xref: /sqlite-3.40.0/src/expr.c (revision a23a873f)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
48     assert( pExpr->op==TK_COLLATE
49          || pExpr->op==TK_IF_NULL_ROW
50          || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
51     pExpr = pExpr->pLeft;
52     assert( pExpr!=0 );
53   }
54   op = pExpr->op;
55   if( op==TK_REGISTER ) op = pExpr->op2;
56   if( (op==TK_COLUMN || op==TK_AGG_COLUMN) && pExpr->y.pTab ){
57     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
58   }
59   if( op==TK_SELECT ){
60     assert( pExpr->flags&EP_xIsSelect );
61     assert( pExpr->x.pSelect!=0 );
62     assert( pExpr->x.pSelect->pEList!=0 );
63     assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
64     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
65   }
66 #ifndef SQLITE_OMIT_CAST
67   if( op==TK_CAST ){
68     assert( !ExprHasProperty(pExpr, EP_IntValue) );
69     return sqlite3AffinityType(pExpr->u.zToken, 0);
70   }
71 #endif
72   if( op==TK_SELECT_COLUMN ){
73     assert( pExpr->pLeft->flags&EP_xIsSelect );
74     return sqlite3ExprAffinity(
75         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
76     );
77   }
78   if( op==TK_VECTOR ){
79     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
80   }
81   return pExpr->affExpr;
82 }
83 
84 /*
85 ** Set the collating sequence for expression pExpr to be the collating
86 ** sequence named by pToken.   Return a pointer to a new Expr node that
87 ** implements the COLLATE operator.
88 **
89 ** If a memory allocation error occurs, that fact is recorded in pParse->db
90 ** and the pExpr parameter is returned unchanged.
91 */
92 Expr *sqlite3ExprAddCollateToken(
93   Parse *pParse,           /* Parsing context */
94   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
95   const Token *pCollName,  /* Name of collating sequence */
96   int dequote              /* True to dequote pCollName */
97 ){
98   assert( pExpr!=0 || pParse->db->mallocFailed );
99   if( pExpr==0 ) return 0;
100   if( pExpr->op==TK_VECTOR ){
101     ExprList *pList = pExpr->x.pList;
102     if( pList!=0 ){
103       int i;
104       for(i=0; i<pList->nExpr; i++){
105         pList->a[i].pExpr = sqlite3ExprAddCollateToken(pParse,pList->a[i].pExpr,
106                                                        pCollName, dequote);
107       }
108     }
109   }else if( pCollName->n>0 ){
110     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
111     if( pNew ){
112       pNew->pLeft = pExpr;
113       pNew->flags |= EP_Collate|EP_Skip;
114       pExpr = pNew;
115     }
116   }
117   return pExpr;
118 }
119 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
120   Token s;
121   assert( zC!=0 );
122   sqlite3TokenInit(&s, (char*)zC);
123   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
124 }
125 
126 /*
127 ** Skip over any TK_COLLATE operators.
128 */
129 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
130   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
131     assert( pExpr->op==TK_COLLATE );
132     pExpr = pExpr->pLeft;
133   }
134   return pExpr;
135 }
136 
137 /*
138 ** Skip over any TK_COLLATE operators and/or any unlikely()
139 ** or likelihood() or likely() functions at the root of an
140 ** expression.
141 */
142 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
143   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
144     if( ExprHasProperty(pExpr, EP_Unlikely) ){
145       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
146       assert( pExpr->x.pList->nExpr>0 );
147       assert( pExpr->op==TK_FUNCTION );
148       pExpr = pExpr->x.pList->a[0].pExpr;
149     }else{
150       assert( pExpr->op==TK_COLLATE );
151       pExpr = pExpr->pLeft;
152     }
153   }
154   return pExpr;
155 }
156 
157 /*
158 ** Return the collation sequence for the expression pExpr. If
159 ** there is no defined collating sequence, return NULL.
160 **
161 ** See also: sqlite3ExprNNCollSeq()
162 **
163 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
164 ** default collation if pExpr has no defined collation.
165 **
166 ** The collating sequence might be determined by a COLLATE operator
167 ** or by the presence of a column with a defined collating sequence.
168 ** COLLATE operators take first precedence.  Left operands take
169 ** precedence over right operands.
170 */
171 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
172   sqlite3 *db = pParse->db;
173   CollSeq *pColl = 0;
174   const Expr *p = pExpr;
175   while( p ){
176     int op = p->op;
177     if( op==TK_REGISTER ) op = p->op2;
178     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
179      && p->y.pTab!=0
180     ){
181       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
182       ** a TK_COLUMN but was previously evaluated and cached in a register */
183       int j = p->iColumn;
184       if( j>=0 ){
185         const char *zColl = p->y.pTab->aCol[j].zColl;
186         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
187       }
188       break;
189     }
190     if( op==TK_CAST || op==TK_UPLUS ){
191       p = p->pLeft;
192       continue;
193     }
194     if( op==TK_VECTOR ){
195       p = p->x.pList->a[0].pExpr;
196       continue;
197     }
198     if( op==TK_COLLATE ){
199       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
200       break;
201     }
202     if( p->flags & EP_Collate ){
203       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
204         p = p->pLeft;
205       }else{
206         Expr *pNext  = p->pRight;
207         /* The Expr.x union is never used at the same time as Expr.pRight */
208         assert( p->x.pList==0 || p->pRight==0 );
209         if( p->x.pList!=0
210          && !db->mallocFailed
211          && ALWAYS(!ExprHasProperty(p, EP_xIsSelect))
212         ){
213           int i;
214           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
215             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
216               pNext = p->x.pList->a[i].pExpr;
217               break;
218             }
219           }
220         }
221         p = pNext;
222       }
223     }else{
224       break;
225     }
226   }
227   if( sqlite3CheckCollSeq(pParse, pColl) ){
228     pColl = 0;
229   }
230   return pColl;
231 }
232 
233 /*
234 ** Return the collation sequence for the expression pExpr. If
235 ** there is no defined collating sequence, return a pointer to the
236 ** defautl collation sequence.
237 **
238 ** See also: sqlite3ExprCollSeq()
239 **
240 ** The sqlite3ExprCollSeq() routine works the same except that it
241 ** returns NULL if there is no defined collation.
242 */
243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
244   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
245   if( p==0 ) p = pParse->db->pDfltColl;
246   assert( p!=0 );
247   return p;
248 }
249 
250 /*
251 ** Return TRUE if the two expressions have equivalent collating sequences.
252 */
253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
254   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
255   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
256   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
257 }
258 
259 /*
260 ** pExpr is an operand of a comparison operator.  aff2 is the
261 ** type affinity of the other operand.  This routine returns the
262 ** type affinity that should be used for the comparison operator.
263 */
264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
265   char aff1 = sqlite3ExprAffinity(pExpr);
266   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
267     /* Both sides of the comparison are columns. If one has numeric
268     ** affinity, use that. Otherwise use no affinity.
269     */
270     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
271       return SQLITE_AFF_NUMERIC;
272     }else{
273       return SQLITE_AFF_BLOB;
274     }
275   }else{
276     /* One side is a column, the other is not. Use the columns affinity. */
277     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
278     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
279   }
280 }
281 
282 /*
283 ** pExpr is a comparison operator.  Return the type affinity that should
284 ** be applied to both operands prior to doing the comparison.
285 */
286 static char comparisonAffinity(const Expr *pExpr){
287   char aff;
288   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
289           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
290           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
291   assert( pExpr->pLeft );
292   aff = sqlite3ExprAffinity(pExpr->pLeft);
293   if( pExpr->pRight ){
294     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
295   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
296     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
297   }else if( aff==0 ){
298     aff = SQLITE_AFF_BLOB;
299   }
300   return aff;
301 }
302 
303 /*
304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
305 ** idx_affinity is the affinity of an indexed column. Return true
306 ** if the index with affinity idx_affinity may be used to implement
307 ** the comparison in pExpr.
308 */
309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
310   char aff = comparisonAffinity(pExpr);
311   if( aff<SQLITE_AFF_TEXT ){
312     return 1;
313   }
314   if( aff==SQLITE_AFF_TEXT ){
315     return idx_affinity==SQLITE_AFF_TEXT;
316   }
317   return sqlite3IsNumericAffinity(idx_affinity);
318 }
319 
320 /*
321 ** Return the P5 value that should be used for a binary comparison
322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
323 */
324 static u8 binaryCompareP5(
325   const Expr *pExpr1,   /* Left operand */
326   const Expr *pExpr2,   /* Right operand */
327   int jumpIfNull        /* Extra flags added to P5 */
328 ){
329   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
330   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
331   return aff;
332 }
333 
334 /*
335 ** Return a pointer to the collation sequence that should be used by
336 ** a binary comparison operator comparing pLeft and pRight.
337 **
338 ** If the left hand expression has a collating sequence type, then it is
339 ** used. Otherwise the collation sequence for the right hand expression
340 ** is used, or the default (BINARY) if neither expression has a collating
341 ** type.
342 **
343 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
344 ** it is not considered.
345 */
346 CollSeq *sqlite3BinaryCompareCollSeq(
347   Parse *pParse,
348   const Expr *pLeft,
349   const Expr *pRight
350 ){
351   CollSeq *pColl;
352   assert( pLeft );
353   if( pLeft->flags & EP_Collate ){
354     pColl = sqlite3ExprCollSeq(pParse, pLeft);
355   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
356     pColl = sqlite3ExprCollSeq(pParse, pRight);
357   }else{
358     pColl = sqlite3ExprCollSeq(pParse, pLeft);
359     if( !pColl ){
360       pColl = sqlite3ExprCollSeq(pParse, pRight);
361     }
362   }
363   return pColl;
364 }
365 
366 /* Expresssion p is a comparison operator.  Return a collation sequence
367 ** appropriate for the comparison operator.
368 **
369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
370 ** However, if the OP_Commuted flag is set, then the order of the operands
371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
372 ** correct collating sequence is found.
373 */
374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
375   if( ExprHasProperty(p, EP_Commuted) ){
376     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
377   }else{
378     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
379   }
380 }
381 
382 /*
383 ** Generate code for a comparison operator.
384 */
385 static int codeCompare(
386   Parse *pParse,    /* The parsing (and code generating) context */
387   Expr *pLeft,      /* The left operand */
388   Expr *pRight,     /* The right operand */
389   int opcode,       /* The comparison opcode */
390   int in1, int in2, /* Register holding operands */
391   int dest,         /* Jump here if true.  */
392   int jumpIfNull,   /* If true, jump if either operand is NULL */
393   int isCommuted    /* The comparison has been commuted */
394 ){
395   int p5;
396   int addr;
397   CollSeq *p4;
398 
399   if( pParse->nErr ) return 0;
400   if( isCommuted ){
401     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
402   }else{
403     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
404   }
405   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
406   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
407                            (void*)p4, P4_COLLSEQ);
408   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
409   return addr;
410 }
411 
412 /*
413 ** Return true if expression pExpr is a vector, or false otherwise.
414 **
415 ** A vector is defined as any expression that results in two or more
416 ** columns of result.  Every TK_VECTOR node is an vector because the
417 ** parser will not generate a TK_VECTOR with fewer than two entries.
418 ** But a TK_SELECT might be either a vector or a scalar. It is only
419 ** considered a vector if it has two or more result columns.
420 */
421 int sqlite3ExprIsVector(Expr *pExpr){
422   return sqlite3ExprVectorSize(pExpr)>1;
423 }
424 
425 /*
426 ** If the expression passed as the only argument is of type TK_VECTOR
427 ** return the number of expressions in the vector. Or, if the expression
428 ** is a sub-select, return the number of columns in the sub-select. For
429 ** any other type of expression, return 1.
430 */
431 int sqlite3ExprVectorSize(Expr *pExpr){
432   u8 op = pExpr->op;
433   if( op==TK_REGISTER ) op = pExpr->op2;
434   if( op==TK_VECTOR ){
435     return pExpr->x.pList->nExpr;
436   }else if( op==TK_SELECT ){
437     return pExpr->x.pSelect->pEList->nExpr;
438   }else{
439     return 1;
440   }
441 }
442 
443 /*
444 ** Return a pointer to a subexpression of pVector that is the i-th
445 ** column of the vector (numbered starting with 0).  The caller must
446 ** ensure that i is within range.
447 **
448 ** If pVector is really a scalar (and "scalar" here includes subqueries
449 ** that return a single column!) then return pVector unmodified.
450 **
451 ** pVector retains ownership of the returned subexpression.
452 **
453 ** If the vector is a (SELECT ...) then the expression returned is
454 ** just the expression for the i-th term of the result set, and may
455 ** not be ready for evaluation because the table cursor has not yet
456 ** been positioned.
457 */
458 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
459   assert( i<sqlite3ExprVectorSize(pVector) );
460   if( sqlite3ExprIsVector(pVector) ){
461     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
462     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
463       return pVector->x.pSelect->pEList->a[i].pExpr;
464     }else{
465       return pVector->x.pList->a[i].pExpr;
466     }
467   }
468   return pVector;
469 }
470 
471 /*
472 ** Compute and return a new Expr object which when passed to
473 ** sqlite3ExprCode() will generate all necessary code to compute
474 ** the iField-th column of the vector expression pVector.
475 **
476 ** It is ok for pVector to be a scalar (as long as iField==0).
477 ** In that case, this routine works like sqlite3ExprDup().
478 **
479 ** The caller owns the returned Expr object and is responsible for
480 ** ensuring that the returned value eventually gets freed.
481 **
482 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
483 ** then the returned object will reference pVector and so pVector must remain
484 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
485 ** or a scalar expression, then it can be deleted as soon as this routine
486 ** returns.
487 **
488 ** A trick to cause a TK_SELECT pVector to be deleted together with
489 ** the returned Expr object is to attach the pVector to the pRight field
490 ** of the returned TK_SELECT_COLUMN Expr object.
491 */
492 Expr *sqlite3ExprForVectorField(
493   Parse *pParse,       /* Parsing context */
494   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
495   int iField           /* Which column of the vector to return */
496 ){
497   Expr *pRet;
498   if( pVector->op==TK_SELECT ){
499     assert( pVector->flags & EP_xIsSelect );
500     /* The TK_SELECT_COLUMN Expr node:
501     **
502     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
503     ** pRight:          not used.  But recursively deleted.
504     ** iColumn:         Index of a column in pVector
505     ** iTable:          0 or the number of columns on the LHS of an assignment
506     ** pLeft->iTable:   First in an array of register holding result, or 0
507     **                  if the result is not yet computed.
508     **
509     ** sqlite3ExprDelete() specifically skips the recursive delete of
510     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
511     ** can be attached to pRight to cause this node to take ownership of
512     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
513     ** with the same pLeft pointer to the pVector, but only one of them
514     ** will own the pVector.
515     */
516     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
517     if( pRet ){
518       pRet->iColumn = iField;
519       pRet->pLeft = pVector;
520     }
521     assert( pRet==0 || pRet->iTable==0 );
522   }else{
523     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
524     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
525     sqlite3RenameTokenRemap(pParse, pRet, pVector);
526   }
527   return pRet;
528 }
529 
530 /*
531 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
532 ** it. Return the register in which the result is stored (or, if the
533 ** sub-select returns more than one column, the first in an array
534 ** of registers in which the result is stored).
535 **
536 ** If pExpr is not a TK_SELECT expression, return 0.
537 */
538 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
539   int reg = 0;
540 #ifndef SQLITE_OMIT_SUBQUERY
541   if( pExpr->op==TK_SELECT ){
542     reg = sqlite3CodeSubselect(pParse, pExpr);
543   }
544 #endif
545   return reg;
546 }
547 
548 /*
549 ** Argument pVector points to a vector expression - either a TK_VECTOR
550 ** or TK_SELECT that returns more than one column. This function returns
551 ** the register number of a register that contains the value of
552 ** element iField of the vector.
553 **
554 ** If pVector is a TK_SELECT expression, then code for it must have
555 ** already been generated using the exprCodeSubselect() routine. In this
556 ** case parameter regSelect should be the first in an array of registers
557 ** containing the results of the sub-select.
558 **
559 ** If pVector is of type TK_VECTOR, then code for the requested field
560 ** is generated. In this case (*pRegFree) may be set to the number of
561 ** a temporary register to be freed by the caller before returning.
562 **
563 ** Before returning, output parameter (*ppExpr) is set to point to the
564 ** Expr object corresponding to element iElem of the vector.
565 */
566 static int exprVectorRegister(
567   Parse *pParse,                  /* Parse context */
568   Expr *pVector,                  /* Vector to extract element from */
569   int iField,                     /* Field to extract from pVector */
570   int regSelect,                  /* First in array of registers */
571   Expr **ppExpr,                  /* OUT: Expression element */
572   int *pRegFree                   /* OUT: Temp register to free */
573 ){
574   u8 op = pVector->op;
575   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
576   if( op==TK_REGISTER ){
577     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
578     return pVector->iTable+iField;
579   }
580   if( op==TK_SELECT ){
581     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
582      return regSelect+iField;
583   }
584   *ppExpr = pVector->x.pList->a[iField].pExpr;
585   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
586 }
587 
588 /*
589 ** Expression pExpr is a comparison between two vector values. Compute
590 ** the result of the comparison (1, 0, or NULL) and write that
591 ** result into register dest.
592 **
593 ** The caller must satisfy the following preconditions:
594 **
595 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
596 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
597 **    otherwise:                op==pExpr->op and p5==0
598 */
599 static void codeVectorCompare(
600   Parse *pParse,        /* Code generator context */
601   Expr *pExpr,          /* The comparison operation */
602   int dest,             /* Write results into this register */
603   u8 op,                /* Comparison operator */
604   u8 p5                 /* SQLITE_NULLEQ or zero */
605 ){
606   Vdbe *v = pParse->pVdbe;
607   Expr *pLeft = pExpr->pLeft;
608   Expr *pRight = pExpr->pRight;
609   int nLeft = sqlite3ExprVectorSize(pLeft);
610   int i;
611   int regLeft = 0;
612   int regRight = 0;
613   u8 opx = op;
614   int addrCmp = 0;
615   int addrDone = sqlite3VdbeMakeLabel(pParse);
616   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
617 
618   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
619   if( pParse->nErr ) return;
620   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
621     sqlite3ErrorMsg(pParse, "row value misused");
622     return;
623   }
624   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
625        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
626        || pExpr->op==TK_LT || pExpr->op==TK_GT
627        || pExpr->op==TK_LE || pExpr->op==TK_GE
628   );
629   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
630             || (pExpr->op==TK_ISNOT && op==TK_NE) );
631   assert( p5==0 || pExpr->op!=op );
632   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
633 
634   if( op==TK_LE ) opx = TK_LT;
635   if( op==TK_GE ) opx = TK_GT;
636   if( op==TK_NE ) opx = TK_EQ;
637 
638   regLeft = exprCodeSubselect(pParse, pLeft);
639   regRight = exprCodeSubselect(pParse, pRight);
640 
641   sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
642   for(i=0; 1 /*Loop exits by "break"*/; i++){
643     int regFree1 = 0, regFree2 = 0;
644     Expr *pL, *pR;
645     int r1, r2;
646     assert( i>=0 && i<nLeft );
647     if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
648     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
649     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
650     addrCmp = sqlite3VdbeCurrentAddr(v);
651     codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
652     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
653     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
654     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
655     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
656     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
657     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
658     sqlite3ReleaseTempReg(pParse, regFree1);
659     sqlite3ReleaseTempReg(pParse, regFree2);
660     if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
661       addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
662       testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
663       testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
664     }
665     if( p5==SQLITE_NULLEQ ){
666       sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
667     }else{
668       sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
669     }
670     if( i==nLeft-1 ){
671       break;
672     }
673     if( opx==TK_EQ ){
674       sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
675     }else{
676       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
677       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
678       if( i==nLeft-2 ) opx = op;
679     }
680   }
681   sqlite3VdbeJumpHere(v, addrCmp);
682   sqlite3VdbeResolveLabel(v, addrDone);
683   if( op==TK_NE ){
684     sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
685   }
686 }
687 
688 #if SQLITE_MAX_EXPR_DEPTH>0
689 /*
690 ** Check that argument nHeight is less than or equal to the maximum
691 ** expression depth allowed. If it is not, leave an error message in
692 ** pParse.
693 */
694 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
695   int rc = SQLITE_OK;
696   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
697   if( nHeight>mxHeight ){
698     sqlite3ErrorMsg(pParse,
699        "Expression tree is too large (maximum depth %d)", mxHeight
700     );
701     rc = SQLITE_ERROR;
702   }
703   return rc;
704 }
705 
706 /* The following three functions, heightOfExpr(), heightOfExprList()
707 ** and heightOfSelect(), are used to determine the maximum height
708 ** of any expression tree referenced by the structure passed as the
709 ** first argument.
710 **
711 ** If this maximum height is greater than the current value pointed
712 ** to by pnHeight, the second parameter, then set *pnHeight to that
713 ** value.
714 */
715 static void heightOfExpr(Expr *p, int *pnHeight){
716   if( p ){
717     if( p->nHeight>*pnHeight ){
718       *pnHeight = p->nHeight;
719     }
720   }
721 }
722 static void heightOfExprList(ExprList *p, int *pnHeight){
723   if( p ){
724     int i;
725     for(i=0; i<p->nExpr; i++){
726       heightOfExpr(p->a[i].pExpr, pnHeight);
727     }
728   }
729 }
730 static void heightOfSelect(Select *pSelect, int *pnHeight){
731   Select *p;
732   for(p=pSelect; p; p=p->pPrior){
733     heightOfExpr(p->pWhere, pnHeight);
734     heightOfExpr(p->pHaving, pnHeight);
735     heightOfExpr(p->pLimit, pnHeight);
736     heightOfExprList(p->pEList, pnHeight);
737     heightOfExprList(p->pGroupBy, pnHeight);
738     heightOfExprList(p->pOrderBy, pnHeight);
739   }
740 }
741 
742 /*
743 ** Set the Expr.nHeight variable in the structure passed as an
744 ** argument. An expression with no children, Expr.pList or
745 ** Expr.pSelect member has a height of 1. Any other expression
746 ** has a height equal to the maximum height of any other
747 ** referenced Expr plus one.
748 **
749 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
750 ** if appropriate.
751 */
752 static void exprSetHeight(Expr *p){
753   int nHeight = 0;
754   heightOfExpr(p->pLeft, &nHeight);
755   heightOfExpr(p->pRight, &nHeight);
756   if( ExprHasProperty(p, EP_xIsSelect) ){
757     heightOfSelect(p->x.pSelect, &nHeight);
758   }else if( p->x.pList ){
759     heightOfExprList(p->x.pList, &nHeight);
760     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
761   }
762   p->nHeight = nHeight + 1;
763 }
764 
765 /*
766 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
767 ** the height is greater than the maximum allowed expression depth,
768 ** leave an error in pParse.
769 **
770 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
771 ** Expr.flags.
772 */
773 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
774   if( pParse->nErr ) return;
775   exprSetHeight(p);
776   sqlite3ExprCheckHeight(pParse, p->nHeight);
777 }
778 
779 /*
780 ** Return the maximum height of any expression tree referenced
781 ** by the select statement passed as an argument.
782 */
783 int sqlite3SelectExprHeight(Select *p){
784   int nHeight = 0;
785   heightOfSelect(p, &nHeight);
786   return nHeight;
787 }
788 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
789 /*
790 ** Propagate all EP_Propagate flags from the Expr.x.pList into
791 ** Expr.flags.
792 */
793 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
794   if( pParse->nErr ) return;
795   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
796     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
797   }
798 }
799 #define exprSetHeight(y)
800 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
801 
802 /*
803 ** This routine is the core allocator for Expr nodes.
804 **
805 ** Construct a new expression node and return a pointer to it.  Memory
806 ** for this node and for the pToken argument is a single allocation
807 ** obtained from sqlite3DbMalloc().  The calling function
808 ** is responsible for making sure the node eventually gets freed.
809 **
810 ** If dequote is true, then the token (if it exists) is dequoted.
811 ** If dequote is false, no dequoting is performed.  The deQuote
812 ** parameter is ignored if pToken is NULL or if the token does not
813 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
814 ** then the EP_DblQuoted flag is set on the expression node.
