xref: /sqlite-3.40.0/src/expr.c (revision 9b843f0c)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){
25   if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER;
26   return pTab->aCol[iCol].affinity;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
48     assert( pExpr->op==TK_COLLATE
49          || pExpr->op==TK_IF_NULL_ROW
50          || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
51     pExpr = pExpr->pLeft;
52     assert( pExpr!=0 );
53   }
54   op = pExpr->op;
55   if( op==TK_REGISTER ) op = pExpr->op2;
56   if( op==TK_COLUMN || op==TK_AGG_COLUMN ){
57     assert( ExprUseYTab(pExpr) );
58     if( pExpr->y.pTab ){
59       return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
60     }
61   }
62   if( op==TK_SELECT ){
63     assert( ExprUseXSelect(pExpr) );
64     assert( pExpr->x.pSelect!=0 );
65     assert( pExpr->x.pSelect->pEList!=0 );
66     assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
67     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
68   }
69 #ifndef SQLITE_OMIT_CAST
70   if( op==TK_CAST ){
71     assert( !ExprHasProperty(pExpr, EP_IntValue) );
72     return sqlite3AffinityType(pExpr->u.zToken, 0);
73   }
74 #endif
75   if( op==TK_SELECT_COLUMN ){
76     assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) );
77     assert( pExpr->iColumn < pExpr->iTable );
78     assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr );
79     return sqlite3ExprAffinity(
80         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
81     );
82   }
83   if( op==TK_VECTOR ){
84     assert( ExprUseXList(pExpr) );
85     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
86   }
87   return pExpr->affExpr;
88 }
89 
90 /*
91 ** Set the collating sequence for expression pExpr to be the collating
92 ** sequence named by pToken.   Return a pointer to a new Expr node that
93 ** implements the COLLATE operator.
94 **
95 ** If a memory allocation error occurs, that fact is recorded in pParse->db
96 ** and the pExpr parameter is returned unchanged.
97 */
98 Expr *sqlite3ExprAddCollateToken(
99   const Parse *pParse,     /* Parsing context */
100   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
101   const Token *pCollName,  /* Name of collating sequence */
102   int dequote              /* True to dequote pCollName */
103 ){
104   if( pCollName->n>0 ){
105     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
106     if( pNew ){
107       pNew->pLeft = pExpr;
108       pNew->flags |= EP_Collate|EP_Skip;
109       pExpr = pNew;
110     }
111   }
112   return pExpr;
113 }
114 Expr *sqlite3ExprAddCollateString(
115   const Parse *pParse,  /* Parsing context */
116   Expr *pExpr,          /* Add the "COLLATE" clause to this expression */
117   const char *zC        /* The collating sequence name */
118 ){
119   Token s;
120   assert( zC!=0 );
121   sqlite3TokenInit(&s, (char*)zC);
122   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
123 }
124 
125 /*
126 ** Skip over any TK_COLLATE operators.
127 */
128 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
129   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
130     assert( pExpr->op==TK_COLLATE );
131     pExpr = pExpr->pLeft;
132   }
133   return pExpr;
134 }
135 
136 /*
137 ** Skip over any TK_COLLATE operators and/or any unlikely()
138 ** or likelihood() or likely() functions at the root of an
139 ** expression.
140 */
141 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
142   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
143     if( ExprHasProperty(pExpr, EP_Unlikely) ){
144       assert( ExprUseXList(pExpr) );
145       assert( pExpr->x.pList->nExpr>0 );
146       assert( pExpr->op==TK_FUNCTION );
147       pExpr = pExpr->x.pList->a[0].pExpr;
148     }else{
149       assert( pExpr->op==TK_COLLATE );
150       pExpr = pExpr->pLeft;
151     }
152   }
153   return pExpr;
154 }
155 
156 /*
157 ** Return the collation sequence for the expression pExpr. If
158 ** there is no defined collating sequence, return NULL.
159 **
160 ** See also: sqlite3ExprNNCollSeq()
161 **
162 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
163 ** default collation if pExpr has no defined collation.
164 **
165 ** The collating sequence might be determined by a COLLATE operator
166 ** or by the presence of a column with a defined collating sequence.
167 ** COLLATE operators take first precedence.  Left operands take
168 ** precedence over right operands.
169 */
170 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
171   sqlite3 *db = pParse->db;
172   CollSeq *pColl = 0;
173   const Expr *p = pExpr;
174   while( p ){
175     int op = p->op;
176     if( op==TK_REGISTER ) op = p->op2;
177     if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){
178       assert( ExprUseYTab(p) );
179       if( p->y.pTab!=0 ){
180         /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
181         ** a TK_COLUMN but was previously evaluated and cached in a register */
182         int j = p->iColumn;
183         if( j>=0 ){
184           const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]);
185           pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
186         }
187         break;
188       }
189     }
190     if( op==TK_CAST || op==TK_UPLUS ){
191       p = p->pLeft;
192       continue;
193     }
194     if( op==TK_VECTOR ){
195       assert( ExprUseXList(p) );
196       p = p->x.pList->a[0].pExpr;
197       continue;
198     }
199     if( op==TK_COLLATE ){
200       assert( !ExprHasProperty(p, EP_IntValue) );
201       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
202       break;
203     }
204     if( p->flags & EP_Collate ){
205       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
206         p = p->pLeft;
207       }else{
208         Expr *pNext  = p->pRight;
209         /* The Expr.x union is never used at the same time as Expr.pRight */
210         assert( ExprUseXList(p) );
211         assert( p->x.pList==0 || p->pRight==0 );
212         if( p->x.pList!=0 && !db->mallocFailed ){
213           int i;
214           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
215             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
216               pNext = p->x.pList->a[i].pExpr;
217               break;
218             }
219           }
220         }
221         p = pNext;
222       }
223     }else{
224       break;
225     }
226   }
227   if( sqlite3CheckCollSeq(pParse, pColl) ){
228     pColl = 0;
229   }
230   return pColl;
231 }
232 
233 /*
234 ** Return the collation sequence for the expression pExpr. If
235 ** there is no defined collating sequence, return a pointer to the
236 ** defautl collation sequence.
237 **
238 ** See also: sqlite3ExprCollSeq()
239 **
240 ** The sqlite3ExprCollSeq() routine works the same except that it
241 ** returns NULL if there is no defined collation.
242 */
243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
244   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
245   if( p==0 ) p = pParse->db->pDfltColl;
246   assert( p!=0 );
247   return p;
248 }
249 
250 /*
251 ** Return TRUE if the two expressions have equivalent collating sequences.
252 */
253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
254   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
255   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
256   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
257 }
258 
259 /*
260 ** pExpr is an operand of a comparison operator.  aff2 is the
261 ** type affinity of the other operand.  This routine returns the
262 ** type affinity that should be used for the comparison operator.
263 */
264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
265   char aff1 = sqlite3ExprAffinity(pExpr);
266   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
267     /* Both sides of the comparison are columns. If one has numeric
268     ** affinity, use that. Otherwise use no affinity.
269     */
270     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
271       return SQLITE_AFF_NUMERIC;
272     }else{
273       return SQLITE_AFF_BLOB;
274     }
275   }else{
276     /* One side is a column, the other is not. Use the columns affinity. */
277     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
278     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
279   }
280 }
281 
282 /*
283 ** pExpr is a comparison operator.  Return the type affinity that should
284 ** be applied to both operands prior to doing the comparison.
285 */
286 static char comparisonAffinity(const Expr *pExpr){
287   char aff;
288   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
289           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
290           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
291   assert( pExpr->pLeft );
292   aff = sqlite3ExprAffinity(pExpr->pLeft);
293   if( pExpr->pRight ){
294     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
295   }else if( ExprUseXSelect(pExpr) ){
296     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
297   }else if( aff==0 ){
298     aff = SQLITE_AFF_BLOB;
299   }
300   return aff;
301 }
302 
303 /*
304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
305 ** idx_affinity is the affinity of an indexed column. Return true
306 ** if the index with affinity idx_affinity may be used to implement
307 ** the comparison in pExpr.
308 */
309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
310   char aff = comparisonAffinity(pExpr);
311   if( aff<SQLITE_AFF_TEXT ){
312     return 1;
313   }
314   if( aff==SQLITE_AFF_TEXT ){
315     return idx_affinity==SQLITE_AFF_TEXT;
316   }
317   return sqlite3IsNumericAffinity(idx_affinity);
318 }
319 
320 /*
321 ** Return the P5 value that should be used for a binary comparison
322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
323 */
324 static u8 binaryCompareP5(
325   const Expr *pExpr1,   /* Left operand */
326   const Expr *pExpr2,   /* Right operand */
327   int jumpIfNull        /* Extra flags added to P5 */
328 ){
329   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
330   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
331   return aff;
332 }
333 
334 /*
335 ** Return a pointer to the collation sequence that should be used by
336 ** a binary comparison operator comparing pLeft and pRight.
337 **
338 ** If the left hand expression has a collating sequence type, then it is
339 ** used. Otherwise the collation sequence for the right hand expression
340 ** is used, or the default (BINARY) if neither expression has a collating
341 ** type.
342 **
343 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
344 ** it is not considered.
345 */
346 CollSeq *sqlite3BinaryCompareCollSeq(
347   Parse *pParse,
348   const Expr *pLeft,
349   const Expr *pRight
350 ){
351   CollSeq *pColl;
352   assert( pLeft );
353   if( pLeft->flags & EP_Collate ){
354     pColl = sqlite3ExprCollSeq(pParse, pLeft);
355   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
356     pColl = sqlite3ExprCollSeq(pParse, pRight);
357   }else{
358     pColl = sqlite3ExprCollSeq(pParse, pLeft);
359     if( !pColl ){
360       pColl = sqlite3ExprCollSeq(pParse, pRight);
361     }
362   }
363   return pColl;
364 }
365 
366 /* Expresssion p is a comparison operator.  Return a collation sequence
367 ** appropriate for the comparison operator.
368 **
369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
370 ** However, if the OP_Commuted flag is set, then the order of the operands
371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
372 ** correct collating sequence is found.
373 */
374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
375   if( ExprHasProperty(p, EP_Commuted) ){
376     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
377   }else{
378     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
379   }
380 }
381 
382 /*
383 ** Generate code for a comparison operator.
384 */
385 static int codeCompare(
386   Parse *pParse,    /* The parsing (and code generating) context */
387   Expr *pLeft,      /* The left operand */
388   Expr *pRight,     /* The right operand */
389   int opcode,       /* The comparison opcode */
390   int in1, int in2, /* Register holding operands */
391   int dest,         /* Jump here if true.  */
392   int jumpIfNull,   /* If true, jump if either operand is NULL */
393   int isCommuted    /* The comparison has been commuted */
394 ){
395   int p5;
396   int addr;
397   CollSeq *p4;
398 
399   if( pParse->nErr ) return 0;
400   if( isCommuted ){
401     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
402   }else{
403     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
404   }
405   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
406   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
407                            (void*)p4, P4_COLLSEQ);
408   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
409   return addr;
410 }
411 
412 /*
413 ** Return true if expression pExpr is a vector, or false otherwise.
414 **
415 ** A vector is defined as any expression that results in two or more
416 ** columns of result.  Every TK_VECTOR node is an vector because the
417 ** parser will not generate a TK_VECTOR with fewer than two entries.
418 ** But a TK_SELECT might be either a vector or a scalar. It is only
419 ** considered a vector if it has two or more result columns.
420 */
421 int sqlite3ExprIsVector(const Expr *pExpr){
422   return sqlite3ExprVectorSize(pExpr)>1;
423 }
424 
425 /*
426 ** If the expression passed as the only argument is of type TK_VECTOR
427 ** return the number of expressions in the vector. Or, if the expression
428 ** is a sub-select, return the number of columns in the sub-select. For
429 ** any other type of expression, return 1.
430 */
431 int sqlite3ExprVectorSize(const Expr *pExpr){
432   u8 op = pExpr->op;
433   if( op==TK_REGISTER ) op = pExpr->op2;
434   if( op==TK_VECTOR ){
435     assert( ExprUseXList(pExpr) );
436     return pExpr->x.pList->nExpr;
437   }else if( op==TK_SELECT ){
438     assert( ExprUseXSelect(pExpr) );
439     return pExpr->x.pSelect->pEList->nExpr;
440   }else{
441     return 1;
442   }
443 }
444 
445 /*
446 ** Return a pointer to a subexpression of pVector that is the i-th
447 ** column of the vector (numbered starting with 0).  The caller must
448 ** ensure that i is within range.
449 **
450 ** If pVector is really a scalar (and "scalar" here includes subqueries
451 ** that return a single column!) then return pVector unmodified.
452 **
453 ** pVector retains ownership of the returned subexpression.
454 **
455 ** If the vector is a (SELECT ...) then the expression returned is
456 ** just the expression for the i-th term of the result set, and may
457 ** not be ready for evaluation because the table cursor has not yet
458 ** been positioned.
459 */
460 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
461   assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR );
462   if( sqlite3ExprIsVector(pVector) ){
463     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
464     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
465       assert( ExprUseXSelect(pVector) );
466       return pVector->x.pSelect->pEList->a[i].pExpr;
467     }else{
468       assert( ExprUseXList(pVector) );
469       return pVector->x.pList->a[i].pExpr;
470     }
471   }
472   return pVector;
473 }
474 
475 /*
476 ** Compute and return a new Expr object which when passed to
477 ** sqlite3ExprCode() will generate all necessary code to compute
478 ** the iField-th column of the vector expression pVector.
479 **
480 ** It is ok for pVector to be a scalar (as long as iField==0).
481 ** In that case, this routine works like sqlite3ExprDup().
482 **
483 ** The caller owns the returned Expr object and is responsible for
484 ** ensuring that the returned value eventually gets freed.
485 **
486 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
487 ** then the returned object will reference pVector and so pVector must remain
488 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
489 ** or a scalar expression, then it can be deleted as soon as this routine
490 ** returns.
491 **
492 ** A trick to cause a TK_SELECT pVector to be deleted together with
493 ** the returned Expr object is to attach the pVector to the pRight field
494 ** of the returned TK_SELECT_COLUMN Expr object.
495 */
496 Expr *sqlite3ExprForVectorField(
497   Parse *pParse,       /* Parsing context */
498   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
499   int iField,          /* Which column of the vector to return */
500   int nField           /* Total number of columns in the vector */
501 ){
502   Expr *pRet;
503   if( pVector->op==TK_SELECT ){
504     assert( ExprUseXSelect(pVector) );
505     /* The TK_SELECT_COLUMN Expr node:
506     **
507     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
508     ** pRight:          not used.  But recursively deleted.
509     ** iColumn:         Index of a column in pVector
510     ** iTable:          0 or the number of columns on the LHS of an assignment
511     ** pLeft->iTable:   First in an array of register holding result, or 0
512     **                  if the result is not yet computed.
513     **
514     ** sqlite3ExprDelete() specifically skips the recursive delete of
515     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
516     ** can be attached to pRight to cause this node to take ownership of
517     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
518     ** with the same pLeft pointer to the pVector, but only one of them
519     ** will own the pVector.
520     */
521     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
522     if( pRet ){
523       pRet->iTable = nField;
524       pRet->iColumn = iField;
525       pRet->pLeft = pVector;
526     }
527   }else{
528     if( pVector->op==TK_VECTOR ){
529       Expr **ppVector;
530       assert( ExprUseXList(pVector) );
531       ppVector = &pVector->x.pList->a[iField].pExpr;
532       pVector = *ppVector;
533       if( IN_RENAME_OBJECT ){
534         /* This must be a vector UPDATE inside a trigger */
535         *ppVector = 0;
536         return pVector;
537       }
538     }
539     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
540   }
541   return pRet;
542 }
543 
544 /*
545 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
546 ** it. Return the register in which the result is stored (or, if the
547 ** sub-select returns more than one column, the first in an array
548 ** of registers in which the result is stored).
549 **
550 ** If pExpr is not a TK_SELECT expression, return 0.
551 */
552 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
553   int reg = 0;
554 #ifndef SQLITE_OMIT_SUBQUERY
555   if( pExpr->op==TK_SELECT ){
556     reg = sqlite3CodeSubselect(pParse, pExpr);
557   }
558 #endif
559   return reg;
560 }
561 
562 /*
563 ** Argument pVector points to a vector expression - either a TK_VECTOR
564 ** or TK_SELECT that returns more than one column. This function returns
565 ** the register number of a register that contains the value of
566 ** element iField of the vector.
567 **
568 ** If pVector is a TK_SELECT expression, then code for it must have
569 ** already been generated using the exprCodeSubselect() routine. In this
570 ** case parameter regSelect should be the first in an array of registers
571 ** containing the results of the sub-select.
572 **
573 ** If pVector is of type TK_VECTOR, then code for the requested field
574 ** is generated. In this case (*pRegFree) may be set to the number of
575 ** a temporary register to be freed by the caller before returning.
576 **
577 ** Before returning, output parameter (*ppExpr) is set to point to the
578 ** Expr object corresponding to element iElem of the vector.
579 */
580 static int exprVectorRegister(
581   Parse *pParse,                  /* Parse context */
582   Expr *pVector,                  /* Vector to extract element from */
583   int iField,                     /* Field to extract from pVector */
584   int regSelect,                  /* First in array of registers */
585   Expr **ppExpr,                  /* OUT: Expression element */
586   int *pRegFree                   /* OUT: Temp register to free */
587 ){
588   u8 op = pVector->op;
589   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR );
590   if( op==TK_REGISTER ){
591     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
592     return pVector->iTable+iField;
593   }
594   if( op==TK_SELECT ){
595     assert( ExprUseXSelect(pVector) );
596     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
597      return regSelect+iField;
598   }
599   if( op==TK_VECTOR ){
600     assert( ExprUseXList(pVector) );
601     *ppExpr = pVector->x.pList->a[iField].pExpr;
602     return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
603   }
604   return 0;
605 }
606 
607 /*
608 ** Expression pExpr is a comparison between two vector values. Compute
609 ** the result of the comparison (1, 0, or NULL) and write that
610 ** result into register dest.
611 **
612 ** The caller must satisfy the following preconditions:
613 **
614 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
615 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
616 **    otherwise:                op==pExpr->op and p5==0
617 */
618 static void codeVectorCompare(
619   Parse *pParse,        /* Code generator context */
620   Expr *pExpr,          /* The comparison operation */
621   int dest,             /* Write results into this register */
622   u8 op,                /* Comparison operator */
623   u8 p5                 /* SQLITE_NULLEQ or zero */
624 ){
625   Vdbe *v = pParse->pVdbe;
626   Expr *pLeft = pExpr->pLeft;
627   Expr *pRight = pExpr->pRight;
628   int nLeft = sqlite3ExprVectorSize(pLeft);
629   int i;
630   int regLeft = 0;
631   int regRight = 0;
632   u8 opx = op;
633   int addrCmp = 0;
634   int addrDone = sqlite3VdbeMakeLabel(pParse);
635   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
636 
637   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
638   if( pParse->nErr ) return;
639   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
640     sqlite3ErrorMsg(pParse, "row value misused");
641     return;
642   }
643   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
644        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
645        || pExpr->op==TK_LT || pExpr->op==TK_GT
646        || pExpr->op==TK_LE || pExpr->op==TK_GE
647   );
648   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
649             || (pExpr->op==TK_ISNOT && op==TK_NE) );
650   assert( p5==0 || pExpr->op!=op );
651   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
652 
653   if( op==TK_LE ) opx = TK_LT;
654   if( op==TK_GE ) opx = TK_GT;
655   if( op==TK_NE ) opx = TK_EQ;
656 
657   regLeft = exprCodeSubselect(pParse, pLeft);
658   regRight = exprCodeSubselect(pParse, pRight);
659 
660   sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
661   for(i=0; 1 /*Loop exits by "break"*/; i++){
662     int regFree1 = 0, regFree2 = 0;
663     Expr *pL = 0, *pR = 0;
664     int r1, r2;
665     assert( i>=0 && i<nLeft );
666     if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
667     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
668     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
669     addrCmp = sqlite3VdbeCurrentAddr(v);
670     codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
671     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
672     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
673     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
674     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
675     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
676     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
677     sqlite3ReleaseTempReg(pParse, regFree1);
678     sqlite3ReleaseTempReg(pParse, regFree2);
679     if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
680       addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
681       testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
682       testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
683     }
684     if( p5==SQLITE_NULLEQ ){
685       sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
686     }else{
687       sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
688     }
689     if( i==nLeft-1 ){
690       break;
691     }
692     if( opx==TK_EQ ){
693       sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
694     }else{
695       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
696       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
697       if( i==nLeft-2 ) opx = op;
698     }
699   }
700   sqlite3VdbeJumpHere(v, addrCmp);
701   sqlite3VdbeResolveLabel(v, addrDone);
702   if( op==TK_NE ){
703     sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
704   }
705 }
706 
707 #if SQLITE_MAX_EXPR_DEPTH>0
708 /*
709 ** Check that argument nHeight is less than or equal to the maximum
710 ** expression depth allowed. If it is not, leave an error message in
711 ** pParse.
712 */
713 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
714   int rc = SQLITE_OK;
715   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
716   if( nHeight>mxHeight ){
717     sqlite3ErrorMsg(pParse,
718        "Expression tree is too large (maximum depth %d)", mxHeight
719     );
720     rc = SQLITE_ERROR;
721   }
722   return rc;
723 }
724 
725 /* The following three functions, heightOfExpr(), heightOfExprList()
726 ** and heightOfSelect(), are used to determine the maximum height
727 ** of any expression tree referenced by the structure passed as the
728 ** first argument.
729 **
730 ** If this maximum height is greater than the current value pointed
731 ** to by pnHeight, the second parameter, then set *pnHeight to that
732 ** value.
733 */
734 static void heightOfExpr(const Expr *p, int *pnHeight){
735   if( p ){
736     if( p->nHeight>*pnHeight ){
737       *pnHeight = p->nHeight;
738     }
739   }
740 }
741 static void heightOfExprList(const ExprList *p, int *pnHeight){
742   if( p ){
743     int i;
744     for(i=0; i<p->nExpr; i++){
745       heightOfExpr(p->a[i].pExpr, pnHeight);
746     }
747   }
748 }
749 static void heightOfSelect(const Select *pSelect, int *pnHeight){
750   const Select *p;
751   for(p=pSelect; p; p=p->pPrior){
752     heightOfExpr(p->pWhere, pnHeight);
753     heightOfExpr(p->pHaving, pnHeight);
754     heightOfExpr(p->pLimit, pnHeight);
755     heightOfExprList(p->pEList, pnHeight);
756     heightOfExprList(p->pGroupBy, pnHeight);
757     heightOfExprList(p->pOrderBy, pnHeight);
758   }
759 }
760 
761 /*
762 ** Set the Expr.nHeight variable in the structure passed as an
763 ** argument. An expression with no children, Expr.pList or
764 ** Expr.pSelect member has a height of 1. Any other expression
765 ** has a height equal to the maximum height of any other
766 ** referenced Expr plus one.
767 **
768 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
769 ** if appropriate.
770 */
771 static void exprSetHeight(Expr *p){
772   int nHeight = p->pLeft ? p->pLeft->nHeight : 0;
773   if( p->pRight && p->pRight->nHeight>nHeight ) nHeight = p->pRight->nHeight;
774   if( ExprUseXSelect(p) ){
775     heightOfSelect(p->x.pSelect, &nHeight);
776   }else if( p->x.pList ){
777     heightOfExprList(p->x.pList, &nHeight);
778     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
779   }
780   p->nHeight = nHeight + 1;
781 }
782 
783 /*
784 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
785 ** the height is greater than the maximum allowed expression depth,
786 ** leave an error in pParse.
787 **
788 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
789 ** Expr.flags.
790 */
791 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
792   if( pParse->nErr ) return;
793   exprSetHeight(p);
794   sqlite3ExprCheckHeight(pParse, p->nHeight);
795 }
796 
797 /*
798 ** Return the maximum height of any expression tree referenced
799 ** by the select statement passed as an argument.
800 */
801 int sqlite3SelectExprHeight(const Select *p){
802   int nHeight = 0;
803   heightOfSelect(p, &nHeight);
804   return nHeight;
805 }
806 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
807 /*
808 ** Propagate all EP_Propagate flags from the Expr.x.pList into
809 ** Expr.flags.
810 */
811 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
812   if( pParse->nErr ) return;
813   if( p && ExprUseXList(p) && p->x.pList ){
814     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
815   }
816 }
817 #define exprSetHeight(y)
818 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
819 
820 /*
821 ** This routine is the core allocator for Expr nodes.
822 **
823 ** Construct a new expression node and return a pointer to it.  Memory
824 ** for this node and for the pToken argument is a single allocation
825 ** obtained from sqlite3DbMalloc().  The calling function
826 ** is responsible for making sure the node eventually gets freed.
827 **
828 ** If dequote is true, then the token (if it exists) is dequoted.
829 ** If dequote is false, no dequoting is performed.  The deQuote
830 ** parameter is ignored if pToken is NULL or if the token does not
831 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
832 ** then the EP_DblQuoted flag is set on the expression node.
833 **
834 ** Special case:  If op==TK_INTEGER and pToken points to a string that
835 ** can be translated into a 32-bit integer, then the token is not
836 ** stored in u.zToken.  Instead, the integer values is written
837 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
838 ** is allocated to hold the integer text and the dequote flag is ignored.
