xref: /sqlite-3.40.0/src/expr.c (revision 9cffb0ff)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
48     assert( pExpr->op==TK_COLLATE
49          || pExpr->op==TK_IF_NULL_ROW
50          || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
51     pExpr = pExpr->pLeft;
52     assert( pExpr!=0 );
53   }
54   op = pExpr->op;
55   if( op==TK_SELECT ){
56     assert( pExpr->flags&EP_xIsSelect );
57     assert( pExpr->x.pSelect!=0 );
58     assert( pExpr->x.pSelect->pEList!=0 );
59     assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
60     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
61   }
62   if( op==TK_REGISTER ) op = pExpr->op2;
63 #ifndef SQLITE_OMIT_CAST
64   if( op==TK_CAST ){
65     assert( !ExprHasProperty(pExpr, EP_IntValue) );
66     return sqlite3AffinityType(pExpr->u.zToken, 0);
67   }
68 #endif
69   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){
70     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
71   }
72   if( op==TK_SELECT_COLUMN ){
73     assert( pExpr->pLeft->flags&EP_xIsSelect );
74     return sqlite3ExprAffinity(
75         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
76     );
77   }
78   if( op==TK_VECTOR ){
79     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
80   }
81   return pExpr->affExpr;
82 }
83 
84 /*
85 ** Set the collating sequence for expression pExpr to be the collating
86 ** sequence named by pToken.   Return a pointer to a new Expr node that
87 ** implements the COLLATE operator.
88 **
89 ** If a memory allocation error occurs, that fact is recorded in pParse->db
90 ** and the pExpr parameter is returned unchanged.
91 */
92 Expr *sqlite3ExprAddCollateToken(
93   Parse *pParse,           /* Parsing context */
94   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
95   const Token *pCollName,  /* Name of collating sequence */
96   int dequote              /* True to dequote pCollName */
97 ){
98   assert( pExpr!=0 || pParse->db->mallocFailed );
99   if( pExpr==0 ) return 0;
100   if( pExpr->op==TK_VECTOR ){
101     ExprList *pList = pExpr->x.pList;
102     if( ALWAYS(pList!=0) ){
103       int i;
104       for(i=0; i<pList->nExpr; i++){
105         pList->a[i].pExpr = sqlite3ExprAddCollateToken(pParse,pList->a[i].pExpr,
106                                                        pCollName, dequote);
107       }
108     }
109   }else if( pCollName->n>0 ){
110     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
111     if( pNew ){
112       pNew->pLeft = pExpr;
113       pNew->flags |= EP_Collate|EP_Skip;
114       pExpr = pNew;
115     }
116   }
117   return pExpr;
118 }
119 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
120   Token s;
121   assert( zC!=0 );
122   sqlite3TokenInit(&s, (char*)zC);
123   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
124 }
125 
126 /*
127 ** Skip over any TK_COLLATE operators.
128 */
129 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
130   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
131     assert( pExpr->op==TK_COLLATE );
132     pExpr = pExpr->pLeft;
133   }
134   return pExpr;
135 }
136 
137 /*
138 ** Skip over any TK_COLLATE operators and/or any unlikely()
139 ** or likelihood() or likely() functions at the root of an
140 ** expression.
141 */
142 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
143   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
144     if( ExprHasProperty(pExpr, EP_Unlikely) ){
145       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
146       assert( pExpr->x.pList->nExpr>0 );
147       assert( pExpr->op==TK_FUNCTION );
148       pExpr = pExpr->x.pList->a[0].pExpr;
149     }else{
150       assert( pExpr->op==TK_COLLATE );
151       pExpr = pExpr->pLeft;
152     }
153   }
154   return pExpr;
155 }
156 
157 /*
158 ** Return the collation sequence for the expression pExpr. If
159 ** there is no defined collating sequence, return NULL.
160 **
161 ** See also: sqlite3ExprNNCollSeq()
162 **
163 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
164 ** default collation if pExpr has no defined collation.
165 **
166 ** The collating sequence might be determined by a COLLATE operator
167 ** or by the presence of a column with a defined collating sequence.
168 ** COLLATE operators take first precedence.  Left operands take
169 ** precedence over right operands.
170 */
171 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
172   sqlite3 *db = pParse->db;
173   CollSeq *pColl = 0;
174   const Expr *p = pExpr;
175   while( p ){
176     int op = p->op;
177     if( op==TK_REGISTER ) op = p->op2;
178     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
179      && p->y.pTab!=0
180     ){
181       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
182       ** a TK_COLUMN but was previously evaluated and cached in a register */
183       int j = p->iColumn;
184       if( j>=0 ){
185         const char *zColl = p->y.pTab->aCol[j].zColl;
186         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
187       }
188       break;
189     }
190     if( op==TK_CAST || op==TK_UPLUS ){
191       p = p->pLeft;
192       continue;
193     }
194     if( op==TK_VECTOR ){
195       p = p->x.pList->a[0].pExpr;
196       continue;
197     }
198     if( op==TK_COLLATE ){
199       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
200       break;
201     }
202     if( p->flags & EP_Collate ){
203       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
204         p = p->pLeft;
205       }else{
206         Expr *pNext  = p->pRight;
207         /* The Expr.x union is never used at the same time as Expr.pRight */
208         assert( p->x.pList==0 || p->pRight==0 );
209         if( p->x.pList!=0
210          && !db->mallocFailed
211          && ALWAYS(!ExprHasProperty(p, EP_xIsSelect))
212         ){
213           int i;
214           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
215             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
216               pNext = p->x.pList->a[i].pExpr;
217               break;
218             }
219           }
220         }
221         p = pNext;
222       }
223     }else{
224       break;
225     }
226   }
227   if( sqlite3CheckCollSeq(pParse, pColl) ){
228     pColl = 0;
229   }
230   return pColl;
231 }
232 
233 /*
234 ** Return the collation sequence for the expression pExpr. If
235 ** there is no defined collating sequence, return a pointer to the
236 ** defautl collation sequence.
237 **
238 ** See also: sqlite3ExprCollSeq()
239 **
240 ** The sqlite3ExprCollSeq() routine works the same except that it
241 ** returns NULL if there is no defined collation.
242 */
243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
244   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
245   if( p==0 ) p = pParse->db->pDfltColl;
246   assert( p!=0 );
247   return p;
248 }
249 
250 /*
251 ** Return TRUE if the two expressions have equivalent collating sequences.
252 */
253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
254   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
255   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
256   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
257 }
258 
259 /*
260 ** pExpr is an operand of a comparison operator.  aff2 is the
261 ** type affinity of the other operand.  This routine returns the
262 ** type affinity that should be used for the comparison operator.
263 */
264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
265   char aff1 = sqlite3ExprAffinity(pExpr);
266   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
267     /* Both sides of the comparison are columns. If one has numeric
268     ** affinity, use that. Otherwise use no affinity.
269     */
270     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
271       return SQLITE_AFF_NUMERIC;
272     }else{
273       return SQLITE_AFF_BLOB;
274     }
275   }else{
276     /* One side is a column, the other is not. Use the columns affinity. */
277     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
278     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
279   }
280 }
281 
282 /*
283 ** pExpr is a comparison operator.  Return the type affinity that should
284 ** be applied to both operands prior to doing the comparison.
285 */
286 static char comparisonAffinity(const Expr *pExpr){
287   char aff;
288   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
289           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
290           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
291   assert( pExpr->pLeft );
292   aff = sqlite3ExprAffinity(pExpr->pLeft);
293   if( pExpr->pRight ){
294     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
295   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
296     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
297   }else if( aff==0 ){
298     aff = SQLITE_AFF_BLOB;
299   }
300   return aff;
301 }
302 
303 /*
304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
305 ** idx_affinity is the affinity of an indexed column. Return true
306 ** if the index with affinity idx_affinity may be used to implement
307 ** the comparison in pExpr.
308 */
309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
310   char aff = comparisonAffinity(pExpr);
311   if( aff<SQLITE_AFF_TEXT ){
312     return 1;
313   }
314   if( aff==SQLITE_AFF_TEXT ){
315     return idx_affinity==SQLITE_AFF_TEXT;
316   }
317   return sqlite3IsNumericAffinity(idx_affinity);
318 }
319 
320 /*
321 ** Return the P5 value that should be used for a binary comparison
322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
323 */
324 static u8 binaryCompareP5(
325   const Expr *pExpr1,   /* Left operand */
326   const Expr *pExpr2,   /* Right operand */
327   int jumpIfNull        /* Extra flags added to P5 */
328 ){
329   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
330   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
331   return aff;
332 }
333 
334 /*
335 ** Return a pointer to the collation sequence that should be used by
336 ** a binary comparison operator comparing pLeft and pRight.
337 **
338 ** If the left hand expression has a collating sequence type, then it is
339 ** used. Otherwise the collation sequence for the right hand expression
340 ** is used, or the default (BINARY) if neither expression has a collating
341 ** type.
342 **
343 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
344 ** it is not considered.
345 */
346 CollSeq *sqlite3BinaryCompareCollSeq(
347   Parse *pParse,
348   const Expr *pLeft,
349   const Expr *pRight
350 ){
351   CollSeq *pColl;
352   assert( pLeft );
353   if( pLeft->flags & EP_Collate ){
354     pColl = sqlite3ExprCollSeq(pParse, pLeft);
355   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
356     pColl = sqlite3ExprCollSeq(pParse, pRight);
357   }else{
358     pColl = sqlite3ExprCollSeq(pParse, pLeft);
359     if( !pColl ){
360       pColl = sqlite3ExprCollSeq(pParse, pRight);
361     }
362   }
363   return pColl;
364 }
365 
366 /* Expresssion p is a comparison operator.  Return a collation sequence
367 ** appropriate for the comparison operator.
368 **
369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
370 ** However, if the OP_Commuted flag is set, then the order of the operands
371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
372 ** correct collating sequence is found.
373 */
374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
375   if( ExprHasProperty(p, EP_Commuted) ){
376     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
377   }else{
378     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
379   }
380 }
381 
382 /*
383 ** Generate code for a comparison operator.
384 */
385 static int codeCompare(
386   Parse *pParse,    /* The parsing (and code generating) context */
387   Expr *pLeft,      /* The left operand */
388   Expr *pRight,     /* The right operand */
389   int opcode,       /* The comparison opcode */
390   int in1, int in2, /* Register holding operands */
391   int dest,         /* Jump here if true.  */
392   int jumpIfNull,   /* If true, jump if either operand is NULL */
393   int isCommuted    /* The comparison has been commuted */
394 ){
395   int p5;
396   int addr;
397   CollSeq *p4;
398 
399   if( pParse->nErr ) return 0;
400   if( isCommuted ){
401     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
402   }else{
403     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
404   }
405   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
406   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
407                            (void*)p4, P4_COLLSEQ);
408   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
409   return addr;
410 }
411 
412 /*
413 ** Return true if expression pExpr is a vector, or false otherwise.
414 **
415 ** A vector is defined as any expression that results in two or more
416 ** columns of result.  Every TK_VECTOR node is an vector because the
417 ** parser will not generate a TK_VECTOR with fewer than two entries.
418 ** But a TK_SELECT might be either a vector or a scalar. It is only
419 ** considered a vector if it has two or more result columns.
420 */
421 int sqlite3ExprIsVector(Expr *pExpr){
422   return sqlite3ExprVectorSize(pExpr)>1;
423 }
424 
425 /*
426 ** If the expression passed as the only argument is of type TK_VECTOR
427 ** return the number of expressions in the vector. Or, if the expression
428 ** is a sub-select, return the number of columns in the sub-select. For
429 ** any other type of expression, return 1.
430 */
431 int sqlite3ExprVectorSize(Expr *pExpr){
432   u8 op = pExpr->op;
433   if( op==TK_REGISTER ) op = pExpr->op2;
434   if( op==TK_VECTOR ){
435     return pExpr->x.pList->nExpr;
436   }else if( op==TK_SELECT ){
437     return pExpr->x.pSelect->pEList->nExpr;
438   }else{
439     return 1;
440   }
441 }
442 
443 /*
444 ** Return a pointer to a subexpression of pVector that is the i-th
445 ** column of the vector (numbered starting with 0).  The caller must
446 ** ensure that i is within range.
447 **
448 ** If pVector is really a scalar (and "scalar" here includes subqueries
449 ** that return a single column!) then return pVector unmodified.
450 **
451 ** pVector retains ownership of the returned subexpression.
452 **
453 ** If the vector is a (SELECT ...) then the expression returned is
454 ** just the expression for the i-th term of the result set, and may
455 ** not be ready for evaluation because the table cursor has not yet
456 ** been positioned.
457 */
458 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
459   assert( i<sqlite3ExprVectorSize(pVector) );
460   if( sqlite3ExprIsVector(pVector) ){
461     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
462     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
463       return pVector->x.pSelect->pEList->a[i].pExpr;
464     }else{
465       return pVector->x.pList->a[i].pExpr;
466     }
467   }
468   return pVector;
469 }
470 
471 /*
472 ** Compute and return a new Expr object which when passed to
473 ** sqlite3ExprCode() will generate all necessary code to compute
474 ** the iField-th column of the vector expression pVector.
475 **
476 ** It is ok for pVector to be a scalar (as long as iField==0).
477 ** In that case, this routine works like sqlite3ExprDup().
478 **
479 ** The caller owns the returned Expr object and is responsible for
480 ** ensuring that the returned value eventually gets freed.
481 **
482 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
483 ** then the returned object will reference pVector and so pVector must remain
484 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
485 ** or a scalar expression, then it can be deleted as soon as this routine
486 ** returns.
487 **
488 ** A trick to cause a TK_SELECT pVector to be deleted together with
489 ** the returned Expr object is to attach the pVector to the pRight field
490 ** of the returned TK_SELECT_COLUMN Expr object.
491 */
492 Expr *sqlite3ExprForVectorField(
493   Parse *pParse,       /* Parsing context */
494   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
495   int iField           /* Which column of the vector to return */
496 ){
497   Expr *pRet;
498   if( pVector->op==TK_SELECT ){
499     assert( pVector->flags & EP_xIsSelect );
500     /* The TK_SELECT_COLUMN Expr node:
501     **
502     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
503     ** pRight:          not used.  But recursively deleted.
504     ** iColumn:         Index of a column in pVector
505     ** iTable:          0 or the number of columns on the LHS of an assignment
506     ** pLeft->iTable:   First in an array of register holding result, or 0
507     **                  if the result is not yet computed.
508     **
509     ** sqlite3ExprDelete() specifically skips the recursive delete of
510     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
511     ** can be attached to pRight to cause this node to take ownership of
512     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
513     ** with the same pLeft pointer to the pVector, but only one of them
514     ** will own the pVector.
515     */
516     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
517     if( pRet ){
518       pRet->iColumn = iField;
519       pRet->pLeft = pVector;
520     }
521     assert( pRet==0 || pRet->iTable==0 );
522   }else{
523     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
524     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
525     sqlite3RenameTokenRemap(pParse, pRet, pVector);
526   }
527   return pRet;
528 }
529 
530 /*
531 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
532 ** it. Return the register in which the result is stored (or, if the
533 ** sub-select returns more than one column, the first in an array
534 ** of registers in which the result is stored).
535 **
536 ** If pExpr is not a TK_SELECT expression, return 0.
537 */
538 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
539   int reg = 0;
540 #ifndef SQLITE_OMIT_SUBQUERY
541   if( pExpr->op==TK_SELECT ){
542     reg = sqlite3CodeSubselect(pParse, pExpr);
543   }
544 #endif
545   return reg;
546 }
547 
548 /*
549 ** Argument pVector points to a vector expression - either a TK_VECTOR
550 ** or TK_SELECT that returns more than one column. This function returns
551 ** the register number of a register that contains the value of
552 ** element iField of the vector.
553 **
554 ** If pVector is a TK_SELECT expression, then code for it must have
555 ** already been generated using the exprCodeSubselect() routine. In this
556 ** case parameter regSelect should be the first in an array of registers
557 ** containing the results of the sub-select.
558 **
559 ** If pVector is of type TK_VECTOR, then code for the requested field
560 ** is generated. In this case (*pRegFree) may be set to the number of
561 ** a temporary register to be freed by the caller before returning.
562 **
563 ** Before returning, output parameter (*ppExpr) is set to point to the
564 ** Expr object corresponding to element iElem of the vector.
565 */
566 static int exprVectorRegister(
567   Parse *pParse,                  /* Parse context */
568   Expr *pVector,                  /* Vector to extract element from */
569   int iField,                     /* Field to extract from pVector */
570   int regSelect,                  /* First in array of registers */
571   Expr **ppExpr,                  /* OUT: Expression element */
572   int *pRegFree                   /* OUT: Temp register to free */
573 ){
574   u8 op = pVector->op;
575   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
576   if( op==TK_REGISTER ){
577     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
578     return pVector->iTable+iField;
579   }
580   if( op==TK_SELECT ){
581     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
582      return regSelect+iField;
583   }
584   *ppExpr = pVector->x.pList->a[iField].pExpr;
585   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
586 }
587 
588 /*
589 ** Expression pExpr is a comparison between two vector values. Compute
590 ** the result of the comparison (1, 0, or NULL) and write that
591 ** result into register dest.
592 **
593 ** The caller must satisfy the following preconditions:
594 **
595 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
596 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
597 **    otherwise:                op==pExpr->op and p5==0
598 */
599 static void codeVectorCompare(
600   Parse *pParse,        /* Code generator context */
601   Expr *pExpr,          /* The comparison operation */
602   int dest,             /* Write results into this register */
603   u8 op,                /* Comparison operator */
604   u8 p5                 /* SQLITE_NULLEQ or zero */
605 ){
606   Vdbe *v = pParse->pVdbe;
607   Expr *pLeft = pExpr->pLeft;
608   Expr *pRight = pExpr->pRight;
609   int nLeft = sqlite3ExprVectorSize(pLeft);
610   int i;
611   int regLeft = 0;
612   int regRight = 0;
613   u8 opx = op;
614   int addrDone = sqlite3VdbeMakeLabel(pParse);
615   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
616 
617   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
618   if( pParse->nErr ) return;
619   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
620     sqlite3ErrorMsg(pParse, "row value misused");
621     return;
622   }
623   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
624        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
625        || pExpr->op==TK_LT || pExpr->op==TK_GT
626        || pExpr->op==TK_LE || pExpr->op==TK_GE
627   );
628   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
629             || (pExpr->op==TK_ISNOT && op==TK_NE) );
630   assert( p5==0 || pExpr->op!=op );
631   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
632 
633   p5 |= SQLITE_STOREP2;
634   if( opx==TK_LE ) opx = TK_LT;
635   if( opx==TK_GE ) opx = TK_GT;
636 
637   regLeft = exprCodeSubselect(pParse, pLeft);
638   regRight = exprCodeSubselect(pParse, pRight);
639 
640   for(i=0; 1 /*Loop exits by "break"*/; i++){
641     int regFree1 = 0, regFree2 = 0;
642     Expr *pL, *pR;
643     int r1, r2;
644     assert( i>=0 && i<nLeft );
645     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
646     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
647     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted);
648     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
649     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
650     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
651     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
652     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
653     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
654     sqlite3ReleaseTempReg(pParse, regFree1);
655     sqlite3ReleaseTempReg(pParse, regFree2);
656     if( i==nLeft-1 ){
657       break;
658     }
659     if( opx==TK_EQ ){
660       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
661       p5 |= SQLITE_KEEPNULL;
662     }else if( opx==TK_NE ){
663       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
664       p5 |= SQLITE_KEEPNULL;
665     }else{
666       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
667       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
668       VdbeCoverageIf(v, op==TK_LT);
669       VdbeCoverageIf(v, op==TK_GT);
670       VdbeCoverageIf(v, op==TK_LE);
671       VdbeCoverageIf(v, op==TK_GE);
672       if( i==nLeft-2 ) opx = op;
673     }
674   }
675   sqlite3VdbeResolveLabel(v, addrDone);
676 }
677 
678 #if SQLITE_MAX_EXPR_DEPTH>0
679 /*
680 ** Check that argument nHeight is less than or equal to the maximum
681 ** expression depth allowed. If it is not, leave an error message in
682 ** pParse.
683 */
684 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
685   int rc = SQLITE_OK;
686   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
687   if( nHeight>mxHeight ){
688     sqlite3ErrorMsg(pParse,
689        "Expression tree is too large (maximum depth %d)", mxHeight
690     );
691     rc = SQLITE_ERROR;
692   }
693   return rc;
694 }
695 
696 /* The following three functions, heightOfExpr(), heightOfExprList()
697 ** and heightOfSelect(), are used to determine the maximum height
698 ** of any expression tree referenced by the structure passed as the
699 ** first argument.
700 **
701 ** If this maximum height is greater than the current value pointed
702 ** to by pnHeight, the second parameter, then set *pnHeight to that
703 ** value.
704 */
705 static void heightOfExpr(Expr *p, int *pnHeight){
706   if( p ){
707     if( p->nHeight>*pnHeight ){
708       *pnHeight = p->nHeight;
709     }
710   }
711 }
712 static void heightOfExprList(ExprList *p, int *pnHeight){
713   if( p ){
714     int i;
715     for(i=0; i<p->nExpr; i++){
716       heightOfExpr(p->a[i].pExpr, pnHeight);
717     }
718   }
719 }
720 static void heightOfSelect(Select *pSelect, int *pnHeight){
721   Select *p;
722   for(p=pSelect; p; p=p->pPrior){
723     heightOfExpr(p->pWhere, pnHeight);
724     heightOfExpr(p->pHaving, pnHeight);
725     heightOfExpr(p->pLimit, pnHeight);
726     heightOfExprList(p->pEList, pnHeight);
727     heightOfExprList(p->pGroupBy, pnHeight);
728     heightOfExprList(p->pOrderBy, pnHeight);
729   }
730 }
731 
732 /*
733 ** Set the Expr.nHeight variable in the structure passed as an
734 ** argument. An expression with no children, Expr.pList or
735 ** Expr.pSelect member has a height of 1. Any other expression
736 ** has a height equal to the maximum height of any other
737 ** referenced Expr plus one.
738 **
739 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
740 ** if appropriate.
741 */
742 static void exprSetHeight(Expr *p){
743   int nHeight = 0;
744   heightOfExpr(p->pLeft, &nHeight);
745   heightOfExpr(p->pRight, &nHeight);
746   if( ExprHasProperty(p, EP_xIsSelect) ){
747     heightOfSelect(p->x.pSelect, &nHeight);
748   }else if( p->x.pList ){
749     heightOfExprList(p->x.pList, &nHeight);
750     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
751   }
752   p->nHeight = nHeight + 1;
753 }
754 
755 /*
756 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
757 ** the height is greater than the maximum allowed expression depth,
758 ** leave an error in pParse.
759 **
760 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
761 ** Expr.flags.
762 */
763 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
764   if( pParse->nErr ) return;
765   exprSetHeight(p);
766   sqlite3ExprCheckHeight(pParse, p->nHeight);
767 }
768 
769 /*
770 ** Return the maximum height of any expression tree referenced
771 ** by the select statement passed as an argument.
772 */
773 int sqlite3SelectExprHeight(Select *p){
774   int nHeight = 0;
775   heightOfSelect(p, &nHeight);
776   return nHeight;
777 }
778 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
779 /*
780 ** Propagate all EP_Propagate flags from the Expr.x.pList into
781 ** Expr.flags.
782 */
783 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
784   if( pParse->nErr ) return;
785   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
786     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
787   }
788 }
789 #define exprSetHeight(y)
790 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
791 
792 /*
793 ** This routine is the core allocator for Expr nodes.
794 **
795 ** Construct a new expression node and return a pointer to it.  Memory
796 ** for this node and for the pToken argument is a single allocation
797 ** obtained from sqlite3DbMalloc().  The calling function
798 ** is responsible for making sure the node eventually gets freed.
799 **
800 ** If dequote is true, then the token (if it exists) is dequoted.
801 ** If dequote is false, no dequoting is performed.  The deQuote
802 ** parameter is ignored if pToken is NULL or if the token does not
803 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
804 ** then the EP_DblQuoted flag is set on the expression node.
