1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_REGISTER ) op = pExpr->op2; 56 if( (op==TK_COLUMN || op==TK_AGG_COLUMN) && pExpr->y.pTab ){ 57 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 58 } 59 if( op==TK_SELECT ){ 60 assert( pExpr->flags&EP_xIsSelect ); 61 assert( pExpr->x.pSelect!=0 ); 62 assert( pExpr->x.pSelect->pEList!=0 ); 63 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 64 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 65 } 66 #ifndef SQLITE_OMIT_CAST 67 if( op==TK_CAST ){ 68 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 69 return sqlite3AffinityType(pExpr->u.zToken, 0); 70 } 71 #endif 72 if( op==TK_SELECT_COLUMN ){ 73 assert( pExpr->pLeft->flags&EP_xIsSelect ); 74 return sqlite3ExprAffinity( 75 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 76 ); 77 } 78 if( op==TK_VECTOR ){ 79 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 80 } 81 return pExpr->affExpr; 82 } 83 84 /* 85 ** Set the collating sequence for expression pExpr to be the collating 86 ** sequence named by pToken. Return a pointer to a new Expr node that 87 ** implements the COLLATE operator. 88 ** 89 ** If a memory allocation error occurs, that fact is recorded in pParse->db 90 ** and the pExpr parameter is returned unchanged. 91 */ 92 Expr *sqlite3ExprAddCollateToken( 93 Parse *pParse, /* Parsing context */ 94 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 95 const Token *pCollName, /* Name of collating sequence */ 96 int dequote /* True to dequote pCollName */ 97 ){ 98 assert( pExpr!=0 || pParse->db->mallocFailed ); 99 if( pExpr==0 ) return 0; 100 if( pExpr->op==TK_VECTOR ){ 101 ExprList *pList = pExpr->x.pList; 102 if( pList!=0 ){ 103 int i; 104 for(i=0; i<pList->nExpr; i++){ 105 pList->a[i].pExpr = sqlite3ExprAddCollateToken(pParse,pList->a[i].pExpr, 106 pCollName, dequote); 107 } 108 } 109 }else if( pCollName->n>0 ){ 110 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 111 if( pNew ){ 112 pNew->pLeft = pExpr; 113 pNew->flags |= EP_Collate|EP_Skip; 114 pExpr = pNew; 115 } 116 } 117 return pExpr; 118 } 119 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 120 Token s; 121 assert( zC!=0 ); 122 sqlite3TokenInit(&s, (char*)zC); 123 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 124 } 125 126 /* 127 ** Skip over any TK_COLLATE operators. 128 */ 129 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 130 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 131 assert( pExpr->op==TK_COLLATE ); 132 pExpr = pExpr->pLeft; 133 } 134 return pExpr; 135 } 136 137 /* 138 ** Skip over any TK_COLLATE operators and/or any unlikely() 139 ** or likelihood() or likely() functions at the root of an 140 ** expression. 141 */ 142 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 143 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 144 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 145 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 146 assert( pExpr->x.pList->nExpr>0 ); 147 assert( pExpr->op==TK_FUNCTION ); 148 pExpr = pExpr->x.pList->a[0].pExpr; 149 }else{ 150 assert( pExpr->op==TK_COLLATE ); 151 pExpr = pExpr->pLeft; 152 } 153 } 154 return pExpr; 155 } 156 157 /* 158 ** Return the collation sequence for the expression pExpr. If 159 ** there is no defined collating sequence, return NULL. 160 ** 161 ** See also: sqlite3ExprNNCollSeq() 162 ** 163 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 164 ** default collation if pExpr has no defined collation. 165 ** 166 ** The collating sequence might be determined by a COLLATE operator 167 ** or by the presence of a column with a defined collating sequence. 168 ** COLLATE operators take first precedence. Left operands take 169 ** precedence over right operands. 170 */ 171 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 172 sqlite3 *db = pParse->db; 173 CollSeq *pColl = 0; 174 const Expr *p = pExpr; 175 while( p ){ 176 int op = p->op; 177 if( op==TK_REGISTER ) op = p->op2; 178 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 179 && p->y.pTab!=0 180 ){ 181 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 182 ** a TK_COLUMN but was previously evaluated and cached in a register */ 183 int j = p->iColumn; 184 if( j>=0 ){ 185 const char *zColl = p->y.pTab->aCol[j].zColl; 186 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 187 } 188 break; 189 } 190 if( op==TK_CAST || op==TK_UPLUS ){ 191 p = p->pLeft; 192 continue; 193 } 194 if( op==TK_VECTOR ){ 195 p = p->x.pList->a[0].pExpr; 196 continue; 197 } 198 if( op==TK_COLLATE ){ 199 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 200 break; 201 } 202 if( p->flags & EP_Collate ){ 203 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 204 p = p->pLeft; 205 }else{ 206 Expr *pNext = p->pRight; 207 /* The Expr.x union is never used at the same time as Expr.pRight */ 208 assert( p->x.pList==0 || p->pRight==0 ); 209 if( p->x.pList!=0 210 && !db->mallocFailed 211 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 212 ){ 213 int i; 214 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 215 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 216 pNext = p->x.pList->a[i].pExpr; 217 break; 218 } 219 } 220 } 221 p = pNext; 222 } 223 }else{ 224 break; 225 } 226 } 227 if( sqlite3CheckCollSeq(pParse, pColl) ){ 228 pColl = 0; 229 } 230 return pColl; 231 } 232 233 /* 234 ** Return the collation sequence for the expression pExpr. If 235 ** there is no defined collating sequence, return a pointer to the 236 ** defautl collation sequence. 237 ** 238 ** See also: sqlite3ExprCollSeq() 239 ** 240 ** The sqlite3ExprCollSeq() routine works the same except that it 241 ** returns NULL if there is no defined collation. 242 */ 243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 244 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 245 if( p==0 ) p = pParse->db->pDfltColl; 246 assert( p!=0 ); 247 return p; 248 } 249 250 /* 251 ** Return TRUE if the two expressions have equivalent collating sequences. 252 */ 253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 254 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 255 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 256 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 257 } 258 259 /* 260 ** pExpr is an operand of a comparison operator. aff2 is the 261 ** type affinity of the other operand. This routine returns the 262 ** type affinity that should be used for the comparison operator. 263 */ 264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 265 char aff1 = sqlite3ExprAffinity(pExpr); 266 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 267 /* Both sides of the comparison are columns. If one has numeric 268 ** affinity, use that. Otherwise use no affinity. 269 */ 270 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 271 return SQLITE_AFF_NUMERIC; 272 }else{ 273 return SQLITE_AFF_BLOB; 274 } 275 }else{ 276 /* One side is a column, the other is not. Use the columns affinity. */ 277 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 278 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 279 } 280 } 281 282 /* 283 ** pExpr is a comparison operator. Return the type affinity that should 284 ** be applied to both operands prior to doing the comparison. 285 */ 286 static char comparisonAffinity(const Expr *pExpr){ 287 char aff; 288 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 289 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 290 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 291 assert( pExpr->pLeft ); 292 aff = sqlite3ExprAffinity(pExpr->pLeft); 293 if( pExpr->pRight ){ 294 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 295 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 296 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 297 }else if( aff==0 ){ 298 aff = SQLITE_AFF_BLOB; 299 } 300 return aff; 301 } 302 303 /* 304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 305 ** idx_affinity is the affinity of an indexed column. Return true 306 ** if the index with affinity idx_affinity may be used to implement 307 ** the comparison in pExpr. 308 */ 309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 310 char aff = comparisonAffinity(pExpr); 311 if( aff<SQLITE_AFF_TEXT ){ 312 return 1; 313 } 314 if( aff==SQLITE_AFF_TEXT ){ 315 return idx_affinity==SQLITE_AFF_TEXT; 316 } 317 return sqlite3IsNumericAffinity(idx_affinity); 318 } 319 320 /* 321 ** Return the P5 value that should be used for a binary comparison 322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 323 */ 324 static u8 binaryCompareP5( 325 const Expr *pExpr1, /* Left operand */ 326 const Expr *pExpr2, /* Right operand */ 327 int jumpIfNull /* Extra flags added to P5 */ 328 ){ 329 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 330 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 331 return aff; 332 } 333 334 /* 335 ** Return a pointer to the collation sequence that should be used by 336 ** a binary comparison operator comparing pLeft and pRight. 337 ** 338 ** If the left hand expression has a collating sequence type, then it is 339 ** used. Otherwise the collation sequence for the right hand expression 340 ** is used, or the default (BINARY) if neither expression has a collating 341 ** type. 342 ** 343 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 344 ** it is not considered. 345 */ 346 CollSeq *sqlite3BinaryCompareCollSeq( 347 Parse *pParse, 348 const Expr *pLeft, 349 const Expr *pRight 350 ){ 351 CollSeq *pColl; 352 assert( pLeft ); 353 if( pLeft->flags & EP_Collate ){ 354 pColl = sqlite3ExprCollSeq(pParse, pLeft); 355 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 356 pColl = sqlite3ExprCollSeq(pParse, pRight); 357 }else{ 358 pColl = sqlite3ExprCollSeq(pParse, pLeft); 359 if( !pColl ){ 360 pColl = sqlite3ExprCollSeq(pParse, pRight); 361 } 362 } 363 return pColl; 364 } 365 366 /* Expresssion p is a comparison operator. Return a collation sequence 367 ** appropriate for the comparison operator. 368 ** 369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 370 ** However, if the OP_Commuted flag is set, then the order of the operands 371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 372 ** correct collating sequence is found. 373 */ 374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 375 if( ExprHasProperty(p, EP_Commuted) ){ 376 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 377 }else{ 378 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 379 } 380 } 381 382 /* 383 ** Generate code for a comparison operator. 384 */ 385 static int codeCompare( 386 Parse *pParse, /* The parsing (and code generating) context */ 387 Expr *pLeft, /* The left operand */ 388 Expr *pRight, /* The right operand */ 389 int opcode, /* The comparison opcode */ 390 int in1, int in2, /* Register holding operands */ 391 int dest, /* Jump here if true. */ 392 int jumpIfNull, /* If true, jump if either operand is NULL */ 393 int isCommuted /* The comparison has been commuted */ 394 ){ 395 int p5; 396 int addr; 397 CollSeq *p4; 398 399 if( pParse->nErr ) return 0; 400 if( isCommuted ){ 401 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 402 }else{ 403 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 404 } 405 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 406 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 407 (void*)p4, P4_COLLSEQ); 408 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 409 return addr; 410 } 411 412 /* 413 ** Return true if expression pExpr is a vector, or false otherwise. 414 ** 415 ** A vector is defined as any expression that results in two or more 416 ** columns of result. Every TK_VECTOR node is an vector because the 417 ** parser will not generate a TK_VECTOR with fewer than two entries. 418 ** But a TK_SELECT might be either a vector or a scalar. It is only 419 ** considered a vector if it has two or more result columns. 420 */ 421 int sqlite3ExprIsVector(Expr *pExpr){ 422 return sqlite3ExprVectorSize(pExpr)>1; 423 } 424 425 /* 426 ** If the expression passed as the only argument is of type TK_VECTOR 427 ** return the number of expressions in the vector. Or, if the expression 428 ** is a sub-select, return the number of columns in the sub-select. For 429 ** any other type of expression, return 1. 430 */ 431 int sqlite3ExprVectorSize(Expr *pExpr){ 432 u8 op = pExpr->op; 433 if( op==TK_REGISTER ) op = pExpr->op2; 434 if( op==TK_VECTOR ){ 435 return pExpr->x.pList->nExpr; 436 }else if( op==TK_SELECT ){ 437 return pExpr->x.pSelect->pEList->nExpr; 438 }else{ 439 return 1; 440 } 441 } 442 443 /* 444 ** Return a pointer to a subexpression of pVector that is the i-th 445 ** column of the vector (numbered starting with 0). The caller must 446 ** ensure that i is within range. 447 ** 448 ** If pVector is really a scalar (and "scalar" here includes subqueries 449 ** that return a single column!) then return pVector unmodified. 450 ** 451 ** pVector retains ownership of the returned subexpression. 452 ** 453 ** If the vector is a (SELECT ...) then the expression returned is 454 ** just the expression for the i-th term of the result set, and may 455 ** not be ready for evaluation because the table cursor has not yet 456 ** been positioned. 457 */ 458 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 459 assert( i<sqlite3ExprVectorSize(pVector) ); 460 if( sqlite3ExprIsVector(pVector) ){ 461 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 462 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 463 return pVector->x.pSelect->pEList->a[i].pExpr; 464 }else{ 465 return pVector->x.pList->a[i].pExpr; 466 } 467 } 468 return pVector; 469 } 470 471 /* 472 ** Compute and return a new Expr object which when passed to 473 ** sqlite3ExprCode() will generate all necessary code to compute 474 ** the iField-th column of the vector expression pVector. 475 ** 476 ** It is ok for pVector to be a scalar (as long as iField==0). 477 ** In that case, this routine works like sqlite3ExprDup(). 478 ** 479 ** The caller owns the returned Expr object and is responsible for 480 ** ensuring that the returned value eventually gets freed. 481 ** 482 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 483 ** then the returned object will reference pVector and so pVector must remain 484 ** valid for the life of the returned object. If pVector is a TK_VECTOR 485 ** or a scalar expression, then it can be deleted as soon as this routine 486 ** returns. 487 ** 488 ** A trick to cause a TK_SELECT pVector to be deleted together with 489 ** the returned Expr object is to attach the pVector to the pRight field 490 ** of the returned TK_SELECT_COLUMN Expr object. 491 */ 492 Expr *sqlite3ExprForVectorField( 493 Parse *pParse, /* Parsing context */ 494 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 495 int iField /* Which column of the vector to return */ 496 ){ 497 Expr *pRet; 498 if( pVector->op==TK_SELECT ){ 499 assert( pVector->flags & EP_xIsSelect ); 500 /* The TK_SELECT_COLUMN Expr node: 501 ** 502 ** pLeft: pVector containing TK_SELECT. Not deleted. 503 ** pRight: not used. But recursively deleted. 504 ** iColumn: Index of a column in pVector 505 ** iTable: 0 or the number of columns on the LHS of an assignment 506 ** pLeft->iTable: First in an array of register holding result, or 0 507 ** if the result is not yet computed. 508 ** 509 ** sqlite3ExprDelete() specifically skips the recursive delete of 510 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 511 ** can be attached to pRight to cause this node to take ownership of 512 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 513 ** with the same pLeft pointer to the pVector, but only one of them 514 ** will own the pVector. 515 */ 516 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 517 if( pRet ){ 518 pRet->iColumn = iField; 519 pRet->pLeft = pVector; 520 } 521 assert( pRet==0 || pRet->iTable==0 ); 522 }else{ 523 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 524 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 525 sqlite3RenameTokenRemap(pParse, pRet, pVector); 526 } 527 return pRet; 528 } 529 530 /* 531 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 532 ** it. Return the register in which the result is stored (or, if the 533 ** sub-select returns more than one column, the first in an array 534 ** of registers in which the result is stored). 535 ** 536 ** If pExpr is not a TK_SELECT expression, return 0. 537 */ 538 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 539 int reg = 0; 540 #ifndef SQLITE_OMIT_SUBQUERY 541 if( pExpr->op==TK_SELECT ){ 542 reg = sqlite3CodeSubselect(pParse, pExpr); 543 } 544 #endif 545 return reg; 546 } 547 548 /* 549 ** Argument pVector points to a vector expression - either a TK_VECTOR 550 ** or TK_SELECT that returns more than one column. This function returns 551 ** the register number of a register that contains the value of 552 ** element iField of the vector. 553 ** 554 ** If pVector is a TK_SELECT expression, then code for it must have 555 ** already been generated using the exprCodeSubselect() routine. In this 556 ** case parameter regSelect should be the first in an array of registers 557 ** containing the results of the sub-select. 558 ** 559 ** If pVector is of type TK_VECTOR, then code for the requested field 560 ** is generated. In this case (*pRegFree) may be set to the number of 561 ** a temporary register to be freed by the caller before returning. 562 ** 563 ** Before returning, output parameter (*ppExpr) is set to point to the 564 ** Expr object corresponding to element iElem of the vector. 565 */ 566 static int exprVectorRegister( 567 Parse *pParse, /* Parse context */ 568 Expr *pVector, /* Vector to extract element from */ 569 int iField, /* Field to extract from pVector */ 570 int regSelect, /* First in array of registers */ 571 Expr **ppExpr, /* OUT: Expression element */ 572 int *pRegFree /* OUT: Temp register to free */ 573 ){ 574 u8 op = pVector->op; 575 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 576 if( op==TK_REGISTER ){ 577 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 578 return pVector->iTable+iField; 579 } 580 if( op==TK_SELECT ){ 581 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 582 return regSelect+iField; 583 } 584 *ppExpr = pVector->x.pList->a[iField].pExpr; 585 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 586 } 587 588 /* 589 ** Expression pExpr is a comparison between two vector values. Compute 590 ** the result of the comparison (1, 0, or NULL) and write that 591 ** result into register dest. 592 ** 593 ** The caller must satisfy the following preconditions: 594 ** 595 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 596 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 597 ** otherwise: op==pExpr->op and p5==0 598 */ 599 static void codeVectorCompare( 600 Parse *pParse, /* Code generator context */ 601 Expr *pExpr, /* The comparison operation */ 602 int dest, /* Write results into this register */ 603 u8 op, /* Comparison operator */ 604 u8 p5 /* SQLITE_NULLEQ or zero */ 605 ){ 606 Vdbe *v = pParse->pVdbe; 607 Expr *pLeft = pExpr->pLeft; 608 Expr *pRight = pExpr->pRight; 609 int nLeft = sqlite3ExprVectorSize(pLeft); 610 int i; 611 int regLeft = 0; 612 int regRight = 0; 613 u8 opx = op; 614 int addrCmp = 0; 615 int addrDone = sqlite3VdbeMakeLabel(pParse); 616 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 617 618 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 619 if( pParse->nErr ) return; 620 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 621 sqlite3ErrorMsg(pParse, "row value misused"); 622 return; 623 } 624 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 625 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 626 || pExpr->op==TK_LT || pExpr->op==TK_GT 627 || pExpr->op==TK_LE || pExpr->op==TK_GE 628 ); 629 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 630 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 631 assert( p5==0 || pExpr->op!=op ); 632 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 633 634 if( op==TK_LE ) opx = TK_LT; 635 if( op==TK_GE ) opx = TK_GT; 636 if( op==TK_NE ) opx = TK_EQ; 637 638 regLeft = exprCodeSubselect(pParse, pLeft); 639 regRight = exprCodeSubselect(pParse, pRight); 640 641 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 642 for(i=0; 1 /*Loop exits by "break"*/; i++){ 643 int regFree1 = 0, regFree2 = 0; 644 Expr *pL, *pR; 645 int r1, r2; 646 assert( i>=0 && i<nLeft ); 647 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 648 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 649 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 650 addrCmp = sqlite3VdbeCurrentAddr(v); 651 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 652 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 653 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 654 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 655 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 656 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 657 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 658 sqlite3ReleaseTempReg(pParse, regFree1); 659 sqlite3ReleaseTempReg(pParse, regFree2); 660 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 661 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 662 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 663 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 664 } 665 if( p5==SQLITE_NULLEQ ){ 666 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 667 }else{ 668 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 669 } 670 if( i==nLeft-1 ){ 671 break; 672 } 673 if( opx==TK_EQ ){ 674 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 675 }else{ 676 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 677 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 678 if( i==nLeft-2 ) opx = op; 679 } 680 } 681 sqlite3VdbeJumpHere(v, addrCmp); 682 sqlite3VdbeResolveLabel(v, addrDone); 683 if( op==TK_NE ){ 684 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 685 } 686 } 687 688 #if SQLITE_MAX_EXPR_DEPTH>0 689 /* 690 ** Check that argument nHeight is less than or equal to the maximum 691 ** expression depth allowed. If it is not, leave an error message in 692 ** pParse. 693 */ 694 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 695 int rc = SQLITE_OK; 696 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 697 if( nHeight>mxHeight ){ 698 sqlite3ErrorMsg(pParse, 699 "Expression tree is too large (maximum depth %d)", mxHeight 700 ); 701 rc = SQLITE_ERROR; 702 } 703 return rc; 704 } 705 706 /* The following three functions, heightOfExpr(), heightOfExprList() 707 ** and heightOfSelect(), are used to determine the maximum height 708 ** of any expression tree referenced by the structure passed as the 709 ** first argument. 710 ** 711 ** If this maximum height is greater than the current value pointed 712 ** to by pnHeight, the second parameter, then set *pnHeight to that 713 ** value. 714 */ 715 static void heightOfExpr(Expr *p, int *pnHeight){ 716 if( p ){ 717 if( p->nHeight>*pnHeight ){ 718 *pnHeight = p->nHeight; 719 } 720 } 721 } 722 static void heightOfExprList(ExprList *p, int *pnHeight){ 723 if( p ){ 724 int i; 725 for(i=0; i<p->nExpr; i++){ 726 heightOfExpr(p->a[i].pExpr, pnHeight); 727 } 728 } 729 } 730 static void heightOfSelect(Select *pSelect, int *pnHeight){ 731 Select *p; 732 for(p=pSelect; p; p=p->pPrior){ 733 heightOfExpr(p->pWhere, pnHeight); 734 heightOfExpr(p->pHaving, pnHeight); 735 heightOfExpr(p->pLimit, pnHeight); 736 heightOfExprList(p->pEList, pnHeight); 737 heightOfExprList(p->pGroupBy, pnHeight); 738 heightOfExprList(p->pOrderBy, pnHeight); 739 } 740 } 741 742 /* 743 ** Set the Expr.nHeight variable in the structure passed as an 744 ** argument. An expression with no children, Expr.pList or 745 ** Expr.pSelect member has a height of 1. Any other expression 746 ** has a height equal to the maximum height of any other 747 ** referenced Expr plus one. 748 ** 749 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 750 ** if appropriate. 751 */ 752 static void exprSetHeight(Expr *p){ 753 int nHeight = 0; 754 heightOfExpr(p->pLeft, &nHeight); 755 heightOfExpr(p->pRight, &nHeight); 756 if( ExprHasProperty(p, EP_xIsSelect) ){ 757 heightOfSelect(p->x.pSelect, &nHeight); 758 }else if( p->x.pList ){ 759 heightOfExprList(p->x.pList, &nHeight); 760 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 761 } 762 p->nHeight = nHeight + 1; 763 } 764 765 /* 766 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 767 ** the height is greater than the maximum allowed expression depth, 768 ** leave an error in pParse. 769 ** 770 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 771 ** Expr.flags. 772 */ 773 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 774 if( pParse->nErr ) return; 775 exprSetHeight(p); 776 sqlite3ExprCheckHeight(pParse, p->nHeight); 777 } 778 779 /* 780 ** Return the maximum height of any expression tree referenced 781 ** by the select statement passed as an argument. 782 */ 783 int sqlite3SelectExprHeight(Select *p){ 784 int nHeight = 0; 785 heightOfSelect(p, &nHeight); 786 return nHeight; 787 } 788 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 789 /* 790 ** Propagate all EP_Propagate flags from the Expr.x.pList into 791 ** Expr.flags. 792 */ 793 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 794 if( pParse->nErr ) return; 795 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 796 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 797 } 798 } 799 #define exprSetHeight(y) 800 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 801 802 /* 803 ** This routine is the core allocator for Expr nodes. 804 ** 805 ** Construct a new expression node and return a pointer to it. Memory 806 ** for this node and for the pToken argument is a single allocation 807 ** obtained from sqlite3DbMalloc(). The calling function 808 ** is responsible for making sure the node eventually gets freed. 809 ** 810 ** If dequote is true, then the token (if it exists) is dequoted. 811 ** If dequote is false, no dequoting is performed. The deQuote 812 ** parameter is ignored if pToken is NULL or if the token does not 813 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 814 ** then the EP_DblQuoted flag is set on the expression node. 815 ** 816 ** Special case: If op==TK_INTEGER and pToken points to a string that 817 ** can be translated into a 32-bit integer, then the token is not 818 ** stored in u.zToken. Instead, the integer values is written 819 ** into u.iValue and the EP_IntValue flag is set. No extra storage 820 ** is allocated to hold the integer text and the dequote flag is ignored. 