xref: /sqlite-3.40.0/src/expr.c (revision 9f8a4b43)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 **
15 ** $Id: expr.c,v 1.301 2007/07/23 22:51:15 drh Exp $
16 */
17 #include "sqliteInt.h"
18 #include <ctype.h>
19 
20 /*
21 ** Return the 'affinity' of the expression pExpr if any.
22 **
23 ** If pExpr is a column, a reference to a column via an 'AS' alias,
24 ** or a sub-select with a column as the return value, then the
25 ** affinity of that column is returned. Otherwise, 0x00 is returned,
26 ** indicating no affinity for the expression.
27 **
28 ** i.e. the WHERE clause expresssions in the following statements all
29 ** have an affinity:
30 **
31 ** CREATE TABLE t1(a);
32 ** SELECT * FROM t1 WHERE a;
33 ** SELECT a AS b FROM t1 WHERE b;
34 ** SELECT * FROM t1 WHERE (select a from t1);
35 */
36 char sqlite3ExprAffinity(Expr *pExpr){
37   int op = pExpr->op;
38   if( op==TK_SELECT ){
39     return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
40   }
41 #ifndef SQLITE_OMIT_CAST
42   if( op==TK_CAST ){
43     return sqlite3AffinityType(&pExpr->token);
44   }
45 #endif
46   return pExpr->affinity;
47 }
48 
49 /*
50 ** Set the collating sequence for expression pExpr to be the collating
51 ** sequence named by pToken.   Return a pointer to the revised expression.
52 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
53 ** flag.  An explicit collating sequence will override implicit
54 ** collating sequences.
55 */
56 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
57   CollSeq *pColl;
58   if( pExpr==0 ) return 0;
59   pColl = sqlite3LocateCollSeq(pParse, (char*)pName->z, pName->n);
60   if( pColl ){
61     pExpr->pColl = pColl;
62     pExpr->flags |= EP_ExpCollate;
63   }
64   return pExpr;
65 }
66 
67 /*
68 ** Return the default collation sequence for the expression pExpr. If
69 ** there is no default collation type, return 0.
70 */
71 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
72   CollSeq *pColl = 0;
73   if( pExpr ){
74     int op;
75     pColl = pExpr->pColl;
76     op = pExpr->op;
77     if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){
78       return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
79     }
80   }
81   if( sqlite3CheckCollSeq(pParse, pColl) ){
82     pColl = 0;
83   }
84   return pColl;
85 }
86 
87 /*
88 ** pExpr is an operand of a comparison operator.  aff2 is the
89 ** type affinity of the other operand.  This routine returns the
90 ** type affinity that should be used for the comparison operator.
91 */
92 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
93   char aff1 = sqlite3ExprAffinity(pExpr);
94   if( aff1 && aff2 ){
95     /* Both sides of the comparison are columns. If one has numeric
96     ** affinity, use that. Otherwise use no affinity.
97     */
98     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
99       return SQLITE_AFF_NUMERIC;
100     }else{
101       return SQLITE_AFF_NONE;
102     }
103   }else if( !aff1 && !aff2 ){
104     /* Neither side of the comparison is a column.  Compare the
105     ** results directly.
106     */
107     return SQLITE_AFF_NONE;
108   }else{
109     /* One side is a column, the other is not. Use the columns affinity. */
110     assert( aff1==0 || aff2==0 );
111     return (aff1 + aff2);
112   }
113 }
114 
115 /*
116 ** pExpr is a comparison operator.  Return the type affinity that should
117 ** be applied to both operands prior to doing the comparison.
118 */
119 static char comparisonAffinity(Expr *pExpr){
120   char aff;
121   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
122           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
123           pExpr->op==TK_NE );
124   assert( pExpr->pLeft );
125   aff = sqlite3ExprAffinity(pExpr->pLeft);
126   if( pExpr->pRight ){
127     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
128   }
129   else if( pExpr->pSelect ){
130     aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
131   }
132   else if( !aff ){
133     aff = SQLITE_AFF_NONE;
134   }
135   return aff;
136 }
137 
138 /*
139 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
140 ** idx_affinity is the affinity of an indexed column. Return true
141 ** if the index with affinity idx_affinity may be used to implement
142 ** the comparison in pExpr.
143 */
144 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
145   char aff = comparisonAffinity(pExpr);
146   switch( aff ){
147     case SQLITE_AFF_NONE:
148       return 1;
149     case SQLITE_AFF_TEXT:
150       return idx_affinity==SQLITE_AFF_TEXT;
151     default:
152       return sqlite3IsNumericAffinity(idx_affinity);
153   }
154 }
155 
156 /*
157 ** Return the P1 value that should be used for a binary comparison
158 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
159 ** If jumpIfNull is true, then set the low byte of the returned
160 ** P1 value to tell the opcode to jump if either expression
161 ** evaluates to NULL.
162 */
163 static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
164   char aff = sqlite3ExprAffinity(pExpr2);
165   return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0);
166 }
167 
168 /*
169 ** Return a pointer to the collation sequence that should be used by
170 ** a binary comparison operator comparing pLeft and pRight.
171 **
172 ** If the left hand expression has a collating sequence type, then it is
173 ** used. Otherwise the collation sequence for the right hand expression
174 ** is used, or the default (BINARY) if neither expression has a collating
175 ** type.
176 **
177 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
178 ** it is not considered.
179 */
180 CollSeq* sqlite3BinaryCompareCollSeq(
181   Parse *pParse,
182   Expr *pLeft,
183   Expr *pRight
184 ){
185   CollSeq *pColl;
186   assert( pLeft );
187   if( pLeft->flags & EP_ExpCollate ){
188     assert( pLeft->pColl );
189     pColl = pLeft->pColl;
190   }else if( pRight && pRight->flags & EP_ExpCollate ){
191     assert( pRight->pColl );
192     pColl = pRight->pColl;
193   }else{
194     pColl = sqlite3ExprCollSeq(pParse, pLeft);
195     if( !pColl ){
196       pColl = sqlite3ExprCollSeq(pParse, pRight);
197     }
198   }
199   return pColl;
200 }
201 
202 /*
203 ** Generate code for a comparison operator.
204 */
205 static int codeCompare(
206   Parse *pParse,    /* The parsing (and code generating) context */
207   Expr *pLeft,      /* The left operand */
208   Expr *pRight,     /* The right operand */
209   int opcode,       /* The comparison opcode */
210   int dest,         /* Jump here if true.  */
211   int jumpIfNull    /* If true, jump if either operand is NULL */
212 ){
213   int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull);
214   CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
215   return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ);
216 }
217 
218 /*
219 ** Construct a new expression node and return a pointer to it.  Memory
220 ** for this node is obtained from sqliteMalloc().  The calling function
221 ** is responsible for making sure the node eventually gets freed.
222 */
223 Expr *sqlite3Expr(int op, Expr *pLeft, Expr *pRight, const Token *pToken){
224   Expr *pNew;
225   pNew = sqliteMalloc( sizeof(Expr) );
226   if( pNew==0 ){
227     /* When malloc fails, delete pLeft and pRight. Expressions passed to
228     ** this function must always be allocated with sqlite3Expr() for this
229     ** reason.
230     */
231     sqlite3ExprDelete(pLeft);
232     sqlite3ExprDelete(pRight);
233     return 0;
234   }
235   pNew->op = op;
236   pNew->pLeft = pLeft;
237   pNew->pRight = pRight;
238   pNew->iAgg = -1;
239   if( pToken ){
240     assert( pToken->dyn==0 );
241     pNew->span = pNew->token = *pToken;
242   }else if( pLeft ){
243     if( pRight ){
244       sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
245       if( pRight->flags & EP_ExpCollate ){
246         pNew->flags |= EP_ExpCollate;
247         pNew->pColl = pRight->pColl;
248       }
249     }
250     if( pLeft->flags & EP_ExpCollate ){
251       pNew->flags |= EP_ExpCollate;
252       pNew->pColl = pLeft->pColl;
253     }
254   }
255 
256   sqlite3ExprSetHeight(pNew);
257   return pNew;
258 }
259 
260 /*
261 ** Works like sqlite3Expr() but frees its pLeft and pRight arguments
262 ** if it fails due to a malloc problem.
263 */
264 Expr *sqlite3ExprOrFree(int op, Expr *pLeft, Expr *pRight, const Token *pToken){
265   Expr *pNew = sqlite3Expr(op, pLeft, pRight, pToken);
266   if( pNew==0 ){
267     sqlite3ExprDelete(pLeft);
268     sqlite3ExprDelete(pRight);
269   }
270   return pNew;
271 }
272 
273 /*
274 ** When doing a nested parse, you can include terms in an expression
275 ** that look like this:   #0 #1 #2 ...  These terms refer to elements
276 ** on the stack.  "#0" means the top of the stack.
277 ** "#1" means the next down on the stack.  And so forth.
278 **
279 ** This routine is called by the parser to deal with on of those terms.
280 ** It immediately generates code to store the value in a memory location.
281 ** The returns an expression that will code to extract the value from
282 ** that memory location as needed.
283 */
284 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
285   Vdbe *v = pParse->pVdbe;
286   Expr *p;
287   int depth;
288   if( pParse->nested==0 ){
289     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
290     return sqlite3Expr(TK_NULL, 0, 0, 0);
291   }
292   if( v==0 ) return 0;
293   p = sqlite3Expr(TK_REGISTER, 0, 0, pToken);
294   if( p==0 ){
295     return 0;  /* Malloc failed */
296   }
297   depth = atoi((char*)&pToken->z[1]);
298   p->iTable = pParse->nMem++;
299   sqlite3VdbeAddOp(v, OP_Dup, depth, 0);
300   sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1);
301   return p;
302 }
303 
304 /*
305 ** Join two expressions using an AND operator.  If either expression is
306 ** NULL, then just return the other expression.
307 */
308 Expr *sqlite3ExprAnd(Expr *pLeft, Expr *pRight){
309   if( pLeft==0 ){
310     return pRight;
311   }else if( pRight==0 ){
312     return pLeft;
313   }else{
314     return sqlite3Expr(TK_AND, pLeft, pRight, 0);
315   }
316 }
317 
318 /*
319 ** Set the Expr.span field of the given expression to span all
320 ** text between the two given tokens.
321 */
322 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
323   assert( pRight!=0 );
324   assert( pLeft!=0 );
325   if( !sqlite3MallocFailed() && pRight->z && pLeft->z ){
326     assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 );
327     if( pLeft->dyn==0 && pRight->dyn==0 ){
328       pExpr->span.z = pLeft->z;
329       pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
330     }else{
331       pExpr->span.z = 0;
332     }
333   }
334 }
335 
336 /*
337 ** Construct a new expression node for a function with multiple
338 ** arguments.
339 */
340 Expr *sqlite3ExprFunction(ExprList *pList, Token *pToken){
341   Expr *pNew;
342   assert( pToken );
343   pNew = sqliteMalloc( sizeof(Expr) );
344   if( pNew==0 ){
345     sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */
346     return 0;
347   }
348   pNew->op = TK_FUNCTION;
349   pNew->pList = pList;
350   assert( pToken->dyn==0 );
351   pNew->token = *pToken;
352   pNew->span = pNew->token;
353 
354   sqlite3ExprSetHeight(pNew);
355   return pNew;
356 }
357 
358 /*
359 ** Assign a variable number to an expression that encodes a wildcard
360 ** in the original SQL statement.
