1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_SELECT ){ 56 assert( pExpr->flags&EP_xIsSelect ); 57 assert( pExpr->x.pSelect!=0 ); 58 assert( pExpr->x.pSelect->pEList!=0 ); 59 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 60 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 61 } 62 if( op==TK_REGISTER ) op = pExpr->op2; 63 #ifndef SQLITE_OMIT_CAST 64 if( op==TK_CAST ){ 65 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 66 return sqlite3AffinityType(pExpr->u.zToken, 0); 67 } 68 #endif 69 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ 70 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 71 } 72 if( op==TK_SELECT_COLUMN ){ 73 assert( pExpr->pLeft->flags&EP_xIsSelect ); 74 return sqlite3ExprAffinity( 75 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 76 ); 77 } 78 if( op==TK_VECTOR ){ 79 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 80 } 81 return pExpr->affExpr; 82 } 83 84 /* 85 ** Set the collating sequence for expression pExpr to be the collating 86 ** sequence named by pToken. Return a pointer to a new Expr node that 87 ** implements the COLLATE operator. 88 ** 89 ** If a memory allocation error occurs, that fact is recorded in pParse->db 90 ** and the pExpr parameter is returned unchanged. 91 */ 92 Expr *sqlite3ExprAddCollateToken( 93 Parse *pParse, /* Parsing context */ 94 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 95 const Token *pCollName, /* Name of collating sequence */ 96 int dequote /* True to dequote pCollName */ 97 ){ 98 assert( pExpr!=0 || pParse->db->mallocFailed ); 99 if( pExpr==0 ) return 0; 100 if( pExpr->op==TK_VECTOR ){ 101 ExprList *pList = pExpr->x.pList; 102 if( ALWAYS(pList!=0) ){ 103 int i; 104 for(i=0; i<pList->nExpr; i++){ 105 pList->a[i].pExpr = sqlite3ExprAddCollateToken(pParse,pList->a[i].pExpr, 106 pCollName, dequote); 107 } 108 } 109 }else if( pCollName->n>0 ){ 110 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 111 if( pNew ){ 112 pNew->pLeft = pExpr; 113 pNew->flags |= EP_Collate|EP_Skip; 114 pExpr = pNew; 115 } 116 } 117 return pExpr; 118 } 119 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 120 Token s; 121 assert( zC!=0 ); 122 sqlite3TokenInit(&s, (char*)zC); 123 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 124 } 125 126 /* 127 ** Skip over any TK_COLLATE operators. 128 */ 129 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 130 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 131 assert( pExpr->op==TK_COLLATE ); 132 pExpr = pExpr->pLeft; 133 } 134 return pExpr; 135 } 136 137 /* 138 ** Skip over any TK_COLLATE operators and/or any unlikely() 139 ** or likelihood() or likely() functions at the root of an 140 ** expression. 141 */ 142 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 143 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 144 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 145 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 146 assert( pExpr->x.pList->nExpr>0 ); 147 assert( pExpr->op==TK_FUNCTION ); 148 pExpr = pExpr->x.pList->a[0].pExpr; 149 }else{ 150 assert( pExpr->op==TK_COLLATE ); 151 pExpr = pExpr->pLeft; 152 } 153 } 154 return pExpr; 155 } 156 157 /* 158 ** Return the collation sequence for the expression pExpr. If 159 ** there is no defined collating sequence, return NULL. 160 ** 161 ** See also: sqlite3ExprNNCollSeq() 162 ** 163 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 164 ** default collation if pExpr has no defined collation. 165 ** 166 ** The collating sequence might be determined by a COLLATE operator 167 ** or by the presence of a column with a defined collating sequence. 168 ** COLLATE operators take first precedence. Left operands take 169 ** precedence over right operands. 170 */ 171 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 172 sqlite3 *db = pParse->db; 173 CollSeq *pColl = 0; 174 const Expr *p = pExpr; 175 while( p ){ 176 int op = p->op; 177 if( op==TK_REGISTER ) op = p->op2; 178 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 179 && p->y.pTab!=0 180 ){ 181 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 182 ** a TK_COLUMN but was previously evaluated and cached in a register */ 183 int j = p->iColumn; 184 if( j>=0 ){ 185 const char *zColl = p->y.pTab->aCol[j].zColl; 186 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 187 } 188 break; 189 } 190 if( op==TK_CAST || op==TK_UPLUS ){ 191 p = p->pLeft; 192 continue; 193 } 194 if( op==TK_VECTOR ){ 195 p = p->x.pList->a[0].pExpr; 196 continue; 197 } 198 if( op==TK_COLLATE ){ 199 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 200 break; 201 } 202 if( p->flags & EP_Collate ){ 203 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 204 p = p->pLeft; 205 }else{ 206 Expr *pNext = p->pRight; 207 /* The Expr.x union is never used at the same time as Expr.pRight */ 208 assert( p->x.pList==0 || p->pRight==0 ); 209 if( p->x.pList!=0 210 && !db->mallocFailed 211 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 212 ){ 213 int i; 214 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 215 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 216 pNext = p->x.pList->a[i].pExpr; 217 break; 218 } 219 } 220 } 221 p = pNext; 222 } 223 }else{ 224 break; 225 } 226 } 227 if( sqlite3CheckCollSeq(pParse, pColl) ){ 228 pColl = 0; 229 } 230 return pColl; 231 } 232 233 /* 234 ** Return the collation sequence for the expression pExpr. If 235 ** there is no defined collating sequence, return a pointer to the 236 ** defautl collation sequence. 237 ** 238 ** See also: sqlite3ExprCollSeq() 239 ** 240 ** The sqlite3ExprCollSeq() routine works the same except that it 241 ** returns NULL if there is no defined collation. 242 */ 243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 244 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 245 if( p==0 ) p = pParse->db->pDfltColl; 246 assert( p!=0 ); 247 return p; 248 } 249 250 /* 251 ** Return TRUE if the two expressions have equivalent collating sequences. 252 */ 253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 254 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 255 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 256 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 257 } 258 259 /* 260 ** pExpr is an operand of a comparison operator. aff2 is the 261 ** type affinity of the other operand. This routine returns the 262 ** type affinity that should be used for the comparison operator. 263 */ 264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 265 char aff1 = sqlite3ExprAffinity(pExpr); 266 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 267 /* Both sides of the comparison are columns. If one has numeric 268 ** affinity, use that. Otherwise use no affinity. 269 */ 270 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 271 return SQLITE_AFF_NUMERIC; 272 }else{ 273 return SQLITE_AFF_BLOB; 274 } 275 }else{ 276 /* One side is a column, the other is not. Use the columns affinity. */ 277 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 278 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 279 } 280 } 281 282 /* 283 ** pExpr is a comparison operator. Return the type affinity that should 284 ** be applied to both operands prior to doing the comparison. 285 */ 286 static char comparisonAffinity(const Expr *pExpr){ 287 char aff; 288 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 289 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 290 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 291 assert( pExpr->pLeft ); 292 aff = sqlite3ExprAffinity(pExpr->pLeft); 293 if( pExpr->pRight ){ 294 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 295 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 296 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 297 }else if( aff==0 ){ 298 aff = SQLITE_AFF_BLOB; 299 } 300 return aff; 301 } 302 303 /* 304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 305 ** idx_affinity is the affinity of an indexed column. Return true 306 ** if the index with affinity idx_affinity may be used to implement 307 ** the comparison in pExpr. 308 */ 309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 310 char aff = comparisonAffinity(pExpr); 311 if( aff<SQLITE_AFF_TEXT ){ 312 return 1; 313 } 314 if( aff==SQLITE_AFF_TEXT ){ 315 return idx_affinity==SQLITE_AFF_TEXT; 316 } 317 return sqlite3IsNumericAffinity(idx_affinity); 318 } 319 320 /* 321 ** Return the P5 value that should be used for a binary comparison 322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 323 */ 324 static u8 binaryCompareP5( 325 const Expr *pExpr1, /* Left operand */ 326 const Expr *pExpr2, /* Right operand */ 327 int jumpIfNull /* Extra flags added to P5 */ 328 ){ 329 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 330 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 331 return aff; 332 } 333 334 /* 335 ** Return a pointer to the collation sequence that should be used by 336 ** a binary comparison operator comparing pLeft and pRight. 337 ** 338 ** If the left hand expression has a collating sequence type, then it is 339 ** used. Otherwise the collation sequence for the right hand expression 340 ** is used, or the default (BINARY) if neither expression has a collating 341 ** type. 342 ** 343 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 344 ** it is not considered. 345 */ 346 CollSeq *sqlite3BinaryCompareCollSeq( 347 Parse *pParse, 348 const Expr *pLeft, 349 const Expr *pRight 350 ){ 351 CollSeq *pColl; 352 assert( pLeft ); 353 if( pLeft->flags & EP_Collate ){ 354 pColl = sqlite3ExprCollSeq(pParse, pLeft); 355 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 356 pColl = sqlite3ExprCollSeq(pParse, pRight); 357 }else{ 358 pColl = sqlite3ExprCollSeq(pParse, pLeft); 359 if( !pColl ){ 360 pColl = sqlite3ExprCollSeq(pParse, pRight); 361 } 362 } 363 return pColl; 364 } 365 366 /* Expresssion p is a comparison operator. Return a collation sequence 367 ** appropriate for the comparison operator. 368 ** 369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 370 ** However, if the OP_Commuted flag is set, then the order of the operands 371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 372 ** correct collating sequence is found. 373 */ 374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 375 if( ExprHasProperty(p, EP_Commuted) ){ 376 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 377 }else{ 378 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 379 } 380 } 381 382 /* 383 ** Generate code for a comparison operator. 384 */ 385 static int codeCompare( 386 Parse *pParse, /* The parsing (and code generating) context */ 387 Expr *pLeft, /* The left operand */ 388 Expr *pRight, /* The right operand */ 389 int opcode, /* The comparison opcode */ 390 int in1, int in2, /* Register holding operands */ 391 int dest, /* Jump here if true. */ 392 int jumpIfNull, /* If true, jump if either operand is NULL */ 393 int isCommuted /* The comparison has been commuted */ 394 ){ 395 int p5; 396 int addr; 397 CollSeq *p4; 398 399 if( pParse->nErr ) return 0; 400 if( isCommuted ){ 401 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 402 }else{ 403 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 404 } 405 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 406 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 407 (void*)p4, P4_COLLSEQ); 408 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 409 return addr; 410 } 411 412 /* 413 ** Return true if expression pExpr is a vector, or false otherwise. 414 ** 415 ** A vector is defined as any expression that results in two or more 416 ** columns of result. Every TK_VECTOR node is an vector because the 417 ** parser will not generate a TK_VECTOR with fewer than two entries. 418 ** But a TK_SELECT might be either a vector or a scalar. It is only 419 ** considered a vector if it has two or more result columns. 420 */ 421 int sqlite3ExprIsVector(Expr *pExpr){ 422 return sqlite3ExprVectorSize(pExpr)>1; 423 } 424 425 /* 426 ** If the expression passed as the only argument is of type TK_VECTOR 427 ** return the number of expressions in the vector. Or, if the expression 428 ** is a sub-select, return the number of columns in the sub-select. For 429 ** any other type of expression, return 1. 430 */ 431 int sqlite3ExprVectorSize(Expr *pExpr){ 432 u8 op = pExpr->op; 433 if( op==TK_REGISTER ) op = pExpr->op2; 434 if( op==TK_VECTOR ){ 435 return pExpr->x.pList->nExpr; 436 }else if( op==TK_SELECT ){ 437 return pExpr->x.pSelect->pEList->nExpr; 438 }else{ 439 return 1; 440 } 441 } 442 443 /* 444 ** Return a pointer to a subexpression of pVector that is the i-th 445 ** column of the vector (numbered starting with 0). The caller must 446 ** ensure that i is within range. 447 ** 448 ** If pVector is really a scalar (and "scalar" here includes subqueries 449 ** that return a single column!) then return pVector unmodified. 450 ** 451 ** pVector retains ownership of the returned subexpression. 452 ** 453 ** If the vector is a (SELECT ...) then the expression returned is 454 ** just the expression for the i-th term of the result set, and may 455 ** not be ready for evaluation because the table cursor has not yet 456 ** been positioned. 457 */ 458 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 459 assert( i<sqlite3ExprVectorSize(pVector) ); 460 if( sqlite3ExprIsVector(pVector) ){ 461 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 462 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 463 return pVector->x.pSelect->pEList->a[i].pExpr; 464 }else{ 465 return pVector->x.pList->a[i].pExpr; 466 } 467 } 468 return pVector; 469 } 470 471 /* 472 ** Compute and return a new Expr object which when passed to 473 ** sqlite3ExprCode() will generate all necessary code to compute 474 ** the iField-th column of the vector expression pVector. 475 ** 476 ** It is ok for pVector to be a scalar (as long as iField==0). 477 ** In that case, this routine works like sqlite3ExprDup(). 478 ** 479 ** The caller owns the returned Expr object and is responsible for 480 ** ensuring that the returned value eventually gets freed. 481 ** 482 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 483 ** then the returned object will reference pVector and so pVector must remain 484 ** valid for the life of the returned object. If pVector is a TK_VECTOR 485 ** or a scalar expression, then it can be deleted as soon as this routine 486 ** returns. 487 ** 488 ** A trick to cause a TK_SELECT pVector to be deleted together with 489 ** the returned Expr object is to attach the pVector to the pRight field 490 ** of the returned TK_SELECT_COLUMN Expr object. 491 */ 492 Expr *sqlite3ExprForVectorField( 493 Parse *pParse, /* Parsing context */ 494 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 495 int iField /* Which column of the vector to return */ 496 ){ 497 Expr *pRet; 498 if( pVector->op==TK_SELECT ){ 499 assert( pVector->flags & EP_xIsSelect ); 500 /* The TK_SELECT_COLUMN Expr node: 501 ** 502 ** pLeft: pVector containing TK_SELECT. Not deleted. 503 ** pRight: not used. But recursively deleted. 504 ** iColumn: Index of a column in pVector 505 ** iTable: 0 or the number of columns on the LHS of an assignment 506 ** pLeft->iTable: First in an array of register holding result, or 0 507 ** if the result is not yet computed. 508 ** 509 ** sqlite3ExprDelete() specifically skips the recursive delete of 510 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 511 ** can be attached to pRight to cause this node to take ownership of 512 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 513 ** with the same pLeft pointer to the pVector, but only one of them 514 ** will own the pVector. 515 */ 516 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 517 if( pRet ){ 518 pRet->iColumn = iField; 519 pRet->pLeft = pVector; 520 } 521 assert( pRet==0 || pRet->iTable==0 ); 522 }else{ 523 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 524 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 525 sqlite3RenameTokenRemap(pParse, pRet, pVector); 526 } 527 return pRet; 528 } 529 530 /* 531 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 532 ** it. Return the register in which the result is stored (or, if the 533 ** sub-select returns more than one column, the first in an array 534 ** of registers in which the result is stored). 535 ** 536 ** If pExpr is not a TK_SELECT expression, return 0. 537 */ 538 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 539 int reg = 0; 540 #ifndef SQLITE_OMIT_SUBQUERY 541 if( pExpr->op==TK_SELECT ){ 542 reg = sqlite3CodeSubselect(pParse, pExpr); 543 } 544 #endif 545 return reg; 546 } 547 548 /* 549 ** Argument pVector points to a vector expression - either a TK_VECTOR 550 ** or TK_SELECT that returns more than one column. This function returns 551 ** the register number of a register that contains the value of 552 ** element iField of the vector. 553 ** 554 ** If pVector is a TK_SELECT expression, then code for it must have 555 ** already been generated using the exprCodeSubselect() routine. In this 556 ** case parameter regSelect should be the first in an array of registers 557 ** containing the results of the sub-select. 558 ** 559 ** If pVector is of type TK_VECTOR, then code for the requested field 560 ** is generated. In this case (*pRegFree) may be set to the number of 561 ** a temporary register to be freed by the caller before returning. 562 ** 563 ** Before returning, output parameter (*ppExpr) is set to point to the 564 ** Expr object corresponding to element iElem of the vector. 565 */ 566 static int exprVectorRegister( 567 Parse *pParse, /* Parse context */ 568 Expr *pVector, /* Vector to extract element from */ 569 int iField, /* Field to extract from pVector */ 570 int regSelect, /* First in array of registers */ 571 Expr **ppExpr, /* OUT: Expression element */ 572 int *pRegFree /* OUT: Temp register to free */ 573 ){ 574 u8 op = pVector->op; 575 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 576 if( op==TK_REGISTER ){ 577 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 578 return pVector->iTable+iField; 579 } 580 if( op==TK_SELECT ){ 581 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 582 return regSelect+iField; 583 } 584 *ppExpr = pVector->x.pList->a[iField].pExpr; 585 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 586 } 587 588 /* 589 ** Expression pExpr is a comparison between two vector values. Compute 590 ** the result of the comparison (1, 0, or NULL) and write that 591 ** result into register dest. 592 ** 593 ** The caller must satisfy the following preconditions: 594 ** 595 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 596 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 597 ** otherwise: op==pExpr->op and p5==0 598 */ 599 static void codeVectorCompare( 600 Parse *pParse, /* Code generator context */ 601 Expr *pExpr, /* The comparison operation */ 602 int dest, /* Write results into this register */ 603 u8 op, /* Comparison operator */ 604 u8 p5 /* SQLITE_NULLEQ or zero */ 605 ){ 606 Vdbe *v = pParse->pVdbe; 607 Expr *pLeft = pExpr->pLeft; 608 Expr *pRight = pExpr->pRight; 609 int nLeft = sqlite3ExprVectorSize(pLeft); 610 int i; 611 int regLeft = 0; 612 int regRight = 0; 613 u8 opx = op; 614 int addrDone = sqlite3VdbeMakeLabel(pParse); 615 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 616 617 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 618 if( pParse->nErr ) return; 619 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 620 sqlite3ErrorMsg(pParse, "row value misused"); 621 return; 622 } 623 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 624 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 625 || pExpr->op==TK_LT || pExpr->op==TK_GT 626 || pExpr->op==TK_LE || pExpr->op==TK_GE 627 ); 628 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 629 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 630 assert( p5==0 || pExpr->op!=op ); 631 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 632 633 p5 |= SQLITE_STOREP2; 634 if( opx==TK_LE ) opx = TK_LT; 635 if( opx==TK_GE ) opx = TK_GT; 636 637 regLeft = exprCodeSubselect(pParse, pLeft); 638 regRight = exprCodeSubselect(pParse, pRight); 639 640 for(i=0; 1 /*Loop exits by "break"*/; i++){ 641 int regFree1 = 0, regFree2 = 0; 642 Expr *pL, *pR; 643 int r1, r2; 644 assert( i>=0 && i<nLeft ); 645 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 646 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 647 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted); 648 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 649 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 650 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 651 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 652 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 653 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 654 sqlite3ReleaseTempReg(pParse, regFree1); 655 sqlite3ReleaseTempReg(pParse, regFree2); 656 if( i==nLeft-1 ){ 657 break; 658 } 659 if( opx==TK_EQ ){ 660 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 661 p5 |= SQLITE_KEEPNULL; 662 }else if( opx==TK_NE ){ 663 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 664 p5 |= SQLITE_KEEPNULL; 665 }else{ 666 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 667 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 668 VdbeCoverageIf(v, op==TK_LT); 669 VdbeCoverageIf(v, op==TK_GT); 670 VdbeCoverageIf(v, op==TK_LE); 671 VdbeCoverageIf(v, op==TK_GE); 672 if( i==nLeft-2 ) opx = op; 673 } 674 } 675 sqlite3VdbeResolveLabel(v, addrDone); 676 } 677 678 #if SQLITE_MAX_EXPR_DEPTH>0 679 /* 680 ** Check that argument nHeight is less than or equal to the maximum 681 ** expression depth allowed. If it is not, leave an error message in 682 ** pParse. 683 */ 684 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 685 int rc = SQLITE_OK; 686 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 687 if( nHeight>mxHeight ){ 688 sqlite3ErrorMsg(pParse, 689 "Expression tree is too large (maximum depth %d)", mxHeight 690 ); 691 rc = SQLITE_ERROR; 692 } 693 return rc; 694 } 695 696 /* The following three functions, heightOfExpr(), heightOfExprList() 697 ** and heightOfSelect(), are used to determine the maximum height 698 ** of any expression tree referenced by the structure passed as the 699 ** first argument. 700 ** 701 ** If this maximum height is greater than the current value pointed 702 ** to by pnHeight, the second parameter, then set *pnHeight to that 703 ** value. 704 */ 705 static void heightOfExpr(Expr *p, int *pnHeight){ 706 if( p ){ 707 if( p->nHeight>*pnHeight ){ 708 *pnHeight = p->nHeight; 709 } 710 } 711 } 712 static void heightOfExprList(ExprList *p, int *pnHeight){ 713 if( p ){ 714 int i; 715 for(i=0; i<p->nExpr; i++){ 716 heightOfExpr(p->a[i].pExpr, pnHeight); 717 } 718 } 719 } 720 static void heightOfSelect(Select *pSelect, int *pnHeight){ 721 Select *p; 722 for(p=pSelect; p; p=p->pPrior){ 723 heightOfExpr(p->pWhere, pnHeight); 724 heightOfExpr(p->pHaving, pnHeight); 725 heightOfExpr(p->pLimit, pnHeight); 726 heightOfExprList(p->pEList, pnHeight); 727 heightOfExprList(p->pGroupBy, pnHeight); 728 heightOfExprList(p->pOrderBy, pnHeight); 729 } 730 } 731 732 /* 733 ** Set the Expr.nHeight variable in the structure passed as an 734 ** argument. An expression with no children, Expr.pList or 735 ** Expr.pSelect member has a height of 1. Any other expression 736 ** has a height equal to the maximum height of any other 737 ** referenced Expr plus one. 738 ** 739 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 740 ** if appropriate. 741 */ 742 static void exprSetHeight(Expr *p){ 743 int nHeight = 0; 744 heightOfExpr(p->pLeft, &nHeight); 745 heightOfExpr(p->pRight, &nHeight); 746 if( ExprHasProperty(p, EP_xIsSelect) ){ 747 heightOfSelect(p->x.pSelect, &nHeight); 748 }else if( p->x.pList ){ 749 heightOfExprList(p->x.pList, &nHeight); 750 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 751 } 752 p->nHeight = nHeight + 1; 753 } 754 755 /* 756 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 757 ** the height is greater than the maximum allowed expression depth, 758 ** leave an error in pParse. 759 ** 760 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 761 ** Expr.flags. 762 */ 763 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 764 if( pParse->nErr ) return; 765 exprSetHeight(p); 766 sqlite3ExprCheckHeight(pParse, p->nHeight); 767 } 768 769 /* 770 ** Return the maximum height of any expression tree referenced 771 ** by the select statement passed as an argument. 772 */ 773 int sqlite3SelectExprHeight(Select *p){ 774 int nHeight = 0; 775 heightOfSelect(p, &nHeight); 776 return nHeight; 777 } 778 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 779 /* 780 ** Propagate all EP_Propagate flags from the Expr.x.pList into 781 ** Expr.flags. 782 */ 783 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 784 if( pParse->nErr ) return; 785 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 786 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 787 } 788 } 789 #define exprSetHeight(y) 790 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 791 792 /* 793 ** This routine is the core allocator for Expr nodes. 794 ** 795 ** Construct a new expression node and return a pointer to it. Memory 796 ** for this node and for the pToken argument is a single allocation 797 ** obtained from sqlite3DbMalloc(). The calling function 798 ** is responsible for making sure the node eventually gets freed. 799 ** 800 ** If dequote is true, then the token (if it exists) is dequoted. 801 ** If dequote is false, no dequoting is performed. The deQuote 802 ** parameter is ignored if pToken is NULL or if the token does not 803 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 804 ** then the EP_DblQuoted flag is set on the expression node. 805 ** 806 ** Special case: If op==TK_INTEGER and pToken points to a string that 807 ** can be translated into a 32-bit integer, then the token is not 808 ** stored in u.zToken. Instead, the integer values is written 809 ** into u.iValue and the EP_IntValue flag is set. No extra storage 810 ** is allocated to hold the integer text and the dequote flag is ignored. 811 */ 812 Expr *sqlite3ExprAlloc( 813 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 814 int op, /* Expression opcode */ 815 const Token *pToken, /* Token argument. Might be NULL */ 816 int dequote /* True to dequote */ 817 ){ 818 Expr *pNew; 819 int nExtra = 0; 820 int iValue = 0; 821 822 assert( db!=0 ); 823 if( pToken ){ 824 if( op!