1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expressions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op; 35 pExpr = sqlite3ExprSkipCollate(pExpr); 36 if( pExpr->flags & EP_Generic ) return 0; 37 op = pExpr->op; 38 if( op==TK_SELECT ){ 39 assert( pExpr->flags&EP_xIsSelect ); 40 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 41 } 42 #ifndef SQLITE_OMIT_CAST 43 if( op==TK_CAST ){ 44 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 45 return sqlite3AffinityType(pExpr->u.zToken, 0); 46 } 47 #endif 48 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 49 && pExpr->pTab!=0 50 ){ 51 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 52 ** a TK_COLUMN but was previously evaluated and cached in a register */ 53 int j = pExpr->iColumn; 54 if( j<0 ) return SQLITE_AFF_INTEGER; 55 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 56 return pExpr->pTab->aCol[j].affinity; 57 } 58 return pExpr->affinity; 59 } 60 61 /* 62 ** Set the collating sequence for expression pExpr to be the collating 63 ** sequence named by pToken. Return a pointer to a new Expr node that 64 ** implements the COLLATE operator. 65 ** 66 ** If a memory allocation error occurs, that fact is recorded in pParse->db 67 ** and the pExpr parameter is returned unchanged. 68 */ 69 Expr *sqlite3ExprAddCollateToken( 70 Parse *pParse, /* Parsing context */ 71 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 72 const Token *pCollName, /* Name of collating sequence */ 73 int dequote /* True to dequote pCollName */ 74 ){ 75 if( pCollName->n>0 ){ 76 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 77 if( pNew ){ 78 pNew->pLeft = pExpr; 79 pNew->flags |= EP_Collate|EP_Skip; 80 pExpr = pNew; 81 } 82 } 83 return pExpr; 84 } 85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 86 Token s; 87 assert( zC!=0 ); 88 sqlite3TokenInit(&s, (char*)zC); 89 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 90 } 91 92 /* 93 ** Skip over any TK_COLLATE operators and any unlikely() 94 ** or likelihood() function at the root of an expression. 95 */ 96 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 97 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 98 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 99 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 100 assert( pExpr->x.pList->nExpr>0 ); 101 assert( pExpr->op==TK_FUNCTION ); 102 pExpr = pExpr->x.pList->a[0].pExpr; 103 }else{ 104 assert( pExpr->op==TK_COLLATE ); 105 pExpr = pExpr->pLeft; 106 } 107 } 108 return pExpr; 109 } 110 111 /* 112 ** Return the collation sequence for the expression pExpr. If 113 ** there is no defined collating sequence, return NULL. 114 ** 115 ** The collating sequence might be determined by a COLLATE operator 116 ** or by the presence of a column with a defined collating sequence. 117 ** COLLATE operators take first precedence. Left operands take 118 ** precedence over right operands. 119 */ 120 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 121 sqlite3 *db = pParse->db; 122 CollSeq *pColl = 0; 123 Expr *p = pExpr; 124 while( p ){ 125 int op = p->op; 126 if( p->flags & EP_Generic ) break; 127 if( op==TK_CAST || op==TK_UPLUS ){ 128 p = p->pLeft; 129 continue; 130 } 131 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 132 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 133 break; 134 } 135 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 136 || op==TK_REGISTER || op==TK_TRIGGER) 137 && p->pTab!=0 138 ){ 139 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 140 ** a TK_COLUMN but was previously evaluated and cached in a register */ 141 int j = p->iColumn; 142 if( j>=0 ){ 143 const char *zColl = p->pTab->aCol[j].zColl; 144 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 145 } 146 break; 147 } 148 if( p->flags & EP_Collate ){ 149 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 150 p = p->pLeft; 151 }else{ 152 Expr *pNext = p->pRight; 153 /* The Expr.x union is never used at the same time as Expr.pRight */ 154 assert( p->x.pList==0 || p->pRight==0 ); 155 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 156 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 157 ** least one EP_Collate. Thus the following two ALWAYS. */ 158 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 159 int i; 160 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 161 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 162 pNext = p->x.pList->a[i].pExpr; 163 break; 164 } 165 } 166 } 167 p = pNext; 168 } 169 }else{ 170 break; 171 } 172 } 173 if( sqlite3CheckCollSeq(pParse, pColl) ){ 174 pColl = 0; 175 } 176 return pColl; 177 } 178 179 /* 180 ** pExpr is an operand of a comparison operator. aff2 is the 181 ** type affinity of the other operand. This routine returns the 182 ** type affinity that should be used for the comparison operator. 183 */ 184 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 185 char aff1 = sqlite3ExprAffinity(pExpr); 186 if( aff1 && aff2 ){ 187 /* Both sides of the comparison are columns. If one has numeric 188 ** affinity, use that. Otherwise use no affinity. 189 */ 190 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 191 return SQLITE_AFF_NUMERIC; 192 }else{ 193 return SQLITE_AFF_BLOB; 194 } 195 }else if( !aff1 && !aff2 ){ 196 /* Neither side of the comparison is a column. Compare the 197 ** results directly. 198 */ 199 return SQLITE_AFF_BLOB; 200 }else{ 201 /* One side is a column, the other is not. Use the columns affinity. */ 202 assert( aff1==0 || aff2==0 ); 203 return (aff1 + aff2); 204 } 205 } 206 207 /* 208 ** pExpr is a comparison operator. Return the type affinity that should 209 ** be applied to both operands prior to doing the comparison. 210 */ 211 static char comparisonAffinity(Expr *pExpr){ 212 char aff; 213 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 214 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 215 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 216 assert( pExpr->pLeft ); 217 aff = sqlite3ExprAffinity(pExpr->pLeft); 218 if( pExpr->pRight ){ 219 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 220 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 221 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 222 }else if( !aff ){ 223 aff = SQLITE_AFF_BLOB; 224 } 225 return aff; 226 } 227 228 /* 229 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 230 ** idx_affinity is the affinity of an indexed column. Return true 231 ** if the index with affinity idx_affinity may be used to implement 232 ** the comparison in pExpr. 233 */ 234 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 235 char aff = comparisonAffinity(pExpr); 236 switch( aff ){ 237 case SQLITE_AFF_BLOB: 238 return 1; 239 case SQLITE_AFF_TEXT: 240 return idx_affinity==SQLITE_AFF_TEXT; 241 default: 242 return sqlite3IsNumericAffinity(idx_affinity); 243 } 244 } 245 246 /* 247 ** Return the P5 value that should be used for a binary comparison 248 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 249 */ 250 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 251 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 252 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 253 return aff; 254 } 255 256 /* 257 ** Return a pointer to the collation sequence that should be used by 258 ** a binary comparison operator comparing pLeft and pRight. 259 ** 260 ** If the left hand expression has a collating sequence type, then it is 261 ** used. Otherwise the collation sequence for the right hand expression 262 ** is used, or the default (BINARY) if neither expression has a collating 263 ** type. 264 ** 265 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 266 ** it is not considered. 267 */ 268 CollSeq *sqlite3BinaryCompareCollSeq( 269 Parse *pParse, 270 Expr *pLeft, 271 Expr *pRight 272 ){ 273 CollSeq *pColl; 274 assert( pLeft ); 275 if( pLeft->flags & EP_Collate ){ 276 pColl = sqlite3ExprCollSeq(pParse, pLeft); 277 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 278 pColl = sqlite3ExprCollSeq(pParse, pRight); 279 }else{ 280 pColl = sqlite3ExprCollSeq(pParse, pLeft); 281 if( !pColl ){ 282 pColl = sqlite3ExprCollSeq(pParse, pRight); 283 } 284 } 285 return pColl; 286 } 287 288 /* 289 ** Generate code for a comparison operator. 290 */ 291 static int codeCompare( 292 Parse *pParse, /* The parsing (and code generating) context */ 293 Expr *pLeft, /* The left operand */ 294 Expr *pRight, /* The right operand */ 295 int opcode, /* The comparison opcode */ 296 int in1, int in2, /* Register holding operands */ 297 int dest, /* Jump here if true. */ 298 int jumpIfNull /* If true, jump if either operand is NULL */ 299 ){ 300 int p5; 301 int addr; 302 CollSeq *p4; 303 304 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 305 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 306 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 307 (void*)p4, P4_COLLSEQ); 308 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 309 return addr; 310 } 311 312 #if SQLITE_MAX_EXPR_DEPTH>0 313 /* 314 ** Check that argument nHeight is less than or equal to the maximum 315 ** expression depth allowed. If it is not, leave an error message in 316 ** pParse. 317 */ 318 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 319 int rc = SQLITE_OK; 320 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 321 if( nHeight>mxHeight ){ 322 sqlite3ErrorMsg(pParse, 323 "Expression tree is too large (maximum depth %d)", mxHeight 324 ); 325 rc = SQLITE_ERROR; 326 } 327 return rc; 328 } 329 330 /* The following three functions, heightOfExpr(), heightOfExprList() 331 ** and heightOfSelect(), are used to determine the maximum height 332 ** of any expression tree referenced by the structure passed as the 333 ** first argument. 334 ** 335 ** If this maximum height is greater than the current value pointed 336 ** to by pnHeight, the second parameter, then set *pnHeight to that 337 ** value. 338 */ 339 static void heightOfExpr(Expr *p, int *pnHeight){ 340 if( p ){ 341 if( p->nHeight>*pnHeight ){ 342 *pnHeight = p->nHeight; 343 } 344 } 345 } 346 static void heightOfExprList(ExprList *p, int *pnHeight){ 347 if( p ){ 348 int i; 349 for(i=0; i<p->nExpr; i++){ 350 heightOfExpr(p->a[i].pExpr, pnHeight); 351 } 352 } 353 } 354 static void heightOfSelect(Select *p, int *pnHeight){ 355 if( p ){ 356 heightOfExpr(p->pWhere, pnHeight); 357 heightOfExpr(p->pHaving, pnHeight); 358 heightOfExpr(p->pLimit, pnHeight); 359 heightOfExpr(p->pOffset, pnHeight); 360 heightOfExprList(p->pEList, pnHeight); 361 heightOfExprList(p->pGroupBy, pnHeight); 362 heightOfExprList(p->pOrderBy, pnHeight); 363 heightOfSelect(p->pPrior, pnHeight); 364 } 365 } 366 367 /* 368 ** Set the Expr.nHeight variable in the structure passed as an 369 ** argument. An expression with no children, Expr.pList or 370 ** Expr.pSelect member has a height of 1. Any other expression 371 ** has a height equal to the maximum height of any other 372 ** referenced Expr plus one. 373 ** 374 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 375 ** if appropriate. 376 */ 377 static void exprSetHeight(Expr *p){ 378 int nHeight = 0; 379 heightOfExpr(p->pLeft, &nHeight); 380 heightOfExpr(p->pRight, &nHeight); 381 if( ExprHasProperty(p, EP_xIsSelect) ){ 382 heightOfSelect(p->x.pSelect, &nHeight); 383 }else if( p->x.pList ){ 384 heightOfExprList(p->x.pList, &nHeight); 385 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 386 } 387 p->nHeight = nHeight + 1; 388 } 389 390 /* 391 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 392 ** the height is greater than the maximum allowed expression depth, 393 ** leave an error in pParse. 394 ** 395 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 396 ** Expr.flags. 397 */ 398 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 399 if( pParse->nErr ) return; 400 exprSetHeight(p); 401 sqlite3ExprCheckHeight(pParse, p->nHeight); 402 } 403 404 /* 405 ** Return the maximum height of any expression tree referenced 406 ** by the select statement passed as an argument. 407 */ 408 int sqlite3SelectExprHeight(Select *p){ 409 int nHeight = 0; 410 heightOfSelect(p, &nHeight); 411 return nHeight; 412 } 413 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 414 /* 415 ** Propagate all EP_Propagate flags from the Expr.x.pList into 416 ** Expr.flags. 417 */ 418 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 419 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 420 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 421 } 422 } 423 #define exprSetHeight(y) 424 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 425 426 /* 427 ** This routine is the core allocator for Expr nodes. 428 ** 429 ** Construct a new expression node and return a pointer to it. Memory 430 ** for this node and for the pToken argument is a single allocation 431 ** obtained from sqlite3DbMalloc(). The calling function 432 ** is responsible for making sure the node eventually gets freed. 433 ** 434 ** If dequote is true, then the token (if it exists) is dequoted. 435 ** If dequote is false, no dequoting is performed. The deQuote 436 ** parameter is ignored if pToken is NULL or if the token does not 437 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 438 ** then the EP_DblQuoted flag is set on the expression node. 439 ** 440 ** Special case: If op==TK_INTEGER and pToken points to a string that 441 ** can be translated into a 32-bit integer, then the token is not 442 ** stored in u.zToken. Instead, the integer values is written 443 ** into u.iValue and the EP_IntValue flag is set. No extra storage 444 ** is allocated to hold the integer text and the dequote flag is ignored. 445 */ 446 Expr *sqlite3ExprAlloc( 447 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 448 int op, /* Expression opcode */ 449 const Token *pToken, /* Token argument. Might be NULL */ 450 int dequote /* True to dequote */ 451 ){ 452 Expr *pNew; 453 int nExtra = 0; 454 int iValue = 0; 455 456 assert( db!=0 ); 457 if( pToken ){ 458 if( op!=TK_INTEGER || pToken->z==0 459 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 460 nExtra = pToken->n+1; 461 assert( iValue>=0 ); 462 } 463 } 464 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 465 if( pNew ){ 466 memset(pNew, 0, sizeof(Expr)); 467 pNew->op = (u8)op; 468 pNew->iAgg = -1; 469 if( pToken ){ 470 if( nExtra==0 ){ 471 pNew->flags |= EP_IntValue; 472 pNew->u.iValue = iValue; 473 }else{ 474 int c; 475 pNew->u.zToken = (char*)&pNew[1]; 476 assert( pToken->z!=0 || pToken->n==0 ); 477 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 478 pNew->u.zToken[pToken->n] = 0; 479 if( dequote && nExtra>=3 480 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 481 sqlite3Dequote(pNew->u.zToken); 482 if( c=='"' ) pNew->flags |= EP_DblQuoted; 483 } 484 } 485 } 486 #if SQLITE_MAX_EXPR_DEPTH>0 487 pNew->nHeight = 1; 488 #endif 489 } 490 return pNew; 491 } 492 493 /* 494 ** Allocate a new expression node from a zero-terminated token that has 495 ** already been dequoted. 496 */ 497 Expr *sqlite3Expr( 498 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 499 int op, /* Expression opcode */ 500 const char *zToken /* Token argument. Might be NULL */ 501 ){ 502 Token x; 503 x.z = zToken; 504 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 505 return sqlite3ExprAlloc(db, op, &x, 0); 506 } 507 508 /* 509 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 510 ** 511 ** If pRoot==NULL that means that a memory allocation error has occurred. 512 ** In that case, delete the subtrees pLeft and pRight. 513 */ 514 void sqlite3ExprAttachSubtrees( 515 sqlite3 *db, 516 Expr *pRoot, 517 Expr *pLeft, 518 Expr *pRight 519 ){ 520 if( pRoot==0 ){ 521 assert( db->mallocFailed ); 522 sqlite3ExprDelete(db, pLeft); 523 sqlite3ExprDelete(db, pRight); 524 }else{ 525 if( pRight ){ 526 pRoot->pRight = pRight; 527 pRoot->flags |= EP_Propagate & pRight->flags; 528 } 529 if( pLeft ){ 530 pRoot->pLeft = pLeft; 531 pRoot->flags |= EP_Propagate & pLeft->flags; 532 } 533 exprSetHeight(pRoot); 534 } 535 } 536 537 /* 538 ** Allocate an Expr node which joins as many as two subtrees. 539 ** 540 ** One or both of the subtrees can be NULL. Return a pointer to the new 541 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 542 ** free the subtrees and return NULL. 543 */ 544 Expr *sqlite3PExpr( 545 Parse *pParse, /* Parsing context */ 546 int op, /* Expression opcode */ 547 Expr *pLeft, /* Left operand */ 548 Expr *pRight, /* Right operand */ 549 const Token *pToken /* Argument token */ 550 ){ 551 Expr *p; 552 if( op==TK_AND && pParse->nErr==0 ){ 553 /* Take advantage of short-circuit false optimization for AND */ 554 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 555 }else{ 556 p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1); 557 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 558 } 559 if( p ) { 560 sqlite3ExprCheckHeight(pParse, p->nHeight); 561 } 562 return p; 563 } 564 565 /* 566 ** If the expression is always either TRUE or FALSE (respectively), 567 ** then return 1. If one cannot determine the truth value of the 568 ** expression at compile-time return 0. 569 ** 570 ** This is an optimization. If is OK to return 0 here even if 571 ** the expression really is always false or false (a false negative). 572 ** But it is a bug to return 1 if the expression might have different 573 ** boolean values in different circumstances (a false positive.) 574 ** 575 ** Note that if the expression is part of conditional for a 576 ** LEFT JOIN, then we cannot determine at compile-time whether or not 577 ** is it true or false, so always return 0. 578 */ 579 static int exprAlwaysTrue(Expr *p){ 580 int v = 0; 581 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 582 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 583 return v!=0; 584 } 585 static int exprAlwaysFalse(Expr *p){ 586 int v = 0; 587 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 588 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 589 return v==0; 590 } 591 592 /* 593 ** Join two expressions using an AND operator. If either expression is 594 ** NULL, then just return the other expression. 595 ** 596 ** If one side or the other of the AND is known to be false, then instead 597 ** of returning an AND expression, just return a constant expression with 598 ** a value of false. 