821 */ 822 Expr *sqlite3ExprAlloc( 823 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 824 int op, /* Expression opcode */ 825 const Token *pToken, /* Token argument. Might be NULL */ 826 int dequote /* True to dequote */ 827 ){ 828 Expr *pNew; 829 int nExtra = 0; 830 int iValue = 0; 831 832 assert( db!=0 ); 833 if( pToken ){ 834 if( op!=TK_INTEGER || pToken->z==0 835 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 836 nExtra = pToken->n+1; 837 assert( iValue>=0 ); 838 } 839 } 840 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 841 if( pNew ){ 842 memset(pNew, 0, sizeof(Expr)); 843 pNew->op = (u8)op; 844 pNew->iAgg = -1; 845 if( pToken ){ 846 if( nExtra==0 ){ 847 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 848 pNew->u.iValue = iValue; 849 }else{ 850 pNew->u.zToken = (char*)&pNew[1]; 851 assert( pToken->z!=0 || pToken->n==0 ); 852 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 853 pNew->u.zToken[pToken->n] = 0; 854 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 855 sqlite3DequoteExpr(pNew); 856 } 857 } 858 } 859 #if SQLITE_MAX_EXPR_DEPTH>0 860 pNew->nHeight = 1; 861 #endif 862 } 863 return pNew; 864 } 865 866 /* 867 ** Allocate a new expression node from a zero-terminated token that has 868 ** already been dequoted. 869 */ 870 Expr *sqlite3Expr( 871 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 872 int op, /* Expression opcode */ 873 const char *zToken /* Token argument. Might be NULL */ 874 ){ 875 Token x; 876 x.z = zToken; 877 x.n = sqlite3Strlen30(zToken); 878 return sqlite3ExprAlloc(db, op, &x, 0); 879 } 880 881 /* 882 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 883 ** 884 ** If pRoot==NULL that means that a memory allocation error has occurred. 885 ** In that case, delete the subtrees pLeft and pRight. 886 */ 887 void sqlite3ExprAttachSubtrees( 888 sqlite3 *db, 889 Expr *pRoot, 890 Expr *pLeft, 891 Expr *pRight 892 ){ 893 if( pRoot==0 ){ 894 assert( db->mallocFailed ); 895 sqlite3ExprDelete(db, pLeft); 896 sqlite3ExprDelete(db, pRight); 897 }else{ 898 if( pRight ){ 899 pRoot->pRight = pRight; 900 pRoot->flags |= EP_Propagate & pRight->flags; 901 } 902 if( pLeft ){ 903 pRoot->pLeft = pLeft; 904 pRoot->flags |= EP_Propagate & pLeft->flags; 905 } 906 exprSetHeight(pRoot); 907 } 908 } 909 910 /* 911 ** Allocate an Expr node which joins as many as two subtrees. 912 ** 913 ** One or both of the subtrees can be NULL. Return a pointer to the new 914 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 915 ** free the subtrees and return NULL. 916 */ 917 Expr *sqlite3PExpr( 918 Parse *pParse, /* Parsing context */ 919 int op, /* Expression opcode */ 920 Expr *pLeft, /* Left operand */ 921 Expr *pRight /* Right operand */ 922 ){ 923 Expr *p; 924 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 925 if( p ){ 926 memset(p, 0, sizeof(Expr)); 927 p->op = op & 0xff; 928 p->iAgg = -1; 929 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 930 sqlite3ExprCheckHeight(pParse, p->nHeight); 931 }else{ 932 sqlite3ExprDelete(pParse->db, pLeft); 933 sqlite3ExprDelete(pParse->db, pRight); 934 } 935 return p; 936 } 937 938 /* 939 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 940 ** do a memory allocation failure) then delete the pSelect object. 941 */ 942 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 943 if( pExpr ){ 944 pExpr->x.pSelect = pSelect; 945 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 946 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 947 }else{ 948 assert( pParse->db->mallocFailed ); 949 sqlite3SelectDelete(pParse->db, pSelect); 950 } 951 } 952 953 954 /* 955 ** Join two expressions using an AND operator. If either expression is 956 ** NULL, then just return the other expression. 957 ** 958 ** If one side or the other of the AND is known to be false, then instead 959 ** of returning an AND expression, just return a constant expression with 960 ** a value of false. 961 */ 962 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 963 sqlite3 *db = pParse->db; 964 if( pLeft==0 ){ 965 return pRight; 966 }else if( pRight==0 ){ 967 return pLeft; 968 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 969 && !IN_RENAME_OBJECT 970 ){ 971 sqlite3ExprDeferredDelete(pParse, pLeft); 972 sqlite3ExprDeferredDelete(pParse, pRight); 973 return sqlite3Expr(db, TK_INTEGER, "0"); 974 }else{ 975 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 976 } 977 } 978 979 /* 980 ** Construct a new expression node for a function with multiple 981 ** arguments. 982 */ 983 Expr *sqlite3ExprFunction( 984 Parse *pParse, /* Parsing context */ 985 ExprList *pList, /* Argument list */ 986 Token *pToken, /* Name of the function */ 987 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 988 ){ 989 Expr *pNew; 990 sqlite3 *db = pParse->db; 991 assert( pToken ); 992 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 993 if( pNew==0 ){ 994 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 995 return 0; 996 } 997 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 998 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 999 } 1000 pNew->x.pList = pList; 1001 ExprSetProperty(pNew, EP_HasFunc); 1002 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 1003 sqlite3ExprSetHeightAndFlags(pParse, pNew); 1004 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 1005 return pNew; 1006 } 1007 1008 /* 1009 ** Check to see if a function is usable according to current access 1010 ** rules: 1011 ** 1012 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1013 ** 1014 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1015 ** top-level SQL 1016 ** 1017 ** If the function is not usable, create an error. 1018 */ 1019 void sqlite3ExprFunctionUsable( 1020 Parse *pParse, /* Parsing and code generating context */ 1021 Expr *pExpr, /* The function invocation */ 1022 FuncDef *pDef /* The function being invoked */ 1023 ){ 1024 assert( !IN_RENAME_OBJECT ); 1025 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1026 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1027 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1028 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1029 ){ 1030 /* Functions prohibited in triggers and views if: 1031 ** (1) tagged with SQLITE_DIRECTONLY 1032 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1033 ** is tagged with SQLITE_FUNC_UNSAFE) and 1034 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1035 ** that the schema is possibly tainted). 1036 */ 1037 sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName); 1038 } 1039 } 1040 } 1041 1042 /* 1043 ** Assign a variable number to an expression that encodes a wildcard 1044 ** in the original SQL statement. 1045 ** 1046 ** Wildcards consisting of a single "?" are assigned the next sequential 1047 ** variable number. 1048 ** 1049 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1050 ** sure "nnn" is not too big to avoid a denial of service attack when 1051 ** the SQL statement comes from an external source. 1052 ** 1053 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1054 ** as the previous instance of the same wildcard. Or if this is the first 1055 ** instance of the wildcard, the next sequential variable number is 1056 ** assigned. 1057 */ 1058 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1059 sqlite3 *db = pParse->db; 1060 const char *z; 1061 ynVar x; 1062 1063 if( pExpr==0 ) return; 1064 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1065 z = pExpr->u.zToken; 1066 assert( z!=0 ); 1067 assert( z[0]!=0 ); 1068 assert( n==(u32)sqlite3Strlen30(z) ); 1069 if( z[1]==0 ){ 1070 /* Wildcard of the form "?". Assign the next variable number */ 1071 assert( z[0]=='?' ); 1072 x = (ynVar)(++pParse->nVar); 1073 }else{ 1074 int doAdd = 0; 1075 if( z[0]=='?' ){ 1076 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1077 ** use it as the variable number */ 1078 i64 i; 1079 int bOk; 1080 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1081 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1082 bOk = 1; 1083 }else{ 1084 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1085 } 1086 testcase( i==0 ); 1087 testcase( i==1 ); 1088 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1089 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1090 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1091 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1092 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1093 return; 1094 } 1095 x = (ynVar)i; 1096 if( x>pParse->nVar ){ 1097 pParse->nVar = (int)x; 1098 doAdd = 1; 1099 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1100 doAdd = 1; 1101 } 1102 }else{ 1103 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1104 ** number as the prior appearance of the same name, or if the name 1105 ** has never appeared before, reuse the same variable number 1106 */ 1107 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1108 if( x==0 ){ 1109 x = (ynVar)(++pParse->nVar); 1110 doAdd = 1; 1111 } 1112 } 1113 if( doAdd ){ 1114 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1115 } 1116 } 1117 pExpr->iColumn = x; 1118 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1119 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1120 } 1121 } 1122 1123 /* 1124 ** Recursively delete an expression tree. 1125 */ 1126 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1127 assert( p!=0 ); 1128 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1129 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1130 1131 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1132 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1133 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1134 #ifdef SQLITE_DEBUG 1135 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1136 assert( p->pLeft==0 ); 1137 assert( p->pRight==0 ); 1138 assert( p->x.pSelect==0 ); 1139 } 1140 #endif 1141 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1142 /* The Expr.x union is never used at the same time as Expr.pRight */ 1143 assert( p->x.pList==0 || p->pRight==0 ); 1144 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1145 if( p->pRight ){ 1146 assert( !ExprHasProperty(p, EP_WinFunc) ); 1147 sqlite3ExprDeleteNN(db, p->pRight); 1148 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1149 assert( !ExprHasProperty(p, EP_WinFunc) ); 1150 sqlite3SelectDelete(db, p->x.pSelect); 1151 }else{ 1152 sqlite3ExprListDelete(db, p->x.pList); 1153 #ifndef SQLITE_OMIT_WINDOWFUNC 1154 if( ExprHasProperty(p, EP_WinFunc) ){ 1155 sqlite3WindowDelete(db, p->y.pWin); 1156 } 1157 #endif 1158 } 1159 } 1160 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1161 if( !ExprHasProperty(p, EP_Static) ){ 1162 sqlite3DbFreeNN(db, p); 1163 } 1164 } 1165 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1166 if( p ) sqlite3ExprDeleteNN(db, p); 1167 } 1168 1169 1170 /* 1171 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 1172 ** This is similar to sqlite3ExprDelete() except that the delete is 1173 ** deferred untilthe pParse is deleted. 1174 ** 1175 ** The pExpr might be deleted immediately on an OOM error. 1176 ** 1177 ** The deferred delete is (currently) implemented by adding the 1178 ** pExpr to the pParse->pConstExpr list with a register number of 0. 1179 */ 1180 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 1181 pParse->pConstExpr = 1182 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 1183 } 1184 1185 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1186 ** expression. 1187 */ 1188 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1189 if( p ){ 1190 if( IN_RENAME_OBJECT ){ 1191 sqlite3RenameExprUnmap(pParse, p); 1192 } 1193 sqlite3ExprDeleteNN(pParse->db, p); 1194 } 1195 } 1196 1197 /* 1198 ** Return the number of bytes allocated for the expression structure 1199 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1200 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1201 */ 1202 static int exprStructSize(Expr *p){ 1203 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1204 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1205 return EXPR_FULLSIZE; 1206 } 1207 1208 /* 1209 ** The dupedExpr*Size() routines each return the number of bytes required 1210 ** to store a copy of an expression or expression tree. They differ in 1211 ** how much of the tree is measured. 1212 ** 1213 ** dupedExprStructSize() Size of only the Expr structure 1214 ** dupedExprNodeSize() Size of Expr + space for token 1215 ** dupedExprSize() Expr + token + subtree components 1216 ** 1217 *************************************************************************** 1218 ** 1219 ** The dupedExprStructSize() function returns two values OR-ed together: 1220 ** (1) the space required for a copy of the Expr structure only and 1221 ** (2) the EP_xxx flags that indicate what the structure size should be. 1222 ** The return values is always one of: 1223 ** 1224 ** EXPR_FULLSIZE 1225 ** EXPR_REDUCEDSIZE | EP_Reduced 1226 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1227 ** 1228 ** The size of the structure can be found by masking the return value 1229 ** of this routine with 0xfff. The flags can be found by masking the 1230 ** return value with EP_Reduced|EP_TokenOnly. 1231 ** 1232 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1233 ** (unreduced) Expr objects as they or originally constructed by the parser. 1234 ** During expression analysis, extra information is computed and moved into 1235 ** later parts of the Expr object and that extra information might get chopped 1236 ** off if the expression is reduced. Note also that it does not work to 1237 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1238 ** to reduce a pristine expression tree from the parser. The implementation 1239 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1240 ** to enforce this constraint. 1241 */ 1242 static int dupedExprStructSize(Expr *p, int flags){ 1243 int nSize; 1244 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1245 assert( EXPR_FULLSIZE<=0xfff ); 1246 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1247 if( 0==flags || p->op==TK_SELECT_COLUMN 1248 #ifndef SQLITE_OMIT_WINDOWFUNC 1249 || ExprHasProperty(p, EP_WinFunc) 1250 #endif 1251 ){ 1252 nSize = EXPR_FULLSIZE; 1253 }else{ 1254 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1255 assert( !ExprHasProperty(p, EP_FromJoin) ); 1256 assert( !ExprHasProperty(p, EP_MemToken) ); 1257 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1258 if( p->pLeft || p->x.pList ){ 1259 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1260 }else{ 1261 assert( p->pRight==0 ); 1262 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1263 } 1264 } 1265 return nSize; 1266 } 1267 1268 /* 1269 ** This function returns the space in bytes required to store the copy 1270 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1271 ** string is defined.) 1272 */ 1273 static int dupedExprNodeSize(Expr *p, int flags){ 1274 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1275 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1276 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1277 } 1278 return ROUND8(nByte); 1279 } 1280 1281 /* 1282 ** Return the number of bytes required to create a duplicate of the 1283 ** expression passed as the first argument. The second argument is a 1284 ** mask containing EXPRDUP_XXX flags. 1285 ** 1286 ** The value returned includes space to create a copy of the Expr struct 1287 ** itself and the buffer referred to by Expr.u.zToken, if any. 1288 ** 1289 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1290 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1291 ** and Expr.pRight variables (but not for any structures pointed to or 1292 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1293 */ 1294 static int dupedExprSize(Expr *p, int flags){ 1295 int nByte = 0; 1296 if( p ){ 1297 nByte = dupedExprNodeSize(p, flags); 1298 if( flags&EXPRDUP_REDUCE ){ 1299 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1300 } 1301 } 1302 return nByte; 1303 } 1304 1305 /* 1306 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1307 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1308 ** to store the copy of expression p, the copies of p->u.zToken 1309 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1310 ** if any. Before returning, *pzBuffer is set to the first byte past the 1311 ** portion of the buffer copied into by this function. 1312 */ 1313 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1314 Expr *pNew; /* Value to return */ 1315 u8 *zAlloc; /* Memory space from which to build Expr object */ 1316 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1317 1318 assert( db!=0 ); 1319 assert( p ); 1320 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1321 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1322 1323 /* Figure out where to write the new Expr structure. */ 1324 if( pzBuffer ){ 1325 zAlloc = *pzBuffer; 1326 staticFlag = EP_Static; 1327 }else{ 1328 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1329 staticFlag = 0; 1330 } 1331 pNew = (Expr *)zAlloc; 1332 1333 if( pNew ){ 1334 /* Set nNewSize to the size allocated for the structure pointed to 1335 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1336 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1337 ** by the copy of the p->u.zToken string (if any). 1338 */ 1339 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1340 const int nNewSize = nStructSize & 0xfff; 1341 int nToken; 1342 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1343 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1344 }else{ 1345 nToken = 0; 1346 } 1347 if( dupFlags ){ 1348 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1349 memcpy(zAlloc, p, nNewSize); 1350 }else{ 1351 u32 nSize = (u32)exprStructSize(p); 1352 memcpy(zAlloc, p, nSize); 1353 if( nSize<EXPR_FULLSIZE ){ 1354 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1355 } 1356 } 1357 1358 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1359 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1360 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1361 pNew->flags |= staticFlag; 1362 ExprClearVVAProperties(pNew); 1363 if( dupFlags ){ 1364 ExprSetVVAProperty(pNew, EP_Immutable); 1365 } 1366 1367 /* Copy the p->u.zToken string, if any. */ 1368 if( nToken ){ 1369 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1370 memcpy(zToken, p->u.zToken, nToken); 1371 } 1372 1373 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1374 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1375 if( ExprHasProperty(p, EP_xIsSelect) ){ 1376 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1377 }else{ 1378 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1379 } 1380 } 1381 1382 /* Fill in pNew->pLeft and pNew->pRight. */ 1383 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1384 zAlloc += dupedExprNodeSize(p, dupFlags); 1385 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1386 pNew->pLeft = p->pLeft ? 1387 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1388 pNew->pRight = p->pRight ? 1389 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1390 } 1391 #ifndef SQLITE_OMIT_WINDOWFUNC 1392 if( ExprHasProperty(p, EP_WinFunc) ){ 1393 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1394 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1395 } 1396 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1397 if( pzBuffer ){ 1398 *pzBuffer = zAlloc; 1399 } 1400 }else{ 1401 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1402 if( pNew->op==TK_SELECT_COLUMN ){ 1403 pNew->pLeft = p->pLeft; 1404 assert( p->iColumn==0 || p->pRight==0 ); 1405 assert( p->pRight==0 || p->pRight==p->pLeft 1406 || ExprHasProperty(p->pLeft, EP_Subquery) ); 1407 }else{ 1408 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1409 } 1410 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1411 } 1412 } 1413 } 1414 return pNew; 1415 } 1416 1417 /* 1418 ** Create and return a deep copy of the object passed as the second 1419 ** argument. If an OOM condition is encountered, NULL is returned 1420 ** and the db->mallocFailed flag set. 1421 */ 1422 #ifndef SQLITE_OMIT_CTE 1423 static With *withDup(sqlite3 *db, With *p){ 1424 With *pRet = 0; 1425 if( p ){ 1426 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1427 pRet = sqlite3DbMallocZero(db, nByte); 1428 if( pRet ){ 1429 int i; 1430 pRet->nCte = p->nCte; 1431 for(i=0; i<p->nCte; i++){ 1432 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1433 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1434 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1435 } 1436 } 1437 } 1438 return pRet; 1439 } 1440 #else 1441 # define withDup(x,y) 0 1442 #endif 1443 1444 #ifndef SQLITE_OMIT_WINDOWFUNC 1445 /* 1446 ** The gatherSelectWindows() procedure and its helper routine 1447 ** gatherSelectWindowsCallback() are used to scan all the expressions 1448 ** an a newly duplicated SELECT statement and gather all of the Window 1449 ** objects found there, assembling them onto the linked list at Select->pWin. 1450 */ 1451 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1452 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1453 Select *pSelect = pWalker->u.pSelect; 1454 Window *pWin = pExpr->y.pWin; 1455 assert( pWin ); 1456 assert( IsWindowFunc(pExpr) ); 1457 assert( pWin->ppThis==0 ); 1458 sqlite3WindowLink(pSelect, pWin); 1459 } 1460 return WRC_Continue; 1461 } 1462 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1463 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1464 } 1465 static void gatherSelectWindows(Select *p){ 1466 Walker w; 1467 w.xExprCallback = gatherSelectWindowsCallback; 1468 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1469 w.xSelectCallback2 = 0; 1470 w.pParse = 0; 1471 w.u.pSelect = p; 1472 sqlite3WalkSelect(&w, p); 1473 } 1474 #endif 1475 1476 1477 /* 1478 ** The following group of routines make deep copies of expressions, 1479 ** expression lists, ID lists, and select statements. The copies can 1480 ** be deleted (by being passed to their respective ...Delete() routines) 1481 ** without effecting the originals. 1482 ** 1483 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1484 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1485 ** by subsequent calls to sqlite*ListAppend() routines. 1486 ** 1487 ** Any tables that the SrcList might point to are not duplicated. 1488 ** 1489 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1490 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1491 ** truncated version of the usual Expr structure that will be stored as 1492 ** part of the in-memory representation of the database schema. 1493 */ 1494 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1495 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1496 return p ? exprDup(db, p, flags, 0) : 0; 1497 } 1498 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1499 ExprList *pNew; 1500 struct ExprList_item *pItem, *pOldItem; 1501 int i; 1502 Expr *pPriorSelectCol = 0; 1503 assert( db!=0 ); 1504 if( p==0 ) return 0; 1505 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1506 if( pNew==0 ) return 0; 1507 pNew->nExpr = p->nExpr; 1508 pNew->nAlloc = p->nAlloc; 1509 pItem = pNew->a; 1510 pOldItem = p->a; 1511 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1512 Expr *pOldExpr = pOldItem->pExpr; 1513 Expr *pNewExpr; 1514 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1515 if( pOldExpr 1516 && pOldExpr->op==TK_SELECT_COLUMN 1517 && (pNewExpr = pItem->pExpr)!=0 1518 ){ 1519 assert( pNewExpr->iColumn==0 || i>0 ); 1520 if( pNewExpr->iColumn==0 ){ 1521 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1522 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1523 }else{ 1524 assert( i>0 ); 1525 assert( pItem[-1].pExpr!=0 ); 1526 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1527 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1528 pNewExpr->pLeft = pPriorSelectCol; 1529 } 1530 } 1531 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1532 pItem->sortFlags = pOldItem->sortFlags; 1533 pItem->eEName = pOldItem->eEName; 1534 pItem->done = 0; 1535 pItem->bNulls = pOldItem->bNulls; 1536 pItem->bSorterRef = pOldItem->bSorterRef; 1537 pItem->u = pOldItem->u; 1538 } 1539 return pNew; 1540 } 1541 1542 /* 1543 ** If cursors, triggers, views and subqueries are all omitted from 1544 ** the build, then none of the following routines, except for 1545 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1546 ** called with a NULL argument. 1547 */ 1548 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1549 || !defined(SQLITE_OMIT_SUBQUERY) 1550 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1551 SrcList *pNew; 1552 int i; 1553 int nByte; 1554 assert( db!=0 ); 1555 if( p==0 ) return 0; 1556 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1557 pNew = sqlite3DbMallocRawNN(db, nByte ); 1558 if( pNew==0 ) return 0; 1559 pNew->nSrc = pNew->nAlloc = p->nSrc; 1560 for(i=0; i<p->nSrc; i++){ 1561 SrcItem *pNewItem = &pNew->a[i]; 1562 SrcItem *pOldItem = &p->a[i]; 1563 Table *pTab; 1564 pNewItem->pSchema = pOldItem->pSchema; 1565 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1566 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1567 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1568 pNewItem->fg = pOldItem->fg; 1569 pNewItem->iCursor = pOldItem->iCursor; 1570 pNewItem->addrFillSub = pOldItem->addrFillSub; 1571 pNewItem->regReturn = pOldItem->regReturn; 1572 if( pNewItem->fg.isIndexedBy ){ 1573 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1574 } 1575 pNewItem->u2 = pOldItem->u2; 1576 if( pNewItem->fg.isCte ){ 1577 pNewItem->u2.pCteUse->nUse++; 1578 } 1579 if( pNewItem->fg.isTabFunc ){ 1580 pNewItem->u1.pFuncArg = 1581 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1582 } 1583 pTab = pNewItem->pTab = pOldItem->pTab; 1584 if( pTab ){ 1585 pTab->nTabRef++; 1586 } 1587 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1588 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1589 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1590 pNewItem->colUsed = pOldItem->colUsed; 1591 } 1592 return pNew; 1593 } 1594 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1595 IdList *pNew; 1596 int i; 1597 assert( db!=0 ); 1598 if( p==0 ) return 0; 1599 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1600 if( pNew==0 ) return 0; 1601 pNew->nId = p->nId; 1602 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1603 if( pNew->a==0 ){ 1604 sqlite3DbFreeNN(db, pNew); 1605 return 0; 1606 } 1607 /* Note that because the size of the allocation for p->a[] is not 1608 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1609 ** on the duplicate created by this function. */ 1610 for(i=0; i<p->nId; i++){ 1611 struct IdList_item *pNewItem = &pNew->a[i]; 1612 struct IdList_item *pOldItem = &p->a[i]; 1613 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1614 pNewItem->idx = pOldItem->idx; 1615 } 1616 return pNew; 1617 } 1618 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1619 Select *pRet = 0; 1620 Select *pNext = 0; 1621 Select **pp = &pRet; 1622 Select *p; 1623 1624 assert( db!