1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 pExpr = sqlite3ExprSkipCollate(pExpr); 48 if( pExpr->flags & EP_Generic ) return 0; 49 op = pExpr->op; 50 if( op==TK_SELECT ){ 51 assert( pExpr->flags&EP_xIsSelect ); 52 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 53 } 54 if( op==TK_REGISTER ) op = pExpr->op2; 55 #ifndef SQLITE_OMIT_CAST 56 if( op==TK_CAST ){ 57 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 58 return sqlite3AffinityType(pExpr->u.zToken, 0); 59 } 60 #endif 61 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){ 62 return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn); 63 } 64 if( op==TK_SELECT_COLUMN ){ 65 assert( pExpr->pLeft->flags&EP_xIsSelect ); 66 return sqlite3ExprAffinity( 67 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 68 ); 69 } 70 return pExpr->affinity; 71 } 72 73 /* 74 ** Set the collating sequence for expression pExpr to be the collating 75 ** sequence named by pToken. Return a pointer to a new Expr node that 76 ** implements the COLLATE operator. 77 ** 78 ** If a memory allocation error occurs, that fact is recorded in pParse->db 79 ** and the pExpr parameter is returned unchanged. 80 */ 81 Expr *sqlite3ExprAddCollateToken( 82 Parse *pParse, /* Parsing context */ 83 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 84 const Token *pCollName, /* Name of collating sequence */ 85 int dequote /* True to dequote pCollName */ 86 ){ 87 if( pCollName->n>0 ){ 88 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 89 if( pNew ){ 90 pNew->pLeft = pExpr; 91 pNew->flags |= EP_Collate|EP_Skip; 92 pExpr = pNew; 93 } 94 } 95 return pExpr; 96 } 97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 98 Token s; 99 assert( zC!=0 ); 100 sqlite3TokenInit(&s, (char*)zC); 101 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 102 } 103 104 /* 105 ** Skip over any TK_COLLATE operators and any unlikely() 106 ** or likelihood() function at the root of an expression. 107 */ 108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 109 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 110 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 111 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 112 assert( pExpr->x.pList->nExpr>0 ); 113 assert( pExpr->op==TK_FUNCTION ); 114 pExpr = pExpr->x.pList->a[0].pExpr; 115 }else{ 116 assert( pExpr->op==TK_COLLATE ); 117 pExpr = pExpr->pLeft; 118 } 119 } 120 return pExpr; 121 } 122 123 /* 124 ** Return the collation sequence for the expression pExpr. If 125 ** there is no defined collating sequence, return NULL. 126 ** 127 ** The collating sequence might be determined by a COLLATE operator 128 ** or by the presence of a column with a defined collating sequence. 129 ** COLLATE operators take first precedence. Left operands take 130 ** precedence over right operands. 131 */ 132 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 133 sqlite3 *db = pParse->db; 134 CollSeq *pColl = 0; 135 Expr *p = pExpr; 136 while( p ){ 137 int op = p->op; 138 if( p->flags & EP_Generic ) break; 139 if( op==TK_CAST || op==TK_UPLUS ){ 140 p = p->pLeft; 141 continue; 142 } 143 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 144 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 145 break; 146 } 147 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 148 || op==TK_REGISTER || op==TK_TRIGGER) 149 && p->pTab!=0 150 ){ 151 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 152 ** a TK_COLUMN but was previously evaluated and cached in a register */ 153 int j = p->iColumn; 154 if( j>=0 ){ 155 const char *zColl = p->pTab->aCol[j].zColl; 156 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 157 } 158 break; 159 } 160 if( p->flags & EP_Collate ){ 161 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 162 p = p->pLeft; 163 }else{ 164 Expr *pNext = p->pRight; 165 /* The Expr.x union is never used at the same time as Expr.pRight */ 166 assert( p->x.pList==0 || p->pRight==0 ); 167 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 168 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 169 ** least one EP_Collate. Thus the following two ALWAYS. */ 170 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 171 int i; 172 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 173 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 174 pNext = p->x.pList->a[i].pExpr; 175 break; 176 } 177 } 178 } 179 p = pNext; 180 } 181 }else{ 182 break; 183 } 184 } 185 if( sqlite3CheckCollSeq(pParse, pColl) ){ 186 pColl = 0; 187 } 188 return pColl; 189 } 190 191 /* 192 ** pExpr is an operand of a comparison operator. aff2 is the 193 ** type affinity of the other operand. This routine returns the 194 ** type affinity that should be used for the comparison operator. 195 */ 196 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 197 char aff1 = sqlite3ExprAffinity(pExpr); 198 if( aff1 && aff2 ){ 199 /* Both sides of the comparison are columns. If one has numeric 200 ** affinity, use that. Otherwise use no affinity. 201 */ 202 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 203 return SQLITE_AFF_NUMERIC; 204 }else{ 205 return SQLITE_AFF_BLOB; 206 } 207 }else if( !aff1 && !aff2 ){ 208 /* Neither side of the comparison is a column. Compare the 209 ** results directly. 210 */ 211 return SQLITE_AFF_BLOB; 212 }else{ 213 /* One side is a column, the other is not. Use the columns affinity. */ 214 assert( aff1==0 || aff2==0 ); 215 return (aff1 + aff2); 216 } 217 } 218 219 /* 220 ** pExpr is a comparison operator. Return the type affinity that should 221 ** be applied to both operands prior to doing the comparison. 222 */ 223 static char comparisonAffinity(Expr *pExpr){ 224 char aff; 225 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 226 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 227 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 228 assert( pExpr->pLeft ); 229 aff = sqlite3ExprAffinity(pExpr->pLeft); 230 if( pExpr->pRight ){ 231 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 232 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 233 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 234 }else if( aff==0 ){ 235 aff = SQLITE_AFF_BLOB; 236 } 237 return aff; 238 } 239 240 /* 241 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 242 ** idx_affinity is the affinity of an indexed column. Return true 243 ** if the index with affinity idx_affinity may be used to implement 244 ** the comparison in pExpr. 245 */ 246 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 247 char aff = comparisonAffinity(pExpr); 248 switch( aff ){ 249 case SQLITE_AFF_BLOB: 250 return 1; 251 case SQLITE_AFF_TEXT: 252 return idx_affinity==SQLITE_AFF_TEXT; 253 default: 254 return sqlite3IsNumericAffinity(idx_affinity); 255 } 256 } 257 258 /* 259 ** Return the P5 value that should be used for a binary comparison 260 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 261 */ 262 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 263 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 264 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 265 return aff; 266 } 267 268 /* 269 ** Return a pointer to the collation sequence that should be used by 270 ** a binary comparison operator comparing pLeft and pRight. 271 ** 272 ** If the left hand expression has a collating sequence type, then it is 273 ** used. Otherwise the collation sequence for the right hand expression 274 ** is used, or the default (BINARY) if neither expression has a collating 275 ** type. 276 ** 277 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 278 ** it is not considered. 279 */ 280 CollSeq *sqlite3BinaryCompareCollSeq( 281 Parse *pParse, 282 Expr *pLeft, 283 Expr *pRight 284 ){ 285 CollSeq *pColl; 286 assert( pLeft ); 287 if( pLeft->flags & EP_Collate ){ 288 pColl = sqlite3ExprCollSeq(pParse, pLeft); 289 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 290 pColl = sqlite3ExprCollSeq(pParse, pRight); 291 }else{ 292 pColl = sqlite3ExprCollSeq(pParse, pLeft); 293 if( !pColl ){ 294 pColl = sqlite3ExprCollSeq(pParse, pRight); 295 } 296 } 297 return pColl; 298 } 299 300 /* 301 ** Generate code for a comparison operator. 302 */ 303 static int codeCompare( 304 Parse *pParse, /* The parsing (and code generating) context */ 305 Expr *pLeft, /* The left operand */ 306 Expr *pRight, /* The right operand */ 307 int opcode, /* The comparison opcode */ 308 int in1, int in2, /* Register holding operands */ 309 int dest, /* Jump here if true. */ 310 int jumpIfNull /* If true, jump if either operand is NULL */ 311 ){ 312 int p5; 313 int addr; 314 CollSeq *p4; 315 316 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 317 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 318 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 319 (void*)p4, P4_COLLSEQ); 320 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 321 return addr; 322 } 323 324 /* 325 ** Return true if expression pExpr is a vector, or false otherwise. 326 ** 327 ** A vector is defined as any expression that results in two or more 328 ** columns of result. Every TK_VECTOR node is an vector because the 329 ** parser will not generate a TK_VECTOR with fewer than two entries. 330 ** But a TK_SELECT might be either a vector or a scalar. It is only 331 ** considered a vector if it has two or more result columns. 332 */ 333 int sqlite3ExprIsVector(Expr *pExpr){ 334 return sqlite3ExprVectorSize(pExpr)>1; 335 } 336 337 /* 338 ** If the expression passed as the only argument is of type TK_VECTOR 339 ** return the number of expressions in the vector. Or, if the expression 340 ** is a sub-select, return the number of columns in the sub-select. For 341 ** any other type of expression, return 1. 342 */ 343 int sqlite3ExprVectorSize(Expr *pExpr){ 344 u8 op = pExpr->op; 345 if( op==TK_REGISTER ) op = pExpr->op2; 346 if( op==TK_VECTOR ){ 347 return pExpr->x.pList->nExpr; 348 }else if( op==TK_SELECT ){ 349 return pExpr->x.pSelect->pEList->nExpr; 350 }else{ 351 return 1; 352 } 353 } 354 355 /* 356 ** Return a pointer to a subexpression of pVector that is the i-th 357 ** column of the vector (numbered starting with 0). The caller must 358 ** ensure that i is within range. 359 ** 360 ** If pVector is really a scalar (and "scalar" here includes subqueries 361 ** that return a single column!) then return pVector unmodified. 362 ** 363 ** pVector retains ownership of the returned subexpression. 364 ** 365 ** If the vector is a (SELECT ...) then the expression returned is 366 ** just the expression for the i-th term of the result set, and may 367 ** not be ready for evaluation because the table cursor has not yet 368 ** been positioned. 369 */ 370 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 371 assert( i<sqlite3ExprVectorSize(pVector) ); 372 if( sqlite3ExprIsVector(pVector) ){ 373 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 374 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 375 return pVector->x.pSelect->pEList->a[i].pExpr; 376 }else{ 377 return pVector->x.pList->a[i].pExpr; 378 } 379 } 380 return pVector; 381 } 382 383 /* 384 ** Compute and return a new Expr object which when passed to 385 ** sqlite3ExprCode() will generate all necessary code to compute 386 ** the iField-th column of the vector expression pVector. 387 ** 388 ** It is ok for pVector to be a scalar (as long as iField==0). 389 ** In that case, this routine works like sqlite3ExprDup(). 390 ** 391 ** The caller owns the returned Expr object and is responsible for 392 ** ensuring that the returned value eventually gets freed. 393 ** 394 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 395 ** then the returned object will reference pVector and so pVector must remain 396 ** valid for the life of the returned object. If pVector is a TK_VECTOR 397 ** or a scalar expression, then it can be deleted as soon as this routine 398 ** returns. 399 ** 400 ** A trick to cause a TK_SELECT pVector to be deleted together with 401 ** the returned Expr object is to attach the pVector to the pRight field 402 ** of the returned TK_SELECT_COLUMN Expr object. 403 */ 404 Expr *sqlite3ExprForVectorField( 405 Parse *pParse, /* Parsing context */ 406 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 407 int iField /* Which column of the vector to return */ 408 ){ 409 Expr *pRet; 410 if( pVector->op==TK_SELECT ){ 411 assert( pVector->flags & EP_xIsSelect ); 412 /* The TK_SELECT_COLUMN Expr node: 413 ** 414 ** pLeft: pVector containing TK_SELECT. Not deleted. 415 ** pRight: not used. But recursively deleted. 416 ** iColumn: Index of a column in pVector 417 ** iTable: 0 or the number of columns on the LHS of an assignment 418 ** pLeft->iTable: First in an array of register holding result, or 0 419 ** if the result is not yet computed. 420 ** 421 ** sqlite3ExprDelete() specifically skips the recursive delete of 422 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 423 ** can be attached to pRight to cause this node to take ownership of 424 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 425 ** with the same pLeft pointer to the pVector, but only one of them 426 ** will own the pVector. 427 */ 428 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 429 if( pRet ){ 430 pRet->iColumn = iField; 431 pRet->pLeft = pVector; 432 } 433 assert( pRet==0 || pRet->iTable==0 ); 434 }else{ 435 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 436 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 437 } 438 return pRet; 439 } 440 441 /* 442 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 443 ** it. Return the register in which the result is stored (or, if the 444 ** sub-select returns more than one column, the first in an array 445 ** of registers in which the result is stored). 446 ** 447 ** If pExpr is not a TK_SELECT expression, return 0. 448 */ 449 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 450 int reg = 0; 451 #ifndef SQLITE_OMIT_SUBQUERY 452 if( pExpr->op==TK_SELECT ){ 453 reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 454 } 455 #endif 456 return reg; 457 } 458 459 /* 460 ** Argument pVector points to a vector expression - either a TK_VECTOR 461 ** or TK_SELECT that returns more than one column. This function returns 462 ** the register number of a register that contains the value of 463 ** element iField of the vector. 464 ** 465 ** If pVector is a TK_SELECT expression, then code for it must have 466 ** already been generated using the exprCodeSubselect() routine. In this 467 ** case parameter regSelect should be the first in an array of registers 468 ** containing the results of the sub-select. 469 ** 470 ** If pVector is of type TK_VECTOR, then code for the requested field 471 ** is generated. In this case (*pRegFree) may be set to the number of 472 ** a temporary register to be freed by the caller before returning. 473 ** 474 ** Before returning, output parameter (*ppExpr) is set to point to the 475 ** Expr object corresponding to element iElem of the vector. 476 */ 477 static int exprVectorRegister( 478 Parse *pParse, /* Parse context */ 479 Expr *pVector, /* Vector to extract element from */ 480 int iField, /* Field to extract from pVector */ 481 int regSelect, /* First in array of registers */ 482 Expr **ppExpr, /* OUT: Expression element */ 483 int *pRegFree /* OUT: Temp register to free */ 484 ){ 485 u8 op = pVector->op; 486 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 487 if( op==TK_REGISTER ){ 488 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 489 return pVector->iTable+iField; 490 } 491 if( op==TK_SELECT ){ 492 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 493 return regSelect+iField; 494 } 495 *ppExpr = pVector->x.pList->a[iField].pExpr; 496 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 497 } 498 499 /* 500 ** Expression pExpr is a comparison between two vector values. Compute 501 ** the result of the comparison (1, 0, or NULL) and write that 502 ** result into register dest. 503 ** 504 ** The caller must satisfy the following preconditions: 505 ** 506 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 507 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 508 ** otherwise: op==pExpr->op and p5==0 509 */ 510 static void codeVectorCompare( 511 Parse *pParse, /* Code generator context */ 512 Expr *pExpr, /* The comparison operation */ 513 int dest, /* Write results into this register */ 514 u8 op, /* Comparison operator */ 515 u8 p5 /* SQLITE_NULLEQ or zero */ 516 ){ 517 Vdbe *v = pParse->pVdbe; 518 Expr *pLeft = pExpr->pLeft; 519 Expr *pRight = pExpr->pRight; 520 int nLeft = sqlite3ExprVectorSize(pLeft); 521 int i; 522 int regLeft = 0; 523 int regRight = 0; 524 u8 opx = op; 525 int addrDone = sqlite3VdbeMakeLabel(v); 526 527 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 528 sqlite3ErrorMsg(pParse, "row value misused"); 529 return; 530 } 531 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 532 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 533 || pExpr->op==TK_LT || pExpr->op==TK_GT 534 || pExpr->op==TK_LE || pExpr->op==TK_GE 535 ); 536 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 537 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 538 assert( p5==0 || pExpr->op!=op ); 539 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 540 541 p5 |= SQLITE_STOREP2; 542 if( opx==TK_LE ) opx = TK_LT; 543 if( opx==TK_GE ) opx = TK_GT; 544 545 regLeft = exprCodeSubselect(pParse, pLeft); 546 regRight = exprCodeSubselect(pParse, pRight); 547 548 for(i=0; 1 /*Loop exits by "break"*/; i++){ 549 int regFree1 = 0, regFree2 = 0; 550 Expr *pL, *pR; 551 int r1, r2; 552 assert( i>=0 && i<nLeft ); 553 if( i>0 ) sqlite3ExprCachePush(pParse); 554 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 555 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 556 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); 557 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 558 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 559 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 560 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 561 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 562 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 563 sqlite3ReleaseTempReg(pParse, regFree1); 564 sqlite3ReleaseTempReg(pParse, regFree2); 565 if( i>0 ) sqlite3ExprCachePop(pParse); 566 if( i==nLeft-1 ){ 567 break; 568 } 569 if( opx==TK_EQ ){ 570 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 571 p5 |= SQLITE_KEEPNULL; 572 }else if( opx==TK_NE ){ 573 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 574 p5 |= SQLITE_KEEPNULL; 575 }else{ 576 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 577 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 578 VdbeCoverageIf(v, op==TK_LT); 579 VdbeCoverageIf(v, op==TK_GT); 580 VdbeCoverageIf(v, op==TK_LE); 581 VdbeCoverageIf(v, op==TK_GE); 582 if( i==nLeft-2 ) opx = op; 583 } 584 } 585 sqlite3VdbeResolveLabel(v, addrDone); 586 } 587 588 #if SQLITE_MAX_EXPR_DEPTH>0 589 /* 590 ** Check that argument nHeight is less than or equal to the maximum 591 ** expression depth allowed. If it is not, leave an error message in 592 ** pParse. 593 */ 594 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 595 int rc = SQLITE_OK; 596 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 597 if( nHeight>mxHeight ){ 598 sqlite3ErrorMsg(pParse, 599 "Expression tree is too large (maximum depth %d)", mxHeight 600 ); 601 rc = SQLITE_ERROR; 602 } 603 return rc; 604 } 605 606 /* The following three functions, heightOfExpr(), heightOfExprList() 607 ** and heightOfSelect(), are used to determine the maximum height 608 ** of any expression tree referenced by the structure passed as the 609 ** first argument. 610 ** 611 ** If this maximum height is greater than the current value pointed 612 ** to by pnHeight, the second parameter, then set *pnHeight to that 613 ** value. 