599 */ 600 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 601 if( pLeft==0 ){ 602 return pRight; 603 }else if( pRight==0 ){ 604 return pLeft; 605 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 606 sqlite3ExprDelete(db, pLeft); 607 sqlite3ExprDelete(db, pRight); 608 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 609 }else{ 610 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 611 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 612 return pNew; 613 } 614 } 615 616 /* 617 ** Construct a new expression node for a function with multiple 618 ** arguments. 619 */ 620 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 621 Expr *pNew; 622 sqlite3 *db = pParse->db; 623 assert( pToken ); 624 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 625 if( pNew==0 ){ 626 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 627 return 0; 628 } 629 pNew->x.pList = pList; 630 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 631 sqlite3ExprSetHeightAndFlags(pParse, pNew); 632 return pNew; 633 } 634 635 /* 636 ** Assign a variable number to an expression that encodes a wildcard 637 ** in the original SQL statement. 638 ** 639 ** Wildcards consisting of a single "?" are assigned the next sequential 640 ** variable number. 641 ** 642 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 643 ** sure "nnn" is not too be to avoid a denial of service attack when 644 ** the SQL statement comes from an external source. 645 ** 646 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 647 ** as the previous instance of the same wildcard. Or if this is the first 648 ** instance of the wildcard, the next sequential variable number is 649 ** assigned. 650 */ 651 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 652 sqlite3 *db = pParse->db; 653 const char *z; 654 655 if( pExpr==0 ) return; 656 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 657 z = pExpr->u.zToken; 658 assert( z!=0 ); 659 assert( z[0]!=0 ); 660 if( z[1]==0 ){ 661 /* Wildcard of the form "?". Assign the next variable number */ 662 assert( z[0]=='?' ); 663 pExpr->iColumn = (ynVar)(++pParse->nVar); 664 }else{ 665 ynVar x = 0; 666 u32 n = sqlite3Strlen30(z); 667 if( z[0]=='?' ){ 668 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 669 ** use it as the variable number */ 670 i64 i; 671 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 672 pExpr->iColumn = x = (ynVar)i; 673 testcase( i==0 ); 674 testcase( i==1 ); 675 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 676 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 677 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 678 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 679 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 680 x = 0; 681 } 682 if( i>pParse->nVar ){ 683 pParse->nVar = (int)i; 684 } 685 }else{ 686 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 687 ** number as the prior appearance of the same name, or if the name 688 ** has never appeared before, reuse the same variable number 689 */ 690 ynVar i; 691 for(i=0; i<pParse->nzVar; i++){ 692 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 693 pExpr->iColumn = x = (ynVar)i+1; 694 break; 695 } 696 } 697 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 698 } 699 if( x>0 ){ 700 if( x>pParse->nzVar ){ 701 char **a; 702 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 703 if( a==0 ){ 704 assert( db->mallocFailed ); /* Error reported through mallocFailed */ 705 return; 706 } 707 pParse->azVar = a; 708 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 709 pParse->nzVar = x; 710 } 711 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 712 sqlite3DbFree(db, pParse->azVar[x-1]); 713 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 714 } 715 } 716 } 717 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 718 sqlite3ErrorMsg(pParse, "too many SQL variables"); 719 } 720 } 721 722 /* 723 ** Recursively delete an expression tree. 724 */ 725 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 726 if( p==0 ) return; 727 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 728 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 729 if( !ExprHasProperty(p, EP_TokenOnly) ){ 730 /* The Expr.x union is never used at the same time as Expr.pRight */ 731 assert( p->x.pList==0 || p->pRight==0 ); 732 sqlite3ExprDelete(db, p->pLeft); 733 sqlite3ExprDelete(db, p->pRight); 734 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 735 if( ExprHasProperty(p, EP_xIsSelect) ){ 736 sqlite3SelectDelete(db, p->x.pSelect); 737 }else{ 738 sqlite3ExprListDelete(db, p->x.pList); 739 } 740 } 741 if( !ExprHasProperty(p, EP_Static) ){ 742 sqlite3DbFree(db, p); 743 } 744 } 745 746 /* 747 ** Return the number of bytes allocated for the expression structure 748 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 749 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 750 */ 751 static int exprStructSize(Expr *p){ 752 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 753 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 754 return EXPR_FULLSIZE; 755 } 756 757 /* 758 ** The dupedExpr*Size() routines each return the number of bytes required 759 ** to store a copy of an expression or expression tree. They differ in 760 ** how much of the tree is measured. 761 ** 762 ** dupedExprStructSize() Size of only the Expr structure 763 ** dupedExprNodeSize() Size of Expr + space for token 764 ** dupedExprSize() Expr + token + subtree components 765 ** 766 *************************************************************************** 767 ** 768 ** The dupedExprStructSize() function returns two values OR-ed together: 769 ** (1) the space required for a copy of the Expr structure only and 770 ** (2) the EP_xxx flags that indicate what the structure size should be. 771 ** The return values is always one of: 772 ** 773 ** EXPR_FULLSIZE 774 ** EXPR_REDUCEDSIZE | EP_Reduced 775 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 776 ** 777 ** The size of the structure can be found by masking the return value 778 ** of this routine with 0xfff. The flags can be found by masking the 779 ** return value with EP_Reduced|EP_TokenOnly. 780 ** 781 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 782 ** (unreduced) Expr objects as they or originally constructed by the parser. 783 ** During expression analysis, extra information is computed and moved into 784 ** later parts of teh Expr object and that extra information might get chopped 785 ** off if the expression is reduced. Note also that it does not work to 786 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 787 ** to reduce a pristine expression tree from the parser. The implementation 788 ** of dupedExprStructSize() contain multiple assert() statements that attempt 789 ** to enforce this constraint. 790 */ 791 static int dupedExprStructSize(Expr *p, int flags){ 792 int nSize; 793 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 794 assert( EXPR_FULLSIZE<=0xfff ); 795 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 796 if( 0==(flags&EXPRDUP_REDUCE) ){ 797 nSize = EXPR_FULLSIZE; 798 }else{ 799 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 800 assert( !ExprHasProperty(p, EP_FromJoin) ); 801 assert( !ExprHasProperty(p, EP_MemToken) ); 802 assert( !ExprHasProperty(p, EP_NoReduce) ); 803 if( p->pLeft || p->x.pList ){ 804 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 805 }else{ 806 assert( p->pRight==0 ); 807 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 808 } 809 } 810 return nSize; 811 } 812 813 /* 814 ** This function returns the space in bytes required to store the copy 815 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 816 ** string is defined.) 817 */ 818 static int dupedExprNodeSize(Expr *p, int flags){ 819 int nByte = dupedExprStructSize(p, flags) & 0xfff; 820 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 821 nByte += sqlite3Strlen30(p->u.zToken)+1; 822 } 823 return ROUND8(nByte); 824 } 825 826 /* 827 ** Return the number of bytes required to create a duplicate of the 828 ** expression passed as the first argument. The second argument is a 829 ** mask containing EXPRDUP_XXX flags. 830 ** 831 ** The value returned includes space to create a copy of the Expr struct 832 ** itself and the buffer referred to by Expr.u.zToken, if any. 833 ** 834 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 835 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 836 ** and Expr.pRight variables (but not for any structures pointed to or 837 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 838 */ 839 static int dupedExprSize(Expr *p, int flags){ 840 int nByte = 0; 841 if( p ){ 842 nByte = dupedExprNodeSize(p, flags); 843 if( flags&EXPRDUP_REDUCE ){ 844 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 845 } 846 } 847 return nByte; 848 } 849 850 /* 851 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 852 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 853 ** to store the copy of expression p, the copies of p->u.zToken 854 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 855 ** if any. Before returning, *pzBuffer is set to the first byte past the 856 ** portion of the buffer copied into by this function. 857 */ 858 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 859 Expr *pNew = 0; /* Value to return */ 860 assert( flags==0 || flags==EXPRDUP_REDUCE ); 861 assert( db!=0 ); 862 if( p ){ 863 const int isReduced = (flags&EXPRDUP_REDUCE); 864 u8 *zAlloc; 865 u32 staticFlag = 0; 866 867 assert( pzBuffer==0 || isReduced ); 868 869 /* Figure out where to write the new Expr structure. */ 870 if( pzBuffer ){ 871 zAlloc = *pzBuffer; 872 staticFlag = EP_Static; 873 }else{ 874 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, flags)); 875 } 876 pNew = (Expr *)zAlloc; 877 878 if( pNew ){ 879 /* Set nNewSize to the size allocated for the structure pointed to 880 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 881 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 882 ** by the copy of the p->u.zToken string (if any). 883 */ 884 const unsigned nStructSize = dupedExprStructSize(p, flags); 885 const int nNewSize = nStructSize & 0xfff; 886 int nToken; 887 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 888 nToken = sqlite3Strlen30(p->u.zToken) + 1; 889 }else{ 890 nToken = 0; 891 } 892 if( isReduced ){ 893 assert( ExprHasProperty(p, EP_Reduced)==0 ); 894 memcpy(zAlloc, p, nNewSize); 895 }else{ 896 u32 nSize = (u32)exprStructSize(p); 897 memcpy(zAlloc, p, nSize); 898 if( nSize<EXPR_FULLSIZE ){ 899 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 900 } 901 } 902 903 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 904 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 905 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 906 pNew->flags |= staticFlag; 907 908 /* Copy the p->u.zToken string, if any. */ 909 if( nToken ){ 910 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 911 memcpy(zToken, p->u.zToken, nToken); 912 } 913 914 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 915 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 916 if( ExprHasProperty(p, EP_xIsSelect) ){ 917 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 918 }else{ 919 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 920 } 921 } 922 923 /* Fill in pNew->pLeft and pNew->pRight. */ 924 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 925 zAlloc += dupedExprNodeSize(p, flags); 926 if( ExprHasProperty(pNew, EP_Reduced) ){ 927 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 928 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 929 } 930 if( pzBuffer ){ 931 *pzBuffer = zAlloc; 932 } 933 }else{ 934 if( !ExprHasProperty(p, EP_TokenOnly) ){ 935 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 936 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 937 } 938 } 939 940 } 941 } 942 return pNew; 943 } 944 945 /* 946 ** Create and return a deep copy of the object passed as the second 947 ** argument. If an OOM condition is encountered, NULL is returned 948 ** and the db->mallocFailed flag set. 949 */ 950 #ifndef SQLITE_OMIT_CTE 951 static With *withDup(sqlite3 *db, With *p){ 952 With *pRet = 0; 953 if( p ){ 954 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 955 pRet = sqlite3DbMallocZero(db, nByte); 956 if( pRet ){ 957 int i; 958 pRet->nCte = p->nCte; 959 for(i=0; i<p->nCte; i++){ 960 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 961 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 962 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 963 } 964 } 965 } 966 return pRet; 967 } 968 #else 969 # define withDup(x,y) 0 970 #endif 971 972 /* 973 ** The following group of routines make deep copies of expressions, 974 ** expression lists, ID lists, and select statements. The copies can 975 ** be deleted (by being passed to their respective ...Delete() routines) 976 ** without effecting the originals. 977 ** 978 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 979 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 980 ** by subsequent calls to sqlite*ListAppend() routines. 981 ** 982 ** Any tables that the SrcList might point to are not duplicated. 983 ** 984 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 985 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 986 ** truncated version of the usual Expr structure that will be stored as 987 ** part of the in-memory representation of the database schema. 988 */ 989 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 990 assert( flags==0 || flags==EXPRDUP_REDUCE ); 991 return exprDup(db, p, flags, 0); 992 } 993 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 994 ExprList *pNew; 995 struct ExprList_item *pItem, *pOldItem; 996 int i; 997 assert( db!=0 ); 998 if( p==0 ) return 0; 999 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1000 if( pNew==0 ) return 0; 1001 pNew->nExpr = i = p->nExpr; 1002 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 1003 pNew->a = pItem = sqlite3DbMallocRawNN(db, i*sizeof(p->a[0]) ); 1004 if( pItem==0 ){ 1005 sqlite3DbFree(db, pNew); 1006 return 0; 1007 } 1008 pOldItem = p->a; 1009 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1010 Expr *pOldExpr = pOldItem->pExpr; 1011 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1012 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1013 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1014 pItem->sortOrder = pOldItem->sortOrder; 1015 pItem->done = 0; 1016 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1017 pItem->u = pOldItem->u; 1018 } 1019 return pNew; 1020 } 1021 1022 /* 1023 ** If cursors, triggers, views and subqueries are all omitted from 1024 ** the build, then none of the following routines, except for 1025 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1026 ** called with a NULL argument. 1027 */ 1028 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1029 || !defined(SQLITE_OMIT_SUBQUERY) 1030 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1031 SrcList *pNew; 1032 int i; 1033 int nByte; 1034 assert( db!=0 ); 1035 if( p==0 ) return 0; 1036 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1037 pNew = sqlite3DbMallocRawNN(db, nByte ); 1038 if( pNew==0 ) return 0; 1039 pNew->nSrc = pNew->nAlloc = p->nSrc; 1040 for(i=0; i<p->nSrc; i++){ 1041 struct SrcList_item *pNewItem = &pNew->a[i]; 1042 struct SrcList_item *pOldItem = &p->a[i]; 1043 Table *pTab; 1044 pNewItem->pSchema = pOldItem->pSchema; 1045 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1046 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1047 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1048 pNewItem->fg = pOldItem->fg; 1049 pNewItem->iCursor = pOldItem->iCursor; 1050 pNewItem->addrFillSub = pOldItem->addrFillSub; 1051 pNewItem->regReturn = pOldItem->regReturn; 1052 if( pNewItem->fg.isIndexedBy ){ 1053 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1054 } 1055 pNewItem->pIBIndex = pOldItem->pIBIndex; 1056 if( pNewItem->fg.isTabFunc ){ 1057 pNewItem->u1.pFuncArg = 1058 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1059 } 1060 pTab = pNewItem->pTab = pOldItem->pTab; 1061 if( pTab ){ 1062 pTab->nRef++; 1063 } 1064 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1065 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1066 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1067 pNewItem->colUsed = pOldItem->colUsed; 1068 } 1069 return pNew; 1070 } 1071 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1072 IdList *pNew; 1073 int i; 1074 assert( db!=0 ); 1075 if( p==0 ) return 0; 1076 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1077 if( pNew==0 ) return 0; 1078 pNew->nId = p->nId; 1079 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1080 if( pNew->a==0 ){ 1081 sqlite3DbFree(db, pNew); 1082 return 0; 1083 } 1084 /* Note that because the size of the allocation for p->a[] is not 1085 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1086 ** on the duplicate created by this function. */ 1087 for(i=0; i<p->nId; i++){ 1088 struct IdList_item *pNewItem = &pNew->a[i]; 1089 struct IdList_item *pOldItem = &p->a[i]; 1090 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1091 pNewItem->idx = pOldItem->idx; 1092 } 1093 return pNew; 1094 } 1095 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1096 Select *pNew, *pPrior; 1097 assert( db!=0 ); 1098 if( p==0 ) return 0; 1099 pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1100 if( pNew==0 ) return 0; 1101 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1102 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1103 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1104 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1105 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1106 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1107 pNew->op = p->op; 1108 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1109 if( pPrior ) pPrior->pNext = pNew; 1110 pNew->pNext = 0; 1111 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1112 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1113 pNew->iLimit = 0; 1114 pNew->iOffset = 0; 1115 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1116 pNew->addrOpenEphm[0] = -1; 1117 pNew->addrOpenEphm[1] = -1; 1118 pNew->nSelectRow = p->nSelectRow; 1119 pNew->pWith = withDup(db, p->pWith); 1120 sqlite3SelectSetName(pNew, p->zSelName); 1121 return pNew; 1122 } 1123 #else 1124 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1125 assert( p==0 ); 1126 return 0; 1127 } 1128 #endif 1129 1130 1131 /* 1132 ** Add a new element to the end of an expression list. If pList is 1133 ** initially NULL, then create a new expression list. 1134 ** 1135 ** If a memory allocation error occurs, the entire list is freed and 1136 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1137 ** that the new entry was successfully appended. 