1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expressions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op; 35 pExpr = sqlite3ExprSkipCollate(pExpr); 36 if( pExpr->flags & EP_Generic ) return 0; 37 op = pExpr->op; 38 if( op==TK_SELECT ){ 39 assert( pExpr->flags&EP_xIsSelect ); 40 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 41 } 42 #ifndef SQLITE_OMIT_CAST 43 if( op==TK_CAST ){ 44 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 45 return sqlite3AffinityType(pExpr->u.zToken, 0); 46 } 47 #endif 48 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 49 && pExpr->pTab!=0 50 ){ 51 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 52 ** a TK_COLUMN but was previously evaluated and cached in a register */ 53 int j = pExpr->iColumn; 54 if( j<0 ) return SQLITE_AFF_INTEGER; 55 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 56 return pExpr->pTab->aCol[j].affinity; 57 } 58 return pExpr->affinity; 59 } 60 61 /* 62 ** Set the collating sequence for expression pExpr to be the collating 63 ** sequence named by pToken. Return a pointer to a new Expr node that 64 ** implements the COLLATE operator. 65 ** 66 ** If a memory allocation error occurs, that fact is recorded in pParse->db 67 ** and the pExpr parameter is returned unchanged. 68 */ 69 Expr *sqlite3ExprAddCollateToken( 70 Parse *pParse, /* Parsing context */ 71 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 72 const Token *pCollName, /* Name of collating sequence */ 73 int dequote /* True to dequote pCollName */ 74 ){ 75 if( pCollName->n>0 ){ 76 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 77 if( pNew ){ 78 pNew->pLeft = pExpr; 79 pNew->flags |= EP_Collate|EP_Skip; 80 pExpr = pNew; 81 } 82 } 83 return pExpr; 84 } 85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 86 Token s; 87 assert( zC!=0 ); 88 s.z = zC; 89 s.n = sqlite3Strlen30(s.z); 90 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 91 } 92 93 /* 94 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely() 95 ** or likelihood() function at the root of an expression. 96 */ 97 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 98 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 99 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 100 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 101 assert( pExpr->x.pList->nExpr>0 ); 102 assert( pExpr->op==TK_FUNCTION ); 103 pExpr = pExpr->x.pList->a[0].pExpr; 104 }else{ 105 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS ); 106 pExpr = pExpr->pLeft; 107 } 108 } 109 return pExpr; 110 } 111 112 /* 113 ** Return the collation sequence for the expression pExpr. If 114 ** there is no defined collating sequence, return NULL. 115 ** 116 ** The collating sequence might be determined by a COLLATE operator 117 ** or by the presence of a column with a defined collating sequence. 118 ** COLLATE operators take first precedence. Left operands take 119 ** precedence over right operands. 120 */ 121 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 122 sqlite3 *db = pParse->db; 123 CollSeq *pColl = 0; 124 Expr *p = pExpr; 125 while( p ){ 126 int op = p->op; 127 if( p->flags & EP_Generic ) break; 128 if( op==TK_CAST || op==TK_UPLUS ){ 129 p = p->pLeft; 130 continue; 131 } 132 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 133 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 134 break; 135 } 136 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 137 || op==TK_REGISTER || op==TK_TRIGGER) 138 && p->pTab!=0 139 ){ 140 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 141 ** a TK_COLUMN but was previously evaluated and cached in a register */ 142 int j = p->iColumn; 143 if( j>=0 ){ 144 const char *zColl = p->pTab->aCol[j].zColl; 145 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 146 } 147 break; 148 } 149 if( p->flags & EP_Collate ){ 150 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 151 p = p->pLeft; 152 }else{ 153 Expr *pNext = p->pRight; 154 /* The Expr.x union is never used at the same time as Expr.pRight */ 155 assert( p->x.pList==0 || p->pRight==0 ); 156 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 157 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 158 ** least one EP_Collate. Thus the following two ALWAYS. */ 159 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 160 int i; 161 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 162 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 163 pNext = p->x.pList->a[i].pExpr; 164 break; 165 } 166 } 167 } 168 p = pNext; 169 } 170 }else{ 171 break; 172 } 173 } 174 if( sqlite3CheckCollSeq(pParse, pColl) ){ 175 pColl = 0; 176 } 177 return pColl; 178 } 179 180 /* 181 ** pExpr is an operand of a comparison operator. aff2 is the 182 ** type affinity of the other operand. This routine returns the 183 ** type affinity that should be used for the comparison operator. 184 */ 185 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 186 char aff1 = sqlite3ExprAffinity(pExpr); 187 if( aff1 && aff2 ){ 188 /* Both sides of the comparison are columns. If one has numeric 189 ** affinity, use that. Otherwise use no affinity. 190 */ 191 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 192 return SQLITE_AFF_NUMERIC; 193 }else{ 194 return SQLITE_AFF_BLOB; 195 } 196 }else if( !aff1 && !aff2 ){ 197 /* Neither side of the comparison is a column. Compare the 198 ** results directly. 199 */ 200 return SQLITE_AFF_BLOB; 201 }else{ 202 /* One side is a column, the other is not. Use the columns affinity. */ 203 assert( aff1==0 || aff2==0 ); 204 return (aff1 + aff2); 205 } 206 } 207 208 /* 209 ** pExpr is a comparison operator. Return the type affinity that should 210 ** be applied to both operands prior to doing the comparison. 211 */ 212 static char comparisonAffinity(Expr *pExpr){ 213 char aff; 214 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 215 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 216 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 217 assert( pExpr->pLeft ); 218 aff = sqlite3ExprAffinity(pExpr->pLeft); 219 if( pExpr->pRight ){ 220 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 221 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 222 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 223 }else if( !aff ){ 224 aff = SQLITE_AFF_BLOB; 225 } 226 return aff; 227 } 228 229 /* 230 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 231 ** idx_affinity is the affinity of an indexed column. Return true 232 ** if the index with affinity idx_affinity may be used to implement 233 ** the comparison in pExpr. 234 */ 235 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 236 char aff = comparisonAffinity(pExpr); 237 switch( aff ){ 238 case SQLITE_AFF_BLOB: 239 return 1; 240 case SQLITE_AFF_TEXT: 241 return idx_affinity==SQLITE_AFF_TEXT; 242 default: 243 return sqlite3IsNumericAffinity(idx_affinity); 244 } 245 } 246 247 /* 248 ** Return the P5 value that should be used for a binary comparison 249 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 250 */ 251 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 252 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 253 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 254 return aff; 255 } 256 257 /* 258 ** Return a pointer to the collation sequence that should be used by 259 ** a binary comparison operator comparing pLeft and pRight. 260 ** 261 ** If the left hand expression has a collating sequence type, then it is 262 ** used. Otherwise the collation sequence for the right hand expression 263 ** is used, or the default (BINARY) if neither expression has a collating 264 ** type. 265 ** 266 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 267 ** it is not considered. 268 */ 269 CollSeq *sqlite3BinaryCompareCollSeq( 270 Parse *pParse, 271 Expr *pLeft, 272 Expr *pRight 273 ){ 274 CollSeq *pColl; 275 assert( pLeft ); 276 if( pLeft->flags & EP_Collate ){ 277 pColl = sqlite3ExprCollSeq(pParse, pLeft); 278 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 279 pColl = sqlite3ExprCollSeq(pParse, pRight); 280 }else{ 281 pColl = sqlite3ExprCollSeq(pParse, pLeft); 282 if( !pColl ){ 283 pColl = sqlite3ExprCollSeq(pParse, pRight); 284 } 285 } 286 return pColl; 287 } 288 289 /* 290 ** Generate code for a comparison operator. 291 */ 292 static int codeCompare( 293 Parse *pParse, /* The parsing (and code generating) context */ 294 Expr *pLeft, /* The left operand */ 295 Expr *pRight, /* The right operand */ 296 int opcode, /* The comparison opcode */ 297 int in1, int in2, /* Register holding operands */ 298 int dest, /* Jump here if true. */ 299 int jumpIfNull /* If true, jump if either operand is NULL */ 300 ){ 301 int p5; 302 int addr; 303 CollSeq *p4; 304 305 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 306 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 307 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 308 (void*)p4, P4_COLLSEQ); 309 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 310 return addr; 311 } 312 313 #if SQLITE_MAX_EXPR_DEPTH>0 314 /* 315 ** Check that argument nHeight is less than or equal to the maximum 316 ** expression depth allowed. If it is not, leave an error message in 317 ** pParse. 318 */ 319 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 320 int rc = SQLITE_OK; 321 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 322 if( nHeight>mxHeight ){ 323 sqlite3ErrorMsg(pParse, 324 "Expression tree is too large (maximum depth %d)", mxHeight 325 ); 326 rc = SQLITE_ERROR; 327 } 328 return rc; 329 } 330 331 /* The following three functions, heightOfExpr(), heightOfExprList() 332 ** and heightOfSelect(), are used to determine the maximum height 333 ** of any expression tree referenced by the structure passed as the 334 ** first argument. 335 ** 336 ** If this maximum height is greater than the current value pointed 337 ** to by pnHeight, the second parameter, then set *pnHeight to that 338 ** value. 339 */ 340 static void heightOfExpr(Expr *p, int *pnHeight){ 341 if( p ){ 342 if( p->nHeight>*pnHeight ){ 343 *pnHeight = p->nHeight; 344 } 345 } 346 } 347 static void heightOfExprList(ExprList *p, int *pnHeight){ 348 if( p ){ 349 int i; 350 for(i=0; i<p->nExpr; i++){ 351 heightOfExpr(p->a[i].pExpr, pnHeight); 352 } 353 } 354 } 355 static void heightOfSelect(Select *p, int *pnHeight){ 356 if( p ){ 357 heightOfExpr(p->pWhere, pnHeight); 358 heightOfExpr(p->pHaving, pnHeight); 359 heightOfExpr(p->pLimit, pnHeight); 360 heightOfExpr(p->pOffset, pnHeight); 361 heightOfExprList(p->pEList, pnHeight); 362 heightOfExprList(p->pGroupBy, pnHeight); 363 heightOfExprList(p->pOrderBy, pnHeight); 364 heightOfSelect(p->pPrior, pnHeight); 365 } 366 } 367 368 /* 369 ** Set the Expr.nHeight variable in the structure passed as an 370 ** argument. An expression with no children, Expr.pList or 371 ** Expr.pSelect member has a height of 1. Any other expression 372 ** has a height equal to the maximum height of any other 373 ** referenced Expr plus one. 374 ** 375 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 376 ** if appropriate. 377 */ 378 static void exprSetHeight(Expr *p){ 379 int nHeight = 0; 380 heightOfExpr(p->pLeft, &nHeight); 381 heightOfExpr(p->pRight, &nHeight); 382 if( ExprHasProperty(p, EP_xIsSelect) ){ 383 heightOfSelect(p->x.pSelect, &nHeight); 384 }else if( p->x.pList ){ 385 heightOfExprList(p->x.pList, &nHeight); 386 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 387 } 388 p->nHeight = nHeight + 1; 389 } 390 391 /* 392 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 393 ** the height is greater than the maximum allowed expression depth, 394 ** leave an error in pParse. 395 ** 396 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 397 ** Expr.flags. 398 */ 399 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 400 if( pParse->nErr ) return; 401 exprSetHeight(p); 402 sqlite3ExprCheckHeight(pParse, p->nHeight); 403 } 404 405 /* 406 ** Return the maximum height of any expression tree referenced 407 ** by the select statement passed as an argument. 408 */ 409 int sqlite3SelectExprHeight(Select *p){ 410 int nHeight = 0; 411 heightOfSelect(p, &nHeight); 412 return nHeight; 413 } 414 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 415 /* 416 ** Propagate all EP_Propagate flags from the Expr.x.pList into 417 ** Expr.flags. 418 */ 419 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 420 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 421 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 422 } 423 } 424 #define exprSetHeight(y) 425 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 426 427 /* 428 ** This routine is the core allocator for Expr nodes. 429 ** 430 ** Construct a new expression node and return a pointer to it. Memory 431 ** for this node and for the pToken argument is a single allocation 432 ** obtained from sqlite3DbMalloc(). The calling function 433 ** is responsible for making sure the node eventually gets freed. 434 ** 435 ** If dequote is true, then the token (if it exists) is dequoted. 436 ** If dequote is false, no dequoting is performance. The deQuote 437 ** parameter is ignored if pToken is NULL or if the token does not 438 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 439 ** then the EP_DblQuoted flag is set on the expression node. 440 ** 441 ** Special case: If op==TK_INTEGER and pToken points to a string that 442 ** can be translated into a 32-bit integer, then the token is not 443 ** stored in u.zToken. Instead, the integer values is written 444 ** into u.iValue and the EP_IntValue flag is set. No extra storage 445 ** is allocated to hold the integer text and the dequote flag is ignored. 446 */ 447 Expr *sqlite3ExprAlloc( 448 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 449 int op, /* Expression opcode */ 450 const Token *pToken, /* Token argument. Might be NULL */ 451 int dequote /* True to dequote */ 452 ){ 453 Expr *pNew; 454 int nExtra = 0; 455 int iValue = 0; 456 457 if( pToken ){ 458 if( op!=TK_INTEGER || pToken->z==0 459 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 460 nExtra = pToken->n+1; 461 assert( iValue>=0 ); 462 } 463 } 464 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 465 if( pNew ){ 466 pNew->op = (u8)op; 467 pNew->iAgg = -1; 468 if( pToken ){ 469 if( nExtra==0 ){ 470 pNew->flags |= EP_IntValue; 471 pNew->u.iValue = iValue; 472 }else{ 473 int c; 474 pNew->u.zToken = (char*)&pNew[1]; 475 assert( pToken->z!=0 || pToken->n==0 ); 476 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 477 pNew->u.zToken[pToken->n] = 0; 478 if( dequote && nExtra>=3 479 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 480 sqlite3Dequote(pNew->u.zToken); 481 if( c=='"' ) pNew->flags |= EP_DblQuoted; 482 } 483 } 484 } 485 #if SQLITE_MAX_EXPR_DEPTH>0 486 pNew->nHeight = 1; 487 #endif 488 } 489 return pNew; 490 } 491 492 /* 493 ** Allocate a new expression node from a zero-terminated token that has 494 ** already been dequoted. 495 */ 496 Expr *sqlite3Expr( 497 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 498 int op, /* Expression opcode */ 499 const char *zToken /* Token argument. Might be NULL */ 500 ){ 501 Token x; 502 x.z = zToken; 503 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 504 return sqlite3ExprAlloc(db, op, &x, 0); 505 } 506 507 /* 508 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 509 ** 510 ** If pRoot==NULL that means that a memory allocation error has occurred. 511 ** In that case, delete the subtrees pLeft and pRight. 512 */ 513 void sqlite3ExprAttachSubtrees( 514 sqlite3 *db, 515 Expr *pRoot, 516 Expr *pLeft, 517 Expr *pRight 518 ){ 519 if( pRoot==0 ){ 520 assert( db->mallocFailed ); 521 sqlite3ExprDelete(db, pLeft); 522 sqlite3ExprDelete(db, pRight); 523 }else{ 524 if( pRight ){ 525 pRoot->pRight = pRight; 526 pRoot->flags |= EP_Propagate & pRight->flags; 527 } 528 if( pLeft ){ 529 pRoot->pLeft = pLeft; 530 pRoot->flags |= EP_Propagate & pLeft->flags; 531 } 532 exprSetHeight(pRoot); 533 } 534 } 535 536 /* 537 ** Allocate an Expr node which joins as many as two subtrees. 538 ** 539 ** One or both of the subtrees can be NULL. Return a pointer to the new 540 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 541 ** free the subtrees and return NULL. 542 */ 543 Expr *sqlite3PExpr( 544 Parse *pParse, /* Parsing context */ 545 int op, /* Expression opcode */ 546 Expr *pLeft, /* Left operand */ 547 Expr *pRight, /* Right operand */ 548 const Token *pToken /* Argument token */ 549 ){ 550 Expr *p; 551 if( op==TK_AND && pLeft && pRight && pParse->nErr==0 ){ 552 /* Take advantage of short-circuit false optimization for AND */ 553 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 554 }else{ 555 p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 556 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 557 } 558 if( p ) { 559 sqlite3ExprCheckHeight(pParse, p->nHeight); 560 } 561 return p; 562 } 563 564 /* 565 ** If the expression is always either TRUE or FALSE (respectively), 566 ** then return 1. If one cannot determine the truth value of the 567 ** expression at compile-time return 0. 568 ** 569 ** This is an optimization. If is OK to return 0 here even if 570 ** the expression really is always false or false (a false negative). 571 ** But it is a bug to return 1 if the expression might have different 572 ** boolean values in different circumstances (a false positive.) 573 ** 574 ** Note that if the expression is part of conditional for a 575 ** LEFT JOIN, then we cannot determine at compile-time whether or not 576 ** is it true or false, so always return 0. 577 */ 578 static int exprAlwaysTrue(Expr *p){ 579 int v = 0; 580 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 581 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 582 return v!