=TK_INTEGER || pToken->z==0 825 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 826 nExtra = pToken->n+1; 827 assert( iValue>=0 ); 828 } 829 } 830 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 831 if( pNew ){ 832 memset(pNew, 0, sizeof(Expr)); 833 pNew->op = (u8)op; 834 pNew->iAgg = -1; 835 if( pToken ){ 836 if( nExtra==0 ){ 837 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 838 pNew->u.iValue = iValue; 839 }else{ 840 pNew->u.zToken = (char*)&pNew[1]; 841 assert( pToken->z!=0 || pToken->n==0 ); 842 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 843 pNew->u.zToken[pToken->n] = 0; 844 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 845 sqlite3DequoteExpr(pNew); 846 } 847 } 848 } 849 #if SQLITE_MAX_EXPR_DEPTH>0 850 pNew->nHeight = 1; 851 #endif 852 } 853 return pNew; 854 } 855 856 /* 857 ** Allocate a new expression node from a zero-terminated token that has 858 ** already been dequoted. 859 */ 860 Expr *sqlite3Expr( 861 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 862 int op, /* Expression opcode */ 863 const char *zToken /* Token argument. Might be NULL */ 864 ){ 865 Token x; 866 x.z = zToken; 867 x.n = sqlite3Strlen30(zToken); 868 return sqlite3ExprAlloc(db, op, &x, 0); 869 } 870 871 /* 872 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 873 ** 874 ** If pRoot==NULL that means that a memory allocation error has occurred. 875 ** In that case, delete the subtrees pLeft and pRight. 876 */ 877 void sqlite3ExprAttachSubtrees( 878 sqlite3 *db, 879 Expr *pRoot, 880 Expr *pLeft, 881 Expr *pRight 882 ){ 883 if( pRoot==0 ){ 884 assert( db->mallocFailed ); 885 sqlite3ExprDelete(db, pLeft); 886 sqlite3ExprDelete(db, pRight); 887 }else{ 888 if( pRight ){ 889 pRoot->pRight = pRight; 890 pRoot->flags |= EP_Propagate & pRight->flags; 891 } 892 if( pLeft ){ 893 pRoot->pLeft = pLeft; 894 pRoot->flags |= EP_Propagate & pLeft->flags; 895 } 896 exprSetHeight(pRoot); 897 } 898 } 899 900 /* 901 ** Allocate an Expr node which joins as many as two subtrees. 902 ** 903 ** One or both of the subtrees can be NULL. Return a pointer to the new 904 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 905 ** free the subtrees and return NULL. 906 */ 907 Expr *sqlite3PExpr( 908 Parse *pParse, /* Parsing context */ 909 int op, /* Expression opcode */ 910 Expr *pLeft, /* Left operand */ 911 Expr *pRight /* Right operand */ 912 ){ 913 Expr *p; 914 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 915 if( p ){ 916 memset(p, 0, sizeof(Expr)); 917 p->op = op & 0xff; 918 p->iAgg = -1; 919 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 920 sqlite3ExprCheckHeight(pParse, p->nHeight); 921 }else{ 922 sqlite3ExprDelete(pParse->db, pLeft); 923 sqlite3ExprDelete(pParse->db, pRight); 924 } 925 return p; 926 } 927 928 /* 929 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 930 ** do a memory allocation failure) then delete the pSelect object. 931 */ 932 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 933 if( pExpr ){ 934 pExpr->x.pSelect = pSelect; 935 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 936 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 937 }else{ 938 assert( pParse->db->mallocFailed ); 939 sqlite3SelectDelete(pParse->db, pSelect); 940 } 941 } 942 943 944 /* 945 ** Join two expressions using an AND operator. If either expression is 946 ** NULL, then just return the other expression. 947 ** 948 ** If one side or the other of the AND is known to be false, then instead 949 ** of returning an AND expression, just return a constant expression with 950 ** a value of false. 951 */ 952 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 953 sqlite3 *db = pParse->db; 954 if( pLeft==0 ){ 955 return pRight; 956 }else if( pRight==0 ){ 957 return pLeft; 958 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 959 && !IN_RENAME_OBJECT 960 ){ 961 sqlite3ExprDelete(db, pLeft); 962 sqlite3ExprDelete(db, pRight); 963 return sqlite3Expr(db, TK_INTEGER, "0"); 964 }else{ 965 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 966 } 967 } 968 969 /* 970 ** Construct a new expression node for a function with multiple 971 ** arguments. 972 */ 973 Expr *sqlite3ExprFunction( 974 Parse *pParse, /* Parsing context */ 975 ExprList *pList, /* Argument list */ 976 Token *pToken, /* Name of the function */ 977 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 978 ){ 979 Expr *pNew; 980 sqlite3 *db = pParse->db; 981 assert( pToken ); 982 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 983 if( pNew==0 ){ 984 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 985 return 0; 986 } 987 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 988 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 989 } 990 pNew->x.pList = pList; 991 ExprSetProperty(pNew, EP_HasFunc); 992 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 993 sqlite3ExprSetHeightAndFlags(pParse, pNew); 994 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 995 return pNew; 996 } 997 998 /* 999 ** Check to see if a function is usable according to current access 1000 ** rules: 1001 ** 1002 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1003 ** 1004 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1005 ** top-level SQL 1006 ** 1007 ** If the function is not usable, create an error. 1008 */ 1009 void sqlite3ExprFunctionUsable( 1010 Parse *pParse, /* Parsing and code generating context */ 1011 Expr *pExpr, /* The function invocation */ 1012 FuncDef *pDef /* The function being invoked */ 1013 ){ 1014 assert( !IN_RENAME_OBJECT ); 1015 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1016 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1017 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1018 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1019 ){ 1020 /* Functions prohibited in triggers and views if: 1021 ** (1) tagged with SQLITE_DIRECTONLY 1022 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1023 ** is tagged with SQLITE_FUNC_UNSAFE) and 1024 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1025 ** that the schema is possibly tainted). 1026 */ 1027 sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName); 1028 } 1029 } 1030 } 1031 1032 /* 1033 ** Assign a variable number to an expression that encodes a wildcard 1034 ** in the original SQL statement. 1035 ** 1036 ** Wildcards consisting of a single "?" are assigned the next sequential 1037 ** variable number. 1038 ** 1039 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1040 ** sure "nnn" is not too big to avoid a denial of service attack when 1041 ** the SQL statement comes from an external source. 1042 ** 1043 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1044 ** as the previous instance of the same wildcard. Or if this is the first 1045 ** instance of the wildcard, the next sequential variable number is 1046 ** assigned. 1047 */ 1048 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1049 sqlite3 *db = pParse->db; 1050 const char *z; 1051 ynVar x; 1052 1053 if( pExpr==0 ) return; 1054 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1055 z = pExpr->u.zToken; 1056 assert( z!=0 ); 1057 assert( z[0]!=0 ); 1058 assert( n==(u32)sqlite3Strlen30(z) ); 1059 if( z[1]==0 ){ 1060 /* Wildcard of the form "?". Assign the next variable number */ 1061 assert( z[0]=='?' ); 1062 x = (ynVar)(++pParse->nVar); 1063 }else{ 1064 int doAdd = 0; 1065 if( z[0]=='?' ){ 1066 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1067 ** use it as the variable number */ 1068 i64 i; 1069 int bOk; 1070 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1071 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1072 bOk = 1; 1073 }else{ 1074 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1075 } 1076 testcase( i==0 ); 1077 testcase( i==1 ); 1078 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1079 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1080 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1081 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1082 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1083 return; 1084 } 1085 x = (ynVar)i; 1086 if( x>pParse->nVar ){ 1087 pParse->nVar = (int)x; 1088 doAdd = 1; 1089 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1090 doAdd = 1; 1091 } 1092 }else{ 1093 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1094 ** number as the prior appearance of the same name, or if the name 1095 ** has never appeared before, reuse the same variable number 1096 */ 1097 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1098 if( x==0 ){ 1099 x = (ynVar)(++pParse->nVar); 1100 doAdd = 1; 1101 } 1102 } 1103 if( doAdd ){ 1104 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1105 } 1106 } 1107 pExpr->iColumn = x; 1108 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1109 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1110 } 1111 } 1112 1113 /* 1114 ** Recursively delete an expression tree. 1115 */ 1116 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1117 assert( p!=0 ); 1118 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1119 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1120 1121 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1122 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1123 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1124 #ifdef SQLITE_DEBUG 1125 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1126 assert( p->pLeft==0 ); 1127 assert( p->pRight==0 ); 1128 assert( p->x.pSelect==0 ); 1129 } 1130 #endif 1131 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1132 /* The Expr.x union is never used at the same time as Expr.pRight */ 1133 assert( p->x.pList==0 || p->pRight==0 ); 1134 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1135 if( p->pRight ){ 1136 assert( !ExprHasProperty(p, EP_WinFunc) ); 1137 sqlite3ExprDeleteNN(db, p->pRight); 1138 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1139 assert( !ExprHasProperty(p, EP_WinFunc) ); 1140 sqlite3SelectDelete(db, p->x.pSelect); 1141 }else{ 1142 sqlite3ExprListDelete(db, p->x.pList); 1143 #ifndef SQLITE_OMIT_WINDOWFUNC 1144 if( ExprHasProperty(p, EP_WinFunc) ){ 1145 sqlite3WindowDelete(db, p->y.pWin); 1146 } 1147 #endif 1148 } 1149 } 1150 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1151 if( !ExprHasProperty(p, EP_Static) ){ 1152 sqlite3DbFreeNN(db, p); 1153 } 1154 } 1155 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1156 if( p ) sqlite3ExprDeleteNN(db, p); 1157 } 1158 1159 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1160 ** expression. 1161 */ 1162 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1163 if( p ){ 1164 if( IN_RENAME_OBJECT ){ 1165 sqlite3RenameExprUnmap(pParse, p); 1166 } 1167 sqlite3ExprDeleteNN(pParse->db, p); 1168 } 1169 } 1170 1171 /* 1172 ** Return the number of bytes allocated for the expression structure 1173 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1174 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1175 */ 1176 static int exprStructSize(Expr *p){ 1177 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1178 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1179 return EXPR_FULLSIZE; 1180 } 1181 1182 /* 1183 ** The dupedExpr*Size() routines each return the number of bytes required 1184 ** to store a copy of an expression or expression tree. They differ in 1185 ** how much of the tree is measured. 1186 ** 1187 ** dupedExprStructSize() Size of only the Expr structure 1188 ** dupedExprNodeSize() Size of Expr + space for token 1189 ** dupedExprSize() Expr + token + subtree components 1190 ** 1191 *************************************************************************** 1192 ** 1193 ** The dupedExprStructSize() function returns two values OR-ed together: 1194 ** (1) the space required for a copy of the Expr structure only and 1195 ** (2) the EP_xxx flags that indicate what the structure size should be. 1196 ** The return values is always one of: 1197 ** 1198 ** EXPR_FULLSIZE 1199 ** EXPR_REDUCEDSIZE | EP_Reduced 1200 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1201 ** 1202 ** The size of the structure can be found by masking the return value 1203 ** of this routine with 0xfff. The flags can be found by masking the 1204 ** return value with EP_Reduced|EP_TokenOnly. 1205 ** 1206 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1207 ** (unreduced) Expr objects as they or originally constructed by the parser. 1208 ** During expression analysis, extra information is computed and moved into 1209 ** later parts of the Expr object and that extra information might get chopped 1210 ** off if the expression is reduced. Note also that it does not work to 1211 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1212 ** to reduce a pristine expression tree from the parser. The implementation 1213 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1214 ** to enforce this constraint. 1215 */ 1216 static int dupedExprStructSize(Expr *p, int flags){ 1217 int nSize; 1218 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1219 assert( EXPR_FULLSIZE<=0xfff ); 1220 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1221 if( 0==flags || p->op==TK_SELECT_COLUMN 1222 #ifndef SQLITE_OMIT_WINDOWFUNC 1223 || ExprHasProperty(p, EP_WinFunc) 1224 #endif 1225 ){ 1226 nSize = EXPR_FULLSIZE; 1227 }else{ 1228 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1229 assert( !ExprHasProperty(p, EP_FromJoin) ); 1230 assert( !ExprHasProperty(p, EP_MemToken) ); 1231 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1232 if( p->pLeft || p->x.pList ){ 1233 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1234 }else{ 1235 assert( p->pRight==0 ); 1236 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1237 } 1238 } 1239 return nSize; 1240 } 1241 1242 /* 1243 ** This function returns the space in bytes required to store the copy 1244 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1245 ** string is defined.) 1246 */ 1247 static int dupedExprNodeSize(Expr *p, int flags){ 1248 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1249 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1250 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1251 } 1252 return ROUND8(nByte); 1253 } 1254 1255 /* 1256 ** Return the number of bytes required to create a duplicate of the 1257 ** expression passed as the first argument. The second argument is a 1258 ** mask containing EXPRDUP_XXX flags. 1259 ** 1260 ** The value returned includes space to create a copy of the Expr struct 1261 ** itself and the buffer referred to by Expr.u.zToken, if any. 1262 ** 1263 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1264 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1265 ** and Expr.pRight variables (but not for any structures pointed to or 1266 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1267 */ 1268 static int dupedExprSize(Expr *p, int flags){ 1269 int nByte = 0; 1270 if( p ){ 1271 nByte = dupedExprNodeSize(p, flags); 1272 if( flags&EXPRDUP_REDUCE ){ 1273 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1274 } 1275 } 1276 return nByte; 1277 } 1278 1279 /* 1280 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1281 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1282 ** to store the copy of expression p, the copies of p->u.zToken 1283 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1284 ** if any. Before returning, *pzBuffer is set to the first byte past the 1285 ** portion of the buffer copied into by this function. 1286 */ 1287 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1288 Expr *pNew; /* Value to return */ 1289 u8 *zAlloc; /* Memory space from which to build Expr object */ 1290 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1291 1292 assert( db!=0 ); 1293 assert( p ); 1294 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1295 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1296 1297 /* Figure out where to write the new Expr structure. */ 1298 if( pzBuffer ){ 1299 zAlloc = *pzBuffer; 1300 staticFlag = EP_Static; 1301 }else{ 1302 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1303 staticFlag = 0; 1304 } 1305 pNew = (Expr *)zAlloc; 1306 1307 if( pNew ){ 1308 /* Set nNewSize to the size allocated for the structure pointed to 1309 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1310 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1311 ** by the copy of the p->u.zToken string (if any). 1312 */ 1313 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1314 const int nNewSize = nStructSize & 0xfff; 1315 int nToken; 1316 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1317 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1318 }else{ 1319 nToken = 0; 1320 } 1321 if( dupFlags ){ 1322 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1323 memcpy(zAlloc, p, nNewSize); 1324 }else{ 1325 u32 nSize = (u32)exprStructSize(p); 1326 memcpy(zAlloc, p, nSize); 1327 if( nSize<EXPR_FULLSIZE ){ 1328 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1329 } 1330 } 1331 1332 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1333 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1334 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1335 pNew->flags |= staticFlag; 1336 ExprClearVVAProperties(pNew); 1337 if( dupFlags ){ 1338 ExprSetVVAProperty(pNew, EP_Immutable); 1339 } 1340 1341 /* Copy the p->u.zToken string, if any. */ 1342 if( nToken ){ 1343 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1344 memcpy(zToken, p->u.zToken, nToken); 1345 } 1346 1347 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1348 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1349 if( ExprHasProperty(p, EP_xIsSelect) ){ 1350 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1351 }else{ 1352 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1353 } 1354 } 1355 1356 /* Fill in pNew->pLeft and pNew->pRight. */ 1357 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1358 zAlloc += dupedExprNodeSize(p, dupFlags); 1359 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1360 pNew->pLeft = p->pLeft ? 1361 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1362 pNew->pRight = p->pRight ? 1363 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1364 } 1365 #ifndef SQLITE_OMIT_WINDOWFUNC 1366 if( ExprHasProperty(p, EP_WinFunc) ){ 1367 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1368 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1369 } 1370 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1371 if( pzBuffer ){ 1372 *pzBuffer = zAlloc; 1373 } 1374 }else{ 1375 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1376 if( pNew->op==TK_SELECT_COLUMN ){ 1377 pNew->pLeft = p->pLeft; 1378 assert( p->iColumn==0 || p->pRight==0 ); 1379 assert( p->pRight==0 || p->pRight==p->pLeft ); 1380 }else{ 1381 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1382 } 1383 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1384 } 1385 } 1386 } 1387 return pNew; 1388 } 1389 1390 /* 1391 ** Create and return a deep copy of the object passed as the second 1392 ** argument. If an OOM condition is encountered, NULL is returned 1393 ** and the db->mallocFailed flag set. 1394 */ 1395 #ifndef SQLITE_OMIT_CTE 1396 static With *withDup(sqlite3 *db, With *p){ 1397 With *pRet = 0; 1398 if( p ){ 1399 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1400 pRet = sqlite3DbMallocZero(db, nByte); 1401 if( pRet ){ 1402 int i; 1403 pRet->nCte = p->nCte; 1404 for(i=0; i<p->nCte; i++){ 1405 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1406 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1407 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1408 } 1409 } 1410 } 1411 return pRet; 1412 } 1413 #else 1414 # define withDup(x,y) 0 1415 #endif 1416 1417 #ifndef SQLITE_OMIT_WINDOWFUNC 1418 /* 1419 ** The gatherSelectWindows() procedure and its helper routine 1420 ** gatherSelectWindowsCallback() are used to scan all the expressions 1421 ** an a newly duplicated SELECT statement and gather all of the Window 1422 ** objects found there, assembling them onto the linked list at Select->pWin. 1423 */ 1424 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1425 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1426 Select *pSelect = pWalker->u.pSelect; 1427 Window *pWin = pExpr->y.pWin; 1428 assert( pWin ); 1429 assert( IsWindowFunc(pExpr) ); 1430 assert( pWin->ppThis==0 ); 1431 sqlite3WindowLink(pSelect, pWin); 1432 } 1433 return WRC_Continue; 1434 } 1435 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1436 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1437 } 1438 static void gatherSelectWindows(Select *p){ 1439 Walker w; 1440 w.xExprCallback = gatherSelectWindowsCallback; 1441 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1442 w.xSelectCallback2 = 0; 1443 w.pParse = 0; 1444 w.u.pSelect = p; 1445 sqlite3WalkSelect(&w, p); 1446 } 1447 #endif 1448 1449 1450 /* 1451 ** The following group of routines make deep copies of expressions, 1452 ** expression lists, ID lists, and select statements. The copies can 1453 ** be deleted (by being passed to their respective ...Delete() routines) 1454 ** without effecting the originals. 1455 ** 1456 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1457 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1458 ** by subsequent calls to sqlite*ListAppend() routines. 1459 ** 1460 ** Any tables that the SrcList might point to are not duplicated. 1461 ** 1462 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1463 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1464 ** truncated version of the usual Expr structure that will be stored as 1465 ** part of the in-memory representation of the database schema. 1466 */ 1467 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1468 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1469 return p ? exprDup(db, p, flags, 0) : 0; 1470 } 1471 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1472 ExprList *pNew; 1473 struct ExprList_item *pItem, *pOldItem; 1474 int i; 1475 Expr *pPriorSelectCol = 0; 1476 assert( db!=0 ); 1477 if( p==0 ) return 0; 1478 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1479 if( pNew==0 ) return 0; 1480 pNew->nExpr = p->nExpr; 1481 pNew->nAlloc = p->nAlloc; 1482 pItem = pNew->a; 1483 pOldItem = p->a; 1484 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1485 Expr *pOldExpr = pOldItem->pExpr; 1486 Expr *pNewExpr; 1487 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1488 if( pOldExpr 1489 && pOldExpr->op==TK_SELECT_COLUMN 1490 && (pNewExpr = pItem->pExpr)!=0 1491 ){ 1492 assert( pNewExpr->iColumn==0 || i>0 ); 1493 if( pNewExpr->iColumn==0 ){ 1494 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1495 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1496 }else{ 1497 assert( i>0 ); 1498 assert( pItem[-1].pExpr!=0 ); 1499 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1500 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1501 pNewExpr->pLeft = pPriorSelectCol; 1502 } 1503 } 1504 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1505 pItem->sortFlags = pOldItem->sortFlags; 1506 pItem->eEName = pOldItem->eEName; 1507 pItem->done = 0; 1508 pItem->bNulls = pOldItem->bNulls; 1509 pItem->bSorterRef = pOldItem->bSorterRef; 1510 pItem->u = pOldItem->u; 1511 } 1512 return pNew; 1513 } 1514 1515 /* 1516 ** If cursors, triggers, views and subqueries are all omitted from 1517 ** the build, then none of the following routines, except for 1518 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1519 ** called with a NULL argument. 1520 */ 1521 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1522 || !defined(SQLITE_OMIT_SUBQUERY) 1523 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1524 SrcList *pNew; 1525 int i; 1526 int nByte; 1527 assert( db!=0 ); 1528 if( p==0 ) return 0; 1529 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1530 pNew = sqlite3DbMallocRawNN(db, nByte ); 1531 if( pNew==0 ) return 0; 1532 pNew->nSrc = pNew->nAlloc = p->nSrc; 1533 for(i=0; i<p->nSrc; i++){ 1534 SrcItem *pNewItem = &pNew->a[i]; 1535 SrcItem *pOldItem = &p->a[i]; 1536 Table *pTab; 1537 pNewItem->pSchema = pOldItem->pSchema; 1538 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1539 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1540 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1541 pNewItem->fg = pOldItem->fg; 1542 pNewItem->iCursor = pOldItem->iCursor; 1543 pNewItem->addrFillSub = pOldItem->addrFillSub; 1544 pNewItem->regReturn = pOldItem->regReturn; 1545 if( pNewItem->fg.isIndexedBy ){ 1546 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1547 } 1548 pNewItem->u2 = pOldItem->u2; 1549 if( pNewItem->fg.isCte ){ 1550 pNewItem->u2.pCteUse->nUse++; 1551 } 1552 if( pNewItem->fg.isTabFunc ){ 1553 pNewItem->u1.pFuncArg = 1554 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1555 } 1556 pTab = pNewItem->pTab = pOldItem->pTab; 1557 if( pTab ){ 1558 pTab->nTabRef++; 1559 } 1560 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1561 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1562 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1563 pNewItem->colUsed = pOldItem->colUsed; 1564 } 1565 return pNew; 1566 } 1567 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1568 IdList *pNew; 1569 int i; 1570 assert( db!=0 ); 1571 if( p==0 ) return 0; 1572 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1573 if( pNew==0 ) return 0; 1574 pNew->nId = p->nId; 1575 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1576 if( pNew->a==0 ){ 1577 sqlite3DbFreeNN(db, pNew); 1578 return 0; 1579 } 1580 /* Note that because the size of the allocation for p->a[] is not 1581 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1582 ** on the duplicate created by this function. */ 1583 for(i=0; i<p->nId; i++){ 1584 struct IdList_item *pNewItem = &pNew->a[i]; 1585 struct IdList_item *pOldItem = &p->a[i]; 1586 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1587 pNewItem->idx = pOldItem->idx; 1588 } 1589 return pNew; 1590 } 1591 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1592 Select *pRet = 0; 1593 Select *pNext = 0; 1594 Select **pp = &pRet; 1595 Select *p; 1596 1597 assert( db!