815 **
816 ** Special case:  If op==TK_INTEGER and pToken points to a string that
817 ** can be translated into a 32-bit integer, then the token is not
818 ** stored in u.zToken.  Instead, the integer values is written
819 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
820 ** is allocated to hold the integer text and the dequote flag is ignored.
821 */
822 Expr *sqlite3ExprAlloc(
823   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
824   int op,                 /* Expression opcode */
825   const Token *pToken,    /* Token argument.  Might be NULL */
826   int dequote             /* True to dequote */
827 ){
828   Expr *pNew;
829   int nExtra = 0;
830   int iValue = 0;
831 
832   assert( db!=0 );
833   if( pToken ){
834     if( op!=TK_INTEGER || pToken->z==0
835           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
836       nExtra = pToken->n+1;
837       assert( iValue>=0 );
838     }
839   }
840   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
841   if( pNew ){
842     memset(pNew, 0, sizeof(Expr));
843     pNew->op = (u8)op;
844     pNew->iAgg = -1;
845     if( pToken ){
846       if( nExtra==0 ){
847         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
848         pNew->u.iValue = iValue;
849       }else{
850         pNew->u.zToken = (char*)&pNew[1];
851         assert( pToken->z!=0 || pToken->n==0 );
852         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
853         pNew->u.zToken[pToken->n] = 0;
854         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
855           sqlite3DequoteExpr(pNew);
856         }
857       }
858     }
859 #if SQLITE_MAX_EXPR_DEPTH>0
860     pNew->nHeight = 1;
861 #endif
862   }
863   return pNew;
864 }
865 
866 /*
867 ** Allocate a new expression node from a zero-terminated token that has
868 ** already been dequoted.
869 */
870 Expr *sqlite3Expr(
871   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
872   int op,                 /* Expression opcode */
873   const char *zToken      /* Token argument.  Might be NULL */
874 ){
875   Token x;
876   x.z = zToken;
877   x.n = sqlite3Strlen30(zToken);
878   return sqlite3ExprAlloc(db, op, &x, 0);
879 }
880 
881 /*
882 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
883 **
884 ** If pRoot==NULL that means that a memory allocation error has occurred.
885 ** In that case, delete the subtrees pLeft and pRight.
886 */
887 void sqlite3ExprAttachSubtrees(
888   sqlite3 *db,
889   Expr *pRoot,
890   Expr *pLeft,
891   Expr *pRight
892 ){
893   if( pRoot==0 ){
894     assert( db->mallocFailed );
895     sqlite3ExprDelete(db, pLeft);
896     sqlite3ExprDelete(db, pRight);
897   }else{
898     if( pRight ){
899       pRoot->pRight = pRight;
900       pRoot->flags |= EP_Propagate & pRight->flags;
901     }
902     if( pLeft ){
903       pRoot->pLeft = pLeft;
904       pRoot->flags |= EP_Propagate & pLeft->flags;
905     }
906     exprSetHeight(pRoot);
907   }
908 }
909 
910 /*
911 ** Allocate an Expr node which joins as many as two subtrees.
912 **
913 ** One or both of the subtrees can be NULL.  Return a pointer to the new
914 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
915 ** free the subtrees and return NULL.
916 */
917 Expr *sqlite3PExpr(
918   Parse *pParse,          /* Parsing context */
919   int op,                 /* Expression opcode */
920   Expr *pLeft,            /* Left operand */
921   Expr *pRight            /* Right operand */
922 ){
923   Expr *p;
924   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
925   if( p ){
926     memset(p, 0, sizeof(Expr));
927     p->op = op & 0xff;
928     p->iAgg = -1;
929     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
930     sqlite3ExprCheckHeight(pParse, p->nHeight);
931   }else{
932     sqlite3ExprDelete(pParse->db, pLeft);
933     sqlite3ExprDelete(pParse->db, pRight);
934   }
935   return p;
936 }
937 
938 /*
939 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
940 ** do a memory allocation failure) then delete the pSelect object.
941 */
942 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
943   if( pExpr ){
944     pExpr->x.pSelect = pSelect;
945     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
946     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
947   }else{
948     assert( pParse->db->mallocFailed );
949     sqlite3SelectDelete(pParse->db, pSelect);
950   }
951 }
952 
953 
954 /*
955 ** Join two expressions using an AND operator.  If either expression is
956 ** NULL, then just return the other expression.
957 **
958 ** If one side or the other of the AND is known to be false, then instead
959 ** of returning an AND expression, just return a constant expression with
960 ** a value of false.
961 */
962 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
963   sqlite3 *db = pParse->db;
964   if( pLeft==0  ){
965     return pRight;
966   }else if( pRight==0 ){
967     return pLeft;
968   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
969          && !IN_RENAME_OBJECT
970   ){
971     sqlite3ExprDeferredDelete(pParse, pLeft);
972     sqlite3ExprDeferredDelete(pParse, pRight);
973     return sqlite3Expr(db, TK_INTEGER, "0");
974   }else{
975     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
976   }
977 }
978 
979 /*
980 ** Construct a new expression node for a function with multiple
981 ** arguments.
982 */
983 Expr *sqlite3ExprFunction(
984   Parse *pParse,        /* Parsing context */
985   ExprList *pList,      /* Argument list */
986   Token *pToken,        /* Name of the function */
987   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
988 ){
989   Expr *pNew;
990   sqlite3 *db = pParse->db;
991   assert( pToken );
992   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
993   if( pNew==0 ){
994     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
995     return 0;
996   }
997   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
998     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
999   }
1000   pNew->x.pList = pList;
1001   ExprSetProperty(pNew, EP_HasFunc);
1002   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
1003   sqlite3ExprSetHeightAndFlags(pParse, pNew);
1004   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
1005   return pNew;
1006 }
1007 
1008 /*
1009 ** Check to see if a function is usable according to current access
1010 ** rules:
1011 **
1012 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
1013 **
1014 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
1015 **                                top-level SQL
1016 **
1017 ** If the function is not usable, create an error.
1018 */
1019 void sqlite3ExprFunctionUsable(
1020   Parse *pParse,         /* Parsing and code generating context */
1021   Expr *pExpr,           /* The function invocation */
1022   FuncDef *pDef          /* The function being invoked */
1023 ){
1024   assert( !IN_RENAME_OBJECT );
1025   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1026   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1027     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1028      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1029     ){
1030       /* Functions prohibited in triggers and views if:
1031       **     (1) tagged with SQLITE_DIRECTONLY
1032       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1033       **         is tagged with SQLITE_FUNC_UNSAFE) and
1034       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1035       **         that the schema is possibly tainted).
1036       */
1037       sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName);
1038     }
1039   }
1040 }
1041 
1042 /*
1043 ** Assign a variable number to an expression that encodes a wildcard
1044 ** in the original SQL statement.
1045 **
1046 ** Wildcards consisting of a single "?" are assigned the next sequential
1047 ** variable number.
1048 **
1049 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1050 ** sure "nnn" is not too big to avoid a denial of service attack when
1051 ** the SQL statement comes from an external source.
1052 **
1053 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1054 ** as the previous instance of the same wildcard.  Or if this is the first
1055 ** instance of the wildcard, the next sequential variable number is
1056 ** assigned.
1057 */
1058 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1059   sqlite3 *db = pParse->db;
1060   const char *z;
1061   ynVar x;
1062 
1063   if( pExpr==0 ) return;
1064   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1065   z = pExpr->u.zToken;
1066   assert( z!=0 );
1067   assert( z[0]!=0 );
1068   assert( n==(u32)sqlite3Strlen30(z) );
1069   if( z[1]==0 ){
1070     /* Wildcard of the form "?".  Assign the next variable number */
1071     assert( z[0]=='?' );
1072     x = (ynVar)(++pParse->nVar);
1073   }else{
1074     int doAdd = 0;
1075     if( z[0]=='?' ){
1076       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1077       ** use it as the variable number */
1078       i64 i;
1079       int bOk;
1080       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1081         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1082         bOk = 1;
1083       }else{
1084         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1085       }
1086       testcase( i==0 );
1087       testcase( i==1 );
1088       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1089       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1090       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1091         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1092             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1093         return;
1094       }
1095       x = (ynVar)i;
1096       if( x>pParse->nVar ){
1097         pParse->nVar = (int)x;
1098         doAdd = 1;
1099       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1100         doAdd = 1;
1101       }
1102     }else{
1103       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1104       ** number as the prior appearance of the same name, or if the name
1105       ** has never appeared before, reuse the same variable number
1106       */
1107       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1108       if( x==0 ){
1109         x = (ynVar)(++pParse->nVar);
1110         doAdd = 1;
1111       }
1112     }
1113     if( doAdd ){
1114       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1115     }
1116   }
1117   pExpr->iColumn = x;
1118   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1119     sqlite3ErrorMsg(pParse, "too many SQL variables");
1120   }
1121 }
1122 
1123 /*
1124 ** Recursively delete an expression tree.
1125 */
1126 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1127   assert( p!=0 );
1128   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1129   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1130 
1131   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1132   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1133           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1134 #ifdef SQLITE_DEBUG
1135   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1136     assert( p->pLeft==0 );
1137     assert( p->pRight==0 );
1138     assert( p->x.pSelect==0 );
1139   }
1140 #endif
1141   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1142     /* The Expr.x union is never used at the same time as Expr.pRight */
1143     assert( p->x.pList==0 || p->pRight==0 );
1144     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1145     if( p->pRight ){
1146       assert( !ExprHasProperty(p, EP_WinFunc) );
1147       sqlite3ExprDeleteNN(db, p->pRight);
1148     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1149       assert( !ExprHasProperty(p, EP_WinFunc) );
1150       sqlite3SelectDelete(db, p->x.pSelect);
1151     }else{
1152       sqlite3ExprListDelete(db, p->x.pList);
1153 #ifndef SQLITE_OMIT_WINDOWFUNC
1154       if( ExprHasProperty(p, EP_WinFunc) ){
1155         sqlite3WindowDelete(db, p->y.pWin);
1156       }
1157 #endif
1158     }
1159   }
1160   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1161   if( !ExprHasProperty(p, EP_Static) ){
1162     sqlite3DbFreeNN(db, p);
1163   }
1164 }
1165 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1166   if( p ) sqlite3ExprDeleteNN(db, p);
1167 }
1168 
1169 
1170 /*
1171 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1172 ** This is similar to sqlite3ExprDelete() except that the delete is
1173 ** deferred untilthe pParse is deleted.
1174 **
1175 ** The pExpr might be deleted immediately on an OOM error.
1176 **
1177 ** The deferred delete is (currently) implemented by adding the
1178 ** pExpr to the pParse->pConstExpr list with a register number of 0.
1179 */
1180 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
1181   pParse->pConstExpr =
1182       sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
1183 }
1184 
1185 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1186 ** expression.
1187 */
1188 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1189   if( p ){
1190     if( IN_RENAME_OBJECT ){
1191       sqlite3RenameExprUnmap(pParse, p);
1192     }
1193     sqlite3ExprDeleteNN(pParse->db, p);
1194   }
1195 }
1196 
1197 /*
1198 ** Return the number of bytes allocated for the expression structure
1199 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1200 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1201 */
1202 static int exprStructSize(Expr *p){
1203   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1204   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1205   return EXPR_FULLSIZE;
1206 }
1207 
1208 /*
1209 ** The dupedExpr*Size() routines each return the number of bytes required
1210 ** to store a copy of an expression or expression tree.  They differ in
1211 ** how much of the tree is measured.
1212 **
1213 **     dupedExprStructSize()     Size of only the Expr structure
1214 **     dupedExprNodeSize()       Size of Expr + space for token
1215 **     dupedExprSize()           Expr + token + subtree components
1216 **
1217 ***************************************************************************
1218 **
1219 ** The dupedExprStructSize() function returns two values OR-ed together:
1220 ** (1) the space required for a copy of the Expr structure only and
1221 ** (2) the EP_xxx flags that indicate what the structure size should be.
1222 ** The return values is always one of:
1223 **
1224 **      EXPR_FULLSIZE
1225 **      EXPR_REDUCEDSIZE   | EP_Reduced
1226 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1227 **
1228 ** The size of the structure can be found by masking the return value
1229 ** of this routine with 0xfff.  The flags can be found by masking the
1230 ** return value with EP_Reduced|EP_TokenOnly.
1231 **
1232 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1233 ** (unreduced) Expr objects as they or originally constructed by the parser.
1234 ** During expression analysis, extra information is computed and moved into
1235 ** later parts of the Expr object and that extra information might get chopped
1236 ** off if the expression is reduced.  Note also that it does not work to
1237 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1238 ** to reduce a pristine expression tree from the parser.  The implementation
1239 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1240 ** to enforce this constraint.
1241 */
1242 static int dupedExprStructSize(Expr *p, int flags){
1243   int nSize;
1244   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1245   assert( EXPR_FULLSIZE<=0xfff );
1246   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1247   if( 0==flags || p->op==TK_SELECT_COLUMN
1248 #ifndef SQLITE_OMIT_WINDOWFUNC
1249    || ExprHasProperty(p, EP_WinFunc)
1250 #endif
1251   ){
1252     nSize = EXPR_FULLSIZE;
1253   }else{
1254     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1255     assert( !ExprHasProperty(p, EP_FromJoin) );
1256     assert( !ExprHasProperty(p, EP_MemToken) );
1257     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1258     if( p->pLeft || p->x.pList ){
1259       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1260     }else{
1261       assert( p->pRight==0 );
1262       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1263     }
1264   }
1265   return nSize;
1266 }
1267 
1268 /*
1269 ** This function returns the space in bytes required to store the copy
1270 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1271 ** string is defined.)
1272 */
1273 static int dupedExprNodeSize(Expr *p, int flags){
1274   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1275   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1276     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1277   }
1278   return ROUND8(nByte);
1279 }
1280 
1281 /*
1282 ** Return the number of bytes required to create a duplicate of the
1283 ** expression passed as the first argument. The second argument is a
1284 ** mask containing EXPRDUP_XXX flags.
1285 **
1286 ** The value returned includes space to create a copy of the Expr struct
1287 ** itself and the buffer referred to by Expr.u.zToken, if any.
1288 **
1289 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1290 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1291 ** and Expr.pRight variables (but not for any structures pointed to or
1292 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1293 */
1294 static int dupedExprSize(Expr *p, int flags){
1295   int nByte = 0;
1296   if( p ){
1297     nByte = dupedExprNodeSize(p, flags);
1298     if( flags&EXPRDUP_REDUCE ){
1299       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1300     }
1301   }
1302   return nByte;
1303 }
1304 
1305 /*
1306 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1307 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1308 ** to store the copy of expression p, the copies of p->u.zToken
1309 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1310 ** if any. Before returning, *pzBuffer is set to the first byte past the
1311 ** portion of the buffer copied into by this function.
1312 */
1313 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1314   Expr *pNew;           /* Value to return */
1315   u8 *zAlloc;           /* Memory space from which to build Expr object */
1316   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1317 
1318   assert( db!=0 );
1319   assert( p );
1320   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1321   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1322 
1323   /* Figure out where to write the new Expr structure. */
1324   if( pzBuffer ){
1325     zAlloc = *pzBuffer;
1326     staticFlag = EP_Static;
1327   }else{
1328     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1329     staticFlag = 0;
1330   }
1331   pNew = (Expr *)zAlloc;
1332 
1333   if( pNew ){
1334     /* Set nNewSize to the size allocated for the structure pointed to
1335     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1336     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1337     ** by the copy of the p->u.zToken string (if any).
1338     */
1339     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1340     const int nNewSize = nStructSize & 0xfff;
1341     int nToken;
1342     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1343       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1344     }else{
1345       nToken = 0;
1346     }
1347     if( dupFlags ){
1348       assert( ExprHasProperty(p, EP_Reduced)==0 );
1349       memcpy(zAlloc, p, nNewSize);
1350     }else{
1351       u32 nSize = (u32)exprStructSize(p);
1352       memcpy(zAlloc, p, nSize);
1353       if( nSize<EXPR_FULLSIZE ){
1354         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1355       }
1356     }
1357 
1358     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1359     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1360     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1361     pNew->flags |= staticFlag;
1362     ExprClearVVAProperties(pNew);
1363     if( dupFlags ){
1364       ExprSetVVAProperty(pNew, EP_Immutable);
1365     }
1366 
1367     /* Copy the p->u.zToken string, if any. */
1368     if( nToken ){
1369       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1370       memcpy(zToken, p->u.zToken, nToken);
1371     }
1372 
1373     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1374       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1375       if( ExprHasProperty(p, EP_xIsSelect) ){
1376         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1377       }else{
1378         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1379       }
1380     }
1381 
1382     /* Fill in pNew->pLeft and pNew->pRight. */
1383     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1384       zAlloc += dupedExprNodeSize(p, dupFlags);
1385       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1386         pNew->pLeft = p->pLeft ?
1387                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1388         pNew->pRight = p->pRight ?
1389                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1390       }
1391 #ifndef SQLITE_OMIT_WINDOWFUNC
1392       if( ExprHasProperty(p, EP_WinFunc) ){
1393         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1394         assert( ExprHasProperty(pNew, EP_WinFunc) );
1395       }
1396 #endif /* SQLITE_OMIT_WINDOWFUNC */
1397       if( pzBuffer ){
1398         *pzBuffer = zAlloc;
1399       }
1400     }else{
1401       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1402         if( pNew->op==TK_SELECT_COLUMN ){
1403           pNew->pLeft = p->pLeft;
1404           assert( p->iColumn==0 || p->pRight==0 );
1405           assert( p->pRight==0  || p->pRight==p->pLeft
1406                                 || ExprHasProperty(p->pLeft, EP_Subquery) );
1407         }else{
1408           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1409         }
1410         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1411       }
1412     }
1413   }
1414   return pNew;
1415 }
1416 
1417 /*
1418 ** Create and return a deep copy of the object passed as the second
1419 ** argument. If an OOM condition is encountered, NULL is returned
1420 ** and the db->mallocFailed flag set.
1421 */
1422 #ifndef SQLITE_OMIT_CTE
1423 static With *withDup(sqlite3 *db, With *p){
1424   With *pRet = 0;
1425   if( p ){
1426     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1427     pRet = sqlite3DbMallocZero(db, nByte);
1428     if( pRet ){
1429       int i;
1430       pRet->nCte = p->nCte;
1431       for(i=0; i<p->nCte; i++){
1432         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1433         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1434         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1435       }
1436     }
1437   }
1438   return pRet;
1439 }
1440 #else
1441 # define withDup(x,y) 0
1442 #endif
1443 
1444 #ifndef SQLITE_OMIT_WINDOWFUNC
1445 /*
1446 ** The gatherSelectWindows() procedure and its helper routine
1447 ** gatherSelectWindowsCallback() are used to scan all the expressions
1448 ** an a newly duplicated SELECT statement and gather all of the Window
1449 ** objects found there, assembling them onto the linked list at Select->pWin.
1450 */
1451 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1452   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1453     Select *pSelect = pWalker->u.pSelect;
1454     Window *pWin = pExpr->y.pWin;
1455     assert( pWin );
1456     assert( IsWindowFunc(pExpr) );
1457     assert( pWin->ppThis==0 );
1458     sqlite3WindowLink(pSelect, pWin);
1459   }
1460   return WRC_Continue;
1461 }
1462 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1463   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1464 }
1465 static void gatherSelectWindows(Select *p){
1466   Walker w;
1467   w.xExprCallback = gatherSelectWindowsCallback;
1468   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1469   w.xSelectCallback2 = 0;
1470   w.pParse = 0;
1471   w.u.pSelect = p;
1472   sqlite3WalkSelect(&w, p);
1473 }
1474 #endif
1475 
1476 
1477 /*
1478 ** The following group of routines make deep copies of expressions,
1479 ** expression lists, ID lists, and select statements.  The copies can
1480 ** be deleted (by being passed to their respective ...Delete() routines)
1481 ** without effecting the originals.
1482 **
1483 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1484 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1485 ** by subsequent calls to sqlite*ListAppend() routines.
1486 **
1487 ** Any tables that the SrcList might point to are not duplicated.
1488 **
1489 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1490 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1491 ** truncated version of the usual Expr structure that will be stored as
1492 ** part of the in-memory representation of the database schema.
1493 */
1494 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1495   assert( flags==0 || flags==EXPRDUP_REDUCE );
1496   return p ? exprDup(db, p, flags, 0) : 0;
1497 }
1498 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1499   ExprList *pNew;
1500   struct ExprList_item *pItem, *pOldItem;
1501   int i;
1502   Expr *pPriorSelectCol = 0;
1503   assert( db!=0 );
1504   if( p==0 ) return 0;
1505   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1506   if( pNew==0 ) return 0;
1507   pNew->nExpr = p->nExpr;
1508   pNew->nAlloc = p->nAlloc;
1509   pItem = pNew->a;
1510   pOldItem = p->a;
1511   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1512     Expr *pOldExpr = pOldItem->pExpr;
1513     Expr *pNewExpr;
1514     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1515     if( pOldExpr
1516      && pOldExpr->op==TK_SELECT_COLUMN
1517      && (pNewExpr = pItem->pExpr)!=0
1518     ){
1519       assert( pNewExpr->iColumn==0 || i>0 );
1520       if( pNewExpr->iColumn==0 ){
1521         assert( pOldExpr->pLeft==pOldExpr->pRight );
1522         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1523       }else{
1524         assert( i>0 );
1525         assert( pItem[-1].pExpr!=0 );
1526         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1527         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1528         pNewExpr->pLeft = pPriorSelectCol;
1529       }
1530     }
1531     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1532     pItem->sortFlags = pOldItem->sortFlags;
1533     pItem->eEName = pOldItem->eEName;
1534     pItem->done = 0;
1535     pItem->bNulls = pOldItem->bNulls;
1536     pItem->bSorterRef = pOldItem->bSorterRef;
1537     pItem->u = pOldItem->u;
1538   }
1539   return pNew;
1540 }
1541 
1542 /*
1543 ** If cursors, triggers, views and subqueries are all omitted from
1544 ** the build, then none of the following routines, except for
1545 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1546 ** called with a NULL argument.
1547 */
1548 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1549  || !defined(SQLITE_OMIT_SUBQUERY)
1550 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1551   SrcList *pNew;
1552   int i;
1553   int nByte;
1554   assert( db!=0 );
1555   if( p==0 ) return 0;
1556   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1557   pNew = sqlite3DbMallocRawNN(db, nByte );
1558   if( pNew==0 ) return 0;
1559   pNew->nSrc = pNew->nAlloc = p->nSrc;
1560   for(i=0; i<p->nSrc; i++){
1561     SrcItem *pNewItem = &pNew->a[i];
1562     SrcItem *pOldItem = &p->a[i];
1563     Table *pTab;
1564     pNewItem->pSchema = pOldItem->pSchema;
1565     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1566     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1567     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1568     pNewItem->fg = pOldItem->fg;
1569     pNewItem->iCursor = pOldItem->iCursor;
1570     pNewItem->addrFillSub = pOldItem->addrFillSub;
1571     pNewItem->regReturn = pOldItem->regReturn;
1572     if( pNewItem->fg.isIndexedBy ){
1573       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1574     }
1575     pNewItem->u2 = pOldItem->u2;
1576     if( pNewItem->fg.isCte ){
1577       pNewItem->u2.pCteUse->nUse++;
1578     }
1579     if( pNewItem->fg.isTabFunc ){
1580       pNewItem->u1.pFuncArg =
1581           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1582     }
1583     pTab = pNewItem->pTab = pOldItem->pTab;
1584     if( pTab ){
1585       pTab->nTabRef++;
1586     }
1587     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1588     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1589     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1590     pNewItem->colUsed = pOldItem->colUsed;
1591   }
1592   return pNew;
1593 }
1594 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1595   IdList *pNew;
1596   int i;
1597   assert( db!=0 );
1598   if( p==0 ) return 0;
1599   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1600   if( pNew==0 ) return 0;
1601   pNew->nId = p->nId;
1602   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1603   if( pNew->a==0 ){
1604     sqlite3DbFreeNN(db, pNew);
1605     return 0;
1606   }
1607   /* Note that because the size of the allocation for p->a[] is not
1608   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1609   ** on the duplicate created by this function. */
1610   for(i=0; i<p->nId; i++){
1611     struct IdList_item *pNewItem = &pNew->a[i];
1612     struct IdList_item *pOldItem = &p->a[i];
1613     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1614     pNewItem->idx = pOldItem->idx;
1615   }
1616   return pNew;
1617 }
1618 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1619   Select *pRet = 0;
1620   Select *pNext = 0;
1621   Select **pp = &pRet;
1622   Select *p;
1623 
1624   assert( db!=0 );
1625   for(p=pDup; p; p=p->pPrior){
1626     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1627     if( pNew==0 ) break;
1628     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1629     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1630     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1631     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1632     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1633     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1634     pNew->op = p->op;
1635     pNew->pNext = pNext;
1636     pNew->pPrior = 0;
1637     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1638     pNew->iLimit = 0;
1639     pNew->iOffset = 0;
1640     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1641     pNew->addrOpenEphm[0] = -1;
1642     pNew->addrOpenEphm[1] = -1;
1643     pNew->nSelectRow = p->nSelectRow;
1644     pNew->pWith = withDup(db, p->pWith);
1645 #ifndef SQLITE_OMIT_WINDOWFUNC
1646     pNew->pWin = 0;
1647     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1648     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1649 #endif
1650     pNew->selId = p->selId;
1651     if( db->mallocFailed ){
1652       /* Any prior OOM might have left the Select object incomplete.