=0; 583 } 584 static int exprAlwaysFalse(Expr *p){ 585 int v = 0; 586 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 587 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 588 return v==0; 589 } 590 591 /* 592 ** Join two expressions using an AND operator. If either expression is 593 ** NULL, then just return the other expression. 594 ** 595 ** If one side or the other of the AND is known to be false, then instead 596 ** of returning an AND expression, just return a constant expression with 597 ** a value of false. 598 */ 599 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 600 if( pLeft==0 ){ 601 return pRight; 602 }else if( pRight==0 ){ 603 return pLeft; 604 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 605 sqlite3ExprDelete(db, pLeft); 606 sqlite3ExprDelete(db, pRight); 607 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 608 }else{ 609 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 610 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 611 return pNew; 612 } 613 } 614 615 /* 616 ** Construct a new expression node for a function with multiple 617 ** arguments. 618 */ 619 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 620 Expr *pNew; 621 sqlite3 *db = pParse->db; 622 assert( pToken ); 623 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 624 if( pNew==0 ){ 625 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 626 return 0; 627 } 628 pNew->x.pList = pList; 629 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 630 sqlite3ExprSetHeightAndFlags(pParse, pNew); 631 return pNew; 632 } 633 634 /* 635 ** Assign a variable number to an expression that encodes a wildcard 636 ** in the original SQL statement. 637 ** 638 ** Wildcards consisting of a single "?" are assigned the next sequential 639 ** variable number. 640 ** 641 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 642 ** sure "nnn" is not too be to avoid a denial of service attack when 643 ** the SQL statement comes from an external source. 644 ** 645 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 646 ** as the previous instance of the same wildcard. Or if this is the first 647 ** instance of the wildcard, the next sequential variable number is 648 ** assigned. 649 */ 650 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 651 sqlite3 *db = pParse->db; 652 const char *z; 653 654 if( pExpr==0 ) return; 655 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 656 z = pExpr->u.zToken; 657 assert( z!=0 ); 658 assert( z[0]!=0 ); 659 if( z[1]==0 ){ 660 /* Wildcard of the form "?". Assign the next variable number */ 661 assert( z[0]=='?' ); 662 pExpr->iColumn = (ynVar)(++pParse->nVar); 663 }else{ 664 ynVar x = 0; 665 u32 n = sqlite3Strlen30(z); 666 if( z[0]=='?' ){ 667 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 668 ** use it as the variable number */ 669 i64 i; 670 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 671 pExpr->iColumn = x = (ynVar)i; 672 testcase( i==0 ); 673 testcase( i==1 ); 674 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 675 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 676 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 677 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 678 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 679 x = 0; 680 } 681 if( i>pParse->nVar ){ 682 pParse->nVar = (int)i; 683 } 684 }else{ 685 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 686 ** number as the prior appearance of the same name, or if the name 687 ** has never appeared before, reuse the same variable number 688 */ 689 ynVar i; 690 for(i=0; i<pParse->nzVar; i++){ 691 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 692 pExpr->iColumn = x = (ynVar)i+1; 693 break; 694 } 695 } 696 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 697 } 698 if( x>0 ){ 699 if( x>pParse->nzVar ){ 700 char **a; 701 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 702 if( a==0 ) return; /* Error reported through db->mallocFailed */ 703 pParse->azVar = a; 704 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 705 pParse->nzVar = x; 706 } 707 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 708 sqlite3DbFree(db, pParse->azVar[x-1]); 709 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 710 } 711 } 712 } 713 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 714 sqlite3ErrorMsg(pParse, "too many SQL variables"); 715 } 716 } 717 718 /* 719 ** Recursively delete an expression tree. 720 */ 721 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 722 if( p==0 ) return; 723 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 724 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 725 if( !ExprHasProperty(p, EP_TokenOnly) ){ 726 /* The Expr.x union is never used at the same time as Expr.pRight */ 727 assert( p->x.pList==0 || p->pRight==0 ); 728 sqlite3ExprDelete(db, p->pLeft); 729 sqlite3ExprDelete(db, p->pRight); 730 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 731 if( ExprHasProperty(p, EP_xIsSelect) ){ 732 sqlite3SelectDelete(db, p->x.pSelect); 733 }else{ 734 sqlite3ExprListDelete(db, p->x.pList); 735 } 736 } 737 if( !ExprHasProperty(p, EP_Static) ){ 738 sqlite3DbFree(db, p); 739 } 740 } 741 742 /* 743 ** Return the number of bytes allocated for the expression structure 744 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 745 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 746 */ 747 static int exprStructSize(Expr *p){ 748 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 749 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 750 return EXPR_FULLSIZE; 751 } 752 753 /* 754 ** The dupedExpr*Size() routines each return the number of bytes required 755 ** to store a copy of an expression or expression tree. They differ in 756 ** how much of the tree is measured. 757 ** 758 ** dupedExprStructSize() Size of only the Expr structure 759 ** dupedExprNodeSize() Size of Expr + space for token 760 ** dupedExprSize() Expr + token + subtree components 761 ** 762 *************************************************************************** 763 ** 764 ** The dupedExprStructSize() function returns two values OR-ed together: 765 ** (1) the space required for a copy of the Expr structure only and 766 ** (2) the EP_xxx flags that indicate what the structure size should be. 767 ** The return values is always one of: 768 ** 769 ** EXPR_FULLSIZE 770 ** EXPR_REDUCEDSIZE | EP_Reduced 771 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 772 ** 773 ** The size of the structure can be found by masking the return value 774 ** of this routine with 0xfff. The flags can be found by masking the 775 ** return value with EP_Reduced|EP_TokenOnly. 776 ** 777 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 778 ** (unreduced) Expr objects as they or originally constructed by the parser. 779 ** During expression analysis, extra information is computed and moved into 780 ** later parts of teh Expr object and that extra information might get chopped 781 ** off if the expression is reduced. Note also that it does not work to 782 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 783 ** to reduce a pristine expression tree from the parser. The implementation 784 ** of dupedExprStructSize() contain multiple assert() statements that attempt 785 ** to enforce this constraint. 786 */ 787 static int dupedExprStructSize(Expr *p, int flags){ 788 int nSize; 789 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 790 assert( EXPR_FULLSIZE<=0xfff ); 791 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 792 if( 0==(flags&EXPRDUP_REDUCE) ){ 793 nSize = EXPR_FULLSIZE; 794 }else{ 795 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 796 assert( !ExprHasProperty(p, EP_FromJoin) ); 797 assert( !ExprHasProperty(p, EP_MemToken) ); 798 assert( !ExprHasProperty(p, EP_NoReduce) ); 799 if( p->pLeft || p->x.pList ){ 800 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 801 }else{ 802 assert( p->pRight==0 ); 803 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 804 } 805 } 806 return nSize; 807 } 808 809 /* 810 ** This function returns the space in bytes required to store the copy 811 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 812 ** string is defined.) 813 */ 814 static int dupedExprNodeSize(Expr *p, int flags){ 815 int nByte = dupedExprStructSize(p, flags) & 0xfff; 816 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 817 nByte += sqlite3Strlen30(p->u.zToken)+1; 818 } 819 return ROUND8(nByte); 820 } 821 822 /* 823 ** Return the number of bytes required to create a duplicate of the 824 ** expression passed as the first argument. The second argument is a 825 ** mask containing EXPRDUP_XXX flags. 826 ** 827 ** The value returned includes space to create a copy of the Expr struct 828 ** itself and the buffer referred to by Expr.u.zToken, if any. 829 ** 830 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 831 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 832 ** and Expr.pRight variables (but not for any structures pointed to or 833 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 834 */ 835 static int dupedExprSize(Expr *p, int flags){ 836 int nByte = 0; 837 if( p ){ 838 nByte = dupedExprNodeSize(p, flags); 839 if( flags&EXPRDUP_REDUCE ){ 840 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 841 } 842 } 843 return nByte; 844 } 845 846 /* 847 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 848 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 849 ** to store the copy of expression p, the copies of p->u.zToken 850 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 851 ** if any. Before returning, *pzBuffer is set to the first byte past the 852 ** portion of the buffer copied into by this function. 853 */ 854 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 855 Expr *pNew = 0; /* Value to return */ 856 if( p ){ 857 const int isReduced = (flags&EXPRDUP_REDUCE); 858 u8 *zAlloc; 859 u32 staticFlag = 0; 860 861 assert( pzBuffer==0 || isReduced ); 862 863 /* Figure out where to write the new Expr structure. */ 864 if( pzBuffer ){ 865 zAlloc = *pzBuffer; 866 staticFlag = EP_Static; 867 }else{ 868 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 869 } 870 pNew = (Expr *)zAlloc; 871 872 if( pNew ){ 873 /* Set nNewSize to the size allocated for the structure pointed to 874 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 875 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 876 ** by the copy of the p->u.zToken string (if any). 877 */ 878 const unsigned nStructSize = dupedExprStructSize(p, flags); 879 const int nNewSize = nStructSize & 0xfff; 880 int nToken; 881 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 882 nToken = sqlite3Strlen30(p->u.zToken) + 1; 883 }else{ 884 nToken = 0; 885 } 886 if( isReduced ){ 887 assert( ExprHasProperty(p, EP_Reduced)==0 ); 888 memcpy(zAlloc, p, nNewSize); 889 }else{ 890 int nSize = exprStructSize(p); 891 memcpy(zAlloc, p, nSize); 892 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 893 } 894 895 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 896 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 897 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 898 pNew->flags |= staticFlag; 899 900 /* Copy the p->u.zToken string, if any. */ 901 if( nToken ){ 902 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 903 memcpy(zToken, p->u.zToken, nToken); 904 } 905 906 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 907 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 908 if( ExprHasProperty(p, EP_xIsSelect) ){ 909 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 910 }else{ 911 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 912 } 913 } 914 915 /* Fill in pNew->pLeft and pNew->pRight. */ 916 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 917 zAlloc += dupedExprNodeSize(p, flags); 918 if( ExprHasProperty(pNew, EP_Reduced) ){ 919 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 920 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 921 } 922 if( pzBuffer ){ 923 *pzBuffer = zAlloc; 924 } 925 }else{ 926 if( !ExprHasProperty(p, EP_TokenOnly) ){ 927 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 928 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 929 } 930 } 931 932 } 933 } 934 return pNew; 935 } 936 937 /* 938 ** Create and return a deep copy of the object passed as the second 939 ** argument. If an OOM condition is encountered, NULL is returned 940 ** and the db->mallocFailed flag set. 941 */ 942 #ifndef SQLITE_OMIT_CTE 943 static With *withDup(sqlite3 *db, With *p){ 944 With *pRet = 0; 945 if( p ){ 946 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 947 pRet = sqlite3DbMallocZero(db, nByte); 948 if( pRet ){ 949 int i; 950 pRet->nCte = p->nCte; 951 for(i=0; i<p->nCte; i++){ 952 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 953 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 954 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 955 } 956 } 957 } 958 return pRet; 959 } 960 #else 961 # define withDup(x,y) 0 962 #endif 963 964 /* 965 ** The following group of routines make deep copies of expressions, 966 ** expression lists, ID lists, and select statements. The copies can 967 ** be deleted (by being passed to their respective ...Delete() routines) 968 ** without effecting the originals. 969 ** 970 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 971 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 972 ** by subsequent calls to sqlite*ListAppend() routines. 973 ** 974 ** Any tables that the SrcList might point to are not duplicated. 975 ** 976 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 977 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 978 ** truncated version of the usual Expr structure that will be stored as 979 ** part of the in-memory representation of the database schema. 980 */ 981 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 982 return exprDup(db, p, flags, 0); 983 } 984 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 985 ExprList *pNew; 986 struct ExprList_item *pItem, *pOldItem; 987 int i; 988 if( p==0 ) return 0; 989 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 990 if( pNew==0 ) return 0; 991 pNew->nExpr = i = p->nExpr; 992 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 993 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 994 if( pItem==0 ){ 995 sqlite3DbFree(db, pNew); 996 return 0; 997 } 998 pOldItem = p->a; 999 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1000 Expr *pOldExpr = pOldItem->pExpr; 1001 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1002 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1003 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1004 pItem->sortOrder = pOldItem->sortOrder; 1005 pItem->done = 0; 1006 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1007 pItem->u = pOldItem->u; 1008 } 1009 return pNew; 1010 } 1011 1012 /* 1013 ** If cursors, triggers, views and subqueries are all omitted from 1014 ** the build, then none of the following routines, except for 1015 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1016 ** called with a NULL argument. 1017 */ 1018 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1019 || !defined(SQLITE_OMIT_SUBQUERY) 1020 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1021 SrcList *pNew; 1022 int i; 1023 int nByte; 1024 if( p==0 ) return 0; 1025 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1026 pNew = sqlite3DbMallocRaw(db, nByte ); 1027 if( pNew==0 ) return 0; 1028 pNew->nSrc = pNew->nAlloc = p->nSrc; 1029 for(i=0; i<p->nSrc; i++){ 1030 struct SrcList_item *pNewItem = &pNew->a[i]; 1031 struct SrcList_item *pOldItem = &p->a[i]; 1032 Table *pTab; 1033 pNewItem->pSchema = pOldItem->pSchema; 1034 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1035 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1036 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1037 pNewItem->jointype = pOldItem->jointype; 1038 pNewItem->iCursor = pOldItem->iCursor; 1039 pNewItem->addrFillSub = pOldItem->addrFillSub; 1040 pNewItem->regReturn = pOldItem->regReturn; 1041 pNewItem->isCorrelated = pOldItem->isCorrelated; 1042 pNewItem->viaCoroutine = pOldItem->viaCoroutine; 1043 pNewItem->isRecursive = pOldItem->isRecursive; 1044 pNewItem->zIndexedBy = sqlite3DbStrDup(db, pOldItem->zIndexedBy); 1045 pNewItem->notIndexed = pOldItem->notIndexed; 1046 pNewItem->pIndex = pOldItem->pIndex; 1047 pTab = pNewItem->pTab = pOldItem->pTab; 1048 if( pTab ){ 1049 pTab->nRef++; 1050 } 1051 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1052 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1053 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1054 pNewItem->colUsed = pOldItem->colUsed; 1055 } 1056 return pNew; 1057 } 1058 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1059 IdList *pNew; 1060 int i; 1061 if( p==0 ) return 0; 1062 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 1063 if( pNew==0 ) return 0; 1064 pNew->nId = p->nId; 1065 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 1066 if( pNew->a==0 ){ 1067 sqlite3DbFree(db, pNew); 1068 return 0; 1069 } 1070 /* Note that because the size of the allocation for p->a[] is not 1071 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1072 ** on the duplicate created by this function. */ 1073 for(i=0; i<p->nId; i++){ 1074 struct IdList_item *pNewItem = &pNew->a[i]; 1075 struct IdList_item *pOldItem = &p->a[i]; 1076 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1077 pNewItem->idx = pOldItem->idx; 1078 } 1079 return pNew; 1080 } 1081 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1082 Select *pNew, *pPrior; 1083 if( p==0 ) return 0; 1084 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 1085 if( pNew==0 ) return 0; 1086 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1087 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1088 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1089 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1090 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1091 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1092 pNew->op = p->op; 1093 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1094 if( pPrior ) pPrior->pNext = pNew; 1095 pNew->pNext = 0; 1096 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1097 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1098 pNew->iLimit = 0; 1099 pNew->iOffset = 0; 1100 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1101 pNew->addrOpenEphm[0] = -1; 1102 pNew->addrOpenEphm[1] = -1; 1103 pNew->nSelectRow = p->nSelectRow; 1104 pNew->pWith = withDup(db, p->pWith); 1105 sqlite3SelectSetName(pNew, p->zSelName); 1106 return pNew; 1107 } 1108 #else 1109 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1110 assert( p==0 ); 1111 return 0; 1112 } 1113 #endif 1114 1115 1116 /* 1117 ** Add a new element to the end of an expression list. If pList is 1118 ** initially NULL, then create a new expression list. 1119 ** 1120 ** If a memory allocation error occurs, the entire list is freed and 1121 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1122 ** that the new entry was successfully appended. 