614 */ 615 static void heightOfExpr(Expr *p, int *pnHeight){ 616 if( p ){ 617 if( p->nHeight>*pnHeight ){ 618 *pnHeight = p->nHeight; 619 } 620 } 621 } 622 static void heightOfExprList(ExprList *p, int *pnHeight){ 623 if( p ){ 624 int i; 625 for(i=0; i<p->nExpr; i++){ 626 heightOfExpr(p->a[i].pExpr, pnHeight); 627 } 628 } 629 } 630 static void heightOfSelect(Select *p, int *pnHeight){ 631 if( p ){ 632 heightOfExpr(p->pWhere, pnHeight); 633 heightOfExpr(p->pHaving, pnHeight); 634 heightOfExpr(p->pLimit, pnHeight); 635 heightOfExpr(p->pOffset, pnHeight); 636 heightOfExprList(p->pEList, pnHeight); 637 heightOfExprList(p->pGroupBy, pnHeight); 638 heightOfExprList(p->pOrderBy, pnHeight); 639 heightOfSelect(p->pPrior, pnHeight); 640 } 641 } 642 643 /* 644 ** Set the Expr.nHeight variable in the structure passed as an 645 ** argument. An expression with no children, Expr.pList or 646 ** Expr.pSelect member has a height of 1. Any other expression 647 ** has a height equal to the maximum height of any other 648 ** referenced Expr plus one. 649 ** 650 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 651 ** if appropriate. 652 */ 653 static void exprSetHeight(Expr *p){ 654 int nHeight = 0; 655 heightOfExpr(p->pLeft, &nHeight); 656 heightOfExpr(p->pRight, &nHeight); 657 if( ExprHasProperty(p, EP_xIsSelect) ){ 658 heightOfSelect(p->x.pSelect, &nHeight); 659 }else if( p->x.pList ){ 660 heightOfExprList(p->x.pList, &nHeight); 661 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 662 } 663 p->nHeight = nHeight + 1; 664 } 665 666 /* 667 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 668 ** the height is greater than the maximum allowed expression depth, 669 ** leave an error in pParse. 670 ** 671 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 672 ** Expr.flags. 673 */ 674 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 675 if( pParse->nErr ) return; 676 exprSetHeight(p); 677 sqlite3ExprCheckHeight(pParse, p->nHeight); 678 } 679 680 /* 681 ** Return the maximum height of any expression tree referenced 682 ** by the select statement passed as an argument. 683 */ 684 int sqlite3SelectExprHeight(Select *p){ 685 int nHeight = 0; 686 heightOfSelect(p, &nHeight); 687 return nHeight; 688 } 689 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 690 /* 691 ** Propagate all EP_Propagate flags from the Expr.x.pList into 692 ** Expr.flags. 693 */ 694 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 695 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 696 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 697 } 698 } 699 #define exprSetHeight(y) 700 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 701 702 /* 703 ** This routine is the core allocator for Expr nodes. 704 ** 705 ** Construct a new expression node and return a pointer to it. Memory 706 ** for this node and for the pToken argument is a single allocation 707 ** obtained from sqlite3DbMalloc(). The calling function 708 ** is responsible for making sure the node eventually gets freed. 709 ** 710 ** If dequote is true, then the token (if it exists) is dequoted. 711 ** If dequote is false, no dequoting is performed. The deQuote 712 ** parameter is ignored if pToken is NULL or if the token does not 713 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 714 ** then the EP_DblQuoted flag is set on the expression node. 715 ** 716 ** Special case: If op==TK_INTEGER and pToken points to a string that 717 ** can be translated into a 32-bit integer, then the token is not 718 ** stored in u.zToken. Instead, the integer values is written 719 ** into u.iValue and the EP_IntValue flag is set. No extra storage 720 ** is allocated to hold the integer text and the dequote flag is ignored. 721 */ 722 Expr *sqlite3ExprAlloc( 723 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 724 int op, /* Expression opcode */ 725 const Token *pToken, /* Token argument. Might be NULL */ 726 int dequote /* True to dequote */ 727 ){ 728 Expr *pNew; 729 int nExtra = 0; 730 int iValue = 0; 731 732 assert( db!=0 ); 733 if( pToken ){ 734 if( op!=TK_INTEGER || pToken->z==0 735 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 736 nExtra = pToken->n+1; 737 assert( iValue>=0 ); 738 } 739 } 740 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 741 if( pNew ){ 742 memset(pNew, 0, sizeof(Expr)); 743 pNew->op = (u8)op; 744 pNew->iAgg = -1; 745 if( pToken ){ 746 if( nExtra==0 ){ 747 pNew->flags |= EP_IntValue|EP_Leaf; 748 pNew->u.iValue = iValue; 749 }else{ 750 pNew->u.zToken = (char*)&pNew[1]; 751 assert( pToken->z!=0 || pToken->n==0 ); 752 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 753 pNew->u.zToken[pToken->n] = 0; 754 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 755 if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted; 756 sqlite3Dequote(pNew->u.zToken); 757 } 758 } 759 } 760 #if SQLITE_MAX_EXPR_DEPTH>0 761 pNew->nHeight = 1; 762 #endif 763 } 764 return pNew; 765 } 766 767 /* 768 ** Allocate a new expression node from a zero-terminated token that has 769 ** already been dequoted. 770 */ 771 Expr *sqlite3Expr( 772 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 773 int op, /* Expression opcode */ 774 const char *zToken /* Token argument. Might be NULL */ 775 ){ 776 Token x; 777 x.z = zToken; 778 x.n = sqlite3Strlen30(zToken); 779 return sqlite3ExprAlloc(db, op, &x, 0); 780 } 781 782 /* 783 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 784 ** 785 ** If pRoot==NULL that means that a memory allocation error has occurred. 786 ** In that case, delete the subtrees pLeft and pRight. 787 */ 788 void sqlite3ExprAttachSubtrees( 789 sqlite3 *db, 790 Expr *pRoot, 791 Expr *pLeft, 792 Expr *pRight 793 ){ 794 if( pRoot==0 ){ 795 assert( db->mallocFailed ); 796 sqlite3ExprDelete(db, pLeft); 797 sqlite3ExprDelete(db, pRight); 798 }else{ 799 if( pRight ){ 800 pRoot->pRight = pRight; 801 pRoot->flags |= EP_Propagate & pRight->flags; 802 } 803 if( pLeft ){ 804 pRoot->pLeft = pLeft; 805 pRoot->flags |= EP_Propagate & pLeft->flags; 806 } 807 exprSetHeight(pRoot); 808 } 809 } 810 811 /* 812 ** Allocate an Expr node which joins as many as two subtrees. 813 ** 814 ** One or both of the subtrees can be NULL. Return a pointer to the new 815 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 816 ** free the subtrees and return NULL. 817 */ 818 Expr *sqlite3PExpr( 819 Parse *pParse, /* Parsing context */ 820 int op, /* Expression opcode */ 821 Expr *pLeft, /* Left operand */ 822 Expr *pRight /* Right operand */ 823 ){ 824 Expr *p; 825 if( op==TK_AND && pParse->nErr==0 ){ 826 /* Take advantage of short-circuit false optimization for AND */ 827 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 828 }else{ 829 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 830 if( p ){ 831 memset(p, 0, sizeof(Expr)); 832 p->op = op & TKFLG_MASK; 833 p->iAgg = -1; 834 } 835 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 836 } 837 if( p ) { 838 sqlite3ExprCheckHeight(pParse, p->nHeight); 839 } 840 return p; 841 } 842 843 /* 844 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 845 ** do a memory allocation failure) then delete the pSelect object. 846 */ 847 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 848 if( pExpr ){ 849 pExpr->x.pSelect = pSelect; 850 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 851 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 852 }else{ 853 assert( pParse->db->mallocFailed ); 854 sqlite3SelectDelete(pParse->db, pSelect); 855 } 856 } 857 858 859 /* 860 ** If the expression is always either TRUE or FALSE (respectively), 861 ** then return 1. If one cannot determine the truth value of the 862 ** expression at compile-time return 0. 863 ** 864 ** This is an optimization. If is OK to return 0 here even if 865 ** the expression really is always false or false (a false negative). 866 ** But it is a bug to return 1 if the expression might have different 867 ** boolean values in different circumstances (a false positive.) 868 ** 869 ** Note that if the expression is part of conditional for a 870 ** LEFT JOIN, then we cannot determine at compile-time whether or not 871 ** is it true or false, so always return 0. 872 */ 873 static int exprAlwaysTrue(Expr *p){ 874 int v = 0; 875 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 876 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 877 return v!=0; 878 } 879 static int exprAlwaysFalse(Expr *p){ 880 int v = 0; 881 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 882 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 883 return v==0; 884 } 885 886 /* 887 ** Join two expressions using an AND operator. If either expression is 888 ** NULL, then just return the other expression. 889 ** 890 ** If one side or the other of the AND is known to be false, then instead 891 ** of returning an AND expression, just return a constant expression with 892 ** a value of false. 893 */ 894 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 895 if( pLeft==0 ){ 896 return pRight; 897 }else if( pRight==0 ){ 898 return pLeft; 899 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 900 sqlite3ExprDelete(db, pLeft); 901 sqlite3ExprDelete(db, pRight); 902 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 903 }else{ 904 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 905 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 906 return pNew; 907 } 908 } 909 910 /* 911 ** Construct a new expression node for a function with multiple 912 ** arguments. 913 */ 914 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 915 Expr *pNew; 916 sqlite3 *db = pParse->db; 917 assert( pToken ); 918 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 919 if( pNew==0 ){ 920 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 921 return 0; 922 } 923 pNew->x.pList = pList; 924 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 925 sqlite3ExprSetHeightAndFlags(pParse, pNew); 926 return pNew; 927 } 928 929 /* 930 ** Assign a variable number to an expression that encodes a wildcard 931 ** in the original SQL statement. 932 ** 933 ** Wildcards consisting of a single "?" are assigned the next sequential 934 ** variable number. 935 ** 936 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 937 ** sure "nnn" is not too big to avoid a denial of service attack when 938 ** the SQL statement comes from an external source. 939 ** 940 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 941 ** as the previous instance of the same wildcard. Or if this is the first 942 ** instance of the wildcard, the next sequential variable number is 943 ** assigned. 944 */ 945 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 946 sqlite3 *db = pParse->db; 947 const char *z; 948 ynVar x; 949 950 if( pExpr==0 ) return; 951 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 952 z = pExpr->u.zToken; 953 assert( z!=0 ); 954 assert( z[0]!=0 ); 955 assert( n==(u32)sqlite3Strlen30(z) ); 956 if( z[1]==0 ){ 957 /* Wildcard of the form "?". Assign the next variable number */ 958 assert( z[0]=='?' ); 959 x = (ynVar)(++pParse->nVar); 960 }else{ 961 int doAdd = 0; 962 if( z[0]=='?' ){ 963 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 964 ** use it as the variable number */ 965 i64 i; 966 int bOk; 967 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 968 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 969 bOk = 1; 970 }else{ 971 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 972 } 973 testcase( i==0 ); 974 testcase( i==1 ); 975 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 976 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 977 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 978 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 979 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 980 return; 981 } 982 x = (ynVar)i; 983 if( x>pParse->nVar ){ 984 pParse->nVar = (int)x; 985 doAdd = 1; 986 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 987 doAdd = 1; 988 } 989 }else{ 990 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 991 ** number as the prior appearance of the same name, or if the name 992 ** has never appeared before, reuse the same variable number 993 */ 994 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 995 if( x==0 ){ 996 x = (ynVar)(++pParse->nVar); 997 doAdd = 1; 998 } 999 } 1000 if( doAdd ){ 1001 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1002 } 1003 } 1004 pExpr->iColumn = x; 1005 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1006 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1007 } 1008 } 1009 1010 /* 1011 ** Recursively delete an expression tree. 1012 */ 1013 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1014 assert( p!=0 ); 1015 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1016 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1017 #ifdef SQLITE_DEBUG 1018 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1019 assert( p->pLeft==0 ); 1020 assert( p->pRight==0 ); 1021 assert( p->x.pSelect==0 ); 1022 } 1023 #endif 1024 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1025 /* The Expr.x union is never used at the same time as Expr.pRight */ 1026 assert( p->x.pList==0 || p->pRight==0 ); 1027 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1028 if( p->pRight ){ 1029 sqlite3ExprDeleteNN(db, p->pRight); 1030 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1031 sqlite3SelectDelete(db, p->x.pSelect); 1032 }else{ 1033 sqlite3ExprListDelete(db, p->x.pList); 1034 } 1035 } 1036 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1037 if( !ExprHasProperty(p, EP_Static) ){ 1038 sqlite3DbFreeNN(db, p); 1039 } 1040 } 1041 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1042 if( p ) sqlite3ExprDeleteNN(db, p); 1043 } 1044 1045 /* 1046 ** Return the number of bytes allocated for the expression structure 1047 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1048 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1049 */ 1050 static int exprStructSize(Expr *p){ 1051 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1052 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1053 return EXPR_FULLSIZE; 1054 } 1055 1056 /* 1057 ** The dupedExpr*Size() routines each return the number of bytes required 1058 ** to store a copy of an expression or expression tree. They differ in 1059 ** how much of the tree is measured. 1060 ** 1061 ** dupedExprStructSize() Size of only the Expr structure 1062 ** dupedExprNodeSize() Size of Expr + space for token 1063 ** dupedExprSize() Expr + token + subtree components 1064 ** 1065 *************************************************************************** 1066 ** 1067 ** The dupedExprStructSize() function returns two values OR-ed together: 1068 ** (1) the space required for a copy of the Expr structure only and 1069 ** (2) the EP_xxx flags that indicate what the structure size should be. 1070 ** The return values is always one of: 1071 ** 1072 ** EXPR_FULLSIZE 1073 ** EXPR_REDUCEDSIZE | EP_Reduced 1074 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1075 ** 1076 ** The size of the structure can be found by masking the return value 1077 ** of this routine with 0xfff. The flags can be found by masking the 1078 ** return value with EP_Reduced|EP_TokenOnly. 1079 ** 1080 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1081 ** (unreduced) Expr objects as they or originally constructed by the parser. 1082 ** During expression analysis, extra information is computed and moved into 1083 ** later parts of teh Expr object and that extra information might get chopped 1084 ** off if the expression is reduced. Note also that it does not work to 1085 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1086 ** to reduce a pristine expression tree from the parser. The implementation 1087 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1088 ** to enforce this constraint. 1089 */ 1090 static int dupedExprStructSize(Expr *p, int flags){ 1091 int nSize; 1092 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1093 assert( EXPR_FULLSIZE<=0xfff ); 1094 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1095 if( 0==flags || p->op==TK_SELECT_COLUMN ){ 1096 nSize = EXPR_FULLSIZE; 1097 }else{ 1098 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1099 assert( !ExprHasProperty(p, EP_FromJoin) ); 1100 assert( !ExprHasProperty(p, EP_MemToken) ); 1101 assert( !ExprHasProperty(p, EP_NoReduce) ); 1102 if( p->pLeft || p->x.pList ){ 1103 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1104 }else{ 1105 assert( p->pRight==0 ); 1106 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1107 } 1108 } 1109 return nSize; 1110 } 1111 1112 /* 1113 ** This function returns the space in bytes required to store the copy 1114 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1115 ** string is defined.) 1116 */ 1117 static int dupedExprNodeSize(Expr *p, int flags){ 1118 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1119 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1120 nByte += sqlite3Strlen30(p->u.zToken)+1; 1121 } 1122 return ROUND8(nByte); 1123 } 1124 1125 /* 1126 ** Return the number of bytes required to create a duplicate of the 1127 ** expression passed as the first argument. The second argument is a 1128 ** mask containing EXPRDUP_XXX flags. 1129 ** 1130 ** The value returned includes space to create a copy of the Expr struct 1131 ** itself and the buffer referred to by Expr.u.zToken, if any. 1132 ** 1133 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1134 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1135 ** and Expr.pRight variables (but not for any structures pointed to or 1136 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1137 */ 1138 static int dupedExprSize(Expr *p, int flags){ 1139 int nByte = 0; 1140 if( p ){ 1141 nByte = dupedExprNodeSize(p, flags); 1142 if( flags&EXPRDUP_REDUCE ){ 1143 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1144 } 1145 } 1146 return nByte; 1147 } 1148 1149 /* 1150 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1151 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1152 ** to store the copy of expression p, the copies of p->u.zToken 1153 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1154 ** if any. Before returning, *pzBuffer is set to the first byte past the 1155 ** portion of the buffer copied into by this function. 1156 */ 1157 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1158 Expr *pNew; /* Value to return */ 1159 u8 *zAlloc; /* Memory space from which to build Expr object */ 1160 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1161 1162 assert( db!=0 ); 1163 assert( p ); 1164 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1165 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1166 1167 /* Figure out where to write the new Expr structure. */ 1168 if( pzBuffer ){ 1169 zAlloc = *pzBuffer; 1170 staticFlag = EP_Static; 1171 }else{ 1172 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1173 staticFlag = 0; 1174 } 1175 pNew = (Expr *)zAlloc; 1176 1177 if( pNew ){ 1178 /* Set nNewSize to the size allocated for the structure pointed to 1179 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1180 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1181 ** by the copy of the p->u.zToken string (if any). 1182 */ 1183 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1184 const int nNewSize = nStructSize & 0xfff; 1185 int nToken; 1186 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1187 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1188 }else{ 1189 nToken = 0; 1190 } 1191 if( dupFlags ){ 1192 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1193 memcpy(zAlloc, p, nNewSize); 1194 }else{ 1195 u32 nSize = (u32)exprStructSize(p); 1196 memcpy(zAlloc, p, nSize); 1197 if( nSize<EXPR_FULLSIZE ){ 1198 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1199 } 1200 } 1201 1202 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1203 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1204 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1205 pNew->flags |= staticFlag; 1206 1207 /* Copy the p->u.zToken string, if any. */ 1208 if( nToken ){ 1209 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1210 memcpy(zToken, p->u.zToken, nToken); 1211 } 1212 1213 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1214 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1215 if( ExprHasProperty(p, EP_xIsSelect) ){ 1216 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1217 }else{ 1218 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1219 } 1220 } 1221 1222 /* Fill in pNew->pLeft and pNew->pRight. */ 1223 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 1224 zAlloc += dupedExprNodeSize(p, dupFlags); 1225 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1226 pNew->pLeft = p->pLeft ? 