1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){ 25 if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER; 26 return pTab->aCol[iCol].affinity; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_REGISTER ) op = pExpr->op2; 56 if( op==TK_COLUMN || op==TK_AGG_COLUMN ){ 57 assert( ExprUseYTab(pExpr) ); 58 if( pExpr->y.pTab ){ 59 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 60 } 61 } 62 if( op==TK_SELECT ){ 63 assert( ExprUseXSelect(pExpr) ); 64 assert( pExpr->x.pSelect!=0 ); 65 assert( pExpr->x.pSelect->pEList!=0 ); 66 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 67 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 68 } 69 #ifndef SQLITE_OMIT_CAST 70 if( op==TK_CAST ){ 71 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 72 return sqlite3AffinityType(pExpr->u.zToken, 0); 73 } 74 #endif 75 if( op==TK_SELECT_COLUMN ){ 76 assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) ); 77 assert( pExpr->iColumn < pExpr->iTable ); 78 assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); 79 return sqlite3ExprAffinity( 80 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 81 ); 82 } 83 if( op==TK_VECTOR ){ 84 assert( ExprUseXList(pExpr) ); 85 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 86 } 87 return pExpr->affExpr; 88 } 89 90 /* 91 ** Set the collating sequence for expression pExpr to be the collating 92 ** sequence named by pToken. Return a pointer to a new Expr node that 93 ** implements the COLLATE operator. 94 ** 95 ** If a memory allocation error occurs, that fact is recorded in pParse->db 96 ** and the pExpr parameter is returned unchanged. 97 */ 98 Expr *sqlite3ExprAddCollateToken( 99 const Parse *pParse, /* Parsing context */ 100 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 101 const Token *pCollName, /* Name of collating sequence */ 102 int dequote /* True to dequote pCollName */ 103 ){ 104 if( pCollName->n>0 ){ 105 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 106 if( pNew ){ 107 pNew->pLeft = pExpr; 108 pNew->flags |= EP_Collate|EP_Skip; 109 pExpr = pNew; 110 } 111 } 112 return pExpr; 113 } 114 Expr *sqlite3ExprAddCollateString( 115 const Parse *pParse, /* Parsing context */ 116 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 117 const char *zC /* The collating sequence name */ 118 ){ 119 Token s; 120 assert( zC!=0 ); 121 sqlite3TokenInit(&s, (char*)zC); 122 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 123 } 124 125 /* 126 ** Skip over any TK_COLLATE operators. 127 */ 128 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 129 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 130 assert( pExpr->op==TK_COLLATE ); 131 pExpr = pExpr->pLeft; 132 } 133 return pExpr; 134 } 135 136 /* 137 ** Skip over any TK_COLLATE operators and/or any unlikely() 138 ** or likelihood() or likely() functions at the root of an 139 ** expression. 140 */ 141 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 142 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 143 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 144 assert( ExprUseXList(pExpr) ); 145 assert( pExpr->x.pList->nExpr>0 ); 146 assert( pExpr->op==TK_FUNCTION ); 147 pExpr = pExpr->x.pList->a[0].pExpr; 148 }else{ 149 assert( pExpr->op==TK_COLLATE ); 150 pExpr = pExpr->pLeft; 151 } 152 } 153 return pExpr; 154 } 155 156 /* 157 ** Return the collation sequence for the expression pExpr. If 158 ** there is no defined collating sequence, return NULL. 159 ** 160 ** See also: sqlite3ExprNNCollSeq() 161 ** 162 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 163 ** default collation if pExpr has no defined collation. 164 ** 165 ** The collating sequence might be determined by a COLLATE operator 166 ** or by the presence of a column with a defined collating sequence. 167 ** COLLATE operators take first precedence. Left operands take 168 ** precedence over right operands. 169 */ 170 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 171 sqlite3 *db = pParse->db; 172 CollSeq *pColl = 0; 173 const Expr *p = pExpr; 174 while( p ){ 175 int op = p->op; 176 if( op==TK_REGISTER ) op = p->op2; 177 if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){ 178 assert( ExprUseYTab(p) ); 179 if( p->y.pTab!=0 ){ 180 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 181 ** a TK_COLUMN but was previously evaluated and cached in a register */ 182 int j = p->iColumn; 183 if( j>=0 ){ 184 const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]); 185 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 186 } 187 break; 188 } 189 } 190 if( op==TK_CAST || op==TK_UPLUS ){ 191 p = p->pLeft; 192 continue; 193 } 194 if( op==TK_VECTOR ){ 195 assert( ExprUseXList(p) ); 196 p = p->x.pList->a[0].pExpr; 197 continue; 198 } 199 if( op==TK_COLLATE ){ 200 assert( !ExprHasProperty(p, EP_IntValue) ); 201 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 202 break; 203 } 204 if( p->flags & EP_Collate ){ 205 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 206 p = p->pLeft; 207 }else{ 208 Expr *pNext = p->pRight; 209 /* The Expr.x union is never used at the same time as Expr.pRight */ 210 assert( ExprUseXList(p) ); 211 assert( p->x.pList==0 || p->pRight==0 ); 212 if( p->x.pList!=0 && !db->mallocFailed ){ 213 int i; 214 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 215 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 216 pNext = p->x.pList->a[i].pExpr; 217 break; 218 } 219 } 220 } 221 p = pNext; 222 } 223 }else{ 224 break; 225 } 226 } 227 if( sqlite3CheckCollSeq(pParse, pColl) ){ 228 pColl = 0; 229 } 230 return pColl; 231 } 232 233 /* 234 ** Return the collation sequence for the expression pExpr. If 235 ** there is no defined collating sequence, return a pointer to the 236 ** defautl collation sequence. 237 ** 238 ** See also: sqlite3ExprCollSeq() 239 ** 240 ** The sqlite3ExprCollSeq() routine works the same except that it 241 ** returns NULL if there is no defined collation. 242 */ 243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 244 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 245 if( p==0 ) p = pParse->db->pDfltColl; 246 assert( p!=0 ); 247 return p; 248 } 249 250 /* 251 ** Return TRUE if the two expressions have equivalent collating sequences. 252 */ 253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 254 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 255 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 256 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 257 } 258 259 /* 260 ** pExpr is an operand of a comparison operator. aff2 is the 261 ** type affinity of the other operand. This routine returns the 262 ** type affinity that should be used for the comparison operator. 263 */ 264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 265 char aff1 = sqlite3ExprAffinity(pExpr); 266 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 267 /* Both sides of the comparison are columns. If one has numeric 268 ** affinity, use that. Otherwise use no affinity. 269 */ 270 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 271 return SQLITE_AFF_NUMERIC; 272 }else{ 273 return SQLITE_AFF_BLOB; 274 } 275 }else{ 276 /* One side is a column, the other is not. Use the columns affinity. */ 277 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 278 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 279 } 280 } 281 282 /* 283 ** pExpr is a comparison operator. Return the type affinity that should 284 ** be applied to both operands prior to doing the comparison. 285 */ 286 static char comparisonAffinity(const Expr *pExpr){ 287 char aff; 288 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 289 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 290 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 291 assert( pExpr->pLeft ); 292 aff = sqlite3ExprAffinity(pExpr->pLeft); 293 if( pExpr->pRight ){ 294 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 295 }else if( ExprUseXSelect(pExpr) ){ 296 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 297 }else if( aff==0 ){ 298 aff = SQLITE_AFF_BLOB; 299 } 300 return aff; 301 } 302 303 /* 304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 305 ** idx_affinity is the affinity of an indexed column. Return true 306 ** if the index with affinity idx_affinity may be used to implement 307 ** the comparison in pExpr. 308 */ 309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 310 char aff = comparisonAffinity(pExpr); 311 if( aff<SQLITE_AFF_TEXT ){ 312 return 1; 313 } 314 if( aff==SQLITE_AFF_TEXT ){ 315 return idx_affinity==SQLITE_AFF_TEXT; 316 } 317 return sqlite3IsNumericAffinity(idx_affinity); 318 } 319 320 /* 321 ** Return the P5 value that should be used for a binary comparison 322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 323 */ 324 static u8 binaryCompareP5( 325 const Expr *pExpr1, /* Left operand */ 326 const Expr *pExpr2, /* Right operand */ 327 int jumpIfNull /* Extra flags added to P5 */ 328 ){ 329 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 330 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 331 return aff; 332 } 333 334 /* 335 ** Return a pointer to the collation sequence that should be used by 336 ** a binary comparison operator comparing pLeft and pRight. 337 ** 338 ** If the left hand expression has a collating sequence type, then it is 339 ** used. Otherwise the collation sequence for the right hand expression 340 ** is used, or the default (BINARY) if neither expression has a collating 341 ** type. 342 ** 343 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 344 ** it is not considered. 345 */ 346 CollSeq *sqlite3BinaryCompareCollSeq( 347 Parse *pParse, 348 const Expr *pLeft, 349 const Expr *pRight 350 ){ 351 CollSeq *pColl; 352 assert( pLeft ); 353 if( pLeft->flags & EP_Collate ){ 354 pColl = sqlite3ExprCollSeq(pParse, pLeft); 355 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 356 pColl = sqlite3ExprCollSeq(pParse, pRight); 357 }else{ 358 pColl = sqlite3ExprCollSeq(pParse, pLeft); 359 if( !pColl ){ 360 pColl = sqlite3ExprCollSeq(pParse, pRight); 361 } 362 } 363 return pColl; 364 } 365 366 /* Expresssion p is a comparison operator. Return a collation sequence 367 ** appropriate for the comparison operator. 368 ** 369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 370 ** However, if the OP_Commuted flag is set, then the order of the operands 371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 372 ** correct collating sequence is found. 373 */ 374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 375 if( ExprHasProperty(p, EP_Commuted) ){ 376 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 377 }else{ 378 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 379 } 380 } 381 382 /* 383 ** Generate code for a comparison operator. 384 */ 385 static int codeCompare( 386 Parse *pParse, /* The parsing (and code generating) context */ 387 Expr *pLeft, /* The left operand */ 388 Expr *pRight, /* The right operand */ 389 int opcode, /* The comparison opcode */ 390 int in1, int in2, /* Register holding operands */ 391 int dest, /* Jump here if true. */ 392 int jumpIfNull, /* If true, jump if either operand is NULL */ 393 int isCommuted /* The comparison has been commuted */ 394 ){ 395 int p5; 396 int addr; 397 CollSeq *p4; 398 399 if( pParse->nErr ) return 0; 400 if( isCommuted ){ 401 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 402 }else{ 403 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 404 } 405 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 406 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 407 (void*)p4, P4_COLLSEQ); 408 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 409 return addr; 410 } 411 412 /* 413 ** Return true if expression pExpr is a vector, or false otherwise. 414 ** 415 ** A vector is defined as any expression that results in two or more 416 ** columns of result. Every TK_VECTOR node is an vector because the 417 ** parser will not generate a TK_VECTOR with fewer than two entries. 418 ** But a TK_SELECT might be either a vector or a scalar. It is only 419 ** considered a vector if it has two or more result columns. 420 */ 421 int sqlite3ExprIsVector(const Expr *pExpr){ 422 return sqlite3ExprVectorSize(pExpr)>1; 423 } 424 425 /* 426 ** If the expression passed as the only argument is of type TK_VECTOR 427 ** return the number of expressions in the vector. Or, if the expression 428 ** is a sub-select, return the number of columns in the sub-select. For 429 ** any other type of expression, return 1. 430 */ 431 int sqlite3ExprVectorSize(const Expr *pExpr){ 432 u8 op = pExpr->op; 433 if( op==TK_REGISTER ) op = pExpr->op2; 434 if( op==TK_VECTOR ){ 435 assert( ExprUseXList(pExpr) ); 436 return pExpr->x.pList->nExpr; 437 }else if( op==TK_SELECT ){ 438 assert( ExprUseXSelect(pExpr) ); 439 return pExpr->x.pSelect->pEList->nExpr; 440 }else{ 441 return 1; 442 } 443 } 444 445 /* 446 ** Return a pointer to a subexpression of pVector that is the i-th 447 ** column of the vector (numbered starting with 0). The caller must 448 ** ensure that i is within range. 449 ** 450 ** If pVector is really a scalar (and "scalar" here includes subqueries 451 ** that return a single column!) then return pVector unmodified. 452 ** 453 ** pVector retains ownership of the returned subexpression. 454 ** 455 ** If the vector is a (SELECT ...) then the expression returned is 456 ** just the expression for the i-th term of the result set, and may 457 ** not be ready for evaluation because the table cursor has not yet 458 ** been positioned. 459 */ 460 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 461 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR ); 462 if( sqlite3ExprIsVector(pVector) ){ 463 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 464 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 465 assert( ExprUseXSelect(pVector) ); 466 return pVector->x.pSelect->pEList->a[i].pExpr; 467 }else{ 468 assert( ExprUseXList(pVector) ); 469 return pVector->x.pList->a[i].pExpr; 470 } 471 } 472 return pVector; 473 } 474 475 /* 476 ** Compute and return a new Expr object which when passed to 477 ** sqlite3ExprCode() will generate all necessary code to compute 478 ** the iField-th column of the vector expression pVector. 479 ** 480 ** It is ok for pVector to be a scalar (as long as iField==0). 481 ** In that case, this routine works like sqlite3ExprDup(). 482 ** 483 ** The caller owns the returned Expr object and is responsible for 484 ** ensuring that the returned value eventually gets freed. 485 ** 486 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 487 ** then the returned object will reference pVector and so pVector must remain 488 ** valid for the life of the returned object. If pVector is a TK_VECTOR 489 ** or a scalar expression, then it can be deleted as soon as this routine 490 ** returns. 491 ** 492 ** A trick to cause a TK_SELECT pVector to be deleted together with 493 ** the returned Expr object is to attach the pVector to the pRight field 494 ** of the returned TK_SELECT_COLUMN Expr object. 495 */ 496 Expr *sqlite3ExprForVectorField( 497 Parse *pParse, /* Parsing context */ 498 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 499 int iField, /* Which column of the vector to return */ 500 int nField /* Total number of columns in the vector */ 501 ){ 502 Expr *pRet; 503 if( pVector->op==TK_SELECT ){ 504 assert( ExprUseXSelect(pVector) ); 505 /* The TK_SELECT_COLUMN Expr node: 506 ** 507 ** pLeft: pVector containing TK_SELECT. Not deleted. 508 ** pRight: not used. But recursively deleted. 509 ** iColumn: Index of a column in pVector 510 ** iTable: 0 or the number of columns on the LHS of an assignment 511 ** pLeft->iTable: First in an array of register holding result, or 0 512 ** if the result is not yet computed. 513 ** 514 ** sqlite3ExprDelete() specifically skips the recursive delete of 515 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 516 ** can be attached to pRight to cause this node to take ownership of 517 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 518 ** with the same pLeft pointer to the pVector, but only one of them 519 ** will own the pVector. 520 */ 521 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 522 if( pRet ){ 523 pRet->iTable = nField; 524 pRet->iColumn = iField; 525 pRet->pLeft = pVector; 526 } 527 }else{ 528 if( pVector->op==TK_VECTOR ){ 529 Expr **ppVector; 530 assert( ExprUseXList(pVector) ); 531 ppVector = &pVector->x.pList->a[iField].pExpr; 532 pVector = *ppVector; 533 if( IN_RENAME_OBJECT ){ 534 /* This must be a vector UPDATE inside a trigger */ 535 *ppVector = 0; 536 return pVector; 537 } 538 } 539 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 540 } 541 return pRet; 542 } 543 544 /* 545 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 546 ** it. Return the register in which the result is stored (or, if the 547 ** sub-select returns more than one column, the first in an array 548 ** of registers in which the result is stored). 549 ** 550 ** If pExpr is not a TK_SELECT expression, return 0. 551 */ 552 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 553 int reg = 0; 554 #ifndef SQLITE_OMIT_SUBQUERY 555 if( pExpr->op==TK_SELECT ){ 556 reg = sqlite3CodeSubselect(pParse, pExpr); 557 } 558 #endif 559 return reg; 560 } 561 562 /* 563 ** Argument pVector points to a vector expression - either a TK_VECTOR 564 ** or TK_SELECT that returns more than one column. This function returns 565 ** the register number of a register that contains the value of 566 ** element iField of the vector. 567 ** 568 ** If pVector is a TK_SELECT expression, then code for it must have 569 ** already been generated using the exprCodeSubselect() routine. In this 570 ** case parameter regSelect should be the first in an array of registers 571 ** containing the results of the sub-select. 572 ** 573 ** If pVector is of type TK_VECTOR, then code for the requested field 574 ** is generated. In this case (*pRegFree) may be set to the number of 575 ** a temporary register to be freed by the caller before returning. 576 ** 577 ** Before returning, output parameter (*ppExpr) is set to point to the 578 ** Expr object corresponding to element iElem of the vector. 579 */ 580 static int exprVectorRegister( 581 Parse *pParse, /* Parse context */ 582 Expr *pVector, /* Vector to extract element from */ 583 int iField, /* Field to extract from pVector */ 584 int regSelect, /* First in array of registers */ 585 Expr **ppExpr, /* OUT: Expression element */ 586 int *pRegFree /* OUT: Temp register to free */ 587 ){ 588 u8 op = pVector->op; 589 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); 590 if( op==TK_REGISTER ){ 591 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 592 return pVector->iTable+iField; 593 } 594 if( op==TK_SELECT ){ 595 assert( ExprUseXSelect(pVector) ); 596 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 597 return regSelect+iField; 598 } 599 if( op==TK_VECTOR ){ 600 assert( ExprUseXList(pVector) ); 601 *ppExpr = pVector->x.pList->a[iField].pExpr; 602 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 603 } 604 return 0; 605 } 606 607 /* 608 ** Expression pExpr is a comparison between two vector values. Compute 609 ** the result of the comparison (1, 0, or NULL) and write that 610 ** result into register dest. 611 ** 612 ** The caller must satisfy the following preconditions: 613 ** 614 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 615 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 616 ** otherwise: op==pExpr->op and p5==0 617 */ 618 static void codeVectorCompare( 619 Parse *pParse, /* Code generator context */ 620 Expr *pExpr, /* The comparison operation */ 621 int dest, /* Write results into this register */ 622 u8 op, /* Comparison operator */ 623 u8 p5 /* SQLITE_NULLEQ or zero */ 624 ){ 625 Vdbe *v = pParse->pVdbe; 626 Expr *pLeft = pExpr->pLeft; 627 Expr *pRight = pExpr->pRight; 628 int nLeft = sqlite3ExprVectorSize(pLeft); 629 int i; 630 int regLeft = 0; 631 int regRight = 0; 632 u8 opx = op; 633 int addrCmp = 0; 634 int addrDone = sqlite3VdbeMakeLabel(pParse); 635 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 636 637 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 638 if( pParse->nErr ) return; 639 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 640 sqlite3ErrorMsg(pParse, "row value misused"); 641 return; 642 } 643 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 644 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 645 || pExpr->op==TK_LT || pExpr->op==TK_GT 646 || pExpr->op==TK_LE || pExpr->op==TK_GE 647 ); 648 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 649 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 650 assert( p5==0 || pExpr->op!=op ); 651 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 652 653 if( op==TK_LE ) opx = TK_LT; 654 if( op==TK_GE ) opx = TK_GT; 655 if( op==TK_NE ) opx = TK_EQ; 656 657 regLeft = exprCodeSubselect(pParse, pLeft); 658 regRight = exprCodeSubselect(pParse, pRight); 659 660 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 661 for(i=0; 1 /*Loop exits by "break"*/; i++){ 662 int regFree1 = 0, regFree2 = 0; 663 Expr *pL = 0, *pR = 0; 664 int r1, r2; 665 assert( i>=0 && i<nLeft ); 666 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 667 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 668 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 669 addrCmp = sqlite3VdbeCurrentAddr(v); 670 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 671 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 672 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 673 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 674 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 675 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 676 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 677 sqlite3ReleaseTempReg(pParse, regFree1); 678 sqlite3ReleaseTempReg(pParse, regFree2); 679 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 680 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 681 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 682 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 683 } 684 if( p5==SQLITE_NULLEQ ){ 685 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 686 }else{ 687 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 688 } 689 if( i==nLeft-1 ){ 690 break; 691 } 692 if( opx==TK_EQ ){ 693 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 694 }else{ 695 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 696 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 697 if( i==nLeft-2 ) opx = op; 698 } 699 } 700 sqlite3VdbeJumpHere(v, addrCmp); 701 sqlite3VdbeResolveLabel(v, addrDone); 702 if( op==TK_NE ){ 703 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 704 } 705 } 706 707 #if SQLITE_MAX_EXPR_DEPTH>0 708 /* 709 ** Check that argument nHeight is less than or equal to the maximum 710 ** expression depth allowed. If it is not, leave an error message in 711 ** pParse. 712 */ 713 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 714 int rc = SQLITE_OK; 715 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 716 if( nHeight>mxHeight ){ 717 sqlite3ErrorMsg(pParse, 718 "Expression tree is too large (maximum depth %d)", mxHeight 719 ); 720 rc = SQLITE_ERROR; 721 } 722 return rc; 723 } 724 725 /* The following three functions, heightOfExpr(), heightOfExprList() 726 ** and heightOfSelect(), are used to determine the maximum height 727 ** of any expression tree referenced by the structure passed as the 728 ** first argument. 729 ** 730 ** If this maximum height is greater than the current value pointed 731 ** to by pnHeight, the second parameter, then set *pnHeight to that 732 ** value. 733 */ 734 static void heightOfExpr(const Expr *p, int *pnHeight){ 735 if( p ){ 736 if( p->nHeight>*pnHeight ){ 737 *pnHeight = p->nHeight; 738 } 739 } 740 } 741 static void heightOfExprList(const ExprList *p, int *pnHeight){ 742 if( p ){ 743 int i; 744 for(i=0; i<p->nExpr; i++){ 745 heightOfExpr(p->a[i].pExpr, pnHeight); 746 } 747 } 748 } 749 static void heightOfSelect(const Select *pSelect, int *pnHeight){ 750 const Select *p; 751 for(p=pSelect; p; p=p->pPrior){ 752 heightOfExpr(p->pWhere, pnHeight); 753 heightOfExpr(p->pHaving, pnHeight); 754 heightOfExpr(p->pLimit, pnHeight); 755 heightOfExprList(p->pEList, pnHeight); 756 heightOfExprList(p->pGroupBy, pnHeight); 757 heightOfExprList(p->pOrderBy, pnHeight); 758 } 759 } 760 761 /* 762 ** Set the Expr.nHeight variable in the structure passed as an 763 ** argument. An expression with no children, Expr.pList or 764 ** Expr.pSelect member has a height of 1. Any other expression 765 ** has a height equal to the maximum height of any other 766 ** referenced Expr plus one. 767 ** 768 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 769 ** if appropriate. 770 */ 771 static void exprSetHeight(Expr *p){ 772 int nHeight = p->pLeft ? p->pLeft->nHeight : 0; 773 if( p->pRight && p->pRight->nHeight>nHeight ) nHeight = p->pRight->nHeight; 774 if( ExprUseXSelect(p) ){ 775 heightOfSelect(p->x.pSelect, &nHeight); 776 }else if( p->x.pList ){ 777 heightOfExprList(p->x.pList, &nHeight); 778 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 779 } 780 p->nHeight = nHeight + 1; 781 } 782 783 /* 784 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 785 ** the height is greater than the maximum allowed expression depth, 786 ** leave an error in pParse. 787 ** 788 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 789 ** Expr.flags. 790 */ 791 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 792 if( pParse->nErr ) return; 793 exprSetHeight(p); 794 sqlite3ExprCheckHeight(pParse, p->nHeight); 795 } 796 797 /* 798 ** Return the maximum height of any expression tree referenced 799 ** by the select statement passed as an argument. 800 */ 801 int sqlite3SelectExprHeight(const Select *p){ 802 int nHeight = 0; 803 heightOfSelect(p, &nHeight); 804 return nHeight; 805 } 806 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 807 /* 808 ** Propagate all EP_Propagate flags from the Expr.x.pList into 809 ** Expr.flags. 810 */ 811 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 812 if( pParse->nErr ) return; 813 if( p && ExprUseXList(p) && p->x.pList ){ 814 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 815 } 816 } 817 #define exprSetHeight(y) 818 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 819 820 /* 821 ** This routine is the core allocator for Expr nodes. 822 ** 823 ** Construct a new expression node and return a pointer to it. Memory 824 ** for this node and for the pToken argument is a single allocation 825 ** obtained from sqlite3DbMalloc(). The calling function 826 ** is responsible for making sure the node eventually gets freed. 827 ** 828 ** If dequote is true, then the token (if it exists) is dequoted. 829 ** If dequote is false, no dequoting is performed. The deQuote 830 ** parameter is ignored if pToken is NULL or if the token does not 831 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 832 ** then the EP_DblQuoted flag is set on the expression node. 833 ** 834 ** Special case: If op==TK_INTEGER and pToken points to a string that 835 ** can be translated into a 32-bit integer, then the token is not 836 ** stored in u.zToken. Instead, the integer values is written 837 ** into u.iValue and the EP_IntValue flag is set. No extra storage 838 ** is allocated to hold the integer text and the dequote flag is ignored. 