1123 */ 1124 ExprList *sqlite3ExprListAppend( 1125 Parse *pParse, /* Parsing context */ 1126 ExprList *pList, /* List to which to append. Might be NULL */ 1127 Expr *pExpr /* Expression to be appended. Might be NULL */ 1128 ){ 1129 sqlite3 *db = pParse->db; 1130 if( pList==0 ){ 1131 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1132 if( pList==0 ){ 1133 goto no_mem; 1134 } 1135 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1136 if( pList->a==0 ) goto no_mem; 1137 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1138 struct ExprList_item *a; 1139 assert( pList->nExpr>0 ); 1140 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1141 if( a==0 ){ 1142 goto no_mem; 1143 } 1144 pList->a = a; 1145 } 1146 assert( pList->a!=0 ); 1147 if( 1 ){ 1148 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1149 memset(pItem, 0, sizeof(*pItem)); 1150 pItem->pExpr = pExpr; 1151 } 1152 return pList; 1153 1154 no_mem: 1155 /* Avoid leaking memory if malloc has failed. */ 1156 sqlite3ExprDelete(db, pExpr); 1157 sqlite3ExprListDelete(db, pList); 1158 return 0; 1159 } 1160 1161 /* 1162 ** Set the ExprList.a[].zName element of the most recently added item 1163 ** on the expression list. 1164 ** 1165 ** pList might be NULL following an OOM error. But pName should never be 1166 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1167 ** is set. 1168 */ 1169 void sqlite3ExprListSetName( 1170 Parse *pParse, /* Parsing context */ 1171 ExprList *pList, /* List to which to add the span. */ 1172 Token *pName, /* Name to be added */ 1173 int dequote /* True to cause the name to be dequoted */ 1174 ){ 1175 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1176 if( pList ){ 1177 struct ExprList_item *pItem; 1178 assert( pList->nExpr>0 ); 1179 pItem = &pList->a[pList->nExpr-1]; 1180 assert( pItem->zName==0 ); 1181 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1182 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1183 } 1184 } 1185 1186 /* 1187 ** Set the ExprList.a[].zSpan element of the most recently added item 1188 ** on the expression list. 1189 ** 1190 ** pList might be NULL following an OOM error. But pSpan should never be 1191 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1192 ** is set. 1193 */ 1194 void sqlite3ExprListSetSpan( 1195 Parse *pParse, /* Parsing context */ 1196 ExprList *pList, /* List to which to add the span. */ 1197 ExprSpan *pSpan /* The span to be added */ 1198 ){ 1199 sqlite3 *db = pParse->db; 1200 assert( pList!=0 || db->mallocFailed!=0 ); 1201 if( pList ){ 1202 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1203 assert( pList->nExpr>0 ); 1204 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1205 sqlite3DbFree(db, pItem->zSpan); 1206 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1207 (int)(pSpan->zEnd - pSpan->zStart)); 1208 } 1209 } 1210 1211 /* 1212 ** If the expression list pEList contains more than iLimit elements, 1213 ** leave an error message in pParse. 1214 */ 1215 void sqlite3ExprListCheckLength( 1216 Parse *pParse, 1217 ExprList *pEList, 1218 const char *zObject 1219 ){ 1220 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1221 testcase( pEList && pEList->nExpr==mx ); 1222 testcase( pEList && pEList->nExpr==mx+1 ); 1223 if( pEList && pEList->nExpr>mx ){ 1224 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1225 } 1226 } 1227 1228 /* 1229 ** Delete an entire expression list. 1230 */ 1231 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1232 int i; 1233 struct ExprList_item *pItem; 1234 if( pList==0 ) return; 1235 assert( pList->a!=0 || pList->nExpr==0 ); 1236 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1237 sqlite3ExprDelete(db, pItem->pExpr); 1238 sqlite3DbFree(db, pItem->zName); 1239 sqlite3DbFree(db, pItem->zSpan); 1240 } 1241 sqlite3DbFree(db, pList->a); 1242 sqlite3DbFree(db, pList); 1243 } 1244 1245 /* 1246 ** Return the bitwise-OR of all Expr.flags fields in the given 1247 ** ExprList. 1248 */ 1249 u32 sqlite3ExprListFlags(const ExprList *pList){ 1250 int i; 1251 u32 m = 0; 1252 if( pList ){ 1253 for(i=0; i<pList->nExpr; i++){ 1254 Expr *pExpr = pList->a[i].pExpr; 1255 if( ALWAYS(pExpr) ) m |= pExpr->flags; 1256 } 1257 } 1258 return m; 1259 } 1260 1261 /* 1262 ** These routines are Walker callbacks used to check expressions to 1263 ** see if they are "constant" for some definition of constant. The 1264 ** Walker.eCode value determines the type of "constant" we are looking 1265 ** for. 1266 ** 1267 ** These callback routines are used to implement the following: 1268 ** 1269 ** sqlite3ExprIsConstant() pWalker->eCode==1 1270 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1271 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1272 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1273 ** 1274 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1275 ** is found to not be a constant. 1276 ** 1277 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1278 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1279 ** an existing schema and 4 when processing a new statement. A bound 1280 ** parameter raises an error for new statements, but is silently converted 1281 ** to NULL for existing schemas. This allows sqlite_master tables that 1282 ** contain a bound parameter because they were generated by older versions 1283 ** of SQLite to be parsed by newer versions of SQLite without raising a 1284 ** malformed schema error. 1285 */ 1286 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1287 1288 /* If pWalker->eCode is 2 then any term of the expression that comes from 1289 ** the ON or USING clauses of a left join disqualifies the expression 1290 ** from being considered constant. */ 1291 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1292 pWalker->eCode = 0; 1293 return WRC_Abort; 1294 } 1295 1296 switch( pExpr->op ){ 1297 /* Consider functions to be constant if all their arguments are constant 1298 ** and either pWalker->eCode==4 or 5 or the function has the 1299 ** SQLITE_FUNC_CONST flag. */ 1300 case TK_FUNCTION: 1301 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1302 return WRC_Continue; 1303 }else{ 1304 pWalker->eCode = 0; 1305 return WRC_Abort; 1306 } 1307 case TK_ID: 1308 case TK_COLUMN: 1309 case TK_AGG_FUNCTION: 1310 case TK_AGG_COLUMN: 1311 testcase( pExpr->op==TK_ID ); 1312 testcase( pExpr->op==TK_COLUMN ); 1313 testcase( pExpr->op==TK_AGG_FUNCTION ); 1314 testcase( pExpr->op==TK_AGG_COLUMN ); 1315 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1316 return WRC_Continue; 1317 }else{ 1318 pWalker->eCode = 0; 1319 return WRC_Abort; 1320 } 1321 case TK_VARIABLE: 1322 if( pWalker->eCode==5 ){ 1323 /* Silently convert bound parameters that appear inside of CREATE 1324 ** statements into a NULL when parsing the CREATE statement text out 1325 ** of the sqlite_master table */ 1326 pExpr->op = TK_NULL; 1327 }else if( pWalker->eCode==4 ){ 1328 /* A bound parameter in a CREATE statement that originates from 1329 ** sqlite3_prepare() causes an error */ 1330 pWalker->eCode = 0; 1331 return WRC_Abort; 1332 } 1333 /* Fall through */ 1334 default: 1335 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1336 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1337 return WRC_Continue; 1338 } 1339 } 1340 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1341 UNUSED_PARAMETER(NotUsed); 1342 pWalker->eCode = 0; 1343 return WRC_Abort; 1344 } 1345 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1346 Walker w; 1347 memset(&w, 0, sizeof(w)); 1348 w.eCode = initFlag; 1349 w.xExprCallback = exprNodeIsConstant; 1350 w.xSelectCallback = selectNodeIsConstant; 1351 w.u.iCur = iCur; 1352 sqlite3WalkExpr(&w, p); 1353 return w.eCode; 1354 } 1355 1356 /* 1357 ** Walk an expression tree. Return non-zero if the expression is constant 1358 ** and 0 if it involves variables or function calls. 1359 ** 1360 ** For the purposes of this function, a double-quoted string (ex: "abc") 1361 ** is considered a variable but a single-quoted string (ex: 'abc') is 1362 ** a constant. 1363 */ 1364 int sqlite3ExprIsConstant(Expr *p){ 1365 return exprIsConst(p, 1, 0); 1366 } 1367 1368 /* 1369 ** Walk an expression tree. Return non-zero if the expression is constant 1370 ** that does no originate from the ON or USING clauses of a join. 1371 ** Return 0 if it involves variables or function calls or terms from 1372 ** an ON or USING clause. 1373 */ 1374 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1375 return exprIsConst(p, 2, 0); 1376 } 1377 1378 /* 1379 ** Walk an expression tree. Return non-zero if the expression is constant 1380 ** for any single row of the table with cursor iCur. In other words, the 1381 ** expression must not refer to any non-deterministic function nor any 1382 ** table other than iCur. 1383 */ 1384 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1385 return exprIsConst(p, 3, iCur); 1386 } 1387 1388 /* 1389 ** Walk an expression tree. Return non-zero if the expression is constant 1390 ** or a function call with constant arguments. Return and 0 if there 1391 ** are any variables. 1392 ** 1393 ** For the purposes of this function, a double-quoted string (ex: "abc") 1394 ** is considered a variable but a single-quoted string (ex: 'abc') is 1395 ** a constant. 1396 */ 1397 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1398 assert( isInit==0 || isInit==1 ); 1399 return exprIsConst(p, 4+isInit, 0); 1400 } 1401 1402 /* 1403 ** If the expression p codes a constant integer that is small enough 1404 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1405 ** in *pValue. If the expression is not an integer or if it is too big 1406 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1407 */ 1408 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1409 int rc = 0; 1410 1411 /* If an expression is an integer literal that fits in a signed 32-bit 1412 ** integer, then the EP_IntValue flag will have already been set */ 1413 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1414 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1415 1416 if( p->flags & EP_IntValue ){ 1417 *pValue = p->u.iValue; 1418 return 1; 1419 } 1420 switch( p->op ){ 1421 case TK_UPLUS: { 1422 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1423 break; 1424 } 1425 case TK_UMINUS: { 1426 int v; 1427 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1428 assert( v!=(-2147483647-1) ); 1429 *pValue = -v; 1430 rc = 1; 1431 } 1432 break; 1433 } 1434 default: break; 1435 } 1436 return rc; 1437 } 1438 1439 /* 1440 ** Return FALSE if there is no chance that the expression can be NULL. 1441 ** 1442 ** If the expression might be NULL or if the expression is too complex 1443 ** to tell return TRUE. 1444 ** 1445 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1446 ** when we know that a value cannot be NULL. Hence, a false positive 1447 ** (returning TRUE when in fact the expression can never be NULL) might 1448 ** be a small performance hit but is otherwise harmless. On the other 1449 ** hand, a false negative (returning FALSE when the result could be NULL) 1450 ** will likely result in an incorrect answer. So when in doubt, return 1451 ** TRUE. 1452 */ 1453 int sqlite3ExprCanBeNull(const Expr *p){ 1454 u8 op; 1455 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1456 op = p->op; 1457 if( op==TK_REGISTER ) op = p->op2; 1458 switch( op ){ 1459 case TK_INTEGER: 1460 case TK_STRING: 1461 case TK_FLOAT: 1462 case TK_BLOB: 1463 return 0; 1464 case TK_COLUMN: 1465 assert( p->pTab!=0 ); 1466 return ExprHasProperty(p, EP_CanBeNull) || 1467 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 1468 default: 1469 return 1; 1470 } 1471 } 1472 1473 /* 1474 ** Return TRUE if the given expression is a constant which would be 1475 ** unchanged by OP_Affinity with the affinity given in the second 1476 ** argument. 1477 ** 1478 ** This routine is used to determine if the OP_Affinity operation 1479 ** can be omitted. When in doubt return FALSE. A false negative 1480 ** is harmless. A false positive, however, can result in the wrong 1481 ** answer. 1482 */ 1483 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1484 u8 op; 1485 if( aff==SQLITE_AFF_BLOB ) return 1; 1486 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1487 op = p->op; 1488 if( op==TK_REGISTER ) op = p->op2; 1489 switch( op ){ 1490 case TK_INTEGER: { 1491 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1492 } 1493 case TK_FLOAT: { 1494 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1495 } 1496 case TK_STRING: { 1497 return aff==SQLITE_AFF_TEXT; 1498 } 1499 case TK_BLOB: { 1500 return 1; 1501 } 1502 case TK_COLUMN: { 1503 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1504 return p->iColumn<0 1505 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1506 } 1507 default: { 1508 return 0; 1509 } 1510 } 1511 } 1512 1513 /* 1514 ** Return TRUE if the given string is a row-id column name. 1515 */ 1516 int sqlite3IsRowid(const char *z){ 1517 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1518 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1519 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1520 return 0; 1521 } 1522 1523 /* 1524 ** Return true if we are able to the IN operator optimization on a 1525 ** query of the form 1526 ** 1527 ** x IN (SELECT ...) 1528 ** 1529 ** Where the SELECT... clause is as specified by the parameter to this 1530 ** routine. 1531 ** 1532 ** The Select object passed in has already been preprocessed and no 1533 ** errors have been found. 1534 */ 1535 #ifndef SQLITE_OMIT_SUBQUERY 1536 static int isCandidateForInOpt(Select *p){ 1537 SrcList *pSrc; 1538 ExprList *pEList; 1539 Table *pTab; 1540 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1541 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1542 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1543 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1544 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1545 return 0; /* No DISTINCT keyword and no aggregate functions */ 1546 } 1547 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1548 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1549 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1550 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1551 pSrc = p->pSrc; 1552 assert( pSrc!=0 ); 1553 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1554 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1555 pTab = pSrc->a[0].pTab; 1556 if( NEVER(pTab==0) ) return 0; 1557 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1558 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1559 pEList = p->pEList; 1560 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1561 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1562 return 1; 1563 } 1564 #endif /* SQLITE_OMIT_SUBQUERY */ 1565 1566 /* 1567 ** Code an OP_Once instruction and allocate space for its flag. Return the 1568 ** address of the new instruction. 1569 */ 1570 int sqlite3CodeOnce(Parse *pParse){ 1571 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1572 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1573 } 1574 1575 /* 1576 ** Generate code that checks the left-most column of index table iCur to see if 1577 ** it contains any NULL entries. Cause the register at regHasNull to be set 1578 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 1579 ** to be set to NULL if iCur contains one or more NULL values. 1580 */ 1581 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 1582 int j1; 1583 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 1584 j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1585 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 1586 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1587 VdbeComment((v, "first_entry_in(%d)", iCur)); 1588 sqlite3VdbeJumpHere(v, j1); 1589 } 1590 1591 1592 #ifndef SQLITE_OMIT_SUBQUERY 1593 /* 1594 ** The argument is an IN operator with a list (not a subquery) on the 1595 ** right-hand side. Return TRUE if that list is constant. 1596 */ 1597 static int sqlite3InRhsIsConstant(Expr *pIn){ 1598 Expr *pLHS; 1599 int res; 1600 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 1601 pLHS = pIn->pLeft; 1602 pIn->pLeft = 0; 1603 res = sqlite3ExprIsConstant(pIn); 1604 pIn->pLeft = pLHS; 1605 return res; 1606 } 1607 #endif 1608 1609 /* 1610 ** This function is used by the implementation of the IN (...) operator. 1611 ** The pX parameter is the expression on the RHS of the IN operator, which 1612 ** might be either a list of expressions or a subquery. 