361 **
362 ** Wildcards consisting of a single "?" are assigned the next sequential
363 ** variable number.
364 **
365 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
366 ** sure "nnn" is not too be to avoid a denial of service attack when
367 ** the SQL statement comes from an external source.
368 **
369 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
370 ** as the previous instance of the same wildcard.  Or if this is the first
371 ** instance of the wildcard, the next sequenial variable number is
372 ** assigned.
373 */
374 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
375   Token *pToken;
376   if( pExpr==0 ) return;
377   pToken = &pExpr->token;
378   assert( pToken->n>=1 );
379   assert( pToken->z!=0 );
380   assert( pToken->z[0]!=0 );
381   if( pToken->n==1 ){
382     /* Wildcard of the form "?".  Assign the next variable number */
383     pExpr->iTable = ++pParse->nVar;
384   }else if( pToken->z[0]=='?' ){
385     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
386     ** use it as the variable number */
387     int i;
388     pExpr->iTable = i = atoi((char*)&pToken->z[1]);
389     if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){
390       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
391           SQLITE_MAX_VARIABLE_NUMBER);
392     }
393     if( i>pParse->nVar ){
394       pParse->nVar = i;
395     }
396   }else{
397     /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable
398     ** number as the prior appearance of the same name, or if the name
399     ** has never appeared before, reuse the same variable number
400     */
401     int i, n;
402     n = pToken->n;
403     for(i=0; i<pParse->nVarExpr; i++){
404       Expr *pE;
405       if( (pE = pParse->apVarExpr[i])!=0
406           && pE->token.n==n
407           && memcmp(pE->token.z, pToken->z, n)==0 ){
408         pExpr->iTable = pE->iTable;
409         break;
410       }
411     }
412     if( i>=pParse->nVarExpr ){
413       pExpr->iTable = ++pParse->nVar;
414       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
415         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
416         pParse->apVarExpr = sqliteReallocOrFree(pParse->apVarExpr,
417                        pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) );
418       }
419       if( !sqlite3MallocFailed() ){
420         assert( pParse->apVarExpr!=0 );
421         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
422       }
423     }
424   }
425   if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){
426     sqlite3ErrorMsg(pParse, "too many SQL variables");
427   }
428 }
429 
430 /*
431 ** Recursively delete an expression tree.
432 */
433 void sqlite3ExprDelete(Expr *p){
434   if( p==0 ) return;
435   if( p->span.dyn ) sqliteFree((char*)p->span.z);
436   if( p->token.dyn ) sqliteFree((char*)p->token.z);
437   sqlite3ExprDelete(p->pLeft);
438   sqlite3ExprDelete(p->pRight);
439   sqlite3ExprListDelete(p->pList);
440   sqlite3SelectDelete(p->pSelect);
441   sqliteFree(p);
442 }
443 
444 /*
445 ** The Expr.token field might be a string literal that is quoted.
446 ** If so, remove the quotation marks.
447 */
448 void sqlite3DequoteExpr(Expr *p){
449   if( ExprHasAnyProperty(p, EP_Dequoted) ){
450     return;
451   }
452   ExprSetProperty(p, EP_Dequoted);
453   if( p->token.dyn==0 ){
454     sqlite3TokenCopy(&p->token, &p->token);
455   }
456   sqlite3Dequote((char*)p->token.z);
457 }
458 
459 
460 /*
461 ** The following group of routines make deep copies of expressions,
462 ** expression lists, ID lists, and select statements.  The copies can
463 ** be deleted (by being passed to their respective ...Delete() routines)
464 ** without effecting the originals.
465 **
466 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
467 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
468 ** by subsequent calls to sqlite*ListAppend() routines.
469 **
470 ** Any tables that the SrcList might point to are not duplicated.
471 */
472 Expr *sqlite3ExprDup(Expr *p){
473   Expr *pNew;
474   if( p==0 ) return 0;
475   pNew = sqliteMallocRaw( sizeof(*p) );
476   if( pNew==0 ) return 0;
477   memcpy(pNew, p, sizeof(*pNew));
478   if( p->token.z!=0 ){
479     pNew->token.z = (u8*)sqliteStrNDup((char*)p->token.z, p->token.n);
480     pNew->token.dyn = 1;
481   }else{
482     assert( pNew->token.z==0 );
483   }
484   pNew->span.z = 0;
485   pNew->pLeft = sqlite3ExprDup(p->pLeft);
486   pNew->pRight = sqlite3ExprDup(p->pRight);
487   pNew->pList = sqlite3ExprListDup(p->pList);
488   pNew->pSelect = sqlite3SelectDup(p->pSelect);
489   return pNew;
490 }
491 void sqlite3TokenCopy(Token *pTo, Token *pFrom){
492   if( pTo->dyn ) sqliteFree((char*)pTo->z);
493   if( pFrom->z ){
494     pTo->n = pFrom->n;
495     pTo->z = (u8*)sqliteStrNDup((char*)pFrom->z, pFrom->n);
496     pTo->dyn = 1;
497   }else{
498     pTo->z = 0;
499   }
500 }
501 ExprList *sqlite3ExprListDup(ExprList *p){
502   ExprList *pNew;
503   struct ExprList_item *pItem, *pOldItem;
504   int i;
505   if( p==0 ) return 0;
506   pNew = sqliteMalloc( sizeof(*pNew) );
507   if( pNew==0 ) return 0;
508   pNew->nExpr = pNew->nAlloc = p->nExpr;
509   pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) );
510   if( pItem==0 ){
511     sqliteFree(pNew);
512     return 0;
513   }
514   pOldItem = p->a;
515   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
516     Expr *pNewExpr, *pOldExpr;
517     pItem->pExpr = pNewExpr = sqlite3ExprDup(pOldExpr = pOldItem->pExpr);
518     if( pOldExpr->span.z!=0 && pNewExpr ){
519       /* Always make a copy of the span for top-level expressions in the
520       ** expression list.  The logic in SELECT processing that determines
521       ** the names of columns in the result set needs this information */
522       sqlite3TokenCopy(&pNewExpr->span, &pOldExpr->span);
523     }
524     assert( pNewExpr==0 || pNewExpr->span.z!=0
525             || pOldExpr->span.z==0
526             || sqlite3MallocFailed() );
527     pItem->zName = sqliteStrDup(pOldItem->zName);
528     pItem->sortOrder = pOldItem->sortOrder;
529     pItem->isAgg = pOldItem->isAgg;
530     pItem->done = 0;
531   }
532   return pNew;
533 }
534 
535 /*
536 ** If cursors, triggers, views and subqueries are all omitted from
537 ** the build, then none of the following routines, except for
538 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
539 ** called with a NULL argument.
540 */
541 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
542  || !defined(SQLITE_OMIT_SUBQUERY)
543 SrcList *sqlite3SrcListDup(SrcList *p){
544   SrcList *pNew;
545   int i;
546   int nByte;
547   if( p==0 ) return 0;
548   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
549   pNew = sqliteMallocRaw( nByte );
550   if( pNew==0 ) return 0;
551   pNew->nSrc = pNew->nAlloc = p->nSrc;
552   for(i=0; i<p->nSrc; i++){
553     struct SrcList_item *pNewItem = &pNew->a[i];
554     struct SrcList_item *pOldItem = &p->a[i];
555     Table *pTab;
556     pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase);
557     pNewItem->zName = sqliteStrDup(pOldItem->zName);
558     pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias);
559     pNewItem->jointype = pOldItem->jointype;
560     pNewItem->iCursor = pOldItem->iCursor;
561     pNewItem->isPopulated = pOldItem->isPopulated;
562     pTab = pNewItem->pTab = pOldItem->pTab;
563     if( pTab ){
564       pTab->nRef++;
565     }
566     pNewItem->pSelect = sqlite3SelectDup(pOldItem->pSelect);
567     pNewItem->pOn = sqlite3ExprDup(pOldItem->pOn);
568     pNewItem->pUsing = sqlite3IdListDup(pOldItem->pUsing);
569     pNewItem->colUsed = pOldItem->colUsed;
570   }
571   return pNew;
572 }
573 IdList *sqlite3IdListDup(IdList *p){
574   IdList *pNew;
575   int i;
576   if( p==0 ) return 0;
577   pNew = sqliteMallocRaw( sizeof(*pNew) );
578   if( pNew==0 ) return 0;
579   pNew->nId = pNew->nAlloc = p->nId;
580   pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) );
581   if( pNew->a==0 ){
582     sqliteFree(pNew);
583     return 0;
584   }
585   for(i=0; i<p->nId; i++){
586     struct IdList_item *pNewItem = &pNew->a[i];
587     struct IdList_item *pOldItem = &p->a[i];
588     pNewItem->zName = sqliteStrDup(pOldItem->zName);
589     pNewItem->idx = pOldItem->idx;
590   }
591   return pNew;
592 }
593 Select *sqlite3SelectDup(Select *p){
594   Select *pNew;
595   if( p==0 ) return 0;
596   pNew = sqliteMallocRaw( sizeof(*p) );
597   if( pNew==0 ) return 0;
598   pNew->isDistinct = p->isDistinct;
599   pNew->pEList = sqlite3ExprListDup(p->pEList);
600   pNew->pSrc = sqlite3SrcListDup(p->pSrc);
601   pNew->pWhere = sqlite3ExprDup(p->pWhere);
602   pNew->pGroupBy = sqlite3ExprListDup(p->pGroupBy);
603   pNew->pHaving = sqlite3ExprDup(p->pHaving);
604   pNew->pOrderBy = sqlite3ExprListDup(p->pOrderBy);
605   pNew->op = p->op;
606   pNew->pPrior = sqlite3SelectDup(p->pPrior);
607   pNew->pLimit = sqlite3ExprDup(p->pLimit);
608   pNew->pOffset = sqlite3ExprDup(p->pOffset);
609   pNew->iLimit = -1;
610   pNew->iOffset = -1;
611   pNew->isResolved = p->isResolved;
612   pNew->isAgg = p->isAgg;
613   pNew->usesEphm = 0;
614   pNew->disallowOrderBy = 0;
615   pNew->pRightmost = 0;
616   pNew->addrOpenEphm[0] = -1;
617   pNew->addrOpenEphm[1] = -1;
618   pNew->addrOpenEphm[2] = -1;
619   return pNew;
620 }
621 #else
622 Select *sqlite3SelectDup(Select *p){
623   assert( p==0 );
624   return 0;
625 }
626 #endif
627 
628 
629 /*
630 ** Add a new element to the end of an expression list.  If pList is
631 ** initially NULL, then create a new expression list.
632 */
633 ExprList *sqlite3ExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){
634   if( pList==0 ){
635     pList = sqliteMalloc( sizeof(ExprList) );
636     if( pList==0 ){
637       goto no_mem;
638     }
639     assert( pList->nAlloc==0 );
640   }
641   if( pList->nAlloc<=pList->nExpr ){
642     struct ExprList_item *a;
643     int n = pList->nAlloc*2 + 4;
644     a = sqliteRealloc(pList->a, n*sizeof(pList->a[0]));
645     if( a==0 ){
646       goto no_mem;
647     }
648     pList->a = a;
649     pList->nAlloc = n;
650   }
651   assert( pList->a!=0 );
652   if( pExpr || pName ){
653     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
654     memset(pItem, 0, sizeof(*pItem));
655     pItem->zName = sqlite3NameFromToken(pName);
656     pItem->pExpr = pExpr;
657   }
658   return pList;
659 
660 no_mem:
661   /* Avoid leaking memory if malloc has failed. */
662   sqlite3ExprDelete(pExpr);
663   sqlite3ExprListDelete(pList);
664   return 0;
665 }
666 
667 /*
668 ** If the expression list pEList contains more than iLimit elements,
669 ** leave an error message in pParse.