=0 ); 1625 for(p=pDup; p; p=p->pPrior){ 1626 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1627 if( pNew==0 ) break; 1628 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1629 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1630 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1631 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1632 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1633 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1634 pNew->op = p->op; 1635 pNew->pNext = pNext; 1636 pNew->pPrior = 0; 1637 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1638 pNew->iLimit = 0; 1639 pNew->iOffset = 0; 1640 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1641 pNew->addrOpenEphm[0] = -1; 1642 pNew->addrOpenEphm[1] = -1; 1643 pNew->nSelectRow = p->nSelectRow; 1644 pNew->pWith = withDup(db, p->pWith); 1645 #ifndef SQLITE_OMIT_WINDOWFUNC 1646 pNew->pWin = 0; 1647 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1648 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1649 #endif 1650 pNew->selId = p->selId; 1651 if( db->mallocFailed ){ 1652 /* Any prior OOM might have left the Select object incomplete. 1653 ** Delete the whole thing rather than allow an incomplete Select 1654 ** to be used by the code generator. */ 1655 pNew->pNext = 0; 1656 sqlite3SelectDelete(db, pNew); 1657 break; 1658 } 1659 *pp = pNew; 1660 pp = &pNew->pPrior; 1661 pNext = pNew; 1662 } 1663 1664 return pRet; 1665 } 1666 #else 1667 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1668 assert( p==0 ); 1669 return 0; 1670 } 1671 #endif 1672 1673 1674 /* 1675 ** Add a new element to the end of an expression list. If pList is 1676 ** initially NULL, then create a new expression list. 1677 ** 1678 ** The pList argument must be either NULL or a pointer to an ExprList 1679 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1680 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1681 ** Reason: This routine assumes that the number of slots in pList->a[] 1682 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1683 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1684 ** 1685 ** If a memory allocation error occurs, the entire list is freed and 1686 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1687 ** that the new entry was successfully appended. 1688 */ 1689 static const struct ExprList_item zeroItem = {0}; 1690 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 1691 sqlite3 *db, /* Database handle. Used for memory allocation */ 1692 Expr *pExpr /* Expression to be appended. Might be NULL */ 1693 ){ 1694 struct ExprList_item *pItem; 1695 ExprList *pList; 1696 1697 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 1698 if( pList==0 ){ 1699 sqlite3ExprDelete(db, pExpr); 1700 return 0; 1701 } 1702 pList->nAlloc = 4; 1703 pList->nExpr = 1; 1704 pItem = &pList->a[0]; 1705 *pItem = zeroItem; 1706 pItem->pExpr = pExpr; 1707 return pList; 1708 } 1709 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 1710 sqlite3 *db, /* Database handle. Used for memory allocation */ 1711 ExprList *pList, /* List to which to append. Might be NULL */ 1712 Expr *pExpr /* Expression to be appended. Might be NULL */ 1713 ){ 1714 struct ExprList_item *pItem; 1715 ExprList *pNew; 1716 pList->nAlloc *= 2; 1717 pNew = sqlite3DbRealloc(db, pList, 1718 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 1719 if( pNew==0 ){ 1720 sqlite3ExprListDelete(db, pList); 1721 sqlite3ExprDelete(db, pExpr); 1722 return 0; 1723 }else{ 1724 pList = pNew; 1725 } 1726 pItem = &pList->a[pList->nExpr++]; 1727 *pItem = zeroItem; 1728 pItem->pExpr = pExpr; 1729 return pList; 1730 } 1731 ExprList *sqlite3ExprListAppend( 1732 Parse *pParse, /* Parsing context */ 1733 ExprList *pList, /* List to which to append. Might be NULL */ 1734 Expr *pExpr /* Expression to be appended. Might be NULL */ 1735 ){ 1736 struct ExprList_item *pItem; 1737 if( pList==0 ){ 1738 return sqlite3ExprListAppendNew(pParse->db,pExpr); 1739 } 1740 if( pList->nAlloc<pList->nExpr+1 ){ 1741 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 1742 } 1743 pItem = &pList->a[pList->nExpr++]; 1744 *pItem = zeroItem; 1745 pItem->pExpr = pExpr; 1746 return pList; 1747 } 1748 1749 /* 1750 ** pColumns and pExpr form a vector assignment which is part of the SET 1751 ** clause of an UPDATE statement. Like this: 1752 ** 1753 ** (a,b,c) = (expr1,expr2,expr3) 1754 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1755 ** 1756 ** For each term of the vector assignment, append new entries to the 1757 ** expression list pList. In the case of a subquery on the RHS, append 1758 ** TK_SELECT_COLUMN expressions. 1759 */ 1760 ExprList *sqlite3ExprListAppendVector( 1761 Parse *pParse, /* Parsing context */ 1762 ExprList *pList, /* List to which to append. Might be NULL */ 1763 IdList *pColumns, /* List of names of LHS of the assignment */ 1764 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1765 ){ 1766 sqlite3 *db = pParse->db; 1767 int n; 1768 int i; 1769 int iFirst = pList ? pList->nExpr : 0; 1770 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1771 ** exit prior to this routine being invoked */ 1772 if( NEVER(pColumns==0) ) goto vector_append_error; 1773 if( pExpr==0 ) goto vector_append_error; 1774 1775 /* If the RHS is a vector, then we can immediately check to see that 1776 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1777 ** wildcards ("*") in the result set of the SELECT must be expanded before 1778 ** we can do the size check, so defer the size check until code generation. 1779 */ 1780 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1781 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1782 pColumns->nId, n); 1783 goto vector_append_error; 1784 } 1785 1786 for(i=0; i<pColumns->nId; i++){ 1787 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1788 assert( pSubExpr!=0 || db->mallocFailed ); 1789 assert( pSubExpr==0 || pSubExpr->iTable==0 ); 1790 if( pSubExpr==0 ) continue; 1791 pSubExpr->iTable = pColumns->nId; 1792 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1793 if( pList ){ 1794 assert( pList->nExpr==iFirst+i+1 ); 1795 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1796 pColumns->a[i].zName = 0; 1797 } 1798 } 1799 1800 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1801 Expr *pFirst = pList->a[iFirst].pExpr; 1802 assert( pFirst!=0 ); 1803 assert( pFirst->op==TK_SELECT_COLUMN ); 1804 1805 /* Store the SELECT statement in pRight so it will be deleted when 1806 ** sqlite3ExprListDelete() is called */ 1807 pFirst->pRight = pExpr; 1808 pExpr = 0; 1809 1810 /* Remember the size of the LHS in iTable so that we can check that 1811 ** the RHS and LHS sizes match during code generation. */ 1812 pFirst->iTable = pColumns->nId; 1813 } 1814 1815 vector_append_error: 1816 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1817 sqlite3IdListDelete(db, pColumns); 1818 return pList; 1819 } 1820 1821 /* 1822 ** Set the sort order for the last element on the given ExprList. 1823 */ 1824 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1825 struct ExprList_item *pItem; 1826 if( p==0 ) return; 1827 assert( p->nExpr>0 ); 1828 1829 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1830 assert( iSortOrder==SQLITE_SO_UNDEFINED 1831 || iSortOrder==SQLITE_SO_ASC 1832 || iSortOrder==SQLITE_SO_DESC 1833 ); 1834 assert( eNulls==SQLITE_SO_UNDEFINED 1835 || eNulls==SQLITE_SO_ASC 1836 || eNulls==SQLITE_SO_DESC 1837 ); 1838 1839 pItem = &p->a[p->nExpr-1]; 1840 assert( pItem->bNulls==0 ); 1841 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1842 iSortOrder = SQLITE_SO_ASC; 1843 } 1844 pItem->sortFlags = (u8)iSortOrder; 1845 1846 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1847 pItem->bNulls = 1; 1848 if( iSortOrder!=eNulls ){ 1849 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1850 } 1851 } 1852 } 1853 1854 /* 1855 ** Set the ExprList.a[].zEName element of the most recently added item 1856 ** on the expression list. 1857 ** 1858 ** pList might be NULL following an OOM error. But pName should never be 1859 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1860 ** is set. 1861 */ 1862 void sqlite3ExprListSetName( 1863 Parse *pParse, /* Parsing context */ 1864 ExprList *pList, /* List to which to add the span. */ 1865 Token *pName, /* Name to be added */ 1866 int dequote /* True to cause the name to be dequoted */ 1867 ){ 1868 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1869 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1870 if( pList ){ 1871 struct ExprList_item *pItem; 1872 assert( pList->nExpr>0 ); 1873 pItem = &pList->a[pList->nExpr-1]; 1874 assert( pItem->zEName==0 ); 1875 assert( pItem->eEName==ENAME_NAME ); 1876 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1877 if( dequote ){ 1878 /* If dequote==0, then pName->z does not point to part of a DDL 1879 ** statement handled by the parser. And so no token need be added 1880 ** to the token-map. */ 1881 sqlite3Dequote(pItem->zEName); 1882 if( IN_RENAME_OBJECT ){ 1883 sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName); 1884 } 1885 } 1886 } 1887 } 1888 1889 /* 1890 ** Set the ExprList.a[].zSpan element of the most recently added item 1891 ** on the expression list. 1892 ** 1893 ** pList might be NULL following an OOM error. But pSpan should never be 1894 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1895 ** is set. 1896 */ 1897 void sqlite3ExprListSetSpan( 1898 Parse *pParse, /* Parsing context */ 1899 ExprList *pList, /* List to which to add the span. */ 1900 const char *zStart, /* Start of the span */ 1901 const char *zEnd /* End of the span */ 1902 ){ 1903 sqlite3 *db = pParse->db; 1904 assert( pList!=0 || db->mallocFailed!=0 ); 1905 if( pList ){ 1906 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1907 assert( pList->nExpr>0 ); 1908 if( pItem->zEName==0 ){ 1909 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1910 pItem->eEName = ENAME_SPAN; 1911 } 1912 } 1913 } 1914 1915 /* 1916 ** If the expression list pEList contains more than iLimit elements, 1917 ** leave an error message in pParse. 1918 */ 1919 void sqlite3ExprListCheckLength( 1920 Parse *pParse, 1921 ExprList *pEList, 1922 const char *zObject 1923 ){ 1924 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1925 testcase( pEList && pEList->nExpr==mx ); 1926 testcase( pEList && pEList->nExpr==mx+1 ); 1927 if( pEList && pEList->nExpr>mx ){ 1928 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1929 } 1930 } 1931 1932 /* 1933 ** Delete an entire expression list. 1934 */ 1935 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1936 int i = pList->nExpr; 1937 struct ExprList_item *pItem = pList->a; 1938 assert( pList->nExpr>0 ); 1939 do{ 1940 sqlite3ExprDelete(db, pItem->pExpr); 1941 sqlite3DbFree(db, pItem->zEName); 1942 pItem++; 1943 }while( --i>0 ); 1944 sqlite3DbFreeNN(db, pList); 1945 } 1946 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1947 if( pList ) exprListDeleteNN(db, pList); 1948 } 1949 1950 /* 1951 ** Return the bitwise-OR of all Expr.flags fields in the given 1952 ** ExprList. 1953 */ 1954 u32 sqlite3ExprListFlags(const ExprList *pList){ 1955 int i; 1956 u32 m = 0; 1957 assert( pList!=0 ); 1958 for(i=0; i<pList->nExpr; i++){ 1959 Expr *pExpr = pList->a[i].pExpr; 1960 assert( pExpr!=0 ); 1961 m |= pExpr->flags; 1962 } 1963 return m; 1964 } 1965 1966 /* 1967 ** This is a SELECT-node callback for the expression walker that 1968 ** always "fails". By "fail" in this case, we mean set 1969 ** pWalker->eCode to zero and abort. 1970 ** 1971 ** This callback is used by multiple expression walkers. 1972 */ 1973 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1974 UNUSED_PARAMETER(NotUsed); 1975 pWalker->eCode = 0; 1976 return WRC_Abort; 1977 } 1978 1979 /* 1980 ** Check the input string to see if it is "true" or "false" (in any case). 1981 ** 1982 ** If the string is.... Return 1983 ** "true" EP_IsTrue 1984 ** "false" EP_IsFalse 1985 ** anything else 0 1986 */ 1987 u32 sqlite3IsTrueOrFalse(const char *zIn){ 1988 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 1989 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 1990 return 0; 1991 } 1992 1993 1994 /* 1995 ** If the input expression is an ID with the name "true" or "false" 1996 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1997 ** the conversion happened, and zero if the expression is unaltered. 1998 */ 1999 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 2000 u32 v; 2001 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 2002 if( !ExprHasProperty(pExpr, EP_Quoted) 2003 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 2004 ){ 2005 pExpr->op = TK_TRUEFALSE; 2006 ExprSetProperty(pExpr, v); 2007 return 1; 2008 } 2009 return 0; 2010 } 2011 2012 /* 2013 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 2014 ** and 0 if it is FALSE. 2015 */ 2016 int sqlite3ExprTruthValue(const Expr *pExpr){ 2017 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 2018 assert( pExpr->op==TK_TRUEFALSE ); 2019 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 2020 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 2021 return pExpr->u.zToken[4]==0; 2022 } 2023 2024 /* 2025 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 2026 ** terms that are always true or false. Return the simplified expression. 2027 ** Or return the original expression if no simplification is possible. 2028 ** 2029 ** Examples: 2030 ** 2031 ** (x<10) AND true => (x<10) 2032 ** (x<10) AND false => false 2033 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 2034 ** (x<10) AND (y=22 OR true) => (x<10) 2035 ** (y=22) OR true => true 2036 */ 2037 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 2038 assert( pExpr!=0 ); 2039 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 2040 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 2041 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 2042 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 2043 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 2044 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 2045 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 2046 } 2047 } 2048 return pExpr; 2049 } 2050 2051 2052 /* 2053 ** These routines are Walker callbacks used to check expressions to 2054 ** see if they are "constant" for some definition of constant. The 2055 ** Walker.eCode value determines the type of "constant" we are looking 2056 ** for. 2057 ** 2058 ** These callback routines are used to implement the following: 2059 ** 2060 ** sqlite3ExprIsConstant() pWalker->eCode==1 2061 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2062 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2063 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2064 ** 2065 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2066 ** is found to not be a constant. 2067 ** 2068 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2069 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2070 ** when parsing an existing schema out of the sqlite_schema table and 4 2071 ** when processing a new CREATE TABLE statement. A bound parameter raises 2072 ** an error for new statements, but is silently converted 2073 ** to NULL for existing schemas. This allows sqlite_schema tables that 2074 ** contain a bound parameter because they were generated by older versions 2075 ** of SQLite to be parsed by newer versions of SQLite without raising a 2076 ** malformed schema error. 2077 */ 2078 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2079 2080 /* If pWalker->eCode is 2 then any term of the expression that comes from 2081 ** the ON or USING clauses of a left join disqualifies the expression 2082 ** from being considered constant. */ 2083 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2084 pWalker->eCode = 0; 2085 return WRC_Abort; 2086 } 2087 2088 switch( pExpr->op ){ 2089 /* Consider functions to be constant if all their arguments are constant 2090 ** and either pWalker->eCode==4 or 5 or the function has the 2091 ** SQLITE_FUNC_CONST flag. */ 2092 case TK_FUNCTION: 2093 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2094 && !ExprHasProperty(pExpr, EP_WinFunc) 2095 ){ 2096 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2097 return WRC_Continue; 2098 }else{ 2099 pWalker->eCode = 0; 2100 return WRC_Abort; 2101 } 2102 case TK_ID: 2103 /* Convert "true" or "false" in a DEFAULT clause into the 2104 ** appropriate TK_TRUEFALSE operator */ 2105 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2106 return WRC_Prune; 2107 } 2108 /* no break */ deliberate_fall_through 2109 case TK_COLUMN: 2110 case TK_AGG_FUNCTION: 2111 case TK_AGG_COLUMN: 2112 testcase( pExpr->op==TK_ID ); 2113 testcase( pExpr->op==TK_COLUMN ); 2114 testcase( pExpr->op==TK_AGG_FUNCTION ); 2115 testcase( pExpr->op==TK_AGG_COLUMN ); 2116 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2117 return WRC_Continue; 2118 } 2119 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2120 return WRC_Continue; 2121 } 2122 /* no break */ deliberate_fall_through 2123 case TK_IF_NULL_ROW: 2124 case TK_REGISTER: 2125 case TK_DOT: 2126 testcase( pExpr->op==TK_REGISTER ); 2127 testcase( pExpr->op==TK_IF_NULL_ROW ); 2128 testcase( pExpr->op==TK_DOT ); 2129 pWalker->eCode = 0; 2130 return WRC_Abort; 2131 case TK_VARIABLE: 2132 if( pWalker->eCode==5 ){ 2133 /* Silently convert bound parameters that appear inside of CREATE 2134 ** statements into a NULL when parsing the CREATE statement text out 2135 ** of the sqlite_schema table */ 2136 pExpr->op = TK_NULL; 2137 }else if( pWalker->eCode==4 ){ 2138 /* A bound parameter in a CREATE statement that originates from 2139 ** sqlite3_prepare() causes an error */ 2140 pWalker->eCode = 0; 2141 return WRC_Abort; 2142 } 2143 /* no break */ deliberate_fall_through 2144 default: 2145 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2146 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2147 return WRC_Continue; 2148 } 2149 } 2150 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2151 Walker w; 2152 w.eCode = initFlag; 2153 w.xExprCallback = exprNodeIsConstant; 2154 w.xSelectCallback = sqlite3SelectWalkFail; 2155 #ifdef SQLITE_DEBUG 2156 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2157 #endif 2158 w.u.iCur = iCur; 2159 sqlite3WalkExpr(&w, p); 2160 return w.eCode; 2161 } 2162 2163 /* 2164 ** Walk an expression tree. Return non-zero if the expression is constant 2165 ** and 0 if it involves variables or function calls. 2166 ** 2167 ** For the purposes of this function, a double-quoted string (ex: "abc") 2168 ** is considered a variable but a single-quoted string (ex: 'abc') is 2169 ** a constant. 2170 */ 2171 int sqlite3ExprIsConstant(Expr *p){ 2172 return exprIsConst(p, 1, 0); 2173 } 2174 2175 /* 2176 ** Walk an expression tree. Return non-zero if 2177 ** 2178 ** (1) the expression is constant, and 2179 ** (2) the expression does originate in the ON or USING clause 2180 ** of a LEFT JOIN, and 2181 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2182 ** operands created by the constant propagation optimization. 2183 ** 2184 ** When this routine returns true, it indicates that the expression 2185 ** can be added to the pParse->pConstExpr list and evaluated once when 2186 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2187 */ 2188 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2189 return exprIsConst(p, 2, 0); 2190 } 2191 2192 /* 2193 ** Walk an expression tree. Return non-zero if the expression is constant 2194 ** for any single row of the table with cursor iCur. In other words, the 2195 ** expression must not refer to any non-deterministic function nor any 2196 ** table other than iCur. 2197 */ 2198 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2199 return exprIsConst(p, 3, iCur); 2200 } 2201 2202 2203 /* 2204 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2205 */ 2206 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2207 ExprList *pGroupBy = pWalker->u.pGroupBy; 2208 int i; 2209 2210 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2211 ** it constant. */ 2212 for(i=0; i<pGroupBy->nExpr; i++){ 2213 Expr *p = pGroupBy->a[i].pExpr; 2214 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2215 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2216 if( sqlite3IsBinary(pColl) ){ 2217 return WRC_Prune; 2218 } 2219 } 2220 } 2221 2222 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2223 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2224 pWalker->eCode = 0; 2225 return WRC_Abort; 2226 } 2227 2228 return exprNodeIsConstant(pWalker, pExpr); 2229 } 2230 2231 /* 2232 ** Walk the expression tree passed as the first argument. Return non-zero 2233 ** if the expression consists entirely of constants or copies of terms 2234 ** in pGroupBy that sort with the BINARY collation sequence. 2235 ** 2236 ** This routine is used to determine if a term of the HAVING clause can 2237 ** be promoted into the WHERE clause. In order for such a promotion to work, 2238 ** the value of the HAVING clause term must be the same for all members of 2239 ** a "group". The requirement that the GROUP BY term must be BINARY 2240 ** assumes that no other collating sequence will have a finer-grained 2241 ** grouping than binary. In other words (A=B COLLATE binary) implies 2242 ** A=B in every other collating sequence. The requirement that the 2243 ** GROUP BY be BINARY is stricter than necessary. It would also work 2244 ** to promote HAVING clauses that use the same alternative collating 2245 ** sequence as the GROUP BY term, but that is much harder to check, 2246 ** alternative collating sequences are uncommon, and this is only an 2247 ** optimization, so we take the easy way out and simply require the 2248 ** GROUP BY to use the BINARY collating sequence. 2249 */ 2250 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2251 Walker w; 2252 w.eCode = 1; 2253 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2254 w.xSelectCallback = 0; 2255 w.u.pGroupBy = pGroupBy; 2256 w.pParse = pParse; 2257 sqlite3WalkExpr(&w, p); 2258 return w.eCode; 2259 } 2260 2261 /* 2262 ** Walk an expression tree for the DEFAULT field of a column definition 2263 ** in a CREATE TABLE statement. Return non-zero if the expression is 2264 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2265 ** the expression is constant or a function call with constant arguments. 2266 ** Return and 0 if there are any variables. 2267 ** 2268 ** isInit is true when parsing from sqlite_schema. isInit is false when 2269 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2270 ** (such as ? or $abc) in the expression are converted into NULL. When 2271 ** isInit is false, parameters raise an error. Parameters should not be 2272 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2273 ** allowed it, so we need to support it when reading sqlite_schema for 2274 ** backwards compatibility. 2275 ** 2276 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2277 ** 2278 ** For the purposes of this function, a double-quoted string (ex: "abc") 2279 ** is considered a variable but a single-quoted string (ex: 'abc') is 2280 ** a constant. 2281 */ 2282 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2283 assert( isInit==0 || isInit==1 ); 2284 return exprIsConst(p, 4+isInit, 0); 2285 } 2286 2287 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2288 /* 2289 ** Walk an expression tree. Return 1 if the expression contains a 2290 ** subquery of some kind. Return 0 if there are no subqueries. 2291 */ 2292 int sqlite3ExprContainsSubquery(Expr *p){ 2293 Walker w; 2294 w.eCode = 1; 2295 w.xExprCallback = sqlite3ExprWalkNoop; 2296 w.xSelectCallback = sqlite3SelectWalkFail; 2297 #ifdef SQLITE_DEBUG 2298 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2299 #endif 2300 sqlite3WalkExpr(&w, p); 2301 return w.eCode==0; 2302 } 2303 #endif 2304 2305 /* 2306 ** If the expression p codes a constant integer that is small enough 2307 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2308 ** in *pValue. If the expression is not an integer or if it is too big 2309 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2310 */ 2311 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2312 int rc = 0; 2313 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2314 2315 /* If an expression is an integer literal that fits in a signed 32-bit 2316 ** integer, then the EP_IntValue flag will have already been set */ 2317 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2318 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2319 2320 if( p->flags & EP_IntValue ){ 2321 *pValue = p->u.iValue; 2322 return 1; 2323 } 2324 switch( p->op ){ 2325 case TK_UPLUS: { 2326 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2327 break; 2328 } 2329 case TK_UMINUS: { 2330 int v; 2331 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2332 assert( v!=(-2147483647-1) ); 2333 *pValue = -v; 2334 rc = 1; 2335 } 2336 break; 2337 } 2338 default: break; 2339 } 2340 return rc; 2341 } 2342 2343 /* 2344 ** Return FALSE if there is no chance that the expression can be NULL. 2345 ** 2346 ** If the expression might be NULL or if the expression is too complex 2347 ** to tell return TRUE. 2348 ** 2349 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2350 ** when we know that a value cannot be NULL. Hence, a false positive 2351 ** (returning TRUE when in fact the expression can never be NULL) might 2352 ** be a small performance hit but is otherwise harmless. On the other 2353 ** hand, a false negative (returning FALSE when the result could be NULL) 2354 ** will likely result in an incorrect answer. So when in doubt, return 2355 ** TRUE. 2356 */ 2357 int sqlite3ExprCanBeNull(const Expr *p){ 2358 u8 op; 2359 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2360 p = p->pLeft; 2361 } 2362 op = p->op; 2363 if( op==TK_REGISTER ) op = p->op2; 2364 switch( op ){ 2365 case TK_INTEGER: 2366 case TK_STRING: 2367 case TK_FLOAT: 2368 case TK_BLOB: 2369 return 0; 2370 case TK_COLUMN: 2371 return ExprHasProperty(p, EP_CanBeNull) || 2372 p->y.pTab==0 || /* Reference to column of index on expression */ 2373 (p->iColumn>=0 2374 && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ 2375 && p->y.pTab->aCol[p->iColumn].notNull==0); 2376 default: 2377 return 1; 2378 } 2379 } 2380 2381 /* 2382 ** Return TRUE if the given expression is a constant which would be 2383 ** unchanged by OP_Affinity with the affinity given in the second 2384 ** argument. 2385 ** 2386 ** This routine is used to determine if the OP_Affinity operation 2387 ** can be omitted. When in doubt return FALSE. A false negative 2388 ** is harmless. A false positive, however, can result in the wrong 2389 ** answer. 