1227 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1228 pNew->pRight = p->pRight ? 1229 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1230 } 1231 if( pzBuffer ){ 1232 *pzBuffer = zAlloc; 1233 } 1234 }else{ 1235 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1236 if( pNew->op==TK_SELECT_COLUMN ){ 1237 pNew->pLeft = p->pLeft; 1238 assert( p->iColumn==0 || p->pRight==0 ); 1239 assert( p->pRight==0 || p->pRight==p->pLeft ); 1240 }else{ 1241 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1242 } 1243 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1244 } 1245 } 1246 } 1247 return pNew; 1248 } 1249 1250 /* 1251 ** Create and return a deep copy of the object passed as the second 1252 ** argument. If an OOM condition is encountered, NULL is returned 1253 ** and the db->mallocFailed flag set. 1254 */ 1255 #ifndef SQLITE_OMIT_CTE 1256 static With *withDup(sqlite3 *db, With *p){ 1257 With *pRet = 0; 1258 if( p ){ 1259 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1260 pRet = sqlite3DbMallocZero(db, nByte); 1261 if( pRet ){ 1262 int i; 1263 pRet->nCte = p->nCte; 1264 for(i=0; i<p->nCte; i++){ 1265 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1266 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1267 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1268 } 1269 } 1270 } 1271 return pRet; 1272 } 1273 #else 1274 # define withDup(x,y) 0 1275 #endif 1276 1277 /* 1278 ** The following group of routines make deep copies of expressions, 1279 ** expression lists, ID lists, and select statements. The copies can 1280 ** be deleted (by being passed to their respective ...Delete() routines) 1281 ** without effecting the originals. 1282 ** 1283 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1284 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1285 ** by subsequent calls to sqlite*ListAppend() routines. 1286 ** 1287 ** Any tables that the SrcList might point to are not duplicated. 1288 ** 1289 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1290 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1291 ** truncated version of the usual Expr structure that will be stored as 1292 ** part of the in-memory representation of the database schema. 1293 */ 1294 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1295 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1296 return p ? exprDup(db, p, flags, 0) : 0; 1297 } 1298 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1299 ExprList *pNew; 1300 struct ExprList_item *pItem, *pOldItem; 1301 int i; 1302 Expr *pPriorSelectCol = 0; 1303 assert( db!=0 ); 1304 if( p==0 ) return 0; 1305 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1306 if( pNew==0 ) return 0; 1307 pNew->nExpr = p->nExpr; 1308 pItem = pNew->a; 1309 pOldItem = p->a; 1310 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1311 Expr *pOldExpr = pOldItem->pExpr; 1312 Expr *pNewExpr; 1313 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1314 if( pOldExpr 1315 && pOldExpr->op==TK_SELECT_COLUMN 1316 && (pNewExpr = pItem->pExpr)!=0 1317 ){ 1318 assert( pNewExpr->iColumn==0 || i>0 ); 1319 if( pNewExpr->iColumn==0 ){ 1320 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1321 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1322 }else{ 1323 assert( i>0 ); 1324 assert( pItem[-1].pExpr!=0 ); 1325 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1326 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1327 pNewExpr->pLeft = pPriorSelectCol; 1328 } 1329 } 1330 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1331 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1332 pItem->sortOrder = pOldItem->sortOrder; 1333 pItem->done = 0; 1334 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1335 pItem->u = pOldItem->u; 1336 } 1337 return pNew; 1338 } 1339 1340 /* 1341 ** If cursors, triggers, views and subqueries are all omitted from 1342 ** the build, then none of the following routines, except for 1343 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1344 ** called with a NULL argument. 1345 */ 1346 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1347 || !defined(SQLITE_OMIT_SUBQUERY) 1348 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1349 SrcList *pNew; 1350 int i; 1351 int nByte; 1352 assert( db!=0 ); 1353 if( p==0 ) return 0; 1354 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1355 pNew = sqlite3DbMallocRawNN(db, nByte ); 1356 if( pNew==0 ) return 0; 1357 pNew->nSrc = pNew->nAlloc = p->nSrc; 1358 for(i=0; i<p->nSrc; i++){ 1359 struct SrcList_item *pNewItem = &pNew->a[i]; 1360 struct SrcList_item *pOldItem = &p->a[i]; 1361 Table *pTab; 1362 pNewItem->pSchema = pOldItem->pSchema; 1363 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1364 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1365 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1366 pNewItem->fg = pOldItem->fg; 1367 pNewItem->iCursor = pOldItem->iCursor; 1368 pNewItem->addrFillSub = pOldItem->addrFillSub; 1369 pNewItem->regReturn = pOldItem->regReturn; 1370 if( pNewItem->fg.isIndexedBy ){ 1371 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1372 } 1373 pNewItem->pIBIndex = pOldItem->pIBIndex; 1374 if( pNewItem->fg.isTabFunc ){ 1375 pNewItem->u1.pFuncArg = 1376 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1377 } 1378 pTab = pNewItem->pTab = pOldItem->pTab; 1379 if( pTab ){ 1380 pTab->nTabRef++; 1381 } 1382 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1383 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1384 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1385 pNewItem->colUsed = pOldItem->colUsed; 1386 } 1387 return pNew; 1388 } 1389 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1390 IdList *pNew; 1391 int i; 1392 assert( db!=0 ); 1393 if( p==0 ) return 0; 1394 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1395 if( pNew==0 ) return 0; 1396 pNew->nId = p->nId; 1397 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1398 if( pNew->a==0 ){ 1399 sqlite3DbFreeNN(db, pNew); 1400 return 0; 1401 } 1402 /* Note that because the size of the allocation for p->a[] is not 1403 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1404 ** on the duplicate created by this function. */ 1405 for(i=0; i<p->nId; i++){ 1406 struct IdList_item *pNewItem = &pNew->a[i]; 1407 struct IdList_item *pOldItem = &p->a[i]; 1408 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1409 pNewItem->idx = pOldItem->idx; 1410 } 1411 return pNew; 1412 } 1413 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1414 Select *pRet = 0; 1415 Select *pNext = 0; 1416 Select **pp = &pRet; 1417 Select *p; 1418 1419 assert( db!=0 ); 1420 for(p=pDup; p; p=p->pPrior){ 1421 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1422 if( pNew==0 ) break; 1423 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1424 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1425 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1426 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1427 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1428 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1429 pNew->op = p->op; 1430 pNew->pNext = pNext; 1431 pNew->pPrior = 0; 1432 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1433 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1434 pNew->iLimit = 0; 1435 pNew->iOffset = 0; 1436 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1437 pNew->addrOpenEphm[0] = -1; 1438 pNew->addrOpenEphm[1] = -1; 1439 pNew->nSelectRow = p->nSelectRow; 1440 pNew->pWith = withDup(db, p->pWith); 1441 sqlite3SelectSetName(pNew, p->zSelName); 1442 *pp = pNew; 1443 pp = &pNew->pPrior; 1444 pNext = pNew; 1445 } 1446 1447 return pRet; 1448 } 1449 #else 1450 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1451 assert( p==0 ); 1452 return 0; 1453 } 1454 #endif 1455 1456 1457 /* 1458 ** Add a new element to the end of an expression list. If pList is 1459 ** initially NULL, then create a new expression list. 1460 ** 1461 ** The pList argument must be either NULL or a pointer to an ExprList 1462 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1463 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1464 ** Reason: This routine assumes that the number of slots in pList->a[] 1465 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1466 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1467 ** 1468 ** If a memory allocation error occurs, the entire list is freed and 1469 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1470 ** that the new entry was successfully appended. 1471 */ 1472 ExprList *sqlite3ExprListAppend( 1473 Parse *pParse, /* Parsing context */ 1474 ExprList *pList, /* List to which to append. Might be NULL */ 1475 Expr *pExpr /* Expression to be appended. Might be NULL */ 1476 ){ 1477 struct ExprList_item *pItem; 1478 sqlite3 *db = pParse->db; 1479 assert( db!=0 ); 1480 if( pList==0 ){ 1481 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1482 if( pList==0 ){ 1483 goto no_mem; 1484 } 1485 pList->nExpr = 0; 1486 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1487 ExprList *pNew; 1488 pNew = sqlite3DbRealloc(db, pList, 1489 sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0])); 1490 if( pNew==0 ){ 1491 goto no_mem; 1492 } 1493 pList = pNew; 1494 } 1495 pItem = &pList->a[pList->nExpr++]; 1496 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) ); 1497 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1498 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName)); 1499 pItem->pExpr = pExpr; 1500 return pList; 1501 1502 no_mem: 1503 /* Avoid leaking memory if malloc has failed. */ 1504 sqlite3ExprDelete(db, pExpr); 1505 sqlite3ExprListDelete(db, pList); 1506 return 0; 1507 } 1508 1509 /* 1510 ** pColumns and pExpr form a vector assignment which is part of the SET 1511 ** clause of an UPDATE statement. Like this: 1512 ** 1513 ** (a,b,c) = (expr1,expr2,expr3) 1514 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1515 ** 1516 ** For each term of the vector assignment, append new entries to the 1517 ** expression list pList. In the case of a subquery on the RHS, append 1518 ** TK_SELECT_COLUMN expressions. 1519 */ 1520 ExprList *sqlite3ExprListAppendVector( 1521 Parse *pParse, /* Parsing context */ 1522 ExprList *pList, /* List to which to append. Might be NULL */ 1523 IdList *pColumns, /* List of names of LHS of the assignment */ 1524 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1525 ){ 1526 sqlite3 *db = pParse->db; 1527 int n; 1528 int i; 1529 int iFirst = pList ? pList->nExpr : 0; 1530 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1531 ** exit prior to this routine being invoked */ 1532 if( NEVER(pColumns==0) ) goto vector_append_error; 1533 if( pExpr==0 ) goto vector_append_error; 1534 1535 /* If the RHS is a vector, then we can immediately check to see that 1536 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1537 ** wildcards ("*") in the result set of the SELECT must be expanded before 1538 ** we can do the size check, so defer the size check until code generation. 1539 */ 1540 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1541 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1542 pColumns->nId, n); 1543 goto vector_append_error; 1544 } 1545 1546 for(i=0; i<pColumns->nId; i++){ 1547 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1548 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1549 if( pList ){ 1550 assert( pList->nExpr==iFirst+i+1 ); 1551 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1552 pColumns->a[i].zName = 0; 1553 } 1554 } 1555 1556 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1557 Expr *pFirst = pList->a[iFirst].pExpr; 1558 assert( pFirst!=0 ); 1559 assert( pFirst->op==TK_SELECT_COLUMN ); 1560 1561 /* Store the SELECT statement in pRight so it will be deleted when 1562 ** sqlite3ExprListDelete() is called */ 1563 pFirst->pRight = pExpr; 1564 pExpr = 0; 1565 1566 /* Remember the size of the LHS in iTable so that we can check that 1567 ** the RHS and LHS sizes match during code generation. */ 1568 pFirst->iTable = pColumns->nId; 1569 } 1570 1571 vector_append_error: 1572 sqlite3ExprDelete(db, pExpr); 1573 sqlite3IdListDelete(db, pColumns); 1574 return pList; 1575 } 1576 1577 /* 1578 ** Set the sort order for the last element on the given ExprList. 1579 */ 1580 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1581 if( p==0 ) return; 1582 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1583 assert( p->nExpr>0 ); 1584 if( iSortOrder<0 ){ 1585 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1586 return; 1587 } 1588 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1589 } 1590 1591 /* 1592 ** Set the ExprList.a[].zName element of the most recently added item 1593 ** on the expression list. 1594 ** 1595 ** pList might be NULL following an OOM error. But pName should never be 1596 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1597 ** is set. 1598 */ 1599 void sqlite3ExprListSetName( 1600 Parse *pParse, /* Parsing context */ 1601 ExprList *pList, /* List to which to add the span. */ 1602 Token *pName, /* Name to be added */ 1603 int dequote /* True to cause the name to be dequoted */ 1604 ){ 1605 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1606 if( pList ){ 1607 struct ExprList_item *pItem; 1608 assert( pList->nExpr>0 ); 1609 pItem = &pList->a[pList->nExpr-1]; 1610 assert( pItem->zName==0 ); 1611 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1612 if( dequote ) sqlite3Dequote(pItem->zName); 1613 } 1614 } 1615 1616 /* 1617 ** Set the ExprList.a[].zSpan element of the most recently added item 1618 ** on the expression list. 1619 ** 1620 ** pList might be NULL following an OOM error. But pSpan should never be 1621 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1622 ** is set. 1623 */ 1624 void sqlite3ExprListSetSpan( 1625 Parse *pParse, /* Parsing context */ 1626 ExprList *pList, /* List to which to add the span. */ 1627 ExprSpan *pSpan /* The span to be added */ 1628 ){ 1629 sqlite3 *db = pParse->db; 1630 assert( pList!=0 || db->mallocFailed!=0 ); 1631 if( pList ){ 1632 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1633 assert( pList->nExpr>0 ); 1634 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1635 sqlite3DbFree(db, pItem->zSpan); 1636 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1637 (int)(pSpan->zEnd - pSpan->zStart)); 1638 } 1639 } 1640 1641 /* 1642 ** If the expression list pEList contains more than iLimit elements, 1643 ** leave an error message in pParse. 1644 */ 1645 void sqlite3ExprListCheckLength( 1646 Parse *pParse, 1647 ExprList *pEList, 1648 const char *zObject 1649 ){ 1650 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1651 testcase( pEList && pEList->nExpr==mx ); 1652 testcase( pEList && pEList->nExpr==mx+1 ); 1653 if( pEList && pEList->nExpr>mx ){ 1654 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1655 } 1656 } 1657 1658 /* 1659 ** Delete an entire expression list. 1660 */ 1661 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1662 int i = pList->nExpr; 1663 struct ExprList_item *pItem = pList->a; 1664 assert( pList->nExpr>0 ); 1665 do{ 1666 sqlite3ExprDelete(db, pItem->pExpr); 1667 sqlite3DbFree(db, pItem->zName); 1668 sqlite3DbFree(db, pItem->zSpan); 1669 pItem++; 1670 }while( --i>0 ); 1671 sqlite3DbFreeNN(db, pList); 1672 } 1673 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1674 if( pList ) exprListDeleteNN(db, pList); 1675 } 1676 1677 /* 1678 ** Return the bitwise-OR of all Expr.flags fields in the given 1679 ** ExprList. 1680 */ 1681 u32 sqlite3ExprListFlags(const ExprList *pList){ 1682 int i; 1683 u32 m = 0; 1684 if( pList ){ 1685 for(i=0; i<pList->nExpr; i++){ 1686 Expr *pExpr = pList->a[i].pExpr; 1687 assert( pExpr!=0 ); 1688 m |= pExpr->flags; 1689 } 1690 } 1691 return m; 1692 } 1693 1694 /* 1695 ** This is a SELECT-node callback for the expression walker that 1696 ** always "fails". By "fail" in this case, we mean set 1697 ** pWalker->eCode to zero and abort. 1698 ** 1699 ** This callback is used by multiple expression walkers. 1700 */ 1701 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1702 UNUSED_PARAMETER(NotUsed); 1703 pWalker->eCode = 0; 1704 return WRC_Abort; 1705 } 1706 1707 /* 1708 ** These routines are Walker callbacks used to check expressions to 1709 ** see if they are "constant" for some definition of constant. The 1710 ** Walker.eCode value determines the type of "constant" we are looking 1711 ** for. 1712 ** 1713 ** These callback routines are used to implement the following: 1714 ** 1715 ** sqlite3ExprIsConstant() pWalker->eCode==1 1716 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1717 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1718 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1719 ** 1720 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1721 ** is found to not be a constant. 1722 ** 1723 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1724 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1725 ** an existing schema and 4 when processing a new statement. A bound 1726 ** parameter raises an error for new statements, but is silently converted 1727 ** to NULL for existing schemas. This allows sqlite_master tables that 1728 ** contain a bound parameter because they were generated by older versions 1729 ** of SQLite to be parsed by newer versions of SQLite without raising a 1730 ** malformed schema error. 1731 */ 1732 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1733 1734 /* If pWalker->eCode is 2 then any term of the expression that comes from 1735 ** the ON or USING clauses of a left join disqualifies the expression 1736 ** from being considered constant. */ 1737 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1738 pWalker->eCode = 0; 1739 return WRC_Abort; 1740 } 1741 1742 switch( pExpr->op ){ 1743 /* Consider functions to be constant if all their arguments are constant 1744 ** and either pWalker->eCode==4 or 5 or the function has the 1745 ** SQLITE_FUNC_CONST flag. */ 1746 case TK_FUNCTION: 1747 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1748 return WRC_Continue; 1749 }else{ 1750 pWalker->eCode = 0; 1751 return WRC_Abort; 1752 } 1753 case TK_ID: 1754 case TK_COLUMN: 1755 case TK_AGG_FUNCTION: 1756 case TK_AGG_COLUMN: 1757 testcase( pExpr->op==TK_ID ); 1758 testcase( pExpr->op==TK_COLUMN ); 1759 testcase( pExpr->op==TK_AGG_FUNCTION ); 1760 testcase( pExpr->op==TK_AGG_COLUMN ); 1761 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1762 return WRC_Continue; 1763 } 1764 /* Fall through */ 1765 case TK_IF_NULL_ROW: 1766 testcase( pExpr->op==TK_IF_NULL_ROW ); 1767 pWalker->eCode = 0; 1768 return WRC_Abort; 1769 case TK_VARIABLE: 1770 if( pWalker->eCode==5 ){ 1771 /* Silently convert bound parameters that appear inside of CREATE 1772 ** statements into a NULL when parsing the CREATE statement text out 1773 ** of the sqlite_master table */ 1774 pExpr->op = TK_NULL; 1775 }else if( pWalker->eCode==4 ){ 1776 /* A bound parameter in a CREATE statement that originates from 1777 ** sqlite3_prepare() causes an error */ 1778 pWalker->eCode = 0; 1779 return WRC_Abort; 1780 } 1781 /* Fall through */ 1782 default: 1783 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail will disallow */ 1784 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail will disallow */ 1785 return WRC_Continue; 1786 } 1787 } 1788 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1789 Walker w; 1790 w.eCode = initFlag; 1791 w.xExprCallback = exprNodeIsConstant; 1792 w.xSelectCallback = sqlite3SelectWalkFail; 1793 #ifdef SQLITE_DEBUG 1794 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1795 #endif 1796 w.u.iCur = iCur; 1797 sqlite3WalkExpr(&w, p); 1798 return w.eCode; 1799 } 1800 1801 /* 1802 ** Walk an expression tree. Return non-zero if the expression is constant 1803 ** and 0 if it involves variables or function calls. 