=0 ); 1598 for(p=pDup; p; p=p->pPrior){ 1599 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1600 if( pNew==0 ) break; 1601 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1602 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1603 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1604 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1605 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1606 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1607 pNew->op = p->op; 1608 pNew->pNext = pNext; 1609 pNew->pPrior = 0; 1610 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1611 pNew->iLimit = 0; 1612 pNew->iOffset = 0; 1613 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1614 pNew->addrOpenEphm[0] = -1; 1615 pNew->addrOpenEphm[1] = -1; 1616 pNew->nSelectRow = p->nSelectRow; 1617 pNew->pWith = withDup(db, p->pWith); 1618 #ifndef SQLITE_OMIT_WINDOWFUNC 1619 pNew->pWin = 0; 1620 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1621 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1622 #endif 1623 pNew->selId = p->selId; 1624 *pp = pNew; 1625 pp = &pNew->pPrior; 1626 pNext = pNew; 1627 } 1628 1629 return pRet; 1630 } 1631 #else 1632 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1633 assert( p==0 ); 1634 return 0; 1635 } 1636 #endif 1637 1638 1639 /* 1640 ** Add a new element to the end of an expression list. If pList is 1641 ** initially NULL, then create a new expression list. 1642 ** 1643 ** The pList argument must be either NULL or a pointer to an ExprList 1644 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1645 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1646 ** Reason: This routine assumes that the number of slots in pList->a[] 1647 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1648 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1649 ** 1650 ** If a memory allocation error occurs, the entire list is freed and 1651 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1652 ** that the new entry was successfully appended. 1653 */ 1654 static const struct ExprList_item zeroItem; 1655 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 1656 sqlite3 *db, /* Database handle. Used for memory allocation */ 1657 Expr *pExpr /* Expression to be appended. Might be NULL */ 1658 ){ 1659 struct ExprList_item *pItem; 1660 ExprList *pList; 1661 1662 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 1663 if( pList==0 ){ 1664 sqlite3ExprDelete(db, pExpr); 1665 return 0; 1666 } 1667 pList->nAlloc = 4; 1668 pList->nExpr = 1; 1669 pItem = &pList->a[0]; 1670 *pItem = zeroItem; 1671 pItem->pExpr = pExpr; 1672 return pList; 1673 } 1674 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 1675 sqlite3 *db, /* Database handle. Used for memory allocation */ 1676 ExprList *pList, /* List to which to append. Might be NULL */ 1677 Expr *pExpr /* Expression to be appended. Might be NULL */ 1678 ){ 1679 struct ExprList_item *pItem; 1680 ExprList *pNew; 1681 pList->nAlloc *= 2; 1682 pNew = sqlite3DbRealloc(db, pList, 1683 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 1684 if( pNew==0 ){ 1685 sqlite3ExprListDelete(db, pList); 1686 sqlite3ExprDelete(db, pExpr); 1687 return 0; 1688 }else{ 1689 pList = pNew; 1690 } 1691 pItem = &pList->a[pList->nExpr++]; 1692 *pItem = zeroItem; 1693 pItem->pExpr = pExpr; 1694 return pList; 1695 } 1696 ExprList *sqlite3ExprListAppend( 1697 Parse *pParse, /* Parsing context */ 1698 ExprList *pList, /* List to which to append. Might be NULL */ 1699 Expr *pExpr /* Expression to be appended. Might be NULL */ 1700 ){ 1701 struct ExprList_item *pItem; 1702 if( pList==0 ){ 1703 return sqlite3ExprListAppendNew(pParse->db,pExpr); 1704 } 1705 if( pList->nAlloc<pList->nExpr+1 ){ 1706 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 1707 } 1708 pItem = &pList->a[pList->nExpr++]; 1709 *pItem = zeroItem; 1710 pItem->pExpr = pExpr; 1711 return pList; 1712 } 1713 1714 /* 1715 ** pColumns and pExpr form a vector assignment which is part of the SET 1716 ** clause of an UPDATE statement. Like this: 1717 ** 1718 ** (a,b,c) = (expr1,expr2,expr3) 1719 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1720 ** 1721 ** For each term of the vector assignment, append new entries to the 1722 ** expression list pList. In the case of a subquery on the RHS, append 1723 ** TK_SELECT_COLUMN expressions. 1724 */ 1725 ExprList *sqlite3ExprListAppendVector( 1726 Parse *pParse, /* Parsing context */ 1727 ExprList *pList, /* List to which to append. Might be NULL */ 1728 IdList *pColumns, /* List of names of LHS of the assignment */ 1729 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1730 ){ 1731 sqlite3 *db = pParse->db; 1732 int n; 1733 int i; 1734 int iFirst = pList ? pList->nExpr : 0; 1735 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1736 ** exit prior to this routine being invoked */ 1737 if( NEVER(pColumns==0) ) goto vector_append_error; 1738 if( pExpr==0 ) goto vector_append_error; 1739 1740 /* If the RHS is a vector, then we can immediately check to see that 1741 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1742 ** wildcards ("*") in the result set of the SELECT must be expanded before 1743 ** we can do the size check, so defer the size check until code generation. 1744 */ 1745 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1746 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1747 pColumns->nId, n); 1748 goto vector_append_error; 1749 } 1750 1751 for(i=0; i<pColumns->nId; i++){ 1752 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1753 assert( pSubExpr!=0 || db->mallocFailed ); 1754 assert( pSubExpr==0 || pSubExpr->iTable==0 ); 1755 if( pSubExpr==0 ) continue; 1756 pSubExpr->iTable = pColumns->nId; 1757 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1758 if( pList ){ 1759 assert( pList->nExpr==iFirst+i+1 ); 1760 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1761 pColumns->a[i].zName = 0; 1762 } 1763 } 1764 1765 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1766 Expr *pFirst = pList->a[iFirst].pExpr; 1767 assert( pFirst!=0 ); 1768 assert( pFirst->op==TK_SELECT_COLUMN ); 1769 1770 /* Store the SELECT statement in pRight so it will be deleted when 1771 ** sqlite3ExprListDelete() is called */ 1772 pFirst->pRight = pExpr; 1773 pExpr = 0; 1774 1775 /* Remember the size of the LHS in iTable so that we can check that 1776 ** the RHS and LHS sizes match during code generation. */ 1777 pFirst->iTable = pColumns->nId; 1778 } 1779 1780 vector_append_error: 1781 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1782 sqlite3IdListDelete(db, pColumns); 1783 return pList; 1784 } 1785 1786 /* 1787 ** Set the sort order for the last element on the given ExprList. 1788 */ 1789 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1790 struct ExprList_item *pItem; 1791 if( p==0 ) return; 1792 assert( p->nExpr>0 ); 1793 1794 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1795 assert( iSortOrder==SQLITE_SO_UNDEFINED 1796 || iSortOrder==SQLITE_SO_ASC 1797 || iSortOrder==SQLITE_SO_DESC 1798 ); 1799 assert( eNulls==SQLITE_SO_UNDEFINED 1800 || eNulls==SQLITE_SO_ASC 1801 || eNulls==SQLITE_SO_DESC 1802 ); 1803 1804 pItem = &p->a[p->nExpr-1]; 1805 assert( pItem->bNulls==0 ); 1806 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1807 iSortOrder = SQLITE_SO_ASC; 1808 } 1809 pItem->sortFlags = (u8)iSortOrder; 1810 1811 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1812 pItem->bNulls = 1; 1813 if( iSortOrder!=eNulls ){ 1814 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1815 } 1816 } 1817 } 1818 1819 /* 1820 ** Set the ExprList.a[].zEName element of the most recently added item 1821 ** on the expression list. 1822 ** 1823 ** pList might be NULL following an OOM error. But pName should never be 1824 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1825 ** is set. 1826 */ 1827 void sqlite3ExprListSetName( 1828 Parse *pParse, /* Parsing context */ 1829 ExprList *pList, /* List to which to add the span. */ 1830 Token *pName, /* Name to be added */ 1831 int dequote /* True to cause the name to be dequoted */ 1832 ){ 1833 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1834 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1835 if( pList ){ 1836 struct ExprList_item *pItem; 1837 assert( pList->nExpr>0 ); 1838 pItem = &pList->a[pList->nExpr-1]; 1839 assert( pItem->zEName==0 ); 1840 assert( pItem->eEName==ENAME_NAME ); 1841 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1842 if( dequote ){ 1843 /* If dequote==0, then pName->z does not point to part of a DDL 1844 ** statement handled by the parser. And so no token need be added 1845 ** to the token-map. */ 1846 sqlite3Dequote(pItem->zEName); 1847 if( IN_RENAME_OBJECT ){ 1848 sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName); 1849 } 1850 } 1851 } 1852 } 1853 1854 /* 1855 ** Set the ExprList.a[].zSpan element of the most recently added item 1856 ** on the expression list. 1857 ** 1858 ** pList might be NULL following an OOM error. But pSpan should never be 1859 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1860 ** is set. 1861 */ 1862 void sqlite3ExprListSetSpan( 1863 Parse *pParse, /* Parsing context */ 1864 ExprList *pList, /* List to which to add the span. */ 1865 const char *zStart, /* Start of the span */ 1866 const char *zEnd /* End of the span */ 1867 ){ 1868 sqlite3 *db = pParse->db; 1869 assert( pList!=0 || db->mallocFailed!=0 ); 1870 if( pList ){ 1871 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1872 assert( pList->nExpr>0 ); 1873 if( pItem->zEName==0 ){ 1874 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1875 pItem->eEName = ENAME_SPAN; 1876 } 1877 } 1878 } 1879 1880 /* 1881 ** If the expression list pEList contains more than iLimit elements, 1882 ** leave an error message in pParse. 1883 */ 1884 void sqlite3ExprListCheckLength( 1885 Parse *pParse, 1886 ExprList *pEList, 1887 const char *zObject 1888 ){ 1889 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1890 testcase( pEList && pEList->nExpr==mx ); 1891 testcase( pEList && pEList->nExpr==mx+1 ); 1892 if( pEList && pEList->nExpr>mx ){ 1893 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1894 } 1895 } 1896 1897 /* 1898 ** Delete an entire expression list. 1899 */ 1900 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1901 int i = pList->nExpr; 1902 struct ExprList_item *pItem = pList->a; 1903 assert( pList->nExpr>0 ); 1904 do{ 1905 sqlite3ExprDelete(db, pItem->pExpr); 1906 sqlite3DbFree(db, pItem->zEName); 1907 pItem++; 1908 }while( --i>0 ); 1909 sqlite3DbFreeNN(db, pList); 1910 } 1911 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1912 if( pList ) exprListDeleteNN(db, pList); 1913 } 1914 1915 /* 1916 ** Return the bitwise-OR of all Expr.flags fields in the given 1917 ** ExprList. 1918 */ 1919 u32 sqlite3ExprListFlags(const ExprList *pList){ 1920 int i; 1921 u32 m = 0; 1922 assert( pList!=0 ); 1923 for(i=0; i<pList->nExpr; i++){ 1924 Expr *pExpr = pList->a[i].pExpr; 1925 assert( pExpr!=0 ); 1926 m |= pExpr->flags; 1927 } 1928 return m; 1929 } 1930 1931 /* 1932 ** This is a SELECT-node callback for the expression walker that 1933 ** always "fails". By "fail" in this case, we mean set 1934 ** pWalker->eCode to zero and abort. 1935 ** 1936 ** This callback is used by multiple expression walkers. 1937 */ 1938 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1939 UNUSED_PARAMETER(NotUsed); 1940 pWalker->eCode = 0; 1941 return WRC_Abort; 1942 } 1943 1944 /* 1945 ** Check the input string to see if it is "true" or "false" (in any case). 1946 ** 1947 ** If the string is.... Return 1948 ** "true" EP_IsTrue 1949 ** "false" EP_IsFalse 1950 ** anything else 0 1951 */ 1952 u32 sqlite3IsTrueOrFalse(const char *zIn){ 1953 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 1954 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 1955 return 0; 1956 } 1957 1958 1959 /* 1960 ** If the input expression is an ID with the name "true" or "false" 1961 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1962 ** the conversion happened, and zero if the expression is unaltered. 1963 */ 1964 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1965 u32 v; 1966 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1967 if( !ExprHasProperty(pExpr, EP_Quoted) 1968 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 1969 ){ 1970 pExpr->op = TK_TRUEFALSE; 1971 ExprSetProperty(pExpr, v); 1972 return 1; 1973 } 1974 return 0; 1975 } 1976 1977 /* 1978 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1979 ** and 0 if it is FALSE. 1980 */ 1981 int sqlite3ExprTruthValue(const Expr *pExpr){ 1982 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 1983 assert( pExpr->op==TK_TRUEFALSE ); 1984 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1985 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1986 return pExpr->u.zToken[4]==0; 1987 } 1988 1989 /* 1990 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 1991 ** terms that are always true or false. Return the simplified expression. 1992 ** Or return the original expression if no simplification is possible. 1993 ** 1994 ** Examples: 1995 ** 1996 ** (x<10) AND true => (x<10) 1997 ** (x<10) AND false => false 1998 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 1999 ** (x<10) AND (y=22 OR true) => (x<10) 2000 ** (y=22) OR true => true 2001 */ 2002 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 2003 assert( pExpr!=0 ); 2004 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 2005 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 2006 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 2007 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 2008 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 2009 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 2010 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 2011 } 2012 } 2013 return pExpr; 2014 } 2015 2016 2017 /* 2018 ** These routines are Walker callbacks used to check expressions to 2019 ** see if they are "constant" for some definition of constant. The 2020 ** Walker.eCode value determines the type of "constant" we are looking 2021 ** for. 2022 ** 2023 ** These callback routines are used to implement the following: 2024 ** 2025 ** sqlite3ExprIsConstant() pWalker->eCode==1 2026 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2027 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2028 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2029 ** 2030 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2031 ** is found to not be a constant. 2032 ** 2033 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2034 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2035 ** when parsing an existing schema out of the sqlite_schema table and 4 2036 ** when processing a new CREATE TABLE statement. A bound parameter raises 2037 ** an error for new statements, but is silently converted 2038 ** to NULL for existing schemas. This allows sqlite_schema tables that 2039 ** contain a bound parameter because they were generated by older versions 2040 ** of SQLite to be parsed by newer versions of SQLite without raising a 2041 ** malformed schema error. 2042 */ 2043 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2044 2045 /* If pWalker->eCode is 2 then any term of the expression that comes from 2046 ** the ON or USING clauses of a left join disqualifies the expression 2047 ** from being considered constant. */ 2048 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2049 pWalker->eCode = 0; 2050 return WRC_Abort; 2051 } 2052 2053 switch( pExpr->op ){ 2054 /* Consider functions to be constant if all their arguments are constant 2055 ** and either pWalker->eCode==4 or 5 or the function has the 2056 ** SQLITE_FUNC_CONST flag. */ 2057 case TK_FUNCTION: 2058 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2059 && !ExprHasProperty(pExpr, EP_WinFunc) 2060 ){ 2061 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2062 return WRC_Continue; 2063 }else{ 2064 pWalker->eCode = 0; 2065 return WRC_Abort; 2066 } 2067 case TK_ID: 2068 /* Convert "true" or "false" in a DEFAULT clause into the 2069 ** appropriate TK_TRUEFALSE operator */ 2070 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2071 return WRC_Prune; 2072 } 2073 /* no break */ deliberate_fall_through 2074 case TK_COLUMN: 2075 case TK_AGG_FUNCTION: 2076 case TK_AGG_COLUMN: 2077 testcase( pExpr->op==TK_ID ); 2078 testcase( pExpr->op==TK_COLUMN ); 2079 testcase( pExpr->op==TK_AGG_FUNCTION ); 2080 testcase( pExpr->op==TK_AGG_COLUMN ); 2081 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2082 return WRC_Continue; 2083 } 2084 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2085 return WRC_Continue; 2086 } 2087 /* no break */ deliberate_fall_through 2088 case TK_IF_NULL_ROW: 2089 case TK_REGISTER: 2090 case TK_DOT: 2091 testcase( pExpr->op==TK_REGISTER ); 2092 testcase( pExpr->op==TK_IF_NULL_ROW ); 2093 testcase( pExpr->op==TK_DOT ); 2094 pWalker->eCode = 0; 2095 return WRC_Abort; 2096 case TK_VARIABLE: 2097 if( pWalker->eCode==5 ){ 2098 /* Silently convert bound parameters that appear inside of CREATE 2099 ** statements into a NULL when parsing the CREATE statement text out 2100 ** of the sqlite_schema table */ 2101 pExpr->op = TK_NULL; 2102 }else if( pWalker->eCode==4 ){ 2103 /* A bound parameter in a CREATE statement that originates from 2104 ** sqlite3_prepare() causes an error */ 2105 pWalker->eCode = 0; 2106 return WRC_Abort; 2107 } 2108 /* no break */ deliberate_fall_through 2109 default: 2110 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2111 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2112 return WRC_Continue; 2113 } 2114 } 2115 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2116 Walker w; 2117 w.eCode = initFlag; 2118 w.xExprCallback = exprNodeIsConstant; 2119 w.xSelectCallback = sqlite3SelectWalkFail; 2120 #ifdef SQLITE_DEBUG 2121 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2122 #endif 2123 w.u.iCur = iCur; 2124 sqlite3WalkExpr(&w, p); 2125 return w.eCode; 2126 } 2127 2128 /* 2129 ** Walk an expression tree. Return non-zero if the expression is constant 2130 ** and 0 if it involves variables or function calls. 2131 ** 2132 ** For the purposes of this function, a double-quoted string (ex: "abc") 2133 ** is considered a variable but a single-quoted string (ex: 'abc') is 2134 ** a constant. 2135 */ 2136 int sqlite3ExprIsConstant(Expr *p){ 2137 return exprIsConst(p, 1, 0); 2138 } 2139 2140 /* 2141 ** Walk an expression tree. Return non-zero if 2142 ** 2143 ** (1) the expression is constant, and 2144 ** (2) the expression does originate in the ON or USING clause 2145 ** of a LEFT JOIN, and 2146 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2147 ** operands created by the constant propagation optimization. 2148 ** 2149 ** When this routine returns true, it indicates that the expression 2150 ** can be added to the pParse->pConstExpr list and evaluated once when 2151 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2152 */ 2153 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2154 return exprIsConst(p, 2, 0); 2155 } 2156 2157 /* 2158 ** Walk an expression tree. Return non-zero if the expression is constant 2159 ** for any single row of the table with cursor iCur. In other words, the 2160 ** expression must not refer to any non-deterministic function nor any 2161 ** table other than iCur. 2162 */ 2163 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2164 return exprIsConst(p, 3, iCur); 2165 } 2166 2167 2168 /* 2169 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2170 */ 2171 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2172 ExprList *pGroupBy = pWalker->u.pGroupBy; 2173 int i; 2174 2175 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2176 ** it constant. */ 2177 for(i=0; i<pGroupBy->nExpr; i++){ 2178 Expr *p = pGroupBy->a[i].pExpr; 2179 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2180 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2181 if( sqlite3IsBinary(pColl) ){ 2182 return WRC_Prune; 2183 } 2184 } 2185 } 2186 2187 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2188 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2189 pWalker->eCode = 0; 2190 return WRC_Abort; 2191 } 2192 2193 return exprNodeIsConstant(pWalker, pExpr); 2194 } 2195 2196 /* 2197 ** Walk the expression tree passed as the first argument. Return non-zero 2198 ** if the expression consists entirely of constants or copies of terms 2199 ** in pGroupBy that sort with the BINARY collation sequence. 2200 ** 2201 ** This routine is used to determine if a term of the HAVING clause can 2202 ** be promoted into the WHERE clause. In order for such a promotion to work, 2203 ** the value of the HAVING clause term must be the same for all members of 2204 ** a "group". The requirement that the GROUP BY term must be BINARY 2205 ** assumes that no other collating sequence will have a finer-grained 2206 ** grouping than binary. In other words (A=B COLLATE binary) implies 2207 ** A=B in every other collating sequence. The requirement that the 2208 ** GROUP BY be BINARY is stricter than necessary. It would also work 2209 ** to promote HAVING clauses that use the same alternative collating 2210 ** sequence as the GROUP BY term, but that is much harder to check, 2211 ** alternative collating sequences are uncommon, and this is only an 2212 ** optimization, so we take the easy way out and simply require the 2213 ** GROUP BY to use the BINARY collating sequence. 2214 */ 2215 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2216 Walker w; 2217 w.eCode = 1; 2218 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2219 w.xSelectCallback = 0; 2220 w.u.pGroupBy = pGroupBy; 2221 w.pParse = pParse; 2222 sqlite3WalkExpr(&w, p); 2223 return w.eCode; 2224 } 2225 2226 /* 2227 ** Walk an expression tree for the DEFAULT field of a column definition 2228 ** in a CREATE TABLE statement. Return non-zero if the expression is 2229 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2230 ** the expression is constant or a function call with constant arguments. 2231 ** Return and 0 if there are any variables. 2232 ** 2233 ** isInit is true when parsing from sqlite_schema. isInit is false when 2234 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2235 ** (such as ? or $abc) in the expression are converted into NULL. When 2236 ** isInit is false, parameters raise an error. Parameters should not be 2237 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2238 ** allowed it, so we need to support it when reading sqlite_schema for 2239 ** backwards compatibility. 2240 ** 2241 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2242 ** 2243 ** For the purposes of this function, a double-quoted string (ex: "abc") 2244 ** is considered a variable but a single-quoted string (ex: 'abc') is 2245 ** a constant. 2246 */ 2247 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2248 assert( isInit==0 || isInit==1 ); 2249 return exprIsConst(p, 4+isInit, 0); 2250 } 2251 2252 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2253 /* 2254 ** Walk an expression tree. Return 1 if the expression contains a 2255 ** subquery of some kind. Return 0 if there are no subqueries. 2256 */ 2257 int sqlite3ExprContainsSubquery(Expr *p){ 2258 Walker w; 2259 w.eCode = 1; 2260 w.xExprCallback = sqlite3ExprWalkNoop; 2261 w.xSelectCallback = sqlite3SelectWalkFail; 2262 #ifdef SQLITE_DEBUG 2263 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2264 #endif 2265 sqlite3WalkExpr(&w, p); 2266 return w.eCode==0; 2267 } 2268 #endif 2269 2270 /* 2271 ** If the expression p codes a constant integer that is small enough 2272 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2273 ** in *pValue. If the expression is not an integer or if it is too big 2274 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2275 */ 2276 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2277 int rc = 0; 2278 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2279 2280 /* If an expression is an integer literal that fits in a signed 32-bit 2281 ** integer, then the EP_IntValue flag will have already been set */ 2282 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2283 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2284 2285 if( p->flags & EP_IntValue ){ 2286 *pValue = p->u.iValue; 2287 return 1; 2288 } 2289 switch( p->op ){ 2290 case TK_UPLUS: { 2291 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2292 break; 2293 } 2294 case TK_UMINUS: { 2295 int v; 2296 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2297 assert( v!=(-2147483647-1) ); 2298 *pValue = -v; 2299 rc = 1; 2300 } 2301 break; 2302 } 2303 default: break; 2304 } 2305 return rc; 2306 } 2307 2308 /* 2309 ** Return FALSE if there is no chance that the expression can be NULL. 2310 ** 2311 ** If the expression might be NULL or if the expression is too complex 2312 ** to tell return TRUE. 2313 ** 2314 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2315 ** when we know that a value cannot be NULL. Hence, a false positive 2316 ** (returning TRUE when in fact the expression can never be NULL) might 2317 ** be a small performance hit but is otherwise harmless. On the other 2318 ** hand, a false negative (returning FALSE when the result could be NULL) 2319 ** will likely result in an incorrect answer. So when in doubt, return 2320 ** TRUE. 2321 */ 2322 int sqlite3ExprCanBeNull(const Expr *p){ 2323 u8 op; 2324 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2325 p = p->pLeft; 2326 } 2327 op = p->op; 2328 if( op==TK_REGISTER ) op = p->op2; 2329 switch( op ){ 2330 case TK_INTEGER: 2331 case TK_STRING: 2332 case TK_FLOAT: 2333 case TK_BLOB: 2334 return 0; 2335 case TK_COLUMN: 2336 return ExprHasProperty(p, EP_CanBeNull) || 2337 p->y.pTab==0 || /* Reference to column of index on expression */ 2338 (p->iColumn>=0 2339 && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ 2340 && p->y.pTab->aCol[p->iColumn].notNull==0); 2341 default: 2342 return 1; 2343 } 2344 } 2345 2346 /* 2347 ** Return TRUE if the given expression is a constant which would be 2348 ** unchanged by OP_Affinity with the affinity given in the second 2349 ** argument. 2350 ** 2351 ** This routine is used to determine if the OP_Affinity operation 2352 ** can be omitted. When in doubt return FALSE. A false negative 2353 ** is harmless. A false positive, however, can result in the wrong 2354 ** answer. 