805 **
806 ** Special case:  If op==TK_INTEGER and pToken points to a string that
807 ** can be translated into a 32-bit integer, then the token is not
808 ** stored in u.zToken.  Instead, the integer values is written
809 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
810 ** is allocated to hold the integer text and the dequote flag is ignored.
811 */
812 Expr *sqlite3ExprAlloc(
813   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
814   int op,                 /* Expression opcode */
815   const Token *pToken,    /* Token argument.  Might be NULL */
816   int dequote             /* True to dequote */
817 ){
818   Expr *pNew;
819   int nExtra = 0;
820   int iValue = 0;
821 
822   assert( db!=0 );
823   if( pToken ){
824     if( op!=TK_INTEGER || pToken->z==0
825           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
826       nExtra = pToken->n+1;
827       assert( iValue>=0 );
828     }
829   }
830   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
831   if( pNew ){
832     memset(pNew, 0, sizeof(Expr));
833     pNew->op = (u8)op;
834     pNew->iAgg = -1;
835     if( pToken ){
836       if( nExtra==0 ){
837         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
838         pNew->u.iValue = iValue;
839       }else{
840         pNew->u.zToken = (char*)&pNew[1];
841         assert( pToken->z!=0 || pToken->n==0 );
842         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
843         pNew->u.zToken[pToken->n] = 0;
844         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
845           sqlite3DequoteExpr(pNew);
846         }
847       }
848     }
849 #if SQLITE_MAX_EXPR_DEPTH>0
850     pNew->nHeight = 1;
851 #endif
852   }
853   return pNew;
854 }
855 
856 /*
857 ** Allocate a new expression node from a zero-terminated token that has
858 ** already been dequoted.
859 */
860 Expr *sqlite3Expr(
861   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
862   int op,                 /* Expression opcode */
863   const char *zToken      /* Token argument.  Might be NULL */
864 ){
865   Token x;
866   x.z = zToken;
867   x.n = sqlite3Strlen30(zToken);
868   return sqlite3ExprAlloc(db, op, &x, 0);
869 }
870 
871 /*
872 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
873 **
874 ** If pRoot==NULL that means that a memory allocation error has occurred.
875 ** In that case, delete the subtrees pLeft and pRight.
876 */
877 void sqlite3ExprAttachSubtrees(
878   sqlite3 *db,
879   Expr *pRoot,
880   Expr *pLeft,
881   Expr *pRight
882 ){
883   if( pRoot==0 ){
884     assert( db->mallocFailed );
885     sqlite3ExprDelete(db, pLeft);
886     sqlite3ExprDelete(db, pRight);
887   }else{
888     if( pRight ){
889       pRoot->pRight = pRight;
890       pRoot->flags |= EP_Propagate & pRight->flags;
891     }
892     if( pLeft ){
893       pRoot->pLeft = pLeft;
894       pRoot->flags |= EP_Propagate & pLeft->flags;
895     }
896     exprSetHeight(pRoot);
897   }
898 }
899 
900 /*
901 ** Allocate an Expr node which joins as many as two subtrees.
902 **
903 ** One or both of the subtrees can be NULL.  Return a pointer to the new
904 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
905 ** free the subtrees and return NULL.
906 */
907 Expr *sqlite3PExpr(
908   Parse *pParse,          /* Parsing context */
909   int op,                 /* Expression opcode */
910   Expr *pLeft,            /* Left operand */
911   Expr *pRight            /* Right operand */
912 ){
913   Expr *p;
914   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
915   if( p ){
916     memset(p, 0, sizeof(Expr));
917     p->op = op & 0xff;
918     p->iAgg = -1;
919     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
920     sqlite3ExprCheckHeight(pParse, p->nHeight);
921   }else{
922     sqlite3ExprDelete(pParse->db, pLeft);
923     sqlite3ExprDelete(pParse->db, pRight);
924   }
925   return p;
926 }
927 
928 /*
929 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
930 ** do a memory allocation failure) then delete the pSelect object.
931 */
932 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
933   if( pExpr ){
934     pExpr->x.pSelect = pSelect;
935     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
936     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
937   }else{
938     assert( pParse->db->mallocFailed );
939     sqlite3SelectDelete(pParse->db, pSelect);
940   }
941 }
942 
943 
944 /*
945 ** Join two expressions using an AND operator.  If either expression is
946 ** NULL, then just return the other expression.
947 **
948 ** If one side or the other of the AND is known to be false, then instead
949 ** of returning an AND expression, just return a constant expression with
950 ** a value of false.
951 */
952 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
953   sqlite3 *db = pParse->db;
954   if( pLeft==0  ){
955     return pRight;
956   }else if( pRight==0 ){
957     return pLeft;
958   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
959          && !IN_RENAME_OBJECT
960   ){
961     sqlite3ExprDelete(db, pLeft);
962     sqlite3ExprDelete(db, pRight);
963     return sqlite3Expr(db, TK_INTEGER, "0");
964   }else{
965     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
966   }
967 }
968 
969 /*
970 ** Construct a new expression node for a function with multiple
971 ** arguments.
972 */
973 Expr *sqlite3ExprFunction(
974   Parse *pParse,        /* Parsing context */
975   ExprList *pList,      /* Argument list */
976   Token *pToken,        /* Name of the function */
977   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
978 ){
979   Expr *pNew;
980   sqlite3 *db = pParse->db;
981   assert( pToken );
982   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
983   if( pNew==0 ){
984     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
985     return 0;
986   }
987   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
988     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
989   }
990   pNew->x.pList = pList;
991   ExprSetProperty(pNew, EP_HasFunc);
992   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
993   sqlite3ExprSetHeightAndFlags(pParse, pNew);
994   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
995   return pNew;
996 }
997 
998 /*
999 ** Check to see if a function is usable according to current access
1000 ** rules:
1001 **
1002 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
1003 **
1004 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
1005 **                                top-level SQL
1006 **
1007 ** If the function is not usable, create an error.
1008 */
1009 void sqlite3ExprFunctionUsable(
1010   Parse *pParse,         /* Parsing and code generating context */
1011   Expr *pExpr,           /* The function invocation */
1012   FuncDef *pDef          /* The function being invoked */
1013 ){
1014   assert( !IN_RENAME_OBJECT );
1015   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1016   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1017     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1018      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1019     ){
1020       /* Functions prohibited in triggers and views if:
1021       **     (1) tagged with SQLITE_DIRECTONLY
1022       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1023       **         is tagged with SQLITE_FUNC_UNSAFE) and
1024       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1025       **         that the schema is possibly tainted).
1026       */
1027       sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName);
1028     }
1029   }
1030 }
1031 
1032 /*
1033 ** Assign a variable number to an expression that encodes a wildcard
1034 ** in the original SQL statement.
1035 **
1036 ** Wildcards consisting of a single "?" are assigned the next sequential
1037 ** variable number.
1038 **
1039 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1040 ** sure "nnn" is not too big to avoid a denial of service attack when
1041 ** the SQL statement comes from an external source.
1042 **
1043 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1044 ** as the previous instance of the same wildcard.  Or if this is the first
1045 ** instance of the wildcard, the next sequential variable number is
1046 ** assigned.
1047 */
1048 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1049   sqlite3 *db = pParse->db;
1050   const char *z;
1051   ynVar x;
1052 
1053   if( pExpr==0 ) return;
1054   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1055   z = pExpr->u.zToken;
1056   assert( z!=0 );
1057   assert( z[0]!=0 );
1058   assert( n==(u32)sqlite3Strlen30(z) );
1059   if( z[1]==0 ){
1060     /* Wildcard of the form "?".  Assign the next variable number */
1061     assert( z[0]=='?' );
1062     x = (ynVar)(++pParse->nVar);
1063   }else{
1064     int doAdd = 0;
1065     if( z[0]=='?' ){
1066       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1067       ** use it as the variable number */
1068       i64 i;
1069       int bOk;
1070       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1071         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1072         bOk = 1;
1073       }else{
1074         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1075       }
1076       testcase( i==0 );
1077       testcase( i==1 );
1078       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1079       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1080       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1081         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1082             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1083         return;
1084       }
1085       x = (ynVar)i;
1086       if( x>pParse->nVar ){
1087         pParse->nVar = (int)x;
1088         doAdd = 1;
1089       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1090         doAdd = 1;
1091       }
1092     }else{
1093       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1094       ** number as the prior appearance of the same name, or if the name
1095       ** has never appeared before, reuse the same variable number
1096       */
1097       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1098       if( x==0 ){
1099         x = (ynVar)(++pParse->nVar);
1100         doAdd = 1;
1101       }
1102     }
1103     if( doAdd ){
1104       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1105     }
1106   }
1107   pExpr->iColumn = x;
1108   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1109     sqlite3ErrorMsg(pParse, "too many SQL variables");
1110   }
1111 }
1112 
1113 /*
1114 ** Recursively delete an expression tree.
1115 */
1116 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1117   assert( p!=0 );
1118   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1119   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1120 
1121   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1122   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1123           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1124 #ifdef SQLITE_DEBUG
1125   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1126     assert( p->pLeft==0 );
1127     assert( p->pRight==0 );
1128     assert( p->x.pSelect==0 );
1129   }
1130 #endif
1131   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1132     /* The Expr.x union is never used at the same time as Expr.pRight */
1133     assert( p->x.pList==0 || p->pRight==0 );
1134     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1135     if( p->pRight ){
1136       assert( !ExprHasProperty(p, EP_WinFunc) );
1137       sqlite3ExprDeleteNN(db, p->pRight);
1138     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1139       assert( !ExprHasProperty(p, EP_WinFunc) );
1140       sqlite3SelectDelete(db, p->x.pSelect);
1141     }else{
1142       sqlite3ExprListDelete(db, p->x.pList);
1143 #ifndef SQLITE_OMIT_WINDOWFUNC
1144       if( ExprHasProperty(p, EP_WinFunc) ){
1145         sqlite3WindowDelete(db, p->y.pWin);
1146       }
1147 #endif
1148     }
1149   }
1150   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1151   if( !ExprHasProperty(p, EP_Static) ){
1152     sqlite3DbFreeNN(db, p);
1153   }
1154 }
1155 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1156   if( p ) sqlite3ExprDeleteNN(db, p);
1157 }
1158 
1159 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1160 ** expression.
1161 */
1162 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1163   if( p ){
1164     if( IN_RENAME_OBJECT ){
1165       sqlite3RenameExprUnmap(pParse, p);
1166     }
1167     sqlite3ExprDeleteNN(pParse->db, p);
1168   }
1169 }
1170 
1171 /*
1172 ** Return the number of bytes allocated for the expression structure
1173 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1174 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1175 */
1176 static int exprStructSize(Expr *p){
1177   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1178   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1179   return EXPR_FULLSIZE;
1180 }
1181 
1182 /*
1183 ** The dupedExpr*Size() routines each return the number of bytes required
1184 ** to store a copy of an expression or expression tree.  They differ in
1185 ** how much of the tree is measured.
1186 **
1187 **     dupedExprStructSize()     Size of only the Expr structure
1188 **     dupedExprNodeSize()       Size of Expr + space for token
1189 **     dupedExprSize()           Expr + token + subtree components
1190 **
1191 ***************************************************************************
1192 **
1193 ** The dupedExprStructSize() function returns two values OR-ed together:
1194 ** (1) the space required for a copy of the Expr structure only and
1195 ** (2) the EP_xxx flags that indicate what the structure size should be.
1196 ** The return values is always one of:
1197 **
1198 **      EXPR_FULLSIZE
1199 **      EXPR_REDUCEDSIZE   | EP_Reduced
1200 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1201 **
1202 ** The size of the structure can be found by masking the return value
1203 ** of this routine with 0xfff.  The flags can be found by masking the
1204 ** return value with EP_Reduced|EP_TokenOnly.
1205 **
1206 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1207 ** (unreduced) Expr objects as they or originally constructed by the parser.
1208 ** During expression analysis, extra information is computed and moved into
1209 ** later parts of the Expr object and that extra information might get chopped
1210 ** off if the expression is reduced.  Note also that it does not work to
1211 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1212 ** to reduce a pristine expression tree from the parser.  The implementation
1213 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1214 ** to enforce this constraint.
1215 */
1216 static int dupedExprStructSize(Expr *p, int flags){
1217   int nSize;
1218   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1219   assert( EXPR_FULLSIZE<=0xfff );
1220   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1221   if( 0==flags || p->op==TK_SELECT_COLUMN
1222 #ifndef SQLITE_OMIT_WINDOWFUNC
1223    || ExprHasProperty(p, EP_WinFunc)
1224 #endif
1225   ){
1226     nSize = EXPR_FULLSIZE;
1227   }else{
1228     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1229     assert( !ExprHasProperty(p, EP_FromJoin) );
1230     assert( !ExprHasProperty(p, EP_MemToken) );
1231     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1232     if( p->pLeft || p->x.pList ){
1233       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1234     }else{
1235       assert( p->pRight==0 );
1236       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1237     }
1238   }
1239   return nSize;
1240 }
1241 
1242 /*
1243 ** This function returns the space in bytes required to store the copy
1244 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1245 ** string is defined.)
1246 */
1247 static int dupedExprNodeSize(Expr *p, int flags){
1248   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1249   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1250     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1251   }
1252   return ROUND8(nByte);
1253 }
1254 
1255 /*
1256 ** Return the number of bytes required to create a duplicate of the
1257 ** expression passed as the first argument. The second argument is a
1258 ** mask containing EXPRDUP_XXX flags.
1259 **
1260 ** The value returned includes space to create a copy of the Expr struct
1261 ** itself and the buffer referred to by Expr.u.zToken, if any.
1262 **
1263 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1264 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1265 ** and Expr.pRight variables (but not for any structures pointed to or
1266 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1267 */
1268 static int dupedExprSize(Expr *p, int flags){
1269   int nByte = 0;
1270   if( p ){
1271     nByte = dupedExprNodeSize(p, flags);
1272     if( flags&EXPRDUP_REDUCE ){
1273       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1274     }
1275   }
1276   return nByte;
1277 }
1278 
1279 /*
1280 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1281 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1282 ** to store the copy of expression p, the copies of p->u.zToken
1283 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1284 ** if any. Before returning, *pzBuffer is set to the first byte past the
1285 ** portion of the buffer copied into by this function.
1286 */
1287 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1288   Expr *pNew;           /* Value to return */
1289   u8 *zAlloc;           /* Memory space from which to build Expr object */
1290   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1291 
1292   assert( db!=0 );
1293   assert( p );
1294   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1295   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1296 
1297   /* Figure out where to write the new Expr structure. */
1298   if( pzBuffer ){
1299     zAlloc = *pzBuffer;
1300     staticFlag = EP_Static;
1301   }else{
1302     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1303     staticFlag = 0;
1304   }
1305   pNew = (Expr *)zAlloc;
1306 
1307   if( pNew ){
1308     /* Set nNewSize to the size allocated for the structure pointed to
1309     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1310     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1311     ** by the copy of the p->u.zToken string (if any).
1312     */
1313     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1314     const int nNewSize = nStructSize & 0xfff;
1315     int nToken;
1316     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1317       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1318     }else{
1319       nToken = 0;
1320     }
1321     if( dupFlags ){
1322       assert( ExprHasProperty(p, EP_Reduced)==0 );
1323       memcpy(zAlloc, p, nNewSize);
1324     }else{
1325       u32 nSize = (u32)exprStructSize(p);
1326       memcpy(zAlloc, p, nSize);
1327       if( nSize<EXPR_FULLSIZE ){
1328         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1329       }
1330     }
1331 
1332     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1333     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1334     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1335     pNew->flags |= staticFlag;
1336     ExprClearVVAProperties(pNew);
1337     if( dupFlags ){
1338       ExprSetVVAProperty(pNew, EP_Immutable);
1339     }
1340 
1341     /* Copy the p->u.zToken string, if any. */
1342     if( nToken ){
1343       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1344       memcpy(zToken, p->u.zToken, nToken);
1345     }
1346 
1347     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1348       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1349       if( ExprHasProperty(p, EP_xIsSelect) ){
1350         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1351       }else{
1352         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1353       }
1354     }
1355 
1356     /* Fill in pNew->pLeft and pNew->pRight. */
1357     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1358       zAlloc += dupedExprNodeSize(p, dupFlags);
1359       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1360         pNew->pLeft = p->pLeft ?
1361                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1362         pNew->pRight = p->pRight ?
1363                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1364       }
1365 #ifndef SQLITE_OMIT_WINDOWFUNC
1366       if( ExprHasProperty(p, EP_WinFunc) ){
1367         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1368         assert( ExprHasProperty(pNew, EP_WinFunc) );
1369       }
1370 #endif /* SQLITE_OMIT_WINDOWFUNC */
1371       if( pzBuffer ){
1372         *pzBuffer = zAlloc;
1373       }
1374     }else{
1375       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1376         if( pNew->op==TK_SELECT_COLUMN ){
1377           pNew->pLeft = p->pLeft;
1378           assert( p->iColumn==0 || p->pRight==0 );
1379           assert( p->pRight==0  || p->pRight==p->pLeft );
1380         }else{
1381           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1382         }
1383         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1384       }
1385     }
1386   }
1387   return pNew;
1388 }
1389 
1390 /*
1391 ** Create and return a deep copy of the object passed as the second
1392 ** argument. If an OOM condition is encountered, NULL is returned
1393 ** and the db->mallocFailed flag set.
1394 */
1395 #ifndef SQLITE_OMIT_CTE
1396 static With *withDup(sqlite3 *db, With *p){
1397   With *pRet = 0;
1398   if( p ){
1399     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1400     pRet = sqlite3DbMallocZero(db, nByte);
1401     if( pRet ){
1402       int i;
1403       pRet->nCte = p->nCte;
1404       for(i=0; i<p->nCte; i++){
1405         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1406         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1407         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1408       }
1409     }
1410   }
1411   return pRet;
1412 }
1413 #else
1414 # define withDup(x,y) 0
1415 #endif
1416 
1417 #ifndef SQLITE_OMIT_WINDOWFUNC
1418 /*
1419 ** The gatherSelectWindows() procedure and its helper routine
1420 ** gatherSelectWindowsCallback() are used to scan all the expressions
1421 ** an a newly duplicated SELECT statement and gather all of the Window
1422 ** objects found there, assembling them onto the linked list at Select->pWin.
1423 */
1424 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1425   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1426     Select *pSelect = pWalker->u.pSelect;
1427     Window *pWin = pExpr->y.pWin;
1428     assert( pWin );
1429     assert( IsWindowFunc(pExpr) );
1430     assert( pWin->ppThis==0 );
1431     sqlite3WindowLink(pSelect, pWin);
1432   }
1433   return WRC_Continue;
1434 }
1435 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1436   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1437 }
1438 static void gatherSelectWindows(Select *p){
1439   Walker w;
1440   w.xExprCallback = gatherSelectWindowsCallback;
1441   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1442   w.xSelectCallback2 = 0;
1443   w.pParse = 0;
1444   w.u.pSelect = p;
1445   sqlite3WalkSelect(&w, p);
1446 }
1447 #endif
1448 
1449 
1450 /*
1451 ** The following group of routines make deep copies of expressions,
1452 ** expression lists, ID lists, and select statements.  The copies can
1453 ** be deleted (by being passed to their respective ...Delete() routines)
1454 ** without effecting the originals.
1455 **
1456 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1457 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1458 ** by subsequent calls to sqlite*ListAppend() routines.
1459 **
1460 ** Any tables that the SrcList might point to are not duplicated.
1461 **
1462 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1463 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1464 ** truncated version of the usual Expr structure that will be stored as
1465 ** part of the in-memory representation of the database schema.
1466 */
1467 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1468   assert( flags==0 || flags==EXPRDUP_REDUCE );
1469   return p ? exprDup(db, p, flags, 0) : 0;
1470 }
1471 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1472   ExprList *pNew;
1473   struct ExprList_item *pItem, *pOldItem;
1474   int i;
1475   Expr *pPriorSelectCol = 0;
1476   assert( db!=0 );
1477   if( p==0 ) return 0;
1478   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1479   if( pNew==0 ) return 0;
1480   pNew->nExpr = p->nExpr;
1481   pNew->nAlloc = p->nAlloc;
1482   pItem = pNew->a;
1483   pOldItem = p->a;
1484   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1485     Expr *pOldExpr = pOldItem->pExpr;
1486     Expr *pNewExpr;
1487     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1488     if( pOldExpr
1489      && pOldExpr->op==TK_SELECT_COLUMN
1490      && (pNewExpr = pItem->pExpr)!=0
1491     ){
1492       assert( pNewExpr->iColumn==0 || i>0 );
1493       if( pNewExpr->iColumn==0 ){
1494         assert( pOldExpr->pLeft==pOldExpr->pRight );
1495         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1496       }else{
1497         assert( i>0 );
1498         assert( pItem[-1].pExpr!=0 );
1499         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1500         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1501         pNewExpr->pLeft = pPriorSelectCol;
1502       }
1503     }
1504     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1505     pItem->sortFlags = pOldItem->sortFlags;
1506     pItem->eEName = pOldItem->eEName;
1507     pItem->done = 0;
1508     pItem->bNulls = pOldItem->bNulls;
1509     pItem->bSorterRef = pOldItem->bSorterRef;
1510     pItem->u = pOldItem->u;
1511   }
1512   return pNew;
1513 }
1514 
1515 /*
1516 ** If cursors, triggers, views and subqueries are all omitted from
1517 ** the build, then none of the following routines, except for
1518 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1519 ** called with a NULL argument.
1520 */
1521 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1522  || !defined(SQLITE_OMIT_SUBQUERY)
1523 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1524   SrcList *pNew;
1525   int i;
1526   int nByte;
1527   assert( db!=0 );
1528   if( p==0 ) return 0;
1529   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1530   pNew = sqlite3DbMallocRawNN(db, nByte );
1531   if( pNew==0 ) return 0;
1532   pNew->nSrc = pNew->nAlloc = p->nSrc;
1533   for(i=0; i<p->nSrc; i++){
1534     SrcItem *pNewItem = &pNew->a[i];
1535     SrcItem *pOldItem = &p->a[i];
1536     Table *pTab;
1537     pNewItem->pSchema = pOldItem->pSchema;
1538     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1539     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1540     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1541     pNewItem->fg = pOldItem->fg;
1542     pNewItem->iCursor = pOldItem->iCursor;
1543     pNewItem->addrFillSub = pOldItem->addrFillSub;
1544     pNewItem->regReturn = pOldItem->regReturn;
1545     if( pNewItem->fg.isIndexedBy ){
1546       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1547     }
1548     pNewItem->u2 = pOldItem->u2;
1549     if( pNewItem->fg.isCte ){
1550       pNewItem->u2.pCteUse->nUse++;
1551     }
1552     if( pNewItem->fg.isTabFunc ){
1553       pNewItem->u1.pFuncArg =
1554           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1555     }
1556     pTab = pNewItem->pTab = pOldItem->pTab;
1557     if( pTab ){
1558       pTab->nTabRef++;
1559     }
1560     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1561     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1562     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1563     pNewItem->colUsed = pOldItem->colUsed;
1564   }
1565   return pNew;
1566 }
1567 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1568   IdList *pNew;
1569   int i;
1570   assert( db!=0 );
1571   if( p==0 ) return 0;
1572   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1573   if( pNew==0 ) return 0;
1574   pNew->nId = p->nId;
1575   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1576   if( pNew->a==0 ){
1577     sqlite3DbFreeNN(db, pNew);
1578     return 0;
1579   }
1580   /* Note that because the size of the allocation for p->a[] is not
1581   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1582   ** on the duplicate created by this function. */
1583   for(i=0; i<p->nId; i++){
1584     struct IdList_item *pNewItem = &pNew->a[i];
1585     struct IdList_item *pOldItem = &p->a[i];
1586     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1587     pNewItem->idx = pOldItem->idx;
1588   }
1589   return pNew;
1590 }
1591 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1592   Select *pRet = 0;
1593   Select *pNext = 0;
1594   Select **pp = &pRet;
1595   Select *p;
1596 
1597   assert( db!=0 );
1598   for(p=pDup; p; p=p->pPrior){
1599     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1600     if( pNew==0 ) break;
1601     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1602     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1603     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1604     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1605     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1606     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1607     pNew->op = p->op;
1608     pNew->pNext = pNext;
1609     pNew->pPrior = 0;
1610     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1611     pNew->iLimit = 0;
1612     pNew->iOffset = 0;
1613     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1614     pNew->addrOpenEphm[0] = -1;
1615     pNew->addrOpenEphm[1] = -1;
1616     pNew->nSelectRow = p->nSelectRow;
1617     pNew->pWith = withDup(db, p->pWith);
1618 #ifndef SQLITE_OMIT_WINDOWFUNC
1619     pNew->pWin = 0;
1620     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1621     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1622 #endif
1623     pNew->selId = p->selId;
1624     *pp = pNew;
1625     pp = &pNew->pPrior;
1626     pNext = pNew;
1627   }
1628 
1629   return pRet;
1630 }
1631 #else
1632 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1633   assert( p==0 );
1634   return 0;
1635 }
1636 #endif
1637 
1638 
1639 /*
1640 ** Add a new element to the end of an expression list.  If pList is
1641 ** initially NULL, then create a new expression list.