1804 ** 1805 ** For the purposes of this function, a double-quoted string (ex: "abc") 1806 ** is considered a variable but a single-quoted string (ex: 'abc') is 1807 ** a constant. 1808 */ 1809 int sqlite3ExprIsConstant(Expr *p){ 1810 return exprIsConst(p, 1, 0); 1811 } 1812 1813 /* 1814 ** Walk an expression tree. Return non-zero if the expression is constant 1815 ** that does no originate from the ON or USING clauses of a join. 1816 ** Return 0 if it involves variables or function calls or terms from 1817 ** an ON or USING clause. 1818 */ 1819 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1820 return exprIsConst(p, 2, 0); 1821 } 1822 1823 /* 1824 ** Walk an expression tree. Return non-zero if the expression is constant 1825 ** for any single row of the table with cursor iCur. In other words, the 1826 ** expression must not refer to any non-deterministic function nor any 1827 ** table other than iCur. 1828 */ 1829 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1830 return exprIsConst(p, 3, iCur); 1831 } 1832 1833 1834 /* 1835 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 1836 */ 1837 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 1838 ExprList *pGroupBy = pWalker->u.pGroupBy; 1839 int i; 1840 1841 /* Check if pExpr is identical to any GROUP BY term. If so, consider 1842 ** it constant. */ 1843 for(i=0; i<pGroupBy->nExpr; i++){ 1844 Expr *p = pGroupBy->a[i].pExpr; 1845 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 1846 CollSeq *pColl = sqlite3ExprCollSeq(pWalker->pParse, p); 1847 if( pColl==0 || sqlite3_stricmp("BINARY", pColl->zName)==0 ){ 1848 return WRC_Prune; 1849 } 1850 } 1851 } 1852 1853 /* Check if pExpr is a sub-select. If so, consider it variable. */ 1854 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1855 pWalker->eCode = 0; 1856 return WRC_Abort; 1857 } 1858 1859 return exprNodeIsConstant(pWalker, pExpr); 1860 } 1861 1862 /* 1863 ** Walk the expression tree passed as the first argument. Return non-zero 1864 ** if the expression consists entirely of constants or copies of terms 1865 ** in pGroupBy that sort with the BINARY collation sequence. 1866 ** 1867 ** This routine is used to determine if a term of the HAVING clause can 1868 ** be promoted into the WHERE clause. In order for such a promotion to work, 1869 ** the value of the HAVING clause term must be the same for all members of 1870 ** a "group". The requirement that the GROUP BY term must be BINARY 1871 ** assumes that no other collating sequence will have a finer-grained 1872 ** grouping than binary. In other words (A=B COLLATE binary) implies 1873 ** A=B in every other collating sequence. The requirement that the 1874 ** GROUP BY be BINARY is stricter than necessary. It would also work 1875 ** to promote HAVING clauses that use the same alternative collating 1876 ** sequence as the GROUP BY term, but that is much harder to check, 1877 ** alternative collating sequences are uncommon, and this is only an 1878 ** optimization, so we take the easy way out and simply require the 1879 ** GROUP BY to use the BINARY collating sequence. 1880 */ 1881 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 1882 Walker w; 1883 w.eCode = 1; 1884 w.xExprCallback = exprNodeIsConstantOrGroupBy; 1885 w.xSelectCallback = 0; 1886 w.u.pGroupBy = pGroupBy; 1887 w.pParse = pParse; 1888 sqlite3WalkExpr(&w, p); 1889 return w.eCode; 1890 } 1891 1892 /* 1893 ** Walk an expression tree. Return non-zero if the expression is constant 1894 ** or a function call with constant arguments. Return and 0 if there 1895 ** are any variables. 1896 ** 1897 ** For the purposes of this function, a double-quoted string (ex: "abc") 1898 ** is considered a variable but a single-quoted string (ex: 'abc') is 1899 ** a constant. 1900 */ 1901 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1902 assert( isInit==0 || isInit==1 ); 1903 return exprIsConst(p, 4+isInit, 0); 1904 } 1905 1906 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1907 /* 1908 ** Walk an expression tree. Return 1 if the expression contains a 1909 ** subquery of some kind. Return 0 if there are no subqueries. 1910 */ 1911 int sqlite3ExprContainsSubquery(Expr *p){ 1912 Walker w; 1913 w.eCode = 1; 1914 w.xExprCallback = sqlite3ExprWalkNoop; 1915 w.xSelectCallback = sqlite3SelectWalkFail; 1916 #ifdef SQLITE_DEBUG 1917 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1918 #endif 1919 sqlite3WalkExpr(&w, p); 1920 return w.eCode==0; 1921 } 1922 #endif 1923 1924 /* 1925 ** If the expression p codes a constant integer that is small enough 1926 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1927 ** in *pValue. If the expression is not an integer or if it is too big 1928 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1929 */ 1930 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1931 int rc = 0; 1932 if( p==0 ) return 0; /* Can only happen following on OOM */ 1933 1934 /* If an expression is an integer literal that fits in a signed 32-bit 1935 ** integer, then the EP_IntValue flag will have already been set */ 1936 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1937 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1938 1939 if( p->flags & EP_IntValue ){ 1940 *pValue = p->u.iValue; 1941 return 1; 1942 } 1943 switch( p->op ){ 1944 case TK_UPLUS: { 1945 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1946 break; 1947 } 1948 case TK_UMINUS: { 1949 int v; 1950 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1951 assert( v!=(-2147483647-1) ); 1952 *pValue = -v; 1953 rc = 1; 1954 } 1955 break; 1956 } 1957 default: break; 1958 } 1959 return rc; 1960 } 1961 1962 /* 1963 ** Return FALSE if there is no chance that the expression can be NULL. 1964 ** 1965 ** If the expression might be NULL or if the expression is too complex 1966 ** to tell return TRUE. 1967 ** 1968 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1969 ** when we know that a value cannot be NULL. Hence, a false positive 1970 ** (returning TRUE when in fact the expression can never be NULL) might 1971 ** be a small performance hit but is otherwise harmless. On the other 1972 ** hand, a false negative (returning FALSE when the result could be NULL) 1973 ** will likely result in an incorrect answer. So when in doubt, return 1974 ** TRUE. 1975 */ 1976 int sqlite3ExprCanBeNull(const Expr *p){ 1977 u8 op; 1978 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1979 op = p->op; 1980 if( op==TK_REGISTER ) op = p->op2; 1981 switch( op ){ 1982 case TK_INTEGER: 1983 case TK_STRING: 1984 case TK_FLOAT: 1985 case TK_BLOB: 1986 return 0; 1987 case TK_COLUMN: 1988 return ExprHasProperty(p, EP_CanBeNull) || 1989 p->pTab==0 || /* Reference to column of index on expression */ 1990 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 1991 default: 1992 return 1; 1993 } 1994 } 1995 1996 /* 1997 ** Return TRUE if the given expression is a constant which would be 1998 ** unchanged by OP_Affinity with the affinity given in the second 1999 ** argument. 2000 ** 2001 ** This routine is used to determine if the OP_Affinity operation 2002 ** can be omitted. When in doubt return FALSE. A false negative 2003 ** is harmless. A false positive, however, can result in the wrong 2004 ** answer. 2005 */ 2006 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2007 u8 op; 2008 if( aff==SQLITE_AFF_BLOB ) return 1; 2009 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 2010 op = p->op; 2011 if( op==TK_REGISTER ) op = p->op2; 2012 switch( op ){ 2013 case TK_INTEGER: { 2014 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 2015 } 2016 case TK_FLOAT: { 2017 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 2018 } 2019 case TK_STRING: { 2020 return aff==SQLITE_AFF_TEXT; 2021 } 2022 case TK_BLOB: { 2023 return 1; 2024 } 2025 case TK_COLUMN: { 2026 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2027 return p->iColumn<0 2028 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 2029 } 2030 default: { 2031 return 0; 2032 } 2033 } 2034 } 2035 2036 /* 2037 ** Return TRUE if the given string is a row-id column name. 2038 */ 2039 int sqlite3IsRowid(const char *z){ 2040 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2041 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2042 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2043 return 0; 2044 } 2045 2046 /* 2047 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2048 ** that can be simplified to a direct table access, then return 2049 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2050 ** or if the SELECT statement needs to be manifested into a transient 2051 ** table, then return NULL. 2052 */ 2053 #ifndef SQLITE_OMIT_SUBQUERY 2054 static Select *isCandidateForInOpt(Expr *pX){ 2055 Select *p; 2056 SrcList *pSrc; 2057 ExprList *pEList; 2058 Table *pTab; 2059 int i; 2060 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2061 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2062 p = pX->x.pSelect; 2063 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2064 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2065 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2066 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2067 return 0; /* No DISTINCT keyword and no aggregate functions */ 2068 } 2069 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2070 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2071 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 2072 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2073 pSrc = p->pSrc; 2074 assert( pSrc!=0 ); 2075 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2076 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2077 pTab = pSrc->a[0].pTab; 2078 assert( pTab!=0 ); 2079 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2080 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2081 pEList = p->pEList; 2082 assert( pEList!=0 ); 2083 /* All SELECT results must be columns. */ 2084 for(i=0; i<pEList->nExpr; i++){ 2085 Expr *pRes = pEList->a[i].pExpr; 2086 if( pRes->op!=TK_COLUMN ) return 0; 2087 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2088 } 2089 return p; 2090 } 2091 #endif /* SQLITE_OMIT_SUBQUERY */ 2092 2093 #ifndef SQLITE_OMIT_SUBQUERY 2094 /* 2095 ** Generate code that checks the left-most column of index table iCur to see if 2096 ** it contains any NULL entries. Cause the register at regHasNull to be set 2097 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2098 ** to be set to NULL if iCur contains one or more NULL values. 2099 */ 2100 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2101 int addr1; 2102 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2103 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2104 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2105 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2106 VdbeComment((v, "first_entry_in(%d)", iCur)); 2107 sqlite3VdbeJumpHere(v, addr1); 2108 } 2109 #endif 2110 2111 2112 #ifndef SQLITE_OMIT_SUBQUERY 2113 /* 2114 ** The argument is an IN operator with a list (not a subquery) on the 2115 ** right-hand side. Return TRUE if that list is constant. 2116 */ 2117 static int sqlite3InRhsIsConstant(Expr *pIn){ 2118 Expr *pLHS; 2119 int res; 2120 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2121 pLHS = pIn->pLeft; 2122 pIn->pLeft = 0; 2123 res = sqlite3ExprIsConstant(pIn); 2124 pIn->pLeft = pLHS; 2125 return res; 2126 } 2127 #endif 2128 2129 /* 2130 ** This function is used by the implementation of the IN (...) operator. 2131 ** The pX parameter is the expression on the RHS of the IN operator, which 2132 ** might be either a list of expressions or a subquery. 2133 ** 2134 ** The job of this routine is to find or create a b-tree object that can 2135 ** be used either to test for membership in the RHS set or to iterate through 2136 ** all members of the RHS set, skipping duplicates. 2137 ** 2138 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2139 ** and pX->iTable is set to the index of that cursor. 2140 ** 2141 ** The returned value of this function indicates the b-tree type, as follows: 2142 ** 2143 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2144 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2145 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2146 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2147 ** populated epheremal table. 2148 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2149 ** implemented as a sequence of comparisons. 2150 ** 2151 ** An existing b-tree might be used if the RHS expression pX is a simple 2152 ** subquery such as: 2153 ** 2154 ** SELECT <column1>, <column2>... FROM <table> 2155 ** 2156 ** If the RHS of the IN operator is a list or a more complex subquery, then 2157 ** an ephemeral table might need to be generated from the RHS and then 2158 ** pX->iTable made to point to the ephemeral table instead of an 2159 ** existing table. 2160 ** 2161 ** The inFlags parameter must contain exactly one of the bits 2162 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 2163 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 2164 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 2165 ** IN index will be used to loop over all values of the RHS of the 2166 ** IN operator. 2167 ** 2168 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2169 ** through the set members) then the b-tree must not contain duplicates. 2170 ** An epheremal table must be used unless the selected columns are guaranteed 2171 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2172 ** a UNIQUE constraint or index. 2173 ** 2174 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2175 ** for fast set membership tests) then an epheremal table must 2176 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2177 ** index can be found with the specified <columns> as its left-most. 2178 ** 2179 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2180 ** if the RHS of the IN operator is a list (not a subquery) then this 2181 ** routine might decide that creating an ephemeral b-tree for membership 2182 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2183 ** calling routine should implement the IN operator using a sequence 2184 ** of Eq or Ne comparison operations. 2185 ** 2186 ** When the b-tree is being used for membership tests, the calling function 2187 ** might need to know whether or not the RHS side of the IN operator 2188 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2189 ** if there is any chance that the (...) might contain a NULL value at 2190 ** runtime, then a register is allocated and the register number written 2191 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2192 ** NULL value, then *prRhsHasNull is left unchanged. 2193 ** 2194 ** If a register is allocated and its location stored in *prRhsHasNull, then 2195 ** the value in that register will be NULL if the b-tree contains one or more 2196 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2197 ** NULL values. 2198 ** 2199 ** If the aiMap parameter is not NULL, it must point to an array containing 2200 ** one element for each column returned by the SELECT statement on the RHS 2201 ** of the IN(...) operator. The i'th entry of the array is populated with the 2202 ** offset of the index column that matches the i'th column returned by the 2203 ** SELECT. For example, if the expression and selected index are: 2204 ** 2205 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2206 ** CREATE INDEX i1 ON t1(b, c, a); 2207 ** 2208 ** then aiMap[] is populated with {2, 0, 1}. 2209 */ 2210 #ifndef SQLITE_OMIT_SUBQUERY 2211 int sqlite3FindInIndex( 2212 Parse *pParse, /* Parsing context */ 2213 Expr *pX, /* The right-hand side (RHS) of the IN operator */ 2214 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2215 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2216 int *aiMap /* Mapping from Index fields to RHS fields */ 2217 ){ 2218 Select *p; /* SELECT to the right of IN operator */ 2219 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2220 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2221 int mustBeUnique; /* True if RHS must be unique */ 2222 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2223 2224 assert( pX->op==TK_IN ); 2225 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2226 2227 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2228 ** whether or not the SELECT result contains NULL values, check whether 2229 ** or not NULL is actually possible (it may not be, for example, due 2230 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2231 ** set prRhsHasNull to 0 before continuing. */ 2232 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2233 int i; 2234 ExprList *pEList = pX->x.pSelect->pEList; 2235 for(i=0; i<pEList->nExpr; i++){ 2236 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2237 } 2238 if( i==pEList->nExpr ){ 2239 prRhsHasNull = 0; 2240 } 2241 } 2242 2243 /* Check to see if an existing table or index can be used to 2244 ** satisfy the query. This is preferable to generating a new 2245 ** ephemeral table. */ 2246 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2247 sqlite3 *db = pParse->db; /* Database connection */ 2248 Table *pTab; /* Table <table>. */ 2249 i16 iDb; /* Database idx for pTab */ 2250 ExprList *pEList = p->pEList; 2251 int nExpr = pEList->nExpr; 2252 2253 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2254 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2255 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2256 pTab = p->pSrc->a[0].pTab; 2257 2258 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2259 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2260 sqlite3CodeVerifySchema(pParse, iDb); 2261 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2262 2263 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2264 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2265 /* The "x IN (SELECT rowid FROM table)" case */ 2266 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2267 VdbeCoverage(v); 2268 2269 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2270 eType = IN_INDEX_ROWID; 2271 2272 sqlite3VdbeJumpHere(v, iAddr); 2273 }else{ 2274 Index *pIdx; /* Iterator variable */ 2275 int affinity_ok = 1; 2276 int i; 2277 2278 /* Check that the affinity that will be used to perform each 2279 ** comparison is the same as the affinity of each column in table 2280 ** on the RHS of the IN operator. If it not, it is not possible to 2281 ** use any index of the RHS table. */ 2282 for(i=0; i<nExpr && affinity_ok; i++){ 2283 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2284 int iCol = pEList->a[i].pExpr->iColumn; 2285 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2286 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2287 testcase( cmpaff==SQLITE_AFF_BLOB ); 2288 testcase( cmpaff==SQLITE_AFF_TEXT ); 2289 switch( cmpaff ){ 2290 case SQLITE_AFF_BLOB: 2291 break; 2292 case SQLITE_AFF_TEXT: 2293 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2294 ** other has no affinity and the other side is TEXT. Hence, 2295 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2296 ** and for the term on the LHS of the IN to have no affinity. */ 2297 assert( idxaff==SQLITE_AFF_TEXT ); 2298 break; 2299 default: 2300 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2301 } 2302 } 2303 2304 if( affinity_ok ){ 2305 /* Search for an existing index that will work for this IN operator */ 2306 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2307 Bitmask colUsed; /* Columns of the index used */ 2308 Bitmask mCol; /* Mask for the current column */ 2309 if( pIdx->nColumn<nExpr ) continue; 2310 