1653       ** Delete the whole thing rather than allow an incomplete Select
1654       ** to be used by the code generator. */
1655       pNew->pNext = 0;
1656       sqlite3SelectDelete(db, pNew);
1657       break;
1658     }
1659     *pp = pNew;
1660     pp = &pNew->pPrior;
1661     pNext = pNew;
1662   }
1663 
1664   return pRet;
1665 }
1666 #else
1667 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1668   assert( p==0 );
1669   return 0;
1670 }
1671 #endif
1672 
1673 
1674 /*
1675 ** Add a new element to the end of an expression list.  If pList is
1676 ** initially NULL, then create a new expression list.
1677 **
1678 ** The pList argument must be either NULL or a pointer to an ExprList
1679 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1680 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1681 ** Reason:  This routine assumes that the number of slots in pList->a[]
1682 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1683 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1684 **
1685 ** If a memory allocation error occurs, the entire list is freed and
1686 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1687 ** that the new entry was successfully appended.
1688 */
1689 static const struct ExprList_item zeroItem = {0};
1690 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
1691   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1692   Expr *pExpr             /* Expression to be appended. Might be NULL */
1693 ){
1694   struct ExprList_item *pItem;
1695   ExprList *pList;
1696 
1697   pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
1698   if( pList==0 ){
1699     sqlite3ExprDelete(db, pExpr);
1700     return 0;
1701   }
1702   pList->nAlloc = 4;
1703   pList->nExpr = 1;
1704   pItem = &pList->a[0];
1705   *pItem = zeroItem;
1706   pItem->pExpr = pExpr;
1707   return pList;
1708 }
1709 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
1710   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1711   ExprList *pList,        /* List to which to append. Might be NULL */
1712   Expr *pExpr             /* Expression to be appended. Might be NULL */
1713 ){
1714   struct ExprList_item *pItem;
1715   ExprList *pNew;
1716   pList->nAlloc *= 2;
1717   pNew = sqlite3DbRealloc(db, pList,
1718        sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
1719   if( pNew==0 ){
1720     sqlite3ExprListDelete(db, pList);
1721     sqlite3ExprDelete(db, pExpr);
1722     return 0;
1723   }else{
1724     pList = pNew;
1725   }
1726   pItem = &pList->a[pList->nExpr++];
1727   *pItem = zeroItem;
1728   pItem->pExpr = pExpr;
1729   return pList;
1730 }
1731 ExprList *sqlite3ExprListAppend(
1732   Parse *pParse,          /* Parsing context */
1733   ExprList *pList,        /* List to which to append. Might be NULL */
1734   Expr *pExpr             /* Expression to be appended. Might be NULL */
1735 ){
1736   struct ExprList_item *pItem;
1737   if( pList==0 ){
1738     return sqlite3ExprListAppendNew(pParse->db,pExpr);
1739   }
1740   if( pList->nAlloc<pList->nExpr+1 ){
1741     return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
1742   }
1743   pItem = &pList->a[pList->nExpr++];
1744   *pItem = zeroItem;
1745   pItem->pExpr = pExpr;
1746   return pList;
1747 }
1748 
1749 /*
1750 ** pColumns and pExpr form a vector assignment which is part of the SET
1751 ** clause of an UPDATE statement.  Like this:
1752 **
1753 **        (a,b,c) = (expr1,expr2,expr3)
1754 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1755 **
1756 ** For each term of the vector assignment, append new entries to the
1757 ** expression list pList.  In the case of a subquery on the RHS, append
1758 ** TK_SELECT_COLUMN expressions.
1759 */
1760 ExprList *sqlite3ExprListAppendVector(
1761   Parse *pParse,         /* Parsing context */
1762   ExprList *pList,       /* List to which to append. Might be NULL */
1763   IdList *pColumns,      /* List of names of LHS of the assignment */
1764   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1765 ){
1766   sqlite3 *db = pParse->db;
1767   int n;
1768   int i;
1769   int iFirst = pList ? pList->nExpr : 0;
1770   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1771   ** exit prior to this routine being invoked */
1772   if( NEVER(pColumns==0) ) goto vector_append_error;
1773   if( pExpr==0 ) goto vector_append_error;
1774 
1775   /* If the RHS is a vector, then we can immediately check to see that
1776   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1777   ** wildcards ("*") in the result set of the SELECT must be expanded before
1778   ** we can do the size check, so defer the size check until code generation.
1779   */
1780   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1781     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1782                     pColumns->nId, n);
1783     goto vector_append_error;
1784   }
1785 
1786   for(i=0; i<pColumns->nId; i++){
1787     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1788     assert( pSubExpr!=0 || db->mallocFailed );
1789     assert( pSubExpr==0 || pSubExpr->iTable==0 );
1790     if( pSubExpr==0 ) continue;
1791     pSubExpr->iTable = pColumns->nId;
1792     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1793     if( pList ){
1794       assert( pList->nExpr==iFirst+i+1 );
1795       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1796       pColumns->a[i].zName = 0;
1797     }
1798   }
1799 
1800   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1801     Expr *pFirst = pList->a[iFirst].pExpr;
1802     assert( pFirst!=0 );
1803     assert( pFirst->op==TK_SELECT_COLUMN );
1804 
1805     /* Store the SELECT statement in pRight so it will be deleted when
1806     ** sqlite3ExprListDelete() is called */
1807     pFirst->pRight = pExpr;
1808     pExpr = 0;
1809 
1810     /* Remember the size of the LHS in iTable so that we can check that
1811     ** the RHS and LHS sizes match during code generation. */
1812     pFirst->iTable = pColumns->nId;
1813   }
1814 
1815 vector_append_error:
1816   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1817   sqlite3IdListDelete(db, pColumns);
1818   return pList;
1819 }
1820 
1821 /*
1822 ** Set the sort order for the last element on the given ExprList.
1823 */
1824 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1825   struct ExprList_item *pItem;
1826   if( p==0 ) return;
1827   assert( p->nExpr>0 );
1828 
1829   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1830   assert( iSortOrder==SQLITE_SO_UNDEFINED
1831        || iSortOrder==SQLITE_SO_ASC
1832        || iSortOrder==SQLITE_SO_DESC
1833   );
1834   assert( eNulls==SQLITE_SO_UNDEFINED
1835        || eNulls==SQLITE_SO_ASC
1836        || eNulls==SQLITE_SO_DESC
1837   );
1838 
1839   pItem = &p->a[p->nExpr-1];
1840   assert( pItem->bNulls==0 );
1841   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1842     iSortOrder = SQLITE_SO_ASC;
1843   }
1844   pItem->sortFlags = (u8)iSortOrder;
1845 
1846   if( eNulls!=SQLITE_SO_UNDEFINED ){
1847     pItem->bNulls = 1;
1848     if( iSortOrder!=eNulls ){
1849       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1850     }
1851   }
1852 }
1853 
1854 /*
1855 ** Set the ExprList.a[].zEName element of the most recently added item
1856 ** on the expression list.
1857 **
1858 ** pList might be NULL following an OOM error.  But pName should never be
1859 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1860 ** is set.
1861 */
1862 void sqlite3ExprListSetName(
1863   Parse *pParse,          /* Parsing context */
1864   ExprList *pList,        /* List to which to add the span. */
1865   Token *pName,           /* Name to be added */
1866   int dequote             /* True to cause the name to be dequoted */
1867 ){
1868   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1869   assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1870   if( pList ){
1871     struct ExprList_item *pItem;
1872     assert( pList->nExpr>0 );
1873     pItem = &pList->a[pList->nExpr-1];
1874     assert( pItem->zEName==0 );
1875     assert( pItem->eEName==ENAME_NAME );
1876     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1877     if( dequote ){
1878       /* If dequote==0, then pName->z does not point to part of a DDL
1879       ** statement handled by the parser. And so no token need be added
1880       ** to the token-map.  */
1881       sqlite3Dequote(pItem->zEName);
1882       if( IN_RENAME_OBJECT ){
1883         sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName);
1884       }
1885     }
1886   }
1887 }
1888 
1889 /*
1890 ** Set the ExprList.a[].zSpan element of the most recently added item
1891 ** on the expression list.
1892 **
1893 ** pList might be NULL following an OOM error.  But pSpan should never be
1894 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1895 ** is set.
1896 */
1897 void sqlite3ExprListSetSpan(
1898   Parse *pParse,          /* Parsing context */
1899   ExprList *pList,        /* List to which to add the span. */
1900   const char *zStart,     /* Start of the span */
1901   const char *zEnd        /* End of the span */
1902 ){
1903   sqlite3 *db = pParse->db;
1904   assert( pList!=0 || db->mallocFailed!=0 );
1905   if( pList ){
1906     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1907     assert( pList->nExpr>0 );
1908     if( pItem->zEName==0 ){
1909       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
1910       pItem->eEName = ENAME_SPAN;
1911     }
1912   }
1913 }
1914 
1915 /*
1916 ** If the expression list pEList contains more than iLimit elements,
1917 ** leave an error message in pParse.
1918 */
1919 void sqlite3ExprListCheckLength(
1920   Parse *pParse,
1921   ExprList *pEList,
1922   const char *zObject
1923 ){
1924   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1925   testcase( pEList && pEList->nExpr==mx );
1926   testcase( pEList && pEList->nExpr==mx+1 );
1927   if( pEList && pEList->nExpr>mx ){
1928     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1929   }
1930 }
1931 
1932 /*
1933 ** Delete an entire expression list.
1934 */
1935 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1936   int i = pList->nExpr;
1937   struct ExprList_item *pItem =  pList->a;
1938   assert( pList->nExpr>0 );
1939   do{
1940     sqlite3ExprDelete(db, pItem->pExpr);
1941     sqlite3DbFree(db, pItem->zEName);
1942     pItem++;
1943   }while( --i>0 );
1944   sqlite3DbFreeNN(db, pList);
1945 }
1946 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1947   if( pList ) exprListDeleteNN(db, pList);
1948 }
1949 
1950 /*
1951 ** Return the bitwise-OR of all Expr.flags fields in the given
1952 ** ExprList.
1953 */
1954 u32 sqlite3ExprListFlags(const ExprList *pList){
1955   int i;
1956   u32 m = 0;
1957   assert( pList!=0 );
1958   for(i=0; i<pList->nExpr; i++){
1959      Expr *pExpr = pList->a[i].pExpr;
1960      assert( pExpr!=0 );
1961      m |= pExpr->flags;
1962   }
1963   return m;
1964 }
1965 
1966 /*
1967 ** This is a SELECT-node callback for the expression walker that
1968 ** always "fails".  By "fail" in this case, we mean set
1969 ** pWalker->eCode to zero and abort.
1970 **
1971 ** This callback is used by multiple expression walkers.
1972 */
1973 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1974   UNUSED_PARAMETER(NotUsed);
1975   pWalker->eCode = 0;
1976   return WRC_Abort;
1977 }
1978 
1979 /*
1980 ** Check the input string to see if it is "true" or "false" (in any case).
1981 **
1982 **       If the string is....           Return
1983 **         "true"                         EP_IsTrue
1984 **         "false"                        EP_IsFalse
1985 **         anything else                  0
1986 */
1987 u32 sqlite3IsTrueOrFalse(const char *zIn){
1988   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
1989   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
1990   return 0;
1991 }
1992 
1993 
1994 /*
1995 ** If the input expression is an ID with the name "true" or "false"
1996 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1997 ** the conversion happened, and zero if the expression is unaltered.
1998 */
1999 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
2000   u32 v;
2001   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
2002   if( !ExprHasProperty(pExpr, EP_Quoted)
2003    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
2004   ){
2005     pExpr->op = TK_TRUEFALSE;
2006     ExprSetProperty(pExpr, v);
2007     return 1;
2008   }
2009   return 0;
2010 }
2011 
2012 /*
2013 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
2014 ** and 0 if it is FALSE.
2015 */
2016 int sqlite3ExprTruthValue(const Expr *pExpr){
2017   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
2018   assert( pExpr->op==TK_TRUEFALSE );
2019   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
2020        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
2021   return pExpr->u.zToken[4]==0;
2022 }
2023 
2024 /*
2025 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2026 ** terms that are always true or false.  Return the simplified expression.
2027 ** Or return the original expression if no simplification is possible.
2028 **
2029 ** Examples:
2030 **
2031 **     (x<10) AND true                =>   (x<10)
2032 **     (x<10) AND false               =>   false
2033 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
2034 **     (x<10) AND (y=22 OR true)      =>   (x<10)
2035 **     (y=22) OR true                 =>   true
2036 */
2037 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
2038   assert( pExpr!=0 );
2039   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
2040     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
2041     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
2042     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
2043       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
2044     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
2045       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
2046     }
2047   }
2048   return pExpr;
2049 }
2050 
2051 
2052 /*
2053 ** These routines are Walker callbacks used to check expressions to
2054 ** see if they are "constant" for some definition of constant.  The
2055 ** Walker.eCode value determines the type of "constant" we are looking
2056 ** for.
2057 **
2058 ** These callback routines are used to implement the following:
2059 **
2060 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
2061 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
2062 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
2063 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
2064 **
2065 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2066 ** is found to not be a constant.
2067 **
2068 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2069 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
2070 ** when parsing an existing schema out of the sqlite_schema table and 4
2071 ** when processing a new CREATE TABLE statement.  A bound parameter raises
2072 ** an error for new statements, but is silently converted
2073 ** to NULL for existing schemas.  This allows sqlite_schema tables that
2074 ** contain a bound parameter because they were generated by older versions
2075 ** of SQLite to be parsed by newer versions of SQLite without raising a
2076 ** malformed schema error.
2077 */
2078 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2079 
2080   /* If pWalker->eCode is 2 then any term of the expression that comes from
2081   ** the ON or USING clauses of a left join disqualifies the expression
2082   ** from being considered constant. */
2083   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
2084     pWalker->eCode = 0;
2085     return WRC_Abort;
2086   }
2087 
2088   switch( pExpr->op ){
2089     /* Consider functions to be constant if all their arguments are constant
2090     ** and either pWalker->eCode==4 or 5 or the function has the
2091     ** SQLITE_FUNC_CONST flag. */
2092     case TK_FUNCTION:
2093       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2094        && !ExprHasProperty(pExpr, EP_WinFunc)
2095       ){
2096         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2097         return WRC_Continue;
2098       }else{
2099         pWalker->eCode = 0;
2100         return WRC_Abort;
2101       }
2102     case TK_ID:
2103       /* Convert "true" or "false" in a DEFAULT clause into the
2104       ** appropriate TK_TRUEFALSE operator */
2105       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2106         return WRC_Prune;
2107       }
2108       /* no break */ deliberate_fall_through
2109     case TK_COLUMN:
2110     case TK_AGG_FUNCTION:
2111     case TK_AGG_COLUMN:
2112       testcase( pExpr->op==TK_ID );
2113       testcase( pExpr->op==TK_COLUMN );
2114       testcase( pExpr->op==TK_AGG_FUNCTION );
2115       testcase( pExpr->op==TK_AGG_COLUMN );
2116       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2117         return WRC_Continue;
2118       }
2119       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2120         return WRC_Continue;
2121       }
2122       /* no break */ deliberate_fall_through
2123     case TK_IF_NULL_ROW:
2124     case TK_REGISTER:
2125     case TK_DOT:
2126       testcase( pExpr->op==TK_REGISTER );
2127       testcase( pExpr->op==TK_IF_NULL_ROW );
2128       testcase( pExpr->op==TK_DOT );
2129       pWalker->eCode = 0;
2130       return WRC_Abort;
2131     case TK_VARIABLE:
2132       if( pWalker->eCode==5 ){
2133         /* Silently convert bound parameters that appear inside of CREATE
2134         ** statements into a NULL when parsing the CREATE statement text out
2135         ** of the sqlite_schema table */
2136         pExpr->op = TK_NULL;
2137       }else if( pWalker->eCode==4 ){
2138         /* A bound parameter in a CREATE statement that originates from
2139         ** sqlite3_prepare() causes an error */
2140         pWalker->eCode = 0;
2141         return WRC_Abort;
2142       }
2143       /* no break */ deliberate_fall_through
2144     default:
2145       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2146       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2147       return WRC_Continue;
2148   }
2149 }
2150 static int exprIsConst(Expr *p, int initFlag, int iCur){
2151   Walker w;
2152   w.eCode = initFlag;
2153   w.xExprCallback = exprNodeIsConstant;
2154   w.xSelectCallback = sqlite3SelectWalkFail;
2155 #ifdef SQLITE_DEBUG
2156   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2157 #endif
2158   w.u.iCur = iCur;
2159   sqlite3WalkExpr(&w, p);
2160   return w.eCode;
2161 }
2162 
2163 /*
2164 ** Walk an expression tree.  Return non-zero if the expression is constant
2165 ** and 0 if it involves variables or function calls.
2166 **
2167 ** For the purposes of this function, a double-quoted string (ex: "abc")
2168 ** is considered a variable but a single-quoted string (ex: 'abc') is
2169 ** a constant.
2170 */
2171 int sqlite3ExprIsConstant(Expr *p){
2172   return exprIsConst(p, 1, 0);
2173 }
2174 
2175 /*
2176 ** Walk an expression tree.  Return non-zero if
2177 **
2178 **   (1) the expression is constant, and
2179 **   (2) the expression does originate in the ON or USING clause
2180 **       of a LEFT JOIN, and
2181 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2182 **       operands created by the constant propagation optimization.
2183 **
2184 ** When this routine returns true, it indicates that the expression
2185 ** can be added to the pParse->pConstExpr list and evaluated once when
2186 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2187 */
2188 int sqlite3ExprIsConstantNotJoin(Expr *p){
2189   return exprIsConst(p, 2, 0);
2190 }
2191 
2192 /*
2193 ** Walk an expression tree.  Return non-zero if the expression is constant
2194 ** for any single row of the table with cursor iCur.  In other words, the
2195 ** expression must not refer to any non-deterministic function nor any
2196 ** table other than iCur.
2197 */
2198 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2199   return exprIsConst(p, 3, iCur);
2200 }
2201 
2202 
2203 /*
2204 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2205 */
2206 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2207   ExprList *pGroupBy = pWalker->u.pGroupBy;
2208   int i;
2209 
2210   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2211   ** it constant.  */
2212   for(i=0; i<pGroupBy->nExpr; i++){
2213     Expr *p = pGroupBy->a[i].pExpr;
2214     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2215       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2216       if( sqlite3IsBinary(pColl) ){
2217         return WRC_Prune;
2218       }
2219     }
2220   }
2221 
2222   /* Check if pExpr is a sub-select. If so, consider it variable. */
2223   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2224     pWalker->eCode = 0;
2225     return WRC_Abort;
2226   }
2227 
2228   return exprNodeIsConstant(pWalker, pExpr);
2229 }
2230 
2231 /*
2232 ** Walk the expression tree passed as the first argument. Return non-zero
2233 ** if the expression consists entirely of constants or copies of terms
2234 ** in pGroupBy that sort with the BINARY collation sequence.
2235 **
2236 ** This routine is used to determine if a term of the HAVING clause can
2237 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2238 ** the value of the HAVING clause term must be the same for all members of
2239 ** a "group".  The requirement that the GROUP BY term must be BINARY
2240 ** assumes that no other collating sequence will have a finer-grained
2241 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2242 ** A=B in every other collating sequence.  The requirement that the
2243 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2244 ** to promote HAVING clauses that use the same alternative collating
2245 ** sequence as the GROUP BY term, but that is much harder to check,
2246 ** alternative collating sequences are uncommon, and this is only an
2247 ** optimization, so we take the easy way out and simply require the
2248 ** GROUP BY to use the BINARY collating sequence.
2249 */
2250 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2251   Walker w;
2252   w.eCode = 1;
2253   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2254   w.xSelectCallback = 0;
2255   w.u.pGroupBy = pGroupBy;
2256   w.pParse = pParse;
2257   sqlite3WalkExpr(&w, p);
2258   return w.eCode;
2259 }
2260 
2261 /*
2262 ** Walk an expression tree for the DEFAULT field of a column definition
2263 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2264 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2265 ** the expression is constant or a function call with constant arguments.
2266 ** Return and 0 if there are any variables.
2267 **
2268 ** isInit is true when parsing from sqlite_schema.  isInit is false when
2269 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2270 ** (such as ? or $abc) in the expression are converted into NULL.  When
2271 ** isInit is false, parameters raise an error.  Parameters should not be
2272 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2273 ** allowed it, so we need to support it when reading sqlite_schema for
2274 ** backwards compatibility.
2275 **
2276 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2277 **
2278 ** For the purposes of this function, a double-quoted string (ex: "abc")
2279 ** is considered a variable but a single-quoted string (ex: 'abc') is
2280 ** a constant.
2281 */
2282 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2283   assert( isInit==0 || isInit==1 );
2284   return exprIsConst(p, 4+isInit, 0);
2285 }
2286 
2287 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2288 /*
2289 ** Walk an expression tree.  Return 1 if the expression contains a
2290 ** subquery of some kind.  Return 0 if there are no subqueries.
2291 */
2292 int sqlite3ExprContainsSubquery(Expr *p){
2293   Walker w;
2294   w.eCode = 1;
2295   w.xExprCallback = sqlite3ExprWalkNoop;
2296   w.xSelectCallback = sqlite3SelectWalkFail;
2297 #ifdef SQLITE_DEBUG
2298   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2299 #endif
2300   sqlite3WalkExpr(&w, p);
2301   return w.eCode==0;
2302 }
2303 #endif
2304 
2305 /*
2306 ** If the expression p codes a constant integer that is small enough
2307 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2308 ** in *pValue.  If the expression is not an integer or if it is too big
2309 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2310 */
2311 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2312   int rc = 0;
2313   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2314 
2315   /* If an expression is an integer literal that fits in a signed 32-bit
2316   ** integer, then the EP_IntValue flag will have already been set */
2317   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2318            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2319 
2320   if( p->flags & EP_IntValue ){
2321     *pValue = p->u.iValue;
2322     return 1;
2323   }
2324   switch( p->op ){
2325     case TK_UPLUS: {
2326       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2327       break;
2328     }
2329     case TK_UMINUS: {
2330       int v;
2331       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2332         assert( v!=(-2147483647-1) );
2333         *pValue = -v;
2334         rc = 1;
2335       }
2336       break;
2337     }
2338     default: break;
2339   }
2340   return rc;
2341 }
2342 
2343 /*
2344 ** Return FALSE if there is no chance that the expression can be NULL.
2345 **
2346 ** If the expression might be NULL or if the expression is too complex
2347 ** to tell return TRUE.
2348 **
2349 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2350 ** when we know that a value cannot be NULL.  Hence, a false positive
2351 ** (returning TRUE when in fact the expression can never be NULL) might
2352 ** be a small performance hit but is otherwise harmless.  On the other
2353 ** hand, a false negative (returning FALSE when the result could be NULL)
2354 ** will likely result in an incorrect answer.  So when in doubt, return
2355 ** TRUE.