2355 */ 2356 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2357 u8 op; 2358 int unaryMinus = 0; 2359 if( aff==SQLITE_AFF_BLOB ) return 1; 2360 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2361 if( p->op==TK_UMINUS ) unaryMinus = 1; 2362 p = p->pLeft; 2363 } 2364 op = p->op; 2365 if( op==TK_REGISTER ) op = p->op2; 2366 switch( op ){ 2367 case TK_INTEGER: { 2368 return aff>=SQLITE_AFF_NUMERIC; 2369 } 2370 case TK_FLOAT: { 2371 return aff>=SQLITE_AFF_NUMERIC; 2372 } 2373 case TK_STRING: { 2374 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2375 } 2376 case TK_BLOB: { 2377 return !unaryMinus; 2378 } 2379 case TK_COLUMN: { 2380 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2381 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2382 } 2383 default: { 2384 return 0; 2385 } 2386 } 2387 } 2388 2389 /* 2390 ** Return TRUE if the given string is a row-id column name. 2391 */ 2392 int sqlite3IsRowid(const char *z){ 2393 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2394 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2395 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2396 return 0; 2397 } 2398 2399 /* 2400 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2401 ** that can be simplified to a direct table access, then return 2402 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2403 ** or if the SELECT statement needs to be manifested into a transient 2404 ** table, then return NULL. 2405 */ 2406 #ifndef SQLITE_OMIT_SUBQUERY 2407 static Select *isCandidateForInOpt(Expr *pX){ 2408 Select *p; 2409 SrcList *pSrc; 2410 ExprList *pEList; 2411 Table *pTab; 2412 int i; 2413 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2414 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2415 p = pX->x.pSelect; 2416 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2417 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2418 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2419 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2420 return 0; /* No DISTINCT keyword and no aggregate functions */ 2421 } 2422 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2423 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2424 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2425 pSrc = p->pSrc; 2426 assert( pSrc!=0 ); 2427 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2428 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2429 pTab = pSrc->a[0].pTab; 2430 assert( pTab!=0 ); 2431 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2432 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2433 pEList = p->pEList; 2434 assert( pEList!=0 ); 2435 /* All SELECT results must be columns. */ 2436 for(i=0; i<pEList->nExpr; i++){ 2437 Expr *pRes = pEList->a[i].pExpr; 2438 if( pRes->op!=TK_COLUMN ) return 0; 2439 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2440 } 2441 return p; 2442 } 2443 #endif /* SQLITE_OMIT_SUBQUERY */ 2444 2445 #ifndef SQLITE_OMIT_SUBQUERY 2446 /* 2447 ** Generate code that checks the left-most column of index table iCur to see if 2448 ** it contains any NULL entries. Cause the register at regHasNull to be set 2449 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2450 ** to be set to NULL if iCur contains one or more NULL values. 2451 */ 2452 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2453 int addr1; 2454 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2455 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2456 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2457 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2458 VdbeComment((v, "first_entry_in(%d)", iCur)); 2459 sqlite3VdbeJumpHere(v, addr1); 2460 } 2461 #endif 2462 2463 2464 #ifndef SQLITE_OMIT_SUBQUERY 2465 /* 2466 ** The argument is an IN operator with a list (not a subquery) on the 2467 ** right-hand side. Return TRUE if that list is constant. 2468 */ 2469 static int sqlite3InRhsIsConstant(Expr *pIn){ 2470 Expr *pLHS; 2471 int res; 2472 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2473 pLHS = pIn->pLeft; 2474 pIn->pLeft = 0; 2475 res = sqlite3ExprIsConstant(pIn); 2476 pIn->pLeft = pLHS; 2477 return res; 2478 } 2479 #endif 2480 2481 /* 2482 ** This function is used by the implementation of the IN (...) operator. 2483 ** The pX parameter is the expression on the RHS of the IN operator, which 2484 ** might be either a list of expressions or a subquery. 2485 ** 2486 ** The job of this routine is to find or create a b-tree object that can 2487 ** be used either to test for membership in the RHS set or to iterate through 2488 ** all members of the RHS set, skipping duplicates. 2489 ** 2490 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2491 ** and pX->iTable is set to the index of that cursor. 2492 ** 2493 ** The returned value of this function indicates the b-tree type, as follows: 2494 ** 2495 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2496 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2497 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2498 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2499 ** populated epheremal table. 2500 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2501 ** implemented as a sequence of comparisons. 2502 ** 2503 ** An existing b-tree might be used if the RHS expression pX is a simple 2504 ** subquery such as: 2505 ** 2506 ** SELECT <column1>, <column2>... FROM <table> 2507 ** 2508 ** If the RHS of the IN operator is a list or a more complex subquery, then 2509 ** an ephemeral table might need to be generated from the RHS and then 2510 ** pX->iTable made to point to the ephemeral table instead of an 2511 ** existing table. 2512 ** 2513 ** The inFlags parameter must contain, at a minimum, one of the bits 2514 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2515 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2516 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2517 ** be used to loop over all values of the RHS of the IN operator. 2518 ** 2519 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2520 ** through the set members) then the b-tree must not contain duplicates. 2521 ** An epheremal table will be created unless the selected columns are guaranteed 2522 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2523 ** a UNIQUE constraint or index. 2524 ** 2525 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2526 ** for fast set membership tests) then an epheremal table must 2527 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2528 ** index can be found with the specified <columns> as its left-most. 2529 ** 2530 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2531 ** if the RHS of the IN operator is a list (not a subquery) then this 2532 ** routine might decide that creating an ephemeral b-tree for membership 2533 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2534 ** calling routine should implement the IN operator using a sequence 2535 ** of Eq or Ne comparison operations. 2536 ** 2537 ** When the b-tree is being used for membership tests, the calling function 2538 ** might need to know whether or not the RHS side of the IN operator 2539 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2540 ** if there is any chance that the (...) might contain a NULL value at 2541 ** runtime, then a register is allocated and the register number written 2542 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2543 ** NULL value, then *prRhsHasNull is left unchanged. 2544 ** 2545 ** If a register is allocated and its location stored in *prRhsHasNull, then 2546 ** the value in that register will be NULL if the b-tree contains one or more 2547 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2548 ** NULL values. 2549 ** 2550 ** If the aiMap parameter is not NULL, it must point to an array containing 2551 ** one element for each column returned by the SELECT statement on the RHS 2552 ** of the IN(...) operator. The i'th entry of the array is populated with the 2553 ** offset of the index column that matches the i'th column returned by the 2554 ** SELECT. For example, if the expression and selected index are: 2555 ** 2556 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2557 ** CREATE INDEX i1 ON t1(b, c, a); 2558 ** 2559 ** then aiMap[] is populated with {2, 0, 1}. 2560 */ 2561 #ifndef SQLITE_OMIT_SUBQUERY 2562 int sqlite3FindInIndex( 2563 Parse *pParse, /* Parsing context */ 2564 Expr *pX, /* The IN expression */ 2565 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2566 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2567 int *aiMap, /* Mapping from Index fields to RHS fields */ 2568 int *piTab /* OUT: index to use */ 2569 ){ 2570 Select *p; /* SELECT to the right of IN operator */ 2571 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2572 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2573 int mustBeUnique; /* True if RHS must be unique */ 2574 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2575 2576 assert( pX->op==TK_IN ); 2577 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2578 2579 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2580 ** whether or not the SELECT result contains NULL values, check whether 2581 ** or not NULL is actually possible (it may not be, for example, due 2582 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2583 ** set prRhsHasNull to 0 before continuing. */ 2584 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2585 int i; 2586 ExprList *pEList = pX->x.pSelect->pEList; 2587 for(i=0; i<pEList->nExpr; i++){ 2588 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2589 } 2590 if( i==pEList->nExpr ){ 2591 prRhsHasNull = 0; 2592 } 2593 } 2594 2595 /* Check to see if an existing table or index can be used to 2596 ** satisfy the query. This is preferable to generating a new 2597 ** ephemeral table. */ 2598 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2599 sqlite3 *db = pParse->db; /* Database connection */ 2600 Table *pTab; /* Table <table>. */ 2601 int iDb; /* Database idx for pTab */ 2602 ExprList *pEList = p->pEList; 2603 int nExpr = pEList->nExpr; 2604 2605 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2606 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2607 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2608 pTab = p->pSrc->a[0].pTab; 2609 2610 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2611 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2612 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 2613 sqlite3CodeVerifySchema(pParse, iDb); 2614 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2615 2616 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2617 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2618 /* The "x IN (SELECT rowid FROM table)" case */ 2619 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2620 VdbeCoverage(v); 2621 2622 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2623 eType = IN_INDEX_ROWID; 2624 ExplainQueryPlan((pParse, 0, 2625 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2626 sqlite3VdbeJumpHere(v, iAddr); 2627 }else{ 2628 Index *pIdx; /* Iterator variable */ 2629 int affinity_ok = 1; 2630 int i; 2631 2632 /* Check that the affinity that will be used to perform each 2633 ** comparison is the same as the affinity of each column in table 2634 ** on the RHS of the IN operator. If it not, it is not possible to 2635 ** use any index of the RHS table. */ 2636 for(i=0; i<nExpr && affinity_ok; i++){ 2637 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2638 int iCol = pEList->a[i].pExpr->iColumn; 2639 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2640 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2641 testcase( cmpaff==SQLITE_AFF_BLOB ); 2642 testcase( cmpaff==SQLITE_AFF_TEXT ); 2643 switch( cmpaff ){ 2644 case SQLITE_AFF_BLOB: 2645 break; 2646 case SQLITE_AFF_TEXT: 2647 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2648 ** other has no affinity and the other side is TEXT. Hence, 2649 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2650 ** and for the term on the LHS of the IN to have no affinity. */ 2651 assert( idxaff==SQLITE_AFF_TEXT ); 2652 break; 2653 default: 2654 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2655 } 2656 } 2657 2658 if( affinity_ok ){ 2659 /* Search for an existing index that will work for this IN operator */ 2660 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2661 Bitmask colUsed; /* Columns of the index used */ 2662 Bitmask mCol; /* Mask for the current column */ 2663 if( pIdx->nColumn<nExpr ) continue; 2664 if( pIdx->pPartIdxWhere!=0 ) continue; 2665 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2666 ** BITMASK(nExpr) without overflowing */ 2667 testcase( pIdx->nColumn==BMS-2 ); 2668 testcase( pIdx->nColumn==BMS-1 ); 2669 if( pIdx->nColumn>=BMS-1 ) continue; 2670 if( mustBeUnique ){ 2671 if( pIdx->nKeyCol>nExpr 2672 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2673 ){ 2674 continue; /* This index is not unique over the IN RHS columns */ 2675 } 2676 } 2677 2678 colUsed = 0; /* Columns of index used so far */ 2679 for(i=0; i<nExpr; i++){ 2680 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2681 Expr *pRhs = pEList->a[i].pExpr; 2682 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2683 int j; 2684 2685 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2686 for(j=0; j<nExpr; j++){ 2687 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2688 assert( pIdx->azColl[j] ); 2689 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2690 continue; 2691 } 2692 break; 2693 } 2694 if( j==nExpr ) break; 2695 mCol = MASKBIT(j); 2696 if( mCol & colUsed ) break; /* Each column used only once */ 2697 colUsed |= mCol; 2698 if( aiMap ) aiMap[i] = j; 2699 } 2700 2701 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2702 if( colUsed==(MASKBIT(nExpr)-1) ){ 2703 /* If we reach this point, that means the index pIdx is usable */ 2704 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2705 ExplainQueryPlan((pParse, 0, 2706 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2707 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2708 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2709 VdbeComment((v, "%s", pIdx->zName)); 2710 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2711 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2712 2713 if( prRhsHasNull ){ 2714 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2715 i64 mask = (1<<nExpr)-1; 2716 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2717 iTab, 0, 0, (u8*)&mask, P4_INT64); 2718 #endif 2719 *prRhsHasNull = ++pParse->nMem; 2720 if( nExpr==1 ){ 2721 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2722 } 2723 } 2724 sqlite3VdbeJumpHere(v, iAddr); 2725 } 2726 } /* End loop over indexes */ 2727 } /* End if( affinity_ok ) */ 2728 } /* End if not an rowid index */ 2729 } /* End attempt to optimize using an index */ 2730 2731 /* If no preexisting index is available for the IN clause 2732 ** and IN_INDEX_NOOP is an allowed reply 2733 ** and the RHS of the IN operator is a list, not a subquery 2734 ** and the RHS is not constant or has two or fewer terms, 2735 ** then it is not worth creating an ephemeral table to evaluate 2736 ** the IN operator so return IN_INDEX_NOOP. 2737 */ 2738 if( eType==0 2739 && (inFlags & IN_INDEX_NOOP_OK) 2740 && !ExprHasProperty(pX, EP_xIsSelect) 2741 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2742 ){ 2743 eType = IN_INDEX_NOOP; 2744 } 2745 2746 if( eType==0 ){ 2747 /* Could not find an existing table or index to use as the RHS b-tree. 2748 ** We will have to generate an ephemeral table to do the job. 2749 */ 2750 u32 savedNQueryLoop = pParse->nQueryLoop; 2751 int rMayHaveNull = 0; 2752 eType = IN_INDEX_EPH; 2753 if( inFlags & IN_INDEX_LOOP ){ 2754 pParse->nQueryLoop = 0; 2755 }else if( prRhsHasNull ){ 2756 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2757 } 2758 assert( pX->op==TK_IN ); 2759 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2760 if( rMayHaveNull ){ 2761 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2762 } 2763 pParse->nQueryLoop = savedNQueryLoop; 2764 } 2765 2766 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2767 int i, n; 2768 n = sqlite3ExprVectorSize(pX->pLeft); 2769 for(i=0; i<n; i++) aiMap[i] = i; 2770 } 2771 *piTab = iTab; 2772 return eType; 2773 } 2774 #endif 2775 2776 #ifndef SQLITE_OMIT_SUBQUERY 2777 /* 2778 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2779 ** function allocates and returns a nul-terminated string containing 2780 ** the affinities to be used for each column of the comparison. 2781 ** 2782 ** It is the responsibility of the caller to ensure that the returned 2783 ** string is eventually freed using sqlite3DbFree(). 2784 */ 2785 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2786 Expr *pLeft = pExpr->pLeft; 2787 int nVal = sqlite3ExprVectorSize(pLeft); 2788 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2789 char *zRet; 2790 2791 assert( pExpr->op==TK_IN ); 2792 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2793 if( zRet ){ 2794 int i; 2795 for(i=0; i<nVal; i++){ 2796 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2797 char a = sqlite3ExprAffinity(pA); 2798 if( pSelect ){ 2799 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2800 }else{ 2801 zRet[i] = a; 2802 } 2803 } 2804 zRet[nVal] = '\0'; 2805 } 2806 return zRet; 2807 } 2808 #endif 2809 2810 #ifndef SQLITE_OMIT_SUBQUERY 2811 /* 2812 ** Load the Parse object passed as the first argument with an error 2813 ** message of the form: 2814 ** 2815 ** "sub-select returns N columns - expected M" 2816 */ 2817 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2818 if( pParse->nErr==0 ){ 2819 const char *zFmt = "sub-select returns %d columns - expected %d"; 2820 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2821 } 2822 } 2823 #endif 2824 2825 /* 2826 ** Expression pExpr is a vector that has been used in a context where 2827 ** it is not permitted. If pExpr is a sub-select vector, this routine 2828 ** loads the Parse object with a message of the form: 2829 ** 2830 ** "sub-select returns N columns - expected 1" 2831 ** 2832 ** Or, if it is a regular scalar vector: 2833 ** 2834 ** "row value misused" 2835 */ 2836 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2837 #ifndef SQLITE_OMIT_SUBQUERY 2838 if( pExpr->flags & EP_xIsSelect ){ 2839 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2840 }else 2841 #endif 2842 { 2843 sqlite3ErrorMsg(pParse, "row value misused"); 2844 } 2845 } 2846 2847 #ifndef SQLITE_OMIT_SUBQUERY 2848 /* 2849 ** Generate code that will construct an ephemeral table containing all terms 2850 ** in the RHS of an IN operator. The IN operator can be in either of two 2851 ** forms: 2852 ** 2853 ** x IN (4,5,11) -- IN operator with list on right-hand side 2854 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2855 ** 2856 ** The pExpr parameter is the IN operator. The cursor number for the 2857 ** constructed ephermeral table is returned. The first time the ephemeral 2858 ** table is computed, the cursor number is also stored in pExpr->iTable, 2859 ** however the cursor number returned might not be the same, as it might 2860 ** have been duplicated using OP_OpenDup. 2861 ** 2862 ** If the LHS expression ("x" in the examples) is a column value, or 2863 ** the SELECT statement returns a column value, then the affinity of that 2864 ** column is used to build the index keys. If both 'x' and the 2865 ** SELECT... statement are columns, then numeric affinity is used 2866 ** if either column has NUMERIC or INTEGER affinity. If neither 2867 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2868 ** is used. 2869 */ 2870 void sqlite3CodeRhsOfIN( 2871 Parse *pParse, /* Parsing context */ 2872 Expr *pExpr, /* The IN operator */ 2873 int iTab /* Use this cursor number */ 2874 ){ 2875 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2876 int addr; /* Address of OP_OpenEphemeral instruction */ 2877 Expr *pLeft; /* the LHS of the IN operator */ 2878 KeyInfo *pKeyInfo = 0; /* Key information */ 2879 int nVal; /* Size of vector pLeft */ 2880 Vdbe *v; /* The prepared statement under construction */ 2881 2882 v = pParse->pVdbe; 2883 assert( v!=0 ); 2884 2885 /* The evaluation of the IN must be repeated every time it 2886 ** is encountered if any of the following is true: 2887 ** 2888 ** * The right-hand side is a correlated subquery 2889 ** * The right-hand side is an expression list containing variables 2890 ** * We are inside a trigger 2891 ** 2892 ** If all of the above are false, then we can compute the RHS just once 2893 ** and reuse it many names. 2894 */ 2895 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2896 /* Reuse of the RHS is allowed */ 2897 /* If this routine has already been coded, but the previous code 2898 ** might not have been invoked yet, so invoke it now as a subroutine. 2899 */ 2900 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2901 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2902 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2903 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2904 pExpr->x.pSelect->selId)); 2905 } 2906 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2907 pExpr->y.sub.iAddr); 2908 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2909 sqlite3VdbeJumpHere(v, addrOnce); 2910 return; 2911 } 2912 2913 /* Begin coding the subroutine */ 2914 ExprSetProperty(pExpr, EP_Subrtn); 2915 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 2916 pExpr->y.sub.regReturn = ++pParse->nMem; 2917 pExpr->y.sub.iAddr = 2918 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2919 VdbeComment((v, "return address")); 2920 2921 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2922 } 2923 2924 /* Check to see if this is a vector IN operator */ 2925 pLeft = pExpr->pLeft; 2926 nVal = sqlite3ExprVectorSize(pLeft); 2927 2928 /* Construct the ephemeral table that will contain the content of 2929 ** RHS of the IN operator. 2930 */ 2931 pExpr->iTable = iTab; 2932 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2933 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2934 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2935 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2936 }else{ 2937 VdbeComment((v, "RHS of IN operator")); 2938 } 2939 #endif 2940 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2941 2942 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2943 /* Case 1: expr IN (SELECT ...) 2944 ** 2945 ** Generate code to write the results of the select into the temporary 2946 ** table allocated and opened above. 2947 */ 2948 Select *pSelect = pExpr->x.pSelect; 2949 ExprList *pEList = pSelect->pEList; 2950 2951 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2952 addrOnce?"":"CORRELATED ", pSelect->selId 2953 )); 2954 /* If the LHS and RHS of the IN operator do not match, that 2955 ** error will have been caught long before we reach this point. */ 2956 if( ALWAYS(pEList->nExpr==nVal) ){ 2957 SelectDest dest; 2958 int i; 2959 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2960 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2961 pSelect->iLimit = 0; 2962 testcase( pSelect->selFlags & SF_Distinct ); 2963 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2964 if( sqlite3Select(pParse, pSelect, &dest) ){ 2965 sqlite3DbFree(pParse->db, dest.zAffSdst); 2966 sqlite3KeyInfoUnref(pKeyInfo); 2967 return; 2968 } 2969 sqlite3DbFree(pParse->db, dest.zAffSdst); 2970 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2971 assert( pEList!=0 ); 2972 assert( pEList->nExpr>0 ); 2973 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2974 for(i=0; i<nVal; i++){ 2975 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2976 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2977 pParse, p, pEList->a[i].pExpr 2978 ); 2979 } 2980 } 2981 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2982 /* Case 2: expr IN (exprlist) 2983 ** 2984 ** For each expression, build an index key from the evaluation and 2985 ** store it in the temporary table. If <expr> is a column, then use 2986 ** that columns affinity when building index keys. If <expr> is not 2987 ** a column, use numeric affinity. 2988 */ 2989 char affinity; /* Affinity of the LHS of the IN */ 2990 int i; 2991 ExprList *pList = pExpr->x.pList; 2992 struct ExprList_item *pItem; 2993 int r1, r2; 2994 affinity = sqlite3ExprAffinity(pLeft); 2995 if( affinity<=SQLITE_AFF_NONE ){ 2996 affinity = SQLITE_AFF_BLOB; 2997 }else if( affinity==SQLITE_AFF_REAL ){ 2998 affinity = SQLITE_AFF_NUMERIC; 2999 } 3000 if( pKeyInfo ){ 3001 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3002 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3003 } 3004 3005 /* Loop through each expression in <exprlist>. */ 3006 r1 = sqlite3GetTempReg(pParse); 3007 r2 = sqlite3GetTempReg(pParse); 3008 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 3009 Expr *pE2 = pItem->pExpr; 3010 3011 /* If the expression is not constant then we will need to 3012 ** disable the test that was generated above that makes sure 3013 ** this code only executes once. Because for a non-constant 3014 ** expression we need to rerun this code each time. 3015 */ 3016 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 3017 sqlite3VdbeChangeToNoop(v, addrOnce); 3018 ExprClearProperty(pExpr, EP_Subrtn); 3019 addrOnce = 0; 3020 } 3021 3022 /* Evaluate the expression and insert it into the temp table */ 3023 sqlite3ExprCode(pParse, pE2, r1); 3024 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3025 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3026 } 3027 sqlite3ReleaseTempReg(pParse, r1); 3028 sqlite3ReleaseTempReg(pParse, r2); 3029 } 3030 if( pKeyInfo ){ 3031 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3032 } 3033 if( addrOnce ){ 3034 sqlite3VdbeJumpHere(v, addrOnce); 3035 /* Subroutine return */ 3036 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3037 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3038 sqlite3ClearTempRegCache(pParse); 3039 } 3040 } 3041 #endif /* SQLITE_OMIT_SUBQUERY */ 3042 3043 /* 3044 ** Generate code for scalar subqueries used as a subquery expression 3045 ** or EXISTS operator: 3046 ** 3047 ** (SELECT a FROM b) -- subquery 3048 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3049 ** 3050 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3051 ** 3052 ** Return the register that holds the result. For a multi-column SELECT, 3053 ** the result is stored in a contiguous array of registers and the 3054 ** return value is the register of the left-most result column. 3055 ** Return 0 if an error occurs. 3056 */ 3057 #ifndef SQLITE_OMIT_SUBQUERY 3058 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3059 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3060 int rReg = 0; /* Register storing resulting */ 3061 Select *pSel; /* SELECT statement to encode */ 3062 SelectDest dest; /* How to deal with SELECT result */ 3063 int nReg; /* Registers to allocate */ 3064 Expr *pLimit; /* New limit expression */ 3065 3066 Vdbe *v = pParse->pVdbe; 3067 assert( v!