1138 */ 1139 ExprList *sqlite3ExprListAppend( 1140 Parse *pParse, /* Parsing context */ 1141 ExprList *pList, /* List to which to append. Might be NULL */ 1142 Expr *pExpr /* Expression to be appended. Might be NULL */ 1143 ){ 1144 sqlite3 *db = pParse->db; 1145 assert( db!=0 ); 1146 if( pList==0 ){ 1147 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1148 if( pList==0 ){ 1149 goto no_mem; 1150 } 1151 pList->nExpr = 0; 1152 pList->a = sqlite3DbMallocRawNN(db, sizeof(pList->a[0])); 1153 if( pList->a==0 ) goto no_mem; 1154 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1155 struct ExprList_item *a; 1156 assert( pList->nExpr>0 ); 1157 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1158 if( a==0 ){ 1159 goto no_mem; 1160 } 1161 pList->a = a; 1162 } 1163 assert( pList->a!=0 ); 1164 if( 1 ){ 1165 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1166 memset(pItem, 0, sizeof(*pItem)); 1167 pItem->pExpr = pExpr; 1168 } 1169 return pList; 1170 1171 no_mem: 1172 /* Avoid leaking memory if malloc has failed. */ 1173 sqlite3ExprDelete(db, pExpr); 1174 sqlite3ExprListDelete(db, pList); 1175 return 0; 1176 } 1177 1178 /* 1179 ** Set the sort order for the last element on the given ExprList. 1180 */ 1181 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1182 if( p==0 ) return; 1183 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1184 assert( p->nExpr>0 ); 1185 if( iSortOrder<0 ){ 1186 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1187 return; 1188 } 1189 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1190 } 1191 1192 /* 1193 ** Set the ExprList.a[].zName element of the most recently added item 1194 ** on the expression list. 1195 ** 1196 ** pList might be NULL following an OOM error. But pName should never be 1197 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1198 ** is set. 1199 */ 1200 void sqlite3ExprListSetName( 1201 Parse *pParse, /* Parsing context */ 1202 ExprList *pList, /* List to which to add the span. */ 1203 Token *pName, /* Name to be added */ 1204 int dequote /* True to cause the name to be dequoted */ 1205 ){ 1206 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1207 if( pList ){ 1208 struct ExprList_item *pItem; 1209 assert( pList->nExpr>0 ); 1210 pItem = &pList->a[pList->nExpr-1]; 1211 assert( pItem->zName==0 ); 1212 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1213 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1214 } 1215 } 1216 1217 /* 1218 ** Set the ExprList.a[].zSpan element of the most recently added item 1219 ** on the expression list. 1220 ** 1221 ** pList might be NULL following an OOM error. But pSpan should never be 1222 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1223 ** is set. 1224 */ 1225 void sqlite3ExprListSetSpan( 1226 Parse *pParse, /* Parsing context */ 1227 ExprList *pList, /* List to which to add the span. */ 1228 ExprSpan *pSpan /* The span to be added */ 1229 ){ 1230 sqlite3 *db = pParse->db; 1231 assert( pList!=0 || db->mallocFailed!=0 ); 1232 if( pList ){ 1233 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1234 assert( pList->nExpr>0 ); 1235 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1236 sqlite3DbFree(db, pItem->zSpan); 1237 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1238 (int)(pSpan->zEnd - pSpan->zStart)); 1239 } 1240 } 1241 1242 /* 1243 ** If the expression list pEList contains more than iLimit elements, 1244 ** leave an error message in pParse. 1245 */ 1246 void sqlite3ExprListCheckLength( 1247 Parse *pParse, 1248 ExprList *pEList, 1249 const char *zObject 1250 ){ 1251 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1252 testcase( pEList && pEList->nExpr==mx ); 1253 testcase( pEList && pEList->nExpr==mx+1 ); 1254 if( pEList && pEList->nExpr>mx ){ 1255 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1256 } 1257 } 1258 1259 /* 1260 ** Delete an entire expression list. 1261 */ 1262 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1263 int i; 1264 struct ExprList_item *pItem; 1265 if( pList==0 ) return; 1266 assert( pList->a!=0 || pList->nExpr==0 ); 1267 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1268 sqlite3ExprDelete(db, pItem->pExpr); 1269 sqlite3DbFree(db, pItem->zName); 1270 sqlite3DbFree(db, pItem->zSpan); 1271 } 1272 sqlite3DbFree(db, pList->a); 1273 sqlite3DbFree(db, pList); 1274 } 1275 1276 /* 1277 ** Return the bitwise-OR of all Expr.flags fields in the given 1278 ** ExprList. 1279 */ 1280 u32 sqlite3ExprListFlags(const ExprList *pList){ 1281 int i; 1282 u32 m = 0; 1283 if( pList ){ 1284 for(i=0; i<pList->nExpr; i++){ 1285 Expr *pExpr = pList->a[i].pExpr; 1286 assert( pExpr!=0 ); 1287 m |= pExpr->flags; 1288 } 1289 } 1290 return m; 1291 } 1292 1293 /* 1294 ** These routines are Walker callbacks used to check expressions to 1295 ** see if they are "constant" for some definition of constant. The 1296 ** Walker.eCode value determines the type of "constant" we are looking 1297 ** for. 1298 ** 1299 ** These callback routines are used to implement the following: 1300 ** 1301 ** sqlite3ExprIsConstant() pWalker->eCode==1 1302 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1303 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1304 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1305 ** 1306 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1307 ** is found to not be a constant. 1308 ** 1309 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1310 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1311 ** an existing schema and 4 when processing a new statement. A bound 1312 ** parameter raises an error for new statements, but is silently converted 1313 ** to NULL for existing schemas. This allows sqlite_master tables that 1314 ** contain a bound parameter because they were generated by older versions 1315 ** of SQLite to be parsed by newer versions of SQLite without raising a 1316 ** malformed schema error. 1317 */ 1318 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1319 1320 /* If pWalker->eCode is 2 then any term of the expression that comes from 1321 ** the ON or USING clauses of a left join disqualifies the expression 1322 ** from being considered constant. */ 1323 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1324 pWalker->eCode = 0; 1325 return WRC_Abort; 1326 } 1327 1328 switch( pExpr->op ){ 1329 /* Consider functions to be constant if all their arguments are constant 1330 ** and either pWalker->eCode==4 or 5 or the function has the 1331 ** SQLITE_FUNC_CONST flag. */ 1332 case TK_FUNCTION: 1333 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1334 return WRC_Continue; 1335 }else{ 1336 pWalker->eCode = 0; 1337 return WRC_Abort; 1338 } 1339 case TK_ID: 1340 case TK_COLUMN: 1341 case TK_AGG_FUNCTION: 1342 case TK_AGG_COLUMN: 1343 testcase( pExpr->op==TK_ID ); 1344 testcase( pExpr->op==TK_COLUMN ); 1345 testcase( pExpr->op==TK_AGG_FUNCTION ); 1346 testcase( pExpr->op==TK_AGG_COLUMN ); 1347 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1348 return WRC_Continue; 1349 }else{ 1350 pWalker->eCode = 0; 1351 return WRC_Abort; 1352 } 1353 case TK_VARIABLE: 1354 if( pWalker->eCode==5 ){ 1355 /* Silently convert bound parameters that appear inside of CREATE 1356 ** statements into a NULL when parsing the CREATE statement text out 1357 ** of the sqlite_master table */ 1358 pExpr->op = TK_NULL; 1359 }else if( pWalker->eCode==4 ){ 1360 /* A bound parameter in a CREATE statement that originates from 1361 ** sqlite3_prepare() causes an error */ 1362 pWalker->eCode = 0; 1363 return WRC_Abort; 1364 } 1365 /* Fall through */ 1366 default: 1367 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1368 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1369 return WRC_Continue; 1370 } 1371 } 1372 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1373 UNUSED_PARAMETER(NotUsed); 1374 pWalker->eCode = 0; 1375 return WRC_Abort; 1376 } 1377 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1378 Walker w; 1379 memset(&w, 0, sizeof(w)); 1380 w.eCode = initFlag; 1381 w.xExprCallback = exprNodeIsConstant; 1382 w.xSelectCallback = selectNodeIsConstant; 1383 w.u.iCur = iCur; 1384 sqlite3WalkExpr(&w, p); 1385 return w.eCode; 1386 } 1387 1388 /* 1389 ** Walk an expression tree. Return non-zero if the expression is constant 1390 ** and 0 if it involves variables or function calls. 1391 ** 1392 ** For the purposes of this function, a double-quoted string (ex: "abc") 1393 ** is considered a variable but a single-quoted string (ex: 'abc') is 1394 ** a constant. 1395 */ 1396 int sqlite3ExprIsConstant(Expr *p){ 1397 return exprIsConst(p, 1, 0); 1398 } 1399 1400 /* 1401 ** Walk an expression tree. Return non-zero if the expression is constant 1402 ** that does no originate from the ON or USING clauses of a join. 1403 ** Return 0 if it involves variables or function calls or terms from 1404 ** an ON or USING clause. 1405 */ 1406 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1407 return exprIsConst(p, 2, 0); 1408 } 1409 1410 /* 1411 ** Walk an expression tree. Return non-zero if the expression is constant 1412 ** for any single row of the table with cursor iCur. In other words, the 1413 ** expression must not refer to any non-deterministic function nor any 1414 ** table other than iCur. 1415 */ 1416 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1417 return exprIsConst(p, 3, iCur); 1418 } 1419 1420 /* 1421 ** Walk an expression tree. Return non-zero if the expression is constant 1422 ** or a function call with constant arguments. Return and 0 if there 1423 ** are any variables. 1424 ** 1425 ** For the purposes of this function, a double-quoted string (ex: "abc") 1426 ** is considered a variable but a single-quoted string (ex: 'abc') is 1427 ** a constant. 1428 */ 1429 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1430 assert( isInit==0 || isInit==1 ); 1431 return exprIsConst(p, 4+isInit, 0); 1432 } 1433 1434 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1435 /* 1436 ** Walk an expression tree. Return 1 if the expression contains a 1437 ** subquery of some kind. Return 0 if there are no subqueries. 1438 */ 1439 int sqlite3ExprContainsSubquery(Expr *p){ 1440 Walker w; 1441 memset(&w, 0, sizeof(w)); 1442 w.eCode = 1; 1443 w.xExprCallback = sqlite3ExprWalkNoop; 1444 w.xSelectCallback = selectNodeIsConstant; 1445 sqlite3WalkExpr(&w, p); 1446 return w.eCode==0; 1447 } 1448 #endif 1449 1450 /* 1451 ** If the expression p codes a constant integer that is small enough 1452 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1453 ** in *pValue. If the expression is not an integer or if it is too big 1454 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1455 */ 1456 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1457 int rc = 0; 1458 1459 /* If an expression is an integer literal that fits in a signed 32-bit 1460 ** integer, then the EP_IntValue flag will have already been set */ 1461 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1462 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1463 1464 if( p->flags & EP_IntValue ){ 1465 *pValue = p->u.iValue; 1466 return 1; 1467 } 1468 switch( p->op ){ 1469 case TK_UPLUS: { 1470 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1471 break; 1472 } 1473 case TK_UMINUS: { 1474 int v; 1475 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1476 assert( v!=(-2147483647-1) ); 1477 *pValue = -v; 1478 rc = 1; 1479 } 1480 break; 1481 } 1482 default: break; 1483 } 1484 return rc; 1485 } 1486 1487 /* 1488 ** Return FALSE if there is no chance that the expression can be NULL. 1489 ** 1490 ** If the expression might be NULL or if the expression is too complex 1491 ** to tell return TRUE. 1492 ** 1493 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1494 ** when we know that a value cannot be NULL. Hence, a false positive 1495 ** (returning TRUE when in fact the expression can never be NULL) might 1496 ** be a small performance hit but is otherwise harmless. On the other 1497 ** hand, a false negative (returning FALSE when the result could be NULL) 1498 ** will likely result in an incorrect answer. So when in doubt, return 1499 ** TRUE. 1500 */ 1501 int sqlite3ExprCanBeNull(const Expr *p){ 1502 u8 op; 1503 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1504 op = p->op; 1505 if( op==TK_REGISTER ) op = p->op2; 1506 switch( op ){ 1507 case TK_INTEGER: 1508 case TK_STRING: 1509 case TK_FLOAT: 1510 case TK_BLOB: 1511 return 0; 1512 case TK_COLUMN: 1513 assert( p->pTab!=0 ); 1514 return ExprHasProperty(p, EP_CanBeNull) || 1515 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 1516 default: 1517 return 1; 1518 } 1519 } 1520 1521 /* 1522 ** Return TRUE if the given expression is a constant which would be 1523 ** unchanged by OP_Affinity with the affinity given in the second 1524 ** argument. 1525 ** 1526 ** This routine is used to determine if the OP_Affinity operation 1527 ** can be omitted. When in doubt return FALSE. A false negative 1528 ** is harmless. A false positive, however, can result in the wrong 1529 ** answer. 1530 */ 1531 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1532 u8 op; 1533 if( aff==SQLITE_AFF_BLOB ) return 1; 1534 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1535 op = p->op; 1536 if( op==TK_REGISTER ) op = p->op2; 1537 switch( op ){ 1538 case TK_INTEGER: { 1539 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1540 } 1541 case TK_FLOAT: { 1542 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1543 } 1544 case TK_STRING: { 1545 return aff==SQLITE_AFF_TEXT; 1546 } 1547 case TK_BLOB: { 1548 return 1; 1549 } 1550 case TK_COLUMN: { 1551 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1552 return p->iColumn<0 1553 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1554 } 1555 default: { 1556 return 0; 1557 } 1558 } 1559 } 1560 1561 /* 1562 ** Return TRUE if the given string is a row-id column name. 1563 */ 1564 int sqlite3IsRowid(const char *z){ 1565 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1566 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1567 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1568 return 0; 1569 } 1570 1571 /* 1572 ** pX is the RHS of an IN operator. If pX is a SELECT statement 1573 ** that can be simplified to a direct table access, then return 1574 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 1575 ** or if the SELECT statement needs to be manifested into a transient 1576 ** table, then return NULL. 1577 */ 1578 #ifndef SQLITE_OMIT_SUBQUERY 1579 static Select *isCandidateForInOpt(Expr *pX){ 1580 Select *p; 1581 SrcList *pSrc; 1582 ExprList *pEList; 1583 Expr *pRes; 1584 Table *pTab; 1585 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 1586 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 1587 p = pX->x.pSelect; 1588 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1589 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1590 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1591 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1592 return 0; /* No DISTINCT keyword and no aggregate functions */ 1593 } 1594 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1595 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1596 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1597 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1598 pSrc = p->pSrc; 1599 assert( pSrc!=0 ); 1600 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1601 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1602 pTab = pSrc->a[0].pTab; 1603 assert( pTab!=0 ); 1604 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1605 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1606 pEList = p->pEList; 1607 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1608 pRes = pEList->a[0].pExpr; 1609 if( pRes->op!=TK_COLUMN ) return 0; /* Result is a column */ 1610 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 1611 return p; 1612 } 1613 #endif /* SQLITE_OMIT_SUBQUERY */ 1614 1615 /* 1616 ** Code an OP_Once instruction and allocate space for its flag. Return the 1617 ** address of the new instruction. 1618 */ 1619 int sqlite3CodeOnce(Parse *pParse){ 1620 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1621 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1622 } 1623 1624 /* 1625 ** Generate code that checks the left-most column of index table iCur to see if 1626 ** it contains any NULL entries. Cause the register at regHasNull to be set 1627 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 1628 ** to be set to NULL if iCur contains one or more NULL values. 1629 */ 1630 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 1631 int addr1; 1632 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 1633 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1634 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 1635 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1636 VdbeComment((v, "first_entry_in(%d)", iCur)); 1637 sqlite3VdbeJumpHere(v, addr1); 1638 } 1639 1640 1641 #ifndef SQLITE_OMIT_SUBQUERY 1642 /* 1643 ** The argument is an IN operator with a list (not a subquery) on the 1644 ** right-hand side. Return TRUE if that list is constant. 1645 */ 1646 static int sqlite3InRhsIsConstant(Expr *pIn){ 1647 Expr *pLHS; 1648 int res; 1649 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 1650 pLHS = pIn->pLeft; 1651 pIn->pLeft = 0; 1652 res = sqlite3ExprIsConstant(pIn); 1653 pIn->pLeft = pLHS; 1654 return res; 1655 } 1656 #endif 1657 1658 /* 1659 ** This function is used by the implementation of the IN (...) operator. 1660 ** The pX parameter is the expression on the RHS of the IN operator, which 1661 ** might be either a list of expressions or a subquery. 