839 */ 840 Expr *sqlite3ExprAlloc( 841 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 842 int op, /* Expression opcode */ 843 const Token *pToken, /* Token argument. Might be NULL */ 844 int dequote /* True to dequote */ 845 ){ 846 Expr *pNew; 847 int nExtra = 0; 848 int iValue = 0; 849 850 assert( db!=0 ); 851 if( pToken ){ 852 if( op!=TK_INTEGER || pToken->z==0 853 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 854 nExtra = pToken->n+1; 855 assert( iValue>=0 ); 856 } 857 } 858 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 859 if( pNew ){ 860 memset(pNew, 0, sizeof(Expr)); 861 pNew->op = (u8)op; 862 pNew->iAgg = -1; 863 if( pToken ){ 864 if( nExtra==0 ){ 865 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 866 pNew->u.iValue = iValue; 867 }else{ 868 pNew->u.zToken = (char*)&pNew[1]; 869 assert( pToken->z!=0 || pToken->n==0 ); 870 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 871 pNew->u.zToken[pToken->n] = 0; 872 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 873 sqlite3DequoteExpr(pNew); 874 } 875 } 876 } 877 #if SQLITE_MAX_EXPR_DEPTH>0 878 pNew->nHeight = 1; 879 #endif 880 } 881 return pNew; 882 } 883 884 /* 885 ** Allocate a new expression node from a zero-terminated token that has 886 ** already been dequoted. 887 */ 888 Expr *sqlite3Expr( 889 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 890 int op, /* Expression opcode */ 891 const char *zToken /* Token argument. Might be NULL */ 892 ){ 893 Token x; 894 x.z = zToken; 895 x.n = sqlite3Strlen30(zToken); 896 return sqlite3ExprAlloc(db, op, &x, 0); 897 } 898 899 /* 900 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 901 ** 902 ** If pRoot==NULL that means that a memory allocation error has occurred. 903 ** In that case, delete the subtrees pLeft and pRight. 904 */ 905 void sqlite3ExprAttachSubtrees( 906 sqlite3 *db, 907 Expr *pRoot, 908 Expr *pLeft, 909 Expr *pRight 910 ){ 911 if( pRoot==0 ){ 912 assert( db->mallocFailed ); 913 sqlite3ExprDelete(db, pLeft); 914 sqlite3ExprDelete(db, pRight); 915 }else{ 916 if( pRight ){ 917 pRoot->pRight = pRight; 918 pRoot->flags |= EP_Propagate & pRight->flags; 919 } 920 if( pLeft ){ 921 pRoot->pLeft = pLeft; 922 pRoot->flags |= EP_Propagate & pLeft->flags; 923 } 924 exprSetHeight(pRoot); 925 } 926 } 927 928 /* 929 ** Allocate an Expr node which joins as many as two subtrees. 930 ** 931 ** One or both of the subtrees can be NULL. Return a pointer to the new 932 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 933 ** free the subtrees and return NULL. 934 */ 935 Expr *sqlite3PExpr( 936 Parse *pParse, /* Parsing context */ 937 int op, /* Expression opcode */ 938 Expr *pLeft, /* Left operand */ 939 Expr *pRight /* Right operand */ 940 ){ 941 Expr *p; 942 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 943 if( p ){ 944 memset(p, 0, sizeof(Expr)); 945 p->op = op & 0xff; 946 p->iAgg = -1; 947 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 948 sqlite3ExprCheckHeight(pParse, p->nHeight); 949 }else{ 950 sqlite3ExprDelete(pParse->db, pLeft); 951 sqlite3ExprDelete(pParse->db, pRight); 952 } 953 return p; 954 } 955 956 /* 957 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 958 ** do a memory allocation failure) then delete the pSelect object. 959 */ 960 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 961 if( pExpr ){ 962 pExpr->x.pSelect = pSelect; 963 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 964 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 965 }else{ 966 assert( pParse->db->mallocFailed ); 967 sqlite3SelectDelete(pParse->db, pSelect); 968 } 969 } 970 971 /* 972 ** Expression list pEList is a list of vector values. This function 973 ** converts the contents of pEList to a VALUES(...) Select statement 974 ** returning 1 row for each element of the list. For example, the 975 ** expression list: 976 ** 977 ** ( (1,2), (3,4) (5,6) ) 978 ** 979 ** is translated to the equivalent of: 980 ** 981 ** VALUES(1,2), (3,4), (5,6) 982 ** 983 ** Each of the vector values in pEList must contain exactly nElem terms. 984 ** If a list element that is not a vector or does not contain nElem terms, 985 ** an error message is left in pParse. 986 ** 987 ** This is used as part of processing IN(...) expressions with a list 988 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))". 989 */ 990 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){ 991 int ii; 992 Select *pRet = 0; 993 assert( nElem>1 ); 994 for(ii=0; ii<pEList->nExpr; ii++){ 995 Select *pSel; 996 Expr *pExpr = pEList->a[ii].pExpr; 997 int nExprElem; 998 if( pExpr->op==TK_VECTOR ){ 999 assert( ExprUseXList(pExpr) ); 1000 nExprElem = pExpr->x.pList->nExpr; 1001 }else{ 1002 nExprElem = 1; 1003 } 1004 if( nExprElem!=nElem ){ 1005 sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d", 1006 nExprElem, nExprElem>1?"s":"", nElem 1007 ); 1008 break; 1009 } 1010 assert( ExprUseXList(pExpr) ); 1011 pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0); 1012 pExpr->x.pList = 0; 1013 if( pSel ){ 1014 if( pRet ){ 1015 pSel->op = TK_ALL; 1016 pSel->pPrior = pRet; 1017 } 1018 pRet = pSel; 1019 } 1020 } 1021 1022 if( pRet && pRet->pPrior ){ 1023 pRet->selFlags |= SF_MultiValue; 1024 } 1025 sqlite3ExprListDelete(pParse->db, pEList); 1026 return pRet; 1027 } 1028 1029 /* 1030 ** Join two expressions using an AND operator. If either expression is 1031 ** NULL, then just return the other expression. 1032 ** 1033 ** If one side or the other of the AND is known to be false, then instead 1034 ** of returning an AND expression, just return a constant expression with 1035 ** a value of false. 1036 */ 1037 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 1038 sqlite3 *db = pParse->db; 1039 if( pLeft==0 ){ 1040 return pRight; 1041 }else if( pRight==0 ){ 1042 return pLeft; 1043 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 1044 && !IN_RENAME_OBJECT 1045 ){ 1046 sqlite3ExprDeferredDelete(pParse, pLeft); 1047 sqlite3ExprDeferredDelete(pParse, pRight); 1048 return sqlite3Expr(db, TK_INTEGER, "0"); 1049 }else{ 1050 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 1051 } 1052 } 1053 1054 /* 1055 ** Construct a new expression node for a function with multiple 1056 ** arguments. 1057 */ 1058 Expr *sqlite3ExprFunction( 1059 Parse *pParse, /* Parsing context */ 1060 ExprList *pList, /* Argument list */ 1061 const Token *pToken, /* Name of the function */ 1062 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 1063 ){ 1064 Expr *pNew; 1065 sqlite3 *db = pParse->db; 1066 assert( pToken ); 1067 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 1068 if( pNew==0 ){ 1069 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 1070 return 0; 1071 } 1072 pNew->w.iOfst = (int)(pToken->z - pParse->zTail); 1073 if( pList 1074 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] 1075 && !pParse->nested 1076 ){ 1077 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 1078 } 1079 pNew->x.pList = pList; 1080 ExprSetProperty(pNew, EP_HasFunc); 1081 assert( ExprUseXList(pNew) ); 1082 sqlite3ExprSetHeightAndFlags(pParse, pNew); 1083 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 1084 return pNew; 1085 } 1086 1087 /* 1088 ** Check to see if a function is usable according to current access 1089 ** rules: 1090 ** 1091 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1092 ** 1093 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1094 ** top-level SQL 1095 ** 1096 ** If the function is not usable, create an error. 1097 */ 1098 void sqlite3ExprFunctionUsable( 1099 Parse *pParse, /* Parsing and code generating context */ 1100 const Expr *pExpr, /* The function invocation */ 1101 const FuncDef *pDef /* The function being invoked */ 1102 ){ 1103 assert( !IN_RENAME_OBJECT ); 1104 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1105 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1106 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1107 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1108 ){ 1109 /* Functions prohibited in triggers and views if: 1110 ** (1) tagged with SQLITE_DIRECTONLY 1111 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1112 ** is tagged with SQLITE_FUNC_UNSAFE) and 1113 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1114 ** that the schema is possibly tainted). 1115 */ 1116 sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr); 1117 } 1118 } 1119 } 1120 1121 /* 1122 ** Assign a variable number to an expression that encodes a wildcard 1123 ** in the original SQL statement. 1124 ** 1125 ** Wildcards consisting of a single "?" are assigned the next sequential 1126 ** variable number. 1127 ** 1128 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1129 ** sure "nnn" is not too big to avoid a denial of service attack when 1130 ** the SQL statement comes from an external source. 1131 ** 1132 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1133 ** as the previous instance of the same wildcard. Or if this is the first 1134 ** instance of the wildcard, the next sequential variable number is 1135 ** assigned. 1136 */ 1137 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1138 sqlite3 *db = pParse->db; 1139 const char *z; 1140 ynVar x; 1141 1142 if( pExpr==0 ) return; 1143 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1144 z = pExpr->u.zToken; 1145 assert( z!=0 ); 1146 assert( z[0]!=0 ); 1147 assert( n==(u32)sqlite3Strlen30(z) ); 1148 if( z[1]==0 ){ 1149 /* Wildcard of the form "?". Assign the next variable number */ 1150 assert( z[0]=='?' ); 1151 x = (ynVar)(++pParse->nVar); 1152 }else{ 1153 int doAdd = 0; 1154 if( z[0]=='?' ){ 1155 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1156 ** use it as the variable number */ 1157 i64 i; 1158 int bOk; 1159 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1160 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1161 bOk = 1; 1162 }else{ 1163 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1164 } 1165 testcase( i==0 ); 1166 testcase( i==1 ); 1167 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1168 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1169 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1170 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1171 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1172 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 1173 return; 1174 } 1175 x = (ynVar)i; 1176 if( x>pParse->nVar ){ 1177 pParse->nVar = (int)x; 1178 doAdd = 1; 1179 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1180 doAdd = 1; 1181 } 1182 }else{ 1183 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1184 ** number as the prior appearance of the same name, or if the name 1185 ** has never appeared before, reuse the same variable number 1186 */ 1187 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1188 if( x==0 ){ 1189 x = (ynVar)(++pParse->nVar); 1190 doAdd = 1; 1191 } 1192 } 1193 if( doAdd ){ 1194 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1195 } 1196 } 1197 pExpr->iColumn = x; 1198 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1199 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1200 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 1201 } 1202 } 1203 1204 /* 1205 ** Recursively delete an expression tree. 1206 */ 1207 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1208 assert( p!=0 ); 1209 assert( !ExprUseUValue(p) || p->u.iValue>=0 ); 1210 assert( !ExprUseYWin(p) || !ExprUseYSub(p) ); 1211 assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed ); 1212 assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) ); 1213 #ifdef SQLITE_DEBUG 1214 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1215 assert( p->pLeft==0 ); 1216 assert( p->pRight==0 ); 1217 assert( !ExprUseXSelect(p) || p->x.pSelect==0 ); 1218 assert( !ExprUseXList(p) || p->x.pList==0 ); 1219 } 1220 #endif 1221 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1222 /* The Expr.x union is never used at the same time as Expr.pRight */ 1223 assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 ); 1224 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1225 if( p->pRight ){ 1226 assert( !ExprHasProperty(p, EP_WinFunc) ); 1227 sqlite3ExprDeleteNN(db, p->pRight); 1228 }else if( ExprUseXSelect(p) ){ 1229 assert( !ExprHasProperty(p, EP_WinFunc) ); 1230 sqlite3SelectDelete(db, p->x.pSelect); 1231 }else{ 1232 sqlite3ExprListDelete(db, p->x.pList); 1233 #ifndef SQLITE_OMIT_WINDOWFUNC 1234 if( ExprHasProperty(p, EP_WinFunc) ){ 1235 sqlite3WindowDelete(db, p->y.pWin); 1236 } 1237 #endif 1238 } 1239 } 1240 if( ExprHasProperty(p, EP_MemToken) ){ 1241 assert( !ExprHasProperty(p, EP_IntValue) ); 1242 sqlite3DbFree(db, p->u.zToken); 1243 } 1244 if( !ExprHasProperty(p, EP_Static) ){ 1245 sqlite3DbFreeNN(db, p); 1246 } 1247 } 1248 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1249 if( p ) sqlite3ExprDeleteNN(db, p); 1250 } 1251 1252 /* 1253 ** Clear both elements of an OnOrUsing object 1254 */ 1255 void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){ 1256 if( p==0 ){ 1257 /* Nothing to clear */ 1258 }else if( p->pOn ){ 1259 sqlite3ExprDeleteNN(db, p->pOn); 1260 }else if( p->pUsing ){ 1261 sqlite3IdListDelete(db, p->pUsing); 1262 } 1263 } 1264 1265 /* 1266 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 1267 ** This is similar to sqlite3ExprDelete() except that the delete is 1268 ** deferred untilthe pParse is deleted. 1269 ** 1270 ** The pExpr might be deleted immediately on an OOM error. 1271 ** 1272 ** The deferred delete is (currently) implemented by adding the 1273 ** pExpr to the pParse->pConstExpr list with a register number of 0. 1274 */ 1275 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 1276 pParse->pConstExpr = 1277 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 1278 } 1279 1280 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1281 ** expression. 1282 */ 1283 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1284 if( p ){ 1285 if( IN_RENAME_OBJECT ){ 1286 sqlite3RenameExprUnmap(pParse, p); 1287 } 1288 sqlite3ExprDeleteNN(pParse->db, p); 1289 } 1290 } 1291 1292 /* 1293 ** Return the number of bytes allocated for the expression structure 1294 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1295 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1296 */ 1297 static int exprStructSize(const Expr *p){ 1298 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1299 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1300 return EXPR_FULLSIZE; 1301 } 1302 1303 /* 1304 ** The dupedExpr*Size() routines each return the number of bytes required 1305 ** to store a copy of an expression or expression tree. They differ in 1306 ** how much of the tree is measured. 1307 ** 1308 ** dupedExprStructSize() Size of only the Expr structure 1309 ** dupedExprNodeSize() Size of Expr + space for token 1310 ** dupedExprSize() Expr + token + subtree components 1311 ** 1312 *************************************************************************** 1313 ** 1314 ** The dupedExprStructSize() function returns two values OR-ed together: 1315 ** (1) the space required for a copy of the Expr structure only and 1316 ** (2) the EP_xxx flags that indicate what the structure size should be. 1317 ** The return values is always one of: 1318 ** 1319 ** EXPR_FULLSIZE 1320 ** EXPR_REDUCEDSIZE | EP_Reduced 1321 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1322 ** 1323 ** The size of the structure can be found by masking the return value 1324 ** of this routine with 0xfff. The flags can be found by masking the 1325 ** return value with EP_Reduced|EP_TokenOnly. 1326 ** 1327 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1328 ** (unreduced) Expr objects as they or originally constructed by the parser. 1329 ** During expression analysis, extra information is computed and moved into 1330 ** later parts of the Expr object and that extra information might get chopped 1331 ** off if the expression is reduced. Note also that it does not work to 1332 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1333 ** to reduce a pristine expression tree from the parser. The implementation 1334 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1335 ** to enforce this constraint. 1336 */ 1337 static int dupedExprStructSize(const Expr *p, int flags){ 1338 int nSize; 1339 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1340 assert( EXPR_FULLSIZE<=0xfff ); 1341 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1342 if( 0==flags || p->op==TK_SELECT_COLUMN 1343 #ifndef SQLITE_OMIT_WINDOWFUNC 1344 || ExprHasProperty(p, EP_WinFunc) 1345 #endif 1346 ){ 1347 nSize = EXPR_FULLSIZE; 1348 }else{ 1349 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1350 assert( !ExprHasProperty(p, EP_FromJoin) ); 1351 assert( !ExprHasProperty(p, EP_MemToken) ); 1352 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1353 if( p->pLeft || p->x.pList ){ 1354 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1355 }else{ 1356 assert( p->pRight==0 ); 1357 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1358 } 1359 } 1360 return nSize; 1361 } 1362 1363 /* 1364 ** This function returns the space in bytes required to store the copy 1365 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1366 ** string is defined.) 1367 */ 1368 static int dupedExprNodeSize(const Expr *p, int flags){ 1369 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1370 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1371 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1372 } 1373 return ROUND8(nByte); 1374 } 1375 1376 /* 1377 ** Return the number of bytes required to create a duplicate of the 1378 ** expression passed as the first argument. The second argument is a 1379 ** mask containing EXPRDUP_XXX flags. 1380 ** 1381 ** The value returned includes space to create a copy of the Expr struct 1382 ** itself and the buffer referred to by Expr.u.zToken, if any. 1383 ** 1384 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1385 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1386 ** and Expr.pRight variables (but not for any structures pointed to or 1387 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1388 */ 1389 static int dupedExprSize(const Expr *p, int flags){ 1390 int nByte = 0; 1391 if( p ){ 1392 nByte = dupedExprNodeSize(p, flags); 1393 if( flags&EXPRDUP_REDUCE ){ 1394 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1395 } 1396 } 1397 return nByte; 1398 } 1399 1400 /* 1401 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1402 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1403 ** to store the copy of expression p, the copies of p->u.zToken 1404 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1405 ** if any. Before returning, *pzBuffer is set to the first byte past the 1406 ** portion of the buffer copied into by this function. 1407 */ 1408 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){ 1409 Expr *pNew; /* Value to return */ 1410 u8 *zAlloc; /* Memory space from which to build Expr object */ 1411 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1412 1413 assert( db!=0 ); 1414 assert( p ); 1415 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1416 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1417 1418 /* Figure out where to write the new Expr structure. */ 1419 if( pzBuffer ){ 1420 zAlloc = *pzBuffer; 1421 staticFlag = EP_Static; 1422 assert( zAlloc!=0 ); 1423 }else{ 1424 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1425 staticFlag = 0; 1426 } 1427 pNew = (Expr *)zAlloc; 1428 1429 if( pNew ){ 1430 /* Set nNewSize to the size allocated for the structure pointed to 1431 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1432 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1433 ** by the copy of the p->u.zToken string (if any). 1434 */ 1435 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1436 const int nNewSize = nStructSize & 0xfff; 1437 int nToken; 1438 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1439 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1440 }else{ 1441 nToken = 0; 1442 } 1443 if( dupFlags ){ 1444 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1445 memcpy(zAlloc, p, nNewSize); 1446 }else{ 1447 u32 nSize = (u32)exprStructSize(p); 1448 memcpy(zAlloc, p, nSize); 1449 if( nSize<EXPR_FULLSIZE ){ 1450 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1451 } 1452 } 1453 1454 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1455 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1456 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1457 pNew->flags |= staticFlag; 1458 ExprClearVVAProperties(pNew); 1459 if( dupFlags ){ 1460 ExprSetVVAProperty(pNew, EP_Immutable); 1461 } 1462 1463 /* Copy the p->u.zToken string, if any. */ 1464 if( nToken ){ 1465 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1466 memcpy(zToken, p->u.zToken, nToken); 1467 } 1468 1469 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1470 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1471 if( ExprUseXSelect(p) ){ 1472 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1473 }else{ 1474 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1475 } 1476 } 1477 1478 /* Fill in pNew->pLeft and pNew->pRight. */ 1479 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1480 zAlloc += dupedExprNodeSize(p, dupFlags); 1481 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1482 pNew->pLeft = p->pLeft ? 1483 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1484 pNew->pRight = p->pRight ? 1485 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1486 } 1487 #ifndef SQLITE_OMIT_WINDOWFUNC 1488 if( ExprHasProperty(p, EP_WinFunc) ){ 1489 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1490 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1491 } 1492 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1493 if( pzBuffer ){ 1494 *pzBuffer = zAlloc; 1495 } 1496 }else{ 1497 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1498 if( pNew->op==TK_SELECT_COLUMN ){ 1499 pNew->pLeft = p->pLeft; 1500 assert( p->pRight==0 || p->pRight==p->pLeft 1501 || ExprHasProperty(p->pLeft, EP_Subquery) ); 1502 }else{ 1503 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1504 } 1505 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1506 } 1507 } 1508 } 1509 return pNew; 1510 } 1511 1512 /* 1513 ** Create and return a deep copy of the object passed as the second 1514 ** argument. If an OOM condition is encountered, NULL is returned 1515 ** and the db->mallocFailed flag set. 1516 */ 1517 #ifndef SQLITE_OMIT_CTE 1518 With *sqlite3WithDup(sqlite3 *db, With *p){ 1519 With *pRet = 0; 1520 if( p ){ 1521 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1522 pRet = sqlite3DbMallocZero(db, nByte); 1523 if( pRet ){ 1524 int i; 1525 pRet->nCte = p->nCte; 1526 for(i=0; i<p->nCte; i++){ 1527 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1528 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1529 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1530 } 1531 } 1532 } 1533 return pRet; 1534 } 1535 #else 1536 # define sqlite3WithDup(x,y) 0 1537 #endif 1538 1539 #ifndef SQLITE_OMIT_WINDOWFUNC 1540 /* 1541 ** The gatherSelectWindows() procedure and its helper routine 1542 ** gatherSelectWindowsCallback() are used to scan all the expressions 1543 ** an a newly duplicated SELECT statement and gather all of the Window 1544 ** objects found there, assembling them onto the linked list at Select->pWin. 1545 */ 1546 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1547 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1548 Select *pSelect = pWalker->u.pSelect; 1549 Window *pWin = pExpr->y.pWin; 1550 assert( pWin ); 1551 assert( IsWindowFunc(pExpr) ); 1552 assert( pWin->ppThis==0 ); 1553 sqlite3WindowLink(pSelect, pWin); 1554 } 1555 return WRC_Continue; 1556 } 1557 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1558 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1559 } 1560 static void gatherSelectWindows(Select *p){ 1561 Walker w; 1562 w.xExprCallback = gatherSelectWindowsCallback; 1563 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1564 w.xSelectCallback2 = 0; 1565 w.pParse = 0; 1566 w.u.pSelect = p; 1567 sqlite3WalkSelect(&w, p); 1568 } 1569 #endif 1570 1571 1572 /* 1573 ** The following group of routines make deep copies of expressions, 1574 ** expression lists, ID lists, and select statements. The copies can 1575 ** be deleted (by being passed to their respective ...Delete() routines) 1576 ** without effecting the originals. 1577 ** 1578 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1579 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1580 ** by subsequent calls to sqlite*ListAppend() routines. 1581 ** 1582 ** Any tables that the SrcList might point to are not duplicated. 1583 ** 1584 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1585 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1586 ** truncated version of the usual Expr structure that will be stored as 1587 ** part of the in-memory representation of the database schema. 1588 */ 1589 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){ 1590 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1591 return p ? exprDup(db, p, flags, 0) : 0; 1592 } 1593 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){ 1594 ExprList *pNew; 1595 struct ExprList_item *pItem; 1596 const struct ExprList_item *pOldItem; 1597 int i; 1598 Expr *pPriorSelectColOld = 0; 1599 Expr *pPriorSelectColNew = 0; 1600 assert( db!=0 ); 1601 if( p==0 ) return 0; 1602 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1603 if( pNew==0 ) return 0; 1604 pNew->nExpr = p->nExpr; 1605 pNew->nAlloc = p->nAlloc; 1606 pItem = pNew->a; 1607 pOldItem = p->a; 1608 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1609 Expr *pOldExpr = pOldItem->pExpr; 1610 Expr *pNewExpr; 1611 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1612 if( pOldExpr 1613 && pOldExpr->op==TK_SELECT_COLUMN 1614 && (pNewExpr = pItem->pExpr)!=0 1615 ){ 1616 if( pNewExpr->pRight ){ 1617 pPriorSelectColOld = pOldExpr->pRight; 1618 pPriorSelectColNew = pNewExpr->pRight; 1619 pNewExpr->pLeft = pNewExpr->pRight; 1620 }else{ 1621 if( pOldExpr->pLeft!=pPriorSelectColOld ){ 1622 pPriorSelectColOld = pOldExpr->pLeft; 1623 pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags); 1624 pNewExpr->pRight = pPriorSelectColNew; 1625 } 1626 pNewExpr->pLeft = pPriorSelectColNew; 1627 } 1628 } 1629 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1630 pItem->sortFlags = pOldItem->sortFlags; 1631 pItem->eEName = pOldItem->eEName; 1632 pItem->done = 0; 1633 pItem->bNulls = pOldItem->bNulls; 1634 pItem->bUsed = pOldItem->bUsed; 1635 pItem->bSorterRef = pOldItem->bSorterRef; 1636 pItem->u = pOldItem->u; 1637 } 1638 return pNew; 1639 } 1640 1641 /* 1642 ** If cursors, triggers, views and subqueries are all omitted from 1643 ** the build, then none of the following routines, except for 1644 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1645 ** called with a NULL argument. 1646 */ 1647 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1648 || !defined(SQLITE_OMIT_SUBQUERY) 1649 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){ 1650 SrcList *pNew; 1651 int i; 1652 int nByte; 1653 assert( db!