=0 ); 3068 testcase( pExpr->op==TK_EXISTS ); 3069 testcase( pExpr->op==TK_SELECT ); 3070 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3071 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 3072 pSel = pExpr->x.pSelect; 3073 3074 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3075 ** is encountered if any of the following is true: 3076 ** 3077 ** * The right-hand side is a correlated subquery 3078 ** * The right-hand side is an expression list containing variables 3079 ** * We are inside a trigger 3080 ** 3081 ** If all of the above are false, then we can run this code just once 3082 ** save the results, and reuse the same result on subsequent invocations. 3083 */ 3084 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3085 /* If this routine has already been coded, then invoke it as a 3086 ** subroutine. */ 3087 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3088 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3089 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3090 pExpr->y.sub.iAddr); 3091 return pExpr->iTable; 3092 } 3093 3094 /* Begin coding the subroutine */ 3095 ExprSetProperty(pExpr, EP_Subrtn); 3096 pExpr->y.sub.regReturn = ++pParse->nMem; 3097 pExpr->y.sub.iAddr = 3098 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3099 VdbeComment((v, "return address")); 3100 3101 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3102 } 3103 3104 /* For a SELECT, generate code to put the values for all columns of 3105 ** the first row into an array of registers and return the index of 3106 ** the first register. 3107 ** 3108 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3109 ** into a register and return that register number. 3110 ** 3111 ** In both cases, the query is augmented with "LIMIT 1". Any 3112 ** preexisting limit is discarded in place of the new LIMIT 1. 3113 */ 3114 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3115 addrOnce?"":"CORRELATED ", pSel->selId)); 3116 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3117 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3118 pParse->nMem += nReg; 3119 if( pExpr->op==TK_SELECT ){ 3120 dest.eDest = SRT_Mem; 3121 dest.iSdst = dest.iSDParm; 3122 dest.nSdst = nReg; 3123 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3124 VdbeComment((v, "Init subquery result")); 3125 }else{ 3126 dest.eDest = SRT_Exists; 3127 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3128 VdbeComment((v, "Init EXISTS result")); 3129 } 3130 if( pSel->pLimit ){ 3131 /* The subquery already has a limit. If the pre-existing limit is X 3132 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3133 sqlite3 *db = pParse->db; 3134 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3135 if( pLimit ){ 3136 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3137 pLimit = sqlite3PExpr(pParse, TK_NE, 3138 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3139 } 3140 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3141 pSel->pLimit->pLeft = pLimit; 3142 }else{ 3143 /* If there is no pre-existing limit add a limit of 1 */ 3144 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3145 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3146 } 3147 pSel->iLimit = 0; 3148 if( sqlite3Select(pParse, pSel, &dest) ){ 3149 return 0; 3150 } 3151 pExpr->iTable = rReg = dest.iSDParm; 3152 ExprSetVVAProperty(pExpr, EP_NoReduce); 3153 if( addrOnce ){ 3154 sqlite3VdbeJumpHere(v, addrOnce); 3155 3156 /* Subroutine return */ 3157 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3158 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3159 sqlite3ClearTempRegCache(pParse); 3160 } 3161 3162 return rReg; 3163 } 3164 #endif /* SQLITE_OMIT_SUBQUERY */ 3165 3166 #ifndef SQLITE_OMIT_SUBQUERY 3167 /* 3168 ** Expr pIn is an IN(...) expression. This function checks that the 3169 ** sub-select on the RHS of the IN() operator has the same number of 3170 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3171 ** a sub-query, that the LHS is a vector of size 1. 3172 */ 3173 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3174 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3175 if( (pIn->flags & EP_xIsSelect) ){ 3176 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3177 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3178 return 1; 3179 } 3180 }else if( nVector!=1 ){ 3181 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3182 return 1; 3183 } 3184 return 0; 3185 } 3186 #endif 3187 3188 #ifndef SQLITE_OMIT_SUBQUERY 3189 /* 3190 ** Generate code for an IN expression. 3191 ** 3192 ** x IN (SELECT ...) 3193 ** x IN (value, value, ...) 3194 ** 3195 ** The left-hand side (LHS) is a scalar or vector expression. The 3196 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3197 ** subquery. If the RHS is a subquery, the number of result columns must 3198 ** match the number of columns in the vector on the LHS. If the RHS is 3199 ** a list of values, the LHS must be a scalar. 3200 ** 3201 ** The IN operator is true if the LHS value is contained within the RHS. 3202 ** The result is false if the LHS is definitely not in the RHS. The 3203 ** result is NULL if the presence of the LHS in the RHS cannot be 3204 ** determined due to NULLs. 3205 ** 3206 ** This routine generates code that jumps to destIfFalse if the LHS is not 3207 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3208 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3209 ** within the RHS then fall through. 3210 ** 3211 ** See the separate in-operator.md documentation file in the canonical 3212 ** SQLite source tree for additional information. 3213 */ 3214 static void sqlite3ExprCodeIN( 3215 Parse *pParse, /* Parsing and code generating context */ 3216 Expr *pExpr, /* The IN expression */ 3217 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3218 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3219 ){ 3220 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3221 int eType; /* Type of the RHS */ 3222 int rLhs; /* Register(s) holding the LHS values */ 3223 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3224 Vdbe *v; /* Statement under construction */ 3225 int *aiMap = 0; /* Map from vector field to index column */ 3226 char *zAff = 0; /* Affinity string for comparisons */ 3227 int nVector; /* Size of vectors for this IN operator */ 3228 int iDummy; /* Dummy parameter to exprCodeVector() */ 3229 Expr *pLeft; /* The LHS of the IN operator */ 3230 int i; /* loop counter */ 3231 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3232 int destStep6 = 0; /* Start of code for Step 6 */ 3233 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3234 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3235 int addrTop; /* Top of the step-6 loop */ 3236 int iTab = 0; /* Index to use */ 3237 u8 okConstFactor = pParse->okConstFactor; 3238 3239 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3240 pLeft = pExpr->pLeft; 3241 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3242 zAff = exprINAffinity(pParse, pExpr); 3243 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3244 aiMap = (int*)sqlite3DbMallocZero( 3245 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3246 ); 3247 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3248 3249 /* Attempt to compute the RHS. After this step, if anything other than 3250 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3251 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3252 ** the RHS has not yet been coded. */ 3253 v = pParse->pVdbe; 3254 assert( v!=0 ); /* OOM detected prior to this routine */ 3255 VdbeNoopComment((v, "begin IN expr")); 3256 eType = sqlite3FindInIndex(pParse, pExpr, 3257 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3258 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3259 aiMap, &iTab); 3260 3261 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3262 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3263 ); 3264 #ifdef SQLITE_DEBUG 3265 /* Confirm that aiMap[] contains nVector integer values between 0 and 3266 ** nVector-1. */ 3267 for(i=0; i<nVector; i++){ 3268 int j, cnt; 3269 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3270 assert( cnt==1 ); 3271 } 3272 #endif 3273 3274 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3275 ** vector, then it is stored in an array of nVector registers starting 3276 ** at r1. 3277 ** 3278 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3279 ** so that the fields are in the same order as an existing index. The 3280 ** aiMap[] array contains a mapping from the original LHS field order to 3281 ** the field order that matches the RHS index. 3282 ** 3283 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3284 ** even if it is constant, as OP_Affinity may be used on the register 3285 ** by code generated below. */ 3286 assert( pParse->okConstFactor==okConstFactor ); 3287 pParse->okConstFactor = 0; 3288 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3289 pParse->okConstFactor = okConstFactor; 3290 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3291 if( i==nVector ){ 3292 /* LHS fields are not reordered */ 3293 rLhs = rLhsOrig; 3294 }else{ 3295 /* Need to reorder the LHS fields according to aiMap */ 3296 rLhs = sqlite3GetTempRange(pParse, nVector); 3297 for(i=0; i<nVector; i++){ 3298 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3299 } 3300 } 3301 3302 /* If sqlite3FindInIndex() did not find or create an index that is 3303 ** suitable for evaluating the IN operator, then evaluate using a 3304 ** sequence of comparisons. 3305 ** 3306 ** This is step (1) in the in-operator.md optimized algorithm. 3307 */ 3308 if( eType==IN_INDEX_NOOP ){ 3309 ExprList *pList = pExpr->x.pList; 3310 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3311 int labelOk = sqlite3VdbeMakeLabel(pParse); 3312 int r2, regToFree; 3313 int regCkNull = 0; 3314 int ii; 3315 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3316 if( destIfNull!=destIfFalse ){ 3317 regCkNull = sqlite3GetTempReg(pParse); 3318 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3319 } 3320 for(ii=0; ii<pList->nExpr; ii++){ 3321 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3322 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3323 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3324 } 3325 sqlite3ReleaseTempReg(pParse, regToFree); 3326 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3327 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3328 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3329 (void*)pColl, P4_COLLSEQ); 3330 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3331 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3332 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3333 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3334 sqlite3VdbeChangeP5(v, zAff[0]); 3335 }else{ 3336 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3337 assert( destIfNull==destIfFalse ); 3338 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3339 (void*)pColl, P4_COLLSEQ); 3340 VdbeCoverageIf(v, op==OP_Ne); 3341 VdbeCoverageIf(v, op==OP_IsNull); 3342 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3343 } 3344 } 3345 if( regCkNull ){ 3346 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3347 sqlite3VdbeGoto(v, destIfFalse); 3348 } 3349 sqlite3VdbeResolveLabel(v, labelOk); 3350 sqlite3ReleaseTempReg(pParse, regCkNull); 3351 goto sqlite3ExprCodeIN_finished; 3352 } 3353 3354 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3355 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3356 ** We will then skip the binary search of the RHS. 3357 */ 3358 if( destIfNull==destIfFalse ){ 3359 destStep2 = destIfFalse; 3360 }else{ 3361 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3362 } 3363 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3364 for(i=0; i<nVector; i++){ 3365 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3366 if( sqlite3ExprCanBeNull(p) ){ 3367 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3368 VdbeCoverage(v); 3369 } 3370 } 3371 3372 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3373 ** of the RHS using the LHS as a probe. If found, the result is 3374 ** true. 3375 */ 3376 if( eType==IN_INDEX_ROWID ){ 3377 /* In this case, the RHS is the ROWID of table b-tree and so we also 3378 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3379 ** into a single opcode. */ 3380 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3381 VdbeCoverage(v); 3382 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3383 }else{ 3384 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3385 if( destIfFalse==destIfNull ){ 3386 /* Combine Step 3 and Step 5 into a single opcode */ 3387 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3388 rLhs, nVector); VdbeCoverage(v); 3389 goto sqlite3ExprCodeIN_finished; 3390 } 3391 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3392 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3393 rLhs, nVector); VdbeCoverage(v); 3394 } 3395 3396 /* Step 4. If the RHS is known to be non-NULL and we did not find 3397 ** an match on the search above, then the result must be FALSE. 3398 */ 3399 if( rRhsHasNull && nVector==1 ){ 3400 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3401 VdbeCoverage(v); 3402 } 3403 3404 /* Step 5. If we do not care about the difference between NULL and 3405 ** FALSE, then just return false. 3406 */ 3407 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3408 3409 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3410 ** If any comparison is NULL, then the result is NULL. If all 3411 ** comparisons are FALSE then the final result is FALSE. 3412 ** 3413 ** For a scalar LHS, it is sufficient to check just the first row 3414 ** of the RHS. 3415 */ 3416 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3417 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3418 VdbeCoverage(v); 3419 if( nVector>1 ){ 3420 destNotNull = sqlite3VdbeMakeLabel(pParse); 3421 }else{ 3422 /* For nVector==1, combine steps 6 and 7 by immediately returning 3423 ** FALSE if the first comparison is not NULL */ 3424 destNotNull = destIfFalse; 3425 } 3426 for(i=0; i<nVector; i++){ 3427 Expr *p; 3428 CollSeq *pColl; 3429 int r3 = sqlite3GetTempReg(pParse); 3430 p = sqlite3VectorFieldSubexpr(pLeft, i); 3431 pColl = sqlite3ExprCollSeq(pParse, p); 3432 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3433 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3434 (void*)pColl, P4_COLLSEQ); 3435 VdbeCoverage(v); 3436 sqlite3ReleaseTempReg(pParse, r3); 3437 } 3438 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3439 if( nVector>1 ){ 3440 sqlite3VdbeResolveLabel(v, destNotNull); 3441 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3442 VdbeCoverage(v); 3443 3444 /* Step 7: If we reach this point, we know that the result must 3445 ** be false. */ 3446 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3447 } 3448 3449 /* Jumps here in order to return true. */ 3450 sqlite3VdbeJumpHere(v, addrTruthOp); 3451 3452 sqlite3ExprCodeIN_finished: 3453 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3454 VdbeComment((v, "end IN expr")); 3455 sqlite3ExprCodeIN_oom_error: 3456 sqlite3DbFree(pParse->db, aiMap); 3457 sqlite3DbFree(pParse->db, zAff); 3458 } 3459 #endif /* SQLITE_OMIT_SUBQUERY */ 3460 3461 #ifndef SQLITE_OMIT_FLOATING_POINT 3462 /* 3463 ** Generate an instruction that will put the floating point 3464 ** value described by z[0..n-1] into register iMem. 3465 ** 3466 ** The z[] string will probably not be zero-terminated. But the 3467 ** z[n] character is guaranteed to be something that does not look 3468 ** like the continuation of the number. 3469 */ 3470 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3471 if( ALWAYS(z!=0) ){ 3472 double value; 3473 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3474 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3475 if( negateFlag ) value = -value; 3476 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3477 } 3478 } 3479 #endif 3480 3481 3482 /* 3483 ** Generate an instruction that will put the integer describe by 3484 ** text z[0..n-1] into register iMem. 3485 ** 3486 ** Expr.u.zToken is always UTF8 and zero-terminated. 3487 */ 3488 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3489 Vdbe *v = pParse->pVdbe; 3490 if( pExpr->flags & EP_IntValue ){ 3491 int i = pExpr->u.iValue; 3492 assert( i>=0 ); 3493 if( negFlag ) i = -i; 3494 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3495 }else{ 3496 int c; 3497 i64 value; 3498 const char *z = pExpr->u.zToken; 3499 assert( z!=0 ); 3500 c = sqlite3DecOrHexToI64(z, &value); 3501 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3502 #ifdef SQLITE_OMIT_FLOATING_POINT 3503 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3504 #else 3505 #ifndef SQLITE_OMIT_HEX_INTEGER 3506 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3507 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3508 }else 3509 #endif 3510 { 3511 codeReal(v, z, negFlag, iMem); 3512 } 3513 #endif 3514 }else{ 3515 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3516 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3517 } 3518 } 3519 } 3520 3521 3522 /* Generate code that will load into register regOut a value that is 3523 ** appropriate for the iIdxCol-th column of index pIdx. 3524 */ 3525 void sqlite3ExprCodeLoadIndexColumn( 3526 Parse *pParse, /* The parsing context */ 3527 Index *pIdx, /* The index whose column is to be loaded */ 3528 int iTabCur, /* Cursor pointing to a table row */ 3529 int iIdxCol, /* The column of the index to be loaded */ 3530 int regOut /* Store the index column value in this register */ 3531 ){ 3532 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3533 if( iTabCol==XN_EXPR ){ 3534 assert( pIdx->aColExpr ); 3535 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3536 pParse->iSelfTab = iTabCur + 1; 3537 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3538 pParse->iSelfTab = 0; 3539 }else{ 3540 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3541 iTabCol, regOut); 3542 } 3543 } 3544 3545 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3546 /* 3547 ** Generate code that will compute the value of generated column pCol 3548 ** and store the result in register regOut 3549 */ 3550 void sqlite3ExprCodeGeneratedColumn( 3551 Parse *pParse, 3552 Column *pCol, 3553 int regOut 3554 ){ 3555 int iAddr; 3556 Vdbe *v = pParse->pVdbe; 3557 assert( v!=0 ); 3558 assert( pParse->iSelfTab!=0 ); 3559 if( pParse->iSelfTab>0 ){ 3560 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3561 }else{ 3562 iAddr = 0; 3563 } 3564 sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut); 3565 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3566 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3567 } 3568 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3569 } 3570 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3571 3572 /* 3573 ** Generate code to extract the value of the iCol-th column of a table. 3574 */ 3575 void sqlite3ExprCodeGetColumnOfTable( 3576 Vdbe *v, /* Parsing context */ 3577 Table *pTab, /* The table containing the value */ 3578 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3579 int iCol, /* Index of the column to extract */ 3580 int regOut /* Extract the value into this register */ 3581 ){ 3582 Column *pCol; 3583 assert( v!=0 ); 3584 if( pTab==0 ){ 3585 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3586 return; 3587 } 3588 if( iCol<0 || iCol==pTab->iPKey ){ 3589 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3590 }else{ 3591 int op; 3592 int x; 3593 if( IsVirtual(pTab) ){ 3594 op = OP_VColumn; 3595 x = iCol; 3596 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3597 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3598 Parse *pParse = sqlite3VdbeParser(v); 3599 if( pCol->colFlags & COLFLAG_BUSY ){ 3600 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName); 3601 }else{ 3602 int savedSelfTab = pParse->iSelfTab; 3603 pCol->colFlags |= COLFLAG_BUSY; 3604 pParse->iSelfTab = iTabCur+1; 3605 sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut); 3606 pParse->iSelfTab = savedSelfTab; 3607 pCol->colFlags &= ~COLFLAG_BUSY; 3608 } 3609 return; 3610 #endif 3611 }else if( !HasRowid(pTab) ){ 3612 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3613 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3614 op = OP_Column; 3615 }else{ 3616 x = sqlite3TableColumnToStorage(pTab,iCol); 3617 testcase( x!=iCol ); 3618 op = OP_Column; 3619 } 3620 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3621 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3622 } 3623 } 3624 3625 /* 3626 ** Generate code that will extract the iColumn-th column from 3627 ** table pTab and store the column value in register iReg. 3628 ** 3629 ** There must be an open cursor to pTab in iTable when this routine 3630 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3631 */ 3632 int sqlite3ExprCodeGetColumn( 3633 Parse *pParse, /* Parsing and code generating context */ 3634 Table *pTab, /* Description of the table we are reading from */ 3635 int iColumn, /* Index of the table column */ 3636 int iTable, /* The cursor pointing to the table */ 3637 int iReg, /* Store results here */ 3638 u8 p5 /* P5 value for OP_Column + FLAGS */ 3639 ){ 3640 assert( pParse->pVdbe!=0 ); 3641 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3642 if( p5 ){ 3643 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3644 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3645 } 3646 return iReg; 3647 } 3648 3649 /* 3650 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3651 ** over to iTo..iTo+nReg-1. 3652 */ 3653 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3654 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3655 } 3656 3657 /* 3658 ** Convert a scalar expression node to a TK_REGISTER referencing 3659 ** register iReg. The caller must ensure that iReg already contains 3660 ** the correct value for the expression. 3661 */ 3662 static void exprToRegister(Expr *pExpr, int iReg){ 3663 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3664 if( NEVER(p==0) ) return; 3665 p->op2 = p->op; 3666 p->op = TK_REGISTER; 3667 p->iTable = iReg; 3668 ExprClearProperty(p, EP_Skip); 3669 } 3670 3671 /* 3672 ** Evaluate an expression (either a vector or a scalar expression) and store 3673 ** the result in continguous temporary registers. Return the index of 3674 ** the first register used to store the result. 3675 ** 3676 ** If the returned result register is a temporary scalar, then also write 3677 ** that register number into *piFreeable. If the returned result register 3678 ** is not a temporary or if the expression is a vector set *piFreeable 3679 ** to 0. 3680 */ 3681 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3682 int iResult; 3683 int nResult = sqlite3ExprVectorSize(p); 3684 if( nResult==1 ){ 3685 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3686 }else{ 3687 *piFreeable = 0; 3688 if( p->op==TK_SELECT ){ 3689 #if SQLITE_OMIT_SUBQUERY 3690 iResult = 0; 3691 #else 3692 iResult = sqlite3CodeSubselect(pParse, p); 3693 #endif 3694 }else{ 3695 int i; 3696 iResult = pParse->nMem+1; 3697 pParse->nMem += nResult; 3698 for(i=0; i<nResult; i++){ 3699 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3700 } 3701 } 3702 } 3703 return iResult; 3704 } 3705 3706 /* 3707 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3708 ** so that a subsequent copy will not be merged into this one. 3709 */ 3710 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3711 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3712 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3713 } 3714 } 3715 3716 /* 3717 ** Generate code to implement special SQL functions that are implemented 3718 ** in-line rather than by using the usual callbacks. 3719 */ 3720 static int exprCodeInlineFunction( 3721 Parse *pParse, /* Parsing context */ 3722 ExprList *pFarg, /* List of function arguments */ 3723 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3724 int target /* Store function result in this register */ 3725 ){ 3726 int nFarg; 3727 Vdbe *v = pParse->pVdbe; 3728 assert( v!=0 ); 3729 assert( pFarg!=0 ); 3730 nFarg = pFarg->nExpr; 3731 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3732 switch( iFuncId ){ 3733 case INLINEFUNC_coalesce: { 3734 /* Attempt a direct implementation of the built-in COALESCE() and 3735 ** IFNULL() functions. This avoids unnecessary evaluation of 3736 ** arguments past the first non-NULL argument. 3737 */ 3738 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3739 int i; 3740 assert( nFarg>=2 ); 3741 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3742 for(i=1; i<nFarg; i++){ 3743 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3744 VdbeCoverage(v); 3745 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3746 } 3747 setDoNotMergeFlagOnCopy(v); 3748 sqlite3VdbeResolveLabel(v, endCoalesce); 3749 break; 3750 } 3751 case INLINEFUNC_iif: { 3752 Expr caseExpr; 3753 memset(&caseExpr, 0, sizeof(caseExpr)); 3754 caseExpr.op = TK_CASE; 3755 caseExpr.x.pList = pFarg; 3756 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3757 } 3758 3759 default: { 3760 /* The UNLIKELY() function is a no-op. The result is the value 3761 ** of the first argument. 3762 */ 3763 assert( nFarg==1 || nFarg==2 ); 3764 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3765 break; 3766 } 3767 3768 /*********************************************************************** 3769 ** Test-only SQL functions that are only usable if enabled 3770 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3771 */ 3772 case INLINEFUNC_expr_compare: { 3773 /* Compare two expressions using sqlite3ExprCompare() */ 3774 assert( nFarg==2 ); 3775 sqlite3VdbeAddOp2(v, OP_Integer, 3776 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3777 target); 3778 break; 3779 } 3780 3781 case INLINEFUNC_expr_implies_expr: { 3782 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3783 assert( nFarg==2 ); 3784 sqlite3VdbeAddOp2(v, OP_Integer, 3785 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3786 target); 3787 break; 3788 } 3789 3790 case INLINEFUNC_implies_nonnull_row: { 3791 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3792 Expr *pA1; 3793 assert( nFarg==2 ); 3794 pA1 = pFarg->a[1].pExpr; 3795 if( pA1->op==TK_COLUMN ){ 3796 sqlite3VdbeAddOp2(v, OP_Integer, 3797 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3798 target); 3799 }else{ 3800 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3801 } 3802 break; 3803 } 3804 3805 #ifdef SQLITE_DEBUG 3806 case INLINEFUNC_affinity: { 3807 /* The AFFINITY() function evaluates to a string that describes 3808 ** the type affinity of the argument. This is used for testing of 3809 ** the SQLite type logic. 