1662 ** 1663 ** The job of this routine is to find or create a b-tree object that can 1664 ** be used either to test for membership in the RHS set or to iterate through 1665 ** all members of the RHS set, skipping duplicates. 1666 ** 1667 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 1668 ** and pX->iTable is set to the index of that cursor. 1669 ** 1670 ** The returned value of this function indicates the b-tree type, as follows: 1671 ** 1672 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1673 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 1674 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 1675 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1676 ** populated epheremal table. 1677 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 1678 ** implemented as a sequence of comparisons. 1679 ** 1680 ** An existing b-tree might be used if the RHS expression pX is a simple 1681 ** subquery such as: 1682 ** 1683 ** SELECT <column> FROM <table> 1684 ** 1685 ** If the RHS of the IN operator is a list or a more complex subquery, then 1686 ** an ephemeral table might need to be generated from the RHS and then 1687 ** pX->iTable made to point to the ephemeral table instead of an 1688 ** existing table. 1689 ** 1690 ** The inFlags parameter must contain exactly one of the bits 1691 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 1692 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 1693 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 1694 ** IN index will be used to loop over all values of the RHS of the 1695 ** IN operator. 1696 ** 1697 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 1698 ** through the set members) then the b-tree must not contain duplicates. 1699 ** An epheremal table must be used unless the selected <column> is guaranteed 1700 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1701 ** has a UNIQUE constraint or UNIQUE index. 1702 ** 1703 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 1704 ** for fast set membership tests) then an epheremal table must 1705 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1706 ** be found with <column> as its left-most column. 1707 ** 1708 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 1709 ** if the RHS of the IN operator is a list (not a subquery) then this 1710 ** routine might decide that creating an ephemeral b-tree for membership 1711 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 1712 ** calling routine should implement the IN operator using a sequence 1713 ** of Eq or Ne comparison operations. 1714 ** 1715 ** When the b-tree is being used for membership tests, the calling function 1716 ** might need to know whether or not the RHS side of the IN operator 1717 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 1718 ** if there is any chance that the (...) might contain a NULL value at 1719 ** runtime, then a register is allocated and the register number written 1720 ** to *prRhsHasNull. If there is no chance that the (...) contains a 1721 ** NULL value, then *prRhsHasNull is left unchanged. 1722 ** 1723 ** If a register is allocated and its location stored in *prRhsHasNull, then 1724 ** the value in that register will be NULL if the b-tree contains one or more 1725 ** NULL values, and it will be some non-NULL value if the b-tree contains no 1726 ** NULL values. 1727 */ 1728 #ifndef SQLITE_OMIT_SUBQUERY 1729 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){ 1730 Select *p; /* SELECT to the right of IN operator */ 1731 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1732 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1733 int mustBeUnique; /* True if RHS must be unique */ 1734 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1735 1736 assert( pX->op==TK_IN ); 1737 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 1738 1739 /* Check to see if an existing table or index can be used to 1740 ** satisfy the query. This is preferable to generating a new 1741 ** ephemeral table. 1742 */ 1743 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 1744 sqlite3 *db = pParse->db; /* Database connection */ 1745 Table *pTab; /* Table <table>. */ 1746 Expr *pExpr; /* Expression <column> */ 1747 i16 iCol; /* Index of column <column> */ 1748 i16 iDb; /* Database idx for pTab */ 1749 1750 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1751 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1752 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1753 pTab = p->pSrc->a[0].pTab; 1754 pExpr = p->pEList->a[0].pExpr; 1755 iCol = (i16)pExpr->iColumn; 1756 1757 /* Code an OP_Transaction and OP_TableLock for <table>. */ 1758 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1759 sqlite3CodeVerifySchema(pParse, iDb); 1760 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1761 1762 /* This function is only called from two places. In both cases the vdbe 1763 ** has already been allocated. So assume sqlite3GetVdbe() is always 1764 ** successful here. 1765 */ 1766 assert(v); 1767 if( iCol<0 ){ 1768 int iAddr = sqlite3CodeOnce(pParse); 1769 VdbeCoverage(v); 1770 1771 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1772 eType = IN_INDEX_ROWID; 1773 1774 sqlite3VdbeJumpHere(v, iAddr); 1775 }else{ 1776 Index *pIdx; /* Iterator variable */ 1777 1778 /* The collation sequence used by the comparison. If an index is to 1779 ** be used in place of a temp-table, it must be ordered according 1780 ** to this collation sequence. */ 1781 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1782 1783 /* Check that the affinity that will be used to perform the 1784 ** comparison is the same as the affinity of the column. If 1785 ** it is not, it is not possible to use any index. 1786 */ 1787 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1788 1789 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1790 if( (pIdx->aiColumn[0]==iCol) 1791 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1792 && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx))) 1793 ){ 1794 int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1795 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 1796 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1797 VdbeComment((v, "%s", pIdx->zName)); 1798 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 1799 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 1800 1801 if( prRhsHasNull && !pTab->aCol[iCol].notNull ){ 1802 *prRhsHasNull = ++pParse->nMem; 1803 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 1804 } 1805 sqlite3VdbeJumpHere(v, iAddr); 1806 } 1807 } 1808 } 1809 } 1810 1811 /* If no preexisting index is available for the IN clause 1812 ** and IN_INDEX_NOOP is an allowed reply 1813 ** and the RHS of the IN operator is a list, not a subquery 1814 ** and the RHS is not contant or has two or fewer terms, 1815 ** then it is not worth creating an ephemeral table to evaluate 1816 ** the IN operator so return IN_INDEX_NOOP. 1817 */ 1818 if( eType==0 1819 && (inFlags & IN_INDEX_NOOP_OK) 1820 && !ExprHasProperty(pX, EP_xIsSelect) 1821 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 1822 ){ 1823 eType = IN_INDEX_NOOP; 1824 } 1825 1826 1827 if( eType==0 ){ 1828 /* Could not find an existing table or index to use as the RHS b-tree. 1829 ** We will have to generate an ephemeral table to do the job. 1830 */ 1831 u32 savedNQueryLoop = pParse->nQueryLoop; 1832 int rMayHaveNull = 0; 1833 eType = IN_INDEX_EPH; 1834 if( inFlags & IN_INDEX_LOOP ){ 1835 pParse->nQueryLoop = 0; 1836 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 1837 eType = IN_INDEX_ROWID; 1838 } 1839 }else if( prRhsHasNull ){ 1840 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 1841 } 1842 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1843 pParse->nQueryLoop = savedNQueryLoop; 1844 }else{ 1845 pX->iTable = iTab; 1846 } 1847 return eType; 1848 } 1849 #endif 1850 1851 /* 1852 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1853 ** or IN operators. Examples: 1854 ** 1855 ** (SELECT a FROM b) -- subquery 1856 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1857 ** x IN (4,5,11) -- IN operator with list on right-hand side 1858 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1859 ** 1860 ** The pExpr parameter describes the expression that contains the IN 1861 ** operator or subquery. 1862 ** 1863 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1864 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1865 ** to some integer key column of a table B-Tree. In this case, use an 1866 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1867 ** (slower) variable length keys B-Tree. 1868 ** 1869 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1870 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1871 ** All this routine does is initialize the register given by rMayHaveNull 1872 ** to NULL. Calling routines will take care of changing this register 1873 ** value to non-NULL if the RHS is NULL-free. 1874 ** 1875 ** For a SELECT or EXISTS operator, return the register that holds the 1876 ** result. For IN operators or if an error occurs, the return value is 0. 1877 */ 1878 #ifndef SQLITE_OMIT_SUBQUERY 1879 int sqlite3CodeSubselect( 1880 Parse *pParse, /* Parsing context */ 1881 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1882 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 1883 int isRowid /* If true, LHS of IN operator is a rowid */ 1884 ){ 1885 int jmpIfDynamic = -1; /* One-time test address */ 1886 int rReg = 0; /* Register storing resulting */ 1887 Vdbe *v = sqlite3GetVdbe(pParse); 1888 if( NEVER(v==0) ) return 0; 1889 sqlite3ExprCachePush(pParse); 1890 1891 /* This code must be run in its entirety every time it is encountered 1892 ** if any of the following is true: 1893 ** 1894 ** * The right-hand side is a correlated subquery 1895 ** * The right-hand side is an expression list containing variables 1896 ** * We are inside a trigger 1897 ** 1898 ** If all of the above are false, then we can run this code just once 1899 ** save the results, and reuse the same result on subsequent invocations. 1900 */ 1901 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 1902 jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1903 } 1904 1905 #ifndef SQLITE_OMIT_EXPLAIN 1906 if( pParse->explain==2 ){ 1907 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d", 1908 jmpIfDynamic>=0?"":"CORRELATED ", 1909 pExpr->op==TK_IN?"LIST":"SCALAR", 1910 pParse->iNextSelectId 1911 ); 1912 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1913 } 1914 #endif 1915 1916 switch( pExpr->op ){ 1917 case TK_IN: { 1918 char affinity; /* Affinity of the LHS of the IN */ 1919 int addr; /* Address of OP_OpenEphemeral instruction */ 1920 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1921 KeyInfo *pKeyInfo = 0; /* Key information */ 1922 1923 affinity = sqlite3ExprAffinity(pLeft); 1924 1925 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1926 ** expression it is handled the same way. An ephemeral table is 1927 ** filled with single-field index keys representing the results 1928 ** from the SELECT or the <exprlist>. 1929 ** 1930 ** If the 'x' expression is a column value, or the SELECT... 1931 ** statement returns a column value, then the affinity of that 1932 ** column is used to build the index keys. If both 'x' and the 1933 ** SELECT... statement are columns, then numeric affinity is used 1934 ** if either column has NUMERIC or INTEGER affinity. If neither 1935 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1936 ** is used. 1937 */ 1938 pExpr->iTable = pParse->nTab++; 1939 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1940 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); 1941 1942 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1943 /* Case 1: expr IN (SELECT ...) 1944 ** 1945 ** Generate code to write the results of the select into the temporary 1946 ** table allocated and opened above. 1947 */ 1948 Select *pSelect = pExpr->x.pSelect; 1949 SelectDest dest; 1950 ExprList *pEList; 1951 1952 assert( !isRowid ); 1953 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1954 dest.affSdst = (u8)affinity; 1955 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1956 pSelect->iLimit = 0; 1957 testcase( pSelect->selFlags & SF_Distinct ); 1958 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 1959 if( sqlite3Select(pParse, pSelect, &dest) ){ 1960 sqlite3KeyInfoUnref(pKeyInfo); 1961 return 0; 1962 } 1963 pEList = pSelect->pEList; 1964 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 1965 assert( pEList!=0 ); 1966 assert( pEList->nExpr>0 ); 1967 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1968 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1969 pEList->a[0].pExpr); 1970 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1971 /* Case 2: expr IN (exprlist) 1972 ** 1973 ** For each expression, build an index key from the evaluation and 1974 ** store it in the temporary table. If <expr> is a column, then use 1975 ** that columns affinity when building index keys. If <expr> is not 1976 ** a column, use numeric affinity. 1977 */ 1978 int i; 1979 ExprList *pList = pExpr->x.pList; 1980 struct ExprList_item *pItem; 1981 int r1, r2, r3; 1982 1983 if( !affinity ){ 1984 affinity = SQLITE_AFF_BLOB; 1985 } 1986 if( pKeyInfo ){ 1987 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1988 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1989 } 1990 1991 /* Loop through each expression in <exprlist>. */ 1992 r1 = sqlite3GetTempReg(pParse); 1993 r2 = sqlite3GetTempReg(pParse); 1994 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1995 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1996 Expr *pE2 = pItem->pExpr; 1997 int iValToIns; 1998 1999 /* If the expression is not constant then we will need to 2000 ** disable the test that was generated above that makes sure 2001 ** this code only executes once. Because for a non-constant 2002 ** expression we need to rerun this code each time. 2003 */ 2004 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 2005 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 2006 jmpIfDynamic = -1; 2007 } 2008 2009 /* Evaluate the expression and insert it into the temp table */ 2010 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 2011 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 2012 }else{ 2013 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2014 if( isRowid ){ 2015 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2016 sqlite3VdbeCurrentAddr(v)+2); 2017 VdbeCoverage(v); 2018 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 2019 }else{ 2020 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2021 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 2022 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 2023 } 2024 } 2025 } 2026 sqlite3ReleaseTempReg(pParse, r1); 2027 sqlite3ReleaseTempReg(pParse, r2); 2028 } 2029 if( pKeyInfo ){ 2030 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2031 } 2032 break; 2033 } 2034 2035 case TK_EXISTS: 2036 case TK_SELECT: 2037 default: { 2038 /* If this has to be a scalar SELECT. Generate code to put the 2039 ** value of this select in a memory cell and record the number 2040 ** of the memory cell in iColumn. If this is an EXISTS, write 2041 ** an integer 0 (not exists) or 1 (exists) into a memory cell 2042 ** and record that memory cell in iColumn. 2043 */ 2044 Select *pSel; /* SELECT statement to encode */ 2045 SelectDest dest; /* How to deal with SELECt result */ 2046 2047 testcase( pExpr->op==TK_EXISTS ); 2048 testcase( pExpr->op==TK_SELECT ); 2049 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2050 2051 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2052 pSel = pExpr->x.pSelect; 2053 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 2054 if( pExpr->op==TK_SELECT ){ 2055 dest.eDest = SRT_Mem; 2056 dest.iSdst = dest.iSDParm; 2057 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 2058 VdbeComment((v, "Init subquery result")); 2059 }else{ 2060 dest.eDest = SRT_Exists; 2061 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2062 VdbeComment((v, "Init EXISTS result")); 2063 } 2064 sqlite3ExprDelete(pParse->db, pSel->pLimit); 2065 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 2066 &sqlite3IntTokens[1]); 2067 pSel->iLimit = 0; 2068 pSel->selFlags &= ~SF_MultiValue; 2069 if( sqlite3Select(pParse, pSel, &dest) ){ 2070 return 0; 2071 } 2072 rReg = dest.iSDParm; 2073 ExprSetVVAProperty(pExpr, EP_NoReduce); 2074 break; 2075 } 2076 } 2077 2078 if( rHasNullFlag ){ 2079 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2080 } 2081 2082 if( jmpIfDynamic>=0 ){ 2083 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2084 } 2085 sqlite3ExprCachePop(pParse); 2086 2087 return rReg; 2088 } 2089 #endif /* SQLITE_OMIT_SUBQUERY */ 2090 2091 #ifndef SQLITE_OMIT_SUBQUERY 2092 /* 2093 ** Generate code for an IN expression. 2094 ** 2095 ** x IN (SELECT ...) 2096 ** x IN (value, value, ...) 2097 ** 2098 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 2099 ** is an array of zero or more values. The expression is true if the LHS is 2100 ** contained within the RHS. The value of the expression is unknown (NULL) 2101 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 2102 ** RHS contains one or more NULL values. 2103 ** 2104 ** This routine generates code that jumps to destIfFalse if the LHS is not 2105 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2106 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2107 ** within the RHS then fall through. 2108 */ 2109 static void sqlite3ExprCodeIN( 2110 Parse *pParse, /* Parsing and code generating context */ 2111 Expr *pExpr, /* The IN expression */ 2112 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2113 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2114 ){ 2115 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2116 char affinity; /* Comparison affinity to use */ 2117 int eType; /* Type of the RHS */ 2118 int r1; /* Temporary use register */ 2119 Vdbe *v; /* Statement under construction */ 2120 2121 /* Compute the RHS. After this step, the table with cursor 2122 ** pExpr->iTable will contains the values that make up the RHS. 2123 */ 2124 v = pParse->pVdbe; 2125 assert( v!