1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 ** 15 ** $Id: expr.c,v 1.301 2007/07/23 22:51:15 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 #include <ctype.h> 19 20 /* 21 ** Return the 'affinity' of the expression pExpr if any. 22 ** 23 ** If pExpr is a column, a reference to a column via an 'AS' alias, 24 ** or a sub-select with a column as the return value, then the 25 ** affinity of that column is returned. Otherwise, 0x00 is returned, 26 ** indicating no affinity for the expression. 27 ** 28 ** i.e. the WHERE clause expresssions in the following statements all 29 ** have an affinity: 30 ** 31 ** CREATE TABLE t1(a); 32 ** SELECT * FROM t1 WHERE a; 33 ** SELECT a AS b FROM t1 WHERE b; 34 ** SELECT * FROM t1 WHERE (select a from t1); 35 */ 36 char sqlite3ExprAffinity(Expr *pExpr){ 37 int op = pExpr->op; 38 if( op==TK_SELECT ){ 39 return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); 40 } 41 #ifndef SQLITE_OMIT_CAST 42 if( op==TK_CAST ){ 43 return sqlite3AffinityType(&pExpr->token); 44 } 45 #endif 46 return pExpr->affinity; 47 } 48 49 /* 50 ** Set the collating sequence for expression pExpr to be the collating 51 ** sequence named by pToken. Return a pointer to the revised expression. 52 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 53 ** flag. An explicit collating sequence will override implicit 54 ** collating sequences. 55 */ 56 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){ 57 CollSeq *pColl; 58 if( pExpr==0 ) return 0; 59 pColl = sqlite3LocateCollSeq(pParse, (char*)pName->z, pName->n); 60 if( pColl ){ 61 pExpr->pColl = pColl; 62 pExpr->flags |= EP_ExpCollate; 63 } 64 return pExpr; 65 } 66 67 /* 68 ** Return the default collation sequence for the expression pExpr. If 69 ** there is no default collation type, return 0. 70 */ 71 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 72 CollSeq *pColl = 0; 73 if( pExpr ){ 74 int op; 75 pColl = pExpr->pColl; 76 op = pExpr->op; 77 if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){ 78 return sqlite3ExprCollSeq(pParse, pExpr->pLeft); 79 } 80 } 81 if( sqlite3CheckCollSeq(pParse, pColl) ){ 82 pColl = 0; 83 } 84 return pColl; 85 } 86 87 /* 88 ** pExpr is an operand of a comparison operator. aff2 is the 89 ** type affinity of the other operand. This routine returns the 90 ** type affinity that should be used for the comparison operator. 91 */ 92 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 93 char aff1 = sqlite3ExprAffinity(pExpr); 94 if( aff1 && aff2 ){ 95 /* Both sides of the comparison are columns. If one has numeric 96 ** affinity, use that. Otherwise use no affinity. 97 */ 98 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 99 return SQLITE_AFF_NUMERIC; 100 }else{ 101 return SQLITE_AFF_NONE; 102 } 103 }else if( !aff1 && !aff2 ){ 104 /* Neither side of the comparison is a column. Compare the 105 ** results directly. 106 */ 107 return SQLITE_AFF_NONE; 108 }else{ 109 /* One side is a column, the other is not. Use the columns affinity. */ 110 assert( aff1==0 || aff2==0 ); 111 return (aff1 + aff2); 112 } 113 } 114 115 /* 116 ** pExpr is a comparison operator. Return the type affinity that should 117 ** be applied to both operands prior to doing the comparison. 118 */ 119 static char comparisonAffinity(Expr *pExpr){ 120 char aff; 121 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 122 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 123 pExpr->op==TK_NE ); 124 assert( pExpr->pLeft ); 125 aff = sqlite3ExprAffinity(pExpr->pLeft); 126 if( pExpr->pRight ){ 127 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 128 } 129 else if( pExpr->pSelect ){ 130 aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); 131 } 132 else if( !aff ){ 133 aff = SQLITE_AFF_NONE; 134 } 135 return aff; 136 } 137 138 /* 139 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 140 ** idx_affinity is the affinity of an indexed column. Return true 141 ** if the index with affinity idx_affinity may be used to implement 142 ** the comparison in pExpr. 143 */ 144 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 145 char aff = comparisonAffinity(pExpr); 146 switch( aff ){ 147 case SQLITE_AFF_NONE: 148 return 1; 149 case SQLITE_AFF_TEXT: 150 return idx_affinity==SQLITE_AFF_TEXT; 151 default: 152 return sqlite3IsNumericAffinity(idx_affinity); 153 } 154 } 155 156 /* 157 ** Return the P1 value that should be used for a binary comparison 158 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 159 ** If jumpIfNull is true, then set the low byte of the returned 160 ** P1 value to tell the opcode to jump if either expression 161 ** evaluates to NULL. 162 */ 163 static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 164 char aff = sqlite3ExprAffinity(pExpr2); 165 return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0); 166 } 167 168 /* 169 ** Return a pointer to the collation sequence that should be used by 170 ** a binary comparison operator comparing pLeft and pRight. 171 ** 172 ** If the left hand expression has a collating sequence type, then it is 173 ** used. Otherwise the collation sequence for the right hand expression 174 ** is used, or the default (BINARY) if neither expression has a collating 175 ** type. 176 ** 177 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 178 ** it is not considered. 179 */ 180 CollSeq* sqlite3BinaryCompareCollSeq( 181 Parse *pParse, 182 Expr *pLeft, 183 Expr *pRight 184 ){ 185 CollSeq *pColl; 186 assert( pLeft ); 187 if( pLeft->flags & EP_ExpCollate ){ 188 assert( pLeft->pColl ); 189 pColl = pLeft->pColl; 190 }else if( pRight && pRight->flags & EP_ExpCollate ){ 191 assert( pRight->pColl ); 192 pColl = pRight->pColl; 193 }else{ 194 pColl = sqlite3ExprCollSeq(pParse, pLeft); 195 if( !pColl ){ 196 pColl = sqlite3ExprCollSeq(pParse, pRight); 197 } 198 } 199 return pColl; 200 } 201 202 /* 203 ** Generate code for a comparison operator. 204 */ 205 static int codeCompare( 206 Parse *pParse, /* The parsing (and code generating) context */ 207 Expr *pLeft, /* The left operand */ 208 Expr *pRight, /* The right operand */ 209 int opcode, /* The comparison opcode */ 210 int dest, /* Jump here if true. */ 211 int jumpIfNull /* If true, jump if either operand is NULL */ 212 ){ 213 int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull); 214 CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 215 return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ); 216 } 217 218 /* 219 ** Construct a new expression node and return a pointer to it. Memory 220 ** for this node is obtained from sqliteMalloc(). The calling function 221 ** is responsible for making sure the node eventually gets freed. 222 */ 223 Expr *sqlite3Expr(int op, Expr *pLeft, Expr *pRight, const Token *pToken){ 224 Expr *pNew; 225 pNew = sqliteMalloc( sizeof(Expr) ); 226 if( pNew==0 ){ 227 /* When malloc fails, delete pLeft and pRight. Expressions passed to 228 ** this function must always be allocated with sqlite3Expr() for this 229 ** reason. 230 */ 231 sqlite3ExprDelete(pLeft); 232 sqlite3ExprDelete(pRight); 233 return 0; 234 } 235 pNew->op = op; 236 pNew->pLeft = pLeft; 237 pNew->pRight = pRight; 238 pNew->iAgg = -1; 239 if( pToken ){ 240 assert( pToken->dyn==0 ); 241 pNew->span = pNew->token = *pToken; 242 }else if( pLeft ){ 243 if( pRight ){ 244 sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); 245 if( pRight->flags & EP_ExpCollate ){ 246 pNew->flags |= EP_ExpCollate; 247 pNew->pColl = pRight->pColl; 248 } 249 } 250 if( pLeft->flags & EP_ExpCollate ){ 251 pNew->flags |= EP_ExpCollate; 252 pNew->pColl = pLeft->pColl; 253 } 254 } 255 256 sqlite3ExprSetHeight(pNew); 257 return pNew; 258 } 259 260 /* 261 ** Works like sqlite3Expr() but frees its pLeft and pRight arguments 262 ** if it fails due to a malloc problem. 263 */ 264 Expr *sqlite3ExprOrFree(int op, Expr *pLeft, Expr *pRight, const Token *pToken){ 265 Expr *pNew = sqlite3Expr(op, pLeft, pRight, pToken); 266 if( pNew==0 ){ 267 sqlite3ExprDelete(pLeft); 268 sqlite3ExprDelete(pRight); 269 } 270 return pNew; 271 } 272 273 /* 274 ** When doing a nested parse, you can include terms in an expression 275 ** that look like this: #0 #1 #2 ... These terms refer to elements 276 ** on the stack. "#0" means the top of the stack. 277 ** "#1" means the next down on the stack. And so forth. 278 ** 279 ** This routine is called by the parser to deal with on of those terms. 280 ** It immediately generates code to store the value in a memory location. 281 ** The returns an expression that will code to extract the value from 282 ** that memory location as needed. 283 */ 284 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ 285 Vdbe *v = pParse->pVdbe; 286 Expr *p; 287 int depth; 288 if( pParse->nested==0 ){ 289 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); 290 return sqlite3Expr(TK_NULL, 0, 0, 0); 291 } 292 if( v==0 ) return 0; 293 p = sqlite3Expr(TK_REGISTER, 0, 0, pToken); 294 if( p==0 ){ 295 return 0; /* Malloc failed */ 296 } 297 depth = atoi((char*)&pToken->z[1]); 298 p->iTable = pParse->nMem++; 299 sqlite3VdbeAddOp(v, OP_Dup, depth, 0); 300 sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1); 301 return p; 302 } 303 304 /* 305 ** Join two expressions using an AND operator. If either expression is 306 ** NULL, then just return the other expression. 307 */ 308 Expr *sqlite3ExprAnd(Expr *pLeft, Expr *pRight){ 309 if( pLeft==0 ){ 310 return pRight; 311 }else if( pRight==0 ){ 312 return pLeft; 313 }else{ 314 return sqlite3Expr(TK_AND, pLeft, pRight, 0); 315 } 316 } 317 318 /* 319 ** Set the Expr.span field of the given expression to span all 320 ** text between the two given tokens. 321 */ 322 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ 323 assert( pRight!=0 ); 324 assert( pLeft!=0 ); 325 if( !sqlite3MallocFailed() && pRight->z && pLeft->z ){ 326 assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 ); 327 if( pLeft->dyn==0 && pRight->dyn==0 ){ 328 pExpr->span.z = pLeft->z; 329 pExpr->span.n = pRight->n + (pRight->z - pLeft->z); 330 }else{ 331 pExpr->span.z = 0; 332 } 333 } 334 } 335 336 /* 337 ** Construct a new expression node for a function with multiple 338 ** arguments. 