839 */
840 Expr *sqlite3ExprAlloc(
841   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
842   int op,                 /* Expression opcode */
843   const Token *pToken,    /* Token argument.  Might be NULL */
844   int dequote             /* True to dequote */
845 ){
846   Expr *pNew;
847   int nExtra = 0;
848   int iValue = 0;
849 
850   assert( db!=0 );
851   if( pToken ){
852     if( op!=TK_INTEGER || pToken->z==0
853           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
854       nExtra = pToken->n+1;
855       assert( iValue>=0 );
856     }
857   }
858   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
859   if( pNew ){
860     memset(pNew, 0, sizeof(Expr));
861     pNew->op = (u8)op;
862     pNew->iAgg = -1;
863     if( pToken ){
864       if( nExtra==0 ){
865         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
866         pNew->u.iValue = iValue;
867       }else{
868         pNew->u.zToken = (char*)&pNew[1];
869         assert( pToken->z!=0 || pToken->n==0 );
870         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
871         pNew->u.zToken[pToken->n] = 0;
872         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
873           sqlite3DequoteExpr(pNew);
874         }
875       }
876     }
877 #if SQLITE_MAX_EXPR_DEPTH>0
878     pNew->nHeight = 1;
879 #endif
880   }
881   return pNew;
882 }
883 
884 /*
885 ** Allocate a new expression node from a zero-terminated token that has
886 ** already been dequoted.
887 */
888 Expr *sqlite3Expr(
889   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
890   int op,                 /* Expression opcode */
891   const char *zToken      /* Token argument.  Might be NULL */
892 ){
893   Token x;
894   x.z = zToken;
895   x.n = sqlite3Strlen30(zToken);
896   return sqlite3ExprAlloc(db, op, &x, 0);
897 }
898 
899 /*
900 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
901 **
902 ** If pRoot==NULL that means that a memory allocation error has occurred.
903 ** In that case, delete the subtrees pLeft and pRight.
904 */
905 void sqlite3ExprAttachSubtrees(
906   sqlite3 *db,
907   Expr *pRoot,
908   Expr *pLeft,
909   Expr *pRight
910 ){
911   if( pRoot==0 ){
912     assert( db->mallocFailed );
913     sqlite3ExprDelete(db, pLeft);
914     sqlite3ExprDelete(db, pRight);
915   }else{
916     if( pRight ){
917       pRoot->pRight = pRight;
918       pRoot->flags |= EP_Propagate & pRight->flags;
919     }
920     if( pLeft ){
921       pRoot->pLeft = pLeft;
922       pRoot->flags |= EP_Propagate & pLeft->flags;
923     }
924     exprSetHeight(pRoot);
925   }
926 }
927 
928 /*
929 ** Allocate an Expr node which joins as many as two subtrees.
930 **
931 ** One or both of the subtrees can be NULL.  Return a pointer to the new
932 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
933 ** free the subtrees and return NULL.
934 */
935 Expr *sqlite3PExpr(
936   Parse *pParse,          /* Parsing context */
937   int op,                 /* Expression opcode */
938   Expr *pLeft,            /* Left operand */
939   Expr *pRight            /* Right operand */
940 ){
941   Expr *p;
942   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
943   if( p ){
944     memset(p, 0, sizeof(Expr));
945     p->op = op & 0xff;
946     p->iAgg = -1;
947     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
948     sqlite3ExprCheckHeight(pParse, p->nHeight);
949   }else{
950     sqlite3ExprDelete(pParse->db, pLeft);
951     sqlite3ExprDelete(pParse->db, pRight);
952   }
953   return p;
954 }
955 
956 /*
957 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
958 ** do a memory allocation failure) then delete the pSelect object.
959 */
960 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
961   if( pExpr ){
962     pExpr->x.pSelect = pSelect;
963     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
964     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
965   }else{
966     assert( pParse->db->mallocFailed );
967     sqlite3SelectDelete(pParse->db, pSelect);
968   }
969 }
970 
971 /*
972 ** Expression list pEList is a list of vector values. This function
973 ** converts the contents of pEList to a VALUES(...) Select statement
974 ** returning 1 row for each element of the list. For example, the
975 ** expression list:
976 **
977 **   ( (1,2), (3,4) (5,6) )
978 **
979 ** is translated to the equivalent of:
980 **
981 **   VALUES(1,2), (3,4), (5,6)
982 **
983 ** Each of the vector values in pEList must contain exactly nElem terms.
984 ** If a list element that is not a vector or does not contain nElem terms,
985 ** an error message is left in pParse.
986 **
987 ** This is used as part of processing IN(...) expressions with a list
988 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))".
989 */
990 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){
991   int ii;
992   Select *pRet = 0;
993   assert( nElem>1 );
994   for(ii=0; ii<pEList->nExpr; ii++){
995     Select *pSel;
996     Expr *pExpr = pEList->a[ii].pExpr;
997     int nExprElem;
998     if( pExpr->op==TK_VECTOR ){
999       assert( ExprUseXList(pExpr) );
1000       nExprElem = pExpr->x.pList->nExpr;
1001     }else{
1002       nExprElem = 1;
1003     }
1004     if( nExprElem!=nElem ){
1005       sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d",
1006           nExprElem, nExprElem>1?"s":"", nElem
1007       );
1008       break;
1009     }
1010     assert( ExprUseXList(pExpr) );
1011     pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0);
1012     pExpr->x.pList = 0;
1013     if( pSel ){
1014       if( pRet ){
1015         pSel->op = TK_ALL;
1016         pSel->pPrior = pRet;
1017       }
1018       pRet = pSel;
1019     }
1020   }
1021 
1022   if( pRet && pRet->pPrior ){
1023     pRet->selFlags |= SF_MultiValue;
1024   }
1025   sqlite3ExprListDelete(pParse->db, pEList);
1026   return pRet;
1027 }
1028 
1029 /*
1030 ** Join two expressions using an AND operator.  If either expression is
1031 ** NULL, then just return the other expression.
1032 **
1033 ** If one side or the other of the AND is known to be false, then instead
1034 ** of returning an AND expression, just return a constant expression with
1035 ** a value of false.
1036 */
1037 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
1038   sqlite3 *db = pParse->db;
1039   if( pLeft==0  ){
1040     return pRight;
1041   }else if( pRight==0 ){
1042     return pLeft;
1043   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
1044          && !IN_RENAME_OBJECT
1045   ){
1046     sqlite3ExprDeferredDelete(pParse, pLeft);
1047     sqlite3ExprDeferredDelete(pParse, pRight);
1048     return sqlite3Expr(db, TK_INTEGER, "0");
1049   }else{
1050     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
1051   }
1052 }
1053 
1054 /*
1055 ** Construct a new expression node for a function with multiple
1056 ** arguments.
1057 */
1058 Expr *sqlite3ExprFunction(
1059   Parse *pParse,        /* Parsing context */
1060   ExprList *pList,      /* Argument list */
1061   const Token *pToken,  /* Name of the function */
1062   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
1063 ){
1064   Expr *pNew;
1065   sqlite3 *db = pParse->db;
1066   assert( pToken );
1067   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
1068   if( pNew==0 ){
1069     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
1070     return 0;
1071   }
1072   pNew->w.iOfst = (int)(pToken->z - pParse->zTail);
1073   if( pList
1074    && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG]
1075    && !pParse->nested
1076   ){
1077     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
1078   }
1079   pNew->x.pList = pList;
1080   ExprSetProperty(pNew, EP_HasFunc);
1081   assert( ExprUseXList(pNew) );
1082   sqlite3ExprSetHeightAndFlags(pParse, pNew);
1083   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
1084   return pNew;
1085 }
1086 
1087 /*
1088 ** Check to see if a function is usable according to current access
1089 ** rules:
1090 **
1091 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
1092 **
1093 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
1094 **                                top-level SQL
1095 **
1096 ** If the function is not usable, create an error.
1097 */
1098 void sqlite3ExprFunctionUsable(
1099   Parse *pParse,         /* Parsing and code generating context */
1100   const Expr *pExpr,     /* The function invocation */
1101   const FuncDef *pDef    /* The function being invoked */
1102 ){
1103   assert( !IN_RENAME_OBJECT );
1104   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1105   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1106     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1107      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1108     ){
1109       /* Functions prohibited in triggers and views if:
1110       **     (1) tagged with SQLITE_DIRECTONLY
1111       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1112       **         is tagged with SQLITE_FUNC_UNSAFE) and
1113       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1114       **         that the schema is possibly tainted).
1115       */
1116       sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr);
1117     }
1118   }
1119 }
1120 
1121 /*
1122 ** Assign a variable number to an expression that encodes a wildcard
1123 ** in the original SQL statement.
1124 **
1125 ** Wildcards consisting of a single "?" are assigned the next sequential
1126 ** variable number.
1127 **
1128 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1129 ** sure "nnn" is not too big to avoid a denial of service attack when
1130 ** the SQL statement comes from an external source.
1131 **
1132 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1133 ** as the previous instance of the same wildcard.  Or if this is the first
1134 ** instance of the wildcard, the next sequential variable number is
1135 ** assigned.
1136 */
1137 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1138   sqlite3 *db = pParse->db;
1139   const char *z;
1140   ynVar x;
1141 
1142   if( pExpr==0 ) return;
1143   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1144   z = pExpr->u.zToken;
1145   assert( z!=0 );
1146   assert( z[0]!=0 );
1147   assert( n==(u32)sqlite3Strlen30(z) );
1148   if( z[1]==0 ){
1149     /* Wildcard of the form "?".  Assign the next variable number */
1150     assert( z[0]=='?' );
1151     x = (ynVar)(++pParse->nVar);
1152   }else{
1153     int doAdd = 0;
1154     if( z[0]=='?' ){
1155       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1156       ** use it as the variable number */
1157       i64 i;
1158       int bOk;
1159       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1160         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1161         bOk = 1;
1162       }else{
1163         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1164       }
1165       testcase( i==0 );
1166       testcase( i==1 );
1167       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1168       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1169       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1170         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1171             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1172         sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
1173         return;
1174       }
1175       x = (ynVar)i;
1176       if( x>pParse->nVar ){
1177         pParse->nVar = (int)x;
1178         doAdd = 1;
1179       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1180         doAdd = 1;
1181       }
1182     }else{
1183       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1184       ** number as the prior appearance of the same name, or if the name
1185       ** has never appeared before, reuse the same variable number
1186       */
1187       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1188       if( x==0 ){
1189         x = (ynVar)(++pParse->nVar);
1190         doAdd = 1;
1191       }
1192     }
1193     if( doAdd ){
1194       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1195     }
1196   }
1197   pExpr->iColumn = x;
1198   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1199     sqlite3ErrorMsg(pParse, "too many SQL variables");
1200     sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
1201   }
1202 }
1203 
1204 /*
1205 ** Recursively delete an expression tree.
1206 */
1207 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1208   assert( p!=0 );
1209   assert( !ExprUseUValue(p) || p->u.iValue>=0 );
1210   assert( !ExprUseYWin(p) || !ExprUseYSub(p) );
1211   assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed );
1212   assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) );
1213 #ifdef SQLITE_DEBUG
1214   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1215     assert( p->pLeft==0 );
1216     assert( p->pRight==0 );
1217     assert( !ExprUseXSelect(p) || p->x.pSelect==0 );
1218     assert( !ExprUseXList(p) || p->x.pList==0 );
1219   }
1220 #endif
1221   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1222     /* The Expr.x union is never used at the same time as Expr.pRight */
1223     assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 );
1224     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1225     if( p->pRight ){
1226       assert( !ExprHasProperty(p, EP_WinFunc) );
1227       sqlite3ExprDeleteNN(db, p->pRight);
1228     }else if( ExprUseXSelect(p) ){
1229       assert( !ExprHasProperty(p, EP_WinFunc) );
1230       sqlite3SelectDelete(db, p->x.pSelect);
1231     }else{
1232       sqlite3ExprListDelete(db, p->x.pList);
1233 #ifndef SQLITE_OMIT_WINDOWFUNC
1234       if( ExprHasProperty(p, EP_WinFunc) ){
1235         sqlite3WindowDelete(db, p->y.pWin);
1236       }
1237 #endif
1238     }
1239   }
1240   if( ExprHasProperty(p, EP_MemToken) ){
1241     assert( !ExprHasProperty(p, EP_IntValue) );
1242     sqlite3DbFree(db, p->u.zToken);
1243   }
1244   if( !ExprHasProperty(p, EP_Static) ){
1245     sqlite3DbFreeNN(db, p);
1246   }
1247 }
1248 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1249   if( p ) sqlite3ExprDeleteNN(db, p);
1250 }
1251 
1252 /*
1253 ** Clear both elements of an OnOrUsing object
1254 */
1255 void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){
1256   if( p==0 ){
1257     /* Nothing to clear */
1258   }else if( p->pOn ){
1259     sqlite3ExprDeleteNN(db, p->pOn);
1260   }else if( p->pUsing ){
1261     sqlite3IdListDelete(db, p->pUsing);
1262   }
1263 }
1264 
1265 /*
1266 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1267 ** This is similar to sqlite3ExprDelete() except that the delete is
1268 ** deferred untilthe pParse is deleted.
1269 **
1270 ** The pExpr might be deleted immediately on an OOM error.
1271 **
1272 ** The deferred delete is (currently) implemented by adding the
1273 ** pExpr to the pParse->pConstExpr list with a register number of 0.
1274 */
1275 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
1276   pParse->pConstExpr =
1277       sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
1278 }
1279 
1280 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1281 ** expression.
1282 */
1283 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1284   if( p ){
1285     if( IN_RENAME_OBJECT ){
1286       sqlite3RenameExprUnmap(pParse, p);
1287     }
1288     sqlite3ExprDeleteNN(pParse->db, p);
1289   }
1290 }
1291 
1292 /*
1293 ** Return the number of bytes allocated for the expression structure
1294 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1295 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1296 */
1297 static int exprStructSize(const Expr *p){
1298   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1299   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1300   return EXPR_FULLSIZE;
1301 }
1302 
1303 /*
1304 ** The dupedExpr*Size() routines each return the number of bytes required
1305 ** to store a copy of an expression or expression tree.  They differ in
1306 ** how much of the tree is measured.
1307 **
1308 **     dupedExprStructSize()     Size of only the Expr structure
1309 **     dupedExprNodeSize()       Size of Expr + space for token
1310 **     dupedExprSize()           Expr + token + subtree components
1311 **
1312 ***************************************************************************
1313 **
1314 ** The dupedExprStructSize() function returns two values OR-ed together:
1315 ** (1) the space required for a copy of the Expr structure only and
1316 ** (2) the EP_xxx flags that indicate what the structure size should be.
1317 ** The return values is always one of:
1318 **
1319 **      EXPR_FULLSIZE
1320 **      EXPR_REDUCEDSIZE   | EP_Reduced
1321 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1322 **
1323 ** The size of the structure can be found by masking the return value
1324 ** of this routine with 0xfff.  The flags can be found by masking the
1325 ** return value with EP_Reduced|EP_TokenOnly.
1326 **
1327 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1328 ** (unreduced) Expr objects as they or originally constructed by the parser.
1329 ** During expression analysis, extra information is computed and moved into
1330 ** later parts of the Expr object and that extra information might get chopped
1331 ** off if the expression is reduced.  Note also that it does not work to
1332 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1333 ** to reduce a pristine expression tree from the parser.  The implementation
1334 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1335 ** to enforce this constraint.
1336 */
1337 static int dupedExprStructSize(const Expr *p, int flags){
1338   int nSize;
1339   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1340   assert( EXPR_FULLSIZE<=0xfff );
1341   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1342   if( 0==flags || p->op==TK_SELECT_COLUMN
1343 #ifndef SQLITE_OMIT_WINDOWFUNC
1344    || ExprHasProperty(p, EP_WinFunc)
1345 #endif
1346   ){
1347     nSize = EXPR_FULLSIZE;
1348   }else{
1349     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1350     assert( !ExprHasProperty(p, EP_FromJoin) );
1351     assert( !ExprHasProperty(p, EP_MemToken) );
1352     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1353     if( p->pLeft || p->x.pList ){
1354       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1355     }else{
1356       assert( p->pRight==0 );
1357       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1358     }
1359   }
1360   return nSize;
1361 }
1362 
1363 /*
1364 ** This function returns the space in bytes required to store the copy
1365 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1366 ** string is defined.)
1367 */
1368 static int dupedExprNodeSize(const Expr *p, int flags){
1369   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1370   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1371     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1372   }
1373   return ROUND8(nByte);
1374 }
1375 
1376 /*
1377 ** Return the number of bytes required to create a duplicate of the
1378 ** expression passed as the first argument. The second argument is a
1379 ** mask containing EXPRDUP_XXX flags.
1380 **
1381 ** The value returned includes space to create a copy of the Expr struct
1382 ** itself and the buffer referred to by Expr.u.zToken, if any.
1383 **
1384 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1385 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1386 ** and Expr.pRight variables (but not for any structures pointed to or
1387 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1388 */
1389 static int dupedExprSize(const Expr *p, int flags){
1390   int nByte = 0;
1391   if( p ){
1392     nByte = dupedExprNodeSize(p, flags);
1393     if( flags&EXPRDUP_REDUCE ){
1394       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1395     }
1396   }
1397   return nByte;
1398 }
1399 
1400 /*
1401 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1402 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1403 ** to store the copy of expression p, the copies of p->u.zToken
1404 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1405 ** if any. Before returning, *pzBuffer is set to the first byte past the
1406 ** portion of the buffer copied into by this function.
1407 */
1408 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){
1409   Expr *pNew;           /* Value to return */
1410   u8 *zAlloc;           /* Memory space from which to build Expr object */
1411   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1412 
1413   assert( db!=0 );
1414   assert( p );
1415   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1416   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1417 
1418   /* Figure out where to write the new Expr structure. */
1419   if( pzBuffer ){
1420     zAlloc = *pzBuffer;
1421     staticFlag = EP_Static;
1422     assert( zAlloc!=0 );
1423   }else{
1424     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1425     staticFlag = 0;
1426   }
1427   pNew = (Expr *)zAlloc;
1428 
1429   if( pNew ){
1430     /* Set nNewSize to the size allocated for the structure pointed to
1431     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1432     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1433     ** by the copy of the p->u.zToken string (if any).
1434     */
1435     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1436     const int nNewSize = nStructSize & 0xfff;
1437     int nToken;
1438     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1439       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1440     }else{
1441       nToken = 0;
1442     }
1443     if( dupFlags ){
1444       assert( ExprHasProperty(p, EP_Reduced)==0 );
1445       memcpy(zAlloc, p, nNewSize);
1446     }else{
1447       u32 nSize = (u32)exprStructSize(p);
1448       memcpy(zAlloc, p, nSize);
1449       if( nSize<EXPR_FULLSIZE ){
1450         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1451       }
1452     }
1453 
1454     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1455     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1456     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1457     pNew->flags |= staticFlag;
1458     ExprClearVVAProperties(pNew);
1459     if( dupFlags ){
1460       ExprSetVVAProperty(pNew, EP_Immutable);
1461     }
1462 
1463     /* Copy the p->u.zToken string, if any. */
1464     if( nToken ){
1465       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1466       memcpy(zToken, p->u.zToken, nToken);
1467     }
1468 
1469     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1470       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1471       if( ExprUseXSelect(p) ){
1472         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1473       }else{
1474         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1475       }
1476     }
1477 
1478     /* Fill in pNew->pLeft and pNew->pRight. */
1479     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1480       zAlloc += dupedExprNodeSize(p, dupFlags);
1481       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1482         pNew->pLeft = p->pLeft ?
1483                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1484         pNew->pRight = p->pRight ?
1485                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1486       }
1487 #ifndef SQLITE_OMIT_WINDOWFUNC
1488       if( ExprHasProperty(p, EP_WinFunc) ){
1489         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1490         assert( ExprHasProperty(pNew, EP_WinFunc) );
1491       }
1492 #endif /* SQLITE_OMIT_WINDOWFUNC */
1493       if( pzBuffer ){
1494         *pzBuffer = zAlloc;
1495       }
1496     }else{
1497       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1498         if( pNew->op==TK_SELECT_COLUMN ){
1499           pNew->pLeft = p->pLeft;
1500           assert( p->pRight==0  || p->pRight==p->pLeft
1501                                 || ExprHasProperty(p->pLeft, EP_Subquery) );
1502         }else{
1503           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1504         }
1505         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1506       }
1507     }
1508   }
1509   return pNew;
1510 }
1511 
1512 /*
1513 ** Create and return a deep copy of the object passed as the second
1514 ** argument. If an OOM condition is encountered, NULL is returned
1515 ** and the db->mallocFailed flag set.
1516 */
1517 #ifndef SQLITE_OMIT_CTE
1518 With *sqlite3WithDup(sqlite3 *db, With *p){
1519   With *pRet = 0;
1520   if( p ){
1521     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1522     pRet = sqlite3DbMallocZero(db, nByte);
1523     if( pRet ){
1524       int i;
1525       pRet->nCte = p->nCte;
1526       for(i=0; i<p->nCte; i++){
1527         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1528         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1529         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1530       }
1531     }
1532   }
1533   return pRet;
1534 }
1535 #else
1536 # define sqlite3WithDup(x,y) 0
1537 #endif
1538 
1539 #ifndef SQLITE_OMIT_WINDOWFUNC
1540 /*
1541 ** The gatherSelectWindows() procedure and its helper routine
1542 ** gatherSelectWindowsCallback() are used to scan all the expressions
1543 ** an a newly duplicated SELECT statement and gather all of the Window
1544 ** objects found there, assembling them onto the linked list at Select->pWin.
1545 */
1546 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1547   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1548     Select *pSelect = pWalker->u.pSelect;
1549     Window *pWin = pExpr->y.pWin;
1550     assert( pWin );
1551     assert( IsWindowFunc(pExpr) );
1552     assert( pWin->ppThis==0 );
1553     sqlite3WindowLink(pSelect, pWin);
1554   }
1555   return WRC_Continue;
1556 }
1557 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1558   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1559 }
1560 static void gatherSelectWindows(Select *p){
1561   Walker w;
1562   w.xExprCallback = gatherSelectWindowsCallback;
1563   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1564   w.xSelectCallback2 = 0;
1565   w.pParse = 0;
1566   w.u.pSelect = p;
1567   sqlite3WalkSelect(&w, p);
1568 }
1569 #endif
1570 
1571 
1572 /*
1573 ** The following group of routines make deep copies of expressions,
1574 ** expression lists, ID lists, and select statements.  The copies can
1575 ** be deleted (by being passed to their respective ...Delete() routines)
1576 ** without effecting the originals.
1577 **
1578 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1579 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1580 ** by subsequent calls to sqlite*ListAppend() routines.
1581 **
1582 ** Any tables that the SrcList might point to are not duplicated.
1583 **
1584 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1585 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1586 ** truncated version of the usual Expr structure that will be stored as
1587 ** part of the in-memory representation of the database schema.
1588 */
1589 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){
1590   assert( flags==0 || flags==EXPRDUP_REDUCE );
1591   return p ? exprDup(db, p, flags, 0) : 0;
1592 }
1593 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){
1594   ExprList *pNew;
1595   struct ExprList_item *pItem;
1596   const struct ExprList_item *pOldItem;
1597   int i;
1598   Expr *pPriorSelectColOld = 0;
1599   Expr *pPriorSelectColNew = 0;
1600   assert( db!=0 );
1601   if( p==0 ) return 0;
1602   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1603   if( pNew==0 ) return 0;
1604   pNew->nExpr = p->nExpr;
1605   pNew->nAlloc = p->nAlloc;
1606   pItem = pNew->a;
1607   pOldItem = p->a;
1608   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1609     Expr *pOldExpr = pOldItem->pExpr;
1610     Expr *pNewExpr;
1611     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1612     if( pOldExpr
1613      && pOldExpr->op==TK_SELECT_COLUMN
1614      && (pNewExpr = pItem->pExpr)!=0
1615     ){
1616       if( pNewExpr->pRight ){
1617         pPriorSelectColOld = pOldExpr->pRight;
1618         pPriorSelectColNew = pNewExpr->pRight;
1619         pNewExpr->pLeft = pNewExpr->pRight;
1620       }else{
1621         if( pOldExpr->pLeft!=pPriorSelectColOld ){
1622           pPriorSelectColOld = pOldExpr->pLeft;
1623           pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags);
1624           pNewExpr->pRight = pPriorSelectColNew;
1625         }
1626         pNewExpr->pLeft = pPriorSelectColNew;
1627       }
1628     }
1629     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1630     pItem->sortFlags = pOldItem->sortFlags;
1631     pItem->eEName = pOldItem->eEName;
1632     pItem->done = 0;
1633     pItem->bNulls = pOldItem->bNulls;
1634     pItem->bUsed = pOldItem->bUsed;
1635     pItem->bSorterRef = pOldItem->bSorterRef;
1636     pItem->u = pOldItem->u;
1637   }
1638   return pNew;
1639 }
1640 
1641 /*
1642 ** If cursors, triggers, views and subqueries are all omitted from
1643 ** the build, then none of the following routines, except for
1644 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1645 ** called with a NULL argument.