2390 */ 2391 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2392 u8 op; 2393 int unaryMinus = 0; 2394 if( aff==SQLITE_AFF_BLOB ) return 1; 2395 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2396 if( p->op==TK_UMINUS ) unaryMinus = 1; 2397 p = p->pLeft; 2398 } 2399 op = p->op; 2400 if( op==TK_REGISTER ) op = p->op2; 2401 switch( op ){ 2402 case TK_INTEGER: { 2403 return aff>=SQLITE_AFF_NUMERIC; 2404 } 2405 case TK_FLOAT: { 2406 return aff>=SQLITE_AFF_NUMERIC; 2407 } 2408 case TK_STRING: { 2409 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2410 } 2411 case TK_BLOB: { 2412 return !unaryMinus; 2413 } 2414 case TK_COLUMN: { 2415 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2416 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2417 } 2418 default: { 2419 return 0; 2420 } 2421 } 2422 } 2423 2424 /* 2425 ** Return TRUE if the given string is a row-id column name. 2426 */ 2427 int sqlite3IsRowid(const char *z){ 2428 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2429 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2430 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2431 return 0; 2432 } 2433 2434 /* 2435 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2436 ** that can be simplified to a direct table access, then return 2437 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2438 ** or if the SELECT statement needs to be manifested into a transient 2439 ** table, then return NULL. 2440 */ 2441 #ifndef SQLITE_OMIT_SUBQUERY 2442 static Select *isCandidateForInOpt(Expr *pX){ 2443 Select *p; 2444 SrcList *pSrc; 2445 ExprList *pEList; 2446 Table *pTab; 2447 int i; 2448 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2449 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2450 p = pX->x.pSelect; 2451 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2452 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2453 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2454 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2455 return 0; /* No DISTINCT keyword and no aggregate functions */ 2456 } 2457 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2458 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2459 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2460 pSrc = p->pSrc; 2461 assert( pSrc!=0 ); 2462 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2463 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2464 pTab = pSrc->a[0].pTab; 2465 assert( pTab!=0 ); 2466 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2467 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2468 pEList = p->pEList; 2469 assert( pEList!=0 ); 2470 /* All SELECT results must be columns. */ 2471 for(i=0; i<pEList->nExpr; i++){ 2472 Expr *pRes = pEList->a[i].pExpr; 2473 if( pRes->op!=TK_COLUMN ) return 0; 2474 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2475 } 2476 return p; 2477 } 2478 #endif /* SQLITE_OMIT_SUBQUERY */ 2479 2480 #ifndef SQLITE_OMIT_SUBQUERY 2481 /* 2482 ** Generate code that checks the left-most column of index table iCur to see if 2483 ** it contains any NULL entries. Cause the register at regHasNull to be set 2484 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2485 ** to be set to NULL if iCur contains one or more NULL values. 2486 */ 2487 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2488 int addr1; 2489 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2490 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2491 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2492 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2493 VdbeComment((v, "first_entry_in(%d)", iCur)); 2494 sqlite3VdbeJumpHere(v, addr1); 2495 } 2496 #endif 2497 2498 2499 #ifndef SQLITE_OMIT_SUBQUERY 2500 /* 2501 ** The argument is an IN operator with a list (not a subquery) on the 2502 ** right-hand side. Return TRUE if that list is constant. 2503 */ 2504 static int sqlite3InRhsIsConstant(Expr *pIn){ 2505 Expr *pLHS; 2506 int res; 2507 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2508 pLHS = pIn->pLeft; 2509 pIn->pLeft = 0; 2510 res = sqlite3ExprIsConstant(pIn); 2511 pIn->pLeft = pLHS; 2512 return res; 2513 } 2514 #endif 2515 2516 /* 2517 ** This function is used by the implementation of the IN (...) operator. 2518 ** The pX parameter is the expression on the RHS of the IN operator, which 2519 ** might be either a list of expressions or a subquery. 2520 ** 2521 ** The job of this routine is to find or create a b-tree object that can 2522 ** be used either to test for membership in the RHS set or to iterate through 2523 ** all members of the RHS set, skipping duplicates. 2524 ** 2525 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2526 ** and pX->iTable is set to the index of that cursor. 2527 ** 2528 ** The returned value of this function indicates the b-tree type, as follows: 2529 ** 2530 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2531 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2532 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2533 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2534 ** populated epheremal table. 2535 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2536 ** implemented as a sequence of comparisons. 2537 ** 2538 ** An existing b-tree might be used if the RHS expression pX is a simple 2539 ** subquery such as: 2540 ** 2541 ** SELECT <column1>, <column2>... FROM <table> 2542 ** 2543 ** If the RHS of the IN operator is a list or a more complex subquery, then 2544 ** an ephemeral table might need to be generated from the RHS and then 2545 ** pX->iTable made to point to the ephemeral table instead of an 2546 ** existing table. 2547 ** 2548 ** The inFlags parameter must contain, at a minimum, one of the bits 2549 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2550 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2551 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2552 ** be used to loop over all values of the RHS of the IN operator. 2553 ** 2554 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2555 ** through the set members) then the b-tree must not contain duplicates. 2556 ** An epheremal table will be created unless the selected columns are guaranteed 2557 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2558 ** a UNIQUE constraint or index. 2559 ** 2560 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2561 ** for fast set membership tests) then an epheremal table must 2562 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2563 ** index can be found with the specified <columns> as its left-most. 2564 ** 2565 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2566 ** if the RHS of the IN operator is a list (not a subquery) then this 2567 ** routine might decide that creating an ephemeral b-tree for membership 2568 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2569 ** calling routine should implement the IN operator using a sequence 2570 ** of Eq or Ne comparison operations. 2571 ** 2572 ** When the b-tree is being used for membership tests, the calling function 2573 ** might need to know whether or not the RHS side of the IN operator 2574 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2575 ** if there is any chance that the (...) might contain a NULL value at 2576 ** runtime, then a register is allocated and the register number written 2577 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2578 ** NULL value, then *prRhsHasNull is left unchanged. 2579 ** 2580 ** If a register is allocated and its location stored in *prRhsHasNull, then 2581 ** the value in that register will be NULL if the b-tree contains one or more 2582 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2583 ** NULL values. 2584 ** 2585 ** If the aiMap parameter is not NULL, it must point to an array containing 2586 ** one element for each column returned by the SELECT statement on the RHS 2587 ** of the IN(...) operator. The i'th entry of the array is populated with the 2588 ** offset of the index column that matches the i'th column returned by the 2589 ** SELECT. For example, if the expression and selected index are: 2590 ** 2591 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2592 ** CREATE INDEX i1 ON t1(b, c, a); 2593 ** 2594 ** then aiMap[] is populated with {2, 0, 1}. 2595 */ 2596 #ifndef SQLITE_OMIT_SUBQUERY 2597 int sqlite3FindInIndex( 2598 Parse *pParse, /* Parsing context */ 2599 Expr *pX, /* The IN expression */ 2600 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2601 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2602 int *aiMap, /* Mapping from Index fields to RHS fields */ 2603 int *piTab /* OUT: index to use */ 2604 ){ 2605 Select *p; /* SELECT to the right of IN operator */ 2606 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2607 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2608 int mustBeUnique; /* True if RHS must be unique */ 2609 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2610 2611 assert( pX->op==TK_IN ); 2612 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2613 2614 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2615 ** whether or not the SELECT result contains NULL values, check whether 2616 ** or not NULL is actually possible (it may not be, for example, due 2617 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2618 ** set prRhsHasNull to 0 before continuing. */ 2619 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2620 int i; 2621 ExprList *pEList = pX->x.pSelect->pEList; 2622 for(i=0; i<pEList->nExpr; i++){ 2623 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2624 } 2625 if( i==pEList->nExpr ){ 2626 prRhsHasNull = 0; 2627 } 2628 } 2629 2630 /* Check to see if an existing table or index can be used to 2631 ** satisfy the query. This is preferable to generating a new 2632 ** ephemeral table. */ 2633 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2634 sqlite3 *db = pParse->db; /* Database connection */ 2635 Table *pTab; /* Table <table>. */ 2636 int iDb; /* Database idx for pTab */ 2637 ExprList *pEList = p->pEList; 2638 int nExpr = pEList->nExpr; 2639 2640 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2641 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2642 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2643 pTab = p->pSrc->a[0].pTab; 2644 2645 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2646 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2647 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 2648 sqlite3CodeVerifySchema(pParse, iDb); 2649 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2650 2651 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2652 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2653 /* The "x IN (SELECT rowid FROM table)" case */ 2654 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2655 VdbeCoverage(v); 2656 2657 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2658 eType = IN_INDEX_ROWID; 2659 ExplainQueryPlan((pParse, 0, 2660 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2661 sqlite3VdbeJumpHere(v, iAddr); 2662 }else{ 2663 Index *pIdx; /* Iterator variable */ 2664 int affinity_ok = 1; 2665 int i; 2666 2667 /* Check that the affinity that will be used to perform each 2668 ** comparison is the same as the affinity of each column in table 2669 ** on the RHS of the IN operator. If it not, it is not possible to 2670 ** use any index of the RHS table. */ 2671 for(i=0; i<nExpr && affinity_ok; i++){ 2672 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2673 int iCol = pEList->a[i].pExpr->iColumn; 2674 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2675 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2676 testcase( cmpaff==SQLITE_AFF_BLOB ); 2677 testcase( cmpaff==SQLITE_AFF_TEXT ); 2678 switch( cmpaff ){ 2679 case SQLITE_AFF_BLOB: 2680 break; 2681 case SQLITE_AFF_TEXT: 2682 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2683 ** other has no affinity and the other side is TEXT. Hence, 2684 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2685 ** and for the term on the LHS of the IN to have no affinity. */ 2686 assert( idxaff==SQLITE_AFF_TEXT ); 2687 break; 2688 default: 2689 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2690 } 2691 } 2692 2693 if( affinity_ok ){ 2694 /* Search for an existing index that will work for this IN operator */ 2695 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2696 Bitmask colUsed; /* Columns of the index used */ 2697 Bitmask mCol; /* Mask for the current column */ 2698 if( pIdx->nColumn<nExpr ) continue; 2699 if( pIdx->pPartIdxWhere!=0 ) continue; 2700 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2701 ** BITMASK(nExpr) without overflowing */ 2702 testcase( pIdx->nColumn==BMS-2 ); 2703 testcase( pIdx->nColumn==BMS-1 ); 2704 if( pIdx->nColumn>=BMS-1 ) continue; 2705 if( mustBeUnique ){ 2706 if( pIdx->nKeyCol>nExpr 2707 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2708 ){ 2709 continue; /* This index is not unique over the IN RHS columns */ 2710 } 2711 } 2712 2713 colUsed = 0; /* Columns of index used so far */ 2714 for(i=0; i<nExpr; i++){ 2715 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2716 Expr *pRhs = pEList->a[i].pExpr; 2717 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2718 int j; 2719 2720 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2721 for(j=0; j<nExpr; j++){ 2722 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2723 assert( pIdx->azColl[j] ); 2724 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2725 continue; 2726 } 2727 break; 2728 } 2729 if( j==nExpr ) break; 2730 mCol = MASKBIT(j); 2731 if( mCol & colUsed ) break; /* Each column used only once */ 2732 colUsed |= mCol; 2733 if( aiMap ) aiMap[i] = j; 2734 } 2735 2736 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2737 if( colUsed==(MASKBIT(nExpr)-1) ){ 2738 /* If we reach this point, that means the index pIdx is usable */ 2739 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2740 ExplainQueryPlan((pParse, 0, 2741 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2742 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2743 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2744 VdbeComment((v, "%s", pIdx->zName)); 2745 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2746 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2747 2748 if( prRhsHasNull ){ 2749 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2750 i64 mask = (1<<nExpr)-1; 2751 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2752 iTab, 0, 0, (u8*)&mask, P4_INT64); 2753 #endif 2754 *prRhsHasNull = ++pParse->nMem; 2755 if( nExpr==1 ){ 2756 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2757 } 2758 } 2759 sqlite3VdbeJumpHere(v, iAddr); 2760 } 2761 } /* End loop over indexes */ 2762 } /* End if( affinity_ok ) */ 2763 } /* End if not an rowid index */ 2764 } /* End attempt to optimize using an index */ 2765 2766 /* If no preexisting index is available for the IN clause 2767 ** and IN_INDEX_NOOP is an allowed reply 2768 ** and the RHS of the IN operator is a list, not a subquery 2769 ** and the RHS is not constant or has two or fewer terms, 2770 ** then it is not worth creating an ephemeral table to evaluate 2771 ** the IN operator so return IN_INDEX_NOOP. 2772 */ 2773 if( eType==0 2774 && (inFlags & IN_INDEX_NOOP_OK) 2775 && !ExprHasProperty(pX, EP_xIsSelect) 2776 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2777 ){ 2778 eType = IN_INDEX_NOOP; 2779 } 2780 2781 if( eType==0 ){ 2782 /* Could not find an existing table or index to use as the RHS b-tree. 2783 ** We will have to generate an ephemeral table to do the job. 2784 */ 2785 u32 savedNQueryLoop = pParse->nQueryLoop; 2786 int rMayHaveNull = 0; 2787 eType = IN_INDEX_EPH; 2788 if( inFlags & IN_INDEX_LOOP ){ 2789 pParse->nQueryLoop = 0; 2790 }else if( prRhsHasNull ){ 2791 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2792 } 2793 assert( pX->op==TK_IN ); 2794 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2795 if( rMayHaveNull ){ 2796 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2797 } 2798 pParse->nQueryLoop = savedNQueryLoop; 2799 } 2800 2801 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2802 int i, n; 2803 n = sqlite3ExprVectorSize(pX->pLeft); 2804 for(i=0; i<n; i++) aiMap[i] = i; 2805 } 2806 *piTab = iTab; 2807 return eType; 2808 } 2809 #endif 2810 2811 #ifndef SQLITE_OMIT_SUBQUERY 2812 /* 2813 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2814 ** function allocates and returns a nul-terminated string containing 2815 ** the affinities to be used for each column of the comparison. 2816 ** 2817 ** It is the responsibility of the caller to ensure that the returned 2818 ** string is eventually freed using sqlite3DbFree(). 2819 */ 2820 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2821 Expr *pLeft = pExpr->pLeft; 2822 int nVal = sqlite3ExprVectorSize(pLeft); 2823 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2824 char *zRet; 2825 2826 assert( pExpr->op==TK_IN ); 2827 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2828 if( zRet ){ 2829 int i; 2830 for(i=0; i<nVal; i++){ 2831 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2832 char a = sqlite3ExprAffinity(pA); 2833 if( pSelect ){ 2834 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2835 }else{ 2836 zRet[i] = a; 2837 } 2838 } 2839 zRet[nVal] = '\0'; 2840 } 2841 return zRet; 2842 } 2843 #endif 2844 2845 #ifndef SQLITE_OMIT_SUBQUERY 2846 /* 2847 ** Load the Parse object passed as the first argument with an error 2848 ** message of the form: 2849 ** 2850 ** "sub-select returns N columns - expected M" 2851 */ 2852 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2853 if( pParse->nErr==0 ){ 2854 const char *zFmt = "sub-select returns %d columns - expected %d"; 2855 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2856 } 2857 } 2858 #endif 2859 2860 /* 2861 ** Expression pExpr is a vector that has been used in a context where 2862 ** it is not permitted. If pExpr is a sub-select vector, this routine 2863 ** loads the Parse object with a message of the form: 2864 ** 2865 ** "sub-select returns N columns - expected 1" 2866 ** 2867 ** Or, if it is a regular scalar vector: 2868 ** 2869 ** "row value misused" 2870 */ 2871 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2872 #ifndef SQLITE_OMIT_SUBQUERY 2873 if( pExpr->flags & EP_xIsSelect ){ 2874 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2875 }else 2876 #endif 2877 { 2878 sqlite3ErrorMsg(pParse, "row value misused"); 2879 } 2880 } 2881 2882 #ifndef SQLITE_OMIT_SUBQUERY 2883 /* 2884 ** Generate code that will construct an ephemeral table containing all terms 2885 ** in the RHS of an IN operator. The IN operator can be in either of two 2886 ** forms: 2887 ** 2888 ** x IN (4,5,11) -- IN operator with list on right-hand side 2889 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2890 ** 2891 ** The pExpr parameter is the IN operator. The cursor number for the 2892 ** constructed ephermeral table is returned. The first time the ephemeral 2893 ** table is computed, the cursor number is also stored in pExpr->iTable, 2894 ** however the cursor number returned might not be the same, as it might 2895 ** have been duplicated using OP_OpenDup. 2896 ** 2897 ** If the LHS expression ("x" in the examples) is a column value, or 2898 ** the SELECT statement returns a column value, then the affinity of that 2899 ** column is used to build the index keys. If both 'x' and the 2900 ** SELECT... statement are columns, then numeric affinity is used 2901 ** if either column has NUMERIC or INTEGER affinity. If neither 2902 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2903 ** is used. 2904 */ 2905 void sqlite3CodeRhsOfIN( 2906 Parse *pParse, /* Parsing context */ 2907 Expr *pExpr, /* The IN operator */ 2908 int iTab /* Use this cursor number */ 2909 ){ 2910 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2911 int addr; /* Address of OP_OpenEphemeral instruction */ 2912 Expr *pLeft; /* the LHS of the IN operator */ 2913 KeyInfo *pKeyInfo = 0; /* Key information */ 2914 int nVal; /* Size of vector pLeft */ 2915 Vdbe *v; /* The prepared statement under construction */ 2916 2917 v = pParse->pVdbe; 2918 assert( v!=0 ); 2919 2920 /* The evaluation of the IN must be repeated every time it 2921 ** is encountered if any of the following is true: 2922 ** 2923 ** * The right-hand side is a correlated subquery 2924 ** * The right-hand side is an expression list containing variables 2925 ** * We are inside a trigger 2926 ** 2927 ** If all of the above are false, then we can compute the RHS just once 2928 ** and reuse it many names. 2929 */ 2930 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2931 /* Reuse of the RHS is allowed */ 2932 /* If this routine has already been coded, but the previous code 2933 ** might not have been invoked yet, so invoke it now as a subroutine. 2934 */ 2935 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2936 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2937 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2938 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2939 pExpr->x.pSelect->selId)); 2940 } 2941 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2942 pExpr->y.sub.iAddr); 2943 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2944 sqlite3VdbeJumpHere(v, addrOnce); 2945 return; 2946 } 2947 2948 /* Begin coding the subroutine */ 2949 ExprSetProperty(pExpr, EP_Subrtn); 2950 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 2951 pExpr->y.sub.regReturn = ++pParse->nMem; 2952 pExpr->y.sub.iAddr = 2953 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2954 VdbeComment((v, "return address")); 2955 2956 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2957 } 2958 2959 /* Check to see if this is a vector IN operator */ 2960 pLeft = pExpr->pLeft; 2961 nVal = sqlite3ExprVectorSize(pLeft); 2962 2963 /* Construct the ephemeral table that will contain the content of 2964 ** RHS of the IN operator. 2965 */ 2966 pExpr->iTable = iTab; 2967 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2968 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2969 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2970 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2971 }else{ 2972 VdbeComment((v, "RHS of IN operator")); 2973 } 2974 #endif 2975 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2976 2977 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2978 /* Case 1: expr IN (SELECT ...) 2979 ** 2980 ** Generate code to write the results of the select into the temporary 2981 ** table allocated and opened above. 2982 */ 2983 Select *pSelect = pExpr->x.pSelect; 2984 ExprList *pEList = pSelect->pEList; 2985 2986 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2987 addrOnce?"":"CORRELATED ", pSelect->selId 2988 )); 2989 /* If the LHS and RHS of the IN operator do not match, that 2990 ** error will have been caught long before we reach this point. */ 2991 if( ALWAYS(pEList->nExpr==nVal) ){ 2992 SelectDest dest; 2993 int i; 2994 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2995 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2996 pSelect->iLimit = 0; 2997 testcase( pSelect->selFlags & SF_Distinct ); 2998 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2999 if( sqlite3Select(pParse, pSelect, &dest) ){ 3000 sqlite3DbFree(pParse->db, dest.zAffSdst); 3001 sqlite3KeyInfoUnref(pKeyInfo); 3002 return; 3003 } 3004 sqlite3DbFree(pParse->db, dest.zAffSdst); 3005 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 3006 assert( pEList!=0 ); 3007 assert( pEList->nExpr>0 ); 3008 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3009 for(i=0; i<nVal; i++){ 3010 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 3011 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 3012 pParse, p, pEList->a[i].pExpr 3013 ); 3014 } 3015 } 3016 }else if( ALWAYS(pExpr->x.pList!=0) ){ 3017 /* Case 2: expr IN (exprlist) 3018 ** 3019 ** For each expression, build an index key from the evaluation and 3020 ** store it in the temporary table. If <expr> is a column, then use 3021 ** that columns affinity when building index keys. If <expr> is not 3022 ** a column, use numeric affinity. 3023 */ 3024 char affinity; /* Affinity of the LHS of the IN */ 3025 int i; 3026 ExprList *pList = pExpr->x.pList; 3027 struct ExprList_item *pItem; 3028 int r1, r2; 3029 affinity = sqlite3ExprAffinity(pLeft); 3030 if( affinity<=SQLITE_AFF_NONE ){ 3031 affinity = SQLITE_AFF_BLOB; 3032 }else if( affinity==SQLITE_AFF_REAL ){ 3033 affinity = SQLITE_AFF_NUMERIC; 3034 } 3035 if( pKeyInfo ){ 3036 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3037 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3038 } 3039 3040 /* Loop through each expression in <exprlist>. */ 3041 r1 = sqlite3GetTempReg(pParse); 3042 r2 = sqlite3GetTempReg(pParse); 3043 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 3044 Expr *pE2 = pItem->pExpr; 3045 3046 /* If the expression is not constant then we will need to 3047 ** disable the test that was generated above that makes sure 3048 ** this code only executes once. Because for a non-constant 3049 ** expression we need to rerun this code each time. 3050 */ 3051 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 3052 sqlite3VdbeChangeToNoop(v, addrOnce); 3053 ExprClearProperty(pExpr, EP_Subrtn); 3054 addrOnce = 0; 3055 } 3056 3057 /* Evaluate the expression and insert it into the temp table */ 3058 sqlite3ExprCode(pParse, pE2, r1); 3059 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3060 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3061 } 3062 sqlite3ReleaseTempReg(pParse, r1); 3063 sqlite3ReleaseTempReg(pParse, r2); 3064 } 3065 if( pKeyInfo ){ 3066 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3067 } 3068 if( addrOnce ){ 3069 sqlite3VdbeJumpHere(v, addrOnce); 3070 /* Subroutine return */ 3071 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3072 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3073 sqlite3ClearTempRegCache(pParse); 3074 } 3075 } 3076 #endif /* SQLITE_OMIT_SUBQUERY */ 3077 3078 /* 3079 ** Generate code for scalar subqueries used as a subquery expression 3080 ** or EXISTS operator: 3081 ** 3082 ** (SELECT a FROM b) -- subquery 3083 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3084 ** 3085 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3086 ** 3087 ** Return the register that holds the result. For a multi-column SELECT, 3088 ** the result is stored in a contiguous array of registers and the 3089 ** return value is the register of the left-most result column. 3090 ** Return 0 if an error occurs. 