339 */ 340 Expr *sqlite3ExprFunction(ExprList *pList, Token *pToken){ 341 Expr *pNew; 342 assert( pToken ); 343 pNew = sqliteMalloc( sizeof(Expr) ); 344 if( pNew==0 ){ 345 sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */ 346 return 0; 347 } 348 pNew->op = TK_FUNCTION; 349 pNew->pList = pList; 350 assert( pToken->dyn==0 ); 351 pNew->token = *pToken; 352 pNew->span = pNew->token; 353 354 sqlite3ExprSetHeight(pNew); 355 return pNew; 356 } 357 358 /* 359 ** Assign a variable number to an expression that encodes a wildcard 360 ** in the original SQL statement. 361 ** 362 ** Wildcards consisting of a single "?" are assigned the next sequential 363 ** variable number. 364 ** 365 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 366 ** sure "nnn" is not too be to avoid a denial of service attack when 367 ** the SQL statement comes from an external source. 368 ** 369 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number 370 ** as the previous instance of the same wildcard. Or if this is the first 371 ** instance of the wildcard, the next sequenial variable number is 372 ** assigned. 373 */ 374 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 375 Token *pToken; 376 if( pExpr==0 ) return; 377 pToken = &pExpr->token; 378 assert( pToken->n>=1 ); 379 assert( pToken->z!=0 ); 380 assert( pToken->z[0]!=0 ); 381 if( pToken->n==1 ){ 382 /* Wildcard of the form "?". Assign the next variable number */ 383 pExpr->iTable = ++pParse->nVar; 384 }else if( pToken->z[0]=='?' ){ 385 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 386 ** use it as the variable number */ 387 int i; 388 pExpr->iTable = i = atoi((char*)&pToken->z[1]); 389 if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){ 390 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 391 SQLITE_MAX_VARIABLE_NUMBER); 392 } 393 if( i>pParse->nVar ){ 394 pParse->nVar = i; 395 } 396 }else{ 397 /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable 398 ** number as the prior appearance of the same name, or if the name 399 ** has never appeared before, reuse the same variable number 400 */ 401 int i, n; 402 n = pToken->n; 403 for(i=0; i<pParse->nVarExpr; i++){ 404 Expr *pE; 405 if( (pE = pParse->apVarExpr[i])!=0 406 && pE->token.n==n 407 && memcmp(pE->token.z, pToken->z, n)==0 ){ 408 pExpr->iTable = pE->iTable; 409 break; 410 } 411 } 412 if( i>=pParse->nVarExpr ){ 413 pExpr->iTable = ++pParse->nVar; 414 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ 415 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; 416 pParse->apVarExpr = sqliteReallocOrFree(pParse->apVarExpr, 417 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) ); 418 } 419 if( !sqlite3MallocFailed() ){ 420 assert( pParse->apVarExpr!=0 ); 421 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; 422 } 423 } 424 } 425 if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){ 426 sqlite3ErrorMsg(pParse, "too many SQL variables"); 427 } 428 } 429 430 /* 431 ** Recursively delete an expression tree. 432 */ 433 void sqlite3ExprDelete(Expr *p){ 434 if( p==0 ) return; 435 if( p->span.dyn ) sqliteFree((char*)p->span.z); 436 if( p->token.dyn ) sqliteFree((char*)p->token.z); 437 sqlite3ExprDelete(p->pLeft); 438 sqlite3ExprDelete(p->pRight); 439 sqlite3ExprListDelete(p->pList); 440 sqlite3SelectDelete(p->pSelect); 441 sqliteFree(p); 442 } 443 444 /* 445 ** The Expr.token field might be a string literal that is quoted. 446 ** If so, remove the quotation marks. 447 */ 448 void sqlite3DequoteExpr(Expr *p){ 449 if( ExprHasAnyProperty(p, EP_Dequoted) ){ 450 return; 451 } 452 ExprSetProperty(p, EP_Dequoted); 453 if( p->token.dyn==0 ){ 454 sqlite3TokenCopy(&p->token, &p->token); 455 } 456 sqlite3Dequote((char*)p->token.z); 457 } 458 459 460 /* 461 ** The following group of routines make deep copies of expressions, 462 ** expression lists, ID lists, and select statements. The copies can 463 ** be deleted (by being passed to their respective ...Delete() routines) 464 ** without effecting the originals. 465 ** 466 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 467 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 468 ** by subsequent calls to sqlite*ListAppend() routines. 469 ** 470 ** Any tables that the SrcList might point to are not duplicated. 471 */ 472 Expr *sqlite3ExprDup(Expr *p){ 473 Expr *pNew; 474 if( p==0 ) return 0; 475 pNew = sqliteMallocRaw( sizeof(*p) ); 476 if( pNew==0 ) return 0; 477 memcpy(pNew, p, sizeof(*pNew)); 478 if( p->token.z!=0 ){ 479 pNew->token.z = (u8*)sqliteStrNDup((char*)p->token.z, p->token.n); 480 pNew->token.dyn = 1; 481 }else{ 482 assert( pNew->token.z==0 ); 483 } 484 pNew->span.z = 0; 485 pNew->pLeft = sqlite3ExprDup(p->pLeft); 486 pNew->pRight = sqlite3ExprDup(p->pRight); 487 pNew->pList = sqlite3ExprListDup(p->pList); 488 pNew->pSelect = sqlite3SelectDup(p->pSelect); 489 return pNew; 490 } 491 void sqlite3TokenCopy(Token *pTo, Token *pFrom){ 492 if( pTo->dyn ) sqliteFree((char*)pTo->z); 493 if( pFrom->z ){ 494 pTo->n = pFrom->n; 495 pTo->z = (u8*)sqliteStrNDup((char*)pFrom->z, pFrom->n); 496 pTo->dyn = 1; 497 }else{ 498 pTo->z = 0; 499 } 500 } 501 ExprList *sqlite3ExprListDup(ExprList *p){ 502 ExprList *pNew; 503 struct ExprList_item *pItem, *pOldItem; 504 int i; 505 if( p==0 ) return 0; 506 pNew = sqliteMalloc( sizeof(*pNew) ); 507 if( pNew==0 ) return 0; 508 pNew->nExpr = pNew->nAlloc = p->nExpr; 509 pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) ); 510 if( pItem==0 ){ 511 sqliteFree(pNew); 512 return 0; 513 } 514 pOldItem = p->a; 515 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 516 Expr *pNewExpr, *pOldExpr; 517 pItem->pExpr = pNewExpr = sqlite3ExprDup(pOldExpr = pOldItem->pExpr); 518 if( pOldExpr->span.z!=0 && pNewExpr ){ 519 /* Always make a copy of the span for top-level expressions in the 520 ** expression list. The logic in SELECT processing that determines 521 ** the names of columns in the result set needs this information */ 522 sqlite3TokenCopy(&pNewExpr->span, &pOldExpr->span); 523 } 524 assert( pNewExpr==0 || pNewExpr->span.z!=0 525 || pOldExpr->span.z==0 526 || sqlite3MallocFailed() ); 527 pItem->zName = sqliteStrDup(pOldItem->zName); 528 pItem->sortOrder = pOldItem->sortOrder; 529 pItem->isAgg = pOldItem->isAgg; 530 pItem->done = 0; 531 } 532 return pNew; 533 } 534 535 /* 536 ** If cursors, triggers, views and subqueries are all omitted from 537 ** the build, then none of the following routines, except for 538 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 539 ** called with a NULL argument. 540 */ 541 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 542 || !defined(SQLITE_OMIT_SUBQUERY) 543 SrcList *sqlite3SrcListDup(SrcList *p){ 544 SrcList *pNew; 545 int i; 546 int nByte; 547 if( p==0 ) return 0; 548 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 549 pNew = sqliteMallocRaw( nByte ); 550 if( pNew==0 ) return 0; 551 pNew->nSrc = pNew->nAlloc = p->nSrc; 552 for(i=0; i<p->nSrc; i++){ 553 struct SrcList_item *pNewItem = &pNew->a[i]; 554 struct SrcList_item *pOldItem = &p->a[i]; 555 Table *pTab; 556 pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase); 557 pNewItem->zName = sqliteStrDup(pOldItem->zName); 558 pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias); 559 pNewItem->jointype = pOldItem->jointype; 560 pNewItem->iCursor = pOldItem->iCursor; 561 pNewItem->isPopulated = pOldItem->isPopulated; 562 pTab = pNewItem->pTab = pOldItem->pTab; 563 if( pTab ){ 564 pTab->nRef++; 565 } 566 pNewItem->pSelect = sqlite3SelectDup(pOldItem->pSelect); 567 pNewItem->pOn = sqlite3ExprDup(pOldItem->pOn); 568 pNewItem->pUsing = sqlite3IdListDup(pOldItem->pUsing); 569 pNewItem->colUsed = pOldItem->colUsed; 570 } 571 return pNew; 572 } 573 IdList *sqlite3IdListDup(IdList *p){ 574 IdList *pNew; 575 int i; 576 if( p==0 ) return 0; 577 pNew = sqliteMallocRaw( sizeof(*pNew) ); 578 if( pNew==0 ) return 0; 579 pNew->nId = pNew->nAlloc = p->nId; 580 pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) ); 581 if( pNew->a==0 ){ 582 sqliteFree(pNew); 583 return 0; 584 } 585 for(i=0; i<p->nId; i++){ 586 struct IdList_item *pNewItem = &pNew->a[i]; 587 struct IdList_item *pOldItem = &p->a[i]; 588 pNewItem->zName = sqliteStrDup(pOldItem->zName); 589 pNewItem->idx = pOldItem->idx; 590 } 591 return pNew; 592 } 593 Select *sqlite3SelectDup(Select *p){ 594 Select *pNew; 595 if( p==0 ) return 0; 596 pNew = sqliteMallocRaw( sizeof(*p) ); 597 if( pNew==0 ) return 0; 598 pNew->isDistinct = p->isDistinct; 599 pNew->pEList = sqlite3ExprListDup(p->pEList); 600 pNew->pSrc = sqlite3SrcListDup(p->pSrc); 601 pNew->pWhere = sqlite3ExprDup(p->pWhere); 602 pNew->pGroupBy = sqlite3ExprListDup(p->pGroupBy); 603 pNew->pHaving = sqlite3ExprDup(p->pHaving); 604 pNew->pOrderBy = sqlite3ExprListDup(p->pOrderBy); 605 pNew->op = p->op; 606 pNew->pPrior = sqlite3SelectDup(p->pPrior); 607 pNew->pLimit = sqlite3ExprDup(p->pLimit); 608 pNew->pOffset = sqlite3ExprDup(p->pOffset); 609 pNew->iLimit = -1; 610 pNew->iOffset = -1; 611 pNew->isResolved = p->isResolved; 612 pNew->isAgg = p->isAgg; 613 pNew->usesEphm = 0; 614 pNew->disallowOrderBy = 0; 615 pNew->pRightmost = 0; 616 pNew->addrOpenEphm[0] = -1; 617 pNew->addrOpenEphm[1] = -1; 618 pNew->addrOpenEphm[2] = -1; 619 return pNew; 620 } 621 #else 622 Select *sqlite3SelectDup(Select *p){ 623 assert( p==0 ); 624 return 0; 625 } 626 #endif 627 628 629 /* 630 ** Add a new element to the end of an expression list. If pList is 631 ** initially NULL, then create a new expression list. 632 */ 633 ExprList *sqlite3ExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){ 634 if( pList==0 ){ 635 pList = sqliteMalloc( sizeof(ExprList) ); 636 if( pList==0 ){ 637 goto no_mem; 638 } 639 assert( pList->nAlloc==0 ); 640 } 641 if( pList->nAlloc<=pList->nExpr ){ 642 struct ExprList_item *a; 643 int n = pList->nAlloc*2 + 4; 644 a = sqliteRealloc(pList->a, n*sizeof(pList->a[0])); 645 if( a==0 ){ 646 goto no_mem; 647 } 648 pList->a = a; 649 pList->nAlloc = n; 650 } 651 assert( pList->a!=0 ); 652 if( pExpr || pName ){ 653 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 654 memset(pItem, 0, sizeof(*pItem)); 655 pItem->zName = sqlite3NameFromToken(pName); 656 pItem->pExpr = pExpr; 657 } 658 return pList; 659 660 no_mem: 661 /* Avoid leaking memory if malloc has failed. */ 662 sqlite3ExprDelete(pExpr); 663 sqlite3ExprListDelete(pList); 664 return 0; 665 } 666 667 /* 668 ** If the expression list pEList contains more than iLimit elements, 669 ** leave an error message in pParse. 