1646 */
1647 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1648  || !defined(SQLITE_OMIT_SUBQUERY)
1649 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){
1650   SrcList *pNew;
1651   int i;
1652   int nByte;
1653   assert( db!=0 );
1654   if( p==0 ) return 0;
1655   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1656   pNew = sqlite3DbMallocRawNN(db, nByte );
1657   if( pNew==0 ) return 0;
1658   pNew->nSrc = pNew->nAlloc = p->nSrc;
1659   for(i=0; i<p->nSrc; i++){
1660     SrcItem *pNewItem = &pNew->a[i];
1661     const SrcItem *pOldItem = &p->a[i];
1662     Table *pTab;
1663     pNewItem->pSchema = pOldItem->pSchema;
1664     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1665     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1666     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1667     pNewItem->fg = pOldItem->fg;
1668     pNewItem->iCursor = pOldItem->iCursor;
1669     pNewItem->addrFillSub = pOldItem->addrFillSub;
1670     pNewItem->regReturn = pOldItem->regReturn;
1671     if( pNewItem->fg.isIndexedBy ){
1672       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1673     }
1674     pNewItem->u2 = pOldItem->u2;
1675     if( pNewItem->fg.isCte ){
1676       pNewItem->u2.pCteUse->nUse++;
1677     }
1678     if( pNewItem->fg.isTabFunc ){
1679       pNewItem->u1.pFuncArg =
1680           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1681     }
1682     pTab = pNewItem->pTab = pOldItem->pTab;
1683     if( pTab ){
1684       pTab->nTabRef++;
1685     }
1686     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1687     if( pOldItem->fg.isUsing ){
1688       assert( pNewItem->fg.isUsing );
1689       pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing);
1690     }else{
1691       pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags);
1692     }
1693     pNewItem->colUsed = pOldItem->colUsed;
1694   }
1695   return pNew;
1696 }
1697 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){
1698   IdList *pNew;
1699   int i;
1700   assert( db!=0 );
1701   if( p==0 ) return 0;
1702   assert( p->eU4!=EU4_EXPR );
1703   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) );
1704   if( pNew==0 ) return 0;
1705   pNew->nId = p->nId;
1706   pNew->eU4 = p->eU4;
1707   for(i=0; i<p->nId; i++){
1708     struct IdList_item *pNewItem = &pNew->a[i];
1709     const struct IdList_item *pOldItem = &p->a[i];
1710     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1711     pNewItem->u4 = pOldItem->u4;
1712   }
1713   return pNew;
1714 }
1715 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){
1716   Select *pRet = 0;
1717   Select *pNext = 0;
1718   Select **pp = &pRet;
1719   const Select *p;
1720 
1721   assert( db!=0 );
1722   for(p=pDup; p; p=p->pPrior){
1723     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1724     if( pNew==0 ) break;
1725     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1726     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1727     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1728     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1729     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1730     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1731     pNew->op = p->op;
1732     pNew->pNext = pNext;
1733     pNew->pPrior = 0;
1734     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1735     pNew->iLimit = 0;
1736     pNew->iOffset = 0;
1737     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1738     pNew->addrOpenEphm[0] = -1;
1739     pNew->addrOpenEphm[1] = -1;
1740     pNew->nSelectRow = p->nSelectRow;
1741     pNew->pWith = sqlite3WithDup(db, p->pWith);
1742 #ifndef SQLITE_OMIT_WINDOWFUNC
1743     pNew->pWin = 0;
1744     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1745     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1746 #endif
1747     pNew->selId = p->selId;
1748     if( db->mallocFailed ){
1749       /* Any prior OOM might have left the Select object incomplete.
1750       ** Delete the whole thing rather than allow an incomplete Select
1751       ** to be used by the code generator. */
1752       pNew->pNext = 0;
1753       sqlite3SelectDelete(db, pNew);
1754       break;
1755     }
1756     *pp = pNew;
1757     pp = &pNew->pPrior;
1758     pNext = pNew;
1759   }
1760 
1761   return pRet;
1762 }
1763 #else
1764 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){
1765   assert( p==0 );
1766   return 0;
1767 }
1768 #endif
1769 
1770 
1771 /*
1772 ** Add a new element to the end of an expression list.  If pList is
1773 ** initially NULL, then create a new expression list.
1774 **
1775 ** The pList argument must be either NULL or a pointer to an ExprList
1776 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1777 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1778 ** Reason:  This routine assumes that the number of slots in pList->a[]
1779 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1780 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1781 **
1782 ** If a memory allocation error occurs, the entire list is freed and
1783 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1784 ** that the new entry was successfully appended.
1785 */
1786 static const struct ExprList_item zeroItem = {0};
1787 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
1788   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1789   Expr *pExpr             /* Expression to be appended. Might be NULL */
1790 ){
1791   struct ExprList_item *pItem;
1792   ExprList *pList;
1793 
1794   pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
1795   if( pList==0 ){
1796     sqlite3ExprDelete(db, pExpr);
1797     return 0;
1798   }
1799   pList->nAlloc = 4;
1800   pList->nExpr = 1;
1801   pItem = &pList->a[0];
1802   *pItem = zeroItem;
1803   pItem->pExpr = pExpr;
1804   return pList;
1805 }
1806 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
1807   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1808   ExprList *pList,        /* List to which to append. Might be NULL */
1809   Expr *pExpr             /* Expression to be appended. Might be NULL */
1810 ){
1811   struct ExprList_item *pItem;
1812   ExprList *pNew;
1813   pList->nAlloc *= 2;
1814   pNew = sqlite3DbRealloc(db, pList,
1815        sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
1816   if( pNew==0 ){
1817     sqlite3ExprListDelete(db, pList);
1818     sqlite3ExprDelete(db, pExpr);
1819     return 0;
1820   }else{
1821     pList = pNew;
1822   }
1823   pItem = &pList->a[pList->nExpr++];
1824   *pItem = zeroItem;
1825   pItem->pExpr = pExpr;
1826   return pList;
1827 }
1828 ExprList *sqlite3ExprListAppend(
1829   Parse *pParse,          /* Parsing context */
1830   ExprList *pList,        /* List to which to append. Might be NULL */
1831   Expr *pExpr             /* Expression to be appended. Might be NULL */
1832 ){
1833   struct ExprList_item *pItem;
1834   if( pList==0 ){
1835     return sqlite3ExprListAppendNew(pParse->db,pExpr);
1836   }
1837   if( pList->nAlloc<pList->nExpr+1 ){
1838     return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
1839   }
1840   pItem = &pList->a[pList->nExpr++];
1841   *pItem = zeroItem;
1842   pItem->pExpr = pExpr;
1843   return pList;
1844 }
1845 
1846 /*
1847 ** pColumns and pExpr form a vector assignment which is part of the SET
1848 ** clause of an UPDATE statement.  Like this:
1849 **
1850 **        (a,b,c) = (expr1,expr2,expr3)
1851 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1852 **
1853 ** For each term of the vector assignment, append new entries to the
1854 ** expression list pList.  In the case of a subquery on the RHS, append
1855 ** TK_SELECT_COLUMN expressions.
1856 */
1857 ExprList *sqlite3ExprListAppendVector(
1858   Parse *pParse,         /* Parsing context */
1859   ExprList *pList,       /* List to which to append. Might be NULL */
1860   IdList *pColumns,      /* List of names of LHS of the assignment */
1861   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1862 ){
1863   sqlite3 *db = pParse->db;
1864   int n;
1865   int i;
1866   int iFirst = pList ? pList->nExpr : 0;
1867   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1868   ** exit prior to this routine being invoked */
1869   if( NEVER(pColumns==0) ) goto vector_append_error;
1870   if( pExpr==0 ) goto vector_append_error;
1871 
1872   /* If the RHS is a vector, then we can immediately check to see that
1873   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1874   ** wildcards ("*") in the result set of the SELECT must be expanded before
1875   ** we can do the size check, so defer the size check until code generation.
1876   */
1877   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1878     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1879                     pColumns->nId, n);
1880     goto vector_append_error;
1881   }
1882 
1883   for(i=0; i<pColumns->nId; i++){
1884     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId);
1885     assert( pSubExpr!=0 || db->mallocFailed );
1886     if( pSubExpr==0 ) continue;
1887     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1888     if( pList ){
1889       assert( pList->nExpr==iFirst+i+1 );
1890       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1891       pColumns->a[i].zName = 0;
1892     }
1893   }
1894 
1895   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1896     Expr *pFirst = pList->a[iFirst].pExpr;
1897     assert( pFirst!=0 );
1898     assert( pFirst->op==TK_SELECT_COLUMN );
1899 
1900     /* Store the SELECT statement in pRight so it will be deleted when
1901     ** sqlite3ExprListDelete() is called */
1902     pFirst->pRight = pExpr;
1903     pExpr = 0;
1904 
1905     /* Remember the size of the LHS in iTable so that we can check that
1906     ** the RHS and LHS sizes match during code generation. */
1907     pFirst->iTable = pColumns->nId;
1908   }
1909 
1910 vector_append_error:
1911   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1912   sqlite3IdListDelete(db, pColumns);
1913   return pList;
1914 }
1915 
1916 /*
1917 ** Set the sort order for the last element on the given ExprList.
1918 */
1919 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1920   struct ExprList_item *pItem;
1921   if( p==0 ) return;
1922   assert( p->nExpr>0 );
1923 
1924   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1925   assert( iSortOrder==SQLITE_SO_UNDEFINED
1926        || iSortOrder==SQLITE_SO_ASC
1927        || iSortOrder==SQLITE_SO_DESC
1928   );
1929   assert( eNulls==SQLITE_SO_UNDEFINED
1930        || eNulls==SQLITE_SO_ASC
1931        || eNulls==SQLITE_SO_DESC
1932   );
1933 
1934   pItem = &p->a[p->nExpr-1];
1935   assert( pItem->bNulls==0 );
1936   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1937     iSortOrder = SQLITE_SO_ASC;
1938   }
1939   pItem->sortFlags = (u8)iSortOrder;
1940 
1941   if( eNulls!=SQLITE_SO_UNDEFINED ){
1942     pItem->bNulls = 1;
1943     if( iSortOrder!=eNulls ){
1944       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1945     }
1946   }
1947 }
1948 
1949 /*
1950 ** Set the ExprList.a[].zEName element of the most recently added item
1951 ** on the expression list.
1952 **
1953 ** pList might be NULL following an OOM error.  But pName should never be
1954 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1955 ** is set.
1956 */
1957 void sqlite3ExprListSetName(
1958   Parse *pParse,          /* Parsing context */
1959   ExprList *pList,        /* List to which to add the span. */
1960   const Token *pName,     /* Name to be added */
1961   int dequote             /* True to cause the name to be dequoted */
1962 ){
1963   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1964   assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1965   if( pList ){
1966     struct ExprList_item *pItem;
1967     assert( pList->nExpr>0 );
1968     pItem = &pList->a[pList->nExpr-1];
1969     assert( pItem->zEName==0 );
1970     assert( pItem->eEName==ENAME_NAME );
1971     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1972     if( dequote ){
1973       /* If dequote==0, then pName->z does not point to part of a DDL
1974       ** statement handled by the parser. And so no token need be added
1975       ** to the token-map.  */
1976       sqlite3Dequote(pItem->zEName);
1977       if( IN_RENAME_OBJECT ){
1978         sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName);
1979       }
1980     }
1981   }
1982 }
1983 
1984 /*
1985 ** Set the ExprList.a[].zSpan element of the most recently added item
1986 ** on the expression list.
1987 **
1988 ** pList might be NULL following an OOM error.  But pSpan should never be
1989 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1990 ** is set.
1991 */
1992 void sqlite3ExprListSetSpan(
1993   Parse *pParse,          /* Parsing context */
1994   ExprList *pList,        /* List to which to add the span. */
1995   const char *zStart,     /* Start of the span */
1996   const char *zEnd        /* End of the span */
1997 ){
1998   sqlite3 *db = pParse->db;
1999   assert( pList!=0 || db->mallocFailed!=0 );
2000   if( pList ){
2001     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
2002     assert( pList->nExpr>0 );
2003     if( pItem->zEName==0 ){
2004       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
2005       pItem->eEName = ENAME_SPAN;
2006     }
2007   }
2008 }
2009 
2010 /*
2011 ** If the expression list pEList contains more than iLimit elements,
2012 ** leave an error message in pParse.
2013 */
2014 void sqlite3ExprListCheckLength(
2015   Parse *pParse,
2016   ExprList *pEList,
2017   const char *zObject
2018 ){
2019   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
2020   testcase( pEList && pEList->nExpr==mx );
2021   testcase( pEList && pEList->nExpr==mx+1 );
2022   if( pEList && pEList->nExpr>mx ){
2023     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
2024   }
2025 }
2026 
2027 /*
2028 ** Delete an entire expression list.
2029 */
2030 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
2031   int i = pList->nExpr;
2032   struct ExprList_item *pItem =  pList->a;
2033   assert( pList->nExpr>0 );
2034   do{
2035     sqlite3ExprDelete(db, pItem->pExpr);
2036     sqlite3DbFree(db, pItem->zEName);
2037     pItem++;
2038   }while( --i>0 );
2039   sqlite3DbFreeNN(db, pList);
2040 }
2041 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
2042   if( pList ) exprListDeleteNN(db, pList);
2043 }
2044 
2045 /*
2046 ** Return the bitwise-OR of all Expr.flags fields in the given
2047 ** ExprList.
2048 */
2049 u32 sqlite3ExprListFlags(const ExprList *pList){
2050   int i;
2051   u32 m = 0;
2052   assert( pList!=0 );
2053   for(i=0; i<pList->nExpr; i++){
2054      Expr *pExpr = pList->a[i].pExpr;
2055      assert( pExpr!=0 );
2056      m |= pExpr->flags;
2057   }
2058   return m;
2059 }
2060 
2061 /*
2062 ** This is a SELECT-node callback for the expression walker that
2063 ** always "fails".  By "fail" in this case, we mean set
2064 ** pWalker->eCode to zero and abort.
2065 **
2066 ** This callback is used by multiple expression walkers.
2067 */
2068 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
2069   UNUSED_PARAMETER(NotUsed);
2070   pWalker->eCode = 0;
2071   return WRC_Abort;
2072 }
2073 
2074 /*
2075 ** Check the input string to see if it is "true" or "false" (in any case).
2076 **
2077 **       If the string is....           Return
2078 **         "true"                         EP_IsTrue
2079 **         "false"                        EP_IsFalse
2080 **         anything else                  0
2081 */
2082 u32 sqlite3IsTrueOrFalse(const char *zIn){
2083   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
2084   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
2085   return 0;
2086 }
2087 
2088 
2089 /*
2090 ** If the input expression is an ID with the name "true" or "false"
2091 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
2092 ** the conversion happened, and zero if the expression is unaltered.
2093 */
2094 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
2095   u32 v;
2096   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
2097   if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue)
2098    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
2099   ){
2100     pExpr->op = TK_TRUEFALSE;
2101     ExprSetProperty(pExpr, v);
2102     return 1;
2103   }
2104   return 0;
2105 }
2106 
2107 /*
2108 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
2109 ** and 0 if it is FALSE.
2110 */
2111 int sqlite3ExprTruthValue(const Expr *pExpr){
2112   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
2113   assert( pExpr->op==TK_TRUEFALSE );
2114   assert( !ExprHasProperty(pExpr, EP_IntValue) );
2115   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
2116        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
2117   return pExpr->u.zToken[4]==0;
2118 }
2119 
2120 /*
2121 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2122 ** terms that are always true or false.  Return the simplified expression.
2123 ** Or return the original expression if no simplification is possible.
2124 **
2125 ** Examples:
2126 **
2127 **     (x<10) AND true                =>   (x<10)
2128 **     (x<10) AND false               =>   false
2129 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
2130 **     (x<10) AND (y=22 OR true)      =>   (x<10)
2131 **     (y=22) OR true                 =>   true
2132 */
2133 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
2134   assert( pExpr!=0 );
2135   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
2136     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
2137     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
2138     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
2139       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
2140     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
2141       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
2142     }
2143   }
2144   return pExpr;
2145 }
2146 
2147 
2148 /*
2149 ** These routines are Walker callbacks used to check expressions to
2150 ** see if they are "constant" for some definition of constant.  The
2151 ** Walker.eCode value determines the type of "constant" we are looking
2152 ** for.
2153 **
2154 ** These callback routines are used to implement the following:
2155 **
2156 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
2157 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
2158 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
2159 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
2160 **
2161 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2162 ** is found to not be a constant.
2163 **
2164 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2165 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
2166 ** when parsing an existing schema out of the sqlite_schema table and 4
2167 ** when processing a new CREATE TABLE statement.  A bound parameter raises
2168 ** an error for new statements, but is silently converted
2169 ** to NULL for existing schemas.  This allows sqlite_schema tables that
2170 ** contain a bound parameter because they were generated by older versions
2171 ** of SQLite to be parsed by newer versions of SQLite without raising a
2172 ** malformed schema error.
2173 */
2174 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2175 
2176   /* If pWalker->eCode is 2 then any term of the expression that comes from
2177   ** the ON or USING clauses of an outer join disqualifies the expression
2178   ** from being considered constant. */
2179   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
2180     pWalker->eCode = 0;
2181     return WRC_Abort;
2182   }
2183 
2184   switch( pExpr->op ){
2185     /* Consider functions to be constant if all their arguments are constant
2186     ** and either pWalker->eCode==4 or 5 or the function has the
2187     ** SQLITE_FUNC_CONST flag. */
2188     case TK_FUNCTION:
2189       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2190        && !ExprHasProperty(pExpr, EP_WinFunc)
2191       ){
2192         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2193         return WRC_Continue;
2194       }else{
2195         pWalker->eCode = 0;
2196         return WRC_Abort;
2197       }
2198     case TK_ID:
2199       /* Convert "true" or "false" in a DEFAULT clause into the
2200       ** appropriate TK_TRUEFALSE operator */
2201       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2202         return WRC_Prune;
2203       }
2204       /* no break */ deliberate_fall_through
2205     case TK_COLUMN:
2206     case TK_AGG_FUNCTION:
2207     case TK_AGG_COLUMN:
2208       testcase( pExpr->op==TK_ID );
2209       testcase( pExpr->op==TK_COLUMN );
2210       testcase( pExpr->op==TK_AGG_FUNCTION );
2211       testcase( pExpr->op==TK_AGG_COLUMN );
2212       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2213         return WRC_Continue;
2214       }
2215       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2216         return WRC_Continue;
2217       }
2218       /* no break */ deliberate_fall_through
2219     case TK_IF_NULL_ROW:
2220     case TK_REGISTER:
2221     case TK_DOT:
2222       testcase( pExpr->op==TK_REGISTER );
2223       testcase( pExpr->op==TK_IF_NULL_ROW );
2224       testcase( pExpr->op==TK_DOT );
2225       pWalker->eCode = 0;
2226       return WRC_Abort;
2227     case TK_VARIABLE:
2228       if( pWalker->eCode==5 ){
2229         /* Silently convert bound parameters that appear inside of CREATE
2230         ** statements into a NULL when parsing the CREATE statement text out
2231         ** of the sqlite_schema table */
2232         pExpr->op = TK_NULL;
2233       }else if( pWalker->eCode==4 ){
2234         /* A bound parameter in a CREATE statement that originates from
2235         ** sqlite3_prepare() causes an error */
2236         pWalker->eCode = 0;
2237         return WRC_Abort;
2238       }
2239       /* no break */ deliberate_fall_through
2240     default:
2241       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2242       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2243       return WRC_Continue;
2244   }
2245 }
2246 static int exprIsConst(Expr *p, int initFlag, int iCur){
2247   Walker w;
2248   w.eCode = initFlag;
2249   w.xExprCallback = exprNodeIsConstant;
2250   w.xSelectCallback = sqlite3SelectWalkFail;
2251 #ifdef SQLITE_DEBUG
2252   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2253 #endif
2254   w.u.iCur = iCur;
2255   sqlite3WalkExpr(&w, p);
2256   return w.eCode;
2257 }
2258 
2259 /*
2260 ** Walk an expression tree.  Return non-zero if the expression is constant
2261 ** and 0 if it involves variables or function calls.
2262 **
2263 ** For the purposes of this function, a double-quoted string (ex: "abc")
2264 ** is considered a variable but a single-quoted string (ex: 'abc') is
2265 ** a constant.
2266 */
2267 int sqlite3ExprIsConstant(Expr *p){
2268   return exprIsConst(p, 1, 0);
2269 }
2270 
2271 /*
2272 ** Walk an expression tree.  Return non-zero if
2273 **
2274 **   (1) the expression is constant, and
2275 **   (2) the expression does originate in the ON or USING clause
2276 **       of a LEFT JOIN, and
2277 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2278 **       operands created by the constant propagation optimization.
2279 **
2280 ** When this routine returns true, it indicates that the expression
2281 ** can be added to the pParse->pConstExpr list and evaluated once when
2282 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2283 */
2284 int sqlite3ExprIsConstantNotJoin(Expr *p){
2285   return exprIsConst(p, 2, 0);
2286 }
2287 
2288 /*
2289 ** Walk an expression tree.  Return non-zero if the expression is constant
2290 ** for any single row of the table with cursor iCur.  In other words, the
2291 ** expression must not refer to any non-deterministic function nor any
2292 ** table other than iCur.
2293 */
2294 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2295   return exprIsConst(p, 3, iCur);
2296 }
2297 
2298 
2299 /*
2300 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2301 */
2302 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2303   ExprList *pGroupBy = pWalker->u.pGroupBy;
2304   int i;
2305 
2306   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2307   ** it constant.  */
2308   for(i=0; i<pGroupBy->nExpr; i++){
2309     Expr *p = pGroupBy->a[i].pExpr;
2310     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2311       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2312       if( sqlite3IsBinary(pColl) ){
2313         return WRC_Prune;
2314       }
2315     }
2316   }
2317 
2318   /* Check if pExpr is a sub-select. If so, consider it variable. */
2319   if( ExprUseXSelect(pExpr) ){
2320     pWalker->eCode = 0;
2321     return WRC_Abort;
2322   }
2323 
2324   return exprNodeIsConstant(pWalker, pExpr);
2325 }
2326 
2327 /*
2328 ** Walk the expression tree passed as the first argument. Return non-zero
2329 ** if the expression consists entirely of constants or copies of terms
2330 ** in pGroupBy that sort with the BINARY collation sequence.
2331 **
2332 ** This routine is used to determine if a term of the HAVING clause can
2333 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2334 ** the value of the HAVING clause term must be the same for all members of
2335 ** a "group".  The requirement that the GROUP BY term must be BINARY
2336 ** assumes that no other collating sequence will have a finer-grained
2337 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2338 ** A=B in every other collating sequence.  The requirement that the
2339 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2340 ** to promote HAVING clauses that use the same alternative collating
2341 ** sequence as the GROUP BY term, but that is much harder to check,
2342 ** alternative collating sequences are uncommon, and this is only an
2343 ** optimization, so we take the easy way out and simply require the
2344 ** GROUP BY to use the BINARY collating sequence.
2345 */
2346 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2347   Walker w;
2348   w.eCode = 1;
2349   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2350   w.xSelectCallback = 0;
2351   w.u.pGroupBy = pGroupBy;
2352   w.pParse = pParse;
2353   sqlite3WalkExpr(&w, p);
2354   return w.eCode;
2355 }
2356 
2357 /*
2358 ** Walk an expression tree for the DEFAULT field of a column definition
2359 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2360 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2361 ** the expression is constant or a function call with constant arguments.
2362 ** Return and 0 if there are any variables.
2363 **
2364 ** isInit is true when parsing from sqlite_schema.  isInit is false when
2365 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2366 ** (such as ? or $abc) in the expression are converted into NULL.  When
2367 ** isInit is false, parameters raise an error.  Parameters should not be
2368 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2369 ** allowed it, so we need to support it when reading sqlite_schema for
2370 ** backwards compatibility.
2371 **
2372 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2373 **
2374 ** For the purposes of this function, a double-quoted string (ex: "abc")
2375 ** is considered a variable but a single-quoted string (ex: 'abc') is
2376 ** a constant.
2377 */
2378 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2379   assert( isInit==0 || isInit==1 );
2380   return exprIsConst(p, 4+isInit, 0);
2381 }
2382 
2383 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2384 /*
2385 ** Walk an expression tree.  Return 1 if the expression contains a
2386 ** subquery of some kind.  Return 0 if there are no subqueries.
2387 */
2388 int sqlite3ExprContainsSubquery(Expr *p){
2389   Walker w;
2390   w.eCode = 1;
2391   w.xExprCallback = sqlite3ExprWalkNoop;
2392   w.xSelectCallback = sqlite3SelectWalkFail;
2393 #ifdef SQLITE_DEBUG
2394   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2395 #endif
2396   sqlite3WalkExpr(&w, p);
2397   return w.eCode==0;
2398 }
2399 #endif
2400 
2401 /*
2402 ** If the expression p codes a constant integer that is small enough
2403 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2404 ** in *pValue.  If the expression is not an integer or if it is too big
2405 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2406 */
2407 int sqlite3ExprIsInteger(const Expr *p, int *pValue){
2408   int rc = 0;
2409   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2410 
2411   /* If an expression is an integer literal that fits in a signed 32-bit
2412   ** integer, then the EP_IntValue flag will have already been set */
2413   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2414            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2415 
2416   if( p->flags & EP_IntValue ){
2417     *pValue = p->u.iValue;
2418     return 1;
2419   }
2420   switch( p->op ){
2421     case TK_UPLUS: {
2422       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2423       break;
2424     }
2425     case TK_UMINUS: {
2426       int v = 0;
2427       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2428         assert( ((unsigned int)v)!=0x80000000 );
2429         *pValue = -v;
2430         rc = 1;
2431       }
2432       break;
2433     }
2434     default: break;
2435   }
2436   return rc;
2437 }
2438 
2439 /*
2440 ** Return FALSE if there is no chance that the expression can be NULL.