670 */
671 void sqlite3ExprListCheckLength(
672   Parse *pParse,
673   ExprList *pEList,
674   int iLimit,
675   const char *zObject
676 ){
677   if( pEList && pEList->nExpr>iLimit ){
678     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
679   }
680 }
681 
682 
683 #if SQLITE_MAX_EXPR_DEPTH>0
684 /* The following three functions, heightOfExpr(), heightOfExprList()
685 ** and heightOfSelect(), are used to determine the maximum height
686 ** of any expression tree referenced by the structure passed as the
687 ** first argument.
688 **
689 ** If this maximum height is greater than the current value pointed
690 ** to by pnHeight, the second parameter, then set *pnHeight to that
691 ** value.
692 */
693 static void heightOfExpr(Expr *p, int *pnHeight){
694   if( p ){
695     if( p->nHeight>*pnHeight ){
696       *pnHeight = p->nHeight;
697     }
698   }
699 }
700 static void heightOfExprList(ExprList *p, int *pnHeight){
701   if( p ){
702     int i;
703     for(i=0; i<p->nExpr; i++){
704       heightOfExpr(p->a[i].pExpr, pnHeight);
705     }
706   }
707 }
708 static void heightOfSelect(Select *p, int *pnHeight){
709   if( p ){
710     heightOfExpr(p->pWhere, pnHeight);
711     heightOfExpr(p->pHaving, pnHeight);
712     heightOfExpr(p->pLimit, pnHeight);
713     heightOfExpr(p->pOffset, pnHeight);
714     heightOfExprList(p->pEList, pnHeight);
715     heightOfExprList(p->pGroupBy, pnHeight);
716     heightOfExprList(p->pOrderBy, pnHeight);
717     heightOfSelect(p->pPrior, pnHeight);
718   }
719 }
720 
721 /*
722 ** Set the Expr.nHeight variable in the structure passed as an
723 ** argument. An expression with no children, Expr.pList or
724 ** Expr.pSelect member has a height of 1. Any other expression
725 ** has a height equal to the maximum height of any other
726 ** referenced Expr plus one.
727 */
728 void sqlite3ExprSetHeight(Expr *p){
729   int nHeight = 0;
730   heightOfExpr(p->pLeft, &nHeight);
731   heightOfExpr(p->pRight, &nHeight);
732   heightOfExprList(p->pList, &nHeight);
733   heightOfSelect(p->pSelect, &nHeight);
734   p->nHeight = nHeight + 1;
735 }
736 
737 /*
738 ** Return the maximum height of any expression tree referenced
739 ** by the select statement passed as an argument.
740 */
741 int sqlite3SelectExprHeight(Select *p){
742   int nHeight = 0;
743   heightOfSelect(p, &nHeight);
744   return nHeight;
745 }
746 #endif
747 
748 /*
749 ** Delete an entire expression list.
750 */
751 void sqlite3ExprListDelete(ExprList *pList){
752   int i;
753   struct ExprList_item *pItem;
754   if( pList==0 ) return;
755   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
756   assert( pList->nExpr<=pList->nAlloc );
757   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
758     sqlite3ExprDelete(pItem->pExpr);
759     sqliteFree(pItem->zName);
760   }
761   sqliteFree(pList->a);
762   sqliteFree(pList);
763 }
764 
765 /*
766 ** Walk an expression tree.  Call xFunc for each node visited.
767 **
768 ** The return value from xFunc determines whether the tree walk continues.
769 ** 0 means continue walking the tree.  1 means do not walk children
770 ** of the current node but continue with siblings.  2 means abandon
771 ** the tree walk completely.
772 **
773 ** The return value from this routine is 1 to abandon the tree walk
774 ** and 0 to continue.
775 **
776 ** NOTICE:  This routine does *not* descend into subqueries.
777 */
778 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
779 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
780   int rc;
781   if( pExpr==0 ) return 0;
782   rc = (*xFunc)(pArg, pExpr);
783   if( rc==0 ){
784     if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
785     if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
786     if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
787   }
788   return rc>1;
789 }
790 
791 /*
792 ** Call walkExprTree() for every expression in list p.
793 */
794 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
795   int i;
796   struct ExprList_item *pItem;
797   if( !p ) return 0;
798   for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
799     if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
800   }
801   return 0;
802 }
803 
804 /*
805 ** Call walkExprTree() for every expression in Select p, not including
806 ** expressions that are part of sub-selects in any FROM clause or the LIMIT
807 ** or OFFSET expressions..
808 */
809 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
810   walkExprList(p->pEList, xFunc, pArg);
811   walkExprTree(p->pWhere, xFunc, pArg);
812   walkExprList(p->pGroupBy, xFunc, pArg);
813   walkExprTree(p->pHaving, xFunc, pArg);
814   walkExprList(p->pOrderBy, xFunc, pArg);
815   if( p->pPrior ){
816     walkSelectExpr(p->pPrior, xFunc, pArg);
817   }
818   return 0;
819 }
820 
821 
822 /*
823 ** This routine is designed as an xFunc for walkExprTree().
824 **
825 ** pArg is really a pointer to an integer.  If we can tell by looking
826 ** at pExpr that the expression that contains pExpr is not a constant
827 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
828 ** If pExpr does does not disqualify the expression from being a constant
829 ** then do nothing.
830 **
831 ** After walking the whole tree, if no nodes are found that disqualify
832 ** the expression as constant, then we assume the whole expression
833 ** is constant.  See sqlite3ExprIsConstant() for additional information.
834 */
835 static int exprNodeIsConstant(void *pArg, Expr *pExpr){
836   int *pN = (int*)pArg;
837 
838   /* If *pArg is 3 then any term of the expression that comes from
839   ** the ON or USING clauses of a join disqualifies the expression
840   ** from being considered constant. */
841   if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
842     *pN = 0;
843     return 2;
844   }
845 
846   switch( pExpr->op ){
847     /* Consider functions to be constant if all their arguments are constant
848     ** and *pArg==2 */
849     case TK_FUNCTION:
850       if( (*pN)==2 ) return 0;
851       /* Fall through */
852     case TK_ID:
853     case TK_COLUMN:
854     case TK_DOT:
855     case TK_AGG_FUNCTION:
856     case TK_AGG_COLUMN:
857 #ifndef SQLITE_OMIT_SUBQUERY
858     case TK_SELECT:
859     case TK_EXISTS:
860 #endif
861       *pN = 0;
862       return 2;
863     case TK_IN:
864       if( pExpr->pSelect ){
865         *pN = 0;
866         return 2;
867       }
868     default:
869       return 0;
870   }
871 }
872 
873 /*
874 ** Walk an expression tree.  Return 1 if the expression is constant
875 ** and 0 if it involves variables or function calls.
876 **
877 ** For the purposes of this function, a double-quoted string (ex: "abc")
878 ** is considered a variable but a single-quoted string (ex: 'abc') is
879 ** a constant.
880 */
881 int sqlite3ExprIsConstant(Expr *p){
882   int isConst = 1;
883   walkExprTree(p, exprNodeIsConstant, &isConst);
884   return isConst;
885 }
886 
887 /*
888 ** Walk an expression tree.  Return 1 if the expression is constant
889 ** that does no originate from the ON or USING clauses of a join.
890 ** Return 0 if it involves variables or function calls or terms from
891 ** an ON or USING clause.
892 */
893 int sqlite3ExprIsConstantNotJoin(Expr *p){
894   int isConst = 3;
895   walkExprTree(p, exprNodeIsConstant, &isConst);
896   return isConst!=0;
897 }
898 
899 /*
900 ** Walk an expression tree.  Return 1 if the expression is constant
901 ** or a function call with constant arguments.  Return and 0 if there
902 ** are any variables.
903 **
904 ** For the purposes of this function, a double-quoted string (ex: "abc")
905 ** is considered a variable but a single-quoted string (ex: 'abc') is
906 ** a constant.
907 */
908 int sqlite3ExprIsConstantOrFunction(Expr *p){
909   int isConst = 2;
910   walkExprTree(p, exprNodeIsConstant, &isConst);
911   return isConst!=0;
912 }
913 
914 /*
915 ** If the expression p codes a constant integer that is small enough
916 ** to fit in a 32-bit integer, return 1 and put the value of the integer
917 ** in *pValue.  If the expression is not an integer or if it is too big
918 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
919 */
920 int sqlite3ExprIsInteger(Expr *p, int *pValue){
921   switch( p->op ){
922     case TK_INTEGER: {
923       if( sqlite3GetInt32((char*)p->token.z, pValue) ){
924         return 1;
925       }
926       break;
927     }
928     case TK_UPLUS: {
929       return sqlite3ExprIsInteger(p->pLeft, pValue);
930     }
931     case TK_UMINUS: {
932       int v;
933       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
934         *pValue = -v;
935         return 1;
936       }
937       break;
938     }
939     default: break;
940   }
941   return 0;
942 }
943 
944 /*
945 ** Return TRUE if the given string is a row-id column name.
946 */
947 int sqlite3IsRowid(const char *z){
948   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
949   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
950   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
951   return 0;
952 }
953 
954 /*
955 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
956 ** that name in the set of source tables in pSrcList and make the pExpr
957 ** expression node refer back to that source column.  The following changes
958 ** are made to pExpr:
959 **
960 **    pExpr->iDb           Set the index in db->aDb[] of the database holding
961 **                         the table.
962 **    pExpr->iTable        Set to the cursor number for the table obtained
963 **                         from pSrcList.
964 **    pExpr->iColumn       Set to the column number within the table.
965 **    pExpr->op            Set to TK_COLUMN.
966 **    pExpr->pLeft         Any expression this points to is deleted
967 **    pExpr->pRight        Any expression this points to is deleted.
968 **
969 ** The pDbToken is the name of the database (the "X").  This value may be
970 ** NULL meaning that name is of the form Y.Z or Z.  Any available database
971 ** can be used.  The pTableToken is the name of the table (the "Y").  This
972 ** value can be NULL if pDbToken is also NULL.  If pTableToken is NULL it
973 ** means that the form of the name is Z and that columns from any table
974 ** can be used.
975 **
976 ** If the name cannot be resolved unambiguously, leave an error message
977 ** in pParse and return non-zero.  Return zero on success.