3810 */ 3811 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3812 char aff; 3813 assert( nFarg==1 ); 3814 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3815 sqlite3VdbeLoadString(v, target, 3816 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3817 break; 3818 } 3819 #endif 3820 } 3821 return target; 3822 } 3823 3824 3825 /* 3826 ** Generate code into the current Vdbe to evaluate the given 3827 ** expression. Attempt to store the results in register "target". 3828 ** Return the register where results are stored. 3829 ** 3830 ** With this routine, there is no guarantee that results will 3831 ** be stored in target. The result might be stored in some other 3832 ** register if it is convenient to do so. The calling function 3833 ** must check the return code and move the results to the desired 3834 ** register. 3835 */ 3836 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3837 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3838 int op; /* The opcode being coded */ 3839 int inReg = target; /* Results stored in register inReg */ 3840 int regFree1 = 0; /* If non-zero free this temporary register */ 3841 int regFree2 = 0; /* If non-zero free this temporary register */ 3842 int r1, r2; /* Various register numbers */ 3843 Expr tempX; /* Temporary expression node */ 3844 int p5 = 0; 3845 3846 assert( target>0 && target<=pParse->nMem ); 3847 assert( v!=0 ); 3848 3849 expr_code_doover: 3850 if( pExpr==0 ){ 3851 op = TK_NULL; 3852 }else{ 3853 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3854 op = pExpr->op; 3855 } 3856 switch( op ){ 3857 case TK_AGG_COLUMN: { 3858 AggInfo *pAggInfo = pExpr->pAggInfo; 3859 struct AggInfo_col *pCol; 3860 assert( pAggInfo!=0 ); 3861 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 3862 pCol = &pAggInfo->aCol[pExpr->iAgg]; 3863 if( !pAggInfo->directMode ){ 3864 assert( pCol->iMem>0 ); 3865 return pCol->iMem; 3866 }else if( pAggInfo->useSortingIdx ){ 3867 Table *pTab = pCol->pTab; 3868 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3869 pCol->iSorterColumn, target); 3870 if( pCol->iColumn<0 ){ 3871 VdbeComment((v,"%s.rowid",pTab->zName)); 3872 }else{ 3873 VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName)); 3874 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 3875 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3876 } 3877 } 3878 return target; 3879 } 3880 /* Otherwise, fall thru into the TK_COLUMN case */ 3881 /* no break */ deliberate_fall_through 3882 } 3883 case TK_COLUMN: { 3884 int iTab = pExpr->iTable; 3885 int iReg; 3886 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3887 /* This COLUMN expression is really a constant due to WHERE clause 3888 ** constraints, and that constant is coded by the pExpr->pLeft 3889 ** expresssion. However, make sure the constant has the correct 3890 ** datatype by applying the Affinity of the table column to the 3891 ** constant. 3892 */ 3893 int aff; 3894 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3895 if( pExpr->y.pTab ){ 3896 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3897 }else{ 3898 aff = pExpr->affExpr; 3899 } 3900 if( aff>SQLITE_AFF_BLOB ){ 3901 static const char zAff[] = "B\000C\000D\000E"; 3902 assert( SQLITE_AFF_BLOB=='A' ); 3903 assert( SQLITE_AFF_TEXT=='B' ); 3904 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3905 &zAff[(aff-'B')*2], P4_STATIC); 3906 } 3907 return iReg; 3908 } 3909 if( iTab<0 ){ 3910 if( pParse->iSelfTab<0 ){ 3911 /* Other columns in the same row for CHECK constraints or 3912 ** generated columns or for inserting into partial index. 3913 ** The row is unpacked into registers beginning at 3914 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 3915 ** immediately prior to the first column. 3916 */ 3917 Column *pCol; 3918 Table *pTab = pExpr->y.pTab; 3919 int iSrc; 3920 int iCol = pExpr->iColumn; 3921 assert( pTab!=0 ); 3922 assert( iCol>=XN_ROWID ); 3923 assert( iCol<pTab->nCol ); 3924 if( iCol<0 ){ 3925 return -1-pParse->iSelfTab; 3926 } 3927 pCol = pTab->aCol + iCol; 3928 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 3929 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 3930 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3931 if( pCol->colFlags & COLFLAG_GENERATED ){ 3932 if( pCol->colFlags & COLFLAG_BUSY ){ 3933 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3934 pCol->zName); 3935 return 0; 3936 } 3937 pCol->colFlags |= COLFLAG_BUSY; 3938 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 3939 sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc); 3940 } 3941 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 3942 return iSrc; 3943 }else 3944 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3945 if( pCol->affinity==SQLITE_AFF_REAL ){ 3946 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 3947 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3948 return target; 3949 }else{ 3950 return iSrc; 3951 } 3952 }else{ 3953 /* Coding an expression that is part of an index where column names 3954 ** in the index refer to the table to which the index belongs */ 3955 iTab = pParse->iSelfTab - 1; 3956 } 3957 } 3958 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3959 pExpr->iColumn, iTab, target, 3960 pExpr->op2); 3961 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 3962 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 3963 } 3964 return iReg; 3965 } 3966 case TK_INTEGER: { 3967 codeInteger(pParse, pExpr, 0, target); 3968 return target; 3969 } 3970 case TK_TRUEFALSE: { 3971 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3972 return target; 3973 } 3974 #ifndef SQLITE_OMIT_FLOATING_POINT 3975 case TK_FLOAT: { 3976 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3977 codeReal(v, pExpr->u.zToken, 0, target); 3978 return target; 3979 } 3980 #endif 3981 case TK_STRING: { 3982 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3983 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3984 return target; 3985 } 3986 default: { 3987 /* Make NULL the default case so that if a bug causes an illegal 3988 ** Expr node to be passed into this function, it will be handled 3989 ** sanely and not crash. But keep the assert() to bring the problem 3990 ** to the attention of the developers. */ 3991 assert( op==TK_NULL ); 3992 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3993 return target; 3994 } 3995 #ifndef SQLITE_OMIT_BLOB_LITERAL 3996 case TK_BLOB: { 3997 int n; 3998 const char *z; 3999 char *zBlob; 4000 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4001 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 4002 assert( pExpr->u.zToken[1]=='\'' ); 4003 z = &pExpr->u.zToken[2]; 4004 n = sqlite3Strlen30(z) - 1; 4005 assert( z[n]=='\'' ); 4006 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 4007 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 4008 return target; 4009 } 4010 #endif 4011 case TK_VARIABLE: { 4012 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4013 assert( pExpr->u.zToken!=0 ); 4014 assert( pExpr->u.zToken[0]!=0 ); 4015 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 4016 if( pExpr->u.zToken[1]!=0 ){ 4017 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 4018 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 4019 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 4020 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 4021 } 4022 return target; 4023 } 4024 case TK_REGISTER: { 4025 return pExpr->iTable; 4026 } 4027 #ifndef SQLITE_OMIT_CAST 4028 case TK_CAST: { 4029 /* Expressions of the form: CAST(pLeft AS token) */ 4030 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4031 if( inReg!=target ){ 4032 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4033 inReg = target; 4034 } 4035 sqlite3VdbeAddOp2(v, OP_Cast, target, 4036 sqlite3AffinityType(pExpr->u.zToken, 0)); 4037 return inReg; 4038 } 4039 #endif /* SQLITE_OMIT_CAST */ 4040 case TK_IS: 4041 case TK_ISNOT: 4042 op = (op==TK_IS) ? TK_EQ : TK_NE; 4043 p5 = SQLITE_NULLEQ; 4044 /* fall-through */ 4045 case TK_LT: 4046 case TK_LE: 4047 case TK_GT: 4048 case TK_GE: 4049 case TK_NE: 4050 case TK_EQ: { 4051 Expr *pLeft = pExpr->pLeft; 4052 if( sqlite3ExprIsVector(pLeft) ){ 4053 codeVectorCompare(pParse, pExpr, target, op, p5); 4054 }else{ 4055 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4056 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4057 codeCompare(pParse, pLeft, pExpr->pRight, op, 4058 r1, r2, inReg, SQLITE_STOREP2 | p5, 4059 ExprHasProperty(pExpr,EP_Commuted)); 4060 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4061 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4062 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4063 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4064 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4065 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4066 testcase( regFree1==0 ); 4067 testcase( regFree2==0 ); 4068 } 4069 break; 4070 } 4071 case TK_AND: 4072 case TK_OR: 4073 case TK_PLUS: 4074 case TK_STAR: 4075 case TK_MINUS: 4076 case TK_REM: 4077 case TK_BITAND: 4078 case TK_BITOR: 4079 case TK_SLASH: 4080 case TK_LSHIFT: 4081 case TK_RSHIFT: 4082 case TK_CONCAT: { 4083 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4084 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4085 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4086 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4087 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4088 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4089 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4090 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4091 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4092 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4093 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4094 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4095 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4096 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4097 testcase( regFree1==0 ); 4098 testcase( regFree2==0 ); 4099 break; 4100 } 4101 case TK_UMINUS: { 4102 Expr *pLeft = pExpr->pLeft; 4103 assert( pLeft ); 4104 if( pLeft->op==TK_INTEGER ){ 4105 codeInteger(pParse, pLeft, 1, target); 4106 return target; 4107 #ifndef SQLITE_OMIT_FLOATING_POINT 4108 }else if( pLeft->op==TK_FLOAT ){ 4109 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4110 codeReal(v, pLeft->u.zToken, 1, target); 4111 return target; 4112 #endif 4113 }else{ 4114 tempX.op = TK_INTEGER; 4115 tempX.flags = EP_IntValue|EP_TokenOnly; 4116 tempX.u.iValue = 0; 4117 ExprClearVVAProperties(&tempX); 4118 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4119 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4120 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4121 testcase( regFree2==0 ); 4122 } 4123 break; 4124 } 4125 case TK_BITNOT: 4126 case TK_NOT: { 4127 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4128 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4129 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4130 testcase( regFree1==0 ); 4131 sqlite3VdbeAddOp2(v, op, r1, inReg); 4132 break; 4133 } 4134 case TK_TRUTH: { 4135 int isTrue; /* IS TRUE or IS NOT TRUE */ 4136 int bNormal; /* IS TRUE or IS FALSE */ 4137 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4138 testcase( regFree1==0 ); 4139 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4140 bNormal = pExpr->op2==TK_IS; 4141 testcase( isTrue && bNormal); 4142 testcase( !isTrue && bNormal); 4143 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4144 break; 4145 } 4146 case TK_ISNULL: 4147 case TK_NOTNULL: { 4148 int addr; 4149 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4150 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4151 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4152 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4153 testcase( regFree1==0 ); 4154 addr = sqlite3VdbeAddOp1(v, op, r1); 4155 VdbeCoverageIf(v, op==TK_ISNULL); 4156 VdbeCoverageIf(v, op==TK_NOTNULL); 4157 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4158 sqlite3VdbeJumpHere(v, addr); 4159 break; 4160 } 4161 case TK_AGG_FUNCTION: { 4162 AggInfo *pInfo = pExpr->pAggInfo; 4163 if( pInfo==0 4164 || NEVER(pExpr->iAgg<0) 4165 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4166 ){ 4167 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4168 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 4169 }else{ 4170 return pInfo->aFunc[pExpr->iAgg].iMem; 4171 } 4172 break; 4173 } 4174 case TK_FUNCTION: { 4175 ExprList *pFarg; /* List of function arguments */ 4176 int nFarg; /* Number of function arguments */ 4177 FuncDef *pDef; /* The function definition object */ 4178 const char *zId; /* The function name */ 4179 u32 constMask = 0; /* Mask of function arguments that are constant */ 4180 int i; /* Loop counter */ 4181 sqlite3 *db = pParse->db; /* The database connection */ 4182 u8 enc = ENC(db); /* The text encoding used by this database */ 4183 CollSeq *pColl = 0; /* A collating sequence */ 4184 4185 #ifndef SQLITE_OMIT_WINDOWFUNC 4186 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4187 return pExpr->y.pWin->regResult; 4188 } 4189 #endif 4190 4191 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4192 /* SQL functions can be expensive. So try to avoid running them 4193 ** multiple times if we know they always give the same result */ 4194 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4195 } 4196 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4197 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4198 pFarg = pExpr->x.pList; 4199 nFarg = pFarg ? pFarg->nExpr : 0; 4200 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4201 zId = pExpr->u.zToken; 4202 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4203 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4204 if( pDef==0 && pParse->explain ){ 4205 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4206 } 4207 #endif 4208 if( pDef==0 || pDef->xFinalize!=0 ){ 4209 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 4210 break; 4211 } 4212 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4213 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4214 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4215 return exprCodeInlineFunction(pParse, pFarg, 4216 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4217 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4218 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4219 } 4220 4221 for(i=0; i<nFarg; i++){ 4222 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4223 testcase( i==31 ); 4224 constMask |= MASKBIT32(i); 4225 } 4226 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4227 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4228 } 4229 } 4230 if( pFarg ){ 4231 if( constMask ){ 4232 r1 = pParse->nMem+1; 4233 pParse->nMem += nFarg; 4234 }else{ 4235 r1 = sqlite3GetTempRange(pParse, nFarg); 4236 } 4237 4238 /* For length() and typeof() functions with a column argument, 4239 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4240 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4241 ** loading. 4242 */ 4243 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4244 u8 exprOp; 4245 assert( nFarg==1 ); 4246 assert( pFarg->a[0].pExpr!=0 ); 4247 exprOp = pFarg->a[0].pExpr->op; 4248 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4249 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4250 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4251 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4252 pFarg->a[0].pExpr->op2 = 4253 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4254 } 4255 } 4256 4257 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4258 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4259 }else{ 4260 r1 = 0; 4261 } 4262 #ifndef SQLITE_OMIT_VIRTUALTABLE 4263 /* Possibly overload the function if the first argument is 4264 ** a virtual table column. 4265 ** 4266 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4267 ** second argument, not the first, as the argument to test to 4268 ** see if it is a column in a virtual table. This is done because 4269 ** the left operand of infix functions (the operand we want to 4270 ** control overloading) ends up as the second argument to the 4271 ** function. The expression "A glob B" is equivalent to 4272 ** "glob(B,A). We want to use the A in "A glob B" to test 4273 ** for function overloading. But we use the B term in "glob(B,A)". 4274 */ 4275 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4276 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4277 }else if( nFarg>0 ){ 4278 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4279 } 4280 #endif 4281 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4282 if( !pColl ) pColl = db->pDfltColl; 4283 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4284 } 4285 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4286 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4287 Expr *pArg = pFarg->a[0].pExpr; 4288 if( pArg->op==TK_COLUMN ){ 4289 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4290 }else{ 4291 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4292 } 4293 }else 4294 #endif 4295 { 4296 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4297 pDef, pExpr->op2); 4298 } 4299 if( nFarg ){ 4300 if( constMask==0 ){ 4301 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4302 }else{ 4303 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4304 } 4305 } 4306 return target; 4307 } 4308 #ifndef SQLITE_OMIT_SUBQUERY 4309 case TK_EXISTS: 4310 case TK_SELECT: { 4311 int nCol; 4312 testcase( op==TK_EXISTS ); 4313 testcase( op==TK_SELECT ); 4314 if( pParse->db->mallocFailed ){ 4315 return 0; 4316 }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4317 sqlite3SubselectError(pParse, nCol, 1); 4318 }else{ 4319 return sqlite3CodeSubselect(pParse, pExpr); 4320 } 4321 break; 4322 } 4323 case TK_SELECT_COLUMN: { 4324 int n; 4325 if( pExpr->pLeft->iTable==0 ){ 4326 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4327 } 4328 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 4329 if( pExpr->iTable!=0 4330 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 4331 ){ 4332 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4333 pExpr->iTable, n); 4334 } 4335 return pExpr->pLeft->iTable + pExpr->iColumn; 4336 } 4337 case TK_IN: { 4338 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4339 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4340 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4341 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4342 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4343 sqlite3VdbeResolveLabel(v, destIfFalse); 4344 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4345 sqlite3VdbeResolveLabel(v, destIfNull); 4346 return target; 4347 } 4348 #endif /* SQLITE_OMIT_SUBQUERY */ 4349 4350 4351 /* 4352 ** x BETWEEN y AND z 4353 ** 4354 ** This is equivalent to 4355 ** 4356 ** x>=y AND x<=z 4357 ** 4358 ** X is stored in pExpr->pLeft. 4359 ** Y is stored in pExpr->pList->a[0].pExpr. 4360 ** Z is stored in pExpr->pList->a[1].pExpr. 4361 */ 4362 case TK_BETWEEN: { 4363 exprCodeBetween(pParse, pExpr, target, 0, 0); 4364 return target; 4365 } 4366 case TK_SPAN: 4367 case TK_COLLATE: 4368 case TK_UPLUS: { 4369 pExpr = pExpr->pLeft; 4370 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4371 } 4372 4373 case TK_TRIGGER: { 4374 /* If the opcode is TK_TRIGGER, then the expression is a reference 4375 ** to a column in the new.* or old.* pseudo-tables available to 4376 ** trigger programs. In this case Expr.iTable is set to 1 for the 4377 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4378 ** is set to the column of the pseudo-table to read, or to -1 to 4379 ** read the rowid field. 4380 ** 4381 ** The expression is implemented using an OP_Param opcode. The p1 4382 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4383 ** to reference another column of the old.* pseudo-table, where 4384 ** i is the index of the column. For a new.rowid reference, p1 is 4385 ** set to (n+1), where n is the number of columns in each pseudo-table. 4386 ** For a reference to any other column in the new.* pseudo-table, p1 4387 ** is set to (n+2+i), where n and i are as defined previously. For 4388 ** example, if the table on which triggers are being fired is 4389 ** declared as: 4390 ** 4391 ** CREATE TABLE t1(a, b); 4392 ** 4393 ** Then p1 is interpreted as follows: 4394 ** 4395 ** p1==0 -> old.rowid p1==3 -> new.rowid 4396 ** p1==1 -> old.a p1==4 -> new.a 4397 ** p1==2 -> old.b p1==5 -> new.b 4398 */ 4399 Table *pTab = pExpr->y.pTab; 4400 int iCol = pExpr->iColumn; 4401 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4402 + sqlite3TableColumnToStorage(pTab, iCol); 4403 4404 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4405 assert( iCol>=-1 && iCol<pTab->nCol ); 4406 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4407 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4408 4409 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4410 VdbeComment((v, "r[%d]=%s.%s", target, 4411 (pExpr->iTable ? "new" : "old"), 4412 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName) 4413 )); 4414 4415 #ifndef SQLITE_OMIT_FLOATING_POINT 4416 /* If the column has REAL affinity, it may currently be stored as an 4417 ** integer. Use OP_RealAffinity to make sure it is really real. 4418 ** 4419 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4420 ** floating point when extracting it from the record. */ 4421 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4422 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4423 } 4424 #endif 4425 break; 4426 } 4427 4428 case TK_VECTOR: { 4429 sqlite3ErrorMsg(pParse, "row value misused"); 4430 break; 4431 } 4432 4433 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4434 ** that derive from the right-hand table of a LEFT JOIN. The 4435 ** Expr.iTable value is the table number for the right-hand table. 4436 ** The expression is only evaluated if that table is not currently 4437 ** on a LEFT JOIN NULL row. 4438 */ 4439 case TK_IF_NULL_ROW: { 4440 int addrINR; 4441 u8 okConstFactor = pParse->okConstFactor; 4442 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4443 /* Temporarily disable factoring of constant expressions, since 4444 ** even though expressions may appear to be constant, they are not 4445 ** really constant because they originate from the right-hand side 4446 ** of a LEFT JOIN. */ 4447 pParse->okConstFactor = 0; 4448 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4449 pParse->okConstFactor = okConstFactor; 4450 sqlite3VdbeJumpHere(v, addrINR); 4451 sqlite3VdbeChangeP3(v, addrINR, inReg); 4452 break; 4453 } 4454 4455 /* 4456 ** Form A: 4457 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4458 ** 4459 ** Form B: 4460 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4461 ** 4462 ** Form A is can be transformed into the equivalent form B as follows: 4463 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4464 ** WHEN x=eN THEN rN ELSE y END 4465 ** 4466 ** X (if it exists) is in pExpr->pLeft. 4467 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4468 ** odd. The Y is also optional. If the number of elements in x.pList 4469 ** is even, then Y is omitted and the "otherwise" result is NULL. 4470 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4471 ** 4472 ** The result of the expression is the Ri for the first matching Ei, 4473 ** or if there is no matching Ei, the ELSE term Y, or if there is 4474 ** no ELSE term, NULL. 4475 */ 4476 case TK_CASE: { 4477 int endLabel; /* GOTO label for end of CASE stmt */ 4478 int nextCase; /* GOTO label for next WHEN clause */ 4479 int nExpr; /* 2x number of WHEN terms */ 4480 int i; /* Loop counter */ 4481 ExprList *pEList; /* List of WHEN terms */ 4482 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4483 Expr opCompare; /* The X==Ei expression */ 4484 Expr *pX; /* The X expression */ 4485 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4486 Expr *pDel = 0; 4487 sqlite3 *db = pParse->db; 4488 4489 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4490 assert(pExpr->x.pList->nExpr > 0); 4491 pEList = pExpr->x.pList; 4492 aListelem = pEList->a; 4493 nExpr = pEList->nExpr; 4494 endLabel = sqlite3VdbeMakeLabel(pParse); 4495 if( (pX = pExpr->pLeft)!=0 ){ 4496 pDel = sqlite3ExprDup(db, pX, 0); 4497 if( db->mallocFailed ){ 4498 sqlite3ExprDelete(db, pDel); 4499 break; 4500 } 4501 testcase( pX->op==TK_COLUMN ); 4502 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4503 testcase( regFree1==0 ); 4504 memset(&opCompare, 0, sizeof(opCompare)); 4505 opCompare.op = TK_EQ; 4506 opCompare.pLeft = pDel; 4507 pTest = &opCompare; 4508 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4509 ** The value in regFree1 might get SCopy-ed into the file result. 4510 ** So make sure that the regFree1 register is not reused for other 4511 ** purposes and possibly overwritten. */ 4512 regFree1 = 0; 4513 } 4514 for(i=0; i<nExpr-1; i=i+2){ 4515 if( pX ){ 4516 assert( pTest!=0 ); 4517 opCompare.pRight = aListelem[i].pExpr; 4518 }else{ 4519 pTest = aListelem[i].pExpr; 4520 } 4521 nextCase = sqlite3VdbeMakeLabel(pParse); 4522 testcase( pTest->op==TK_COLUMN ); 4523 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4524 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4525 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4526 sqlite3VdbeGoto(v, endLabel); 4527 sqlite3VdbeResolveLabel(v, nextCase); 4528 } 4529 if( (nExpr&1)!=0 ){ 4530 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4531 }else{ 4532 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4533 } 4534 sqlite3ExprDelete(db, pDel); 4535 setDoNotMergeFlagOnCopy(v); 4536 sqlite3VdbeResolveLabel(v, endLabel); 4537 break; 4538 } 4539 #ifndef SQLITE_OMIT_TRIGGER 4540 case TK_RAISE: { 4541 assert( pExpr->affExpr==OE_Rollback 4542 || pExpr->affExpr==OE_Abort 4543 || pExpr->affExpr==OE_Fail 4544 || pExpr->affExpr==OE_Ignore 4545 ); 4546 if( !pParse->pTriggerTab && !pParse->nested ){ 4547 sqlite3ErrorMsg(pParse, 4548 "RAISE() may only be used within a trigger-program"); 4549 return 0; 4550 } 4551 if( pExpr->affExpr==OE_Abort ){ 4552 sqlite3MayAbort(pParse); 4553 } 4554 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4555 if( pExpr->affExpr==OE_Ignore ){ 4556 sqlite3VdbeAddOp4( 4557 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4558 VdbeCoverage(v); 4559 }else{ 4560 sqlite3HaltConstraint(pParse, 4561 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4562 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4563 } 4564 4565 break; 4566 } 4567 #endif 4568 } 4569 sqlite3ReleaseTempReg(pParse, regFree1); 4570 sqlite3ReleaseTempReg(pParse, regFree2); 4571 return inReg; 4572 } 4573 4574 /* 4575 ** Generate code that will evaluate expression pExpr just one time 4576 ** per prepared statement execution. 