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2311 ** BITMASK(nExpr) without overflowing */ 2312 testcase( pIdx->nColumn==BMS-2 ); 2313 testcase( pIdx->nColumn==BMS-1 ); 2314 if( pIdx->nColumn>=BMS-1 ) continue; 2315 if( mustBeUnique ){ 2316 if( pIdx->nKeyCol>nExpr 2317 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2318 ){ 2319 continue; /* This index is not unique over the IN RHS columns */ 2320 } 2321 } 2322 2323 colUsed = 0; /* Columns of index used so far */ 2324 for(i=0; i<nExpr; i++){ 2325 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2326 Expr *pRhs = pEList->a[i].pExpr; 2327 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2328 int j; 2329 2330 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2331 for(j=0; j<nExpr; j++){ 2332 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2333 assert( pIdx->azColl[j] ); 2334 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2335 continue; 2336 } 2337 break; 2338 } 2339 if( j==nExpr ) break; 2340 mCol = MASKBIT(j); 2341 if( mCol & colUsed ) break; /* Each column used only once */ 2342 colUsed |= mCol; 2343 if( aiMap ) aiMap[i] = j; 2344 } 2345 2346 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2347 if( colUsed==(MASKBIT(nExpr)-1) ){ 2348 /* If we reach this point, that means the index pIdx is usable */ 2349 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2350 #ifndef SQLITE_OMIT_EXPLAIN 2351 sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0, 2352 sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName), 2353 P4_DYNAMIC); 2354 #endif 2355 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2356 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2357 VdbeComment((v, "%s", pIdx->zName)); 2358 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2359 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2360 2361 if( prRhsHasNull ){ 2362 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2363 i64 mask = (1<<nExpr)-1; 2364 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2365 iTab, 0, 0, (u8*)&mask, P4_INT64); 2366 #endif 2367 *prRhsHasNull = ++pParse->nMem; 2368 if( nExpr==1 ){ 2369 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2370 } 2371 } 2372 sqlite3VdbeJumpHere(v, iAddr); 2373 } 2374 } /* End loop over indexes */ 2375 } /* End if( affinity_ok ) */ 2376 } /* End if not an rowid index */ 2377 } /* End attempt to optimize using an index */ 2378 2379 /* If no preexisting index is available for the IN clause 2380 ** and IN_INDEX_NOOP is an allowed reply 2381 ** and the RHS of the IN operator is a list, not a subquery 2382 ** and the RHS is not constant or has two or fewer terms, 2383 ** then it is not worth creating an ephemeral table to evaluate 2384 ** the IN operator so return IN_INDEX_NOOP. 2385 */ 2386 if( eType==0 2387 && (inFlags & IN_INDEX_NOOP_OK) 2388 && !ExprHasProperty(pX, EP_xIsSelect) 2389 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2390 ){ 2391 eType = IN_INDEX_NOOP; 2392 } 2393 2394 if( eType==0 ){ 2395 /* Could not find an existing table or index to use as the RHS b-tree. 2396 ** We will have to generate an ephemeral table to do the job. 2397 */ 2398 u32 savedNQueryLoop = pParse->nQueryLoop; 2399 int rMayHaveNull = 0; 2400 eType = IN_INDEX_EPH; 2401 if( inFlags & IN_INDEX_LOOP ){ 2402 pParse->nQueryLoop = 0; 2403 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 2404 eType = IN_INDEX_ROWID; 2405 } 2406 }else if( prRhsHasNull ){ 2407 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2408 } 2409 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 2410 pParse->nQueryLoop = savedNQueryLoop; 2411 }else{ 2412 pX->iTable = iTab; 2413 } 2414 2415 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2416 int i, n; 2417 n = sqlite3ExprVectorSize(pX->pLeft); 2418 for(i=0; i<n; i++) aiMap[i] = i; 2419 } 2420 return eType; 2421 } 2422 #endif 2423 2424 #ifndef SQLITE_OMIT_SUBQUERY 2425 /* 2426 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2427 ** function allocates and returns a nul-terminated string containing 2428 ** the affinities to be used for each column of the comparison. 2429 ** 2430 ** It is the responsibility of the caller to ensure that the returned 2431 ** string is eventually freed using sqlite3DbFree(). 2432 */ 2433 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2434 Expr *pLeft = pExpr->pLeft; 2435 int nVal = sqlite3ExprVectorSize(pLeft); 2436 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2437 char *zRet; 2438 2439 assert( pExpr->op==TK_IN ); 2440 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2441 if( zRet ){ 2442 int i; 2443 for(i=0; i<nVal; i++){ 2444 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2445 char a = sqlite3ExprAffinity(pA); 2446 if( pSelect ){ 2447 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2448 }else{ 2449 zRet[i] = a; 2450 } 2451 } 2452 zRet[nVal] = '\0'; 2453 } 2454 return zRet; 2455 } 2456 #endif 2457 2458 #ifndef SQLITE_OMIT_SUBQUERY 2459 /* 2460 ** Load the Parse object passed as the first argument with an error 2461 ** message of the form: 2462 ** 2463 ** "sub-select returns N columns - expected M" 2464 */ 2465 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2466 const char *zFmt = "sub-select returns %d columns - expected %d"; 2467 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2468 } 2469 #endif 2470 2471 /* 2472 ** Expression pExpr is a vector that has been used in a context where 2473 ** it is not permitted. If pExpr is a sub-select vector, this routine 2474 ** loads the Parse object with a message of the form: 2475 ** 2476 ** "sub-select returns N columns - expected 1" 2477 ** 2478 ** Or, if it is a regular scalar vector: 2479 ** 2480 ** "row value misused" 2481 */ 2482 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2483 #ifndef SQLITE_OMIT_SUBQUERY 2484 if( pExpr->flags & EP_xIsSelect ){ 2485 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2486 }else 2487 #endif 2488 { 2489 sqlite3ErrorMsg(pParse, "row value misused"); 2490 } 2491 } 2492 2493 /* 2494 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 2495 ** or IN operators. Examples: 2496 ** 2497 ** (SELECT a FROM b) -- subquery 2498 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2499 ** x IN (4,5,11) -- IN operator with list on right-hand side 2500 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2501 ** 2502 ** The pExpr parameter describes the expression that contains the IN 2503 ** operator or subquery. 2504 ** 2505 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 2506 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 2507 ** to some integer key column of a table B-Tree. In this case, use an 2508 ** intkey B-Tree to store the set of IN(...) values instead of the usual 2509 ** (slower) variable length keys B-Tree. 2510 ** 2511 ** If rMayHaveNull is non-zero, that means that the operation is an IN 2512 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 2513 ** All this routine does is initialize the register given by rMayHaveNull 2514 ** to NULL. Calling routines will take care of changing this register 2515 ** value to non-NULL if the RHS is NULL-free. 2516 ** 2517 ** For a SELECT or EXISTS operator, return the register that holds the 2518 ** result. For a multi-column SELECT, the result is stored in a contiguous 2519 ** array of registers and the return value is the register of the left-most 2520 ** result column. Return 0 for IN operators or if an error occurs. 2521 */ 2522 #ifndef SQLITE_OMIT_SUBQUERY 2523 int sqlite3CodeSubselect( 2524 Parse *pParse, /* Parsing context */ 2525 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 2526 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 2527 int isRowid /* If true, LHS of IN operator is a rowid */ 2528 ){ 2529 int jmpIfDynamic = -1; /* One-time test address */ 2530 int rReg = 0; /* Register storing resulting */ 2531 Vdbe *v = sqlite3GetVdbe(pParse); 2532 if( NEVER(v==0) ) return 0; 2533 sqlite3ExprCachePush(pParse); 2534 2535 /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it 2536 ** is encountered if any of the following is true: 2537 ** 2538 ** * The right-hand side is a correlated subquery 2539 ** * The right-hand side is an expression list containing variables 2540 ** * We are inside a trigger 2541 ** 2542 ** If all of the above are false, then we can run this code just once 2543 ** save the results, and reuse the same result on subsequent invocations. 2544 */ 2545 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2546 jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2547 } 2548 2549 #ifndef SQLITE_OMIT_EXPLAIN 2550 if( pParse->explain==2 ){ 2551 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d", 2552 jmpIfDynamic>=0?"":"CORRELATED ", 2553 pExpr->op==TK_IN?"LIST":"SCALAR", 2554 pParse->iNextSelectId 2555 ); 2556 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 2557 } 2558 #endif 2559 2560 switch( pExpr->op ){ 2561 case TK_IN: { 2562 int addr; /* Address of OP_OpenEphemeral instruction */ 2563 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 2564 KeyInfo *pKeyInfo = 0; /* Key information */ 2565 int nVal; /* Size of vector pLeft */ 2566 2567 nVal = sqlite3ExprVectorSize(pLeft); 2568 assert( !isRowid || nVal==1 ); 2569 2570 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 2571 ** expression it is handled the same way. An ephemeral table is 2572 ** filled with index keys representing the results from the 2573 ** SELECT or the <exprlist>. 2574 ** 2575 ** If the 'x' expression is a column value, or the SELECT... 2576 ** statement returns a column value, then the affinity of that 2577 ** column is used to build the index keys. If both 'x' and the 2578 ** SELECT... statement are columns, then numeric affinity is used 2579 ** if either column has NUMERIC or INTEGER affinity. If neither 2580 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2581 ** is used. 2582 */ 2583 pExpr->iTable = pParse->nTab++; 2584 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, 2585 pExpr->iTable, (isRowid?0:nVal)); 2586 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2587 2588 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2589 /* Case 1: expr IN (SELECT ...) 2590 ** 2591 ** Generate code to write the results of the select into the temporary 2592 ** table allocated and opened above. 2593 */ 2594 Select *pSelect = pExpr->x.pSelect; 2595 ExprList *pEList = pSelect->pEList; 2596 2597 assert( !isRowid ); 2598 /* If the LHS and RHS of the IN operator do not match, that 2599 ** error will have been caught long before we reach this point. */ 2600 if( ALWAYS(pEList->nExpr==nVal) ){ 2601 SelectDest dest; 2602 int i; 2603 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 2604 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2605 pSelect->iLimit = 0; 2606 testcase( pSelect->selFlags & SF_Distinct ); 2607 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2608 if( sqlite3Select(pParse, pSelect, &dest) ){ 2609 sqlite3DbFree(pParse->db, dest.zAffSdst); 2610 sqlite3KeyInfoUnref(pKeyInfo); 2611 return 0; 2612 } 2613 sqlite3DbFree(pParse->db, dest.zAffSdst); 2614 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2615 assert( pEList!=0 ); 2616 assert( pEList->nExpr>0 ); 2617 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2618 for(i=0; i<nVal; i++){ 2619 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2620 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2621 pParse, p, pEList->a[i].pExpr 2622 ); 2623 } 2624 } 2625 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2626 /* Case 2: expr IN (exprlist) 2627 ** 2628 ** For each expression, build an index key from the evaluation and 2629 ** store it in the temporary table. If <expr> is a column, then use 2630 ** that columns affinity when building index keys. If <expr> is not 2631 ** a column, use numeric affinity. 2632 */ 2633 char affinity; /* Affinity of the LHS of the IN */ 2634 int i; 2635 ExprList *pList = pExpr->x.pList; 2636 struct ExprList_item *pItem; 2637 int r1, r2, r3; 2638 2639 affinity = sqlite3ExprAffinity(pLeft); 2640 if( !affinity ){ 2641 affinity = SQLITE_AFF_BLOB; 2642 } 2643 if( pKeyInfo ){ 2644 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2645 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2646 } 2647 2648 /* Loop through each expression in <exprlist>. */ 2649 r1 = sqlite3GetTempReg(pParse); 2650 r2 = sqlite3GetTempReg(pParse); 2651 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 2652 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2653 Expr *pE2 = pItem->pExpr; 2654 int iValToIns; 2655 2656 /* If the expression is not constant then we will need to 2657 ** disable the test that was generated above that makes sure 2658 ** this code only executes once. Because for a non-constant 2659 ** expression we need to rerun this code each time. 2660 */ 2661 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 2662 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 2663 jmpIfDynamic = -1; 2664 } 2665 2666 /* Evaluate the expression and insert it into the temp table */ 2667 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 2668 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 2669 }else{ 2670 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2671 if( isRowid ){ 2672 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2673 sqlite3VdbeCurrentAddr(v)+2); 2674 VdbeCoverage(v); 2675 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 2676 }else{ 2677 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2678 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 2679 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1); 2680 } 2681 } 2682 } 2683 sqlite3ReleaseTempReg(pParse, r1); 2684 sqlite3ReleaseTempReg(pParse, r2); 2685 } 2686 if( pKeyInfo ){ 2687 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2688 } 2689 break; 2690 } 2691 2692 case TK_EXISTS: 2693 case TK_SELECT: 2694 default: { 2695 /* Case 3: (SELECT ... FROM ...) 2696 ** or: EXISTS(SELECT ... FROM ...) 2697 ** 2698 ** For a SELECT, generate code to put the values for all columns of 2699 ** the first row into an array of registers and return the index of 2700 ** the first register. 2701 ** 2702 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2703 ** into a register and return that register number. 2704 ** 2705 ** In both cases, the query is augmented with "LIMIT 1". Any 2706 ** preexisting limit is discarded in place of the new LIMIT 1. 2707 */ 2708 Select *pSel; /* SELECT statement to encode */ 2709 SelectDest dest; /* How to deal with SELECT result */ 2710 int nReg; /* Registers to allocate */ 2711 2712 testcase( pExpr->op==TK_EXISTS ); 2713 testcase( pExpr->op==TK_SELECT ); 2714 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2715 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2716 2717 pSel = pExpr->x.pSelect; 2718 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2719 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2720 pParse->nMem += nReg; 2721 if( pExpr->op==TK_SELECT ){ 2722 dest.eDest = SRT_Mem; 2723 dest.iSdst = dest.iSDParm; 2724 dest.nSdst = nReg; 2725 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2726 VdbeComment((v, "Init subquery result")); 2727 }else{ 2728 dest.eDest = SRT_Exists; 2729 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2730 VdbeComment((v, "Init EXISTS result")); 2731 } 2732 sqlite3ExprDelete(pParse->db, pSel->pLimit); 2733 pSel->pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER, 2734 &sqlite3IntTokens[1], 0); 2735 pSel->iLimit = 0; 2736 pSel->selFlags &= ~SF_MultiValue; 2737 if( sqlite3Select(pParse, pSel, &dest) ){ 2738 return 0; 2739 } 2740 rReg = dest.iSDParm; 2741 ExprSetVVAProperty(pExpr, EP_NoReduce); 2742 break; 2743 } 2744 } 2745 2746 if( rHasNullFlag ){ 2747 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2748 } 2749 2750 if( jmpIfDynamic>=0 ){ 2751 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2752 } 2753 sqlite3ExprCachePop(pParse); 2754 2755 return rReg; 2756 } 2757 #endif /* SQLITE_OMIT_SUBQUERY */ 2758 2759 #ifndef SQLITE_OMIT_SUBQUERY 2760 /* 2761 ** Expr pIn is an IN(...) expression. This function checks that the 2762 ** sub-select on the RHS of the IN() operator has the same number of 2763 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 2764 ** a sub-query, that the LHS is a vector of size 1. 2765 */ 2766 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 2767 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 2768 if( (pIn->flags & EP_xIsSelect) ){ 2769 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 2770 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 2771 return 1; 2772 } 2773 }else if( nVector!=1 ){ 2774 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 2775 return 1; 2776 } 2777 return 0; 2778 } 2779 #endif 2780 2781 #ifndef SQLITE_OMIT_SUBQUERY 2782 /* 2783 ** Generate code for an IN expression. 2784 ** 2785 ** x IN (SELECT ...) 2786 ** x IN (value, value, ...) 2787 ** 2788 ** The left-hand side (LHS) is a scalar or vector expression. The 2789 ** right-hand side (RHS) is an array of zero or more scalar values, or a 2790 ** subquery. If the RHS is a subquery, the number of result columns must 2791 ** match the number of columns in the vector on the LHS. If the RHS is 2792 ** a list of values, the LHS must be a scalar. 2793 ** 2794 ** The IN operator is true if the LHS value is contained within the RHS. 2795 ** The result is false if the LHS is definitely not in the RHS. The 2796 ** result is NULL if the presence of the LHS in the RHS cannot be 2797 ** determined due to NULLs. 2798 ** 2799 ** This routine generates code that jumps to destIfFalse if the LHS is not 2800 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2801 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2802 ** within the RHS then fall through. 2803 ** 2804 ** See the separate in-operator.md documentation file in the canonical 2805 ** SQLite source tree for additional information. 2806 */ 2807 static void sqlite3ExprCodeIN( 2808 Parse *pParse, /* Parsing and code generating context */ 2809 Expr *pExpr, /* The IN expression */ 2810 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2811 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2812 ){ 2813 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2814 int eType; /* Type of the RHS */ 2815 int rLhs; /* Register(s) holding the LHS values */ 2816 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 2817 Vdbe *v; /* Statement under construction */ 2818 int *aiMap = 0; /* Map from vector field to index column */ 2819 char *zAff = 0; /* Affinity string for comparisons */ 2820 int nVector; /* Size of vectors for this IN operator */ 2821 int iDummy; /* Dummy parameter to exprCodeVector() */ 2822 Expr *pLeft; /* The LHS of the IN operator */ 2823 int i; /* loop counter */ 2824 int destStep2; /* Where to jump when NULLs seen in step 2 */ 2825 int destStep6 = 0; /* Start of code for Step 6 */ 2826 int addrTruthOp; /* Address of opcode that determines the IN is true */ 2827 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 2828 int addrTop; /* Top of the step-6 loop */ 2829 2830 pLeft = pExpr->pLeft; 2831 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 2832 zAff = exprINAffinity(pParse, pExpr); 2833 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 2834 aiMap = (int*)sqlite3DbMallocZero( 2835 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 2836 ); 2837 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 2838 2839 /* Attempt to compute the RHS. After this step, if anything other than 2840 ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable 2841 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 2842 ** the RHS has not yet been coded. */ 2843 v = pParse->pVdbe; 2844 assert( v!