670 */ 671 void sqlite3ExprListCheckLength( 672 Parse *pParse, 673 ExprList *pEList, 674 int iLimit, 675 const char *zObject 676 ){ 677 if( pEList && pEList->nExpr>iLimit ){ 678 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 679 } 680 } 681 682 683 #if SQLITE_MAX_EXPR_DEPTH>0 684 /* The following three functions, heightOfExpr(), heightOfExprList() 685 ** and heightOfSelect(), are used to determine the maximum height 686 ** of any expression tree referenced by the structure passed as the 687 ** first argument. 688 ** 689 ** If this maximum height is greater than the current value pointed 690 ** to by pnHeight, the second parameter, then set *pnHeight to that 691 ** value. 692 */ 693 static void heightOfExpr(Expr *p, int *pnHeight){ 694 if( p ){ 695 if( p->nHeight>*pnHeight ){ 696 *pnHeight = p->nHeight; 697 } 698 } 699 } 700 static void heightOfExprList(ExprList *p, int *pnHeight){ 701 if( p ){ 702 int i; 703 for(i=0; i<p->nExpr; i++){ 704 heightOfExpr(p->a[i].pExpr, pnHeight); 705 } 706 } 707 } 708 static void heightOfSelect(Select *p, int *pnHeight){ 709 if( p ){ 710 heightOfExpr(p->pWhere, pnHeight); 711 heightOfExpr(p->pHaving, pnHeight); 712 heightOfExpr(p->pLimit, pnHeight); 713 heightOfExpr(p->pOffset, pnHeight); 714 heightOfExprList(p->pEList, pnHeight); 715 heightOfExprList(p->pGroupBy, pnHeight); 716 heightOfExprList(p->pOrderBy, pnHeight); 717 heightOfSelect(p->pPrior, pnHeight); 718 } 719 } 720 721 /* 722 ** Set the Expr.nHeight variable in the structure passed as an 723 ** argument. An expression with no children, Expr.pList or 724 ** Expr.pSelect member has a height of 1. Any other expression 725 ** has a height equal to the maximum height of any other 726 ** referenced Expr plus one. 727 */ 728 void sqlite3ExprSetHeight(Expr *p){ 729 int nHeight = 0; 730 heightOfExpr(p->pLeft, &nHeight); 731 heightOfExpr(p->pRight, &nHeight); 732 heightOfExprList(p->pList, &nHeight); 733 heightOfSelect(p->pSelect, &nHeight); 734 p->nHeight = nHeight + 1; 735 } 736 737 /* 738 ** Return the maximum height of any expression tree referenced 739 ** by the select statement passed as an argument. 740 */ 741 int sqlite3SelectExprHeight(Select *p){ 742 int nHeight = 0; 743 heightOfSelect(p, &nHeight); 744 return nHeight; 745 } 746 #endif 747 748 /* 749 ** Delete an entire expression list. 750 */ 751 void sqlite3ExprListDelete(ExprList *pList){ 752 int i; 753 struct ExprList_item *pItem; 754 if( pList==0 ) return; 755 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 756 assert( pList->nExpr<=pList->nAlloc ); 757 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 758 sqlite3ExprDelete(pItem->pExpr); 759 sqliteFree(pItem->zName); 760 } 761 sqliteFree(pList->a); 762 sqliteFree(pList); 763 } 764 765 /* 766 ** Walk an expression tree. Call xFunc for each node visited. 767 ** 768 ** The return value from xFunc determines whether the tree walk continues. 769 ** 0 means continue walking the tree. 1 means do not walk children 770 ** of the current node but continue with siblings. 2 means abandon 771 ** the tree walk completely. 772 ** 773 ** The return value from this routine is 1 to abandon the tree walk 774 ** and 0 to continue. 775 ** 776 ** NOTICE: This routine does *not* descend into subqueries. 777 */ 778 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); 779 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ 780 int rc; 781 if( pExpr==0 ) return 0; 782 rc = (*xFunc)(pArg, pExpr); 783 if( rc==0 ){ 784 if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; 785 if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; 786 if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; 787 } 788 return rc>1; 789 } 790 791 /* 792 ** Call walkExprTree() for every expression in list p. 793 */ 794 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ 795 int i; 796 struct ExprList_item *pItem; 797 if( !p ) return 0; 798 for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ 799 if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; 800 } 801 return 0; 802 } 803 804 /* 805 ** Call walkExprTree() for every expression in Select p, not including 806 ** expressions that are part of sub-selects in any FROM clause or the LIMIT 807 ** or OFFSET expressions.. 808 */ 809 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ 810 walkExprList(p->pEList, xFunc, pArg); 811 walkExprTree(p->pWhere, xFunc, pArg); 812 walkExprList(p->pGroupBy, xFunc, pArg); 813 walkExprTree(p->pHaving, xFunc, pArg); 814 walkExprList(p->pOrderBy, xFunc, pArg); 815 if( p->pPrior ){ 816 walkSelectExpr(p->pPrior, xFunc, pArg); 817 } 818 return 0; 819 } 820 821 822 /* 823 ** This routine is designed as an xFunc for walkExprTree(). 824 ** 825 ** pArg is really a pointer to an integer. If we can tell by looking 826 ** at pExpr that the expression that contains pExpr is not a constant 827 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk. 828 ** If pExpr does does not disqualify the expression from being a constant 829 ** then do nothing. 830 ** 831 ** After walking the whole tree, if no nodes are found that disqualify 832 ** the expression as constant, then we assume the whole expression 833 ** is constant. See sqlite3ExprIsConstant() for additional information. 834 */ 835 static int exprNodeIsConstant(void *pArg, Expr *pExpr){ 836 int *pN = (int*)pArg; 837 838 /* If *pArg is 3 then any term of the expression that comes from 839 ** the ON or USING clauses of a join disqualifies the expression 840 ** from being considered constant. */ 841 if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 842 *pN = 0; 843 return 2; 844 } 845 846 switch( pExpr->op ){ 847 /* Consider functions to be constant if all their arguments are constant 848 ** and *pArg==2 */ 849 case TK_FUNCTION: 850 if( (*pN)==2 ) return 0; 851 /* Fall through */ 852 case TK_ID: 853 case TK_COLUMN: 854 case TK_DOT: 855 case TK_AGG_FUNCTION: 856 case TK_AGG_COLUMN: 857 #ifndef SQLITE_OMIT_SUBQUERY 858 case TK_SELECT: 859 case TK_EXISTS: 860 #endif 861 *pN = 0; 862 return 2; 863 case TK_IN: 864 if( pExpr->pSelect ){ 865 *pN = 0; 866 return 2; 867 } 868 default: 869 return 0; 870 } 871 } 872 873 /* 874 ** Walk an expression tree. Return 1 if the expression is constant 875 ** and 0 if it involves variables or function calls. 876 ** 877 ** For the purposes of this function, a double-quoted string (ex: "abc") 878 ** is considered a variable but a single-quoted string (ex: 'abc') is 879 ** a constant. 880 */ 881 int sqlite3ExprIsConstant(Expr *p){ 882 int isConst = 1; 883 walkExprTree(p, exprNodeIsConstant, &isConst); 884 return isConst; 885 } 886 887 /* 888 ** Walk an expression tree. Return 1 if the expression is constant 889 ** that does no originate from the ON or USING clauses of a join. 890 ** Return 0 if it involves variables or function calls or terms from 891 ** an ON or USING clause. 892 */ 893 int sqlite3ExprIsConstantNotJoin(Expr *p){ 894 int isConst = 3; 895 walkExprTree(p, exprNodeIsConstant, &isConst); 896 return isConst!=0; 897 } 898 899 /* 900 ** Walk an expression tree. Return 1 if the expression is constant 901 ** or a function call with constant arguments. Return and 0 if there 902 ** are any variables. 903 ** 904 ** For the purposes of this function, a double-quoted string (ex: "abc") 905 ** is considered a variable but a single-quoted string (ex: 'abc') is 906 ** a constant. 907 */ 908 int sqlite3ExprIsConstantOrFunction(Expr *p){ 909 int isConst = 2; 910 walkExprTree(p, exprNodeIsConstant, &isConst); 911 return isConst!=0; 912 } 913 914 /* 915 ** If the expression p codes a constant integer that is small enough 916 ** to fit in a 32-bit integer, return 1 and put the value of the integer 917 ** in *pValue. If the expression is not an integer or if it is too big 918 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 919 */ 920 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 921 switch( p->op ){ 922 case TK_INTEGER: { 923 if( sqlite3GetInt32((char*)p->token.z, pValue) ){ 924 return 1; 925 } 926 break; 927 } 928 case TK_UPLUS: { 929 return sqlite3ExprIsInteger(p->pLeft, pValue); 930 } 931 case TK_UMINUS: { 932 int v; 933 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 934 *pValue = -v; 935 return 1; 936 } 937 break; 938 } 939 default: break; 940 } 941 return 0; 942 } 943 944 /* 945 ** Return TRUE if the given string is a row-id column name. 946 */ 947 int sqlite3IsRowid(const char *z){ 948 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 949 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 950 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 951 return 0; 952 } 953 954 /* 955 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up 956 ** that name in the set of source tables in pSrcList and make the pExpr 957 ** expression node refer back to that source column. The following changes 958 ** are made to pExpr: 959 ** 960 ** pExpr->iDb Set the index in db->aDb[] of the database holding 961 ** the table. 962 ** pExpr->iTable Set to the cursor number for the table obtained 963 ** from pSrcList. 964 ** pExpr->iColumn Set to the column number within the table. 965 ** pExpr->op Set to TK_COLUMN. 966 ** pExpr->pLeft Any expression this points to is deleted 967 ** pExpr->pRight Any expression this points to is deleted. 968 ** 969 ** The pDbToken is the name of the database (the "X"). This value may be 970 ** NULL meaning that name is of the form Y.Z or Z. Any available database 971 ** can be used. The pTableToken is the name of the table (the "Y"). This 972 ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it 973 ** means that the form of the name is Z and that columns from any table 974 ** can be used. 975 ** 976 ** If the name cannot be resolved unambiguously, leave an error message 977 ** in pParse and return non-zero. Return zero on success. 