=0 ); 1654 if( p==0 ) return 0; 1655 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1656 pNew = sqlite3DbMallocRawNN(db, nByte ); 1657 if( pNew==0 ) return 0; 1658 pNew->nSrc = pNew->nAlloc = p->nSrc; 1659 for(i=0; i<p->nSrc; i++){ 1660 SrcItem *pNewItem = &pNew->a[i]; 1661 const SrcItem *pOldItem = &p->a[i]; 1662 Table *pTab; 1663 pNewItem->pSchema = pOldItem->pSchema; 1664 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1665 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1666 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1667 pNewItem->fg = pOldItem->fg; 1668 pNewItem->iCursor = pOldItem->iCursor; 1669 pNewItem->addrFillSub = pOldItem->addrFillSub; 1670 pNewItem->regReturn = pOldItem->regReturn; 1671 if( pNewItem->fg.isIndexedBy ){ 1672 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1673 } 1674 pNewItem->u2 = pOldItem->u2; 1675 if( pNewItem->fg.isCte ){ 1676 pNewItem->u2.pCteUse->nUse++; 1677 } 1678 if( pNewItem->fg.isTabFunc ){ 1679 pNewItem->u1.pFuncArg = 1680 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1681 } 1682 pTab = pNewItem->pTab = pOldItem->pTab; 1683 if( pTab ){ 1684 pTab->nTabRef++; 1685 } 1686 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1687 if( pOldItem->fg.isUsing ){ 1688 assert( pNewItem->fg.isUsing ); 1689 pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing); 1690 }else{ 1691 pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags); 1692 } 1693 pNewItem->colUsed = pOldItem->colUsed; 1694 } 1695 return pNew; 1696 } 1697 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){ 1698 IdList *pNew; 1699 int i; 1700 assert( db!=0 ); 1701 if( p==0 ) return 0; 1702 assert( p->eU4!=EU4_EXPR ); 1703 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) ); 1704 if( pNew==0 ) return 0; 1705 pNew->nId = p->nId; 1706 pNew->eU4 = p->eU4; 1707 for(i=0; i<p->nId; i++){ 1708 struct IdList_item *pNewItem = &pNew->a[i]; 1709 const struct IdList_item *pOldItem = &p->a[i]; 1710 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1711 pNewItem->u4 = pOldItem->u4; 1712 } 1713 return pNew; 1714 } 1715 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){ 1716 Select *pRet = 0; 1717 Select *pNext = 0; 1718 Select **pp = &pRet; 1719 const Select *p; 1720 1721 assert( db!=0 ); 1722 for(p=pDup; p; p=p->pPrior){ 1723 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1724 if( pNew==0 ) break; 1725 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1726 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1727 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1728 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1729 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1730 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1731 pNew->op = p->op; 1732 pNew->pNext = pNext; 1733 pNew->pPrior = 0; 1734 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1735 pNew->iLimit = 0; 1736 pNew->iOffset = 0; 1737 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1738 pNew->addrOpenEphm[0] = -1; 1739 pNew->addrOpenEphm[1] = -1; 1740 pNew->nSelectRow = p->nSelectRow; 1741 pNew->pWith = sqlite3WithDup(db, p->pWith); 1742 #ifndef SQLITE_OMIT_WINDOWFUNC 1743 pNew->pWin = 0; 1744 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1745 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1746 #endif 1747 pNew->selId = p->selId; 1748 if( db->mallocFailed ){ 1749 /* Any prior OOM might have left the Select object incomplete. 1750 ** Delete the whole thing rather than allow an incomplete Select 1751 ** to be used by the code generator. */ 1752 pNew->pNext = 0; 1753 sqlite3SelectDelete(db, pNew); 1754 break; 1755 } 1756 *pp = pNew; 1757 pp = &pNew->pPrior; 1758 pNext = pNew; 1759 } 1760 1761 return pRet; 1762 } 1763 #else 1764 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){ 1765 assert( p==0 ); 1766 return 0; 1767 } 1768 #endif 1769 1770 1771 /* 1772 ** Add a new element to the end of an expression list. If pList is 1773 ** initially NULL, then create a new expression list. 1774 ** 1775 ** The pList argument must be either NULL or a pointer to an ExprList 1776 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1777 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1778 ** Reason: This routine assumes that the number of slots in pList->a[] 1779 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1780 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1781 ** 1782 ** If a memory allocation error occurs, the entire list is freed and 1783 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1784 ** that the new entry was successfully appended. 1785 */ 1786 static const struct ExprList_item zeroItem = {0}; 1787 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 1788 sqlite3 *db, /* Database handle. Used for memory allocation */ 1789 Expr *pExpr /* Expression to be appended. Might be NULL */ 1790 ){ 1791 struct ExprList_item *pItem; 1792 ExprList *pList; 1793 1794 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 1795 if( pList==0 ){ 1796 sqlite3ExprDelete(db, pExpr); 1797 return 0; 1798 } 1799 pList->nAlloc = 4; 1800 pList->nExpr = 1; 1801 pItem = &pList->a[0]; 1802 *pItem = zeroItem; 1803 pItem->pExpr = pExpr; 1804 return pList; 1805 } 1806 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 1807 sqlite3 *db, /* Database handle. Used for memory allocation */ 1808 ExprList *pList, /* List to which to append. Might be NULL */ 1809 Expr *pExpr /* Expression to be appended. Might be NULL */ 1810 ){ 1811 struct ExprList_item *pItem; 1812 ExprList *pNew; 1813 pList->nAlloc *= 2; 1814 pNew = sqlite3DbRealloc(db, pList, 1815 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 1816 if( pNew==0 ){ 1817 sqlite3ExprListDelete(db, pList); 1818 sqlite3ExprDelete(db, pExpr); 1819 return 0; 1820 }else{ 1821 pList = pNew; 1822 } 1823 pItem = &pList->a[pList->nExpr++]; 1824 *pItem = zeroItem; 1825 pItem->pExpr = pExpr; 1826 return pList; 1827 } 1828 ExprList *sqlite3ExprListAppend( 1829 Parse *pParse, /* Parsing context */ 1830 ExprList *pList, /* List to which to append. Might be NULL */ 1831 Expr *pExpr /* Expression to be appended. Might be NULL */ 1832 ){ 1833 struct ExprList_item *pItem; 1834 if( pList==0 ){ 1835 return sqlite3ExprListAppendNew(pParse->db,pExpr); 1836 } 1837 if( pList->nAlloc<pList->nExpr+1 ){ 1838 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 1839 } 1840 pItem = &pList->a[pList->nExpr++]; 1841 *pItem = zeroItem; 1842 pItem->pExpr = pExpr; 1843 return pList; 1844 } 1845 1846 /* 1847 ** pColumns and pExpr form a vector assignment which is part of the SET 1848 ** clause of an UPDATE statement. Like this: 1849 ** 1850 ** (a,b,c) = (expr1,expr2,expr3) 1851 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1852 ** 1853 ** For each term of the vector assignment, append new entries to the 1854 ** expression list pList. In the case of a subquery on the RHS, append 1855 ** TK_SELECT_COLUMN expressions. 1856 */ 1857 ExprList *sqlite3ExprListAppendVector( 1858 Parse *pParse, /* Parsing context */ 1859 ExprList *pList, /* List to which to append. Might be NULL */ 1860 IdList *pColumns, /* List of names of LHS of the assignment */ 1861 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1862 ){ 1863 sqlite3 *db = pParse->db; 1864 int n; 1865 int i; 1866 int iFirst = pList ? pList->nExpr : 0; 1867 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1868 ** exit prior to this routine being invoked */ 1869 if( NEVER(pColumns==0) ) goto vector_append_error; 1870 if( pExpr==0 ) goto vector_append_error; 1871 1872 /* If the RHS is a vector, then we can immediately check to see that 1873 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1874 ** wildcards ("*") in the result set of the SELECT must be expanded before 1875 ** we can do the size check, so defer the size check until code generation. 1876 */ 1877 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1878 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1879 pColumns->nId, n); 1880 goto vector_append_error; 1881 } 1882 1883 for(i=0; i<pColumns->nId; i++){ 1884 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId); 1885 assert( pSubExpr!=0 || db->mallocFailed ); 1886 if( pSubExpr==0 ) continue; 1887 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1888 if( pList ){ 1889 assert( pList->nExpr==iFirst+i+1 ); 1890 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1891 pColumns->a[i].zName = 0; 1892 } 1893 } 1894 1895 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1896 Expr *pFirst = pList->a[iFirst].pExpr; 1897 assert( pFirst!=0 ); 1898 assert( pFirst->op==TK_SELECT_COLUMN ); 1899 1900 /* Store the SELECT statement in pRight so it will be deleted when 1901 ** sqlite3ExprListDelete() is called */ 1902 pFirst->pRight = pExpr; 1903 pExpr = 0; 1904 1905 /* Remember the size of the LHS in iTable so that we can check that 1906 ** the RHS and LHS sizes match during code generation. */ 1907 pFirst->iTable = pColumns->nId; 1908 } 1909 1910 vector_append_error: 1911 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1912 sqlite3IdListDelete(db, pColumns); 1913 return pList; 1914 } 1915 1916 /* 1917 ** Set the sort order for the last element on the given ExprList. 1918 */ 1919 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1920 struct ExprList_item *pItem; 1921 if( p==0 ) return; 1922 assert( p->nExpr>0 ); 1923 1924 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1925 assert( iSortOrder==SQLITE_SO_UNDEFINED 1926 || iSortOrder==SQLITE_SO_ASC 1927 || iSortOrder==SQLITE_SO_DESC 1928 ); 1929 assert( eNulls==SQLITE_SO_UNDEFINED 1930 || eNulls==SQLITE_SO_ASC 1931 || eNulls==SQLITE_SO_DESC 1932 ); 1933 1934 pItem = &p->a[p->nExpr-1]; 1935 assert( pItem->bNulls==0 ); 1936 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1937 iSortOrder = SQLITE_SO_ASC; 1938 } 1939 pItem->sortFlags = (u8)iSortOrder; 1940 1941 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1942 pItem->bNulls = 1; 1943 if( iSortOrder!=eNulls ){ 1944 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1945 } 1946 } 1947 } 1948 1949 /* 1950 ** Set the ExprList.a[].zEName element of the most recently added item 1951 ** on the expression list. 1952 ** 1953 ** pList might be NULL following an OOM error. But pName should never be 1954 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1955 ** is set. 1956 */ 1957 void sqlite3ExprListSetName( 1958 Parse *pParse, /* Parsing context */ 1959 ExprList *pList, /* List to which to add the span. */ 1960 const Token *pName, /* Name to be added */ 1961 int dequote /* True to cause the name to be dequoted */ 1962 ){ 1963 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1964 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1965 if( pList ){ 1966 struct ExprList_item *pItem; 1967 assert( pList->nExpr>0 ); 1968 pItem = &pList->a[pList->nExpr-1]; 1969 assert( pItem->zEName==0 ); 1970 assert( pItem->eEName==ENAME_NAME ); 1971 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1972 if( dequote ){ 1973 /* If dequote==0, then pName->z does not point to part of a DDL 1974 ** statement handled by the parser. And so no token need be added 1975 ** to the token-map. */ 1976 sqlite3Dequote(pItem->zEName); 1977 if( IN_RENAME_OBJECT ){ 1978 sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName); 1979 } 1980 } 1981 } 1982 } 1983 1984 /* 1985 ** Set the ExprList.a[].zSpan element of the most recently added item 1986 ** on the expression list. 1987 ** 1988 ** pList might be NULL following an OOM error. But pSpan should never be 1989 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1990 ** is set. 1991 */ 1992 void sqlite3ExprListSetSpan( 1993 Parse *pParse, /* Parsing context */ 1994 ExprList *pList, /* List to which to add the span. */ 1995 const char *zStart, /* Start of the span */ 1996 const char *zEnd /* End of the span */ 1997 ){ 1998 sqlite3 *db = pParse->db; 1999 assert( pList!=0 || db->mallocFailed!=0 ); 2000 if( pList ){ 2001 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 2002 assert( pList->nExpr>0 ); 2003 if( pItem->zEName==0 ){ 2004 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 2005 pItem->eEName = ENAME_SPAN; 2006 } 2007 } 2008 } 2009 2010 /* 2011 ** If the expression list pEList contains more than iLimit elements, 2012 ** leave an error message in pParse. 2013 */ 2014 void sqlite3ExprListCheckLength( 2015 Parse *pParse, 2016 ExprList *pEList, 2017 const char *zObject 2018 ){ 2019 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 2020 testcase( pEList && pEList->nExpr==mx ); 2021 testcase( pEList && pEList->nExpr==mx+1 ); 2022 if( pEList && pEList->nExpr>mx ){ 2023 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 2024 } 2025 } 2026 2027 /* 2028 ** Delete an entire expression list. 2029 */ 2030 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 2031 int i = pList->nExpr; 2032 struct ExprList_item *pItem = pList->a; 2033 assert( pList->nExpr>0 ); 2034 do{ 2035 sqlite3ExprDelete(db, pItem->pExpr); 2036 sqlite3DbFree(db, pItem->zEName); 2037 pItem++; 2038 }while( --i>0 ); 2039 sqlite3DbFreeNN(db, pList); 2040 } 2041 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 2042 if( pList ) exprListDeleteNN(db, pList); 2043 } 2044 2045 /* 2046 ** Return the bitwise-OR of all Expr.flags fields in the given 2047 ** ExprList. 2048 */ 2049 u32 sqlite3ExprListFlags(const ExprList *pList){ 2050 int i; 2051 u32 m = 0; 2052 assert( pList!=0 ); 2053 for(i=0; i<pList->nExpr; i++){ 2054 Expr *pExpr = pList->a[i].pExpr; 2055 assert( pExpr!=0 ); 2056 m |= pExpr->flags; 2057 } 2058 return m; 2059 } 2060 2061 /* 2062 ** This is a SELECT-node callback for the expression walker that 2063 ** always "fails". By "fail" in this case, we mean set 2064 ** pWalker->eCode to zero and abort. 2065 ** 2066 ** This callback is used by multiple expression walkers. 2067 */ 2068 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 2069 UNUSED_PARAMETER(NotUsed); 2070 pWalker->eCode = 0; 2071 return WRC_Abort; 2072 } 2073 2074 /* 2075 ** Check the input string to see if it is "true" or "false" (in any case). 2076 ** 2077 ** If the string is.... Return 2078 ** "true" EP_IsTrue 2079 ** "false" EP_IsFalse 2080 ** anything else 0 2081 */ 2082 u32 sqlite3IsTrueOrFalse(const char *zIn){ 2083 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 2084 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 2085 return 0; 2086 } 2087 2088 2089 /* 2090 ** If the input expression is an ID with the name "true" or "false" 2091 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 2092 ** the conversion happened, and zero if the expression is unaltered. 2093 */ 2094 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 2095 u32 v; 2096 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 2097 if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue) 2098 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 2099 ){ 2100 pExpr->op = TK_TRUEFALSE; 2101 ExprSetProperty(pExpr, v); 2102 return 1; 2103 } 2104 return 0; 2105 } 2106 2107 /* 2108 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 2109 ** and 0 if it is FALSE. 2110 */ 2111 int sqlite3ExprTruthValue(const Expr *pExpr){ 2112 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 2113 assert( pExpr->op==TK_TRUEFALSE ); 2114 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2115 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 2116 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 2117 return pExpr->u.zToken[4]==0; 2118 } 2119 2120 /* 2121 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 2122 ** terms that are always true or false. Return the simplified expression. 2123 ** Or return the original expression if no simplification is possible. 2124 ** 2125 ** Examples: 2126 ** 2127 ** (x<10) AND true => (x<10) 2128 ** (x<10) AND false => false 2129 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 2130 ** (x<10) AND (y=22 OR true) => (x<10) 2131 ** (y=22) OR true => true 2132 */ 2133 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 2134 assert( pExpr!=0 ); 2135 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 2136 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 2137 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 2138 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 2139 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 2140 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 2141 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 2142 } 2143 } 2144 return pExpr; 2145 } 2146 2147 2148 /* 2149 ** These routines are Walker callbacks used to check expressions to 2150 ** see if they are "constant" for some definition of constant. The 2151 ** Walker.eCode value determines the type of "constant" we are looking 2152 ** for. 2153 ** 2154 ** These callback routines are used to implement the following: 2155 ** 2156 ** sqlite3ExprIsConstant() pWalker->eCode==1 2157 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2158 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2159 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2160 ** 2161 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2162 ** is found to not be a constant. 2163 ** 2164 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2165 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2166 ** when parsing an existing schema out of the sqlite_schema table and 4 2167 ** when processing a new CREATE TABLE statement. A bound parameter raises 2168 ** an error for new statements, but is silently converted 2169 ** to NULL for existing schemas. This allows sqlite_schema tables that 2170 ** contain a bound parameter because they were generated by older versions 2171 ** of SQLite to be parsed by newer versions of SQLite without raising a 2172 ** malformed schema error. 2173 */ 2174 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2175 2176 /* If pWalker->eCode is 2 then any term of the expression that comes from 2177 ** the ON or USING clauses of an outer join disqualifies the expression 2178 ** from being considered constant. */ 2179 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2180 pWalker->eCode = 0; 2181 return WRC_Abort; 2182 } 2183 2184 switch( pExpr->op ){ 2185 /* Consider functions to be constant if all their arguments are constant 2186 ** and either pWalker->eCode==4 or 5 or the function has the 2187 ** SQLITE_FUNC_CONST flag. */ 2188 case TK_FUNCTION: 2189 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2190 && !ExprHasProperty(pExpr, EP_WinFunc) 2191 ){ 2192 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2193 return WRC_Continue; 2194 }else{ 2195 pWalker->eCode = 0; 2196 return WRC_Abort; 2197 } 2198 case TK_ID: 2199 /* Convert "true" or "false" in a DEFAULT clause into the 2200 ** appropriate TK_TRUEFALSE operator */ 2201 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2202 return WRC_Prune; 2203 } 2204 /* no break */ deliberate_fall_through 2205 case TK_COLUMN: 2206 case TK_AGG_FUNCTION: 2207 case TK_AGG_COLUMN: 2208 testcase( pExpr->op==TK_ID ); 2209 testcase( pExpr->op==TK_COLUMN ); 2210 testcase( pExpr->op==TK_AGG_FUNCTION ); 2211 testcase( pExpr->op==TK_AGG_COLUMN ); 2212 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2213 return WRC_Continue; 2214 } 2215 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2216 return WRC_Continue; 2217 } 2218 /* no break */ deliberate_fall_through 2219 case TK_IF_NULL_ROW: 2220 case TK_REGISTER: 2221 case TK_DOT: 2222 testcase( pExpr->op==TK_REGISTER ); 2223 testcase( pExpr->op==TK_IF_NULL_ROW ); 2224 testcase( pExpr->op==TK_DOT ); 2225 pWalker->eCode = 0; 2226 return WRC_Abort; 2227 case TK_VARIABLE: 2228 if( pWalker->eCode==5 ){ 2229 /* Silently convert bound parameters that appear inside of CREATE 2230 ** statements into a NULL when parsing the CREATE statement text out 2231 ** of the sqlite_schema table */ 2232 pExpr->op = TK_NULL; 2233 }else if( pWalker->eCode==4 ){ 2234 /* A bound parameter in a CREATE statement that originates from 2235 ** sqlite3_prepare() causes an error */ 2236 pWalker->eCode = 0; 2237 return WRC_Abort; 2238 } 2239 /* no break */ deliberate_fall_through 2240 default: 2241 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2242 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2243 return WRC_Continue; 2244 } 2245 } 2246 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2247 Walker w; 2248 w.eCode = initFlag; 2249 w.xExprCallback = exprNodeIsConstant; 2250 w.xSelectCallback = sqlite3SelectWalkFail; 2251 #ifdef SQLITE_DEBUG 2252 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2253 #endif 2254 w.u.iCur = iCur; 2255 sqlite3WalkExpr(&w, p); 2256 return w.eCode; 2257 } 2258 2259 /* 2260 ** Walk an expression tree. Return non-zero if the expression is constant 2261 ** and 0 if it involves variables or function calls. 2262 ** 2263 ** For the purposes of this function, a double-quoted string (ex: "abc") 2264 ** is considered a variable but a single-quoted string (ex: 'abc') is 2265 ** a constant. 2266 */ 2267 int sqlite3ExprIsConstant(Expr *p){ 2268 return exprIsConst(p, 1, 0); 2269 } 2270 2271 /* 2272 ** Walk an expression tree. Return non-zero if 2273 ** 2274 ** (1) the expression is constant, and 2275 ** (2) the expression does originate in the ON or USING clause 2276 ** of a LEFT JOIN, and 2277 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2278 ** operands created by the constant propagation optimization. 2279 ** 2280 ** When this routine returns true, it indicates that the expression 2281 ** can be added to the pParse->pConstExpr list and evaluated once when 2282 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2283 */ 2284 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2285 return exprIsConst(p, 2, 0); 2286 } 2287 2288 /* 2289 ** Walk an expression tree. Return non-zero if the expression is constant 2290 ** for any single row of the table with cursor iCur. In other words, the 2291 ** expression must not refer to any non-deterministic function nor any 2292 ** table other than iCur. 2293 */ 2294 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2295 return exprIsConst(p, 3, iCur); 2296 } 2297 2298 2299 /* 2300 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2301 */ 2302 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2303 ExprList *pGroupBy = pWalker->u.pGroupBy; 2304 int i; 2305 2306 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2307 ** it constant. */ 2308 for(i=0; i<pGroupBy->nExpr; i++){ 2309 Expr *p = pGroupBy->a[i].pExpr; 2310 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2311 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2312 if( sqlite3IsBinary(pColl) ){ 2313 return WRC_Prune; 2314 } 2315 } 2316 } 2317 2318 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2319 if( ExprUseXSelect(pExpr) ){ 2320 pWalker->eCode = 0; 2321 return WRC_Abort; 2322 } 2323 2324 return exprNodeIsConstant(pWalker, pExpr); 2325 } 2326 2327 /* 2328 ** Walk the expression tree passed as the first argument. Return non-zero 2329 ** if the expression consists entirely of constants or copies of terms 2330 ** in pGroupBy that sort with the BINARY collation sequence. 2331 ** 2332 ** This routine is used to determine if a term of the HAVING clause can 2333 ** be promoted into the WHERE clause. In order for such a promotion to work, 2334 ** the value of the HAVING clause term must be the same for all members of 2335 ** a "group". The requirement that the GROUP BY term must be BINARY 2336 ** assumes that no other collating sequence will have a finer-grained 2337 ** grouping than binary. In other words (A=B COLLATE binary) implies 2338 ** A=B in every other collating sequence. The requirement that the 2339 ** GROUP BY be BINARY is stricter than necessary. It would also work 2340 ** to promote HAVING clauses that use the same alternative collating 2341 ** sequence as the GROUP BY term, but that is much harder to check, 2342 ** alternative collating sequences are uncommon, and this is only an 2343 ** optimization, so we take the easy way out and simply require the 2344 ** GROUP BY to use the BINARY collating sequence. 2345 */ 2346 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2347 Walker w; 2348 w.eCode = 1; 2349 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2350 w.xSelectCallback = 0; 2351 w.u.pGroupBy = pGroupBy; 2352 w.pParse = pParse; 2353 sqlite3WalkExpr(&w, p); 2354 return w.eCode; 2355 } 2356 2357 /* 2358 ** Walk an expression tree for the DEFAULT field of a column definition 2359 ** in a CREATE TABLE statement. Return non-zero if the expression is 2360 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2361 ** the expression is constant or a function call with constant arguments. 2362 ** Return and 0 if there are any variables. 2363 ** 2364 ** isInit is true when parsing from sqlite_schema. isInit is false when 2365 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2366 ** (such as ? or $abc) in the expression are converted into NULL. When 2367 ** isInit is false, parameters raise an error. Parameters should not be 2368 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2369 ** allowed it, so we need to support it when reading sqlite_schema for 2370 ** backwards compatibility. 2371 ** 2372 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2373 ** 2374 ** For the purposes of this function, a double-quoted string (ex: "abc") 2375 ** is considered a variable but a single-quoted string (ex: 'abc') is 2376 ** a constant. 2377 */ 2378 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2379 assert( isInit==0 || isInit==1 ); 2380 return exprIsConst(p, 4+isInit, 0); 2381 } 2382 2383 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2384 /* 2385 ** Walk an expression tree. Return 1 if the expression contains a 2386 ** subquery of some kind. Return 0 if there are no subqueries. 2387 */ 2388 int sqlite3ExprContainsSubquery(Expr *p){ 2389 Walker w; 2390 w.eCode = 1; 2391 w.xExprCallback = sqlite3ExprWalkNoop; 2392 w.xSelectCallback = sqlite3SelectWalkFail; 2393 #ifdef SQLITE_DEBUG 2394 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2395 #endif 2396 sqlite3WalkExpr(&w, p); 2397 return w.eCode==0; 2398 } 2399 #endif 2400 2401 /* 2402 ** If the expression p codes a constant integer that is small enough 2403 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2404 ** in *pValue. If the expression is not an integer or if it is too big 2405 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2406 */ 2407 int sqlite3ExprIsInteger(const Expr *p, int *pValue){ 2408 int rc = 0; 2409 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2410 2411 /* If an expression is an integer literal that fits in a signed 32-bit 2412 ** integer, then the EP_IntValue flag will have already been set */ 2413 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2414 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2415 2416 if( p->flags & EP_IntValue ){ 2417 *pValue = p->u.iValue; 2418 return 1; 2419 } 2420 switch( p->op ){ 2421 case TK_UPLUS: { 2422 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2423 break; 2424 } 2425 case TK_UMINUS: { 2426 int v = 0; 2427 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2428 assert( ((unsigned int)v)!=0x80000000 ); 2429 *pValue = -v; 2430 rc = 1; 2431 } 2432 break; 2433 } 2434 default: break; 2435 } 2436 return rc; 2437 } 2438 2439 /* 2440 ** Return FALSE if there is no chance that the expression can be NULL. 2441 ** 2442 ** If the expression might be NULL or if the expression is too complex 2443 ** to tell return TRUE. 2444 ** 2445 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2446 ** when we know that a value cannot be NULL. Hence, a false positive 2447 ** (returning TRUE when in fact the expression can never be NULL) might 2448 ** be a small performance hit but is otherwise harmless. On the other 2449 ** hand, a false negative (returning FALSE when the result could be NULL) 2450 ** will likely result in an incorrect answer. So when in doubt, return 2451 ** TRUE. 2452 */ 2453 int sqlite3ExprCanBeNull(const Expr *p){ 2454 u8 op; 2455 assert( p!