978 */
979 static int lookupName(
980   Parse *pParse,       /* The parsing context */
981   Token *pDbToken,     /* Name of the database containing table, or NULL */
982   Token *pTableToken,  /* Name of table containing column, or NULL */
983   Token *pColumnToken, /* Name of the column. */
984   NameContext *pNC,    /* The name context used to resolve the name */
985   Expr *pExpr          /* Make this EXPR node point to the selected column */
986 ){
987   char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */
988   char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */
989   char *zCol = 0;      /* Name of the column.  The "Z" */
990   int i, j;            /* Loop counters */
991   int cnt = 0;         /* Number of matching column names */
992   int cntTab = 0;      /* Number of matching table names */
993   sqlite3 *db = pParse->db;  /* The database */
994   struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
995   struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
996   NameContext *pTopNC = pNC;        /* First namecontext in the list */
997 
998   assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
999   zDb = sqlite3NameFromToken(pDbToken);
1000   zTab = sqlite3NameFromToken(pTableToken);
1001   zCol = sqlite3NameFromToken(pColumnToken);
1002   if( sqlite3MallocFailed() ){
1003     goto lookupname_end;
1004   }
1005 
1006   pExpr->iTable = -1;
1007   while( pNC && cnt==0 ){
1008     ExprList *pEList;
1009     SrcList *pSrcList = pNC->pSrcList;
1010 
1011     if( pSrcList ){
1012       for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
1013         Table *pTab;
1014         int iDb;
1015         Column *pCol;
1016 
1017         pTab = pItem->pTab;
1018         assert( pTab!=0 );
1019         iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1020         assert( pTab->nCol>0 );
1021         if( zTab ){
1022           if( pItem->zAlias ){
1023             char *zTabName = pItem->zAlias;
1024             if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
1025           }else{
1026             char *zTabName = pTab->zName;
1027             if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
1028             if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
1029               continue;
1030             }
1031           }
1032         }
1033         if( 0==(cntTab++) ){
1034           pExpr->iTable = pItem->iCursor;
1035           pExpr->pSchema = pTab->pSchema;
1036           pMatch = pItem;
1037         }
1038         for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
1039           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
1040             const char *zColl = pTab->aCol[j].zColl;
1041             IdList *pUsing;
1042             cnt++;
1043             pExpr->iTable = pItem->iCursor;
1044             pMatch = pItem;
1045             pExpr->pSchema = pTab->pSchema;
1046             /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
1047             pExpr->iColumn = j==pTab->iPKey ? -1 : j;
1048             pExpr->affinity = pTab->aCol[j].affinity;
1049             if( (pExpr->flags & EP_ExpCollate)==0 ){
1050               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
1051             }
1052             if( i<pSrcList->nSrc-1 ){
1053               if( pItem[1].jointype & JT_NATURAL ){
1054                 /* If this match occurred in the left table of a natural join,
1055                 ** then skip the right table to avoid a duplicate match */
1056                 pItem++;
1057                 i++;
1058               }else if( (pUsing = pItem[1].pUsing)!=0 ){
1059                 /* If this match occurs on a column that is in the USING clause
1060                 ** of a join, skip the search of the right table of the join
1061                 ** to avoid a duplicate match there. */
1062                 int k;
1063                 for(k=0; k<pUsing->nId; k++){
1064                   if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
1065                     pItem++;
1066                     i++;
1067                     break;
1068                   }
1069                 }
1070               }
1071             }
1072             break;
1073           }
1074         }
1075       }
1076     }
1077 
1078 #ifndef SQLITE_OMIT_TRIGGER
1079     /* If we have not already resolved the name, then maybe
1080     ** it is a new.* or old.* trigger argument reference
1081     */
1082     if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
1083       TriggerStack *pTriggerStack = pParse->trigStack;
1084       Table *pTab = 0;
1085       if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
1086         pExpr->iTable = pTriggerStack->newIdx;
1087         assert( pTriggerStack->pTab );
1088         pTab = pTriggerStack->pTab;
1089       }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
1090         pExpr->iTable = pTriggerStack->oldIdx;
1091         assert( pTriggerStack->pTab );
1092         pTab = pTriggerStack->pTab;
1093       }
1094 
1095       if( pTab ){
1096         int iCol;
1097         Column *pCol = pTab->aCol;
1098 
1099         pExpr->pSchema = pTab->pSchema;
1100         cntTab++;
1101         for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
1102           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
1103             const char *zColl = pTab->aCol[iCol].zColl;
1104             cnt++;
1105             pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
1106             pExpr->affinity = pTab->aCol[iCol].affinity;
1107             if( (pExpr->flags & EP_ExpCollate)==0 ){
1108               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
1109             }
1110             pExpr->pTab = pTab;
1111             break;
1112           }
1113         }
1114       }
1115     }
1116 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
1117 
1118     /*
1119     ** Perhaps the name is a reference to the ROWID
1120     */
1121     if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
1122       cnt = 1;
1123       pExpr->iColumn = -1;
1124       pExpr->affinity = SQLITE_AFF_INTEGER;
1125     }
1126 
1127     /*
1128     ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
1129     ** might refer to an result-set alias.  This happens, for example, when
1130     ** we are resolving names in the WHERE clause of the following command:
1131     **
1132     **     SELECT a+b AS x FROM table WHERE x<10;
1133     **
1134     ** In cases like this, replace pExpr with a copy of the expression that
1135     ** forms the result set entry ("a+b" in the example) and return immediately.
1136     ** Note that the expression in the result set should have already been
1137     ** resolved by the time the WHERE clause is resolved.
1138     */
1139     if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
1140       for(j=0; j<pEList->nExpr; j++){
1141         char *zAs = pEList->a[j].zName;
1142         if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
1143           Expr *pDup, *pOrig;
1144           assert( pExpr->pLeft==0 && pExpr->pRight==0 );
1145           assert( pExpr->pList==0 );
1146           assert( pExpr->pSelect==0 );
1147           pOrig = pEList->a[j].pExpr;
1148           if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
1149             sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
1150             sqliteFree(zCol);
1151             return 2;
1152           }
1153           pDup = sqlite3ExprDup(pOrig);
1154           if( pExpr->flags & EP_ExpCollate ){
1155             pDup->pColl = pExpr->pColl;
1156             pDup->flags |= EP_ExpCollate;
1157           }
1158           if( pExpr->span.dyn ) sqliteFree((char*)pExpr->span.z);
1159           if( pExpr->token.dyn ) sqliteFree((char*)pExpr->token.z);
1160           memcpy(pExpr, pDup, sizeof(*pExpr));
1161           sqliteFree(pDup);
1162           cnt = 1;
1163           pMatch = 0;
1164           assert( zTab==0 && zDb==0 );
1165           goto lookupname_end_2;
1166         }
1167       }
1168     }
1169 
1170     /* Advance to the next name context.  The loop will exit when either
1171     ** we have a match (cnt>0) or when we run out of name contexts.
1172     */
1173     if( cnt==0 ){
1174       pNC = pNC->pNext;
1175     }
1176   }
1177 
1178   /*
1179   ** If X and Y are NULL (in other words if only the column name Z is
1180   ** supplied) and the value of Z is enclosed in double-quotes, then
1181   ** Z is a string literal if it doesn't match any column names.  In that
1182   ** case, we need to return right away and not make any changes to
1183   ** pExpr.
1184   **
1185   ** Because no reference was made to outer contexts, the pNC->nRef
1186   ** fields are not changed in any context.
1187   */
1188   if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
1189     sqliteFree(zCol);
1190     return 0;
1191   }
1192 
1193   /*
1194   ** cnt==0 means there was not match.  cnt>1 means there were two or
1195   ** more matches.  Either way, we have an error.
1196   */
1197   if( cnt!=1 ){
1198     char *z = 0;
1199     char *zErr;
1200     zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s";
1201     if( zDb ){
1202       sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0);
1203     }else if( zTab ){
1204       sqlite3SetString(&z, zTab, ".", zCol, (char*)0);
1205     }else{
1206       z = sqliteStrDup(zCol);
1207     }
1208     sqlite3ErrorMsg(pParse, zErr, z);
1209     sqliteFree(z);
1210     pTopNC->nErr++;
1211   }
1212 
1213   /* If a column from a table in pSrcList is referenced, then record
1214   ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes
1215   ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the
1216   ** column number is greater than the number of bits in the bitmask
1217   ** then set the high-order bit of the bitmask.
1218   */
1219   if( pExpr->iColumn>=0 && pMatch!=0 ){
1220     int n = pExpr->iColumn;
1221     if( n>=sizeof(Bitmask)*8 ){
1222       n = sizeof(Bitmask)*8-1;
1223     }
1224     assert( pMatch->iCursor==pExpr->iTable );
1225     pMatch->colUsed |= ((Bitmask)1)<<n;
1226   }
1227 
1228 lookupname_end:
1229   /* Clean up and return
1230   */
1231   sqliteFree(zDb);
1232   sqliteFree(zTab);
1233   sqlite3ExprDelete(pExpr->pLeft);
1234   pExpr->pLeft = 0;
1235   sqlite3ExprDelete(pExpr->pRight);
1236   pExpr->pRight = 0;
1237   pExpr->op = TK_COLUMN;
1238 lookupname_end_2:
1239   sqliteFree(zCol);
1240   if( cnt==1 ){
1241     assert( pNC!=0 );
1242     sqlite3AuthRead(pParse, pExpr, pNC->pSrcList);
1243     if( pMatch && !pMatch->pSelect ){
1244       pExpr->pTab = pMatch->pTab;
1245     }
1246     /* Increment the nRef value on all name contexts from TopNC up to
1247     ** the point where the name matched. */
1248     for(;;){
1249       assert( pTopNC!=0 );
1250       pTopNC->nRef++;
1251       if( pTopNC==pNC ) break;
1252       pTopNC = pTopNC->pNext;
1253     }
1254     return 0;
1255   } else {
1256     return 1;
1257   }
1258 }
1259 
1260 /*
1261 ** This routine is designed as an xFunc for walkExprTree().
1262 **
1263 ** Resolve symbolic names into TK_COLUMN operators for the current
1264 ** node in the expression tree.  Return 0 to continue the search down
1265 ** the tree or 2 to abort the tree walk.
1266 **
1267 ** This routine also does error checking and name resolution for
1268 ** function names.  The operator for aggregate functions is changed
1269 ** to TK_AGG_FUNCTION.
1270 */
1271 static int nameResolverStep(void *pArg, Expr *pExpr){
1272   NameContext *pNC = (NameContext*)pArg;
1273   Parse *pParse;
1274 
1275   if( pExpr==0 ) return 1;
1276   assert( pNC!=0 );
1277   pParse = pNC->pParse;
1278 
1279   if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
1280   ExprSetProperty(pExpr, EP_Resolved);
1281 #ifndef NDEBUG
1282   if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
1283     SrcList *pSrcList = pNC->pSrcList;
1284     int i;
1285     for(i=0; i<pNC->pSrcList->nSrc; i++){
1286       assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
1287     }
1288   }
1289 #endif
1290   switch( pExpr->op ){
1291     /* Double-quoted strings (ex: "abc") are used as identifiers if
1292     ** possible.  Otherwise they remain as strings.  Single-quoted
1293     ** strings (ex: 'abc') are always string literals.
1294     */
1295     case TK_STRING: {
1296       if( pExpr->token.z[0]=='\'' ) break;
1297       /* Fall thru into the TK_ID case if this is a double-quoted string */
1298     }
1299     /* A lone identifier is the name of a column.