1642 **
1643 ** The pList argument must be either NULL or a pointer to an ExprList
1644 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1645 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1646 ** Reason:  This routine assumes that the number of slots in pList->a[]
1647 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1648 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1649 **
1650 ** If a memory allocation error occurs, the entire list is freed and
1651 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1652 ** that the new entry was successfully appended.
1653 */
1654 static const struct ExprList_item zeroItem;
1655 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
1656   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1657   Expr *pExpr             /* Expression to be appended. Might be NULL */
1658 ){
1659   struct ExprList_item *pItem;
1660   ExprList *pList;
1661 
1662   pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
1663   if( pList==0 ){
1664     sqlite3ExprDelete(db, pExpr);
1665     return 0;
1666   }
1667   pList->nAlloc = 4;
1668   pList->nExpr = 1;
1669   pItem = &pList->a[0];
1670   *pItem = zeroItem;
1671   pItem->pExpr = pExpr;
1672   return pList;
1673 }
1674 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
1675   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1676   ExprList *pList,        /* List to which to append. Might be NULL */
1677   Expr *pExpr             /* Expression to be appended. Might be NULL */
1678 ){
1679   struct ExprList_item *pItem;
1680   ExprList *pNew;
1681   pList->nAlloc *= 2;
1682   pNew = sqlite3DbRealloc(db, pList,
1683        sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
1684   if( pNew==0 ){
1685     sqlite3ExprListDelete(db, pList);
1686     sqlite3ExprDelete(db, pExpr);
1687     return 0;
1688   }else{
1689     pList = pNew;
1690   }
1691   pItem = &pList->a[pList->nExpr++];
1692   *pItem = zeroItem;
1693   pItem->pExpr = pExpr;
1694   return pList;
1695 }
1696 ExprList *sqlite3ExprListAppend(
1697   Parse *pParse,          /* Parsing context */
1698   ExprList *pList,        /* List to which to append. Might be NULL */
1699   Expr *pExpr             /* Expression to be appended. Might be NULL */
1700 ){
1701   struct ExprList_item *pItem;
1702   if( pList==0 ){
1703     return sqlite3ExprListAppendNew(pParse->db,pExpr);
1704   }
1705   if( pList->nAlloc<pList->nExpr+1 ){
1706     return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
1707   }
1708   pItem = &pList->a[pList->nExpr++];
1709   *pItem = zeroItem;
1710   pItem->pExpr = pExpr;
1711   return pList;
1712 }
1713 
1714 /*
1715 ** pColumns and pExpr form a vector assignment which is part of the SET
1716 ** clause of an UPDATE statement.  Like this:
1717 **
1718 **        (a,b,c) = (expr1,expr2,expr3)
1719 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1720 **
1721 ** For each term of the vector assignment, append new entries to the
1722 ** expression list pList.  In the case of a subquery on the RHS, append
1723 ** TK_SELECT_COLUMN expressions.
1724 */
1725 ExprList *sqlite3ExprListAppendVector(
1726   Parse *pParse,         /* Parsing context */
1727   ExprList *pList,       /* List to which to append. Might be NULL */
1728   IdList *pColumns,      /* List of names of LHS of the assignment */
1729   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1730 ){
1731   sqlite3 *db = pParse->db;
1732   int n;
1733   int i;
1734   int iFirst = pList ? pList->nExpr : 0;
1735   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1736   ** exit prior to this routine being invoked */
1737   if( NEVER(pColumns==0) ) goto vector_append_error;
1738   if( pExpr==0 ) goto vector_append_error;
1739 
1740   /* If the RHS is a vector, then we can immediately check to see that
1741   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1742   ** wildcards ("*") in the result set of the SELECT must be expanded before
1743   ** we can do the size check, so defer the size check until code generation.
1744   */
1745   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1746     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1747                     pColumns->nId, n);
1748     goto vector_append_error;
1749   }
1750 
1751   for(i=0; i<pColumns->nId; i++){
1752     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1753     assert( pSubExpr!=0 || db->mallocFailed );
1754     assert( pSubExpr==0 || pSubExpr->iTable==0 );
1755     if( pSubExpr==0 ) continue;
1756     pSubExpr->iTable = pColumns->nId;
1757     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1758     if( pList ){
1759       assert( pList->nExpr==iFirst+i+1 );
1760       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1761       pColumns->a[i].zName = 0;
1762     }
1763   }
1764 
1765   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1766     Expr *pFirst = pList->a[iFirst].pExpr;
1767     assert( pFirst!=0 );
1768     assert( pFirst->op==TK_SELECT_COLUMN );
1769 
1770     /* Store the SELECT statement in pRight so it will be deleted when
1771     ** sqlite3ExprListDelete() is called */
1772     pFirst->pRight = pExpr;
1773     pExpr = 0;
1774 
1775     /* Remember the size of the LHS in iTable so that we can check that
1776     ** the RHS and LHS sizes match during code generation. */
1777     pFirst->iTable = pColumns->nId;
1778   }
1779 
1780 vector_append_error:
1781   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1782   sqlite3IdListDelete(db, pColumns);
1783   return pList;
1784 }
1785 
1786 /*
1787 ** Set the sort order for the last element on the given ExprList.
1788 */
1789 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1790   struct ExprList_item *pItem;
1791   if( p==0 ) return;
1792   assert( p->nExpr>0 );
1793 
1794   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1795   assert( iSortOrder==SQLITE_SO_UNDEFINED
1796        || iSortOrder==SQLITE_SO_ASC
1797        || iSortOrder==SQLITE_SO_DESC
1798   );
1799   assert( eNulls==SQLITE_SO_UNDEFINED
1800        || eNulls==SQLITE_SO_ASC
1801        || eNulls==SQLITE_SO_DESC
1802   );
1803 
1804   pItem = &p->a[p->nExpr-1];
1805   assert( pItem->bNulls==0 );
1806   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1807     iSortOrder = SQLITE_SO_ASC;
1808   }
1809   pItem->sortFlags = (u8)iSortOrder;
1810 
1811   if( eNulls!=SQLITE_SO_UNDEFINED ){
1812     pItem->bNulls = 1;
1813     if( iSortOrder!=eNulls ){
1814       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1815     }
1816   }
1817 }
1818 
1819 /*
1820 ** Set the ExprList.a[].zEName element of the most recently added item
1821 ** on the expression list.
1822 **
1823 ** pList might be NULL following an OOM error.  But pName should never be
1824 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1825 ** is set.
1826 */
1827 void sqlite3ExprListSetName(
1828   Parse *pParse,          /* Parsing context */
1829   ExprList *pList,        /* List to which to add the span. */
1830   Token *pName,           /* Name to be added */
1831   int dequote             /* True to cause the name to be dequoted */
1832 ){
1833   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1834   assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1835   if( pList ){
1836     struct ExprList_item *pItem;
1837     assert( pList->nExpr>0 );
1838     pItem = &pList->a[pList->nExpr-1];
1839     assert( pItem->zEName==0 );
1840     assert( pItem->eEName==ENAME_NAME );
1841     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1842     if( dequote ){
1843       /* If dequote==0, then pName->z does not point to part of a DDL
1844       ** statement handled by the parser. And so no token need be added
1845       ** to the token-map.  */
1846       sqlite3Dequote(pItem->zEName);
1847       if( IN_RENAME_OBJECT ){
1848         sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName);
1849       }
1850     }
1851   }
1852 }
1853 
1854 /*
1855 ** Set the ExprList.a[].zSpan element of the most recently added item
1856 ** on the expression list.
1857 **
1858 ** pList might be NULL following an OOM error.  But pSpan should never be
1859 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1860 ** is set.
1861 */
1862 void sqlite3ExprListSetSpan(
1863   Parse *pParse,          /* Parsing context */
1864   ExprList *pList,        /* List to which to add the span. */
1865   const char *zStart,     /* Start of the span */
1866   const char *zEnd        /* End of the span */
1867 ){
1868   sqlite3 *db = pParse->db;
1869   assert( pList!=0 || db->mallocFailed!=0 );
1870   if( pList ){
1871     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1872     assert( pList->nExpr>0 );
1873     if( pItem->zEName==0 ){
1874       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
1875       pItem->eEName = ENAME_SPAN;
1876     }
1877   }
1878 }
1879 
1880 /*
1881 ** If the expression list pEList contains more than iLimit elements,
1882 ** leave an error message in pParse.
1883 */
1884 void sqlite3ExprListCheckLength(
1885   Parse *pParse,
1886   ExprList *pEList,
1887   const char *zObject
1888 ){
1889   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1890   testcase( pEList && pEList->nExpr==mx );
1891   testcase( pEList && pEList->nExpr==mx+1 );
1892   if( pEList && pEList->nExpr>mx ){
1893     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1894   }
1895 }
1896 
1897 /*
1898 ** Delete an entire expression list.
1899 */
1900 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1901   int i = pList->nExpr;
1902   struct ExprList_item *pItem =  pList->a;
1903   assert( pList->nExpr>0 );
1904   do{
1905     sqlite3ExprDelete(db, pItem->pExpr);
1906     sqlite3DbFree(db, pItem->zEName);
1907     pItem++;
1908   }while( --i>0 );
1909   sqlite3DbFreeNN(db, pList);
1910 }
1911 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1912   if( pList ) exprListDeleteNN(db, pList);
1913 }
1914 
1915 /*
1916 ** Return the bitwise-OR of all Expr.flags fields in the given
1917 ** ExprList.
1918 */
1919 u32 sqlite3ExprListFlags(const ExprList *pList){
1920   int i;
1921   u32 m = 0;
1922   assert( pList!=0 );
1923   for(i=0; i<pList->nExpr; i++){
1924      Expr *pExpr = pList->a[i].pExpr;
1925      assert( pExpr!=0 );
1926      m |= pExpr->flags;
1927   }
1928   return m;
1929 }
1930 
1931 /*
1932 ** This is a SELECT-node callback for the expression walker that
1933 ** always "fails".  By "fail" in this case, we mean set
1934 ** pWalker->eCode to zero and abort.
1935 **
1936 ** This callback is used by multiple expression walkers.
1937 */
1938 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1939   UNUSED_PARAMETER(NotUsed);
1940   pWalker->eCode = 0;
1941   return WRC_Abort;
1942 }
1943 
1944 /*
1945 ** Check the input string to see if it is "true" or "false" (in any case).
1946 **
1947 **       If the string is....           Return
1948 **         "true"                         EP_IsTrue
1949 **         "false"                        EP_IsFalse
1950 **         anything else                  0
1951 */
1952 u32 sqlite3IsTrueOrFalse(const char *zIn){
1953   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
1954   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
1955   return 0;
1956 }
1957 
1958 
1959 /*
1960 ** If the input expression is an ID with the name "true" or "false"
1961 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1962 ** the conversion happened, and zero if the expression is unaltered.
1963 */
1964 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1965   u32 v;
1966   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1967   if( !ExprHasProperty(pExpr, EP_Quoted)
1968    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
1969   ){
1970     pExpr->op = TK_TRUEFALSE;
1971     ExprSetProperty(pExpr, v);
1972     return 1;
1973   }
1974   return 0;
1975 }
1976 
1977 /*
1978 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
1979 ** and 0 if it is FALSE.
1980 */
1981 int sqlite3ExprTruthValue(const Expr *pExpr){
1982   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
1983   assert( pExpr->op==TK_TRUEFALSE );
1984   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1985        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1986   return pExpr->u.zToken[4]==0;
1987 }
1988 
1989 /*
1990 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
1991 ** terms that are always true or false.  Return the simplified expression.
1992 ** Or return the original expression if no simplification is possible.
1993 **
1994 ** Examples:
1995 **
1996 **     (x<10) AND true                =>   (x<10)
1997 **     (x<10) AND false               =>   false
1998 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
1999 **     (x<10) AND (y=22 OR true)      =>   (x<10)
2000 **     (y=22) OR true                 =>   true
2001 */
2002 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
2003   assert( pExpr!=0 );
2004   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
2005     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
2006     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
2007     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
2008       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
2009     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
2010       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
2011     }
2012   }
2013   return pExpr;
2014 }
2015 
2016 
2017 /*
2018 ** These routines are Walker callbacks used to check expressions to
2019 ** see if they are "constant" for some definition of constant.  The
2020 ** Walker.eCode value determines the type of "constant" we are looking
2021 ** for.
2022 **
2023 ** These callback routines are used to implement the following:
2024 **
2025 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
2026 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
2027 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
2028 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
2029 **
2030 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2031 ** is found to not be a constant.
2032 **
2033 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2034 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
2035 ** when parsing an existing schema out of the sqlite_schema table and 4
2036 ** when processing a new CREATE TABLE statement.  A bound parameter raises
2037 ** an error for new statements, but is silently converted
2038 ** to NULL for existing schemas.  This allows sqlite_schema tables that
2039 ** contain a bound parameter because they were generated by older versions
2040 ** of SQLite to be parsed by newer versions of SQLite without raising a
2041 ** malformed schema error.
2042 */
2043 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2044 
2045   /* If pWalker->eCode is 2 then any term of the expression that comes from
2046   ** the ON or USING clauses of a left join disqualifies the expression
2047   ** from being considered constant. */
2048   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
2049     pWalker->eCode = 0;
2050     return WRC_Abort;
2051   }
2052 
2053   switch( pExpr->op ){
2054     /* Consider functions to be constant if all their arguments are constant
2055     ** and either pWalker->eCode==4 or 5 or the function has the
2056     ** SQLITE_FUNC_CONST flag. */
2057     case TK_FUNCTION:
2058       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2059        && !ExprHasProperty(pExpr, EP_WinFunc)
2060       ){
2061         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2062         return WRC_Continue;
2063       }else{
2064         pWalker->eCode = 0;
2065         return WRC_Abort;
2066       }
2067     case TK_ID:
2068       /* Convert "true" or "false" in a DEFAULT clause into the
2069       ** appropriate TK_TRUEFALSE operator */
2070       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2071         return WRC_Prune;
2072       }
2073       /* no break */ deliberate_fall_through
2074     case TK_COLUMN:
2075     case TK_AGG_FUNCTION:
2076     case TK_AGG_COLUMN:
2077       testcase( pExpr->op==TK_ID );
2078       testcase( pExpr->op==TK_COLUMN );
2079       testcase( pExpr->op==TK_AGG_FUNCTION );
2080       testcase( pExpr->op==TK_AGG_COLUMN );
2081       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2082         return WRC_Continue;
2083       }
2084       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2085         return WRC_Continue;
2086       }
2087       /* no break */ deliberate_fall_through
2088     case TK_IF_NULL_ROW:
2089     case TK_REGISTER:
2090     case TK_DOT:
2091       testcase( pExpr->op==TK_REGISTER );
2092       testcase( pExpr->op==TK_IF_NULL_ROW );
2093       testcase( pExpr->op==TK_DOT );
2094       pWalker->eCode = 0;
2095       return WRC_Abort;
2096     case TK_VARIABLE:
2097       if( pWalker->eCode==5 ){
2098         /* Silently convert bound parameters that appear inside of CREATE
2099         ** statements into a NULL when parsing the CREATE statement text out
2100         ** of the sqlite_schema table */
2101         pExpr->op = TK_NULL;
2102       }else if( pWalker->eCode==4 ){
2103         /* A bound parameter in a CREATE statement that originates from
2104         ** sqlite3_prepare() causes an error */
2105         pWalker->eCode = 0;
2106         return WRC_Abort;
2107       }
2108       /* no break */ deliberate_fall_through
2109     default:
2110       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2111       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2112       return WRC_Continue;
2113   }
2114 }
2115 static int exprIsConst(Expr *p, int initFlag, int iCur){
2116   Walker w;
2117   w.eCode = initFlag;
2118   w.xExprCallback = exprNodeIsConstant;
2119   w.xSelectCallback = sqlite3SelectWalkFail;
2120 #ifdef SQLITE_DEBUG
2121   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2122 #endif
2123   w.u.iCur = iCur;
2124   sqlite3WalkExpr(&w, p);
2125   return w.eCode;
2126 }
2127 
2128 /*
2129 ** Walk an expression tree.  Return non-zero if the expression is constant
2130 ** and 0 if it involves variables or function calls.
2131 **
2132 ** For the purposes of this function, a double-quoted string (ex: "abc")
2133 ** is considered a variable but a single-quoted string (ex: 'abc') is
2134 ** a constant.
2135 */
2136 int sqlite3ExprIsConstant(Expr *p){
2137   return exprIsConst(p, 1, 0);
2138 }
2139 
2140 /*
2141 ** Walk an expression tree.  Return non-zero if
2142 **
2143 **   (1) the expression is constant, and
2144 **   (2) the expression does originate in the ON or USING clause
2145 **       of a LEFT JOIN, and
2146 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2147 **       operands created by the constant propagation optimization.
2148 **
2149 ** When this routine returns true, it indicates that the expression
2150 ** can be added to the pParse->pConstExpr list and evaluated once when
2151 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2152 */
2153 int sqlite3ExprIsConstantNotJoin(Expr *p){
2154   return exprIsConst(p, 2, 0);
2155 }
2156 
2157 /*
2158 ** Walk an expression tree.  Return non-zero if the expression is constant
2159 ** for any single row of the table with cursor iCur.  In other words, the
2160 ** expression must not refer to any non-deterministic function nor any
2161 ** table other than iCur.
2162 */
2163 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2164   return exprIsConst(p, 3, iCur);
2165 }
2166 
2167 
2168 /*
2169 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2170 */
2171 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2172   ExprList *pGroupBy = pWalker->u.pGroupBy;
2173   int i;
2174 
2175   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2176   ** it constant.  */
2177   for(i=0; i<pGroupBy->nExpr; i++){
2178     Expr *p = pGroupBy->a[i].pExpr;
2179     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2180       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2181       if( sqlite3IsBinary(pColl) ){
2182         return WRC_Prune;
2183       }
2184     }
2185   }
2186 
2187   /* Check if pExpr is a sub-select. If so, consider it variable. */
2188   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2189     pWalker->eCode = 0;
2190     return WRC_Abort;
2191   }
2192 
2193   return exprNodeIsConstant(pWalker, pExpr);
2194 }
2195 
2196 /*
2197 ** Walk the expression tree passed as the first argument. Return non-zero
2198 ** if the expression consists entirely of constants or copies of terms
2199 ** in pGroupBy that sort with the BINARY collation sequence.
2200 **
2201 ** This routine is used to determine if a term of the HAVING clause can
2202 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2203 ** the value of the HAVING clause term must be the same for all members of
2204 ** a "group".  The requirement that the GROUP BY term must be BINARY
2205 ** assumes that no other collating sequence will have a finer-grained
2206 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2207 ** A=B in every other collating sequence.  The requirement that the
2208 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2209 ** to promote HAVING clauses that use the same alternative collating
2210 ** sequence as the GROUP BY term, but that is much harder to check,
2211 ** alternative collating sequences are uncommon, and this is only an
2212 ** optimization, so we take the easy way out and simply require the
2213 ** GROUP BY to use the BINARY collating sequence.
2214 */
2215 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2216   Walker w;
2217   w.eCode = 1;
2218   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2219   w.xSelectCallback = 0;
2220   w.u.pGroupBy = pGroupBy;
2221   w.pParse = pParse;
2222   sqlite3WalkExpr(&w, p);
2223   return w.eCode;
2224 }
2225 
2226 /*
2227 ** Walk an expression tree for the DEFAULT field of a column definition
2228 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2229 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2230 ** the expression is constant or a function call with constant arguments.
2231 ** Return and 0 if there are any variables.
2232 **
2233 ** isInit is true when parsing from sqlite_schema.  isInit is false when
2234 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2235 ** (such as ? or $abc) in the expression are converted into NULL.  When
2236 ** isInit is false, parameters raise an error.  Parameters should not be
2237 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2238 ** allowed it, so we need to support it when reading sqlite_schema for
2239 ** backwards compatibility.
2240 **
2241 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2242 **
2243 ** For the purposes of this function, a double-quoted string (ex: "abc")
2244 ** is considered a variable but a single-quoted string (ex: 'abc') is
2245 ** a constant.
2246 */
2247 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2248   assert( isInit==0 || isInit==1 );
2249   return exprIsConst(p, 4+isInit, 0);
2250 }
2251 
2252 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2253 /*
2254 ** Walk an expression tree.  Return 1 if the expression contains a
2255 ** subquery of some kind.  Return 0 if there are no subqueries.
2256 */
2257 int sqlite3ExprContainsSubquery(Expr *p){
2258   Walker w;
2259   w.eCode = 1;
2260   w.xExprCallback = sqlite3ExprWalkNoop;
2261   w.xSelectCallback = sqlite3SelectWalkFail;
2262 #ifdef SQLITE_DEBUG
2263   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2264 #endif
2265   sqlite3WalkExpr(&w, p);
2266   return w.eCode==0;
2267 }
2268 #endif
2269 
2270 /*
2271 ** If the expression p codes a constant integer that is small enough
2272 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2273 ** in *pValue.  If the expression is not an integer or if it is too big
2274 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2275 */
2276 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2277   int rc = 0;
2278   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2279 
2280   /* If an expression is an integer literal that fits in a signed 32-bit
2281   ** integer, then the EP_IntValue flag will have already been set */
2282   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2283            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2284 
2285   if( p->flags & EP_IntValue ){
2286     *pValue = p->u.iValue;
2287     return 1;
2288   }
2289   switch( p->op ){
2290     case TK_UPLUS: {
2291       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2292       break;
2293     }
2294     case TK_UMINUS: {
2295       int v;
2296       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2297         assert( v!=(-2147483647-1) );
2298         *pValue = -v;
2299         rc = 1;
2300       }
2301       break;
2302     }
2303     default: break;
2304   }
2305   return rc;
2306 }
2307 
2308 /*
2309 ** Return FALSE if there is no chance that the expression can be NULL.
2310 **
2311 ** If the expression might be NULL or if the expression is too complex
2312 ** to tell return TRUE.
2313 **
2314 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2315 ** when we know that a value cannot be NULL.  Hence, a false positive
2316 ** (returning TRUE when in fact the expression can never be NULL) might
2317 ** be a small performance hit but is otherwise harmless.  On the other
2318 ** hand, a false negative (returning FALSE when the result could be NULL)
2319 ** will likely result in an incorrect answer.  So when in doubt, return
2320 ** TRUE.
2321 */
2322 int sqlite3ExprCanBeNull(const Expr *p){
2323   u8 op;
2324   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2325     p = p->pLeft;
2326   }
2327   op = p->op;
2328   if( op==TK_REGISTER ) op = p->op2;
2329   switch( op ){
2330     case TK_INTEGER:
2331     case TK_STRING:
2332     case TK_FLOAT:
2333     case TK_BLOB:
2334       return 0;
2335     case TK_COLUMN:
2336       return ExprHasProperty(p, EP_CanBeNull) ||
2337              p->y.pTab==0 ||  /* Reference to column of index on expression */
2338              (p->iColumn>=0
2339               && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */
2340               && p->y.pTab->aCol[p->iColumn].notNull==0);
2341     default:
2342       return 1;
2343   }
2344 }
2345 
2346 /*
2347 ** Return TRUE if the given expression is a constant which would be
2348 ** unchanged by OP_Affinity with the affinity given in the second
2349 ** argument.