2356 */
2357 int sqlite3ExprCanBeNull(const Expr *p){
2358   u8 op;
2359   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2360     p = p->pLeft;
2361   }
2362   op = p->op;
2363   if( op==TK_REGISTER ) op = p->op2;
2364   switch( op ){
2365     case TK_INTEGER:
2366     case TK_STRING:
2367     case TK_FLOAT:
2368     case TK_BLOB:
2369       return 0;
2370     case TK_COLUMN:
2371       return ExprHasProperty(p, EP_CanBeNull) ||
2372              p->y.pTab==0 ||  /* Reference to column of index on expression */
2373              (p->iColumn>=0
2374               && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */
2375               && p->y.pTab->aCol[p->iColumn].notNull==0);
2376     default:
2377       return 1;
2378   }
2379 }
2380 
2381 /*
2382 ** Return TRUE if the given expression is a constant which would be
2383 ** unchanged by OP_Affinity with the affinity given in the second
2384 ** argument.
2385 **
2386 ** This routine is used to determine if the OP_Affinity operation
2387 ** can be omitted.  When in doubt return FALSE.  A false negative
2388 ** is harmless.  A false positive, however, can result in the wrong
2389 ** answer.
2390 */
2391 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2392   u8 op;
2393   int unaryMinus = 0;
2394   if( aff==SQLITE_AFF_BLOB ) return 1;
2395   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2396     if( p->op==TK_UMINUS ) unaryMinus = 1;
2397     p = p->pLeft;
2398   }
2399   op = p->op;
2400   if( op==TK_REGISTER ) op = p->op2;
2401   switch( op ){
2402     case TK_INTEGER: {
2403       return aff>=SQLITE_AFF_NUMERIC;
2404     }
2405     case TK_FLOAT: {
2406       return aff>=SQLITE_AFF_NUMERIC;
2407     }
2408     case TK_STRING: {
2409       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2410     }
2411     case TK_BLOB: {
2412       return !unaryMinus;
2413     }
2414     case TK_COLUMN: {
2415       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2416       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2417     }
2418     default: {
2419       return 0;
2420     }
2421   }
2422 }
2423 
2424 /*
2425 ** Return TRUE if the given string is a row-id column name.
2426 */
2427 int sqlite3IsRowid(const char *z){
2428   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2429   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2430   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2431   return 0;
2432 }
2433 
2434 /*
2435 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2436 ** that can be simplified to a direct table access, then return
2437 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2438 ** or if the SELECT statement needs to be manifested into a transient
2439 ** table, then return NULL.
2440 */
2441 #ifndef SQLITE_OMIT_SUBQUERY
2442 static Select *isCandidateForInOpt(Expr *pX){
2443   Select *p;
2444   SrcList *pSrc;
2445   ExprList *pEList;
2446   Table *pTab;
2447   int i;
2448   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2449   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2450   p = pX->x.pSelect;
2451   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2452   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2453     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2454     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2455     return 0; /* No DISTINCT keyword and no aggregate functions */
2456   }
2457   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2458   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2459   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2460   pSrc = p->pSrc;
2461   assert( pSrc!=0 );
2462   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2463   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2464   pTab = pSrc->a[0].pTab;
2465   assert( pTab!=0 );
2466   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2467   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2468   pEList = p->pEList;
2469   assert( pEList!=0 );
2470   /* All SELECT results must be columns. */
2471   for(i=0; i<pEList->nExpr; i++){
2472     Expr *pRes = pEList->a[i].pExpr;
2473     if( pRes->op!=TK_COLUMN ) return 0;
2474     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2475   }
2476   return p;
2477 }
2478 #endif /* SQLITE_OMIT_SUBQUERY */
2479 
2480 #ifndef SQLITE_OMIT_SUBQUERY
2481 /*
2482 ** Generate code that checks the left-most column of index table iCur to see if
2483 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2484 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2485 ** to be set to NULL if iCur contains one or more NULL values.
2486 */
2487 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2488   int addr1;
2489   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2490   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2491   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2492   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2493   VdbeComment((v, "first_entry_in(%d)", iCur));
2494   sqlite3VdbeJumpHere(v, addr1);
2495 }
2496 #endif
2497 
2498 
2499 #ifndef SQLITE_OMIT_SUBQUERY
2500 /*
2501 ** The argument is an IN operator with a list (not a subquery) on the
2502 ** right-hand side.  Return TRUE if that list is constant.
2503 */
2504 static int sqlite3InRhsIsConstant(Expr *pIn){
2505   Expr *pLHS;
2506   int res;
2507   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2508   pLHS = pIn->pLeft;
2509   pIn->pLeft = 0;
2510   res = sqlite3ExprIsConstant(pIn);
2511   pIn->pLeft = pLHS;
2512   return res;
2513 }
2514 #endif
2515 
2516 /*
2517 ** This function is used by the implementation of the IN (...) operator.
2518 ** The pX parameter is the expression on the RHS of the IN operator, which
2519 ** might be either a list of expressions or a subquery.
2520 **
2521 ** The job of this routine is to find or create a b-tree object that can
2522 ** be used either to test for membership in the RHS set or to iterate through
2523 ** all members of the RHS set, skipping duplicates.
2524 **
2525 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2526 ** and pX->iTable is set to the index of that cursor.
2527 **
2528 ** The returned value of this function indicates the b-tree type, as follows:
2529 **
2530 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2531 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2532 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2533 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2534 **                         populated epheremal table.
2535 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2536 **                         implemented as a sequence of comparisons.
2537 **
2538 ** An existing b-tree might be used if the RHS expression pX is a simple
2539 ** subquery such as:
2540 **
2541 **     SELECT <column1>, <column2>... FROM <table>
2542 **
2543 ** If the RHS of the IN operator is a list or a more complex subquery, then
2544 ** an ephemeral table might need to be generated from the RHS and then
2545 ** pX->iTable made to point to the ephemeral table instead of an
2546 ** existing table.
2547 **
2548 ** The inFlags parameter must contain, at a minimum, one of the bits
2549 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2550 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2551 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2552 ** be used to loop over all values of the RHS of the IN operator.
2553 **
2554 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2555 ** through the set members) then the b-tree must not contain duplicates.
2556 ** An epheremal table will be created unless the selected columns are guaranteed
2557 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2558 ** a UNIQUE constraint or index.
2559 **
2560 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2561 ** for fast set membership tests) then an epheremal table must
2562 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2563 ** index can be found with the specified <columns> as its left-most.
2564 **
2565 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2566 ** if the RHS of the IN operator is a list (not a subquery) then this
2567 ** routine might decide that creating an ephemeral b-tree for membership
2568 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2569 ** calling routine should implement the IN operator using a sequence
2570 ** of Eq or Ne comparison operations.
2571 **
2572 ** When the b-tree is being used for membership tests, the calling function
2573 ** might need to know whether or not the RHS side of the IN operator
2574 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2575 ** if there is any chance that the (...) might contain a NULL value at
2576 ** runtime, then a register is allocated and the register number written
2577 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2578 ** NULL value, then *prRhsHasNull is left unchanged.
2579 **
2580 ** If a register is allocated and its location stored in *prRhsHasNull, then
2581 ** the value in that register will be NULL if the b-tree contains one or more
2582 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2583 ** NULL values.
2584 **
2585 ** If the aiMap parameter is not NULL, it must point to an array containing
2586 ** one element for each column returned by the SELECT statement on the RHS
2587 ** of the IN(...) operator. The i'th entry of the array is populated with the
2588 ** offset of the index column that matches the i'th column returned by the
2589 ** SELECT. For example, if the expression and selected index are:
2590 **
2591 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2592 **   CREATE INDEX i1 ON t1(b, c, a);
2593 **
2594 ** then aiMap[] is populated with {2, 0, 1}.
2595 */
2596 #ifndef SQLITE_OMIT_SUBQUERY
2597 int sqlite3FindInIndex(
2598   Parse *pParse,             /* Parsing context */
2599   Expr *pX,                  /* The IN expression */
2600   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2601   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2602   int *aiMap,                /* Mapping from Index fields to RHS fields */
2603   int *piTab                 /* OUT: index to use */
2604 ){
2605   Select *p;                            /* SELECT to the right of IN operator */
2606   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2607   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2608   int mustBeUnique;                     /* True if RHS must be unique */
2609   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2610 
2611   assert( pX->op==TK_IN );
2612   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2613 
2614   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2615   ** whether or not the SELECT result contains NULL values, check whether
2616   ** or not NULL is actually possible (it may not be, for example, due
2617   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2618   ** set prRhsHasNull to 0 before continuing.  */
2619   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2620     int i;
2621     ExprList *pEList = pX->x.pSelect->pEList;
2622     for(i=0; i<pEList->nExpr; i++){
2623       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2624     }
2625     if( i==pEList->nExpr ){
2626       prRhsHasNull = 0;
2627     }
2628   }
2629 
2630   /* Check to see if an existing table or index can be used to
2631   ** satisfy the query.  This is preferable to generating a new
2632   ** ephemeral table.  */
2633   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2634     sqlite3 *db = pParse->db;              /* Database connection */
2635     Table *pTab;                           /* Table <table>. */
2636     int iDb;                               /* Database idx for pTab */
2637     ExprList *pEList = p->pEList;
2638     int nExpr = pEList->nExpr;
2639 
2640     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2641     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2642     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2643     pTab = p->pSrc->a[0].pTab;
2644 
2645     /* Code an OP_Transaction and OP_TableLock for <table>. */
2646     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2647     assert( iDb>=0 && iDb<SQLITE_MAX_DB );
2648     sqlite3CodeVerifySchema(pParse, iDb);
2649     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2650 
2651     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2652     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2653       /* The "x IN (SELECT rowid FROM table)" case */
2654       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2655       VdbeCoverage(v);
2656 
2657       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2658       eType = IN_INDEX_ROWID;
2659       ExplainQueryPlan((pParse, 0,
2660             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2661       sqlite3VdbeJumpHere(v, iAddr);
2662     }else{
2663       Index *pIdx;                         /* Iterator variable */
2664       int affinity_ok = 1;
2665       int i;
2666 
2667       /* Check that the affinity that will be used to perform each
2668       ** comparison is the same as the affinity of each column in table
2669       ** on the RHS of the IN operator.  If it not, it is not possible to
2670       ** use any index of the RHS table.  */
2671       for(i=0; i<nExpr && affinity_ok; i++){
2672         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2673         int iCol = pEList->a[i].pExpr->iColumn;
2674         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2675         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2676         testcase( cmpaff==SQLITE_AFF_BLOB );
2677         testcase( cmpaff==SQLITE_AFF_TEXT );
2678         switch( cmpaff ){
2679           case SQLITE_AFF_BLOB:
2680             break;
2681           case SQLITE_AFF_TEXT:
2682             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2683             ** other has no affinity and the other side is TEXT.  Hence,
2684             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2685             ** and for the term on the LHS of the IN to have no affinity. */
2686             assert( idxaff==SQLITE_AFF_TEXT );
2687             break;
2688           default:
2689             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2690         }
2691       }
2692 
2693       if( affinity_ok ){
2694         /* Search for an existing index that will work for this IN operator */
2695         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2696           Bitmask colUsed;      /* Columns of the index used */
2697           Bitmask mCol;         /* Mask for the current column */
2698           if( pIdx->nColumn<nExpr ) continue;
2699           if( pIdx->pPartIdxWhere!=0 ) continue;
2700           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2701           ** BITMASK(nExpr) without overflowing */
2702           testcase( pIdx->nColumn==BMS-2 );
2703           testcase( pIdx->nColumn==BMS-1 );
2704           if( pIdx->nColumn>=BMS-1 ) continue;
2705           if( mustBeUnique ){
2706             if( pIdx->nKeyCol>nExpr
2707              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2708             ){
2709               continue;  /* This index is not unique over the IN RHS columns */
2710             }
2711           }
2712 
2713           colUsed = 0;   /* Columns of index used so far */
2714           for(i=0; i<nExpr; i++){
2715             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2716             Expr *pRhs = pEList->a[i].pExpr;
2717             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2718             int j;
2719 
2720             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2721             for(j=0; j<nExpr; j++){
2722               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2723               assert( pIdx->azColl[j] );
2724               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2725                 continue;
2726               }
2727               break;
2728             }
2729             if( j==nExpr ) break;
2730             mCol = MASKBIT(j);
2731             if( mCol & colUsed ) break; /* Each column used only once */
2732             colUsed |= mCol;
2733             if( aiMap ) aiMap[i] = j;
2734           }
2735 
2736           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2737           if( colUsed==(MASKBIT(nExpr)-1) ){
2738             /* If we reach this point, that means the index pIdx is usable */
2739             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2740             ExplainQueryPlan((pParse, 0,
2741                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2742             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2743             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2744             VdbeComment((v, "%s", pIdx->zName));
2745             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2746             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2747 
2748             if( prRhsHasNull ){
2749 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2750               i64 mask = (1<<nExpr)-1;
2751               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2752                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2753 #endif
2754               *prRhsHasNull = ++pParse->nMem;
2755               if( nExpr==1 ){
2756                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2757               }
2758             }
2759             sqlite3VdbeJumpHere(v, iAddr);
2760           }
2761         } /* End loop over indexes */
2762       } /* End if( affinity_ok ) */
2763     } /* End if not an rowid index */
2764   } /* End attempt to optimize using an index */
2765 
2766   /* If no preexisting index is available for the IN clause
2767   ** and IN_INDEX_NOOP is an allowed reply
2768   ** and the RHS of the IN operator is a list, not a subquery
2769   ** and the RHS is not constant or has two or fewer terms,
2770   ** then it is not worth creating an ephemeral table to evaluate
2771   ** the IN operator so return IN_INDEX_NOOP.
2772   */
2773   if( eType==0
2774    && (inFlags & IN_INDEX_NOOP_OK)
2775    && !ExprHasProperty(pX, EP_xIsSelect)
2776    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2777   ){
2778     eType = IN_INDEX_NOOP;
2779   }
2780 
2781   if( eType==0 ){
2782     /* Could not find an existing table or index to use as the RHS b-tree.
2783     ** We will have to generate an ephemeral table to do the job.
2784     */
2785     u32 savedNQueryLoop = pParse->nQueryLoop;
2786     int rMayHaveNull = 0;
2787     eType = IN_INDEX_EPH;
2788     if( inFlags & IN_INDEX_LOOP ){
2789       pParse->nQueryLoop = 0;
2790     }else if( prRhsHasNull ){
2791       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2792     }
2793     assert( pX->op==TK_IN );
2794     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2795     if( rMayHaveNull ){
2796       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2797     }
2798     pParse->nQueryLoop = savedNQueryLoop;
2799   }
2800 
2801   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2802     int i, n;
2803     n = sqlite3ExprVectorSize(pX->pLeft);
2804     for(i=0; i<n; i++) aiMap[i] = i;
2805   }
2806   *piTab = iTab;
2807   return eType;
2808 }
2809 #endif
2810 
2811 #ifndef SQLITE_OMIT_SUBQUERY
2812 /*
2813 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2814 ** function allocates and returns a nul-terminated string containing
2815 ** the affinities to be used for each column of the comparison.
2816 **
2817 ** It is the responsibility of the caller to ensure that the returned
2818 ** string is eventually freed using sqlite3DbFree().
2819 */
2820 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2821   Expr *pLeft = pExpr->pLeft;
2822   int nVal = sqlite3ExprVectorSize(pLeft);
2823   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2824   char *zRet;
2825 
2826   assert( pExpr->op==TK_IN );
2827   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2828   if( zRet ){
2829     int i;
2830     for(i=0; i<nVal; i++){
2831       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2832       char a = sqlite3ExprAffinity(pA);
2833       if( pSelect ){
2834         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2835       }else{
2836         zRet[i] = a;
2837       }
2838     }
2839     zRet[nVal] = '\0';
2840   }
2841   return zRet;
2842 }
2843 #endif
2844 
2845 #ifndef SQLITE_OMIT_SUBQUERY
2846 /*
2847 ** Load the Parse object passed as the first argument with an error
2848 ** message of the form:
2849 **
2850 **   "sub-select returns N columns - expected M"
2851 */
2852 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2853   if( pParse->nErr==0 ){
2854     const char *zFmt = "sub-select returns %d columns - expected %d";
2855     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2856   }
2857 }
2858 #endif
2859 
2860 /*
2861 ** Expression pExpr is a vector that has been used in a context where
2862 ** it is not permitted. If pExpr is a sub-select vector, this routine
2863 ** loads the Parse object with a message of the form:
2864 **
2865 **   "sub-select returns N columns - expected 1"
2866 **
2867 ** Or, if it is a regular scalar vector:
2868 **
2869 **   "row value misused"
2870 */
2871 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2872 #ifndef SQLITE_OMIT_SUBQUERY
2873   if( pExpr->flags & EP_xIsSelect ){
2874     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2875   }else
2876 #endif
2877   {
2878     sqlite3ErrorMsg(pParse, "row value misused");
2879   }
2880 }
2881 
2882 #ifndef SQLITE_OMIT_SUBQUERY
2883 /*
2884 ** Generate code that will construct an ephemeral table containing all terms
2885 ** in the RHS of an IN operator.  The IN operator can be in either of two
2886 ** forms:
2887 **
2888 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2889 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2890 **
2891 ** The pExpr parameter is the IN operator.  The cursor number for the
2892 ** constructed ephermeral table is returned.  The first time the ephemeral
2893 ** table is computed, the cursor number is also stored in pExpr->iTable,
2894 ** however the cursor number returned might not be the same, as it might
2895 ** have been duplicated using OP_OpenDup.
2896 **
2897 ** If the LHS expression ("x" in the examples) is a column value, or
2898 ** the SELECT statement returns a column value, then the affinity of that
2899 ** column is used to build the index keys. If both 'x' and the
2900 ** SELECT... statement are columns, then numeric affinity is used
2901 ** if either column has NUMERIC or INTEGER affinity. If neither
2902 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2903 ** is used.
2904 */
2905 void sqlite3CodeRhsOfIN(
2906   Parse *pParse,          /* Parsing context */
2907   Expr *pExpr,            /* The IN operator */
2908   int iTab                /* Use this cursor number */
2909 ){
2910   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2911   int addr;                   /* Address of OP_OpenEphemeral instruction */
2912   Expr *pLeft;                /* the LHS of the IN operator */
2913   KeyInfo *pKeyInfo = 0;      /* Key information */
2914   int nVal;                   /* Size of vector pLeft */
2915   Vdbe *v;                    /* The prepared statement under construction */
2916 
2917   v = pParse->pVdbe;
2918   assert( v!=0 );
2919 
2920   /* The evaluation of the IN must be repeated every time it
2921   ** is encountered if any of the following is true:
2922   **
2923   **    *  The right-hand side is a correlated subquery
2924   **    *  The right-hand side is an expression list containing variables
2925   **    *  We are inside a trigger
2926   **
2927   ** If all of the above are false, then we can compute the RHS just once
2928   ** and reuse it many names.
2929   */
2930   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2931     /* Reuse of the RHS is allowed */
2932     /* If this routine has already been coded, but the previous code
2933     ** might not have been invoked yet, so invoke it now as a subroutine.
2934     */
2935     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2936       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2937       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2938         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
2939               pExpr->x.pSelect->selId));
2940       }
2941       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2942                         pExpr->y.sub.iAddr);
2943       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
2944       sqlite3VdbeJumpHere(v, addrOnce);
2945       return;
2946     }
2947 
2948     /* Begin coding the subroutine */
2949     ExprSetProperty(pExpr, EP_Subrtn);
2950     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
2951     pExpr->y.sub.regReturn = ++pParse->nMem;
2952     pExpr->y.sub.iAddr =
2953       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2954     VdbeComment((v, "return address"));
2955 
2956     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2957   }
2958 
2959   /* Check to see if this is a vector IN operator */
2960   pLeft = pExpr->pLeft;
2961   nVal = sqlite3ExprVectorSize(pLeft);
2962 
2963   /* Construct the ephemeral table that will contain the content of
2964   ** RHS of the IN operator.
2965   */
2966   pExpr->iTable = iTab;
2967   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
2968 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2969   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2970     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
2971   }else{
2972     VdbeComment((v, "RHS of IN operator"));
2973   }
2974 #endif
2975   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2976 
2977   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2978     /* Case 1:     expr IN (SELECT ...)
2979     **
2980     ** Generate code to write the results of the select into the temporary
2981     ** table allocated and opened above.
2982     */
2983     Select *pSelect = pExpr->x.pSelect;
2984     ExprList *pEList = pSelect->pEList;
2985 
2986     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
2987         addrOnce?"":"CORRELATED ", pSelect->selId
2988     ));
2989     /* If the LHS and RHS of the IN operator do not match, that
2990     ** error will have been caught long before we reach this point. */
2991     if( ALWAYS(pEList->nExpr==nVal) ){
2992       SelectDest dest;
2993       int i;
2994       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
2995       dest.zAffSdst = exprINAffinity(pParse, pExpr);
2996       pSelect->iLimit = 0;
2997       testcase( pSelect->selFlags & SF_Distinct );
2998       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2999       if( sqlite3Select(pParse, pSelect, &dest) ){
3000         sqlite3DbFree(pParse->db, dest.zAffSdst);
3001         sqlite3KeyInfoUnref(pKeyInfo);
3002         return;
3003       }
3004       sqlite3DbFree(pParse->db, dest.zAffSdst);
3005       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
3006       assert( pEList!=0 );
3007       assert( pEList->nExpr>0 );
3008       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3009       for(i=0; i<nVal; i++){
3010         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
3011         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
3012             pParse, p, pEList->a[i].pExpr
3013         );
3014       }
3015     }
3016   }else if( ALWAYS(pExpr->x.pList!=0) ){
3017     /* Case 2:     expr IN (exprlist)
3018     **
3019     ** For each expression, build an index key from the evaluation and
3020     ** store it in the temporary table. If <expr> is a column, then use
3021     ** that columns affinity when building index keys. If <expr> is not
3022     ** a column, use numeric affinity.
3023     */
3024     char affinity;            /* Affinity of the LHS of the IN */
3025     int i;
3026     ExprList *pList = pExpr->x.pList;
3027     struct ExprList_item *pItem;
3028     int r1, r2;
3029     affinity = sqlite3ExprAffinity(pLeft);
3030     if( affinity<=SQLITE_AFF_NONE ){
3031       affinity = SQLITE_AFF_BLOB;
3032     }else if( affinity==SQLITE_AFF_REAL ){
3033       affinity = SQLITE_AFF_NUMERIC;
3034     }
3035     if( pKeyInfo ){
3036       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3037       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3038     }
3039 
3040     /* Loop through each expression in <exprlist>. */
3041     r1 = sqlite3GetTempReg(pParse);
3042     r2 = sqlite3GetTempReg(pParse);
3043     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
3044       Expr *pE2 = pItem->pExpr;
3045 
3046       /* If the expression is not constant then we will need to
3047       ** disable the test that was generated above that makes sure
3048       ** this code only executes once.  Because for a non-constant
3049       ** expression we need to rerun this code each time.
3050       */
3051       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
3052         sqlite3VdbeChangeToNoop(v, addrOnce);
3053         ExprClearProperty(pExpr, EP_Subrtn);
3054         addrOnce = 0;
3055       }
3056 
3057       /* Evaluate the expression and insert it into the temp table */
3058       sqlite3ExprCode(pParse, pE2, r1);
3059       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3060       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3061     }
3062     sqlite3ReleaseTempReg(pParse, r1);
3063     sqlite3ReleaseTempReg(pParse, r2);
3064   }
3065   if( pKeyInfo ){
3066     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3067   }
3068   if( addrOnce ){
3069     sqlite3VdbeJumpHere(v, addrOnce);
3070     /* Subroutine return */
3071     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3072     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3073     sqlite3ClearTempRegCache(pParse);
3074   }
3075 }
3076 #endif /* SQLITE_OMIT_SUBQUERY */
3077 
3078 /*
3079 ** Generate code for scalar subqueries used as a subquery expression
3080 ** or EXISTS operator:
3081 **
3082 **     (SELECT a FROM b)          -- subquery
3083 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
3084 **
3085 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3086 **
3087 ** Return the register that holds the result.  For a multi-column SELECT,
3088 ** the result is stored in a contiguous array of registers and the
3089 ** return value is the register of the left-most result column.