=0 ); 2456 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2457 p = p->pLeft; 2458 assert( p!=0 ); 2459 } 2460 op = p->op; 2461 if( op==TK_REGISTER ) op = p->op2; 2462 switch( op ){ 2463 case TK_INTEGER: 2464 case TK_STRING: 2465 case TK_FLOAT: 2466 case TK_BLOB: 2467 return 0; 2468 case TK_COLUMN: 2469 assert( ExprUseYTab(p) ); 2470 return ExprHasProperty(p, EP_CanBeNull) || 2471 p->y.pTab==0 || /* Reference to column of index on expression */ 2472 (p->iColumn>=0 2473 && p->y.pTab->aCol!=0 /* Possible due to prior error */ 2474 && p->y.pTab->aCol[p->iColumn].notNull==0); 2475 default: 2476 return 1; 2477 } 2478 } 2479 2480 /* 2481 ** Return TRUE if the given expression is a constant which would be 2482 ** unchanged by OP_Affinity with the affinity given in the second 2483 ** argument. 2484 ** 2485 ** This routine is used to determine if the OP_Affinity operation 2486 ** can be omitted. When in doubt return FALSE. A false negative 2487 ** is harmless. A false positive, however, can result in the wrong 2488 ** answer. 2489 */ 2490 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2491 u8 op; 2492 int unaryMinus = 0; 2493 if( aff==SQLITE_AFF_BLOB ) return 1; 2494 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2495 if( p->op==TK_UMINUS ) unaryMinus = 1; 2496 p = p->pLeft; 2497 } 2498 op = p->op; 2499 if( op==TK_REGISTER ) op = p->op2; 2500 switch( op ){ 2501 case TK_INTEGER: { 2502 return aff>=SQLITE_AFF_NUMERIC; 2503 } 2504 case TK_FLOAT: { 2505 return aff>=SQLITE_AFF_NUMERIC; 2506 } 2507 case TK_STRING: { 2508 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2509 } 2510 case TK_BLOB: { 2511 return !unaryMinus; 2512 } 2513 case TK_COLUMN: { 2514 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2515 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2516 } 2517 default: { 2518 return 0; 2519 } 2520 } 2521 } 2522 2523 /* 2524 ** Return TRUE if the given string is a row-id column name. 2525 */ 2526 int sqlite3IsRowid(const char *z){ 2527 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2528 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2529 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2530 return 0; 2531 } 2532 2533 /* 2534 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2535 ** that can be simplified to a direct table access, then return 2536 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2537 ** or if the SELECT statement needs to be manifested into a transient 2538 ** table, then return NULL. 2539 */ 2540 #ifndef SQLITE_OMIT_SUBQUERY 2541 static Select *isCandidateForInOpt(const Expr *pX){ 2542 Select *p; 2543 SrcList *pSrc; 2544 ExprList *pEList; 2545 Table *pTab; 2546 int i; 2547 if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */ 2548 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2549 p = pX->x.pSelect; 2550 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2551 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2552 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2553 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2554 return 0; /* No DISTINCT keyword and no aggregate functions */ 2555 } 2556 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2557 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2558 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2559 pSrc = p->pSrc; 2560 assert( pSrc!=0 ); 2561 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2562 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2563 pTab = pSrc->a[0].pTab; 2564 assert( pTab!=0 ); 2565 assert( !IsView(pTab) ); /* FROM clause is not a view */ 2566 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2567 pEList = p->pEList; 2568 assert( pEList!=0 ); 2569 /* All SELECT results must be columns. */ 2570 for(i=0; i<pEList->nExpr; i++){ 2571 Expr *pRes = pEList->a[i].pExpr; 2572 if( pRes->op!=TK_COLUMN ) return 0; 2573 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2574 } 2575 return p; 2576 } 2577 #endif /* SQLITE_OMIT_SUBQUERY */ 2578 2579 #ifndef SQLITE_OMIT_SUBQUERY 2580 /* 2581 ** Generate code that checks the left-most column of index table iCur to see if 2582 ** it contains any NULL entries. Cause the register at regHasNull to be set 2583 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2584 ** to be set to NULL if iCur contains one or more NULL values. 2585 */ 2586 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2587 int addr1; 2588 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2589 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2590 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2591 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2592 VdbeComment((v, "first_entry_in(%d)", iCur)); 2593 sqlite3VdbeJumpHere(v, addr1); 2594 } 2595 #endif 2596 2597 2598 #ifndef SQLITE_OMIT_SUBQUERY 2599 /* 2600 ** The argument is an IN operator with a list (not a subquery) on the 2601 ** right-hand side. Return TRUE if that list is constant. 2602 */ 2603 static int sqlite3InRhsIsConstant(Expr *pIn){ 2604 Expr *pLHS; 2605 int res; 2606 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2607 pLHS = pIn->pLeft; 2608 pIn->pLeft = 0; 2609 res = sqlite3ExprIsConstant(pIn); 2610 pIn->pLeft = pLHS; 2611 return res; 2612 } 2613 #endif 2614 2615 /* 2616 ** This function is used by the implementation of the IN (...) operator. 2617 ** The pX parameter is the expression on the RHS of the IN operator, which 2618 ** might be either a list of expressions or a subquery. 2619 ** 2620 ** The job of this routine is to find or create a b-tree object that can 2621 ** be used either to test for membership in the RHS set or to iterate through 2622 ** all members of the RHS set, skipping duplicates. 2623 ** 2624 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2625 ** and pX->iTable is set to the index of that cursor. 2626 ** 2627 ** The returned value of this function indicates the b-tree type, as follows: 2628 ** 2629 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2630 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2631 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2632 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2633 ** populated epheremal table. 2634 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2635 ** implemented as a sequence of comparisons. 2636 ** 2637 ** An existing b-tree might be used if the RHS expression pX is a simple 2638 ** subquery such as: 2639 ** 2640 ** SELECT <column1>, <column2>... FROM <table> 2641 ** 2642 ** If the RHS of the IN operator is a list or a more complex subquery, then 2643 ** an ephemeral table might need to be generated from the RHS and then 2644 ** pX->iTable made to point to the ephemeral table instead of an 2645 ** existing table. 2646 ** 2647 ** The inFlags parameter must contain, at a minimum, one of the bits 2648 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2649 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2650 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2651 ** be used to loop over all values of the RHS of the IN operator. 2652 ** 2653 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2654 ** through the set members) then the b-tree must not contain duplicates. 2655 ** An epheremal table will be created unless the selected columns are guaranteed 2656 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2657 ** a UNIQUE constraint or index. 2658 ** 2659 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2660 ** for fast set membership tests) then an epheremal table must 2661 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2662 ** index can be found with the specified <columns> as its left-most. 2663 ** 2664 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2665 ** if the RHS of the IN operator is a list (not a subquery) then this 2666 ** routine might decide that creating an ephemeral b-tree for membership 2667 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2668 ** calling routine should implement the IN operator using a sequence 2669 ** of Eq or Ne comparison operations. 2670 ** 2671 ** When the b-tree is being used for membership tests, the calling function 2672 ** might need to know whether or not the RHS side of the IN operator 2673 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2674 ** if there is any chance that the (...) might contain a NULL value at 2675 ** runtime, then a register is allocated and the register number written 2676 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2677 ** NULL value, then *prRhsHasNull is left unchanged. 2678 ** 2679 ** If a register is allocated and its location stored in *prRhsHasNull, then 2680 ** the value in that register will be NULL if the b-tree contains one or more 2681 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2682 ** NULL values. 2683 ** 2684 ** If the aiMap parameter is not NULL, it must point to an array containing 2685 ** one element for each column returned by the SELECT statement on the RHS 2686 ** of the IN(...) operator. The i'th entry of the array is populated with the 2687 ** offset of the index column that matches the i'th column returned by the 2688 ** SELECT. For example, if the expression and selected index are: 2689 ** 2690 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2691 ** CREATE INDEX i1 ON t1(b, c, a); 2692 ** 2693 ** then aiMap[] is populated with {2, 0, 1}. 2694 */ 2695 #ifndef SQLITE_OMIT_SUBQUERY 2696 int sqlite3FindInIndex( 2697 Parse *pParse, /* Parsing context */ 2698 Expr *pX, /* The IN expression */ 2699 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2700 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2701 int *aiMap, /* Mapping from Index fields to RHS fields */ 2702 int *piTab /* OUT: index to use */ 2703 ){ 2704 Select *p; /* SELECT to the right of IN operator */ 2705 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2706 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2707 int mustBeUnique; /* True if RHS must be unique */ 2708 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2709 2710 assert( pX->op==TK_IN ); 2711 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2712 2713 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2714 ** whether or not the SELECT result contains NULL values, check whether 2715 ** or not NULL is actually possible (it may not be, for example, due 2716 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2717 ** set prRhsHasNull to 0 before continuing. */ 2718 if( prRhsHasNull && ExprUseXSelect(pX) ){ 2719 int i; 2720 ExprList *pEList = pX->x.pSelect->pEList; 2721 for(i=0; i<pEList->nExpr; i++){ 2722 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2723 } 2724 if( i==pEList->nExpr ){ 2725 prRhsHasNull = 0; 2726 } 2727 } 2728 2729 /* Check to see if an existing table or index can be used to 2730 ** satisfy the query. This is preferable to generating a new 2731 ** ephemeral table. */ 2732 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2733 sqlite3 *db = pParse->db; /* Database connection */ 2734 Table *pTab; /* Table <table>. */ 2735 int iDb; /* Database idx for pTab */ 2736 ExprList *pEList = p->pEList; 2737 int nExpr = pEList->nExpr; 2738 2739 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2740 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2741 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2742 pTab = p->pSrc->a[0].pTab; 2743 2744 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2745 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2746 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 2747 sqlite3CodeVerifySchema(pParse, iDb); 2748 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2749 2750 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2751 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2752 /* The "x IN (SELECT rowid FROM table)" case */ 2753 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2754 VdbeCoverage(v); 2755 2756 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2757 eType = IN_INDEX_ROWID; 2758 ExplainQueryPlan((pParse, 0, 2759 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2760 sqlite3VdbeJumpHere(v, iAddr); 2761 }else{ 2762 Index *pIdx; /* Iterator variable */ 2763 int affinity_ok = 1; 2764 int i; 2765 2766 /* Check that the affinity that will be used to perform each 2767 ** comparison is the same as the affinity of each column in table 2768 ** on the RHS of the IN operator. If it not, it is not possible to 2769 ** use any index of the RHS table. */ 2770 for(i=0; i<nExpr && affinity_ok; i++){ 2771 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2772 int iCol = pEList->a[i].pExpr->iColumn; 2773 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2774 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2775 testcase( cmpaff==SQLITE_AFF_BLOB ); 2776 testcase( cmpaff==SQLITE_AFF_TEXT ); 2777 switch( cmpaff ){ 2778 case SQLITE_AFF_BLOB: 2779 break; 2780 case SQLITE_AFF_TEXT: 2781 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2782 ** other has no affinity and the other side is TEXT. Hence, 2783 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2784 ** and for the term on the LHS of the IN to have no affinity. */ 2785 assert( idxaff==SQLITE_AFF_TEXT ); 2786 break; 2787 default: 2788 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2789 } 2790 } 2791 2792 if( affinity_ok ){ 2793 /* Search for an existing index that will work for this IN operator */ 2794 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2795 Bitmask colUsed; /* Columns of the index used */ 2796 Bitmask mCol; /* Mask for the current column */ 2797 if( pIdx->nColumn<nExpr ) continue; 2798 if( pIdx->pPartIdxWhere!=0 ) continue; 2799 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2800 ** BITMASK(nExpr) without overflowing */ 2801 testcase( pIdx->nColumn==BMS-2 ); 2802 testcase( pIdx->nColumn==BMS-1 ); 2803 if( pIdx->nColumn>=BMS-1 ) continue; 2804 if( mustBeUnique ){ 2805 if( pIdx->nKeyCol>nExpr 2806 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2807 ){ 2808 continue; /* This index is not unique over the IN RHS columns */ 2809 } 2810 } 2811 2812 colUsed = 0; /* Columns of index used so far */ 2813 for(i=0; i<nExpr; i++){ 2814 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2815 Expr *pRhs = pEList->a[i].pExpr; 2816 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2817 int j; 2818 2819 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2820 for(j=0; j<nExpr; j++){ 2821 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2822 assert( pIdx->azColl[j] ); 2823 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2824 continue; 2825 } 2826 break; 2827 } 2828 if( j==nExpr ) break; 2829 mCol = MASKBIT(j); 2830 if( mCol & colUsed ) break; /* Each column used only once */ 2831 colUsed |= mCol; 2832 if( aiMap ) aiMap[i] = j; 2833 } 2834 2835 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2836 if( colUsed==(MASKBIT(nExpr)-1) ){ 2837 /* If we reach this point, that means the index pIdx is usable */ 2838 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2839 ExplainQueryPlan((pParse, 0, 2840 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2841 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2842 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2843 VdbeComment((v, "%s", pIdx->zName)); 2844 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2845 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2846 2847 if( prRhsHasNull ){ 2848 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2849 i64 mask = (1<<nExpr)-1; 2850 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2851 iTab, 0, 0, (u8*)&mask, P4_INT64); 2852 #endif 2853 *prRhsHasNull = ++pParse->nMem; 2854 if( nExpr==1 ){ 2855 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2856 } 2857 } 2858 sqlite3VdbeJumpHere(v, iAddr); 2859 } 2860 } /* End loop over indexes */ 2861 } /* End if( affinity_ok ) */ 2862 } /* End if not an rowid index */ 2863 } /* End attempt to optimize using an index */ 2864 2865 /* If no preexisting index is available for the IN clause 2866 ** and IN_INDEX_NOOP is an allowed reply 2867 ** and the RHS of the IN operator is a list, not a subquery 2868 ** and the RHS is not constant or has two or fewer terms, 2869 ** then it is not worth creating an ephemeral table to evaluate 2870 ** the IN operator so return IN_INDEX_NOOP. 2871 */ 2872 if( eType==0 2873 && (inFlags & IN_INDEX_NOOP_OK) 2874 && ExprUseXList(pX) 2875 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2876 ){ 2877 eType = IN_INDEX_NOOP; 2878 } 2879 2880 if( eType==0 ){ 2881 /* Could not find an existing table or index to use as the RHS b-tree. 2882 ** We will have to generate an ephemeral table to do the job. 2883 */ 2884 u32 savedNQueryLoop = pParse->nQueryLoop; 2885 int rMayHaveNull = 0; 2886 eType = IN_INDEX_EPH; 2887 if( inFlags & IN_INDEX_LOOP ){ 2888 pParse->nQueryLoop = 0; 2889 }else if( prRhsHasNull ){ 2890 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2891 } 2892 assert( pX->op==TK_IN ); 2893 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2894 if( rMayHaveNull ){ 2895 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2896 } 2897 pParse->nQueryLoop = savedNQueryLoop; 2898 } 2899 2900 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2901 int i, n; 2902 n = sqlite3ExprVectorSize(pX->pLeft); 2903 for(i=0; i<n; i++) aiMap[i] = i; 2904 } 2905 *piTab = iTab; 2906 return eType; 2907 } 2908 #endif 2909 2910 #ifndef SQLITE_OMIT_SUBQUERY 2911 /* 2912 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2913 ** function allocates and returns a nul-terminated string containing 2914 ** the affinities to be used for each column of the comparison. 2915 ** 2916 ** It is the responsibility of the caller to ensure that the returned 2917 ** string is eventually freed using sqlite3DbFree(). 2918 */ 2919 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){ 2920 Expr *pLeft = pExpr->pLeft; 2921 int nVal = sqlite3ExprVectorSize(pLeft); 2922 Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0; 2923 char *zRet; 2924 2925 assert( pExpr->op==TK_IN ); 2926 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2927 if( zRet ){ 2928 int i; 2929 for(i=0; i<nVal; i++){ 2930 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2931 char a = sqlite3ExprAffinity(pA); 2932 if( pSelect ){ 2933 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2934 }else{ 2935 zRet[i] = a; 2936 } 2937 } 2938 zRet[nVal] = '\0'; 2939 } 2940 return zRet; 2941 } 2942 #endif 2943 2944 #ifndef SQLITE_OMIT_SUBQUERY 2945 /* 2946 ** Load the Parse object passed as the first argument with an error 2947 ** message of the form: 2948 ** 2949 ** "sub-select returns N columns - expected M" 2950 */ 2951 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2952 if( pParse->nErr==0 ){ 2953 const char *zFmt = "sub-select returns %d columns - expected %d"; 2954 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2955 } 2956 } 2957 #endif 2958 2959 /* 2960 ** Expression pExpr is a vector that has been used in a context where 2961 ** it is not permitted. If pExpr is a sub-select vector, this routine 2962 ** loads the Parse object with a message of the form: 2963 ** 2964 ** "sub-select returns N columns - expected 1" 2965 ** 2966 ** Or, if it is a regular scalar vector: 2967 ** 2968 ** "row value misused" 2969 */ 2970 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2971 #ifndef SQLITE_OMIT_SUBQUERY 2972 if( ExprUseXSelect(pExpr) ){ 2973 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2974 }else 2975 #endif 2976 { 2977 sqlite3ErrorMsg(pParse, "row value misused"); 2978 } 2979 } 2980 2981 #ifndef SQLITE_OMIT_SUBQUERY 2982 /* 2983 ** Generate code that will construct an ephemeral table containing all terms 2984 ** in the RHS of an IN operator. The IN operator can be in either of two 2985 ** forms: 2986 ** 2987 ** x IN (4,5,11) -- IN operator with list on right-hand side 2988 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2989 ** 2990 ** The pExpr parameter is the IN operator. The cursor number for the 2991 ** constructed ephermeral table is returned. The first time the ephemeral 2992 ** table is computed, the cursor number is also stored in pExpr->iTable, 2993 ** however the cursor number returned might not be the same, as it might 2994 ** have been duplicated using OP_OpenDup. 2995 ** 2996 ** If the LHS expression ("x" in the examples) is a column value, or 2997 ** the SELECT statement returns a column value, then the affinity of that 2998 ** column is used to build the index keys. If both 'x' and the 2999 ** SELECT... statement are columns, then numeric affinity is used 3000 ** if either column has NUMERIC or INTEGER affinity. If neither 3001 ** 'x' nor the SELECT... statement are columns, then numeric affinity 3002 ** is used. 3003 */ 3004 void sqlite3CodeRhsOfIN( 3005 Parse *pParse, /* Parsing context */ 3006 Expr *pExpr, /* The IN operator */ 3007 int iTab /* Use this cursor number */ 3008 ){ 3009 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 3010 int addr; /* Address of OP_OpenEphemeral instruction */ 3011 Expr *pLeft; /* the LHS of the IN operator */ 3012 KeyInfo *pKeyInfo = 0; /* Key information */ 3013 int nVal; /* Size of vector pLeft */ 3014 Vdbe *v; /* The prepared statement under construction */ 3015 3016 v = pParse->pVdbe; 3017 assert( v!=0 ); 3018 3019 /* The evaluation of the IN must be repeated every time it 3020 ** is encountered if any of the following is true: 3021 ** 3022 ** * The right-hand side is a correlated subquery 3023 ** * The right-hand side is an expression list containing variables 3024 ** * We are inside a trigger 3025 ** 3026 ** If all of the above are false, then we can compute the RHS just once 3027 ** and reuse it many names. 3028 */ 3029 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 3030 /* Reuse of the RHS is allowed */ 3031 /* If this routine has already been coded, but the previous code 3032 ** might not have been invoked yet, so invoke it now as a subroutine. 3033 */ 3034 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3035 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3036 if( ExprUseXSelect(pExpr) ){ 3037 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 3038 pExpr->x.pSelect->selId)); 3039 } 3040 assert( ExprUseYSub(pExpr) ); 3041 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3042 pExpr->y.sub.iAddr); 3043 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 3044 sqlite3VdbeJumpHere(v, addrOnce); 3045 return; 3046 } 3047 3048 /* Begin coding the subroutine */ 3049 assert( !ExprUseYWin(pExpr) ); 3050 ExprSetProperty(pExpr, EP_Subrtn); 3051 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3052 pExpr->y.sub.regReturn = ++pParse->nMem; 3053 pExpr->y.sub.iAddr = 3054 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; 3055 3056 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3057 } 3058 3059 /* Check to see if this is a vector IN operator */ 3060 pLeft = pExpr->pLeft; 3061 nVal = sqlite3ExprVectorSize(pLeft); 3062 3063 /* Construct the ephemeral table that will contain the content of 3064 ** RHS of the IN operator. 3065 */ 3066 pExpr->iTable = iTab; 3067 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 3068 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 3069 if( ExprUseXSelect(pExpr) ){ 3070 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 3071 }else{ 3072 VdbeComment((v, "RHS of IN operator")); 3073 } 3074 #endif 3075 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 3076 3077 if( ExprUseXSelect(pExpr) ){ 3078 /* Case 1: expr IN (SELECT ...) 3079 ** 3080 ** Generate code to write the results of the select into the temporary 3081 ** table allocated and opened above. 3082 */ 3083 Select *pSelect = pExpr->x.pSelect; 3084 ExprList *pEList = pSelect->pEList; 3085 3086 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 3087 addrOnce?"":"CORRELATED ", pSelect->selId 3088 )); 3089 /* If the LHS and RHS of the IN operator do not match, that 3090 ** error will have been caught long before we reach this point. */ 3091 if( ALWAYS(pEList->nExpr==nVal) ){ 3092 Select *pCopy; 3093 SelectDest dest; 3094 int i; 3095 int rc; 3096 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 3097 dest.zAffSdst = exprINAffinity(pParse, pExpr); 3098 pSelect->iLimit = 0; 3099 testcase( pSelect->selFlags & SF_Distinct ); 3100 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 3101 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); 3102 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); 3103 sqlite3SelectDelete(pParse->db, pCopy); 3104 sqlite3DbFree(pParse->db, dest.zAffSdst); 3105 if( rc ){ 3106 sqlite3KeyInfoUnref(pKeyInfo); 3107 return; 3108 } 3109 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 3110 assert( pEList!=0 ); 3111 assert( pEList->nExpr>0 ); 3112 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3113 for(i=0; i<nVal; i++){ 3114 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 3115 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 3116 pParse, p, pEList->a[i].pExpr 3117 ); 3118 } 3119 } 3120 }else if( ALWAYS(pExpr->x.pList!=0) ){ 3121 /* Case 2: expr IN (exprlist) 3122 ** 3123 ** For each expression, build an index key from the evaluation and 3124 ** store it in the temporary table. If <expr> is a column, then use 3125 ** that columns affinity when building index keys. If <expr> is not 3126 ** a column, use numeric affinity. 3127 */ 3128 char affinity; /* Affinity of the LHS of the IN */ 3129 int i; 3130 ExprList *pList = pExpr->x.pList; 3131 struct ExprList_item *pItem; 3132 int r1, r2; 3133 affinity = sqlite3ExprAffinity(pLeft); 3134 if( affinity<=SQLITE_AFF_NONE ){ 3135 affinity = SQLITE_AFF_BLOB; 3136 }else if( affinity==SQLITE_AFF_REAL ){ 3137 affinity = SQLITE_AFF_NUMERIC; 3138 } 3139 if( pKeyInfo ){ 3140 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3141 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3142 } 3143 3144 /* Loop through each expression in <exprlist>. */ 3145 r1 = sqlite3GetTempReg(pParse); 3146 r2 = sqlite3GetTempReg(pParse); 3147 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 3148 Expr *pE2 = pItem->pExpr; 3149 3150 /* If the expression is not constant then we will need to 3151 ** disable the test that was generated above that makes sure 3152 ** this code only executes once. Because for a non-constant 3153 ** expression we need to rerun this code each time. 3154 */ 3155 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 3156 sqlite3VdbeChangeToNoop(v, addrOnce-1); 3157 sqlite3VdbeChangeToNoop(v, addrOnce); 3158 ExprClearProperty(pExpr, EP_Subrtn); 3159 addrOnce = 0; 3160 } 3161 3162 /* Evaluate the expression and insert it into the temp table */ 3163 sqlite3ExprCode(pParse, pE2, r1); 3164 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3165 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3166 } 3167 sqlite3ReleaseTempReg(pParse, r1); 3168 sqlite3ReleaseTempReg(pParse, r2); 3169 } 3170 if( pKeyInfo ){ 3171 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3172 } 3173 if( addrOnce ){ 3174 sqlite3VdbeJumpHere(v, addrOnce); 3175 /* Subroutine return */ 3176 assert( ExprUseYSub(pExpr) ); 3177 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn 3178 || pParse->nErr ); 3179 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 3180 pExpr->y.sub.iAddr, 1); 3181 VdbeCoverage(v); 3182 sqlite3ClearTempRegCache(pParse); 3183 } 3184 } 3185 #endif /* SQLITE_OMIT_SUBQUERY */ 3186 3187 /* 3188 ** Generate code for scalar subqueries used as a subquery expression 3189 ** or EXISTS operator: 3190 ** 3191 ** (SELECT a FROM b) -- subquery 3192 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3193 ** 3194 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3195 ** 3196 ** Return the register that holds the result. For a multi-column SELECT, 3197 ** the result is stored in a contiguous array of registers and the 3198 ** return value is the register of the left-most result column. 