2350 **
2351 ** This routine is used to determine if the OP_Affinity operation
2352 ** can be omitted.  When in doubt return FALSE.  A false negative
2353 ** is harmless.  A false positive, however, can result in the wrong
2354 ** answer.
2355 */
2356 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2357   u8 op;
2358   int unaryMinus = 0;
2359   if( aff==SQLITE_AFF_BLOB ) return 1;
2360   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2361     if( p->op==TK_UMINUS ) unaryMinus = 1;
2362     p = p->pLeft;
2363   }
2364   op = p->op;
2365   if( op==TK_REGISTER ) op = p->op2;
2366   switch( op ){
2367     case TK_INTEGER: {
2368       return aff>=SQLITE_AFF_NUMERIC;
2369     }
2370     case TK_FLOAT: {
2371       return aff>=SQLITE_AFF_NUMERIC;
2372     }
2373     case TK_STRING: {
2374       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2375     }
2376     case TK_BLOB: {
2377       return !unaryMinus;
2378     }
2379     case TK_COLUMN: {
2380       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2381       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2382     }
2383     default: {
2384       return 0;
2385     }
2386   }
2387 }
2388 
2389 /*
2390 ** Return TRUE if the given string is a row-id column name.
2391 */
2392 int sqlite3IsRowid(const char *z){
2393   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2394   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2395   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2396   return 0;
2397 }
2398 
2399 /*
2400 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2401 ** that can be simplified to a direct table access, then return
2402 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2403 ** or if the SELECT statement needs to be manifested into a transient
2404 ** table, then return NULL.
2405 */
2406 #ifndef SQLITE_OMIT_SUBQUERY
2407 static Select *isCandidateForInOpt(Expr *pX){
2408   Select *p;
2409   SrcList *pSrc;
2410   ExprList *pEList;
2411   Table *pTab;
2412   int i;
2413   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2414   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2415   p = pX->x.pSelect;
2416   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2417   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2418     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2419     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2420     return 0; /* No DISTINCT keyword and no aggregate functions */
2421   }
2422   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2423   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2424   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2425   pSrc = p->pSrc;
2426   assert( pSrc!=0 );
2427   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2428   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2429   pTab = pSrc->a[0].pTab;
2430   assert( pTab!=0 );
2431   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2432   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2433   pEList = p->pEList;
2434   assert( pEList!=0 );
2435   /* All SELECT results must be columns. */
2436   for(i=0; i<pEList->nExpr; i++){
2437     Expr *pRes = pEList->a[i].pExpr;
2438     if( pRes->op!=TK_COLUMN ) return 0;
2439     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2440   }
2441   return p;
2442 }
2443 #endif /* SQLITE_OMIT_SUBQUERY */
2444 
2445 #ifndef SQLITE_OMIT_SUBQUERY
2446 /*
2447 ** Generate code that checks the left-most column of index table iCur to see if
2448 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2449 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2450 ** to be set to NULL if iCur contains one or more NULL values.
2451 */
2452 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2453   int addr1;
2454   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2455   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2456   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2457   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2458   VdbeComment((v, "first_entry_in(%d)", iCur));
2459   sqlite3VdbeJumpHere(v, addr1);
2460 }
2461 #endif
2462 
2463 
2464 #ifndef SQLITE_OMIT_SUBQUERY
2465 /*
2466 ** The argument is an IN operator with a list (not a subquery) on the
2467 ** right-hand side.  Return TRUE if that list is constant.
2468 */
2469 static int sqlite3InRhsIsConstant(Expr *pIn){
2470   Expr *pLHS;
2471   int res;
2472   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2473   pLHS = pIn->pLeft;
2474   pIn->pLeft = 0;
2475   res = sqlite3ExprIsConstant(pIn);
2476   pIn->pLeft = pLHS;
2477   return res;
2478 }
2479 #endif
2480 
2481 /*
2482 ** This function is used by the implementation of the IN (...) operator.
2483 ** The pX parameter is the expression on the RHS of the IN operator, which
2484 ** might be either a list of expressions or a subquery.
2485 **
2486 ** The job of this routine is to find or create a b-tree object that can
2487 ** be used either to test for membership in the RHS set or to iterate through
2488 ** all members of the RHS set, skipping duplicates.
2489 **
2490 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2491 ** and pX->iTable is set to the index of that cursor.
2492 **
2493 ** The returned value of this function indicates the b-tree type, as follows:
2494 **
2495 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2496 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2497 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2498 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2499 **                         populated epheremal table.
2500 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2501 **                         implemented as a sequence of comparisons.
2502 **
2503 ** An existing b-tree might be used if the RHS expression pX is a simple
2504 ** subquery such as:
2505 **
2506 **     SELECT <column1>, <column2>... FROM <table>
2507 **
2508 ** If the RHS of the IN operator is a list or a more complex subquery, then
2509 ** an ephemeral table might need to be generated from the RHS and then
2510 ** pX->iTable made to point to the ephemeral table instead of an
2511 ** existing table.
2512 **
2513 ** The inFlags parameter must contain, at a minimum, one of the bits
2514 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2515 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2516 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2517 ** be used to loop over all values of the RHS of the IN operator.
2518 **
2519 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2520 ** through the set members) then the b-tree must not contain duplicates.
2521 ** An epheremal table will be created unless the selected columns are guaranteed
2522 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2523 ** a UNIQUE constraint or index.
2524 **
2525 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2526 ** for fast set membership tests) then an epheremal table must
2527 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2528 ** index can be found with the specified <columns> as its left-most.
2529 **
2530 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2531 ** if the RHS of the IN operator is a list (not a subquery) then this
2532 ** routine might decide that creating an ephemeral b-tree for membership
2533 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2534 ** calling routine should implement the IN operator using a sequence
2535 ** of Eq or Ne comparison operations.
2536 **
2537 ** When the b-tree is being used for membership tests, the calling function
2538 ** might need to know whether or not the RHS side of the IN operator
2539 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2540 ** if there is any chance that the (...) might contain a NULL value at
2541 ** runtime, then a register is allocated and the register number written
2542 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2543 ** NULL value, then *prRhsHasNull is left unchanged.
2544 **
2545 ** If a register is allocated and its location stored in *prRhsHasNull, then
2546 ** the value in that register will be NULL if the b-tree contains one or more
2547 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2548 ** NULL values.
2549 **
2550 ** If the aiMap parameter is not NULL, it must point to an array containing
2551 ** one element for each column returned by the SELECT statement on the RHS
2552 ** of the IN(...) operator. The i'th entry of the array is populated with the
2553 ** offset of the index column that matches the i'th column returned by the
2554 ** SELECT. For example, if the expression and selected index are:
2555 **
2556 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2557 **   CREATE INDEX i1 ON t1(b, c, a);
2558 **
2559 ** then aiMap[] is populated with {2, 0, 1}.
2560 */
2561 #ifndef SQLITE_OMIT_SUBQUERY
2562 int sqlite3FindInIndex(
2563   Parse *pParse,             /* Parsing context */
2564   Expr *pX,                  /* The IN expression */
2565   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2566   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2567   int *aiMap,                /* Mapping from Index fields to RHS fields */
2568   int *piTab                 /* OUT: index to use */
2569 ){
2570   Select *p;                            /* SELECT to the right of IN operator */
2571   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2572   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2573   int mustBeUnique;                     /* True if RHS must be unique */
2574   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2575 
2576   assert( pX->op==TK_IN );
2577   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2578 
2579   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2580   ** whether or not the SELECT result contains NULL values, check whether
2581   ** or not NULL is actually possible (it may not be, for example, due
2582   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2583   ** set prRhsHasNull to 0 before continuing.  */
2584   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2585     int i;
2586     ExprList *pEList = pX->x.pSelect->pEList;
2587     for(i=0; i<pEList->nExpr; i++){
2588       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2589     }
2590     if( i==pEList->nExpr ){
2591       prRhsHasNull = 0;
2592     }
2593   }
2594 
2595   /* Check to see if an existing table or index can be used to
2596   ** satisfy the query.  This is preferable to generating a new
2597   ** ephemeral table.  */
2598   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2599     sqlite3 *db = pParse->db;              /* Database connection */
2600     Table *pTab;                           /* Table <table>. */
2601     int iDb;                               /* Database idx for pTab */
2602     ExprList *pEList = p->pEList;
2603     int nExpr = pEList->nExpr;
2604 
2605     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2606     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2607     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2608     pTab = p->pSrc->a[0].pTab;
2609 
2610     /* Code an OP_Transaction and OP_TableLock for <table>. */
2611     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2612     assert( iDb>=0 && iDb<SQLITE_MAX_DB );
2613     sqlite3CodeVerifySchema(pParse, iDb);
2614     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2615 
2616     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2617     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2618       /* The "x IN (SELECT rowid FROM table)" case */
2619       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2620       VdbeCoverage(v);
2621 
2622       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2623       eType = IN_INDEX_ROWID;
2624       ExplainQueryPlan((pParse, 0,
2625             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2626       sqlite3VdbeJumpHere(v, iAddr);
2627     }else{
2628       Index *pIdx;                         /* Iterator variable */
2629       int affinity_ok = 1;
2630       int i;
2631 
2632       /* Check that the affinity that will be used to perform each
2633       ** comparison is the same as the affinity of each column in table
2634       ** on the RHS of the IN operator.  If it not, it is not possible to
2635       ** use any index of the RHS table.  */
2636       for(i=0; i<nExpr && affinity_ok; i++){
2637         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2638         int iCol = pEList->a[i].pExpr->iColumn;
2639         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2640         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2641         testcase( cmpaff==SQLITE_AFF_BLOB );
2642         testcase( cmpaff==SQLITE_AFF_TEXT );
2643         switch( cmpaff ){
2644           case SQLITE_AFF_BLOB:
2645             break;
2646           case SQLITE_AFF_TEXT:
2647             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2648             ** other has no affinity and the other side is TEXT.  Hence,
2649             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2650             ** and for the term on the LHS of the IN to have no affinity. */
2651             assert( idxaff==SQLITE_AFF_TEXT );
2652             break;
2653           default:
2654             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2655         }
2656       }
2657 
2658       if( affinity_ok ){
2659         /* Search for an existing index that will work for this IN operator */
2660         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2661           Bitmask colUsed;      /* Columns of the index used */
2662           Bitmask mCol;         /* Mask for the current column */
2663           if( pIdx->nColumn<nExpr ) continue;
2664           if( pIdx->pPartIdxWhere!=0 ) continue;
2665           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2666           ** BITMASK(nExpr) without overflowing */
2667           testcase( pIdx->nColumn==BMS-2 );
2668           testcase( pIdx->nColumn==BMS-1 );
2669           if( pIdx->nColumn>=BMS-1 ) continue;
2670           if( mustBeUnique ){
2671             if( pIdx->nKeyCol>nExpr
2672              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2673             ){
2674               continue;  /* This index is not unique over the IN RHS columns */
2675             }
2676           }
2677 
2678           colUsed = 0;   /* Columns of index used so far */
2679           for(i=0; i<nExpr; i++){
2680             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2681             Expr *pRhs = pEList->a[i].pExpr;
2682             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2683             int j;
2684 
2685             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2686             for(j=0; j<nExpr; j++){
2687               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2688               assert( pIdx->azColl[j] );
2689               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2690                 continue;
2691               }
2692               break;
2693             }
2694             if( j==nExpr ) break;
2695             mCol = MASKBIT(j);
2696             if( mCol & colUsed ) break; /* Each column used only once */
2697             colUsed |= mCol;
2698             if( aiMap ) aiMap[i] = j;
2699           }
2700 
2701           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2702           if( colUsed==(MASKBIT(nExpr)-1) ){
2703             /* If we reach this point, that means the index pIdx is usable */
2704             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2705             ExplainQueryPlan((pParse, 0,
2706                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2707             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2708             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2709             VdbeComment((v, "%s", pIdx->zName));
2710             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2711             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2712 
2713             if( prRhsHasNull ){
2714 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2715               i64 mask = (1<<nExpr)-1;
2716               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2717                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2718 #endif
2719               *prRhsHasNull = ++pParse->nMem;
2720               if( nExpr==1 ){
2721                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2722               }
2723             }
2724             sqlite3VdbeJumpHere(v, iAddr);
2725           }
2726         } /* End loop over indexes */
2727       } /* End if( affinity_ok ) */
2728     } /* End if not an rowid index */
2729   } /* End attempt to optimize using an index */
2730 
2731   /* If no preexisting index is available for the IN clause
2732   ** and IN_INDEX_NOOP is an allowed reply
2733   ** and the RHS of the IN operator is a list, not a subquery
2734   ** and the RHS is not constant or has two or fewer terms,
2735   ** then it is not worth creating an ephemeral table to evaluate
2736   ** the IN operator so return IN_INDEX_NOOP.
2737   */
2738   if( eType==0
2739    && (inFlags & IN_INDEX_NOOP_OK)
2740    && !ExprHasProperty(pX, EP_xIsSelect)
2741    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2742   ){
2743     eType = IN_INDEX_NOOP;
2744   }
2745 
2746   if( eType==0 ){
2747     /* Could not find an existing table or index to use as the RHS b-tree.
2748     ** We will have to generate an ephemeral table to do the job.
2749     */
2750     u32 savedNQueryLoop = pParse->nQueryLoop;
2751     int rMayHaveNull = 0;
2752     eType = IN_INDEX_EPH;
2753     if( inFlags & IN_INDEX_LOOP ){
2754       pParse->nQueryLoop = 0;
2755     }else if( prRhsHasNull ){
2756       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2757     }
2758     assert( pX->op==TK_IN );
2759     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2760     if( rMayHaveNull ){
2761       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2762     }
2763     pParse->nQueryLoop = savedNQueryLoop;
2764   }
2765 
2766   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2767     int i, n;
2768     n = sqlite3ExprVectorSize(pX->pLeft);
2769     for(i=0; i<n; i++) aiMap[i] = i;
2770   }
2771   *piTab = iTab;
2772   return eType;
2773 }
2774 #endif
2775 
2776 #ifndef SQLITE_OMIT_SUBQUERY
2777 /*
2778 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2779 ** function allocates and returns a nul-terminated string containing
2780 ** the affinities to be used for each column of the comparison.
2781 **
2782 ** It is the responsibility of the caller to ensure that the returned
2783 ** string is eventually freed using sqlite3DbFree().
2784 */
2785 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2786   Expr *pLeft = pExpr->pLeft;
2787   int nVal = sqlite3ExprVectorSize(pLeft);
2788   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2789   char *zRet;
2790 
2791   assert( pExpr->op==TK_IN );
2792   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2793   if( zRet ){
2794     int i;
2795     for(i=0; i<nVal; i++){
2796       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2797       char a = sqlite3ExprAffinity(pA);
2798       if( pSelect ){
2799         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2800       }else{
2801         zRet[i] = a;
2802       }
2803     }
2804     zRet[nVal] = '\0';
2805   }
2806   return zRet;
2807 }
2808 #endif
2809 
2810 #ifndef SQLITE_OMIT_SUBQUERY
2811 /*
2812 ** Load the Parse object passed as the first argument with an error
2813 ** message of the form:
2814 **
2815 **   "sub-select returns N columns - expected M"
2816 */
2817 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2818   if( pParse->nErr==0 ){
2819     const char *zFmt = "sub-select returns %d columns - expected %d";
2820     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2821   }
2822 }
2823 #endif
2824 
2825 /*
2826 ** Expression pExpr is a vector that has been used in a context where
2827 ** it is not permitted. If pExpr is a sub-select vector, this routine
2828 ** loads the Parse object with a message of the form:
2829 **
2830 **   "sub-select returns N columns - expected 1"
2831 **
2832 ** Or, if it is a regular scalar vector:
2833 **
2834 **   "row value misused"
2835 */
2836 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2837 #ifndef SQLITE_OMIT_SUBQUERY
2838   if( pExpr->flags & EP_xIsSelect ){
2839     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2840   }else
2841 #endif
2842   {
2843     sqlite3ErrorMsg(pParse, "row value misused");
2844   }
2845 }
2846 
2847 #ifndef SQLITE_OMIT_SUBQUERY
2848 /*
2849 ** Generate code that will construct an ephemeral table containing all terms
2850 ** in the RHS of an IN operator.  The IN operator can be in either of two
2851 ** forms:
2852 **
2853 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2854 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2855 **
2856 ** The pExpr parameter is the IN operator.  The cursor number for the
2857 ** constructed ephermeral table is returned.  The first time the ephemeral
2858 ** table is computed, the cursor number is also stored in pExpr->iTable,
2859 ** however the cursor number returned might not be the same, as it might
2860 ** have been duplicated using OP_OpenDup.
2861 **
2862 ** If the LHS expression ("x" in the examples) is a column value, or
2863 ** the SELECT statement returns a column value, then the affinity of that
2864 ** column is used to build the index keys. If both 'x' and the
2865 ** SELECT... statement are columns, then numeric affinity is used
2866 ** if either column has NUMERIC or INTEGER affinity. If neither
2867 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2868 ** is used.
2869 */
2870 void sqlite3CodeRhsOfIN(
2871   Parse *pParse,          /* Parsing context */
2872   Expr *pExpr,            /* The IN operator */
2873   int iTab                /* Use this cursor number */
2874 ){
2875   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2876   int addr;                   /* Address of OP_OpenEphemeral instruction */
2877   Expr *pLeft;                /* the LHS of the IN operator */
2878   KeyInfo *pKeyInfo = 0;      /* Key information */
2879   int nVal;                   /* Size of vector pLeft */
2880   Vdbe *v;                    /* The prepared statement under construction */
2881 
2882   v = pParse->pVdbe;
2883   assert( v!=0 );
2884 
2885   /* The evaluation of the IN must be repeated every time it
2886   ** is encountered if any of the following is true:
2887   **
2888   **    *  The right-hand side is a correlated subquery
2889   **    *  The right-hand side is an expression list containing variables
2890   **    *  We are inside a trigger
2891   **
2892   ** If all of the above are false, then we can compute the RHS just once
2893   ** and reuse it many names.
2894   */
2895   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2896     /* Reuse of the RHS is allowed */
2897     /* If this routine has already been coded, but the previous code
2898     ** might not have been invoked yet, so invoke it now as a subroutine.
2899     */
2900     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2901       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2902       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2903         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
2904               pExpr->x.pSelect->selId));
2905       }
2906       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2907                         pExpr->y.sub.iAddr);
2908       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
2909       sqlite3VdbeJumpHere(v, addrOnce);
2910       return;
2911     }
2912 
2913     /* Begin coding the subroutine */
2914     ExprSetProperty(pExpr, EP_Subrtn);
2915     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
2916     pExpr->y.sub.regReturn = ++pParse->nMem;
2917     pExpr->y.sub.iAddr =
2918       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2919     VdbeComment((v, "return address"));
2920 
2921     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2922   }
2923 
2924   /* Check to see if this is a vector IN operator */
2925   pLeft = pExpr->pLeft;
2926   nVal = sqlite3ExprVectorSize(pLeft);
2927 
2928   /* Construct the ephemeral table that will contain the content of
2929   ** RHS of the IN operator.
2930   */
2931   pExpr->iTable = iTab;
2932   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
2933 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2934   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2935     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
2936   }else{
2937     VdbeComment((v, "RHS of IN operator"));
2938   }
2939 #endif
2940   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2941 
2942   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2943     /* Case 1:     expr IN (SELECT ...)
2944     **
2945     ** Generate code to write the results of the select into the temporary
2946     ** table allocated and opened above.
2947     */
2948     Select *pSelect = pExpr->x.pSelect;
2949     ExprList *pEList = pSelect->pEList;
2950 
2951     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
2952         addrOnce?"":"CORRELATED ", pSelect->selId
2953     ));
2954     /* If the LHS and RHS of the IN operator do not match, that
2955     ** error will have been caught long before we reach this point. */
2956     if( ALWAYS(pEList->nExpr==nVal) ){
2957       SelectDest dest;
2958       int i;
2959       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
2960       dest.zAffSdst = exprINAffinity(pParse, pExpr);
2961       pSelect->iLimit = 0;
2962       testcase( pSelect->selFlags & SF_Distinct );
2963       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2964       if( sqlite3Select(pParse, pSelect, &dest) ){
2965         sqlite3DbFree(pParse->db, dest.zAffSdst);
2966         sqlite3KeyInfoUnref(pKeyInfo);
2967         return;
2968       }
2969       sqlite3DbFree(pParse->db, dest.zAffSdst);
2970       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2971       assert( pEList!=0 );
2972       assert( pEList->nExpr>0 );
2973       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2974       for(i=0; i<nVal; i++){
2975         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2976         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2977             pParse, p, pEList->a[i].pExpr
2978         );
2979       }
2980     }
2981   }else if( ALWAYS(pExpr->x.pList!=0) ){
2982     /* Case 2:     expr IN (exprlist)
2983     **
2984     ** For each expression, build an index key from the evaluation and
2985     ** store it in the temporary table. If <expr> is a column, then use
2986     ** that columns affinity when building index keys. If <expr> is not
2987     ** a column, use numeric affinity.
2988     */
2989     char affinity;            /* Affinity of the LHS of the IN */
2990     int i;
2991     ExprList *pList = pExpr->x.pList;
2992     struct ExprList_item *pItem;
2993     int r1, r2;
2994     affinity = sqlite3ExprAffinity(pLeft);
2995     if( affinity<=SQLITE_AFF_NONE ){
2996       affinity = SQLITE_AFF_BLOB;
2997     }else if( affinity==SQLITE_AFF_REAL ){
2998       affinity = SQLITE_AFF_NUMERIC;
2999     }
3000     if( pKeyInfo ){
3001       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3002       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3003     }
3004 
3005     /* Loop through each expression in <exprlist>. */
3006     r1 = sqlite3GetTempReg(pParse);
3007     r2 = sqlite3GetTempReg(pParse);
3008     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
3009       Expr *pE2 = pItem->pExpr;
3010 
3011       /* If the expression is not constant then we will need to
3012       ** disable the test that was generated above that makes sure
3013       ** this code only executes once.  Because for a non-constant
3014       ** expression we need to rerun this code each time.
3015       */
3016       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
3017         sqlite3VdbeChangeToNoop(v, addrOnce);
3018         ExprClearProperty(pExpr, EP_Subrtn);
3019         addrOnce = 0;
3020       }
3021 
3022       /* Evaluate the expression and insert it into the temp table */
3023       sqlite3ExprCode(pParse, pE2, r1);
3024       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3025       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3026     }
3027     sqlite3ReleaseTempReg(pParse, r1);
3028     sqlite3ReleaseTempReg(pParse, r2);
3029   }
3030   if( pKeyInfo ){
3031     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3032   }
3033   if( addrOnce ){
3034     sqlite3VdbeJumpHere(v, addrOnce);
3035     /* Subroutine return */
3036     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3037     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3038     sqlite3ClearTempRegCache(pParse);
3039   }
3040 }
3041 #endif /* SQLITE_OMIT_SUBQUERY */
3042 
3043 /*
3044 ** Generate code for scalar subqueries used as a subquery expression
3045 ** or EXISTS operator:
3046 **
3047 **     (SELECT a FROM b)          -- subquery
3048 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
3049 **
3050 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3051 **
3052 ** Return the register that holds the result.  For a multi-column SELECT,
3053 ** the result is stored in a contiguous array of registers and the
3054 ** return value is the register of the left-most result column.
3055 ** Return 0 if an error occurs.