=0 ); /* OOM detected prior to this routine */ 2126 VdbeNoopComment((v, "begin IN expr")); 2127 eType = sqlite3FindInIndex(pParse, pExpr, 2128 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2129 destIfFalse==destIfNull ? 0 : &rRhsHasNull); 2130 2131 /* Figure out the affinity to use to create a key from the results 2132 ** of the expression. affinityStr stores a static string suitable for 2133 ** P4 of OP_MakeRecord. 2134 */ 2135 affinity = comparisonAffinity(pExpr); 2136 2137 /* Code the LHS, the <expr> from "<expr> IN (...)". 2138 */ 2139 sqlite3ExprCachePush(pParse); 2140 r1 = sqlite3GetTempReg(pParse); 2141 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 2142 2143 /* If sqlite3FindInIndex() did not find or create an index that is 2144 ** suitable for evaluating the IN operator, then evaluate using a 2145 ** sequence of comparisons. 2146 */ 2147 if( eType==IN_INDEX_NOOP ){ 2148 ExprList *pList = pExpr->x.pList; 2149 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2150 int labelOk = sqlite3VdbeMakeLabel(v); 2151 int r2, regToFree; 2152 int regCkNull = 0; 2153 int ii; 2154 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2155 if( destIfNull!=destIfFalse ){ 2156 regCkNull = sqlite3GetTempReg(pParse); 2157 sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull); 2158 } 2159 for(ii=0; ii<pList->nExpr; ii++){ 2160 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2161 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2162 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2163 } 2164 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2165 sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2, 2166 (void*)pColl, P4_COLLSEQ); 2167 VdbeCoverageIf(v, ii<pList->nExpr-1); 2168 VdbeCoverageIf(v, ii==pList->nExpr-1); 2169 sqlite3VdbeChangeP5(v, affinity); 2170 }else{ 2171 assert( destIfNull==destIfFalse ); 2172 sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2, 2173 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2174 sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL); 2175 } 2176 sqlite3ReleaseTempReg(pParse, regToFree); 2177 } 2178 if( regCkNull ){ 2179 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2180 sqlite3VdbeGoto(v, destIfFalse); 2181 } 2182 sqlite3VdbeResolveLabel(v, labelOk); 2183 sqlite3ReleaseTempReg(pParse, regCkNull); 2184 }else{ 2185 2186 /* If the LHS is NULL, then the result is either false or NULL depending 2187 ** on whether the RHS is empty or not, respectively. 2188 */ 2189 if( sqlite3ExprCanBeNull(pExpr->pLeft) ){ 2190 if( destIfNull==destIfFalse ){ 2191 /* Shortcut for the common case where the false and NULL outcomes are 2192 ** the same. */ 2193 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); 2194 }else{ 2195 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); 2196 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2197 VdbeCoverage(v); 2198 sqlite3VdbeGoto(v, destIfNull); 2199 sqlite3VdbeJumpHere(v, addr1); 2200 } 2201 } 2202 2203 if( eType==IN_INDEX_ROWID ){ 2204 /* In this case, the RHS is the ROWID of table b-tree 2205 */ 2206 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); 2207 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 2208 VdbeCoverage(v); 2209 }else{ 2210 /* In this case, the RHS is an index b-tree. 2211 */ 2212 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 2213 2214 /* If the set membership test fails, then the result of the 2215 ** "x IN (...)" expression must be either 0 or NULL. If the set 2216 ** contains no NULL values, then the result is 0. If the set 2217 ** contains one or more NULL values, then the result of the 2218 ** expression is also NULL. 2219 */ 2220 assert( destIfFalse!=destIfNull || rRhsHasNull==0 ); 2221 if( rRhsHasNull==0 ){ 2222 /* This branch runs if it is known at compile time that the RHS 2223 ** cannot contain NULL values. This happens as the result 2224 ** of a "NOT NULL" constraint in the database schema. 2225 ** 2226 ** Also run this branch if NULL is equivalent to FALSE 2227 ** for this particular IN operator. 2228 */ 2229 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 2230 VdbeCoverage(v); 2231 }else{ 2232 /* In this branch, the RHS of the IN might contain a NULL and 2233 ** the presence of a NULL on the RHS makes a difference in the 2234 ** outcome. 2235 */ 2236 int addr1; 2237 2238 /* First check to see if the LHS is contained in the RHS. If so, 2239 ** then the answer is TRUE the presence of NULLs in the RHS does 2240 ** not matter. If the LHS is not contained in the RHS, then the 2241 ** answer is NULL if the RHS contains NULLs and the answer is 2242 ** FALSE if the RHS is NULL-free. 2243 */ 2244 addr1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 2245 VdbeCoverage(v); 2246 sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull); 2247 VdbeCoverage(v); 2248 sqlite3VdbeGoto(v, destIfFalse); 2249 sqlite3VdbeJumpHere(v, addr1); 2250 } 2251 } 2252 } 2253 sqlite3ReleaseTempReg(pParse, r1); 2254 sqlite3ExprCachePop(pParse); 2255 VdbeComment((v, "end IN expr")); 2256 } 2257 #endif /* SQLITE_OMIT_SUBQUERY */ 2258 2259 #ifndef SQLITE_OMIT_FLOATING_POINT 2260 /* 2261 ** Generate an instruction that will put the floating point 2262 ** value described by z[0..n-1] into register iMem. 2263 ** 2264 ** The z[] string will probably not be zero-terminated. But the 2265 ** z[n] character is guaranteed to be something that does not look 2266 ** like the continuation of the number. 2267 */ 2268 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2269 if( ALWAYS(z!=0) ){ 2270 double value; 2271 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2272 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2273 if( negateFlag ) value = -value; 2274 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 2275 } 2276 } 2277 #endif 2278 2279 2280 /* 2281 ** Generate an instruction that will put the integer describe by 2282 ** text z[0..n-1] into register iMem. 2283 ** 2284 ** Expr.u.zToken is always UTF8 and zero-terminated. 2285 */ 2286 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2287 Vdbe *v = pParse->pVdbe; 2288 if( pExpr->flags & EP_IntValue ){ 2289 int i = pExpr->u.iValue; 2290 assert( i>=0 ); 2291 if( negFlag ) i = -i; 2292 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2293 }else{ 2294 int c; 2295 i64 value; 2296 const char *z = pExpr->u.zToken; 2297 assert( z!=0 ); 2298 c = sqlite3DecOrHexToI64(z, &value); 2299 if( c==0 || (c==2 && negFlag) ){ 2300 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2301 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 2302 }else{ 2303 #ifdef SQLITE_OMIT_FLOATING_POINT 2304 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2305 #else 2306 #ifndef SQLITE_OMIT_HEX_INTEGER 2307 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 2308 sqlite3ErrorMsg(pParse, "hex literal too big: %s", z); 2309 }else 2310 #endif 2311 { 2312 codeReal(v, z, negFlag, iMem); 2313 } 2314 #endif 2315 } 2316 } 2317 } 2318 2319 /* 2320 ** Clear a cache entry. 2321 */ 2322 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2323 if( p->tempReg ){ 2324 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2325 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2326 } 2327 p->tempReg = 0; 2328 } 2329 } 2330 2331 2332 /* 2333 ** Record in the column cache that a particular column from a 2334 ** particular table is stored in a particular register. 2335 */ 2336 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2337 int i; 2338 int minLru; 2339 int idxLru; 2340 struct yColCache *p; 2341 2342 /* Unless an error has occurred, register numbers are always positive. */ 2343 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 2344 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2345 2346 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2347 ** for testing only - to verify that SQLite always gets the same answer 2348 ** with and without the column cache. 2349 */ 2350 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2351 2352 /* First replace any existing entry. 2353 ** 2354 ** Actually, the way the column cache is currently used, we are guaranteed 2355 ** that the object will never already be in cache. Verify this guarantee. 2356 */ 2357 #ifndef NDEBUG 2358 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2359 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2360 } 2361 #endif 2362 2363 /* Find an empty slot and replace it */ 2364 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2365 if( p->iReg==0 ){ 2366 p->iLevel = pParse->iCacheLevel; 2367 p->iTable = iTab; 2368 p->iColumn = iCol; 2369 p->iReg = iReg; 2370 p->tempReg = 0; 2371 p->lru = pParse->iCacheCnt++; 2372 return; 2373 } 2374 } 2375 2376 /* Replace the last recently used */ 2377 minLru = 0x7fffffff; 2378 idxLru = -1; 2379 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2380 if( p->lru<minLru ){ 2381 idxLru = i; 2382 minLru = p->lru; 2383 } 2384 } 2385 if( ALWAYS(idxLru>=0) ){ 2386 p = &pParse->aColCache[idxLru]; 2387 p->iLevel = pParse->iCacheLevel; 2388 p->iTable = iTab; 2389 p->iColumn = iCol; 2390 p->iReg = iReg; 2391 p->tempReg = 0; 2392 p->lru = pParse->iCacheCnt++; 2393 return; 2394 } 2395 } 2396 2397 /* 2398 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2399 ** Purge the range of registers from the column cache. 2400 */ 2401 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2402 int i; 2403 int iLast = iReg + nReg - 1; 2404 struct yColCache *p; 2405 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2406 int r = p->iReg; 2407 if( r>=iReg && r<=iLast ){ 2408 cacheEntryClear(pParse, p); 2409 p->iReg = 0; 2410 } 2411 } 2412 } 2413 2414 /* 2415 ** Remember the current column cache context. Any new entries added 2416 ** added to the column cache after this call are removed when the 2417 ** corresponding pop occurs. 2418 */ 2419 void sqlite3ExprCachePush(Parse *pParse){ 2420 pParse->iCacheLevel++; 2421 #ifdef SQLITE_DEBUG 2422 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2423 printf("PUSH to %d\n", pParse->iCacheLevel); 2424 } 2425 #endif 2426 } 2427 2428 /* 2429 ** Remove from the column cache any entries that were added since the 2430 ** the previous sqlite3ExprCachePush operation. In other words, restore 2431 ** the cache to the state it was in prior the most recent Push. 2432 */ 2433 void sqlite3ExprCachePop(Parse *pParse){ 2434 int i; 2435 struct yColCache *p; 2436 assert( pParse->iCacheLevel>=1 ); 2437 pParse->iCacheLevel--; 2438 #ifdef SQLITE_DEBUG 2439 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2440 printf("POP to %d\n", pParse->iCacheLevel); 2441 } 2442 #endif 2443 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2444 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2445 cacheEntryClear(pParse, p); 2446 p->iReg = 0; 2447 } 2448 } 2449 } 2450 2451 /* 2452 ** When a cached column is reused, make sure that its register is 2453 ** no longer available as a temp register. ticket #3879: that same 2454 ** register might be in the cache in multiple places, so be sure to 2455 ** get them all. 2456 */ 2457 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2458 int i; 2459 struct yColCache *p; 2460 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2461 if( p->iReg==iReg ){ 2462 p->tempReg = 0; 2463 } 2464 } 2465 } 2466 2467 /* Generate code that will load into register regOut a value that is 2468 ** appropriate for the iIdxCol-th column of index pIdx. 2469 */ 2470 void sqlite3ExprCodeLoadIndexColumn( 2471 Parse *pParse, /* The parsing context */ 2472 Index *pIdx, /* The index whose column is to be loaded */ 2473 int iTabCur, /* Cursor pointing to a table row */ 2474 int iIdxCol, /* The column of the index to be loaded */ 2475 int regOut /* Store the index column value in this register */ 2476 ){ 2477 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 2478 if( iTabCol==XN_EXPR ){ 2479 assert( pIdx->aColExpr ); 2480 assert( pIdx->aColExpr->nExpr>iIdxCol ); 2481 pParse->iSelfTab = iTabCur; 2482 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 2483 }else{ 2484 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 2485 iTabCol, regOut); 2486 } 2487 } 2488 2489 /* 2490 ** Generate code to extract the value of the iCol-th column of a table. 2491 */ 2492 void sqlite3ExprCodeGetColumnOfTable( 2493 Vdbe *v, /* The VDBE under construction */ 2494 Table *pTab, /* The table containing the value */ 2495 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 2496 int iCol, /* Index of the column to extract */ 2497 int regOut /* Extract the value into this register */ 2498 ){ 2499 if( iCol<0 || iCol==pTab->iPKey ){ 2500 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2501 }else{ 2502 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2503 int x = iCol; 2504 if( !HasRowid(pTab) ){ 2505 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 2506 } 2507 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 2508 } 2509 if( iCol>=0 ){ 2510 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2511 } 2512 } 2513 2514 /* 2515 ** Generate code that will extract the iColumn-th column from 2516 ** table pTab and store the column value in a register. 2517 ** 2518 ** An effort is made to store the column value in register iReg. This 2519 ** is not garanteeed for GetColumn() - the result can be stored in 2520 ** any register. But the result is guaranteed to land in register iReg 2521 ** for GetColumnToReg(). 2522 ** 2523 ** There must be an open cursor to pTab in iTable when this routine 2524 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2525 */ 2526 int sqlite3ExprCodeGetColumn( 2527 Parse *pParse, /* Parsing and code generating context */ 2528 Table *pTab, /* Description of the table we are reading from */ 2529 int iColumn, /* Index of the table column */ 2530 int iTable, /* The cursor pointing to the table */ 2531 int iReg, /* Store results here */ 2532 u8 p5 /* P5 value for OP_Column + FLAGS */ 2533 ){ 2534 Vdbe *v = pParse->pVdbe; 2535 int i; 2536 struct yColCache *p; 2537 2538 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2539 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2540 p->lru = pParse->iCacheCnt++; 2541 sqlite3ExprCachePinRegister(pParse, p->iReg); 2542 return p->iReg; 2543 } 2544 } 2545 assert( v!=0 ); 2546 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2547 if( p5 ){ 2548 sqlite3VdbeChangeP5(v, p5); 2549 }else{ 2550 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2551 } 2552 return iReg; 2553 } 2554 void sqlite3ExprCodeGetColumnToReg( 2555 Parse *pParse, /* Parsing and code generating context */ 2556 Table *pTab, /* Description of the table we are reading from */ 2557 int iColumn, /* Index of the table column */ 2558 int iTable, /* The cursor pointing to the table */ 2559 int iReg /* Store results here */ 2560 ){ 2561 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); 2562 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); 2563 } 2564 2565 2566 /* 2567 ** Clear all column cache entries. 2568 */ 2569 void sqlite3ExprCacheClear(Parse *pParse){ 2570 int i; 2571 struct yColCache *p; 2572 2573 #if SQLITE_DEBUG 2574 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2575 printf("CLEAR\n"); 2576 } 2577 #endif 2578 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2579 if( p->iReg ){ 2580 cacheEntryClear(pParse, p); 2581 p->iReg = 0; 2582 } 2583 } 2584 } 2585 2586 /* 2587 ** Record the fact that an affinity change has occurred on iCount 2588 ** registers starting with iStart. 2589 */ 2590 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2591 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2592 } 2593 2594 /* 2595 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2596 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2597 */ 2598 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2599 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2600 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2601 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 2602 } 2603 2604 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2605 /* 2606 ** Return true if any register in the range iFrom..iTo (inclusive) 2607 ** is used as part of the column cache. 2608 ** 2609 ** This routine is used within assert() and testcase() macros only 2610 ** and does not appear in a normal build. 2611 */ 2612 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2613 int i; 2614 struct yColCache *p; 2615 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2616 int r = p->iReg; 2617 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2618 } 2619 return 0; 2620 } 2621 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2622 2623 /* 2624 ** Convert an expression node to a TK_REGISTER 2625 */ 2626 static void exprToRegister(Expr *p, int iReg){ 2627 p->op2 = p->op; 2628 p->op = TK_REGISTER; 2629 p->iTable = iReg; 2630 ExprClearProperty(p, EP_Skip); 2631 } 2632 2633 /* 2634 ** Generate code into the current Vdbe to evaluate the given 2635 ** expression. Attempt to store the results in register "target". 2636 ** Return the register where results are stored. 2637 ** 2638 ** With this routine, there is no guarantee that results will 2639 ** be stored in target. The result might be stored in some other 2640 ** register if it is convenient to do so. The calling function 2641 ** must check the return code and move the results to the desired 2642 ** register. 