3199 ** Return 0 if an error occurs. 3200 */ 3201 #ifndef SQLITE_OMIT_SUBQUERY 3202 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3203 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3204 int rReg = 0; /* Register storing resulting */ 3205 Select *pSel; /* SELECT statement to encode */ 3206 SelectDest dest; /* How to deal with SELECT result */ 3207 int nReg; /* Registers to allocate */ 3208 Expr *pLimit; /* New limit expression */ 3209 3210 Vdbe *v = pParse->pVdbe; 3211 assert( v!=0 ); 3212 if( pParse->nErr ) return 0; 3213 testcase( pExpr->op==TK_EXISTS ); 3214 testcase( pExpr->op==TK_SELECT ); 3215 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3216 assert( ExprUseXSelect(pExpr) ); 3217 pSel = pExpr->x.pSelect; 3218 3219 /* If this routine has already been coded, then invoke it as a 3220 ** subroutine. */ 3221 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3222 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3223 assert( ExprUseYSub(pExpr) ); 3224 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3225 pExpr->y.sub.iAddr); 3226 return pExpr->iTable; 3227 } 3228 3229 /* Begin coding the subroutine */ 3230 assert( !ExprUseYWin(pExpr) ); 3231 assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) ); 3232 ExprSetProperty(pExpr, EP_Subrtn); 3233 pExpr->y.sub.regReturn = ++pParse->nMem; 3234 pExpr->y.sub.iAddr = 3235 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; 3236 3237 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3238 ** is encountered if any of the following is true: 3239 ** 3240 ** * The right-hand side is a correlated subquery 3241 ** * The right-hand side is an expression list containing variables 3242 ** * We are inside a trigger 3243 ** 3244 ** If all of the above are false, then we can run this code just once 3245 ** save the results, and reuse the same result on subsequent invocations. 3246 */ 3247 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3248 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3249 } 3250 3251 /* For a SELECT, generate code to put the values for all columns of 3252 ** the first row into an array of registers and return the index of 3253 ** the first register. 3254 ** 3255 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3256 ** into a register and return that register number. 3257 ** 3258 ** In both cases, the query is augmented with "LIMIT 1". Any 3259 ** preexisting limit is discarded in place of the new LIMIT 1. 3260 */ 3261 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3262 addrOnce?"":"CORRELATED ", pSel->selId)); 3263 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3264 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3265 pParse->nMem += nReg; 3266 if( pExpr->op==TK_SELECT ){ 3267 dest.eDest = SRT_Mem; 3268 dest.iSdst = dest.iSDParm; 3269 dest.nSdst = nReg; 3270 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3271 VdbeComment((v, "Init subquery result")); 3272 }else{ 3273 dest.eDest = SRT_Exists; 3274 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3275 VdbeComment((v, "Init EXISTS result")); 3276 } 3277 if( pSel->pLimit ){ 3278 /* The subquery already has a limit. If the pre-existing limit is X 3279 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3280 sqlite3 *db = pParse->db; 3281 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3282 if( pLimit ){ 3283 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3284 pLimit = sqlite3PExpr(pParse, TK_NE, 3285 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3286 } 3287 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3288 pSel->pLimit->pLeft = pLimit; 3289 }else{ 3290 /* If there is no pre-existing limit add a limit of 1 */ 3291 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3292 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3293 } 3294 pSel->iLimit = 0; 3295 if( sqlite3Select(pParse, pSel, &dest) ){ 3296 pExpr->op2 = pExpr->op; 3297 pExpr->op = TK_ERROR; 3298 return 0; 3299 } 3300 pExpr->iTable = rReg = dest.iSDParm; 3301 ExprSetVVAProperty(pExpr, EP_NoReduce); 3302 if( addrOnce ){ 3303 sqlite3VdbeJumpHere(v, addrOnce); 3304 } 3305 3306 /* Subroutine return */ 3307 assert( ExprUseYSub(pExpr) ); 3308 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn 3309 || pParse->nErr ); 3310 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 3311 pExpr->y.sub.iAddr, 1); 3312 VdbeCoverage(v); 3313 sqlite3ClearTempRegCache(pParse); 3314 return rReg; 3315 } 3316 #endif /* SQLITE_OMIT_SUBQUERY */ 3317 3318 #ifndef SQLITE_OMIT_SUBQUERY 3319 /* 3320 ** Expr pIn is an IN(...) expression. This function checks that the 3321 ** sub-select on the RHS of the IN() operator has the same number of 3322 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3323 ** a sub-query, that the LHS is a vector of size 1. 3324 */ 3325 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3326 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3327 if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){ 3328 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3329 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3330 return 1; 3331 } 3332 }else if( nVector!=1 ){ 3333 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3334 return 1; 3335 } 3336 return 0; 3337 } 3338 #endif 3339 3340 #ifndef SQLITE_OMIT_SUBQUERY 3341 /* 3342 ** Generate code for an IN expression. 3343 ** 3344 ** x IN (SELECT ...) 3345 ** x IN (value, value, ...) 3346 ** 3347 ** The left-hand side (LHS) is a scalar or vector expression. The 3348 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3349 ** subquery. If the RHS is a subquery, the number of result columns must 3350 ** match the number of columns in the vector on the LHS. If the RHS is 3351 ** a list of values, the LHS must be a scalar. 3352 ** 3353 ** The IN operator is true if the LHS value is contained within the RHS. 3354 ** The result is false if the LHS is definitely not in the RHS. The 3355 ** result is NULL if the presence of the LHS in the RHS cannot be 3356 ** determined due to NULLs. 3357 ** 3358 ** This routine generates code that jumps to destIfFalse if the LHS is not 3359 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3360 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3361 ** within the RHS then fall through. 3362 ** 3363 ** See the separate in-operator.md documentation file in the canonical 3364 ** SQLite source tree for additional information. 3365 */ 3366 static void sqlite3ExprCodeIN( 3367 Parse *pParse, /* Parsing and code generating context */ 3368 Expr *pExpr, /* The IN expression */ 3369 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3370 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3371 ){ 3372 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3373 int eType; /* Type of the RHS */ 3374 int rLhs; /* Register(s) holding the LHS values */ 3375 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3376 Vdbe *v; /* Statement under construction */ 3377 int *aiMap = 0; /* Map from vector field to index column */ 3378 char *zAff = 0; /* Affinity string for comparisons */ 3379 int nVector; /* Size of vectors for this IN operator */ 3380 int iDummy; /* Dummy parameter to exprCodeVector() */ 3381 Expr *pLeft; /* The LHS of the IN operator */ 3382 int i; /* loop counter */ 3383 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3384 int destStep6 = 0; /* Start of code for Step 6 */ 3385 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3386 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3387 int addrTop; /* Top of the step-6 loop */ 3388 int iTab = 0; /* Index to use */ 3389 u8 okConstFactor = pParse->okConstFactor; 3390 3391 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3392 pLeft = pExpr->pLeft; 3393 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3394 zAff = exprINAffinity(pParse, pExpr); 3395 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3396 aiMap = (int*)sqlite3DbMallocZero( 3397 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3398 ); 3399 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3400 3401 /* Attempt to compute the RHS. After this step, if anything other than 3402 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3403 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3404 ** the RHS has not yet been coded. */ 3405 v = pParse->pVdbe; 3406 assert( v!=0 ); /* OOM detected prior to this routine */ 3407 VdbeNoopComment((v, "begin IN expr")); 3408 eType = sqlite3FindInIndex(pParse, pExpr, 3409 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3410 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3411 aiMap, &iTab); 3412 3413 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3414 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3415 ); 3416 #ifdef SQLITE_DEBUG 3417 /* Confirm that aiMap[] contains nVector integer values between 0 and 3418 ** nVector-1. */ 3419 for(i=0; i<nVector; i++){ 3420 int j, cnt; 3421 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3422 assert( cnt==1 ); 3423 } 3424 #endif 3425 3426 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3427 ** vector, then it is stored in an array of nVector registers starting 3428 ** at r1. 3429 ** 3430 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3431 ** so that the fields are in the same order as an existing index. The 3432 ** aiMap[] array contains a mapping from the original LHS field order to 3433 ** the field order that matches the RHS index. 3434 ** 3435 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3436 ** even if it is constant, as OP_Affinity may be used on the register 3437 ** by code generated below. */ 3438 assert( pParse->okConstFactor==okConstFactor ); 3439 pParse->okConstFactor = 0; 3440 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3441 pParse->okConstFactor = okConstFactor; 3442 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3443 if( i==nVector ){ 3444 /* LHS fields are not reordered */ 3445 rLhs = rLhsOrig; 3446 }else{ 3447 /* Need to reorder the LHS fields according to aiMap */ 3448 rLhs = sqlite3GetTempRange(pParse, nVector); 3449 for(i=0; i<nVector; i++){ 3450 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3451 } 3452 } 3453 3454 /* If sqlite3FindInIndex() did not find or create an index that is 3455 ** suitable for evaluating the IN operator, then evaluate using a 3456 ** sequence of comparisons. 3457 ** 3458 ** This is step (1) in the in-operator.md optimized algorithm. 3459 */ 3460 if( eType==IN_INDEX_NOOP ){ 3461 ExprList *pList; 3462 CollSeq *pColl; 3463 int labelOk = sqlite3VdbeMakeLabel(pParse); 3464 int r2, regToFree; 3465 int regCkNull = 0; 3466 int ii; 3467 assert( ExprUseXList(pExpr) ); 3468 pList = pExpr->x.pList; 3469 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3470 if( destIfNull!=destIfFalse ){ 3471 regCkNull = sqlite3GetTempReg(pParse); 3472 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3473 } 3474 for(ii=0; ii<pList->nExpr; ii++){ 3475 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3476 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3477 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3478 } 3479 sqlite3ReleaseTempReg(pParse, regToFree); 3480 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3481 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3482 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3483 (void*)pColl, P4_COLLSEQ); 3484 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3485 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3486 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3487 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3488 sqlite3VdbeChangeP5(v, zAff[0]); 3489 }else{ 3490 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3491 assert( destIfNull==destIfFalse ); 3492 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3493 (void*)pColl, P4_COLLSEQ); 3494 VdbeCoverageIf(v, op==OP_Ne); 3495 VdbeCoverageIf(v, op==OP_IsNull); 3496 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3497 } 3498 } 3499 if( regCkNull ){ 3500 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3501 sqlite3VdbeGoto(v, destIfFalse); 3502 } 3503 sqlite3VdbeResolveLabel(v, labelOk); 3504 sqlite3ReleaseTempReg(pParse, regCkNull); 3505 goto sqlite3ExprCodeIN_finished; 3506 } 3507 3508 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3509 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3510 ** We will then skip the binary search of the RHS. 3511 */ 3512 if( destIfNull==destIfFalse ){ 3513 destStep2 = destIfFalse; 3514 }else{ 3515 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3516 } 3517 for(i=0; i<nVector; i++){ 3518 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3519 if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error; 3520 if( sqlite3ExprCanBeNull(p) ){ 3521 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3522 VdbeCoverage(v); 3523 } 3524 } 3525 3526 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3527 ** of the RHS using the LHS as a probe. If found, the result is 3528 ** true. 3529 */ 3530 if( eType==IN_INDEX_ROWID ){ 3531 /* In this case, the RHS is the ROWID of table b-tree and so we also 3532 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3533 ** into a single opcode. */ 3534 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3535 VdbeCoverage(v); 3536 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3537 }else{ 3538 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3539 if( destIfFalse==destIfNull ){ 3540 /* Combine Step 3 and Step 5 into a single opcode */ 3541 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3542 rLhs, nVector); VdbeCoverage(v); 3543 goto sqlite3ExprCodeIN_finished; 3544 } 3545 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3546 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3547 rLhs, nVector); VdbeCoverage(v); 3548 } 3549 3550 /* Step 4. If the RHS is known to be non-NULL and we did not find 3551 ** an match on the search above, then the result must be FALSE. 3552 */ 3553 if( rRhsHasNull && nVector==1 ){ 3554 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3555 VdbeCoverage(v); 3556 } 3557 3558 /* Step 5. If we do not care about the difference between NULL and 3559 ** FALSE, then just return false. 3560 */ 3561 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3562 3563 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3564 ** If any comparison is NULL, then the result is NULL. If all 3565 ** comparisons are FALSE then the final result is FALSE. 3566 ** 3567 ** For a scalar LHS, it is sufficient to check just the first row 3568 ** of the RHS. 3569 */ 3570 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3571 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3572 VdbeCoverage(v); 3573 if( nVector>1 ){ 3574 destNotNull = sqlite3VdbeMakeLabel(pParse); 3575 }else{ 3576 /* For nVector==1, combine steps 6 and 7 by immediately returning 3577 ** FALSE if the first comparison is not NULL */ 3578 destNotNull = destIfFalse; 3579 } 3580 for(i=0; i<nVector; i++){ 3581 Expr *p; 3582 CollSeq *pColl; 3583 int r3 = sqlite3GetTempReg(pParse); 3584 p = sqlite3VectorFieldSubexpr(pLeft, i); 3585 pColl = sqlite3ExprCollSeq(pParse, p); 3586 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3587 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3588 (void*)pColl, P4_COLLSEQ); 3589 VdbeCoverage(v); 3590 sqlite3ReleaseTempReg(pParse, r3); 3591 } 3592 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3593 if( nVector>1 ){ 3594 sqlite3VdbeResolveLabel(v, destNotNull); 3595 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3596 VdbeCoverage(v); 3597 3598 /* Step 7: If we reach this point, we know that the result must 3599 ** be false. */ 3600 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3601 } 3602 3603 /* Jumps here in order to return true. */ 3604 sqlite3VdbeJumpHere(v, addrTruthOp); 3605 3606 sqlite3ExprCodeIN_finished: 3607 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3608 VdbeComment((v, "end IN expr")); 3609 sqlite3ExprCodeIN_oom_error: 3610 sqlite3DbFree(pParse->db, aiMap); 3611 sqlite3DbFree(pParse->db, zAff); 3612 } 3613 #endif /* SQLITE_OMIT_SUBQUERY */ 3614 3615 #ifndef SQLITE_OMIT_FLOATING_POINT 3616 /* 3617 ** Generate an instruction that will put the floating point 3618 ** value described by z[0..n-1] into register iMem. 3619 ** 3620 ** The z[] string will probably not be zero-terminated. But the 3621 ** z[n] character is guaranteed to be something that does not look 3622 ** like the continuation of the number. 3623 */ 3624 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3625 if( ALWAYS(z!=0) ){ 3626 double value; 3627 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3628 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3629 if( negateFlag ) value = -value; 3630 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3631 } 3632 } 3633 #endif 3634 3635 3636 /* 3637 ** Generate an instruction that will put the integer describe by 3638 ** text z[0..n-1] into register iMem. 3639 ** 3640 ** Expr.u.zToken is always UTF8 and zero-terminated. 3641 */ 3642 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3643 Vdbe *v = pParse->pVdbe; 3644 if( pExpr->flags & EP_IntValue ){ 3645 int i = pExpr->u.iValue; 3646 assert( i>=0 ); 3647 if( negFlag ) i = -i; 3648 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3649 }else{ 3650 int c; 3651 i64 value; 3652 const char *z = pExpr->u.zToken; 3653 assert( z!=0 ); 3654 c = sqlite3DecOrHexToI64(z, &value); 3655 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3656 #ifdef SQLITE_OMIT_FLOATING_POINT 3657 sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr); 3658 #else 3659 #ifndef SQLITE_OMIT_HEX_INTEGER 3660 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3661 sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T", 3662 negFlag?"-":"",pExpr); 3663 }else 3664 #endif 3665 { 3666 codeReal(v, z, negFlag, iMem); 3667 } 3668 #endif 3669 }else{ 3670 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3671 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3672 } 3673 } 3674 } 3675 3676 3677 /* Generate code that will load into register regOut a value that is 3678 ** appropriate for the iIdxCol-th column of index pIdx. 3679 */ 3680 void sqlite3ExprCodeLoadIndexColumn( 3681 Parse *pParse, /* The parsing context */ 3682 Index *pIdx, /* The index whose column is to be loaded */ 3683 int iTabCur, /* Cursor pointing to a table row */ 3684 int iIdxCol, /* The column of the index to be loaded */ 3685 int regOut /* Store the index column value in this register */ 3686 ){ 3687 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3688 if( iTabCol==XN_EXPR ){ 3689 assert( pIdx->aColExpr ); 3690 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3691 pParse->iSelfTab = iTabCur + 1; 3692 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3693 pParse->iSelfTab = 0; 3694 }else{ 3695 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3696 iTabCol, regOut); 3697 } 3698 } 3699 3700 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3701 /* 3702 ** Generate code that will compute the value of generated column pCol 3703 ** and store the result in register regOut 3704 */ 3705 void sqlite3ExprCodeGeneratedColumn( 3706 Parse *pParse, /* Parsing context */ 3707 Table *pTab, /* Table containing the generated column */ 3708 Column *pCol, /* The generated column */ 3709 int regOut /* Put the result in this register */ 3710 ){ 3711 int iAddr; 3712 Vdbe *v = pParse->pVdbe; 3713 assert( v!=0 ); 3714 assert( pParse->iSelfTab!=0 ); 3715 if( pParse->iSelfTab>0 ){ 3716 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3717 }else{ 3718 iAddr = 0; 3719 } 3720 sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut); 3721 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3722 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3723 } 3724 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3725 } 3726 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3727 3728 /* 3729 ** Generate code to extract the value of the iCol-th column of a table. 3730 */ 3731 void sqlite3ExprCodeGetColumnOfTable( 3732 Vdbe *v, /* Parsing context */ 3733 Table *pTab, /* The table containing the value */ 3734 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3735 int iCol, /* Index of the column to extract */ 3736 int regOut /* Extract the value into this register */ 3737 ){ 3738 Column *pCol; 3739 assert( v!=0 ); 3740 if( pTab==0 ){ 3741 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3742 return; 3743 } 3744 if( iCol<0 || iCol==pTab->iPKey ){ 3745 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3746 VdbeComment((v, "%s.rowid", pTab->zName)); 3747 }else{ 3748 int op; 3749 int x; 3750 if( IsVirtual(pTab) ){ 3751 op = OP_VColumn; 3752 x = iCol; 3753 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3754 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3755 Parse *pParse = sqlite3VdbeParser(v); 3756 if( pCol->colFlags & COLFLAG_BUSY ){ 3757 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3758 pCol->zCnName); 3759 }else{ 3760 int savedSelfTab = pParse->iSelfTab; 3761 pCol->colFlags |= COLFLAG_BUSY; 3762 pParse->iSelfTab = iTabCur+1; 3763 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut); 3764 pParse->iSelfTab = savedSelfTab; 3765 pCol->colFlags &= ~COLFLAG_BUSY; 3766 } 3767 return; 3768 #endif 3769 }else if( !HasRowid(pTab) ){ 3770 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3771 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3772 op = OP_Column; 3773 }else{ 3774 x = sqlite3TableColumnToStorage(pTab,iCol); 3775 testcase( x!=iCol ); 3776 op = OP_Column; 3777 } 3778 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3779 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3780 } 3781 } 3782 3783 /* 3784 ** Generate code that will extract the iColumn-th column from 3785 ** table pTab and store the column value in register iReg. 3786 ** 3787 ** There must be an open cursor to pTab in iTable when this routine 3788 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3789 */ 3790 int sqlite3ExprCodeGetColumn( 3791 Parse *pParse, /* Parsing and code generating context */ 3792 Table *pTab, /* Description of the table we are reading from */ 3793 int iColumn, /* Index of the table column */ 3794 int iTable, /* The cursor pointing to the table */ 3795 int iReg, /* Store results here */ 3796 u8 p5 /* P5 value for OP_Column + FLAGS */ 3797 ){ 3798 assert( pParse->pVdbe!=0 ); 3799 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3800 if( p5 ){ 3801 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3802 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3803 } 3804 return iReg; 3805 } 3806 3807 /* 3808 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3809 ** over to iTo..iTo+nReg-1. 3810 */ 3811 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3812 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3813 } 3814 3815 /* 3816 ** Convert a scalar expression node to a TK_REGISTER referencing 3817 ** register iReg. The caller must ensure that iReg already contains 3818 ** the correct value for the expression. 3819 */ 3820 static void exprToRegister(Expr *pExpr, int iReg){ 3821 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3822 if( NEVER(p==0) ) return; 3823 p->op2 = p->op; 3824 p->op = TK_REGISTER; 3825 p->iTable = iReg; 3826 ExprClearProperty(p, EP_Skip); 3827 } 3828 3829 /* 3830 ** Evaluate an expression (either a vector or a scalar expression) and store 3831 ** the result in continguous temporary registers. Return the index of 3832 ** the first register used to store the result. 3833 ** 3834 ** If the returned result register is a temporary scalar, then also write 3835 ** that register number into *piFreeable. If the returned result register 3836 ** is not a temporary or if the expression is a vector set *piFreeable 3837 ** to 0. 3838 */ 3839 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3840 int iResult; 3841 int nResult = sqlite3ExprVectorSize(p); 3842 if( nResult==1 ){ 3843 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3844 }else{ 3845 *piFreeable = 0; 3846 if( p->op==TK_SELECT ){ 3847 #if SQLITE_OMIT_SUBQUERY 3848 iResult = 0; 3849 #else 3850 iResult = sqlite3CodeSubselect(pParse, p); 3851 #endif 3852 }else{ 3853 int i; 3854 iResult = pParse->nMem+1; 3855 pParse->nMem += nResult; 3856 assert( ExprUseXList(p) ); 3857 for(i=0; i<nResult; i++){ 3858 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3859 } 3860 } 3861 } 3862 return iResult; 3863 } 3864 3865 /* 3866 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3867 ** so that a subsequent copy will not be merged into this one. 3868 */ 3869 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3870 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3871 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3872 } 3873 } 3874 3875 /* 3876 ** Generate code to implement special SQL functions that are implemented 3877 ** in-line rather than by using the usual callbacks. 3878 */ 3879 static int exprCodeInlineFunction( 3880 Parse *pParse, /* Parsing context */ 3881 ExprList *pFarg, /* List of function arguments */ 3882 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3883 int target /* Store function result in this register */ 3884 ){ 3885 int nFarg; 3886 Vdbe *v = pParse->pVdbe; 3887 assert( v!=0 ); 3888 assert( pFarg!=0 ); 3889 nFarg = pFarg->nExpr; 3890 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3891 switch( iFuncId ){ 3892 case INLINEFUNC_coalesce: { 3893 /* Attempt a direct implementation of the built-in COALESCE() and 3894 ** IFNULL() functions. This avoids unnecessary evaluation of 3895 ** arguments past the first non-NULL argument. 3896 */ 3897 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3898 int i; 3899 assert( nFarg>=2 ); 3900 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3901 for(i=1; i<nFarg; i++){ 3902 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3903 VdbeCoverage(v); 3904 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3905 } 3906 setDoNotMergeFlagOnCopy(v); 3907 sqlite3VdbeResolveLabel(v, endCoalesce); 3908 break; 3909 } 3910 case INLINEFUNC_iif: { 3911 Expr caseExpr; 3912 memset(&caseExpr, 0, sizeof(caseExpr)); 3913 caseExpr.op = TK_CASE; 3914 caseExpr.x.pList = pFarg; 3915 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3916 } 3917 3918 default: { 3919 /* The UNLIKELY() function is a no-op. The result is the value 3920 ** of the first argument. 