978 */ 979 static int lookupName( 980 Parse *pParse, /* The parsing context */ 981 Token *pDbToken, /* Name of the database containing table, or NULL */ 982 Token *pTableToken, /* Name of table containing column, or NULL */ 983 Token *pColumnToken, /* Name of the column. */ 984 NameContext *pNC, /* The name context used to resolve the name */ 985 Expr *pExpr /* Make this EXPR node point to the selected column */ 986 ){ 987 char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ 988 char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ 989 char *zCol = 0; /* Name of the column. The "Z" */ 990 int i, j; /* Loop counters */ 991 int cnt = 0; /* Number of matching column names */ 992 int cntTab = 0; /* Number of matching table names */ 993 sqlite3 *db = pParse->db; /* The database */ 994 struct SrcList_item *pItem; /* Use for looping over pSrcList items */ 995 struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ 996 NameContext *pTopNC = pNC; /* First namecontext in the list */ 997 998 assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ 999 zDb = sqlite3NameFromToken(pDbToken); 1000 zTab = sqlite3NameFromToken(pTableToken); 1001 zCol = sqlite3NameFromToken(pColumnToken); 1002 if( sqlite3MallocFailed() ){ 1003 goto lookupname_end; 1004 } 1005 1006 pExpr->iTable = -1; 1007 while( pNC && cnt==0 ){ 1008 ExprList *pEList; 1009 SrcList *pSrcList = pNC->pSrcList; 1010 1011 if( pSrcList ){ 1012 for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ 1013 Table *pTab; 1014 int iDb; 1015 Column *pCol; 1016 1017 pTab = pItem->pTab; 1018 assert( pTab!=0 ); 1019 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1020 assert( pTab->nCol>0 ); 1021 if( zTab ){ 1022 if( pItem->zAlias ){ 1023 char *zTabName = pItem->zAlias; 1024 if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 1025 }else{ 1026 char *zTabName = pTab->zName; 1027 if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 1028 if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){ 1029 continue; 1030 } 1031 } 1032 } 1033 if( 0==(cntTab++) ){ 1034 pExpr->iTable = pItem->iCursor; 1035 pExpr->pSchema = pTab->pSchema; 1036 pMatch = pItem; 1037 } 1038 for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ 1039 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 1040 const char *zColl = pTab->aCol[j].zColl; 1041 IdList *pUsing; 1042 cnt++; 1043 pExpr->iTable = pItem->iCursor; 1044 pMatch = pItem; 1045 pExpr->pSchema = pTab->pSchema; 1046 /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ 1047 pExpr->iColumn = j==pTab->iPKey ? -1 : j; 1048 pExpr->affinity = pTab->aCol[j].affinity; 1049 if( (pExpr->flags & EP_ExpCollate)==0 ){ 1050 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); 1051 } 1052 if( i<pSrcList->nSrc-1 ){ 1053 if( pItem[1].jointype & JT_NATURAL ){ 1054 /* If this match occurred in the left table of a natural join, 1055 ** then skip the right table to avoid a duplicate match */ 1056 pItem++; 1057 i++; 1058 }else if( (pUsing = pItem[1].pUsing)!=0 ){ 1059 /* If this match occurs on a column that is in the USING clause 1060 ** of a join, skip the search of the right table of the join 1061 ** to avoid a duplicate match there. */ 1062 int k; 1063 for(k=0; k<pUsing->nId; k++){ 1064 if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ 1065 pItem++; 1066 i++; 1067 break; 1068 } 1069 } 1070 } 1071 } 1072 break; 1073 } 1074 } 1075 } 1076 } 1077 1078 #ifndef SQLITE_OMIT_TRIGGER 1079 /* If we have not already resolved the name, then maybe 1080 ** it is a new.* or old.* trigger argument reference 1081 */ 1082 if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ 1083 TriggerStack *pTriggerStack = pParse->trigStack; 1084 Table *pTab = 0; 1085 if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ 1086 pExpr->iTable = pTriggerStack->newIdx; 1087 assert( pTriggerStack->pTab ); 1088 pTab = pTriggerStack->pTab; 1089 }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ 1090 pExpr->iTable = pTriggerStack->oldIdx; 1091 assert( pTriggerStack->pTab ); 1092 pTab = pTriggerStack->pTab; 1093 } 1094 1095 if( pTab ){ 1096 int iCol; 1097 Column *pCol = pTab->aCol; 1098 1099 pExpr->pSchema = pTab->pSchema; 1100 cntTab++; 1101 for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) { 1102 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 1103 const char *zColl = pTab->aCol[iCol].zColl; 1104 cnt++; 1105 pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol; 1106 pExpr->affinity = pTab->aCol[iCol].affinity; 1107 if( (pExpr->flags & EP_ExpCollate)==0 ){ 1108 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); 1109 } 1110 pExpr->pTab = pTab; 1111 break; 1112 } 1113 } 1114 } 1115 } 1116 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ 1117 1118 /* 1119 ** Perhaps the name is a reference to the ROWID 1120 */ 1121 if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ 1122 cnt = 1; 1123 pExpr->iColumn = -1; 1124 pExpr->affinity = SQLITE_AFF_INTEGER; 1125 } 1126 1127 /* 1128 ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z 1129 ** might refer to an result-set alias. This happens, for example, when 1130 ** we are resolving names in the WHERE clause of the following command: 1131 ** 1132 ** SELECT a+b AS x FROM table WHERE x<10; 1133 ** 1134 ** In cases like this, replace pExpr with a copy of the expression that 1135 ** forms the result set entry ("a+b" in the example) and return immediately. 1136 ** Note that the expression in the result set should have already been 1137 ** resolved by the time the WHERE clause is resolved. 1138 */ 1139 if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ 1140 for(j=0; j<pEList->nExpr; j++){ 1141 char *zAs = pEList->a[j].zName; 1142 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ 1143 Expr *pDup, *pOrig; 1144 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 1145 assert( pExpr->pList==0 ); 1146 assert( pExpr->pSelect==0 ); 1147 pOrig = pEList->a[j].pExpr; 1148 if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){ 1149 sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); 1150 sqliteFree(zCol); 1151 return 2; 1152 } 1153 pDup = sqlite3ExprDup(pOrig); 1154 if( pExpr->flags & EP_ExpCollate ){ 1155 pDup->pColl = pExpr->pColl; 1156 pDup->flags |= EP_ExpCollate; 1157 } 1158 if( pExpr->span.dyn ) sqliteFree((char*)pExpr->span.z); 1159 if( pExpr->token.dyn ) sqliteFree((char*)pExpr->token.z); 1160 memcpy(pExpr, pDup, sizeof(*pExpr)); 1161 sqliteFree(pDup); 1162 cnt = 1; 1163 pMatch = 0; 1164 assert( zTab==0 && zDb==0 ); 1165 goto lookupname_end_2; 1166 } 1167 } 1168 } 1169 1170 /* Advance to the next name context. The loop will exit when either 1171 ** we have a match (cnt>0) or when we run out of name contexts. 1172 */ 1173 if( cnt==0 ){ 1174 pNC = pNC->pNext; 1175 } 1176 } 1177 1178 /* 1179 ** If X and Y are NULL (in other words if only the column name Z is 1180 ** supplied) and the value of Z is enclosed in double-quotes, then 1181 ** Z is a string literal if it doesn't match any column names. In that 1182 ** case, we need to return right away and not make any changes to 1183 ** pExpr. 1184 ** 1185 ** Because no reference was made to outer contexts, the pNC->nRef 1186 ** fields are not changed in any context. 1187 */ 1188 if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ 1189 sqliteFree(zCol); 1190 return 0; 1191 } 1192 1193 /* 1194 ** cnt==0 means there was not match. cnt>1 means there were two or 1195 ** more matches. Either way, we have an error. 1196 */ 1197 if( cnt!=1 ){ 1198 char *z = 0; 1199 char *zErr; 1200 zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s"; 1201 if( zDb ){ 1202 sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0); 1203 }else if( zTab ){ 1204 sqlite3SetString(&z, zTab, ".", zCol, (char*)0); 1205 }else{ 1206 z = sqliteStrDup(zCol); 1207 } 1208 sqlite3ErrorMsg(pParse, zErr, z); 1209 sqliteFree(z); 1210 pTopNC->nErr++; 1211 } 1212 1213 /* If a column from a table in pSrcList is referenced, then record 1214 ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes 1215 ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the 1216 ** column number is greater than the number of bits in the bitmask 1217 ** then set the high-order bit of the bitmask. 1218 */ 1219 if( pExpr->iColumn>=0 && pMatch!=0 ){ 1220 int n = pExpr->iColumn; 1221 if( n>=sizeof(Bitmask)*8 ){ 1222 n = sizeof(Bitmask)*8-1; 1223 } 1224 assert( pMatch->iCursor==pExpr->iTable ); 1225 pMatch->colUsed |= ((Bitmask)1)<<n; 1226 } 1227 1228 lookupname_end: 1229 /* Clean up and return 1230 */ 1231 sqliteFree(zDb); 1232 sqliteFree(zTab); 1233 sqlite3ExprDelete(pExpr->pLeft); 1234 pExpr->pLeft = 0; 1235 sqlite3ExprDelete(pExpr->pRight); 1236 pExpr->pRight = 0; 1237 pExpr->op = TK_COLUMN; 1238 lookupname_end_2: 1239 sqliteFree(zCol); 1240 if( cnt==1 ){ 1241 assert( pNC!=0 ); 1242 sqlite3AuthRead(pParse, pExpr, pNC->pSrcList); 1243 if( pMatch && !pMatch->pSelect ){ 1244 pExpr->pTab = pMatch->pTab; 1245 } 1246 /* Increment the nRef value on all name contexts from TopNC up to 1247 ** the point where the name matched. */ 1248 for(;;){ 1249 assert( pTopNC!=0 ); 1250 pTopNC->nRef++; 1251 if( pTopNC==pNC ) break; 1252 pTopNC = pTopNC->pNext; 1253 } 1254 return 0; 1255 } else { 1256 return 1; 1257 } 1258 } 1259 1260 /* 1261 ** This routine is designed as an xFunc for walkExprTree(). 1262 ** 1263 ** Resolve symbolic names into TK_COLUMN operators for the current 1264 ** node in the expression tree. Return 0 to continue the search down 1265 ** the tree or 2 to abort the tree walk. 1266 ** 1267 ** This routine also does error checking and name resolution for 1268 ** function names. The operator for aggregate functions is changed 1269 ** to TK_AGG_FUNCTION. 1270 */ 1271 static int nameResolverStep(void *pArg, Expr *pExpr){ 1272 NameContext *pNC = (NameContext*)pArg; 1273 Parse *pParse; 1274 1275 if( pExpr==0 ) return 1; 1276 assert( pNC!=0 ); 1277 pParse = pNC->pParse; 1278 1279 if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; 1280 ExprSetProperty(pExpr, EP_Resolved); 1281 #ifndef NDEBUG 1282 if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ 1283 SrcList *pSrcList = pNC->pSrcList; 1284 int i; 1285 for(i=0; i<pNC->pSrcList->nSrc; i++){ 1286 assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); 1287 } 1288 } 1289 #endif 1290 switch( pExpr->op ){ 1291 /* Double-quoted strings (ex: "abc") are used as identifiers if 1292 ** possible. Otherwise they remain as strings. Single-quoted 1293 ** strings (ex: 'abc') are always string literals. 1294 */ 1295 case TK_STRING: { 1296 if( pExpr->token.z[0]=='\'' ) break; 1297 /* Fall thru into the TK_ID case if this is a double-quoted string */ 1298 } 1299 /* A lone identifier is the name of a column. 