3056 */
3057 #ifndef SQLITE_OMIT_SUBQUERY
3058 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3059   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3060   int rReg = 0;               /* Register storing resulting */
3061   Select *pSel;               /* SELECT statement to encode */
3062   SelectDest dest;            /* How to deal with SELECT result */
3063   int nReg;                   /* Registers to allocate */
3064   Expr *pLimit;               /* New limit expression */
3065 
3066   Vdbe *v = pParse->pVdbe;
3067   assert( v!=0 );
3068   testcase( pExpr->op==TK_EXISTS );
3069   testcase( pExpr->op==TK_SELECT );
3070   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3071   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
3072   pSel = pExpr->x.pSelect;
3073 
3074   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3075   ** is encountered if any of the following is true:
3076   **
3077   **    *  The right-hand side is a correlated subquery
3078   **    *  The right-hand side is an expression list containing variables
3079   **    *  We are inside a trigger
3080   **
3081   ** If all of the above are false, then we can run this code just once
3082   ** save the results, and reuse the same result on subsequent invocations.
3083   */
3084   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3085     /* If this routine has already been coded, then invoke it as a
3086     ** subroutine. */
3087     if( ExprHasProperty(pExpr, EP_Subrtn) ){
3088       ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3089       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3090                         pExpr->y.sub.iAddr);
3091       return pExpr->iTable;
3092     }
3093 
3094     /* Begin coding the subroutine */
3095     ExprSetProperty(pExpr, EP_Subrtn);
3096     pExpr->y.sub.regReturn = ++pParse->nMem;
3097     pExpr->y.sub.iAddr =
3098       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
3099     VdbeComment((v, "return address"));
3100 
3101     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3102   }
3103 
3104   /* For a SELECT, generate code to put the values for all columns of
3105   ** the first row into an array of registers and return the index of
3106   ** the first register.
3107   **
3108   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3109   ** into a register and return that register number.
3110   **
3111   ** In both cases, the query is augmented with "LIMIT 1".  Any
3112   ** preexisting limit is discarded in place of the new LIMIT 1.
3113   */
3114   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3115         addrOnce?"":"CORRELATED ", pSel->selId));
3116   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3117   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3118   pParse->nMem += nReg;
3119   if( pExpr->op==TK_SELECT ){
3120     dest.eDest = SRT_Mem;
3121     dest.iSdst = dest.iSDParm;
3122     dest.nSdst = nReg;
3123     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3124     VdbeComment((v, "Init subquery result"));
3125   }else{
3126     dest.eDest = SRT_Exists;
3127     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3128     VdbeComment((v, "Init EXISTS result"));
3129   }
3130   if( pSel->pLimit ){
3131     /* The subquery already has a limit.  If the pre-existing limit is X
3132     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3133     sqlite3 *db = pParse->db;
3134     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3135     if( pLimit ){
3136       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3137       pLimit = sqlite3PExpr(pParse, TK_NE,
3138                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3139     }
3140     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3141     pSel->pLimit->pLeft = pLimit;
3142   }else{
3143     /* If there is no pre-existing limit add a limit of 1 */
3144     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3145     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3146   }
3147   pSel->iLimit = 0;
3148   if( sqlite3Select(pParse, pSel, &dest) ){
3149     return 0;
3150   }
3151   pExpr->iTable = rReg = dest.iSDParm;
3152   ExprSetVVAProperty(pExpr, EP_NoReduce);
3153   if( addrOnce ){
3154     sqlite3VdbeJumpHere(v, addrOnce);
3155 
3156     /* Subroutine return */
3157     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3158     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3159     sqlite3ClearTempRegCache(pParse);
3160   }
3161 
3162   return rReg;
3163 }
3164 #endif /* SQLITE_OMIT_SUBQUERY */
3165 
3166 #ifndef SQLITE_OMIT_SUBQUERY
3167 /*
3168 ** Expr pIn is an IN(...) expression. This function checks that the
3169 ** sub-select on the RHS of the IN() operator has the same number of
3170 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3171 ** a sub-query, that the LHS is a vector of size 1.
3172 */
3173 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3174   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3175   if( (pIn->flags & EP_xIsSelect) ){
3176     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3177       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3178       return 1;
3179     }
3180   }else if( nVector!=1 ){
3181     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3182     return 1;
3183   }
3184   return 0;
3185 }
3186 #endif
3187 
3188 #ifndef SQLITE_OMIT_SUBQUERY
3189 /*
3190 ** Generate code for an IN expression.
3191 **
3192 **      x IN (SELECT ...)
3193 **      x IN (value, value, ...)
3194 **
3195 ** The left-hand side (LHS) is a scalar or vector expression.  The
3196 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3197 ** subquery.  If the RHS is a subquery, the number of result columns must
3198 ** match the number of columns in the vector on the LHS.  If the RHS is
3199 ** a list of values, the LHS must be a scalar.
3200 **
3201 ** The IN operator is true if the LHS value is contained within the RHS.
3202 ** The result is false if the LHS is definitely not in the RHS.  The
3203 ** result is NULL if the presence of the LHS in the RHS cannot be
3204 ** determined due to NULLs.
3205 **
3206 ** This routine generates code that jumps to destIfFalse if the LHS is not
3207 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3208 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3209 ** within the RHS then fall through.
3210 **
3211 ** See the separate in-operator.md documentation file in the canonical
3212 ** SQLite source tree for additional information.
3213 */
3214 static void sqlite3ExprCodeIN(
3215   Parse *pParse,        /* Parsing and code generating context */
3216   Expr *pExpr,          /* The IN expression */
3217   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3218   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3219 ){
3220   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3221   int eType;            /* Type of the RHS */
3222   int rLhs;             /* Register(s) holding the LHS values */
3223   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3224   Vdbe *v;              /* Statement under construction */
3225   int *aiMap = 0;       /* Map from vector field to index column */
3226   char *zAff = 0;       /* Affinity string for comparisons */
3227   int nVector;          /* Size of vectors for this IN operator */
3228   int iDummy;           /* Dummy parameter to exprCodeVector() */
3229   Expr *pLeft;          /* The LHS of the IN operator */
3230   int i;                /* loop counter */
3231   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3232   int destStep6 = 0;    /* Start of code for Step 6 */
3233   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3234   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3235   int addrTop;          /* Top of the step-6 loop */
3236   int iTab = 0;         /* Index to use */
3237   u8 okConstFactor = pParse->okConstFactor;
3238 
3239   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3240   pLeft = pExpr->pLeft;
3241   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3242   zAff = exprINAffinity(pParse, pExpr);
3243   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3244   aiMap = (int*)sqlite3DbMallocZero(
3245       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3246   );
3247   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3248 
3249   /* Attempt to compute the RHS. After this step, if anything other than
3250   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3251   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3252   ** the RHS has not yet been coded.  */
3253   v = pParse->pVdbe;
3254   assert( v!=0 );       /* OOM detected prior to this routine */
3255   VdbeNoopComment((v, "begin IN expr"));
3256   eType = sqlite3FindInIndex(pParse, pExpr,
3257                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3258                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3259                              aiMap, &iTab);
3260 
3261   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3262        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3263   );
3264 #ifdef SQLITE_DEBUG
3265   /* Confirm that aiMap[] contains nVector integer values between 0 and
3266   ** nVector-1. */
3267   for(i=0; i<nVector; i++){
3268     int j, cnt;
3269     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3270     assert( cnt==1 );
3271   }
3272 #endif
3273 
3274   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3275   ** vector, then it is stored in an array of nVector registers starting
3276   ** at r1.
3277   **
3278   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3279   ** so that the fields are in the same order as an existing index.   The
3280   ** aiMap[] array contains a mapping from the original LHS field order to
3281   ** the field order that matches the RHS index.
3282   **
3283   ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3284   ** even if it is constant, as OP_Affinity may be used on the register
3285   ** by code generated below.  */
3286   assert( pParse->okConstFactor==okConstFactor );
3287   pParse->okConstFactor = 0;
3288   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3289   pParse->okConstFactor = okConstFactor;
3290   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3291   if( i==nVector ){
3292     /* LHS fields are not reordered */
3293     rLhs = rLhsOrig;
3294   }else{
3295     /* Need to reorder the LHS fields according to aiMap */
3296     rLhs = sqlite3GetTempRange(pParse, nVector);
3297     for(i=0; i<nVector; i++){
3298       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3299     }
3300   }
3301 
3302   /* If sqlite3FindInIndex() did not find or create an index that is
3303   ** suitable for evaluating the IN operator, then evaluate using a
3304   ** sequence of comparisons.
3305   **
3306   ** This is step (1) in the in-operator.md optimized algorithm.
3307   */
3308   if( eType==IN_INDEX_NOOP ){
3309     ExprList *pList = pExpr->x.pList;
3310     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3311     int labelOk = sqlite3VdbeMakeLabel(pParse);
3312     int r2, regToFree;
3313     int regCkNull = 0;
3314     int ii;
3315     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3316     if( destIfNull!=destIfFalse ){
3317       regCkNull = sqlite3GetTempReg(pParse);
3318       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3319     }
3320     for(ii=0; ii<pList->nExpr; ii++){
3321       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3322       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3323         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3324       }
3325       sqlite3ReleaseTempReg(pParse, regToFree);
3326       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3327         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3328         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3329                           (void*)pColl, P4_COLLSEQ);
3330         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3331         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3332         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3333         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3334         sqlite3VdbeChangeP5(v, zAff[0]);
3335       }else{
3336         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3337         assert( destIfNull==destIfFalse );
3338         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3339                           (void*)pColl, P4_COLLSEQ);
3340         VdbeCoverageIf(v, op==OP_Ne);
3341         VdbeCoverageIf(v, op==OP_IsNull);
3342         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3343       }
3344     }
3345     if( regCkNull ){
3346       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3347       sqlite3VdbeGoto(v, destIfFalse);
3348     }
3349     sqlite3VdbeResolveLabel(v, labelOk);
3350     sqlite3ReleaseTempReg(pParse, regCkNull);
3351     goto sqlite3ExprCodeIN_finished;
3352   }
3353 
3354   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3355   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3356   ** We will then skip the binary search of the RHS.
3357   */
3358   if( destIfNull==destIfFalse ){
3359     destStep2 = destIfFalse;
3360   }else{
3361     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3362   }
3363   if( pParse->nErr ) goto sqlite3ExprCodeIN_finished;
3364   for(i=0; i<nVector; i++){
3365     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3366     if( sqlite3ExprCanBeNull(p) ){
3367       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3368       VdbeCoverage(v);
3369     }
3370   }
3371 
3372   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3373   ** of the RHS using the LHS as a probe.  If found, the result is
3374   ** true.
3375   */
3376   if( eType==IN_INDEX_ROWID ){
3377     /* In this case, the RHS is the ROWID of table b-tree and so we also
3378     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3379     ** into a single opcode. */
3380     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3381     VdbeCoverage(v);
3382     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3383   }else{
3384     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3385     if( destIfFalse==destIfNull ){
3386       /* Combine Step 3 and Step 5 into a single opcode */
3387       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3388                            rLhs, nVector); VdbeCoverage(v);
3389       goto sqlite3ExprCodeIN_finished;
3390     }
3391     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3392     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3393                                       rLhs, nVector); VdbeCoverage(v);
3394   }
3395 
3396   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3397   ** an match on the search above, then the result must be FALSE.
3398   */
3399   if( rRhsHasNull && nVector==1 ){
3400     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3401     VdbeCoverage(v);
3402   }
3403 
3404   /* Step 5.  If we do not care about the difference between NULL and
3405   ** FALSE, then just return false.
3406   */
3407   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3408 
3409   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3410   ** If any comparison is NULL, then the result is NULL.  If all
3411   ** comparisons are FALSE then the final result is FALSE.
3412   **
3413   ** For a scalar LHS, it is sufficient to check just the first row
3414   ** of the RHS.
3415   */
3416   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3417   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3418   VdbeCoverage(v);
3419   if( nVector>1 ){
3420     destNotNull = sqlite3VdbeMakeLabel(pParse);
3421   }else{
3422     /* For nVector==1, combine steps 6 and 7 by immediately returning
3423     ** FALSE if the first comparison is not NULL */
3424     destNotNull = destIfFalse;
3425   }
3426   for(i=0; i<nVector; i++){
3427     Expr *p;
3428     CollSeq *pColl;
3429     int r3 = sqlite3GetTempReg(pParse);
3430     p = sqlite3VectorFieldSubexpr(pLeft, i);
3431     pColl = sqlite3ExprCollSeq(pParse, p);
3432     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3433     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3434                       (void*)pColl, P4_COLLSEQ);
3435     VdbeCoverage(v);
3436     sqlite3ReleaseTempReg(pParse, r3);
3437   }
3438   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3439   if( nVector>1 ){
3440     sqlite3VdbeResolveLabel(v, destNotNull);
3441     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3442     VdbeCoverage(v);
3443 
3444     /* Step 7:  If we reach this point, we know that the result must
3445     ** be false. */
3446     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3447   }
3448 
3449   /* Jumps here in order to return true. */
3450   sqlite3VdbeJumpHere(v, addrTruthOp);
3451 
3452 sqlite3ExprCodeIN_finished:
3453   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3454   VdbeComment((v, "end IN expr"));
3455 sqlite3ExprCodeIN_oom_error:
3456   sqlite3DbFree(pParse->db, aiMap);
3457   sqlite3DbFree(pParse->db, zAff);
3458 }
3459 #endif /* SQLITE_OMIT_SUBQUERY */
3460 
3461 #ifndef SQLITE_OMIT_FLOATING_POINT
3462 /*
3463 ** Generate an instruction that will put the floating point
3464 ** value described by z[0..n-1] into register iMem.
3465 **
3466 ** The z[] string will probably not be zero-terminated.  But the
3467 ** z[n] character is guaranteed to be something that does not look
3468 ** like the continuation of the number.
3469 */
3470 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3471   if( ALWAYS(z!=0) ){
3472     double value;
3473     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3474     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3475     if( negateFlag ) value = -value;
3476     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3477   }
3478 }
3479 #endif
3480 
3481 
3482 /*
3483 ** Generate an instruction that will put the integer describe by
3484 ** text z[0..n-1] into register iMem.
3485 **
3486 ** Expr.u.zToken is always UTF8 and zero-terminated.
3487 */
3488 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3489   Vdbe *v = pParse->pVdbe;
3490   if( pExpr->flags & EP_IntValue ){
3491     int i = pExpr->u.iValue;
3492     assert( i>=0 );
3493     if( negFlag ) i = -i;
3494     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3495   }else{
3496     int c;
3497     i64 value;
3498     const char *z = pExpr->u.zToken;
3499     assert( z!=0 );
3500     c = sqlite3DecOrHexToI64(z, &value);
3501     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3502 #ifdef SQLITE_OMIT_FLOATING_POINT
3503       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3504 #else
3505 #ifndef SQLITE_OMIT_HEX_INTEGER
3506       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3507         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3508       }else
3509 #endif
3510       {
3511         codeReal(v, z, negFlag, iMem);
3512       }
3513 #endif
3514     }else{
3515       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3516       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3517     }
3518   }
3519 }
3520 
3521 
3522 /* Generate code that will load into register regOut a value that is
3523 ** appropriate for the iIdxCol-th column of index pIdx.
3524 */
3525 void sqlite3ExprCodeLoadIndexColumn(
3526   Parse *pParse,  /* The parsing context */
3527   Index *pIdx,    /* The index whose column is to be loaded */
3528   int iTabCur,    /* Cursor pointing to a table row */
3529   int iIdxCol,    /* The column of the index to be loaded */
3530   int regOut      /* Store the index column value in this register */
3531 ){
3532   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3533   if( iTabCol==XN_EXPR ){
3534     assert( pIdx->aColExpr );
3535     assert( pIdx->aColExpr->nExpr>iIdxCol );
3536     pParse->iSelfTab = iTabCur + 1;
3537     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3538     pParse->iSelfTab = 0;
3539   }else{
3540     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3541                                     iTabCol, regOut);
3542   }
3543 }
3544 
3545 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3546 /*
3547 ** Generate code that will compute the value of generated column pCol
3548 ** and store the result in register regOut
3549 */
3550 void sqlite3ExprCodeGeneratedColumn(
3551   Parse *pParse,
3552   Column *pCol,
3553   int regOut
3554 ){
3555   int iAddr;
3556   Vdbe *v = pParse->pVdbe;
3557   assert( v!=0 );
3558   assert( pParse->iSelfTab!=0 );
3559   if( pParse->iSelfTab>0 ){
3560     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3561   }else{
3562     iAddr = 0;
3563   }
3564   sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut);
3565   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3566     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3567   }
3568   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3569 }
3570 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3571 
3572 /*
3573 ** Generate code to extract the value of the iCol-th column of a table.
3574 */
3575 void sqlite3ExprCodeGetColumnOfTable(
3576   Vdbe *v,        /* Parsing context */
3577   Table *pTab,    /* The table containing the value */
3578   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3579   int iCol,       /* Index of the column to extract */
3580   int regOut      /* Extract the value into this register */
3581 ){
3582   Column *pCol;
3583   assert( v!=0 );
3584   if( pTab==0 ){
3585     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3586     return;
3587   }
3588   if( iCol<0 || iCol==pTab->iPKey ){
3589     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3590   }else{
3591     int op;
3592     int x;
3593     if( IsVirtual(pTab) ){
3594       op = OP_VColumn;
3595       x = iCol;
3596 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3597     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3598       Parse *pParse = sqlite3VdbeParser(v);
3599       if( pCol->colFlags & COLFLAG_BUSY ){
3600         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName);
3601       }else{
3602         int savedSelfTab = pParse->iSelfTab;
3603         pCol->colFlags |= COLFLAG_BUSY;
3604         pParse->iSelfTab = iTabCur+1;
3605         sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut);
3606         pParse->iSelfTab = savedSelfTab;
3607         pCol->colFlags &= ~COLFLAG_BUSY;
3608       }
3609       return;
3610 #endif
3611     }else if( !HasRowid(pTab) ){
3612       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3613       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3614       op = OP_Column;
3615     }else{
3616       x = sqlite3TableColumnToStorage(pTab,iCol);
3617       testcase( x!=iCol );
3618       op = OP_Column;
3619     }
3620     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3621     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3622   }
3623 }
3624 
3625 /*
3626 ** Generate code that will extract the iColumn-th column from
3627 ** table pTab and store the column value in register iReg.
3628 **
3629 ** There must be an open cursor to pTab in iTable when this routine
3630 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3631 */
3632 int sqlite3ExprCodeGetColumn(
3633   Parse *pParse,   /* Parsing and code generating context */
3634   Table *pTab,     /* Description of the table we are reading from */
3635   int iColumn,     /* Index of the table column */
3636   int iTable,      /* The cursor pointing to the table */
3637   int iReg,        /* Store results here */
3638   u8 p5            /* P5 value for OP_Column + FLAGS */
3639 ){
3640   assert( pParse->pVdbe!=0 );
3641   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3642   if( p5 ){
3643     VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3644     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3645   }
3646   return iReg;
3647 }
3648 
3649 /*
3650 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3651 ** over to iTo..iTo+nReg-1.
3652 */
3653 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3654   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3655 }
3656 
3657 /*
3658 ** Convert a scalar expression node to a TK_REGISTER referencing
3659 ** register iReg.  The caller must ensure that iReg already contains
3660 ** the correct value for the expression.
3661 */
3662 static void exprToRegister(Expr *pExpr, int iReg){
3663   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3664   if( NEVER(p==0) ) return;
3665   p->op2 = p->op;
3666   p->op = TK_REGISTER;
3667   p->iTable = iReg;
3668   ExprClearProperty(p, EP_Skip);
3669 }
3670 
3671 /*
3672 ** Evaluate an expression (either a vector or a scalar expression) and store
3673 ** the result in continguous temporary registers.  Return the index of
3674 ** the first register used to store the result.
3675 **
3676 ** If the returned result register is a temporary scalar, then also write
3677 ** that register number into *piFreeable.  If the returned result register
3678 ** is not a temporary or if the expression is a vector set *piFreeable
3679 ** to 0.
3680 */
3681 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3682   int iResult;
3683   int nResult = sqlite3ExprVectorSize(p);
3684   if( nResult==1 ){
3685     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3686   }else{
3687     *piFreeable = 0;
3688     if( p->op==TK_SELECT ){
3689 #if SQLITE_OMIT_SUBQUERY
3690       iResult = 0;
3691 #else
3692       iResult = sqlite3CodeSubselect(pParse, p);
3693 #endif
3694     }else{
3695       int i;
3696       iResult = pParse->nMem+1;
3697       pParse->nMem += nResult;
3698       for(i=0; i<nResult; i++){
3699         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3700       }
3701     }
3702   }
3703   return iResult;
3704 }
3705 
3706 /*
3707 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3708 ** so that a subsequent copy will not be merged into this one.
3709 */
3710 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3711   if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
3712     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3713   }
3714 }
3715 
3716 /*
3717 ** Generate code to implement special SQL functions that are implemented
3718 ** in-line rather than by using the usual callbacks.
3719 */
3720 static int exprCodeInlineFunction(
3721   Parse *pParse,        /* Parsing context */
3722   ExprList *pFarg,      /* List of function arguments */
3723   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3724   int target            /* Store function result in this register */
3725 ){
3726   int nFarg;
3727   Vdbe *v = pParse->pVdbe;
3728   assert( v!=0 );
3729   assert( pFarg!=0 );
3730   nFarg = pFarg->nExpr;
3731   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3732   switch( iFuncId ){
3733     case INLINEFUNC_coalesce: {
3734       /* Attempt a direct implementation of the built-in COALESCE() and
3735       ** IFNULL() functions.  This avoids unnecessary evaluation of
3736       ** arguments past the first non-NULL argument.
3737       */
3738       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3739       int i;
3740       assert( nFarg>=2 );
3741       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3742       for(i=1; i<nFarg; i++){
3743         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3744         VdbeCoverage(v);
3745         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3746       }
3747       setDoNotMergeFlagOnCopy(v);
3748       sqlite3VdbeResolveLabel(v, endCoalesce);
3749       break;
3750     }
3751     case INLINEFUNC_iif: {
3752       Expr caseExpr;
3753       memset(&caseExpr, 0, sizeof(caseExpr));
3754       caseExpr.op = TK_CASE;
3755       caseExpr.x.pList = pFarg;
3756       return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3757     }
3758 
3759     default: {
3760       /* The UNLIKELY() function is a no-op.  The result is the value
3761       ** of the first argument.
3762       */
3763       assert( nFarg==1 || nFarg==2 );
3764       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3765       break;
3766     }
3767 
3768   /***********************************************************************
3769   ** Test-only SQL functions that are only usable if enabled
3770   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3771   */
3772     case INLINEFUNC_expr_compare: {
3773       /* Compare two expressions using sqlite3ExprCompare() */
3774       assert( nFarg==2 );
3775       sqlite3VdbeAddOp2(v, OP_Integer,
3776          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3777          target);
3778       break;
3779     }
3780 
3781     case INLINEFUNC_expr_implies_expr: {
3782       /* Compare two expressions using sqlite3ExprImpliesExpr() */
3783       assert( nFarg==2 );
3784       sqlite3VdbeAddOp2(v, OP_Integer,
3785          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3786          target);
3787       break;
3788     }
3789 
3790     case INLINEFUNC_implies_nonnull_row: {
3791       /* REsult of sqlite3ExprImpliesNonNullRow() */
3792       Expr *pA1;
3793       assert( nFarg==2 );
3794       pA1 = pFarg->a[1].pExpr;
3795       if( pA1->op==TK_COLUMN ){
3796         sqlite3VdbeAddOp2(v, OP_Integer,
3797            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
3798            target);
3799       }else{
3800         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3801       }
3802       break;
3803     }
3804 
3805 #ifdef SQLITE_DEBUG
3806     case INLINEFUNC_affinity: {
3807       /* The AFFINITY() function evaluates to a string that describes
3808       ** the type affinity of the argument.  This is used for testing of
3809       ** the SQLite type logic.
3810       */
3811       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3812       char aff;
3813       assert( nFarg==1 );
3814       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3815       sqlite3VdbeLoadString(v, target,
3816               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3817       break;
3818     }
3819 #endif
3820   }
3821   return target;
3822 }
3823 
3824 
3825 /*
3826 ** Generate code into the current Vdbe to evaluate the given
3827 ** expression.  Attempt to store the results in register "target".
3828 ** Return the register where results are stored.