2441 **
2442 ** If the expression might be NULL or if the expression is too complex
2443 ** to tell return TRUE.
2444 **
2445 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2446 ** when we know that a value cannot be NULL.  Hence, a false positive
2447 ** (returning TRUE when in fact the expression can never be NULL) might
2448 ** be a small performance hit but is otherwise harmless.  On the other
2449 ** hand, a false negative (returning FALSE when the result could be NULL)
2450 ** will likely result in an incorrect answer.  So when in doubt, return
2451 ** TRUE.
2452 */
2453 int sqlite3ExprCanBeNull(const Expr *p){
2454   u8 op;
2455   assert( p!=0 );
2456   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2457     p = p->pLeft;
2458     assert( p!=0 );
2459   }
2460   op = p->op;
2461   if( op==TK_REGISTER ) op = p->op2;
2462   switch( op ){
2463     case TK_INTEGER:
2464     case TK_STRING:
2465     case TK_FLOAT:
2466     case TK_BLOB:
2467       return 0;
2468     case TK_COLUMN:
2469       assert( ExprUseYTab(p) );
2470       return ExprHasProperty(p, EP_CanBeNull) ||
2471              p->y.pTab==0 ||  /* Reference to column of index on expression */
2472              (p->iColumn>=0
2473               && p->y.pTab->aCol!=0 /* Possible due to prior error */
2474               && p->y.pTab->aCol[p->iColumn].notNull==0);
2475     default:
2476       return 1;
2477   }
2478 }
2479 
2480 /*
2481 ** Return TRUE if the given expression is a constant which would be
2482 ** unchanged by OP_Affinity with the affinity given in the second
2483 ** argument.
2484 **
2485 ** This routine is used to determine if the OP_Affinity operation
2486 ** can be omitted.  When in doubt return FALSE.  A false negative
2487 ** is harmless.  A false positive, however, can result in the wrong
2488 ** answer.
2489 */
2490 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2491   u8 op;
2492   int unaryMinus = 0;
2493   if( aff==SQLITE_AFF_BLOB ) return 1;
2494   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2495     if( p->op==TK_UMINUS ) unaryMinus = 1;
2496     p = p->pLeft;
2497   }
2498   op = p->op;
2499   if( op==TK_REGISTER ) op = p->op2;
2500   switch( op ){
2501     case TK_INTEGER: {
2502       return aff>=SQLITE_AFF_NUMERIC;
2503     }
2504     case TK_FLOAT: {
2505       return aff>=SQLITE_AFF_NUMERIC;
2506     }
2507     case TK_STRING: {
2508       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2509     }
2510     case TK_BLOB: {
2511       return !unaryMinus;
2512     }
2513     case TK_COLUMN: {
2514       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2515       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2516     }
2517     default: {
2518       return 0;
2519     }
2520   }
2521 }
2522 
2523 /*
2524 ** Return TRUE if the given string is a row-id column name.
2525 */
2526 int sqlite3IsRowid(const char *z){
2527   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2528   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2529   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2530   return 0;
2531 }
2532 
2533 /*
2534 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2535 ** that can be simplified to a direct table access, then return
2536 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2537 ** or if the SELECT statement needs to be manifested into a transient
2538 ** table, then return NULL.
2539 */
2540 #ifndef SQLITE_OMIT_SUBQUERY
2541 static Select *isCandidateForInOpt(const Expr *pX){
2542   Select *p;
2543   SrcList *pSrc;
2544   ExprList *pEList;
2545   Table *pTab;
2546   int i;
2547   if( !ExprUseXSelect(pX) ) return 0;                 /* Not a subquery */
2548   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2549   p = pX->x.pSelect;
2550   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2551   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2552     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2553     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2554     return 0; /* No DISTINCT keyword and no aggregate functions */
2555   }
2556   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2557   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2558   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2559   pSrc = p->pSrc;
2560   assert( pSrc!=0 );
2561   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2562   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2563   pTab = pSrc->a[0].pTab;
2564   assert( pTab!=0 );
2565   assert( !IsView(pTab)  );              /* FROM clause is not a view */
2566   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2567   pEList = p->pEList;
2568   assert( pEList!=0 );
2569   /* All SELECT results must be columns. */
2570   for(i=0; i<pEList->nExpr; i++){
2571     Expr *pRes = pEList->a[i].pExpr;
2572     if( pRes->op!=TK_COLUMN ) return 0;
2573     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2574   }
2575   return p;
2576 }
2577 #endif /* SQLITE_OMIT_SUBQUERY */
2578 
2579 #ifndef SQLITE_OMIT_SUBQUERY
2580 /*
2581 ** Generate code that checks the left-most column of index table iCur to see if
2582 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2583 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2584 ** to be set to NULL if iCur contains one or more NULL values.
2585 */
2586 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2587   int addr1;
2588   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2589   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2590   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2591   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2592   VdbeComment((v, "first_entry_in(%d)", iCur));
2593   sqlite3VdbeJumpHere(v, addr1);
2594 }
2595 #endif
2596 
2597 
2598 #ifndef SQLITE_OMIT_SUBQUERY
2599 /*
2600 ** The argument is an IN operator with a list (not a subquery) on the
2601 ** right-hand side.  Return TRUE if that list is constant.
2602 */
2603 static int sqlite3InRhsIsConstant(Expr *pIn){
2604   Expr *pLHS;
2605   int res;
2606   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2607   pLHS = pIn->pLeft;
2608   pIn->pLeft = 0;
2609   res = sqlite3ExprIsConstant(pIn);
2610   pIn->pLeft = pLHS;
2611   return res;
2612 }
2613 #endif
2614 
2615 /*
2616 ** This function is used by the implementation of the IN (...) operator.
2617 ** The pX parameter is the expression on the RHS of the IN operator, which
2618 ** might be either a list of expressions or a subquery.
2619 **
2620 ** The job of this routine is to find or create a b-tree object that can
2621 ** be used either to test for membership in the RHS set or to iterate through
2622 ** all members of the RHS set, skipping duplicates.
2623 **
2624 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2625 ** and pX->iTable is set to the index of that cursor.
2626 **
2627 ** The returned value of this function indicates the b-tree type, as follows:
2628 **
2629 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2630 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2631 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2632 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2633 **                         populated epheremal table.
2634 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2635 **                         implemented as a sequence of comparisons.
2636 **
2637 ** An existing b-tree might be used if the RHS expression pX is a simple
2638 ** subquery such as:
2639 **
2640 **     SELECT <column1>, <column2>... FROM <table>
2641 **
2642 ** If the RHS of the IN operator is a list or a more complex subquery, then
2643 ** an ephemeral table might need to be generated from the RHS and then
2644 ** pX->iTable made to point to the ephemeral table instead of an
2645 ** existing table.
2646 **
2647 ** The inFlags parameter must contain, at a minimum, one of the bits
2648 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2649 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2650 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2651 ** be used to loop over all values of the RHS of the IN operator.
2652 **
2653 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2654 ** through the set members) then the b-tree must not contain duplicates.
2655 ** An epheremal table will be created unless the selected columns are guaranteed
2656 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2657 ** a UNIQUE constraint or index.
2658 **
2659 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2660 ** for fast set membership tests) then an epheremal table must
2661 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2662 ** index can be found with the specified <columns> as its left-most.
2663 **
2664 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2665 ** if the RHS of the IN operator is a list (not a subquery) then this
2666 ** routine might decide that creating an ephemeral b-tree for membership
2667 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2668 ** calling routine should implement the IN operator using a sequence
2669 ** of Eq or Ne comparison operations.
2670 **
2671 ** When the b-tree is being used for membership tests, the calling function
2672 ** might need to know whether or not the RHS side of the IN operator
2673 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2674 ** if there is any chance that the (...) might contain a NULL value at
2675 ** runtime, then a register is allocated and the register number written
2676 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2677 ** NULL value, then *prRhsHasNull is left unchanged.
2678 **
2679 ** If a register is allocated and its location stored in *prRhsHasNull, then
2680 ** the value in that register will be NULL if the b-tree contains one or more
2681 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2682 ** NULL values.
2683 **
2684 ** If the aiMap parameter is not NULL, it must point to an array containing
2685 ** one element for each column returned by the SELECT statement on the RHS
2686 ** of the IN(...) operator. The i'th entry of the array is populated with the
2687 ** offset of the index column that matches the i'th column returned by the
2688 ** SELECT. For example, if the expression and selected index are:
2689 **
2690 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2691 **   CREATE INDEX i1 ON t1(b, c, a);
2692 **
2693 ** then aiMap[] is populated with {2, 0, 1}.
2694 */
2695 #ifndef SQLITE_OMIT_SUBQUERY
2696 int sqlite3FindInIndex(
2697   Parse *pParse,             /* Parsing context */
2698   Expr *pX,                  /* The IN expression */
2699   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2700   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2701   int *aiMap,                /* Mapping from Index fields to RHS fields */
2702   int *piTab                 /* OUT: index to use */
2703 ){
2704   Select *p;                            /* SELECT to the right of IN operator */
2705   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2706   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2707   int mustBeUnique;                     /* True if RHS must be unique */
2708   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2709 
2710   assert( pX->op==TK_IN );
2711   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2712 
2713   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2714   ** whether or not the SELECT result contains NULL values, check whether
2715   ** or not NULL is actually possible (it may not be, for example, due
2716   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2717   ** set prRhsHasNull to 0 before continuing.  */
2718   if( prRhsHasNull && ExprUseXSelect(pX) ){
2719     int i;
2720     ExprList *pEList = pX->x.pSelect->pEList;
2721     for(i=0; i<pEList->nExpr; i++){
2722       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2723     }
2724     if( i==pEList->nExpr ){
2725       prRhsHasNull = 0;
2726     }
2727   }
2728 
2729   /* Check to see if an existing table or index can be used to
2730   ** satisfy the query.  This is preferable to generating a new
2731   ** ephemeral table.  */
2732   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2733     sqlite3 *db = pParse->db;              /* Database connection */
2734     Table *pTab;                           /* Table <table>. */
2735     int iDb;                               /* Database idx for pTab */
2736     ExprList *pEList = p->pEList;
2737     int nExpr = pEList->nExpr;
2738 
2739     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2740     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2741     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2742     pTab = p->pSrc->a[0].pTab;
2743 
2744     /* Code an OP_Transaction and OP_TableLock for <table>. */
2745     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2746     assert( iDb>=0 && iDb<SQLITE_MAX_DB );
2747     sqlite3CodeVerifySchema(pParse, iDb);
2748     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2749 
2750     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2751     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2752       /* The "x IN (SELECT rowid FROM table)" case */
2753       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2754       VdbeCoverage(v);
2755 
2756       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2757       eType = IN_INDEX_ROWID;
2758       ExplainQueryPlan((pParse, 0,
2759             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2760       sqlite3VdbeJumpHere(v, iAddr);
2761     }else{
2762       Index *pIdx;                         /* Iterator variable */
2763       int affinity_ok = 1;
2764       int i;
2765 
2766       /* Check that the affinity that will be used to perform each
2767       ** comparison is the same as the affinity of each column in table
2768       ** on the RHS of the IN operator.  If it not, it is not possible to
2769       ** use any index of the RHS table.  */
2770       for(i=0; i<nExpr && affinity_ok; i++){
2771         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2772         int iCol = pEList->a[i].pExpr->iColumn;
2773         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2774         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2775         testcase( cmpaff==SQLITE_AFF_BLOB );
2776         testcase( cmpaff==SQLITE_AFF_TEXT );
2777         switch( cmpaff ){
2778           case SQLITE_AFF_BLOB:
2779             break;
2780           case SQLITE_AFF_TEXT:
2781             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2782             ** other has no affinity and the other side is TEXT.  Hence,
2783             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2784             ** and for the term on the LHS of the IN to have no affinity. */
2785             assert( idxaff==SQLITE_AFF_TEXT );
2786             break;
2787           default:
2788             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2789         }
2790       }
2791 
2792       if( affinity_ok ){
2793         /* Search for an existing index that will work for this IN operator */
2794         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2795           Bitmask colUsed;      /* Columns of the index used */
2796           Bitmask mCol;         /* Mask for the current column */
2797           if( pIdx->nColumn<nExpr ) continue;
2798           if( pIdx->pPartIdxWhere!=0 ) continue;
2799           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2800           ** BITMASK(nExpr) without overflowing */
2801           testcase( pIdx->nColumn==BMS-2 );
2802           testcase( pIdx->nColumn==BMS-1 );
2803           if( pIdx->nColumn>=BMS-1 ) continue;
2804           if( mustBeUnique ){
2805             if( pIdx->nKeyCol>nExpr
2806              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2807             ){
2808               continue;  /* This index is not unique over the IN RHS columns */
2809             }
2810           }
2811 
2812           colUsed = 0;   /* Columns of index used so far */
2813           for(i=0; i<nExpr; i++){
2814             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2815             Expr *pRhs = pEList->a[i].pExpr;
2816             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2817             int j;
2818 
2819             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2820             for(j=0; j<nExpr; j++){
2821               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2822               assert( pIdx->azColl[j] );
2823               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2824                 continue;
2825               }
2826               break;
2827             }
2828             if( j==nExpr ) break;
2829             mCol = MASKBIT(j);
2830             if( mCol & colUsed ) break; /* Each column used only once */
2831             colUsed |= mCol;
2832             if( aiMap ) aiMap[i] = j;
2833           }
2834 
2835           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2836           if( colUsed==(MASKBIT(nExpr)-1) ){
2837             /* If we reach this point, that means the index pIdx is usable */
2838             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2839             ExplainQueryPlan((pParse, 0,
2840                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2841             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2842             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2843             VdbeComment((v, "%s", pIdx->zName));
2844             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2845             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2846 
2847             if( prRhsHasNull ){
2848 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2849               i64 mask = (1<<nExpr)-1;
2850               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2851                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2852 #endif
2853               *prRhsHasNull = ++pParse->nMem;
2854               if( nExpr==1 ){
2855                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2856               }
2857             }
2858             sqlite3VdbeJumpHere(v, iAddr);
2859           }
2860         } /* End loop over indexes */
2861       } /* End if( affinity_ok ) */
2862     } /* End if not an rowid index */
2863   } /* End attempt to optimize using an index */
2864 
2865   /* If no preexisting index is available for the IN clause
2866   ** and IN_INDEX_NOOP is an allowed reply
2867   ** and the RHS of the IN operator is a list, not a subquery
2868   ** and the RHS is not constant or has two or fewer terms,
2869   ** then it is not worth creating an ephemeral table to evaluate
2870   ** the IN operator so return IN_INDEX_NOOP.
2871   */
2872   if( eType==0
2873    && (inFlags & IN_INDEX_NOOP_OK)
2874    && ExprUseXList(pX)
2875    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2876   ){
2877     eType = IN_INDEX_NOOP;
2878   }
2879 
2880   if( eType==0 ){
2881     /* Could not find an existing table or index to use as the RHS b-tree.
2882     ** We will have to generate an ephemeral table to do the job.
2883     */
2884     u32 savedNQueryLoop = pParse->nQueryLoop;
2885     int rMayHaveNull = 0;
2886     eType = IN_INDEX_EPH;
2887     if( inFlags & IN_INDEX_LOOP ){
2888       pParse->nQueryLoop = 0;
2889     }else if( prRhsHasNull ){
2890       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2891     }
2892     assert( pX->op==TK_IN );
2893     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2894     if( rMayHaveNull ){
2895       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2896     }
2897     pParse->nQueryLoop = savedNQueryLoop;
2898   }
2899 
2900   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2901     int i, n;
2902     n = sqlite3ExprVectorSize(pX->pLeft);
2903     for(i=0; i<n; i++) aiMap[i] = i;
2904   }
2905   *piTab = iTab;
2906   return eType;
2907 }
2908 #endif
2909 
2910 #ifndef SQLITE_OMIT_SUBQUERY
2911 /*
2912 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2913 ** function allocates and returns a nul-terminated string containing
2914 ** the affinities to be used for each column of the comparison.
2915 **
2916 ** It is the responsibility of the caller to ensure that the returned
2917 ** string is eventually freed using sqlite3DbFree().
2918 */
2919 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){
2920   Expr *pLeft = pExpr->pLeft;
2921   int nVal = sqlite3ExprVectorSize(pLeft);
2922   Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0;
2923   char *zRet;
2924 
2925   assert( pExpr->op==TK_IN );
2926   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2927   if( zRet ){
2928     int i;
2929     for(i=0; i<nVal; i++){
2930       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2931       char a = sqlite3ExprAffinity(pA);
2932       if( pSelect ){
2933         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2934       }else{
2935         zRet[i] = a;
2936       }
2937     }
2938     zRet[nVal] = '\0';
2939   }
2940   return zRet;
2941 }
2942 #endif
2943 
2944 #ifndef SQLITE_OMIT_SUBQUERY
2945 /*
2946 ** Load the Parse object passed as the first argument with an error
2947 ** message of the form:
2948 **
2949 **   "sub-select returns N columns - expected M"
2950 */
2951 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2952   if( pParse->nErr==0 ){
2953     const char *zFmt = "sub-select returns %d columns - expected %d";
2954     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2955   }
2956 }
2957 #endif
2958 
2959 /*
2960 ** Expression pExpr is a vector that has been used in a context where
2961 ** it is not permitted. If pExpr is a sub-select vector, this routine
2962 ** loads the Parse object with a message of the form:
2963 **
2964 **   "sub-select returns N columns - expected 1"
2965 **
2966 ** Or, if it is a regular scalar vector:
2967 **
2968 **   "row value misused"
2969 */
2970 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2971 #ifndef SQLITE_OMIT_SUBQUERY
2972   if( ExprUseXSelect(pExpr) ){
2973     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2974   }else
2975 #endif
2976   {
2977     sqlite3ErrorMsg(pParse, "row value misused");
2978   }
2979 }
2980 
2981 #ifndef SQLITE_OMIT_SUBQUERY
2982 /*
2983 ** Generate code that will construct an ephemeral table containing all terms
2984 ** in the RHS of an IN operator.  The IN operator can be in either of two
2985 ** forms:
2986 **
2987 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2988 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2989 **
2990 ** The pExpr parameter is the IN operator.  The cursor number for the
2991 ** constructed ephermeral table is returned.  The first time the ephemeral
2992 ** table is computed, the cursor number is also stored in pExpr->iTable,
2993 ** however the cursor number returned might not be the same, as it might
2994 ** have been duplicated using OP_OpenDup.
2995 **
2996 ** If the LHS expression ("x" in the examples) is a column value, or
2997 ** the SELECT statement returns a column value, then the affinity of that
2998 ** column is used to build the index keys. If both 'x' and the
2999 ** SELECT... statement are columns, then numeric affinity is used
3000 ** if either column has NUMERIC or INTEGER affinity. If neither
3001 ** 'x' nor the SELECT... statement are columns, then numeric affinity
3002 ** is used.
3003 */
3004 void sqlite3CodeRhsOfIN(
3005   Parse *pParse,          /* Parsing context */
3006   Expr *pExpr,            /* The IN operator */
3007   int iTab                /* Use this cursor number */
3008 ){
3009   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
3010   int addr;                   /* Address of OP_OpenEphemeral instruction */
3011   Expr *pLeft;                /* the LHS of the IN operator */
3012   KeyInfo *pKeyInfo = 0;      /* Key information */
3013   int nVal;                   /* Size of vector pLeft */
3014   Vdbe *v;                    /* The prepared statement under construction */
3015 
3016   v = pParse->pVdbe;
3017   assert( v!=0 );
3018 
3019   /* The evaluation of the IN must be repeated every time it
3020   ** is encountered if any of the following is true:
3021   **
3022   **    *  The right-hand side is a correlated subquery
3023   **    *  The right-hand side is an expression list containing variables
3024   **    *  We are inside a trigger
3025   **
3026   ** If all of the above are false, then we can compute the RHS just once
3027   ** and reuse it many names.
3028   */
3029   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
3030     /* Reuse of the RHS is allowed */
3031     /* If this routine has already been coded, but the previous code
3032     ** might not have been invoked yet, so invoke it now as a subroutine.
3033     */
3034     if( ExprHasProperty(pExpr, EP_Subrtn) ){
3035       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3036       if( ExprUseXSelect(pExpr) ){
3037         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
3038               pExpr->x.pSelect->selId));
3039       }
3040       assert( ExprUseYSub(pExpr) );
3041       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3042                         pExpr->y.sub.iAddr);
3043       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
3044       sqlite3VdbeJumpHere(v, addrOnce);
3045       return;
3046     }
3047 
3048     /* Begin coding the subroutine */
3049     assert( !ExprUseYWin(pExpr) );
3050     ExprSetProperty(pExpr, EP_Subrtn);
3051     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3052     pExpr->y.sub.regReturn = ++pParse->nMem;
3053     pExpr->y.sub.iAddr =
3054       sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
3055 
3056     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3057   }
3058 
3059   /* Check to see if this is a vector IN operator */
3060   pLeft = pExpr->pLeft;
3061   nVal = sqlite3ExprVectorSize(pLeft);
3062 
3063   /* Construct the ephemeral table that will contain the content of
3064   ** RHS of the IN operator.
3065   */
3066   pExpr->iTable = iTab;
3067   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
3068 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
3069   if( ExprUseXSelect(pExpr) ){
3070     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
3071   }else{
3072     VdbeComment((v, "RHS of IN operator"));
3073   }
3074 #endif
3075   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
3076 
3077   if( ExprUseXSelect(pExpr) ){
3078     /* Case 1:     expr IN (SELECT ...)
3079     **
3080     ** Generate code to write the results of the select into the temporary
3081     ** table allocated and opened above.
3082     */
3083     Select *pSelect = pExpr->x.pSelect;
3084     ExprList *pEList = pSelect->pEList;
3085 
3086     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
3087         addrOnce?"":"CORRELATED ", pSelect->selId
3088     ));
3089     /* If the LHS and RHS of the IN operator do not match, that
3090     ** error will have been caught long before we reach this point. */
3091     if( ALWAYS(pEList->nExpr==nVal) ){
3092       Select *pCopy;
3093       SelectDest dest;
3094       int i;
3095       int rc;
3096       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
3097       dest.zAffSdst = exprINAffinity(pParse, pExpr);
3098       pSelect->iLimit = 0;
3099       testcase( pSelect->selFlags & SF_Distinct );
3100       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
3101       pCopy = sqlite3SelectDup(pParse->db, pSelect, 0);
3102       rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest);
3103       sqlite3SelectDelete(pParse->db, pCopy);
3104       sqlite3DbFree(pParse->db, dest.zAffSdst);
3105       if( rc ){
3106         sqlite3KeyInfoUnref(pKeyInfo);
3107         return;
3108       }
3109       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
3110       assert( pEList!=0 );
3111       assert( pEList->nExpr>0 );
3112       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3113       for(i=0; i<nVal; i++){
3114         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
3115         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
3116             pParse, p, pEList->a[i].pExpr
3117         );
3118       }
3119     }
3120   }else if( ALWAYS(pExpr->x.pList!=0) ){
3121     /* Case 2:     expr IN (exprlist)
3122     **
3123     ** For each expression, build an index key from the evaluation and
3124     ** store it in the temporary table. If <expr> is a column, then use
3125     ** that columns affinity when building index keys. If <expr> is not
3126     ** a column, use numeric affinity.
3127     */
3128     char affinity;            /* Affinity of the LHS of the IN */
3129     int i;
3130     ExprList *pList = pExpr->x.pList;
3131     struct ExprList_item *pItem;
3132     int r1, r2;
3133     affinity = sqlite3ExprAffinity(pLeft);
3134     if( affinity<=SQLITE_AFF_NONE ){
3135       affinity = SQLITE_AFF_BLOB;
3136     }else if( affinity==SQLITE_AFF_REAL ){
3137       affinity = SQLITE_AFF_NUMERIC;
3138     }
3139     if( pKeyInfo ){
3140       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3141       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3142     }
3143 
3144     /* Loop through each expression in <exprlist>. */
3145     r1 = sqlite3GetTempReg(pParse);
3146     r2 = sqlite3GetTempReg(pParse);
3147     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
3148       Expr *pE2 = pItem->pExpr;
3149 
3150       /* If the expression is not constant then we will need to
3151       ** disable the test that was generated above that makes sure
3152       ** this code only executes once.  Because for a non-constant
3153       ** expression we need to rerun this code each time.
3154       */
3155       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
3156         sqlite3VdbeChangeToNoop(v, addrOnce-1);
3157         sqlite3VdbeChangeToNoop(v, addrOnce);
3158         ExprClearProperty(pExpr, EP_Subrtn);
3159         addrOnce = 0;
3160       }
3161 
3162       /* Evaluate the expression and insert it into the temp table */
3163       sqlite3ExprCode(pParse, pE2, r1);
3164       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3165       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3166     }
3167     sqlite3ReleaseTempReg(pParse, r1);
3168     sqlite3ReleaseTempReg(pParse, r2);
3169   }
3170   if( pKeyInfo ){
3171     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3172   }
3173   if( addrOnce ){
3174     sqlite3VdbeJumpHere(v, addrOnce);
3175     /* Subroutine return */
3176     assert( ExprUseYSub(pExpr) );
3177     assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
3178             || pParse->nErr );
3179     sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
3180                       pExpr->y.sub.iAddr, 1);
3181     VdbeCoverage(v);
3182     sqlite3ClearTempRegCache(pParse);
3183   }
3184 }
3185 #endif /* SQLITE_OMIT_SUBQUERY */
3186 
3187 /*
3188 ** Generate code for scalar subqueries used as a subquery expression
3189 ** or EXISTS operator:
3190 **
3191 **     (SELECT a FROM b)          -- subquery
3192 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
3193 **
3194 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3195 **
3196 ** Return the register that holds the result.  For a multi-column SELECT,
3197 ** the result is stored in a contiguous array of registers and the
3198 ** return value is the register of the left-most result column.