1300     */
1301     case TK_ID: {
1302       lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
1303       return 1;
1304     }
1305 
1306     /* A table name and column name:     ID.ID
1307     ** Or a database, table and column:  ID.ID.ID
1308     */
1309     case TK_DOT: {
1310       Token *pColumn;
1311       Token *pTable;
1312       Token *pDb;
1313       Expr *pRight;
1314 
1315       /* if( pSrcList==0 ) break; */
1316       pRight = pExpr->pRight;
1317       if( pRight->op==TK_ID ){
1318         pDb = 0;
1319         pTable = &pExpr->pLeft->token;
1320         pColumn = &pRight->token;
1321       }else{
1322         assert( pRight->op==TK_DOT );
1323         pDb = &pExpr->pLeft->token;
1324         pTable = &pRight->pLeft->token;
1325         pColumn = &pRight->pRight->token;
1326       }
1327       lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
1328       return 1;
1329     }
1330 
1331     /* Resolve function names
1332     */
1333     case TK_CONST_FUNC:
1334     case TK_FUNCTION: {
1335       ExprList *pList = pExpr->pList;    /* The argument list */
1336       int n = pList ? pList->nExpr : 0;  /* Number of arguments */
1337       int no_such_func = 0;       /* True if no such function exists */
1338       int wrong_num_args = 0;     /* True if wrong number of arguments */
1339       int is_agg = 0;             /* True if is an aggregate function */
1340       int i;
1341       int auth;                   /* Authorization to use the function */
1342       int nId;                    /* Number of characters in function name */
1343       const char *zId;            /* The function name. */
1344       FuncDef *pDef;              /* Information about the function */
1345       int enc = ENC(pParse->db);  /* The database encoding */
1346 
1347       zId = (char*)pExpr->token.z;
1348       nId = pExpr->token.n;
1349       pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
1350       if( pDef==0 ){
1351         pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
1352         if( pDef==0 ){
1353           no_such_func = 1;
1354         }else{
1355           wrong_num_args = 1;
1356         }
1357       }else{
1358         is_agg = pDef->xFunc==0;
1359       }
1360 #ifndef SQLITE_OMIT_AUTHORIZATION
1361       if( pDef ){
1362         auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
1363         if( auth!=SQLITE_OK ){
1364           if( auth==SQLITE_DENY ){
1365             sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
1366                                     pDef->zName);
1367             pNC->nErr++;
1368           }
1369           pExpr->op = TK_NULL;
1370           return 1;
1371         }
1372       }
1373 #endif
1374       if( is_agg && !pNC->allowAgg ){
1375         sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
1376         pNC->nErr++;
1377         is_agg = 0;
1378       }else if( no_such_func ){
1379         sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
1380         pNC->nErr++;
1381       }else if( wrong_num_args ){
1382         sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
1383              nId, zId);
1384         pNC->nErr++;
1385       }
1386       if( is_agg ){
1387         pExpr->op = TK_AGG_FUNCTION;
1388         pNC->hasAgg = 1;
1389       }
1390       if( is_agg ) pNC->allowAgg = 0;
1391       for(i=0; pNC->nErr==0 && i<n; i++){
1392         walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
1393       }
1394       if( is_agg ) pNC->allowAgg = 1;
1395       /* FIX ME:  Compute pExpr->affinity based on the expected return
1396       ** type of the function
1397       */
1398       return is_agg;
1399     }
1400 #ifndef SQLITE_OMIT_SUBQUERY
1401     case TK_SELECT:
1402     case TK_EXISTS:
1403 #endif
1404     case TK_IN: {
1405       if( pExpr->pSelect ){
1406         int nRef = pNC->nRef;
1407 #ifndef SQLITE_OMIT_CHECK
1408         if( pNC->isCheck ){
1409           sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
1410         }
1411 #endif
1412         sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
1413         assert( pNC->nRef>=nRef );
1414         if( nRef!=pNC->nRef ){
1415           ExprSetProperty(pExpr, EP_VarSelect);
1416         }
1417       }
1418       break;
1419     }
1420 #ifndef SQLITE_OMIT_CHECK
1421     case TK_VARIABLE: {
1422       if( pNC->isCheck ){
1423         sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
1424       }
1425       break;
1426     }
1427 #endif
1428   }
1429   return 0;
1430 }
1431 
1432 /*
1433 ** This routine walks an expression tree and resolves references to
1434 ** table columns.  Nodes of the form ID.ID or ID resolve into an
1435 ** index to the table in the table list and a column offset.  The
1436 ** Expr.opcode for such nodes is changed to TK_COLUMN.  The Expr.iTable
1437 ** value is changed to the index of the referenced table in pTabList
1438 ** plus the "base" value.  The base value will ultimately become the
1439 ** VDBE cursor number for a cursor that is pointing into the referenced
1440 ** table.  The Expr.iColumn value is changed to the index of the column
1441 ** of the referenced table.  The Expr.iColumn value for the special
1442 ** ROWID column is -1.  Any INTEGER PRIMARY KEY column is tried as an
1443 ** alias for ROWID.
1444 **
1445 ** Also resolve function names and check the functions for proper
1446 ** usage.  Make sure all function names are recognized and all functions
1447 ** have the correct number of arguments.  Leave an error message
1448 ** in pParse->zErrMsg if anything is amiss.  Return the number of errors.
1449 **
1450 ** If the expression contains aggregate functions then set the EP_Agg
1451 ** property on the expression.
1452 */
1453 int sqlite3ExprResolveNames(
1454   NameContext *pNC,       /* Namespace to resolve expressions in. */
1455   Expr *pExpr             /* The expression to be analyzed. */
1456 ){
1457   int savedHasAgg;
1458   if( pExpr==0 ) return 0;
1459 #if SQLITE_MAX_EXPR_DEPTH>0
1460   if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){
1461     sqlite3ErrorMsg(pNC->pParse,
1462        "Expression tree is too large (maximum depth %d)",
1463        SQLITE_MAX_EXPR_DEPTH
1464     );
1465     return 1;
1466   }
1467   pNC->pParse->nHeight += pExpr->nHeight;
1468 #endif
1469   savedHasAgg = pNC->hasAgg;
1470   pNC->hasAgg = 0;
1471   walkExprTree(pExpr, nameResolverStep, pNC);
1472 #if SQLITE_MAX_EXPR_DEPTH>0
1473   pNC->pParse->nHeight -= pExpr->nHeight;
1474 #endif
1475   if( pNC->nErr>0 ){
1476     ExprSetProperty(pExpr, EP_Error);
1477   }
1478   if( pNC->hasAgg ){
1479     ExprSetProperty(pExpr, EP_Agg);
1480   }else if( savedHasAgg ){
1481     pNC->hasAgg = 1;
1482   }
1483   return ExprHasProperty(pExpr, EP_Error);
1484 }
1485 
1486 /*
1487 ** A pointer instance of this structure is used to pass information
1488 ** through walkExprTree into codeSubqueryStep().
1489 */
1490 typedef struct QueryCoder QueryCoder;
1491 struct QueryCoder {
1492   Parse *pParse;       /* The parsing context */
1493   NameContext *pNC;    /* Namespace of first enclosing query */
1494 };
1495 
1496 
1497 /*
1498 ** Generate code for scalar subqueries used as an expression
1499 ** and IN operators.  Examples:
1500 **
1501 **     (SELECT a FROM b)          -- subquery
1502 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1503 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1504 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1505 **
1506 ** The pExpr parameter describes the expression that contains the IN
1507 ** operator or subquery.
1508 */
1509 #ifndef SQLITE_OMIT_SUBQUERY
1510 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
1511   int testAddr = 0;                       /* One-time test address */
1512   Vdbe *v = sqlite3GetVdbe(pParse);
1513   if( v==0 ) return;
1514 
1515 
1516   /* This code must be run in its entirety every time it is encountered
1517   ** if any of the following is true:
1518   **
1519   **    *  The right-hand side is a correlated subquery
1520   **    *  The right-hand side is an expression list containing variables
1521   **    *  We are inside a trigger
1522   **
1523   ** If all of the above are false, then we can run this code just once
1524   ** save the results, and reuse the same result on subsequent invocations.
1525   */
1526   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
1527     int mem = pParse->nMem++;
1528     sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0);
1529     testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0);
1530     assert( testAddr>0 || sqlite3MallocFailed() );
1531     sqlite3VdbeAddOp(v, OP_MemInt, 1, mem);
1532   }
1533 
1534   switch( pExpr->op ){
1535     case TK_IN: {
1536       char affinity;
1537       KeyInfo keyInfo;
1538       int addr;        /* Address of OP_OpenEphemeral instruction */
1539 
1540       affinity = sqlite3ExprAffinity(pExpr->pLeft);
1541 
1542       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1543       ** expression it is handled the same way. A virtual table is
1544       ** filled with single-field index keys representing the results
1545       ** from the SELECT or the <exprlist>.
1546       **
1547       ** If the 'x' expression is a column value, or the SELECT...
1548       ** statement returns a column value, then the affinity of that
1549       ** column is used to build the index keys. If both 'x' and the
1550       ** SELECT... statement are columns, then numeric affinity is used
1551       ** if either column has NUMERIC or INTEGER affinity. If neither
1552       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1553       ** is used.
1554       */
1555       pExpr->iTable = pParse->nTab++;
1556       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0);
1557       memset(&keyInfo, 0, sizeof(keyInfo));
1558       keyInfo.nField = 1;
1559       sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1);
1560 
1561       if( pExpr->pSelect ){
1562         /* Case 1:     expr IN (SELECT ...)
1563         **
1564         ** Generate code to write the results of the select into the temporary
1565         ** table allocated and opened above.
1566         */
1567         int iParm = pExpr->iTable +  (((int)affinity)<<16);
1568         ExprList *pEList;
1569         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1570         if( sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0) ){
1571           return;
1572         }
1573         pEList = pExpr->pSelect->pEList;
1574         if( pEList && pEList->nExpr>0 ){
1575           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1576               pEList->a[0].pExpr);
1577         }
1578       }else if( pExpr->pList ){
1579         /* Case 2:     expr IN (exprlist)
1580         **
1581 	** For each expression, build an index key from the evaluation and
1582         ** store it in the temporary table. If <expr> is a column, then use
1583         ** that columns affinity when building index keys. If <expr> is not
1584         ** a column, use numeric affinity.
1585         */
1586         int i;
1587         ExprList *pList = pExpr->pList;
1588         struct ExprList_item *pItem;
1589 
1590         if( !affinity ){
1591           affinity = SQLITE_AFF_NONE;
1592         }
1593         keyInfo.aColl[0] = pExpr->pLeft->pColl;
1594 
1595         /* Loop through each expression in <exprlist>. */
1596         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1597           Expr *pE2 = pItem->pExpr;
1598 
1599           /* If the expression is not constant then we will need to
1600           ** disable the test that was generated above that makes sure
1601           ** this code only executes once.  Because for a non-constant
1602           ** expression we need to rerun this code each time.
1603           */
1604           if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){
1605             sqlite3VdbeChangeToNoop(v, testAddr-1, 3);
1606             testAddr = 0;
1607           }
1608 
1609           /* Evaluate the expression and insert it into the temp table */
1610           sqlite3ExprCode(pParse, pE2);
1611           sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);
1612           sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0);
1613         }
1614       }
1615       sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO);
1616       break;
1617     }
1618 
1619     case TK_EXISTS:
1620     case TK_SELECT: {
1621       /* This has to be a scalar SELECT.  Generate code to put the
1622       ** value of this select in a memory cell and record the number
1623       ** of the memory cell in iColumn.