1300 */ 1301 case TK_ID: { 1302 lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); 1303 return 1; 1304 } 1305 1306 /* A table name and column name: ID.ID 1307 ** Or a database, table and column: ID.ID.ID 1308 */ 1309 case TK_DOT: { 1310 Token *pColumn; 1311 Token *pTable; 1312 Token *pDb; 1313 Expr *pRight; 1314 1315 /* if( pSrcList==0 ) break; */ 1316 pRight = pExpr->pRight; 1317 if( pRight->op==TK_ID ){ 1318 pDb = 0; 1319 pTable = &pExpr->pLeft->token; 1320 pColumn = &pRight->token; 1321 }else{ 1322 assert( pRight->op==TK_DOT ); 1323 pDb = &pExpr->pLeft->token; 1324 pTable = &pRight->pLeft->token; 1325 pColumn = &pRight->pRight->token; 1326 } 1327 lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); 1328 return 1; 1329 } 1330 1331 /* Resolve function names 1332 */ 1333 case TK_CONST_FUNC: 1334 case TK_FUNCTION: { 1335 ExprList *pList = pExpr->pList; /* The argument list */ 1336 int n = pList ? pList->nExpr : 0; /* Number of arguments */ 1337 int no_such_func = 0; /* True if no such function exists */ 1338 int wrong_num_args = 0; /* True if wrong number of arguments */ 1339 int is_agg = 0; /* True if is an aggregate function */ 1340 int i; 1341 int auth; /* Authorization to use the function */ 1342 int nId; /* Number of characters in function name */ 1343 const char *zId; /* The function name. */ 1344 FuncDef *pDef; /* Information about the function */ 1345 int enc = ENC(pParse->db); /* The database encoding */ 1346 1347 zId = (char*)pExpr->token.z; 1348 nId = pExpr->token.n; 1349 pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); 1350 if( pDef==0 ){ 1351 pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); 1352 if( pDef==0 ){ 1353 no_such_func = 1; 1354 }else{ 1355 wrong_num_args = 1; 1356 } 1357 }else{ 1358 is_agg = pDef->xFunc==0; 1359 } 1360 #ifndef SQLITE_OMIT_AUTHORIZATION 1361 if( pDef ){ 1362 auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); 1363 if( auth!=SQLITE_OK ){ 1364 if( auth==SQLITE_DENY ){ 1365 sqlite3ErrorMsg(pParse, "not authorized to use function: %s", 1366 pDef->zName); 1367 pNC->nErr++; 1368 } 1369 pExpr->op = TK_NULL; 1370 return 1; 1371 } 1372 } 1373 #endif 1374 if( is_agg && !pNC->allowAgg ){ 1375 sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); 1376 pNC->nErr++; 1377 is_agg = 0; 1378 }else if( no_such_func ){ 1379 sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); 1380 pNC->nErr++; 1381 }else if( wrong_num_args ){ 1382 sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", 1383 nId, zId); 1384 pNC->nErr++; 1385 } 1386 if( is_agg ){ 1387 pExpr->op = TK_AGG_FUNCTION; 1388 pNC->hasAgg = 1; 1389 } 1390 if( is_agg ) pNC->allowAgg = 0; 1391 for(i=0; pNC->nErr==0 && i<n; i++){ 1392 walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC); 1393 } 1394 if( is_agg ) pNC->allowAgg = 1; 1395 /* FIX ME: Compute pExpr->affinity based on the expected return 1396 ** type of the function 1397 */ 1398 return is_agg; 1399 } 1400 #ifndef SQLITE_OMIT_SUBQUERY 1401 case TK_SELECT: 1402 case TK_EXISTS: 1403 #endif 1404 case TK_IN: { 1405 if( pExpr->pSelect ){ 1406 int nRef = pNC->nRef; 1407 #ifndef SQLITE_OMIT_CHECK 1408 if( pNC->isCheck ){ 1409 sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); 1410 } 1411 #endif 1412 sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); 1413 assert( pNC->nRef>=nRef ); 1414 if( nRef!=pNC->nRef ){ 1415 ExprSetProperty(pExpr, EP_VarSelect); 1416 } 1417 } 1418 break; 1419 } 1420 #ifndef SQLITE_OMIT_CHECK 1421 case TK_VARIABLE: { 1422 if( pNC->isCheck ){ 1423 sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); 1424 } 1425 break; 1426 } 1427 #endif 1428 } 1429 return 0; 1430 } 1431 1432 /* 1433 ** This routine walks an expression tree and resolves references to 1434 ** table columns. Nodes of the form ID.ID or ID resolve into an 1435 ** index to the table in the table list and a column offset. The 1436 ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable 1437 ** value is changed to the index of the referenced table in pTabList 1438 ** plus the "base" value. The base value will ultimately become the 1439 ** VDBE cursor number for a cursor that is pointing into the referenced 1440 ** table. The Expr.iColumn value is changed to the index of the column 1441 ** of the referenced table. The Expr.iColumn value for the special 1442 ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an 1443 ** alias for ROWID. 1444 ** 1445 ** Also resolve function names and check the functions for proper 1446 ** usage. Make sure all function names are recognized and all functions 1447 ** have the correct number of arguments. Leave an error message 1448 ** in pParse->zErrMsg if anything is amiss. Return the number of errors. 1449 ** 1450 ** If the expression contains aggregate functions then set the EP_Agg 1451 ** property on the expression. 1452 */ 1453 int sqlite3ExprResolveNames( 1454 NameContext *pNC, /* Namespace to resolve expressions in. */ 1455 Expr *pExpr /* The expression to be analyzed. */ 1456 ){ 1457 int savedHasAgg; 1458 if( pExpr==0 ) return 0; 1459 #if SQLITE_MAX_EXPR_DEPTH>0 1460 if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){ 1461 sqlite3ErrorMsg(pNC->pParse, 1462 "Expression tree is too large (maximum depth %d)", 1463 SQLITE_MAX_EXPR_DEPTH 1464 ); 1465 return 1; 1466 } 1467 pNC->pParse->nHeight += pExpr->nHeight; 1468 #endif 1469 savedHasAgg = pNC->hasAgg; 1470 pNC->hasAgg = 0; 1471 walkExprTree(pExpr, nameResolverStep, pNC); 1472 #if SQLITE_MAX_EXPR_DEPTH>0 1473 pNC->pParse->nHeight -= pExpr->nHeight; 1474 #endif 1475 if( pNC->nErr>0 ){ 1476 ExprSetProperty(pExpr, EP_Error); 1477 } 1478 if( pNC->hasAgg ){ 1479 ExprSetProperty(pExpr, EP_Agg); 1480 }else if( savedHasAgg ){ 1481 pNC->hasAgg = 1; 1482 } 1483 return ExprHasProperty(pExpr, EP_Error); 1484 } 1485 1486 /* 1487 ** A pointer instance of this structure is used to pass information 1488 ** through walkExprTree into codeSubqueryStep(). 1489 */ 1490 typedef struct QueryCoder QueryCoder; 1491 struct QueryCoder { 1492 Parse *pParse; /* The parsing context */ 1493 NameContext *pNC; /* Namespace of first enclosing query */ 1494 }; 1495 1496 1497 /* 1498 ** Generate code for scalar subqueries used as an expression 1499 ** and IN operators. Examples: 1500 ** 1501 ** (SELECT a FROM b) -- subquery 1502 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1503 ** x IN (4,5,11) -- IN operator with list on right-hand side 1504 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1505 ** 1506 ** The pExpr parameter describes the expression that contains the IN 1507 ** operator or subquery. 1508 */ 1509 #ifndef SQLITE_OMIT_SUBQUERY 1510 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 1511 int testAddr = 0; /* One-time test address */ 1512 Vdbe *v = sqlite3GetVdbe(pParse); 1513 if( v==0 ) return; 1514 1515 1516 /* This code must be run in its entirety every time it is encountered 1517 ** if any of the following is true: 1518 ** 1519 ** * The right-hand side is a correlated subquery 1520 ** * The right-hand side is an expression list containing variables 1521 ** * We are inside a trigger 1522 ** 1523 ** If all of the above are false, then we can run this code just once 1524 ** save the results, and reuse the same result on subsequent invocations. 1525 */ 1526 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ 1527 int mem = pParse->nMem++; 1528 sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0); 1529 testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0); 1530 assert( testAddr>0 || sqlite3MallocFailed() ); 1531 sqlite3VdbeAddOp(v, OP_MemInt, 1, mem); 1532 } 1533 1534 switch( pExpr->op ){ 1535 case TK_IN: { 1536 char affinity; 1537 KeyInfo keyInfo; 1538 int addr; /* Address of OP_OpenEphemeral instruction */ 1539 1540 affinity = sqlite3ExprAffinity(pExpr->pLeft); 1541 1542 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1543 ** expression it is handled the same way. A virtual table is 1544 ** filled with single-field index keys representing the results 1545 ** from the SELECT or the <exprlist>. 1546 ** 1547 ** If the 'x' expression is a column value, or the SELECT... 1548 ** statement returns a column value, then the affinity of that 1549 ** column is used to build the index keys. If both 'x' and the 1550 ** SELECT... statement are columns, then numeric affinity is used 1551 ** if either column has NUMERIC or INTEGER affinity. If neither 1552 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1553 ** is used. 1554 */ 1555 pExpr->iTable = pParse->nTab++; 1556 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0); 1557 memset(&keyInfo, 0, sizeof(keyInfo)); 1558 keyInfo.nField = 1; 1559 sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1); 1560 1561 if( pExpr->pSelect ){ 1562 /* Case 1: expr IN (SELECT ...) 1563 ** 1564 ** Generate code to write the results of the select into the temporary 1565 ** table allocated and opened above. 1566 */ 1567 int iParm = pExpr->iTable + (((int)affinity)<<16); 1568 ExprList *pEList; 1569 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1570 if( sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0) ){ 1571 return; 1572 } 1573 pEList = pExpr->pSelect->pEList; 1574 if( pEList && pEList->nExpr>0 ){ 1575 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1576 pEList->a[0].pExpr); 1577 } 1578 }else if( pExpr->pList ){ 1579 /* Case 2: expr IN (exprlist) 1580 ** 1581 ** For each expression, build an index key from the evaluation and 1582 ** store it in the temporary table. If <expr> is a column, then use 1583 ** that columns affinity when building index keys. If <expr> is not 1584 ** a column, use numeric affinity. 1585 */ 1586 int i; 1587 ExprList *pList = pExpr->pList; 1588 struct ExprList_item *pItem; 1589 1590 if( !affinity ){ 1591 affinity = SQLITE_AFF_NONE; 1592 } 1593 keyInfo.aColl[0] = pExpr->pLeft->pColl; 1594 1595 /* Loop through each expression in <exprlist>. */ 1596 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1597 Expr *pE2 = pItem->pExpr; 1598 1599 /* If the expression is not constant then we will need to 1600 ** disable the test that was generated above that makes sure 1601 ** this code only executes once. Because for a non-constant 1602 ** expression we need to rerun this code each time. 1603 */ 1604 if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){ 1605 sqlite3VdbeChangeToNoop(v, testAddr-1, 3); 1606 testAddr = 0; 1607 } 1608 1609 /* Evaluate the expression and insert it into the temp table */ 1610 sqlite3ExprCode(pParse, pE2); 1611 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); 1612 sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0); 1613 } 1614 } 1615 sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO); 1616 break; 1617 } 1618 1619 case TK_EXISTS: 1620 case TK_SELECT: { 1621 /* This has to be a scalar SELECT. Generate code to put the 1622 ** value of this select in a memory cell and record the number 1623 ** of the memory cell in iColumn. 