3199 ** Return 0 if an error occurs.
3200 */
3201 #ifndef SQLITE_OMIT_SUBQUERY
3202 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3203   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3204   int rReg = 0;               /* Register storing resulting */
3205   Select *pSel;               /* SELECT statement to encode */
3206   SelectDest dest;            /* How to deal with SELECT result */
3207   int nReg;                   /* Registers to allocate */
3208   Expr *pLimit;               /* New limit expression */
3209 
3210   Vdbe *v = pParse->pVdbe;
3211   assert( v!=0 );
3212   if( pParse->nErr ) return 0;
3213   testcase( pExpr->op==TK_EXISTS );
3214   testcase( pExpr->op==TK_SELECT );
3215   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3216   assert( ExprUseXSelect(pExpr) );
3217   pSel = pExpr->x.pSelect;
3218 
3219   /* If this routine has already been coded, then invoke it as a
3220   ** subroutine. */
3221   if( ExprHasProperty(pExpr, EP_Subrtn) ){
3222     ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3223     assert( ExprUseYSub(pExpr) );
3224     sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3225                       pExpr->y.sub.iAddr);
3226     return pExpr->iTable;
3227   }
3228 
3229   /* Begin coding the subroutine */
3230   assert( !ExprUseYWin(pExpr) );
3231   assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) );
3232   ExprSetProperty(pExpr, EP_Subrtn);
3233   pExpr->y.sub.regReturn = ++pParse->nMem;
3234   pExpr->y.sub.iAddr =
3235     sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
3236 
3237   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3238   ** is encountered if any of the following is true:
3239   **
3240   **    *  The right-hand side is a correlated subquery
3241   **    *  The right-hand side is an expression list containing variables
3242   **    *  We are inside a trigger
3243   **
3244   ** If all of the above are false, then we can run this code just once
3245   ** save the results, and reuse the same result on subsequent invocations.
3246   */
3247   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3248     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3249   }
3250 
3251   /* For a SELECT, generate code to put the values for all columns of
3252   ** the first row into an array of registers and return the index of
3253   ** the first register.
3254   **
3255   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3256   ** into a register and return that register number.
3257   **
3258   ** In both cases, the query is augmented with "LIMIT 1".  Any
3259   ** preexisting limit is discarded in place of the new LIMIT 1.
3260   */
3261   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3262         addrOnce?"":"CORRELATED ", pSel->selId));
3263   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3264   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3265   pParse->nMem += nReg;
3266   if( pExpr->op==TK_SELECT ){
3267     dest.eDest = SRT_Mem;
3268     dest.iSdst = dest.iSDParm;
3269     dest.nSdst = nReg;
3270     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3271     VdbeComment((v, "Init subquery result"));
3272   }else{
3273     dest.eDest = SRT_Exists;
3274     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3275     VdbeComment((v, "Init EXISTS result"));
3276   }
3277   if( pSel->pLimit ){
3278     /* The subquery already has a limit.  If the pre-existing limit is X
3279     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3280     sqlite3 *db = pParse->db;
3281     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3282     if( pLimit ){
3283       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3284       pLimit = sqlite3PExpr(pParse, TK_NE,
3285                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3286     }
3287     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3288     pSel->pLimit->pLeft = pLimit;
3289   }else{
3290     /* If there is no pre-existing limit add a limit of 1 */
3291     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3292     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3293   }
3294   pSel->iLimit = 0;
3295   if( sqlite3Select(pParse, pSel, &dest) ){
3296     pExpr->op2 = pExpr->op;
3297     pExpr->op = TK_ERROR;
3298     return 0;
3299   }
3300   pExpr->iTable = rReg = dest.iSDParm;
3301   ExprSetVVAProperty(pExpr, EP_NoReduce);
3302   if( addrOnce ){
3303     sqlite3VdbeJumpHere(v, addrOnce);
3304   }
3305 
3306   /* Subroutine return */
3307   assert( ExprUseYSub(pExpr) );
3308   assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
3309           || pParse->nErr );
3310   sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
3311                     pExpr->y.sub.iAddr, 1);
3312   VdbeCoverage(v);
3313   sqlite3ClearTempRegCache(pParse);
3314   return rReg;
3315 }
3316 #endif /* SQLITE_OMIT_SUBQUERY */
3317 
3318 #ifndef SQLITE_OMIT_SUBQUERY
3319 /*
3320 ** Expr pIn is an IN(...) expression. This function checks that the
3321 ** sub-select on the RHS of the IN() operator has the same number of
3322 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3323 ** a sub-query, that the LHS is a vector of size 1.
3324 */
3325 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3326   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3327   if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){
3328     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3329       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3330       return 1;
3331     }
3332   }else if( nVector!=1 ){
3333     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3334     return 1;
3335   }
3336   return 0;
3337 }
3338 #endif
3339 
3340 #ifndef SQLITE_OMIT_SUBQUERY
3341 /*
3342 ** Generate code for an IN expression.
3343 **
3344 **      x IN (SELECT ...)
3345 **      x IN (value, value, ...)
3346 **
3347 ** The left-hand side (LHS) is a scalar or vector expression.  The
3348 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3349 ** subquery.  If the RHS is a subquery, the number of result columns must
3350 ** match the number of columns in the vector on the LHS.  If the RHS is
3351 ** a list of values, the LHS must be a scalar.
3352 **
3353 ** The IN operator is true if the LHS value is contained within the RHS.
3354 ** The result is false if the LHS is definitely not in the RHS.  The
3355 ** result is NULL if the presence of the LHS in the RHS cannot be
3356 ** determined due to NULLs.
3357 **
3358 ** This routine generates code that jumps to destIfFalse if the LHS is not
3359 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3360 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3361 ** within the RHS then fall through.
3362 **
3363 ** See the separate in-operator.md documentation file in the canonical
3364 ** SQLite source tree for additional information.
3365 */
3366 static void sqlite3ExprCodeIN(
3367   Parse *pParse,        /* Parsing and code generating context */
3368   Expr *pExpr,          /* The IN expression */
3369   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3370   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3371 ){
3372   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3373   int eType;            /* Type of the RHS */
3374   int rLhs;             /* Register(s) holding the LHS values */
3375   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3376   Vdbe *v;              /* Statement under construction */
3377   int *aiMap = 0;       /* Map from vector field to index column */
3378   char *zAff = 0;       /* Affinity string for comparisons */
3379   int nVector;          /* Size of vectors for this IN operator */
3380   int iDummy;           /* Dummy parameter to exprCodeVector() */
3381   Expr *pLeft;          /* The LHS of the IN operator */
3382   int i;                /* loop counter */
3383   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3384   int destStep6 = 0;    /* Start of code for Step 6 */
3385   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3386   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3387   int addrTop;          /* Top of the step-6 loop */
3388   int iTab = 0;         /* Index to use */
3389   u8 okConstFactor = pParse->okConstFactor;
3390 
3391   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3392   pLeft = pExpr->pLeft;
3393   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3394   zAff = exprINAffinity(pParse, pExpr);
3395   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3396   aiMap = (int*)sqlite3DbMallocZero(
3397       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3398   );
3399   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3400 
3401   /* Attempt to compute the RHS. After this step, if anything other than
3402   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3403   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3404   ** the RHS has not yet been coded.  */
3405   v = pParse->pVdbe;
3406   assert( v!=0 );       /* OOM detected prior to this routine */
3407   VdbeNoopComment((v, "begin IN expr"));
3408   eType = sqlite3FindInIndex(pParse, pExpr,
3409                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3410                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3411                              aiMap, &iTab);
3412 
3413   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3414        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3415   );
3416 #ifdef SQLITE_DEBUG
3417   /* Confirm that aiMap[] contains nVector integer values between 0 and
3418   ** nVector-1. */
3419   for(i=0; i<nVector; i++){
3420     int j, cnt;
3421     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3422     assert( cnt==1 );
3423   }
3424 #endif
3425 
3426   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3427   ** vector, then it is stored in an array of nVector registers starting
3428   ** at r1.
3429   **
3430   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3431   ** so that the fields are in the same order as an existing index.   The
3432   ** aiMap[] array contains a mapping from the original LHS field order to
3433   ** the field order that matches the RHS index.
3434   **
3435   ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3436   ** even if it is constant, as OP_Affinity may be used on the register
3437   ** by code generated below.  */
3438   assert( pParse->okConstFactor==okConstFactor );
3439   pParse->okConstFactor = 0;
3440   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3441   pParse->okConstFactor = okConstFactor;
3442   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3443   if( i==nVector ){
3444     /* LHS fields are not reordered */
3445     rLhs = rLhsOrig;
3446   }else{
3447     /* Need to reorder the LHS fields according to aiMap */
3448     rLhs = sqlite3GetTempRange(pParse, nVector);
3449     for(i=0; i<nVector; i++){
3450       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3451     }
3452   }
3453 
3454   /* If sqlite3FindInIndex() did not find or create an index that is
3455   ** suitable for evaluating the IN operator, then evaluate using a
3456   ** sequence of comparisons.
3457   **
3458   ** This is step (1) in the in-operator.md optimized algorithm.
3459   */
3460   if( eType==IN_INDEX_NOOP ){
3461     ExprList *pList;
3462     CollSeq *pColl;
3463     int labelOk = sqlite3VdbeMakeLabel(pParse);
3464     int r2, regToFree;
3465     int regCkNull = 0;
3466     int ii;
3467     assert( ExprUseXList(pExpr) );
3468     pList = pExpr->x.pList;
3469     pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3470     if( destIfNull!=destIfFalse ){
3471       regCkNull = sqlite3GetTempReg(pParse);
3472       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3473     }
3474     for(ii=0; ii<pList->nExpr; ii++){
3475       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3476       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3477         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3478       }
3479       sqlite3ReleaseTempReg(pParse, regToFree);
3480       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3481         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3482         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3483                           (void*)pColl, P4_COLLSEQ);
3484         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3485         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3486         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3487         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3488         sqlite3VdbeChangeP5(v, zAff[0]);
3489       }else{
3490         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3491         assert( destIfNull==destIfFalse );
3492         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3493                           (void*)pColl, P4_COLLSEQ);
3494         VdbeCoverageIf(v, op==OP_Ne);
3495         VdbeCoverageIf(v, op==OP_IsNull);
3496         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3497       }
3498     }
3499     if( regCkNull ){
3500       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3501       sqlite3VdbeGoto(v, destIfFalse);
3502     }
3503     sqlite3VdbeResolveLabel(v, labelOk);
3504     sqlite3ReleaseTempReg(pParse, regCkNull);
3505     goto sqlite3ExprCodeIN_finished;
3506   }
3507 
3508   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3509   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3510   ** We will then skip the binary search of the RHS.
3511   */
3512   if( destIfNull==destIfFalse ){
3513     destStep2 = destIfFalse;
3514   }else{
3515     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3516   }
3517   for(i=0; i<nVector; i++){
3518     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3519     if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error;
3520     if( sqlite3ExprCanBeNull(p) ){
3521       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3522       VdbeCoverage(v);
3523     }
3524   }
3525 
3526   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3527   ** of the RHS using the LHS as a probe.  If found, the result is
3528   ** true.
3529   */
3530   if( eType==IN_INDEX_ROWID ){
3531     /* In this case, the RHS is the ROWID of table b-tree and so we also
3532     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3533     ** into a single opcode. */
3534     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3535     VdbeCoverage(v);
3536     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3537   }else{
3538     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3539     if( destIfFalse==destIfNull ){
3540       /* Combine Step 3 and Step 5 into a single opcode */
3541       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3542                            rLhs, nVector); VdbeCoverage(v);
3543       goto sqlite3ExprCodeIN_finished;
3544     }
3545     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3546     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3547                                       rLhs, nVector); VdbeCoverage(v);
3548   }
3549 
3550   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3551   ** an match on the search above, then the result must be FALSE.
3552   */
3553   if( rRhsHasNull && nVector==1 ){
3554     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3555     VdbeCoverage(v);
3556   }
3557 
3558   /* Step 5.  If we do not care about the difference between NULL and
3559   ** FALSE, then just return false.
3560   */
3561   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3562 
3563   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3564   ** If any comparison is NULL, then the result is NULL.  If all
3565   ** comparisons are FALSE then the final result is FALSE.
3566   **
3567   ** For a scalar LHS, it is sufficient to check just the first row
3568   ** of the RHS.
3569   */
3570   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3571   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3572   VdbeCoverage(v);
3573   if( nVector>1 ){
3574     destNotNull = sqlite3VdbeMakeLabel(pParse);
3575   }else{
3576     /* For nVector==1, combine steps 6 and 7 by immediately returning
3577     ** FALSE if the first comparison is not NULL */
3578     destNotNull = destIfFalse;
3579   }
3580   for(i=0; i<nVector; i++){
3581     Expr *p;
3582     CollSeq *pColl;
3583     int r3 = sqlite3GetTempReg(pParse);
3584     p = sqlite3VectorFieldSubexpr(pLeft, i);
3585     pColl = sqlite3ExprCollSeq(pParse, p);
3586     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3587     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3588                       (void*)pColl, P4_COLLSEQ);
3589     VdbeCoverage(v);
3590     sqlite3ReleaseTempReg(pParse, r3);
3591   }
3592   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3593   if( nVector>1 ){
3594     sqlite3VdbeResolveLabel(v, destNotNull);
3595     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3596     VdbeCoverage(v);
3597 
3598     /* Step 7:  If we reach this point, we know that the result must
3599     ** be false. */
3600     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3601   }
3602 
3603   /* Jumps here in order to return true. */
3604   sqlite3VdbeJumpHere(v, addrTruthOp);
3605 
3606 sqlite3ExprCodeIN_finished:
3607   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3608   VdbeComment((v, "end IN expr"));
3609 sqlite3ExprCodeIN_oom_error:
3610   sqlite3DbFree(pParse->db, aiMap);
3611   sqlite3DbFree(pParse->db, zAff);
3612 }
3613 #endif /* SQLITE_OMIT_SUBQUERY */
3614 
3615 #ifndef SQLITE_OMIT_FLOATING_POINT
3616 /*
3617 ** Generate an instruction that will put the floating point
3618 ** value described by z[0..n-1] into register iMem.
3619 **
3620 ** The z[] string will probably not be zero-terminated.  But the
3621 ** z[n] character is guaranteed to be something that does not look
3622 ** like the continuation of the number.
3623 */
3624 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3625   if( ALWAYS(z!=0) ){
3626     double value;
3627     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3628     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3629     if( negateFlag ) value = -value;
3630     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3631   }
3632 }
3633 #endif
3634 
3635 
3636 /*
3637 ** Generate an instruction that will put the integer describe by
3638 ** text z[0..n-1] into register iMem.
3639 **
3640 ** Expr.u.zToken is always UTF8 and zero-terminated.
3641 */
3642 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3643   Vdbe *v = pParse->pVdbe;
3644   if( pExpr->flags & EP_IntValue ){
3645     int i = pExpr->u.iValue;
3646     assert( i>=0 );
3647     if( negFlag ) i = -i;
3648     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3649   }else{
3650     int c;
3651     i64 value;
3652     const char *z = pExpr->u.zToken;
3653     assert( z!=0 );
3654     c = sqlite3DecOrHexToI64(z, &value);
3655     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3656 #ifdef SQLITE_OMIT_FLOATING_POINT
3657       sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr);
3658 #else
3659 #ifndef SQLITE_OMIT_HEX_INTEGER
3660       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3661         sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T",
3662                         negFlag?"-":"",pExpr);
3663       }else
3664 #endif
3665       {
3666         codeReal(v, z, negFlag, iMem);
3667       }
3668 #endif
3669     }else{
3670       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3671       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3672     }
3673   }
3674 }
3675 
3676 
3677 /* Generate code that will load into register regOut a value that is
3678 ** appropriate for the iIdxCol-th column of index pIdx.
3679 */
3680 void sqlite3ExprCodeLoadIndexColumn(
3681   Parse *pParse,  /* The parsing context */
3682   Index *pIdx,    /* The index whose column is to be loaded */
3683   int iTabCur,    /* Cursor pointing to a table row */
3684   int iIdxCol,    /* The column of the index to be loaded */
3685   int regOut      /* Store the index column value in this register */
3686 ){
3687   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3688   if( iTabCol==XN_EXPR ){
3689     assert( pIdx->aColExpr );
3690     assert( pIdx->aColExpr->nExpr>iIdxCol );
3691     pParse->iSelfTab = iTabCur + 1;
3692     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3693     pParse->iSelfTab = 0;
3694   }else{
3695     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3696                                     iTabCol, regOut);
3697   }
3698 }
3699 
3700 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3701 /*
3702 ** Generate code that will compute the value of generated column pCol
3703 ** and store the result in register regOut
3704 */
3705 void sqlite3ExprCodeGeneratedColumn(
3706   Parse *pParse,     /* Parsing context */
3707   Table *pTab,       /* Table containing the generated column */
3708   Column *pCol,      /* The generated column */
3709   int regOut         /* Put the result in this register */
3710 ){
3711   int iAddr;
3712   Vdbe *v = pParse->pVdbe;
3713   assert( v!=0 );
3714   assert( pParse->iSelfTab!=0 );
3715   if( pParse->iSelfTab>0 ){
3716     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3717   }else{
3718     iAddr = 0;
3719   }
3720   sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut);
3721   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3722     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3723   }
3724   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3725 }
3726 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3727 
3728 /*
3729 ** Generate code to extract the value of the iCol-th column of a table.
3730 */
3731 void sqlite3ExprCodeGetColumnOfTable(
3732   Vdbe *v,        /* Parsing context */
3733   Table *pTab,    /* The table containing the value */
3734   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3735   int iCol,       /* Index of the column to extract */
3736   int regOut      /* Extract the value into this register */
3737 ){
3738   Column *pCol;
3739   assert( v!=0 );
3740   if( pTab==0 ){
3741     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3742     return;
3743   }
3744   if( iCol<0 || iCol==pTab->iPKey ){
3745     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3746     VdbeComment((v, "%s.rowid", pTab->zName));
3747   }else{
3748     int op;
3749     int x;
3750     if( IsVirtual(pTab) ){
3751       op = OP_VColumn;
3752       x = iCol;
3753 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3754     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3755       Parse *pParse = sqlite3VdbeParser(v);
3756       if( pCol->colFlags & COLFLAG_BUSY ){
3757         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3758                         pCol->zCnName);
3759       }else{
3760         int savedSelfTab = pParse->iSelfTab;
3761         pCol->colFlags |= COLFLAG_BUSY;
3762         pParse->iSelfTab = iTabCur+1;
3763         sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut);
3764         pParse->iSelfTab = savedSelfTab;
3765         pCol->colFlags &= ~COLFLAG_BUSY;
3766       }
3767       return;
3768 #endif
3769     }else if( !HasRowid(pTab) ){
3770       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3771       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3772       op = OP_Column;
3773     }else{
3774       x = sqlite3TableColumnToStorage(pTab,iCol);
3775       testcase( x!=iCol );
3776       op = OP_Column;
3777     }
3778     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3779     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3780   }
3781 }
3782 
3783 /*
3784 ** Generate code that will extract the iColumn-th column from
3785 ** table pTab and store the column value in register iReg.
3786 **
3787 ** There must be an open cursor to pTab in iTable when this routine
3788 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3789 */
3790 int sqlite3ExprCodeGetColumn(
3791   Parse *pParse,   /* Parsing and code generating context */
3792   Table *pTab,     /* Description of the table we are reading from */
3793   int iColumn,     /* Index of the table column */
3794   int iTable,      /* The cursor pointing to the table */
3795   int iReg,        /* Store results here */
3796   u8 p5            /* P5 value for OP_Column + FLAGS */
3797 ){
3798   assert( pParse->pVdbe!=0 );
3799   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3800   if( p5 ){
3801     VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3802     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3803   }
3804   return iReg;
3805 }
3806 
3807 /*
3808 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3809 ** over to iTo..iTo+nReg-1.
3810 */
3811 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3812   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3813 }
3814 
3815 /*
3816 ** Convert a scalar expression node to a TK_REGISTER referencing
3817 ** register iReg.  The caller must ensure that iReg already contains
3818 ** the correct value for the expression.
3819 */
3820 static void exprToRegister(Expr *pExpr, int iReg){
3821   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3822   if( NEVER(p==0) ) return;
3823   p->op2 = p->op;
3824   p->op = TK_REGISTER;
3825   p->iTable = iReg;
3826   ExprClearProperty(p, EP_Skip);
3827 }
3828 
3829 /*
3830 ** Evaluate an expression (either a vector or a scalar expression) and store
3831 ** the result in continguous temporary registers.  Return the index of
3832 ** the first register used to store the result.
3833 **
3834 ** If the returned result register is a temporary scalar, then also write
3835 ** that register number into *piFreeable.  If the returned result register
3836 ** is not a temporary or if the expression is a vector set *piFreeable
3837 ** to 0.
3838 */
3839 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3840   int iResult;
3841   int nResult = sqlite3ExprVectorSize(p);
3842   if( nResult==1 ){
3843     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3844   }else{
3845     *piFreeable = 0;
3846     if( p->op==TK_SELECT ){
3847 #if SQLITE_OMIT_SUBQUERY
3848       iResult = 0;
3849 #else
3850       iResult = sqlite3CodeSubselect(pParse, p);
3851 #endif
3852     }else{
3853       int i;
3854       iResult = pParse->nMem+1;
3855       pParse->nMem += nResult;
3856       assert( ExprUseXList(p) );
3857       for(i=0; i<nResult; i++){
3858         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3859       }
3860     }
3861   }
3862   return iResult;
3863 }
3864 
3865 /*
3866 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3867 ** so that a subsequent copy will not be merged into this one.
3868 */
3869 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3870   if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
3871     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3872   }
3873 }
3874 
3875 /*
3876 ** Generate code to implement special SQL functions that are implemented
3877 ** in-line rather than by using the usual callbacks.
3878 */
3879 static int exprCodeInlineFunction(
3880   Parse *pParse,        /* Parsing context */
3881   ExprList *pFarg,      /* List of function arguments */
3882   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3883   int target            /* Store function result in this register */
3884 ){
3885   int nFarg;
3886   Vdbe *v = pParse->pVdbe;
3887   assert( v!=0 );
3888   assert( pFarg!=0 );
3889   nFarg = pFarg->nExpr;
3890   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3891   switch( iFuncId ){
3892     case INLINEFUNC_coalesce: {
3893       /* Attempt a direct implementation of the built-in COALESCE() and
3894       ** IFNULL() functions.  This avoids unnecessary evaluation of
3895       ** arguments past the first non-NULL argument.
3896       */
3897       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3898       int i;
3899       assert( nFarg>=2 );
3900       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3901       for(i=1; i<nFarg; i++){
3902         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3903         VdbeCoverage(v);
3904         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3905       }
3906       setDoNotMergeFlagOnCopy(v);
3907       sqlite3VdbeResolveLabel(v, endCoalesce);
3908       break;
3909     }
3910     case INLINEFUNC_iif: {
3911       Expr caseExpr;
3912       memset(&caseExpr, 0, sizeof(caseExpr));
3913       caseExpr.op = TK_CASE;
3914       caseExpr.x.pList = pFarg;
3915       return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3916     }
3917 
3918     default: {
3919       /* The UNLIKELY() function is a no-op.  The result is the value
3920       ** of the first argument.
3921       */
3922       assert( nFarg==1 || nFarg==2 );
3923       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3924       break;
3925     }
3926 
3927   /***********************************************************************
3928   ** Test-only SQL functions that are only usable if enabled
3929   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3930   */
3931 #if !defined(SQLITE_UNTESTABLE)
3932     case INLINEFUNC_expr_compare: {
3933       /* Compare two expressions using sqlite3ExprCompare() */
3934       assert( nFarg==2 );
3935       sqlite3VdbeAddOp2(v, OP_Integer,
3936          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3937          target);
3938       break;
3939     }
3940 
3941     case INLINEFUNC_expr_implies_expr: {
3942       /* Compare two expressions using sqlite3ExprImpliesExpr() */
3943       assert( nFarg==2 );
3944       sqlite3VdbeAddOp2(v, OP_Integer,
3945          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3946          target);
3947       break;
3948     }
3949 
3950     case INLINEFUNC_implies_nonnull_row: {
3951       /* REsult of sqlite3ExprImpliesNonNullRow() */
3952       Expr *pA1;
3953       assert( nFarg==2 );
3954       pA1 = pFarg->a[1].pExpr;
3955       if( pA1->op==TK_COLUMN ){
3956         sqlite3VdbeAddOp2(v, OP_Integer,
3957            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
3958            target);
3959       }else{
3960         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3961       }
3962       break;
3963     }
3964 
3965     case INLINEFUNC_affinity: {
3966       /* The AFFINITY() function evaluates to a string that describes
3967       ** the type affinity of the argument.  This is used for testing of
3968       ** the SQLite type logic.