1624       */
1625       static const Token one = { (u8*)"1", 0, 1 };
1626       Select *pSel;
1627       int iMem;
1628       int sop;
1629 
1630       pExpr->iColumn = iMem = pParse->nMem++;
1631       pSel = pExpr->pSelect;
1632       if( pExpr->op==TK_SELECT ){
1633         sop = SRT_Mem;
1634         sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0);
1635         VdbeComment((v, "# Init subquery result"));
1636       }else{
1637         sop = SRT_Exists;
1638         sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem);
1639         VdbeComment((v, "# Init EXISTS result"));
1640       }
1641       sqlite3ExprDelete(pSel->pLimit);
1642       pSel->pLimit = sqlite3Expr(TK_INTEGER, 0, 0, &one);
1643       if( sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0) ){
1644         return;
1645       }
1646       break;
1647     }
1648   }
1649 
1650   if( testAddr ){
1651     sqlite3VdbeJumpHere(v, testAddr);
1652   }
1653 
1654   return;
1655 }
1656 #endif /* SQLITE_OMIT_SUBQUERY */
1657 
1658 /*
1659 ** Generate an instruction that will put the integer describe by
1660 ** text z[0..n-1] on the stack.
1661 */
1662 static void codeInteger(Vdbe *v, const char *z, int n){
1663   assert( z || sqlite3MallocFailed() );
1664   if( z ){
1665     int i;
1666     if( sqlite3GetInt32(z, &i) ){
1667       sqlite3VdbeAddOp(v, OP_Integer, i, 0);
1668     }else if( sqlite3FitsIn64Bits(z) ){
1669       sqlite3VdbeOp3(v, OP_Int64, 0, 0, z, n);
1670     }else{
1671       sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n);
1672     }
1673   }
1674 }
1675 
1676 
1677 /*
1678 ** Generate code that will extract the iColumn-th column from
1679 ** table pTab and push that column value on the stack.  There
1680 ** is an open cursor to pTab in iTable.  If iColumn<0 then
1681 ** code is generated that extracts the rowid.
1682 */
1683 void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){
1684   if( iColumn<0 ){
1685     int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
1686     sqlite3VdbeAddOp(v, op, iTable, 0);
1687   }else if( pTab==0 ){
1688     sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn);
1689   }else{
1690     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
1691     sqlite3VdbeAddOp(v, op, iTable, iColumn);
1692     sqlite3ColumnDefault(v, pTab, iColumn);
1693 #ifndef SQLITE_OMIT_FLOATING_POINT
1694     if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
1695       sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0);
1696     }
1697 #endif
1698   }
1699 }
1700 
1701 /*
1702 ** Generate code into the current Vdbe to evaluate the given
1703 ** expression and leave the result on the top of stack.
1704 **
1705 ** This code depends on the fact that certain token values (ex: TK_EQ)
1706 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
1707 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
1708 ** the make process cause these values to align.  Assert()s in the code
1709 ** below verify that the numbers are aligned correctly.
1710 */
1711 void sqlite3ExprCode(Parse *pParse, Expr *pExpr){
1712   Vdbe *v = pParse->pVdbe;
1713   int op;
1714   int stackChng = 1;    /* Amount of change to stack depth */
1715 
1716   if( v==0 ) return;
1717   if( pExpr==0 ){
1718     sqlite3VdbeAddOp(v, OP_Null, 0, 0);
1719     return;
1720   }
1721   op = pExpr->op;
1722   switch( op ){
1723     case TK_AGG_COLUMN: {
1724       AggInfo *pAggInfo = pExpr->pAggInfo;
1725       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
1726       if( !pAggInfo->directMode ){
1727         sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0);
1728         break;
1729       }else if( pAggInfo->useSortingIdx ){
1730         sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx,
1731                               pCol->iSorterColumn);
1732         break;
1733       }
1734       /* Otherwise, fall thru into the TK_COLUMN case */
1735     }
1736     case TK_COLUMN: {
1737       if( pExpr->iTable<0 ){
1738         /* This only happens when coding check constraints */
1739         assert( pParse->ckOffset>0 );
1740         sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1);
1741       }else{
1742         sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable);
1743       }
1744       break;
1745     }
1746     case TK_INTEGER: {
1747       codeInteger(v, (char*)pExpr->token.z, pExpr->token.n);
1748       break;
1749     }
1750     case TK_FLOAT:
1751     case TK_STRING: {
1752       assert( TK_FLOAT==OP_Real );
1753       assert( TK_STRING==OP_String8 );
1754       sqlite3DequoteExpr(pExpr);
1755       sqlite3VdbeOp3(v, op, 0, 0, (char*)pExpr->token.z, pExpr->token.n);
1756       break;
1757     }
1758     case TK_NULL: {
1759       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
1760       break;
1761     }
1762 #ifndef SQLITE_OMIT_BLOB_LITERAL
1763     case TK_BLOB: {
1764       int n;
1765       const char *z;
1766       assert( TK_BLOB==OP_HexBlob );
1767       n = pExpr->token.n - 3;
1768       z = (char*)pExpr->token.z + 2;
1769       assert( n>=0 );
1770       if( n==0 ){
1771         z = "";
1772       }
1773       sqlite3VdbeOp3(v, op, 0, 0, z, n);
1774       break;
1775     }
1776 #endif
1777     case TK_VARIABLE: {
1778       sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
1779       if( pExpr->token.n>1 ){
1780         sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n);
1781       }
1782       break;
1783     }
1784     case TK_REGISTER: {
1785       sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0);
1786       break;
1787     }
1788 #ifndef SQLITE_OMIT_CAST
1789     case TK_CAST: {
1790       /* Expressions of the form:   CAST(pLeft AS token) */
1791       int aff, to_op;
1792       sqlite3ExprCode(pParse, pExpr->pLeft);
1793       aff = sqlite3AffinityType(&pExpr->token);
1794       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
1795       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
1796       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
1797       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
1798       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
1799       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
1800       sqlite3VdbeAddOp(v, to_op, 0, 0);
1801       stackChng = 0;
1802       break;
1803     }
1804 #endif /* SQLITE_OMIT_CAST */
1805     case TK_LT:
1806     case TK_LE:
1807     case TK_GT:
1808     case TK_GE:
1809     case TK_NE:
1810     case TK_EQ: {
1811       assert( TK_LT==OP_Lt );
1812       assert( TK_LE==OP_Le );
1813       assert( TK_GT==OP_Gt );
1814       assert( TK_GE==OP_Ge );
1815       assert( TK_EQ==OP_Eq );
1816       assert( TK_NE==OP_Ne );
1817       sqlite3ExprCode(pParse, pExpr->pLeft);
1818       sqlite3ExprCode(pParse, pExpr->pRight);
1819       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0);
1820       stackChng = -1;
1821       break;
1822     }
1823     case TK_AND:
1824     case TK_OR:
1825     case TK_PLUS:
1826     case TK_STAR:
1827     case TK_MINUS:
1828     case TK_REM:
1829     case TK_BITAND:
1830     case TK_BITOR:
1831     case TK_SLASH:
1832     case TK_LSHIFT:
1833     case TK_RSHIFT:
1834     case TK_CONCAT: {
1835       assert( TK_AND==OP_And );
1836       assert( TK_OR==OP_Or );
1837       assert( TK_PLUS==OP_Add );
1838       assert( TK_MINUS==OP_Subtract );
1839       assert( TK_REM==OP_Remainder );
1840       assert( TK_BITAND==OP_BitAnd );
1841       assert( TK_BITOR==OP_BitOr );
1842       assert( TK_SLASH==OP_Divide );
1843       assert( TK_LSHIFT==OP_ShiftLeft );
1844       assert( TK_RSHIFT==OP_ShiftRight );
1845       assert( TK_CONCAT==OP_Concat );
1846       sqlite3ExprCode(pParse, pExpr->pLeft);
1847       sqlite3ExprCode(pParse, pExpr->pRight);
1848       sqlite3VdbeAddOp(v, op, 0, 0);
1849       stackChng = -1;
1850       break;
1851     }
1852     case TK_UMINUS: {
1853       Expr *pLeft = pExpr->pLeft;
1854       assert( pLeft );
1855       if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
1856         Token *p = &pLeft->token;
1857         char *z = sqlite3MPrintf("-%.*s", p->n, p->z);
1858         if( pLeft->op==TK_FLOAT ){
1859           sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1);
1860         }else{
1861           codeInteger(v, z, p->n+1);
1862         }
1863         sqliteFree(z);
1864         break;
1865       }
1866       /* Fall through into TK_NOT */
1867     }
1868     case TK_BITNOT:
1869     case TK_NOT: {
1870       assert( TK_BITNOT==OP_BitNot );
1871       assert( TK_NOT==OP_Not );
1872       sqlite3ExprCode(pParse, pExpr->pLeft);
1873       sqlite3VdbeAddOp(v, op, 0, 0);
1874       stackChng = 0;
1875       break;
1876     }
1877     case TK_ISNULL:
1878     case TK_NOTNULL: {
1879       int dest;
1880       assert( TK_ISNULL==OP_IsNull );
1881       assert( TK_NOTNULL==OP_NotNull );
1882       sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
1883       sqlite3ExprCode(pParse, pExpr->pLeft);
1884       dest = sqlite3VdbeCurrentAddr(v) + 2;
1885       sqlite3VdbeAddOp(v, op, 1, dest);
1886       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
1887       stackChng = 0;
1888       break;
1889     }
1890     case TK_AGG_FUNCTION: {
1891       AggInfo *pInfo = pExpr->pAggInfo;
1892       if( pInfo==0 ){
1893         sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
1894             &pExpr->span);
1895       }else{
1896         sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0);
1897       }
1898       break;
1899     }
1900     case TK_CONST_FUNC:
1901     case TK_FUNCTION: {
1902       ExprList *pList = pExpr->pList;
1903       int nExpr = pList ? pList->nExpr : 0;
1904       FuncDef *pDef;
1905       int nId;
1906       const char *zId;
1907       int constMask = 0;
1908       int i;
1909       u8 enc = ENC(pParse->db);
1910       CollSeq *pColl = 0;
1911       zId = (char*)pExpr->token.z;
1912       nId = pExpr->token.n;
1913       pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
1914       assert( pDef!=0 );
1915       nExpr = sqlite3ExprCodeExprList(pParse, pList);
1916 #ifndef SQLITE_OMIT_VIRTUALTABLE
1917       /* Possibly overload the function if the first argument is
1918       ** a virtual table column.
1919       **
1920       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
1921       ** second argument, not the first, as the argument to test to
1922       ** see if it is a column in a virtual table.  This is done because
1923       ** the left operand of infix functions (the operand we want to
1924       ** control overloading) ends up as the second argument to the
1925       ** function.  The expression "A glob B" is equivalent to
1926       ** "glob(B,A).  We want to use the A in "A glob B" to test
1927       ** for function overloading.  But we use the B term in "glob(B,A)".