3090 ** Return 0 if an error occurs.
3091 */
3092 #ifndef SQLITE_OMIT_SUBQUERY
3093 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3094   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3095   int rReg = 0;               /* Register storing resulting */
3096   Select *pSel;               /* SELECT statement to encode */
3097   SelectDest dest;            /* How to deal with SELECT result */
3098   int nReg;                   /* Registers to allocate */
3099   Expr *pLimit;               /* New limit expression */
3100 
3101   Vdbe *v = pParse->pVdbe;
3102   assert( v!=0 );
3103   testcase( pExpr->op==TK_EXISTS );
3104   testcase( pExpr->op==TK_SELECT );
3105   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3106   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
3107   pSel = pExpr->x.pSelect;
3108 
3109   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3110   ** is encountered if any of the following is true:
3111   **
3112   **    *  The right-hand side is a correlated subquery
3113   **    *  The right-hand side is an expression list containing variables
3114   **    *  We are inside a trigger
3115   **
3116   ** If all of the above are false, then we can run this code just once
3117   ** save the results, and reuse the same result on subsequent invocations.
3118   */
3119   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3120     /* If this routine has already been coded, then invoke it as a
3121     ** subroutine. */
3122     if( ExprHasProperty(pExpr, EP_Subrtn) ){
3123       ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3124       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3125                         pExpr->y.sub.iAddr);
3126       return pExpr->iTable;
3127     }
3128 
3129     /* Begin coding the subroutine */
3130     ExprSetProperty(pExpr, EP_Subrtn);
3131     pExpr->y.sub.regReturn = ++pParse->nMem;
3132     pExpr->y.sub.iAddr =
3133       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
3134     VdbeComment((v, "return address"));
3135 
3136     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3137   }
3138 
3139   /* For a SELECT, generate code to put the values for all columns of
3140   ** the first row into an array of registers and return the index of
3141   ** the first register.
3142   **
3143   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3144   ** into a register and return that register number.
3145   **
3146   ** In both cases, the query is augmented with "LIMIT 1".  Any
3147   ** preexisting limit is discarded in place of the new LIMIT 1.
3148   */
3149   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3150         addrOnce?"":"CORRELATED ", pSel->selId));
3151   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3152   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3153   pParse->nMem += nReg;
3154   if( pExpr->op==TK_SELECT ){
3155     dest.eDest = SRT_Mem;
3156     dest.iSdst = dest.iSDParm;
3157     dest.nSdst = nReg;
3158     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3159     VdbeComment((v, "Init subquery result"));
3160   }else{
3161     dest.eDest = SRT_Exists;
3162     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3163     VdbeComment((v, "Init EXISTS result"));
3164   }
3165   if( pSel->pLimit ){
3166     /* The subquery already has a limit.  If the pre-existing limit is X
3167     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3168     sqlite3 *db = pParse->db;
3169     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3170     if( pLimit ){
3171       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3172       pLimit = sqlite3PExpr(pParse, TK_NE,
3173                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3174     }
3175     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3176     pSel->pLimit->pLeft = pLimit;
3177   }else{
3178     /* If there is no pre-existing limit add a limit of 1 */
3179     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3180     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3181   }
3182   pSel->iLimit = 0;
3183   if( sqlite3Select(pParse, pSel, &dest) ){
3184     return 0;
3185   }
3186   pExpr->iTable = rReg = dest.iSDParm;
3187   ExprSetVVAProperty(pExpr, EP_NoReduce);
3188   if( addrOnce ){
3189     sqlite3VdbeJumpHere(v, addrOnce);
3190 
3191     /* Subroutine return */
3192     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3193     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3194     sqlite3ClearTempRegCache(pParse);
3195   }
3196 
3197   return rReg;
3198 }
3199 #endif /* SQLITE_OMIT_SUBQUERY */
3200 
3201 #ifndef SQLITE_OMIT_SUBQUERY
3202 /*
3203 ** Expr pIn is an IN(...) expression. This function checks that the
3204 ** sub-select on the RHS of the IN() operator has the same number of
3205 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3206 ** a sub-query, that the LHS is a vector of size 1.
3207 */
3208 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3209   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3210   if( (pIn->flags & EP_xIsSelect) ){
3211     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3212       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3213       return 1;
3214     }
3215   }else if( nVector!=1 ){
3216     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3217     return 1;
3218   }
3219   return 0;
3220 }
3221 #endif
3222 
3223 #ifndef SQLITE_OMIT_SUBQUERY
3224 /*
3225 ** Generate code for an IN expression.
3226 **
3227 **      x IN (SELECT ...)
3228 **      x IN (value, value, ...)
3229 **
3230 ** The left-hand side (LHS) is a scalar or vector expression.  The
3231 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3232 ** subquery.  If the RHS is a subquery, the number of result columns must
3233 ** match the number of columns in the vector on the LHS.  If the RHS is
3234 ** a list of values, the LHS must be a scalar.
3235 **
3236 ** The IN operator is true if the LHS value is contained within the RHS.
3237 ** The result is false if the LHS is definitely not in the RHS.  The
3238 ** result is NULL if the presence of the LHS in the RHS cannot be
3239 ** determined due to NULLs.
3240 **
3241 ** This routine generates code that jumps to destIfFalse if the LHS is not
3242 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3243 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3244 ** within the RHS then fall through.
3245 **
3246 ** See the separate in-operator.md documentation file in the canonical
3247 ** SQLite source tree for additional information.
3248 */
3249 static void sqlite3ExprCodeIN(
3250   Parse *pParse,        /* Parsing and code generating context */
3251   Expr *pExpr,          /* The IN expression */
3252   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3253   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3254 ){
3255   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3256   int eType;            /* Type of the RHS */
3257   int rLhs;             /* Register(s) holding the LHS values */
3258   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3259   Vdbe *v;              /* Statement under construction */
3260   int *aiMap = 0;       /* Map from vector field to index column */
3261   char *zAff = 0;       /* Affinity string for comparisons */
3262   int nVector;          /* Size of vectors for this IN operator */
3263   int iDummy;           /* Dummy parameter to exprCodeVector() */
3264   Expr *pLeft;          /* The LHS of the IN operator */
3265   int i;                /* loop counter */
3266   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3267   int destStep6 = 0;    /* Start of code for Step 6 */
3268   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3269   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3270   int addrTop;          /* Top of the step-6 loop */
3271   int iTab = 0;         /* Index to use */
3272   u8 okConstFactor = pParse->okConstFactor;
3273 
3274   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3275   pLeft = pExpr->pLeft;
3276   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3277   zAff = exprINAffinity(pParse, pExpr);
3278   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3279   aiMap = (int*)sqlite3DbMallocZero(
3280       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3281   );
3282   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3283 
3284   /* Attempt to compute the RHS. After this step, if anything other than
3285   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3286   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3287   ** the RHS has not yet been coded.  */
3288   v = pParse->pVdbe;
3289   assert( v!=0 );       /* OOM detected prior to this routine */
3290   VdbeNoopComment((v, "begin IN expr"));
3291   eType = sqlite3FindInIndex(pParse, pExpr,
3292                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3293                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3294                              aiMap, &iTab);
3295 
3296   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3297        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3298   );
3299 #ifdef SQLITE_DEBUG
3300   /* Confirm that aiMap[] contains nVector integer values between 0 and
3301   ** nVector-1. */
3302   for(i=0; i<nVector; i++){
3303     int j, cnt;
3304     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3305     assert( cnt==1 );
3306   }
3307 #endif
3308 
3309   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3310   ** vector, then it is stored in an array of nVector registers starting
3311   ** at r1.
3312   **
3313   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3314   ** so that the fields are in the same order as an existing index.   The
3315   ** aiMap[] array contains a mapping from the original LHS field order to
3316   ** the field order that matches the RHS index.
3317   **
3318   ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3319   ** even if it is constant, as OP_Affinity may be used on the register
3320   ** by code generated below.  */
3321   assert( pParse->okConstFactor==okConstFactor );
3322   pParse->okConstFactor = 0;
3323   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3324   pParse->okConstFactor = okConstFactor;
3325   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3326   if( i==nVector ){
3327     /* LHS fields are not reordered */
3328     rLhs = rLhsOrig;
3329   }else{
3330     /* Need to reorder the LHS fields according to aiMap */
3331     rLhs = sqlite3GetTempRange(pParse, nVector);
3332     for(i=0; i<nVector; i++){
3333       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3334     }
3335   }
3336 
3337   /* If sqlite3FindInIndex() did not find or create an index that is
3338   ** suitable for evaluating the IN operator, then evaluate using a
3339   ** sequence of comparisons.
3340   **
3341   ** This is step (1) in the in-operator.md optimized algorithm.
3342   */
3343   if( eType==IN_INDEX_NOOP ){
3344     ExprList *pList = pExpr->x.pList;
3345     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3346     int labelOk = sqlite3VdbeMakeLabel(pParse);
3347     int r2, regToFree;
3348     int regCkNull = 0;
3349     int ii;
3350     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3351     if( destIfNull!=destIfFalse ){
3352       regCkNull = sqlite3GetTempReg(pParse);
3353       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3354     }
3355     for(ii=0; ii<pList->nExpr; ii++){
3356       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3357       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3358         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3359       }
3360       sqlite3ReleaseTempReg(pParse, regToFree);
3361       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3362         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3363         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3364                           (void*)pColl, P4_COLLSEQ);
3365         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3366         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3367         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3368         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3369         sqlite3VdbeChangeP5(v, zAff[0]);
3370       }else{
3371         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3372         assert( destIfNull==destIfFalse );
3373         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3374                           (void*)pColl, P4_COLLSEQ);
3375         VdbeCoverageIf(v, op==OP_Ne);
3376         VdbeCoverageIf(v, op==OP_IsNull);
3377         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3378       }
3379     }
3380     if( regCkNull ){
3381       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3382       sqlite3VdbeGoto(v, destIfFalse);
3383     }
3384     sqlite3VdbeResolveLabel(v, labelOk);
3385     sqlite3ReleaseTempReg(pParse, regCkNull);
3386     goto sqlite3ExprCodeIN_finished;
3387   }
3388 
3389   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3390   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3391   ** We will then skip the binary search of the RHS.
3392   */
3393   if( destIfNull==destIfFalse ){
3394     destStep2 = destIfFalse;
3395   }else{
3396     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3397   }
3398   if( pParse->nErr ) goto sqlite3ExprCodeIN_finished;
3399   for(i=0; i<nVector; i++){
3400     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3401     if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3402     if( sqlite3ExprCanBeNull(p) ){
3403       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3404       VdbeCoverage(v);
3405     }
3406   }
3407 
3408   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3409   ** of the RHS using the LHS as a probe.  If found, the result is
3410   ** true.
3411   */
3412   if( eType==IN_INDEX_ROWID ){
3413     /* In this case, the RHS is the ROWID of table b-tree and so we also
3414     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3415     ** into a single opcode. */
3416     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3417     VdbeCoverage(v);
3418     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3419   }else{
3420     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3421     if( destIfFalse==destIfNull ){
3422       /* Combine Step 3 and Step 5 into a single opcode */
3423       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3424                            rLhs, nVector); VdbeCoverage(v);
3425       goto sqlite3ExprCodeIN_finished;
3426     }
3427     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3428     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3429                                       rLhs, nVector); VdbeCoverage(v);
3430   }
3431 
3432   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3433   ** an match on the search above, then the result must be FALSE.
3434   */
3435   if( rRhsHasNull && nVector==1 ){
3436     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3437     VdbeCoverage(v);
3438   }
3439 
3440   /* Step 5.  If we do not care about the difference between NULL and
3441   ** FALSE, then just return false.
3442   */
3443   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3444 
3445   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3446   ** If any comparison is NULL, then the result is NULL.  If all
3447   ** comparisons are FALSE then the final result is FALSE.
3448   **
3449   ** For a scalar LHS, it is sufficient to check just the first row
3450   ** of the RHS.
3451   */
3452   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3453   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3454   VdbeCoverage(v);
3455   if( nVector>1 ){
3456     destNotNull = sqlite3VdbeMakeLabel(pParse);
3457   }else{
3458     /* For nVector==1, combine steps 6 and 7 by immediately returning
3459     ** FALSE if the first comparison is not NULL */
3460     destNotNull = destIfFalse;
3461   }
3462   for(i=0; i<nVector; i++){
3463     Expr *p;
3464     CollSeq *pColl;
3465     int r3 = sqlite3GetTempReg(pParse);
3466     p = sqlite3VectorFieldSubexpr(pLeft, i);
3467     pColl = sqlite3ExprCollSeq(pParse, p);
3468     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3469     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3470                       (void*)pColl, P4_COLLSEQ);
3471     VdbeCoverage(v);
3472     sqlite3ReleaseTempReg(pParse, r3);
3473   }
3474   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3475   if( nVector>1 ){
3476     sqlite3VdbeResolveLabel(v, destNotNull);
3477     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3478     VdbeCoverage(v);
3479 
3480     /* Step 7:  If we reach this point, we know that the result must
3481     ** be false. */
3482     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3483   }
3484 
3485   /* Jumps here in order to return true. */
3486   sqlite3VdbeJumpHere(v, addrTruthOp);
3487 
3488 sqlite3ExprCodeIN_finished:
3489   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3490   VdbeComment((v, "end IN expr"));
3491 sqlite3ExprCodeIN_oom_error:
3492   sqlite3DbFree(pParse->db, aiMap);
3493   sqlite3DbFree(pParse->db, zAff);
3494 }
3495 #endif /* SQLITE_OMIT_SUBQUERY */
3496 
3497 #ifndef SQLITE_OMIT_FLOATING_POINT
3498 /*
3499 ** Generate an instruction that will put the floating point
3500 ** value described by z[0..n-1] into register iMem.
3501 **
3502 ** The z[] string will probably not be zero-terminated.  But the
3503 ** z[n] character is guaranteed to be something that does not look
3504 ** like the continuation of the number.
3505 */
3506 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3507   if( ALWAYS(z!=0) ){
3508     double value;
3509     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3510     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3511     if( negateFlag ) value = -value;
3512     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3513   }
3514 }
3515 #endif
3516 
3517 
3518 /*
3519 ** Generate an instruction that will put the integer describe by
3520 ** text z[0..n-1] into register iMem.
3521 **
3522 ** Expr.u.zToken is always UTF8 and zero-terminated.
3523 */
3524 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3525   Vdbe *v = pParse->pVdbe;
3526   if( pExpr->flags & EP_IntValue ){
3527     int i = pExpr->u.iValue;
3528     assert( i>=0 );
3529     if( negFlag ) i = -i;
3530     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3531   }else{
3532     int c;
3533     i64 value;
3534     const char *z = pExpr->u.zToken;
3535     assert( z!=0 );
3536     c = sqlite3DecOrHexToI64(z, &value);
3537     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3538 #ifdef SQLITE_OMIT_FLOATING_POINT
3539       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3540 #else
3541 #ifndef SQLITE_OMIT_HEX_INTEGER
3542       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3543         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3544       }else
3545 #endif
3546       {
3547         codeReal(v, z, negFlag, iMem);
3548       }
3549 #endif
3550     }else{
3551       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3552       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3553     }
3554   }
3555 }
3556 
3557 
3558 /* Generate code that will load into register regOut a value that is
3559 ** appropriate for the iIdxCol-th column of index pIdx.
3560 */
3561 void sqlite3ExprCodeLoadIndexColumn(
3562   Parse *pParse,  /* The parsing context */
3563   Index *pIdx,    /* The index whose column is to be loaded */
3564   int iTabCur,    /* Cursor pointing to a table row */
3565   int iIdxCol,    /* The column of the index to be loaded */
3566   int regOut      /* Store the index column value in this register */
3567 ){
3568   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3569   if( iTabCol==XN_EXPR ){
3570     assert( pIdx->aColExpr );
3571     assert( pIdx->aColExpr->nExpr>iIdxCol );
3572     pParse->iSelfTab = iTabCur + 1;
3573     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3574     pParse->iSelfTab = 0;
3575   }else{
3576     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3577                                     iTabCol, regOut);
3578   }
3579 }
3580 
3581 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3582 /*
3583 ** Generate code that will compute the value of generated column pCol
3584 ** and store the result in register regOut
3585 */
3586 void sqlite3ExprCodeGeneratedColumn(
3587   Parse *pParse,
3588   Column *pCol,
3589   int regOut
3590 ){
3591   int iAddr;
3592   Vdbe *v = pParse->pVdbe;
3593   assert( v!=0 );
3594   assert( pParse->iSelfTab!=0 );
3595   if( pParse->iSelfTab>0 ){
3596     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3597   }else{
3598     iAddr = 0;
3599   }
3600   sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut);
3601   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3602     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3603   }
3604   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3605 }
3606 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3607 
3608 /*
3609 ** Generate code to extract the value of the iCol-th column of a table.
3610 */
3611 void sqlite3ExprCodeGetColumnOfTable(
3612   Vdbe *v,        /* Parsing context */
3613   Table *pTab,    /* The table containing the value */
3614   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3615   int iCol,       /* Index of the column to extract */
3616   int regOut      /* Extract the value into this register */
3617 ){
3618   Column *pCol;
3619   assert( v!=0 );
3620   if( pTab==0 ){
3621     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3622     return;
3623   }
3624   if( iCol<0 || iCol==pTab->iPKey ){
3625     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3626   }else{
3627     int op;
3628     int x;
3629     if( IsVirtual(pTab) ){
3630       op = OP_VColumn;
3631       x = iCol;
3632 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3633     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3634       Parse *pParse = sqlite3VdbeParser(v);
3635       if( pCol->colFlags & COLFLAG_BUSY ){
3636         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName);
3637       }else{
3638         int savedSelfTab = pParse->iSelfTab;
3639         pCol->colFlags |= COLFLAG_BUSY;
3640         pParse->iSelfTab = iTabCur+1;
3641         sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut);
3642         pParse->iSelfTab = savedSelfTab;
3643         pCol->colFlags &= ~COLFLAG_BUSY;
3644       }
3645       return;
3646 #endif
3647     }else if( !HasRowid(pTab) ){
3648       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3649       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3650       op = OP_Column;
3651     }else{
3652       x = sqlite3TableColumnToStorage(pTab,iCol);
3653       testcase( x!=iCol );
3654       op = OP_Column;
3655     }
3656     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3657     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3658   }
3659 }
3660 
3661 /*
3662 ** Generate code that will extract the iColumn-th column from
3663 ** table pTab and store the column value in register iReg.
3664 **
3665 ** There must be an open cursor to pTab in iTable when this routine
3666 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3667 */
3668 int sqlite3ExprCodeGetColumn(
3669   Parse *pParse,   /* Parsing and code generating context */
3670   Table *pTab,     /* Description of the table we are reading from */
3671   int iColumn,     /* Index of the table column */
3672   int iTable,      /* The cursor pointing to the table */
3673   int iReg,        /* Store results here */
3674   u8 p5            /* P5 value for OP_Column + FLAGS */
3675 ){
3676   assert( pParse->pVdbe!=0 );
3677   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3678   if( p5 ){
3679     VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3680     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3681   }
3682   return iReg;
3683 }
3684 
3685 /*
3686 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3687 ** over to iTo..iTo+nReg-1.
3688 */
3689 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3690   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3691 }
3692 
3693 /*
3694 ** Convert a scalar expression node to a TK_REGISTER referencing
3695 ** register iReg.  The caller must ensure that iReg already contains
3696 ** the correct value for the expression.
3697 */
3698 static void exprToRegister(Expr *pExpr, int iReg){
3699   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3700   if( NEVER(p==0) ) return;
3701   p->op2 = p->op;
3702   p->op = TK_REGISTER;
3703   p->iTable = iReg;
3704   ExprClearProperty(p, EP_Skip);
3705 }
3706 
3707 /*
3708 ** Evaluate an expression (either a vector or a scalar expression) and store
3709 ** the result in continguous temporary registers.  Return the index of
3710 ** the first register used to store the result.
3711 **
3712 ** If the returned result register is a temporary scalar, then also write
3713 ** that register number into *piFreeable.  If the returned result register
3714 ** is not a temporary or if the expression is a vector set *piFreeable
3715 ** to 0.
3716 */
3717 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3718   int iResult;
3719   int nResult = sqlite3ExprVectorSize(p);
3720   if( nResult==1 ){
3721     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3722   }else{
3723     *piFreeable = 0;
3724     if( p->op==TK_SELECT ){
3725 #if SQLITE_OMIT_SUBQUERY
3726       iResult = 0;
3727 #else
3728       iResult = sqlite3CodeSubselect(pParse, p);
3729 #endif
3730     }else{
3731       int i;
3732       iResult = pParse->nMem+1;
3733       pParse->nMem += nResult;
3734       for(i=0; i<nResult; i++){
3735         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3736       }
3737     }
3738   }
3739   return iResult;
3740 }
3741 
3742 /*
3743 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3744 ** so that a subsequent copy will not be merged into this one.
3745 */
3746 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3747   if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
3748     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3749   }
3750 }
3751 
3752 /*
3753 ** Generate code to implement special SQL functions that are implemented
3754 ** in-line rather than by using the usual callbacks.
3755 */
3756 static int exprCodeInlineFunction(
3757   Parse *pParse,        /* Parsing context */
3758   ExprList *pFarg,      /* List of function arguments */
3759   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3760   int target            /* Store function result in this register */
3761 ){
3762   int nFarg;
3763   Vdbe *v = pParse->pVdbe;
3764   assert( v!=0 );
3765   assert( pFarg!=0 );
3766   nFarg = pFarg->nExpr;
3767   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3768   switch( iFuncId ){
3769     case INLINEFUNC_coalesce: {
3770       /* Attempt a direct implementation of the built-in COALESCE() and
3771       ** IFNULL() functions.  This avoids unnecessary evaluation of
3772       ** arguments past the first non-NULL argument.
3773       */
3774       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3775       int i;
3776       assert( nFarg>=2 );
3777       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3778       for(i=1; i<nFarg; i++){
3779         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3780         VdbeCoverage(v);
3781         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3782       }
3783       setDoNotMergeFlagOnCopy(v);
3784       sqlite3VdbeResolveLabel(v, endCoalesce);
3785       break;
3786     }
3787     case INLINEFUNC_iif: {
3788       Expr caseExpr;
3789       memset(&caseExpr, 0, sizeof(caseExpr));
3790       caseExpr.op = TK_CASE;
3791       caseExpr.x.pList = pFarg;
3792       return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3793     }
3794 
3795     default: {
3796       /* The UNLIKELY() function is a no-op.  The result is the value
3797       ** of the first argument.
3798       */
3799       assert( nFarg==1 || nFarg==2 );
3800       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3801       break;
3802     }
3803 
3804   /***********************************************************************
3805   ** Test-only SQL functions that are only usable if enabled
3806   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3807   */
3808     case INLINEFUNC_expr_compare: {
3809       /* Compare two expressions using sqlite3ExprCompare() */
3810       assert( nFarg==2 );
3811       sqlite3VdbeAddOp2(v, OP_Integer,
3812          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3813          target);
3814       break;
3815     }
3816 
3817     case INLINEFUNC_expr_implies_expr: {
3818       /* Compare two expressions using sqlite3ExprImpliesExpr() */
3819       assert( nFarg==2 );
3820       sqlite3VdbeAddOp2(v, OP_Integer,
3821          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3822          target);
3823       break;
3824     }
3825 
3826     case INLINEFUNC_implies_nonnull_row: {
3827       /* REsult of sqlite3ExprImpliesNonNullRow() */
3828       Expr *pA1;
3829       assert( nFarg==2 );
3830       pA1 = pFarg->a[1].pExpr;
3831       if( pA1->op==TK_COLUMN ){
3832         sqlite3VdbeAddOp2(v, OP_Integer,
3833            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
3834            target);
3835       }else{
3836         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3837       }
3838       break;
3839     }
3840 
3841 #ifdef SQLITE_DEBUG
3842     case INLINEFUNC_affinity: {
3843       /* The AFFINITY() function evaluates to a string that describes
3844       ** the type affinity of the argument.  This is used for testing of
3845       ** the SQLite type logic.