3091 */ 3092 #ifndef SQLITE_OMIT_SUBQUERY 3093 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3094 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3095 int rReg = 0; /* Register storing resulting */ 3096 Select *pSel; /* SELECT statement to encode */ 3097 SelectDest dest; /* How to deal with SELECT result */ 3098 int nReg; /* Registers to allocate */ 3099 Expr *pLimit; /* New limit expression */ 3100 3101 Vdbe *v = pParse->pVdbe; 3102 assert( v!=0 ); 3103 testcase( pExpr->op==TK_EXISTS ); 3104 testcase( pExpr->op==TK_SELECT ); 3105 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3106 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 3107 pSel = pExpr->x.pSelect; 3108 3109 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3110 ** is encountered if any of the following is true: 3111 ** 3112 ** * The right-hand side is a correlated subquery 3113 ** * The right-hand side is an expression list containing variables 3114 ** * We are inside a trigger 3115 ** 3116 ** If all of the above are false, then we can run this code just once 3117 ** save the results, and reuse the same result on subsequent invocations. 3118 */ 3119 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3120 /* If this routine has already been coded, then invoke it as a 3121 ** subroutine. */ 3122 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3123 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3124 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3125 pExpr->y.sub.iAddr); 3126 return pExpr->iTable; 3127 } 3128 3129 /* Begin coding the subroutine */ 3130 ExprSetProperty(pExpr, EP_Subrtn); 3131 pExpr->y.sub.regReturn = ++pParse->nMem; 3132 pExpr->y.sub.iAddr = 3133 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3134 VdbeComment((v, "return address")); 3135 3136 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3137 } 3138 3139 /* For a SELECT, generate code to put the values for all columns of 3140 ** the first row into an array of registers and return the index of 3141 ** the first register. 3142 ** 3143 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3144 ** into a register and return that register number. 3145 ** 3146 ** In both cases, the query is augmented with "LIMIT 1". Any 3147 ** preexisting limit is discarded in place of the new LIMIT 1. 3148 */ 3149 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3150 addrOnce?"":"CORRELATED ", pSel->selId)); 3151 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3152 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3153 pParse->nMem += nReg; 3154 if( pExpr->op==TK_SELECT ){ 3155 dest.eDest = SRT_Mem; 3156 dest.iSdst = dest.iSDParm; 3157 dest.nSdst = nReg; 3158 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3159 VdbeComment((v, "Init subquery result")); 3160 }else{ 3161 dest.eDest = SRT_Exists; 3162 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3163 VdbeComment((v, "Init EXISTS result")); 3164 } 3165 if( pSel->pLimit ){ 3166 /* The subquery already has a limit. If the pre-existing limit is X 3167 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3168 sqlite3 *db = pParse->db; 3169 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3170 if( pLimit ){ 3171 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3172 pLimit = sqlite3PExpr(pParse, TK_NE, 3173 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3174 } 3175 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3176 pSel->pLimit->pLeft = pLimit; 3177 }else{ 3178 /* If there is no pre-existing limit add a limit of 1 */ 3179 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3180 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3181 } 3182 pSel->iLimit = 0; 3183 if( sqlite3Select(pParse, pSel, &dest) ){ 3184 return 0; 3185 } 3186 pExpr->iTable = rReg = dest.iSDParm; 3187 ExprSetVVAProperty(pExpr, EP_NoReduce); 3188 if( addrOnce ){ 3189 sqlite3VdbeJumpHere(v, addrOnce); 3190 3191 /* Subroutine return */ 3192 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3193 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3194 sqlite3ClearTempRegCache(pParse); 3195 } 3196 3197 return rReg; 3198 } 3199 #endif /* SQLITE_OMIT_SUBQUERY */ 3200 3201 #ifndef SQLITE_OMIT_SUBQUERY 3202 /* 3203 ** Expr pIn is an IN(...) expression. This function checks that the 3204 ** sub-select on the RHS of the IN() operator has the same number of 3205 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3206 ** a sub-query, that the LHS is a vector of size 1. 3207 */ 3208 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3209 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3210 if( (pIn->flags & EP_xIsSelect) ){ 3211 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3212 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3213 return 1; 3214 } 3215 }else if( nVector!=1 ){ 3216 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3217 return 1; 3218 } 3219 return 0; 3220 } 3221 #endif 3222 3223 #ifndef SQLITE_OMIT_SUBQUERY 3224 /* 3225 ** Generate code for an IN expression. 3226 ** 3227 ** x IN (SELECT ...) 3228 ** x IN (value, value, ...) 3229 ** 3230 ** The left-hand side (LHS) is a scalar or vector expression. The 3231 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3232 ** subquery. If the RHS is a subquery, the number of result columns must 3233 ** match the number of columns in the vector on the LHS. If the RHS is 3234 ** a list of values, the LHS must be a scalar. 3235 ** 3236 ** The IN operator is true if the LHS value is contained within the RHS. 3237 ** The result is false if the LHS is definitely not in the RHS. The 3238 ** result is NULL if the presence of the LHS in the RHS cannot be 3239 ** determined due to NULLs. 3240 ** 3241 ** This routine generates code that jumps to destIfFalse if the LHS is not 3242 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3243 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3244 ** within the RHS then fall through. 3245 ** 3246 ** See the separate in-operator.md documentation file in the canonical 3247 ** SQLite source tree for additional information. 3248 */ 3249 static void sqlite3ExprCodeIN( 3250 Parse *pParse, /* Parsing and code generating context */ 3251 Expr *pExpr, /* The IN expression */ 3252 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3253 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3254 ){ 3255 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3256 int eType; /* Type of the RHS */ 3257 int rLhs; /* Register(s) holding the LHS values */ 3258 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3259 Vdbe *v; /* Statement under construction */ 3260 int *aiMap = 0; /* Map from vector field to index column */ 3261 char *zAff = 0; /* Affinity string for comparisons */ 3262 int nVector; /* Size of vectors for this IN operator */ 3263 int iDummy; /* Dummy parameter to exprCodeVector() */ 3264 Expr *pLeft; /* The LHS of the IN operator */ 3265 int i; /* loop counter */ 3266 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3267 int destStep6 = 0; /* Start of code for Step 6 */ 3268 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3269 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3270 int addrTop; /* Top of the step-6 loop */ 3271 int iTab = 0; /* Index to use */ 3272 u8 okConstFactor = pParse->okConstFactor; 3273 3274 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3275 pLeft = pExpr->pLeft; 3276 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3277 zAff = exprINAffinity(pParse, pExpr); 3278 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3279 aiMap = (int*)sqlite3DbMallocZero( 3280 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3281 ); 3282 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3283 3284 /* Attempt to compute the RHS. After this step, if anything other than 3285 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3286 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3287 ** the RHS has not yet been coded. */ 3288 v = pParse->pVdbe; 3289 assert( v!=0 ); /* OOM detected prior to this routine */ 3290 VdbeNoopComment((v, "begin IN expr")); 3291 eType = sqlite3FindInIndex(pParse, pExpr, 3292 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3293 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3294 aiMap, &iTab); 3295 3296 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3297 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3298 ); 3299 #ifdef SQLITE_DEBUG 3300 /* Confirm that aiMap[] contains nVector integer values between 0 and 3301 ** nVector-1. */ 3302 for(i=0; i<nVector; i++){ 3303 int j, cnt; 3304 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3305 assert( cnt==1 ); 3306 } 3307 #endif 3308 3309 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3310 ** vector, then it is stored in an array of nVector registers starting 3311 ** at r1. 3312 ** 3313 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3314 ** so that the fields are in the same order as an existing index. The 3315 ** aiMap[] array contains a mapping from the original LHS field order to 3316 ** the field order that matches the RHS index. 3317 ** 3318 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3319 ** even if it is constant, as OP_Affinity may be used on the register 3320 ** by code generated below. */ 3321 assert( pParse->okConstFactor==okConstFactor ); 3322 pParse->okConstFactor = 0; 3323 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3324 pParse->okConstFactor = okConstFactor; 3325 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3326 if( i==nVector ){ 3327 /* LHS fields are not reordered */ 3328 rLhs = rLhsOrig; 3329 }else{ 3330 /* Need to reorder the LHS fields according to aiMap */ 3331 rLhs = sqlite3GetTempRange(pParse, nVector); 3332 for(i=0; i<nVector; i++){ 3333 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3334 } 3335 } 3336 3337 /* If sqlite3FindInIndex() did not find or create an index that is 3338 ** suitable for evaluating the IN operator, then evaluate using a 3339 ** sequence of comparisons. 3340 ** 3341 ** This is step (1) in the in-operator.md optimized algorithm. 3342 */ 3343 if( eType==IN_INDEX_NOOP ){ 3344 ExprList *pList = pExpr->x.pList; 3345 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3346 int labelOk = sqlite3VdbeMakeLabel(pParse); 3347 int r2, regToFree; 3348 int regCkNull = 0; 3349 int ii; 3350 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3351 if( destIfNull!=destIfFalse ){ 3352 regCkNull = sqlite3GetTempReg(pParse); 3353 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3354 } 3355 for(ii=0; ii<pList->nExpr; ii++){ 3356 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3357 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3358 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3359 } 3360 sqlite3ReleaseTempReg(pParse, regToFree); 3361 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3362 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3363 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3364 (void*)pColl, P4_COLLSEQ); 3365 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3366 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3367 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3368 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3369 sqlite3VdbeChangeP5(v, zAff[0]); 3370 }else{ 3371 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3372 assert( destIfNull==destIfFalse ); 3373 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3374 (void*)pColl, P4_COLLSEQ); 3375 VdbeCoverageIf(v, op==OP_Ne); 3376 VdbeCoverageIf(v, op==OP_IsNull); 3377 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3378 } 3379 } 3380 if( regCkNull ){ 3381 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3382 sqlite3VdbeGoto(v, destIfFalse); 3383 } 3384 sqlite3VdbeResolveLabel(v, labelOk); 3385 sqlite3ReleaseTempReg(pParse, regCkNull); 3386 goto sqlite3ExprCodeIN_finished; 3387 } 3388 3389 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3390 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3391 ** We will then skip the binary search of the RHS. 3392 */ 3393 if( destIfNull==destIfFalse ){ 3394 destStep2 = destIfFalse; 3395 }else{ 3396 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3397 } 3398 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3399 for(i=0; i<nVector; i++){ 3400 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3401 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3402 if( sqlite3ExprCanBeNull(p) ){ 3403 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3404 VdbeCoverage(v); 3405 } 3406 } 3407 3408 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3409 ** of the RHS using the LHS as a probe. If found, the result is 3410 ** true. 3411 */ 3412 if( eType==IN_INDEX_ROWID ){ 3413 /* In this case, the RHS is the ROWID of table b-tree and so we also 3414 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3415 ** into a single opcode. */ 3416 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3417 VdbeCoverage(v); 3418 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3419 }else{ 3420 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3421 if( destIfFalse==destIfNull ){ 3422 /* Combine Step 3 and Step 5 into a single opcode */ 3423 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3424 rLhs, nVector); VdbeCoverage(v); 3425 goto sqlite3ExprCodeIN_finished; 3426 } 3427 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3428 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3429 rLhs, nVector); VdbeCoverage(v); 3430 } 3431 3432 /* Step 4. If the RHS is known to be non-NULL and we did not find 3433 ** an match on the search above, then the result must be FALSE. 3434 */ 3435 if( rRhsHasNull && nVector==1 ){ 3436 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3437 VdbeCoverage(v); 3438 } 3439 3440 /* Step 5. If we do not care about the difference between NULL and 3441 ** FALSE, then just return false. 3442 */ 3443 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3444 3445 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3446 ** If any comparison is NULL, then the result is NULL. If all 3447 ** comparisons are FALSE then the final result is FALSE. 3448 ** 3449 ** For a scalar LHS, it is sufficient to check just the first row 3450 ** of the RHS. 3451 */ 3452 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3453 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3454 VdbeCoverage(v); 3455 if( nVector>1 ){ 3456 destNotNull = sqlite3VdbeMakeLabel(pParse); 3457 }else{ 3458 /* For nVector==1, combine steps 6 and 7 by immediately returning 3459 ** FALSE if the first comparison is not NULL */ 3460 destNotNull = destIfFalse; 3461 } 3462 for(i=0; i<nVector; i++){ 3463 Expr *p; 3464 CollSeq *pColl; 3465 int r3 = sqlite3GetTempReg(pParse); 3466 p = sqlite3VectorFieldSubexpr(pLeft, i); 3467 pColl = sqlite3ExprCollSeq(pParse, p); 3468 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3469 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3470 (void*)pColl, P4_COLLSEQ); 3471 VdbeCoverage(v); 3472 sqlite3ReleaseTempReg(pParse, r3); 3473 } 3474 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3475 if( nVector>1 ){ 3476 sqlite3VdbeResolveLabel(v, destNotNull); 3477 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3478 VdbeCoverage(v); 3479 3480 /* Step 7: If we reach this point, we know that the result must 3481 ** be false. */ 3482 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3483 } 3484 3485 /* Jumps here in order to return true. */ 3486 sqlite3VdbeJumpHere(v, addrTruthOp); 3487 3488 sqlite3ExprCodeIN_finished: 3489 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3490 VdbeComment((v, "end IN expr")); 3491 sqlite3ExprCodeIN_oom_error: 3492 sqlite3DbFree(pParse->db, aiMap); 3493 sqlite3DbFree(pParse->db, zAff); 3494 } 3495 #endif /* SQLITE_OMIT_SUBQUERY */ 3496 3497 #ifndef SQLITE_OMIT_FLOATING_POINT 3498 /* 3499 ** Generate an instruction that will put the floating point 3500 ** value described by z[0..n-1] into register iMem. 3501 ** 3502 ** The z[] string will probably not be zero-terminated. But the 3503 ** z[n] character is guaranteed to be something that does not look 3504 ** like the continuation of the number. 3505 */ 3506 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3507 if( ALWAYS(z!=0) ){ 3508 double value; 3509 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3510 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3511 if( negateFlag ) value = -value; 3512 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3513 } 3514 } 3515 #endif 3516 3517 3518 /* 3519 ** Generate an instruction that will put the integer describe by 3520 ** text z[0..n-1] into register iMem. 3521 ** 3522 ** Expr.u.zToken is always UTF8 and zero-terminated. 3523 */ 3524 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3525 Vdbe *v = pParse->pVdbe; 3526 if( pExpr->flags & EP_IntValue ){ 3527 int i = pExpr->u.iValue; 3528 assert( i>=0 ); 3529 if( negFlag ) i = -i; 3530 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3531 }else{ 3532 int c; 3533 i64 value; 3534 const char *z = pExpr->u.zToken; 3535 assert( z!=0 ); 3536 c = sqlite3DecOrHexToI64(z, &value); 3537 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3538 #ifdef SQLITE_OMIT_FLOATING_POINT 3539 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3540 #else 3541 #ifndef SQLITE_OMIT_HEX_INTEGER 3542 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3543 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3544 }else 3545 #endif 3546 { 3547 codeReal(v, z, negFlag, iMem); 3548 } 3549 #endif 3550 }else{ 3551 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3552 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3553 } 3554 } 3555 } 3556 3557 3558 /* Generate code that will load into register regOut a value that is 3559 ** appropriate for the iIdxCol-th column of index pIdx. 3560 */ 3561 void sqlite3ExprCodeLoadIndexColumn( 3562 Parse *pParse, /* The parsing context */ 3563 Index *pIdx, /* The index whose column is to be loaded */ 3564 int iTabCur, /* Cursor pointing to a table row */ 3565 int iIdxCol, /* The column of the index to be loaded */ 3566 int regOut /* Store the index column value in this register */ 3567 ){ 3568 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3569 if( iTabCol==XN_EXPR ){ 3570 assert( pIdx->aColExpr ); 3571 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3572 pParse->iSelfTab = iTabCur + 1; 3573 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3574 pParse->iSelfTab = 0; 3575 }else{ 3576 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3577 iTabCol, regOut); 3578 } 3579 } 3580 3581 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3582 /* 3583 ** Generate code that will compute the value of generated column pCol 3584 ** and store the result in register regOut 3585 */ 3586 void sqlite3ExprCodeGeneratedColumn( 3587 Parse *pParse, 3588 Column *pCol, 3589 int regOut 3590 ){ 3591 int iAddr; 3592 Vdbe *v = pParse->pVdbe; 3593 assert( v!=0 ); 3594 assert( pParse->iSelfTab!=0 ); 3595 if( pParse->iSelfTab>0 ){ 3596 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3597 }else{ 3598 iAddr = 0; 3599 } 3600 sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut); 3601 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3602 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3603 } 3604 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3605 } 3606 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3607 3608 /* 3609 ** Generate code to extract the value of the iCol-th column of a table. 3610 */ 3611 void sqlite3ExprCodeGetColumnOfTable( 3612 Vdbe *v, /* Parsing context */ 3613 Table *pTab, /* The table containing the value */ 3614 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3615 int iCol, /* Index of the column to extract */ 3616 int regOut /* Extract the value into this register */ 3617 ){ 3618 Column *pCol; 3619 assert( v!=0 ); 3620 if( pTab==0 ){ 3621 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3622 return; 3623 } 3624 if( iCol<0 || iCol==pTab->iPKey ){ 3625 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3626 }else{ 3627 int op; 3628 int x; 3629 if( IsVirtual(pTab) ){ 3630 op = OP_VColumn; 3631 x = iCol; 3632 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3633 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3634 Parse *pParse = sqlite3VdbeParser(v); 3635 if( pCol->colFlags & COLFLAG_BUSY ){ 3636 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName); 3637 }else{ 3638 int savedSelfTab = pParse->iSelfTab; 3639 pCol->colFlags |= COLFLAG_BUSY; 3640 pParse->iSelfTab = iTabCur+1; 3641 sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut); 3642 pParse->iSelfTab = savedSelfTab; 3643 pCol->colFlags &= ~COLFLAG_BUSY; 3644 } 3645 return; 3646 #endif 3647 }else if( !HasRowid(pTab) ){ 3648 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3649 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3650 op = OP_Column; 3651 }else{ 3652 x = sqlite3TableColumnToStorage(pTab,iCol); 3653 testcase( x!=iCol ); 3654 op = OP_Column; 3655 } 3656 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3657 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3658 } 3659 } 3660 3661 /* 3662 ** Generate code that will extract the iColumn-th column from 3663 ** table pTab and store the column value in register iReg. 3664 ** 3665 ** There must be an open cursor to pTab in iTable when this routine 3666 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3667 */ 3668 int sqlite3ExprCodeGetColumn( 3669 Parse *pParse, /* Parsing and code generating context */ 3670 Table *pTab, /* Description of the table we are reading from */ 3671 int iColumn, /* Index of the table column */ 3672 int iTable, /* The cursor pointing to the table */ 3673 int iReg, /* Store results here */ 3674 u8 p5 /* P5 value for OP_Column + FLAGS */ 3675 ){ 3676 assert( pParse->pVdbe!=0 ); 3677 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3678 if( p5 ){ 3679 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3680 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3681 } 3682 return iReg; 3683 } 3684 3685 /* 3686 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3687 ** over to iTo..iTo+nReg-1. 3688 */ 3689 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3690 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3691 } 3692 3693 /* 3694 ** Convert a scalar expression node to a TK_REGISTER referencing 3695 ** register iReg. The caller must ensure that iReg already contains 3696 ** the correct value for the expression. 3697 */ 3698 static void exprToRegister(Expr *pExpr, int iReg){ 3699 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3700 if( NEVER(p==0) ) return; 3701 p->op2 = p->op; 3702 p->op = TK_REGISTER; 3703 p->iTable = iReg; 3704 ExprClearProperty(p, EP_Skip); 3705 } 3706 3707 /* 3708 ** Evaluate an expression (either a vector or a scalar expression) and store 3709 ** the result in continguous temporary registers. Return the index of 3710 ** the first register used to store the result. 3711 ** 3712 ** If the returned result register is a temporary scalar, then also write 3713 ** that register number into *piFreeable. If the returned result register 3714 ** is not a temporary or if the expression is a vector set *piFreeable 3715 ** to 0. 3716 */ 3717 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3718 int iResult; 3719 int nResult = sqlite3ExprVectorSize(p); 3720 if( nResult==1 ){ 3721 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3722 }else{ 3723 *piFreeable = 0; 3724 if( p->op==TK_SELECT ){ 3725 #if SQLITE_OMIT_SUBQUERY 3726 iResult = 0; 3727 #else 3728 iResult = sqlite3CodeSubselect(pParse, p); 3729 #endif 3730 }else{ 3731 int i; 3732 iResult = pParse->nMem+1; 3733 pParse->nMem += nResult; 3734 for(i=0; i<nResult; i++){ 3735 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3736 } 3737 } 3738 } 3739 return iResult; 3740 } 3741 3742 /* 3743 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3744 ** so that a subsequent copy will not be merged into this one. 3745 */ 3746 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3747 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3748 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3749 } 3750 } 3751 3752 /* 3753 ** Generate code to implement special SQL functions that are implemented 3754 ** in-line rather than by using the usual callbacks. 3755 */ 3756 static int exprCodeInlineFunction( 3757 Parse *pParse, /* Parsing context */ 3758 ExprList *pFarg, /* List of function arguments */ 3759 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3760 int target /* Store function result in this register */ 3761 ){ 3762 int nFarg; 3763 Vdbe *v = pParse->pVdbe; 3764 assert( v!=0 ); 3765 assert( pFarg!=0 ); 3766 nFarg = pFarg->nExpr; 3767 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3768 switch( iFuncId ){ 3769 case INLINEFUNC_coalesce: { 3770 /* Attempt a direct implementation of the built-in COALESCE() and 3771 ** IFNULL() functions. This avoids unnecessary evaluation of 3772 ** arguments past the first non-NULL argument. 3773 */ 3774 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3775 int i; 3776 assert( nFarg>=2 ); 3777 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3778 for(i=1; i<nFarg; i++){ 3779 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3780 VdbeCoverage(v); 3781 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3782 } 3783 setDoNotMergeFlagOnCopy(v); 3784 sqlite3VdbeResolveLabel(v, endCoalesce); 3785 break; 3786 } 3787 case INLINEFUNC_iif: { 3788 Expr caseExpr; 3789 memset(&caseExpr, 0, sizeof(caseExpr)); 3790 caseExpr.op = TK_CASE; 3791 caseExpr.x.pList = pFarg; 3792 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3793 } 3794 3795 default: { 3796 /* The UNLIKELY() function is a no-op. The result is the value 3797 ** of the first argument. 3798 */ 3799 assert( nFarg==1 || nFarg==2 ); 3800 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3801 break; 3802 } 3803 3804 /*********************************************************************** 3805 ** Test-only SQL functions that are only usable if enabled 3806 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3807 */ 3808 case INLINEFUNC_expr_compare: { 3809 /* Compare two expressions using sqlite3ExprCompare() */ 3810 assert( nFarg==2 ); 3811 sqlite3VdbeAddOp2(v, OP_Integer, 3812 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3813 target); 3814 break; 3815 } 3816 3817 case INLINEFUNC_expr_implies_expr: { 3818 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3819 assert( nFarg==2 ); 3820 sqlite3VdbeAddOp2(v, OP_Integer, 3821 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3822 target); 3823 break; 3824 } 3825 3826 case INLINEFUNC_implies_nonnull_row: { 3827 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3828 Expr *pA1; 3829 assert( nFarg==2 ); 3830 pA1 = pFarg->a[1].pExpr; 3831 if( pA1->op==TK_COLUMN ){ 3832 sqlite3VdbeAddOp2(v, OP_Integer, 3833 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3834 target); 3835 }else{ 3836 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3837 } 3838 break; 3839 } 3840 3841 #ifdef SQLITE_DEBUG 3842 case INLINEFUNC_affinity: { 3843 /* The AFFINITY() function evaluates to a string that describes 3844 ** the type affinity of the argument. This is used for testing of 3845 ** the SQLite type logic. 