3829 **
3830 ** With this routine, there is no guarantee that results will
3831 ** be stored in target.  The result might be stored in some other
3832 ** register if it is convenient to do so.  The calling function
3833 ** must check the return code and move the results to the desired
3834 ** register.
3835 */
3836 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3837   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3838   int op;                   /* The opcode being coded */
3839   int inReg = target;       /* Results stored in register inReg */
3840   int regFree1 = 0;         /* If non-zero free this temporary register */
3841   int regFree2 = 0;         /* If non-zero free this temporary register */
3842   int r1, r2;               /* Various register numbers */
3843   Expr tempX;               /* Temporary expression node */
3844   int p5 = 0;
3845 
3846   assert( target>0 && target<=pParse->nMem );
3847   assert( v!=0 );
3848 
3849 expr_code_doover:
3850   if( pExpr==0 ){
3851     op = TK_NULL;
3852   }else{
3853     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3854     op = pExpr->op;
3855   }
3856   switch( op ){
3857     case TK_AGG_COLUMN: {
3858       AggInfo *pAggInfo = pExpr->pAggInfo;
3859       struct AggInfo_col *pCol;
3860       assert( pAggInfo!=0 );
3861       assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
3862       pCol = &pAggInfo->aCol[pExpr->iAgg];
3863       if( !pAggInfo->directMode ){
3864         assert( pCol->iMem>0 );
3865         return pCol->iMem;
3866       }else if( pAggInfo->useSortingIdx ){
3867         Table *pTab = pCol->pTab;
3868         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3869                               pCol->iSorterColumn, target);
3870         if( pCol->iColumn<0 ){
3871           VdbeComment((v,"%s.rowid",pTab->zName));
3872         }else{
3873           VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName));
3874           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
3875             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3876           }
3877         }
3878         return target;
3879       }
3880       /* Otherwise, fall thru into the TK_COLUMN case */
3881       /* no break */ deliberate_fall_through
3882     }
3883     case TK_COLUMN: {
3884       int iTab = pExpr->iTable;
3885       int iReg;
3886       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3887         /* This COLUMN expression is really a constant due to WHERE clause
3888         ** constraints, and that constant is coded by the pExpr->pLeft
3889         ** expresssion.  However, make sure the constant has the correct
3890         ** datatype by applying the Affinity of the table column to the
3891         ** constant.
3892         */
3893         int aff;
3894         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3895         if( pExpr->y.pTab ){
3896           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3897         }else{
3898           aff = pExpr->affExpr;
3899         }
3900         if( aff>SQLITE_AFF_BLOB ){
3901           static const char zAff[] = "B\000C\000D\000E";
3902           assert( SQLITE_AFF_BLOB=='A' );
3903           assert( SQLITE_AFF_TEXT=='B' );
3904           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3905                             &zAff[(aff-'B')*2], P4_STATIC);
3906         }
3907         return iReg;
3908       }
3909       if( iTab<0 ){
3910         if( pParse->iSelfTab<0 ){
3911           /* Other columns in the same row for CHECK constraints or
3912           ** generated columns or for inserting into partial index.
3913           ** The row is unpacked into registers beginning at
3914           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
3915           ** immediately prior to the first column.
3916           */
3917           Column *pCol;
3918           Table *pTab = pExpr->y.pTab;
3919           int iSrc;
3920           int iCol = pExpr->iColumn;
3921           assert( pTab!=0 );
3922           assert( iCol>=XN_ROWID );
3923           assert( iCol<pTab->nCol );
3924           if( iCol<0 ){
3925             return -1-pParse->iSelfTab;
3926           }
3927           pCol = pTab->aCol + iCol;
3928           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
3929           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
3930 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3931           if( pCol->colFlags & COLFLAG_GENERATED ){
3932             if( pCol->colFlags & COLFLAG_BUSY ){
3933               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3934                               pCol->zName);
3935               return 0;
3936             }
3937             pCol->colFlags |= COLFLAG_BUSY;
3938             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
3939               sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc);
3940             }
3941             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
3942             return iSrc;
3943           }else
3944 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3945           if( pCol->affinity==SQLITE_AFF_REAL ){
3946             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
3947             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3948             return target;
3949           }else{
3950             return iSrc;
3951           }
3952         }else{
3953           /* Coding an expression that is part of an index where column names
3954           ** in the index refer to the table to which the index belongs */
3955           iTab = pParse->iSelfTab - 1;
3956         }
3957       }
3958       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
3959                                pExpr->iColumn, iTab, target,
3960                                pExpr->op2);
3961       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
3962         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
3963       }
3964       return iReg;
3965     }
3966     case TK_INTEGER: {
3967       codeInteger(pParse, pExpr, 0, target);
3968       return target;
3969     }
3970     case TK_TRUEFALSE: {
3971       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3972       return target;
3973     }
3974 #ifndef SQLITE_OMIT_FLOATING_POINT
3975     case TK_FLOAT: {
3976       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3977       codeReal(v, pExpr->u.zToken, 0, target);
3978       return target;
3979     }
3980 #endif
3981     case TK_STRING: {
3982       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3983       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3984       return target;
3985     }
3986     default: {
3987       /* Make NULL the default case so that if a bug causes an illegal
3988       ** Expr node to be passed into this function, it will be handled
3989       ** sanely and not crash.  But keep the assert() to bring the problem
3990       ** to the attention of the developers. */
3991       assert( op==TK_NULL );
3992       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3993       return target;
3994     }
3995 #ifndef SQLITE_OMIT_BLOB_LITERAL
3996     case TK_BLOB: {
3997       int n;
3998       const char *z;
3999       char *zBlob;
4000       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4001       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
4002       assert( pExpr->u.zToken[1]=='\'' );
4003       z = &pExpr->u.zToken[2];
4004       n = sqlite3Strlen30(z) - 1;
4005       assert( z[n]=='\'' );
4006       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
4007       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
4008       return target;
4009     }
4010 #endif
4011     case TK_VARIABLE: {
4012       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4013       assert( pExpr->u.zToken!=0 );
4014       assert( pExpr->u.zToken[0]!=0 );
4015       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
4016       if( pExpr->u.zToken[1]!=0 ){
4017         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
4018         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
4019         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
4020         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
4021       }
4022       return target;
4023     }
4024     case TK_REGISTER: {
4025       return pExpr->iTable;
4026     }
4027 #ifndef SQLITE_OMIT_CAST
4028     case TK_CAST: {
4029       /* Expressions of the form:   CAST(pLeft AS token) */
4030       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4031       if( inReg!=target ){
4032         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4033         inReg = target;
4034       }
4035       sqlite3VdbeAddOp2(v, OP_Cast, target,
4036                         sqlite3AffinityType(pExpr->u.zToken, 0));
4037       return inReg;
4038     }
4039 #endif /* SQLITE_OMIT_CAST */
4040     case TK_IS:
4041     case TK_ISNOT:
4042       op = (op==TK_IS) ? TK_EQ : TK_NE;
4043       p5 = SQLITE_NULLEQ;
4044       /* fall-through */
4045     case TK_LT:
4046     case TK_LE:
4047     case TK_GT:
4048     case TK_GE:
4049     case TK_NE:
4050     case TK_EQ: {
4051       Expr *pLeft = pExpr->pLeft;
4052       if( sqlite3ExprIsVector(pLeft) ){
4053         codeVectorCompare(pParse, pExpr, target, op, p5);
4054       }else{
4055         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4056         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4057         codeCompare(pParse, pLeft, pExpr->pRight, op,
4058             r1, r2, inReg, SQLITE_STOREP2 | p5,
4059             ExprHasProperty(pExpr,EP_Commuted));
4060         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4061         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4062         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4063         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4064         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4065         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4066         testcase( regFree1==0 );
4067         testcase( regFree2==0 );
4068       }
4069       break;
4070     }
4071     case TK_AND:
4072     case TK_OR:
4073     case TK_PLUS:
4074     case TK_STAR:
4075     case TK_MINUS:
4076     case TK_REM:
4077     case TK_BITAND:
4078     case TK_BITOR:
4079     case TK_SLASH:
4080     case TK_LSHIFT:
4081     case TK_RSHIFT:
4082     case TK_CONCAT: {
4083       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4084       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4085       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4086       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4087       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4088       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4089       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4090       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4091       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4092       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4093       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4094       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4095       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4096       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4097       testcase( regFree1==0 );
4098       testcase( regFree2==0 );
4099       break;
4100     }
4101     case TK_UMINUS: {
4102       Expr *pLeft = pExpr->pLeft;
4103       assert( pLeft );
4104       if( pLeft->op==TK_INTEGER ){
4105         codeInteger(pParse, pLeft, 1, target);
4106         return target;
4107 #ifndef SQLITE_OMIT_FLOATING_POINT
4108       }else if( pLeft->op==TK_FLOAT ){
4109         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4110         codeReal(v, pLeft->u.zToken, 1, target);
4111         return target;
4112 #endif
4113       }else{
4114         tempX.op = TK_INTEGER;
4115         tempX.flags = EP_IntValue|EP_TokenOnly;
4116         tempX.u.iValue = 0;
4117         ExprClearVVAProperties(&tempX);
4118         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4119         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4120         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4121         testcase( regFree2==0 );
4122       }
4123       break;
4124     }
4125     case TK_BITNOT:
4126     case TK_NOT: {
4127       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4128       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4129       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4130       testcase( regFree1==0 );
4131       sqlite3VdbeAddOp2(v, op, r1, inReg);
4132       break;
4133     }
4134     case TK_TRUTH: {
4135       int isTrue;    /* IS TRUE or IS NOT TRUE */
4136       int bNormal;   /* IS TRUE or IS FALSE */
4137       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4138       testcase( regFree1==0 );
4139       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4140       bNormal = pExpr->op2==TK_IS;
4141       testcase( isTrue && bNormal);
4142       testcase( !isTrue && bNormal);
4143       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4144       break;
4145     }
4146     case TK_ISNULL:
4147     case TK_NOTNULL: {
4148       int addr;
4149       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4150       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4151       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4152       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4153       testcase( regFree1==0 );
4154       addr = sqlite3VdbeAddOp1(v, op, r1);
4155       VdbeCoverageIf(v, op==TK_ISNULL);
4156       VdbeCoverageIf(v, op==TK_NOTNULL);
4157       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4158       sqlite3VdbeJumpHere(v, addr);
4159       break;
4160     }
4161     case TK_AGG_FUNCTION: {
4162       AggInfo *pInfo = pExpr->pAggInfo;
4163       if( pInfo==0
4164        || NEVER(pExpr->iAgg<0)
4165        || NEVER(pExpr->iAgg>=pInfo->nFunc)
4166       ){
4167         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4168         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
4169       }else{
4170         return pInfo->aFunc[pExpr->iAgg].iMem;
4171       }
4172       break;
4173     }
4174     case TK_FUNCTION: {
4175       ExprList *pFarg;       /* List of function arguments */
4176       int nFarg;             /* Number of function arguments */
4177       FuncDef *pDef;         /* The function definition object */
4178       const char *zId;       /* The function name */
4179       u32 constMask = 0;     /* Mask of function arguments that are constant */
4180       int i;                 /* Loop counter */
4181       sqlite3 *db = pParse->db;  /* The database connection */
4182       u8 enc = ENC(db);      /* The text encoding used by this database */
4183       CollSeq *pColl = 0;    /* A collating sequence */
4184 
4185 #ifndef SQLITE_OMIT_WINDOWFUNC
4186       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4187         return pExpr->y.pWin->regResult;
4188       }
4189 #endif
4190 
4191       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4192         /* SQL functions can be expensive. So try to avoid running them
4193         ** multiple times if we know they always give the same result */
4194         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4195       }
4196       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4197       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4198       pFarg = pExpr->x.pList;
4199       nFarg = pFarg ? pFarg->nExpr : 0;
4200       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4201       zId = pExpr->u.zToken;
4202       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4203 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4204       if( pDef==0 && pParse->explain ){
4205         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4206       }
4207 #endif
4208       if( pDef==0 || pDef->xFinalize!=0 ){
4209         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
4210         break;
4211       }
4212       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4213         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4214         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4215         return exprCodeInlineFunction(pParse, pFarg,
4216              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4217       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4218         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4219       }
4220 
4221       for(i=0; i<nFarg; i++){
4222         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4223           testcase( i==31 );
4224           constMask |= MASKBIT32(i);
4225         }
4226         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4227           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4228         }
4229       }
4230       if( pFarg ){
4231         if( constMask ){
4232           r1 = pParse->nMem+1;
4233           pParse->nMem += nFarg;
4234         }else{
4235           r1 = sqlite3GetTempRange(pParse, nFarg);
4236         }
4237 
4238         /* For length() and typeof() functions with a column argument,
4239         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4240         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4241         ** loading.
4242         */
4243         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4244           u8 exprOp;
4245           assert( nFarg==1 );
4246           assert( pFarg->a[0].pExpr!=0 );
4247           exprOp = pFarg->a[0].pExpr->op;
4248           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4249             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4250             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4251             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4252             pFarg->a[0].pExpr->op2 =
4253                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4254           }
4255         }
4256 
4257         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4258                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4259       }else{
4260         r1 = 0;
4261       }
4262 #ifndef SQLITE_OMIT_VIRTUALTABLE
4263       /* Possibly overload the function if the first argument is
4264       ** a virtual table column.
4265       **
4266       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4267       ** second argument, not the first, as the argument to test to
4268       ** see if it is a column in a virtual table.  This is done because
4269       ** the left operand of infix functions (the operand we want to
4270       ** control overloading) ends up as the second argument to the
4271       ** function.  The expression "A glob B" is equivalent to
4272       ** "glob(B,A).  We want to use the A in "A glob B" to test
4273       ** for function overloading.  But we use the B term in "glob(B,A)".
4274       */
4275       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4276         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4277       }else if( nFarg>0 ){
4278         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4279       }
4280 #endif
4281       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4282         if( !pColl ) pColl = db->pDfltColl;
4283         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4284       }
4285 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4286       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
4287         Expr *pArg = pFarg->a[0].pExpr;
4288         if( pArg->op==TK_COLUMN ){
4289           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4290         }else{
4291           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4292         }
4293       }else
4294 #endif
4295       {
4296         sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4297                                    pDef, pExpr->op2);
4298       }
4299       if( nFarg ){
4300         if( constMask==0 ){
4301           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4302         }else{
4303           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4304         }
4305       }
4306       return target;
4307     }
4308 #ifndef SQLITE_OMIT_SUBQUERY
4309     case TK_EXISTS:
4310     case TK_SELECT: {
4311       int nCol;
4312       testcase( op==TK_EXISTS );
4313       testcase( op==TK_SELECT );
4314       if( pParse->db->mallocFailed ){
4315         return 0;
4316       }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
4317         sqlite3SubselectError(pParse, nCol, 1);
4318       }else{
4319         return sqlite3CodeSubselect(pParse, pExpr);
4320       }
4321       break;
4322     }
4323     case TK_SELECT_COLUMN: {
4324       int n;
4325       if( pExpr->pLeft->iTable==0 ){
4326         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
4327       }
4328       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
4329       if( pExpr->iTable!=0
4330        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
4331       ){
4332         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4333                                 pExpr->iTable, n);
4334       }
4335       return pExpr->pLeft->iTable + pExpr->iColumn;
4336     }
4337     case TK_IN: {
4338       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4339       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4340       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4341       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4342       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4343       sqlite3VdbeResolveLabel(v, destIfFalse);
4344       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4345       sqlite3VdbeResolveLabel(v, destIfNull);
4346       return target;
4347     }
4348 #endif /* SQLITE_OMIT_SUBQUERY */
4349 
4350 
4351     /*
4352     **    x BETWEEN y AND z
4353     **
4354     ** This is equivalent to
4355     **
4356     **    x>=y AND x<=z
4357     **
4358     ** X is stored in pExpr->pLeft.
4359     ** Y is stored in pExpr->pList->a[0].pExpr.
4360     ** Z is stored in pExpr->pList->a[1].pExpr.
4361     */
4362     case TK_BETWEEN: {
4363       exprCodeBetween(pParse, pExpr, target, 0, 0);
4364       return target;
4365     }
4366     case TK_SPAN:
4367     case TK_COLLATE:
4368     case TK_UPLUS: {
4369       pExpr = pExpr->pLeft;
4370       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4371     }
4372 
4373     case TK_TRIGGER: {
4374       /* If the opcode is TK_TRIGGER, then the expression is a reference
4375       ** to a column in the new.* or old.* pseudo-tables available to
4376       ** trigger programs. In this case Expr.iTable is set to 1 for the
4377       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4378       ** is set to the column of the pseudo-table to read, or to -1 to
4379       ** read the rowid field.
4380       **
4381       ** The expression is implemented using an OP_Param opcode. The p1
4382       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4383       ** to reference another column of the old.* pseudo-table, where
4384       ** i is the index of the column. For a new.rowid reference, p1 is
4385       ** set to (n+1), where n is the number of columns in each pseudo-table.
4386       ** For a reference to any other column in the new.* pseudo-table, p1
4387       ** is set to (n+2+i), where n and i are as defined previously. For
4388       ** example, if the table on which triggers are being fired is
4389       ** declared as:
4390       **
4391       **   CREATE TABLE t1(a, b);
4392       **
4393       ** Then p1 is interpreted as follows:
4394       **
4395       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4396       **   p1==1   ->    old.a         p1==4   ->    new.a
4397       **   p1==2   ->    old.b         p1==5   ->    new.b
4398       */
4399       Table *pTab = pExpr->y.pTab;
4400       int iCol = pExpr->iColumn;
4401       int p1 = pExpr->iTable * (pTab->nCol+1) + 1
4402                      + sqlite3TableColumnToStorage(pTab, iCol);
4403 
4404       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4405       assert( iCol>=-1 && iCol<pTab->nCol );
4406       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4407       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4408 
4409       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4410       VdbeComment((v, "r[%d]=%s.%s", target,
4411         (pExpr->iTable ? "new" : "old"),
4412         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName)
4413       ));
4414 
4415 #ifndef SQLITE_OMIT_FLOATING_POINT
4416       /* If the column has REAL affinity, it may currently be stored as an
4417       ** integer. Use OP_RealAffinity to make sure it is really real.
4418       **
4419       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4420       ** floating point when extracting it from the record.  */
4421       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4422         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4423       }
4424 #endif
4425       break;
4426     }
4427 
4428     case TK_VECTOR: {
4429       sqlite3ErrorMsg(pParse, "row value misused");
4430       break;
4431     }
4432 
4433     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4434     ** that derive from the right-hand table of a LEFT JOIN.  The
4435     ** Expr.iTable value is the table number for the right-hand table.
4436     ** The expression is only evaluated if that table is not currently
4437     ** on a LEFT JOIN NULL row.
4438     */
4439     case TK_IF_NULL_ROW: {
4440       int addrINR;
4441       u8 okConstFactor = pParse->okConstFactor;
4442       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4443       /* Temporarily disable factoring of constant expressions, since
4444       ** even though expressions may appear to be constant, they are not
4445       ** really constant because they originate from the right-hand side
4446       ** of a LEFT JOIN. */
4447       pParse->okConstFactor = 0;
4448       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4449       pParse->okConstFactor = okConstFactor;
4450       sqlite3VdbeJumpHere(v, addrINR);
4451       sqlite3VdbeChangeP3(v, addrINR, inReg);
4452       break;
4453     }
4454 
4455     /*
4456     ** Form A:
4457     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4458     **
4459     ** Form B:
4460     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4461     **
4462     ** Form A is can be transformed into the equivalent form B as follows:
4463     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4464     **        WHEN x=eN THEN rN ELSE y END
4465     **
4466     ** X (if it exists) is in pExpr->pLeft.
4467     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4468     ** odd.  The Y is also optional.  If the number of elements in x.pList
4469     ** is even, then Y is omitted and the "otherwise" result is NULL.
4470     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4471     **
4472     ** The result of the expression is the Ri for the first matching Ei,
4473     ** or if there is no matching Ei, the ELSE term Y, or if there is
4474     ** no ELSE term, NULL.
4475     */
4476     case TK_CASE: {
4477       int endLabel;                     /* GOTO label for end of CASE stmt */
4478       int nextCase;                     /* GOTO label for next WHEN clause */
4479       int nExpr;                        /* 2x number of WHEN terms */
4480       int i;                            /* Loop counter */
4481       ExprList *pEList;                 /* List of WHEN terms */
4482       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4483       Expr opCompare;                   /* The X==Ei expression */
4484       Expr *pX;                         /* The X expression */
4485       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4486       Expr *pDel = 0;
4487       sqlite3 *db = pParse->db;
4488 
4489       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4490       assert(pExpr->x.pList->nExpr > 0);
4491       pEList = pExpr->x.pList;
4492       aListelem = pEList->a;
4493       nExpr = pEList->nExpr;
4494       endLabel = sqlite3VdbeMakeLabel(pParse);
4495       if( (pX = pExpr->pLeft)!=0 ){
4496         pDel = sqlite3ExprDup(db, pX, 0);
4497         if( db->mallocFailed ){
4498           sqlite3ExprDelete(db, pDel);
4499           break;
4500         }
4501         testcase( pX->op==TK_COLUMN );
4502         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4503         testcase( regFree1==0 );
4504         memset(&opCompare, 0, sizeof(opCompare));
4505         opCompare.op = TK_EQ;
4506         opCompare.pLeft = pDel;
4507         pTest = &opCompare;
4508         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4509         ** The value in regFree1 might get SCopy-ed into the file result.
4510         ** So make sure that the regFree1 register is not reused for other
4511         ** purposes and possibly overwritten.  */
4512         regFree1 = 0;
4513       }
4514       for(i=0; i<nExpr-1; i=i+2){
4515         if( pX ){
4516           assert( pTest!=0 );
4517           opCompare.pRight = aListelem[i].pExpr;
4518         }else{
4519           pTest = aListelem[i].pExpr;
4520         }
4521         nextCase = sqlite3VdbeMakeLabel(pParse);
4522         testcase( pTest->op==TK_COLUMN );
4523         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4524         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4525         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4526         sqlite3VdbeGoto(v, endLabel);
4527         sqlite3VdbeResolveLabel(v, nextCase);
4528       }
4529       if( (nExpr&1)!=0 ){
4530         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4531       }else{
4532         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4533       }
4534       sqlite3ExprDelete(db, pDel);
4535       setDoNotMergeFlagOnCopy(v);
4536       sqlite3VdbeResolveLabel(v, endLabel);
4537       break;
4538     }
4539 #ifndef SQLITE_OMIT_TRIGGER
4540     case TK_RAISE: {
4541       assert( pExpr->affExpr==OE_Rollback
4542            || pExpr->affExpr==OE_Abort
4543            || pExpr->affExpr==OE_Fail
4544            || pExpr->affExpr==OE_Ignore
4545       );
4546       if( !pParse->pTriggerTab && !pParse->nested ){
4547         sqlite3ErrorMsg(pParse,
4548                        "RAISE() may only be used within a trigger-program");
4549         return 0;
4550       }
4551       if( pExpr->affExpr==OE_Abort ){
4552         sqlite3MayAbort(pParse);
4553       }
4554       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4555       if( pExpr->affExpr==OE_Ignore ){
4556         sqlite3VdbeAddOp4(
4557             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4558         VdbeCoverage(v);
4559       }else{
4560         sqlite3HaltConstraint(pParse,
4561              pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4562              pExpr->affExpr, pExpr->u.zToken, 0, 0);
4563       }
4564 
4565       break;
4566     }
4567 #endif
4568   }
4569   sqlite3ReleaseTempReg(pParse, regFree1);
4570   sqlite3ReleaseTempReg(pParse, regFree2);
4571   return inReg;
4572 }
4573 
4574 /*
4575 ** Generate code that will evaluate expression pExpr just one time
4576 ** per prepared statement execution.
4577 **
4578 ** If the expression uses functions (that might throw an exception) then
4579 ** guard them with an OP_Once opcode to ensure that the code is only executed
4580 ** once. If no functions are involved, then factor the code out and put it at
4581 ** the end of the prepared statement in the initialization section.