3846       */
3847       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3848       char aff;
3849       assert( nFarg==1 );
3850       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3851       sqlite3VdbeLoadString(v, target,
3852               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3853       break;
3854     }
3855 #endif
3856   }
3857   return target;
3858 }
3859 
3860 
3861 /*
3862 ** Generate code into the current Vdbe to evaluate the given
3863 ** expression.  Attempt to store the results in register "target".
3864 ** Return the register where results are stored.
3865 **
3866 ** With this routine, there is no guarantee that results will
3867 ** be stored in target.  The result might be stored in some other
3868 ** register if it is convenient to do so.  The calling function
3869 ** must check the return code and move the results to the desired
3870 ** register.
3871 */
3872 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3873   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3874   int op;                   /* The opcode being coded */
3875   int inReg = target;       /* Results stored in register inReg */
3876   int regFree1 = 0;         /* If non-zero free this temporary register */
3877   int regFree2 = 0;         /* If non-zero free this temporary register */
3878   int r1, r2;               /* Various register numbers */
3879   Expr tempX;               /* Temporary expression node */
3880   int p5 = 0;
3881 
3882   assert( target>0 && target<=pParse->nMem );
3883   assert( v!=0 );
3884 
3885 expr_code_doover:
3886   if( pExpr==0 ){
3887     op = TK_NULL;
3888   }else{
3889     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3890     op = pExpr->op;
3891   }
3892   switch( op ){
3893     case TK_AGG_COLUMN: {
3894       AggInfo *pAggInfo = pExpr->pAggInfo;
3895       struct AggInfo_col *pCol;
3896       assert( pAggInfo!=0 );
3897       assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
3898       pCol = &pAggInfo->aCol[pExpr->iAgg];
3899       if( !pAggInfo->directMode ){
3900         assert( pCol->iMem>0 );
3901         return pCol->iMem;
3902       }else if( pAggInfo->useSortingIdx ){
3903         Table *pTab = pCol->pTab;
3904         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3905                               pCol->iSorterColumn, target);
3906         if( pCol->iColumn<0 ){
3907           VdbeComment((v,"%s.rowid",pTab->zName));
3908         }else{
3909           VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName));
3910           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
3911             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3912           }
3913         }
3914         return target;
3915       }
3916       /* Otherwise, fall thru into the TK_COLUMN case */
3917       /* no break */ deliberate_fall_through
3918     }
3919     case TK_COLUMN: {
3920       int iTab = pExpr->iTable;
3921       int iReg;
3922       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3923         /* This COLUMN expression is really a constant due to WHERE clause
3924         ** constraints, and that constant is coded by the pExpr->pLeft
3925         ** expresssion.  However, make sure the constant has the correct
3926         ** datatype by applying the Affinity of the table column to the
3927         ** constant.
3928         */
3929         int aff;
3930         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3931         if( pExpr->y.pTab ){
3932           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3933         }else{
3934           aff = pExpr->affExpr;
3935         }
3936         if( aff>SQLITE_AFF_BLOB ){
3937           static const char zAff[] = "B\000C\000D\000E";
3938           assert( SQLITE_AFF_BLOB=='A' );
3939           assert( SQLITE_AFF_TEXT=='B' );
3940           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3941                             &zAff[(aff-'B')*2], P4_STATIC);
3942         }
3943         return iReg;
3944       }
3945       if( iTab<0 ){
3946         if( pParse->iSelfTab<0 ){
3947           /* Other columns in the same row for CHECK constraints or
3948           ** generated columns or for inserting into partial index.
3949           ** The row is unpacked into registers beginning at
3950           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
3951           ** immediately prior to the first column.
3952           */
3953           Column *pCol;
3954           Table *pTab = pExpr->y.pTab;
3955           int iSrc;
3956           int iCol = pExpr->iColumn;
3957           assert( pTab!=0 );
3958           assert( iCol>=XN_ROWID );
3959           assert( iCol<pTab->nCol );
3960           if( iCol<0 ){
3961             return -1-pParse->iSelfTab;
3962           }
3963           pCol = pTab->aCol + iCol;
3964           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
3965           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
3966 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3967           if( pCol->colFlags & COLFLAG_GENERATED ){
3968             if( pCol->colFlags & COLFLAG_BUSY ){
3969               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3970                               pCol->zName);
3971               return 0;
3972             }
3973             pCol->colFlags |= COLFLAG_BUSY;
3974             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
3975               sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc);
3976             }
3977             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
3978             return iSrc;
3979           }else
3980 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3981           if( pCol->affinity==SQLITE_AFF_REAL ){
3982             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
3983             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3984             return target;
3985           }else{
3986             return iSrc;
3987           }
3988         }else{
3989           /* Coding an expression that is part of an index where column names
3990           ** in the index refer to the table to which the index belongs */
3991           iTab = pParse->iSelfTab - 1;
3992         }
3993       }
3994       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
3995                                pExpr->iColumn, iTab, target,
3996                                pExpr->op2);
3997       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
3998         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
3999       }
4000       return iReg;
4001     }
4002     case TK_INTEGER: {
4003       codeInteger(pParse, pExpr, 0, target);
4004       return target;
4005     }
4006     case TK_TRUEFALSE: {
4007       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
4008       return target;
4009     }
4010 #ifndef SQLITE_OMIT_FLOATING_POINT
4011     case TK_FLOAT: {
4012       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4013       codeReal(v, pExpr->u.zToken, 0, target);
4014       return target;
4015     }
4016 #endif
4017     case TK_STRING: {
4018       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4019       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
4020       return target;
4021     }
4022     default: {
4023       /* Make NULL the default case so that if a bug causes an illegal
4024       ** Expr node to be passed into this function, it will be handled
4025       ** sanely and not crash.  But keep the assert() to bring the problem
4026       ** to the attention of the developers. */
4027       assert( op==TK_NULL || pParse->db->mallocFailed );
4028       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4029       return target;
4030     }
4031 #ifndef SQLITE_OMIT_BLOB_LITERAL
4032     case TK_BLOB: {
4033       int n;
4034       const char *z;
4035       char *zBlob;
4036       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4037       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
4038       assert( pExpr->u.zToken[1]=='\'' );
4039       z = &pExpr->u.zToken[2];
4040       n = sqlite3Strlen30(z) - 1;
4041       assert( z[n]=='\'' );
4042       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
4043       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
4044       return target;
4045     }
4046 #endif
4047     case TK_VARIABLE: {
4048       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4049       assert( pExpr->u.zToken!=0 );
4050       assert( pExpr->u.zToken[0]!=0 );
4051       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
4052       if( pExpr->u.zToken[1]!=0 ){
4053         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
4054         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
4055         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
4056         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
4057       }
4058       return target;
4059     }
4060     case TK_REGISTER: {
4061       return pExpr->iTable;
4062     }
4063 #ifndef SQLITE_OMIT_CAST
4064     case TK_CAST: {
4065       /* Expressions of the form:   CAST(pLeft AS token) */
4066       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4067       if( inReg!=target ){
4068         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4069         inReg = target;
4070       }
4071       sqlite3VdbeAddOp2(v, OP_Cast, target,
4072                         sqlite3AffinityType(pExpr->u.zToken, 0));
4073       return inReg;
4074     }
4075 #endif /* SQLITE_OMIT_CAST */
4076     case TK_IS:
4077     case TK_ISNOT:
4078       op = (op==TK_IS) ? TK_EQ : TK_NE;
4079       p5 = SQLITE_NULLEQ;
4080       /* fall-through */
4081     case TK_LT:
4082     case TK_LE:
4083     case TK_GT:
4084     case TK_GE:
4085     case TK_NE:
4086     case TK_EQ: {
4087       Expr *pLeft = pExpr->pLeft;
4088       if( sqlite3ExprIsVector(pLeft) ){
4089         codeVectorCompare(pParse, pExpr, target, op, p5);
4090       }else{
4091         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4092         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4093         sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
4094         codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
4095             sqlite3VdbeCurrentAddr(v)+2, p5,
4096             ExprHasProperty(pExpr,EP_Commuted));
4097         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4098         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4099         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4100         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4101         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4102         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4103         if( p5==SQLITE_NULLEQ ){
4104           sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
4105         }else{
4106           sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
4107         }
4108         testcase( regFree1==0 );
4109         testcase( regFree2==0 );
4110       }
4111       break;
4112     }
4113     case TK_AND:
4114     case TK_OR:
4115     case TK_PLUS:
4116     case TK_STAR:
4117     case TK_MINUS:
4118     case TK_REM:
4119     case TK_BITAND:
4120     case TK_BITOR:
4121     case TK_SLASH:
4122     case TK_LSHIFT:
4123     case TK_RSHIFT:
4124     case TK_CONCAT: {
4125       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4126       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4127       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4128       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4129       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4130       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4131       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4132       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4133       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4134       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4135       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4136       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4137       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4138       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4139       testcase( regFree1==0 );
4140       testcase( regFree2==0 );
4141       break;
4142     }
4143     case TK_UMINUS: {
4144       Expr *pLeft = pExpr->pLeft;
4145       assert( pLeft );
4146       if( pLeft->op==TK_INTEGER ){
4147         codeInteger(pParse, pLeft, 1, target);
4148         return target;
4149 #ifndef SQLITE_OMIT_FLOATING_POINT
4150       }else if( pLeft->op==TK_FLOAT ){
4151         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4152         codeReal(v, pLeft->u.zToken, 1, target);
4153         return target;
4154 #endif
4155       }else{
4156         tempX.op = TK_INTEGER;
4157         tempX.flags = EP_IntValue|EP_TokenOnly;
4158         tempX.u.iValue = 0;
4159         ExprClearVVAProperties(&tempX);
4160         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4161         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4162         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4163         testcase( regFree2==0 );
4164       }
4165       break;
4166     }
4167     case TK_BITNOT:
4168     case TK_NOT: {
4169       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4170       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4171       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4172       testcase( regFree1==0 );
4173       sqlite3VdbeAddOp2(v, op, r1, inReg);
4174       break;
4175     }
4176     case TK_TRUTH: {
4177       int isTrue;    /* IS TRUE or IS NOT TRUE */
4178       int bNormal;   /* IS TRUE or IS FALSE */
4179       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4180       testcase( regFree1==0 );
4181       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4182       bNormal = pExpr->op2==TK_IS;
4183       testcase( isTrue && bNormal);
4184       testcase( !isTrue && bNormal);
4185       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4186       break;
4187     }
4188     case TK_ISNULL:
4189     case TK_NOTNULL: {
4190       int addr;
4191       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4192       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4193       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4194       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4195       testcase( regFree1==0 );
4196       addr = sqlite3VdbeAddOp1(v, op, r1);
4197       VdbeCoverageIf(v, op==TK_ISNULL);
4198       VdbeCoverageIf(v, op==TK_NOTNULL);
4199       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4200       sqlite3VdbeJumpHere(v, addr);
4201       break;
4202     }
4203     case TK_AGG_FUNCTION: {
4204       AggInfo *pInfo = pExpr->pAggInfo;
4205       if( pInfo==0
4206        || NEVER(pExpr->iAgg<0)
4207        || NEVER(pExpr->iAgg>=pInfo->nFunc)
4208       ){
4209         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4210         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
4211       }else{
4212         return pInfo->aFunc[pExpr->iAgg].iMem;
4213       }
4214       break;
4215     }
4216     case TK_FUNCTION: {
4217       ExprList *pFarg;       /* List of function arguments */
4218       int nFarg;             /* Number of function arguments */
4219       FuncDef *pDef;         /* The function definition object */
4220       const char *zId;       /* The function name */
4221       u32 constMask = 0;     /* Mask of function arguments that are constant */
4222       int i;                 /* Loop counter */
4223       sqlite3 *db = pParse->db;  /* The database connection */
4224       u8 enc = ENC(db);      /* The text encoding used by this database */
4225       CollSeq *pColl = 0;    /* A collating sequence */
4226 
4227 #ifndef SQLITE_OMIT_WINDOWFUNC
4228       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4229         return pExpr->y.pWin->regResult;
4230       }
4231 #endif
4232 
4233       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4234         /* SQL functions can be expensive. So try to avoid running them
4235         ** multiple times if we know they always give the same result */
4236         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4237       }
4238       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4239       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4240       pFarg = pExpr->x.pList;
4241       nFarg = pFarg ? pFarg->nExpr : 0;
4242       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4243       zId = pExpr->u.zToken;
4244       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4245 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4246       if( pDef==0 && pParse->explain ){
4247         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4248       }
4249 #endif
4250       if( pDef==0 || pDef->xFinalize!=0 ){
4251         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
4252         break;
4253       }
4254       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4255         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4256         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4257         return exprCodeInlineFunction(pParse, pFarg,
4258              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4259       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4260         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4261       }
4262 
4263       for(i=0; i<nFarg; i++){
4264         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4265           testcase( i==31 );
4266           constMask |= MASKBIT32(i);
4267         }
4268         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4269           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4270         }
4271       }
4272       if( pFarg ){
4273         if( constMask ){
4274           r1 = pParse->nMem+1;
4275           pParse->nMem += nFarg;
4276         }else{
4277           r1 = sqlite3GetTempRange(pParse, nFarg);
4278         }
4279 
4280         /* For length() and typeof() functions with a column argument,
4281         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4282         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4283         ** loading.
4284         */
4285         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4286           u8 exprOp;
4287           assert( nFarg==1 );
4288           assert( pFarg->a[0].pExpr!=0 );
4289           exprOp = pFarg->a[0].pExpr->op;
4290           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4291             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4292             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4293             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4294             pFarg->a[0].pExpr->op2 =
4295                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4296           }
4297         }
4298 
4299         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4300                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4301       }else{
4302         r1 = 0;
4303       }
4304 #ifndef SQLITE_OMIT_VIRTUALTABLE
4305       /* Possibly overload the function if the first argument is
4306       ** a virtual table column.
4307       **
4308       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4309       ** second argument, not the first, as the argument to test to
4310       ** see if it is a column in a virtual table.  This is done because
4311       ** the left operand of infix functions (the operand we want to
4312       ** control overloading) ends up as the second argument to the
4313       ** function.  The expression "A glob B" is equivalent to
4314       ** "glob(B,A).  We want to use the A in "A glob B" to test
4315       ** for function overloading.  But we use the B term in "glob(B,A)".
4316       */
4317       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4318         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4319       }else if( nFarg>0 ){
4320         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4321       }
4322 #endif
4323       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4324         if( !pColl ) pColl = db->pDfltColl;
4325         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4326       }
4327 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4328       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
4329         Expr *pArg = pFarg->a[0].pExpr;
4330         if( pArg->op==TK_COLUMN ){
4331           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4332         }else{
4333           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4334         }
4335       }else
4336 #endif
4337       {
4338         sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4339                                    pDef, pExpr->op2);
4340       }
4341       if( nFarg ){
4342         if( constMask==0 ){
4343           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4344         }else{
4345           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4346         }
4347       }
4348       return target;
4349     }
4350 #ifndef SQLITE_OMIT_SUBQUERY
4351     case TK_EXISTS:
4352     case TK_SELECT: {
4353       int nCol;
4354       testcase( op==TK_EXISTS );
4355       testcase( op==TK_SELECT );
4356       if( pParse->db->mallocFailed ){
4357         return 0;
4358       }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
4359         sqlite3SubselectError(pParse, nCol, 1);
4360       }else{
4361         return sqlite3CodeSubselect(pParse, pExpr);
4362       }
4363       break;
4364     }
4365     case TK_SELECT_COLUMN: {
4366       int n;
4367       if( pExpr->pLeft->iTable==0 ){
4368         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
4369       }
4370       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
4371       if( pExpr->iTable!=0
4372        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
4373       ){
4374         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4375                                 pExpr->iTable, n);
4376       }
4377       return pExpr->pLeft->iTable + pExpr->iColumn;
4378     }
4379     case TK_IN: {
4380       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4381       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4382       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4383       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4384       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4385       sqlite3VdbeResolveLabel(v, destIfFalse);
4386       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4387       sqlite3VdbeResolveLabel(v, destIfNull);
4388       return target;
4389     }
4390 #endif /* SQLITE_OMIT_SUBQUERY */
4391 
4392 
4393     /*
4394     **    x BETWEEN y AND z
4395     **
4396     ** This is equivalent to
4397     **
4398     **    x>=y AND x<=z
4399     **
4400     ** X is stored in pExpr->pLeft.
4401     ** Y is stored in pExpr->pList->a[0].pExpr.
4402     ** Z is stored in pExpr->pList->a[1].pExpr.
4403     */
4404     case TK_BETWEEN: {
4405       exprCodeBetween(pParse, pExpr, target, 0, 0);
4406       return target;
4407     }
4408     case TK_SPAN:
4409     case TK_COLLATE:
4410     case TK_UPLUS: {
4411       pExpr = pExpr->pLeft;
4412       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4413     }
4414 
4415     case TK_TRIGGER: {
4416       /* If the opcode is TK_TRIGGER, then the expression is a reference
4417       ** to a column in the new.* or old.* pseudo-tables available to
4418       ** trigger programs. In this case Expr.iTable is set to 1 for the
4419       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4420       ** is set to the column of the pseudo-table to read, or to -1 to
4421       ** read the rowid field.
4422       **
4423       ** The expression is implemented using an OP_Param opcode. The p1
4424       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4425       ** to reference another column of the old.* pseudo-table, where
4426       ** i is the index of the column. For a new.rowid reference, p1 is
4427       ** set to (n+1), where n is the number of columns in each pseudo-table.
4428       ** For a reference to any other column in the new.* pseudo-table, p1
4429       ** is set to (n+2+i), where n and i are as defined previously. For
4430       ** example, if the table on which triggers are being fired is
4431       ** declared as:
4432       **
4433       **   CREATE TABLE t1(a, b);
4434       **
4435       ** Then p1 is interpreted as follows:
4436       **
4437       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4438       **   p1==1   ->    old.a         p1==4   ->    new.a
4439       **   p1==2   ->    old.b         p1==5   ->    new.b
4440       */
4441       Table *pTab = pExpr->y.pTab;
4442       int iCol = pExpr->iColumn;
4443       int p1 = pExpr->iTable * (pTab->nCol+1) + 1
4444                      + sqlite3TableColumnToStorage(pTab, iCol);
4445 
4446       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4447       assert( iCol>=-1 && iCol<pTab->nCol );
4448       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4449       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4450 
4451       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4452       VdbeComment((v, "r[%d]=%s.%s", target,
4453         (pExpr->iTable ? "new" : "old"),
4454         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName)
4455       ));
4456 
4457 #ifndef SQLITE_OMIT_FLOATING_POINT
4458       /* If the column has REAL affinity, it may currently be stored as an
4459       ** integer. Use OP_RealAffinity to make sure it is really real.
4460       **
4461       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4462       ** floating point when extracting it from the record.  */
4463       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4464         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4465       }
4466 #endif
4467       break;
4468     }
4469 
4470     case TK_VECTOR: {
4471       sqlite3ErrorMsg(pParse, "row value misused");
4472       break;
4473     }
4474 
4475     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4476     ** that derive from the right-hand table of a LEFT JOIN.  The
4477     ** Expr.iTable value is the table number for the right-hand table.
4478     ** The expression is only evaluated if that table is not currently
4479     ** on a LEFT JOIN NULL row.
4480     */
4481     case TK_IF_NULL_ROW: {
4482       int addrINR;
4483       u8 okConstFactor = pParse->okConstFactor;
4484       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4485       /* Temporarily disable factoring of constant expressions, since
4486       ** even though expressions may appear to be constant, they are not
4487       ** really constant because they originate from the right-hand side
4488       ** of a LEFT JOIN. */
4489       pParse->okConstFactor = 0;
4490       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4491       pParse->okConstFactor = okConstFactor;
4492       sqlite3VdbeJumpHere(v, addrINR);
4493       sqlite3VdbeChangeP3(v, addrINR, inReg);
4494       break;
4495     }
4496 
4497     /*
4498     ** Form A:
4499     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4500     **
4501     ** Form B:
4502     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4503     **
4504     ** Form A is can be transformed into the equivalent form B as follows:
4505     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4506     **        WHEN x=eN THEN rN ELSE y END
4507     **
4508     ** X (if it exists) is in pExpr->pLeft.
4509     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4510     ** odd.  The Y is also optional.  If the number of elements in x.pList
4511     ** is even, then Y is omitted and the "otherwise" result is NULL.
4512     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4513     **
4514     ** The result of the expression is the Ri for the first matching Ei,
4515     ** or if there is no matching Ei, the ELSE term Y, or if there is
4516     ** no ELSE term, NULL.
4517     */
4518     case TK_CASE: {
4519       int endLabel;                     /* GOTO label for end of CASE stmt */
4520       int nextCase;                     /* GOTO label for next WHEN clause */
4521       int nExpr;                        /* 2x number of WHEN terms */
4522       int i;                            /* Loop counter */
4523       ExprList *pEList;                 /* List of WHEN terms */
4524       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4525       Expr opCompare;                   /* The X==Ei expression */
4526       Expr *pX;                         /* The X expression */
4527       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4528       Expr *pDel = 0;
4529       sqlite3 *db = pParse->db;
4530 
4531       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4532       assert(pExpr->x.pList->nExpr > 0);
4533       pEList = pExpr->x.pList;
4534       aListelem = pEList->a;
4535       nExpr = pEList->nExpr;
4536       endLabel = sqlite3VdbeMakeLabel(pParse);
4537       if( (pX = pExpr->pLeft)!=0 ){
4538         pDel = sqlite3ExprDup(db, pX, 0);
4539         if( db->mallocFailed ){
4540           sqlite3ExprDelete(db, pDel);
4541           break;
4542         }
4543         testcase( pX->op==TK_COLUMN );
4544         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4545         testcase( regFree1==0 );
4546         memset(&opCompare, 0, sizeof(opCompare));
4547         opCompare.op = TK_EQ;
4548         opCompare.pLeft = pDel;
4549         pTest = &opCompare;
4550         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4551         ** The value in regFree1 might get SCopy-ed into the file result.
4552         ** So make sure that the regFree1 register is not reused for other
4553         ** purposes and possibly overwritten.  */
4554         regFree1 = 0;
4555       }
4556       for(i=0; i<nExpr-1; i=i+2){
4557         if( pX ){
4558           assert( pTest!=0 );
4559           opCompare.pRight = aListelem[i].pExpr;
4560         }else{
4561           pTest = aListelem[i].pExpr;
4562         }
4563         nextCase = sqlite3VdbeMakeLabel(pParse);
4564         testcase( pTest->op==TK_COLUMN );
4565         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4566         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4567         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4568         sqlite3VdbeGoto(v, endLabel);
4569         sqlite3VdbeResolveLabel(v, nextCase);
4570       }
4571       if( (nExpr&1)!=0 ){
4572         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4573       }else{
4574         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4575       }
4576       sqlite3ExprDelete(db, pDel);
4577       setDoNotMergeFlagOnCopy(v);
4578       sqlite3VdbeResolveLabel(v, endLabel);
4579       break;
4580     }
4581 #ifndef SQLITE_OMIT_TRIGGER
4582     case TK_RAISE: {
4583       assert( pExpr->affExpr==OE_Rollback
4584            || pExpr->affExpr==OE_Abort
4585            || pExpr->affExpr==OE_Fail
4586            || pExpr->affExpr==OE_Ignore
4587       );
4588       if( !pParse->pTriggerTab && !pParse->nested ){
4589         sqlite3ErrorMsg(pParse,
4590                        "RAISE() may only be used within a trigger-program");
4591         return 0;
4592       }
4593       if( pExpr->affExpr==OE_Abort ){
4594         sqlite3MayAbort(pParse);
4595       }
4596       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4597       if( pExpr->affExpr==OE_Ignore ){
4598         sqlite3VdbeAddOp4(
4599             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4600         VdbeCoverage(v);
4601       }else{
4602         sqlite3HaltConstraint(pParse,
4603              pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4604              pExpr->affExpr, pExpr->u.zToken, 0, 0);
4605       }
4606 
4607       break;
4608     }
4609 #endif
4610   }
4611   sqlite3ReleaseTempReg(pParse, regFree1);
4612   sqlite3ReleaseTempReg(pParse, regFree2);
4613   return inReg;
4614 }
4615 
4616 /*
4617 ** Generate code that will evaluate expression pExpr just one time
4618 ** per prepared statement execution.