1928       */
1929       if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
1930         pDef = sqlite3VtabOverloadFunction(pDef, nExpr, pList->a[1].pExpr);
1931       }else if( nExpr>0 ){
1932         pDef = sqlite3VtabOverloadFunction(pDef, nExpr, pList->a[0].pExpr);
1933       }
1934 #endif
1935       for(i=0; i<nExpr && i<32; i++){
1936         if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
1937           constMask |= (1<<i);
1938         }
1939         if( pDef->needCollSeq && !pColl ){
1940           pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
1941         }
1942       }
1943       if( pDef->needCollSeq ){
1944         if( !pColl ) pColl = pParse->db->pDfltColl;
1945         sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
1946       }
1947       sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF);
1948       stackChng = 1-nExpr;
1949       break;
1950     }
1951 #ifndef SQLITE_OMIT_SUBQUERY
1952     case TK_EXISTS:
1953     case TK_SELECT: {
1954       if( pExpr->iColumn==0 ){
1955         sqlite3CodeSubselect(pParse, pExpr);
1956       }
1957       sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
1958       VdbeComment((v, "# load subquery result"));
1959       break;
1960     }
1961     case TK_IN: {
1962       int addr;
1963       char affinity;
1964       int ckOffset = pParse->ckOffset;
1965       sqlite3CodeSubselect(pParse, pExpr);
1966 
1967       /* Figure out the affinity to use to create a key from the results
1968       ** of the expression. affinityStr stores a static string suitable for
1969       ** P3 of OP_MakeRecord.
1970       */
1971       affinity = comparisonAffinity(pExpr);
1972 
1973       sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
1974       pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0);
1975 
1976       /* Code the <expr> from "<expr> IN (...)". The temporary table
1977       ** pExpr->iTable contains the values that make up the (...) set.
1978       */
1979       sqlite3ExprCode(pParse, pExpr->pLeft);
1980       addr = sqlite3VdbeCurrentAddr(v);
1981       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4);            /* addr + 0 */
1982       sqlite3VdbeAddOp(v, OP_Pop, 2, 0);
1983       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
1984       sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7);
1985       sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);   /* addr + 4 */
1986       sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7);
1987       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);                  /* addr + 6 */
1988 
1989       break;
1990     }
1991 #endif
1992     case TK_BETWEEN: {
1993       Expr *pLeft = pExpr->pLeft;
1994       struct ExprList_item *pLItem = pExpr->pList->a;
1995       Expr *pRight = pLItem->pExpr;
1996       sqlite3ExprCode(pParse, pLeft);
1997       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
1998       sqlite3ExprCode(pParse, pRight);
1999       codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0);
2000       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
2001       pLItem++;
2002       pRight = pLItem->pExpr;
2003       sqlite3ExprCode(pParse, pRight);
2004       codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0);
2005       sqlite3VdbeAddOp(v, OP_And, 0, 0);
2006       break;
2007     }
2008     case TK_UPLUS: {
2009       sqlite3ExprCode(pParse, pExpr->pLeft);
2010       stackChng = 0;
2011       break;
2012     }
2013     case TK_CASE: {
2014       int expr_end_label;
2015       int jumpInst;
2016       int nExpr;
2017       int i;
2018       ExprList *pEList;
2019       struct ExprList_item *aListelem;
2020 
2021       assert(pExpr->pList);
2022       assert((pExpr->pList->nExpr % 2) == 0);
2023       assert(pExpr->pList->nExpr > 0);
2024       pEList = pExpr->pList;
2025       aListelem = pEList->a;
2026       nExpr = pEList->nExpr;
2027       expr_end_label = sqlite3VdbeMakeLabel(v);
2028       if( pExpr->pLeft ){
2029         sqlite3ExprCode(pParse, pExpr->pLeft);
2030       }
2031       for(i=0; i<nExpr; i=i+2){
2032         sqlite3ExprCode(pParse, aListelem[i].pExpr);
2033         if( pExpr->pLeft ){
2034           sqlite3VdbeAddOp(v, OP_Dup, 1, 1);
2035           jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr,
2036                                  OP_Ne, 0, 1);
2037           sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
2038         }else{
2039           jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0);
2040         }
2041         sqlite3ExprCode(pParse, aListelem[i+1].pExpr);
2042         sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label);
2043         sqlite3VdbeJumpHere(v, jumpInst);
2044       }
2045       if( pExpr->pLeft ){
2046         sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
2047       }
2048       if( pExpr->pRight ){
2049         sqlite3ExprCode(pParse, pExpr->pRight);
2050       }else{
2051         sqlite3VdbeAddOp(v, OP_Null, 0, 0);
2052       }
2053       sqlite3VdbeResolveLabel(v, expr_end_label);
2054       break;
2055     }
2056 #ifndef SQLITE_OMIT_TRIGGER
2057     case TK_RAISE: {
2058       if( !pParse->trigStack ){
2059         sqlite3ErrorMsg(pParse,
2060                        "RAISE() may only be used within a trigger-program");
2061 	return;
2062       }
2063       if( pExpr->iColumn!=OE_Ignore ){
2064          assert( pExpr->iColumn==OE_Rollback ||
2065                  pExpr->iColumn == OE_Abort ||
2066                  pExpr->iColumn == OE_Fail );
2067          sqlite3DequoteExpr(pExpr);
2068          sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
2069                         (char*)pExpr->token.z, pExpr->token.n);
2070       } else {
2071          assert( pExpr->iColumn == OE_Ignore );
2072          sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0);
2073          sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
2074          VdbeComment((v, "# raise(IGNORE)"));
2075       }
2076       stackChng = 0;
2077       break;
2078     }
2079 #endif
2080   }
2081 
2082   if( pParse->ckOffset ){
2083     pParse->ckOffset += stackChng;
2084     assert( pParse->ckOffset );
2085   }
2086 }
2087 
2088 #ifndef SQLITE_OMIT_TRIGGER
2089 /*
2090 ** Generate code that evalutes the given expression and leaves the result
2091 ** on the stack.  See also sqlite3ExprCode().
2092 **
2093 ** This routine might also cache the result and modify the pExpr tree
2094 ** so that it will make use of the cached result on subsequent evaluations
2095 ** rather than evaluate the whole expression again.  Trivial expressions are
2096 ** not cached.  If the expression is cached, its result is stored in a
2097 ** memory location.
2098 */
2099 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){
2100   Vdbe *v = pParse->pVdbe;
2101   int iMem;
2102   int addr1, addr2;
2103   if( v==0 ) return;
2104   addr1 = sqlite3VdbeCurrentAddr(v);
2105   sqlite3ExprCode(pParse, pExpr);
2106   addr2 = sqlite3VdbeCurrentAddr(v);
2107   if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){
2108     iMem = pExpr->iTable = pParse->nMem++;
2109     sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
2110     pExpr->op = TK_REGISTER;
2111   }
2112 }
2113 #endif
2114 
2115 /*
2116 ** Generate code that pushes the value of every element of the given
2117 ** expression list onto the stack.
2118 **
2119 ** Return the number of elements pushed onto the stack.
2120 */
2121 int sqlite3ExprCodeExprList(
2122   Parse *pParse,     /* Parsing context */
2123   ExprList *pList    /* The expression list to be coded */
2124 ){
2125   struct ExprList_item *pItem;
2126   int i, n;
2127   if( pList==0 ) return 0;
2128   n = pList->nExpr;
2129   for(pItem=pList->a, i=n; i>0; i--, pItem++){
2130     sqlite3ExprCode(pParse, pItem->pExpr);
2131   }
2132   return n;
2133 }
2134 
2135 /*
2136 ** Generate code for a boolean expression such that a jump is made
2137 ** to the label "dest" if the expression is true but execution
2138 ** continues straight thru if the expression is false.
2139 **
2140 ** If the expression evaluates to NULL (neither true nor false), then
2141 ** take the jump if the jumpIfNull flag is true.
2142 **
2143 ** This code depends on the fact that certain token values (ex: TK_EQ)
2144 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
2145 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
2146 ** the make process cause these values to align.  Assert()s in the code
2147 ** below verify that the numbers are aligned correctly.
2148 */
2149 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
2150   Vdbe *v = pParse->pVdbe;
2151   int op = 0;
2152   int ckOffset = pParse->ckOffset;
2153   if( v==0 || pExpr==0 ) return;
2154   op = pExpr->op;
2155   switch( op ){
2156     case TK_AND: {
2157       int d2 = sqlite3VdbeMakeLabel(v);
2158       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
2159       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
2160       sqlite3VdbeResolveLabel(v, d2);
2161       break;
2162     }
2163     case TK_OR: {
2164       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
2165       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
2166       break;
2167     }
2168     case TK_NOT: {
2169       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
2170       break;
2171     }
2172     case TK_LT:
2173     case TK_LE:
2174     case TK_GT:
2175     case TK_GE:
2176     case TK_NE:
2177     case TK_EQ: {
2178       assert( TK_LT==OP_Lt );
2179       assert( TK_LE==OP_Le );
2180       assert( TK_GT==OP_Gt );
2181       assert( TK_GE==OP_Ge );
2182       assert( TK_EQ==OP_Eq );
2183       assert( TK_NE==OP_Ne );
2184       sqlite3ExprCode(pParse, pExpr->pLeft);
2185       sqlite3ExprCode(pParse, pExpr->pRight);
2186       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
2187       break;
2188     }
2189     case TK_ISNULL:
2190     case TK_NOTNULL: {
2191       assert( TK_ISNULL==OP_IsNull );
2192       assert( TK_NOTNULL==OP_NotNull );
2193       sqlite3ExprCode(pParse, pExpr->pLeft);
2194       sqlite3VdbeAddOp(v, op, 1, dest);
2195       break;
2196     }
2197     case TK_BETWEEN: {
2198       /* The expression "x BETWEEN y AND z" is implemented as:
2199       **
2200       ** 1 IF (x < y) GOTO 3
2201       ** 2 IF (x <= z) GOTO <dest>
2202       ** 3 ...
2203       */
2204       int addr;
2205       Expr *pLeft = pExpr->pLeft;
2206       Expr *pRight = pExpr->pList->a[0].pExpr;
2207       sqlite3ExprCode(pParse, pLeft);
2208       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
2209       sqlite3ExprCode(pParse, pRight);
2210       addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull);
2211 
2212       pRight = pExpr->pList->a[1].pExpr;
2213       sqlite3ExprCode(pParse, pRight);
2214       codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull);
2215 
2216       sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
2217       sqlite3VdbeJumpHere(v, addr);
2218       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
2219       break;
2220     }
2221     default: {
2222       sqlite3ExprCode(pParse, pExpr);
2223       sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest);
2224       break;
2225     }
2226   }
2227   pParse->ckOffset = ckOffset;
2228 }
2229 
2230 /*
2231 ** Generate code for a boolean expression such that a jump is made
2232 ** to the label "dest" if the expression is false but execution
2233 ** continues straight thru if the expression is true.
2234 **
2235 ** If the expression evaluates to NULL (neither true nor false) then
2236 ** jump if jumpIfNull is true or fall through if jumpIfNull is false.
2237 */
2238 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
2239   Vdbe *v = pParse->pVdbe;
2240   int op = 0;
2241   int ckOffset = pParse->ckOffset;
2242   if( v==0 || pExpr==0 ) return;
2243 
2244   /* The value of pExpr->op and op are related as follows:
2245   **
2246   **       pExpr->op            op
2247   **       ---------          ----------
2248   **       TK_ISNULL          OP_NotNull
2249   **       TK_NOTNULL         OP_IsNull
2250   **       TK_NE              OP_Eq
2251   **       TK_EQ              OP_Ne
2252   **       TK_GT              OP_Le
2253   **       TK_LE              OP_Gt
2254   **       TK_GE              OP_Lt
2255   **       TK_LT              OP_Ge
2256   **
2257   ** For other values of pExpr->op, op is undefined and unused.