1613 ** 1614 ** The job of this routine is to find or create a b-tree object that can 1615 ** be used either to test for membership in the RHS set or to iterate through 1616 ** all members of the RHS set, skipping duplicates. 1617 ** 1618 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 1619 ** and pX->iTable is set to the index of that cursor. 1620 ** 1621 ** The returned value of this function indicates the b-tree type, as follows: 1622 ** 1623 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1624 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 1625 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 1626 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1627 ** populated epheremal table. 1628 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 1629 ** implemented as a sequence of comparisons. 1630 ** 1631 ** An existing b-tree might be used if the RHS expression pX is a simple 1632 ** subquery such as: 1633 ** 1634 ** SELECT <column> FROM <table> 1635 ** 1636 ** If the RHS of the IN operator is a list or a more complex subquery, then 1637 ** an ephemeral table might need to be generated from the RHS and then 1638 ** pX->iTable made to point to the ephemeral table instead of an 1639 ** existing table. 1640 ** 1641 ** The inFlags parameter must contain exactly one of the bits 1642 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 1643 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 1644 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 1645 ** IN index will be used to loop over all values of the RHS of the 1646 ** IN operator. 1647 ** 1648 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 1649 ** through the set members) then the b-tree must not contain duplicates. 1650 ** An epheremal table must be used unless the selected <column> is guaranteed 1651 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1652 ** has a UNIQUE constraint or UNIQUE index. 1653 ** 1654 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 1655 ** for fast set membership tests) then an epheremal table must 1656 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1657 ** be found with <column> as its left-most column. 1658 ** 1659 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 1660 ** if the RHS of the IN operator is a list (not a subquery) then this 1661 ** routine might decide that creating an ephemeral b-tree for membership 1662 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 1663 ** calling routine should implement the IN operator using a sequence 1664 ** of Eq or Ne comparison operations. 1665 ** 1666 ** When the b-tree is being used for membership tests, the calling function 1667 ** might need to know whether or not the RHS side of the IN operator 1668 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 1669 ** if there is any chance that the (...) might contain a NULL value at 1670 ** runtime, then a register is allocated and the register number written 1671 ** to *prRhsHasNull. If there is no chance that the (...) contains a 1672 ** NULL value, then *prRhsHasNull is left unchanged. 1673 ** 1674 ** If a register is allocated and its location stored in *prRhsHasNull, then 1675 ** the value in that register will be NULL if the b-tree contains one or more 1676 ** NULL values, and it will be some non-NULL value if the b-tree contains no 1677 ** NULL values. 1678 */ 1679 #ifndef SQLITE_OMIT_SUBQUERY 1680 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){ 1681 Select *p; /* SELECT to the right of IN operator */ 1682 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1683 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1684 int mustBeUnique; /* True if RHS must be unique */ 1685 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1686 1687 assert( pX->op==TK_IN ); 1688 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 1689 1690 /* Check to see if an existing table or index can be used to 1691 ** satisfy the query. This is preferable to generating a new 1692 ** ephemeral table. 1693 */ 1694 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1695 if( pParse->nErr==0 && isCandidateForInOpt(p) ){ 1696 sqlite3 *db = pParse->db; /* Database connection */ 1697 Table *pTab; /* Table <table>. */ 1698 Expr *pExpr; /* Expression <column> */ 1699 i16 iCol; /* Index of column <column> */ 1700 i16 iDb; /* Database idx for pTab */ 1701 1702 assert( p ); /* Because of isCandidateForInOpt(p) */ 1703 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1704 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1705 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1706 pTab = p->pSrc->a[0].pTab; 1707 pExpr = p->pEList->a[0].pExpr; 1708 iCol = (i16)pExpr->iColumn; 1709 1710 /* Code an OP_Transaction and OP_TableLock for <table>. */ 1711 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1712 sqlite3CodeVerifySchema(pParse, iDb); 1713 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1714 1715 /* This function is only called from two places. In both cases the vdbe 1716 ** has already been allocated. So assume sqlite3GetVdbe() is always 1717 ** successful here. 1718 */ 1719 assert(v); 1720 if( iCol<0 ){ 1721 int iAddr = sqlite3CodeOnce(pParse); 1722 VdbeCoverage(v); 1723 1724 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1725 eType = IN_INDEX_ROWID; 1726 1727 sqlite3VdbeJumpHere(v, iAddr); 1728 }else{ 1729 Index *pIdx; /* Iterator variable */ 1730 1731 /* The collation sequence used by the comparison. If an index is to 1732 ** be used in place of a temp-table, it must be ordered according 1733 ** to this collation sequence. */ 1734 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1735 1736 /* Check that the affinity that will be used to perform the 1737 ** comparison is the same as the affinity of the column. If 1738 ** it is not, it is not possible to use any index. 1739 */ 1740 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1741 1742 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1743 if( (pIdx->aiColumn[0]==iCol) 1744 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1745 && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx))) 1746 ){ 1747 int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1748 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 1749 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1750 VdbeComment((v, "%s", pIdx->zName)); 1751 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 1752 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 1753 1754 if( prRhsHasNull && !pTab->aCol[iCol].notNull ){ 1755 *prRhsHasNull = ++pParse->nMem; 1756 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 1757 } 1758 sqlite3VdbeJumpHere(v, iAddr); 1759 } 1760 } 1761 } 1762 } 1763 1764 /* If no preexisting index is available for the IN clause 1765 ** and IN_INDEX_NOOP is an allowed reply 1766 ** and the RHS of the IN operator is a list, not a subquery 1767 ** and the RHS is not contant or has two or fewer terms, 1768 ** then it is not worth creating an ephemeral table to evaluate 1769 ** the IN operator so return IN_INDEX_NOOP. 1770 */ 1771 if( eType==0 1772 && (inFlags & IN_INDEX_NOOP_OK) 1773 && !ExprHasProperty(pX, EP_xIsSelect) 1774 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 1775 ){ 1776 eType = IN_INDEX_NOOP; 1777 } 1778 1779 1780 if( eType==0 ){ 1781 /* Could not find an existing table or index to use as the RHS b-tree. 1782 ** We will have to generate an ephemeral table to do the job. 1783 */ 1784 u32 savedNQueryLoop = pParse->nQueryLoop; 1785 int rMayHaveNull = 0; 1786 eType = IN_INDEX_EPH; 1787 if( inFlags & IN_INDEX_LOOP ){ 1788 pParse->nQueryLoop = 0; 1789 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 1790 eType = IN_INDEX_ROWID; 1791 } 1792 }else if( prRhsHasNull ){ 1793 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 1794 } 1795 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1796 pParse->nQueryLoop = savedNQueryLoop; 1797 }else{ 1798 pX->iTable = iTab; 1799 } 1800 return eType; 1801 } 1802 #endif 1803 1804 /* 1805 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1806 ** or IN operators. Examples: 1807 ** 1808 ** (SELECT a FROM b) -- subquery 1809 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1810 ** x IN (4,5,11) -- IN operator with list on right-hand side 1811 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1812 ** 1813 ** The pExpr parameter describes the expression that contains the IN 1814 ** operator or subquery. 1815 ** 1816 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1817 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1818 ** to some integer key column of a table B-Tree. In this case, use an 1819 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1820 ** (slower) variable length keys B-Tree. 1821 ** 1822 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1823 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1824 ** All this routine does is initialize the register given by rMayHaveNull 1825 ** to NULL. Calling routines will take care of changing this register 1826 ** value to non-NULL if the RHS is NULL-free. 1827 ** 1828 ** For a SELECT or EXISTS operator, return the register that holds the 1829 ** result. For IN operators or if an error occurs, the return value is 0. 1830 */ 1831 #ifndef SQLITE_OMIT_SUBQUERY 1832 int sqlite3CodeSubselect( 1833 Parse *pParse, /* Parsing context */ 1834 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1835 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 1836 int isRowid /* If true, LHS of IN operator is a rowid */ 1837 ){ 1838 int jmpIfDynamic = -1; /* One-time test address */ 1839 int rReg = 0; /* Register storing resulting */ 1840 Vdbe *v = sqlite3GetVdbe(pParse); 1841 if( NEVER(v==0) ) return 0; 1842 sqlite3ExprCachePush(pParse); 1843 1844 /* This code must be run in its entirety every time it is encountered 1845 ** if any of the following is true: 1846 ** 1847 ** * The right-hand side is a correlated subquery 1848 ** * The right-hand side is an expression list containing variables 1849 ** * We are inside a trigger 1850 ** 1851 ** If all of the above are false, then we can run this code just once 1852 ** save the results, and reuse the same result on subsequent invocations. 1853 */ 1854 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 1855 jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1856 } 1857 1858 #ifndef SQLITE_OMIT_EXPLAIN 1859 if( pParse->explain==2 ){ 1860 char *zMsg = sqlite3MPrintf( 1861 pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ", 1862 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId 1863 ); 1864 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1865 } 1866 #endif 1867 1868 switch( pExpr->op ){ 1869 case TK_IN: { 1870 char affinity; /* Affinity of the LHS of the IN */ 1871 int addr; /* Address of OP_OpenEphemeral instruction */ 1872 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1873 KeyInfo *pKeyInfo = 0; /* Key information */ 1874 1875 affinity = sqlite3ExprAffinity(pLeft); 1876 1877 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1878 ** expression it is handled the same way. An ephemeral table is 1879 ** filled with single-field index keys representing the results 1880 ** from the SELECT or the <exprlist>. 1881 ** 1882 ** If the 'x' expression is a column value, or the SELECT... 1883 ** statement returns a column value, then the affinity of that 1884 ** column is used to build the index keys. If both 'x' and the 1885 ** SELECT... statement are columns, then numeric affinity is used 1886 ** if either column has NUMERIC or INTEGER affinity. If neither 1887 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1888 ** is used. 1889 */ 1890 pExpr->iTable = pParse->nTab++; 1891 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1892 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); 1893 1894 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1895 /* Case 1: expr IN (SELECT ...) 1896 ** 1897 ** Generate code to write the results of the select into the temporary 1898 ** table allocated and opened above. 1899 */ 1900 Select *pSelect = pExpr->x.pSelect; 1901 SelectDest dest; 1902 ExprList *pEList; 1903 1904 assert( !isRowid ); 1905 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1906 dest.affSdst = (u8)affinity; 1907 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1908 pSelect->iLimit = 0; 1909 testcase( pSelect->selFlags & SF_Distinct ); 1910 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 1911 if( sqlite3Select(pParse, pSelect, &dest) ){ 1912 sqlite3KeyInfoUnref(pKeyInfo); 1913 return 0; 1914 } 1915 pEList = pSelect->pEList; 1916 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 1917 assert( pEList!=0 ); 1918 assert( pEList->nExpr>0 ); 1919 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1920 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1921 pEList->a[0].pExpr); 1922 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1923 /* Case 2: expr IN (exprlist) 1924 ** 1925 ** For each expression, build an index key from the evaluation and 1926 ** store it in the temporary table. If <expr> is a column, then use 1927 ** that columns affinity when building index keys. If <expr> is not 1928 ** a column, use numeric affinity. 1929 */ 1930 int i; 1931 ExprList *pList = pExpr->x.pList; 1932 struct ExprList_item *pItem; 1933 int r1, r2, r3; 1934 1935 if( !affinity ){ 1936 affinity = SQLITE_AFF_BLOB; 1937 } 1938 if( pKeyInfo ){ 1939 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1940 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1941 } 1942 1943 /* Loop through each expression in <exprlist>. */ 1944 r1 = sqlite3GetTempReg(pParse); 1945 r2 = sqlite3GetTempReg(pParse); 1946 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1947 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1948 Expr *pE2 = pItem->pExpr; 1949 int iValToIns; 1950 1951 /* If the expression is not constant then we will need to 1952 ** disable the test that was generated above that makes sure 1953 ** this code only executes once. Because for a non-constant 1954 ** expression we need to rerun this code each time. 1955 */ 1956 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 1957 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 1958 jmpIfDynamic = -1; 1959 } 1960 1961 /* Evaluate the expression and insert it into the temp table */ 1962 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1963 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1964 }else{ 1965 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1966 if( isRowid ){ 1967 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1968 sqlite3VdbeCurrentAddr(v)+2); 1969 VdbeCoverage(v); 1970 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1971 }else{ 1972 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1973 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1974 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1975 } 1976 } 1977 } 1978 sqlite3ReleaseTempReg(pParse, r1); 1979 sqlite3ReleaseTempReg(pParse, r2); 1980 } 1981 if( pKeyInfo ){ 1982 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 1983 } 1984 break; 1985 } 1986 1987 case TK_EXISTS: 1988 case TK_SELECT: 1989 default: { 1990 /* If this has to be a scalar SELECT. Generate code to put the 1991 ** value of this select in a memory cell and record the number 1992 ** of the memory cell in iColumn. If this is an EXISTS, write 1993 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1994 ** and record that memory cell in iColumn. 1995 */ 1996 Select *pSel; /* SELECT statement to encode */ 1997 SelectDest dest; /* How to deal with SELECt result */ 1998 1999 testcase( pExpr->op==TK_EXISTS ); 2000 testcase( pExpr->op==TK_SELECT ); 2001 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2002 2003 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2004 pSel = pExpr->x.pSelect; 2005 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 2006 if( pExpr->op==TK_SELECT ){ 2007 dest.eDest = SRT_Mem; 2008 dest.iSdst = dest.iSDParm; 2009 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 2010 VdbeComment((v, "Init subquery result")); 2011 }else{ 2012 dest.eDest = SRT_Exists; 2013 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2014 VdbeComment((v, "Init EXISTS result")); 2015 } 2016 sqlite3ExprDelete(pParse->db, pSel->pLimit); 2017 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 2018 &sqlite3IntTokens[1]); 2019 pSel->iLimit = 0; 2020 pSel->selFlags &= ~SF_MultiValue; 2021 if( sqlite3Select(pParse, pSel, &dest) ){ 2022 return 0; 2023 } 2024 rReg = dest.iSDParm; 2025 ExprSetVVAProperty(pExpr, EP_NoReduce); 2026 break; 2027 } 2028 } 2029 2030 if( rHasNullFlag ){ 2031 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2032 } 2033 2034 if( jmpIfDynamic>=0 ){ 2035 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2036 } 2037 sqlite3ExprCachePop(pParse); 2038 2039 return rReg; 2040 } 2041 #endif /* SQLITE_OMIT_SUBQUERY */ 2042 2043 #ifndef SQLITE_OMIT_SUBQUERY 2044 /* 2045 ** Generate code for an IN expression. 2046 ** 2047 ** x IN (SELECT ...) 2048 ** x IN (value, value, ...) 2049 ** 2050 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 2051 ** is an array of zero or more values. The expression is true if the LHS is 2052 ** contained within the RHS. The value of the expression is unknown (NULL) 2053 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 2054 ** RHS contains one or more NULL values. 2055 ** 2056 ** This routine generates code that jumps to destIfFalse if the LHS is not 2057 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2058 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2059 ** within the RHS then fall through. 