4619 **
4620 ** If the expression uses functions (that might throw an exception) then
4621 ** guard them with an OP_Once opcode to ensure that the code is only executed
4622 ** once. If no functions are involved, then factor the code out and put it at
4623 ** the end of the prepared statement in the initialization section.
4624 **
4625 ** If regDest>=0 then the result is always stored in that register and the
4626 ** result is not reusable.  If regDest<0 then this routine is free to
4627 ** store the value whereever it wants.  The register where the expression
4628 ** is stored is returned.  When regDest<0, two identical expressions might
4629 ** code to the same register, if they do not contain function calls and hence
4630 ** are factored out into the initialization section at the end of the
4631 ** prepared statement.
4632 */
4633 int sqlite3ExprCodeRunJustOnce(
4634   Parse *pParse,    /* Parsing context */
4635   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4636   int regDest       /* Store the value in this register */
4637 ){
4638   ExprList *p;
4639   assert( ConstFactorOk(pParse) );
4640   p = pParse->pConstExpr;
4641   if( regDest<0 && p ){
4642     struct ExprList_item *pItem;
4643     int i;
4644     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4645       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4646         return pItem->u.iConstExprReg;
4647       }
4648     }
4649   }
4650   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4651   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4652     Vdbe *v = pParse->pVdbe;
4653     int addr;
4654     assert( v );
4655     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4656     pParse->okConstFactor = 0;
4657     if( !pParse->db->mallocFailed ){
4658       if( regDest<0 ) regDest = ++pParse->nMem;
4659       sqlite3ExprCode(pParse, pExpr, regDest);
4660     }
4661     pParse->okConstFactor = 1;
4662     sqlite3ExprDelete(pParse->db, pExpr);
4663     sqlite3VdbeJumpHere(v, addr);
4664   }else{
4665     p = sqlite3ExprListAppend(pParse, p, pExpr);
4666     if( p ){
4667        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4668        pItem->reusable = regDest<0;
4669        if( regDest<0 ) regDest = ++pParse->nMem;
4670        pItem->u.iConstExprReg = regDest;
4671     }
4672     pParse->pConstExpr = p;
4673   }
4674   return regDest;
4675 }
4676 
4677 /*
4678 ** Generate code to evaluate an expression and store the results
4679 ** into a register.  Return the register number where the results
4680 ** are stored.
4681 **
4682 ** If the register is a temporary register that can be deallocated,
4683 ** then write its number into *pReg.  If the result register is not
4684 ** a temporary, then set *pReg to zero.
4685 **
4686 ** If pExpr is a constant, then this routine might generate this
4687 ** code to fill the register in the initialization section of the
4688 ** VDBE program, in order to factor it out of the evaluation loop.
4689 */
4690 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4691   int r2;
4692   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4693   if( ConstFactorOk(pParse)
4694    && ALWAYS(pExpr!=0)
4695    && pExpr->op!=TK_REGISTER
4696    && sqlite3ExprIsConstantNotJoin(pExpr)
4697   ){
4698     *pReg  = 0;
4699     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4700   }else{
4701     int r1 = sqlite3GetTempReg(pParse);
4702     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4703     if( r2==r1 ){
4704       *pReg = r1;
4705     }else{
4706       sqlite3ReleaseTempReg(pParse, r1);
4707       *pReg = 0;
4708     }
4709   }
4710   return r2;
4711 }
4712 
4713 /*
4714 ** Generate code that will evaluate expression pExpr and store the
4715 ** results in register target.  The results are guaranteed to appear
4716 ** in register target.
4717 */
4718 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4719   int inReg;
4720 
4721   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4722   assert( target>0 && target<=pParse->nMem );
4723   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4724   if( pParse->pVdbe==0 ) return;
4725   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4726   if( inReg!=target ){
4727     u8 op;
4728     if( ExprHasProperty(pExpr,EP_Subquery) ){
4729       op = OP_Copy;
4730     }else{
4731       op = OP_SCopy;
4732     }
4733     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4734   }
4735 }
4736 
4737 /*
4738 ** Make a transient copy of expression pExpr and then code it using
4739 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4740 ** except that the input expression is guaranteed to be unchanged.
4741 */
4742 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4743   sqlite3 *db = pParse->db;
4744   pExpr = sqlite3ExprDup(db, pExpr, 0);
4745   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4746   sqlite3ExprDelete(db, pExpr);
4747 }
4748 
4749 /*
4750 ** Generate code that will evaluate expression pExpr and store the
4751 ** results in register target.  The results are guaranteed to appear
4752 ** in register target.  If the expression is constant, then this routine
4753 ** might choose to code the expression at initialization time.
4754 */
4755 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4756   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4757     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4758   }else{
4759     sqlite3ExprCodeCopy(pParse, pExpr, target);
4760   }
4761 }
4762 
4763 /*
4764 ** Generate code that pushes the value of every element of the given
4765 ** expression list into a sequence of registers beginning at target.
4766 **
4767 ** Return the number of elements evaluated.  The number returned will
4768 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4769 ** is defined.
4770 **
4771 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4772 ** filled using OP_SCopy.  OP_Copy must be used instead.
4773 **
4774 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4775 ** factored out into initialization code.
4776 **
4777 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4778 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4779 ** in registers at srcReg, and so the value can be copied from there.
4780 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4781 ** are simply omitted rather than being copied from srcReg.
4782 */
4783 int sqlite3ExprCodeExprList(
4784   Parse *pParse,     /* Parsing context */
4785   ExprList *pList,   /* The expression list to be coded */
4786   int target,        /* Where to write results */
4787   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4788   u8 flags           /* SQLITE_ECEL_* flags */
4789 ){
4790   struct ExprList_item *pItem;
4791   int i, j, n;
4792   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4793   Vdbe *v = pParse->pVdbe;
4794   assert( pList!=0 );
4795   assert( target>0 );
4796   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4797   n = pList->nExpr;
4798   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4799   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4800     Expr *pExpr = pItem->pExpr;
4801 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4802     if( pItem->bSorterRef ){
4803       i--;
4804       n--;
4805     }else
4806 #endif
4807     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4808       if( flags & SQLITE_ECEL_OMITREF ){
4809         i--;
4810         n--;
4811       }else{
4812         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4813       }
4814     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4815            && sqlite3ExprIsConstantNotJoin(pExpr)
4816     ){
4817       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
4818     }else{
4819       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4820       if( inReg!=target+i ){
4821         VdbeOp *pOp;
4822         if( copyOp==OP_Copy
4823          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4824          && pOp->p1+pOp->p3+1==inReg
4825          && pOp->p2+pOp->p3+1==target+i
4826          && pOp->p5==0  /* The do-not-merge flag must be clear */
4827         ){
4828           pOp->p3++;
4829         }else{
4830           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4831         }
4832       }
4833     }
4834   }
4835   return n;
4836 }
4837 
4838 /*
4839 ** Generate code for a BETWEEN operator.
4840 **
4841 **    x BETWEEN y AND z
4842 **
4843 ** The above is equivalent to
4844 **
4845 **    x>=y AND x<=z
4846 **
4847 ** Code it as such, taking care to do the common subexpression
4848 ** elimination of x.
4849 **
4850 ** The xJumpIf parameter determines details:
4851 **
4852 **    NULL:                   Store the boolean result in reg[dest]
4853 **    sqlite3ExprIfTrue:      Jump to dest if true
4854 **    sqlite3ExprIfFalse:     Jump to dest if false
4855 **
4856 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4857 */
4858 static void exprCodeBetween(
4859   Parse *pParse,    /* Parsing and code generating context */
4860   Expr *pExpr,      /* The BETWEEN expression */
4861   int dest,         /* Jump destination or storage location */
4862   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4863   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4864 ){
4865   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4866   Expr compLeft;    /* The  x>=y  term */
4867   Expr compRight;   /* The  x<=z  term */
4868   int regFree1 = 0; /* Temporary use register */
4869   Expr *pDel = 0;
4870   sqlite3 *db = pParse->db;
4871 
4872   memset(&compLeft, 0, sizeof(Expr));
4873   memset(&compRight, 0, sizeof(Expr));
4874   memset(&exprAnd, 0, sizeof(Expr));
4875 
4876   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4877   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4878   if( db->mallocFailed==0 ){
4879     exprAnd.op = TK_AND;
4880     exprAnd.pLeft = &compLeft;
4881     exprAnd.pRight = &compRight;
4882     compLeft.op = TK_GE;
4883     compLeft.pLeft = pDel;
4884     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4885     compRight.op = TK_LE;
4886     compRight.pLeft = pDel;
4887     compRight.pRight = pExpr->x.pList->a[1].pExpr;
4888     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4889     if( xJump ){
4890       xJump(pParse, &exprAnd, dest, jumpIfNull);
4891     }else{
4892       /* Mark the expression is being from the ON or USING clause of a join
4893       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4894       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4895       ** for clarity, but we are out of bits in the Expr.flags field so we
4896       ** have to reuse the EP_FromJoin bit.  Bummer. */
4897       pDel->flags |= EP_FromJoin;
4898       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4899     }
4900     sqlite3ReleaseTempReg(pParse, regFree1);
4901   }
4902   sqlite3ExprDelete(db, pDel);
4903 
4904   /* Ensure adequate test coverage */
4905   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4906   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4907   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4908   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4909   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4910   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4911   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4912   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4913   testcase( xJump==0 );
4914 }
4915 
4916 /*
4917 ** Generate code for a boolean expression such that a jump is made
4918 ** to the label "dest" if the expression is true but execution
4919 ** continues straight thru if the expression is false.
4920 **
4921 ** If the expression evaluates to NULL (neither true nor false), then
4922 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4923 **
4924 ** This code depends on the fact that certain token values (ex: TK_EQ)
4925 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4926 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4927 ** the make process cause these values to align.  Assert()s in the code
4928 ** below verify that the numbers are aligned correctly.
4929 */
4930 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4931   Vdbe *v = pParse->pVdbe;
4932   int op = 0;
4933   int regFree1 = 0;
4934   int regFree2 = 0;
4935   int r1, r2;
4936 
4937   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4938   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4939   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4940   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
4941   op = pExpr->op;
4942   switch( op ){
4943     case TK_AND:
4944     case TK_OR: {
4945       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4946       if( pAlt!=pExpr ){
4947         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
4948       }else if( op==TK_AND ){
4949         int d2 = sqlite3VdbeMakeLabel(pParse);
4950         testcase( jumpIfNull==0 );
4951         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
4952                            jumpIfNull^SQLITE_JUMPIFNULL);
4953         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4954         sqlite3VdbeResolveLabel(v, d2);
4955       }else{
4956         testcase( jumpIfNull==0 );
4957         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4958         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4959       }
4960       break;
4961     }
4962     case TK_NOT: {
4963       testcase( jumpIfNull==0 );
4964       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4965       break;
4966     }
4967     case TK_TRUTH: {
4968       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4969       int isTrue;     /* IS TRUE or IS NOT TRUE */
4970       testcase( jumpIfNull==0 );
4971       isNot = pExpr->op2==TK_ISNOT;
4972       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4973       testcase( isTrue && isNot );
4974       testcase( !isTrue && isNot );
4975       if( isTrue ^ isNot ){
4976         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4977                           isNot ? SQLITE_JUMPIFNULL : 0);
4978       }else{
4979         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4980                            isNot ? SQLITE_JUMPIFNULL : 0);
4981       }
4982       break;
4983     }
4984     case TK_IS:
4985     case TK_ISNOT:
4986       testcase( op==TK_IS );
4987       testcase( op==TK_ISNOT );
4988       op = (op==TK_IS) ? TK_EQ : TK_NE;
4989       jumpIfNull = SQLITE_NULLEQ;
4990       /* no break */ deliberate_fall_through
4991     case TK_LT:
4992     case TK_LE:
4993     case TK_GT:
4994     case TK_GE:
4995     case TK_NE:
4996     case TK_EQ: {
4997       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4998       testcase( jumpIfNull==0 );
4999       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5000       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5001       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5002                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
5003       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5004       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5005       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5006       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5007       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5008       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5009       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5010       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5011       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5012       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5013       testcase( regFree1==0 );
5014       testcase( regFree2==0 );
5015       break;
5016     }
5017     case TK_ISNULL:
5018     case TK_NOTNULL: {
5019       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
5020       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
5021       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5022       sqlite3VdbeAddOp2(v, op, r1, dest);
5023       VdbeCoverageIf(v, op==TK_ISNULL);
5024       VdbeCoverageIf(v, op==TK_NOTNULL);
5025       testcase( regFree1==0 );
5026       break;
5027     }
5028     case TK_BETWEEN: {
5029       testcase( jumpIfNull==0 );
5030       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
5031       break;
5032     }
5033 #ifndef SQLITE_OMIT_SUBQUERY
5034     case TK_IN: {
5035       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
5036       int destIfNull = jumpIfNull ? dest : destIfFalse;
5037       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
5038       sqlite3VdbeGoto(v, dest);
5039       sqlite3VdbeResolveLabel(v, destIfFalse);
5040       break;
5041     }
5042 #endif
5043     default: {
5044     default_expr:
5045       if( ExprAlwaysTrue(pExpr) ){
5046         sqlite3VdbeGoto(v, dest);
5047       }else if( ExprAlwaysFalse(pExpr) ){
5048         /* No-op */
5049       }else{
5050         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5051         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
5052         VdbeCoverage(v);
5053         testcase( regFree1==0 );
5054         testcase( jumpIfNull==0 );
5055       }
5056       break;
5057     }
5058   }
5059   sqlite3ReleaseTempReg(pParse, regFree1);
5060   sqlite3ReleaseTempReg(pParse, regFree2);
5061 }
5062 
5063 /*
5064 ** Generate code for a boolean expression such that a jump is made
5065 ** to the label "dest" if the expression is false but execution
5066 ** continues straight thru if the expression is true.
5067 **
5068 ** If the expression evaluates to NULL (neither true nor false) then
5069 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5070 ** is 0.
5071 */
5072 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5073   Vdbe *v = pParse->pVdbe;
5074   int op = 0;
5075   int regFree1 = 0;
5076   int regFree2 = 0;
5077   int r1, r2;
5078 
5079   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5080   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5081   if( pExpr==0 )    return;
5082   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5083 
5084   /* The value of pExpr->op and op are related as follows:
5085   **
5086   **       pExpr->op            op
5087   **       ---------          ----------
5088   **       TK_ISNULL          OP_NotNull
5089   **       TK_NOTNULL         OP_IsNull
5090   **       TK_NE              OP_Eq
5091   **       TK_EQ              OP_Ne
5092   **       TK_GT              OP_Le
5093   **       TK_LE              OP_Gt
5094   **       TK_GE              OP_Lt
5095   **       TK_LT              OP_Ge
5096   **
5097   ** For other values of pExpr->op, op is undefined and unused.
5098   ** The value of TK_ and OP_ constants are arranged such that we
5099   ** can compute the mapping above using the following expression.
5100   ** Assert()s verify that the computation is correct.
5101   */
5102   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5103 
5104   /* Verify correct alignment of TK_ and OP_ constants
5105   */
5106   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5107   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5108   assert( pExpr->op!=TK_NE || op==OP_Eq );
5109   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5110   assert( pExpr->op!=TK_LT || op==OP_Ge );
5111   assert( pExpr->op!=TK_LE || op==OP_Gt );
5112   assert( pExpr->op!=TK_GT || op==OP_Le );
5113   assert( pExpr->op!=TK_GE || op==OP_Lt );
5114 
5115   switch( pExpr->op ){
5116     case TK_AND:
5117     case TK_OR: {
5118       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5119       if( pAlt!=pExpr ){
5120         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5121       }else if( pExpr->op==TK_AND ){
5122         testcase( jumpIfNull==0 );
5123         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5124         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5125       }else{
5126         int d2 = sqlite3VdbeMakeLabel(pParse);
5127         testcase( jumpIfNull==0 );
5128         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5129                           jumpIfNull^SQLITE_JUMPIFNULL);
5130         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5131         sqlite3VdbeResolveLabel(v, d2);
5132       }
5133       break;
5134     }
5135     case TK_NOT: {
5136       testcase( jumpIfNull==0 );
5137       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5138       break;
5139     }
5140     case TK_TRUTH: {
5141       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5142       int isTrue;  /* IS TRUE or IS NOT TRUE */
5143       testcase( jumpIfNull==0 );
5144       isNot = pExpr->op2==TK_ISNOT;
5145       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5146       testcase( isTrue && isNot );
5147       testcase( !isTrue && isNot );
5148       if( isTrue ^ isNot ){
5149         /* IS TRUE and IS NOT FALSE */
5150         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5151                            isNot ? 0 : SQLITE_JUMPIFNULL);
5152 
5153       }else{
5154         /* IS FALSE and IS NOT TRUE */
5155         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5156                           isNot ? 0 : SQLITE_JUMPIFNULL);
5157       }
5158       break;
5159     }
5160     case TK_IS:
5161     case TK_ISNOT:
5162       testcase( pExpr->op==TK_IS );
5163       testcase( pExpr->op==TK_ISNOT );
5164       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5165       jumpIfNull = SQLITE_NULLEQ;
5166       /* no break */ deliberate_fall_through
5167     case TK_LT:
5168     case TK_LE:
5169     case TK_GT:
5170     case TK_GE:
5171     case TK_NE:
5172     case TK_EQ: {
5173       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5174       testcase( jumpIfNull==0 );
5175       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5176       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5177       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5178                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5179       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5180       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5181       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5182       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5183       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5184       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5185       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5186       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5187       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5188       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5189       testcase( regFree1==0 );
5190       testcase( regFree2==0 );
5191       break;
5192     }
5193     case TK_ISNULL:
5194     case TK_NOTNULL: {
5195       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5196       sqlite3VdbeAddOp2(v, op, r1, dest);
5197       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5198       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5199       testcase( regFree1==0 );
5200       break;
5201     }
5202     case TK_BETWEEN: {
5203       testcase( jumpIfNull==0 );
5204       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5205       break;
5206     }
5207 #ifndef SQLITE_OMIT_SUBQUERY
5208     case TK_IN: {
5209       if( jumpIfNull ){
5210         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5211       }else{
5212         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5213         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5214         sqlite3VdbeResolveLabel(v, destIfNull);
5215       }
5216       break;
5217     }
5218 #endif
5219     default: {
5220     default_expr:
5221       if( ExprAlwaysFalse(pExpr) ){
5222         sqlite3VdbeGoto(v, dest);
5223       }else if( ExprAlwaysTrue(pExpr) ){
5224         /* no-op */
5225       }else{
5226         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5227         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5228         VdbeCoverage(v);
5229         testcase( regFree1==0 );
5230         testcase( jumpIfNull==0 );
5231       }
5232       break;
5233     }
5234   }
5235   sqlite3ReleaseTempReg(pParse, regFree1);
5236   sqlite3ReleaseTempReg(pParse, regFree2);
5237 }
5238 
5239 /*
5240 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5241 ** code generation, and that copy is deleted after code generation. This
5242 ** ensures that the original pExpr is unchanged.
5243 */
5244 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5245   sqlite3 *db = pParse->db;
5246   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5247   if( db->mallocFailed==0 ){
5248     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5249   }
5250   sqlite3ExprDelete(db, pCopy);
5251 }
5252 
5253 /*
5254 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5255 ** type of expression.
5256 **
5257 ** If pExpr is a simple SQL value - an integer, real, string, blob
5258 ** or NULL value - then the VDBE currently being prepared is configured
5259 ** to re-prepare each time a new value is bound to variable pVar.
5260 **
5261 ** Additionally, if pExpr is a simple SQL value and the value is the
5262 ** same as that currently bound to variable pVar, non-zero is returned.
5263 ** Otherwise, if the values are not the same or if pExpr is not a simple
5264 ** SQL value, zero is returned.
5265 */
5266 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
5267   int res = 0;
5268   int iVar;
5269   sqlite3_value *pL, *pR = 0;
5270 
5271   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5272   if( pR ){
5273     iVar = pVar->iColumn;
5274     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5275     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5276     if( pL ){
5277       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5278         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5279       }
5280       res =  0==sqlite3MemCompare(pL, pR, 0);
5281     }
5282     sqlite3ValueFree(pR);
5283     sqlite3ValueFree(pL);
5284   }
5285 
5286   return res;
5287 }
5288 
5289 /*
5290 ** Do a deep comparison of two expression trees.  Return 0 if the two
5291 ** expressions are completely identical.  Return 1 if they differ only
5292 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5293 ** other than the top-level COLLATE operator.
5294 **
5295 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5296 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5297 **
5298 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5299 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5300 **
5301 ** Sometimes this routine will return 2 even if the two expressions
5302 ** really are equivalent.  If we cannot prove that the expressions are
5303 ** identical, we return 2 just to be safe.  So if this routine
5304 ** returns 2, then you do not really know for certain if the two
5305 ** expressions are the same.  But if you get a 0 or 1 return, then you
5306 ** can be sure the expressions are the same.  In the places where
5307 ** this routine is used, it does not hurt to get an extra 2 - that
5308 ** just might result in some slightly slower code.  But returning
5309 ** an incorrect 0 or 1 could lead to a malfunction.
5310 **
5311 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5312 ** pParse->pReprepare can be matched against literals in pB.  The
5313 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5314 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5315 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5316 ** pB causes a return value of 2.
5317 */
5318 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
5319   u32 combinedFlags;
5320   if( pA==0 || pB==0 ){
5321     return pB==pA ? 0 : 2;
5322   }
5323   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5324     return 0;
5325   }
5326   combinedFlags = pA->flags | pB->flags;
5327   if( combinedFlags & EP_IntValue ){
5328     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5329       return 0;
5330     }
5331     return 2;
5332   }
5333   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5334     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5335       return 1;
5336     }
5337     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5338       return 1;
5339     }
5340     return 2;
5341   }
5342   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
5343     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5344       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5345 #ifndef SQLITE_OMIT_WINDOWFUNC
5346       assert( pA->op==pB->op );
5347       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5348         return 2;
5349       }
5350       if( ExprHasProperty(pA,EP_WinFunc) ){
5351         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5352           return 2;
5353         }
5354       }
5355 #endif
5356     }else if( pA->op==TK_NULL ){
5357       return 0;
5358     }else if( pA->op==TK_COLLATE ){
5359       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5360     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
5361       return 2;
5362     }
5363   }
5364   if( (pA->flags & (EP_Distinct|EP_Commuted))
5365      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5366   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5367     if( combinedFlags & EP_xIsSelect ) return 2;
5368     if( (combinedFlags & EP_FixedCol)==0
5369      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5370     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5371     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5372     if( pA->op!=TK_STRING
5373      && pA->op!=TK_TRUEFALSE
5374      && ALWAYS((combinedFlags & EP_Reduced)==0)
5375     ){
5376       if( pA->iColumn!=pB->iColumn ) return 2;
5377       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5378       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5379         return 2;
5380       }
5381     }
5382   }
5383   return 0;
5384 }
5385 
5386 /*
5387 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5388 ** if they are certainly different, or 2 if it is not possible to
5389 ** determine if they are identical or not.
5390 **
5391 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5392 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5393 **
5394 ** This routine might return non-zero for equivalent ExprLists.  The
5395 ** only consequence will be disabled optimizations.  But this routine
5396 ** must never return 0 if the two ExprList objects are different, or
5397 ** a malfunction will result.
5398 **
5399 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5400 ** always differs from a non-NULL pointer.
5401 */
5402 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
5403   int i;
5404   if( pA==0 && pB==0 ) return 0;
5405   if( pA==0 || pB==0 ) return 1;
5406   if( pA->nExpr!=pB->nExpr ) return 1;
5407   for(i=0; i<pA->nExpr; i++){
5408     int res;
5409     Expr *pExprA = pA->a[i].pExpr;
5410     Expr *pExprB = pB->a[i].pExpr;
5411     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
5412     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5413   }
5414   return 0;
5415 }
5416 
5417 /*
5418 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5419 ** are ignored.