2643 */ 2644 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2645 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2646 int op; /* The opcode being coded */ 2647 int inReg = target; /* Results stored in register inReg */ 2648 int regFree1 = 0; /* If non-zero free this temporary register */ 2649 int regFree2 = 0; /* If non-zero free this temporary register */ 2650 int r1, r2, r3, r4; /* Various register numbers */ 2651 sqlite3 *db = pParse->db; /* The database connection */ 2652 Expr tempX; /* Temporary expression node */ 2653 2654 assert( target>0 && target<=pParse->nMem ); 2655 if( v==0 ){ 2656 assert( pParse->db->mallocFailed ); 2657 return 0; 2658 } 2659 2660 if( pExpr==0 ){ 2661 op = TK_NULL; 2662 }else{ 2663 op = pExpr->op; 2664 } 2665 switch( op ){ 2666 case TK_AGG_COLUMN: { 2667 AggInfo *pAggInfo = pExpr->pAggInfo; 2668 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2669 if( !pAggInfo->directMode ){ 2670 assert( pCol->iMem>0 ); 2671 inReg = pCol->iMem; 2672 break; 2673 }else if( pAggInfo->useSortingIdx ){ 2674 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2675 pCol->iSorterColumn, target); 2676 break; 2677 } 2678 /* Otherwise, fall thru into the TK_COLUMN case */ 2679 } 2680 case TK_COLUMN: { 2681 int iTab = pExpr->iTable; 2682 if( iTab<0 ){ 2683 if( pParse->ckBase>0 ){ 2684 /* Generating CHECK constraints or inserting into partial index */ 2685 inReg = pExpr->iColumn + pParse->ckBase; 2686 break; 2687 }else{ 2688 /* Coding an expression that is part of an index where column names 2689 ** in the index refer to the table to which the index belongs */ 2690 iTab = pParse->iSelfTab; 2691 } 2692 } 2693 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2694 pExpr->iColumn, iTab, target, 2695 pExpr->op2); 2696 break; 2697 } 2698 case TK_INTEGER: { 2699 codeInteger(pParse, pExpr, 0, target); 2700 break; 2701 } 2702 #ifndef SQLITE_OMIT_FLOATING_POINT 2703 case TK_FLOAT: { 2704 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2705 codeReal(v, pExpr->u.zToken, 0, target); 2706 break; 2707 } 2708 #endif 2709 case TK_STRING: { 2710 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2711 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 2712 break; 2713 } 2714 case TK_NULL: { 2715 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2716 break; 2717 } 2718 #ifndef SQLITE_OMIT_BLOB_LITERAL 2719 case TK_BLOB: { 2720 int n; 2721 const char *z; 2722 char *zBlob; 2723 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2724 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2725 assert( pExpr->u.zToken[1]=='\'' ); 2726 z = &pExpr->u.zToken[2]; 2727 n = sqlite3Strlen30(z) - 1; 2728 assert( z[n]=='\'' ); 2729 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2730 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2731 break; 2732 } 2733 #endif 2734 case TK_VARIABLE: { 2735 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2736 assert( pExpr->u.zToken!=0 ); 2737 assert( pExpr->u.zToken[0]!=0 ); 2738 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2739 if( pExpr->u.zToken[1]!=0 ){ 2740 assert( pExpr->u.zToken[0]=='?' 2741 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2742 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2743 } 2744 break; 2745 } 2746 case TK_REGISTER: { 2747 inReg = pExpr->iTable; 2748 break; 2749 } 2750 #ifndef SQLITE_OMIT_CAST 2751 case TK_CAST: { 2752 /* Expressions of the form: CAST(pLeft AS token) */ 2753 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2754 if( inReg!=target ){ 2755 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2756 inReg = target; 2757 } 2758 sqlite3VdbeAddOp2(v, OP_Cast, target, 2759 sqlite3AffinityType(pExpr->u.zToken, 0)); 2760 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2761 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2762 break; 2763 } 2764 #endif /* SQLITE_OMIT_CAST */ 2765 case TK_LT: 2766 case TK_LE: 2767 case TK_GT: 2768 case TK_GE: 2769 case TK_NE: 2770 case TK_EQ: { 2771 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2772 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2773 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2774 r1, r2, inReg, SQLITE_STOREP2); 2775 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 2776 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 2777 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 2778 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 2779 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 2780 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 2781 testcase( regFree1==0 ); 2782 testcase( regFree2==0 ); 2783 break; 2784 } 2785 case TK_IS: 2786 case TK_ISNOT: { 2787 testcase( op==TK_IS ); 2788 testcase( op==TK_ISNOT ); 2789 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2790 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2791 op = (op==TK_IS) ? TK_EQ : TK_NE; 2792 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2793 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2794 VdbeCoverageIf(v, op==TK_EQ); 2795 VdbeCoverageIf(v, op==TK_NE); 2796 testcase( regFree1==0 ); 2797 testcase( regFree2==0 ); 2798 break; 2799 } 2800 case TK_AND: 2801 case TK_OR: 2802 case TK_PLUS: 2803 case TK_STAR: 2804 case TK_MINUS: 2805 case TK_REM: 2806 case TK_BITAND: 2807 case TK_BITOR: 2808 case TK_SLASH: 2809 case TK_LSHIFT: 2810 case TK_RSHIFT: 2811 case TK_CONCAT: { 2812 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 2813 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 2814 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 2815 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 2816 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 2817 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 2818 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 2819 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 2820 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 2821 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 2822 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 2823 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2824 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2825 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2826 testcase( regFree1==0 ); 2827 testcase( regFree2==0 ); 2828 break; 2829 } 2830 case TK_UMINUS: { 2831 Expr *pLeft = pExpr->pLeft; 2832 assert( pLeft ); 2833 if( pLeft->op==TK_INTEGER ){ 2834 codeInteger(pParse, pLeft, 1, target); 2835 #ifndef SQLITE_OMIT_FLOATING_POINT 2836 }else if( pLeft->op==TK_FLOAT ){ 2837 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2838 codeReal(v, pLeft->u.zToken, 1, target); 2839 #endif 2840 }else{ 2841 tempX.op = TK_INTEGER; 2842 tempX.flags = EP_IntValue|EP_TokenOnly; 2843 tempX.u.iValue = 0; 2844 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 2845 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2846 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2847 testcase( regFree2==0 ); 2848 } 2849 inReg = target; 2850 break; 2851 } 2852 case TK_BITNOT: 2853 case TK_NOT: { 2854 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 2855 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 2856 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2857 testcase( regFree1==0 ); 2858 inReg = target; 2859 sqlite3VdbeAddOp2(v, op, r1, inReg); 2860 break; 2861 } 2862 case TK_ISNULL: 2863 case TK_NOTNULL: { 2864 int addr; 2865 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 2866 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 2867 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2868 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2869 testcase( regFree1==0 ); 2870 addr = sqlite3VdbeAddOp1(v, op, r1); 2871 VdbeCoverageIf(v, op==TK_ISNULL); 2872 VdbeCoverageIf(v, op==TK_NOTNULL); 2873 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2874 sqlite3VdbeJumpHere(v, addr); 2875 break; 2876 } 2877 case TK_AGG_FUNCTION: { 2878 AggInfo *pInfo = pExpr->pAggInfo; 2879 if( pInfo==0 ){ 2880 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2881 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2882 }else{ 2883 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2884 } 2885 break; 2886 } 2887 case TK_FUNCTION: { 2888 ExprList *pFarg; /* List of function arguments */ 2889 int nFarg; /* Number of function arguments */ 2890 FuncDef *pDef; /* The function definition object */ 2891 const char *zId; /* The function name */ 2892 u32 constMask = 0; /* Mask of function arguments that are constant */ 2893 int i; /* Loop counter */ 2894 u8 enc = ENC(db); /* The text encoding used by this database */ 2895 CollSeq *pColl = 0; /* A collating sequence */ 2896 2897 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2898 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 2899 pFarg = 0; 2900 }else{ 2901 pFarg = pExpr->x.pList; 2902 } 2903 nFarg = pFarg ? pFarg->nExpr : 0; 2904 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2905 zId = pExpr->u.zToken; 2906 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 2907 if( pDef==0 || pDef->xFinalize!=0 ){ 2908 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 2909 break; 2910 } 2911 2912 /* Attempt a direct implementation of the built-in COALESCE() and 2913 ** IFNULL() functions. This avoids unnecessary evaluation of 2914 ** arguments past the first non-NULL argument. 2915 */ 2916 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 2917 int endCoalesce = sqlite3VdbeMakeLabel(v); 2918 assert( nFarg>=2 ); 2919 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2920 for(i=1; i<nFarg; i++){ 2921 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2922 VdbeCoverage(v); 2923 sqlite3ExprCacheRemove(pParse, target, 1); 2924 sqlite3ExprCachePush(pParse); 2925 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2926 sqlite3ExprCachePop(pParse); 2927 } 2928 sqlite3VdbeResolveLabel(v, endCoalesce); 2929 break; 2930 } 2931 2932 /* The UNLIKELY() function is a no-op. The result is the value 2933 ** of the first argument. 2934 */ 2935 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 2936 assert( nFarg>=1 ); 2937 inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 2938 break; 2939 } 2940 2941 for(i=0; i<nFarg; i++){ 2942 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2943 testcase( i==31 ); 2944 constMask |= MASKBIT32(i); 2945 } 2946 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2947 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2948 } 2949 } 2950 if( pFarg ){ 2951 if( constMask ){ 2952 r1 = pParse->nMem+1; 2953 pParse->nMem += nFarg; 2954 }else{ 2955 r1 = sqlite3GetTempRange(pParse, nFarg); 2956 } 2957 2958 /* For length() and typeof() functions with a column argument, 2959 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2960 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2961 ** loading. 2962 */ 2963 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2964 u8 exprOp; 2965 assert( nFarg==1 ); 2966 assert( pFarg->a[0].pExpr!=0 ); 2967 exprOp = pFarg->a[0].pExpr->op; 2968 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2969 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2970 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2971 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 2972 pFarg->a[0].pExpr->op2 = 2973 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 2974 } 2975 } 2976 2977 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2978 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 2979 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 2980 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 2981 }else{ 2982 r1 = 0; 2983 } 2984 #ifndef SQLITE_OMIT_VIRTUALTABLE 2985 /* Possibly overload the function if the first argument is 2986 ** a virtual table column. 2987 ** 2988 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2989 ** second argument, not the first, as the argument to test to 2990 ** see if it is a column in a virtual table. This is done because 2991 ** the left operand of infix functions (the operand we want to 2992 ** control overloading) ends up as the second argument to the 2993 ** function. The expression "A glob B" is equivalent to 2994 ** "glob(B,A). We want to use the A in "A glob B" to test 2995 ** for function overloading. But we use the B term in "glob(B,A)". 2996 */ 2997 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2998 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2999 }else if( nFarg>0 ){ 3000 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3001 } 3002 #endif 3003 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3004 if( !pColl ) pColl = db->pDfltColl; 3005 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3006 } 3007 sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target, 3008 (char*)pDef, P4_FUNCDEF); 3009 sqlite3VdbeChangeP5(v, (u8)nFarg); 3010 if( nFarg && constMask==0 ){ 3011 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3012 } 3013 break; 3014 } 3015 #ifndef SQLITE_OMIT_SUBQUERY 3016 case TK_EXISTS: 3017 case TK_SELECT: { 3018 testcase( op==TK_EXISTS ); 3019 testcase( op==TK_SELECT ); 3020 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 3021 break; 3022 } 3023 case TK_IN: { 3024 int destIfFalse = sqlite3VdbeMakeLabel(v); 3025 int destIfNull = sqlite3VdbeMakeLabel(v); 3026 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3027 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3028 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3029 sqlite3VdbeResolveLabel(v, destIfFalse); 3030 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3031 sqlite3VdbeResolveLabel(v, destIfNull); 3032 break; 3033 } 3034 #endif /* SQLITE_OMIT_SUBQUERY */ 3035 3036 3037 /* 3038 ** x BETWEEN y AND z 3039 ** 3040 ** This is equivalent to 3041 ** 3042 ** x>=y AND x<=z 3043 ** 3044 ** X is stored in pExpr->pLeft. 3045 ** Y is stored in pExpr->pList->a[0].pExpr. 3046 ** Z is stored in pExpr->pList->a[1].pExpr. 3047 */ 3048 case TK_BETWEEN: { 3049 Expr *pLeft = pExpr->pLeft; 3050 struct ExprList_item *pLItem = pExpr->x.pList->a; 3051 Expr *pRight = pLItem->pExpr; 3052 3053 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3054 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 3055 testcase( regFree1==0 ); 3056 testcase( regFree2==0 ); 3057 r3 = sqlite3GetTempReg(pParse); 3058 r4 = sqlite3GetTempReg(pParse); 3059 codeCompare(pParse, pLeft, pRight, OP_Ge, 3060 r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); 3061 pLItem++; 3062 pRight = pLItem->pExpr; 3063 sqlite3ReleaseTempReg(pParse, regFree2); 3064 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 3065 testcase( regFree2==0 ); 3066 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 3067 VdbeCoverage(v); 3068 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 3069 sqlite3ReleaseTempReg(pParse, r3); 3070 sqlite3ReleaseTempReg(pParse, r4); 3071 break; 3072 } 3073 case TK_SPAN: 3074 case TK_COLLATE: 3075 case TK_UPLUS: { 3076 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3077 break; 3078 } 3079 3080 case TK_TRIGGER: { 3081 /* If the opcode is TK_TRIGGER, then the expression is a reference 3082 ** to a column in the new.* or old.* pseudo-tables available to 3083 ** trigger programs. In this case Expr.iTable is set to 1 for the 3084 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3085 ** is set to the column of the pseudo-table to read, or to -1 to 3086 ** read the rowid field. 3087 ** 3088 ** The expression is implemented using an OP_Param opcode. The p1 3089 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3090 ** to reference another column of the old.* pseudo-table, where 3091 ** i is the index of the column. For a new.rowid reference, p1 is 3092 ** set to (n+1), where n is the number of columns in each pseudo-table. 3093 ** For a reference to any other column in the new.* pseudo-table, p1 3094 ** is set to (n+2+i), where n and i are as defined previously. For 3095 ** example, if the table on which triggers are being fired is 3096 ** declared as: 3097 ** 3098 ** CREATE TABLE t1(a, b); 3099 ** 3100 ** Then p1 is interpreted as follows: 3101 ** 3102 ** p1==0 -> old.rowid p1==3 -> new.rowid 3103 ** p1==1 -> old.a p1==4 -> new.a 3104 ** p1==2 -> old.b p1==5 -> new.b 3105 */ 3106 Table *pTab = pExpr->pTab; 3107 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3108 3109 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3110 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3111 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3112 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3113 3114 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3115 VdbeComment((v, "%s.%s -> $%d", 3116 (pExpr->iTable ? "new" : "old"), 3117 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3118 target 3119 )); 3120 3121 #ifndef SQLITE_OMIT_FLOATING_POINT 3122 /* If the column has REAL affinity, it may currently be stored as an 3123 ** integer. Use OP_RealAffinity to make sure it is really real. 3124 ** 3125 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3126 ** floating point when extracting it from the record. */ 3127 if( pExpr->iColumn>=0 3128 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3129 ){ 3130 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3131 } 3132 #endif 3133 break; 3134 } 3135 3136 3137 /* 3138 ** Form A: 3139 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3140 ** 3141 ** Form B: 3142 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3143 ** 3144 ** Form A is can be transformed into the equivalent form B as follows: 3145 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3146 ** WHEN x=eN THEN rN ELSE y END 3147 ** 3148 ** X (if it exists) is in pExpr->pLeft. 3149 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3150 ** odd. The Y is also optional. If the number of elements in x.pList 3151 ** is even, then Y is omitted and the "otherwise" result is NULL. 3152 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3153 ** 3154 ** The result of the expression is the Ri for the first matching Ei, 3155 ** or if there is no matching Ei, the ELSE term Y, or if there is 3156 ** no ELSE term, NULL. 3157 */ 3158 default: assert( op==TK_CASE ); { 3159 int endLabel; /* GOTO label for end of CASE stmt */ 3160 int nextCase; /* GOTO label for next WHEN clause */ 3161 int nExpr; /* 2x number of WHEN terms */ 3162 int i; /* Loop counter */ 3163 ExprList *pEList; /* List of WHEN terms */ 3164 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3165 Expr opCompare; /* The X==Ei expression */ 3166 Expr *pX; /* The X expression */ 3167 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 3168 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 3169 3170 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 3171 assert(pExpr->x.pList->nExpr > 0); 3172 pEList = pExpr->x.pList; 3173 aListelem = pEList->a; 3174 nExpr = pEList->nExpr; 3175 endLabel = sqlite3VdbeMakeLabel(v); 3176 if( (pX = pExpr->pLeft)!=0 ){ 3177 tempX = *pX; 3178 testcase( pX->op==TK_COLUMN ); 3179 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); 3180 testcase( regFree1==0 ); 3181 opCompare.op = TK_EQ; 3182 opCompare.pLeft = &tempX; 3183 pTest = &opCompare; 3184 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 3185 ** The value in regFree1 might get SCopy-ed into the file result. 