4577 ** 4578 ** If the expression uses functions (that might throw an exception) then 4579 ** guard them with an OP_Once opcode to ensure that the code is only executed 4580 ** once. If no functions are involved, then factor the code out and put it at 4581 ** the end of the prepared statement in the initialization section. 4582 ** 4583 ** If regDest>=0 then the result is always stored in that register and the 4584 ** result is not reusable. If regDest<0 then this routine is free to 4585 ** store the value whereever it wants. The register where the expression 4586 ** is stored is returned. When regDest<0, two identical expressions might 4587 ** code to the same register, if they do not contain function calls and hence 4588 ** are factored out into the initialization section at the end of the 4589 ** prepared statement. 4590 */ 4591 int sqlite3ExprCodeRunJustOnce( 4592 Parse *pParse, /* Parsing context */ 4593 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4594 int regDest /* Store the value in this register */ 4595 ){ 4596 ExprList *p; 4597 assert( ConstFactorOk(pParse) ); 4598 p = pParse->pConstExpr; 4599 if( regDest<0 && p ){ 4600 struct ExprList_item *pItem; 4601 int i; 4602 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4603 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4604 return pItem->u.iConstExprReg; 4605 } 4606 } 4607 } 4608 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4609 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4610 Vdbe *v = pParse->pVdbe; 4611 int addr; 4612 assert( v ); 4613 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4614 pParse->okConstFactor = 0; 4615 if( !pParse->db->mallocFailed ){ 4616 if( regDest<0 ) regDest = ++pParse->nMem; 4617 sqlite3ExprCode(pParse, pExpr, regDest); 4618 } 4619 pParse->okConstFactor = 1; 4620 sqlite3ExprDelete(pParse->db, pExpr); 4621 sqlite3VdbeJumpHere(v, addr); 4622 }else{ 4623 p = sqlite3ExprListAppend(pParse, p, pExpr); 4624 if( p ){ 4625 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4626 pItem->reusable = regDest<0; 4627 if( regDest<0 ) regDest = ++pParse->nMem; 4628 pItem->u.iConstExprReg = regDest; 4629 } 4630 pParse->pConstExpr = p; 4631 } 4632 return regDest; 4633 } 4634 4635 /* 4636 ** Generate code to evaluate an expression and store the results 4637 ** into a register. Return the register number where the results 4638 ** are stored. 4639 ** 4640 ** If the register is a temporary register that can be deallocated, 4641 ** then write its number into *pReg. If the result register is not 4642 ** a temporary, then set *pReg to zero. 4643 ** 4644 ** If pExpr is a constant, then this routine might generate this 4645 ** code to fill the register in the initialization section of the 4646 ** VDBE program, in order to factor it out of the evaluation loop. 4647 */ 4648 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4649 int r2; 4650 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4651 if( ConstFactorOk(pParse) 4652 && ALWAYS(pExpr!=0) 4653 && pExpr->op!=TK_REGISTER 4654 && sqlite3ExprIsConstantNotJoin(pExpr) 4655 ){ 4656 *pReg = 0; 4657 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4658 }else{ 4659 int r1 = sqlite3GetTempReg(pParse); 4660 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4661 if( r2==r1 ){ 4662 *pReg = r1; 4663 }else{ 4664 sqlite3ReleaseTempReg(pParse, r1); 4665 *pReg = 0; 4666 } 4667 } 4668 return r2; 4669 } 4670 4671 /* 4672 ** Generate code that will evaluate expression pExpr and store the 4673 ** results in register target. The results are guaranteed to appear 4674 ** in register target. 4675 */ 4676 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4677 int inReg; 4678 4679 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4680 assert( target>0 && target<=pParse->nMem ); 4681 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4682 if( pParse->pVdbe==0 ) return; 4683 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4684 if( inReg!=target ){ 4685 u8 op; 4686 if( ExprHasProperty(pExpr,EP_Subquery) ){ 4687 op = OP_Copy; 4688 }else{ 4689 op = OP_SCopy; 4690 } 4691 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4692 } 4693 } 4694 4695 /* 4696 ** Make a transient copy of expression pExpr and then code it using 4697 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4698 ** except that the input expression is guaranteed to be unchanged. 4699 */ 4700 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4701 sqlite3 *db = pParse->db; 4702 pExpr = sqlite3ExprDup(db, pExpr, 0); 4703 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4704 sqlite3ExprDelete(db, pExpr); 4705 } 4706 4707 /* 4708 ** Generate code that will evaluate expression pExpr and store the 4709 ** results in register target. The results are guaranteed to appear 4710 ** in register target. If the expression is constant, then this routine 4711 ** might choose to code the expression at initialization time. 4712 */ 4713 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4714 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4715 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4716 }else{ 4717 sqlite3ExprCodeCopy(pParse, pExpr, target); 4718 } 4719 } 4720 4721 /* 4722 ** Generate code that pushes the value of every element of the given 4723 ** expression list into a sequence of registers beginning at target. 4724 ** 4725 ** Return the number of elements evaluated. The number returned will 4726 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4727 ** is defined. 4728 ** 4729 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4730 ** filled using OP_SCopy. OP_Copy must be used instead. 4731 ** 4732 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4733 ** factored out into initialization code. 4734 ** 4735 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4736 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4737 ** in registers at srcReg, and so the value can be copied from there. 4738 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4739 ** are simply omitted rather than being copied from srcReg. 4740 */ 4741 int sqlite3ExprCodeExprList( 4742 Parse *pParse, /* Parsing context */ 4743 ExprList *pList, /* The expression list to be coded */ 4744 int target, /* Where to write results */ 4745 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4746 u8 flags /* SQLITE_ECEL_* flags */ 4747 ){ 4748 struct ExprList_item *pItem; 4749 int i, j, n; 4750 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4751 Vdbe *v = pParse->pVdbe; 4752 assert( pList!=0 ); 4753 assert( target>0 ); 4754 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4755 n = pList->nExpr; 4756 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4757 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4758 Expr *pExpr = pItem->pExpr; 4759 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4760 if( pItem->bSorterRef ){ 4761 i--; 4762 n--; 4763 }else 4764 #endif 4765 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4766 if( flags & SQLITE_ECEL_OMITREF ){ 4767 i--; 4768 n--; 4769 }else{ 4770 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4771 } 4772 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4773 && sqlite3ExprIsConstantNotJoin(pExpr) 4774 ){ 4775 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4776 }else{ 4777 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4778 if( inReg!=target+i ){ 4779 VdbeOp *pOp; 4780 if( copyOp==OP_Copy 4781 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4782 && pOp->p1+pOp->p3+1==inReg 4783 && pOp->p2+pOp->p3+1==target+i 4784 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4785 ){ 4786 pOp->p3++; 4787 }else{ 4788 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4789 } 4790 } 4791 } 4792 } 4793 return n; 4794 } 4795 4796 /* 4797 ** Generate code for a BETWEEN operator. 4798 ** 4799 ** x BETWEEN y AND z 4800 ** 4801 ** The above is equivalent to 4802 ** 4803 ** x>=y AND x<=z 4804 ** 4805 ** Code it as such, taking care to do the common subexpression 4806 ** elimination of x. 4807 ** 4808 ** The xJumpIf parameter determines details: 4809 ** 4810 ** NULL: Store the boolean result in reg[dest] 4811 ** sqlite3ExprIfTrue: Jump to dest if true 4812 ** sqlite3ExprIfFalse: Jump to dest if false 4813 ** 4814 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4815 */ 4816 static void exprCodeBetween( 4817 Parse *pParse, /* Parsing and code generating context */ 4818 Expr *pExpr, /* The BETWEEN expression */ 4819 int dest, /* Jump destination or storage location */ 4820 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4821 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4822 ){ 4823 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4824 Expr compLeft; /* The x>=y term */ 4825 Expr compRight; /* The x<=z term */ 4826 int regFree1 = 0; /* Temporary use register */ 4827 Expr *pDel = 0; 4828 sqlite3 *db = pParse->db; 4829 4830 memset(&compLeft, 0, sizeof(Expr)); 4831 memset(&compRight, 0, sizeof(Expr)); 4832 memset(&exprAnd, 0, sizeof(Expr)); 4833 4834 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4835 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4836 if( db->mallocFailed==0 ){ 4837 exprAnd.op = TK_AND; 4838 exprAnd.pLeft = &compLeft; 4839 exprAnd.pRight = &compRight; 4840 compLeft.op = TK_GE; 4841 compLeft.pLeft = pDel; 4842 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4843 compRight.op = TK_LE; 4844 compRight.pLeft = pDel; 4845 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4846 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4847 if( xJump ){ 4848 xJump(pParse, &exprAnd, dest, jumpIfNull); 4849 }else{ 4850 /* Mark the expression is being from the ON or USING clause of a join 4851 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4852 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4853 ** for clarity, but we are out of bits in the Expr.flags field so we 4854 ** have to reuse the EP_FromJoin bit. Bummer. */ 4855 pDel->flags |= EP_FromJoin; 4856 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4857 } 4858 sqlite3ReleaseTempReg(pParse, regFree1); 4859 } 4860 sqlite3ExprDelete(db, pDel); 4861 4862 /* Ensure adequate test coverage */ 4863 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4864 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4865 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4866 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4867 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4868 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4869 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4870 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4871 testcase( xJump==0 ); 4872 } 4873 4874 /* 4875 ** Generate code for a boolean expression such that a jump is made 4876 ** to the label "dest" if the expression is true but execution 4877 ** continues straight thru if the expression is false. 4878 ** 4879 ** If the expression evaluates to NULL (neither true nor false), then 4880 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4881 ** 4882 ** This code depends on the fact that certain token values (ex: TK_EQ) 4883 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4884 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4885 ** the make process cause these values to align. Assert()s in the code 4886 ** below verify that the numbers are aligned correctly. 4887 */ 4888 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4889 Vdbe *v = pParse->pVdbe; 4890 int op = 0; 4891 int regFree1 = 0; 4892 int regFree2 = 0; 4893 int r1, r2; 4894 4895 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4896 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4897 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4898 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 4899 op = pExpr->op; 4900 switch( op ){ 4901 case TK_AND: 4902 case TK_OR: { 4903 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4904 if( pAlt!=pExpr ){ 4905 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4906 }else if( op==TK_AND ){ 4907 int d2 = sqlite3VdbeMakeLabel(pParse); 4908 testcase( jumpIfNull==0 ); 4909 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4910 jumpIfNull^SQLITE_JUMPIFNULL); 4911 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4912 sqlite3VdbeResolveLabel(v, d2); 4913 }else{ 4914 testcase( jumpIfNull==0 ); 4915 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4916 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4917 } 4918 break; 4919 } 4920 case TK_NOT: { 4921 testcase( jumpIfNull==0 ); 4922 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4923 break; 4924 } 4925 case TK_TRUTH: { 4926 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4927 int isTrue; /* IS TRUE or IS NOT TRUE */ 4928 testcase( jumpIfNull==0 ); 4929 isNot = pExpr->op2==TK_ISNOT; 4930 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4931 testcase( isTrue && isNot ); 4932 testcase( !isTrue && isNot ); 4933 if( isTrue ^ isNot ){ 4934 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4935 isNot ? SQLITE_JUMPIFNULL : 0); 4936 }else{ 4937 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4938 isNot ? SQLITE_JUMPIFNULL : 0); 4939 } 4940 break; 4941 } 4942 case TK_IS: 4943 case TK_ISNOT: 4944 testcase( op==TK_IS ); 4945 testcase( op==TK_ISNOT ); 4946 op = (op==TK_IS) ? TK_EQ : TK_NE; 4947 jumpIfNull = SQLITE_NULLEQ; 4948 /* no break */ deliberate_fall_through 4949 case TK_LT: 4950 case TK_LE: 4951 case TK_GT: 4952 case TK_GE: 4953 case TK_NE: 4954 case TK_EQ: { 4955 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4956 testcase( jumpIfNull==0 ); 4957 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4958 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4959 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4960 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 4961 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4962 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4963 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4964 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4965 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4966 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4967 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4968 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4969 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4970 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4971 testcase( regFree1==0 ); 4972 testcase( regFree2==0 ); 4973 break; 4974 } 4975 case TK_ISNULL: 4976 case TK_NOTNULL: { 4977 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4978 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4979 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4980 sqlite3VdbeAddOp2(v, op, r1, dest); 4981 VdbeCoverageIf(v, op==TK_ISNULL); 4982 VdbeCoverageIf(v, op==TK_NOTNULL); 4983 testcase( regFree1==0 ); 4984 break; 4985 } 4986 case TK_BETWEEN: { 4987 testcase( jumpIfNull==0 ); 4988 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4989 break; 4990 } 4991 #ifndef SQLITE_OMIT_SUBQUERY 4992 case TK_IN: { 4993 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4994 int destIfNull = jumpIfNull ? dest : destIfFalse; 4995 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4996 sqlite3VdbeGoto(v, dest); 4997 sqlite3VdbeResolveLabel(v, destIfFalse); 4998 break; 4999 } 5000 #endif 5001 default: { 5002 default_expr: 5003 if( ExprAlwaysTrue(pExpr) ){ 5004 sqlite3VdbeGoto(v, dest); 5005 }else if( ExprAlwaysFalse(pExpr) ){ 5006 /* No-op */ 5007 }else{ 5008 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5009 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 5010 VdbeCoverage(v); 5011 testcase( regFree1==0 ); 5012 testcase( jumpIfNull==0 ); 5013 } 5014 break; 5015 } 5016 } 5017 sqlite3ReleaseTempReg(pParse, regFree1); 5018 sqlite3ReleaseTempReg(pParse, regFree2); 5019 } 5020 5021 /* 5022 ** Generate code for a boolean expression such that a jump is made 5023 ** to the label "dest" if the expression is false but execution 5024 ** continues straight thru if the expression is true. 5025 ** 5026 ** If the expression evaluates to NULL (neither true nor false) then 5027 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5028 ** is 0. 5029 */ 5030 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5031 Vdbe *v = pParse->pVdbe; 5032 int op = 0; 5033 int regFree1 = 0; 5034 int regFree2 = 0; 5035 int r1, r2; 5036 5037 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5038 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5039 if( pExpr==0 ) return; 5040 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5041 5042 /* The value of pExpr->op and op are related as follows: 5043 ** 5044 ** pExpr->op op 5045 ** --------- ---------- 5046 ** TK_ISNULL OP_NotNull 5047 ** TK_NOTNULL OP_IsNull 5048 ** TK_NE OP_Eq 5049 ** TK_EQ OP_Ne 5050 ** TK_GT OP_Le 5051 ** TK_LE OP_Gt 5052 ** TK_GE OP_Lt 5053 ** TK_LT OP_Ge 5054 ** 5055 ** For other values of pExpr->op, op is undefined and unused. 5056 ** The value of TK_ and OP_ constants are arranged such that we 5057 ** can compute the mapping above using the following expression. 5058 ** Assert()s verify that the computation is correct. 5059 */ 5060 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5061 5062 /* Verify correct alignment of TK_ and OP_ constants 5063 */ 5064 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5065 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5066 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5067 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5068 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5069 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5070 assert( pExpr->op!=TK_GT || op==OP_Le ); 5071 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5072 5073 switch( pExpr->op ){ 5074 case TK_AND: 5075 case TK_OR: { 5076 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5077 if( pAlt!=pExpr ){ 5078 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5079 }else if( pExpr->op==TK_AND ){ 5080 testcase( jumpIfNull==0 ); 5081 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5082 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5083 }else{ 5084 int d2 = sqlite3VdbeMakeLabel(pParse); 5085 testcase( jumpIfNull==0 ); 5086 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5087 jumpIfNull^SQLITE_JUMPIFNULL); 5088 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5089 sqlite3VdbeResolveLabel(v, d2); 5090 } 5091 break; 5092 } 5093 case TK_NOT: { 5094 testcase( jumpIfNull==0 ); 5095 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5096 break; 5097 } 5098 case TK_TRUTH: { 5099 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5100 int isTrue; /* IS TRUE or IS NOT TRUE */ 5101 testcase( jumpIfNull==0 ); 5102 isNot = pExpr->op2==TK_ISNOT; 5103 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5104 testcase( isTrue && isNot ); 5105 testcase( !isTrue && isNot ); 5106 if( isTrue ^ isNot ){ 5107 /* IS TRUE and IS NOT FALSE */ 5108 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5109 isNot ? 0 : SQLITE_JUMPIFNULL); 5110 5111 }else{ 5112 /* IS FALSE and IS NOT TRUE */ 5113 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5114 isNot ? 0 : SQLITE_JUMPIFNULL); 5115 } 5116 break; 5117 } 5118 case TK_IS: 5119 case TK_ISNOT: 5120 testcase( pExpr->op==TK_IS ); 5121 testcase( pExpr->op==TK_ISNOT ); 5122 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5123 jumpIfNull = SQLITE_NULLEQ; 5124 /* no break */ deliberate_fall_through 5125 case TK_LT: 5126 case TK_LE: 5127 case TK_GT: 5128 case TK_GE: 5129 case TK_NE: 5130 case TK_EQ: { 5131 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5132 testcase( jumpIfNull==0 ); 5133 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5134 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5135 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5136 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5137 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5138 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5139 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5140 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5141 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5142 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5143 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5144 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5145 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5146 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5147 testcase( regFree1==0 ); 5148 testcase( regFree2==0 ); 5149 break; 5150 } 5151 case TK_ISNULL: 5152 case TK_NOTNULL: { 5153 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5154 sqlite3VdbeAddOp2(v, op, r1, dest); 5155 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5156 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5157 testcase( regFree1==0 ); 5158 break; 5159 } 5160 case TK_BETWEEN: { 5161 testcase( jumpIfNull==0 ); 5162 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5163 break; 5164 } 5165 #ifndef SQLITE_OMIT_SUBQUERY 5166 case TK_IN: { 5167 if( jumpIfNull ){ 5168 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5169 }else{ 5170 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5171 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5172 sqlite3VdbeResolveLabel(v, destIfNull); 5173 } 5174 break; 5175 } 5176 #endif 5177 default: { 5178 default_expr: 5179 if( ExprAlwaysFalse(pExpr) ){ 5180 sqlite3VdbeGoto(v, dest); 5181 }else if( ExprAlwaysTrue(pExpr) ){ 5182 /* no-op */ 5183 }else{ 5184 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5185 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5186 VdbeCoverage(v); 5187 testcase( regFree1==0 ); 5188 testcase( jumpIfNull==0 ); 5189 } 5190 break; 5191 } 5192 } 5193 sqlite3ReleaseTempReg(pParse, regFree1); 5194 sqlite3ReleaseTempReg(pParse, regFree2); 5195 } 5196 5197 /* 5198 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5199 ** code generation, and that copy is deleted after code generation. This 5200 ** ensures that the original pExpr is unchanged. 5201 */ 5202 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5203 sqlite3 *db = pParse->db; 5204 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5205 if( db->mallocFailed==0 ){ 5206 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5207 } 5208 sqlite3ExprDelete(db, pCopy); 5209 } 5210 5211 /* 5212 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5213 ** type of expression. 5214 ** 5215 ** If pExpr is a simple SQL value - an integer, real, string, blob 5216 ** or NULL value - then the VDBE currently being prepared is configured 5217 ** to re-prepare each time a new value is bound to variable pVar. 5218 ** 5219 ** Additionally, if pExpr is a simple SQL value and the value is the 5220 ** same as that currently bound to variable pVar, non-zero is returned. 5221 ** Otherwise, if the values are not the same or if pExpr is not a simple 5222 ** SQL value, zero is returned. 5223 */ 5224 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 5225 int res = 0; 5226 int iVar; 5227 sqlite3_value *pL, *pR = 0; 5228 5229 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5230 if( pR ){ 5231 iVar = pVar->iColumn; 5232 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5233 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5234 if( pL ){ 5235 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5236 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5237 } 5238 res = 0==sqlite3MemCompare(pL, pR, 0); 5239 } 5240 sqlite3ValueFree(pR); 5241 sqlite3ValueFree(pL); 5242 } 5243 5244 return res; 5245 } 5246 5247 /* 5248 ** Do a deep comparison of two expression trees. Return 0 if the two 5249 ** expressions are completely identical. Return 1 if they differ only 5250 ** by a COLLATE operator at the top level. Return 2 if there are differences 5251 ** other than the top-level COLLATE operator. 5252 ** 5253 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5254 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5255 ** 5256 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5257 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5258 ** 5259 ** Sometimes this routine will return 2 even if the two expressions 5260 ** really are equivalent. If we cannot prove that the expressions are 5261 ** identical, we return 2 just to be safe. So if this routine 5262 ** returns 2, then you do not really know for certain if the two 5263 ** expressions are the same. But if you get a 0 or 1 return, then you 5264 ** can be sure the expressions are the same. In the places where 5265 ** this routine is used, it does not hurt to get an extra 2 - that 5266 ** just might result in some slightly slower code. But returning 5267 ** an incorrect 0 or 1 could lead to a malfunction. 5268 ** 5269 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5270 ** pParse->pReprepare can be matched against literals in pB. The 5271 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5272 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5273 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5274 ** pB causes a return value of 2. 5275 */ 5276 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 5277 u32 combinedFlags; 5278 if( pA==0 || pB==0 ){ 5279 return pB==pA ? 0 : 2; 5280 } 5281 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5282 return 0; 5283 } 5284 combinedFlags = pA->flags | pB->flags; 5285 if( combinedFlags & EP_IntValue ){ 5286 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5287 return 0; 5288 } 5289 return 2; 5290 } 5291 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5292 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5293 return 1; 5294 } 5295 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5296 return 1; 5297 } 5298 return 2; 5299 } 5300 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5301 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5302 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5303 #ifndef SQLITE_OMIT_WINDOWFUNC 5304 assert( pA->op==pB->op ); 5305 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5306 return 2; 5307 } 5308 if( ExprHasProperty(pA,EP_WinFunc) ){ 5309 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5310 return 2; 5311 } 5312 } 5313 #endif 5314 }else if( pA->op==TK_NULL ){ 5315 return 0; 5316 }else if( pA->op==TK_COLLATE ){ 5317 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5318 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5319 return 2; 5320 } 5321 } 5322 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5323 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5324 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5325 if( combinedFlags & EP_xIsSelect ) return 2; 5326 if( (combinedFlags & EP_FixedCol)==0 5327 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5328 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5329 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5330 if( pA->op!