5420 */
5421 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
5422   return sqlite3ExprCompare(0,
5423              sqlite3ExprSkipCollateAndLikely(pA),
5424              sqlite3ExprSkipCollateAndLikely(pB),
5425              iTab);
5426 }
5427 
5428 /*
5429 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5430 **
5431 ** Or if seenNot is true, return non-zero if Expr p can only be
5432 ** non-NULL if pNN is not NULL
5433 */
5434 static int exprImpliesNotNull(
5435   Parse *pParse,      /* Parsing context */
5436   Expr *p,            /* The expression to be checked */
5437   Expr *pNN,          /* The expression that is NOT NULL */
5438   int iTab,           /* Table being evaluated */
5439   int seenNot         /* Return true only if p can be any non-NULL value */
5440 ){
5441   assert( p );
5442   assert( pNN );
5443   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5444     return pNN->op!=TK_NULL;
5445   }
5446   switch( p->op ){
5447     case TK_IN: {
5448       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5449       assert( ExprHasProperty(p,EP_xIsSelect)
5450            || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5451       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5452     }
5453     case TK_BETWEEN: {
5454       ExprList *pList = p->x.pList;
5455       assert( pList!=0 );
5456       assert( pList->nExpr==2 );
5457       if( seenNot ) return 0;
5458       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5459        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5460       ){
5461         return 1;
5462       }
5463       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5464     }
5465     case TK_EQ:
5466     case TK_NE:
5467     case TK_LT:
5468     case TK_LE:
5469     case TK_GT:
5470     case TK_GE:
5471     case TK_PLUS:
5472     case TK_MINUS:
5473     case TK_BITOR:
5474     case TK_LSHIFT:
5475     case TK_RSHIFT:
5476     case TK_CONCAT:
5477       seenNot = 1;
5478       /* no break */ deliberate_fall_through
5479     case TK_STAR:
5480     case TK_REM:
5481     case TK_BITAND:
5482     case TK_SLASH: {
5483       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5484       /* no break */ deliberate_fall_through
5485     }
5486     case TK_SPAN:
5487     case TK_COLLATE:
5488     case TK_UPLUS:
5489     case TK_UMINUS: {
5490       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5491     }
5492     case TK_TRUTH: {
5493       if( seenNot ) return 0;
5494       if( p->op2!=TK_IS ) return 0;
5495       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5496     }
5497     case TK_BITNOT:
5498     case TK_NOT: {
5499       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5500     }
5501   }
5502   return 0;
5503 }
5504 
5505 /*
5506 ** Return true if we can prove the pE2 will always be true if pE1 is
5507 ** true.  Return false if we cannot complete the proof or if pE2 might
5508 ** be false.  Examples:
5509 **
5510 **     pE1: x==5       pE2: x==5             Result: true
5511 **     pE1: x>0        pE2: x==5             Result: false
5512 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5513 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5514 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5515 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5516 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5517 **
5518 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5519 ** Expr.iTable<0 then assume a table number given by iTab.
5520 **
5521 ** If pParse is not NULL, then the values of bound variables in pE1 are
5522 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5523 ** modified to record which bound variables are referenced.  If pParse
5524 ** is NULL, then false will be returned if pE1 contains any bound variables.
5525 **
5526 ** When in doubt, return false.  Returning true might give a performance
5527 ** improvement.  Returning false might cause a performance reduction, but
5528 ** it will always give the correct answer and is hence always safe.
5529 */
5530 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5531   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5532     return 1;
5533   }
5534   if( pE2->op==TK_OR
5535    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5536              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5537   ){
5538     return 1;
5539   }
5540   if( pE2->op==TK_NOTNULL
5541    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5542   ){
5543     return 1;
5544   }
5545   return 0;
5546 }
5547 
5548 /*
5549 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5550 ** If the expression node requires that the table at pWalker->iCur
5551 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5552 **
5553 ** This routine controls an optimization.  False positives (setting
5554 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5555 ** (never setting pWalker->eCode) is a harmless missed optimization.
5556 */
5557 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5558   testcase( pExpr->op==TK_AGG_COLUMN );
5559   testcase( pExpr->op==TK_AGG_FUNCTION );
5560   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5561   switch( pExpr->op ){
5562     case TK_ISNOT:
5563     case TK_ISNULL:
5564     case TK_NOTNULL:
5565     case TK_IS:
5566     case TK_OR:
5567     case TK_VECTOR:
5568     case TK_CASE:
5569     case TK_IN:
5570     case TK_FUNCTION:
5571     case TK_TRUTH:
5572       testcase( pExpr->op==TK_ISNOT );
5573       testcase( pExpr->op==TK_ISNULL );
5574       testcase( pExpr->op==TK_NOTNULL );
5575       testcase( pExpr->op==TK_IS );
5576       testcase( pExpr->op==TK_OR );
5577       testcase( pExpr->op==TK_VECTOR );
5578       testcase( pExpr->op==TK_CASE );
5579       testcase( pExpr->op==TK_IN );
5580       testcase( pExpr->op==TK_FUNCTION );
5581       testcase( pExpr->op==TK_TRUTH );
5582       return WRC_Prune;
5583     case TK_COLUMN:
5584       if( pWalker->u.iCur==pExpr->iTable ){
5585         pWalker->eCode = 1;
5586         return WRC_Abort;
5587       }
5588       return WRC_Prune;
5589 
5590     case TK_AND:
5591       if( pWalker->eCode==0 ){
5592         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5593         if( pWalker->eCode ){
5594           pWalker->eCode = 0;
5595           sqlite3WalkExpr(pWalker, pExpr->pRight);
5596         }
5597       }
5598       return WRC_Prune;
5599 
5600     case TK_BETWEEN:
5601       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5602         assert( pWalker->eCode );
5603         return WRC_Abort;
5604       }
5605       return WRC_Prune;
5606 
5607     /* Virtual tables are allowed to use constraints like x=NULL.  So
5608     ** a term of the form x=y does not prove that y is not null if x
5609     ** is the column of a virtual table */
5610     case TK_EQ:
5611     case TK_NE:
5612     case TK_LT:
5613     case TK_LE:
5614     case TK_GT:
5615     case TK_GE: {
5616       Expr *pLeft = pExpr->pLeft;
5617       Expr *pRight = pExpr->pRight;
5618       testcase( pExpr->op==TK_EQ );
5619       testcase( pExpr->op==TK_NE );
5620       testcase( pExpr->op==TK_LT );
5621       testcase( pExpr->op==TK_LE );
5622       testcase( pExpr->op==TK_GT );
5623       testcase( pExpr->op==TK_GE );
5624       /* The y.pTab=0 assignment in wherecode.c always happens after the
5625       ** impliesNotNullRow() test */
5626       if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0)
5627                                && IsVirtual(pLeft->y.pTab))
5628        || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0)
5629                                && IsVirtual(pRight->y.pTab))
5630       ){
5631         return WRC_Prune;
5632       }
5633       /* no break */ deliberate_fall_through
5634     }
5635     default:
5636       return WRC_Continue;
5637   }
5638 }
5639 
5640 /*
5641 ** Return true (non-zero) if expression p can only be true if at least
5642 ** one column of table iTab is non-null.  In other words, return true
5643 ** if expression p will always be NULL or false if every column of iTab
5644 ** is NULL.
5645 **
5646 ** False negatives are acceptable.  In other words, it is ok to return
5647 ** zero even if expression p will never be true of every column of iTab
5648 ** is NULL.  A false negative is merely a missed optimization opportunity.
5649 **
5650 ** False positives are not allowed, however.  A false positive may result
5651 ** in an incorrect answer.
5652 **
5653 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5654 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5655 **
5656 ** This routine is used to check if a LEFT JOIN can be converted into
5657 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5658 ** clause requires that some column of the right table of the LEFT JOIN
5659 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5660 ** ordinary join.
5661 */
5662 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5663   Walker w;
5664   p = sqlite3ExprSkipCollateAndLikely(p);
5665   if( p==0 ) return 0;
5666   if( p->op==TK_NOTNULL ){
5667     p = p->pLeft;
5668   }else{
5669     while( p->op==TK_AND ){
5670       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5671       p = p->pRight;
5672     }
5673   }
5674   w.xExprCallback = impliesNotNullRow;
5675   w.xSelectCallback = 0;
5676   w.xSelectCallback2 = 0;
5677   w.eCode = 0;
5678   w.u.iCur = iTab;
5679   sqlite3WalkExpr(&w, p);
5680   return w.eCode;
5681 }
5682 
5683 /*
5684 ** An instance of the following structure is used by the tree walker
5685 ** to determine if an expression can be evaluated by reference to the
5686 ** index only, without having to do a search for the corresponding
5687 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5688 ** is the cursor for the table.
5689 */
5690 struct IdxCover {
5691   Index *pIdx;     /* The index to be tested for coverage */
5692   int iCur;        /* Cursor number for the table corresponding to the index */
5693 };
5694 
5695 /*
5696 ** Check to see if there are references to columns in table
5697 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5698 ** pWalker->u.pIdxCover->pIdx.
5699 */
5700 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5701   if( pExpr->op==TK_COLUMN
5702    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5703    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5704   ){
5705     pWalker->eCode = 1;
5706     return WRC_Abort;
5707   }
5708   return WRC_Continue;
5709 }
5710 
5711 /*
5712 ** Determine if an index pIdx on table with cursor iCur contains will
5713 ** the expression pExpr.  Return true if the index does cover the
5714 ** expression and false if the pExpr expression references table columns
5715 ** that are not found in the index pIdx.
5716 **
5717 ** An index covering an expression means that the expression can be
5718 ** evaluated using only the index and without having to lookup the
5719 ** corresponding table entry.
5720 */
5721 int sqlite3ExprCoveredByIndex(
5722   Expr *pExpr,        /* The index to be tested */
5723   int iCur,           /* The cursor number for the corresponding table */
5724   Index *pIdx         /* The index that might be used for coverage */
5725 ){
5726   Walker w;
5727   struct IdxCover xcov;
5728   memset(&w, 0, sizeof(w));
5729   xcov.iCur = iCur;
5730   xcov.pIdx = pIdx;
5731   w.xExprCallback = exprIdxCover;
5732   w.u.pIdxCover = &xcov;
5733   sqlite3WalkExpr(&w, pExpr);
5734   return !w.eCode;
5735 }
5736 
5737 
5738 /*
5739 ** An instance of the following structure is used by the tree walker
5740 ** to count references to table columns in the arguments of an
5741 ** aggregate function, in order to implement the
5742 ** sqlite3FunctionThisSrc() routine.
5743 */
5744 struct SrcCount {
5745   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5746   int iSrcInner;   /* Smallest cursor number in this context */
5747   int nThis;       /* Number of references to columns in pSrcList */
5748   int nOther;      /* Number of references to columns in other FROM clauses */
5749 };
5750 
5751 /*
5752 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first
5753 ** SELECT with a FROM clause encountered during this iteration, set
5754 ** SrcCount.iSrcInner to the cursor number of the leftmost object in
5755 ** the FROM cause.
5756 */
5757 static int selectSrcCount(Walker *pWalker, Select *pSel){
5758   struct SrcCount *p = pWalker->u.pSrcCount;
5759   if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){
5760     pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor;
5761   }
5762   return WRC_Continue;
5763 }
5764 
5765 /*
5766 ** Count the number of references to columns.
5767 */
5768 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5769   /* There was once a NEVER() on the second term on the grounds that
5770   ** sqlite3FunctionUsesThisSrc() was always called before
5771   ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet
5772   ** been converted into TK_AGG_COLUMN. But this is no longer true due
5773   ** to window functions - sqlite3WindowRewrite() may now indirectly call
5774   ** FunctionUsesThisSrc() when creating a new sub-select. */
5775   if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){
5776     int i;
5777     struct SrcCount *p = pWalker->u.pSrcCount;
5778     SrcList *pSrc = p->pSrc;
5779     int nSrc = pSrc ? pSrc->nSrc : 0;
5780     for(i=0; i<nSrc; i++){
5781       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5782     }
5783     if( i<nSrc ){
5784       p->nThis++;
5785     }else if( pExpr->iTable<p->iSrcInner ){
5786       /* In a well-formed parse tree (no name resolution errors),
5787       ** TK_COLUMN nodes with smaller Expr.iTable values are in an
5788       ** outer context.  Those are the only ones to count as "other" */
5789       p->nOther++;
5790     }
5791   }
5792   return WRC_Continue;
5793 }
5794 
5795 /*
5796 ** Determine if any of the arguments to the pExpr Function reference
5797 ** pSrcList.  Return true if they do.  Also return true if the function
5798 ** has no arguments or has only constant arguments.  Return false if pExpr
5799 ** references columns but not columns of tables found in pSrcList.
5800 */
5801 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5802   Walker w;
5803   struct SrcCount cnt;
5804   assert( pExpr->op==TK_AGG_FUNCTION );
5805   memset(&w, 0, sizeof(w));
5806   w.xExprCallback = exprSrcCount;
5807   w.xSelectCallback = selectSrcCount;
5808   w.u.pSrcCount = &cnt;
5809   cnt.pSrc = pSrcList;
5810   cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF;
5811   cnt.nThis = 0;
5812   cnt.nOther = 0;
5813   sqlite3WalkExprList(&w, pExpr->x.pList);
5814 #ifndef SQLITE_OMIT_WINDOWFUNC
5815   if( ExprHasProperty(pExpr, EP_WinFunc) ){
5816     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
5817   }
5818 #endif
5819   return cnt.nThis>0 || cnt.nOther==0;
5820 }
5821 
5822 /*
5823 ** This is a Walker expression node callback.
5824 **
5825 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
5826 ** object that is referenced does not refer directly to the Expr.  If
5827 ** it does, make a copy.  This is done because the pExpr argument is
5828 ** subject to change.
5829 **
5830 ** The copy is stored on pParse->pConstExpr with a register number of 0.
5831 ** This will cause the expression to be deleted automatically when the
5832 ** Parse object is destroyed, but the zero register number means that it
5833 ** will not generate any code in the preamble.
5834 */
5835 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
5836   if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
5837    && pExpr->pAggInfo!=0
5838   ){
5839     AggInfo *pAggInfo = pExpr->pAggInfo;
5840     int iAgg = pExpr->iAgg;
5841     Parse *pParse = pWalker->pParse;
5842     sqlite3 *db = pParse->db;
5843     assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION );
5844     if( pExpr->op==TK_AGG_COLUMN ){
5845       assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
5846       if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
5847         pExpr = sqlite3ExprDup(db, pExpr, 0);
5848         if( pExpr ){
5849           pAggInfo->aCol[iAgg].pCExpr = pExpr;
5850           sqlite3ExprDeferredDelete(pParse, pExpr);
5851         }
5852       }
5853     }else{
5854       assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
5855       if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
5856         pExpr = sqlite3ExprDup(db, pExpr, 0);
5857         if( pExpr ){
5858           pAggInfo->aFunc[iAgg].pFExpr = pExpr;
5859           sqlite3ExprDeferredDelete(pParse, pExpr);
5860         }
5861       }
5862     }
5863   }
5864   return WRC_Continue;
5865 }
5866 
5867 /*
5868 ** Initialize a Walker object so that will persist AggInfo entries referenced
5869 ** by the tree that is walked.
5870 */
5871 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
5872   memset(pWalker, 0, sizeof(*pWalker));
5873   pWalker->pParse = pParse;
5874   pWalker->xExprCallback = agginfoPersistExprCb;
5875   pWalker->xSelectCallback = sqlite3SelectWalkNoop;
5876 }
5877 
5878 /*
5879 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5880 ** the new element.  Return a negative number if malloc fails.
5881 */
5882 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5883   int i;
5884   pInfo->aCol = sqlite3ArrayAllocate(
5885        db,
5886        pInfo->aCol,
5887        sizeof(pInfo->aCol[0]),
5888        &pInfo->nColumn,
5889        &i
5890   );
5891   return i;
5892 }
5893 
5894 /*
5895 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5896 ** the new element.  Return a negative number if malloc fails.
5897 */
5898 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5899   int i;
5900   pInfo->aFunc = sqlite3ArrayAllocate(
5901        db,
5902        pInfo->aFunc,
5903        sizeof(pInfo->aFunc[0]),
5904        &pInfo->nFunc,
5905        &i
5906   );
5907   return i;
5908 }
5909 
5910 /*
5911 ** This is the xExprCallback for a tree walker.  It is used to
5912 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5913 ** for additional information.
5914 */
5915 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5916   int i;
5917   NameContext *pNC = pWalker->u.pNC;
5918   Parse *pParse = pNC->pParse;
5919   SrcList *pSrcList = pNC->pSrcList;
5920   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5921 
5922   assert( pNC->ncFlags & NC_UAggInfo );
5923   switch( pExpr->op ){
5924     case TK_AGG_COLUMN:
5925     case TK_COLUMN: {
5926       testcase( pExpr->op==TK_AGG_COLUMN );
5927       testcase( pExpr->op==TK_COLUMN );
5928       /* Check to see if the column is in one of the tables in the FROM
5929       ** clause of the aggregate query */
5930       if( ALWAYS(pSrcList!=0) ){
5931         SrcItem *pItem = pSrcList->a;
5932         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5933           struct AggInfo_col *pCol;
5934           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5935           if( pExpr->iTable==pItem->iCursor ){
5936             /* If we reach this point, it means that pExpr refers to a table
5937             ** that is in the FROM clause of the aggregate query.
5938             **
5939             ** Make an entry for the column in pAggInfo->aCol[] if there
5940             ** is not an entry there already.
5941             */
5942             int k;
5943             pCol = pAggInfo->aCol;
5944             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5945               if( pCol->iTable==pExpr->iTable &&
5946                   pCol->iColumn==pExpr->iColumn ){
5947                 break;
5948               }
5949             }
5950             if( (k>=pAggInfo->nColumn)
5951              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5952             ){
5953               pCol = &pAggInfo->aCol[k];
5954               pCol->pTab = pExpr->y.pTab;
5955               pCol->iTable = pExpr->iTable;
5956               pCol->iColumn = pExpr->iColumn;
5957               pCol->iMem = ++pParse->nMem;
5958               pCol->iSorterColumn = -1;
5959               pCol->pCExpr = pExpr;
5960               if( pAggInfo->pGroupBy ){
5961                 int j, n;
5962                 ExprList *pGB = pAggInfo->pGroupBy;
5963                 struct ExprList_item *pTerm = pGB->a;
5964                 n = pGB->nExpr;
5965                 for(j=0; j<n; j++, pTerm++){
5966                   Expr *pE = pTerm->pExpr;
5967                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5968                       pE->iColumn==pExpr->iColumn ){
5969                     pCol->iSorterColumn = j;
5970                     break;
5971                   }
5972                 }
5973               }
5974               if( pCol->iSorterColumn<0 ){
5975                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5976               }
5977             }
5978             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5979             ** because it was there before or because we just created it).
5980             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5981             ** pAggInfo->aCol[] entry.
5982             */
5983             ExprSetVVAProperty(pExpr, EP_NoReduce);
5984             pExpr->pAggInfo = pAggInfo;
5985             pExpr->op = TK_AGG_COLUMN;
5986             pExpr->iAgg = (i16)k;
5987             break;
5988           } /* endif pExpr->iTable==pItem->iCursor */
5989         } /* end loop over pSrcList */
5990       }
5991       return WRC_Prune;
5992     }
5993     case TK_AGG_FUNCTION: {
5994       if( (pNC->ncFlags & NC_InAggFunc)==0
5995        && pWalker->walkerDepth==pExpr->op2
5996       ){
5997         /* Check to see if pExpr is a duplicate of another aggregate
5998         ** function that is already in the pAggInfo structure
5999         */
6000         struct AggInfo_func *pItem = pAggInfo->aFunc;
6001         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
6002           if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
6003             break;
6004           }
6005         }
6006         if( i>=pAggInfo->nFunc ){
6007           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
6008           */
6009           u8 enc = ENC(pParse->db);
6010           i = addAggInfoFunc(pParse->db, pAggInfo);
6011           if( i>=0 ){
6012             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6013             pItem = &pAggInfo->aFunc[i];
6014             pItem->pFExpr = pExpr;
6015             pItem->iMem = ++pParse->nMem;
6016             assert( !ExprHasProperty(pExpr, EP_IntValue) );
6017             pItem->pFunc = sqlite3FindFunction(pParse->db,
6018                    pExpr->u.zToken,
6019                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
6020             if( pExpr->flags & EP_Distinct ){
6021               pItem->iDistinct = pParse->nTab++;
6022             }else{
6023               pItem->iDistinct = -1;
6024             }
6025           }
6026         }
6027         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
6028         */
6029         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6030         ExprSetVVAProperty(pExpr, EP_NoReduce);
6031         pExpr->iAgg = (i16)i;
6032         pExpr->pAggInfo = pAggInfo;
6033         return WRC_Prune;
6034       }else{
6035         return WRC_Continue;
6036       }
6037     }
6038   }
6039   return WRC_Continue;
6040 }
6041 
6042 /*
6043 ** Analyze the pExpr expression looking for aggregate functions and
6044 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6045 ** points to.  Additional entries are made on the AggInfo object as
6046 ** necessary.
6047 **
6048 ** This routine should only be called after the expression has been
6049 ** analyzed by sqlite3ResolveExprNames().
6050 */
6051 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
6052   Walker w;
6053   w.xExprCallback = analyzeAggregate;
6054   w.xSelectCallback = sqlite3WalkerDepthIncrease;
6055   w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
6056   w.walkerDepth = 0;
6057   w.u.pNC = pNC;
6058   w.pParse = 0;
6059   assert( pNC->pSrcList!=0 );
6060   sqlite3WalkExpr(&w, pExpr);
6061 }
6062 
6063 /*
6064 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6065 ** expression list.  Return the number of errors.
6066 **
6067 ** If an error is found, the analysis is cut short.
6068 */
6069 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6070   struct ExprList_item *pItem;
6071   int i;
6072   if( pList ){
6073     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6074       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
6075     }
6076   }
6077 }
6078 
6079 /*
6080 ** Allocate a single new register for use to hold some intermediate result.
6081 */
6082 int sqlite3GetTempReg(Parse *pParse){
6083   if( pParse->nTempReg==0 ){
6084     return ++pParse->nMem;
6085   }
6086   return pParse->aTempReg[--pParse->nTempReg];
6087 }
6088 
6089 /*
6090 ** Deallocate a register, making available for reuse for some other
6091 ** purpose.
6092 */
6093 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6094   if( iReg ){
6095     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6096     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6097       pParse->aTempReg[pParse->nTempReg++] = iReg;
6098     }
6099   }
6100 }
6101 
6102 /*
6103 ** Allocate or deallocate a block of nReg consecutive registers.
6104 */
6105 int sqlite3GetTempRange(Parse *pParse, int nReg){
6106   int i, n;
6107   if( nReg==1 ) return sqlite3GetTempReg(pParse);
6108   i = pParse->iRangeReg;
6109   n = pParse->nRangeReg;
6110   if( nReg<=n ){
6111     pParse->iRangeReg += nReg;
6112     pParse->nRangeReg -= nReg;
6113   }else{
6114     i = pParse->nMem+1;
6115     pParse->nMem += nReg;
6116   }
6117   return i;
6118 }
6119 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6120   if( nReg==1 ){
6121     sqlite3ReleaseTempReg(pParse, iReg);
6122     return;
6123   }
6124   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6125   if( nReg>pParse->nRangeReg ){
6126     pParse->nRangeReg = nReg;
6127     pParse->iRangeReg = iReg;
6128   }
6129 }
6130 
6131 /*
6132 ** Mark all temporary registers as being unavailable for reuse.
6133 **
6134 ** Always invoke this procedure after coding a subroutine or co-routine
6135 ** that might be invoked from other parts of the code, to ensure that
6136 ** the sub/co-routine does not use registers in common with the code that
6137 ** invokes the sub/co-routine.
6138 */
6139 void sqlite3ClearTempRegCache(Parse *pParse){
6140   pParse->nTempReg = 0;
6141   pParse->nRangeReg = 0;
6142 }
6143 
6144 /*
6145 ** Validate that no temporary register falls within the range of
6146 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
6147 ** statements.
6148 */
6149 #ifdef SQLITE_DEBUG
6150 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6151   int i;
6152   if( pParse->nRangeReg>0
6153    && pParse->iRangeReg+pParse->nRangeReg > iFirst
6154    && pParse->iRangeReg <= iLast
6155   ){
6156      return 0;
6157   }
6158   for(i=0; i<pParse->nTempReg; i++){
6159     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6160       return 0;
6161     }
6162   }
6163   return 1;
6164 }
6165 #endif /* SQLITE_DEBUG */
6166