1624 */ 1625 static const Token one = { (u8*)"1", 0, 1 }; 1626 Select *pSel; 1627 int iMem; 1628 int sop; 1629 1630 pExpr->iColumn = iMem = pParse->nMem++; 1631 pSel = pExpr->pSelect; 1632 if( pExpr->op==TK_SELECT ){ 1633 sop = SRT_Mem; 1634 sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0); 1635 VdbeComment((v, "# Init subquery result")); 1636 }else{ 1637 sop = SRT_Exists; 1638 sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem); 1639 VdbeComment((v, "# Init EXISTS result")); 1640 } 1641 sqlite3ExprDelete(pSel->pLimit); 1642 pSel->pLimit = sqlite3Expr(TK_INTEGER, 0, 0, &one); 1643 if( sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0) ){ 1644 return; 1645 } 1646 break; 1647 } 1648 } 1649 1650 if( testAddr ){ 1651 sqlite3VdbeJumpHere(v, testAddr); 1652 } 1653 1654 return; 1655 } 1656 #endif /* SQLITE_OMIT_SUBQUERY */ 1657 1658 /* 1659 ** Generate an instruction that will put the integer describe by 1660 ** text z[0..n-1] on the stack. 1661 */ 1662 static void codeInteger(Vdbe *v, const char *z, int n){ 1663 assert( z || sqlite3MallocFailed() ); 1664 if( z ){ 1665 int i; 1666 if( sqlite3GetInt32(z, &i) ){ 1667 sqlite3VdbeAddOp(v, OP_Integer, i, 0); 1668 }else if( sqlite3FitsIn64Bits(z) ){ 1669 sqlite3VdbeOp3(v, OP_Int64, 0, 0, z, n); 1670 }else{ 1671 sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n); 1672 } 1673 } 1674 } 1675 1676 1677 /* 1678 ** Generate code that will extract the iColumn-th column from 1679 ** table pTab and push that column value on the stack. There 1680 ** is an open cursor to pTab in iTable. If iColumn<0 then 1681 ** code is generated that extracts the rowid. 1682 */ 1683 void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){ 1684 if( iColumn<0 ){ 1685 int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid; 1686 sqlite3VdbeAddOp(v, op, iTable, 0); 1687 }else if( pTab==0 ){ 1688 sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn); 1689 }else{ 1690 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 1691 sqlite3VdbeAddOp(v, op, iTable, iColumn); 1692 sqlite3ColumnDefault(v, pTab, iColumn); 1693 #ifndef SQLITE_OMIT_FLOATING_POINT 1694 if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){ 1695 sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0); 1696 } 1697 #endif 1698 } 1699 } 1700 1701 /* 1702 ** Generate code into the current Vdbe to evaluate the given 1703 ** expression and leave the result on the top of stack. 1704 ** 1705 ** This code depends on the fact that certain token values (ex: TK_EQ) 1706 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 1707 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 1708 ** the make process cause these values to align. Assert()s in the code 1709 ** below verify that the numbers are aligned correctly. 1710 */ 1711 void sqlite3ExprCode(Parse *pParse, Expr *pExpr){ 1712 Vdbe *v = pParse->pVdbe; 1713 int op; 1714 int stackChng = 1; /* Amount of change to stack depth */ 1715 1716 if( v==0 ) return; 1717 if( pExpr==0 ){ 1718 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1719 return; 1720 } 1721 op = pExpr->op; 1722 switch( op ){ 1723 case TK_AGG_COLUMN: { 1724 AggInfo *pAggInfo = pExpr->pAggInfo; 1725 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 1726 if( !pAggInfo->directMode ){ 1727 sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0); 1728 break; 1729 }else if( pAggInfo->useSortingIdx ){ 1730 sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx, 1731 pCol->iSorterColumn); 1732 break; 1733 } 1734 /* Otherwise, fall thru into the TK_COLUMN case */ 1735 } 1736 case TK_COLUMN: { 1737 if( pExpr->iTable<0 ){ 1738 /* This only happens when coding check constraints */ 1739 assert( pParse->ckOffset>0 ); 1740 sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1); 1741 }else{ 1742 sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable); 1743 } 1744 break; 1745 } 1746 case TK_INTEGER: { 1747 codeInteger(v, (char*)pExpr->token.z, pExpr->token.n); 1748 break; 1749 } 1750 case TK_FLOAT: 1751 case TK_STRING: { 1752 assert( TK_FLOAT==OP_Real ); 1753 assert( TK_STRING==OP_String8 ); 1754 sqlite3DequoteExpr(pExpr); 1755 sqlite3VdbeOp3(v, op, 0, 0, (char*)pExpr->token.z, pExpr->token.n); 1756 break; 1757 } 1758 case TK_NULL: { 1759 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1760 break; 1761 } 1762 #ifndef SQLITE_OMIT_BLOB_LITERAL 1763 case TK_BLOB: { 1764 int n; 1765 const char *z; 1766 assert( TK_BLOB==OP_HexBlob ); 1767 n = pExpr->token.n - 3; 1768 z = (char*)pExpr->token.z + 2; 1769 assert( n>=0 ); 1770 if( n==0 ){ 1771 z = ""; 1772 } 1773 sqlite3VdbeOp3(v, op, 0, 0, z, n); 1774 break; 1775 } 1776 #endif 1777 case TK_VARIABLE: { 1778 sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0); 1779 if( pExpr->token.n>1 ){ 1780 sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n); 1781 } 1782 break; 1783 } 1784 case TK_REGISTER: { 1785 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0); 1786 break; 1787 } 1788 #ifndef SQLITE_OMIT_CAST 1789 case TK_CAST: { 1790 /* Expressions of the form: CAST(pLeft AS token) */ 1791 int aff, to_op; 1792 sqlite3ExprCode(pParse, pExpr->pLeft); 1793 aff = sqlite3AffinityType(&pExpr->token); 1794 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 1795 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 1796 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 1797 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 1798 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 1799 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 1800 sqlite3VdbeAddOp(v, to_op, 0, 0); 1801 stackChng = 0; 1802 break; 1803 } 1804 #endif /* SQLITE_OMIT_CAST */ 1805 case TK_LT: 1806 case TK_LE: 1807 case TK_GT: 1808 case TK_GE: 1809 case TK_NE: 1810 case TK_EQ: { 1811 assert( TK_LT==OP_Lt ); 1812 assert( TK_LE==OP_Le ); 1813 assert( TK_GT==OP_Gt ); 1814 assert( TK_GE==OP_Ge ); 1815 assert( TK_EQ==OP_Eq ); 1816 assert( TK_NE==OP_Ne ); 1817 sqlite3ExprCode(pParse, pExpr->pLeft); 1818 sqlite3ExprCode(pParse, pExpr->pRight); 1819 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0); 1820 stackChng = -1; 1821 break; 1822 } 1823 case TK_AND: 1824 case TK_OR: 1825 case TK_PLUS: 1826 case TK_STAR: 1827 case TK_MINUS: 1828 case TK_REM: 1829 case TK_BITAND: 1830 case TK_BITOR: 1831 case TK_SLASH: 1832 case TK_LSHIFT: 1833 case TK_RSHIFT: 1834 case TK_CONCAT: { 1835 assert( TK_AND==OP_And ); 1836 assert( TK_OR==OP_Or ); 1837 assert( TK_PLUS==OP_Add ); 1838 assert( TK_MINUS==OP_Subtract ); 1839 assert( TK_REM==OP_Remainder ); 1840 assert( TK_BITAND==OP_BitAnd ); 1841 assert( TK_BITOR==OP_BitOr ); 1842 assert( TK_SLASH==OP_Divide ); 1843 assert( TK_LSHIFT==OP_ShiftLeft ); 1844 assert( TK_RSHIFT==OP_ShiftRight ); 1845 assert( TK_CONCAT==OP_Concat ); 1846 sqlite3ExprCode(pParse, pExpr->pLeft); 1847 sqlite3ExprCode(pParse, pExpr->pRight); 1848 sqlite3VdbeAddOp(v, op, 0, 0); 1849 stackChng = -1; 1850 break; 1851 } 1852 case TK_UMINUS: { 1853 Expr *pLeft = pExpr->pLeft; 1854 assert( pLeft ); 1855 if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ 1856 Token *p = &pLeft->token; 1857 char *z = sqlite3MPrintf("-%.*s", p->n, p->z); 1858 if( pLeft->op==TK_FLOAT ){ 1859 sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1); 1860 }else{ 1861 codeInteger(v, z, p->n+1); 1862 } 1863 sqliteFree(z); 1864 break; 1865 } 1866 /* Fall through into TK_NOT */ 1867 } 1868 case TK_BITNOT: 1869 case TK_NOT: { 1870 assert( TK_BITNOT==OP_BitNot ); 1871 assert( TK_NOT==OP_Not ); 1872 sqlite3ExprCode(pParse, pExpr->pLeft); 1873 sqlite3VdbeAddOp(v, op, 0, 0); 1874 stackChng = 0; 1875 break; 1876 } 1877 case TK_ISNULL: 1878 case TK_NOTNULL: { 1879 int dest; 1880 assert( TK_ISNULL==OP_IsNull ); 1881 assert( TK_NOTNULL==OP_NotNull ); 1882 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 1883 sqlite3ExprCode(pParse, pExpr->pLeft); 1884 dest = sqlite3VdbeCurrentAddr(v) + 2; 1885 sqlite3VdbeAddOp(v, op, 1, dest); 1886 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); 1887 stackChng = 0; 1888 break; 1889 } 1890 case TK_AGG_FUNCTION: { 1891 AggInfo *pInfo = pExpr->pAggInfo; 1892 if( pInfo==0 ){ 1893 sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", 1894 &pExpr->span); 1895 }else{ 1896 sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0); 1897 } 1898 break; 1899 } 1900 case TK_CONST_FUNC: 1901 case TK_FUNCTION: { 1902 ExprList *pList = pExpr->pList; 1903 int nExpr = pList ? pList->nExpr : 0; 1904 FuncDef *pDef; 1905 int nId; 1906 const char *zId; 1907 int constMask = 0; 1908 int i; 1909 u8 enc = ENC(pParse->db); 1910 CollSeq *pColl = 0; 1911 zId = (char*)pExpr->token.z; 1912 nId = pExpr->token.n; 1913 pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); 1914 assert( pDef!=0 ); 1915 nExpr = sqlite3ExprCodeExprList(pParse, pList); 1916 #ifndef SQLITE_OMIT_VIRTUALTABLE 1917 /* Possibly overload the function if the first argument is 1918 ** a virtual table column. 1919 ** 1920 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 1921 ** second argument, not the first, as the argument to test to 1922 ** see if it is a column in a virtual table. This is done because 1923 ** the left operand of infix functions (the operand we want to 1924 ** control overloading) ends up as the second argument to the 1925 ** function. The expression "A glob B" is equivalent to 1926 ** "glob(B,A). We want to use the A in "A glob B" to test 1927 ** for function overloading. But we use the B term in "glob(B,A)". 