4582 **
4583 ** If regDest>=0 then the result is always stored in that register and the
4584 ** result is not reusable.  If regDest<0 then this routine is free to
4585 ** store the value whereever it wants.  The register where the expression
4586 ** is stored is returned.  When regDest<0, two identical expressions might
4587 ** code to the same register, if they do not contain function calls and hence
4588 ** are factored out into the initialization section at the end of the
4589 ** prepared statement.
4590 */
4591 int sqlite3ExprCodeRunJustOnce(
4592   Parse *pParse,    /* Parsing context */
4593   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4594   int regDest       /* Store the value in this register */
4595 ){
4596   ExprList *p;
4597   assert( ConstFactorOk(pParse) );
4598   p = pParse->pConstExpr;
4599   if( regDest<0 && p ){
4600     struct ExprList_item *pItem;
4601     int i;
4602     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4603       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4604         return pItem->u.iConstExprReg;
4605       }
4606     }
4607   }
4608   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4609   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4610     Vdbe *v = pParse->pVdbe;
4611     int addr;
4612     assert( v );
4613     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4614     pParse->okConstFactor = 0;
4615     if( !pParse->db->mallocFailed ){
4616       if( regDest<0 ) regDest = ++pParse->nMem;
4617       sqlite3ExprCode(pParse, pExpr, regDest);
4618     }
4619     pParse->okConstFactor = 1;
4620     sqlite3ExprDelete(pParse->db, pExpr);
4621     sqlite3VdbeJumpHere(v, addr);
4622   }else{
4623     p = sqlite3ExprListAppend(pParse, p, pExpr);
4624     if( p ){
4625        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4626        pItem->reusable = regDest<0;
4627        if( regDest<0 ) regDest = ++pParse->nMem;
4628        pItem->u.iConstExprReg = regDest;
4629     }
4630     pParse->pConstExpr = p;
4631   }
4632   return regDest;
4633 }
4634 
4635 /*
4636 ** Generate code to evaluate an expression and store the results
4637 ** into a register.  Return the register number where the results
4638 ** are stored.
4639 **
4640 ** If the register is a temporary register that can be deallocated,
4641 ** then write its number into *pReg.  If the result register is not
4642 ** a temporary, then set *pReg to zero.
4643 **
4644 ** If pExpr is a constant, then this routine might generate this
4645 ** code to fill the register in the initialization section of the
4646 ** VDBE program, in order to factor it out of the evaluation loop.
4647 */
4648 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4649   int r2;
4650   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4651   if( ConstFactorOk(pParse)
4652    && ALWAYS(pExpr!=0)
4653    && pExpr->op!=TK_REGISTER
4654    && sqlite3ExprIsConstantNotJoin(pExpr)
4655   ){
4656     *pReg  = 0;
4657     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4658   }else{
4659     int r1 = sqlite3GetTempReg(pParse);
4660     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4661     if( r2==r1 ){
4662       *pReg = r1;
4663     }else{
4664       sqlite3ReleaseTempReg(pParse, r1);
4665       *pReg = 0;
4666     }
4667   }
4668   return r2;
4669 }
4670 
4671 /*
4672 ** Generate code that will evaluate expression pExpr and store the
4673 ** results in register target.  The results are guaranteed to appear
4674 ** in register target.
4675 */
4676 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4677   int inReg;
4678 
4679   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4680   assert( target>0 && target<=pParse->nMem );
4681   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4682   if( pParse->pVdbe==0 ) return;
4683   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4684   if( inReg!=target ){
4685     u8 op;
4686     if( ExprHasProperty(pExpr,EP_Subquery) ){
4687       op = OP_Copy;
4688     }else{
4689       op = OP_SCopy;
4690     }
4691     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4692   }
4693 }
4694 
4695 /*
4696 ** Make a transient copy of expression pExpr and then code it using
4697 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4698 ** except that the input expression is guaranteed to be unchanged.
4699 */
4700 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4701   sqlite3 *db = pParse->db;
4702   pExpr = sqlite3ExprDup(db, pExpr, 0);
4703   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4704   sqlite3ExprDelete(db, pExpr);
4705 }
4706 
4707 /*
4708 ** Generate code that will evaluate expression pExpr and store the
4709 ** results in register target.  The results are guaranteed to appear
4710 ** in register target.  If the expression is constant, then this routine
4711 ** might choose to code the expression at initialization time.
4712 */
4713 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4714   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4715     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4716   }else{
4717     sqlite3ExprCodeCopy(pParse, pExpr, target);
4718   }
4719 }
4720 
4721 /*
4722 ** Generate code that pushes the value of every element of the given
4723 ** expression list into a sequence of registers beginning at target.
4724 **
4725 ** Return the number of elements evaluated.  The number returned will
4726 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4727 ** is defined.
4728 **
4729 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4730 ** filled using OP_SCopy.  OP_Copy must be used instead.
4731 **
4732 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4733 ** factored out into initialization code.
4734 **
4735 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4736 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4737 ** in registers at srcReg, and so the value can be copied from there.
4738 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4739 ** are simply omitted rather than being copied from srcReg.
4740 */
4741 int sqlite3ExprCodeExprList(
4742   Parse *pParse,     /* Parsing context */
4743   ExprList *pList,   /* The expression list to be coded */
4744   int target,        /* Where to write results */
4745   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4746   u8 flags           /* SQLITE_ECEL_* flags */
4747 ){
4748   struct ExprList_item *pItem;
4749   int i, j, n;
4750   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4751   Vdbe *v = pParse->pVdbe;
4752   assert( pList!=0 );
4753   assert( target>0 );
4754   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4755   n = pList->nExpr;
4756   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4757   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4758     Expr *pExpr = pItem->pExpr;
4759 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4760     if( pItem->bSorterRef ){
4761       i--;
4762       n--;
4763     }else
4764 #endif
4765     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4766       if( flags & SQLITE_ECEL_OMITREF ){
4767         i--;
4768         n--;
4769       }else{
4770         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4771       }
4772     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4773            && sqlite3ExprIsConstantNotJoin(pExpr)
4774     ){
4775       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
4776     }else{
4777       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4778       if( inReg!=target+i ){
4779         VdbeOp *pOp;
4780         if( copyOp==OP_Copy
4781          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4782          && pOp->p1+pOp->p3+1==inReg
4783          && pOp->p2+pOp->p3+1==target+i
4784          && pOp->p5==0  /* The do-not-merge flag must be clear */
4785         ){
4786           pOp->p3++;
4787         }else{
4788           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4789         }
4790       }
4791     }
4792   }
4793   return n;
4794 }
4795 
4796 /*
4797 ** Generate code for a BETWEEN operator.
4798 **
4799 **    x BETWEEN y AND z
4800 **
4801 ** The above is equivalent to
4802 **
4803 **    x>=y AND x<=z
4804 **
4805 ** Code it as such, taking care to do the common subexpression
4806 ** elimination of x.
4807 **
4808 ** The xJumpIf parameter determines details:
4809 **
4810 **    NULL:                   Store the boolean result in reg[dest]
4811 **    sqlite3ExprIfTrue:      Jump to dest if true
4812 **    sqlite3ExprIfFalse:     Jump to dest if false
4813 **
4814 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4815 */
4816 static void exprCodeBetween(
4817   Parse *pParse,    /* Parsing and code generating context */
4818   Expr *pExpr,      /* The BETWEEN expression */
4819   int dest,         /* Jump destination or storage location */
4820   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4821   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4822 ){
4823   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4824   Expr compLeft;    /* The  x>=y  term */
4825   Expr compRight;   /* The  x<=z  term */
4826   int regFree1 = 0; /* Temporary use register */
4827   Expr *pDel = 0;
4828   sqlite3 *db = pParse->db;
4829 
4830   memset(&compLeft, 0, sizeof(Expr));
4831   memset(&compRight, 0, sizeof(Expr));
4832   memset(&exprAnd, 0, sizeof(Expr));
4833 
4834   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4835   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4836   if( db->mallocFailed==0 ){
4837     exprAnd.op = TK_AND;
4838     exprAnd.pLeft = &compLeft;
4839     exprAnd.pRight = &compRight;
4840     compLeft.op = TK_GE;
4841     compLeft.pLeft = pDel;
4842     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4843     compRight.op = TK_LE;
4844     compRight.pLeft = pDel;
4845     compRight.pRight = pExpr->x.pList->a[1].pExpr;
4846     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4847     if( xJump ){
4848       xJump(pParse, &exprAnd, dest, jumpIfNull);
4849     }else{
4850       /* Mark the expression is being from the ON or USING clause of a join
4851       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4852       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4853       ** for clarity, but we are out of bits in the Expr.flags field so we
4854       ** have to reuse the EP_FromJoin bit.  Bummer. */
4855       pDel->flags |= EP_FromJoin;
4856       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4857     }
4858     sqlite3ReleaseTempReg(pParse, regFree1);
4859   }
4860   sqlite3ExprDelete(db, pDel);
4861 
4862   /* Ensure adequate test coverage */
4863   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4864   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4865   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4866   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4867   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4868   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4869   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4870   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4871   testcase( xJump==0 );
4872 }
4873 
4874 /*
4875 ** Generate code for a boolean expression such that a jump is made
4876 ** to the label "dest" if the expression is true but execution
4877 ** continues straight thru if the expression is false.
4878 **
4879 ** If the expression evaluates to NULL (neither true nor false), then
4880 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4881 **
4882 ** This code depends on the fact that certain token values (ex: TK_EQ)
4883 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4884 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4885 ** the make process cause these values to align.  Assert()s in the code
4886 ** below verify that the numbers are aligned correctly.
4887 */
4888 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4889   Vdbe *v = pParse->pVdbe;
4890   int op = 0;
4891   int regFree1 = 0;
4892   int regFree2 = 0;
4893   int r1, r2;
4894 
4895   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4896   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4897   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4898   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
4899   op = pExpr->op;
4900   switch( op ){
4901     case TK_AND:
4902     case TK_OR: {
4903       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4904       if( pAlt!=pExpr ){
4905         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
4906       }else if( op==TK_AND ){
4907         int d2 = sqlite3VdbeMakeLabel(pParse);
4908         testcase( jumpIfNull==0 );
4909         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
4910                            jumpIfNull^SQLITE_JUMPIFNULL);
4911         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4912         sqlite3VdbeResolveLabel(v, d2);
4913       }else{
4914         testcase( jumpIfNull==0 );
4915         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4916         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4917       }
4918       break;
4919     }
4920     case TK_NOT: {
4921       testcase( jumpIfNull==0 );
4922       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4923       break;
4924     }
4925     case TK_TRUTH: {
4926       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4927       int isTrue;     /* IS TRUE or IS NOT TRUE */
4928       testcase( jumpIfNull==0 );
4929       isNot = pExpr->op2==TK_ISNOT;
4930       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4931       testcase( isTrue && isNot );
4932       testcase( !isTrue && isNot );
4933       if( isTrue ^ isNot ){
4934         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4935                           isNot ? SQLITE_JUMPIFNULL : 0);
4936       }else{
4937         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4938                            isNot ? SQLITE_JUMPIFNULL : 0);
4939       }
4940       break;
4941     }
4942     case TK_IS:
4943     case TK_ISNOT:
4944       testcase( op==TK_IS );
4945       testcase( op==TK_ISNOT );
4946       op = (op==TK_IS) ? TK_EQ : TK_NE;
4947       jumpIfNull = SQLITE_NULLEQ;
4948       /* no break */ deliberate_fall_through
4949     case TK_LT:
4950     case TK_LE:
4951     case TK_GT:
4952     case TK_GE:
4953     case TK_NE:
4954     case TK_EQ: {
4955       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4956       testcase( jumpIfNull==0 );
4957       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4958       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4959       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4960                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
4961       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4962       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4963       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4964       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4965       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4966       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4967       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4968       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4969       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4970       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4971       testcase( regFree1==0 );
4972       testcase( regFree2==0 );
4973       break;
4974     }
4975     case TK_ISNULL:
4976     case TK_NOTNULL: {
4977       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4978       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4979       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4980       sqlite3VdbeAddOp2(v, op, r1, dest);
4981       VdbeCoverageIf(v, op==TK_ISNULL);
4982       VdbeCoverageIf(v, op==TK_NOTNULL);
4983       testcase( regFree1==0 );
4984       break;
4985     }
4986     case TK_BETWEEN: {
4987       testcase( jumpIfNull==0 );
4988       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4989       break;
4990     }
4991 #ifndef SQLITE_OMIT_SUBQUERY
4992     case TK_IN: {
4993       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4994       int destIfNull = jumpIfNull ? dest : destIfFalse;
4995       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4996       sqlite3VdbeGoto(v, dest);
4997       sqlite3VdbeResolveLabel(v, destIfFalse);
4998       break;
4999     }
5000 #endif
5001     default: {
5002     default_expr:
5003       if( ExprAlwaysTrue(pExpr) ){
5004         sqlite3VdbeGoto(v, dest);
5005       }else if( ExprAlwaysFalse(pExpr) ){
5006         /* No-op */
5007       }else{
5008         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5009         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
5010         VdbeCoverage(v);
5011         testcase( regFree1==0 );
5012         testcase( jumpIfNull==0 );
5013       }
5014       break;
5015     }
5016   }
5017   sqlite3ReleaseTempReg(pParse, regFree1);
5018   sqlite3ReleaseTempReg(pParse, regFree2);
5019 }
5020 
5021 /*
5022 ** Generate code for a boolean expression such that a jump is made
5023 ** to the label "dest" if the expression is false but execution
5024 ** continues straight thru if the expression is true.
5025 **
5026 ** If the expression evaluates to NULL (neither true nor false) then
5027 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5028 ** is 0.
5029 */
5030 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5031   Vdbe *v = pParse->pVdbe;
5032   int op = 0;
5033   int regFree1 = 0;
5034   int regFree2 = 0;
5035   int r1, r2;
5036 
5037   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5038   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5039   if( pExpr==0 )    return;
5040   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5041 
5042   /* The value of pExpr->op and op are related as follows:
5043   **
5044   **       pExpr->op            op
5045   **       ---------          ----------
5046   **       TK_ISNULL          OP_NotNull
5047   **       TK_NOTNULL         OP_IsNull
5048   **       TK_NE              OP_Eq
5049   **       TK_EQ              OP_Ne
5050   **       TK_GT              OP_Le
5051   **       TK_LE              OP_Gt
5052   **       TK_GE              OP_Lt
5053   **       TK_LT              OP_Ge
5054   **
5055   ** For other values of pExpr->op, op is undefined and unused.
5056   ** The value of TK_ and OP_ constants are arranged such that we
5057   ** can compute the mapping above using the following expression.
5058   ** Assert()s verify that the computation is correct.
5059   */
5060   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5061 
5062   /* Verify correct alignment of TK_ and OP_ constants
5063   */
5064   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5065   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5066   assert( pExpr->op!=TK_NE || op==OP_Eq );
5067   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5068   assert( pExpr->op!=TK_LT || op==OP_Ge );
5069   assert( pExpr->op!=TK_LE || op==OP_Gt );
5070   assert( pExpr->op!=TK_GT || op==OP_Le );
5071   assert( pExpr->op!=TK_GE || op==OP_Lt );
5072 
5073   switch( pExpr->op ){
5074     case TK_AND:
5075     case TK_OR: {
5076       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5077       if( pAlt!=pExpr ){
5078         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5079       }else if( pExpr->op==TK_AND ){
5080         testcase( jumpIfNull==0 );
5081         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5082         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5083       }else{
5084         int d2 = sqlite3VdbeMakeLabel(pParse);
5085         testcase( jumpIfNull==0 );
5086         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5087                           jumpIfNull^SQLITE_JUMPIFNULL);
5088         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5089         sqlite3VdbeResolveLabel(v, d2);
5090       }
5091       break;
5092     }
5093     case TK_NOT: {
5094       testcase( jumpIfNull==0 );
5095       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5096       break;
5097     }
5098     case TK_TRUTH: {
5099       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5100       int isTrue;  /* IS TRUE or IS NOT TRUE */
5101       testcase( jumpIfNull==0 );
5102       isNot = pExpr->op2==TK_ISNOT;
5103       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5104       testcase( isTrue && isNot );
5105       testcase( !isTrue && isNot );
5106       if( isTrue ^ isNot ){
5107         /* IS TRUE and IS NOT FALSE */
5108         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5109                            isNot ? 0 : SQLITE_JUMPIFNULL);
5110 
5111       }else{
5112         /* IS FALSE and IS NOT TRUE */
5113         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5114                           isNot ? 0 : SQLITE_JUMPIFNULL);
5115       }
5116       break;
5117     }
5118     case TK_IS:
5119     case TK_ISNOT:
5120       testcase( pExpr->op==TK_IS );
5121       testcase( pExpr->op==TK_ISNOT );
5122       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5123       jumpIfNull = SQLITE_NULLEQ;
5124       /* no break */ deliberate_fall_through
5125     case TK_LT:
5126     case TK_LE:
5127     case TK_GT:
5128     case TK_GE:
5129     case TK_NE:
5130     case TK_EQ: {
5131       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5132       testcase( jumpIfNull==0 );
5133       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5134       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5135       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5136                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5137       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5138       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5139       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5140       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5141       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5142       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5143       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5144       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5145       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5146       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5147       testcase( regFree1==0 );
5148       testcase( regFree2==0 );
5149       break;
5150     }
5151     case TK_ISNULL:
5152     case TK_NOTNULL: {
5153       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5154       sqlite3VdbeAddOp2(v, op, r1, dest);
5155       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5156       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5157       testcase( regFree1==0 );
5158       break;
5159     }
5160     case TK_BETWEEN: {
5161       testcase( jumpIfNull==0 );
5162       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5163       break;
5164     }
5165 #ifndef SQLITE_OMIT_SUBQUERY
5166     case TK_IN: {
5167       if( jumpIfNull ){
5168         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5169       }else{
5170         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5171         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5172         sqlite3VdbeResolveLabel(v, destIfNull);
5173       }
5174       break;
5175     }
5176 #endif
5177     default: {
5178     default_expr:
5179       if( ExprAlwaysFalse(pExpr) ){
5180         sqlite3VdbeGoto(v, dest);
5181       }else if( ExprAlwaysTrue(pExpr) ){
5182         /* no-op */
5183       }else{
5184         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5185         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5186         VdbeCoverage(v);
5187         testcase( regFree1==0 );
5188         testcase( jumpIfNull==0 );
5189       }
5190       break;
5191     }
5192   }
5193   sqlite3ReleaseTempReg(pParse, regFree1);
5194   sqlite3ReleaseTempReg(pParse, regFree2);
5195 }
5196 
5197 /*
5198 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5199 ** code generation, and that copy is deleted after code generation. This
5200 ** ensures that the original pExpr is unchanged.
5201 */
5202 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5203   sqlite3 *db = pParse->db;
5204   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5205   if( db->mallocFailed==0 ){
5206     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5207   }
5208   sqlite3ExprDelete(db, pCopy);
5209 }
5210 
5211 /*
5212 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5213 ** type of expression.
5214 **
5215 ** If pExpr is a simple SQL value - an integer, real, string, blob
5216 ** or NULL value - then the VDBE currently being prepared is configured
5217 ** to re-prepare each time a new value is bound to variable pVar.
5218 **
5219 ** Additionally, if pExpr is a simple SQL value and the value is the
5220 ** same as that currently bound to variable pVar, non-zero is returned.
5221 ** Otherwise, if the values are not the same or if pExpr is not a simple
5222 ** SQL value, zero is returned.
5223 */
5224 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
5225   int res = 0;
5226   int iVar;
5227   sqlite3_value *pL, *pR = 0;
5228 
5229   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5230   if( pR ){
5231     iVar = pVar->iColumn;
5232     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5233     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5234     if( pL ){
5235       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5236         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5237       }
5238       res =  0==sqlite3MemCompare(pL, pR, 0);
5239     }
5240     sqlite3ValueFree(pR);
5241     sqlite3ValueFree(pL);
5242   }
5243 
5244   return res;
5245 }
5246 
5247 /*
5248 ** Do a deep comparison of two expression trees.  Return 0 if the two
5249 ** expressions are completely identical.  Return 1 if they differ only
5250 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5251 ** other than the top-level COLLATE operator.
5252 **
5253 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5254 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5255 **
5256 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5257 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5258 **
5259 ** Sometimes this routine will return 2 even if the two expressions
5260 ** really are equivalent.  If we cannot prove that the expressions are
5261 ** identical, we return 2 just to be safe.  So if this routine
5262 ** returns 2, then you do not really know for certain if the two
5263 ** expressions are the same.  But if you get a 0 or 1 return, then you
5264 ** can be sure the expressions are the same.  In the places where
5265 ** this routine is used, it does not hurt to get an extra 2 - that
5266 ** just might result in some slightly slower code.  But returning
5267 ** an incorrect 0 or 1 could lead to a malfunction.
5268 **
5269 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5270 ** pParse->pReprepare can be matched against literals in pB.  The
5271 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5272 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5273 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5274 ** pB causes a return value of 2.
5275 */
5276 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
5277   u32 combinedFlags;
5278   if( pA==0 || pB==0 ){
5279     return pB==pA ? 0 : 2;
5280   }
5281   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5282     return 0;
5283   }
5284   combinedFlags = pA->flags | pB->flags;
5285   if( combinedFlags & EP_IntValue ){
5286     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5287       return 0;
5288     }
5289     return 2;
5290   }
5291   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5292     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5293       return 1;
5294     }
5295     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5296       return 1;
5297     }
5298     return 2;
5299   }
5300   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
5301     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5302       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5303 #ifndef SQLITE_OMIT_WINDOWFUNC
5304       assert( pA->op==pB->op );
5305       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5306         return 2;
5307       }
5308       if( ExprHasProperty(pA,EP_WinFunc) ){
5309         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5310           return 2;
5311         }
5312       }
5313 #endif
5314     }else if( pA->op==TK_NULL ){
5315       return 0;
5316     }else if( pA->op==TK_COLLATE ){
5317       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5318     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
5319       return 2;
5320     }
5321   }
5322   if( (pA->flags & (EP_Distinct|EP_Commuted))
5323      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5324   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5325     if( combinedFlags & EP_xIsSelect ) return 2;
5326     if( (combinedFlags & EP_FixedCol)==0
5327      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5328     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5329     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5330     if( pA->op!=TK_STRING
5331      && pA->op!=TK_TRUEFALSE
5332      && ALWAYS((combinedFlags & EP_Reduced)==0)
5333     ){
5334       if( pA->iColumn!=pB->iColumn ) return 2;
5335       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5336       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5337         return 2;
5338       }
5339     }
5340   }
5341   return 0;
5342 }
5343 
5344 /*
5345 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5346 ** if they are certainly different, or 2 if it is not possible to
5347 ** determine if they are identical or not.
5348 **
5349 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5350 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5351 **
5352 ** This routine might return non-zero for equivalent ExprLists.  The
5353 ** only consequence will be disabled optimizations.  But this routine
5354 ** must never return 0 if the two ExprList objects are different, or
5355 ** a malfunction will result.
5356 **
5357 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5358 ** always differs from a non-NULL pointer.
5359 */
5360 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
5361   int i;
5362   if( pA==0 && pB==0 ) return 0;
5363   if( pA==0 || pB==0 ) return 1;
5364   if( pA->nExpr!=pB->nExpr ) return 1;
5365   for(i=0; i<pA->nExpr; i++){
5366     int res;
5367     Expr *pExprA = pA->a[i].pExpr;
5368     Expr *pExprB = pB->a[i].pExpr;
5369     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
5370     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5371   }
5372   return 0;
5373 }
5374 
5375 /*
5376 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5377 ** are ignored.