3921 */ 3922 assert( nFarg==1 || nFarg==2 ); 3923 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3924 break; 3925 } 3926 3927 /*********************************************************************** 3928 ** Test-only SQL functions that are only usable if enabled 3929 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3930 */ 3931 #if !defined(SQLITE_UNTESTABLE) 3932 case INLINEFUNC_expr_compare: { 3933 /* Compare two expressions using sqlite3ExprCompare() */ 3934 assert( nFarg==2 ); 3935 sqlite3VdbeAddOp2(v, OP_Integer, 3936 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3937 target); 3938 break; 3939 } 3940 3941 case INLINEFUNC_expr_implies_expr: { 3942 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3943 assert( nFarg==2 ); 3944 sqlite3VdbeAddOp2(v, OP_Integer, 3945 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3946 target); 3947 break; 3948 } 3949 3950 case INLINEFUNC_implies_nonnull_row: { 3951 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3952 Expr *pA1; 3953 assert( nFarg==2 ); 3954 pA1 = pFarg->a[1].pExpr; 3955 if( pA1->op==TK_COLUMN ){ 3956 sqlite3VdbeAddOp2(v, OP_Integer, 3957 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3958 target); 3959 }else{ 3960 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3961 } 3962 break; 3963 } 3964 3965 case INLINEFUNC_affinity: { 3966 /* The AFFINITY() function evaluates to a string that describes 3967 ** the type affinity of the argument. This is used for testing of 3968 ** the SQLite type logic. 3969 */ 3970 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3971 char aff; 3972 assert( nFarg==1 ); 3973 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3974 sqlite3VdbeLoadString(v, target, 3975 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3976 break; 3977 } 3978 #endif /* !defined(SQLITE_UNTESTABLE) */ 3979 } 3980 return target; 3981 } 3982 3983 3984 /* 3985 ** Generate code into the current Vdbe to evaluate the given 3986 ** expression. Attempt to store the results in register "target". 3987 ** Return the register where results are stored. 3988 ** 3989 ** With this routine, there is no guarantee that results will 3990 ** be stored in target. The result might be stored in some other 3991 ** register if it is convenient to do so. The calling function 3992 ** must check the return code and move the results to the desired 3993 ** register. 3994 */ 3995 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3996 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3997 int op; /* The opcode being coded */ 3998 int inReg = target; /* Results stored in register inReg */ 3999 int regFree1 = 0; /* If non-zero free this temporary register */ 4000 int regFree2 = 0; /* If non-zero free this temporary register */ 4001 int r1, r2; /* Various register numbers */ 4002 Expr tempX; /* Temporary expression node */ 4003 int p5 = 0; 4004 4005 assert( target>0 && target<=pParse->nMem ); 4006 assert( v!=0 ); 4007 4008 expr_code_doover: 4009 if( pExpr==0 ){ 4010 op = TK_NULL; 4011 }else{ 4012 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4013 op = pExpr->op; 4014 } 4015 switch( op ){ 4016 case TK_AGG_COLUMN: { 4017 AggInfo *pAggInfo = pExpr->pAggInfo; 4018 struct AggInfo_col *pCol; 4019 assert( pAggInfo!=0 ); 4020 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 4021 pCol = &pAggInfo->aCol[pExpr->iAgg]; 4022 if( !pAggInfo->directMode ){ 4023 assert( pCol->iMem>0 ); 4024 return pCol->iMem; 4025 }else if( pAggInfo->useSortingIdx ){ 4026 Table *pTab = pCol->pTab; 4027 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 4028 pCol->iSorterColumn, target); 4029 if( pCol->iColumn<0 ){ 4030 VdbeComment((v,"%s.rowid",pTab->zName)); 4031 }else{ 4032 VdbeComment((v,"%s.%s", 4033 pTab->zName, pTab->aCol[pCol->iColumn].zCnName)); 4034 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 4035 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4036 } 4037 } 4038 return target; 4039 } 4040 /* Otherwise, fall thru into the TK_COLUMN case */ 4041 /* no break */ deliberate_fall_through 4042 } 4043 case TK_COLUMN: { 4044 int iTab = pExpr->iTable; 4045 int iReg; 4046 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 4047 /* This COLUMN expression is really a constant due to WHERE clause 4048 ** constraints, and that constant is coded by the pExpr->pLeft 4049 ** expresssion. However, make sure the constant has the correct 4050 ** datatype by applying the Affinity of the table column to the 4051 ** constant. 4052 */ 4053 int aff; 4054 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 4055 assert( ExprUseYTab(pExpr) ); 4056 if( pExpr->y.pTab ){ 4057 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 4058 }else{ 4059 aff = pExpr->affExpr; 4060 } 4061 if( aff>SQLITE_AFF_BLOB ){ 4062 static const char zAff[] = "B\000C\000D\000E"; 4063 assert( SQLITE_AFF_BLOB=='A' ); 4064 assert( SQLITE_AFF_TEXT=='B' ); 4065 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 4066 &zAff[(aff-'B')*2], P4_STATIC); 4067 } 4068 return iReg; 4069 } 4070 if( iTab<0 ){ 4071 if( pParse->iSelfTab<0 ){ 4072 /* Other columns in the same row for CHECK constraints or 4073 ** generated columns or for inserting into partial index. 4074 ** The row is unpacked into registers beginning at 4075 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 4076 ** immediately prior to the first column. 4077 */ 4078 Column *pCol; 4079 Table *pTab; 4080 int iSrc; 4081 int iCol = pExpr->iColumn; 4082 assert( ExprUseYTab(pExpr) ); 4083 pTab = pExpr->y.pTab; 4084 assert( pTab!=0 ); 4085 assert( iCol>=XN_ROWID ); 4086 assert( iCol<pTab->nCol ); 4087 if( iCol<0 ){ 4088 return -1-pParse->iSelfTab; 4089 } 4090 pCol = pTab->aCol + iCol; 4091 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 4092 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 4093 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 4094 if( pCol->colFlags & COLFLAG_GENERATED ){ 4095 if( pCol->colFlags & COLFLAG_BUSY ){ 4096 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 4097 pCol->zCnName); 4098 return 0; 4099 } 4100 pCol->colFlags |= COLFLAG_BUSY; 4101 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 4102 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc); 4103 } 4104 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 4105 return iSrc; 4106 }else 4107 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 4108 if( pCol->affinity==SQLITE_AFF_REAL ){ 4109 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 4110 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4111 return target; 4112 }else{ 4113 return iSrc; 4114 } 4115 }else{ 4116 /* Coding an expression that is part of an index where column names 4117 ** in the index refer to the table to which the index belongs */ 4118 iTab = pParse->iSelfTab - 1; 4119 } 4120 } 4121 assert( ExprUseYTab(pExpr) ); 4122 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 4123 pExpr->iColumn, iTab, target, 4124 pExpr->op2); 4125 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 4126 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 4127 } 4128 return iReg; 4129 } 4130 case TK_INTEGER: { 4131 codeInteger(pParse, pExpr, 0, target); 4132 return target; 4133 } 4134 case TK_TRUEFALSE: { 4135 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 4136 return target; 4137 } 4138 #ifndef SQLITE_OMIT_FLOATING_POINT 4139 case TK_FLOAT: { 4140 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4141 codeReal(v, pExpr->u.zToken, 0, target); 4142 return target; 4143 } 4144 #endif 4145 case TK_STRING: { 4146 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4147 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 4148 return target; 4149 } 4150 default: { 4151 /* Make NULL the default case so that if a bug causes an illegal 4152 ** Expr node to be passed into this function, it will be handled 4153 ** sanely and not crash. But keep the assert() to bring the problem 4154 ** to the attention of the developers. */ 4155 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); 4156 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4157 return target; 4158 } 4159 #ifndef SQLITE_OMIT_BLOB_LITERAL 4160 case TK_BLOB: { 4161 int n; 4162 const char *z; 4163 char *zBlob; 4164 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4165 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 4166 assert( pExpr->u.zToken[1]=='\'' ); 4167 z = &pExpr->u.zToken[2]; 4168 n = sqlite3Strlen30(z) - 1; 4169 assert( z[n]=='\'' ); 4170 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 4171 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 4172 return target; 4173 } 4174 #endif 4175 case TK_VARIABLE: { 4176 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4177 assert( pExpr->u.zToken!=0 ); 4178 assert( pExpr->u.zToken[0]!=0 ); 4179 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 4180 if( pExpr->u.zToken[1]!=0 ){ 4181 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 4182 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 4183 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 4184 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 4185 } 4186 return target; 4187 } 4188 case TK_REGISTER: { 4189 return pExpr->iTable; 4190 } 4191 #ifndef SQLITE_OMIT_CAST 4192 case TK_CAST: { 4193 /* Expressions of the form: CAST(pLeft AS token) */ 4194 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4195 if( inReg!=target ){ 4196 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4197 inReg = target; 4198 } 4199 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4200 sqlite3VdbeAddOp2(v, OP_Cast, target, 4201 sqlite3AffinityType(pExpr->u.zToken, 0)); 4202 return inReg; 4203 } 4204 #endif /* SQLITE_OMIT_CAST */ 4205 case TK_IS: 4206 case TK_ISNOT: 4207 op = (op==TK_IS) ? TK_EQ : TK_NE; 4208 p5 = SQLITE_NULLEQ; 4209 /* fall-through */ 4210 case TK_LT: 4211 case TK_LE: 4212 case TK_GT: 4213 case TK_GE: 4214 case TK_NE: 4215 case TK_EQ: { 4216 Expr *pLeft = pExpr->pLeft; 4217 if( sqlite3ExprIsVector(pLeft) ){ 4218 codeVectorCompare(pParse, pExpr, target, op, p5); 4219 }else{ 4220 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4221 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4222 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 4223 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 4224 sqlite3VdbeCurrentAddr(v)+2, p5, 4225 ExprHasProperty(pExpr,EP_Commuted)); 4226 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4227 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4228 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4229 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4230 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4231 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4232 if( p5==SQLITE_NULLEQ ){ 4233 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 4234 }else{ 4235 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 4236 } 4237 testcase( regFree1==0 ); 4238 testcase( regFree2==0 ); 4239 } 4240 break; 4241 } 4242 case TK_AND: 4243 case TK_OR: 4244 case TK_PLUS: 4245 case TK_STAR: 4246 case TK_MINUS: 4247 case TK_REM: 4248 case TK_BITAND: 4249 case TK_BITOR: 4250 case TK_SLASH: 4251 case TK_LSHIFT: 4252 case TK_RSHIFT: 4253 case TK_CONCAT: { 4254 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4255 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4256 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4257 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4258 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4259 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4260 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4261 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4262 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4263 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4264 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4265 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4266 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4267 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4268 testcase( regFree1==0 ); 4269 testcase( regFree2==0 ); 4270 break; 4271 } 4272 case TK_UMINUS: { 4273 Expr *pLeft = pExpr->pLeft; 4274 assert( pLeft ); 4275 if( pLeft->op==TK_INTEGER ){ 4276 codeInteger(pParse, pLeft, 1, target); 4277 return target; 4278 #ifndef SQLITE_OMIT_FLOATING_POINT 4279 }else if( pLeft->op==TK_FLOAT ){ 4280 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4281 codeReal(v, pLeft->u.zToken, 1, target); 4282 return target; 4283 #endif 4284 }else{ 4285 tempX.op = TK_INTEGER; 4286 tempX.flags = EP_IntValue|EP_TokenOnly; 4287 tempX.u.iValue = 0; 4288 ExprClearVVAProperties(&tempX); 4289 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4290 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4291 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4292 testcase( regFree2==0 ); 4293 } 4294 break; 4295 } 4296 case TK_BITNOT: 4297 case TK_NOT: { 4298 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4299 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4300 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4301 testcase( regFree1==0 ); 4302 sqlite3VdbeAddOp2(v, op, r1, inReg); 4303 break; 4304 } 4305 case TK_TRUTH: { 4306 int isTrue; /* IS TRUE or IS NOT TRUE */ 4307 int bNormal; /* IS TRUE or IS FALSE */ 4308 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4309 testcase( regFree1==0 ); 4310 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4311 bNormal = pExpr->op2==TK_IS; 4312 testcase( isTrue && bNormal); 4313 testcase( !isTrue && bNormal); 4314 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4315 break; 4316 } 4317 case TK_ISNULL: 4318 case TK_NOTNULL: { 4319 int addr; 4320 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4321 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4322 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4323 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4324 testcase( regFree1==0 ); 4325 addr = sqlite3VdbeAddOp1(v, op, r1); 4326 VdbeCoverageIf(v, op==TK_ISNULL); 4327 VdbeCoverageIf(v, op==TK_NOTNULL); 4328 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4329 sqlite3VdbeJumpHere(v, addr); 4330 break; 4331 } 4332 case TK_AGG_FUNCTION: { 4333 AggInfo *pInfo = pExpr->pAggInfo; 4334 if( pInfo==0 4335 || NEVER(pExpr->iAgg<0) 4336 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4337 ){ 4338 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4339 sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr); 4340 }else{ 4341 return pInfo->aFunc[pExpr->iAgg].iMem; 4342 } 4343 break; 4344 } 4345 case TK_FUNCTION: { 4346 ExprList *pFarg; /* List of function arguments */ 4347 int nFarg; /* Number of function arguments */ 4348 FuncDef *pDef; /* The function definition object */ 4349 const char *zId; /* The function name */ 4350 u32 constMask = 0; /* Mask of function arguments that are constant */ 4351 int i; /* Loop counter */ 4352 sqlite3 *db = pParse->db; /* The database connection */ 4353 u8 enc = ENC(db); /* The text encoding used by this database */ 4354 CollSeq *pColl = 0; /* A collating sequence */ 4355 4356 #ifndef SQLITE_OMIT_WINDOWFUNC 4357 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4358 return pExpr->y.pWin->regResult; 4359 } 4360 #endif 4361 4362 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4363 /* SQL functions can be expensive. So try to avoid running them 4364 ** multiple times if we know they always give the same result */ 4365 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4366 } 4367 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4368 assert( ExprUseXList(pExpr) ); 4369 pFarg = pExpr->x.pList; 4370 nFarg = pFarg ? pFarg->nExpr : 0; 4371 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4372 zId = pExpr->u.zToken; 4373 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4374 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4375 if( pDef==0 && pParse->explain ){ 4376 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4377 } 4378 #endif 4379 if( pDef==0 || pDef->xFinalize!=0 ){ 4380 sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr); 4381 break; 4382 } 4383 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4384 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4385 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4386 return exprCodeInlineFunction(pParse, pFarg, 4387 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4388 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4389 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4390 } 4391 4392 for(i=0; i<nFarg; i++){ 4393 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4394 testcase( i==31 ); 4395 constMask |= MASKBIT32(i); 4396 } 4397 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4398 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4399 } 4400 } 4401 if( pFarg ){ 4402 if( constMask ){ 4403 r1 = pParse->nMem+1; 4404 pParse->nMem += nFarg; 4405 }else{ 4406 r1 = sqlite3GetTempRange(pParse, nFarg); 4407 } 4408 4409 /* For length() and typeof() functions with a column argument, 4410 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4411 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4412 ** loading. 4413 */ 4414 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4415 u8 exprOp; 4416 assert( nFarg==1 ); 4417 assert( pFarg->a[0].pExpr!=0 ); 4418 exprOp = pFarg->a[0].pExpr->op; 4419 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4420 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4421 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4422 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4423 pFarg->a[0].pExpr->op2 = 4424 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4425 } 4426 } 4427 4428 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4429 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4430 }else{ 4431 r1 = 0; 4432 } 4433 #ifndef SQLITE_OMIT_VIRTUALTABLE 4434 /* Possibly overload the function if the first argument is 4435 ** a virtual table column. 4436 ** 4437 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4438 ** second argument, not the first, as the argument to test to 4439 ** see if it is a column in a virtual table. This is done because 4440 ** the left operand of infix functions (the operand we want to 4441 ** control overloading) ends up as the second argument to the 4442 ** function. The expression "A glob B" is equivalent to 4443 ** "glob(B,A). We want to use the A in "A glob B" to test 4444 ** for function overloading. But we use the B term in "glob(B,A)". 4445 */ 4446 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4447 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4448 }else if( nFarg>0 ){ 4449 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4450 } 4451 #endif 4452 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4453 if( !pColl ) pColl = db->pDfltColl; 4454 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4455 } 4456 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4457 if( (pDef->funcFlags & SQLITE_FUNC_OFFSET)!=0 && ALWAYS(pFarg!=0) ){ 4458 Expr *pArg = pFarg->a[0].pExpr; 4459 if( pArg->op==TK_COLUMN ){ 4460 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4461 }else{ 4462 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4463 } 4464 }else 4465 #endif 4466 { 4467 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4468 pDef, pExpr->op2); 4469 } 4470 if( nFarg ){ 4471 if( constMask==0 ){ 4472 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4473 }else{ 4474 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4475 } 4476 } 4477 return target; 4478 } 4479 #ifndef SQLITE_OMIT_SUBQUERY 4480 case TK_EXISTS: 4481 case TK_SELECT: { 4482 int nCol; 4483 testcase( op==TK_EXISTS ); 4484 testcase( op==TK_SELECT ); 4485 if( pParse->db->mallocFailed ){ 4486 return 0; 4487 }else if( op==TK_SELECT 4488 && ALWAYS( ExprUseXSelect(pExpr) ) 4489 && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 4490 ){ 4491 sqlite3SubselectError(pParse, nCol, 1); 4492 }else{ 4493 return sqlite3CodeSubselect(pParse, pExpr); 4494 } 4495 break; 4496 } 4497 case TK_SELECT_COLUMN: { 4498 int n; 4499 Expr *pLeft = pExpr->pLeft; 4500 if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){ 4501 pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft); 4502 pLeft->op2 = pParse->withinRJSubrtn; 4503 } 4504 assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR ); 4505 n = sqlite3ExprVectorSize(pLeft); 4506 if( pExpr->iTable!=n ){ 4507 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4508 pExpr->iTable, n); 4509 } 4510 return pLeft->iTable + pExpr->iColumn; 4511 } 4512 case TK_IN: { 4513 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4514 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4515 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4516 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4517 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4518 sqlite3VdbeResolveLabel(v, destIfFalse); 4519 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4520 sqlite3VdbeResolveLabel(v, destIfNull); 4521 return target; 4522 } 4523 #endif /* SQLITE_OMIT_SUBQUERY */ 4524 4525 4526 /* 4527 ** x BETWEEN y AND z 4528 ** 4529 ** This is equivalent to 4530 ** 4531 ** x>=y AND x<=z 4532 ** 4533 ** X is stored in pExpr->pLeft. 4534 ** Y is stored in pExpr->pList->a[0].pExpr. 4535 ** Z is stored in pExpr->pList->a[1].pExpr. 4536 */ 4537 case TK_BETWEEN: { 4538 exprCodeBetween(pParse, pExpr, target, 0, 0); 4539 return target; 4540 } 4541 case TK_SPAN: 4542 case TK_COLLATE: 4543 case TK_UPLUS: { 4544 pExpr = pExpr->pLeft; 4545 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4546 } 4547 4548 case TK_TRIGGER: { 4549 /* If the opcode is TK_TRIGGER, then the expression is a reference 4550 ** to a column in the new.* or old.* pseudo-tables available to 4551 ** trigger programs. In this case Expr.iTable is set to 1 for the 4552 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4553 ** is set to the column of the pseudo-table to read, or to -1 to 4554 ** read the rowid field. 4555 ** 4556 ** The expression is implemented using an OP_Param opcode. The p1 4557 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4558 ** to reference another column of the old.* pseudo-table, where 4559 ** i is the index of the column. For a new.rowid reference, p1 is 4560 ** set to (n+1), where n is the number of columns in each pseudo-table. 4561 ** For a reference to any other column in the new.* pseudo-table, p1 4562 ** is set to (n+2+i), where n and i are as defined previously. For 4563 ** example, if the table on which triggers are being fired is 4564 ** declared as: 4565 ** 4566 ** CREATE TABLE t1(a, b); 4567 ** 4568 ** Then p1 is interpreted as follows: 4569 ** 4570 ** p1==0 -> old.rowid p1==3 -> new.rowid 4571 ** p1==1 -> old.a p1==4 -> new.a 4572 ** p1==2 -> old.b p1==5 -> new.b 4573 */ 4574 Table *pTab; 4575 int iCol; 4576 int p1; 4577 4578 assert( ExprUseYTab(pExpr) ); 4579 pTab = pExpr->y.pTab; 4580 iCol = pExpr->iColumn; 4581 p1 = pExpr->iTable * (pTab->nCol+1) + 1 4582 + sqlite3TableColumnToStorage(pTab, iCol); 4583 4584 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4585 assert( iCol>=-1 && iCol<pTab->nCol ); 4586 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4587 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4588 4589 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4590 VdbeComment((v, "r[%d]=%s.%s", target, 4591 (pExpr->iTable ? "new" : "old"), 4592 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName) 4593 )); 4594 4595 #ifndef SQLITE_OMIT_FLOATING_POINT 4596 /* If the column has REAL affinity, it may currently be stored as an 4597 ** integer. Use OP_RealAffinity to make sure it is really real. 4598 ** 4599 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4600 ** floating point when extracting it from the record. */ 4601 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4602 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4603 } 4604 #endif 4605 break; 4606 } 4607 4608 case TK_VECTOR: { 4609 sqlite3ErrorMsg(pParse, "row value misused"); 4610 break; 4611 } 4612 4613 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4614 ** that derive from the right-hand table of a LEFT JOIN. The 4615 ** Expr.iTable value is the table number for the right-hand table. 4616 ** The expression is only evaluated if that table is not currently 4617 ** on a LEFT JOIN NULL row. 4618 */ 4619 case TK_IF_NULL_ROW: { 4620 int addrINR; 4621 u8 okConstFactor = pParse->okConstFactor; 4622 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4623 /* Temporarily disable factoring of constant expressions, since 4624 ** even though expressions may appear to be constant, they are not 4625 ** really constant because they originate from the right-hand side 4626 ** of a LEFT JOIN. */ 4627 pParse->okConstFactor = 0; 4628 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4629 pParse->okConstFactor = okConstFactor; 4630 sqlite3VdbeJumpHere(v, addrINR); 4631 sqlite3VdbeChangeP3(v, addrINR, inReg); 4632 break; 4633 } 4634 4635 /* 4636 ** Form A: 4637 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4638 ** 4639 ** Form B: 4640 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4641 ** 4642 ** Form A is can be transformed into the equivalent form B as follows: 4643 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4644 ** WHEN x=eN THEN rN ELSE y END 4645 ** 4646 ** X (if it exists) is in pExpr->pLeft. 4647 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4648 ** odd. The Y is also optional. If the number of elements in x.pList 4649 ** is even, then Y is omitted and the "otherwise" result is NULL. 4650 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4651 ** 4652 ** The result of the expression is the Ri for the first matching Ei, 4653 ** or if there is no matching Ei, the ELSE term Y, or if there is 4654 ** no ELSE term, NULL. 4655 */ 4656 case TK_CASE: { 4657 int endLabel; /* GOTO label for end of CASE stmt */ 4658 int nextCase; /* GOTO label for next WHEN clause */ 4659 int nExpr; /* 2x number of WHEN terms */ 4660 int i; /* Loop counter */ 4661 ExprList *pEList; /* List of WHEN terms */ 4662 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4663 Expr opCompare; /* The X==Ei expression */ 4664 Expr *pX; /* The X expression */ 4665 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4666 Expr *pDel = 0; 4667 sqlite3 *db = pParse->db; 4668 4669 assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 ); 4670 assert(pExpr->x.pList->nExpr > 0); 4671 pEList = pExpr->x.pList; 4672 aListelem = pEList->a; 4673 nExpr = pEList->nExpr; 4674 endLabel = sqlite3VdbeMakeLabel(pParse); 4675 if( (pX = pExpr->pLeft)!=0 ){ 4676 pDel = sqlite3ExprDup(db, pX, 0); 4677 if( db->mallocFailed ){ 4678 sqlite3ExprDelete(db, pDel); 4679 break; 4680 } 4681 testcase( pX->op==TK_COLUMN ); 4682 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4683 testcase( regFree1==0 ); 4684 memset(&opCompare, 0, sizeof(opCompare)); 4685 opCompare.op = TK_EQ; 4686 opCompare.pLeft = pDel; 4687 pTest = &opCompare; 4688 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4689 ** The value in regFree1 might get SCopy-ed into the file result. 4690 ** So make sure that the regFree1 register is not reused for other 4691 ** purposes and possibly overwritten. */ 4692 regFree1 = 0; 4693 } 4694 for(i=0; i<nExpr-1; i=i+2){ 4695 if( pX ){ 4696 assert( pTest!=0 ); 4697 opCompare.pRight = aListelem[i].pExpr; 4698 }else{ 4699 pTest = aListelem[i].pExpr; 4700 } 4701 nextCase = sqlite3VdbeMakeLabel(pParse); 4702 testcase( pTest->op==TK_COLUMN ); 4703 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4704 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4705 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4706 sqlite3VdbeGoto(v, endLabel); 4707 sqlite3VdbeResolveLabel(v, nextCase); 4708 } 4709 if( (nExpr&1)!