1928 */ 1929 if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){ 1930 pDef = sqlite3VtabOverloadFunction(pDef, nExpr, pList->a[1].pExpr); 1931 }else if( nExpr>0 ){ 1932 pDef = sqlite3VtabOverloadFunction(pDef, nExpr, pList->a[0].pExpr); 1933 } 1934 #endif 1935 for(i=0; i<nExpr && i<32; i++){ 1936 if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ 1937 constMask |= (1<<i); 1938 } 1939 if( pDef->needCollSeq && !pColl ){ 1940 pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); 1941 } 1942 } 1943 if( pDef->needCollSeq ){ 1944 if( !pColl ) pColl = pParse->db->pDfltColl; 1945 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); 1946 } 1947 sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF); 1948 stackChng = 1-nExpr; 1949 break; 1950 } 1951 #ifndef SQLITE_OMIT_SUBQUERY 1952 case TK_EXISTS: 1953 case TK_SELECT: { 1954 if( pExpr->iColumn==0 ){ 1955 sqlite3CodeSubselect(pParse, pExpr); 1956 } 1957 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); 1958 VdbeComment((v, "# load subquery result")); 1959 break; 1960 } 1961 case TK_IN: { 1962 int addr; 1963 char affinity; 1964 int ckOffset = pParse->ckOffset; 1965 sqlite3CodeSubselect(pParse, pExpr); 1966 1967 /* Figure out the affinity to use to create a key from the results 1968 ** of the expression. affinityStr stores a static string suitable for 1969 ** P3 of OP_MakeRecord. 1970 */ 1971 affinity = comparisonAffinity(pExpr); 1972 1973 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 1974 pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0); 1975 1976 /* Code the <expr> from "<expr> IN (...)". The temporary table 1977 ** pExpr->iTable contains the values that make up the (...) set. 1978 */ 1979 sqlite3ExprCode(pParse, pExpr->pLeft); 1980 addr = sqlite3VdbeCurrentAddr(v); 1981 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4); /* addr + 0 */ 1982 sqlite3VdbeAddOp(v, OP_Pop, 2, 0); 1983 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1984 sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7); 1985 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); /* addr + 4 */ 1986 sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7); 1987 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */ 1988 1989 break; 1990 } 1991 #endif 1992 case TK_BETWEEN: { 1993 Expr *pLeft = pExpr->pLeft; 1994 struct ExprList_item *pLItem = pExpr->pList->a; 1995 Expr *pRight = pLItem->pExpr; 1996 sqlite3ExprCode(pParse, pLeft); 1997 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 1998 sqlite3ExprCode(pParse, pRight); 1999 codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0); 2000 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 2001 pLItem++; 2002 pRight = pLItem->pExpr; 2003 sqlite3ExprCode(pParse, pRight); 2004 codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0); 2005 sqlite3VdbeAddOp(v, OP_And, 0, 0); 2006 break; 2007 } 2008 case TK_UPLUS: { 2009 sqlite3ExprCode(pParse, pExpr->pLeft); 2010 stackChng = 0; 2011 break; 2012 } 2013 case TK_CASE: { 2014 int expr_end_label; 2015 int jumpInst; 2016 int nExpr; 2017 int i; 2018 ExprList *pEList; 2019 struct ExprList_item *aListelem; 2020 2021 assert(pExpr->pList); 2022 assert((pExpr->pList->nExpr % 2) == 0); 2023 assert(pExpr->pList->nExpr > 0); 2024 pEList = pExpr->pList; 2025 aListelem = pEList->a; 2026 nExpr = pEList->nExpr; 2027 expr_end_label = sqlite3VdbeMakeLabel(v); 2028 if( pExpr->pLeft ){ 2029 sqlite3ExprCode(pParse, pExpr->pLeft); 2030 } 2031 for(i=0; i<nExpr; i=i+2){ 2032 sqlite3ExprCode(pParse, aListelem[i].pExpr); 2033 if( pExpr->pLeft ){ 2034 sqlite3VdbeAddOp(v, OP_Dup, 1, 1); 2035 jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr, 2036 OP_Ne, 0, 1); 2037 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2038 }else{ 2039 jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0); 2040 } 2041 sqlite3ExprCode(pParse, aListelem[i+1].pExpr); 2042 sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label); 2043 sqlite3VdbeJumpHere(v, jumpInst); 2044 } 2045 if( pExpr->pLeft ){ 2046 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2047 } 2048 if( pExpr->pRight ){ 2049 sqlite3ExprCode(pParse, pExpr->pRight); 2050 }else{ 2051 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 2052 } 2053 sqlite3VdbeResolveLabel(v, expr_end_label); 2054 break; 2055 } 2056 #ifndef SQLITE_OMIT_TRIGGER 2057 case TK_RAISE: { 2058 if( !pParse->trigStack ){ 2059 sqlite3ErrorMsg(pParse, 2060 "RAISE() may only be used within a trigger-program"); 2061 return; 2062 } 2063 if( pExpr->iColumn!=OE_Ignore ){ 2064 assert( pExpr->iColumn==OE_Rollback || 2065 pExpr->iColumn == OE_Abort || 2066 pExpr->iColumn == OE_Fail ); 2067 sqlite3DequoteExpr(pExpr); 2068 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 2069 (char*)pExpr->token.z, pExpr->token.n); 2070 } else { 2071 assert( pExpr->iColumn == OE_Ignore ); 2072 sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0); 2073 sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump); 2074 VdbeComment((v, "# raise(IGNORE)")); 2075 } 2076 stackChng = 0; 2077 break; 2078 } 2079 #endif 2080 } 2081 2082 if( pParse->ckOffset ){ 2083 pParse->ckOffset += stackChng; 2084 assert( pParse->ckOffset ); 2085 } 2086 } 2087 2088 #ifndef SQLITE_OMIT_TRIGGER 2089 /* 2090 ** Generate code that evalutes the given expression and leaves the result 2091 ** on the stack. See also sqlite3ExprCode(). 2092 ** 2093 ** This routine might also cache the result and modify the pExpr tree 2094 ** so that it will make use of the cached result on subsequent evaluations 2095 ** rather than evaluate the whole expression again. Trivial expressions are 2096 ** not cached. If the expression is cached, its result is stored in a 2097 ** memory location. 2098 */ 2099 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){ 2100 Vdbe *v = pParse->pVdbe; 2101 int iMem; 2102 int addr1, addr2; 2103 if( v==0 ) return; 2104 addr1 = sqlite3VdbeCurrentAddr(v); 2105 sqlite3ExprCode(pParse, pExpr); 2106 addr2 = sqlite3VdbeCurrentAddr(v); 2107 if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){ 2108 iMem = pExpr->iTable = pParse->nMem++; 2109 sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); 2110 pExpr->op = TK_REGISTER; 2111 } 2112 } 2113 #endif 2114 2115 /* 2116 ** Generate code that pushes the value of every element of the given 2117 ** expression list onto the stack. 2118 ** 2119 ** Return the number of elements pushed onto the stack. 2120 */ 2121 int sqlite3ExprCodeExprList( 2122 Parse *pParse, /* Parsing context */ 2123 ExprList *pList /* The expression list to be coded */ 2124 ){ 2125 struct ExprList_item *pItem; 2126 int i, n; 2127 if( pList==0 ) return 0; 2128 n = pList->nExpr; 2129 for(pItem=pList->a, i=n; i>0; i--, pItem++){ 2130 sqlite3ExprCode(pParse, pItem->pExpr); 2131 } 2132 return n; 2133 } 2134 2135 /* 2136 ** Generate code for a boolean expression such that a jump is made 2137 ** to the label "dest" if the expression is true but execution 2138 ** continues straight thru if the expression is false. 2139 ** 2140 ** If the expression evaluates to NULL (neither true nor false), then 2141 ** take the jump if the jumpIfNull flag is true. 2142 ** 2143 ** This code depends on the fact that certain token values (ex: TK_EQ) 2144 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 2145 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 2146 ** the make process cause these values to align. Assert()s in the code 2147 ** below verify that the numbers are aligned correctly. 2148 */ 2149 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2150 Vdbe *v = pParse->pVdbe; 2151 int op = 0; 2152 int ckOffset = pParse->ckOffset; 2153 if( v==0 || pExpr==0 ) return; 2154 op = pExpr->op; 2155 switch( op ){ 2156 case TK_AND: { 2157 int d2 = sqlite3VdbeMakeLabel(v); 2158 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull); 2159 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2160 sqlite3VdbeResolveLabel(v, d2); 2161 break; 2162 } 2163 case TK_OR: { 2164 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 2165 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2166 break; 2167 } 2168 case TK_NOT: { 2169 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 2170 break; 2171 } 2172 case TK_LT: 2173 case TK_LE: 2174 case TK_GT: 2175 case TK_GE: 2176 case TK_NE: 2177 case TK_EQ: { 2178 assert( TK_LT==OP_Lt ); 2179 assert( TK_LE==OP_Le ); 2180 assert( TK_GT==OP_Gt ); 2181 assert( TK_GE==OP_Ge ); 2182 assert( TK_EQ==OP_Eq ); 2183 assert( TK_NE==OP_Ne ); 2184 sqlite3ExprCode(pParse, pExpr->pLeft); 2185 sqlite3ExprCode(pParse, pExpr->pRight); 2186 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); 2187 break; 2188 } 2189 case TK_ISNULL: 2190 case TK_NOTNULL: { 2191 assert( TK_ISNULL==OP_IsNull ); 2192 assert( TK_NOTNULL==OP_NotNull ); 2193 sqlite3ExprCode(pParse, pExpr->pLeft); 2194 sqlite3VdbeAddOp(v, op, 1, dest); 2195 break; 2196 } 2197 case TK_BETWEEN: { 2198 /* The expression "x BETWEEN y AND z" is implemented as: 2199 ** 2200 ** 1 IF (x < y) GOTO 3 2201 ** 2 IF (x <= z) GOTO <dest> 2202 ** 3 ... 2203 */ 2204 int addr; 2205 Expr *pLeft = pExpr->pLeft; 2206 Expr *pRight = pExpr->pList->a[0].pExpr; 2207 sqlite3ExprCode(pParse, pLeft); 2208 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 2209 sqlite3ExprCode(pParse, pRight); 2210 addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull); 2211 2212 pRight = pExpr->pList->a[1].pExpr; 2213 sqlite3ExprCode(pParse, pRight); 2214 codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull); 2215 2216 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 2217 sqlite3VdbeJumpHere(v, addr); 2218 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2219 break; 2220 } 2221 default: { 2222 sqlite3ExprCode(pParse, pExpr); 2223 sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest); 2224 break; 2225 } 2226 } 2227 pParse->ckOffset = ckOffset; 2228 } 2229 2230 /* 2231 ** Generate code for a boolean expression such that a jump is made 2232 ** to the label "dest" if the expression is false but execution 2233 ** continues straight thru if the expression is true. 2234 ** 2235 ** If the expression evaluates to NULL (neither true nor false) then 2236 ** jump if jumpIfNull is true or fall through if jumpIfNull is false. 2237 */ 2238 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2239 Vdbe *v = pParse->pVdbe; 2240 int op = 0; 2241 int ckOffset = pParse->ckOffset; 2242 if( v==0 || pExpr==0 ) return; 2243 2244 /* The value of pExpr->op and op are related as follows: 2245 ** 2246 ** pExpr->op op 2247 ** --------- ---------- 2248 ** TK_ISNULL OP_NotNull 2249 ** TK_NOTNULL OP_IsNull 2250 ** TK_NE OP_Eq 2251 ** TK_EQ OP_Ne 2252 ** TK_GT OP_Le 2253 ** TK_LE OP_Gt 2254 ** TK_GE OP_Lt 2255 ** TK_LT OP_Ge 2256 ** 2257 ** For other values of pExpr->op, op is undefined and unused. 2258 ** The value of TK_ and OP_ constants are arranged such that we 2259 ** can compute the mapping above using the following expression. 2260 ** Assert()s verify that the computation is correct. 