3969       */
3970       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3971       char aff;
3972       assert( nFarg==1 );
3973       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3974       sqlite3VdbeLoadString(v, target,
3975               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3976       break;
3977     }
3978 #endif /* !defined(SQLITE_UNTESTABLE) */
3979   }
3980   return target;
3981 }
3982 
3983 
3984 /*
3985 ** Generate code into the current Vdbe to evaluate the given
3986 ** expression.  Attempt to store the results in register "target".
3987 ** Return the register where results are stored.
3988 **
3989 ** With this routine, there is no guarantee that results will
3990 ** be stored in target.  The result might be stored in some other
3991 ** register if it is convenient to do so.  The calling function
3992 ** must check the return code and move the results to the desired
3993 ** register.
3994 */
3995 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3996   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3997   int op;                   /* The opcode being coded */
3998   int inReg = target;       /* Results stored in register inReg */
3999   int regFree1 = 0;         /* If non-zero free this temporary register */
4000   int regFree2 = 0;         /* If non-zero free this temporary register */
4001   int r1, r2;               /* Various register numbers */
4002   Expr tempX;               /* Temporary expression node */
4003   int p5 = 0;
4004 
4005   assert( target>0 && target<=pParse->nMem );
4006   assert( v!=0 );
4007 
4008 expr_code_doover:
4009   if( pExpr==0 ){
4010     op = TK_NULL;
4011   }else{
4012     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
4013     op = pExpr->op;
4014   }
4015   switch( op ){
4016     case TK_AGG_COLUMN: {
4017       AggInfo *pAggInfo = pExpr->pAggInfo;
4018       struct AggInfo_col *pCol;
4019       assert( pAggInfo!=0 );
4020       assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
4021       pCol = &pAggInfo->aCol[pExpr->iAgg];
4022       if( !pAggInfo->directMode ){
4023         assert( pCol->iMem>0 );
4024         return pCol->iMem;
4025       }else if( pAggInfo->useSortingIdx ){
4026         Table *pTab = pCol->pTab;
4027         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
4028                               pCol->iSorterColumn, target);
4029         if( pCol->iColumn<0 ){
4030           VdbeComment((v,"%s.rowid",pTab->zName));
4031         }else{
4032           VdbeComment((v,"%s.%s",
4033               pTab->zName, pTab->aCol[pCol->iColumn].zCnName));
4034           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
4035             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4036           }
4037         }
4038         return target;
4039       }
4040       /* Otherwise, fall thru into the TK_COLUMN case */
4041       /* no break */ deliberate_fall_through
4042     }
4043     case TK_COLUMN: {
4044       int iTab = pExpr->iTable;
4045       int iReg;
4046       if( ExprHasProperty(pExpr, EP_FixedCol) ){
4047         /* This COLUMN expression is really a constant due to WHERE clause
4048         ** constraints, and that constant is coded by the pExpr->pLeft
4049         ** expresssion.  However, make sure the constant has the correct
4050         ** datatype by applying the Affinity of the table column to the
4051         ** constant.
4052         */
4053         int aff;
4054         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
4055         assert( ExprUseYTab(pExpr) );
4056         if( pExpr->y.pTab ){
4057           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
4058         }else{
4059           aff = pExpr->affExpr;
4060         }
4061         if( aff>SQLITE_AFF_BLOB ){
4062           static const char zAff[] = "B\000C\000D\000E";
4063           assert( SQLITE_AFF_BLOB=='A' );
4064           assert( SQLITE_AFF_TEXT=='B' );
4065           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
4066                             &zAff[(aff-'B')*2], P4_STATIC);
4067         }
4068         return iReg;
4069       }
4070       if( iTab<0 ){
4071         if( pParse->iSelfTab<0 ){
4072           /* Other columns in the same row for CHECK constraints or
4073           ** generated columns or for inserting into partial index.
4074           ** The row is unpacked into registers beginning at
4075           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
4076           ** immediately prior to the first column.
4077           */
4078           Column *pCol;
4079           Table *pTab;
4080           int iSrc;
4081           int iCol = pExpr->iColumn;
4082           assert( ExprUseYTab(pExpr) );
4083           pTab = pExpr->y.pTab;
4084           assert( pTab!=0 );
4085           assert( iCol>=XN_ROWID );
4086           assert( iCol<pTab->nCol );
4087           if( iCol<0 ){
4088             return -1-pParse->iSelfTab;
4089           }
4090           pCol = pTab->aCol + iCol;
4091           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
4092           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
4093 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4094           if( pCol->colFlags & COLFLAG_GENERATED ){
4095             if( pCol->colFlags & COLFLAG_BUSY ){
4096               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
4097                               pCol->zCnName);
4098               return 0;
4099             }
4100             pCol->colFlags |= COLFLAG_BUSY;
4101             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
4102               sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc);
4103             }
4104             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
4105             return iSrc;
4106           }else
4107 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
4108           if( pCol->affinity==SQLITE_AFF_REAL ){
4109             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
4110             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4111             return target;
4112           }else{
4113             return iSrc;
4114           }
4115         }else{
4116           /* Coding an expression that is part of an index where column names
4117           ** in the index refer to the table to which the index belongs */
4118           iTab = pParse->iSelfTab - 1;
4119         }
4120       }
4121       assert( ExprUseYTab(pExpr) );
4122       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
4123                                pExpr->iColumn, iTab, target,
4124                                pExpr->op2);
4125       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
4126         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
4127       }
4128       return iReg;
4129     }
4130     case TK_INTEGER: {
4131       codeInteger(pParse, pExpr, 0, target);
4132       return target;
4133     }
4134     case TK_TRUEFALSE: {
4135       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
4136       return target;
4137     }
4138 #ifndef SQLITE_OMIT_FLOATING_POINT
4139     case TK_FLOAT: {
4140       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4141       codeReal(v, pExpr->u.zToken, 0, target);
4142       return target;
4143     }
4144 #endif
4145     case TK_STRING: {
4146       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4147       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
4148       return target;
4149     }
4150     default: {
4151       /* Make NULL the default case so that if a bug causes an illegal
4152       ** Expr node to be passed into this function, it will be handled
4153       ** sanely and not crash.  But keep the assert() to bring the problem
4154       ** to the attention of the developers. */
4155       assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed );
4156       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4157       return target;
4158     }
4159 #ifndef SQLITE_OMIT_BLOB_LITERAL
4160     case TK_BLOB: {
4161       int n;
4162       const char *z;
4163       char *zBlob;
4164       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4165       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
4166       assert( pExpr->u.zToken[1]=='\'' );
4167       z = &pExpr->u.zToken[2];
4168       n = sqlite3Strlen30(z) - 1;
4169       assert( z[n]=='\'' );
4170       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
4171       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
4172       return target;
4173     }
4174 #endif
4175     case TK_VARIABLE: {
4176       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4177       assert( pExpr->u.zToken!=0 );
4178       assert( pExpr->u.zToken[0]!=0 );
4179       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
4180       if( pExpr->u.zToken[1]!=0 ){
4181         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
4182         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
4183         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
4184         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
4185       }
4186       return target;
4187     }
4188     case TK_REGISTER: {
4189       return pExpr->iTable;
4190     }
4191 #ifndef SQLITE_OMIT_CAST
4192     case TK_CAST: {
4193       /* Expressions of the form:   CAST(pLeft AS token) */
4194       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4195       if( inReg!=target ){
4196         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4197         inReg = target;
4198       }
4199       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4200       sqlite3VdbeAddOp2(v, OP_Cast, target,
4201                         sqlite3AffinityType(pExpr->u.zToken, 0));
4202       return inReg;
4203     }
4204 #endif /* SQLITE_OMIT_CAST */
4205     case TK_IS:
4206     case TK_ISNOT:
4207       op = (op==TK_IS) ? TK_EQ : TK_NE;
4208       p5 = SQLITE_NULLEQ;
4209       /* fall-through */
4210     case TK_LT:
4211     case TK_LE:
4212     case TK_GT:
4213     case TK_GE:
4214     case TK_NE:
4215     case TK_EQ: {
4216       Expr *pLeft = pExpr->pLeft;
4217       if( sqlite3ExprIsVector(pLeft) ){
4218         codeVectorCompare(pParse, pExpr, target, op, p5);
4219       }else{
4220         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4221         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4222         sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
4223         codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
4224             sqlite3VdbeCurrentAddr(v)+2, p5,
4225             ExprHasProperty(pExpr,EP_Commuted));
4226         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4227         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4228         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4229         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4230         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4231         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4232         if( p5==SQLITE_NULLEQ ){
4233           sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
4234         }else{
4235           sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
4236         }
4237         testcase( regFree1==0 );
4238         testcase( regFree2==0 );
4239       }
4240       break;
4241     }
4242     case TK_AND:
4243     case TK_OR:
4244     case TK_PLUS:
4245     case TK_STAR:
4246     case TK_MINUS:
4247     case TK_REM:
4248     case TK_BITAND:
4249     case TK_BITOR:
4250     case TK_SLASH:
4251     case TK_LSHIFT:
4252     case TK_RSHIFT:
4253     case TK_CONCAT: {
4254       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4255       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4256       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4257       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4258       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4259       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4260       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4261       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4262       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4263       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4264       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4265       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4266       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4267       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4268       testcase( regFree1==0 );
4269       testcase( regFree2==0 );
4270       break;
4271     }
4272     case TK_UMINUS: {
4273       Expr *pLeft = pExpr->pLeft;
4274       assert( pLeft );
4275       if( pLeft->op==TK_INTEGER ){
4276         codeInteger(pParse, pLeft, 1, target);
4277         return target;
4278 #ifndef SQLITE_OMIT_FLOATING_POINT
4279       }else if( pLeft->op==TK_FLOAT ){
4280         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4281         codeReal(v, pLeft->u.zToken, 1, target);
4282         return target;
4283 #endif
4284       }else{
4285         tempX.op = TK_INTEGER;
4286         tempX.flags = EP_IntValue|EP_TokenOnly;
4287         tempX.u.iValue = 0;
4288         ExprClearVVAProperties(&tempX);
4289         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4290         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4291         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4292         testcase( regFree2==0 );
4293       }
4294       break;
4295     }
4296     case TK_BITNOT:
4297     case TK_NOT: {
4298       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4299       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4300       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4301       testcase( regFree1==0 );
4302       sqlite3VdbeAddOp2(v, op, r1, inReg);
4303       break;
4304     }
4305     case TK_TRUTH: {
4306       int isTrue;    /* IS TRUE or IS NOT TRUE */
4307       int bNormal;   /* IS TRUE or IS FALSE */
4308       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4309       testcase( regFree1==0 );
4310       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4311       bNormal = pExpr->op2==TK_IS;
4312       testcase( isTrue && bNormal);
4313       testcase( !isTrue && bNormal);
4314       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4315       break;
4316     }
4317     case TK_ISNULL:
4318     case TK_NOTNULL: {
4319       int addr;
4320       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4321       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4322       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4323       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4324       testcase( regFree1==0 );
4325       addr = sqlite3VdbeAddOp1(v, op, r1);
4326       VdbeCoverageIf(v, op==TK_ISNULL);
4327       VdbeCoverageIf(v, op==TK_NOTNULL);
4328       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4329       sqlite3VdbeJumpHere(v, addr);
4330       break;
4331     }
4332     case TK_AGG_FUNCTION: {
4333       AggInfo *pInfo = pExpr->pAggInfo;
4334       if( pInfo==0
4335        || NEVER(pExpr->iAgg<0)
4336        || NEVER(pExpr->iAgg>=pInfo->nFunc)
4337       ){
4338         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4339         sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr);
4340       }else{
4341         return pInfo->aFunc[pExpr->iAgg].iMem;
4342       }
4343       break;
4344     }
4345     case TK_FUNCTION: {
4346       ExprList *pFarg;       /* List of function arguments */
4347       int nFarg;             /* Number of function arguments */
4348       FuncDef *pDef;         /* The function definition object */
4349       const char *zId;       /* The function name */
4350       u32 constMask = 0;     /* Mask of function arguments that are constant */
4351       int i;                 /* Loop counter */
4352       sqlite3 *db = pParse->db;  /* The database connection */
4353       u8 enc = ENC(db);      /* The text encoding used by this database */
4354       CollSeq *pColl = 0;    /* A collating sequence */
4355 
4356 #ifndef SQLITE_OMIT_WINDOWFUNC
4357       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4358         return pExpr->y.pWin->regResult;
4359       }
4360 #endif
4361 
4362       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4363         /* SQL functions can be expensive. So try to avoid running them
4364         ** multiple times if we know they always give the same result */
4365         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4366       }
4367       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4368       assert( ExprUseXList(pExpr) );
4369       pFarg = pExpr->x.pList;
4370       nFarg = pFarg ? pFarg->nExpr : 0;
4371       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4372       zId = pExpr->u.zToken;
4373       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4374 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4375       if( pDef==0 && pParse->explain ){
4376         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4377       }
4378 #endif
4379       if( pDef==0 || pDef->xFinalize!=0 ){
4380         sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr);
4381         break;
4382       }
4383       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4384         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4385         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4386         return exprCodeInlineFunction(pParse, pFarg,
4387              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4388       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4389         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4390       }
4391 
4392       for(i=0; i<nFarg; i++){
4393         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4394           testcase( i==31 );
4395           constMask |= MASKBIT32(i);
4396         }
4397         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4398           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4399         }
4400       }
4401       if( pFarg ){
4402         if( constMask ){
4403           r1 = pParse->nMem+1;
4404           pParse->nMem += nFarg;
4405         }else{
4406           r1 = sqlite3GetTempRange(pParse, nFarg);
4407         }
4408 
4409         /* For length() and typeof() functions with a column argument,
4410         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4411         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4412         ** loading.
4413         */
4414         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4415           u8 exprOp;
4416           assert( nFarg==1 );
4417           assert( pFarg->a[0].pExpr!=0 );
4418           exprOp = pFarg->a[0].pExpr->op;
4419           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4420             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4421             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4422             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4423             pFarg->a[0].pExpr->op2 =
4424                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4425           }
4426         }
4427 
4428         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4429                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4430       }else{
4431         r1 = 0;
4432       }
4433 #ifndef SQLITE_OMIT_VIRTUALTABLE
4434       /* Possibly overload the function if the first argument is
4435       ** a virtual table column.
4436       **
4437       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4438       ** second argument, not the first, as the argument to test to
4439       ** see if it is a column in a virtual table.  This is done because
4440       ** the left operand of infix functions (the operand we want to
4441       ** control overloading) ends up as the second argument to the
4442       ** function.  The expression "A glob B" is equivalent to
4443       ** "glob(B,A).  We want to use the A in "A glob B" to test
4444       ** for function overloading.  But we use the B term in "glob(B,A)".
4445       */
4446       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4447         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4448       }else if( nFarg>0 ){
4449         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4450       }
4451 #endif
4452       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4453         if( !pColl ) pColl = db->pDfltColl;
4454         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4455       }
4456 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4457       if( (pDef->funcFlags & SQLITE_FUNC_OFFSET)!=0 && ALWAYS(pFarg!=0) ){
4458         Expr *pArg = pFarg->a[0].pExpr;
4459         if( pArg->op==TK_COLUMN ){
4460           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4461         }else{
4462           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4463         }
4464       }else
4465 #endif
4466       {
4467         sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4468                                    pDef, pExpr->op2);
4469       }
4470       if( nFarg ){
4471         if( constMask==0 ){
4472           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4473         }else{
4474           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4475         }
4476       }
4477       return target;
4478     }
4479 #ifndef SQLITE_OMIT_SUBQUERY
4480     case TK_EXISTS:
4481     case TK_SELECT: {
4482       int nCol;
4483       testcase( op==TK_EXISTS );
4484       testcase( op==TK_SELECT );
4485       if( pParse->db->mallocFailed ){
4486         return 0;
4487       }else if( op==TK_SELECT
4488              && ALWAYS( ExprUseXSelect(pExpr) )
4489              && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1
4490       ){
4491         sqlite3SubselectError(pParse, nCol, 1);
4492       }else{
4493         return sqlite3CodeSubselect(pParse, pExpr);
4494       }
4495       break;
4496     }
4497     case TK_SELECT_COLUMN: {
4498       int n;
4499       Expr *pLeft = pExpr->pLeft;
4500       if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){
4501         pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft);
4502         pLeft->op2 = pParse->withinRJSubrtn;
4503       }
4504       assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR );
4505       n = sqlite3ExprVectorSize(pLeft);
4506       if( pExpr->iTable!=n ){
4507         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4508                                 pExpr->iTable, n);
4509       }
4510       return pLeft->iTable + pExpr->iColumn;
4511     }
4512     case TK_IN: {
4513       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4514       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4515       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4516       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4517       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4518       sqlite3VdbeResolveLabel(v, destIfFalse);
4519       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4520       sqlite3VdbeResolveLabel(v, destIfNull);
4521       return target;
4522     }
4523 #endif /* SQLITE_OMIT_SUBQUERY */
4524 
4525 
4526     /*
4527     **    x BETWEEN y AND z
4528     **
4529     ** This is equivalent to
4530     **
4531     **    x>=y AND x<=z
4532     **
4533     ** X is stored in pExpr->pLeft.
4534     ** Y is stored in pExpr->pList->a[0].pExpr.
4535     ** Z is stored in pExpr->pList->a[1].pExpr.
4536     */
4537     case TK_BETWEEN: {
4538       exprCodeBetween(pParse, pExpr, target, 0, 0);
4539       return target;
4540     }
4541     case TK_SPAN:
4542     case TK_COLLATE:
4543     case TK_UPLUS: {
4544       pExpr = pExpr->pLeft;
4545       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4546     }
4547 
4548     case TK_TRIGGER: {
4549       /* If the opcode is TK_TRIGGER, then the expression is a reference
4550       ** to a column in the new.* or old.* pseudo-tables available to
4551       ** trigger programs. In this case Expr.iTable is set to 1 for the
4552       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4553       ** is set to the column of the pseudo-table to read, or to -1 to
4554       ** read the rowid field.
4555       **
4556       ** The expression is implemented using an OP_Param opcode. The p1
4557       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4558       ** to reference another column of the old.* pseudo-table, where
4559       ** i is the index of the column. For a new.rowid reference, p1 is
4560       ** set to (n+1), where n is the number of columns in each pseudo-table.
4561       ** For a reference to any other column in the new.* pseudo-table, p1
4562       ** is set to (n+2+i), where n and i are as defined previously. For
4563       ** example, if the table on which triggers are being fired is
4564       ** declared as:
4565       **
4566       **   CREATE TABLE t1(a, b);
4567       **
4568       ** Then p1 is interpreted as follows:
4569       **
4570       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4571       **   p1==1   ->    old.a         p1==4   ->    new.a
4572       **   p1==2   ->    old.b         p1==5   ->    new.b
4573       */
4574       Table *pTab;
4575       int iCol;
4576       int p1;
4577 
4578       assert( ExprUseYTab(pExpr) );
4579       pTab = pExpr->y.pTab;
4580       iCol = pExpr->iColumn;
4581       p1 = pExpr->iTable * (pTab->nCol+1) + 1
4582                      + sqlite3TableColumnToStorage(pTab, iCol);
4583 
4584       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4585       assert( iCol>=-1 && iCol<pTab->nCol );
4586       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4587       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4588 
4589       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4590       VdbeComment((v, "r[%d]=%s.%s", target,
4591         (pExpr->iTable ? "new" : "old"),
4592         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName)
4593       ));
4594 
4595 #ifndef SQLITE_OMIT_FLOATING_POINT
4596       /* If the column has REAL affinity, it may currently be stored as an
4597       ** integer. Use OP_RealAffinity to make sure it is really real.
4598       **
4599       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4600       ** floating point when extracting it from the record.  */
4601       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4602         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4603       }
4604 #endif
4605       break;
4606     }
4607 
4608     case TK_VECTOR: {
4609       sqlite3ErrorMsg(pParse, "row value misused");
4610       break;
4611     }
4612 
4613     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4614     ** that derive from the right-hand table of a LEFT JOIN.  The
4615     ** Expr.iTable value is the table number for the right-hand table.
4616     ** The expression is only evaluated if that table is not currently
4617     ** on a LEFT JOIN NULL row.
4618     */
4619     case TK_IF_NULL_ROW: {
4620       int addrINR;
4621       u8 okConstFactor = pParse->okConstFactor;
4622       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4623       /* Temporarily disable factoring of constant expressions, since
4624       ** even though expressions may appear to be constant, they are not
4625       ** really constant because they originate from the right-hand side
4626       ** of a LEFT JOIN. */
4627       pParse->okConstFactor = 0;
4628       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4629       pParse->okConstFactor = okConstFactor;
4630       sqlite3VdbeJumpHere(v, addrINR);
4631       sqlite3VdbeChangeP3(v, addrINR, inReg);
4632       break;
4633     }
4634 
4635     /*
4636     ** Form A:
4637     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4638     **
4639     ** Form B:
4640     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4641     **
4642     ** Form A is can be transformed into the equivalent form B as follows:
4643     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4644     **        WHEN x=eN THEN rN ELSE y END
4645     **
4646     ** X (if it exists) is in pExpr->pLeft.
4647     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4648     ** odd.  The Y is also optional.  If the number of elements in x.pList
4649     ** is even, then Y is omitted and the "otherwise" result is NULL.
4650     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4651     **
4652     ** The result of the expression is the Ri for the first matching Ei,
4653     ** or if there is no matching Ei, the ELSE term Y, or if there is
4654     ** no ELSE term, NULL.
4655     */
4656     case TK_CASE: {
4657       int endLabel;                     /* GOTO label for end of CASE stmt */
4658       int nextCase;                     /* GOTO label for next WHEN clause */
4659       int nExpr;                        /* 2x number of WHEN terms */
4660       int i;                            /* Loop counter */
4661       ExprList *pEList;                 /* List of WHEN terms */
4662       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4663       Expr opCompare;                   /* The X==Ei expression */
4664       Expr *pX;                         /* The X expression */
4665       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4666       Expr *pDel = 0;
4667       sqlite3 *db = pParse->db;
4668 
4669       assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 );
4670       assert(pExpr->x.pList->nExpr > 0);
4671       pEList = pExpr->x.pList;
4672       aListelem = pEList->a;
4673       nExpr = pEList->nExpr;
4674       endLabel = sqlite3VdbeMakeLabel(pParse);
4675       if( (pX = pExpr->pLeft)!=0 ){
4676         pDel = sqlite3ExprDup(db, pX, 0);
4677         if( db->mallocFailed ){
4678           sqlite3ExprDelete(db, pDel);
4679           break;
4680         }
4681         testcase( pX->op==TK_COLUMN );
4682         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4683         testcase( regFree1==0 );
4684         memset(&opCompare, 0, sizeof(opCompare));
4685         opCompare.op = TK_EQ;
4686         opCompare.pLeft = pDel;
4687         pTest = &opCompare;
4688         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4689         ** The value in regFree1 might get SCopy-ed into the file result.
4690         ** So make sure that the regFree1 register is not reused for other
4691         ** purposes and possibly overwritten.  */
4692         regFree1 = 0;
4693       }
4694       for(i=0; i<nExpr-1; i=i+2){
4695         if( pX ){
4696           assert( pTest!=0 );
4697           opCompare.pRight = aListelem[i].pExpr;
4698         }else{
4699           pTest = aListelem[i].pExpr;
4700         }
4701         nextCase = sqlite3VdbeMakeLabel(pParse);
4702         testcase( pTest->op==TK_COLUMN );
4703         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4704         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4705         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4706         sqlite3VdbeGoto(v, endLabel);
4707         sqlite3VdbeResolveLabel(v, nextCase);
4708       }
4709       if( (nExpr&1)!=0 ){
4710         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4711       }else{
4712         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4713       }
4714       sqlite3ExprDelete(db, pDel);
4715       setDoNotMergeFlagOnCopy(v);
4716       sqlite3VdbeResolveLabel(v, endLabel);
4717       break;
4718     }
4719 #ifndef SQLITE_OMIT_TRIGGER
4720     case TK_RAISE: {
4721       assert( pExpr->affExpr==OE_Rollback
4722            || pExpr->affExpr==OE_Abort
4723            || pExpr->affExpr==OE_Fail
4724            || pExpr->affExpr==OE_Ignore
4725       );
4726       if( !pParse->pTriggerTab && !pParse->nested ){
4727         sqlite3ErrorMsg(pParse,
4728                        "RAISE() may only be used within a trigger-program");
4729         return 0;
4730       }
4731       if( pExpr->affExpr==OE_Abort ){
4732         sqlite3MayAbort(pParse);
4733       }
4734       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4735       if( pExpr->affExpr==OE_Ignore ){
4736         sqlite3VdbeAddOp4(
4737             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4738         VdbeCoverage(v);
4739       }else{
4740         sqlite3HaltConstraint(pParse,
4741              pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4742              pExpr->affExpr, pExpr->u.zToken, 0, 0);
4743       }
4744 
4745       break;
4746     }
4747 #endif
4748   }
4749   sqlite3ReleaseTempReg(pParse, regFree1);
4750   sqlite3ReleaseTempReg(pParse, regFree2);
4751   return inReg;
4752 }
4753 
4754 /*
4755 ** Generate code that will evaluate expression pExpr just one time
4756 ** per prepared statement execution.
4757 **
4758 ** If the expression uses functions (that might throw an exception) then
4759 ** guard them with an OP_Once opcode to ensure that the code is only executed
4760 ** once. If no functions are involved, then factor the code out and put it at
4761 ** the end of the prepared statement in the initialization section.