2258   ** The value of TK_ and OP_ constants are arranged such that we
2259   ** can compute the mapping above using the following expression.
2260   ** Assert()s verify that the computation is correct.
2261   */
2262   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
2263 
2264   /* Verify correct alignment of TK_ and OP_ constants
2265   */
2266   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
2267   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
2268   assert( pExpr->op!=TK_NE || op==OP_Eq );
2269   assert( pExpr->op!=TK_EQ || op==OP_Ne );
2270   assert( pExpr->op!=TK_LT || op==OP_Ge );
2271   assert( pExpr->op!=TK_LE || op==OP_Gt );
2272   assert( pExpr->op!=TK_GT || op==OP_Le );
2273   assert( pExpr->op!=TK_GE || op==OP_Lt );
2274 
2275   switch( pExpr->op ){
2276     case TK_AND: {
2277       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
2278       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
2279       break;
2280     }
2281     case TK_OR: {
2282       int d2 = sqlite3VdbeMakeLabel(v);
2283       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
2284       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
2285       sqlite3VdbeResolveLabel(v, d2);
2286       break;
2287     }
2288     case TK_NOT: {
2289       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
2290       break;
2291     }
2292     case TK_LT:
2293     case TK_LE:
2294     case TK_GT:
2295     case TK_GE:
2296     case TK_NE:
2297     case TK_EQ: {
2298       sqlite3ExprCode(pParse, pExpr->pLeft);
2299       sqlite3ExprCode(pParse, pExpr->pRight);
2300       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
2301       break;
2302     }
2303     case TK_ISNULL:
2304     case TK_NOTNULL: {
2305       sqlite3ExprCode(pParse, pExpr->pLeft);
2306       sqlite3VdbeAddOp(v, op, 1, dest);
2307       break;
2308     }
2309     case TK_BETWEEN: {
2310       /* The expression is "x BETWEEN y AND z". It is implemented as:
2311       **
2312       ** 1 IF (x >= y) GOTO 3
2313       ** 2 GOTO <dest>
2314       ** 3 IF (x > z) GOTO <dest>
2315       */
2316       int addr;
2317       Expr *pLeft = pExpr->pLeft;
2318       Expr *pRight = pExpr->pList->a[0].pExpr;
2319       sqlite3ExprCode(pParse, pLeft);
2320       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
2321       sqlite3ExprCode(pParse, pRight);
2322       addr = sqlite3VdbeCurrentAddr(v);
2323       codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull);
2324 
2325       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
2326       sqlite3VdbeAddOp(v, OP_Goto, 0, dest);
2327       pRight = pExpr->pList->a[1].pExpr;
2328       sqlite3ExprCode(pParse, pRight);
2329       codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull);
2330       break;
2331     }
2332     default: {
2333       sqlite3ExprCode(pParse, pExpr);
2334       sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
2335       break;
2336     }
2337   }
2338   pParse->ckOffset = ckOffset;
2339 }
2340 
2341 /*
2342 ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
2343 ** if they are identical and return FALSE if they differ in any way.
2344 **
2345 ** Sometimes this routine will return FALSE even if the two expressions
2346 ** really are equivalent.  If we cannot prove that the expressions are
2347 ** identical, we return FALSE just to be safe.  So if this routine
2348 ** returns false, then you do not really know for certain if the two
2349 ** expressions are the same.  But if you get a TRUE return, then you
2350 ** can be sure the expressions are the same.  In the places where
2351 ** this routine is used, it does not hurt to get an extra FALSE - that
2352 ** just might result in some slightly slower code.  But returning
2353 ** an incorrect TRUE could lead to a malfunction.
2354 */
2355 int sqlite3ExprCompare(Expr *pA, Expr *pB){
2356   int i;
2357   if( pA==0||pB==0 ){
2358     return pB==pA;
2359   }
2360   if( pA->op!=pB->op ) return 0;
2361   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
2362   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
2363   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
2364   if( pA->pList ){
2365     if( pB->pList==0 ) return 0;
2366     if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
2367     for(i=0; i<pA->pList->nExpr; i++){
2368       if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
2369         return 0;
2370       }
2371     }
2372   }else if( pB->pList ){
2373     return 0;
2374   }
2375   if( pA->pSelect || pB->pSelect ) return 0;
2376   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
2377   if( pA->op!=TK_COLUMN && pA->token.z ){
2378     if( pB->token.z==0 ) return 0;
2379     if( pB->token.n!=pA->token.n ) return 0;
2380     if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
2381       return 0;
2382     }
2383   }
2384   return 1;
2385 }
2386 
2387 
2388 /*
2389 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
2390 ** the new element.  Return a negative number if malloc fails.
2391 */
2392 static int addAggInfoColumn(AggInfo *pInfo){
2393   int i;
2394   pInfo->aCol = sqlite3ArrayAllocate(
2395        pInfo->aCol,
2396        sizeof(pInfo->aCol[0]),
2397        3,
2398        &pInfo->nColumn,
2399        &pInfo->nColumnAlloc,
2400        &i
2401   );
2402   return i;
2403 }
2404 
2405 /*
2406 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
2407 ** the new element.  Return a negative number if malloc fails.
2408 */
2409 static int addAggInfoFunc(AggInfo *pInfo){
2410   int i;
2411   pInfo->aFunc = sqlite3ArrayAllocate(
2412        pInfo->aFunc,
2413        sizeof(pInfo->aFunc[0]),
2414        3,
2415        &pInfo->nFunc,
2416        &pInfo->nFuncAlloc,
2417        &i
2418   );
2419   return i;
2420 }
2421 
2422 /*
2423 ** This is an xFunc for walkExprTree() used to implement
2424 ** sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
2425 ** for additional information.
2426 **
2427 ** This routine analyzes the aggregate function at pExpr.
2428 */
2429 static int analyzeAggregate(void *pArg, Expr *pExpr){
2430   int i;
2431   NameContext *pNC = (NameContext *)pArg;
2432   Parse *pParse = pNC->pParse;
2433   SrcList *pSrcList = pNC->pSrcList;
2434   AggInfo *pAggInfo = pNC->pAggInfo;
2435 
2436 
2437   switch( pExpr->op ){
2438     case TK_AGG_COLUMN:
2439     case TK_COLUMN: {
2440       /* Check to see if the column is in one of the tables in the FROM
2441       ** clause of the aggregate query */
2442       if( pSrcList ){
2443         struct SrcList_item *pItem = pSrcList->a;
2444         for(i=0; i<pSrcList->nSrc; i++, pItem++){
2445           struct AggInfo_col *pCol;
2446           if( pExpr->iTable==pItem->iCursor ){
2447             /* If we reach this point, it means that pExpr refers to a table
2448             ** that is in the FROM clause of the aggregate query.
2449             **
2450             ** Make an entry for the column in pAggInfo->aCol[] if there
2451             ** is not an entry there already.
2452             */
2453             int k;
2454             pCol = pAggInfo->aCol;
2455             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
2456               if( pCol->iTable==pExpr->iTable &&
2457                   pCol->iColumn==pExpr->iColumn ){
2458                 break;
2459               }
2460             }
2461             if( k>=pAggInfo->nColumn && (k = addAggInfoColumn(pAggInfo))>=0 ){
2462               pCol = &pAggInfo->aCol[k];
2463               pCol->pTab = pExpr->pTab;
2464               pCol->iTable = pExpr->iTable;
2465               pCol->iColumn = pExpr->iColumn;
2466               pCol->iMem = pParse->nMem++;
2467               pCol->iSorterColumn = -1;
2468               pCol->pExpr = pExpr;
2469               if( pAggInfo->pGroupBy ){
2470                 int j, n;
2471                 ExprList *pGB = pAggInfo->pGroupBy;
2472                 struct ExprList_item *pTerm = pGB->a;
2473                 n = pGB->nExpr;
2474                 for(j=0; j<n; j++, pTerm++){
2475                   Expr *pE = pTerm->pExpr;
2476                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
2477                       pE->iColumn==pExpr->iColumn ){
2478                     pCol->iSorterColumn = j;
2479                     break;
2480                   }
2481                 }
2482               }
2483               if( pCol->iSorterColumn<0 ){
2484                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
2485               }
2486             }
2487             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
2488             ** because it was there before or because we just created it).
2489             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
2490             ** pAggInfo->aCol[] entry.
2491             */
2492             pExpr->pAggInfo = pAggInfo;
2493             pExpr->op = TK_AGG_COLUMN;
2494             pExpr->iAgg = k;
2495             break;
2496           } /* endif pExpr->iTable==pItem->iCursor */
2497         } /* end loop over pSrcList */
2498       }
2499       return 1;
2500     }
2501     case TK_AGG_FUNCTION: {
2502       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
2503       ** to be ignored */
2504       if( pNC->nDepth==0 ){
2505         /* Check to see if pExpr is a duplicate of another aggregate
2506         ** function that is already in the pAggInfo structure
2507         */
2508         struct AggInfo_func *pItem = pAggInfo->aFunc;
2509         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
2510           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
2511             break;
2512           }
2513         }
2514         if( i>=pAggInfo->nFunc ){
2515           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
2516           */
2517           u8 enc = ENC(pParse->db);
2518           i = addAggInfoFunc(pAggInfo);
2519           if( i>=0 ){
2520             pItem = &pAggInfo->aFunc[i];
2521             pItem->pExpr = pExpr;
2522             pItem->iMem = pParse->nMem++;
2523             pItem->pFunc = sqlite3FindFunction(pParse->db,
2524                    (char*)pExpr->token.z, pExpr->token.n,
2525                    pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
2526             if( pExpr->flags & EP_Distinct ){
2527               pItem->iDistinct = pParse->nTab++;
2528             }else{
2529               pItem->iDistinct = -1;
2530             }
2531           }
2532         }
2533         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
2534         */
2535         pExpr->iAgg = i;
2536         pExpr->pAggInfo = pAggInfo;
2537         return 1;
2538       }
2539     }
2540   }
2541 
2542   /* Recursively walk subqueries looking for TK_COLUMN nodes that need
2543   ** to be changed to TK_AGG_COLUMN.  But increment nDepth so that
2544   ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
2545   */
2546   if( pExpr->pSelect ){
2547     pNC->nDepth++;
2548     walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
2549     pNC->nDepth--;
2550   }
2551   return 0;
2552 }
2553 
2554 /*
2555 ** Analyze the given expression looking for aggregate functions and
2556 ** for variables that need to be added to the pParse->aAgg[] array.
2557 ** Make additional entries to the pParse->aAgg[] array as necessary.
2558 **
2559 ** This routine should only be called after the expression has been
2560 ** analyzed by sqlite3ExprResolveNames().
2561 **
2562 ** If errors are seen, leave an error message in zErrMsg and return
2563 ** the number of errors.
2564 */
2565 int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
2566   int nErr = pNC->pParse->nErr;
2567   walkExprTree(pExpr, analyzeAggregate, pNC);
2568   return pNC->pParse->nErr - nErr;
2569 }
2570 
2571 /*
2572 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
2573 ** expression list.  Return the number of errors.
2574 **
2575 ** If an error is found, the analysis is cut short.
2576 */
2577 int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
2578   struct ExprList_item *pItem;
2579   int i;
2580   int nErr = 0;
2581   if( pList ){
2582     for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){
2583       nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
2584     }
2585   }
2586   return nErr;
2587 }
2588