=0 ); /* OOM detected prior to this routine */ 2845 VdbeNoopComment((v, "begin IN expr")); 2846 eType = sqlite3FindInIndex(pParse, pExpr, 2847 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2848 destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap); 2849 2850 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 2851 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 2852 ); 2853 #ifdef SQLITE_DEBUG 2854 /* Confirm that aiMap[] contains nVector integer values between 0 and 2855 ** nVector-1. */ 2856 for(i=0; i<nVector; i++){ 2857 int j, cnt; 2858 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 2859 assert( cnt==1 ); 2860 } 2861 #endif 2862 2863 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 2864 ** vector, then it is stored in an array of nVector registers starting 2865 ** at r1. 2866 ** 2867 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 2868 ** so that the fields are in the same order as an existing index. The 2869 ** aiMap[] array contains a mapping from the original LHS field order to 2870 ** the field order that matches the RHS index. 2871 */ 2872 sqlite3ExprCachePush(pParse); 2873 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 2874 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 2875 if( i==nVector ){ 2876 /* LHS fields are not reordered */ 2877 rLhs = rLhsOrig; 2878 }else{ 2879 /* Need to reorder the LHS fields according to aiMap */ 2880 rLhs = sqlite3GetTempRange(pParse, nVector); 2881 for(i=0; i<nVector; i++){ 2882 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 2883 } 2884 } 2885 2886 /* If sqlite3FindInIndex() did not find or create an index that is 2887 ** suitable for evaluating the IN operator, then evaluate using a 2888 ** sequence of comparisons. 2889 ** 2890 ** This is step (1) in the in-operator.md optimized algorithm. 2891 */ 2892 if( eType==IN_INDEX_NOOP ){ 2893 ExprList *pList = pExpr->x.pList; 2894 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2895 int labelOk = sqlite3VdbeMakeLabel(v); 2896 int r2, regToFree; 2897 int regCkNull = 0; 2898 int ii; 2899 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2900 if( destIfNull!=destIfFalse ){ 2901 regCkNull = sqlite3GetTempReg(pParse); 2902 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 2903 } 2904 for(ii=0; ii<pList->nExpr; ii++){ 2905 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2906 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2907 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2908 } 2909 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2910 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 2911 (void*)pColl, P4_COLLSEQ); 2912 VdbeCoverageIf(v, ii<pList->nExpr-1); 2913 VdbeCoverageIf(v, ii==pList->nExpr-1); 2914 sqlite3VdbeChangeP5(v, zAff[0]); 2915 }else{ 2916 assert( destIfNull==destIfFalse ); 2917 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 2918 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2919 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 2920 } 2921 sqlite3ReleaseTempReg(pParse, regToFree); 2922 } 2923 if( regCkNull ){ 2924 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2925 sqlite3VdbeGoto(v, destIfFalse); 2926 } 2927 sqlite3VdbeResolveLabel(v, labelOk); 2928 sqlite3ReleaseTempReg(pParse, regCkNull); 2929 goto sqlite3ExprCodeIN_finished; 2930 } 2931 2932 /* Step 2: Check to see if the LHS contains any NULL columns. If the 2933 ** LHS does contain NULLs then the result must be either FALSE or NULL. 2934 ** We will then skip the binary search of the RHS. 2935 */ 2936 if( destIfNull==destIfFalse ){ 2937 destStep2 = destIfFalse; 2938 }else{ 2939 destStep2 = destStep6 = sqlite3VdbeMakeLabel(v); 2940 } 2941 for(i=0; i<nVector; i++){ 2942 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 2943 if( sqlite3ExprCanBeNull(p) ){ 2944 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 2945 VdbeCoverage(v); 2946 } 2947 } 2948 2949 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 2950 ** of the RHS using the LHS as a probe. If found, the result is 2951 ** true. 2952 */ 2953 if( eType==IN_INDEX_ROWID ){ 2954 /* In this case, the RHS is the ROWID of table b-tree and so we also 2955 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 2956 ** into a single opcode. */ 2957 sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs); 2958 VdbeCoverage(v); 2959 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 2960 }else{ 2961 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 2962 if( destIfFalse==destIfNull ){ 2963 /* Combine Step 3 and Step 5 into a single opcode */ 2964 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, 2965 rLhs, nVector); VdbeCoverage(v); 2966 goto sqlite3ExprCodeIN_finished; 2967 } 2968 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 2969 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, 2970 rLhs, nVector); VdbeCoverage(v); 2971 } 2972 2973 /* Step 4. If the RHS is known to be non-NULL and we did not find 2974 ** an match on the search above, then the result must be FALSE. 2975 */ 2976 if( rRhsHasNull && nVector==1 ){ 2977 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 2978 VdbeCoverage(v); 2979 } 2980 2981 /* Step 5. If we do not care about the difference between NULL and 2982 ** FALSE, then just return false. 2983 */ 2984 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 2985 2986 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 2987 ** If any comparison is NULL, then the result is NULL. If all 2988 ** comparisons are FALSE then the final result is FALSE. 2989 ** 2990 ** For a scalar LHS, it is sufficient to check just the first row 2991 ** of the RHS. 2992 */ 2993 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 2994 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2995 VdbeCoverage(v); 2996 if( nVector>1 ){ 2997 destNotNull = sqlite3VdbeMakeLabel(v); 2998 }else{ 2999 /* For nVector==1, combine steps 6 and 7 by immediately returning 3000 ** FALSE if the first comparison is not NULL */ 3001 destNotNull = destIfFalse; 3002 } 3003 for(i=0; i<nVector; i++){ 3004 Expr *p; 3005 CollSeq *pColl; 3006 int r3 = sqlite3GetTempReg(pParse); 3007 p = sqlite3VectorFieldSubexpr(pLeft, i); 3008 pColl = sqlite3ExprCollSeq(pParse, p); 3009 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3); 3010 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3011 (void*)pColl, P4_COLLSEQ); 3012 VdbeCoverage(v); 3013 sqlite3ReleaseTempReg(pParse, r3); 3014 } 3015 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3016 if( nVector>1 ){ 3017 sqlite3VdbeResolveLabel(v, destNotNull); 3018 sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1); 3019 VdbeCoverage(v); 3020 3021 /* Step 7: If we reach this point, we know that the result must 3022 ** be false. */ 3023 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3024 } 3025 3026 /* Jumps here in order to return true. */ 3027 sqlite3VdbeJumpHere(v, addrTruthOp); 3028 3029 sqlite3ExprCodeIN_finished: 3030 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3031 sqlite3ExprCachePop(pParse); 3032 VdbeComment((v, "end IN expr")); 3033 sqlite3ExprCodeIN_oom_error: 3034 sqlite3DbFree(pParse->db, aiMap); 3035 sqlite3DbFree(pParse->db, zAff); 3036 } 3037 #endif /* SQLITE_OMIT_SUBQUERY */ 3038 3039 #ifndef SQLITE_OMIT_FLOATING_POINT 3040 /* 3041 ** Generate an instruction that will put the floating point 3042 ** value described by z[0..n-1] into register iMem. 3043 ** 3044 ** The z[] string will probably not be zero-terminated. But the 3045 ** z[n] character is guaranteed to be something that does not look 3046 ** like the continuation of the number. 3047 */ 3048 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3049 if( ALWAYS(z!=0) ){ 3050 double value; 3051 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3052 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3053 if( negateFlag ) value = -value; 3054 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3055 } 3056 } 3057 #endif 3058 3059 3060 /* 3061 ** Generate an instruction that will put the integer describe by 3062 ** text z[0..n-1] into register iMem. 3063 ** 3064 ** Expr.u.zToken is always UTF8 and zero-terminated. 3065 */ 3066 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3067 Vdbe *v = pParse->pVdbe; 3068 if( pExpr->flags & EP_IntValue ){ 3069 int i = pExpr->u.iValue; 3070 assert( i>=0 ); 3071 if( negFlag ) i = -i; 3072 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3073 }else{ 3074 int c; 3075 i64 value; 3076 const char *z = pExpr->u.zToken; 3077 assert( z!=0 ); 3078 c = sqlite3DecOrHexToI64(z, &value); 3079 if( c==1 || (c==2 && !negFlag) || (negFlag && value==SMALLEST_INT64)){ 3080 #ifdef SQLITE_OMIT_FLOATING_POINT 3081 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3082 #else 3083 #ifndef SQLITE_OMIT_HEX_INTEGER 3084 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3085 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3086 }else 3087 #endif 3088 { 3089 codeReal(v, z, negFlag, iMem); 3090 } 3091 #endif 3092 }else{ 3093 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 3094 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3095 } 3096 } 3097 } 3098 3099 /* 3100 ** Erase column-cache entry number i 3101 */ 3102 static void cacheEntryClear(Parse *pParse, int i){ 3103 if( pParse->aColCache[i].tempReg ){ 3104 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3105 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3106 } 3107 } 3108 pParse->nColCache--; 3109 if( i<pParse->nColCache ){ 3110 pParse->aColCache[i] = pParse->aColCache[pParse->nColCache]; 3111 } 3112 } 3113 3114 3115 /* 3116 ** Record in the column cache that a particular column from a 3117 ** particular table is stored in a particular register. 3118 */ 3119 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 3120 int i; 3121 int minLru; 3122 int idxLru; 3123 struct yColCache *p; 3124 3125 /* Unless an error has occurred, register numbers are always positive. */ 3126 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 3127 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 3128 3129 /* The SQLITE_ColumnCache flag disables the column cache. This is used 3130 ** for testing only - to verify that SQLite always gets the same answer 3131 ** with and without the column cache. 3132 */ 3133 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 3134 3135 /* First replace any existing entry. 3136 ** 3137 ** Actually, the way the column cache is currently used, we are guaranteed 3138 ** that the object will never already be in cache. Verify this guarantee. 3139 */ 3140 #ifndef NDEBUG 3141 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3142 assert( p->iTable!=iTab || p->iColumn!=iCol ); 3143 } 3144 #endif 3145 3146 /* If the cache is already full, delete the least recently used entry */ 3147 if( pParse->nColCache>=SQLITE_N_COLCACHE ){ 3148 minLru = 0x7fffffff; 3149 idxLru = -1; 3150 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 3151 if( p->lru<minLru ){ 3152 idxLru = i; 3153 minLru = p->lru; 3154 } 3155 } 3156 p = &pParse->aColCache[idxLru]; 3157 }else{ 3158 p = &pParse->aColCache[pParse->nColCache++]; 3159 } 3160 3161 /* Add the new entry to the end of the cache */ 3162 p->iLevel = pParse->iCacheLevel; 3163 p->iTable = iTab; 3164 p->iColumn = iCol; 3165 p->iReg = iReg; 3166 p->tempReg = 0; 3167 p->lru = pParse->iCacheCnt++; 3168 } 3169 3170 /* 3171 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 3172 ** Purge the range of registers from the column cache. 3173 */ 3174 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 3175 int i = 0; 3176 while( i<pParse->nColCache ){ 3177 struct yColCache *p = &pParse->aColCache[i]; 3178 if( p->iReg >= iReg && p->iReg < iReg+nReg ){ 3179 cacheEntryClear(pParse, i); 3180 }else{ 3181 i++; 3182 } 3183 } 3184 } 3185 3186 /* 3187 ** Remember the current column cache context. Any new entries added 3188 ** added to the column cache after this call are removed when the 3189 ** corresponding pop occurs. 3190 */ 3191 void sqlite3ExprCachePush(Parse *pParse){ 3192 pParse->iCacheLevel++; 3193 #ifdef SQLITE_DEBUG 3194 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3195 printf("PUSH to %d\n", pParse->iCacheLevel); 3196 } 3197 #endif 3198 } 3199 3200 /* 3201 ** Remove from the column cache any entries that were added since the 3202 ** the previous sqlite3ExprCachePush operation. In other words, restore 3203 ** the cache to the state it was in prior the most recent Push. 3204 */ 3205 void sqlite3ExprCachePop(Parse *pParse){ 3206 int i = 0; 3207 assert( pParse->iCacheLevel>=1 ); 3208 pParse->iCacheLevel--; 3209 #ifdef SQLITE_DEBUG 3210 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3211 printf("POP to %d\n", pParse->iCacheLevel); 3212 } 3213 #endif 3214 while( i<pParse->nColCache ){ 3215 if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){ 3216 cacheEntryClear(pParse, i); 3217 }else{ 3218 i++; 3219 } 3220 } 3221 } 3222 3223 /* 3224 ** When a cached column is reused, make sure that its register is 3225 ** no longer available as a temp register. ticket #3879: that same 3226 ** register might be in the cache in multiple places, so be sure to 3227 ** get them all. 3228 */ 3229 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 3230 int i; 3231 struct yColCache *p; 3232 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3233 if( p->iReg==iReg ){ 3234 p->tempReg = 0; 3235 } 3236 } 3237 } 3238 3239 /* Generate code that will load into register regOut a value that is 3240 ** appropriate for the iIdxCol-th column of index pIdx. 3241 */ 3242 void sqlite3ExprCodeLoadIndexColumn( 3243 Parse *pParse, /* The parsing context */ 3244 Index *pIdx, /* The index whose column is to be loaded */ 3245 int iTabCur, /* Cursor pointing to a table row */ 3246 int iIdxCol, /* The column of the index to be loaded */ 3247 int regOut /* Store the index column value in this register */ 3248 ){ 3249 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3250 if( iTabCol==XN_EXPR ){ 3251 assert( pIdx->aColExpr ); 3252 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3253 pParse->iSelfTab = iTabCur + 1; 3254 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3255 pParse->iSelfTab = 0; 3256 }else{ 3257 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3258 iTabCol, regOut); 3259 } 3260 } 3261 3262 /* 3263 ** Generate code to extract the value of the iCol-th column of a table. 3264 */ 3265 void sqlite3ExprCodeGetColumnOfTable( 3266 Vdbe *v, /* The VDBE under construction */ 3267 Table *pTab, /* The table containing the value */ 3268 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3269 int iCol, /* Index of the column to extract */ 3270 int regOut /* Extract the value into this register */ 3271 ){ 3272 if( pTab==0 ){ 3273 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3274 return; 3275 } 3276 if( iCol<0 || iCol==pTab->iPKey ){ 3277 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3278 }else{ 3279 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 3280 int x = iCol; 3281 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ 3282 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3283 } 3284 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3285 } 3286 if( iCol>=0 ){ 3287 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3288 } 3289 } 3290 3291 /* 3292 ** Generate code that will extract the iColumn-th column from 3293 ** table pTab and store the column value in a register. 3294 ** 3295 ** An effort is made to store the column value in register iReg. This 3296 ** is not garanteeed for GetColumn() - the result can be stored in 3297 ** any register. But the result is guaranteed to land in register iReg 3298 ** for GetColumnToReg(). 3299 ** 3300 ** There must be an open cursor to pTab in iTable when this routine 3301 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3302 */ 3303 int sqlite3ExprCodeGetColumn( 3304 Parse *pParse, /* Parsing and code generating context */ 3305 Table *pTab, /* Description of the table we are reading from */ 3306 int iColumn, /* Index of the table column */ 3307 int iTable, /* The cursor pointing to the table */ 3308 int iReg, /* Store results here */ 3309 u8 p5 /* P5 value for OP_Column + FLAGS */ 3310 ){ 3311 Vdbe *v = pParse->pVdbe; 3312 int i; 3313 struct yColCache *p; 3314 3315 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3316 if( p->iTable==iTable && p->iColumn==iColumn ){ 3317 p->lru = pParse->iCacheCnt++; 3318 sqlite3ExprCachePinRegister(pParse, p->iReg); 3319 return p->iReg; 3320 } 3321 } 3322 assert( v!=0 ); 3323 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 3324 if( p5 ){ 3325 sqlite3VdbeChangeP5(v, p5); 3326 }else{ 3327 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 3328 } 3329 return iReg; 3330 } 3331 void sqlite3ExprCodeGetColumnToReg( 3332 Parse *pParse, /* Parsing and code generating context */ 3333 Table *pTab, /* Description of the table we are reading from */ 3334 int iColumn, /* Index of the table column */ 3335 int iTable, /* The cursor pointing to the table */ 3336 int iReg /* Store results here */ 3337 ){ 3338 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); 3339 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); 3340 } 3341 3342 3343 /* 3344 ** Clear all column cache entries. 3345 */ 3346 void sqlite3ExprCacheClear(Parse *pParse){ 3347 int i; 3348 3349 #ifdef SQLITE_DEBUG 3350 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3351 printf("CLEAR\n"); 3352 } 3353 #endif 3354 for(i=0; i<pParse->nColCache; i++){ 3355 if( pParse->aColCache[i].tempReg 3356 && pParse->nTempReg<ArraySize(pParse->aTempReg) 3357 ){ 3358 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3359 } 3360 } 3361 pParse->nColCache = 0; 3362 } 3363 3364 /* 3365 ** Record the fact that an affinity change has occurred on iCount 3366 ** registers starting with iStart. 3367 */ 3368 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 3369 sqlite3ExprCacheRemove(pParse, iStart, iCount); 3370 } 3371 3372 /* 3373 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3374 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 3375 */ 3376 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3377 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 3378 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3379 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 3380 } 3381 3382 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 3383 /* 3384 ** Return true if any register in the range iFrom..iTo (inclusive) 3385 ** is used as part of the column cache. 3386 ** 3387 ** This routine is used within assert() and testcase() macros only 3388 ** and does not appear in a normal build. 3389 */ 3390 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 3391 int i; 3392 struct yColCache *p; 3393 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3394 int r = p->iReg; 3395 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 3396 } 3397 return 0; 3398 } 3399 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 3400 3401 3402 /* 3403 ** Convert a scalar expression node to a TK_REGISTER referencing 3404 ** register iReg. The caller must ensure that iReg already contains 3405 ** the correct value for the expression. 3406 */ 3407 static void exprToRegister(Expr *p, int iReg){ 3408 p->op2 = p->op; 3409 p->op = TK_REGISTER; 3410 p->iTable = iReg; 3411 ExprClearProperty(p, EP_Skip); 3412 } 3413 3414 /* 3415 ** Evaluate an expression (either a vector or a scalar expression) and store 3416 ** the result in continguous temporary registers. Return the index of 3417 ** the first register used to store the result. 3418 ** 3419 ** If the returned result register is a temporary scalar, then also write 3420 ** that register number into *piFreeable. If the returned result register 3421 ** is not a temporary or if the expression is a vector set *piFreeable 3422 ** to 0. 3423 */ 3424 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3425 int iResult; 3426 int nResult = sqlite3ExprVectorSize(p); 3427 if( nResult==1 ){ 3428 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3429 }else{ 3430 *piFreeable = 0; 3431 if( p->op==TK_SELECT ){ 3432 #if SQLITE_OMIT_SUBQUERY 3433 iResult = 0; 3434 #else 3435 iResult = sqlite3CodeSubselect(pParse, p, 0, 0); 3436 #endif 3437 }else{ 3438 int i; 3439 iResult = pParse->nMem+1; 3440 pParse->nMem += nResult; 3441 for(i=0; i<nResult; i++){ 3442 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3443 } 3444 } 3445 } 3446 return iResult; 3447 } 3448 3449 3450 /* 3451 ** Generate code into the current Vdbe to evaluate the given 3452 ** expression. Attempt to store the results in register "target". 