4762 **
4763 ** If regDest>=0 then the result is always stored in that register and the
4764 ** result is not reusable.  If regDest<0 then this routine is free to
4765 ** store the value whereever it wants.  The register where the expression
4766 ** is stored is returned.  When regDest<0, two identical expressions might
4767 ** code to the same register, if they do not contain function calls and hence
4768 ** are factored out into the initialization section at the end of the
4769 ** prepared statement.
4770 */
4771 int sqlite3ExprCodeRunJustOnce(
4772   Parse *pParse,    /* Parsing context */
4773   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4774   int regDest       /* Store the value in this register */
4775 ){
4776   ExprList *p;
4777   assert( ConstFactorOk(pParse) );
4778   p = pParse->pConstExpr;
4779   if( regDest<0 && p ){
4780     struct ExprList_item *pItem;
4781     int i;
4782     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4783       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4784         return pItem->u.iConstExprReg;
4785       }
4786     }
4787   }
4788   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4789   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4790     Vdbe *v = pParse->pVdbe;
4791     int addr;
4792     assert( v );
4793     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4794     pParse->okConstFactor = 0;
4795     if( !pParse->db->mallocFailed ){
4796       if( regDest<0 ) regDest = ++pParse->nMem;
4797       sqlite3ExprCode(pParse, pExpr, regDest);
4798     }
4799     pParse->okConstFactor = 1;
4800     sqlite3ExprDelete(pParse->db, pExpr);
4801     sqlite3VdbeJumpHere(v, addr);
4802   }else{
4803     p = sqlite3ExprListAppend(pParse, p, pExpr);
4804     if( p ){
4805        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4806        pItem->reusable = regDest<0;
4807        if( regDest<0 ) regDest = ++pParse->nMem;
4808        pItem->u.iConstExprReg = regDest;
4809     }
4810     pParse->pConstExpr = p;
4811   }
4812   return regDest;
4813 }
4814 
4815 /*
4816 ** Generate code to evaluate an expression and store the results
4817 ** into a register.  Return the register number where the results
4818 ** are stored.
4819 **
4820 ** If the register is a temporary register that can be deallocated,
4821 ** then write its number into *pReg.  If the result register is not
4822 ** a temporary, then set *pReg to zero.
4823 **
4824 ** If pExpr is a constant, then this routine might generate this
4825 ** code to fill the register in the initialization section of the
4826 ** VDBE program, in order to factor it out of the evaluation loop.
4827 */
4828 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4829   int r2;
4830   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4831   if( ConstFactorOk(pParse)
4832    && ALWAYS(pExpr!=0)
4833    && pExpr->op!=TK_REGISTER
4834    && sqlite3ExprIsConstantNotJoin(pExpr)
4835   ){
4836     *pReg  = 0;
4837     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4838   }else{
4839     int r1 = sqlite3GetTempReg(pParse);
4840     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4841     if( r2==r1 ){
4842       *pReg = r1;
4843     }else{
4844       sqlite3ReleaseTempReg(pParse, r1);
4845       *pReg = 0;
4846     }
4847   }
4848   return r2;
4849 }
4850 
4851 /*
4852 ** Generate code that will evaluate expression pExpr and store the
4853 ** results in register target.  The results are guaranteed to appear
4854 ** in register target.
4855 */
4856 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4857   int inReg;
4858 
4859   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4860   assert( target>0 && target<=pParse->nMem );
4861   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4862   if( pParse->pVdbe==0 ) return;
4863   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4864   if( inReg!=target ){
4865     u8 op;
4866     if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){
4867       op = OP_Copy;
4868     }else{
4869       op = OP_SCopy;
4870     }
4871     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4872   }
4873 }
4874 
4875 /*
4876 ** Make a transient copy of expression pExpr and then code it using
4877 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4878 ** except that the input expression is guaranteed to be unchanged.
4879 */
4880 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4881   sqlite3 *db = pParse->db;
4882   pExpr = sqlite3ExprDup(db, pExpr, 0);
4883   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4884   sqlite3ExprDelete(db, pExpr);
4885 }
4886 
4887 /*
4888 ** Generate code that will evaluate expression pExpr and store the
4889 ** results in register target.  The results are guaranteed to appear
4890 ** in register target.  If the expression is constant, then this routine
4891 ** might choose to code the expression at initialization time.
4892 */
4893 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4894   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4895     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4896   }else{
4897     sqlite3ExprCodeCopy(pParse, pExpr, target);
4898   }
4899 }
4900 
4901 /*
4902 ** Generate code that pushes the value of every element of the given
4903 ** expression list into a sequence of registers beginning at target.
4904 **
4905 ** Return the number of elements evaluated.  The number returned will
4906 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4907 ** is defined.
4908 **
4909 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4910 ** filled using OP_SCopy.  OP_Copy must be used instead.
4911 **
4912 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4913 ** factored out into initialization code.
4914 **
4915 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4916 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4917 ** in registers at srcReg, and so the value can be copied from there.
4918 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4919 ** are simply omitted rather than being copied from srcReg.
4920 */
4921 int sqlite3ExprCodeExprList(
4922   Parse *pParse,     /* Parsing context */
4923   ExprList *pList,   /* The expression list to be coded */
4924   int target,        /* Where to write results */
4925   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4926   u8 flags           /* SQLITE_ECEL_* flags */
4927 ){
4928   struct ExprList_item *pItem;
4929   int i, j, n;
4930   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4931   Vdbe *v = pParse->pVdbe;
4932   assert( pList!=0 );
4933   assert( target>0 );
4934   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4935   n = pList->nExpr;
4936   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4937   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4938     Expr *pExpr = pItem->pExpr;
4939 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4940     if( pItem->bSorterRef ){
4941       i--;
4942       n--;
4943     }else
4944 #endif
4945     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4946       if( flags & SQLITE_ECEL_OMITREF ){
4947         i--;
4948         n--;
4949       }else{
4950         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4951       }
4952     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4953            && sqlite3ExprIsConstantNotJoin(pExpr)
4954     ){
4955       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
4956     }else{
4957       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4958       if( inReg!=target+i ){
4959         VdbeOp *pOp;
4960         if( copyOp==OP_Copy
4961          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4962          && pOp->p1+pOp->p3+1==inReg
4963          && pOp->p2+pOp->p3+1==target+i
4964          && pOp->p5==0  /* The do-not-merge flag must be clear */
4965         ){
4966           pOp->p3++;
4967         }else{
4968           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4969         }
4970       }
4971     }
4972   }
4973   return n;
4974 }
4975 
4976 /*
4977 ** Generate code for a BETWEEN operator.
4978 **
4979 **    x BETWEEN y AND z
4980 **
4981 ** The above is equivalent to
4982 **
4983 **    x>=y AND x<=z
4984 **
4985 ** Code it as such, taking care to do the common subexpression
4986 ** elimination of x.
4987 **
4988 ** The xJumpIf parameter determines details:
4989 **
4990 **    NULL:                   Store the boolean result in reg[dest]
4991 **    sqlite3ExprIfTrue:      Jump to dest if true
4992 **    sqlite3ExprIfFalse:     Jump to dest if false
4993 **
4994 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4995 */
4996 static void exprCodeBetween(
4997   Parse *pParse,    /* Parsing and code generating context */
4998   Expr *pExpr,      /* The BETWEEN expression */
4999   int dest,         /* Jump destination or storage location */
5000   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
5001   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
5002 ){
5003   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
5004   Expr compLeft;    /* The  x>=y  term */
5005   Expr compRight;   /* The  x<=z  term */
5006   int regFree1 = 0; /* Temporary use register */
5007   Expr *pDel = 0;
5008   sqlite3 *db = pParse->db;
5009 
5010   memset(&compLeft, 0, sizeof(Expr));
5011   memset(&compRight, 0, sizeof(Expr));
5012   memset(&exprAnd, 0, sizeof(Expr));
5013 
5014   assert( ExprUseXList(pExpr) );
5015   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
5016   if( db->mallocFailed==0 ){
5017     exprAnd.op = TK_AND;
5018     exprAnd.pLeft = &compLeft;
5019     exprAnd.pRight = &compRight;
5020     compLeft.op = TK_GE;
5021     compLeft.pLeft = pDel;
5022     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
5023     compRight.op = TK_LE;
5024     compRight.pLeft = pDel;
5025     compRight.pRight = pExpr->x.pList->a[1].pExpr;
5026     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
5027     if( xJump ){
5028       xJump(pParse, &exprAnd, dest, jumpIfNull);
5029     }else{
5030       /* Mark the expression is being from the ON or USING clause of a join
5031       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
5032       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
5033       ** for clarity, but we are out of bits in the Expr.flags field so we
5034       ** have to reuse the EP_FromJoin bit.  Bummer. */
5035       pDel->flags |= EP_FromJoin;
5036       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
5037     }
5038     sqlite3ReleaseTempReg(pParse, regFree1);
5039   }
5040   sqlite3ExprDelete(db, pDel);
5041 
5042   /* Ensure adequate test coverage */
5043   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
5044   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
5045   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
5046   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
5047   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
5048   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
5049   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
5050   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
5051   testcase( xJump==0 );
5052 }
5053 
5054 /*
5055 ** Generate code for a boolean expression such that a jump is made
5056 ** to the label "dest" if the expression is true but execution
5057 ** continues straight thru if the expression is false.
5058 **
5059 ** If the expression evaluates to NULL (neither true nor false), then
5060 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
5061 **
5062 ** This code depends on the fact that certain token values (ex: TK_EQ)
5063 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
5064 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
5065 ** the make process cause these values to align.  Assert()s in the code
5066 ** below verify that the numbers are aligned correctly.
5067 */
5068 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5069   Vdbe *v = pParse->pVdbe;
5070   int op = 0;
5071   int regFree1 = 0;
5072   int regFree2 = 0;
5073   int r1, r2;
5074 
5075   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5076   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
5077   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
5078   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
5079   op = pExpr->op;
5080   switch( op ){
5081     case TK_AND:
5082     case TK_OR: {
5083       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5084       if( pAlt!=pExpr ){
5085         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
5086       }else if( op==TK_AND ){
5087         int d2 = sqlite3VdbeMakeLabel(pParse);
5088         testcase( jumpIfNull==0 );
5089         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
5090                            jumpIfNull^SQLITE_JUMPIFNULL);
5091         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5092         sqlite3VdbeResolveLabel(v, d2);
5093       }else{
5094         testcase( jumpIfNull==0 );
5095         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5096         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5097       }
5098       break;
5099     }
5100     case TK_NOT: {
5101       testcase( jumpIfNull==0 );
5102       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5103       break;
5104     }
5105     case TK_TRUTH: {
5106       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
5107       int isTrue;     /* IS TRUE or IS NOT TRUE */
5108       testcase( jumpIfNull==0 );
5109       isNot = pExpr->op2==TK_ISNOT;
5110       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5111       testcase( isTrue && isNot );
5112       testcase( !isTrue && isNot );
5113       if( isTrue ^ isNot ){
5114         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5115                           isNot ? SQLITE_JUMPIFNULL : 0);
5116       }else{
5117         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5118                            isNot ? SQLITE_JUMPIFNULL : 0);
5119       }
5120       break;
5121     }
5122     case TK_IS:
5123     case TK_ISNOT:
5124       testcase( op==TK_IS );
5125       testcase( op==TK_ISNOT );
5126       op = (op==TK_IS) ? TK_EQ : TK_NE;
5127       jumpIfNull = SQLITE_NULLEQ;
5128       /* no break */ deliberate_fall_through
5129     case TK_LT:
5130     case TK_LE:
5131     case TK_GT:
5132     case TK_GE:
5133     case TK_NE:
5134     case TK_EQ: {
5135       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5136       testcase( jumpIfNull==0 );
5137       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5138       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5139       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5140                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
5141       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5142       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5143       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5144       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5145       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5146       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5147       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5148       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5149       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5150       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5151       testcase( regFree1==0 );
5152       testcase( regFree2==0 );
5153       break;
5154     }
5155     case TK_ISNULL:
5156     case TK_NOTNULL: {
5157       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
5158       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
5159       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5160       sqlite3VdbeAddOp2(v, op, r1, dest);
5161       VdbeCoverageIf(v, op==TK_ISNULL);
5162       VdbeCoverageIf(v, op==TK_NOTNULL);
5163       testcase( regFree1==0 );
5164       break;
5165     }
5166     case TK_BETWEEN: {
5167       testcase( jumpIfNull==0 );
5168       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
5169       break;
5170     }
5171 #ifndef SQLITE_OMIT_SUBQUERY
5172     case TK_IN: {
5173       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
5174       int destIfNull = jumpIfNull ? dest : destIfFalse;
5175       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
5176       sqlite3VdbeGoto(v, dest);
5177       sqlite3VdbeResolveLabel(v, destIfFalse);
5178       break;
5179     }
5180 #endif
5181     default: {
5182     default_expr:
5183       if( ExprAlwaysTrue(pExpr) ){
5184         sqlite3VdbeGoto(v, dest);
5185       }else if( ExprAlwaysFalse(pExpr) ){
5186         /* No-op */
5187       }else{
5188         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5189         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
5190         VdbeCoverage(v);
5191         testcase( regFree1==0 );
5192         testcase( jumpIfNull==0 );
5193       }
5194       break;
5195     }
5196   }
5197   sqlite3ReleaseTempReg(pParse, regFree1);
5198   sqlite3ReleaseTempReg(pParse, regFree2);
5199 }
5200 
5201 /*
5202 ** Generate code for a boolean expression such that a jump is made
5203 ** to the label "dest" if the expression is false but execution
5204 ** continues straight thru if the expression is true.
5205 **
5206 ** If the expression evaluates to NULL (neither true nor false) then
5207 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5208 ** is 0.
5209 */
5210 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5211   Vdbe *v = pParse->pVdbe;
5212   int op = 0;
5213   int regFree1 = 0;
5214   int regFree2 = 0;
5215   int r1, r2;
5216 
5217   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5218   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5219   if( pExpr==0 )    return;
5220   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5221 
5222   /* The value of pExpr->op and op are related as follows:
5223   **
5224   **       pExpr->op            op
5225   **       ---------          ----------
5226   **       TK_ISNULL          OP_NotNull
5227   **       TK_NOTNULL         OP_IsNull
5228   **       TK_NE              OP_Eq
5229   **       TK_EQ              OP_Ne
5230   **       TK_GT              OP_Le
5231   **       TK_LE              OP_Gt
5232   **       TK_GE              OP_Lt
5233   **       TK_LT              OP_Ge
5234   **
5235   ** For other values of pExpr->op, op is undefined and unused.
5236   ** The value of TK_ and OP_ constants are arranged such that we
5237   ** can compute the mapping above using the following expression.
5238   ** Assert()s verify that the computation is correct.
5239   */
5240   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5241 
5242   /* Verify correct alignment of TK_ and OP_ constants
5243   */
5244   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5245   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5246   assert( pExpr->op!=TK_NE || op==OP_Eq );
5247   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5248   assert( pExpr->op!=TK_LT || op==OP_Ge );
5249   assert( pExpr->op!=TK_LE || op==OP_Gt );
5250   assert( pExpr->op!=TK_GT || op==OP_Le );
5251   assert( pExpr->op!=TK_GE || op==OP_Lt );
5252 
5253   switch( pExpr->op ){
5254     case TK_AND:
5255     case TK_OR: {
5256       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5257       if( pAlt!=pExpr ){
5258         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5259       }else if( pExpr->op==TK_AND ){
5260         testcase( jumpIfNull==0 );
5261         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5262         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5263       }else{
5264         int d2 = sqlite3VdbeMakeLabel(pParse);
5265         testcase( jumpIfNull==0 );
5266         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5267                           jumpIfNull^SQLITE_JUMPIFNULL);
5268         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5269         sqlite3VdbeResolveLabel(v, d2);
5270       }
5271       break;
5272     }
5273     case TK_NOT: {
5274       testcase( jumpIfNull==0 );
5275       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5276       break;
5277     }
5278     case TK_TRUTH: {
5279       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5280       int isTrue;  /* IS TRUE or IS NOT TRUE */
5281       testcase( jumpIfNull==0 );
5282       isNot = pExpr->op2==TK_ISNOT;
5283       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5284       testcase( isTrue && isNot );
5285       testcase( !isTrue && isNot );
5286       if( isTrue ^ isNot ){
5287         /* IS TRUE and IS NOT FALSE */
5288         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5289                            isNot ? 0 : SQLITE_JUMPIFNULL);
5290 
5291       }else{
5292         /* IS FALSE and IS NOT TRUE */
5293         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5294                           isNot ? 0 : SQLITE_JUMPIFNULL);
5295       }
5296       break;
5297     }
5298     case TK_IS:
5299     case TK_ISNOT:
5300       testcase( pExpr->op==TK_IS );
5301       testcase( pExpr->op==TK_ISNOT );
5302       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5303       jumpIfNull = SQLITE_NULLEQ;
5304       /* no break */ deliberate_fall_through
5305     case TK_LT:
5306     case TK_LE:
5307     case TK_GT:
5308     case TK_GE:
5309     case TK_NE:
5310     case TK_EQ: {
5311       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5312       testcase( jumpIfNull==0 );
5313       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5314       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5315       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5316                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5317       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5318       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5319       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5320       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5321       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5322       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5323       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5324       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5325       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5326       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5327       testcase( regFree1==0 );
5328       testcase( regFree2==0 );
5329       break;
5330     }
5331     case TK_ISNULL:
5332     case TK_NOTNULL: {
5333       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5334       sqlite3VdbeAddOp2(v, op, r1, dest);
5335       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5336       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5337       testcase( regFree1==0 );
5338       break;
5339     }
5340     case TK_BETWEEN: {
5341       testcase( jumpIfNull==0 );
5342       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5343       break;
5344     }
5345 #ifndef SQLITE_OMIT_SUBQUERY
5346     case TK_IN: {
5347       if( jumpIfNull ){
5348         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5349       }else{
5350         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5351         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5352         sqlite3VdbeResolveLabel(v, destIfNull);
5353       }
5354       break;
5355     }
5356 #endif
5357     default: {
5358     default_expr:
5359       if( ExprAlwaysFalse(pExpr) ){
5360         sqlite3VdbeGoto(v, dest);
5361       }else if( ExprAlwaysTrue(pExpr) ){
5362         /* no-op */
5363       }else{
5364         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5365         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5366         VdbeCoverage(v);
5367         testcase( regFree1==0 );
5368         testcase( jumpIfNull==0 );
5369       }
5370       break;
5371     }
5372   }
5373   sqlite3ReleaseTempReg(pParse, regFree1);
5374   sqlite3ReleaseTempReg(pParse, regFree2);
5375 }
5376 
5377 /*
5378 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5379 ** code generation, and that copy is deleted after code generation. This
5380 ** ensures that the original pExpr is unchanged.
5381 */
5382 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5383   sqlite3 *db = pParse->db;
5384   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5385   if( db->mallocFailed==0 ){
5386     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5387   }
5388   sqlite3ExprDelete(db, pCopy);
5389 }
5390 
5391 /*
5392 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5393 ** type of expression.
5394 **
5395 ** If pExpr is a simple SQL value - an integer, real, string, blob
5396 ** or NULL value - then the VDBE currently being prepared is configured
5397 ** to re-prepare each time a new value is bound to variable pVar.
5398 **
5399 ** Additionally, if pExpr is a simple SQL value and the value is the
5400 ** same as that currently bound to variable pVar, non-zero is returned.
5401 ** Otherwise, if the values are not the same or if pExpr is not a simple
5402 ** SQL value, zero is returned.
5403 */
5404 static int exprCompareVariable(
5405   const Parse *pParse,
5406   const Expr *pVar,
5407   const Expr *pExpr
5408 ){
5409   int res = 0;
5410   int iVar;
5411   sqlite3_value *pL, *pR = 0;
5412 
5413   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5414   if( pR ){
5415     iVar = pVar->iColumn;
5416     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5417     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5418     if( pL ){
5419       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5420         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5421       }
5422       res =  0==sqlite3MemCompare(pL, pR, 0);
5423     }
5424     sqlite3ValueFree(pR);
5425     sqlite3ValueFree(pL);
5426   }
5427 
5428   return res;
5429 }
5430 
5431 /*
5432 ** Do a deep comparison of two expression trees.  Return 0 if the two
5433 ** expressions are completely identical.  Return 1 if they differ only
5434 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5435 ** other than the top-level COLLATE operator.
5436 **
5437 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5438 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5439 **
5440 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5441 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5442 **
5443 ** Sometimes this routine will return 2 even if the two expressions
5444 ** really are equivalent.  If we cannot prove that the expressions are
5445 ** identical, we return 2 just to be safe.  So if this routine
5446 ** returns 2, then you do not really know for certain if the two
5447 ** expressions are the same.  But if you get a 0 or 1 return, then you
5448 ** can be sure the expressions are the same.  In the places where
5449 ** this routine is used, it does not hurt to get an extra 2 - that
5450 ** just might result in some slightly slower code.  But returning
5451 ** an incorrect 0 or 1 could lead to a malfunction.
5452 **
5453 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5454 ** pParse->pReprepare can be matched against literals in pB.  The
5455 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5456 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5457 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5458 ** pB causes a return value of 2.
5459 */
5460 int sqlite3ExprCompare(
5461   const Parse *pParse,
5462   const Expr *pA,
5463   const Expr *pB,
5464   int iTab
5465 ){
5466   u32 combinedFlags;
5467   if( pA==0 || pB==0 ){
5468     return pB==pA ? 0 : 2;
5469   }
5470   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5471     return 0;
5472   }
5473   combinedFlags = pA->flags | pB->flags;
5474   if( combinedFlags & EP_IntValue ){
5475     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5476       return 0;
5477     }
5478     return 2;
5479   }
5480   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5481     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5482       return 1;
5483     }
5484     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5485       return 1;
5486     }
5487     return 2;
5488   }
5489   assert( !ExprHasProperty(pA, EP_IntValue) );
5490   assert( !ExprHasProperty(pB, EP_IntValue) );
5491   if( pA->u.zToken ){
5492     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5493       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5494 #ifndef SQLITE_OMIT_WINDOWFUNC
5495       assert( pA->op==pB->op );
5496       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5497         return 2;
5498       }
5499       if( ExprHasProperty(pA,EP_WinFunc) ){
5500         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5501           return 2;
5502         }
5503       }
5504 #endif
5505     }else if( pA->op==TK_NULL ){
5506       return 0;
5507     }else if( pA->op==TK_COLLATE ){
5508       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5509     }else
5510     if( pB->u.zToken!=0
5511      && pA->op!=TK_COLUMN
5512      && pA->op!=TK_AGG_COLUMN
5513      && strcmp(pA->u.zToken,pB->u.zToken)!=0
5514     ){
5515       return 2;
5516     }
5517   }
5518   if( (pA->flags & (EP_Distinct|EP_Commuted))
5519      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5520   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5521     if( combinedFlags & EP_xIsSelect ) return 2;
5522     if( (combinedFlags & EP_FixedCol)==0
5523      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5524     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5525     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5526     if( pA->op!=TK_STRING
5527      && pA->op!=TK_TRUEFALSE
5528      && ALWAYS((combinedFlags & EP_Reduced)==0)
5529     ){
5530       if( pA->iColumn!=pB->iColumn ) return 2;
5531       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5532       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5533         return 2;
5534       }
5535     }
5536   }
5537   return 0;
5538 }
5539 
5540 /*
5541 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5542 ** if they are certainly different, or 2 if it is not possible to
5543 ** determine if they are identical or not.
5544 **
5545 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5546 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5547 **
5548 ** This routine might return non-zero for equivalent ExprLists.  The
5549 ** only consequence will be disabled optimizations.  But this routine
5550 ** must never return 0 if the two ExprList objects are different, or
5551 ** a malfunction will result.
5552 **
5553 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5554 ** always differs from a non-NULL pointer.
5555 */
5556 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){
5557   int i;
5558   if( pA==0 && pB==0 ) return 0;
5559   if( pA==0 || pB==0 ) return 1;
5560   if( pA->nExpr!=pB->nExpr ) return 1;
5561   for(i=0; i<pA->nExpr; i++){
5562     int res;
5563     Expr *pExprA = pA->a[i].pExpr;
5564     Expr *pExprB = pB->a[i].pExpr;
5565     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
5566     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5567   }
5568   return 0;
5569 }
5570 
5571 /*
5572 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5573 ** are ignored.