3846 */ 3847 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3848 char aff; 3849 assert( nFarg==1 ); 3850 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3851 sqlite3VdbeLoadString(v, target, 3852 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3853 break; 3854 } 3855 #endif 3856 } 3857 return target; 3858 } 3859 3860 3861 /* 3862 ** Generate code into the current Vdbe to evaluate the given 3863 ** expression. Attempt to store the results in register "target". 3864 ** Return the register where results are stored. 3865 ** 3866 ** With this routine, there is no guarantee that results will 3867 ** be stored in target. The result might be stored in some other 3868 ** register if it is convenient to do so. The calling function 3869 ** must check the return code and move the results to the desired 3870 ** register. 3871 */ 3872 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3873 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3874 int op; /* The opcode being coded */ 3875 int inReg = target; /* Results stored in register inReg */ 3876 int regFree1 = 0; /* If non-zero free this temporary register */ 3877 int regFree2 = 0; /* If non-zero free this temporary register */ 3878 int r1, r2; /* Various register numbers */ 3879 Expr tempX; /* Temporary expression node */ 3880 int p5 = 0; 3881 3882 assert( target>0 && target<=pParse->nMem ); 3883 assert( v!=0 ); 3884 3885 expr_code_doover: 3886 if( pExpr==0 ){ 3887 op = TK_NULL; 3888 }else{ 3889 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3890 op = pExpr->op; 3891 } 3892 switch( op ){ 3893 case TK_AGG_COLUMN: { 3894 AggInfo *pAggInfo = pExpr->pAggInfo; 3895 struct AggInfo_col *pCol; 3896 assert( pAggInfo!=0 ); 3897 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 3898 pCol = &pAggInfo->aCol[pExpr->iAgg]; 3899 if( !pAggInfo->directMode ){ 3900 assert( pCol->iMem>0 ); 3901 return pCol->iMem; 3902 }else if( pAggInfo->useSortingIdx ){ 3903 Table *pTab = pCol->pTab; 3904 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3905 pCol->iSorterColumn, target); 3906 if( pCol->iColumn<0 ){ 3907 VdbeComment((v,"%s.rowid",pTab->zName)); 3908 }else{ 3909 VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName)); 3910 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 3911 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3912 } 3913 } 3914 return target; 3915 } 3916 /* Otherwise, fall thru into the TK_COLUMN case */ 3917 /* no break */ deliberate_fall_through 3918 } 3919 case TK_COLUMN: { 3920 int iTab = pExpr->iTable; 3921 int iReg; 3922 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3923 /* This COLUMN expression is really a constant due to WHERE clause 3924 ** constraints, and that constant is coded by the pExpr->pLeft 3925 ** expresssion. However, make sure the constant has the correct 3926 ** datatype by applying the Affinity of the table column to the 3927 ** constant. 3928 */ 3929 int aff; 3930 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3931 if( pExpr->y.pTab ){ 3932 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3933 }else{ 3934 aff = pExpr->affExpr; 3935 } 3936 if( aff>SQLITE_AFF_BLOB ){ 3937 static const char zAff[] = "B\000C\000D\000E"; 3938 assert( SQLITE_AFF_BLOB=='A' ); 3939 assert( SQLITE_AFF_TEXT=='B' ); 3940 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3941 &zAff[(aff-'B')*2], P4_STATIC); 3942 } 3943 return iReg; 3944 } 3945 if( iTab<0 ){ 3946 if( pParse->iSelfTab<0 ){ 3947 /* Other columns in the same row for CHECK constraints or 3948 ** generated columns or for inserting into partial index. 3949 ** The row is unpacked into registers beginning at 3950 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 3951 ** immediately prior to the first column. 3952 */ 3953 Column *pCol; 3954 Table *pTab = pExpr->y.pTab; 3955 int iSrc; 3956 int iCol = pExpr->iColumn; 3957 assert( pTab!=0 ); 3958 assert( iCol>=XN_ROWID ); 3959 assert( iCol<pTab->nCol ); 3960 if( iCol<0 ){ 3961 return -1-pParse->iSelfTab; 3962 } 3963 pCol = pTab->aCol + iCol; 3964 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 3965 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 3966 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3967 if( pCol->colFlags & COLFLAG_GENERATED ){ 3968 if( pCol->colFlags & COLFLAG_BUSY ){ 3969 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3970 pCol->zName); 3971 return 0; 3972 } 3973 pCol->colFlags |= COLFLAG_BUSY; 3974 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 3975 sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc); 3976 } 3977 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 3978 return iSrc; 3979 }else 3980 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3981 if( pCol->affinity==SQLITE_AFF_REAL ){ 3982 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 3983 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3984 return target; 3985 }else{ 3986 return iSrc; 3987 } 3988 }else{ 3989 /* Coding an expression that is part of an index where column names 3990 ** in the index refer to the table to which the index belongs */ 3991 iTab = pParse->iSelfTab - 1; 3992 } 3993 } 3994 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3995 pExpr->iColumn, iTab, target, 3996 pExpr->op2); 3997 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 3998 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 3999 } 4000 return iReg; 4001 } 4002 case TK_INTEGER: { 4003 codeInteger(pParse, pExpr, 0, target); 4004 return target; 4005 } 4006 case TK_TRUEFALSE: { 4007 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 4008 return target; 4009 } 4010 #ifndef SQLITE_OMIT_FLOATING_POINT 4011 case TK_FLOAT: { 4012 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4013 codeReal(v, pExpr->u.zToken, 0, target); 4014 return target; 4015 } 4016 #endif 4017 case TK_STRING: { 4018 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4019 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 4020 return target; 4021 } 4022 default: { 4023 /* Make NULL the default case so that if a bug causes an illegal 4024 ** Expr node to be passed into this function, it will be handled 4025 ** sanely and not crash. But keep the assert() to bring the problem 4026 ** to the attention of the developers. */ 4027 assert( op==TK_NULL || pParse->db->mallocFailed ); 4028 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4029 return target; 4030 } 4031 #ifndef SQLITE_OMIT_BLOB_LITERAL 4032 case TK_BLOB: { 4033 int n; 4034 const char *z; 4035 char *zBlob; 4036 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4037 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 4038 assert( pExpr->u.zToken[1]=='\'' ); 4039 z = &pExpr->u.zToken[2]; 4040 n = sqlite3Strlen30(z) - 1; 4041 assert( z[n]=='\'' ); 4042 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 4043 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 4044 return target; 4045 } 4046 #endif 4047 case TK_VARIABLE: { 4048 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4049 assert( pExpr->u.zToken!=0 ); 4050 assert( pExpr->u.zToken[0]!=0 ); 4051 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 4052 if( pExpr->u.zToken[1]!=0 ){ 4053 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 4054 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 4055 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 4056 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 4057 } 4058 return target; 4059 } 4060 case TK_REGISTER: { 4061 return pExpr->iTable; 4062 } 4063 #ifndef SQLITE_OMIT_CAST 4064 case TK_CAST: { 4065 /* Expressions of the form: CAST(pLeft AS token) */ 4066 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4067 if( inReg!=target ){ 4068 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4069 inReg = target; 4070 } 4071 sqlite3VdbeAddOp2(v, OP_Cast, target, 4072 sqlite3AffinityType(pExpr->u.zToken, 0)); 4073 return inReg; 4074 } 4075 #endif /* SQLITE_OMIT_CAST */ 4076 case TK_IS: 4077 case TK_ISNOT: 4078 op = (op==TK_IS) ? TK_EQ : TK_NE; 4079 p5 = SQLITE_NULLEQ; 4080 /* fall-through */ 4081 case TK_LT: 4082 case TK_LE: 4083 case TK_GT: 4084 case TK_GE: 4085 case TK_NE: 4086 case TK_EQ: { 4087 Expr *pLeft = pExpr->pLeft; 4088 if( sqlite3ExprIsVector(pLeft) ){ 4089 codeVectorCompare(pParse, pExpr, target, op, p5); 4090 }else{ 4091 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4092 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4093 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 4094 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 4095 sqlite3VdbeCurrentAddr(v)+2, p5, 4096 ExprHasProperty(pExpr,EP_Commuted)); 4097 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4098 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4099 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4100 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4101 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4102 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4103 if( p5==SQLITE_NULLEQ ){ 4104 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 4105 }else{ 4106 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 4107 } 4108 testcase( regFree1==0 ); 4109 testcase( regFree2==0 ); 4110 } 4111 break; 4112 } 4113 case TK_AND: 4114 case TK_OR: 4115 case TK_PLUS: 4116 case TK_STAR: 4117 case TK_MINUS: 4118 case TK_REM: 4119 case TK_BITAND: 4120 case TK_BITOR: 4121 case TK_SLASH: 4122 case TK_LSHIFT: 4123 case TK_RSHIFT: 4124 case TK_CONCAT: { 4125 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4126 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4127 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4128 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4129 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4130 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4131 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4132 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4133 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4134 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4135 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4136 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4137 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4138 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4139 testcase( regFree1==0 ); 4140 testcase( regFree2==0 ); 4141 break; 4142 } 4143 case TK_UMINUS: { 4144 Expr *pLeft = pExpr->pLeft; 4145 assert( pLeft ); 4146 if( pLeft->op==TK_INTEGER ){ 4147 codeInteger(pParse, pLeft, 1, target); 4148 return target; 4149 #ifndef SQLITE_OMIT_FLOATING_POINT 4150 }else if( pLeft->op==TK_FLOAT ){ 4151 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4152 codeReal(v, pLeft->u.zToken, 1, target); 4153 return target; 4154 #endif 4155 }else{ 4156 tempX.op = TK_INTEGER; 4157 tempX.flags = EP_IntValue|EP_TokenOnly; 4158 tempX.u.iValue = 0; 4159 ExprClearVVAProperties(&tempX); 4160 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4161 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4162 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4163 testcase( regFree2==0 ); 4164 } 4165 break; 4166 } 4167 case TK_BITNOT: 4168 case TK_NOT: { 4169 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4170 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4171 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4172 testcase( regFree1==0 ); 4173 sqlite3VdbeAddOp2(v, op, r1, inReg); 4174 break; 4175 } 4176 case TK_TRUTH: { 4177 int isTrue; /* IS TRUE or IS NOT TRUE */ 4178 int bNormal; /* IS TRUE or IS FALSE */ 4179 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4180 testcase( regFree1==0 ); 4181 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4182 bNormal = pExpr->op2==TK_IS; 4183 testcase( isTrue && bNormal); 4184 testcase( !isTrue && bNormal); 4185 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4186 break; 4187 } 4188 case TK_ISNULL: 4189 case TK_NOTNULL: { 4190 int addr; 4191 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4192 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4193 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4194 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4195 testcase( regFree1==0 ); 4196 addr = sqlite3VdbeAddOp1(v, op, r1); 4197 VdbeCoverageIf(v, op==TK_ISNULL); 4198 VdbeCoverageIf(v, op==TK_NOTNULL); 4199 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4200 sqlite3VdbeJumpHere(v, addr); 4201 break; 4202 } 4203 case TK_AGG_FUNCTION: { 4204 AggInfo *pInfo = pExpr->pAggInfo; 4205 if( pInfo==0 4206 || NEVER(pExpr->iAgg<0) 4207 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4208 ){ 4209 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4210 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 4211 }else{ 4212 return pInfo->aFunc[pExpr->iAgg].iMem; 4213 } 4214 break; 4215 } 4216 case TK_FUNCTION: { 4217 ExprList *pFarg; /* List of function arguments */ 4218 int nFarg; /* Number of function arguments */ 4219 FuncDef *pDef; /* The function definition object */ 4220 const char *zId; /* The function name */ 4221 u32 constMask = 0; /* Mask of function arguments that are constant */ 4222 int i; /* Loop counter */ 4223 sqlite3 *db = pParse->db; /* The database connection */ 4224 u8 enc = ENC(db); /* The text encoding used by this database */ 4225 CollSeq *pColl = 0; /* A collating sequence */ 4226 4227 #ifndef SQLITE_OMIT_WINDOWFUNC 4228 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4229 return pExpr->y.pWin->regResult; 4230 } 4231 #endif 4232 4233 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4234 /* SQL functions can be expensive. So try to avoid running them 4235 ** multiple times if we know they always give the same result */ 4236 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4237 } 4238 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4239 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4240 pFarg = pExpr->x.pList; 4241 nFarg = pFarg ? pFarg->nExpr : 0; 4242 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4243 zId = pExpr->u.zToken; 4244 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4245 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4246 if( pDef==0 && pParse->explain ){ 4247 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4248 } 4249 #endif 4250 if( pDef==0 || pDef->xFinalize!=0 ){ 4251 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 4252 break; 4253 } 4254 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4255 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4256 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4257 return exprCodeInlineFunction(pParse, pFarg, 4258 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4259 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4260 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4261 } 4262 4263 for(i=0; i<nFarg; i++){ 4264 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4265 testcase( i==31 ); 4266 constMask |= MASKBIT32(i); 4267 } 4268 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4269 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4270 } 4271 } 4272 if( pFarg ){ 4273 if( constMask ){ 4274 r1 = pParse->nMem+1; 4275 pParse->nMem += nFarg; 4276 }else{ 4277 r1 = sqlite3GetTempRange(pParse, nFarg); 4278 } 4279 4280 /* For length() and typeof() functions with a column argument, 4281 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4282 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4283 ** loading. 4284 */ 4285 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4286 u8 exprOp; 4287 assert( nFarg==1 ); 4288 assert( pFarg->a[0].pExpr!=0 ); 4289 exprOp = pFarg->a[0].pExpr->op; 4290 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4291 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4292 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4293 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4294 pFarg->a[0].pExpr->op2 = 4295 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4296 } 4297 } 4298 4299 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4300 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4301 }else{ 4302 r1 = 0; 4303 } 4304 #ifndef SQLITE_OMIT_VIRTUALTABLE 4305 /* Possibly overload the function if the first argument is 4306 ** a virtual table column. 4307 ** 4308 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4309 ** second argument, not the first, as the argument to test to 4310 ** see if it is a column in a virtual table. This is done because 4311 ** the left operand of infix functions (the operand we want to 4312 ** control overloading) ends up as the second argument to the 4313 ** function. The expression "A glob B" is equivalent to 4314 ** "glob(B,A). We want to use the A in "A glob B" to test 4315 ** for function overloading. But we use the B term in "glob(B,A)". 4316 */ 4317 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4318 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4319 }else if( nFarg>0 ){ 4320 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4321 } 4322 #endif 4323 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4324 if( !pColl ) pColl = db->pDfltColl; 4325 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4326 } 4327 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4328 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4329 Expr *pArg = pFarg->a[0].pExpr; 4330 if( pArg->op==TK_COLUMN ){ 4331 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4332 }else{ 4333 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4334 } 4335 }else 4336 #endif 4337 { 4338 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4339 pDef, pExpr->op2); 4340 } 4341 if( nFarg ){ 4342 if( constMask==0 ){ 4343 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4344 }else{ 4345 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4346 } 4347 } 4348 return target; 4349 } 4350 #ifndef SQLITE_OMIT_SUBQUERY 4351 case TK_EXISTS: 4352 case TK_SELECT: { 4353 int nCol; 4354 testcase( op==TK_EXISTS ); 4355 testcase( op==TK_SELECT ); 4356 if( pParse->db->mallocFailed ){ 4357 return 0; 4358 }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4359 sqlite3SubselectError(pParse, nCol, 1); 4360 }else{ 4361 return sqlite3CodeSubselect(pParse, pExpr); 4362 } 4363 break; 4364 } 4365 case TK_SELECT_COLUMN: { 4366 int n; 4367 if( pExpr->pLeft->iTable==0 ){ 4368 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4369 } 4370 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 4371 if( pExpr->iTable!=0 4372 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 4373 ){ 4374 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4375 pExpr->iTable, n); 4376 } 4377 return pExpr->pLeft->iTable + pExpr->iColumn; 4378 } 4379 case TK_IN: { 4380 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4381 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4382 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4383 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4384 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4385 sqlite3VdbeResolveLabel(v, destIfFalse); 4386 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4387 sqlite3VdbeResolveLabel(v, destIfNull); 4388 return target; 4389 } 4390 #endif /* SQLITE_OMIT_SUBQUERY */ 4391 4392 4393 /* 4394 ** x BETWEEN y AND z 4395 ** 4396 ** This is equivalent to 4397 ** 4398 ** x>=y AND x<=z 4399 ** 4400 ** X is stored in pExpr->pLeft. 4401 ** Y is stored in pExpr->pList->a[0].pExpr. 4402 ** Z is stored in pExpr->pList->a[1].pExpr. 4403 */ 4404 case TK_BETWEEN: { 4405 exprCodeBetween(pParse, pExpr, target, 0, 0); 4406 return target; 4407 } 4408 case TK_SPAN: 4409 case TK_COLLATE: 4410 case TK_UPLUS: { 4411 pExpr = pExpr->pLeft; 4412 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4413 } 4414 4415 case TK_TRIGGER: { 4416 /* If the opcode is TK_TRIGGER, then the expression is a reference 4417 ** to a column in the new.* or old.* pseudo-tables available to 4418 ** trigger programs. In this case Expr.iTable is set to 1 for the 4419 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4420 ** is set to the column of the pseudo-table to read, or to -1 to 4421 ** read the rowid field. 4422 ** 4423 ** The expression is implemented using an OP_Param opcode. The p1 4424 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4425 ** to reference another column of the old.* pseudo-table, where 4426 ** i is the index of the column. For a new.rowid reference, p1 is 4427 ** set to (n+1), where n is the number of columns in each pseudo-table. 4428 ** For a reference to any other column in the new.* pseudo-table, p1 4429 ** is set to (n+2+i), where n and i are as defined previously. For 4430 ** example, if the table on which triggers are being fired is 4431 ** declared as: 4432 ** 4433 ** CREATE TABLE t1(a, b); 4434 ** 4435 ** Then p1 is interpreted as follows: 4436 ** 4437 ** p1==0 -> old.rowid p1==3 -> new.rowid 4438 ** p1==1 -> old.a p1==4 -> new.a 4439 ** p1==2 -> old.b p1==5 -> new.b 4440 */ 4441 Table *pTab = pExpr->y.pTab; 4442 int iCol = pExpr->iColumn; 4443 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4444 + sqlite3TableColumnToStorage(pTab, iCol); 4445 4446 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4447 assert( iCol>=-1 && iCol<pTab->nCol ); 4448 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4449 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4450 4451 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4452 VdbeComment((v, "r[%d]=%s.%s", target, 4453 (pExpr->iTable ? "new" : "old"), 4454 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName) 4455 )); 4456 4457 #ifndef SQLITE_OMIT_FLOATING_POINT 4458 /* If the column has REAL affinity, it may currently be stored as an 4459 ** integer. Use OP_RealAffinity to make sure it is really real. 4460 ** 4461 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4462 ** floating point when extracting it from the record. */ 4463 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4464 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4465 } 4466 #endif 4467 break; 4468 } 4469 4470 case TK_VECTOR: { 4471 sqlite3ErrorMsg(pParse, "row value misused"); 4472 break; 4473 } 4474 4475 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4476 ** that derive from the right-hand table of a LEFT JOIN. The 4477 ** Expr.iTable value is the table number for the right-hand table. 4478 ** The expression is only evaluated if that table is not currently 4479 ** on a LEFT JOIN NULL row. 4480 */ 4481 case TK_IF_NULL_ROW: { 4482 int addrINR; 4483 u8 okConstFactor = pParse->okConstFactor; 4484 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4485 /* Temporarily disable factoring of constant expressions, since 4486 ** even though expressions may appear to be constant, they are not 4487 ** really constant because they originate from the right-hand side 4488 ** of a LEFT JOIN. */ 4489 pParse->okConstFactor = 0; 4490 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4491 pParse->okConstFactor = okConstFactor; 4492 sqlite3VdbeJumpHere(v, addrINR); 4493 sqlite3VdbeChangeP3(v, addrINR, inReg); 4494 break; 4495 } 4496 4497 /* 4498 ** Form A: 4499 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4500 ** 4501 ** Form B: 4502 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4503 ** 4504 ** Form A is can be transformed into the equivalent form B as follows: 4505 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4506 ** WHEN x=eN THEN rN ELSE y END 4507 ** 4508 ** X (if it exists) is in pExpr->pLeft. 4509 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4510 ** odd. The Y is also optional. If the number of elements in x.pList 4511 ** is even, then Y is omitted and the "otherwise" result is NULL. 4512 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4513 ** 4514 ** The result of the expression is the Ri for the first matching Ei, 4515 ** or if there is no matching Ei, the ELSE term Y, or if there is 4516 ** no ELSE term, NULL. 4517 */ 4518 case TK_CASE: { 4519 int endLabel; /* GOTO label for end of CASE stmt */ 4520 int nextCase; /* GOTO label for next WHEN clause */ 4521 int nExpr; /* 2x number of WHEN terms */ 4522 int i; /* Loop counter */ 4523 ExprList *pEList; /* List of WHEN terms */ 4524 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4525 Expr opCompare; /* The X==Ei expression */ 4526 Expr *pX; /* The X expression */ 4527 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4528 Expr *pDel = 0; 4529 sqlite3 *db = pParse->db; 4530 4531 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4532 assert(pExpr->x.pList->nExpr > 0); 4533 pEList = pExpr->x.pList; 4534 aListelem = pEList->a; 4535 nExpr = pEList->nExpr; 4536 endLabel = sqlite3VdbeMakeLabel(pParse); 4537 if( (pX = pExpr->pLeft)!=0 ){ 4538 pDel = sqlite3ExprDup(db, pX, 0); 4539 if( db->mallocFailed ){ 4540 sqlite3ExprDelete(db, pDel); 4541 break; 4542 } 4543 testcase( pX->op==TK_COLUMN ); 4544 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4545 testcase( regFree1==0 ); 4546 memset(&opCompare, 0, sizeof(opCompare)); 4547 opCompare.op = TK_EQ; 4548 opCompare.pLeft = pDel; 4549 pTest = &opCompare; 4550 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4551 ** The value in regFree1 might get SCopy-ed into the file result. 4552 ** So make sure that the regFree1 register is not reused for other 4553 ** purposes and possibly overwritten. */ 4554 regFree1 = 0; 4555 } 4556 for(i=0; i<nExpr-1; i=i+2){ 4557 if( pX ){ 4558 assert( pTest!=0 ); 4559 opCompare.pRight = aListelem[i].pExpr; 4560 }else{ 4561 pTest = aListelem[i].pExpr; 4562 } 4563 nextCase = sqlite3VdbeMakeLabel(pParse); 4564 testcase( pTest->op==TK_COLUMN ); 4565 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4566 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4567 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4568 sqlite3VdbeGoto(v, endLabel); 4569 sqlite3VdbeResolveLabel(v, nextCase); 4570 } 4571 if( (nExpr&1)!