2060 */ 2061 static void sqlite3ExprCodeIN( 2062 Parse *pParse, /* Parsing and code generating context */ 2063 Expr *pExpr, /* The IN expression */ 2064 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2065 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2066 ){ 2067 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2068 char affinity; /* Comparison affinity to use */ 2069 int eType; /* Type of the RHS */ 2070 int r1; /* Temporary use register */ 2071 Vdbe *v; /* Statement under construction */ 2072 2073 /* Compute the RHS. After this step, the table with cursor 2074 ** pExpr->iTable will contains the values that make up the RHS. 2075 */ 2076 v = pParse->pVdbe; 2077 assert( v!=0 ); /* OOM detected prior to this routine */ 2078 VdbeNoopComment((v, "begin IN expr")); 2079 eType = sqlite3FindInIndex(pParse, pExpr, 2080 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2081 destIfFalse==destIfNull ? 0 : &rRhsHasNull); 2082 2083 /* Figure out the affinity to use to create a key from the results 2084 ** of the expression. affinityStr stores a static string suitable for 2085 ** P4 of OP_MakeRecord. 2086 */ 2087 affinity = comparisonAffinity(pExpr); 2088 2089 /* Code the LHS, the <expr> from "<expr> IN (...)". 2090 */ 2091 sqlite3ExprCachePush(pParse); 2092 r1 = sqlite3GetTempReg(pParse); 2093 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 2094 2095 /* If sqlite3FindInIndex() did not find or create an index that is 2096 ** suitable for evaluating the IN operator, then evaluate using a 2097 ** sequence of comparisons. 2098 */ 2099 if( eType==IN_INDEX_NOOP ){ 2100 ExprList *pList = pExpr->x.pList; 2101 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2102 int labelOk = sqlite3VdbeMakeLabel(v); 2103 int r2, regToFree; 2104 int regCkNull = 0; 2105 int ii; 2106 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2107 if( destIfNull!=destIfFalse ){ 2108 regCkNull = sqlite3GetTempReg(pParse); 2109 sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull); 2110 } 2111 for(ii=0; ii<pList->nExpr; ii++){ 2112 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2113 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2114 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2115 } 2116 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2117 sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2, 2118 (void*)pColl, P4_COLLSEQ); 2119 VdbeCoverageIf(v, ii<pList->nExpr-1); 2120 VdbeCoverageIf(v, ii==pList->nExpr-1); 2121 sqlite3VdbeChangeP5(v, affinity); 2122 }else{ 2123 assert( destIfNull==destIfFalse ); 2124 sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2, 2125 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2126 sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL); 2127 } 2128 sqlite3ReleaseTempReg(pParse, regToFree); 2129 } 2130 if( regCkNull ){ 2131 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2132 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 2133 } 2134 sqlite3VdbeResolveLabel(v, labelOk); 2135 sqlite3ReleaseTempReg(pParse, regCkNull); 2136 }else{ 2137 2138 /* If the LHS is NULL, then the result is either false or NULL depending 2139 ** on whether the RHS is empty or not, respectively. 2140 */ 2141 if( sqlite3ExprCanBeNull(pExpr->pLeft) ){ 2142 if( destIfNull==destIfFalse ){ 2143 /* Shortcut for the common case where the false and NULL outcomes are 2144 ** the same. */ 2145 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); 2146 }else{ 2147 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); 2148 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2149 VdbeCoverage(v); 2150 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 2151 sqlite3VdbeJumpHere(v, addr1); 2152 } 2153 } 2154 2155 if( eType==IN_INDEX_ROWID ){ 2156 /* In this case, the RHS is the ROWID of table b-tree 2157 */ 2158 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); 2159 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 2160 VdbeCoverage(v); 2161 }else{ 2162 /* In this case, the RHS is an index b-tree. 2163 */ 2164 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 2165 2166 /* If the set membership test fails, then the result of the 2167 ** "x IN (...)" expression must be either 0 or NULL. If the set 2168 ** contains no NULL values, then the result is 0. If the set 2169 ** contains one or more NULL values, then the result of the 2170 ** expression is also NULL. 2171 */ 2172 assert( destIfFalse!=destIfNull || rRhsHasNull==0 ); 2173 if( rRhsHasNull==0 ){ 2174 /* This branch runs if it is known at compile time that the RHS 2175 ** cannot contain NULL values. This happens as the result 2176 ** of a "NOT NULL" constraint in the database schema. 2177 ** 2178 ** Also run this branch if NULL is equivalent to FALSE 2179 ** for this particular IN operator. 2180 */ 2181 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 2182 VdbeCoverage(v); 2183 }else{ 2184 /* In this branch, the RHS of the IN might contain a NULL and 2185 ** the presence of a NULL on the RHS makes a difference in the 2186 ** outcome. 2187 */ 2188 int j1; 2189 2190 /* First check to see if the LHS is contained in the RHS. If so, 2191 ** then the answer is TRUE the presence of NULLs in the RHS does 2192 ** not matter. If the LHS is not contained in the RHS, then the 2193 ** answer is NULL if the RHS contains NULLs and the answer is 2194 ** FALSE if the RHS is NULL-free. 2195 */ 2196 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 2197 VdbeCoverage(v); 2198 sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull); 2199 VdbeCoverage(v); 2200 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 2201 sqlite3VdbeJumpHere(v, j1); 2202 } 2203 } 2204 } 2205 sqlite3ReleaseTempReg(pParse, r1); 2206 sqlite3ExprCachePop(pParse); 2207 VdbeComment((v, "end IN expr")); 2208 } 2209 #endif /* SQLITE_OMIT_SUBQUERY */ 2210 2211 #ifndef SQLITE_OMIT_FLOATING_POINT 2212 /* 2213 ** Generate an instruction that will put the floating point 2214 ** value described by z[0..n-1] into register iMem. 2215 ** 2216 ** The z[] string will probably not be zero-terminated. But the 2217 ** z[n] character is guaranteed to be something that does not look 2218 ** like the continuation of the number. 2219 */ 2220 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2221 if( ALWAYS(z!=0) ){ 2222 double value; 2223 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2224 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2225 if( negateFlag ) value = -value; 2226 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 2227 } 2228 } 2229 #endif 2230 2231 2232 /* 2233 ** Generate an instruction that will put the integer describe by 2234 ** text z[0..n-1] into register iMem. 2235 ** 2236 ** Expr.u.zToken is always UTF8 and zero-terminated. 2237 */ 2238 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2239 Vdbe *v = pParse->pVdbe; 2240 if( pExpr->flags & EP_IntValue ){ 2241 int i = pExpr->u.iValue; 2242 assert( i>=0 ); 2243 if( negFlag ) i = -i; 2244 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2245 }else{ 2246 int c; 2247 i64 value; 2248 const char *z = pExpr->u.zToken; 2249 assert( z!=0 ); 2250 c = sqlite3DecOrHexToI64(z, &value); 2251 if( c==0 || (c==2 && negFlag) ){ 2252 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2253 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 2254 }else{ 2255 #ifdef SQLITE_OMIT_FLOATING_POINT 2256 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2257 #else 2258 #ifndef SQLITE_OMIT_HEX_INTEGER 2259 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 2260 sqlite3ErrorMsg(pParse, "hex literal too big: %s", z); 2261 }else 2262 #endif 2263 { 2264 codeReal(v, z, negFlag, iMem); 2265 } 2266 #endif 2267 } 2268 } 2269 } 2270 2271 /* 2272 ** Clear a cache entry. 2273 */ 2274 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2275 if( p->tempReg ){ 2276 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2277 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2278 } 2279 p->tempReg = 0; 2280 } 2281 } 2282 2283 2284 /* 2285 ** Record in the column cache that a particular column from a 2286 ** particular table is stored in a particular register. 2287 */ 2288 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2289 int i; 2290 int minLru; 2291 int idxLru; 2292 struct yColCache *p; 2293 2294 /* Unless an error has occurred, register numbers are always positive. */ 2295 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 2296 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2297 2298 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2299 ** for testing only - to verify that SQLite always gets the same answer 2300 ** with and without the column cache. 2301 */ 2302 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2303 2304 /* First replace any existing entry. 2305 ** 2306 ** Actually, the way the column cache is currently used, we are guaranteed 2307 ** that the object will never already be in cache. Verify this guarantee. 2308 */ 2309 #ifndef NDEBUG 2310 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2311 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2312 } 2313 #endif 2314 2315 /* Find an empty slot and replace it */ 2316 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2317 if( p->iReg==0 ){ 2318 p->iLevel = pParse->iCacheLevel; 2319 p->iTable = iTab; 2320 p->iColumn = iCol; 2321 p->iReg = iReg; 2322 p->tempReg = 0; 2323 p->lru = pParse->iCacheCnt++; 2324 return; 2325 } 2326 } 2327 2328 /* Replace the last recently used */ 2329 minLru = 0x7fffffff; 2330 idxLru = -1; 2331 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2332 if( p->lru<minLru ){ 2333 idxLru = i; 2334 minLru = p->lru; 2335 } 2336 } 2337 if( ALWAYS(idxLru>=0) ){ 2338 p = &pParse->aColCache[idxLru]; 2339 p->iLevel = pParse->iCacheLevel; 2340 p->iTable = iTab; 2341 p->iColumn = iCol; 2342 p->iReg = iReg; 2343 p->tempReg = 0; 2344 p->lru = pParse->iCacheCnt++; 2345 return; 2346 } 2347 } 2348 2349 /* 2350 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2351 ** Purge the range of registers from the column cache. 2352 */ 2353 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2354 int i; 2355 int iLast = iReg + nReg - 1; 2356 struct yColCache *p; 2357 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2358 int r = p->iReg; 2359 if( r>=iReg && r<=iLast ){ 2360 cacheEntryClear(pParse, p); 2361 p->iReg = 0; 2362 } 2363 } 2364 } 2365 2366 /* 2367 ** Remember the current column cache context. Any new entries added 2368 ** added to the column cache after this call are removed when the 2369 ** corresponding pop occurs. 2370 */ 2371 void sqlite3ExprCachePush(Parse *pParse){ 2372 pParse->iCacheLevel++; 2373 #ifdef SQLITE_DEBUG 2374 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2375 printf("PUSH to %d\n", pParse->iCacheLevel); 2376 } 2377 #endif 2378 } 2379 2380 /* 2381 ** Remove from the column cache any entries that were added since the 2382 ** the previous sqlite3ExprCachePush operation. In other words, restore 2383 ** the cache to the state it was in prior the most recent Push. 2384 */ 2385 void sqlite3ExprCachePop(Parse *pParse){ 2386 int i; 2387 struct yColCache *p; 2388 assert( pParse->iCacheLevel>=1 ); 2389 pParse->iCacheLevel--; 2390 #ifdef SQLITE_DEBUG 2391 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2392 printf("POP to %d\n", pParse->iCacheLevel); 2393 } 2394 #endif 2395 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2396 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2397 cacheEntryClear(pParse, p); 2398 p->iReg = 0; 2399 } 2400 } 2401 } 2402 2403 /* 2404 ** When a cached column is reused, make sure that its register is 2405 ** no longer available as a temp register. ticket #3879: that same 2406 ** register might be in the cache in multiple places, so be sure to 2407 ** get them all. 2408 */ 2409 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2410 int i; 2411 struct yColCache *p; 2412 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2413 if( p->iReg==iReg ){ 2414 p->tempReg = 0; 2415 } 2416 } 2417 } 2418 2419 /* 2420 ** Generate code to extract the value of the iCol-th column of a table. 2421 */ 2422 void sqlite3ExprCodeGetColumnOfTable( 2423 Vdbe *v, /* The VDBE under construction */ 2424 Table *pTab, /* The table containing the value */ 2425 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 2426 int iCol, /* Index of the column to extract */ 2427 int regOut /* Extract the value into this register */ 2428 ){ 2429 if( iCol<0 || iCol==pTab->iPKey ){ 2430 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2431 }else{ 2432 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2433 int x = iCol; 2434 if( !HasRowid(pTab) ){ 2435 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 2436 } 2437 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 2438 } 2439 if( iCol>=0 ){ 2440 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2441 } 2442 } 2443 2444 /* 2445 ** Generate code that will extract the iColumn-th column from 2446 ** table pTab and store the column value in a register. An effort 2447 ** is made to store the column value in register iReg, but this is 2448 ** not guaranteed. The location of the column value is returned. 2449 ** 2450 ** There must be an open cursor to pTab in iTable when this routine 2451 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2452 */ 2453 int sqlite3ExprCodeGetColumn( 2454 Parse *pParse, /* Parsing and code generating context */ 2455 Table *pTab, /* Description of the table we are reading from */ 2456 int iColumn, /* Index of the table column */ 2457 int iTable, /* The cursor pointing to the table */ 2458 int iReg, /* Store results here */ 2459 u8 p5 /* P5 value for OP_Column */ 2460 ){ 2461 Vdbe *v = pParse->pVdbe; 2462 int i; 2463 struct yColCache *p; 2464 2465 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2466 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2467 p->lru = pParse->iCacheCnt++; 2468 sqlite3ExprCachePinRegister(pParse, p->iReg); 2469 return p->iReg; 2470 } 2471 } 2472 assert( v!=0 ); 2473 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2474 if( p5 ){ 2475 sqlite3VdbeChangeP5(v, p5); 2476 }else{ 2477 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2478 } 2479 return iReg; 2480 } 2481 2482 /* 2483 ** Clear all column cache entries. 2484 */ 2485 void sqlite3ExprCacheClear(Parse *pParse){ 2486 int i; 2487 struct yColCache *p; 2488 2489 #if SQLITE_DEBUG 2490 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2491 printf("CLEAR\n"); 2492 } 2493 #endif 2494 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2495 if( p->iReg ){ 2496 cacheEntryClear(pParse, p); 2497 p->iReg = 0; 2498 } 2499 } 2500 } 2501 2502 /* 2503 ** Record the fact that an affinity change has occurred on iCount 2504 ** registers starting with iStart. 2505 */ 2506 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2507 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2508 } 2509 2510 /* 2511 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2512 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2513 */ 2514 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2515 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2516 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2517 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 2518 } 2519 2520 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2521 /* 2522 ** Return true if any register in the range iFrom..iTo (inclusive) 2523 ** is used as part of the column cache. 2524 ** 2525 ** This routine is used within assert() and testcase() macros only 2526 ** and does not appear in a normal build. 2527 */ 2528 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2529 int i; 2530 struct yColCache *p; 2531 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2532 int r = p->iReg; 2533 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2534 } 2535 return 0; 2536 } 2537 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2538 2539 /* 2540 ** Convert an expression node to a TK_REGISTER 2541 */ 2542 static void exprToRegister(Expr *p, int iReg){ 2543 p->op2 = p->op; 2544 p->op = TK_REGISTER; 2545 p->iTable = iReg; 2546 ExprClearProperty(p, EP_Skip); 2547 } 2548 2549 /* 2550 ** Generate code into the current Vdbe to evaluate the given 2551 ** expression. Attempt to store the results in register "target". 2552 ** Return the register where results are stored. 2553 ** 2554 ** With this routine, there is no guarantee that results will 2555 ** be stored in target. The result might be stored in some other 2556 ** register if it is convenient to do so. The calling function 2557 ** must check the return code and move the results to the desired 2558 ** register. 