3186 ** So make sure that the regFree1 register is not reused for other 3187 ** purposes and possibly overwritten. */ 3188 regFree1 = 0; 3189 } 3190 for(i=0; i<nExpr-1; i=i+2){ 3191 sqlite3ExprCachePush(pParse); 3192 if( pX ){ 3193 assert( pTest!=0 ); 3194 opCompare.pRight = aListelem[i].pExpr; 3195 }else{ 3196 pTest = aListelem[i].pExpr; 3197 } 3198 nextCase = sqlite3VdbeMakeLabel(v); 3199 testcase( pTest->op==TK_COLUMN ); 3200 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 3201 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 3202 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 3203 sqlite3VdbeGoto(v, endLabel); 3204 sqlite3ExprCachePop(pParse); 3205 sqlite3VdbeResolveLabel(v, nextCase); 3206 } 3207 if( (nExpr&1)!=0 ){ 3208 sqlite3ExprCachePush(pParse); 3209 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3210 sqlite3ExprCachePop(pParse); 3211 }else{ 3212 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3213 } 3214 assert( db->mallocFailed || pParse->nErr>0 3215 || pParse->iCacheLevel==iCacheLevel ); 3216 sqlite3VdbeResolveLabel(v, endLabel); 3217 break; 3218 } 3219 #ifndef SQLITE_OMIT_TRIGGER 3220 case TK_RAISE: { 3221 assert( pExpr->affinity==OE_Rollback 3222 || pExpr->affinity==OE_Abort 3223 || pExpr->affinity==OE_Fail 3224 || pExpr->affinity==OE_Ignore 3225 ); 3226 if( !pParse->pTriggerTab ){ 3227 sqlite3ErrorMsg(pParse, 3228 "RAISE() may only be used within a trigger-program"); 3229 return 0; 3230 } 3231 if( pExpr->affinity==OE_Abort ){ 3232 sqlite3MayAbort(pParse); 3233 } 3234 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3235 if( pExpr->affinity==OE_Ignore ){ 3236 sqlite3VdbeAddOp4( 3237 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 3238 VdbeCoverage(v); 3239 }else{ 3240 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 3241 pExpr->affinity, pExpr->u.zToken, 0, 0); 3242 } 3243 3244 break; 3245 } 3246 #endif 3247 } 3248 sqlite3ReleaseTempReg(pParse, regFree1); 3249 sqlite3ReleaseTempReg(pParse, regFree2); 3250 return inReg; 3251 } 3252 3253 /* 3254 ** Factor out the code of the given expression to initialization time. 3255 */ 3256 void sqlite3ExprCodeAtInit( 3257 Parse *pParse, /* Parsing context */ 3258 Expr *pExpr, /* The expression to code when the VDBE initializes */ 3259 int regDest, /* Store the value in this register */ 3260 u8 reusable /* True if this expression is reusable */ 3261 ){ 3262 ExprList *p; 3263 assert( ConstFactorOk(pParse) ); 3264 p = pParse->pConstExpr; 3265 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 3266 p = sqlite3ExprListAppend(pParse, p, pExpr); 3267 if( p ){ 3268 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 3269 pItem->u.iConstExprReg = regDest; 3270 pItem->reusable = reusable; 3271 } 3272 pParse->pConstExpr = p; 3273 } 3274 3275 /* 3276 ** Generate code to evaluate an expression and store the results 3277 ** into a register. Return the register number where the results 3278 ** are stored. 3279 ** 3280 ** If the register is a temporary register that can be deallocated, 3281 ** then write its number into *pReg. If the result register is not 3282 ** a temporary, then set *pReg to zero. 3283 ** 3284 ** If pExpr is a constant, then this routine might generate this 3285 ** code to fill the register in the initialization section of the 3286 ** VDBE program, in order to factor it out of the evaluation loop. 3287 */ 3288 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 3289 int r2; 3290 pExpr = sqlite3ExprSkipCollate(pExpr); 3291 if( ConstFactorOk(pParse) 3292 && pExpr->op!=TK_REGISTER 3293 && sqlite3ExprIsConstantNotJoin(pExpr) 3294 ){ 3295 ExprList *p = pParse->pConstExpr; 3296 int i; 3297 *pReg = 0; 3298 if( p ){ 3299 struct ExprList_item *pItem; 3300 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 3301 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 3302 return pItem->u.iConstExprReg; 3303 } 3304 } 3305 } 3306 r2 = ++pParse->nMem; 3307 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); 3308 }else{ 3309 int r1 = sqlite3GetTempReg(pParse); 3310 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3311 if( r2==r1 ){ 3312 *pReg = r1; 3313 }else{ 3314 sqlite3ReleaseTempReg(pParse, r1); 3315 *pReg = 0; 3316 } 3317 } 3318 return r2; 3319 } 3320 3321 /* 3322 ** Generate code that will evaluate expression pExpr and store the 3323 ** results in register target. The results are guaranteed to appear 3324 ** in register target. 3325 */ 3326 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 3327 int inReg; 3328 3329 assert( target>0 && target<=pParse->nMem ); 3330 if( pExpr && pExpr->op==TK_REGISTER ){ 3331 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 3332 }else{ 3333 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 3334 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 3335 if( inReg!=target && pParse->pVdbe ){ 3336 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 3337 } 3338 } 3339 } 3340 3341 /* 3342 ** Make a transient copy of expression pExpr and then code it using 3343 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 3344 ** except that the input expression is guaranteed to be unchanged. 3345 */ 3346 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 3347 sqlite3 *db = pParse->db; 3348 pExpr = sqlite3ExprDup(db, pExpr, 0); 3349 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 3350 sqlite3ExprDelete(db, pExpr); 3351 } 3352 3353 /* 3354 ** Generate code that will evaluate expression pExpr and store the 3355 ** results in register target. The results are guaranteed to appear 3356 ** in register target. If the expression is constant, then this routine 3357 ** might choose to code the expression at initialization time. 3358 */ 3359 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 3360 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 3361 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); 3362 }else{ 3363 sqlite3ExprCode(pParse, pExpr, target); 3364 } 3365 } 3366 3367 /* 3368 ** Generate code that evaluates the given expression and puts the result 3369 ** in register target. 3370 ** 3371 ** Also make a copy of the expression results into another "cache" register 3372 ** and modify the expression so that the next time it is evaluated, 3373 ** the result is a copy of the cache register. 3374 ** 3375 ** This routine is used for expressions that are used multiple 3376 ** times. They are evaluated once and the results of the expression 3377 ** are reused. 3378 */ 3379 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3380 Vdbe *v = pParse->pVdbe; 3381 int iMem; 3382 3383 assert( target>0 ); 3384 assert( pExpr->op!=TK_REGISTER ); 3385 sqlite3ExprCode(pParse, pExpr, target); 3386 iMem = ++pParse->nMem; 3387 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 3388 exprToRegister(pExpr, iMem); 3389 } 3390 3391 /* 3392 ** Generate code that pushes the value of every element of the given 3393 ** expression list into a sequence of registers beginning at target. 3394 ** 3395 ** Return the number of elements evaluated. 3396 ** 3397 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 3398 ** filled using OP_SCopy. OP_Copy must be used instead. 3399 ** 3400 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 3401 ** factored out into initialization code. 3402 ** 3403 ** The SQLITE_ECEL_REF flag means that expressions in the list with 3404 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 3405 ** in registers at srcReg, and so the value can be copied from there. 3406 */ 3407 int sqlite3ExprCodeExprList( 3408 Parse *pParse, /* Parsing context */ 3409 ExprList *pList, /* The expression list to be coded */ 3410 int target, /* Where to write results */ 3411 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 3412 u8 flags /* SQLITE_ECEL_* flags */ 3413 ){ 3414 struct ExprList_item *pItem; 3415 int i, j, n; 3416 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 3417 Vdbe *v = pParse->pVdbe; 3418 assert( pList!=0 ); 3419 assert( target>0 ); 3420 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3421 n = pList->nExpr; 3422 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 3423 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3424 Expr *pExpr = pItem->pExpr; 3425 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){ 3426 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 3427 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 3428 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); 3429 }else{ 3430 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3431 if( inReg!=target+i ){ 3432 VdbeOp *pOp; 3433 if( copyOp==OP_Copy 3434 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 3435 && pOp->p1+pOp->p3+1==inReg 3436 && pOp->p2+pOp->p3+1==target+i 3437 ){ 3438 pOp->p3++; 3439 }else{ 3440 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 3441 } 3442 } 3443 } 3444 } 3445 return n; 3446 } 3447 3448 /* 3449 ** Generate code for a BETWEEN operator. 3450 ** 3451 ** x BETWEEN y AND z 3452 ** 3453 ** The above is equivalent to 3454 ** 3455 ** x>=y AND x<=z 3456 ** 3457 ** Code it as such, taking care to do the common subexpression 3458 ** elimination of x. 3459 */ 3460 static void exprCodeBetween( 3461 Parse *pParse, /* Parsing and code generating context */ 3462 Expr *pExpr, /* The BETWEEN expression */ 3463 int dest, /* Jump here if the jump is taken */ 3464 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3465 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3466 ){ 3467 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3468 Expr compLeft; /* The x>=y term */ 3469 Expr compRight; /* The x<=z term */ 3470 Expr exprX; /* The x subexpression */ 3471 int regFree1 = 0; /* Temporary use register */ 3472 3473 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3474 exprX = *pExpr->pLeft; 3475 exprAnd.op = TK_AND; 3476 exprAnd.pLeft = &compLeft; 3477 exprAnd.pRight = &compRight; 3478 compLeft.op = TK_GE; 3479 compLeft.pLeft = &exprX; 3480 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3481 compRight.op = TK_LE; 3482 compRight.pLeft = &exprX; 3483 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3484 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); 3485 if( jumpIfTrue ){ 3486 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3487 }else{ 3488 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3489 } 3490 sqlite3ReleaseTempReg(pParse, regFree1); 3491 3492 /* Ensure adequate test coverage */ 3493 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3494 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3495 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3496 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3497 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3498 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3499 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3500 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3501 } 3502 3503 /* 3504 ** Generate code for a boolean expression such that a jump is made 3505 ** to the label "dest" if the expression is true but execution 3506 ** continues straight thru if the expression is false. 3507 ** 3508 ** If the expression evaluates to NULL (neither true nor false), then 3509 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3510 ** 3511 ** This code depends on the fact that certain token values (ex: TK_EQ) 3512 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3513 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3514 ** the make process cause these values to align. Assert()s in the code 3515 ** below verify that the numbers are aligned correctly. 3516 */ 3517 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3518 Vdbe *v = pParse->pVdbe; 3519 int op = 0; 3520 int regFree1 = 0; 3521 int regFree2 = 0; 3522 int r1, r2; 3523 3524 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3525 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3526 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3527 op = pExpr->op; 3528 switch( op ){ 3529 case TK_AND: { 3530 int d2 = sqlite3VdbeMakeLabel(v); 3531 testcase( jumpIfNull==0 ); 3532 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3533 sqlite3ExprCachePush(pParse); 3534 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3535 sqlite3VdbeResolveLabel(v, d2); 3536 sqlite3ExprCachePop(pParse); 3537 break; 3538 } 3539 case TK_OR: { 3540 testcase( jumpIfNull==0 ); 3541 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3542 sqlite3ExprCachePush(pParse); 3543 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3544 sqlite3ExprCachePop(pParse); 3545 break; 3546 } 3547 case TK_NOT: { 3548 testcase( jumpIfNull==0 ); 3549 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3550 break; 3551 } 3552 case TK_IS: 3553 case TK_ISNOT: 3554 testcase( op==TK_IS ); 3555 testcase( op==TK_ISNOT ); 3556 op = (op==TK_IS) ? TK_EQ : TK_NE; 3557 jumpIfNull = SQLITE_NULLEQ; 3558 /* Fall thru */ 3559 case TK_LT: 3560 case TK_LE: 3561 case TK_GT: 3562 case TK_GE: 3563 case TK_NE: 3564 case TK_EQ: { 3565 testcase( jumpIfNull==0 ); 3566 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3567 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3568 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3569 r1, r2, dest, jumpIfNull); 3570 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3571 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3572 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3573 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3574 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 3575 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 3576 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 3577 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 3578 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 3579 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 3580 testcase( regFree1==0 ); 3581 testcase( regFree2==0 ); 3582 break; 3583 } 3584 case TK_ISNULL: 3585 case TK_NOTNULL: { 3586 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3587 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3588 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3589 sqlite3VdbeAddOp2(v, op, r1, dest); 3590 VdbeCoverageIf(v, op==TK_ISNULL); 3591 VdbeCoverageIf(v, op==TK_NOTNULL); 3592 testcase( regFree1==0 ); 3593 break; 3594 } 3595 case TK_BETWEEN: { 3596 testcase( jumpIfNull==0 ); 3597 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3598 break; 3599 } 3600 #ifndef SQLITE_OMIT_SUBQUERY 3601 case TK_IN: { 3602 int destIfFalse = sqlite3VdbeMakeLabel(v); 3603 int destIfNull = jumpIfNull ? dest : destIfFalse; 3604 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3605 sqlite3VdbeGoto(v, dest); 3606 sqlite3VdbeResolveLabel(v, destIfFalse); 3607 break; 3608 } 3609 #endif 3610 default: { 3611 if( exprAlwaysTrue(pExpr) ){ 3612 sqlite3VdbeGoto(v, dest); 3613 }else if( exprAlwaysFalse(pExpr) ){ 3614 /* No-op */ 3615 }else{ 3616 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3617 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3618 VdbeCoverage(v); 3619 testcase( regFree1==0 ); 3620 testcase( jumpIfNull==0 ); 3621 } 3622 break; 3623 } 3624 } 3625 sqlite3ReleaseTempReg(pParse, regFree1); 3626 sqlite3ReleaseTempReg(pParse, regFree2); 3627 } 3628 3629 /* 3630 ** Generate code for a boolean expression such that a jump is made 3631 ** to the label "dest" if the expression is false but execution 3632 ** continues straight thru if the expression is true. 3633 ** 3634 ** If the expression evaluates to NULL (neither true nor false) then 3635 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3636 ** is 0. 3637 */ 3638 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3639 Vdbe *v = pParse->pVdbe; 3640 int op = 0; 3641 int regFree1 = 0; 3642 int regFree2 = 0; 3643 int r1, r2; 3644 3645 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3646 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3647 if( pExpr==0 ) return; 3648 3649 /* The value of pExpr->op and op are related as follows: 3650 ** 3651 ** pExpr->op op 3652 ** --------- ---------- 3653 ** TK_ISNULL OP_NotNull 3654 ** TK_NOTNULL OP_IsNull 3655 ** TK_NE OP_Eq 3656 ** TK_EQ OP_Ne 3657 ** TK_GT OP_Le 3658 ** TK_LE OP_Gt 3659 ** TK_GE OP_Lt 3660 ** TK_LT OP_Ge 3661 ** 3662 ** For other values of pExpr->op, op is undefined and unused. 3663 ** The value of TK_ and OP_ constants are arranged such that we 3664 ** can compute the mapping above using the following expression. 3665 ** Assert()s verify that the computation is correct. 3666 */ 3667 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3668 3669 /* Verify correct alignment of TK_ and OP_ constants 3670 */ 3671 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3672 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3673 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3674 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3675 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3676 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3677 assert( pExpr->op!