=0 ){ 4572 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4573 }else{ 4574 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4575 } 4576 sqlite3ExprDelete(db, pDel); 4577 setDoNotMergeFlagOnCopy(v); 4578 sqlite3VdbeResolveLabel(v, endLabel); 4579 break; 4580 } 4581 #ifndef SQLITE_OMIT_TRIGGER 4582 case TK_RAISE: { 4583 assert( pExpr->affExpr==OE_Rollback 4584 || pExpr->affExpr==OE_Abort 4585 || pExpr->affExpr==OE_Fail 4586 || pExpr->affExpr==OE_Ignore 4587 ); 4588 if( !pParse->pTriggerTab && !pParse->nested ){ 4589 sqlite3ErrorMsg(pParse, 4590 "RAISE() may only be used within a trigger-program"); 4591 return 0; 4592 } 4593 if( pExpr->affExpr==OE_Abort ){ 4594 sqlite3MayAbort(pParse); 4595 } 4596 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4597 if( pExpr->affExpr==OE_Ignore ){ 4598 sqlite3VdbeAddOp4( 4599 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4600 VdbeCoverage(v); 4601 }else{ 4602 sqlite3HaltConstraint(pParse, 4603 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4604 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4605 } 4606 4607 break; 4608 } 4609 #endif 4610 } 4611 sqlite3ReleaseTempReg(pParse, regFree1); 4612 sqlite3ReleaseTempReg(pParse, regFree2); 4613 return inReg; 4614 } 4615 4616 /* 4617 ** Generate code that will evaluate expression pExpr just one time 4618 ** per prepared statement execution. 4619 ** 4620 ** If the expression uses functions (that might throw an exception) then 4621 ** guard them with an OP_Once opcode to ensure that the code is only executed 4622 ** once. If no functions are involved, then factor the code out and put it at 4623 ** the end of the prepared statement in the initialization section. 4624 ** 4625 ** If regDest>=0 then the result is always stored in that register and the 4626 ** result is not reusable. If regDest<0 then this routine is free to 4627 ** store the value whereever it wants. The register where the expression 4628 ** is stored is returned. When regDest<0, two identical expressions might 4629 ** code to the same register, if they do not contain function calls and hence 4630 ** are factored out into the initialization section at the end of the 4631 ** prepared statement. 4632 */ 4633 int sqlite3ExprCodeRunJustOnce( 4634 Parse *pParse, /* Parsing context */ 4635 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4636 int regDest /* Store the value in this register */ 4637 ){ 4638 ExprList *p; 4639 assert( ConstFactorOk(pParse) ); 4640 p = pParse->pConstExpr; 4641 if( regDest<0 && p ){ 4642 struct ExprList_item *pItem; 4643 int i; 4644 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4645 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4646 return pItem->u.iConstExprReg; 4647 } 4648 } 4649 } 4650 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4651 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4652 Vdbe *v = pParse->pVdbe; 4653 int addr; 4654 assert( v ); 4655 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4656 pParse->okConstFactor = 0; 4657 if( !pParse->db->mallocFailed ){ 4658 if( regDest<0 ) regDest = ++pParse->nMem; 4659 sqlite3ExprCode(pParse, pExpr, regDest); 4660 } 4661 pParse->okConstFactor = 1; 4662 sqlite3ExprDelete(pParse->db, pExpr); 4663 sqlite3VdbeJumpHere(v, addr); 4664 }else{ 4665 p = sqlite3ExprListAppend(pParse, p, pExpr); 4666 if( p ){ 4667 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4668 pItem->reusable = regDest<0; 4669 if( regDest<0 ) regDest = ++pParse->nMem; 4670 pItem->u.iConstExprReg = regDest; 4671 } 4672 pParse->pConstExpr = p; 4673 } 4674 return regDest; 4675 } 4676 4677 /* 4678 ** Generate code to evaluate an expression and store the results 4679 ** into a register. Return the register number where the results 4680 ** are stored. 4681 ** 4682 ** If the register is a temporary register that can be deallocated, 4683 ** then write its number into *pReg. If the result register is not 4684 ** a temporary, then set *pReg to zero. 4685 ** 4686 ** If pExpr is a constant, then this routine might generate this 4687 ** code to fill the register in the initialization section of the 4688 ** VDBE program, in order to factor it out of the evaluation loop. 4689 */ 4690 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4691 int r2; 4692 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4693 if( ConstFactorOk(pParse) 4694 && ALWAYS(pExpr!=0) 4695 && pExpr->op!=TK_REGISTER 4696 && sqlite3ExprIsConstantNotJoin(pExpr) 4697 ){ 4698 *pReg = 0; 4699 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4700 }else{ 4701 int r1 = sqlite3GetTempReg(pParse); 4702 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4703 if( r2==r1 ){ 4704 *pReg = r1; 4705 }else{ 4706 sqlite3ReleaseTempReg(pParse, r1); 4707 *pReg = 0; 4708 } 4709 } 4710 return r2; 4711 } 4712 4713 /* 4714 ** Generate code that will evaluate expression pExpr and store the 4715 ** results in register target. The results are guaranteed to appear 4716 ** in register target. 4717 */ 4718 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4719 int inReg; 4720 4721 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4722 assert( target>0 && target<=pParse->nMem ); 4723 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4724 if( pParse->pVdbe==0 ) return; 4725 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4726 if( inReg!=target ){ 4727 u8 op; 4728 if( ExprHasProperty(pExpr,EP_Subquery) ){ 4729 op = OP_Copy; 4730 }else{ 4731 op = OP_SCopy; 4732 } 4733 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4734 } 4735 } 4736 4737 /* 4738 ** Make a transient copy of expression pExpr and then code it using 4739 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4740 ** except that the input expression is guaranteed to be unchanged. 4741 */ 4742 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4743 sqlite3 *db = pParse->db; 4744 pExpr = sqlite3ExprDup(db, pExpr, 0); 4745 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4746 sqlite3ExprDelete(db, pExpr); 4747 } 4748 4749 /* 4750 ** Generate code that will evaluate expression pExpr and store the 4751 ** results in register target. The results are guaranteed to appear 4752 ** in register target. If the expression is constant, then this routine 4753 ** might choose to code the expression at initialization time. 4754 */ 4755 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4756 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4757 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4758 }else{ 4759 sqlite3ExprCodeCopy(pParse, pExpr, target); 4760 } 4761 } 4762 4763 /* 4764 ** Generate code that pushes the value of every element of the given 4765 ** expression list into a sequence of registers beginning at target. 4766 ** 4767 ** Return the number of elements evaluated. The number returned will 4768 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4769 ** is defined. 4770 ** 4771 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4772 ** filled using OP_SCopy. OP_Copy must be used instead. 4773 ** 4774 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4775 ** factored out into initialization code. 4776 ** 4777 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4778 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4779 ** in registers at srcReg, and so the value can be copied from there. 4780 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4781 ** are simply omitted rather than being copied from srcReg. 4782 */ 4783 int sqlite3ExprCodeExprList( 4784 Parse *pParse, /* Parsing context */ 4785 ExprList *pList, /* The expression list to be coded */ 4786 int target, /* Where to write results */ 4787 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4788 u8 flags /* SQLITE_ECEL_* flags */ 4789 ){ 4790 struct ExprList_item *pItem; 4791 int i, j, n; 4792 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4793 Vdbe *v = pParse->pVdbe; 4794 assert( pList!=0 ); 4795 assert( target>0 ); 4796 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4797 n = pList->nExpr; 4798 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4799 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4800 Expr *pExpr = pItem->pExpr; 4801 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4802 if( pItem->bSorterRef ){ 4803 i--; 4804 n--; 4805 }else 4806 #endif 4807 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4808 if( flags & SQLITE_ECEL_OMITREF ){ 4809 i--; 4810 n--; 4811 }else{ 4812 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4813 } 4814 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4815 && sqlite3ExprIsConstantNotJoin(pExpr) 4816 ){ 4817 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4818 }else{ 4819 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4820 if( inReg!=target+i ){ 4821 VdbeOp *pOp; 4822 if( copyOp==OP_Copy 4823 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4824 && pOp->p1+pOp->p3+1==inReg 4825 && pOp->p2+pOp->p3+1==target+i 4826 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4827 ){ 4828 pOp->p3++; 4829 }else{ 4830 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4831 } 4832 } 4833 } 4834 } 4835 return n; 4836 } 4837 4838 /* 4839 ** Generate code for a BETWEEN operator. 4840 ** 4841 ** x BETWEEN y AND z 4842 ** 4843 ** The above is equivalent to 4844 ** 4845 ** x>=y AND x<=z 4846 ** 4847 ** Code it as such, taking care to do the common subexpression 4848 ** elimination of x. 4849 ** 4850 ** The xJumpIf parameter determines details: 4851 ** 4852 ** NULL: Store the boolean result in reg[dest] 4853 ** sqlite3ExprIfTrue: Jump to dest if true 4854 ** sqlite3ExprIfFalse: Jump to dest if false 4855 ** 4856 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4857 */ 4858 static void exprCodeBetween( 4859 Parse *pParse, /* Parsing and code generating context */ 4860 Expr *pExpr, /* The BETWEEN expression */ 4861 int dest, /* Jump destination or storage location */ 4862 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4863 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4864 ){ 4865 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4866 Expr compLeft; /* The x>=y term */ 4867 Expr compRight; /* The x<=z term */ 4868 int regFree1 = 0; /* Temporary use register */ 4869 Expr *pDel = 0; 4870 sqlite3 *db = pParse->db; 4871 4872 memset(&compLeft, 0, sizeof(Expr)); 4873 memset(&compRight, 0, sizeof(Expr)); 4874 memset(&exprAnd, 0, sizeof(Expr)); 4875 4876 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4877 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4878 if( db->mallocFailed==0 ){ 4879 exprAnd.op = TK_AND; 4880 exprAnd.pLeft = &compLeft; 4881 exprAnd.pRight = &compRight; 4882 compLeft.op = TK_GE; 4883 compLeft.pLeft = pDel; 4884 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4885 compRight.op = TK_LE; 4886 compRight.pLeft = pDel; 4887 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4888 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4889 if( xJump ){ 4890 xJump(pParse, &exprAnd, dest, jumpIfNull); 4891 }else{ 4892 /* Mark the expression is being from the ON or USING clause of a join 4893 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4894 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4895 ** for clarity, but we are out of bits in the Expr.flags field so we 4896 ** have to reuse the EP_FromJoin bit. Bummer. */ 4897 pDel->flags |= EP_FromJoin; 4898 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4899 } 4900 sqlite3ReleaseTempReg(pParse, regFree1); 4901 } 4902 sqlite3ExprDelete(db, pDel); 4903 4904 /* Ensure adequate test coverage */ 4905 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4906 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4907 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4908 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4909 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4910 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4911 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4912 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4913 testcase( xJump==0 ); 4914 } 4915 4916 /* 4917 ** Generate code for a boolean expression such that a jump is made 4918 ** to the label "dest" if the expression is true but execution 4919 ** continues straight thru if the expression is false. 4920 ** 4921 ** If the expression evaluates to NULL (neither true nor false), then 4922 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4923 ** 4924 ** This code depends on the fact that certain token values (ex: TK_EQ) 4925 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4926 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4927 ** the make process cause these values to align. Assert()s in the code 4928 ** below verify that the numbers are aligned correctly. 4929 */ 4930 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4931 Vdbe *v = pParse->pVdbe; 4932 int op = 0; 4933 int regFree1 = 0; 4934 int regFree2 = 0; 4935 int r1, r2; 4936 4937 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4938 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4939 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4940 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 4941 op = pExpr->op; 4942 switch( op ){ 4943 case TK_AND: 4944 case TK_OR: { 4945 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4946 if( pAlt!=pExpr ){ 4947 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4948 }else if( op==TK_AND ){ 4949 int d2 = sqlite3VdbeMakeLabel(pParse); 4950 testcase( jumpIfNull==0 ); 4951 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4952 jumpIfNull^SQLITE_JUMPIFNULL); 4953 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4954 sqlite3VdbeResolveLabel(v, d2); 4955 }else{ 4956 testcase( jumpIfNull==0 ); 4957 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4958 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4959 } 4960 break; 4961 } 4962 case TK_NOT: { 4963 testcase( jumpIfNull==0 ); 4964 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4965 break; 4966 } 4967 case TK_TRUTH: { 4968 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4969 int isTrue; /* IS TRUE or IS NOT TRUE */ 4970 testcase( jumpIfNull==0 ); 4971 isNot = pExpr->op2==TK_ISNOT; 4972 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4973 testcase( isTrue && isNot ); 4974 testcase( !isTrue && isNot ); 4975 if( isTrue ^ isNot ){ 4976 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4977 isNot ? SQLITE_JUMPIFNULL : 0); 4978 }else{ 4979 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4980 isNot ? SQLITE_JUMPIFNULL : 0); 4981 } 4982 break; 4983 } 4984 case TK_IS: 4985 case TK_ISNOT: 4986 testcase( op==TK_IS ); 4987 testcase( op==TK_ISNOT ); 4988 op = (op==TK_IS) ? TK_EQ : TK_NE; 4989 jumpIfNull = SQLITE_NULLEQ; 4990 /* no break */ deliberate_fall_through 4991 case TK_LT: 4992 case TK_LE: 4993 case TK_GT: 4994 case TK_GE: 4995 case TK_NE: 4996 case TK_EQ: { 4997 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4998 testcase( jumpIfNull==0 ); 4999 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5000 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5001 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5002 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 5003 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5004 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5005 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5006 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5007 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5008 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5009 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5010 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5011 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5012 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5013 testcase( regFree1==0 ); 5014 testcase( regFree2==0 ); 5015 break; 5016 } 5017 case TK_ISNULL: 5018 case TK_NOTNULL: { 5019 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 5020 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 5021 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5022 sqlite3VdbeAddOp2(v, op, r1, dest); 5023 VdbeCoverageIf(v, op==TK_ISNULL); 5024 VdbeCoverageIf(v, op==TK_NOTNULL); 5025 testcase( regFree1==0 ); 5026 break; 5027 } 5028 case TK_BETWEEN: { 5029 testcase( jumpIfNull==0 ); 5030 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 5031 break; 5032 } 5033 #ifndef SQLITE_OMIT_SUBQUERY 5034 case TK_IN: { 5035 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 5036 int destIfNull = jumpIfNull ? dest : destIfFalse; 5037 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 5038 sqlite3VdbeGoto(v, dest); 5039 sqlite3VdbeResolveLabel(v, destIfFalse); 5040 break; 5041 } 5042 #endif 5043 default: { 5044 default_expr: 5045 if( ExprAlwaysTrue(pExpr) ){ 5046 sqlite3VdbeGoto(v, dest); 5047 }else if( ExprAlwaysFalse(pExpr) ){ 5048 /* No-op */ 5049 }else{ 5050 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5051 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 5052 VdbeCoverage(v); 5053 testcase( regFree1==0 ); 5054 testcase( jumpIfNull==0 ); 5055 } 5056 break; 5057 } 5058 } 5059 sqlite3ReleaseTempReg(pParse, regFree1); 5060 sqlite3ReleaseTempReg(pParse, regFree2); 5061 } 5062 5063 /* 5064 ** Generate code for a boolean expression such that a jump is made 5065 ** to the label "dest" if the expression is false but execution 5066 ** continues straight thru if the expression is true. 5067 ** 5068 ** If the expression evaluates to NULL (neither true nor false) then 5069 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5070 ** is 0. 5071 */ 5072 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5073 Vdbe *v = pParse->pVdbe; 5074 int op = 0; 5075 int regFree1 = 0; 5076 int regFree2 = 0; 5077 int r1, r2; 5078 5079 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5080 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5081 if( pExpr==0 ) return; 5082 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5083 5084 /* The value of pExpr->op and op are related as follows: 5085 ** 5086 ** pExpr->op op 5087 ** --------- ---------- 5088 ** TK_ISNULL OP_NotNull 5089 ** TK_NOTNULL OP_IsNull 5090 ** TK_NE OP_Eq 5091 ** TK_EQ OP_Ne 5092 ** TK_GT OP_Le 5093 ** TK_LE OP_Gt 5094 ** TK_GE OP_Lt 5095 ** TK_LT OP_Ge 5096 ** 5097 ** For other values of pExpr->op, op is undefined and unused. 5098 ** The value of TK_ and OP_ constants are arranged such that we 5099 ** can compute the mapping above using the following expression. 5100 ** Assert()s verify that the computation is correct. 5101 */ 5102 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5103 5104 /* Verify correct alignment of TK_ and OP_ constants 5105 */ 5106 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5107 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5108 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5109 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5110 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5111 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5112 assert( pExpr->op!=TK_GT || op==OP_Le ); 5113 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5114 5115 switch( pExpr->op ){ 5116 case TK_AND: 5117 case TK_OR: { 5118 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5119 if( pAlt!=pExpr ){ 5120 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5121 }else if( pExpr->op==TK_AND ){ 5122 testcase( jumpIfNull==0 ); 5123 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5124 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5125 }else{ 5126 int d2 = sqlite3VdbeMakeLabel(pParse); 5127 testcase( jumpIfNull==0 ); 5128 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5129 jumpIfNull^SQLITE_JUMPIFNULL); 5130 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5131 sqlite3VdbeResolveLabel(v, d2); 5132 } 5133 break; 5134 } 5135 case TK_NOT: { 5136 testcase( jumpIfNull==0 ); 5137 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5138 break; 5139 } 5140 case TK_TRUTH: { 5141 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5142 int isTrue; /* IS TRUE or IS NOT TRUE */ 5143 testcase( jumpIfNull==0 ); 5144 isNot = pExpr->op2==TK_ISNOT; 5145 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5146 testcase( isTrue && isNot ); 5147 testcase( !isTrue && isNot ); 5148 if( isTrue ^ isNot ){ 5149 /* IS TRUE and IS NOT FALSE */ 5150 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5151 isNot ? 0 : SQLITE_JUMPIFNULL); 5152 5153 }else{ 5154 /* IS FALSE and IS NOT TRUE */ 5155 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5156 isNot ? 0 : SQLITE_JUMPIFNULL); 5157 } 5158 break; 5159 } 5160 case TK_IS: 5161 case TK_ISNOT: 5162 testcase( pExpr->op==TK_IS ); 5163 testcase( pExpr->op==TK_ISNOT ); 5164 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5165 jumpIfNull = SQLITE_NULLEQ; 5166 /* no break */ deliberate_fall_through 5167 case TK_LT: 5168 case TK_LE: 5169 case TK_GT: 5170 case TK_GE: 5171 case TK_NE: 5172 case TK_EQ: { 5173 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5174 testcase( jumpIfNull==0 ); 5175 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5176 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5177 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5178 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5179 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5180 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5181 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5182 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5183 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5184 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5185 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5186 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5187 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5188 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5189 testcase( regFree1==0 ); 5190 testcase( regFree2==0 ); 5191 break; 5192 } 5193 case TK_ISNULL: 5194 case TK_NOTNULL: { 5195 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5196 sqlite3VdbeAddOp2(v, op, r1, dest); 5197 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5198 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5199 testcase( regFree1==0 ); 5200 break; 5201 } 5202 case TK_BETWEEN: { 5203 testcase( jumpIfNull==0 ); 5204 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5205 break; 5206 } 5207 #ifndef SQLITE_OMIT_SUBQUERY 5208 case TK_IN: { 5209 if( jumpIfNull ){ 5210 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5211 }else{ 5212 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5213 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5214 sqlite3VdbeResolveLabel(v, destIfNull); 5215 } 5216 break; 5217 } 5218 #endif 5219 default: { 5220 default_expr: 5221 if( ExprAlwaysFalse(pExpr) ){ 5222 sqlite3VdbeGoto(v, dest); 5223 }else if( ExprAlwaysTrue(pExpr) ){ 5224 /* no-op */ 5225 }else{ 5226 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5227 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5228 VdbeCoverage(v); 5229 testcase( regFree1==0 ); 5230 testcase( jumpIfNull==0 ); 5231 } 5232 break; 5233 } 5234 } 5235 sqlite3ReleaseTempReg(pParse, regFree1); 5236 sqlite3ReleaseTempReg(pParse, regFree2); 5237 } 5238 5239 /* 5240 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5241 ** code generation, and that copy is deleted after code generation. This 5242 ** ensures that the original pExpr is unchanged. 5243 */ 5244 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5245 sqlite3 *db = pParse->db; 5246 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5247 if( db->mallocFailed==0 ){ 5248 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5249 } 5250 sqlite3ExprDelete(db, pCopy); 5251 } 5252 5253 /* 5254 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5255 ** type of expression. 5256 ** 5257 ** If pExpr is a simple SQL value - an integer, real, string, blob 5258 ** or NULL value - then the VDBE currently being prepared is configured 5259 ** to re-prepare each time a new value is bound to variable pVar. 5260 ** 5261 ** Additionally, if pExpr is a simple SQL value and the value is the 5262 ** same as that currently bound to variable pVar, non-zero is returned. 5263 ** Otherwise, if the values are not the same or if pExpr is not a simple 5264 ** SQL value, zero is returned. 5265 */ 5266 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 5267 int res = 0; 5268 int iVar; 5269 sqlite3_value *pL, *pR = 0; 5270 5271 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5272 if( pR ){ 5273 iVar = pVar->iColumn; 5274 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5275 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5276 if( pL ){ 5277 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5278 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5279 } 5280 res = 0==sqlite3MemCompare(pL, pR, 0); 5281 } 5282 sqlite3ValueFree(pR); 5283 sqlite3ValueFree(pL); 5284 } 5285 5286 return res; 5287 } 5288 5289 /* 5290 ** Do a deep comparison of two expression trees. Return 0 if the two 5291 ** expressions are completely identical. Return 1 if they differ only 5292 ** by a COLLATE operator at the top level. Return 2 if there are differences 5293 ** other than the top-level COLLATE operator. 5294 ** 5295 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5296 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5297 ** 5298 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5299 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5300 ** 5301 ** Sometimes this routine will return 2 even if the two expressions 5302 ** really are equivalent. If we cannot prove that the expressions are 5303 ** identical, we return 2 just to be safe. So if this routine 5304 ** returns 2, then you do not really know for certain if the two 5305 ** expressions are the same. But if you get a 0 or 1 return, then you 5306 ** can be sure the expressions are the same. In the places where 5307 ** this routine is used, it does not hurt to get an extra 2 - that 5308 ** just might result in some slightly slower code. But returning 5309 ** an incorrect 0 or 1 could lead to a malfunction. 5310 ** 5311 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5312 ** pParse->pReprepare can be matched against literals in pB. The 5313 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5314 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5315 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5316 ** pB causes a return value of 2. 5317 */ 5318 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 5319 u32 combinedFlags; 5320 if( pA==0 || pB==0 ){ 5321 return pB==pA ? 