2559 */ 2560 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2561 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2562 int op; /* The opcode being coded */ 2563 int inReg = target; /* Results stored in register inReg */ 2564 int regFree1 = 0; /* If non-zero free this temporary register */ 2565 int regFree2 = 0; /* If non-zero free this temporary register */ 2566 int r1, r2, r3, r4; /* Various register numbers */ 2567 sqlite3 *db = pParse->db; /* The database connection */ 2568 Expr tempX; /* Temporary expression node */ 2569 2570 assert( target>0 && target<=pParse->nMem ); 2571 if( v==0 ){ 2572 assert( pParse->db->mallocFailed ); 2573 return 0; 2574 } 2575 2576 if( pExpr==0 ){ 2577 op = TK_NULL; 2578 }else{ 2579 op = pExpr->op; 2580 } 2581 switch( op ){ 2582 case TK_AGG_COLUMN: { 2583 AggInfo *pAggInfo = pExpr->pAggInfo; 2584 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2585 if( !pAggInfo->directMode ){ 2586 assert( pCol->iMem>0 ); 2587 inReg = pCol->iMem; 2588 break; 2589 }else if( pAggInfo->useSortingIdx ){ 2590 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2591 pCol->iSorterColumn, target); 2592 break; 2593 } 2594 /* Otherwise, fall thru into the TK_COLUMN case */ 2595 } 2596 case TK_COLUMN: { 2597 int iTab = pExpr->iTable; 2598 if( iTab<0 ){ 2599 if( pParse->ckBase>0 ){ 2600 /* Generating CHECK constraints or inserting into partial index */ 2601 inReg = pExpr->iColumn + pParse->ckBase; 2602 break; 2603 }else{ 2604 /* Deleting from a partial index */ 2605 iTab = pParse->iPartIdxTab; 2606 } 2607 } 2608 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2609 pExpr->iColumn, iTab, target, 2610 pExpr->op2); 2611 break; 2612 } 2613 case TK_INTEGER: { 2614 codeInteger(pParse, pExpr, 0, target); 2615 break; 2616 } 2617 #ifndef SQLITE_OMIT_FLOATING_POINT 2618 case TK_FLOAT: { 2619 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2620 codeReal(v, pExpr->u.zToken, 0, target); 2621 break; 2622 } 2623 #endif 2624 case TK_STRING: { 2625 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2626 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2627 break; 2628 } 2629 case TK_NULL: { 2630 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2631 break; 2632 } 2633 #ifndef SQLITE_OMIT_BLOB_LITERAL 2634 case TK_BLOB: { 2635 int n; 2636 const char *z; 2637 char *zBlob; 2638 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2639 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2640 assert( pExpr->u.zToken[1]=='\'' ); 2641 z = &pExpr->u.zToken[2]; 2642 n = sqlite3Strlen30(z) - 1; 2643 assert( z[n]=='\'' ); 2644 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2645 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2646 break; 2647 } 2648 #endif 2649 case TK_VARIABLE: { 2650 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2651 assert( pExpr->u.zToken!=0 ); 2652 assert( pExpr->u.zToken[0]!=0 ); 2653 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2654 if( pExpr->u.zToken[1]!=0 ){ 2655 assert( pExpr->u.zToken[0]=='?' 2656 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2657 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2658 } 2659 break; 2660 } 2661 case TK_REGISTER: { 2662 inReg = pExpr->iTable; 2663 break; 2664 } 2665 case TK_AS: { 2666 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2667 break; 2668 } 2669 #ifndef SQLITE_OMIT_CAST 2670 case TK_CAST: { 2671 /* Expressions of the form: CAST(pLeft AS token) */ 2672 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2673 if( inReg!=target ){ 2674 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2675 inReg = target; 2676 } 2677 sqlite3VdbeAddOp2(v, OP_Cast, target, 2678 sqlite3AffinityType(pExpr->u.zToken, 0)); 2679 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2680 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2681 break; 2682 } 2683 #endif /* SQLITE_OMIT_CAST */ 2684 case TK_LT: 2685 case TK_LE: 2686 case TK_GT: 2687 case TK_GE: 2688 case TK_NE: 2689 case TK_EQ: { 2690 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2691 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2692 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2693 r1, r2, inReg, SQLITE_STOREP2); 2694 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 2695 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 2696 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 2697 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 2698 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 2699 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 2700 testcase( regFree1==0 ); 2701 testcase( regFree2==0 ); 2702 break; 2703 } 2704 case TK_IS: 2705 case TK_ISNOT: { 2706 testcase( op==TK_IS ); 2707 testcase( op==TK_ISNOT ); 2708 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2709 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2710 op = (op==TK_IS) ? TK_EQ : TK_NE; 2711 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2712 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2713 VdbeCoverageIf(v, op==TK_EQ); 2714 VdbeCoverageIf(v, op==TK_NE); 2715 testcase( regFree1==0 ); 2716 testcase( regFree2==0 ); 2717 break; 2718 } 2719 case TK_AND: 2720 case TK_OR: 2721 case TK_PLUS: 2722 case TK_STAR: 2723 case TK_MINUS: 2724 case TK_REM: 2725 case TK_BITAND: 2726 case TK_BITOR: 2727 case TK_SLASH: 2728 case TK_LSHIFT: 2729 case TK_RSHIFT: 2730 case TK_CONCAT: { 2731 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 2732 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 2733 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 2734 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 2735 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 2736 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 2737 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 2738 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 2739 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 2740 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 2741 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 2742 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2743 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2744 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2745 testcase( regFree1==0 ); 2746 testcase( regFree2==0 ); 2747 break; 2748 } 2749 case TK_UMINUS: { 2750 Expr *pLeft = pExpr->pLeft; 2751 assert( pLeft ); 2752 if( pLeft->op==TK_INTEGER ){ 2753 codeInteger(pParse, pLeft, 1, target); 2754 #ifndef SQLITE_OMIT_FLOATING_POINT 2755 }else if( pLeft->op==TK_FLOAT ){ 2756 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2757 codeReal(v, pLeft->u.zToken, 1, target); 2758 #endif 2759 }else{ 2760 tempX.op = TK_INTEGER; 2761 tempX.flags = EP_IntValue|EP_TokenOnly; 2762 tempX.u.iValue = 0; 2763 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 2764 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2765 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2766 testcase( regFree2==0 ); 2767 } 2768 inReg = target; 2769 break; 2770 } 2771 case TK_BITNOT: 2772 case TK_NOT: { 2773 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 2774 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 2775 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2776 testcase( regFree1==0 ); 2777 inReg = target; 2778 sqlite3VdbeAddOp2(v, op, r1, inReg); 2779 break; 2780 } 2781 case TK_ISNULL: 2782 case TK_NOTNULL: { 2783 int addr; 2784 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 2785 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 2786 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2787 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2788 testcase( regFree1==0 ); 2789 addr = sqlite3VdbeAddOp1(v, op, r1); 2790 VdbeCoverageIf(v, op==TK_ISNULL); 2791 VdbeCoverageIf(v, op==TK_NOTNULL); 2792 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2793 sqlite3VdbeJumpHere(v, addr); 2794 break; 2795 } 2796 case TK_AGG_FUNCTION: { 2797 AggInfo *pInfo = pExpr->pAggInfo; 2798 if( pInfo==0 ){ 2799 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2800 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2801 }else{ 2802 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2803 } 2804 break; 2805 } 2806 case TK_FUNCTION: { 2807 ExprList *pFarg; /* List of function arguments */ 2808 int nFarg; /* Number of function arguments */ 2809 FuncDef *pDef; /* The function definition object */ 2810 int nId; /* Length of the function name in bytes */ 2811 const char *zId; /* The function name */ 2812 u32 constMask = 0; /* Mask of function arguments that are constant */ 2813 int i; /* Loop counter */ 2814 u8 enc = ENC(db); /* The text encoding used by this database */ 2815 CollSeq *pColl = 0; /* A collating sequence */ 2816 2817 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2818 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 2819 pFarg = 0; 2820 }else{ 2821 pFarg = pExpr->x.pList; 2822 } 2823 nFarg = pFarg ? pFarg->nExpr : 0; 2824 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2825 zId = pExpr->u.zToken; 2826 nId = sqlite3Strlen30(zId); 2827 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2828 if( pDef==0 || pDef->xFunc==0 ){ 2829 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2830 break; 2831 } 2832 2833 /* Attempt a direct implementation of the built-in COALESCE() and 2834 ** IFNULL() functions. This avoids unnecessary evaluation of 2835 ** arguments past the first non-NULL argument. 2836 */ 2837 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 2838 int endCoalesce = sqlite3VdbeMakeLabel(v); 2839 assert( nFarg>=2 ); 2840 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2841 for(i=1; i<nFarg; i++){ 2842 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2843 VdbeCoverage(v); 2844 sqlite3ExprCacheRemove(pParse, target, 1); 2845 sqlite3ExprCachePush(pParse); 2846 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2847 sqlite3ExprCachePop(pParse); 2848 } 2849 sqlite3VdbeResolveLabel(v, endCoalesce); 2850 break; 2851 } 2852 2853 /* The UNLIKELY() function is a no-op. The result is the value 2854 ** of the first argument. 2855 */ 2856 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 2857 assert( nFarg>=1 ); 2858 inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 2859 break; 2860 } 2861 2862 for(i=0; i<nFarg; i++){ 2863 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2864 testcase( i==31 ); 2865 constMask |= MASKBIT32(i); 2866 } 2867 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2868 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2869 } 2870 } 2871 if( pFarg ){ 2872 if( constMask ){ 2873 r1 = pParse->nMem+1; 2874 pParse->nMem += nFarg; 2875 }else{ 2876 r1 = sqlite3GetTempRange(pParse, nFarg); 2877 } 2878 2879 /* For length() and typeof() functions with a column argument, 2880 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2881 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2882 ** loading. 2883 */ 2884 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2885 u8 exprOp; 2886 assert( nFarg==1 ); 2887 assert( pFarg->a[0].pExpr!=0 ); 2888 exprOp = pFarg->a[0].pExpr->op; 2889 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2890 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2891 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2892 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 2893 pFarg->a[0].pExpr->op2 = 2894 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 2895 } 2896 } 2897 2898 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2899 sqlite3ExprCodeExprList(pParse, pFarg, r1, 2900 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 2901 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 2902 }else{ 2903 r1 = 0; 2904 } 2905 #ifndef SQLITE_OMIT_VIRTUALTABLE 2906 /* Possibly overload the function if the first argument is 2907 ** a virtual table column. 2908 ** 2909 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2910 ** second argument, not the first, as the argument to test to 2911 ** see if it is a column in a virtual table. This is done because 2912 ** the left operand of infix functions (the operand we want to 2913 ** control overloading) ends up as the second argument to the 2914 ** function. The expression "A glob B" is equivalent to 2915 ** "glob(B,A). We want to use the A in "A glob B" to test 2916 ** for function overloading. But we use the B term in "glob(B,A)". 2917 */ 2918 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2919 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2920 }else if( nFarg>0 ){ 2921 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2922 } 2923 #endif 2924 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 2925 if( !pColl ) pColl = db->pDfltColl; 2926 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2927 } 2928 sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target, 2929 (char*)pDef, P4_FUNCDEF); 2930 sqlite3VdbeChangeP5(v, (u8)nFarg); 2931 if( nFarg && constMask==0 ){ 2932 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2933 } 2934 break; 2935 } 2936 #ifndef SQLITE_OMIT_SUBQUERY 2937 case TK_EXISTS: 2938 case TK_SELECT: { 2939 testcase( op==TK_EXISTS ); 2940 testcase( op==TK_SELECT ); 2941 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2942 break; 2943 } 2944 case TK_IN: { 2945 int destIfFalse = sqlite3VdbeMakeLabel(v); 2946 int destIfNull = sqlite3VdbeMakeLabel(v); 2947 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2948 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2949 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2950 sqlite3VdbeResolveLabel(v, destIfFalse); 2951 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2952 sqlite3VdbeResolveLabel(v, destIfNull); 2953 break; 2954 } 2955 #endif /* SQLITE_OMIT_SUBQUERY */ 2956 2957 2958 /* 2959 ** x BETWEEN y AND z 2960 ** 2961 ** This is equivalent to 2962 ** 2963 ** x>=y AND x<=z 2964 ** 2965 ** X is stored in pExpr->pLeft. 2966 ** Y is stored in pExpr->pList->a[0].pExpr. 2967 ** Z is stored in pExpr->pList->a[1].pExpr. 2968 */ 2969 case TK_BETWEEN: { 2970 Expr *pLeft = pExpr->pLeft; 2971 struct ExprList_item *pLItem = pExpr->x.pList->a; 2972 Expr *pRight = pLItem->pExpr; 2973 2974 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 2975 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2976 testcase( regFree1==0 ); 2977 testcase( regFree2==0 ); 2978 r3 = sqlite3GetTempReg(pParse); 2979 r4 = sqlite3GetTempReg(pParse); 2980 codeCompare(pParse, pLeft, pRight, OP_Ge, 2981 r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); 2982 pLItem++; 2983 pRight = pLItem->pExpr; 2984 sqlite3ReleaseTempReg(pParse, regFree2); 2985 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2986 testcase( regFree2==0 ); 2987 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2988 VdbeCoverage(v); 2989 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2990 sqlite3ReleaseTempReg(pParse, r3); 2991 sqlite3ReleaseTempReg(pParse, r4); 2992 break; 2993 } 2994 case TK_COLLATE: 2995 case TK_UPLUS: { 2996 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2997 break; 2998 } 2999 3000 case TK_TRIGGER: { 3001 /* If the opcode is TK_TRIGGER, then the expression is a reference 3002 ** to a column in the new.* or old.* pseudo-tables available to 3003 ** trigger programs. In this case Expr.iTable is set to 1 for the 3004 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3005 ** is set to the column of the pseudo-table to read, or to -1 to 3006 ** read the rowid field. 3007 ** 3008 ** The expression is implemented using an OP_Param opcode. The p1 3009 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3010 ** to reference another column of the old.* pseudo-table, where 3011 ** i is the index of the column. For a new.rowid reference, p1 is 3012 ** set to (n+1), where n is the number of columns in each pseudo-table. 3013 ** For a reference to any other column in the new.* pseudo-table, p1 3014 ** is set to (n+2+i), where n and i are as defined previously. For 3015 ** example, if the table on which triggers are being fired is 3016 ** declared as: 3017 ** 3018 ** CREATE TABLE t1(a, b); 3019 ** 3020 ** Then p1 is interpreted as follows: 3021 ** 3022 ** p1==0 -> old.rowid p1==3 -> new.rowid 3023 ** p1==1 -> old.a p1==4 -> new.a 3024 ** p1==2 -> old.b p1==5 -> new.b 3025 */ 3026 Table *pTab = pExpr->pTab; 3027 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3028 3029 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3030 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3031 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3032 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3033 3034 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3035 VdbeComment((v, "%s.%s -> $%d", 3036 (pExpr->iTable ? "new" : "old"), 3037 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3038 target 3039 )); 3040 3041 #ifndef SQLITE_OMIT_FLOATING_POINT 3042 /* If the column has REAL affinity, it may currently be stored as an 3043 ** integer. Use OP_RealAffinity to make sure it is really real. 3044 ** 3045 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3046 ** floating point when extracting it from the record. */ 3047 if( pExpr->iColumn>=0 3048 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3049 ){ 3050 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3051 } 3052 #endif 3053 break; 3054 } 3055 3056 3057 /* 3058 ** Form A: 3059 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3060 ** 3061 ** Form B: 3062 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3063 ** 3064 ** Form A is can be transformed into the equivalent form B as follows: 3065 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3066 ** WHEN x=eN THEN rN ELSE y END 3067 ** 3068 ** X (if it exists) is in pExpr->pLeft. 3069 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3070 ** odd. The Y is also optional. If the number of elements in x.pList 3071 ** is even, then Y is omitted and the "otherwise" result is NULL. 3072 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3073 ** 3074 ** The result of the expression is the Ri for the first matching Ei, 3075 ** or if there is no matching Ei, the ELSE term Y, or if there is 3076 ** no ELSE term, NULL. 3077 */ 3078 default: assert( op==TK_CASE ); { 3079 int endLabel; /* GOTO label for end of CASE stmt */ 3080 int nextCase; /* GOTO label for next WHEN clause */ 3081 int nExpr; /* 2x number of WHEN terms */ 3082 int i; /* Loop counter */ 3083 ExprList *pEList; /* List of WHEN terms */ 3084 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3085 Expr opCompare; /* The X==Ei expression */ 3086 Expr *pX; /* The X expression */ 3087 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 3088 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 3089 3090 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 3091 assert(pExpr->x.pList->nExpr > 0); 3092 pEList = pExpr->x.pList; 3093 aListelem = pEList->a; 3094 nExpr = pEList->nExpr; 3095 endLabel = sqlite3VdbeMakeLabel(v); 3096 if( (pX = pExpr->pLeft)!