=TK_GT || op==OP_Le ); 3678 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3679 3680 switch( pExpr->op ){ 3681 case TK_AND: { 3682 testcase( jumpIfNull==0 ); 3683 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3684 sqlite3ExprCachePush(pParse); 3685 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3686 sqlite3ExprCachePop(pParse); 3687 break; 3688 } 3689 case TK_OR: { 3690 int d2 = sqlite3VdbeMakeLabel(v); 3691 testcase( jumpIfNull==0 ); 3692 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3693 sqlite3ExprCachePush(pParse); 3694 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3695 sqlite3VdbeResolveLabel(v, d2); 3696 sqlite3ExprCachePop(pParse); 3697 break; 3698 } 3699 case TK_NOT: { 3700 testcase( jumpIfNull==0 ); 3701 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3702 break; 3703 } 3704 case TK_IS: 3705 case TK_ISNOT: 3706 testcase( pExpr->op==TK_IS ); 3707 testcase( pExpr->op==TK_ISNOT ); 3708 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3709 jumpIfNull = SQLITE_NULLEQ; 3710 /* Fall thru */ 3711 case TK_LT: 3712 case TK_LE: 3713 case TK_GT: 3714 case TK_GE: 3715 case TK_NE: 3716 case TK_EQ: { 3717 testcase( jumpIfNull==0 ); 3718 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3719 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3720 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3721 r1, r2, dest, jumpIfNull); 3722 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3723 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3724 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3725 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3726 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 3727 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 3728 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 3729 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 3730 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 3731 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 3732 testcase( regFree1==0 ); 3733 testcase( regFree2==0 ); 3734 break; 3735 } 3736 case TK_ISNULL: 3737 case TK_NOTNULL: { 3738 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3739 sqlite3VdbeAddOp2(v, op, r1, dest); 3740 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 3741 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 3742 testcase( regFree1==0 ); 3743 break; 3744 } 3745 case TK_BETWEEN: { 3746 testcase( jumpIfNull==0 ); 3747 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3748 break; 3749 } 3750 #ifndef SQLITE_OMIT_SUBQUERY 3751 case TK_IN: { 3752 if( jumpIfNull ){ 3753 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3754 }else{ 3755 int destIfNull = sqlite3VdbeMakeLabel(v); 3756 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3757 sqlite3VdbeResolveLabel(v, destIfNull); 3758 } 3759 break; 3760 } 3761 #endif 3762 default: { 3763 if( exprAlwaysFalse(pExpr) ){ 3764 sqlite3VdbeGoto(v, dest); 3765 }else if( exprAlwaysTrue(pExpr) ){ 3766 /* no-op */ 3767 }else{ 3768 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3769 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3770 VdbeCoverage(v); 3771 testcase( regFree1==0 ); 3772 testcase( jumpIfNull==0 ); 3773 } 3774 break; 3775 } 3776 } 3777 sqlite3ReleaseTempReg(pParse, regFree1); 3778 sqlite3ReleaseTempReg(pParse, regFree2); 3779 } 3780 3781 /* 3782 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 3783 ** code generation, and that copy is deleted after code generation. This 3784 ** ensures that the original pExpr is unchanged. 3785 */ 3786 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 3787 sqlite3 *db = pParse->db; 3788 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 3789 if( db->mallocFailed==0 ){ 3790 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 3791 } 3792 sqlite3ExprDelete(db, pCopy); 3793 } 3794 3795 3796 /* 3797 ** Do a deep comparison of two expression trees. Return 0 if the two 3798 ** expressions are completely identical. Return 1 if they differ only 3799 ** by a COLLATE operator at the top level. Return 2 if there are differences 3800 ** other than the top-level COLLATE operator. 3801 ** 3802 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3803 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3804 ** 3805 ** The pA side might be using TK_REGISTER. If that is the case and pB is 3806 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 3807 ** 3808 ** Sometimes this routine will return 2 even if the two expressions 3809 ** really are equivalent. If we cannot prove that the expressions are 3810 ** identical, we return 2 just to be safe. So if this routine 3811 ** returns 2, then you do not really know for certain if the two 3812 ** expressions are the same. But if you get a 0 or 1 return, then you 3813 ** can be sure the expressions are the same. In the places where 3814 ** this routine is used, it does not hurt to get an extra 2 - that 3815 ** just might result in some slightly slower code. But returning 3816 ** an incorrect 0 or 1 could lead to a malfunction. 3817 */ 3818 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 3819 u32 combinedFlags; 3820 if( pA==0 || pB==0 ){ 3821 return pB==pA ? 0 : 2; 3822 } 3823 combinedFlags = pA->flags | pB->flags; 3824 if( combinedFlags & EP_IntValue ){ 3825 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 3826 return 0; 3827 } 3828 return 2; 3829 } 3830 if( pA->op!=pB->op ){ 3831 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 3832 return 1; 3833 } 3834 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 3835 return 1; 3836 } 3837 return 2; 3838 } 3839 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 3840 if( pA->op==TK_FUNCTION ){ 3841 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 3842 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3843 return pA->op==TK_COLLATE ? 1 : 2; 3844 } 3845 } 3846 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3847 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 3848 if( combinedFlags & EP_xIsSelect ) return 2; 3849 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 3850 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 3851 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 3852 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ 3853 if( pA->iColumn!=pB->iColumn ) return 2; 3854 if( pA->iTable!=pB->iTable 3855 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 3856 } 3857 } 3858 return 0; 3859 } 3860 3861 /* 3862 ** Compare two ExprList objects. Return 0 if they are identical and 3863 ** non-zero if they differ in any way. 3864 ** 3865 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3866 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3867 ** 3868 ** This routine might return non-zero for equivalent ExprLists. The 3869 ** only consequence will be disabled optimizations. But this routine 3870 ** must never return 0 if the two ExprList objects are different, or 3871 ** a malfunction will result. 3872 ** 3873 ** Two NULL pointers are considered to be the same. But a NULL pointer 3874 ** always differs from a non-NULL pointer. 3875 */ 3876 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 3877 int i; 3878 if( pA==0 && pB==0 ) return 0; 3879 if( pA==0 || pB==0 ) return 1; 3880 if( pA->nExpr!=pB->nExpr ) return 1; 3881 for(i=0; i<pA->nExpr; i++){ 3882 Expr *pExprA = pA->a[i].pExpr; 3883 Expr *pExprB = pB->a[i].pExpr; 3884 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3885 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 3886 } 3887 return 0; 3888 } 3889 3890 /* 3891 ** Return true if we can prove the pE2 will always be true if pE1 is 3892 ** true. Return false if we cannot complete the proof or if pE2 might 3893 ** be false. Examples: 3894 ** 3895 ** pE1: x==5 pE2: x==5 Result: true 3896 ** pE1: x>0 pE2: x==5 Result: false 3897 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 3898 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 3899 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 3900 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 3901 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 3902 ** 3903 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 3904 ** Expr.iTable<0 then assume a table number given by iTab. 3905 ** 3906 ** When in doubt, return false. Returning true might give a performance 3907 ** improvement. Returning false might cause a performance reduction, but 3908 ** it will always give the correct answer and is hence always safe. 3909 */ 3910 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 3911 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 3912 return 1; 3913 } 3914 if( pE2->op==TK_OR 3915 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 3916 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 3917 ){ 3918 return 1; 3919 } 3920 if( pE2->op==TK_NOTNULL 3921 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 3922 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) 3923 ){ 3924 return 1; 3925 } 3926 return 0; 3927 } 3928 3929 /* 3930 ** An instance of the following structure is used by the tree walker 3931 ** to count references to table columns in the arguments of an 3932 ** aggregate function, in order to implement the 3933 ** sqlite3FunctionThisSrc() routine. 3934 */ 3935 struct SrcCount { 3936 SrcList *pSrc; /* One particular FROM clause in a nested query */ 3937 int nThis; /* Number of references to columns in pSrcList */ 3938 int nOther; /* Number of references to columns in other FROM clauses */ 3939 }; 3940 3941 /* 3942 ** Count the number of references to columns. 3943 */ 3944 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 3945 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 3946 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 3947 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 3948 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 3949 ** NEVER() will need to be removed. */ 3950 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 3951 int i; 3952 struct SrcCount *p = pWalker->u.pSrcCount; 3953 SrcList *pSrc = p->pSrc; 3954 int nSrc = pSrc ? pSrc->nSrc : 0; 3955 for(i=0; i<nSrc; i++){ 3956 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 3957 } 3958 if( i<nSrc ){ 3959 p->nThis++; 3960 }else{ 3961 p->nOther++; 3962 } 3963 } 3964 return WRC_Continue; 3965 } 3966 3967 /* 3968 ** Determine if any of the arguments to the pExpr Function reference 3969 ** pSrcList. Return true if they do. Also return true if the function 3970 ** has no arguments or has only constant arguments. Return false if pExpr 3971 ** references columns but not columns of tables found in pSrcList. 3972 */ 3973 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 3974 Walker w; 3975 struct SrcCount cnt; 3976 assert( pExpr->op==TK_AGG_FUNCTION ); 3977 memset(&w, 0, sizeof(w)); 3978 w.xExprCallback = exprSrcCount; 3979 w.u.pSrcCount = &cnt; 3980 cnt.pSrc = pSrcList; 3981 cnt.nThis = 0; 3982 cnt.nOther = 0; 3983 sqlite3WalkExprList(&w, pExpr->x.pList); 3984 return cnt.nThis>0 || cnt.nOther==0; 3985 } 3986 3987 /* 3988 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3989 ** the new element. Return a negative number if malloc fails. 3990 */ 3991 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3992 int i; 3993 pInfo->aCol = sqlite3ArrayAllocate( 3994 db, 3995 pInfo->aCol, 3996 sizeof(pInfo->aCol[0]), 3997 &pInfo->nColumn, 3998 &i 3999 ); 4000 return i; 4001 } 4002 4003 /* 4004 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 4005 ** the new element. Return a negative number if malloc fails. 4006 */ 4007 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 4008 int i; 4009 pInfo->aFunc = sqlite3ArrayAllocate( 4010 db, 4011 pInfo->aFunc, 4012 sizeof(pInfo->aFunc[0]), 4013 &pInfo->nFunc, 4014 &i 4015 ); 4016 return i; 4017 } 4018 4019 /* 4020 ** This is the xExprCallback for a tree walker. It is used to 4021 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 4022 ** for additional information. 4023 */ 4024 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 4025 int i; 4026 NameContext *pNC = pWalker->u.pNC; 4027 Parse *pParse = pNC->pParse; 4028 SrcList *pSrcList = pNC->pSrcList; 4029 AggInfo *pAggInfo = pNC->pAggInfo; 4030 4031 switch( pExpr->op ){ 4032 case TK_AGG_COLUMN: 4033 case TK_COLUMN: { 4034 testcase( pExpr->op==TK_AGG_COLUMN ); 4035 testcase( pExpr->op==TK_COLUMN ); 4036 /* Check to see if the column is in one of the tables in the FROM 4037 ** clause of the aggregate query */ 4038 if( ALWAYS(pSrcList!=0) ){ 4039 struct SrcList_item *pItem = pSrcList->a; 4040 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 4041 struct AggInfo_col *pCol; 4042 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4043 if( pExpr->iTable==pItem->iCursor ){ 4044 /* If we reach this point, it means that pExpr refers to a table 4045 ** that is in the FROM clause of the aggregate query. 4046 ** 4047 ** Make an entry for the column in pAggInfo->aCol[] if there 4048 ** is not an entry there already. 4049 */ 4050 int k; 4051 pCol = pAggInfo->aCol; 4052 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4053 if( pCol->iTable==pExpr->iTable && 4054 pCol->iColumn==pExpr->iColumn ){ 4055 break; 4056 } 4057 } 4058 if( (k>=pAggInfo->nColumn) 4059 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4060 ){ 4061 pCol = &pAggInfo->aCol[k]; 4062 pCol->pTab = pExpr->pTab; 4063 pCol->iTable = pExpr->iTable; 4064 pCol->iColumn = pExpr->iColumn; 4065 pCol->iMem = ++pParse->nMem; 4066 pCol->iSorterColumn = -1; 4067 pCol->pExpr = pExpr; 4068 if( pAggInfo->pGroupBy ){ 4069 int j, n; 4070 ExprList *pGB = pAggInfo->pGroupBy; 4071 struct ExprList_item *pTerm = pGB->a; 4072 n = pGB->nExpr; 4073 for(j=0; j<n; j++, pTerm++){ 4074 Expr *pE = pTerm->pExpr; 4075 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4076 pE->iColumn==pExpr->iColumn ){ 4077 pCol->iSorterColumn = j; 4078 break; 4079 } 4080 } 4081 } 4082 if( pCol->iSorterColumn<0 ){ 4083 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4084 } 4085 } 4086 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4087 ** because it was there before or because we just created it). 4088 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4089 ** pAggInfo->aCol[] entry. 4090 */ 4091 ExprSetVVAProperty(pExpr, EP_NoReduce); 4092 pExpr->pAggInfo = pAggInfo; 4093 pExpr->op = TK_AGG_COLUMN; 4094 pExpr->iAgg = (i16)k; 4095 break; 4096 } /* endif pExpr->iTable==pItem->iCursor */ 4097 } /* end loop over pSrcList */ 4098 } 4099 return WRC_Prune; 4100 } 4101 case TK_AGG_FUNCTION: { 4102 if( (pNC->ncFlags & NC_InAggFunc)==0 4103 && pWalker->walkerDepth==pExpr->op2 4104 ){ 4105 /* Check to see if pExpr is a duplicate of another aggregate 4106 ** function that is already in the pAggInfo structure 4107 */ 4108 struct AggInfo_func *pItem = pAggInfo->aFunc; 4109 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4110 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 4111 break; 4112 } 4113 } 4114 if( i>=pAggInfo->nFunc ){ 4115 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4116 */ 4117 u8 enc = ENC(pParse->db); 4118 i = addAggInfoFunc(pParse->db, pAggInfo); 4119 if( i>=0 ){ 4120 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4121 pItem = &pAggInfo->aFunc[i]; 4122 pItem->pExpr = pExpr; 4123 pItem->iMem = ++pParse->nMem; 4124 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4125 pItem->pFunc = sqlite3FindFunction(pParse->db, 4126 pExpr->u.zToken, 4127 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4128 if( pExpr->flags & EP_Distinct ){ 4129 pItem->iDistinct = pParse->nTab++; 4130 }else{ 4131 pItem->iDistinct = -1; 4132 } 4133 } 4134 } 4135 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4136 */ 4137 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4138 ExprSetVVAProperty(pExpr, EP_NoReduce); 4139 pExpr->iAgg = (i16)i; 4140 pExpr->pAggInfo = pAggInfo; 4141 return WRC_Prune; 4142 }else{ 4143 return WRC_Continue; 4144 } 4145 } 4146 } 4147 return WRC_Continue; 4148 } 4149 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4150 UNUSED_PARAMETER(pWalker); 4151 UNUSED_PARAMETER(pSelect); 4152 return WRC_Continue; 4153 } 4154 4155 /* 4156 ** Analyze the pExpr expression looking for aggregate functions and 4157 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4158 ** points to. Additional entries are made on the AggInfo object as 4159 ** necessary. 4160 ** 4161 ** This routine should only be called after the expression has been 4162 ** analyzed by sqlite3ResolveExprNames(). 4163 */ 4164 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4165 Walker w; 4166 memset(&w, 0, sizeof(w)); 4167 w.xExprCallback = analyzeAggregate; 4168 w.xSelectCallback = analyzeAggregatesInSelect; 4169 w.u.pNC = pNC; 4170 assert( pNC->pSrcList!=0 ); 4171 sqlite3WalkExpr(&w, pExpr); 4172 } 4173 4174 /* 4175 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4176 ** expression list. Return the number of errors. 4177 ** 4178 ** If an error is found, the analysis is cut short. 4179 */ 4180 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4181 struct ExprList_item *pItem; 4182 int i; 4183 if( pList ){ 4184 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4185 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4186 } 4187 } 4188 } 4189 4190 /* 4191 ** Allocate a single new register for use to hold some intermediate result. 4192 */ 4193 int sqlite3GetTempReg(Parse *pParse){ 4194 if( pParse->nTempReg==0 ){ 4195 return ++pParse->nMem; 4196 } 4197 return pParse->aTempReg[--pParse->nTempReg]; 4198 } 4199 4200 /* 4201 ** Deallocate a register, making available for reuse for some other 4202 ** purpose. 4203 ** 4204 ** If a register is currently being used by the column cache, then 4205 ** the deallocation is deferred until the column cache line that uses 4206 ** the register becomes stale. 4207 */ 4208 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4209 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4210 int i; 4211 struct yColCache *p; 4212 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4213 if( p->iReg==iReg ){ 4214 p->tempReg = 1; 4215 return; 4216 } 4217 } 4218 pParse->aTempReg[pParse->nTempReg++] = iReg; 4219 } 4220 } 4221 4222 /* 4223 ** Allocate or deallocate a block of nReg consecutive registers 4224 */ 4225 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4226 int i, n; 4227 i = pParse->iRangeReg; 4228 n = pParse->nRangeReg; 4229 if( nReg<=n ){ 4230 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4231 pParse->iRangeReg += nReg; 4232 pParse->nRangeReg -= nReg; 4233 }else{ 4234 i = pParse->nMem+1; 4235 pParse->nMem += nReg; 4236 } 4237 return i; 4238 } 4239 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4240 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4241 if( nReg>pParse->nRangeReg ){ 4242 pParse->nRangeReg = nReg; 4243 pParse->iRangeReg = iReg; 4244 } 4245 } 4246 4247 /* 4248 ** Mark all temporary registers as being unavailable for reuse. 4249 */ 4250 void sqlite3ClearTempRegCache(Parse *pParse){ 4251 pParse->nTempReg = 0; 4252 pParse->nRangeReg = 0; 4253 } 4254 4255 /* 4256 ** Validate that no temporary register falls within the range of 4257 ** iFirst..iLast, inclusive. This routine is only call from within assert() 4258 ** statements. 4259 */ 4260 #ifdef SQLITE_DEBUG 4261 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 4262 int i; 4263 if( pParse->nRangeReg>0 4264 && pParse->iRangeReg+pParse->nRangeReg<iLast 4265 && pParse->iRangeReg>=iFirst 4266 ){ 4267 return 0; 4268 } 4269 for(i=0; i<pParse->nTempReg; i++){ 4270 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 4271 return 0; 4272 } 4273 } 4274 return 1; 4275 } 4276 #endif /* SQLITE_DEBUG */ 4277