=0 ){ 4710 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4711 }else{ 4712 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4713 } 4714 sqlite3ExprDelete(db, pDel); 4715 setDoNotMergeFlagOnCopy(v); 4716 sqlite3VdbeResolveLabel(v, endLabel); 4717 break; 4718 } 4719 #ifndef SQLITE_OMIT_TRIGGER 4720 case TK_RAISE: { 4721 assert( pExpr->affExpr==OE_Rollback 4722 || pExpr->affExpr==OE_Abort 4723 || pExpr->affExpr==OE_Fail 4724 || pExpr->affExpr==OE_Ignore 4725 ); 4726 if( !pParse->pTriggerTab && !pParse->nested ){ 4727 sqlite3ErrorMsg(pParse, 4728 "RAISE() may only be used within a trigger-program"); 4729 return 0; 4730 } 4731 if( pExpr->affExpr==OE_Abort ){ 4732 sqlite3MayAbort(pParse); 4733 } 4734 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4735 if( pExpr->affExpr==OE_Ignore ){ 4736 sqlite3VdbeAddOp4( 4737 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4738 VdbeCoverage(v); 4739 }else{ 4740 sqlite3HaltConstraint(pParse, 4741 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4742 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4743 } 4744 4745 break; 4746 } 4747 #endif 4748 } 4749 sqlite3ReleaseTempReg(pParse, regFree1); 4750 sqlite3ReleaseTempReg(pParse, regFree2); 4751 return inReg; 4752 } 4753 4754 /* 4755 ** Generate code that will evaluate expression pExpr just one time 4756 ** per prepared statement execution. 4757 ** 4758 ** If the expression uses functions (that might throw an exception) then 4759 ** guard them with an OP_Once opcode to ensure that the code is only executed 4760 ** once. If no functions are involved, then factor the code out and put it at 4761 ** the end of the prepared statement in the initialization section. 4762 ** 4763 ** If regDest>=0 then the result is always stored in that register and the 4764 ** result is not reusable. If regDest<0 then this routine is free to 4765 ** store the value whereever it wants. The register where the expression 4766 ** is stored is returned. When regDest<0, two identical expressions might 4767 ** code to the same register, if they do not contain function calls and hence 4768 ** are factored out into the initialization section at the end of the 4769 ** prepared statement. 4770 */ 4771 int sqlite3ExprCodeRunJustOnce( 4772 Parse *pParse, /* Parsing context */ 4773 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4774 int regDest /* Store the value in this register */ 4775 ){ 4776 ExprList *p; 4777 assert( ConstFactorOk(pParse) ); 4778 p = pParse->pConstExpr; 4779 if( regDest<0 && p ){ 4780 struct ExprList_item *pItem; 4781 int i; 4782 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4783 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4784 return pItem->u.iConstExprReg; 4785 } 4786 } 4787 } 4788 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4789 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4790 Vdbe *v = pParse->pVdbe; 4791 int addr; 4792 assert( v ); 4793 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4794 pParse->okConstFactor = 0; 4795 if( !pParse->db->mallocFailed ){ 4796 if( regDest<0 ) regDest = ++pParse->nMem; 4797 sqlite3ExprCode(pParse, pExpr, regDest); 4798 } 4799 pParse->okConstFactor = 1; 4800 sqlite3ExprDelete(pParse->db, pExpr); 4801 sqlite3VdbeJumpHere(v, addr); 4802 }else{ 4803 p = sqlite3ExprListAppend(pParse, p, pExpr); 4804 if( p ){ 4805 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4806 pItem->reusable = regDest<0; 4807 if( regDest<0 ) regDest = ++pParse->nMem; 4808 pItem->u.iConstExprReg = regDest; 4809 } 4810 pParse->pConstExpr = p; 4811 } 4812 return regDest; 4813 } 4814 4815 /* 4816 ** Generate code to evaluate an expression and store the results 4817 ** into a register. Return the register number where the results 4818 ** are stored. 4819 ** 4820 ** If the register is a temporary register that can be deallocated, 4821 ** then write its number into *pReg. If the result register is not 4822 ** a temporary, then set *pReg to zero. 4823 ** 4824 ** If pExpr is a constant, then this routine might generate this 4825 ** code to fill the register in the initialization section of the 4826 ** VDBE program, in order to factor it out of the evaluation loop. 4827 */ 4828 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4829 int r2; 4830 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4831 if( ConstFactorOk(pParse) 4832 && ALWAYS(pExpr!=0) 4833 && pExpr->op!=TK_REGISTER 4834 && sqlite3ExprIsConstantNotJoin(pExpr) 4835 ){ 4836 *pReg = 0; 4837 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4838 }else{ 4839 int r1 = sqlite3GetTempReg(pParse); 4840 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4841 if( r2==r1 ){ 4842 *pReg = r1; 4843 }else{ 4844 sqlite3ReleaseTempReg(pParse, r1); 4845 *pReg = 0; 4846 } 4847 } 4848 return r2; 4849 } 4850 4851 /* 4852 ** Generate code that will evaluate expression pExpr and store the 4853 ** results in register target. The results are guaranteed to appear 4854 ** in register target. 4855 */ 4856 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4857 int inReg; 4858 4859 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4860 assert( target>0 && target<=pParse->nMem ); 4861 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4862 if( pParse->pVdbe==0 ) return; 4863 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4864 if( inReg!=target ){ 4865 u8 op; 4866 if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){ 4867 op = OP_Copy; 4868 }else{ 4869 op = OP_SCopy; 4870 } 4871 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4872 } 4873 } 4874 4875 /* 4876 ** Make a transient copy of expression pExpr and then code it using 4877 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4878 ** except that the input expression is guaranteed to be unchanged. 4879 */ 4880 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4881 sqlite3 *db = pParse->db; 4882 pExpr = sqlite3ExprDup(db, pExpr, 0); 4883 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4884 sqlite3ExprDelete(db, pExpr); 4885 } 4886 4887 /* 4888 ** Generate code that will evaluate expression pExpr and store the 4889 ** results in register target. The results are guaranteed to appear 4890 ** in register target. If the expression is constant, then this routine 4891 ** might choose to code the expression at initialization time. 4892 */ 4893 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4894 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4895 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4896 }else{ 4897 sqlite3ExprCodeCopy(pParse, pExpr, target); 4898 } 4899 } 4900 4901 /* 4902 ** Generate code that pushes the value of every element of the given 4903 ** expression list into a sequence of registers beginning at target. 4904 ** 4905 ** Return the number of elements evaluated. The number returned will 4906 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4907 ** is defined. 4908 ** 4909 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4910 ** filled using OP_SCopy. OP_Copy must be used instead. 4911 ** 4912 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4913 ** factored out into initialization code. 4914 ** 4915 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4916 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4917 ** in registers at srcReg, and so the value can be copied from there. 4918 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4919 ** are simply omitted rather than being copied from srcReg. 4920 */ 4921 int sqlite3ExprCodeExprList( 4922 Parse *pParse, /* Parsing context */ 4923 ExprList *pList, /* The expression list to be coded */ 4924 int target, /* Where to write results */ 4925 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4926 u8 flags /* SQLITE_ECEL_* flags */ 4927 ){ 4928 struct ExprList_item *pItem; 4929 int i, j, n; 4930 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4931 Vdbe *v = pParse->pVdbe; 4932 assert( pList!=0 ); 4933 assert( target>0 ); 4934 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4935 n = pList->nExpr; 4936 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4937 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4938 Expr *pExpr = pItem->pExpr; 4939 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4940 if( pItem->bSorterRef ){ 4941 i--; 4942 n--; 4943 }else 4944 #endif 4945 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4946 if( flags & SQLITE_ECEL_OMITREF ){ 4947 i--; 4948 n--; 4949 }else{ 4950 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4951 } 4952 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4953 && sqlite3ExprIsConstantNotJoin(pExpr) 4954 ){ 4955 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4956 }else{ 4957 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4958 if( inReg!=target+i ){ 4959 VdbeOp *pOp; 4960 if( copyOp==OP_Copy 4961 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4962 && pOp->p1+pOp->p3+1==inReg 4963 && pOp->p2+pOp->p3+1==target+i 4964 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4965 ){ 4966 pOp->p3++; 4967 }else{ 4968 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4969 } 4970 } 4971 } 4972 } 4973 return n; 4974 } 4975 4976 /* 4977 ** Generate code for a BETWEEN operator. 4978 ** 4979 ** x BETWEEN y AND z 4980 ** 4981 ** The above is equivalent to 4982 ** 4983 ** x>=y AND x<=z 4984 ** 4985 ** Code it as such, taking care to do the common subexpression 4986 ** elimination of x. 4987 ** 4988 ** The xJumpIf parameter determines details: 4989 ** 4990 ** NULL: Store the boolean result in reg[dest] 4991 ** sqlite3ExprIfTrue: Jump to dest if true 4992 ** sqlite3ExprIfFalse: Jump to dest if false 4993 ** 4994 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4995 */ 4996 static void exprCodeBetween( 4997 Parse *pParse, /* Parsing and code generating context */ 4998 Expr *pExpr, /* The BETWEEN expression */ 4999 int dest, /* Jump destination or storage location */ 5000 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 5001 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 5002 ){ 5003 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 5004 Expr compLeft; /* The x>=y term */ 5005 Expr compRight; /* The x<=z term */ 5006 int regFree1 = 0; /* Temporary use register */ 5007 Expr *pDel = 0; 5008 sqlite3 *db = pParse->db; 5009 5010 memset(&compLeft, 0, sizeof(Expr)); 5011 memset(&compRight, 0, sizeof(Expr)); 5012 memset(&exprAnd, 0, sizeof(Expr)); 5013 5014 assert( ExprUseXList(pExpr) ); 5015 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 5016 if( db->mallocFailed==0 ){ 5017 exprAnd.op = TK_AND; 5018 exprAnd.pLeft = &compLeft; 5019 exprAnd.pRight = &compRight; 5020 compLeft.op = TK_GE; 5021 compLeft.pLeft = pDel; 5022 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 5023 compRight.op = TK_LE; 5024 compRight.pLeft = pDel; 5025 compRight.pRight = pExpr->x.pList->a[1].pExpr; 5026 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 5027 if( xJump ){ 5028 xJump(pParse, &exprAnd, dest, jumpIfNull); 5029 }else{ 5030 /* Mark the expression is being from the ON or USING clause of a join 5031 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 5032 ** it into the Parse.pConstExpr list. We should use a new bit for this, 5033 ** for clarity, but we are out of bits in the Expr.flags field so we 5034 ** have to reuse the EP_FromJoin bit. Bummer. */ 5035 pDel->flags |= EP_FromJoin; 5036 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 5037 } 5038 sqlite3ReleaseTempReg(pParse, regFree1); 5039 } 5040 sqlite3ExprDelete(db, pDel); 5041 5042 /* Ensure adequate test coverage */ 5043 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 5044 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 5045 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 5046 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 5047 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 5048 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 5049 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 5050 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 5051 testcase( xJump==0 ); 5052 } 5053 5054 /* 5055 ** Generate code for a boolean expression such that a jump is made 5056 ** to the label "dest" if the expression is true but execution 5057 ** continues straight thru if the expression is false. 5058 ** 5059 ** If the expression evaluates to NULL (neither true nor false), then 5060 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 5061 ** 5062 ** This code depends on the fact that certain token values (ex: TK_EQ) 5063 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 5064 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 5065 ** the make process cause these values to align. Assert()s in the code 5066 ** below verify that the numbers are aligned correctly. 5067 */ 5068 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5069 Vdbe *v = pParse->pVdbe; 5070 int op = 0; 5071 int regFree1 = 0; 5072 int regFree2 = 0; 5073 int r1, r2; 5074 5075 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5076 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5077 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 5078 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 5079 op = pExpr->op; 5080 switch( op ){ 5081 case TK_AND: 5082 case TK_OR: { 5083 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5084 if( pAlt!=pExpr ){ 5085 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 5086 }else if( op==TK_AND ){ 5087 int d2 = sqlite3VdbeMakeLabel(pParse); 5088 testcase( jumpIfNull==0 ); 5089 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 5090 jumpIfNull^SQLITE_JUMPIFNULL); 5091 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5092 sqlite3VdbeResolveLabel(v, d2); 5093 }else{ 5094 testcase( jumpIfNull==0 ); 5095 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5096 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5097 } 5098 break; 5099 } 5100 case TK_NOT: { 5101 testcase( jumpIfNull==0 ); 5102 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5103 break; 5104 } 5105 case TK_TRUTH: { 5106 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5107 int isTrue; /* IS TRUE or IS NOT TRUE */ 5108 testcase( jumpIfNull==0 ); 5109 isNot = pExpr->op2==TK_ISNOT; 5110 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5111 testcase( isTrue && isNot ); 5112 testcase( !isTrue && isNot ); 5113 if( isTrue ^ isNot ){ 5114 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5115 isNot ? SQLITE_JUMPIFNULL : 0); 5116 }else{ 5117 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5118 isNot ? SQLITE_JUMPIFNULL : 0); 5119 } 5120 break; 5121 } 5122 case TK_IS: 5123 case TK_ISNOT: 5124 testcase( op==TK_IS ); 5125 testcase( op==TK_ISNOT ); 5126 op = (op==TK_IS) ? TK_EQ : TK_NE; 5127 jumpIfNull = SQLITE_NULLEQ; 5128 /* no break */ deliberate_fall_through 5129 case TK_LT: 5130 case TK_LE: 5131 case TK_GT: 5132 case TK_GE: 5133 case TK_NE: 5134 case TK_EQ: { 5135 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5136 testcase( jumpIfNull==0 ); 5137 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5138 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5139 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5140 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 5141 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5142 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5143 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5144 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5145 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5146 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5147 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5148 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5149 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5150 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5151 testcase( regFree1==0 ); 5152 testcase( regFree2==0 ); 5153 break; 5154 } 5155 case TK_ISNULL: 5156 case TK_NOTNULL: { 5157 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 5158 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 5159 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5160 sqlite3VdbeAddOp2(v, op, r1, dest); 5161 VdbeCoverageIf(v, op==TK_ISNULL); 5162 VdbeCoverageIf(v, op==TK_NOTNULL); 5163 testcase( regFree1==0 ); 5164 break; 5165 } 5166 case TK_BETWEEN: { 5167 testcase( jumpIfNull==0 ); 5168 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 5169 break; 5170 } 5171 #ifndef SQLITE_OMIT_SUBQUERY 5172 case TK_IN: { 5173 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 5174 int destIfNull = jumpIfNull ? dest : destIfFalse; 5175 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 5176 sqlite3VdbeGoto(v, dest); 5177 sqlite3VdbeResolveLabel(v, destIfFalse); 5178 break; 5179 } 5180 #endif 5181 default: { 5182 default_expr: 5183 if( ExprAlwaysTrue(pExpr) ){ 5184 sqlite3VdbeGoto(v, dest); 5185 }else if( ExprAlwaysFalse(pExpr) ){ 5186 /* No-op */ 5187 }else{ 5188 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5189 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 5190 VdbeCoverage(v); 5191 testcase( regFree1==0 ); 5192 testcase( jumpIfNull==0 ); 5193 } 5194 break; 5195 } 5196 } 5197 sqlite3ReleaseTempReg(pParse, regFree1); 5198 sqlite3ReleaseTempReg(pParse, regFree2); 5199 } 5200 5201 /* 5202 ** Generate code for a boolean expression such that a jump is made 5203 ** to the label "dest" if the expression is false but execution 5204 ** continues straight thru if the expression is true. 5205 ** 5206 ** If the expression evaluates to NULL (neither true nor false) then 5207 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5208 ** is 0. 5209 */ 5210 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5211 Vdbe *v = pParse->pVdbe; 5212 int op = 0; 5213 int regFree1 = 0; 5214 int regFree2 = 0; 5215 int r1, r2; 5216 5217 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5218 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5219 if( pExpr==0 ) return; 5220 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5221 5222 /* The value of pExpr->op and op are related as follows: 5223 ** 5224 ** pExpr->op op 5225 ** --------- ---------- 5226 ** TK_ISNULL OP_NotNull 5227 ** TK_NOTNULL OP_IsNull 5228 ** TK_NE OP_Eq 5229 ** TK_EQ OP_Ne 5230 ** TK_GT OP_Le 5231 ** TK_LE OP_Gt 5232 ** TK_GE OP_Lt 5233 ** TK_LT OP_Ge 5234 ** 5235 ** For other values of pExpr->op, op is undefined and unused. 5236 ** The value of TK_ and OP_ constants are arranged such that we 5237 ** can compute the mapping above using the following expression. 5238 ** Assert()s verify that the computation is correct. 5239 */ 5240 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5241 5242 /* Verify correct alignment of TK_ and OP_ constants 5243 */ 5244 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5245 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5246 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5247 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5248 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5249 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5250 assert( pExpr->op!=TK_GT || op==OP_Le ); 5251 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5252 5253 switch( pExpr->op ){ 5254 case TK_AND: 5255 case TK_OR: { 5256 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5257 if( pAlt!=pExpr ){ 5258 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5259 }else if( pExpr->op==TK_AND ){ 5260 testcase( jumpIfNull==0 ); 5261 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5262 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5263 }else{ 5264 int d2 = sqlite3VdbeMakeLabel(pParse); 5265 testcase( jumpIfNull==0 ); 5266 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5267 jumpIfNull^SQLITE_JUMPIFNULL); 5268 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5269 sqlite3VdbeResolveLabel(v, d2); 5270 } 5271 break; 5272 } 5273 case TK_NOT: { 5274 testcase( jumpIfNull==0 ); 5275 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5276 break; 5277 } 5278 case TK_TRUTH: { 5279 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5280 int isTrue; /* IS TRUE or IS NOT TRUE */ 5281 testcase( jumpIfNull==0 ); 5282 isNot = pExpr->op2==TK_ISNOT; 5283 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5284 testcase( isTrue && isNot ); 5285 testcase( !isTrue && isNot ); 5286 if( isTrue ^ isNot ){ 5287 /* IS TRUE and IS NOT FALSE */ 5288 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5289 isNot ? 0 : SQLITE_JUMPIFNULL); 5290 5291 }else{ 5292 /* IS FALSE and IS NOT TRUE */ 5293 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5294 isNot ? 0 : SQLITE_JUMPIFNULL); 5295 } 5296 break; 5297 } 5298 case TK_IS: 5299 case TK_ISNOT: 5300 testcase( pExpr->op==TK_IS ); 5301 testcase( pExpr->op==TK_ISNOT ); 5302 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5303 jumpIfNull = SQLITE_NULLEQ; 5304 /* no break */ deliberate_fall_through 5305 case TK_LT: 5306 case TK_LE: 5307 case TK_GT: 5308 case TK_GE: 5309 case TK_NE: 5310 case TK_EQ: { 5311 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5312 testcase( jumpIfNull==0 ); 5313 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5314 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5315 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5316 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5317 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5318 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5319 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5320 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5321 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5322 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5323 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5324 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5325 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5326 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5327 testcase( regFree1==0 ); 5328 testcase( regFree2==0 ); 5329 break; 5330 } 5331 case TK_ISNULL: 5332 case TK_NOTNULL: { 5333 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5334 sqlite3VdbeAddOp2(v, op, r1, dest); 5335 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5336 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5337 testcase( regFree1==0 ); 5338 break; 5339 } 5340 case TK_BETWEEN: { 5341 testcase( jumpIfNull==0 ); 5342 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5343 break; 5344 } 5345 #ifndef SQLITE_OMIT_SUBQUERY 5346 case TK_IN: { 5347 if( jumpIfNull ){ 5348 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5349 }else{ 5350 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5351 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5352 sqlite3VdbeResolveLabel(v, destIfNull); 5353 } 5354 break; 5355 } 5356 #endif 5357 default: { 5358 default_expr: 5359 if( ExprAlwaysFalse(pExpr) ){ 5360 sqlite3VdbeGoto(v, dest); 5361 }else if( ExprAlwaysTrue(pExpr) ){ 5362 /* no-op */ 5363 }else{ 5364 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5365 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5366 VdbeCoverage(v); 5367 testcase( regFree1==0 ); 5368 testcase( jumpIfNull==0 ); 5369 } 5370 break; 5371 } 5372 } 5373 sqlite3ReleaseTempReg(pParse, regFree1); 5374 sqlite3ReleaseTempReg(pParse, regFree2); 5375 } 5376 5377 /* 5378 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5379 ** code generation, and that copy is deleted after code generation. This 5380 ** ensures that the original pExpr is unchanged. 5381 */ 5382 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5383 sqlite3 *db = pParse->db; 5384 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5385 if( db->mallocFailed==0 ){ 5386 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5387 } 5388 sqlite3ExprDelete(db, pCopy); 5389 } 5390 5391 /* 5392 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5393 ** type of expression. 5394 ** 5395 ** If pExpr is a simple SQL value - an integer, real, string, blob 5396 ** or NULL value - then the VDBE currently being prepared is configured 5397 ** to re-prepare each time a new value is bound to variable pVar. 5398 ** 5399 ** Additionally, if pExpr is a simple SQL value and the value is the 5400 ** same as that currently bound to variable pVar, non-zero is returned. 5401 ** Otherwise, if the values are not the same or if pExpr is not a simple 5402 ** SQL value, zero is returned. 5403 */ 5404 static int exprCompareVariable( 5405 const Parse *pParse, 5406 const Expr *pVar, 5407 const Expr *pExpr 5408 ){ 5409 int res = 0; 5410 int iVar; 5411 sqlite3_value *pL, *pR = 0; 5412 5413 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5414 if( pR ){ 5415 iVar = pVar->iColumn; 5416 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5417 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5418 if( pL ){ 5419 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5420 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5421 } 5422 res = 0==sqlite3MemCompare(pL, pR, 0); 5423 } 5424 sqlite3ValueFree(pR); 5425 sqlite3ValueFree(pL); 5426 } 5427 5428 return res; 5429 } 5430 5431 /* 5432 ** Do a deep comparison of two expression trees. Return 0 if the two 5433 ** expressions are completely identical. Return 1 if they differ only 5434 ** by a COLLATE operator at the top level. Return 2 if there are differences 5435 ** other than the top-level COLLATE operator. 5436 ** 5437 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5438 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5439 ** 5440 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5441 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5442 ** 5443 ** Sometimes this routine will return 2 even if the two expressions 5444 ** really are equivalent. If we cannot prove that the expressions are 5445 ** identical, we return 2 just to be safe. So if this routine 5446 ** returns 2, then you do not really know for certain if the two 5447 ** expressions are the same. But if you get a 0 or 1 return, then you 5448 ** can be sure the expressions are the same. In the places where 5449 ** this routine is used, it does not hurt to get an extra 2 - that 5450 ** just might result in some slightly slower code. But returning 5451 ** an incorrect 0 or 1 could lead to a malfunction. 5452 ** 5453 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5454 ** pParse->pReprepare can be matched against literals in pB. The 5455 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5456 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5457 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5458 ** pB causes a return value of 2. 5459 */ 5460 int sqlite3ExprCompare( 5461 const Parse *pParse, 5462 const Expr *pA, 5463 const Expr *pB, 5464 int iTab 5465 ){ 5466 u32 combinedFlags; 5467 if( pA==0 || pB==0 ){ 5468 return pB==pA ? 0 : 2; 5469 } 5470 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5471 return 0; 5472 } 5473 combinedFlags = pA->flags | pB->flags; 5474 if( combinedFlags & EP_IntValue ){ 5475 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5476 return 0; 5477 } 5478 return 2; 5479 } 5480 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5481 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5482 return 1; 5483 } 5484 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5485 return 1; 5486 } 5487 return 2; 5488 } 5489 assert( !ExprHasProperty(pA, EP_IntValue) ); 5490 assert( !ExprHasProperty(pB, EP_IntValue) ); 5491 if( pA->u.zToken ){ 5492 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5493 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5494 #ifndef SQLITE_OMIT_WINDOWFUNC 5495 assert( pA->op==pB->op ); 5496 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5497 return 2; 5498 } 5499 if( ExprHasProperty(pA,EP_WinFunc) ){ 5500 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5501 return 2; 5502 } 5503 } 5504 #endif 5505 }else if( pA->op==TK_NULL ){ 5506 return 0; 5507 }else if( pA->op==TK_COLLATE ){ 5508 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5509 }else 5510 if( pB->u.zToken!