=0 ){ 3097 tempX = *pX; 3098 testcase( pX->op==TK_COLUMN ); 3099 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); 3100 testcase( regFree1==0 ); 3101 opCompare.op = TK_EQ; 3102 opCompare.pLeft = &tempX; 3103 pTest = &opCompare; 3104 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 3105 ** The value in regFree1 might get SCopy-ed into the file result. 3106 ** So make sure that the regFree1 register is not reused for other 3107 ** purposes and possibly overwritten. */ 3108 regFree1 = 0; 3109 } 3110 for(i=0; i<nExpr-1; i=i+2){ 3111 sqlite3ExprCachePush(pParse); 3112 if( pX ){ 3113 assert( pTest!=0 ); 3114 opCompare.pRight = aListelem[i].pExpr; 3115 }else{ 3116 pTest = aListelem[i].pExpr; 3117 } 3118 nextCase = sqlite3VdbeMakeLabel(v); 3119 testcase( pTest->op==TK_COLUMN ); 3120 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 3121 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 3122 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 3123 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 3124 sqlite3ExprCachePop(pParse); 3125 sqlite3VdbeResolveLabel(v, nextCase); 3126 } 3127 if( (nExpr&1)!=0 ){ 3128 sqlite3ExprCachePush(pParse); 3129 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3130 sqlite3ExprCachePop(pParse); 3131 }else{ 3132 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3133 } 3134 assert( db->mallocFailed || pParse->nErr>0 3135 || pParse->iCacheLevel==iCacheLevel ); 3136 sqlite3VdbeResolveLabel(v, endLabel); 3137 break; 3138 } 3139 #ifndef SQLITE_OMIT_TRIGGER 3140 case TK_RAISE: { 3141 assert( pExpr->affinity==OE_Rollback 3142 || pExpr->affinity==OE_Abort 3143 || pExpr->affinity==OE_Fail 3144 || pExpr->affinity==OE_Ignore 3145 ); 3146 if( !pParse->pTriggerTab ){ 3147 sqlite3ErrorMsg(pParse, 3148 "RAISE() may only be used within a trigger-program"); 3149 return 0; 3150 } 3151 if( pExpr->affinity==OE_Abort ){ 3152 sqlite3MayAbort(pParse); 3153 } 3154 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3155 if( pExpr->affinity==OE_Ignore ){ 3156 sqlite3VdbeAddOp4( 3157 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 3158 VdbeCoverage(v); 3159 }else{ 3160 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 3161 pExpr->affinity, pExpr->u.zToken, 0, 0); 3162 } 3163 3164 break; 3165 } 3166 #endif 3167 } 3168 sqlite3ReleaseTempReg(pParse, regFree1); 3169 sqlite3ReleaseTempReg(pParse, regFree2); 3170 return inReg; 3171 } 3172 3173 /* 3174 ** Factor out the code of the given expression to initialization time. 3175 */ 3176 void sqlite3ExprCodeAtInit( 3177 Parse *pParse, /* Parsing context */ 3178 Expr *pExpr, /* The expression to code when the VDBE initializes */ 3179 int regDest, /* Store the value in this register */ 3180 u8 reusable /* True if this expression is reusable */ 3181 ){ 3182 ExprList *p; 3183 assert( ConstFactorOk(pParse) ); 3184 p = pParse->pConstExpr; 3185 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 3186 p = sqlite3ExprListAppend(pParse, p, pExpr); 3187 if( p ){ 3188 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 3189 pItem->u.iConstExprReg = regDest; 3190 pItem->reusable = reusable; 3191 } 3192 pParse->pConstExpr = p; 3193 } 3194 3195 /* 3196 ** Generate code to evaluate an expression and store the results 3197 ** into a register. Return the register number where the results 3198 ** are stored. 3199 ** 3200 ** If the register is a temporary register that can be deallocated, 3201 ** then write its number into *pReg. If the result register is not 3202 ** a temporary, then set *pReg to zero. 3203 ** 3204 ** If pExpr is a constant, then this routine might generate this 3205 ** code to fill the register in the initialization section of the 3206 ** VDBE program, in order to factor it out of the evaluation loop. 3207 */ 3208 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 3209 int r2; 3210 pExpr = sqlite3ExprSkipCollate(pExpr); 3211 if( ConstFactorOk(pParse) 3212 && pExpr->op!=TK_REGISTER 3213 && sqlite3ExprIsConstantNotJoin(pExpr) 3214 ){ 3215 ExprList *p = pParse->pConstExpr; 3216 int i; 3217 *pReg = 0; 3218 if( p ){ 3219 struct ExprList_item *pItem; 3220 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 3221 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 3222 return pItem->u.iConstExprReg; 3223 } 3224 } 3225 } 3226 r2 = ++pParse->nMem; 3227 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); 3228 }else{ 3229 int r1 = sqlite3GetTempReg(pParse); 3230 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3231 if( r2==r1 ){ 3232 *pReg = r1; 3233 }else{ 3234 sqlite3ReleaseTempReg(pParse, r1); 3235 *pReg = 0; 3236 } 3237 } 3238 return r2; 3239 } 3240 3241 /* 3242 ** Generate code that will evaluate expression pExpr and store the 3243 ** results in register target. The results are guaranteed to appear 3244 ** in register target. 3245 */ 3246 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 3247 int inReg; 3248 3249 assert( target>0 && target<=pParse->nMem ); 3250 if( pExpr && pExpr->op==TK_REGISTER ){ 3251 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 3252 }else{ 3253 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 3254 assert( pParse->pVdbe || pParse->db->mallocFailed ); 3255 if( inReg!=target && pParse->pVdbe ){ 3256 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 3257 } 3258 } 3259 } 3260 3261 /* 3262 ** Generate code that will evaluate expression pExpr and store the 3263 ** results in register target. The results are guaranteed to appear 3264 ** in register target. If the expression is constant, then this routine 3265 ** might choose to code the expression at initialization time. 3266 */ 3267 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 3268 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 3269 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); 3270 }else{ 3271 sqlite3ExprCode(pParse, pExpr, target); 3272 } 3273 } 3274 3275 /* 3276 ** Generate code that evaluates the given expression and puts the result 3277 ** in register target. 3278 ** 3279 ** Also make a copy of the expression results into another "cache" register 3280 ** and modify the expression so that the next time it is evaluated, 3281 ** the result is a copy of the cache register. 3282 ** 3283 ** This routine is used for expressions that are used multiple 3284 ** times. They are evaluated once and the results of the expression 3285 ** are reused. 3286 */ 3287 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3288 Vdbe *v = pParse->pVdbe; 3289 int iMem; 3290 3291 assert( target>0 ); 3292 assert( pExpr->op!=TK_REGISTER ); 3293 sqlite3ExprCode(pParse, pExpr, target); 3294 iMem = ++pParse->nMem; 3295 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 3296 exprToRegister(pExpr, iMem); 3297 } 3298 3299 /* 3300 ** Generate code that pushes the value of every element of the given 3301 ** expression list into a sequence of registers beginning at target. 3302 ** 3303 ** Return the number of elements evaluated. 3304 ** 3305 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 3306 ** filled using OP_SCopy. OP_Copy must be used instead. 3307 ** 3308 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 3309 ** factored out into initialization code. 3310 */ 3311 int sqlite3ExprCodeExprList( 3312 Parse *pParse, /* Parsing context */ 3313 ExprList *pList, /* The expression list to be coded */ 3314 int target, /* Where to write results */ 3315 u8 flags /* SQLITE_ECEL_* flags */ 3316 ){ 3317 struct ExprList_item *pItem; 3318 int i, n; 3319 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 3320 assert( pList!=0 ); 3321 assert( target>0 ); 3322 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3323 n = pList->nExpr; 3324 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 3325 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3326 Expr *pExpr = pItem->pExpr; 3327 if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 3328 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); 3329 }else{ 3330 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3331 if( inReg!=target+i ){ 3332 VdbeOp *pOp; 3333 Vdbe *v = pParse->pVdbe; 3334 if( copyOp==OP_Copy 3335 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 3336 && pOp->p1+pOp->p3+1==inReg 3337 && pOp->p2+pOp->p3+1==target+i 3338 ){ 3339 pOp->p3++; 3340 }else{ 3341 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 3342 } 3343 } 3344 } 3345 } 3346 return n; 3347 } 3348 3349 /* 3350 ** Generate code for a BETWEEN operator. 3351 ** 3352 ** x BETWEEN y AND z 3353 ** 3354 ** The above is equivalent to 3355 ** 3356 ** x>=y AND x<=z 3357 ** 3358 ** Code it as such, taking care to do the common subexpression 3359 ** elimination of x. 3360 */ 3361 static void exprCodeBetween( 3362 Parse *pParse, /* Parsing and code generating context */ 3363 Expr *pExpr, /* The BETWEEN expression */ 3364 int dest, /* Jump here if the jump is taken */ 3365 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3366 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3367 ){ 3368 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3369 Expr compLeft; /* The x>=y term */ 3370 Expr compRight; /* The x<=z term */ 3371 Expr exprX; /* The x subexpression */ 3372 int regFree1 = 0; /* Temporary use register */ 3373 3374 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3375 exprX = *pExpr->pLeft; 3376 exprAnd.op = TK_AND; 3377 exprAnd.pLeft = &compLeft; 3378 exprAnd.pRight = &compRight; 3379 compLeft.op = TK_GE; 3380 compLeft.pLeft = &exprX; 3381 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3382 compRight.op = TK_LE; 3383 compRight.pLeft = &exprX; 3384 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3385 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); 3386 if( jumpIfTrue ){ 3387 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3388 }else{ 3389 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3390 } 3391 sqlite3ReleaseTempReg(pParse, regFree1); 3392 3393 /* Ensure adequate test coverage */ 3394 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3395 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3396 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3397 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3398 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3399 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3400 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3401 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3402 } 3403 3404 /* 3405 ** Generate code for a boolean expression such that a jump is made 3406 ** to the label "dest" if the expression is true but execution 3407 ** continues straight thru if the expression is false. 3408 ** 3409 ** If the expression evaluates to NULL (neither true nor false), then 3410 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3411 ** 3412 ** This code depends on the fact that certain token values (ex: TK_EQ) 3413 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3414 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3415 ** the make process cause these values to align. Assert()s in the code 3416 ** below verify that the numbers are aligned correctly. 3417 */ 3418 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3419 Vdbe *v = pParse->pVdbe; 3420 int op = 0; 3421 int regFree1 = 0; 3422 int regFree2 = 0; 3423 int r1, r2; 3424 3425 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3426 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3427 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3428 op = pExpr->op; 3429 switch( op ){ 3430 case TK_AND: { 3431 int d2 = sqlite3VdbeMakeLabel(v); 3432 testcase( jumpIfNull==0 ); 3433 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3434 sqlite3ExprCachePush(pParse); 3435 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3436 sqlite3VdbeResolveLabel(v, d2); 3437 sqlite3ExprCachePop(pParse); 3438 break; 3439 } 3440 case TK_OR: { 3441 testcase( jumpIfNull==0 ); 3442 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3443 sqlite3ExprCachePush(pParse); 3444 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3445 sqlite3ExprCachePop(pParse); 3446 break; 3447 } 3448 case TK_NOT: { 3449 testcase( jumpIfNull==0 ); 3450 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3451 break; 3452 } 3453 case TK_LT: 3454 case TK_LE: 3455 case TK_GT: 3456 case TK_GE: 3457 case TK_NE: 3458 case TK_EQ: { 3459 testcase( jumpIfNull==0 ); 3460 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3461 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3462 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3463 r1, r2, dest, jumpIfNull); 3464 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3465 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3466 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3467 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3468 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3469 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3470 testcase( regFree1==0 ); 3471 testcase( regFree2==0 ); 3472 break; 3473 } 3474 case TK_IS: 3475 case TK_ISNOT: { 3476 testcase( op==TK_IS ); 3477 testcase( op==TK_ISNOT ); 3478 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3479 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3480 op = (op==TK_IS) ? TK_EQ : TK_NE; 3481 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3482 r1, r2, dest, SQLITE_NULLEQ); 3483 VdbeCoverageIf(v, op==TK_EQ); 3484 VdbeCoverageIf(v, op==TK_NE); 3485 testcase( regFree1==0 ); 3486 testcase( regFree2==0 ); 3487 break; 3488 } 3489 case TK_ISNULL: 3490 case TK_NOTNULL: { 3491 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3492 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3493 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3494 sqlite3VdbeAddOp2(v, op, r1, dest); 3495 VdbeCoverageIf(v, op==TK_ISNULL); 3496 VdbeCoverageIf(v, op==TK_NOTNULL); 3497 testcase( regFree1==0 ); 3498 break; 3499 } 3500 case TK_BETWEEN: { 3501 testcase( jumpIfNull==0 ); 3502 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3503 break; 3504 } 3505 #ifndef SQLITE_OMIT_SUBQUERY 3506 case TK_IN: { 3507 int destIfFalse = sqlite3VdbeMakeLabel(v); 3508 int destIfNull = jumpIfNull ? dest : destIfFalse; 3509 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3510 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3511 sqlite3VdbeResolveLabel(v, destIfFalse); 3512 break; 3513 } 3514 #endif 3515 default: { 3516 if( exprAlwaysTrue(pExpr) ){ 3517 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3518 }else if( exprAlwaysFalse(pExpr) ){ 3519 /* No-op */ 3520 }else{ 3521 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3522 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3523 VdbeCoverage(v); 3524 testcase( regFree1==0 ); 3525 testcase( jumpIfNull==0 ); 3526 } 3527 break; 3528 } 3529 } 3530 sqlite3ReleaseTempReg(pParse, regFree1); 3531 sqlite3ReleaseTempReg(pParse, regFree2); 3532 } 3533 3534 /* 3535 ** Generate code for a boolean expression such that a jump is made 3536 ** to the label "dest" if the expression is false but execution 3537 ** continues straight thru if the expression is true. 3538 ** 3539 ** If the expression evaluates to NULL (neither true nor false) then 3540 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3541 ** is 0. 3542 */ 3543 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3544 Vdbe *v = pParse->pVdbe; 3545 int op = 0; 3546 int regFree1 = 0; 3547 int regFree2 = 0; 3548 int r1, r2; 3549 3550 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3551 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3552 if( pExpr==0 ) return; 3553 3554 /* The value of pExpr->op and op are related as follows: 3555 ** 3556 ** pExpr->op op 3557 ** --------- ---------- 3558 ** TK_ISNULL OP_NotNull 3559 ** TK_NOTNULL OP_IsNull 3560 ** TK_NE OP_Eq 3561 ** TK_EQ OP_Ne 3562 ** TK_GT OP_Le 3563 ** TK_LE OP_Gt 3564 ** TK_GE OP_Lt 3565 ** TK_LT OP_Ge 3566 ** 3567 ** For other values of pExpr->op, op is undefined and unused. 3568 ** The value of TK_ and OP_ constants are arranged such that we 3569 ** can compute the mapping above using the following expression. 3570 ** Assert()s verify that the computation is correct. 3571 */ 3572 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3573 3574 /* Verify correct alignment of TK_ and OP_ constants 3575 */ 3576 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3577 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3578 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3579 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3580 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3581 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3582 assert( pExpr->op!