2261 */ 2262 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 2263 2264 /* Verify correct alignment of TK_ and OP_ constants 2265 */ 2266 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 2267 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 2268 assert( pExpr->op!=TK_NE || op==OP_Eq ); 2269 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 2270 assert( pExpr->op!=TK_LT || op==OP_Ge ); 2271 assert( pExpr->op!=TK_LE || op==OP_Gt ); 2272 assert( pExpr->op!=TK_GT || op==OP_Le ); 2273 assert( pExpr->op!=TK_GE || op==OP_Lt ); 2274 2275 switch( pExpr->op ){ 2276 case TK_AND: { 2277 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 2278 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 2279 break; 2280 } 2281 case TK_OR: { 2282 int d2 = sqlite3VdbeMakeLabel(v); 2283 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull); 2284 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 2285 sqlite3VdbeResolveLabel(v, d2); 2286 break; 2287 } 2288 case TK_NOT: { 2289 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 2290 break; 2291 } 2292 case TK_LT: 2293 case TK_LE: 2294 case TK_GT: 2295 case TK_GE: 2296 case TK_NE: 2297 case TK_EQ: { 2298 sqlite3ExprCode(pParse, pExpr->pLeft); 2299 sqlite3ExprCode(pParse, pExpr->pRight); 2300 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); 2301 break; 2302 } 2303 case TK_ISNULL: 2304 case TK_NOTNULL: { 2305 sqlite3ExprCode(pParse, pExpr->pLeft); 2306 sqlite3VdbeAddOp(v, op, 1, dest); 2307 break; 2308 } 2309 case TK_BETWEEN: { 2310 /* The expression is "x BETWEEN y AND z". It is implemented as: 2311 ** 2312 ** 1 IF (x >= y) GOTO 3 2313 ** 2 GOTO <dest> 2314 ** 3 IF (x > z) GOTO <dest> 2315 */ 2316 int addr; 2317 Expr *pLeft = pExpr->pLeft; 2318 Expr *pRight = pExpr->pList->a[0].pExpr; 2319 sqlite3ExprCode(pParse, pLeft); 2320 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 2321 sqlite3ExprCode(pParse, pRight); 2322 addr = sqlite3VdbeCurrentAddr(v); 2323 codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull); 2324 2325 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2326 sqlite3VdbeAddOp(v, OP_Goto, 0, dest); 2327 pRight = pExpr->pList->a[1].pExpr; 2328 sqlite3ExprCode(pParse, pRight); 2329 codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull); 2330 break; 2331 } 2332 default: { 2333 sqlite3ExprCode(pParse, pExpr); 2334 sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest); 2335 break; 2336 } 2337 } 2338 pParse->ckOffset = ckOffset; 2339 } 2340 2341 /* 2342 ** Do a deep comparison of two expression trees. Return TRUE (non-zero) 2343 ** if they are identical and return FALSE if they differ in any way. 2344 ** 2345 ** Sometimes this routine will return FALSE even if the two expressions 2346 ** really are equivalent. If we cannot prove that the expressions are 2347 ** identical, we return FALSE just to be safe. So if this routine 2348 ** returns false, then you do not really know for certain if the two 2349 ** expressions are the same. But if you get a TRUE return, then you 2350 ** can be sure the expressions are the same. In the places where 2351 ** this routine is used, it does not hurt to get an extra FALSE - that 2352 ** just might result in some slightly slower code. But returning 2353 ** an incorrect TRUE could lead to a malfunction. 2354 */ 2355 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 2356 int i; 2357 if( pA==0||pB==0 ){ 2358 return pB==pA; 2359 } 2360 if( pA->op!=pB->op ) return 0; 2361 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; 2362 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; 2363 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; 2364 if( pA->pList ){ 2365 if( pB->pList==0 ) return 0; 2366 if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; 2367 for(i=0; i<pA->pList->nExpr; i++){ 2368 if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ 2369 return 0; 2370 } 2371 } 2372 }else if( pB->pList ){ 2373 return 0; 2374 } 2375 if( pA->pSelect || pB->pSelect ) return 0; 2376 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; 2377 if( pA->op!=TK_COLUMN && pA->token.z ){ 2378 if( pB->token.z==0 ) return 0; 2379 if( pB->token.n!=pA->token.n ) return 0; 2380 if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ 2381 return 0; 2382 } 2383 } 2384 return 1; 2385 } 2386 2387 2388 /* 2389 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 2390 ** the new element. Return a negative number if malloc fails. 2391 */ 2392 static int addAggInfoColumn(AggInfo *pInfo){ 2393 int i; 2394 pInfo->aCol = sqlite3ArrayAllocate( 2395 pInfo->aCol, 2396 sizeof(pInfo->aCol[0]), 2397 3, 2398 &pInfo->nColumn, 2399 &pInfo->nColumnAlloc, 2400 &i 2401 ); 2402 return i; 2403 } 2404 2405 /* 2406 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 2407 ** the new element. Return a negative number if malloc fails. 2408 */ 2409 static int addAggInfoFunc(AggInfo *pInfo){ 2410 int i; 2411 pInfo->aFunc = sqlite3ArrayAllocate( 2412 pInfo->aFunc, 2413 sizeof(pInfo->aFunc[0]), 2414 3, 2415 &pInfo->nFunc, 2416 &pInfo->nFuncAlloc, 2417 &i 2418 ); 2419 return i; 2420 } 2421 2422 /* 2423 ** This is an xFunc for walkExprTree() used to implement 2424 ** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 2425 ** for additional information. 2426 ** 2427 ** This routine analyzes the aggregate function at pExpr. 2428 */ 2429 static int analyzeAggregate(void *pArg, Expr *pExpr){ 2430 int i; 2431 NameContext *pNC = (NameContext *)pArg; 2432 Parse *pParse = pNC->pParse; 2433 SrcList *pSrcList = pNC->pSrcList; 2434 AggInfo *pAggInfo = pNC->pAggInfo; 2435 2436 2437 switch( pExpr->op ){ 2438 case TK_AGG_COLUMN: 2439 case TK_COLUMN: { 2440 /* Check to see if the column is in one of the tables in the FROM 2441 ** clause of the aggregate query */ 2442 if( pSrcList ){ 2443 struct SrcList_item *pItem = pSrcList->a; 2444 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 2445 struct AggInfo_col *pCol; 2446 if( pExpr->iTable==pItem->iCursor ){ 2447 /* If we reach this point, it means that pExpr refers to a table 2448 ** that is in the FROM clause of the aggregate query. 2449 ** 2450 ** Make an entry for the column in pAggInfo->aCol[] if there 2451 ** is not an entry there already. 2452 */ 2453 int k; 2454 pCol = pAggInfo->aCol; 2455 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 2456 if( pCol->iTable==pExpr->iTable && 2457 pCol->iColumn==pExpr->iColumn ){ 2458 break; 2459 } 2460 } 2461 if( k>=pAggInfo->nColumn && (k = addAggInfoColumn(pAggInfo))>=0 ){ 2462 pCol = &pAggInfo->aCol[k]; 2463 pCol->pTab = pExpr->pTab; 2464 pCol->iTable = pExpr->iTable; 2465 pCol->iColumn = pExpr->iColumn; 2466 pCol->iMem = pParse->nMem++; 2467 pCol->iSorterColumn = -1; 2468 pCol->pExpr = pExpr; 2469 if( pAggInfo->pGroupBy ){ 2470 int j, n; 2471 ExprList *pGB = pAggInfo->pGroupBy; 2472 struct ExprList_item *pTerm = pGB->a; 2473 n = pGB->nExpr; 2474 for(j=0; j<n; j++, pTerm++){ 2475 Expr *pE = pTerm->pExpr; 2476 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 2477 pE->iColumn==pExpr->iColumn ){ 2478 pCol->iSorterColumn = j; 2479 break; 2480 } 2481 } 2482 } 2483 if( pCol->iSorterColumn<0 ){ 2484 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 2485 } 2486 } 2487 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 2488 ** because it was there before or because we just created it). 2489 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 2490 ** pAggInfo->aCol[] entry. 2491 */ 2492 pExpr->pAggInfo = pAggInfo; 2493 pExpr->op = TK_AGG_COLUMN; 2494 pExpr->iAgg = k; 2495 break; 2496 } /* endif pExpr->iTable==pItem->iCursor */ 2497 } /* end loop over pSrcList */ 2498 } 2499 return 1; 2500 } 2501 case TK_AGG_FUNCTION: { 2502 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 2503 ** to be ignored */ 2504 if( pNC->nDepth==0 ){ 2505 /* Check to see if pExpr is a duplicate of another aggregate 2506 ** function that is already in the pAggInfo structure 2507 */ 2508 struct AggInfo_func *pItem = pAggInfo->aFunc; 2509 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 2510 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ 2511 break; 2512 } 2513 } 2514 if( i>=pAggInfo->nFunc ){ 2515 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 2516 */ 2517 u8 enc = ENC(pParse->db); 2518 i = addAggInfoFunc(pAggInfo); 2519 if( i>=0 ){ 2520 pItem = &pAggInfo->aFunc[i]; 2521 pItem->pExpr = pExpr; 2522 pItem->iMem = pParse->nMem++; 2523 pItem->pFunc = sqlite3FindFunction(pParse->db, 2524 (char*)pExpr->token.z, pExpr->token.n, 2525 pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); 2526 if( pExpr->flags & EP_Distinct ){ 2527 pItem->iDistinct = pParse->nTab++; 2528 }else{ 2529 pItem->iDistinct = -1; 2530 } 2531 } 2532 } 2533 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 2534 */ 2535 pExpr->iAgg = i; 2536 pExpr->pAggInfo = pAggInfo; 2537 return 1; 2538 } 2539 } 2540 } 2541 2542 /* Recursively walk subqueries looking for TK_COLUMN nodes that need 2543 ** to be changed to TK_AGG_COLUMN. But increment nDepth so that 2544 ** TK_AGG_FUNCTION nodes in subqueries will be unchanged. 2545 */ 2546 if( pExpr->pSelect ){ 2547 pNC->nDepth++; 2548 walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); 2549 pNC->nDepth--; 2550 } 2551 return 0; 2552 } 2553 2554 /* 2555 ** Analyze the given expression looking for aggregate functions and 2556 ** for variables that need to be added to the pParse->aAgg[] array. 2557 ** Make additional entries to the pParse->aAgg[] array as necessary. 2558 ** 2559 ** This routine should only be called after the expression has been 2560 ** analyzed by sqlite3ExprResolveNames(). 2561 ** 2562 ** If errors are seen, leave an error message in zErrMsg and return 2563 ** the number of errors. 2564 */ 2565 int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 2566 int nErr = pNC->pParse->nErr; 2567 walkExprTree(pExpr, analyzeAggregate, pNC); 2568 return pNC->pParse->nErr - nErr; 2569 } 2570 2571 /* 2572 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 2573 ** expression list. Return the number of errors. 2574 ** 2575 ** If an error is found, the analysis is cut short. 2576 */ 2577 int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 2578 struct ExprList_item *pItem; 2579 int i; 2580 int nErr = 0; 2581 if( pList ){ 2582 for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){ 2583 nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 2584 } 2585 } 2586 return nErr; 2587 } 2588