3453 ** Return the register where results are stored. 3454 ** 3455 ** With this routine, there is no guarantee that results will 3456 ** be stored in target. The result might be stored in some other 3457 ** register if it is convenient to do so. The calling function 3458 ** must check the return code and move the results to the desired 3459 ** register. 3460 */ 3461 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3462 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3463 int op; /* The opcode being coded */ 3464 int inReg = target; /* Results stored in register inReg */ 3465 int regFree1 = 0; /* If non-zero free this temporary register */ 3466 int regFree2 = 0; /* If non-zero free this temporary register */ 3467 int r1, r2; /* Various register numbers */ 3468 Expr tempX; /* Temporary expression node */ 3469 int p5 = 0; 3470 3471 assert( target>0 && target<=pParse->nMem ); 3472 if( v==0 ){ 3473 assert( pParse->db->mallocFailed ); 3474 return 0; 3475 } 3476 3477 if( pExpr==0 ){ 3478 op = TK_NULL; 3479 }else{ 3480 op = pExpr->op; 3481 } 3482 switch( op ){ 3483 case TK_AGG_COLUMN: { 3484 AggInfo *pAggInfo = pExpr->pAggInfo; 3485 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3486 if( !pAggInfo->directMode ){ 3487 assert( pCol->iMem>0 ); 3488 return pCol->iMem; 3489 }else if( pAggInfo->useSortingIdx ){ 3490 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3491 pCol->iSorterColumn, target); 3492 return target; 3493 } 3494 /* Otherwise, fall thru into the TK_COLUMN case */ 3495 } 3496 case TK_COLUMN: { 3497 int iTab = pExpr->iTable; 3498 if( iTab<0 ){ 3499 if( pParse->iSelfTab<0 ){ 3500 /* Generating CHECK constraints or inserting into partial index */ 3501 return pExpr->iColumn - pParse->iSelfTab; 3502 }else{ 3503 /* Coding an expression that is part of an index where column names 3504 ** in the index refer to the table to which the index belongs */ 3505 iTab = pParse->iSelfTab - 1; 3506 } 3507 } 3508 return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 3509 pExpr->iColumn, iTab, target, 3510 pExpr->op2); 3511 } 3512 case TK_INTEGER: { 3513 codeInteger(pParse, pExpr, 0, target); 3514 return target; 3515 } 3516 #ifndef SQLITE_OMIT_FLOATING_POINT 3517 case TK_FLOAT: { 3518 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3519 codeReal(v, pExpr->u.zToken, 0, target); 3520 return target; 3521 } 3522 #endif 3523 case TK_STRING: { 3524 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3525 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3526 return target; 3527 } 3528 case TK_NULL: { 3529 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3530 return target; 3531 } 3532 #ifndef SQLITE_OMIT_BLOB_LITERAL 3533 case TK_BLOB: { 3534 int n; 3535 const char *z; 3536 char *zBlob; 3537 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3538 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3539 assert( pExpr->u.zToken[1]=='\'' ); 3540 z = &pExpr->u.zToken[2]; 3541 n = sqlite3Strlen30(z) - 1; 3542 assert( z[n]=='\'' ); 3543 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3544 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3545 return target; 3546 } 3547 #endif 3548 case TK_VARIABLE: { 3549 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3550 assert( pExpr->u.zToken!=0 ); 3551 assert( pExpr->u.zToken[0]!=0 ); 3552 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3553 if( pExpr->u.zToken[1]!=0 ){ 3554 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3555 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); 3556 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3557 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3558 } 3559 return target; 3560 } 3561 case TK_REGISTER: { 3562 return pExpr->iTable; 3563 } 3564 #ifndef SQLITE_OMIT_CAST 3565 case TK_CAST: { 3566 /* Expressions of the form: CAST(pLeft AS token) */ 3567 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3568 if( inReg!=target ){ 3569 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3570 inReg = target; 3571 } 3572 sqlite3VdbeAddOp2(v, OP_Cast, target, 3573 sqlite3AffinityType(pExpr->u.zToken, 0)); 3574 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 3575 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 3576 return inReg; 3577 } 3578 #endif /* SQLITE_OMIT_CAST */ 3579 case TK_IS: 3580 case TK_ISNOT: 3581 op = (op==TK_IS) ? TK_EQ : TK_NE; 3582 p5 = SQLITE_NULLEQ; 3583 /* fall-through */ 3584 case TK_LT: 3585 case TK_LE: 3586 case TK_GT: 3587 case TK_GE: 3588 case TK_NE: 3589 case TK_EQ: { 3590 Expr *pLeft = pExpr->pLeft; 3591 if( sqlite3ExprIsVector(pLeft) ){ 3592 codeVectorCompare(pParse, pExpr, target, op, p5); 3593 }else{ 3594 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3595 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3596 codeCompare(pParse, pLeft, pExpr->pRight, op, 3597 r1, r2, inReg, SQLITE_STOREP2 | p5); 3598 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3599 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3600 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3601 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3602 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3603 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3604 testcase( regFree1==0 ); 3605 testcase( regFree2==0 ); 3606 } 3607 break; 3608 } 3609 case TK_AND: 3610 case TK_OR: 3611 case TK_PLUS: 3612 case TK_STAR: 3613 case TK_MINUS: 3614 case TK_REM: 3615 case TK_BITAND: 3616 case TK_BITOR: 3617 case TK_SLASH: 3618 case TK_LSHIFT: 3619 case TK_RSHIFT: 3620 case TK_CONCAT: { 3621 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3622 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3623 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3624 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3625 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3626 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3627 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3628 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3629 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3630 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3631 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3632 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3633 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3634 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3635 testcase( regFree1==0 ); 3636 testcase( regFree2==0 ); 3637 break; 3638 } 3639 case TK_UMINUS: { 3640 Expr *pLeft = pExpr->pLeft; 3641 assert( pLeft ); 3642 if( pLeft->op==TK_INTEGER ){ 3643 codeInteger(pParse, pLeft, 1, target); 3644 return target; 3645 #ifndef SQLITE_OMIT_FLOATING_POINT 3646 }else if( pLeft->op==TK_FLOAT ){ 3647 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3648 codeReal(v, pLeft->u.zToken, 1, target); 3649 return target; 3650 #endif 3651 }else{ 3652 tempX.op = TK_INTEGER; 3653 tempX.flags = EP_IntValue|EP_TokenOnly; 3654 tempX.u.iValue = 0; 3655 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3656 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3657 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3658 testcase( regFree2==0 ); 3659 } 3660 break; 3661 } 3662 case TK_BITNOT: 3663 case TK_NOT: { 3664 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3665 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3666 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3667 testcase( regFree1==0 ); 3668 sqlite3VdbeAddOp2(v, op, r1, inReg); 3669 break; 3670 } 3671 case TK_ISNULL: 3672 case TK_NOTNULL: { 3673 int addr; 3674 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3675 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3676 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3677 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3678 testcase( regFree1==0 ); 3679 addr = sqlite3VdbeAddOp1(v, op, r1); 3680 VdbeCoverageIf(v, op==TK_ISNULL); 3681 VdbeCoverageIf(v, op==TK_NOTNULL); 3682 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3683 sqlite3VdbeJumpHere(v, addr); 3684 break; 3685 } 3686 case TK_AGG_FUNCTION: { 3687 AggInfo *pInfo = pExpr->pAggInfo; 3688 if( pInfo==0 ){ 3689 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3690 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3691 }else{ 3692 return pInfo->aFunc[pExpr->iAgg].iMem; 3693 } 3694 break; 3695 } 3696 case TK_FUNCTION: { 3697 ExprList *pFarg; /* List of function arguments */ 3698 int nFarg; /* Number of function arguments */ 3699 FuncDef *pDef; /* The function definition object */ 3700 const char *zId; /* The function name */ 3701 u32 constMask = 0; /* Mask of function arguments that are constant */ 3702 int i; /* Loop counter */ 3703 sqlite3 *db = pParse->db; /* The database connection */ 3704 u8 enc = ENC(db); /* The text encoding used by this database */ 3705 CollSeq *pColl = 0; /* A collating sequence */ 3706 3707 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3708 /* SQL functions can be expensive. So try to move constant functions 3709 ** out of the inner loop, even if that means an extra OP_Copy. */ 3710 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3711 } 3712 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3713 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3714 pFarg = 0; 3715 }else{ 3716 pFarg = pExpr->x.pList; 3717 } 3718 nFarg = pFarg ? pFarg->nExpr : 0; 3719 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3720 zId = pExpr->u.zToken; 3721 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3722 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3723 if( pDef==0 && pParse->explain ){ 3724 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3725 } 3726 #endif 3727 if( pDef==0 || pDef->xFinalize!=0 ){ 3728 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3729 break; 3730 } 3731 3732 /* Attempt a direct implementation of the built-in COALESCE() and 3733 ** IFNULL() functions. This avoids unnecessary evaluation of 3734 ** arguments past the first non-NULL argument. 3735 */ 3736 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3737 int endCoalesce = sqlite3VdbeMakeLabel(v); 3738 assert( nFarg>=2 ); 3739 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3740 for(i=1; i<nFarg; i++){ 3741 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3742 VdbeCoverage(v); 3743 sqlite3ExprCacheRemove(pParse, target, 1); 3744 sqlite3ExprCachePush(pParse); 3745 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3746 sqlite3ExprCachePop(pParse); 3747 } 3748 sqlite3VdbeResolveLabel(v, endCoalesce); 3749 break; 3750 } 3751 3752 /* The UNLIKELY() function is a no-op. The result is the value 3753 ** of the first argument. 3754 */ 3755 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3756 assert( nFarg>=1 ); 3757 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3758 } 3759 3760 #ifdef SQLITE_DEBUG 3761 /* The AFFINITY() function evaluates to a string that describes 3762 ** the type affinity of the argument. This is used for testing of 3763 ** the SQLite type logic. 3764 */ 3765 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3766 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3767 char aff; 3768 assert( nFarg==1 ); 3769 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3770 sqlite3VdbeLoadString(v, target, 3771 aff ? azAff[aff-SQLITE_AFF_BLOB] : "none"); 3772 return target; 3773 } 3774 #endif 3775 3776 for(i=0; i<nFarg; i++){ 3777 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3778 testcase( i==31 ); 3779 constMask |= MASKBIT32(i); 3780 } 3781 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3782 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3783 } 3784 } 3785 if( pFarg ){ 3786 if( constMask ){ 3787 r1 = pParse->nMem+1; 3788 pParse->nMem += nFarg; 3789 }else{ 3790 r1 = sqlite3GetTempRange(pParse, nFarg); 3791 } 3792 3793 /* For length() and typeof() functions with a column argument, 3794 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3795 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3796 ** loading. 3797 */ 3798 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3799 u8 exprOp; 3800 assert( nFarg==1 ); 3801 assert( pFarg->a[0].pExpr!=0 ); 3802 exprOp = pFarg->a[0].pExpr->op; 3803 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3804 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3805 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3806 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3807 pFarg->a[0].pExpr->op2 = 3808 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3809 } 3810 } 3811 3812 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 3813 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3814 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3815 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 3816 }else{ 3817 r1 = 0; 3818 } 3819 #ifndef SQLITE_OMIT_VIRTUALTABLE 3820 /* Possibly overload the function if the first argument is 3821 ** a virtual table column. 3822 ** 3823 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3824 ** second argument, not the first, as the argument to test to 3825 ** see if it is a column in a virtual table. This is done because 3826 ** the left operand of infix functions (the operand we want to 3827 ** control overloading) ends up as the second argument to the 3828 ** function. The expression "A glob B" is equivalent to 3829 ** "glob(B,A). We want to use the A in "A glob B" to test 3830 ** for function overloading. But we use the B term in "glob(B,A)". 3831 */ 3832 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 3833 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3834 }else if( nFarg>0 ){ 3835 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3836 } 3837 #endif 3838 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3839 if( !pColl ) pColl = db->pDfltColl; 3840 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3841 } 3842 sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0, 3843 constMask, r1, target, (char*)pDef, P4_FUNCDEF); 3844 sqlite3VdbeChangeP5(v, (u8)nFarg); 3845 if( nFarg && constMask==0 ){ 3846 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3847 } 3848 return target; 3849 } 3850 #ifndef SQLITE_OMIT_SUBQUERY 3851 case TK_EXISTS: 3852 case TK_SELECT: { 3853 int nCol; 3854 testcase( op==TK_EXISTS ); 3855 testcase( op==TK_SELECT ); 3856 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 3857 sqlite3SubselectError(pParse, nCol, 1); 3858 }else{ 3859 return sqlite3CodeSubselect(pParse, pExpr, 0, 0); 3860 } 3861 break; 3862 } 3863 case TK_SELECT_COLUMN: { 3864 int n; 3865 if( pExpr->pLeft->iTable==0 ){ 3866 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0); 3867 } 3868 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 3869 if( pExpr->iTable 3870 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 3871 ){ 3872 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 3873 pExpr->iTable, n); 3874 } 3875 return pExpr->pLeft->iTable + pExpr->iColumn; 3876 } 3877 case TK_IN: { 3878 int destIfFalse = sqlite3VdbeMakeLabel(v); 3879 int destIfNull = sqlite3VdbeMakeLabel(v); 3880 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3881 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3882 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3883 sqlite3VdbeResolveLabel(v, destIfFalse); 3884 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3885 sqlite3VdbeResolveLabel(v, destIfNull); 3886 return target; 3887 } 3888 #endif /* SQLITE_OMIT_SUBQUERY */ 3889 3890 3891 /* 3892 ** x BETWEEN y AND z 3893 ** 3894 ** This is equivalent to 3895 ** 3896 ** x>=y AND x<=z 3897 ** 3898 ** X is stored in pExpr->pLeft. 3899 ** Y is stored in pExpr->pList->a[0].pExpr. 3900 ** Z is stored in pExpr->pList->a[1].pExpr. 3901 */ 3902 case TK_BETWEEN: { 3903 exprCodeBetween(pParse, pExpr, target, 0, 0); 3904 return target; 3905 } 3906 case TK_SPAN: 3907 case TK_COLLATE: 3908 case TK_UPLUS: { 3909 return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3910 } 3911 3912 case TK_TRIGGER: { 3913 /* If the opcode is TK_TRIGGER, then the expression is a reference 3914 ** to a column in the new.* or old.* pseudo-tables available to 3915 ** trigger programs. In this case Expr.iTable is set to 1 for the 3916 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3917 ** is set to the column of the pseudo-table to read, or to -1 to 3918 ** read the rowid field. 3919 ** 3920 ** The expression is implemented using an OP_Param opcode. The p1 3921 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3922 ** to reference another column of the old.* pseudo-table, where 3923 ** i is the index of the column. For a new.rowid reference, p1 is 3924 ** set to (n+1), where n is the number of columns in each pseudo-table. 3925 ** For a reference to any other column in the new.* pseudo-table, p1 3926 ** is set to (n+2+i), where n and i are as defined previously. For 3927 ** example, if the table on which triggers are being fired is 3928 ** declared as: 3929 ** 3930 ** CREATE TABLE t1(a, b); 3931 ** 3932 ** Then p1 is interpreted as follows: 3933 ** 3934 ** p1==0 -> old.rowid p1==3 -> new.rowid 3935 ** p1==1 -> old.a p1==4 -> new.a 3936 ** p1==2 -> old.b p1==5 -> new.b 3937 */ 3938 Table *pTab = pExpr->pTab; 3939 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3940 3941 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3942 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3943 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3944 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3945 3946 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3947 VdbeComment((v, "%s.%s -> $%d", 3948 (pExpr->iTable ? "new" : "old"), 3949 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3950 target 3951 )); 3952 3953 #ifndef SQLITE_OMIT_FLOATING_POINT 3954 /* If the column has REAL affinity, it may currently be stored as an 3955 ** integer. Use OP_RealAffinity to make sure it is really real. 3956 ** 3957 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3958 ** floating point when extracting it from the record. */ 3959 if( pExpr->iColumn>=0 3960 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3961 ){ 3962 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3963 } 3964 #endif 3965 break; 3966 } 3967 3968 case TK_VECTOR: { 3969 sqlite3ErrorMsg(pParse, "row value misused"); 3970 break; 3971 } 3972 3973 case TK_IF_NULL_ROW: { 3974 int addrINR; 3975 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 3976 sqlite3ExprCachePush(pParse); 3977 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3978 sqlite3ExprCachePop(pParse); 3979 sqlite3VdbeJumpHere(v, addrINR); 3980 sqlite3VdbeChangeP3(v, addrINR, inReg); 3981 break; 3982 } 3983 3984 /* 3985 ** Form A: 3986 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3987 ** 3988 ** Form B: 3989 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3990 ** 3991 ** Form A is can be transformed into the equivalent form B as follows: 3992 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3993 ** WHEN x=eN THEN rN ELSE y END 3994 ** 3995 ** X (if it exists) is in pExpr->pLeft. 3996 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3997 ** odd. The Y is also optional. If the number of elements in x.pList 3998 ** is even, then Y is omitted and the "otherwise" result is NULL. 3999 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4000 ** 4001 ** The result of the expression is the Ri for the first matching Ei, 4002 ** or if there is no matching Ei, the ELSE term Y, or if there is 4003 ** no ELSE term, NULL. 4004 */ 4005 default: assert( op==TK_CASE ); { 4006 int endLabel; /* GOTO label for end of CASE stmt */ 4007 int nextCase; /* GOTO label for next WHEN clause */ 4008 int nExpr; /* 2x number of WHEN terms */ 4009 int i; /* Loop counter */ 4010 ExprList *pEList; /* List of WHEN terms */ 4011 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4012 Expr opCompare; /* The X==Ei expression */ 4013 Expr *pX; /* The X expression */ 4014 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4015 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 4016 4017 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4018 assert(pExpr->x.pList->nExpr > 0); 4019 pEList = pExpr->x.pList; 4020 aListelem = pEList->a; 4021 nExpr = pEList->nExpr; 4022 endLabel = sqlite3VdbeMakeLabel(v); 4023 if( (pX = pExpr->pLeft)!