=TK_GT || op==OP_Le ); 3583 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3584 3585 switch( pExpr->op ){ 3586 case TK_AND: { 3587 testcase( jumpIfNull==0 ); 3588 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3589 sqlite3ExprCachePush(pParse); 3590 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3591 sqlite3ExprCachePop(pParse); 3592 break; 3593 } 3594 case TK_OR: { 3595 int d2 = sqlite3VdbeMakeLabel(v); 3596 testcase( jumpIfNull==0 ); 3597 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3598 sqlite3ExprCachePush(pParse); 3599 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3600 sqlite3VdbeResolveLabel(v, d2); 3601 sqlite3ExprCachePop(pParse); 3602 break; 3603 } 3604 case TK_NOT: { 3605 testcase( jumpIfNull==0 ); 3606 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3607 break; 3608 } 3609 case TK_LT: 3610 case TK_LE: 3611 case TK_GT: 3612 case TK_GE: 3613 case TK_NE: 3614 case TK_EQ: { 3615 testcase( jumpIfNull==0 ); 3616 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3617 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3618 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3619 r1, r2, dest, jumpIfNull); 3620 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3621 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3622 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3623 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3624 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3625 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3626 testcase( regFree1==0 ); 3627 testcase( regFree2==0 ); 3628 break; 3629 } 3630 case TK_IS: 3631 case TK_ISNOT: { 3632 testcase( pExpr->op==TK_IS ); 3633 testcase( pExpr->op==TK_ISNOT ); 3634 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3635 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3636 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3637 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3638 r1, r2, dest, SQLITE_NULLEQ); 3639 VdbeCoverageIf(v, op==TK_EQ); 3640 VdbeCoverageIf(v, op==TK_NE); 3641 testcase( regFree1==0 ); 3642 testcase( regFree2==0 ); 3643 break; 3644 } 3645 case TK_ISNULL: 3646 case TK_NOTNULL: { 3647 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3648 sqlite3VdbeAddOp2(v, op, r1, dest); 3649 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 3650 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 3651 testcase( regFree1==0 ); 3652 break; 3653 } 3654 case TK_BETWEEN: { 3655 testcase( jumpIfNull==0 ); 3656 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3657 break; 3658 } 3659 #ifndef SQLITE_OMIT_SUBQUERY 3660 case TK_IN: { 3661 if( jumpIfNull ){ 3662 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3663 }else{ 3664 int destIfNull = sqlite3VdbeMakeLabel(v); 3665 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3666 sqlite3VdbeResolveLabel(v, destIfNull); 3667 } 3668 break; 3669 } 3670 #endif 3671 default: { 3672 if( exprAlwaysFalse(pExpr) ){ 3673 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3674 }else if( exprAlwaysTrue(pExpr) ){ 3675 /* no-op */ 3676 }else{ 3677 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3678 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3679 VdbeCoverage(v); 3680 testcase( regFree1==0 ); 3681 testcase( jumpIfNull==0 ); 3682 } 3683 break; 3684 } 3685 } 3686 sqlite3ReleaseTempReg(pParse, regFree1); 3687 sqlite3ReleaseTempReg(pParse, regFree2); 3688 } 3689 3690 /* 3691 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 3692 ** code generation, and that copy is deleted after code generation. This 3693 ** ensures that the original pExpr is unchanged. 3694 */ 3695 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 3696 sqlite3 *db = pParse->db; 3697 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 3698 if( db->mallocFailed==0 ){ 3699 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 3700 } 3701 sqlite3ExprDelete(db, pCopy); 3702 } 3703 3704 3705 /* 3706 ** Do a deep comparison of two expression trees. Return 0 if the two 3707 ** expressions are completely identical. Return 1 if they differ only 3708 ** by a COLLATE operator at the top level. Return 2 if there are differences 3709 ** other than the top-level COLLATE operator. 3710 ** 3711 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3712 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3713 ** 3714 ** The pA side might be using TK_REGISTER. If that is the case and pB is 3715 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 3716 ** 3717 ** Sometimes this routine will return 2 even if the two expressions 3718 ** really are equivalent. If we cannot prove that the expressions are 3719 ** identical, we return 2 just to be safe. So if this routine 3720 ** returns 2, then you do not really know for certain if the two 3721 ** expressions are the same. But if you get a 0 or 1 return, then you 3722 ** can be sure the expressions are the same. In the places where 3723 ** this routine is used, it does not hurt to get an extra 2 - that 3724 ** just might result in some slightly slower code. But returning 3725 ** an incorrect 0 or 1 could lead to a malfunction. 3726 */ 3727 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 3728 u32 combinedFlags; 3729 if( pA==0 || pB==0 ){ 3730 return pB==pA ? 0 : 2; 3731 } 3732 combinedFlags = pA->flags | pB->flags; 3733 if( combinedFlags & EP_IntValue ){ 3734 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 3735 return 0; 3736 } 3737 return 2; 3738 } 3739 if( pA->op!=pB->op ){ 3740 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 3741 return 1; 3742 } 3743 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 3744 return 1; 3745 } 3746 return 2; 3747 } 3748 if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){ 3749 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3750 return pA->op==TK_COLLATE ? 1 : 2; 3751 } 3752 } 3753 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3754 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 3755 if( combinedFlags & EP_xIsSelect ) return 2; 3756 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 3757 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 3758 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 3759 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ 3760 if( pA->iColumn!=pB->iColumn ) return 2; 3761 if( pA->iTable!=pB->iTable 3762 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 3763 } 3764 } 3765 return 0; 3766 } 3767 3768 /* 3769 ** Compare two ExprList objects. Return 0 if they are identical and 3770 ** non-zero if they differ in any way. 3771 ** 3772 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3773 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3774 ** 3775 ** This routine might return non-zero for equivalent ExprLists. The 3776 ** only consequence will be disabled optimizations. But this routine 3777 ** must never return 0 if the two ExprList objects are different, or 3778 ** a malfunction will result. 3779 ** 3780 ** Two NULL pointers are considered to be the same. But a NULL pointer 3781 ** always differs from a non-NULL pointer. 3782 */ 3783 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 3784 int i; 3785 if( pA==0 && pB==0 ) return 0; 3786 if( pA==0 || pB==0 ) return 1; 3787 if( pA->nExpr!=pB->nExpr ) return 1; 3788 for(i=0; i<pA->nExpr; i++){ 3789 Expr *pExprA = pA->a[i].pExpr; 3790 Expr *pExprB = pB->a[i].pExpr; 3791 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3792 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 3793 } 3794 return 0; 3795 } 3796 3797 /* 3798 ** Return true if we can prove the pE2 will always be true if pE1 is 3799 ** true. Return false if we cannot complete the proof or if pE2 might 3800 ** be false. Examples: 3801 ** 3802 ** pE1: x==5 pE2: x==5 Result: true 3803 ** pE1: x>0 pE2: x==5 Result: false 3804 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 3805 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 3806 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 3807 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 3808 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 3809 ** 3810 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 3811 ** Expr.iTable<0 then assume a table number given by iTab. 3812 ** 3813 ** When in doubt, return false. Returning true might give a performance 3814 ** improvement. Returning false might cause a performance reduction, but 3815 ** it will always give the correct answer and is hence always safe. 3816 */ 3817 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 3818 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 3819 return 1; 3820 } 3821 if( pE2->op==TK_OR 3822 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 3823 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 3824 ){ 3825 return 1; 3826 } 3827 if( pE2->op==TK_NOTNULL 3828 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 3829 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) 3830 ){ 3831 return 1; 3832 } 3833 return 0; 3834 } 3835 3836 /* 3837 ** An instance of the following structure is used by the tree walker 3838 ** to count references to table columns in the arguments of an 3839 ** aggregate function, in order to implement the 3840 ** sqlite3FunctionThisSrc() routine. 3841 */ 3842 struct SrcCount { 3843 SrcList *pSrc; /* One particular FROM clause in a nested query */ 3844 int nThis; /* Number of references to columns in pSrcList */ 3845 int nOther; /* Number of references to columns in other FROM clauses */ 3846 }; 3847 3848 /* 3849 ** Count the number of references to columns. 3850 */ 3851 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 3852 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 3853 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 3854 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 3855 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 3856 ** NEVER() will need to be removed. */ 3857 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 3858 int i; 3859 struct SrcCount *p = pWalker->u.pSrcCount; 3860 SrcList *pSrc = p->pSrc; 3861 int nSrc = pSrc ? pSrc->nSrc : 0; 3862 for(i=0; i<nSrc; i++){ 3863 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 3864 } 3865 if( i<nSrc ){ 3866 p->nThis++; 3867 }else{ 3868 p->nOther++; 3869 } 3870 } 3871 return WRC_Continue; 3872 } 3873 3874 /* 3875 ** Determine if any of the arguments to the pExpr Function reference 3876 ** pSrcList. Return true if they do. Also return true if the function 3877 ** has no arguments or has only constant arguments. Return false if pExpr 3878 ** references columns but not columns of tables found in pSrcList. 3879 */ 3880 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 3881 Walker w; 3882 struct SrcCount cnt; 3883 assert( pExpr->op==TK_AGG_FUNCTION ); 3884 memset(&w, 0, sizeof(w)); 3885 w.xExprCallback = exprSrcCount; 3886 w.u.pSrcCount = &cnt; 3887 cnt.pSrc = pSrcList; 3888 cnt.nThis = 0; 3889 cnt.nOther = 0; 3890 sqlite3WalkExprList(&w, pExpr->x.pList); 3891 return cnt.nThis>0 || cnt.nOther==0; 3892 } 3893 3894 /* 3895 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3896 ** the new element. Return a negative number if malloc fails. 3897 */ 3898 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3899 int i; 3900 pInfo->aCol = sqlite3ArrayAllocate( 3901 db, 3902 pInfo->aCol, 3903 sizeof(pInfo->aCol[0]), 3904 &pInfo->nColumn, 3905 &i 3906 ); 3907 return i; 3908 } 3909 3910 /* 3911 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3912 ** the new element. Return a negative number if malloc fails. 3913 */ 3914 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3915 int i; 3916 pInfo->aFunc = sqlite3ArrayAllocate( 3917 db, 3918 pInfo->aFunc, 3919 sizeof(pInfo->aFunc[0]), 3920 &pInfo->nFunc, 3921 &i 3922 ); 3923 return i; 3924 } 3925 3926 /* 3927 ** This is the xExprCallback for a tree walker. It is used to 3928 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3929 ** for additional information. 3930 */ 3931 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 3932 int i; 3933 NameContext *pNC = pWalker->u.pNC; 3934 Parse *pParse = pNC->pParse; 3935 SrcList *pSrcList = pNC->pSrcList; 3936 AggInfo *pAggInfo = pNC->pAggInfo; 3937 3938 switch( pExpr->op ){ 3939 case TK_AGG_COLUMN: 3940 case TK_COLUMN: { 3941 testcase( pExpr->op==TK_AGG_COLUMN ); 3942 testcase( pExpr->op==TK_COLUMN ); 3943 /* Check to see if the column is in one of the tables in the FROM 3944 ** clause of the aggregate query */ 3945 if( ALWAYS(pSrcList!=0) ){ 3946 struct SrcList_item *pItem = pSrcList->a; 3947 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3948 struct AggInfo_col *pCol; 3949 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3950 if( pExpr->iTable==pItem->iCursor ){ 3951 /* If we reach this point, it means that pExpr refers to a table 3952 ** that is in the FROM clause of the aggregate query. 3953 ** 3954 ** Make an entry for the column in pAggInfo->aCol[] if there 3955 ** is not an entry there already. 3956 */ 3957 int k; 3958 pCol = pAggInfo->aCol; 3959 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 3960 if( pCol->iTable==pExpr->iTable && 3961 pCol->iColumn==pExpr->iColumn ){ 3962 break; 3963 } 3964 } 3965 if( (k>=pAggInfo->nColumn) 3966 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 3967 ){ 3968 pCol = &pAggInfo->aCol[k]; 3969 pCol->pTab = pExpr->pTab; 3970 pCol->iTable = pExpr->iTable; 3971 pCol->iColumn = pExpr->iColumn; 3972 pCol->iMem = ++pParse->nMem; 3973 pCol->iSorterColumn = -1; 3974 pCol->pExpr = pExpr; 3975 if( pAggInfo->pGroupBy ){ 3976 int j, n; 3977 ExprList *pGB = pAggInfo->pGroupBy; 3978 struct ExprList_item *pTerm = pGB->a; 3979 n = pGB->nExpr; 3980 for(j=0; j<n; j++, pTerm++){ 3981 Expr *pE = pTerm->pExpr; 3982 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 3983 pE->iColumn==pExpr->iColumn ){ 3984 pCol->iSorterColumn = j; 3985 break; 3986 } 3987 } 3988 } 3989 if( pCol->iSorterColumn<0 ){ 3990 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 3991 } 3992 } 3993 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 3994 ** because it was there before or because we just created it). 3995 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 3996 ** pAggInfo->aCol[] entry. 3997 */ 3998 ExprSetVVAProperty(pExpr, EP_NoReduce); 3999 pExpr->pAggInfo = pAggInfo; 4000 pExpr->op = TK_AGG_COLUMN; 4001 pExpr->iAgg = (i16)k; 4002 break; 4003 } /* endif pExpr->iTable==pItem->iCursor */ 4004 } /* end loop over pSrcList */ 4005 } 4006 return WRC_Prune; 4007 } 4008 case TK_AGG_FUNCTION: { 4009 if( (pNC->ncFlags & NC_InAggFunc)==0 4010 && pWalker->walkerDepth==pExpr->op2 4011 ){ 4012 /* Check to see if pExpr is a duplicate of another aggregate 4013 ** function that is already in the pAggInfo structure 4014 */ 4015 struct AggInfo_func *pItem = pAggInfo->aFunc; 4016 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4017 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 4018 break; 4019 } 4020 } 4021 if( i>=pAggInfo->nFunc ){ 4022 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4023 */ 4024 u8 enc = ENC(pParse->db); 4025 i = addAggInfoFunc(pParse->db, pAggInfo); 4026 if( i>=0 ){ 4027 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4028 pItem = &pAggInfo->aFunc[i]; 4029 pItem->pExpr = pExpr; 4030 pItem->iMem = ++pParse->nMem; 4031 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4032 pItem->pFunc = sqlite3FindFunction(pParse->db, 4033 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 4034 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4035 if( pExpr->flags & EP_Distinct ){ 4036 pItem->iDistinct = pParse->nTab++; 4037 }else{ 4038 pItem->iDistinct = -1; 4039 } 4040 } 4041 } 4042 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4043 */ 4044 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4045 ExprSetVVAProperty(pExpr, EP_NoReduce); 4046 pExpr->iAgg = (i16)i; 4047 pExpr->pAggInfo = pAggInfo; 4048 return WRC_Prune; 4049 }else{ 4050 return WRC_Continue; 4051 } 4052 } 4053 } 4054 return WRC_Continue; 4055 } 4056 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4057 UNUSED_PARAMETER(pWalker); 4058 UNUSED_PARAMETER(pSelect); 4059 return WRC_Continue; 4060 } 4061 4062 /* 4063 ** Analyze the pExpr expression looking for aggregate functions and 4064 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4065 ** points to. Additional entries are made on the AggInfo object as 4066 ** necessary. 4067 ** 4068 ** This routine should only be called after the expression has been 4069 ** analyzed by sqlite3ResolveExprNames(). 4070 */ 4071 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4072 Walker w; 4073 memset(&w, 0, sizeof(w)); 4074 w.xExprCallback = analyzeAggregate; 4075 w.xSelectCallback = analyzeAggregatesInSelect; 4076 w.u.pNC = pNC; 4077 assert( pNC->pSrcList!=0 ); 4078 sqlite3WalkExpr(&w, pExpr); 4079 } 4080 4081 /* 4082 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4083 ** expression list. Return the number of errors. 4084 ** 4085 ** If an error is found, the analysis is cut short. 4086 */ 4087 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4088 struct ExprList_item *pItem; 4089 int i; 4090 if( pList ){ 4091 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4092 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4093 } 4094 } 4095 } 4096 4097 /* 4098 ** Allocate a single new register for use to hold some intermediate result. 4099 */ 4100 int sqlite3GetTempReg(Parse *pParse){ 4101 if( pParse->nTempReg==0 ){ 4102 return ++pParse->nMem; 4103 } 4104 return pParse->aTempReg[--pParse->nTempReg]; 4105 } 4106 4107 /* 4108 ** Deallocate a register, making available for reuse for some other 4109 ** purpose. 4110 ** 4111 ** If a register is currently being used by the column cache, then 4112 ** the deallocation is deferred until the column cache line that uses 4113 ** the register becomes stale. 4114 */ 4115 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4116 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4117 int i; 4118 struct yColCache *p; 4119 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4120 if( p->iReg==iReg ){ 4121 p->tempReg = 1; 4122 return; 4123 } 4124 } 4125 pParse->aTempReg[pParse->nTempReg++] = iReg; 4126 } 4127 } 4128 4129 /* 4130 ** Allocate or deallocate a block of nReg consecutive registers 4131 */ 4132 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4133 int i, n; 4134 i = pParse->iRangeReg; 4135 n = pParse->nRangeReg; 4136 if( nReg<=n ){ 4137 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4138 pParse->iRangeReg += nReg; 4139 pParse->nRangeReg -= nReg; 4140 }else{ 4141 i = pParse->nMem+1; 4142 pParse->nMem += nReg; 4143 } 4144 return i; 4145 } 4146 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4147 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4148 if( nReg>pParse->nRangeReg ){ 4149 pParse->nRangeReg = nReg; 4150 pParse->iRangeReg = iReg; 4151 } 4152 } 4153 4154 /* 4155 ** Mark all temporary registers as being unavailable for reuse. 4156 */ 4157 void sqlite3ClearTempRegCache(Parse *pParse){ 4158 pParse->nTempReg = 0; 4159 pParse->nRangeReg = 0; 4160 } 4161