=0 5511 && pA->op!=TK_COLUMN 5512 && pA->op!=TK_AGG_COLUMN 5513 && strcmp(pA->u.zToken,pB->u.zToken)!=0 5514 ){ 5515 return 2; 5516 } 5517 } 5518 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5519 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5520 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5521 if( combinedFlags & EP_xIsSelect ) return 2; 5522 if( (combinedFlags & EP_FixedCol)==0 5523 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5524 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5525 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5526 if( pA->op!=TK_STRING 5527 && pA->op!=TK_TRUEFALSE 5528 && ALWAYS((combinedFlags & EP_Reduced)==0) 5529 ){ 5530 if( pA->iColumn!=pB->iColumn ) return 2; 5531 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5532 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5533 return 2; 5534 } 5535 } 5536 } 5537 return 0; 5538 } 5539 5540 /* 5541 ** Compare two ExprList objects. Return 0 if they are identical, 1 5542 ** if they are certainly different, or 2 if it is not possible to 5543 ** determine if they are identical or not. 5544 ** 5545 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5546 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5547 ** 5548 ** This routine might return non-zero for equivalent ExprLists. The 5549 ** only consequence will be disabled optimizations. But this routine 5550 ** must never return 0 if the two ExprList objects are different, or 5551 ** a malfunction will result. 5552 ** 5553 ** Two NULL pointers are considered to be the same. But a NULL pointer 5554 ** always differs from a non-NULL pointer. 5555 */ 5556 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){ 5557 int i; 5558 if( pA==0 && pB==0 ) return 0; 5559 if( pA==0 || pB==0 ) return 1; 5560 if( pA->nExpr!=pB->nExpr ) return 1; 5561 for(i=0; i<pA->nExpr; i++){ 5562 int res; 5563 Expr *pExprA = pA->a[i].pExpr; 5564 Expr *pExprB = pB->a[i].pExpr; 5565 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5566 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5567 } 5568 return 0; 5569 } 5570 5571 /* 5572 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5573 ** are ignored. 5574 */ 5575 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){ 5576 return sqlite3ExprCompare(0, 5577 sqlite3ExprSkipCollateAndLikely(pA), 5578 sqlite3ExprSkipCollateAndLikely(pB), 5579 iTab); 5580 } 5581 5582 /* 5583 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5584 ** 5585 ** Or if seenNot is true, return non-zero if Expr p can only be 5586 ** non-NULL if pNN is not NULL 5587 */ 5588 static int exprImpliesNotNull( 5589 const Parse *pParse,/* Parsing context */ 5590 const Expr *p, /* The expression to be checked */ 5591 const Expr *pNN, /* The expression that is NOT NULL */ 5592 int iTab, /* Table being evaluated */ 5593 int seenNot /* Return true only if p can be any non-NULL value */ 5594 ){ 5595 assert( p ); 5596 assert( pNN ); 5597 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5598 return pNN->op!=TK_NULL; 5599 } 5600 switch( p->op ){ 5601 case TK_IN: { 5602 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5603 assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5604 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5605 } 5606 case TK_BETWEEN: { 5607 ExprList *pList; 5608 assert( ExprUseXList(p) ); 5609 pList = p->x.pList; 5610 assert( pList!=0 ); 5611 assert( pList->nExpr==2 ); 5612 if( seenNot ) return 0; 5613 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5614 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5615 ){ 5616 return 1; 5617 } 5618 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5619 } 5620 case TK_EQ: 5621 case TK_NE: 5622 case TK_LT: 5623 case TK_LE: 5624 case TK_GT: 5625 case TK_GE: 5626 case TK_PLUS: 5627 case TK_MINUS: 5628 case TK_BITOR: 5629 case TK_LSHIFT: 5630 case TK_RSHIFT: 5631 case TK_CONCAT: 5632 seenNot = 1; 5633 /* no break */ deliberate_fall_through 5634 case TK_STAR: 5635 case TK_REM: 5636 case TK_BITAND: 5637 case TK_SLASH: { 5638 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5639 /* no break */ deliberate_fall_through 5640 } 5641 case TK_SPAN: 5642 case TK_COLLATE: 5643 case TK_UPLUS: 5644 case TK_UMINUS: { 5645 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5646 } 5647 case TK_TRUTH: { 5648 if( seenNot ) return 0; 5649 if( p->op2!=TK_IS ) return 0; 5650 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5651 } 5652 case TK_BITNOT: 5653 case TK_NOT: { 5654 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5655 } 5656 } 5657 return 0; 5658 } 5659 5660 /* 5661 ** Return true if we can prove the pE2 will always be true if pE1 is 5662 ** true. Return false if we cannot complete the proof or if pE2 might 5663 ** be false. Examples: 5664 ** 5665 ** pE1: x==5 pE2: x==5 Result: true 5666 ** pE1: x>0 pE2: x==5 Result: false 5667 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5668 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5669 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5670 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5671 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5672 ** 5673 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5674 ** Expr.iTable<0 then assume a table number given by iTab. 5675 ** 5676 ** If pParse is not NULL, then the values of bound variables in pE1 are 5677 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5678 ** modified to record which bound variables are referenced. If pParse 5679 ** is NULL, then false will be returned if pE1 contains any bound variables. 5680 ** 5681 ** When in doubt, return false. Returning true might give a performance 5682 ** improvement. Returning false might cause a performance reduction, but 5683 ** it will always give the correct answer and is hence always safe. 5684 */ 5685 int sqlite3ExprImpliesExpr( 5686 const Parse *pParse, 5687 const Expr *pE1, 5688 const Expr *pE2, 5689 int iTab 5690 ){ 5691 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5692 return 1; 5693 } 5694 if( pE2->op==TK_OR 5695 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5696 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5697 ){ 5698 return 1; 5699 } 5700 if( pE2->op==TK_NOTNULL 5701 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5702 ){ 5703 return 1; 5704 } 5705 return 0; 5706 } 5707 5708 /* 5709 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5710 ** If the expression node requires that the table at pWalker->iCur 5711 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5712 ** 5713 ** This routine controls an optimization. False positives (setting 5714 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5715 ** (never setting pWalker->eCode) is a harmless missed optimization. 5716 */ 5717 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5718 testcase( pExpr->op==TK_AGG_COLUMN ); 5719 testcase( pExpr->op==TK_AGG_FUNCTION ); 5720 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5721 switch( pExpr->op ){ 5722 case TK_ISNOT: 5723 case TK_ISNULL: 5724 case TK_NOTNULL: 5725 case TK_IS: 5726 case TK_OR: 5727 case TK_VECTOR: 5728 case TK_CASE: 5729 case TK_IN: 5730 case TK_FUNCTION: 5731 case TK_TRUTH: 5732 testcase( pExpr->op==TK_ISNOT ); 5733 testcase( pExpr->op==TK_ISNULL ); 5734 testcase( pExpr->op==TK_NOTNULL ); 5735 testcase( pExpr->op==TK_IS ); 5736 testcase( pExpr->op==TK_OR ); 5737 testcase( pExpr->op==TK_VECTOR ); 5738 testcase( pExpr->op==TK_CASE ); 5739 testcase( pExpr->op==TK_IN ); 5740 testcase( pExpr->op==TK_FUNCTION ); 5741 testcase( pExpr->op==TK_TRUTH ); 5742 return WRC_Prune; 5743 case TK_COLUMN: 5744 if( pWalker->u.iCur==pExpr->iTable ){ 5745 pWalker->eCode = 1; 5746 return WRC_Abort; 5747 } 5748 return WRC_Prune; 5749 5750 case TK_AND: 5751 if( pWalker->eCode==0 ){ 5752 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5753 if( pWalker->eCode ){ 5754 pWalker->eCode = 0; 5755 sqlite3WalkExpr(pWalker, pExpr->pRight); 5756 } 5757 } 5758 return WRC_Prune; 5759 5760 case TK_BETWEEN: 5761 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5762 assert( pWalker->eCode ); 5763 return WRC_Abort; 5764 } 5765 return WRC_Prune; 5766 5767 /* Virtual tables are allowed to use constraints like x=NULL. So 5768 ** a term of the form x=y does not prove that y is not null if x 5769 ** is the column of a virtual table */ 5770 case TK_EQ: 5771 case TK_NE: 5772 case TK_LT: 5773 case TK_LE: 5774 case TK_GT: 5775 case TK_GE: { 5776 Expr *pLeft = pExpr->pLeft; 5777 Expr *pRight = pExpr->pRight; 5778 testcase( pExpr->op==TK_EQ ); 5779 testcase( pExpr->op==TK_NE ); 5780 testcase( pExpr->op==TK_LT ); 5781 testcase( pExpr->op==TK_LE ); 5782 testcase( pExpr->op==TK_GT ); 5783 testcase( pExpr->op==TK_GE ); 5784 /* The y.pTab=0 assignment in wherecode.c always happens after the 5785 ** impliesNotNullRow() test */ 5786 assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) ); 5787 assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) ); 5788 if( (pLeft->op==TK_COLUMN 5789 && pLeft->y.pTab!=0 5790 && IsVirtual(pLeft->y.pTab)) 5791 || (pRight->op==TK_COLUMN 5792 && pRight->y.pTab!=0 5793 && IsVirtual(pRight->y.pTab)) 5794 ){ 5795 return WRC_Prune; 5796 } 5797 /* no break */ deliberate_fall_through 5798 } 5799 default: 5800 return WRC_Continue; 5801 } 5802 } 5803 5804 /* 5805 ** Return true (non-zero) if expression p can only be true if at least 5806 ** one column of table iTab is non-null. In other words, return true 5807 ** if expression p will always be NULL or false if every column of iTab 5808 ** is NULL. 5809 ** 5810 ** False negatives are acceptable. In other words, it is ok to return 5811 ** zero even if expression p will never be true of every column of iTab 5812 ** is NULL. A false negative is merely a missed optimization opportunity. 5813 ** 5814 ** False positives are not allowed, however. A false positive may result 5815 ** in an incorrect answer. 5816 ** 5817 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5818 ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis. 5819 ** 5820 ** This routine is used to check if a LEFT JOIN can be converted into 5821 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5822 ** clause requires that some column of the right table of the LEFT JOIN 5823 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5824 ** ordinary join. 5825 */ 5826 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5827 Walker w; 5828 p = sqlite3ExprSkipCollateAndLikely(p); 5829 if( p==0 ) return 0; 5830 if( p->op==TK_NOTNULL ){ 5831 p = p->pLeft; 5832 }else{ 5833 while( p->op==TK_AND ){ 5834 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5835 p = p->pRight; 5836 } 5837 } 5838 w.xExprCallback = impliesNotNullRow; 5839 w.xSelectCallback = 0; 5840 w.xSelectCallback2 = 0; 5841 w.eCode = 0; 5842 w.u.iCur = iTab; 5843 sqlite3WalkExpr(&w, p); 5844 return w.eCode; 5845 } 5846 5847 /* 5848 ** An instance of the following structure is used by the tree walker 5849 ** to determine if an expression can be evaluated by reference to the 5850 ** index only, without having to do a search for the corresponding 5851 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5852 ** is the cursor for the table. 5853 */ 5854 struct IdxCover { 5855 Index *pIdx; /* The index to be tested for coverage */ 5856 int iCur; /* Cursor number for the table corresponding to the index */ 5857 }; 5858 5859 /* 5860 ** Check to see if there are references to columns in table 5861 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5862 ** pWalker->u.pIdxCover->pIdx. 5863 */ 5864 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5865 if( pExpr->op==TK_COLUMN 5866 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5867 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5868 ){ 5869 pWalker->eCode = 1; 5870 return WRC_Abort; 5871 } 5872 return WRC_Continue; 5873 } 5874 5875 /* 5876 ** Determine if an index pIdx on table with cursor iCur contains will 5877 ** the expression pExpr. Return true if the index does cover the 5878 ** expression and false if the pExpr expression references table columns 5879 ** that are not found in the index pIdx. 5880 ** 5881 ** An index covering an expression means that the expression can be 5882 ** evaluated using only the index and without having to lookup the 5883 ** corresponding table entry. 5884 */ 5885 int sqlite3ExprCoveredByIndex( 5886 Expr *pExpr, /* The index to be tested */ 5887 int iCur, /* The cursor number for the corresponding table */ 5888 Index *pIdx /* The index that might be used for coverage */ 5889 ){ 5890 Walker w; 5891 struct IdxCover xcov; 5892 memset(&w, 0, sizeof(w)); 5893 xcov.iCur = iCur; 5894 xcov.pIdx = pIdx; 5895 w.xExprCallback = exprIdxCover; 5896 w.u.pIdxCover = &xcov; 5897 sqlite3WalkExpr(&w, pExpr); 5898 return !w.eCode; 5899 } 5900 5901 5902 /* Structure used to pass information throught the Walker in order to 5903 ** implement sqlite3ReferencesSrcList(). 5904 */ 5905 struct RefSrcList { 5906 sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */ 5907 SrcList *pRef; /* Looking for references to these tables */ 5908 i64 nExclude; /* Number of tables to exclude from the search */ 5909 int *aiExclude; /* Cursor IDs for tables to exclude from the search */ 5910 }; 5911 5912 /* 5913 ** Walker SELECT callbacks for sqlite3ReferencesSrcList(). 5914 ** 5915 ** When entering a new subquery on the pExpr argument, add all FROM clause 5916 ** entries for that subquery to the exclude list. 5917 ** 5918 ** When leaving the subquery, remove those entries from the exclude list. 5919 */ 5920 static int selectRefEnter(Walker *pWalker, Select *pSelect){ 5921 struct RefSrcList *p = pWalker->u.pRefSrcList; 5922 SrcList *pSrc = pSelect->pSrc; 5923 i64 i, j; 5924 int *piNew; 5925 if( pSrc->nSrc==0 ) return WRC_Continue; 5926 j = p->nExclude; 5927 p->nExclude += pSrc->nSrc; 5928 piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int)); 5929 if( piNew==0 ){ 5930 p->nExclude = 0; 5931 return WRC_Abort; 5932 }else{ 5933 p->aiExclude = piNew; 5934 } 5935 for(i=0; i<pSrc->nSrc; i++, j++){ 5936 p->aiExclude[j] = pSrc->a[i].iCursor; 5937 } 5938 return WRC_Continue; 5939 } 5940 static void selectRefLeave(Walker *pWalker, Select *pSelect){ 5941 struct RefSrcList *p = pWalker->u.pRefSrcList; 5942 SrcList *pSrc = pSelect->pSrc; 5943 if( p->nExclude ){ 5944 assert( p->nExclude>=pSrc->nSrc ); 5945 p->nExclude -= pSrc->nSrc; 5946 } 5947 } 5948 5949 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList(). 5950 ** 5951 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any 5952 ** of the tables shown in RefSrcList.pRef. 5953 ** 5954 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a 5955 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude. 5956 */ 5957 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){ 5958 if( pExpr->op==TK_COLUMN 5959 || pExpr->op==TK_AGG_COLUMN 5960 ){ 5961 int i; 5962 struct RefSrcList *p = pWalker->u.pRefSrcList; 5963 SrcList *pSrc = p->pRef; 5964 int nSrc = pSrc ? pSrc->nSrc : 0; 5965 for(i=0; i<nSrc; i++){ 5966 if( pExpr->iTable==pSrc->a[i].iCursor ){ 5967 pWalker->eCode |= 1; 5968 return WRC_Continue; 5969 } 5970 } 5971 for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){} 5972 if( i>=p->nExclude ){ 5973 pWalker->eCode |= 2; 5974 } 5975 } 5976 return WRC_Continue; 5977 } 5978 5979 /* 5980 ** Check to see if pExpr references any tables in pSrcList. 5981 ** Possible return values: 5982 ** 5983 ** 1 pExpr does references a table in pSrcList. 5984 ** 5985 ** 0 pExpr references some table that is not defined in either 5986 ** pSrcList or in subqueries of pExpr itself. 5987 ** 5988 ** -1 pExpr only references no tables at all, or it only 5989 ** references tables defined in subqueries of pExpr itself. 5990 ** 5991 ** As currently used, pExpr is always an aggregate function call. That 5992 ** fact is exploited for efficiency. 5993 */ 5994 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){ 5995 Walker w; 5996 struct RefSrcList x; 5997 memset(&w, 0, sizeof(w)); 5998 memset(&x, 0, sizeof(x)); 5999 w.xExprCallback = exprRefToSrcList; 6000 w.xSelectCallback = selectRefEnter; 6001 w.xSelectCallback2 = selectRefLeave; 6002 w.u.pRefSrcList = &x; 6003 x.db = pParse->db; 6004 x.pRef = pSrcList; 6005 assert( pExpr->op==TK_AGG_FUNCTION ); 6006 assert( ExprUseXList(pExpr) ); 6007 sqlite3WalkExprList(&w, pExpr->x.pList); 6008 #ifndef SQLITE_OMIT_WINDOWFUNC 6009 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6010 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 6011 } 6012 #endif 6013 sqlite3DbFree(pParse->db, x.aiExclude); 6014 if( w.eCode & 0x01 ){ 6015 return 1; 6016 }else if( w.eCode ){ 6017 return 0; 6018 }else{ 6019 return -1; 6020 } 6021 } 6022 6023 /* 6024 ** This is a Walker expression node callback. 6025 ** 6026 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 6027 ** object that is referenced does not refer directly to the Expr. If 6028 ** it does, make a copy. This is done because the pExpr argument is 6029 ** subject to change. 6030 ** 6031 ** The copy is stored on pParse->pConstExpr with a register number of 0. 6032 ** This will cause the expression to be deleted automatically when the 6033 ** Parse object is destroyed, but the zero register number means that it 6034 ** will not generate any code in the preamble. 6035 */ 6036 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 6037 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 6038 && pExpr->pAggInfo!=0 6039 ){ 6040 AggInfo *pAggInfo = pExpr->pAggInfo; 6041 int iAgg = pExpr->iAgg; 6042 Parse *pParse = pWalker->pParse; 6043 sqlite3 *db = pParse->db; 6044 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 6045 if( pExpr->op==TK_AGG_COLUMN ){ 6046 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 6047 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 6048 pExpr = sqlite3ExprDup(db, pExpr, 0); 6049 if( pExpr ){ 6050 pAggInfo->aCol[iAgg].pCExpr = pExpr; 6051 sqlite3ExprDeferredDelete(pParse, pExpr); 6052 } 6053 } 6054 }else{ 6055 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 6056 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 6057 pExpr = sqlite3ExprDup(db, pExpr, 0); 6058 if( pExpr ){ 6059 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 6060 sqlite3ExprDeferredDelete(pParse, pExpr); 6061 } 6062 } 6063 } 6064 } 6065 return WRC_Continue; 6066 } 6067 6068 /* 6069 ** Initialize a Walker object so that will persist AggInfo entries referenced 6070 ** by the tree that is walked. 6071 */ 6072 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 6073 memset(pWalker, 0, sizeof(*pWalker)); 6074 pWalker->pParse = pParse; 6075 pWalker->xExprCallback = agginfoPersistExprCb; 6076 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 6077 } 6078 6079 /* 6080 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 6081 ** the new element. Return a negative number if malloc fails. 6082 */ 6083 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 6084 int i; 6085 pInfo->aCol = sqlite3ArrayAllocate( 6086 db, 6087 pInfo->aCol, 6088 sizeof(pInfo->aCol[0]), 6089 &pInfo->nColumn, 6090 &i 6091 ); 6092 return i; 6093 } 6094 6095 /* 6096 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 6097 ** the new element. Return a negative number if malloc fails. 6098 */ 6099 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 6100 int i; 6101 pInfo->aFunc = sqlite3ArrayAllocate( 6102 db, 6103 pInfo->aFunc, 6104 sizeof(pInfo->aFunc[0]), 6105 &pInfo->nFunc, 6106 &i 6107 ); 6108 return i; 6109 } 6110 6111 /* 6112 ** This is the xExprCallback for a tree walker. It is used to 6113 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 6114 ** for additional information. 6115 */ 6116 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 6117 int i; 6118 NameContext *pNC = pWalker->u.pNC; 6119 Parse *pParse = pNC->pParse; 6120 SrcList *pSrcList = pNC->pSrcList; 6121 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 6122 6123 assert( pNC->ncFlags & NC_UAggInfo ); 6124 switch( pExpr->op ){ 6125 case TK_AGG_COLUMN: 6126 case TK_COLUMN: { 6127 testcase( pExpr->op==TK_AGG_COLUMN ); 6128 testcase( pExpr->op==TK_COLUMN ); 6129 /* Check to see if the column is in one of the tables in the FROM 6130 ** clause of the aggregate query */ 6131 if( ALWAYS(pSrcList!=0) ){ 6132 SrcItem *pItem = pSrcList->a; 6133 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 6134 struct AggInfo_col *pCol; 6135 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6136 if( pExpr->iTable==pItem->iCursor ){ 6137 /* If we reach this point, it means that pExpr refers to a table 6138 ** that is in the FROM clause of the aggregate query. 6139 ** 6140 ** Make an entry for the column in pAggInfo->aCol[] if there 6141 ** is not an entry there already. 6142 */ 6143 int k; 6144 pCol = pAggInfo->aCol; 6145 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 6146 if( pCol->iTable==pExpr->iTable && 6147 pCol->iColumn==pExpr->iColumn ){ 6148 break; 6149 } 6150 } 6151 if( (k>=pAggInfo->nColumn) 6152 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 6153 ){ 6154 pCol = &pAggInfo->aCol[k]; 6155 assert( ExprUseYTab(pExpr) ); 6156 pCol->pTab = pExpr->y.pTab; 6157 pCol->iTable = pExpr->iTable; 6158 pCol->iColumn = pExpr->iColumn; 6159 pCol->iMem = ++pParse->nMem; 6160 pCol->iSorterColumn = -1; 6161 pCol->pCExpr = pExpr; 6162 if( pAggInfo->pGroupBy ){ 6163 int j, n; 6164 ExprList *pGB = pAggInfo->pGroupBy; 6165 struct ExprList_item *pTerm = pGB->a; 6166 n = pGB->nExpr; 6167 for(j=0; j<n; j++, pTerm++){ 6168 Expr *pE = pTerm->pExpr; 6169 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 6170 pE->iColumn==pExpr->iColumn ){ 6171 pCol->iSorterColumn = j; 6172 break; 6173 } 6174 } 6175 } 6176 if( pCol->iSorterColumn<0 ){ 6177 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 6178 } 6179 } 6180 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 6181 ** because it was there before or because we just created it). 6182 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 6183 ** pAggInfo->aCol[] entry. 6184 */ 6185 ExprSetVVAProperty(pExpr, EP_NoReduce); 6186 pExpr->pAggInfo = pAggInfo; 6187 pExpr->op = TK_AGG_COLUMN; 6188 pExpr->iAgg = (i16)k; 6189 break; 6190 } /* endif pExpr->iTable==pItem->iCursor */ 6191 } /* end loop over pSrcList */ 6192 } 6193 return WRC_Prune; 6194 } 6195 case TK_AGG_FUNCTION: { 6196 if( (pNC->ncFlags & NC_InAggFunc)==0 6197 && pWalker->walkerDepth==pExpr->op2 6198 ){ 6199 /* Check to see if pExpr is a duplicate of another aggregate 6200 ** function that is already in the pAggInfo structure 6201 */ 6202 struct AggInfo_func *pItem = pAggInfo->aFunc; 6203 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 6204 if( pItem->pFExpr==pExpr ) break; 6205 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 6206 break; 6207 } 6208 } 6209 if( i>=pAggInfo->nFunc ){ 6210 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 6211 */ 6212 u8 enc = ENC(pParse->db); 6213 i = addAggInfoFunc(pParse->db, pAggInfo); 6214 if( i>=0 ){ 6215 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6216 pItem = &pAggInfo->aFunc[i]; 6217 pItem->pFExpr = pExpr; 6218 pItem->iMem = ++pParse->nMem; 6219 assert( ExprUseUToken(pExpr) ); 6220 pItem->pFunc = sqlite3FindFunction(pParse->db, 6221 pExpr->u.zToken, 6222 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 6223 if( pExpr->flags & EP_Distinct ){ 6224 pItem->iDistinct = pParse->nTab++; 6225 }else{ 6226 pItem->iDistinct = -1; 6227 } 6228 } 6229 } 6230 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 6231 */ 6232 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6233 ExprSetVVAProperty(pExpr, EP_NoReduce); 6234 pExpr->iAgg = (i16)i; 6235 pExpr->pAggInfo = pAggInfo; 6236 return WRC_Prune; 6237 }else{ 6238 return WRC_Continue; 6239 } 6240 } 6241 } 6242 return WRC_Continue; 6243 } 6244 6245 /* 6246 ** Analyze the pExpr expression looking for aggregate functions and 6247 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 6248 ** points to. Additional entries are made on the AggInfo object as 6249 ** necessary. 6250 ** 6251 ** This routine should only be called after the expression has been 6252 ** analyzed by sqlite3ResolveExprNames(). 6253 */ 6254 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 6255 Walker w; 6256 w.xExprCallback = analyzeAggregate; 6257 w.xSelectCallback = sqlite3WalkerDepthIncrease; 6258 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 6259 w.walkerDepth = 0; 6260 w.u.pNC = pNC; 6261 w.pParse = 0; 6262 assert( pNC->pSrcList!=0 ); 6263 sqlite3WalkExpr(&w, pExpr); 6264 } 6265 6266 /* 6267 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6268 ** expression list. Return the number of errors. 6269 ** 6270 ** If an error is found, the analysis is cut short. 6271 */ 6272 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6273 struct ExprList_item *pItem; 6274 int i; 6275 if( pList ){ 6276 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6277 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6278 } 6279 } 6280 } 6281 6282 /* 6283 ** Allocate a single new register for use to hold some intermediate result. 6284 */ 6285 int sqlite3GetTempReg(Parse *pParse){ 6286 if( pParse->nTempReg==0 ){ 6287 return ++pParse->nMem; 6288 } 6289 return pParse->aTempReg[--pParse->nTempReg]; 6290 } 6291 6292 /* 6293 ** Deallocate a register, making available for reuse for some other 6294 ** purpose. 6295 */ 6296 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6297 if( iReg ){ 6298 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6299 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6300 pParse->aTempReg[pParse->nTempReg++] = iReg; 6301 } 6302 } 6303 } 6304 6305 /* 6306 ** Allocate or deallocate a block of nReg consecutive registers. 6307 */ 6308 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6309 int i, n; 6310 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6311 i = pParse->iRangeReg; 6312 n = pParse->nRangeReg; 6313 if( nReg<=n ){ 6314 pParse->iRangeReg += nReg; 6315 pParse->nRangeReg -= nReg; 6316 }else{ 6317 i = pParse->nMem+1; 6318 pParse->nMem += nReg; 6319 } 6320 return i; 6321 } 6322 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6323 if( nReg==1 ){ 6324 sqlite3ReleaseTempReg(pParse, iReg); 6325 return; 6326 } 6327 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6328 if( nReg>pParse->nRangeReg ){ 6329 pParse->nRangeReg = nReg; 6330 pParse->iRangeReg = iReg; 6331 } 6332 } 6333 6334 /* 6335 ** Mark all temporary registers as being unavailable for reuse. 6336 ** 6337 ** Always invoke this procedure after coding a subroutine or co-routine 6338 ** that might be invoked from other parts of the code, to ensure that 6339 ** the sub/co-routine does not use registers in common with the code that 6340 ** invokes the sub/co-routine. 6341 */ 6342 void sqlite3ClearTempRegCache(Parse *pParse){ 6343 pParse->nTempReg = 0; 6344 pParse->nRangeReg = 0; 6345 } 6346 6347 /* 6348 ** Validate that no temporary register falls within the range of 6349 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6350 ** statements. 6351 */ 6352 #ifdef SQLITE_DEBUG 6353 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6354 int i; 6355 if( pParse->nRangeReg>0 6356 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6357 && pParse->iRangeReg <= iLast 6358 ){ 6359 return 0; 6360 } 6361 for(i=0; i<pParse->nTempReg; i++){ 6362 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6363 return 0; 6364 } 6365 } 6366 return 1; 6367 } 6368 #endif /* SQLITE_DEBUG */ 6369