=TK_STRING 5331 && pA->op!=TK_TRUEFALSE 5332 && ALWAYS((combinedFlags & EP_Reduced)==0) 5333 ){ 5334 if( pA->iColumn!=pB->iColumn ) return 2; 5335 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5336 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5337 return 2; 5338 } 5339 } 5340 } 5341 return 0; 5342 } 5343 5344 /* 5345 ** Compare two ExprList objects. Return 0 if they are identical, 1 5346 ** if they are certainly different, or 2 if it is not possible to 5347 ** determine if they are identical or not. 5348 ** 5349 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5350 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5351 ** 5352 ** This routine might return non-zero for equivalent ExprLists. The 5353 ** only consequence will be disabled optimizations. But this routine 5354 ** must never return 0 if the two ExprList objects are different, or 5355 ** a malfunction will result. 5356 ** 5357 ** Two NULL pointers are considered to be the same. But a NULL pointer 5358 ** always differs from a non-NULL pointer. 5359 */ 5360 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 5361 int i; 5362 if( pA==0 && pB==0 ) return 0; 5363 if( pA==0 || pB==0 ) return 1; 5364 if( pA->nExpr!=pB->nExpr ) return 1; 5365 for(i=0; i<pA->nExpr; i++){ 5366 int res; 5367 Expr *pExprA = pA->a[i].pExpr; 5368 Expr *pExprB = pB->a[i].pExpr; 5369 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5370 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5371 } 5372 return 0; 5373 } 5374 5375 /* 5376 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5377 ** are ignored. 5378 */ 5379 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 5380 return sqlite3ExprCompare(0, 5381 sqlite3ExprSkipCollateAndLikely(pA), 5382 sqlite3ExprSkipCollateAndLikely(pB), 5383 iTab); 5384 } 5385 5386 /* 5387 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5388 ** 5389 ** Or if seenNot is true, return non-zero if Expr p can only be 5390 ** non-NULL if pNN is not NULL 5391 */ 5392 static int exprImpliesNotNull( 5393 Parse *pParse, /* Parsing context */ 5394 Expr *p, /* The expression to be checked */ 5395 Expr *pNN, /* The expression that is NOT NULL */ 5396 int iTab, /* Table being evaluated */ 5397 int seenNot /* Return true only if p can be any non-NULL value */ 5398 ){ 5399 assert( p ); 5400 assert( pNN ); 5401 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5402 return pNN->op!=TK_NULL; 5403 } 5404 switch( p->op ){ 5405 case TK_IN: { 5406 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5407 assert( ExprHasProperty(p,EP_xIsSelect) 5408 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5409 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5410 } 5411 case TK_BETWEEN: { 5412 ExprList *pList = p->x.pList; 5413 assert( pList!=0 ); 5414 assert( pList->nExpr==2 ); 5415 if( seenNot ) return 0; 5416 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5417 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5418 ){ 5419 return 1; 5420 } 5421 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5422 } 5423 case TK_EQ: 5424 case TK_NE: 5425 case TK_LT: 5426 case TK_LE: 5427 case TK_GT: 5428 case TK_GE: 5429 case TK_PLUS: 5430 case TK_MINUS: 5431 case TK_BITOR: 5432 case TK_LSHIFT: 5433 case TK_RSHIFT: 5434 case TK_CONCAT: 5435 seenNot = 1; 5436 /* no break */ deliberate_fall_through 5437 case TK_STAR: 5438 case TK_REM: 5439 case TK_BITAND: 5440 case TK_SLASH: { 5441 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5442 /* no break */ deliberate_fall_through 5443 } 5444 case TK_SPAN: 5445 case TK_COLLATE: 5446 case TK_UPLUS: 5447 case TK_UMINUS: { 5448 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5449 } 5450 case TK_TRUTH: { 5451 if( seenNot ) return 0; 5452 if( p->op2!=TK_IS ) return 0; 5453 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5454 } 5455 case TK_BITNOT: 5456 case TK_NOT: { 5457 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5458 } 5459 } 5460 return 0; 5461 } 5462 5463 /* 5464 ** Return true if we can prove the pE2 will always be true if pE1 is 5465 ** true. Return false if we cannot complete the proof or if pE2 might 5466 ** be false. Examples: 5467 ** 5468 ** pE1: x==5 pE2: x==5 Result: true 5469 ** pE1: x>0 pE2: x==5 Result: false 5470 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5471 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5472 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5473 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5474 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5475 ** 5476 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5477 ** Expr.iTable<0 then assume a table number given by iTab. 5478 ** 5479 ** If pParse is not NULL, then the values of bound variables in pE1 are 5480 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5481 ** modified to record which bound variables are referenced. If pParse 5482 ** is NULL, then false will be returned if pE1 contains any bound variables. 5483 ** 5484 ** When in doubt, return false. Returning true might give a performance 5485 ** improvement. Returning false might cause a performance reduction, but 5486 ** it will always give the correct answer and is hence always safe. 5487 */ 5488 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5489 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5490 return 1; 5491 } 5492 if( pE2->op==TK_OR 5493 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5494 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5495 ){ 5496 return 1; 5497 } 5498 if( pE2->op==TK_NOTNULL 5499 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5500 ){ 5501 return 1; 5502 } 5503 return 0; 5504 } 5505 5506 /* 5507 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5508 ** If the expression node requires that the table at pWalker->iCur 5509 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5510 ** 5511 ** This routine controls an optimization. False positives (setting 5512 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5513 ** (never setting pWalker->eCode) is a harmless missed optimization. 5514 */ 5515 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5516 testcase( pExpr->op==TK_AGG_COLUMN ); 5517 testcase( pExpr->op==TK_AGG_FUNCTION ); 5518 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5519 switch( pExpr->op ){ 5520 case TK_ISNOT: 5521 case TK_ISNULL: 5522 case TK_NOTNULL: 5523 case TK_IS: 5524 case TK_OR: 5525 case TK_VECTOR: 5526 case TK_CASE: 5527 case TK_IN: 5528 case TK_FUNCTION: 5529 case TK_TRUTH: 5530 testcase( pExpr->op==TK_ISNOT ); 5531 testcase( pExpr->op==TK_ISNULL ); 5532 testcase( pExpr->op==TK_NOTNULL ); 5533 testcase( pExpr->op==TK_IS ); 5534 testcase( pExpr->op==TK_OR ); 5535 testcase( pExpr->op==TK_VECTOR ); 5536 testcase( pExpr->op==TK_CASE ); 5537 testcase( pExpr->op==TK_IN ); 5538 testcase( pExpr->op==TK_FUNCTION ); 5539 testcase( pExpr->op==TK_TRUTH ); 5540 return WRC_Prune; 5541 case TK_COLUMN: 5542 if( pWalker->u.iCur==pExpr->iTable ){ 5543 pWalker->eCode = 1; 5544 return WRC_Abort; 5545 } 5546 return WRC_Prune; 5547 5548 case TK_AND: 5549 if( pWalker->eCode==0 ){ 5550 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5551 if( pWalker->eCode ){ 5552 pWalker->eCode = 0; 5553 sqlite3WalkExpr(pWalker, pExpr->pRight); 5554 } 5555 } 5556 return WRC_Prune; 5557 5558 case TK_BETWEEN: 5559 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5560 assert( pWalker->eCode ); 5561 return WRC_Abort; 5562 } 5563 return WRC_Prune; 5564 5565 /* Virtual tables are allowed to use constraints like x=NULL. So 5566 ** a term of the form x=y does not prove that y is not null if x 5567 ** is the column of a virtual table */ 5568 case TK_EQ: 5569 case TK_NE: 5570 case TK_LT: 5571 case TK_LE: 5572 case TK_GT: 5573 case TK_GE: { 5574 Expr *pLeft = pExpr->pLeft; 5575 Expr *pRight = pExpr->pRight; 5576 testcase( pExpr->op==TK_EQ ); 5577 testcase( pExpr->op==TK_NE ); 5578 testcase( pExpr->op==TK_LT ); 5579 testcase( pExpr->op==TK_LE ); 5580 testcase( pExpr->op==TK_GT ); 5581 testcase( pExpr->op==TK_GE ); 5582 /* The y.pTab=0 assignment in wherecode.c always happens after the 5583 ** impliesNotNullRow() test */ 5584 if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0) 5585 && IsVirtual(pLeft->y.pTab)) 5586 || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0) 5587 && IsVirtual(pRight->y.pTab)) 5588 ){ 5589 return WRC_Prune; 5590 } 5591 /* no break */ deliberate_fall_through 5592 } 5593 default: 5594 return WRC_Continue; 5595 } 5596 } 5597 5598 /* 5599 ** Return true (non-zero) if expression p can only be true if at least 5600 ** one column of table iTab is non-null. In other words, return true 5601 ** if expression p will always be NULL or false if every column of iTab 5602 ** is NULL. 5603 ** 5604 ** False negatives are acceptable. In other words, it is ok to return 5605 ** zero even if expression p will never be true of every column of iTab 5606 ** is NULL. A false negative is merely a missed optimization opportunity. 5607 ** 5608 ** False positives are not allowed, however. A false positive may result 5609 ** in an incorrect answer. 5610 ** 5611 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5612 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5613 ** 5614 ** This routine is used to check if a LEFT JOIN can be converted into 5615 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5616 ** clause requires that some column of the right table of the LEFT JOIN 5617 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5618 ** ordinary join. 5619 */ 5620 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5621 Walker w; 5622 p = sqlite3ExprSkipCollateAndLikely(p); 5623 if( p==0 ) return 0; 5624 if( p->op==TK_NOTNULL ){ 5625 p = p->pLeft; 5626 }else{ 5627 while( p->op==TK_AND ){ 5628 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5629 p = p->pRight; 5630 } 5631 } 5632 w.xExprCallback = impliesNotNullRow; 5633 w.xSelectCallback = 0; 5634 w.xSelectCallback2 = 0; 5635 w.eCode = 0; 5636 w.u.iCur = iTab; 5637 sqlite3WalkExpr(&w, p); 5638 return w.eCode; 5639 } 5640 5641 /* 5642 ** An instance of the following structure is used by the tree walker 5643 ** to determine if an expression can be evaluated by reference to the 5644 ** index only, without having to do a search for the corresponding 5645 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5646 ** is the cursor for the table. 5647 */ 5648 struct IdxCover { 5649 Index *pIdx; /* The index to be tested for coverage */ 5650 int iCur; /* Cursor number for the table corresponding to the index */ 5651 }; 5652 5653 /* 5654 ** Check to see if there are references to columns in table 5655 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5656 ** pWalker->u.pIdxCover->pIdx. 5657 */ 5658 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5659 if( pExpr->op==TK_COLUMN 5660 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5661 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5662 ){ 5663 pWalker->eCode = 1; 5664 return WRC_Abort; 5665 } 5666 return WRC_Continue; 5667 } 5668 5669 /* 5670 ** Determine if an index pIdx on table with cursor iCur contains will 5671 ** the expression pExpr. Return true if the index does cover the 5672 ** expression and false if the pExpr expression references table columns 5673 ** that are not found in the index pIdx. 5674 ** 5675 ** An index covering an expression means that the expression can be 5676 ** evaluated using only the index and without having to lookup the 5677 ** corresponding table entry. 5678 */ 5679 int sqlite3ExprCoveredByIndex( 5680 Expr *pExpr, /* The index to be tested */ 5681 int iCur, /* The cursor number for the corresponding table */ 5682 Index *pIdx /* The index that might be used for coverage */ 5683 ){ 5684 Walker w; 5685 struct IdxCover xcov; 5686 memset(&w, 0, sizeof(w)); 5687 xcov.iCur = iCur; 5688 xcov.pIdx = pIdx; 5689 w.xExprCallback = exprIdxCover; 5690 w.u.pIdxCover = &xcov; 5691 sqlite3WalkExpr(&w, pExpr); 5692 return !w.eCode; 5693 } 5694 5695 5696 /* 5697 ** An instance of the following structure is used by the tree walker 5698 ** to count references to table columns in the arguments of an 5699 ** aggregate function, in order to implement the 5700 ** sqlite3FunctionThisSrc() routine. 5701 */ 5702 struct SrcCount { 5703 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5704 int iSrcInner; /* Smallest cursor number in this context */ 5705 int nThis; /* Number of references to columns in pSrcList */ 5706 int nOther; /* Number of references to columns in other FROM clauses */ 5707 }; 5708 5709 /* 5710 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first 5711 ** SELECT with a FROM clause encountered during this iteration, set 5712 ** SrcCount.iSrcInner to the cursor number of the leftmost object in 5713 ** the FROM cause. 5714 */ 5715 static int selectSrcCount(Walker *pWalker, Select *pSel){ 5716 struct SrcCount *p = pWalker->u.pSrcCount; 5717 if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){ 5718 pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor; 5719 } 5720 return WRC_Continue; 5721 } 5722 5723 /* 5724 ** Count the number of references to columns. 5725 */ 5726 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5727 /* There was once a NEVER() on the second term on the grounds that 5728 ** sqlite3FunctionUsesThisSrc() was always called before 5729 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet 5730 ** been converted into TK_AGG_COLUMN. But this is no longer true due 5731 ** to window functions - sqlite3WindowRewrite() may now indirectly call 5732 ** FunctionUsesThisSrc() when creating a new sub-select. */ 5733 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 5734 int i; 5735 struct SrcCount *p = pWalker->u.pSrcCount; 5736 SrcList *pSrc = p->pSrc; 5737 int nSrc = pSrc ? pSrc->nSrc : 0; 5738 for(i=0; i<nSrc; i++){ 5739 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5740 } 5741 if( i<nSrc ){ 5742 p->nThis++; 5743 }else if( pExpr->iTable<p->iSrcInner ){ 5744 /* In a well-formed parse tree (no name resolution errors), 5745 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5746 ** outer context. Those are the only ones to count as "other" */ 5747 p->nOther++; 5748 } 5749 } 5750 return WRC_Continue; 5751 } 5752 5753 /* 5754 ** Determine if any of the arguments to the pExpr Function reference 5755 ** pSrcList. Return true if they do. Also return true if the function 5756 ** has no arguments or has only constant arguments. Return false if pExpr 5757 ** references columns but not columns of tables found in pSrcList. 5758 */ 5759 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5760 Walker w; 5761 struct SrcCount cnt; 5762 assert( pExpr->op==TK_AGG_FUNCTION ); 5763 memset(&w, 0, sizeof(w)); 5764 w.xExprCallback = exprSrcCount; 5765 w.xSelectCallback = selectSrcCount; 5766 w.u.pSrcCount = &cnt; 5767 cnt.pSrc = pSrcList; 5768 cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF; 5769 cnt.nThis = 0; 5770 cnt.nOther = 0; 5771 sqlite3WalkExprList(&w, pExpr->x.pList); 5772 #ifndef SQLITE_OMIT_WINDOWFUNC 5773 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5774 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5775 } 5776 #endif 5777 return cnt.nThis>0 || cnt.nOther==0; 5778 } 5779 5780 /* 5781 ** This is a Walker expression node callback. 5782 ** 5783 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 5784 ** object that is referenced does not refer directly to the Expr. If 5785 ** it does, make a copy. This is done because the pExpr argument is 5786 ** subject to change. 5787 ** 5788 ** The copy is stored on pParse->pConstExpr with a register number of 0. 5789 ** This will cause the expression to be deleted automatically when the 5790 ** Parse object is destroyed, but the zero register number means that it 5791 ** will not generate any code in the preamble. 5792 */ 5793 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 5794 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 5795 && pExpr->pAggInfo!=0 5796 ){ 5797 AggInfo *pAggInfo = pExpr->pAggInfo; 5798 int iAgg = pExpr->iAgg; 5799 Parse *pParse = pWalker->pParse; 5800 sqlite3 *db = pParse->db; 5801 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 5802 if( pExpr->op==TK_AGG_COLUMN ){ 5803 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 5804 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 5805 pExpr = sqlite3ExprDup(db, pExpr, 0); 5806 if( pExpr ){ 5807 pAggInfo->aCol[iAgg].pCExpr = pExpr; 5808 pParse->pConstExpr = 5809 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 5810 } 5811 } 5812 }else{ 5813 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 5814 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 5815 pExpr = sqlite3ExprDup(db, pExpr, 0); 5816 if( pExpr ){ 5817 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 5818 pParse->pConstExpr = 5819 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 5820 } 5821 } 5822 } 5823 } 5824 return WRC_Continue; 5825 } 5826 5827 /* 5828 ** Initialize a Walker object so that will persist AggInfo entries referenced 5829 ** by the tree that is walked. 5830 */ 5831 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 5832 memset(pWalker, 0, sizeof(*pWalker)); 5833 pWalker->pParse = pParse; 5834 pWalker->xExprCallback = agginfoPersistExprCb; 5835 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 5836 } 5837 5838 /* 5839 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5840 ** the new element. Return a negative number if malloc fails. 5841 */ 5842 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5843 int i; 5844 pInfo->aCol = sqlite3ArrayAllocate( 5845 db, 5846 pInfo->aCol, 5847 sizeof(pInfo->aCol[0]), 5848 &pInfo->nColumn, 5849 &i 5850 ); 5851 return i; 5852 } 5853 5854 /* 5855 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5856 ** the new element. Return a negative number if malloc fails. 5857 */ 5858 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5859 int i; 5860 pInfo->aFunc = sqlite3ArrayAllocate( 5861 db, 5862 pInfo->aFunc, 5863 sizeof(pInfo->aFunc[0]), 5864 &pInfo->nFunc, 5865 &i 5866 ); 5867 return i; 5868 } 5869 5870 /* 5871 ** This is the xExprCallback for a tree walker. It is used to 5872 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5873 ** for additional information. 5874 */ 5875 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5876 int i; 5877 NameContext *pNC = pWalker->u.pNC; 5878 Parse *pParse = pNC->pParse; 5879 SrcList *pSrcList = pNC->pSrcList; 5880 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5881 5882 assert( pNC->ncFlags & NC_UAggInfo ); 5883 switch( pExpr->op ){ 5884 case TK_AGG_COLUMN: 5885 case TK_COLUMN: { 5886 testcase( pExpr->op==TK_AGG_COLUMN ); 5887 testcase( pExpr->op==TK_COLUMN ); 5888 /* Check to see if the column is in one of the tables in the FROM 5889 ** clause of the aggregate query */ 5890 if( ALWAYS(pSrcList!=0) ){ 5891 SrcItem *pItem = pSrcList->a; 5892 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5893 struct AggInfo_col *pCol; 5894 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5895 if( pExpr->iTable==pItem->iCursor ){ 5896 /* If we reach this point, it means that pExpr refers to a table 5897 ** that is in the FROM clause of the aggregate query. 5898 ** 5899 ** Make an entry for the column in pAggInfo->aCol[] if there 5900 ** is not an entry there already. 5901 */ 5902 int k; 5903 pCol = pAggInfo->aCol; 5904 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5905 if( pCol->iTable==pExpr->iTable && 5906 pCol->iColumn==pExpr->iColumn ){ 5907 break; 5908 } 5909 } 5910 if( (k>=pAggInfo->nColumn) 5911 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5912 ){ 5913 pCol = &pAggInfo->aCol[k]; 5914 pCol->pTab = pExpr->y.pTab; 5915 pCol->iTable = pExpr->iTable; 5916 pCol->iColumn = pExpr->iColumn; 5917 pCol->iMem = ++pParse->nMem; 5918 pCol->iSorterColumn = -1; 5919 pCol->pCExpr = pExpr; 5920 if( pAggInfo->pGroupBy ){ 5921 int j, n; 5922 ExprList *pGB = pAggInfo->pGroupBy; 5923 struct ExprList_item *pTerm = pGB->a; 5924 n = pGB->nExpr; 5925 for(j=0; j<n; j++, pTerm++){ 5926 Expr *pE = pTerm->pExpr; 5927 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5928 pE->iColumn==pExpr->iColumn ){ 5929 pCol->iSorterColumn = j; 5930 break; 5931 } 5932 } 5933 } 5934 if( pCol->iSorterColumn<0 ){ 5935 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5936 } 5937 } 5938 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5939 ** because it was there before or because we just created it). 5940 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5941 ** pAggInfo->aCol[] entry. 5942 */ 5943 ExprSetVVAProperty(pExpr, EP_NoReduce); 5944 pExpr->pAggInfo = pAggInfo; 5945 pExpr->op = TK_AGG_COLUMN; 5946 pExpr->iAgg = (i16)k; 5947 break; 5948 } /* endif pExpr->iTable==pItem->iCursor */ 5949 } /* end loop over pSrcList */ 5950 } 5951 return WRC_Prune; 5952 } 5953 case TK_AGG_FUNCTION: { 5954 if( (pNC->ncFlags & NC_InAggFunc)==0 5955 && pWalker->walkerDepth==pExpr->op2 5956 ){ 5957 /* Check to see if pExpr is a duplicate of another aggregate 5958 ** function that is already in the pAggInfo structure 5959 */ 5960 struct AggInfo_func *pItem = pAggInfo->aFunc; 5961 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5962 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 5963 break; 5964 } 5965 } 5966 if( i>=pAggInfo->nFunc ){ 5967 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5968 */ 5969 u8 enc = ENC(pParse->db); 5970 i = addAggInfoFunc(pParse->db, pAggInfo); 5971 if( i>=0 ){ 5972 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5973 pItem = &pAggInfo->aFunc[i]; 5974 pItem->pFExpr = pExpr; 5975 pItem->iMem = ++pParse->nMem; 5976 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5977 pItem->pFunc = sqlite3FindFunction(pParse->db, 5978 pExpr->u.zToken, 5979 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5980 if( pExpr->flags & EP_Distinct ){ 5981 pItem->iDistinct = pParse->nTab++; 5982 }else{ 5983 pItem->iDistinct = -1; 5984 } 5985 } 5986 } 5987 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5988 */ 5989 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5990 ExprSetVVAProperty(pExpr, EP_NoReduce); 5991 pExpr->iAgg = (i16)i; 5992 pExpr->pAggInfo = pAggInfo; 5993 return WRC_Prune; 5994 }else{ 5995 return WRC_Continue; 5996 } 5997 } 5998 } 5999 return WRC_Continue; 6000 } 6001 6002 /* 6003 ** Analyze the pExpr expression looking for aggregate functions and 6004 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 6005 ** points to. Additional entries are made on the AggInfo object as 6006 ** necessary. 6007 ** 6008 ** This routine should only be called after the expression has been 6009 ** analyzed by sqlite3ResolveExprNames(). 6010 */ 6011 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 6012 Walker w; 6013 w.xExprCallback = analyzeAggregate; 6014 w.xSelectCallback = sqlite3WalkerDepthIncrease; 6015 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 6016 w.walkerDepth = 0; 6017 w.u.pNC = pNC; 6018 w.pParse = 0; 6019 assert( pNC->pSrcList!=0 ); 6020 sqlite3WalkExpr(&w, pExpr); 6021 } 6022 6023 /* 6024 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6025 ** expression list. Return the number of errors. 6026 ** 6027 ** If an error is found, the analysis is cut short. 6028 */ 6029 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6030 struct ExprList_item *pItem; 6031 int i; 6032 if( pList ){ 6033 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6034 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6035 } 6036 } 6037 } 6038 6039 /* 6040 ** Allocate a single new register for use to hold some intermediate result. 6041 */ 6042 int sqlite3GetTempReg(Parse *pParse){ 6043 if( pParse->nTempReg==0 ){ 6044 return ++pParse->nMem; 6045 } 6046 return pParse->aTempReg[--pParse->nTempReg]; 6047 } 6048 6049 /* 6050 ** Deallocate a register, making available for reuse for some other 6051 ** purpose. 6052 */ 6053 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6054 if( iReg ){ 6055 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6056 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6057 pParse->aTempReg[pParse->nTempReg++] = iReg; 6058 } 6059 } 6060 } 6061 6062 /* 6063 ** Allocate or deallocate a block of nReg consecutive registers. 6064 */ 6065 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6066 int i, n; 6067 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6068 i = pParse->iRangeReg; 6069 n = pParse->nRangeReg; 6070 if( nReg<=n ){ 6071 pParse->iRangeReg += nReg; 6072 pParse->nRangeReg -= nReg; 6073 }else{ 6074 i = pParse->nMem+1; 6075 pParse->nMem += nReg; 6076 } 6077 return i; 6078 } 6079 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6080 if( nReg==1 ){ 6081 sqlite3ReleaseTempReg(pParse, iReg); 6082 return; 6083 } 6084 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6085 if( nReg>pParse->nRangeReg ){ 6086 pParse->nRangeReg = nReg; 6087 pParse->iRangeReg = iReg; 6088 } 6089 } 6090 6091 /* 6092 ** Mark all temporary registers as being unavailable for reuse. 6093 ** 6094 ** Always invoke this procedure after coding a subroutine or co-routine 6095 ** that might be invoked from other parts of the code, to ensure that 6096 ** the sub/co-routine does not use registers in common with the code that 6097 ** invokes the sub/co-routine. 6098 */ 6099 void sqlite3ClearTempRegCache(Parse *pParse){ 6100 pParse->nTempReg = 0; 6101 pParse->nRangeReg = 0; 6102 } 6103 6104 /* 6105 ** Validate that no temporary register falls within the range of 6106 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6107 ** statements. 6108 */ 6109 #ifdef SQLITE_DEBUG 6110 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6111 int i; 6112 if( pParse->nRangeReg>0 6113 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6114 && pParse->iRangeReg <= iLast 6115 ){ 6116 return 0; 6117 } 6118 for(i=0; i<pParse->nTempReg; i++){ 6119 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6120 return 0; 6121 } 6122 } 6123 return 1; 6124 } 6125 #endif /* SQLITE_DEBUG */ 6126