5378 */
5379 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
5380   return sqlite3ExprCompare(0,
5381              sqlite3ExprSkipCollateAndLikely(pA),
5382              sqlite3ExprSkipCollateAndLikely(pB),
5383              iTab);
5384 }
5385 
5386 /*
5387 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5388 **
5389 ** Or if seenNot is true, return non-zero if Expr p can only be
5390 ** non-NULL if pNN is not NULL
5391 */
5392 static int exprImpliesNotNull(
5393   Parse *pParse,      /* Parsing context */
5394   Expr *p,            /* The expression to be checked */
5395   Expr *pNN,          /* The expression that is NOT NULL */
5396   int iTab,           /* Table being evaluated */
5397   int seenNot         /* Return true only if p can be any non-NULL value */
5398 ){
5399   assert( p );
5400   assert( pNN );
5401   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5402     return pNN->op!=TK_NULL;
5403   }
5404   switch( p->op ){
5405     case TK_IN: {
5406       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5407       assert( ExprHasProperty(p,EP_xIsSelect)
5408            || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5409       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5410     }
5411     case TK_BETWEEN: {
5412       ExprList *pList = p->x.pList;
5413       assert( pList!=0 );
5414       assert( pList->nExpr==2 );
5415       if( seenNot ) return 0;
5416       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5417        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5418       ){
5419         return 1;
5420       }
5421       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5422     }
5423     case TK_EQ:
5424     case TK_NE:
5425     case TK_LT:
5426     case TK_LE:
5427     case TK_GT:
5428     case TK_GE:
5429     case TK_PLUS:
5430     case TK_MINUS:
5431     case TK_BITOR:
5432     case TK_LSHIFT:
5433     case TK_RSHIFT:
5434     case TK_CONCAT:
5435       seenNot = 1;
5436       /* no break */ deliberate_fall_through
5437     case TK_STAR:
5438     case TK_REM:
5439     case TK_BITAND:
5440     case TK_SLASH: {
5441       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5442       /* no break */ deliberate_fall_through
5443     }
5444     case TK_SPAN:
5445     case TK_COLLATE:
5446     case TK_UPLUS:
5447     case TK_UMINUS: {
5448       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5449     }
5450     case TK_TRUTH: {
5451       if( seenNot ) return 0;
5452       if( p->op2!=TK_IS ) return 0;
5453       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5454     }
5455     case TK_BITNOT:
5456     case TK_NOT: {
5457       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5458     }
5459   }
5460   return 0;
5461 }
5462 
5463 /*
5464 ** Return true if we can prove the pE2 will always be true if pE1 is
5465 ** true.  Return false if we cannot complete the proof or if pE2 might
5466 ** be false.  Examples:
5467 **
5468 **     pE1: x==5       pE2: x==5             Result: true
5469 **     pE1: x>0        pE2: x==5             Result: false
5470 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5471 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5472 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5473 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5474 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5475 **
5476 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5477 ** Expr.iTable<0 then assume a table number given by iTab.
5478 **
5479 ** If pParse is not NULL, then the values of bound variables in pE1 are
5480 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5481 ** modified to record which bound variables are referenced.  If pParse
5482 ** is NULL, then false will be returned if pE1 contains any bound variables.
5483 **
5484 ** When in doubt, return false.  Returning true might give a performance
5485 ** improvement.  Returning false might cause a performance reduction, but
5486 ** it will always give the correct answer and is hence always safe.
5487 */
5488 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5489   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5490     return 1;
5491   }
5492   if( pE2->op==TK_OR
5493    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5494              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5495   ){
5496     return 1;
5497   }
5498   if( pE2->op==TK_NOTNULL
5499    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5500   ){
5501     return 1;
5502   }
5503   return 0;
5504 }
5505 
5506 /*
5507 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5508 ** If the expression node requires that the table at pWalker->iCur
5509 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5510 **
5511 ** This routine controls an optimization.  False positives (setting
5512 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5513 ** (never setting pWalker->eCode) is a harmless missed optimization.
5514 */
5515 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5516   testcase( pExpr->op==TK_AGG_COLUMN );
5517   testcase( pExpr->op==TK_AGG_FUNCTION );
5518   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5519   switch( pExpr->op ){
5520     case TK_ISNOT:
5521     case TK_ISNULL:
5522     case TK_NOTNULL:
5523     case TK_IS:
5524     case TK_OR:
5525     case TK_VECTOR:
5526     case TK_CASE:
5527     case TK_IN:
5528     case TK_FUNCTION:
5529     case TK_TRUTH:
5530       testcase( pExpr->op==TK_ISNOT );
5531       testcase( pExpr->op==TK_ISNULL );
5532       testcase( pExpr->op==TK_NOTNULL );
5533       testcase( pExpr->op==TK_IS );
5534       testcase( pExpr->op==TK_OR );
5535       testcase( pExpr->op==TK_VECTOR );
5536       testcase( pExpr->op==TK_CASE );
5537       testcase( pExpr->op==TK_IN );
5538       testcase( pExpr->op==TK_FUNCTION );
5539       testcase( pExpr->op==TK_TRUTH );
5540       return WRC_Prune;
5541     case TK_COLUMN:
5542       if( pWalker->u.iCur==pExpr->iTable ){
5543         pWalker->eCode = 1;
5544         return WRC_Abort;
5545       }
5546       return WRC_Prune;
5547 
5548     case TK_AND:
5549       if( pWalker->eCode==0 ){
5550         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5551         if( pWalker->eCode ){
5552           pWalker->eCode = 0;
5553           sqlite3WalkExpr(pWalker, pExpr->pRight);
5554         }
5555       }
5556       return WRC_Prune;
5557 
5558     case TK_BETWEEN:
5559       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5560         assert( pWalker->eCode );
5561         return WRC_Abort;
5562       }
5563       return WRC_Prune;
5564 
5565     /* Virtual tables are allowed to use constraints like x=NULL.  So
5566     ** a term of the form x=y does not prove that y is not null if x
5567     ** is the column of a virtual table */
5568     case TK_EQ:
5569     case TK_NE:
5570     case TK_LT:
5571     case TK_LE:
5572     case TK_GT:
5573     case TK_GE: {
5574       Expr *pLeft = pExpr->pLeft;
5575       Expr *pRight = pExpr->pRight;
5576       testcase( pExpr->op==TK_EQ );
5577       testcase( pExpr->op==TK_NE );
5578       testcase( pExpr->op==TK_LT );
5579       testcase( pExpr->op==TK_LE );
5580       testcase( pExpr->op==TK_GT );
5581       testcase( pExpr->op==TK_GE );
5582       /* The y.pTab=0 assignment in wherecode.c always happens after the
5583       ** impliesNotNullRow() test */
5584       if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0)
5585                                && IsVirtual(pLeft->y.pTab))
5586        || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0)
5587                                && IsVirtual(pRight->y.pTab))
5588       ){
5589         return WRC_Prune;
5590       }
5591       /* no break */ deliberate_fall_through
5592     }
5593     default:
5594       return WRC_Continue;
5595   }
5596 }
5597 
5598 /*
5599 ** Return true (non-zero) if expression p can only be true if at least
5600 ** one column of table iTab is non-null.  In other words, return true
5601 ** if expression p will always be NULL or false if every column of iTab
5602 ** is NULL.
5603 **
5604 ** False negatives are acceptable.  In other words, it is ok to return
5605 ** zero even if expression p will never be true of every column of iTab
5606 ** is NULL.  A false negative is merely a missed optimization opportunity.
5607 **
5608 ** False positives are not allowed, however.  A false positive may result
5609 ** in an incorrect answer.
5610 **
5611 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5612 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5613 **
5614 ** This routine is used to check if a LEFT JOIN can be converted into
5615 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5616 ** clause requires that some column of the right table of the LEFT JOIN
5617 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5618 ** ordinary join.
5619 */
5620 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5621   Walker w;
5622   p = sqlite3ExprSkipCollateAndLikely(p);
5623   if( p==0 ) return 0;
5624   if( p->op==TK_NOTNULL ){
5625     p = p->pLeft;
5626   }else{
5627     while( p->op==TK_AND ){
5628       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5629       p = p->pRight;
5630     }
5631   }
5632   w.xExprCallback = impliesNotNullRow;
5633   w.xSelectCallback = 0;
5634   w.xSelectCallback2 = 0;
5635   w.eCode = 0;
5636   w.u.iCur = iTab;
5637   sqlite3WalkExpr(&w, p);
5638   return w.eCode;
5639 }
5640 
5641 /*
5642 ** An instance of the following structure is used by the tree walker
5643 ** to determine if an expression can be evaluated by reference to the
5644 ** index only, without having to do a search for the corresponding
5645 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5646 ** is the cursor for the table.
5647 */
5648 struct IdxCover {
5649   Index *pIdx;     /* The index to be tested for coverage */
5650   int iCur;        /* Cursor number for the table corresponding to the index */
5651 };
5652 
5653 /*
5654 ** Check to see if there are references to columns in table
5655 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5656 ** pWalker->u.pIdxCover->pIdx.
5657 */
5658 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5659   if( pExpr->op==TK_COLUMN
5660    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5661    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5662   ){
5663     pWalker->eCode = 1;
5664     return WRC_Abort;
5665   }
5666   return WRC_Continue;
5667 }
5668 
5669 /*
5670 ** Determine if an index pIdx on table with cursor iCur contains will
5671 ** the expression pExpr.  Return true if the index does cover the
5672 ** expression and false if the pExpr expression references table columns
5673 ** that are not found in the index pIdx.
5674 **
5675 ** An index covering an expression means that the expression can be
5676 ** evaluated using only the index and without having to lookup the
5677 ** corresponding table entry.
5678 */
5679 int sqlite3ExprCoveredByIndex(
5680   Expr *pExpr,        /* The index to be tested */
5681   int iCur,           /* The cursor number for the corresponding table */
5682   Index *pIdx         /* The index that might be used for coverage */
5683 ){
5684   Walker w;
5685   struct IdxCover xcov;
5686   memset(&w, 0, sizeof(w));
5687   xcov.iCur = iCur;
5688   xcov.pIdx = pIdx;
5689   w.xExprCallback = exprIdxCover;
5690   w.u.pIdxCover = &xcov;
5691   sqlite3WalkExpr(&w, pExpr);
5692   return !w.eCode;
5693 }
5694 
5695 
5696 /*
5697 ** An instance of the following structure is used by the tree walker
5698 ** to count references to table columns in the arguments of an
5699 ** aggregate function, in order to implement the
5700 ** sqlite3FunctionThisSrc() routine.
5701 */
5702 struct SrcCount {
5703   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5704   int iSrcInner;   /* Smallest cursor number in this context */
5705   int nThis;       /* Number of references to columns in pSrcList */
5706   int nOther;      /* Number of references to columns in other FROM clauses */
5707 };
5708 
5709 /*
5710 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first
5711 ** SELECT with a FROM clause encountered during this iteration, set
5712 ** SrcCount.iSrcInner to the cursor number of the leftmost object in
5713 ** the FROM cause.
5714 */
5715 static int selectSrcCount(Walker *pWalker, Select *pSel){
5716   struct SrcCount *p = pWalker->u.pSrcCount;
5717   if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){
5718     pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor;
5719   }
5720   return WRC_Continue;
5721 }
5722 
5723 /*
5724 ** Count the number of references to columns.
5725 */
5726 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5727   /* There was once a NEVER() on the second term on the grounds that
5728   ** sqlite3FunctionUsesThisSrc() was always called before
5729   ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet
5730   ** been converted into TK_AGG_COLUMN. But this is no longer true due
5731   ** to window functions - sqlite3WindowRewrite() may now indirectly call
5732   ** FunctionUsesThisSrc() when creating a new sub-select. */
5733   if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){
5734     int i;
5735     struct SrcCount *p = pWalker->u.pSrcCount;
5736     SrcList *pSrc = p->pSrc;
5737     int nSrc = pSrc ? pSrc->nSrc : 0;
5738     for(i=0; i<nSrc; i++){
5739       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5740     }
5741     if( i<nSrc ){
5742       p->nThis++;
5743     }else if( pExpr->iTable<p->iSrcInner ){
5744       /* In a well-formed parse tree (no name resolution errors),
5745       ** TK_COLUMN nodes with smaller Expr.iTable values are in an
5746       ** outer context.  Those are the only ones to count as "other" */
5747       p->nOther++;
5748     }
5749   }
5750   return WRC_Continue;
5751 }
5752 
5753 /*
5754 ** Determine if any of the arguments to the pExpr Function reference
5755 ** pSrcList.  Return true if they do.  Also return true if the function
5756 ** has no arguments or has only constant arguments.  Return false if pExpr
5757 ** references columns but not columns of tables found in pSrcList.
5758 */
5759 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5760   Walker w;
5761   struct SrcCount cnt;
5762   assert( pExpr->op==TK_AGG_FUNCTION );
5763   memset(&w, 0, sizeof(w));
5764   w.xExprCallback = exprSrcCount;
5765   w.xSelectCallback = selectSrcCount;
5766   w.u.pSrcCount = &cnt;
5767   cnt.pSrc = pSrcList;
5768   cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF;
5769   cnt.nThis = 0;
5770   cnt.nOther = 0;
5771   sqlite3WalkExprList(&w, pExpr->x.pList);
5772 #ifndef SQLITE_OMIT_WINDOWFUNC
5773   if( ExprHasProperty(pExpr, EP_WinFunc) ){
5774     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
5775   }
5776 #endif
5777   return cnt.nThis>0 || cnt.nOther==0;
5778 }
5779 
5780 /*
5781 ** This is a Walker expression node callback.
5782 **
5783 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
5784 ** object that is referenced does not refer directly to the Expr.  If
5785 ** it does, make a copy.  This is done because the pExpr argument is
5786 ** subject to change.
5787 **
5788 ** The copy is stored on pParse->pConstExpr with a register number of 0.
5789 ** This will cause the expression to be deleted automatically when the
5790 ** Parse object is destroyed, but the zero register number means that it
5791 ** will not generate any code in the preamble.
5792 */
5793 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
5794   if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
5795    && pExpr->pAggInfo!=0
5796   ){
5797     AggInfo *pAggInfo = pExpr->pAggInfo;
5798     int iAgg = pExpr->iAgg;
5799     Parse *pParse = pWalker->pParse;
5800     sqlite3 *db = pParse->db;
5801     assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION );
5802     if( pExpr->op==TK_AGG_COLUMN ){
5803       assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
5804       if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
5805         pExpr = sqlite3ExprDup(db, pExpr, 0);
5806         if( pExpr ){
5807           pAggInfo->aCol[iAgg].pCExpr = pExpr;
5808           pParse->pConstExpr =
5809              sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
5810         }
5811       }
5812     }else{
5813       assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
5814       if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
5815         pExpr = sqlite3ExprDup(db, pExpr, 0);
5816         if( pExpr ){
5817           pAggInfo->aFunc[iAgg].pFExpr = pExpr;
5818           pParse->pConstExpr =
5819              sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
5820         }
5821       }
5822     }
5823   }
5824   return WRC_Continue;
5825 }
5826 
5827 /*
5828 ** Initialize a Walker object so that will persist AggInfo entries referenced
5829 ** by the tree that is walked.
5830 */
5831 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
5832   memset(pWalker, 0, sizeof(*pWalker));
5833   pWalker->pParse = pParse;
5834   pWalker->xExprCallback = agginfoPersistExprCb;
5835   pWalker->xSelectCallback = sqlite3SelectWalkNoop;
5836 }
5837 
5838 /*
5839 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5840 ** the new element.  Return a negative number if malloc fails.
5841 */
5842 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5843   int i;
5844   pInfo->aCol = sqlite3ArrayAllocate(
5845        db,
5846        pInfo->aCol,
5847        sizeof(pInfo->aCol[0]),
5848        &pInfo->nColumn,
5849        &i
5850   );
5851   return i;
5852 }
5853 
5854 /*
5855 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5856 ** the new element.  Return a negative number if malloc fails.
5857 */
5858 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5859   int i;
5860   pInfo->aFunc = sqlite3ArrayAllocate(
5861        db,
5862        pInfo->aFunc,
5863        sizeof(pInfo->aFunc[0]),
5864        &pInfo->nFunc,
5865        &i
5866   );
5867   return i;
5868 }
5869 
5870 /*
5871 ** This is the xExprCallback for a tree walker.  It is used to
5872 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5873 ** for additional information.
5874 */
5875 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5876   int i;
5877   NameContext *pNC = pWalker->u.pNC;
5878   Parse *pParse = pNC->pParse;
5879   SrcList *pSrcList = pNC->pSrcList;
5880   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5881 
5882   assert( pNC->ncFlags & NC_UAggInfo );
5883   switch( pExpr->op ){
5884     case TK_AGG_COLUMN:
5885     case TK_COLUMN: {
5886       testcase( pExpr->op==TK_AGG_COLUMN );
5887       testcase( pExpr->op==TK_COLUMN );
5888       /* Check to see if the column is in one of the tables in the FROM
5889       ** clause of the aggregate query */
5890       if( ALWAYS(pSrcList!=0) ){
5891         SrcItem *pItem = pSrcList->a;
5892         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5893           struct AggInfo_col *pCol;
5894           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5895           if( pExpr->iTable==pItem->iCursor ){
5896             /* If we reach this point, it means that pExpr refers to a table
5897             ** that is in the FROM clause of the aggregate query.
5898             **
5899             ** Make an entry for the column in pAggInfo->aCol[] if there
5900             ** is not an entry there already.
5901             */
5902             int k;
5903             pCol = pAggInfo->aCol;
5904             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5905               if( pCol->iTable==pExpr->iTable &&
5906                   pCol->iColumn==pExpr->iColumn ){
5907                 break;
5908               }
5909             }
5910             if( (k>=pAggInfo->nColumn)
5911              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5912             ){
5913               pCol = &pAggInfo->aCol[k];
5914               pCol->pTab = pExpr->y.pTab;
5915               pCol->iTable = pExpr->iTable;
5916               pCol->iColumn = pExpr->iColumn;
5917               pCol->iMem = ++pParse->nMem;
5918               pCol->iSorterColumn = -1;
5919               pCol->pCExpr = pExpr;
5920               if( pAggInfo->pGroupBy ){
5921                 int j, n;
5922                 ExprList *pGB = pAggInfo->pGroupBy;
5923                 struct ExprList_item *pTerm = pGB->a;
5924                 n = pGB->nExpr;
5925                 for(j=0; j<n; j++, pTerm++){
5926                   Expr *pE = pTerm->pExpr;
5927                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5928                       pE->iColumn==pExpr->iColumn ){
5929                     pCol->iSorterColumn = j;
5930                     break;
5931                   }
5932                 }
5933               }
5934               if( pCol->iSorterColumn<0 ){
5935                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5936               }
5937             }
5938             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5939             ** because it was there before or because we just created it).
5940             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5941             ** pAggInfo->aCol[] entry.
5942             */
5943             ExprSetVVAProperty(pExpr, EP_NoReduce);
5944             pExpr->pAggInfo = pAggInfo;
5945             pExpr->op = TK_AGG_COLUMN;
5946             pExpr->iAgg = (i16)k;
5947             break;
5948           } /* endif pExpr->iTable==pItem->iCursor */
5949         } /* end loop over pSrcList */
5950       }
5951       return WRC_Prune;
5952     }
5953     case TK_AGG_FUNCTION: {
5954       if( (pNC->ncFlags & NC_InAggFunc)==0
5955        && pWalker->walkerDepth==pExpr->op2
5956       ){
5957         /* Check to see if pExpr is a duplicate of another aggregate
5958         ** function that is already in the pAggInfo structure
5959         */
5960         struct AggInfo_func *pItem = pAggInfo->aFunc;
5961         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5962           if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
5963             break;
5964           }
5965         }
5966         if( i>=pAggInfo->nFunc ){
5967           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5968           */
5969           u8 enc = ENC(pParse->db);
5970           i = addAggInfoFunc(pParse->db, pAggInfo);
5971           if( i>=0 ){
5972             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5973             pItem = &pAggInfo->aFunc[i];
5974             pItem->pFExpr = pExpr;
5975             pItem->iMem = ++pParse->nMem;
5976             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5977             pItem->pFunc = sqlite3FindFunction(pParse->db,
5978                    pExpr->u.zToken,
5979                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5980             if( pExpr->flags & EP_Distinct ){
5981               pItem->iDistinct = pParse->nTab++;
5982             }else{
5983               pItem->iDistinct = -1;
5984             }
5985           }
5986         }
5987         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5988         */
5989         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5990         ExprSetVVAProperty(pExpr, EP_NoReduce);
5991         pExpr->iAgg = (i16)i;
5992         pExpr->pAggInfo = pAggInfo;
5993         return WRC_Prune;
5994       }else{
5995         return WRC_Continue;
5996       }
5997     }
5998   }
5999   return WRC_Continue;
6000 }
6001 
6002 /*
6003 ** Analyze the pExpr expression looking for aggregate functions and
6004 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6005 ** points to.  Additional entries are made on the AggInfo object as
6006 ** necessary.
6007 **
6008 ** This routine should only be called after the expression has been
6009 ** analyzed by sqlite3ResolveExprNames().
6010 */
6011 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
6012   Walker w;
6013   w.xExprCallback = analyzeAggregate;
6014   w.xSelectCallback = sqlite3WalkerDepthIncrease;
6015   w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
6016   w.walkerDepth = 0;
6017   w.u.pNC = pNC;
6018   w.pParse = 0;
6019   assert( pNC->pSrcList!=0 );
6020   sqlite3WalkExpr(&w, pExpr);
6021 }
6022 
6023 /*
6024 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6025 ** expression list.  Return the number of errors.
6026 **
6027 ** If an error is found, the analysis is cut short.
6028 */
6029 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6030   struct ExprList_item *pItem;
6031   int i;
6032   if( pList ){
6033     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6034       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
6035     }
6036   }
6037 }
6038 
6039 /*
6040 ** Allocate a single new register for use to hold some intermediate result.
6041 */
6042 int sqlite3GetTempReg(Parse *pParse){
6043   if( pParse->nTempReg==0 ){
6044     return ++pParse->nMem;
6045   }
6046   return pParse->aTempReg[--pParse->nTempReg];
6047 }
6048 
6049 /*
6050 ** Deallocate a register, making available for reuse for some other
6051 ** purpose.
6052 */
6053 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6054   if( iReg ){
6055     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6056     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6057       pParse->aTempReg[pParse->nTempReg++] = iReg;
6058     }
6059   }
6060 }
6061 
6062 /*
6063 ** Allocate or deallocate a block of nReg consecutive registers.
6064 */
6065 int sqlite3GetTempRange(Parse *pParse, int nReg){
6066   int i, n;
6067   if( nReg==1 ) return sqlite3GetTempReg(pParse);
6068   i = pParse->iRangeReg;
6069   n = pParse->nRangeReg;
6070   if( nReg<=n ){
6071     pParse->iRangeReg += nReg;
6072     pParse->nRangeReg -= nReg;
6073   }else{
6074     i = pParse->nMem+1;
6075     pParse->nMem += nReg;
6076   }
6077   return i;
6078 }
6079 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6080   if( nReg==1 ){
6081     sqlite3ReleaseTempReg(pParse, iReg);
6082     return;
6083   }
6084   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6085   if( nReg>pParse->nRangeReg ){
6086     pParse->nRangeReg = nReg;
6087     pParse->iRangeReg = iReg;
6088   }
6089 }
6090 
6091 /*
6092 ** Mark all temporary registers as being unavailable for reuse.
6093 **
6094 ** Always invoke this procedure after coding a subroutine or co-routine
6095 ** that might be invoked from other parts of the code, to ensure that
6096 ** the sub/co-routine does not use registers in common with the code that
6097 ** invokes the sub/co-routine.
6098 */
6099 void sqlite3ClearTempRegCache(Parse *pParse){
6100   pParse->nTempReg = 0;
6101   pParse->nRangeReg = 0;
6102 }
6103 
6104 /*
6105 ** Validate that no temporary register falls within the range of
6106 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
6107 ** statements.
6108 */
6109 #ifdef SQLITE_DEBUG
6110 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6111   int i;
6112   if( pParse->nRangeReg>0
6113    && pParse->iRangeReg+pParse->nRangeReg > iFirst
6114    && pParse->iRangeReg <= iLast
6115   ){
6116      return 0;
6117   }
6118   for(i=0; i<pParse->nTempReg; i++){
6119     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6120       return 0;
6121     }
6122   }
6123   return 1;
6124 }
6125 #endif /* SQLITE_DEBUG */
6126