5574 */
5575 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){
5576   return sqlite3ExprCompare(0,
5577              sqlite3ExprSkipCollateAndLikely(pA),
5578              sqlite3ExprSkipCollateAndLikely(pB),
5579              iTab);
5580 }
5581 
5582 /*
5583 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5584 **
5585 ** Or if seenNot is true, return non-zero if Expr p can only be
5586 ** non-NULL if pNN is not NULL
5587 */
5588 static int exprImpliesNotNull(
5589   const Parse *pParse,/* Parsing context */
5590   const Expr *p,      /* The expression to be checked */
5591   const Expr *pNN,    /* The expression that is NOT NULL */
5592   int iTab,           /* Table being evaluated */
5593   int seenNot         /* Return true only if p can be any non-NULL value */
5594 ){
5595   assert( p );
5596   assert( pNN );
5597   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5598     return pNN->op!=TK_NULL;
5599   }
5600   switch( p->op ){
5601     case TK_IN: {
5602       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5603       assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5604       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5605     }
5606     case TK_BETWEEN: {
5607       ExprList *pList;
5608       assert( ExprUseXList(p) );
5609       pList = p->x.pList;
5610       assert( pList!=0 );
5611       assert( pList->nExpr==2 );
5612       if( seenNot ) return 0;
5613       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5614        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5615       ){
5616         return 1;
5617       }
5618       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5619     }
5620     case TK_EQ:
5621     case TK_NE:
5622     case TK_LT:
5623     case TK_LE:
5624     case TK_GT:
5625     case TK_GE:
5626     case TK_PLUS:
5627     case TK_MINUS:
5628     case TK_BITOR:
5629     case TK_LSHIFT:
5630     case TK_RSHIFT:
5631     case TK_CONCAT:
5632       seenNot = 1;
5633       /* no break */ deliberate_fall_through
5634     case TK_STAR:
5635     case TK_REM:
5636     case TK_BITAND:
5637     case TK_SLASH: {
5638       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5639       /* no break */ deliberate_fall_through
5640     }
5641     case TK_SPAN:
5642     case TK_COLLATE:
5643     case TK_UPLUS:
5644     case TK_UMINUS: {
5645       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5646     }
5647     case TK_TRUTH: {
5648       if( seenNot ) return 0;
5649       if( p->op2!=TK_IS ) return 0;
5650       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5651     }
5652     case TK_BITNOT:
5653     case TK_NOT: {
5654       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5655     }
5656   }
5657   return 0;
5658 }
5659 
5660 /*
5661 ** Return true if we can prove the pE2 will always be true if pE1 is
5662 ** true.  Return false if we cannot complete the proof or if pE2 might
5663 ** be false.  Examples:
5664 **
5665 **     pE1: x==5       pE2: x==5             Result: true
5666 **     pE1: x>0        pE2: x==5             Result: false
5667 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5668 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5669 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5670 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5671 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5672 **
5673 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5674 ** Expr.iTable<0 then assume a table number given by iTab.
5675 **
5676 ** If pParse is not NULL, then the values of bound variables in pE1 are
5677 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5678 ** modified to record which bound variables are referenced.  If pParse
5679 ** is NULL, then false will be returned if pE1 contains any bound variables.
5680 **
5681 ** When in doubt, return false.  Returning true might give a performance
5682 ** improvement.  Returning false might cause a performance reduction, but
5683 ** it will always give the correct answer and is hence always safe.
5684 */
5685 int sqlite3ExprImpliesExpr(
5686   const Parse *pParse,
5687   const Expr *pE1,
5688   const Expr *pE2,
5689   int iTab
5690 ){
5691   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5692     return 1;
5693   }
5694   if( pE2->op==TK_OR
5695    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5696              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5697   ){
5698     return 1;
5699   }
5700   if( pE2->op==TK_NOTNULL
5701    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5702   ){
5703     return 1;
5704   }
5705   return 0;
5706 }
5707 
5708 /*
5709 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5710 ** If the expression node requires that the table at pWalker->iCur
5711 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5712 **
5713 ** This routine controls an optimization.  False positives (setting
5714 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5715 ** (never setting pWalker->eCode) is a harmless missed optimization.
5716 */
5717 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5718   testcase( pExpr->op==TK_AGG_COLUMN );
5719   testcase( pExpr->op==TK_AGG_FUNCTION );
5720   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5721   switch( pExpr->op ){
5722     case TK_ISNOT:
5723     case TK_ISNULL:
5724     case TK_NOTNULL:
5725     case TK_IS:
5726     case TK_OR:
5727     case TK_VECTOR:
5728     case TK_CASE:
5729     case TK_IN:
5730     case TK_FUNCTION:
5731     case TK_TRUTH:
5732       testcase( pExpr->op==TK_ISNOT );
5733       testcase( pExpr->op==TK_ISNULL );
5734       testcase( pExpr->op==TK_NOTNULL );
5735       testcase( pExpr->op==TK_IS );
5736       testcase( pExpr->op==TK_OR );
5737       testcase( pExpr->op==TK_VECTOR );
5738       testcase( pExpr->op==TK_CASE );
5739       testcase( pExpr->op==TK_IN );
5740       testcase( pExpr->op==TK_FUNCTION );
5741       testcase( pExpr->op==TK_TRUTH );
5742       return WRC_Prune;
5743     case TK_COLUMN:
5744       if( pWalker->u.iCur==pExpr->iTable ){
5745         pWalker->eCode = 1;
5746         return WRC_Abort;
5747       }
5748       return WRC_Prune;
5749 
5750     case TK_AND:
5751       if( pWalker->eCode==0 ){
5752         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5753         if( pWalker->eCode ){
5754           pWalker->eCode = 0;
5755           sqlite3WalkExpr(pWalker, pExpr->pRight);
5756         }
5757       }
5758       return WRC_Prune;
5759 
5760     case TK_BETWEEN:
5761       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5762         assert( pWalker->eCode );
5763         return WRC_Abort;
5764       }
5765       return WRC_Prune;
5766 
5767     /* Virtual tables are allowed to use constraints like x=NULL.  So
5768     ** a term of the form x=y does not prove that y is not null if x
5769     ** is the column of a virtual table */
5770     case TK_EQ:
5771     case TK_NE:
5772     case TK_LT:
5773     case TK_LE:
5774     case TK_GT:
5775     case TK_GE: {
5776       Expr *pLeft = pExpr->pLeft;
5777       Expr *pRight = pExpr->pRight;
5778       testcase( pExpr->op==TK_EQ );
5779       testcase( pExpr->op==TK_NE );
5780       testcase( pExpr->op==TK_LT );
5781       testcase( pExpr->op==TK_LE );
5782       testcase( pExpr->op==TK_GT );
5783       testcase( pExpr->op==TK_GE );
5784       /* The y.pTab=0 assignment in wherecode.c always happens after the
5785       ** impliesNotNullRow() test */
5786       assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) );
5787       assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) );
5788       if( (pLeft->op==TK_COLUMN
5789            && pLeft->y.pTab!=0
5790            && IsVirtual(pLeft->y.pTab))
5791        || (pRight->op==TK_COLUMN
5792            && pRight->y.pTab!=0
5793            && IsVirtual(pRight->y.pTab))
5794       ){
5795         return WRC_Prune;
5796       }
5797       /* no break */ deliberate_fall_through
5798     }
5799     default:
5800       return WRC_Continue;
5801   }
5802 }
5803 
5804 /*
5805 ** Return true (non-zero) if expression p can only be true if at least
5806 ** one column of table iTab is non-null.  In other words, return true
5807 ** if expression p will always be NULL or false if every column of iTab
5808 ** is NULL.
5809 **
5810 ** False negatives are acceptable.  In other words, it is ok to return
5811 ** zero even if expression p will never be true of every column of iTab
5812 ** is NULL.  A false negative is merely a missed optimization opportunity.
5813 **
5814 ** False positives are not allowed, however.  A false positive may result
5815 ** in an incorrect answer.
5816 **
5817 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5818 ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis.
5819 **
5820 ** This routine is used to check if a LEFT JOIN can be converted into
5821 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5822 ** clause requires that some column of the right table of the LEFT JOIN
5823 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5824 ** ordinary join.
5825 */
5826 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5827   Walker w;
5828   p = sqlite3ExprSkipCollateAndLikely(p);
5829   if( p==0 ) return 0;
5830   if( p->op==TK_NOTNULL ){
5831     p = p->pLeft;
5832   }else{
5833     while( p->op==TK_AND ){
5834       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5835       p = p->pRight;
5836     }
5837   }
5838   w.xExprCallback = impliesNotNullRow;
5839   w.xSelectCallback = 0;
5840   w.xSelectCallback2 = 0;
5841   w.eCode = 0;
5842   w.u.iCur = iTab;
5843   sqlite3WalkExpr(&w, p);
5844   return w.eCode;
5845 }
5846 
5847 /*
5848 ** An instance of the following structure is used by the tree walker
5849 ** to determine if an expression can be evaluated by reference to the
5850 ** index only, without having to do a search for the corresponding
5851 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5852 ** is the cursor for the table.
5853 */
5854 struct IdxCover {
5855   Index *pIdx;     /* The index to be tested for coverage */
5856   int iCur;        /* Cursor number for the table corresponding to the index */
5857 };
5858 
5859 /*
5860 ** Check to see if there are references to columns in table
5861 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5862 ** pWalker->u.pIdxCover->pIdx.
5863 */
5864 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5865   if( pExpr->op==TK_COLUMN
5866    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5867    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5868   ){
5869     pWalker->eCode = 1;
5870     return WRC_Abort;
5871   }
5872   return WRC_Continue;
5873 }
5874 
5875 /*
5876 ** Determine if an index pIdx on table with cursor iCur contains will
5877 ** the expression pExpr.  Return true if the index does cover the
5878 ** expression and false if the pExpr expression references table columns
5879 ** that are not found in the index pIdx.
5880 **
5881 ** An index covering an expression means that the expression can be
5882 ** evaluated using only the index and without having to lookup the
5883 ** corresponding table entry.
5884 */
5885 int sqlite3ExprCoveredByIndex(
5886   Expr *pExpr,        /* The index to be tested */
5887   int iCur,           /* The cursor number for the corresponding table */
5888   Index *pIdx         /* The index that might be used for coverage */
5889 ){
5890   Walker w;
5891   struct IdxCover xcov;
5892   memset(&w, 0, sizeof(w));
5893   xcov.iCur = iCur;
5894   xcov.pIdx = pIdx;
5895   w.xExprCallback = exprIdxCover;
5896   w.u.pIdxCover = &xcov;
5897   sqlite3WalkExpr(&w, pExpr);
5898   return !w.eCode;
5899 }
5900 
5901 
5902 /* Structure used to pass information throught the Walker in order to
5903 ** implement sqlite3ReferencesSrcList().
5904 */
5905 struct RefSrcList {
5906   sqlite3 *db;         /* Database connection used for sqlite3DbRealloc() */
5907   SrcList *pRef;       /* Looking for references to these tables */
5908   i64 nExclude;        /* Number of tables to exclude from the search */
5909   int *aiExclude;      /* Cursor IDs for tables to exclude from the search */
5910 };
5911 
5912 /*
5913 ** Walker SELECT callbacks for sqlite3ReferencesSrcList().
5914 **
5915 ** When entering a new subquery on the pExpr argument, add all FROM clause
5916 ** entries for that subquery to the exclude list.
5917 **
5918 ** When leaving the subquery, remove those entries from the exclude list.
5919 */
5920 static int selectRefEnter(Walker *pWalker, Select *pSelect){
5921   struct RefSrcList *p = pWalker->u.pRefSrcList;
5922   SrcList *pSrc = pSelect->pSrc;
5923   i64 i, j;
5924   int *piNew;
5925   if( pSrc->nSrc==0 ) return WRC_Continue;
5926   j = p->nExclude;
5927   p->nExclude += pSrc->nSrc;
5928   piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int));
5929   if( piNew==0 ){
5930     p->nExclude = 0;
5931     return WRC_Abort;
5932   }else{
5933     p->aiExclude = piNew;
5934   }
5935   for(i=0; i<pSrc->nSrc; i++, j++){
5936      p->aiExclude[j] = pSrc->a[i].iCursor;
5937   }
5938   return WRC_Continue;
5939 }
5940 static void selectRefLeave(Walker *pWalker, Select *pSelect){
5941   struct RefSrcList *p = pWalker->u.pRefSrcList;
5942   SrcList *pSrc = pSelect->pSrc;
5943   if( p->nExclude ){
5944     assert( p->nExclude>=pSrc->nSrc );
5945     p->nExclude -= pSrc->nSrc;
5946   }
5947 }
5948 
5949 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList().
5950 **
5951 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any
5952 ** of the tables shown in RefSrcList.pRef.
5953 **
5954 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a
5955 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude.
5956 */
5957 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){
5958   if( pExpr->op==TK_COLUMN
5959    || pExpr->op==TK_AGG_COLUMN
5960   ){
5961     int i;
5962     struct RefSrcList *p = pWalker->u.pRefSrcList;
5963     SrcList *pSrc = p->pRef;
5964     int nSrc = pSrc ? pSrc->nSrc : 0;
5965     for(i=0; i<nSrc; i++){
5966       if( pExpr->iTable==pSrc->a[i].iCursor ){
5967         pWalker->eCode |= 1;
5968         return WRC_Continue;
5969       }
5970     }
5971     for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){}
5972     if( i>=p->nExclude ){
5973       pWalker->eCode |= 2;
5974     }
5975   }
5976   return WRC_Continue;
5977 }
5978 
5979 /*
5980 ** Check to see if pExpr references any tables in pSrcList.
5981 ** Possible return values:
5982 **
5983 **    1         pExpr does references a table in pSrcList.
5984 **
5985 **    0         pExpr references some table that is not defined in either
5986 **              pSrcList or in subqueries of pExpr itself.
5987 **
5988 **   -1         pExpr only references no tables at all, or it only
5989 **              references tables defined in subqueries of pExpr itself.
5990 **
5991 ** As currently used, pExpr is always an aggregate function call.  That
5992 ** fact is exploited for efficiency.
5993 */
5994 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){
5995   Walker w;
5996   struct RefSrcList x;
5997   memset(&w, 0, sizeof(w));
5998   memset(&x, 0, sizeof(x));
5999   w.xExprCallback = exprRefToSrcList;
6000   w.xSelectCallback = selectRefEnter;
6001   w.xSelectCallback2 = selectRefLeave;
6002   w.u.pRefSrcList = &x;
6003   x.db = pParse->db;
6004   x.pRef = pSrcList;
6005   assert( pExpr->op==TK_AGG_FUNCTION );
6006   assert( ExprUseXList(pExpr) );
6007   sqlite3WalkExprList(&w, pExpr->x.pList);
6008 #ifndef SQLITE_OMIT_WINDOWFUNC
6009   if( ExprHasProperty(pExpr, EP_WinFunc) ){
6010     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
6011   }
6012 #endif
6013   sqlite3DbFree(pParse->db, x.aiExclude);
6014   if( w.eCode & 0x01 ){
6015     return 1;
6016   }else if( w.eCode ){
6017     return 0;
6018   }else{
6019     return -1;
6020   }
6021 }
6022 
6023 /*
6024 ** This is a Walker expression node callback.
6025 **
6026 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
6027 ** object that is referenced does not refer directly to the Expr.  If
6028 ** it does, make a copy.  This is done because the pExpr argument is
6029 ** subject to change.
6030 **
6031 ** The copy is stored on pParse->pConstExpr with a register number of 0.
6032 ** This will cause the expression to be deleted automatically when the
6033 ** Parse object is destroyed, but the zero register number means that it
6034 ** will not generate any code in the preamble.
6035 */
6036 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
6037   if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
6038    && pExpr->pAggInfo!=0
6039   ){
6040     AggInfo *pAggInfo = pExpr->pAggInfo;
6041     int iAgg = pExpr->iAgg;
6042     Parse *pParse = pWalker->pParse;
6043     sqlite3 *db = pParse->db;
6044     assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION );
6045     if( pExpr->op==TK_AGG_COLUMN ){
6046       assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
6047       if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
6048         pExpr = sqlite3ExprDup(db, pExpr, 0);
6049         if( pExpr ){
6050           pAggInfo->aCol[iAgg].pCExpr = pExpr;
6051           sqlite3ExprDeferredDelete(pParse, pExpr);
6052         }
6053       }
6054     }else{
6055       assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
6056       if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
6057         pExpr = sqlite3ExprDup(db, pExpr, 0);
6058         if( pExpr ){
6059           pAggInfo->aFunc[iAgg].pFExpr = pExpr;
6060           sqlite3ExprDeferredDelete(pParse, pExpr);
6061         }
6062       }
6063     }
6064   }
6065   return WRC_Continue;
6066 }
6067 
6068 /*
6069 ** Initialize a Walker object so that will persist AggInfo entries referenced
6070 ** by the tree that is walked.
6071 */
6072 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
6073   memset(pWalker, 0, sizeof(*pWalker));
6074   pWalker->pParse = pParse;
6075   pWalker->xExprCallback = agginfoPersistExprCb;
6076   pWalker->xSelectCallback = sqlite3SelectWalkNoop;
6077 }
6078 
6079 /*
6080 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
6081 ** the new element.  Return a negative number if malloc fails.
6082 */
6083 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
6084   int i;
6085   pInfo->aCol = sqlite3ArrayAllocate(
6086        db,
6087        pInfo->aCol,
6088        sizeof(pInfo->aCol[0]),
6089        &pInfo->nColumn,
6090        &i
6091   );
6092   return i;
6093 }
6094 
6095 /*
6096 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
6097 ** the new element.  Return a negative number if malloc fails.
6098 */
6099 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
6100   int i;
6101   pInfo->aFunc = sqlite3ArrayAllocate(
6102        db,
6103        pInfo->aFunc,
6104        sizeof(pInfo->aFunc[0]),
6105        &pInfo->nFunc,
6106        &i
6107   );
6108   return i;
6109 }
6110 
6111 /*
6112 ** This is the xExprCallback for a tree walker.  It is used to
6113 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
6114 ** for additional information.
6115 */
6116 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
6117   int i;
6118   NameContext *pNC = pWalker->u.pNC;
6119   Parse *pParse = pNC->pParse;
6120   SrcList *pSrcList = pNC->pSrcList;
6121   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
6122 
6123   assert( pNC->ncFlags & NC_UAggInfo );
6124   switch( pExpr->op ){
6125     case TK_AGG_COLUMN:
6126     case TK_COLUMN: {
6127       testcase( pExpr->op==TK_AGG_COLUMN );
6128       testcase( pExpr->op==TK_COLUMN );
6129       /* Check to see if the column is in one of the tables in the FROM
6130       ** clause of the aggregate query */
6131       if( ALWAYS(pSrcList!=0) ){
6132         SrcItem *pItem = pSrcList->a;
6133         for(i=0; i<pSrcList->nSrc; i++, pItem++){
6134           struct AggInfo_col *pCol;
6135           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6136           if( pExpr->iTable==pItem->iCursor ){
6137             /* If we reach this point, it means that pExpr refers to a table
6138             ** that is in the FROM clause of the aggregate query.
6139             **
6140             ** Make an entry for the column in pAggInfo->aCol[] if there
6141             ** is not an entry there already.
6142             */
6143             int k;
6144             pCol = pAggInfo->aCol;
6145             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
6146               if( pCol->iTable==pExpr->iTable &&
6147                   pCol->iColumn==pExpr->iColumn ){
6148                 break;
6149               }
6150             }
6151             if( (k>=pAggInfo->nColumn)
6152              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
6153             ){
6154               pCol = &pAggInfo->aCol[k];
6155               assert( ExprUseYTab(pExpr) );
6156               pCol->pTab = pExpr->y.pTab;
6157               pCol->iTable = pExpr->iTable;
6158               pCol->iColumn = pExpr->iColumn;
6159               pCol->iMem = ++pParse->nMem;
6160               pCol->iSorterColumn = -1;
6161               pCol->pCExpr = pExpr;
6162               if( pAggInfo->pGroupBy ){
6163                 int j, n;
6164                 ExprList *pGB = pAggInfo->pGroupBy;
6165                 struct ExprList_item *pTerm = pGB->a;
6166                 n = pGB->nExpr;
6167                 for(j=0; j<n; j++, pTerm++){
6168                   Expr *pE = pTerm->pExpr;
6169                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
6170                       pE->iColumn==pExpr->iColumn ){
6171                     pCol->iSorterColumn = j;
6172                     break;
6173                   }
6174                 }
6175               }
6176               if( pCol->iSorterColumn<0 ){
6177                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
6178               }
6179             }
6180             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
6181             ** because it was there before or because we just created it).
6182             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
6183             ** pAggInfo->aCol[] entry.
6184             */
6185             ExprSetVVAProperty(pExpr, EP_NoReduce);
6186             pExpr->pAggInfo = pAggInfo;
6187             pExpr->op = TK_AGG_COLUMN;
6188             pExpr->iAgg = (i16)k;
6189             break;
6190           } /* endif pExpr->iTable==pItem->iCursor */
6191         } /* end loop over pSrcList */
6192       }
6193       return WRC_Prune;
6194     }
6195     case TK_AGG_FUNCTION: {
6196       if( (pNC->ncFlags & NC_InAggFunc)==0
6197        && pWalker->walkerDepth==pExpr->op2
6198       ){
6199         /* Check to see if pExpr is a duplicate of another aggregate
6200         ** function that is already in the pAggInfo structure
6201         */
6202         struct AggInfo_func *pItem = pAggInfo->aFunc;
6203         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
6204           if( pItem->pFExpr==pExpr ) break;
6205           if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
6206             break;
6207           }
6208         }
6209         if( i>=pAggInfo->nFunc ){
6210           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
6211           */
6212           u8 enc = ENC(pParse->db);
6213           i = addAggInfoFunc(pParse->db, pAggInfo);
6214           if( i>=0 ){
6215             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6216             pItem = &pAggInfo->aFunc[i];
6217             pItem->pFExpr = pExpr;
6218             pItem->iMem = ++pParse->nMem;
6219             assert( ExprUseUToken(pExpr) );
6220             pItem->pFunc = sqlite3FindFunction(pParse->db,
6221                    pExpr->u.zToken,
6222                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
6223             if( pExpr->flags & EP_Distinct ){
6224               pItem->iDistinct = pParse->nTab++;
6225             }else{
6226               pItem->iDistinct = -1;
6227             }
6228           }
6229         }
6230         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
6231         */
6232         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6233         ExprSetVVAProperty(pExpr, EP_NoReduce);
6234         pExpr->iAgg = (i16)i;
6235         pExpr->pAggInfo = pAggInfo;
6236         return WRC_Prune;
6237       }else{
6238         return WRC_Continue;
6239       }
6240     }
6241   }
6242   return WRC_Continue;
6243 }
6244 
6245 /*
6246 ** Analyze the pExpr expression looking for aggregate functions and
6247 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6248 ** points to.  Additional entries are made on the AggInfo object as
6249 ** necessary.
6250 **
6251 ** This routine should only be called after the expression has been
6252 ** analyzed by sqlite3ResolveExprNames().
6253 */
6254 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
6255   Walker w;
6256   w.xExprCallback = analyzeAggregate;
6257   w.xSelectCallback = sqlite3WalkerDepthIncrease;
6258   w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
6259   w.walkerDepth = 0;
6260   w.u.pNC = pNC;
6261   w.pParse = 0;
6262   assert( pNC->pSrcList!=0 );
6263   sqlite3WalkExpr(&w, pExpr);
6264 }
6265 
6266 /*
6267 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6268 ** expression list.  Return the number of errors.
6269 **
6270 ** If an error is found, the analysis is cut short.
6271 */
6272 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6273   struct ExprList_item *pItem;
6274   int i;
6275   if( pList ){
6276     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6277       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
6278     }
6279   }
6280 }
6281 
6282 /*
6283 ** Allocate a single new register for use to hold some intermediate result.
6284 */
6285 int sqlite3GetTempReg(Parse *pParse){
6286   if( pParse->nTempReg==0 ){
6287     return ++pParse->nMem;
6288   }
6289   return pParse->aTempReg[--pParse->nTempReg];
6290 }
6291 
6292 /*
6293 ** Deallocate a register, making available for reuse for some other
6294 ** purpose.
6295 */
6296 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6297   if( iReg ){
6298     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6299     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6300       pParse->aTempReg[pParse->nTempReg++] = iReg;
6301     }
6302   }
6303 }
6304 
6305 /*
6306 ** Allocate or deallocate a block of nReg consecutive registers.
6307 */
6308 int sqlite3GetTempRange(Parse *pParse, int nReg){
6309   int i, n;
6310   if( nReg==1 ) return sqlite3GetTempReg(pParse);
6311   i = pParse->iRangeReg;
6312   n = pParse->nRangeReg;
6313   if( nReg<=n ){
6314     pParse->iRangeReg += nReg;
6315     pParse->nRangeReg -= nReg;
6316   }else{
6317     i = pParse->nMem+1;
6318     pParse->nMem += nReg;
6319   }
6320   return i;
6321 }
6322 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6323   if( nReg==1 ){
6324     sqlite3ReleaseTempReg(pParse, iReg);
6325     return;
6326   }
6327   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6328   if( nReg>pParse->nRangeReg ){
6329     pParse->nRangeReg = nReg;
6330     pParse->iRangeReg = iReg;
6331   }
6332 }
6333 
6334 /*
6335 ** Mark all temporary registers as being unavailable for reuse.
6336 **
6337 ** Always invoke this procedure after coding a subroutine or co-routine
6338 ** that might be invoked from other parts of the code, to ensure that
6339 ** the sub/co-routine does not use registers in common with the code that
6340 ** invokes the sub/co-routine.
6341 */
6342 void sqlite3ClearTempRegCache(Parse *pParse){
6343   pParse->nTempReg = 0;
6344   pParse->nRangeReg = 0;
6345 }
6346 
6347 /*
6348 ** Validate that no temporary register falls within the range of
6349 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
6350 ** statements.
6351 */
6352 #ifdef SQLITE_DEBUG
6353 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6354   int i;
6355   if( pParse->nRangeReg>0
6356    && pParse->iRangeReg+pParse->nRangeReg > iFirst
6357    && pParse->iRangeReg <= iLast
6358   ){
6359      return 0;
6360   }
6361   for(i=0; i<pParse->nTempReg; i++){
6362     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6363       return 0;
6364     }
6365   }
6366   return 1;
6367 }
6368 #endif /* SQLITE_DEBUG */
6369