0 : 2; 5322 } 5323 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5324 return 0; 5325 } 5326 combinedFlags = pA->flags | pB->flags; 5327 if( combinedFlags & EP_IntValue ){ 5328 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5329 return 0; 5330 } 5331 return 2; 5332 } 5333 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5334 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5335 return 1; 5336 } 5337 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5338 return 1; 5339 } 5340 return 2; 5341 } 5342 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5343 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5344 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5345 #ifndef SQLITE_OMIT_WINDOWFUNC 5346 assert( pA->op==pB->op ); 5347 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5348 return 2; 5349 } 5350 if( ExprHasProperty(pA,EP_WinFunc) ){ 5351 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5352 return 2; 5353 } 5354 } 5355 #endif 5356 }else if( pA->op==TK_NULL ){ 5357 return 0; 5358 }else if( pA->op==TK_COLLATE ){ 5359 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5360 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5361 return 2; 5362 } 5363 } 5364 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5365 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5366 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5367 if( combinedFlags & EP_xIsSelect ) return 2; 5368 if( (combinedFlags & EP_FixedCol)==0 5369 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5370 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5371 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5372 if( pA->op!=TK_STRING 5373 && pA->op!=TK_TRUEFALSE 5374 && ALWAYS((combinedFlags & EP_Reduced)==0) 5375 ){ 5376 if( pA->iColumn!=pB->iColumn ) return 2; 5377 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5378 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5379 return 2; 5380 } 5381 } 5382 } 5383 return 0; 5384 } 5385 5386 /* 5387 ** Compare two ExprList objects. Return 0 if they are identical, 1 5388 ** if they are certainly different, or 2 if it is not possible to 5389 ** determine if they are identical or not. 5390 ** 5391 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5392 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5393 ** 5394 ** This routine might return non-zero for equivalent ExprLists. The 5395 ** only consequence will be disabled optimizations. But this routine 5396 ** must never return 0 if the two ExprList objects are different, or 5397 ** a malfunction will result. 5398 ** 5399 ** Two NULL pointers are considered to be the same. But a NULL pointer 5400 ** always differs from a non-NULL pointer. 5401 */ 5402 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 5403 int i; 5404 if( pA==0 && pB==0 ) return 0; 5405 if( pA==0 || pB==0 ) return 1; 5406 if( pA->nExpr!=pB->nExpr ) return 1; 5407 for(i=0; i<pA->nExpr; i++){ 5408 int res; 5409 Expr *pExprA = pA->a[i].pExpr; 5410 Expr *pExprB = pB->a[i].pExpr; 5411 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5412 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5413 } 5414 return 0; 5415 } 5416 5417 /* 5418 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5419 ** are ignored. 5420 */ 5421 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 5422 return sqlite3ExprCompare(0, 5423 sqlite3ExprSkipCollateAndLikely(pA), 5424 sqlite3ExprSkipCollateAndLikely(pB), 5425 iTab); 5426 } 5427 5428 /* 5429 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5430 ** 5431 ** Or if seenNot is true, return non-zero if Expr p can only be 5432 ** non-NULL if pNN is not NULL 5433 */ 5434 static int exprImpliesNotNull( 5435 Parse *pParse, /* Parsing context */ 5436 Expr *p, /* The expression to be checked */ 5437 Expr *pNN, /* The expression that is NOT NULL */ 5438 int iTab, /* Table being evaluated */ 5439 int seenNot /* Return true only if p can be any non-NULL value */ 5440 ){ 5441 assert( p ); 5442 assert( pNN ); 5443 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5444 return pNN->op!=TK_NULL; 5445 } 5446 switch( p->op ){ 5447 case TK_IN: { 5448 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5449 assert( ExprHasProperty(p,EP_xIsSelect) 5450 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5451 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5452 } 5453 case TK_BETWEEN: { 5454 ExprList *pList = p->x.pList; 5455 assert( pList!=0 ); 5456 assert( pList->nExpr==2 ); 5457 if( seenNot ) return 0; 5458 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5459 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5460 ){ 5461 return 1; 5462 } 5463 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5464 } 5465 case TK_EQ: 5466 case TK_NE: 5467 case TK_LT: 5468 case TK_LE: 5469 case TK_GT: 5470 case TK_GE: 5471 case TK_PLUS: 5472 case TK_MINUS: 5473 case TK_BITOR: 5474 case TK_LSHIFT: 5475 case TK_RSHIFT: 5476 case TK_CONCAT: 5477 seenNot = 1; 5478 /* no break */ deliberate_fall_through 5479 case TK_STAR: 5480 case TK_REM: 5481 case TK_BITAND: 5482 case TK_SLASH: { 5483 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5484 /* no break */ deliberate_fall_through 5485 } 5486 case TK_SPAN: 5487 case TK_COLLATE: 5488 case TK_UPLUS: 5489 case TK_UMINUS: { 5490 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5491 } 5492 case TK_TRUTH: { 5493 if( seenNot ) return 0; 5494 if( p->op2!=TK_IS ) return 0; 5495 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5496 } 5497 case TK_BITNOT: 5498 case TK_NOT: { 5499 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5500 } 5501 } 5502 return 0; 5503 } 5504 5505 /* 5506 ** Return true if we can prove the pE2 will always be true if pE1 is 5507 ** true. Return false if we cannot complete the proof or if pE2 might 5508 ** be false. Examples: 5509 ** 5510 ** pE1: x==5 pE2: x==5 Result: true 5511 ** pE1: x>0 pE2: x==5 Result: false 5512 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5513 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5514 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5515 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5516 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5517 ** 5518 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5519 ** Expr.iTable<0 then assume a table number given by iTab. 5520 ** 5521 ** If pParse is not NULL, then the values of bound variables in pE1 are 5522 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5523 ** modified to record which bound variables are referenced. If pParse 5524 ** is NULL, then false will be returned if pE1 contains any bound variables. 5525 ** 5526 ** When in doubt, return false. Returning true might give a performance 5527 ** improvement. Returning false might cause a performance reduction, but 5528 ** it will always give the correct answer and is hence always safe. 5529 */ 5530 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5531 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5532 return 1; 5533 } 5534 if( pE2->op==TK_OR 5535 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5536 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5537 ){ 5538 return 1; 5539 } 5540 if( pE2->op==TK_NOTNULL 5541 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5542 ){ 5543 return 1; 5544 } 5545 return 0; 5546 } 5547 5548 /* 5549 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5550 ** If the expression node requires that the table at pWalker->iCur 5551 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5552 ** 5553 ** This routine controls an optimization. False positives (setting 5554 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5555 ** (never setting pWalker->eCode) is a harmless missed optimization. 5556 */ 5557 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5558 testcase( pExpr->op==TK_AGG_COLUMN ); 5559 testcase( pExpr->op==TK_AGG_FUNCTION ); 5560 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5561 switch( pExpr->op ){ 5562 case TK_ISNOT: 5563 case TK_ISNULL: 5564 case TK_NOTNULL: 5565 case TK_IS: 5566 case TK_OR: 5567 case TK_VECTOR: 5568 case TK_CASE: 5569 case TK_IN: 5570 case TK_FUNCTION: 5571 case TK_TRUTH: 5572 testcase( pExpr->op==TK_ISNOT ); 5573 testcase( pExpr->op==TK_ISNULL ); 5574 testcase( pExpr->op==TK_NOTNULL ); 5575 testcase( pExpr->op==TK_IS ); 5576 testcase( pExpr->op==TK_OR ); 5577 testcase( pExpr->op==TK_VECTOR ); 5578 testcase( pExpr->op==TK_CASE ); 5579 testcase( pExpr->op==TK_IN ); 5580 testcase( pExpr->op==TK_FUNCTION ); 5581 testcase( pExpr->op==TK_TRUTH ); 5582 return WRC_Prune; 5583 case TK_COLUMN: 5584 if( pWalker->u.iCur==pExpr->iTable ){ 5585 pWalker->eCode = 1; 5586 return WRC_Abort; 5587 } 5588 return WRC_Prune; 5589 5590 case TK_AND: 5591 if( pWalker->eCode==0 ){ 5592 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5593 if( pWalker->eCode ){ 5594 pWalker->eCode = 0; 5595 sqlite3WalkExpr(pWalker, pExpr->pRight); 5596 } 5597 } 5598 return WRC_Prune; 5599 5600 case TK_BETWEEN: 5601 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5602 assert( pWalker->eCode ); 5603 return WRC_Abort; 5604 } 5605 return WRC_Prune; 5606 5607 /* Virtual tables are allowed to use constraints like x=NULL. So 5608 ** a term of the form x=y does not prove that y is not null if x 5609 ** is the column of a virtual table */ 5610 case TK_EQ: 5611 case TK_NE: 5612 case TK_LT: 5613 case TK_LE: 5614 case TK_GT: 5615 case TK_GE: { 5616 Expr *pLeft = pExpr->pLeft; 5617 Expr *pRight = pExpr->pRight; 5618 testcase( pExpr->op==TK_EQ ); 5619 testcase( pExpr->op==TK_NE ); 5620 testcase( pExpr->op==TK_LT ); 5621 testcase( pExpr->op==TK_LE ); 5622 testcase( pExpr->op==TK_GT ); 5623 testcase( pExpr->op==TK_GE ); 5624 /* The y.pTab=0 assignment in wherecode.c always happens after the 5625 ** impliesNotNullRow() test */ 5626 if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0) 5627 && IsVirtual(pLeft->y.pTab)) 5628 || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0) 5629 && IsVirtual(pRight->y.pTab)) 5630 ){ 5631 return WRC_Prune; 5632 } 5633 /* no break */ deliberate_fall_through 5634 } 5635 default: 5636 return WRC_Continue; 5637 } 5638 } 5639 5640 /* 5641 ** Return true (non-zero) if expression p can only be true if at least 5642 ** one column of table iTab is non-null. In other words, return true 5643 ** if expression p will always be NULL or false if every column of iTab 5644 ** is NULL. 5645 ** 5646 ** False negatives are acceptable. In other words, it is ok to return 5647 ** zero even if expression p will never be true of every column of iTab 5648 ** is NULL. A false negative is merely a missed optimization opportunity. 5649 ** 5650 ** False positives are not allowed, however. A false positive may result 5651 ** in an incorrect answer. 5652 ** 5653 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5654 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5655 ** 5656 ** This routine is used to check if a LEFT JOIN can be converted into 5657 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5658 ** clause requires that some column of the right table of the LEFT JOIN 5659 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5660 ** ordinary join. 5661 */ 5662 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5663 Walker w; 5664 p = sqlite3ExprSkipCollateAndLikely(p); 5665 if( p==0 ) return 0; 5666 if( p->op==TK_NOTNULL ){ 5667 p = p->pLeft; 5668 }else{ 5669 while( p->op==TK_AND ){ 5670 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5671 p = p->pRight; 5672 } 5673 } 5674 w.xExprCallback = impliesNotNullRow; 5675 w.xSelectCallback = 0; 5676 w.xSelectCallback2 = 0; 5677 w.eCode = 0; 5678 w.u.iCur = iTab; 5679 sqlite3WalkExpr(&w, p); 5680 return w.eCode; 5681 } 5682 5683 /* 5684 ** An instance of the following structure is used by the tree walker 5685 ** to determine if an expression can be evaluated by reference to the 5686 ** index only, without having to do a search for the corresponding 5687 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5688 ** is the cursor for the table. 5689 */ 5690 struct IdxCover { 5691 Index *pIdx; /* The index to be tested for coverage */ 5692 int iCur; /* Cursor number for the table corresponding to the index */ 5693 }; 5694 5695 /* 5696 ** Check to see if there are references to columns in table 5697 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5698 ** pWalker->u.pIdxCover->pIdx. 5699 */ 5700 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5701 if( pExpr->op==TK_COLUMN 5702 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5703 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5704 ){ 5705 pWalker->eCode = 1; 5706 return WRC_Abort; 5707 } 5708 return WRC_Continue; 5709 } 5710 5711 /* 5712 ** Determine if an index pIdx on table with cursor iCur contains will 5713 ** the expression pExpr. Return true if the index does cover the 5714 ** expression and false if the pExpr expression references table columns 5715 ** that are not found in the index pIdx. 5716 ** 5717 ** An index covering an expression means that the expression can be 5718 ** evaluated using only the index and without having to lookup the 5719 ** corresponding table entry. 5720 */ 5721 int sqlite3ExprCoveredByIndex( 5722 Expr *pExpr, /* The index to be tested */ 5723 int iCur, /* The cursor number for the corresponding table */ 5724 Index *pIdx /* The index that might be used for coverage */ 5725 ){ 5726 Walker w; 5727 struct IdxCover xcov; 5728 memset(&w, 0, sizeof(w)); 5729 xcov.iCur = iCur; 5730 xcov.pIdx = pIdx; 5731 w.xExprCallback = exprIdxCover; 5732 w.u.pIdxCover = &xcov; 5733 sqlite3WalkExpr(&w, pExpr); 5734 return !w.eCode; 5735 } 5736 5737 5738 /* 5739 ** An instance of the following structure is used by the tree walker 5740 ** to count references to table columns in the arguments of an 5741 ** aggregate function, in order to implement the 5742 ** sqlite3FunctionThisSrc() routine. 5743 */ 5744 struct SrcCount { 5745 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5746 int iSrcInner; /* Smallest cursor number in this context */ 5747 int nThis; /* Number of references to columns in pSrcList */ 5748 int nOther; /* Number of references to columns in other FROM clauses */ 5749 }; 5750 5751 /* 5752 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first 5753 ** SELECT with a FROM clause encountered during this iteration, set 5754 ** SrcCount.iSrcInner to the cursor number of the leftmost object in 5755 ** the FROM cause. 5756 */ 5757 static int selectSrcCount(Walker *pWalker, Select *pSel){ 5758 struct SrcCount *p = pWalker->u.pSrcCount; 5759 if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){ 5760 pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor; 5761 } 5762 return WRC_Continue; 5763 } 5764 5765 /* 5766 ** Count the number of references to columns. 5767 */ 5768 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5769 /* There was once a NEVER() on the second term on the grounds that 5770 ** sqlite3FunctionUsesThisSrc() was always called before 5771 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet 5772 ** been converted into TK_AGG_COLUMN. But this is no longer true due 5773 ** to window functions - sqlite3WindowRewrite() may now indirectly call 5774 ** FunctionUsesThisSrc() when creating a new sub-select. */ 5775 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 5776 int i; 5777 struct SrcCount *p = pWalker->u.pSrcCount; 5778 SrcList *pSrc = p->pSrc; 5779 int nSrc = pSrc ? pSrc->nSrc : 0; 5780 for(i=0; i<nSrc; i++){ 5781 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5782 } 5783 if( i<nSrc ){ 5784 p->nThis++; 5785 }else if( pExpr->iTable<p->iSrcInner ){ 5786 /* In a well-formed parse tree (no name resolution errors), 5787 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5788 ** outer context. Those are the only ones to count as "other" */ 5789 p->nOther++; 5790 } 5791 } 5792 return WRC_Continue; 5793 } 5794 5795 /* 5796 ** Determine if any of the arguments to the pExpr Function reference 5797 ** pSrcList. Return true if they do. Also return true if the function 5798 ** has no arguments or has only constant arguments. Return false if pExpr 5799 ** references columns but not columns of tables found in pSrcList. 5800 */ 5801 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5802 Walker w; 5803 struct SrcCount cnt; 5804 assert( pExpr->op==TK_AGG_FUNCTION ); 5805 memset(&w, 0, sizeof(w)); 5806 w.xExprCallback = exprSrcCount; 5807 w.xSelectCallback = selectSrcCount; 5808 w.u.pSrcCount = &cnt; 5809 cnt.pSrc = pSrcList; 5810 cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF; 5811 cnt.nThis = 0; 5812 cnt.nOther = 0; 5813 sqlite3WalkExprList(&w, pExpr->x.pList); 5814 #ifndef SQLITE_OMIT_WINDOWFUNC 5815 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5816 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5817 } 5818 #endif 5819 return cnt.nThis>0 || cnt.nOther==0; 5820 } 5821 5822 /* 5823 ** This is a Walker expression node callback. 5824 ** 5825 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 5826 ** object that is referenced does not refer directly to the Expr. If 5827 ** it does, make a copy. This is done because the pExpr argument is 5828 ** subject to change. 5829 ** 5830 ** The copy is stored on pParse->pConstExpr with a register number of 0. 5831 ** This will cause the expression to be deleted automatically when the 5832 ** Parse object is destroyed, but the zero register number means that it 5833 ** will not generate any code in the preamble. 5834 */ 5835 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 5836 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 5837 && pExpr->pAggInfo!=0 5838 ){ 5839 AggInfo *pAggInfo = pExpr->pAggInfo; 5840 int iAgg = pExpr->iAgg; 5841 Parse *pParse = pWalker->pParse; 5842 sqlite3 *db = pParse->db; 5843 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 5844 if( pExpr->op==TK_AGG_COLUMN ){ 5845 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 5846 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 5847 pExpr = sqlite3ExprDup(db, pExpr, 0); 5848 if( pExpr ){ 5849 pAggInfo->aCol[iAgg].pCExpr = pExpr; 5850 sqlite3ExprDeferredDelete(pParse, pExpr); 5851 } 5852 } 5853 }else{ 5854 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 5855 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 5856 pExpr = sqlite3ExprDup(db, pExpr, 0); 5857 if( pExpr ){ 5858 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 5859 sqlite3ExprDeferredDelete(pParse, pExpr); 5860 } 5861 } 5862 } 5863 } 5864 return WRC_Continue; 5865 } 5866 5867 /* 5868 ** Initialize a Walker object so that will persist AggInfo entries referenced 5869 ** by the tree that is walked. 5870 */ 5871 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 5872 memset(pWalker, 0, sizeof(*pWalker)); 5873 pWalker->pParse = pParse; 5874 pWalker->xExprCallback = agginfoPersistExprCb; 5875 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 5876 } 5877 5878 /* 5879 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5880 ** the new element. Return a negative number if malloc fails. 5881 */ 5882 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5883 int i; 5884 pInfo->aCol = sqlite3ArrayAllocate( 5885 db, 5886 pInfo->aCol, 5887 sizeof(pInfo->aCol[0]), 5888 &pInfo->nColumn, 5889 &i 5890 ); 5891 return i; 5892 } 5893 5894 /* 5895 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5896 ** the new element. Return a negative number if malloc fails. 5897 */ 5898 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5899 int i; 5900 pInfo->aFunc = sqlite3ArrayAllocate( 5901 db, 5902 pInfo->aFunc, 5903 sizeof(pInfo->aFunc[0]), 5904 &pInfo->nFunc, 5905 &i 5906 ); 5907 return i; 5908 } 5909 5910 /* 5911 ** This is the xExprCallback for a tree walker. It is used to 5912 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5913 ** for additional information. 5914 */ 5915 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5916 int i; 5917 NameContext *pNC = pWalker->u.pNC; 5918 Parse *pParse = pNC->pParse; 5919 SrcList *pSrcList = pNC->pSrcList; 5920 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5921 5922 assert( pNC->ncFlags & NC_UAggInfo ); 5923 switch( pExpr->op ){ 5924 case TK_AGG_COLUMN: 5925 case TK_COLUMN: { 5926 testcase( pExpr->op==TK_AGG_COLUMN ); 5927 testcase( pExpr->op==TK_COLUMN ); 5928 /* Check to see if the column is in one of the tables in the FROM 5929 ** clause of the aggregate query */ 5930 if( ALWAYS(pSrcList!=0) ){ 5931 SrcItem *pItem = pSrcList->a; 5932 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5933 struct AggInfo_col *pCol; 5934 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5935 if( pExpr->iTable==pItem->iCursor ){ 5936 /* If we reach this point, it means that pExpr refers to a table 5937 ** that is in the FROM clause of the aggregate query. 5938 ** 5939 ** Make an entry for the column in pAggInfo->aCol[] if there 5940 ** is not an entry there already. 5941 */ 5942 int k; 5943 pCol = pAggInfo->aCol; 5944 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5945 if( pCol->iTable==pExpr->iTable && 5946 pCol->iColumn==pExpr->iColumn ){ 5947 break; 5948 } 5949 } 5950 if( (k>=pAggInfo->nColumn) 5951 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5952 ){ 5953 pCol = &pAggInfo->aCol[k]; 5954 pCol->pTab = pExpr->y.pTab; 5955 pCol->iTable = pExpr->iTable; 5956 pCol->iColumn = pExpr->iColumn; 5957 pCol->iMem = ++pParse->nMem; 5958 pCol->iSorterColumn = -1; 5959 pCol->pCExpr = pExpr; 5960 if( pAggInfo->pGroupBy ){ 5961 int j, n; 5962 ExprList *pGB = pAggInfo->pGroupBy; 5963 struct ExprList_item *pTerm = pGB->a; 5964 n = pGB->nExpr; 5965 for(j=0; j<n; j++, pTerm++){ 5966 Expr *pE = pTerm->pExpr; 5967 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5968 pE->iColumn==pExpr->iColumn ){ 5969 pCol->iSorterColumn = j; 5970 break; 5971 } 5972 } 5973 } 5974 if( pCol->iSorterColumn<0 ){ 5975 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5976 } 5977 } 5978 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5979 ** because it was there before or because we just created it). 5980 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5981 ** pAggInfo->aCol[] entry. 5982 */ 5983 ExprSetVVAProperty(pExpr, EP_NoReduce); 5984 pExpr->pAggInfo = pAggInfo; 5985 pExpr->op = TK_AGG_COLUMN; 5986 pExpr->iAgg = (i16)k; 5987 break; 5988 } /* endif pExpr->iTable==pItem->iCursor */ 5989 } /* end loop over pSrcList */ 5990 } 5991 return WRC_Prune; 5992 } 5993 case TK_AGG_FUNCTION: { 5994 if( (pNC->ncFlags & NC_InAggFunc)==0 5995 && pWalker->walkerDepth==pExpr->op2 5996 ){ 5997 /* Check to see if pExpr is a duplicate of another aggregate 5998 ** function that is already in the pAggInfo structure 5999 */ 6000 struct AggInfo_func *pItem = pAggInfo->aFunc; 6001 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 6002 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 6003 break; 6004 } 6005 } 6006 if( i>=pAggInfo->nFunc ){ 6007 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 6008 */ 6009 u8 enc = ENC(pParse->db); 6010 i = addAggInfoFunc(pParse->db, pAggInfo); 6011 if( i>=0 ){ 6012 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6013 pItem = &pAggInfo->aFunc[i]; 6014 pItem->pFExpr = pExpr; 6015 pItem->iMem = ++pParse->nMem; 6016 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 6017 pItem->pFunc = sqlite3FindFunction(pParse->db, 6018 pExpr->u.zToken, 6019 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 6020 if( pExpr->flags & EP_Distinct ){ 6021 pItem->iDistinct = pParse->nTab++; 6022 }else{ 6023 pItem->iDistinct = -1; 6024 } 6025 } 6026 } 6027 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 6028 */ 6029 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6030 ExprSetVVAProperty(pExpr, EP_NoReduce); 6031 pExpr->iAgg = (i16)i; 6032 pExpr->pAggInfo = pAggInfo; 6033 return WRC_Prune; 6034 }else{ 6035 return WRC_Continue; 6036 } 6037 } 6038 } 6039 return WRC_Continue; 6040 } 6041 6042 /* 6043 ** Analyze the pExpr expression looking for aggregate functions and 6044 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 6045 ** points to. Additional entries are made on the AggInfo object as 6046 ** necessary. 6047 ** 6048 ** This routine should only be called after the expression has been 6049 ** analyzed by sqlite3ResolveExprNames(). 6050 */ 6051 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 6052 Walker w; 6053 w.xExprCallback = analyzeAggregate; 6054 w.xSelectCallback = sqlite3WalkerDepthIncrease; 6055 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 6056 w.walkerDepth = 0; 6057 w.u.pNC = pNC; 6058 w.pParse = 0; 6059 assert( pNC->pSrcList!=0 ); 6060 sqlite3WalkExpr(&w, pExpr); 6061 } 6062 6063 /* 6064 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6065 ** expression list. Return the number of errors. 6066 ** 6067 ** If an error is found, the analysis is cut short. 6068 */ 6069 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6070 struct ExprList_item *pItem; 6071 int i; 6072 if( pList ){ 6073 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6074 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6075 } 6076 } 6077 } 6078 6079 /* 6080 ** Allocate a single new register for use to hold some intermediate result. 6081 */ 6082 int sqlite3GetTempReg(Parse *pParse){ 6083 if( pParse->nTempReg==0 ){ 6084 return ++pParse->nMem; 6085 } 6086 return pParse->aTempReg[--pParse->nTempReg]; 6087 } 6088 6089 /* 6090 ** Deallocate a register, making available for reuse for some other 6091 ** purpose. 6092 */ 6093 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6094 if( iReg ){ 6095 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6096 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6097 pParse->aTempReg[pParse->nTempReg++] = iReg; 6098 } 6099 } 6100 } 6101 6102 /* 6103 ** Allocate or deallocate a block of nReg consecutive registers. 6104 */ 6105 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6106 int i, n; 6107 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6108 i = pParse->iRangeReg; 6109 n = pParse->nRangeReg; 6110 if( nReg<=n ){ 6111 pParse->iRangeReg += nReg; 6112 pParse->nRangeReg -= nReg; 6113 }else{ 6114 i = pParse->nMem+1; 6115 pParse->nMem += nReg; 6116 } 6117 return i; 6118 } 6119 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6120 if( nReg==1 ){ 6121 sqlite3ReleaseTempReg(pParse, iReg); 6122 return; 6123 } 6124 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6125 if( nReg>pParse->nRangeReg ){ 6126 pParse->nRangeReg = nReg; 6127 pParse->iRangeReg = iReg; 6128 } 6129 } 6130 6131 /* 6132 ** Mark all temporary registers as being unavailable for reuse. 6133 ** 6134 ** Always invoke this procedure after coding a subroutine or co-routine 6135 ** that might be invoked from other parts of the code, to ensure that 6136 ** the sub/co-routine does not use registers in common with the code that 6137 ** invokes the sub/co-routine. 6138 */ 6139 void sqlite3ClearTempRegCache(Parse *pParse){ 6140 pParse->nTempReg = 0; 6141 pParse->nRangeReg = 0; 6142 } 6143 6144 /* 6145 ** Validate that no temporary register falls within the range of 6146 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6147 ** statements. 6148 */ 6149 #ifdef SQLITE_DEBUG 6150 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6151 int i; 6152 if( pParse->nRangeReg>0 6153 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6154 && pParse->iRangeReg <= iLast 6155 ){ 6156 return 0; 6157 } 6158 for(i=0; i<pParse->nTempReg; i++){ 6159 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6160 return 0; 6161 } 6162 } 6163 return 1; 6164 } 6165 #endif /* SQLITE_DEBUG */ 6166