=0 ){ 4024 tempX = *pX; 4025 testcase( pX->op==TK_COLUMN ); 4026 exprToRegister(&tempX, exprCodeVector(pParse, &tempX, ®Free1)); 4027 testcase( regFree1==0 ); 4028 memset(&opCompare, 0, sizeof(opCompare)); 4029 opCompare.op = TK_EQ; 4030 opCompare.pLeft = &tempX; 4031 pTest = &opCompare; 4032 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4033 ** The value in regFree1 might get SCopy-ed into the file result. 4034 ** So make sure that the regFree1 register is not reused for other 4035 ** purposes and possibly overwritten. */ 4036 regFree1 = 0; 4037 } 4038 for(i=0; i<nExpr-1; i=i+2){ 4039 sqlite3ExprCachePush(pParse); 4040 if( pX ){ 4041 assert( pTest!=0 ); 4042 opCompare.pRight = aListelem[i].pExpr; 4043 }else{ 4044 pTest = aListelem[i].pExpr; 4045 } 4046 nextCase = sqlite3VdbeMakeLabel(v); 4047 testcase( pTest->op==TK_COLUMN ); 4048 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4049 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4050 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4051 sqlite3VdbeGoto(v, endLabel); 4052 sqlite3ExprCachePop(pParse); 4053 sqlite3VdbeResolveLabel(v, nextCase); 4054 } 4055 if( (nExpr&1)!=0 ){ 4056 sqlite3ExprCachePush(pParse); 4057 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4058 sqlite3ExprCachePop(pParse); 4059 }else{ 4060 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4061 } 4062 assert( pParse->db->mallocFailed || pParse->nErr>0 4063 || pParse->iCacheLevel==iCacheLevel ); 4064 sqlite3VdbeResolveLabel(v, endLabel); 4065 break; 4066 } 4067 #ifndef SQLITE_OMIT_TRIGGER 4068 case TK_RAISE: { 4069 assert( pExpr->affinity==OE_Rollback 4070 || pExpr->affinity==OE_Abort 4071 || pExpr->affinity==OE_Fail 4072 || pExpr->affinity==OE_Ignore 4073 ); 4074 if( !pParse->pTriggerTab ){ 4075 sqlite3ErrorMsg(pParse, 4076 "RAISE() may only be used within a trigger-program"); 4077 return 0; 4078 } 4079 if( pExpr->affinity==OE_Abort ){ 4080 sqlite3MayAbort(pParse); 4081 } 4082 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4083 if( pExpr->affinity==OE_Ignore ){ 4084 sqlite3VdbeAddOp4( 4085 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4086 VdbeCoverage(v); 4087 }else{ 4088 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4089 pExpr->affinity, pExpr->u.zToken, 0, 0); 4090 } 4091 4092 break; 4093 } 4094 #endif 4095 } 4096 sqlite3ReleaseTempReg(pParse, regFree1); 4097 sqlite3ReleaseTempReg(pParse, regFree2); 4098 return inReg; 4099 } 4100 4101 /* 4102 ** Factor out the code of the given expression to initialization time. 4103 ** 4104 ** If regDest>=0 then the result is always stored in that register and the 4105 ** result is not reusable. If regDest<0 then this routine is free to 4106 ** store the value whereever it wants. The register where the expression 4107 ** is stored is returned. When regDest<0, two identical expressions will 4108 ** code to the same register. 4109 */ 4110 int sqlite3ExprCodeAtInit( 4111 Parse *pParse, /* Parsing context */ 4112 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4113 int regDest /* Store the value in this register */ 4114 ){ 4115 ExprList *p; 4116 assert( ConstFactorOk(pParse) ); 4117 p = pParse->pConstExpr; 4118 if( regDest<0 && p ){ 4119 struct ExprList_item *pItem; 4120 int i; 4121 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4122 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4123 return pItem->u.iConstExprReg; 4124 } 4125 } 4126 } 4127 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4128 p = sqlite3ExprListAppend(pParse, p, pExpr); 4129 if( p ){ 4130 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4131 pItem->reusable = regDest<0; 4132 if( regDest<0 ) regDest = ++pParse->nMem; 4133 pItem->u.iConstExprReg = regDest; 4134 } 4135 pParse->pConstExpr = p; 4136 return regDest; 4137 } 4138 4139 /* 4140 ** Generate code to evaluate an expression and store the results 4141 ** into a register. Return the register number where the results 4142 ** are stored. 4143 ** 4144 ** If the register is a temporary register that can be deallocated, 4145 ** then write its number into *pReg. If the result register is not 4146 ** a temporary, then set *pReg to zero. 4147 ** 4148 ** If pExpr is a constant, then this routine might generate this 4149 ** code to fill the register in the initialization section of the 4150 ** VDBE program, in order to factor it out of the evaluation loop. 4151 */ 4152 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4153 int r2; 4154 pExpr = sqlite3ExprSkipCollate(pExpr); 4155 if( ConstFactorOk(pParse) 4156 && pExpr->op!=TK_REGISTER 4157 && sqlite3ExprIsConstantNotJoin(pExpr) 4158 ){ 4159 *pReg = 0; 4160 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4161 }else{ 4162 int r1 = sqlite3GetTempReg(pParse); 4163 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4164 if( r2==r1 ){ 4165 *pReg = r1; 4166 }else{ 4167 sqlite3ReleaseTempReg(pParse, r1); 4168 *pReg = 0; 4169 } 4170 } 4171 return r2; 4172 } 4173 4174 /* 4175 ** Generate code that will evaluate expression pExpr and store the 4176 ** results in register target. The results are guaranteed to appear 4177 ** in register target. 4178 */ 4179 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4180 int inReg; 4181 4182 assert( target>0 && target<=pParse->nMem ); 4183 if( pExpr && pExpr->op==TK_REGISTER ){ 4184 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 4185 }else{ 4186 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4187 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4188 if( inReg!=target && pParse->pVdbe ){ 4189 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4190 } 4191 } 4192 } 4193 4194 /* 4195 ** Make a transient copy of expression pExpr and then code it using 4196 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4197 ** except that the input expression is guaranteed to be unchanged. 4198 */ 4199 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4200 sqlite3 *db = pParse->db; 4201 pExpr = sqlite3ExprDup(db, pExpr, 0); 4202 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4203 sqlite3ExprDelete(db, pExpr); 4204 } 4205 4206 /* 4207 ** Generate code that will evaluate expression pExpr and store the 4208 ** results in register target. The results are guaranteed to appear 4209 ** in register target. If the expression is constant, then this routine 4210 ** might choose to code the expression at initialization time. 4211 */ 4212 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4213 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 4214 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4215 }else{ 4216 sqlite3ExprCode(pParse, pExpr, target); 4217 } 4218 } 4219 4220 /* 4221 ** Generate code that evaluates the given expression and puts the result 4222 ** in register target. 4223 ** 4224 ** Also make a copy of the expression results into another "cache" register 4225 ** and modify the expression so that the next time it is evaluated, 4226 ** the result is a copy of the cache register. 4227 ** 4228 ** This routine is used for expressions that are used multiple 4229 ** times. They are evaluated once and the results of the expression 4230 ** are reused. 4231 */ 4232 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 4233 Vdbe *v = pParse->pVdbe; 4234 int iMem; 4235 4236 assert( target>0 ); 4237 assert( pExpr->op!=TK_REGISTER ); 4238 sqlite3ExprCode(pParse, pExpr, target); 4239 iMem = ++pParse->nMem; 4240 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 4241 exprToRegister(pExpr, iMem); 4242 } 4243 4244 /* 4245 ** Generate code that pushes the value of every element of the given 4246 ** expression list into a sequence of registers beginning at target. 4247 ** 4248 ** Return the number of elements evaluated. The number returned will 4249 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4250 ** is defined. 4251 ** 4252 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4253 ** filled using OP_SCopy. OP_Copy must be used instead. 4254 ** 4255 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4256 ** factored out into initialization code. 4257 ** 4258 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4259 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4260 ** in registers at srcReg, and so the value can be copied from there. 4261 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4262 ** are simply omitted rather than being copied from srcReg. 4263 */ 4264 int sqlite3ExprCodeExprList( 4265 Parse *pParse, /* Parsing context */ 4266 ExprList *pList, /* The expression list to be coded */ 4267 int target, /* Where to write results */ 4268 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4269 u8 flags /* SQLITE_ECEL_* flags */ 4270 ){ 4271 struct ExprList_item *pItem; 4272 int i, j, n; 4273 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4274 Vdbe *v = pParse->pVdbe; 4275 assert( pList!=0 ); 4276 assert( target>0 ); 4277 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4278 n = pList->nExpr; 4279 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4280 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4281 Expr *pExpr = pItem->pExpr; 4282 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4283 if( flags & SQLITE_ECEL_OMITREF ){ 4284 i--; 4285 n--; 4286 }else{ 4287 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4288 } 4289 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 4290 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4291 }else{ 4292 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4293 if( inReg!=target+i ){ 4294 VdbeOp *pOp; 4295 if( copyOp==OP_Copy 4296 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4297 && pOp->p1+pOp->p3+1==inReg 4298 && pOp->p2+pOp->p3+1==target+i 4299 ){ 4300 pOp->p3++; 4301 }else{ 4302 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4303 } 4304 } 4305 } 4306 } 4307 return n; 4308 } 4309 4310 /* 4311 ** Generate code for a BETWEEN operator. 4312 ** 4313 ** x BETWEEN y AND z 4314 ** 4315 ** The above is equivalent to 4316 ** 4317 ** x>=y AND x<=z 4318 ** 4319 ** Code it as such, taking care to do the common subexpression 4320 ** elimination of x. 4321 ** 4322 ** The xJumpIf parameter determines details: 4323 ** 4324 ** NULL: Store the boolean result in reg[dest] 4325 ** sqlite3ExprIfTrue: Jump to dest if true 4326 ** sqlite3ExprIfFalse: Jump to dest if false 4327 ** 4328 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4329 */ 4330 static void exprCodeBetween( 4331 Parse *pParse, /* Parsing and code generating context */ 4332 Expr *pExpr, /* The BETWEEN expression */ 4333 int dest, /* Jump destination or storage location */ 4334 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4335 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4336 ){ 4337 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4338 Expr compLeft; /* The x>=y term */ 4339 Expr compRight; /* The x<=z term */ 4340 Expr exprX; /* The x subexpression */ 4341 int regFree1 = 0; /* Temporary use register */ 4342 4343 4344 memset(&compLeft, 0, sizeof(Expr)); 4345 memset(&compRight, 0, sizeof(Expr)); 4346 memset(&exprAnd, 0, sizeof(Expr)); 4347 4348 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4349 exprX = *pExpr->pLeft; 4350 exprAnd.op = TK_AND; 4351 exprAnd.pLeft = &compLeft; 4352 exprAnd.pRight = &compRight; 4353 compLeft.op = TK_GE; 4354 compLeft.pLeft = &exprX; 4355 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4356 compRight.op = TK_LE; 4357 compRight.pLeft = &exprX; 4358 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4359 exprToRegister(&exprX, exprCodeVector(pParse, &exprX, ®Free1)); 4360 if( xJump ){ 4361 xJump(pParse, &exprAnd, dest, jumpIfNull); 4362 }else{ 4363 /* Mark the expression is being from the ON or USING clause of a join 4364 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4365 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4366 ** for clarity, but we are out of bits in the Expr.flags field so we 4367 ** have to reuse the EP_FromJoin bit. Bummer. */ 4368 exprX.flags |= EP_FromJoin; 4369 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4370 } 4371 sqlite3ReleaseTempReg(pParse, regFree1); 4372 4373 /* Ensure adequate test coverage */ 4374 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4375 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4376 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4377 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4378 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4379 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4380 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4381 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4382 testcase( xJump==0 ); 4383 } 4384 4385 /* 4386 ** Generate code for a boolean expression such that a jump is made 4387 ** to the label "dest" if the expression is true but execution 4388 ** continues straight thru if the expression is false. 4389 ** 4390 ** If the expression evaluates to NULL (neither true nor false), then 4391 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4392 ** 4393 ** This code depends on the fact that certain token values (ex: TK_EQ) 4394 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4395 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4396 ** the make process cause these values to align. Assert()s in the code 4397 ** below verify that the numbers are aligned correctly. 4398 */ 4399 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4400 Vdbe *v = pParse->pVdbe; 4401 int op = 0; 4402 int regFree1 = 0; 4403 int regFree2 = 0; 4404 int r1, r2; 4405 4406 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4407 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4408 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4409 op = pExpr->op; 4410 switch( op ){ 4411 case TK_AND: { 4412 int d2 = sqlite3VdbeMakeLabel(v); 4413 testcase( jumpIfNull==0 ); 4414 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 4415 sqlite3ExprCachePush(pParse); 4416 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4417 sqlite3VdbeResolveLabel(v, d2); 4418 sqlite3ExprCachePop(pParse); 4419 break; 4420 } 4421 case TK_OR: { 4422 testcase( jumpIfNull==0 ); 4423 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4424 sqlite3ExprCachePush(pParse); 4425 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4426 sqlite3ExprCachePop(pParse); 4427 break; 4428 } 4429 case TK_NOT: { 4430 testcase( jumpIfNull==0 ); 4431 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4432 break; 4433 } 4434 case TK_IS: 4435 case TK_ISNOT: 4436 testcase( op==TK_IS ); 4437 testcase( op==TK_ISNOT ); 4438 op = (op==TK_IS) ? TK_EQ : TK_NE; 4439 jumpIfNull = SQLITE_NULLEQ; 4440 /* Fall thru */ 4441 case TK_LT: 4442 case TK_LE: 4443 case TK_GT: 4444 case TK_GE: 4445 case TK_NE: 4446 case TK_EQ: { 4447 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4448 testcase( jumpIfNull==0 ); 4449 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4450 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4451 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4452 r1, r2, dest, jumpIfNull); 4453 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4454 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4455 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4456 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4457 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4458 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4459 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4460 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4461 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4462 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4463 testcase( regFree1==0 ); 4464 testcase( regFree2==0 ); 4465 break; 4466 } 4467 case TK_ISNULL: 4468 case TK_NOTNULL: { 4469 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4470 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4471 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4472 sqlite3VdbeAddOp2(v, op, r1, dest); 4473 VdbeCoverageIf(v, op==TK_ISNULL); 4474 VdbeCoverageIf(v, op==TK_NOTNULL); 4475 testcase( regFree1==0 ); 4476 break; 4477 } 4478 case TK_BETWEEN: { 4479 testcase( jumpIfNull==0 ); 4480 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4481 break; 4482 } 4483 #ifndef SQLITE_OMIT_SUBQUERY 4484 case TK_IN: { 4485 int destIfFalse = sqlite3VdbeMakeLabel(v); 4486 int destIfNull = jumpIfNull ? dest : destIfFalse; 4487 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4488 sqlite3VdbeGoto(v, dest); 4489 sqlite3VdbeResolveLabel(v, destIfFalse); 4490 break; 4491 } 4492 #endif 4493 default: { 4494 default_expr: 4495 if( exprAlwaysTrue(pExpr) ){ 4496 sqlite3VdbeGoto(v, dest); 4497 }else if( exprAlwaysFalse(pExpr) ){ 4498 /* No-op */ 4499 }else{ 4500 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4501 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4502 VdbeCoverage(v); 4503 testcase( regFree1==0 ); 4504 testcase( jumpIfNull==0 ); 4505 } 4506 break; 4507 } 4508 } 4509 sqlite3ReleaseTempReg(pParse, regFree1); 4510 sqlite3ReleaseTempReg(pParse, regFree2); 4511 } 4512 4513 /* 4514 ** Generate code for a boolean expression such that a jump is made 4515 ** to the label "dest" if the expression is false but execution 4516 ** continues straight thru if the expression is true. 4517 ** 4518 ** If the expression evaluates to NULL (neither true nor false) then 4519 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4520 ** is 0. 4521 */ 4522 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4523 Vdbe *v = pParse->pVdbe; 4524 int op = 0; 4525 int regFree1 = 0; 4526 int regFree2 = 0; 4527 int r1, r2; 4528 4529 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4530 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4531 if( pExpr==0 ) return; 4532 4533 /* The value of pExpr->op and op are related as follows: 4534 ** 4535 ** pExpr->op op 4536 ** --------- ---------- 4537 ** TK_ISNULL OP_NotNull 4538 ** TK_NOTNULL OP_IsNull 4539 ** TK_NE OP_Eq 4540 ** TK_EQ OP_Ne 4541 ** TK_GT OP_Le 4542 ** TK_LE OP_Gt 4543 ** TK_GE OP_Lt 4544 ** TK_LT OP_Ge 4545 ** 4546 ** For other values of pExpr->op, op is undefined and unused. 4547 ** The value of TK_ and OP_ constants are arranged such that we 4548 ** can compute the mapping above using the following expression. 4549 ** Assert()s verify that the computation is correct. 4550 */ 4551 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4552 4553 /* Verify correct alignment of TK_ and OP_ constants 4554 */ 4555 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4556 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4557 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4558 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4559 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4560 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4561 assert( pExpr->op!=TK_GT || op==OP_Le ); 4562 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4563 4564 switch( pExpr->op ){ 4565 case TK_AND: { 4566 testcase( jumpIfNull==0 ); 4567 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4568 sqlite3ExprCachePush(pParse); 4569 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4570 sqlite3ExprCachePop(pParse); 4571 break; 4572 } 4573 case TK_OR: { 4574 int d2 = sqlite3VdbeMakeLabel(v); 4575 testcase( jumpIfNull==0 ); 4576 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 4577 sqlite3ExprCachePush(pParse); 4578 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4579 sqlite3VdbeResolveLabel(v, d2); 4580 sqlite3ExprCachePop(pParse); 4581 break; 4582 } 4583 case TK_NOT: { 4584 testcase( jumpIfNull==0 ); 4585 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4586 break; 4587 } 4588 case TK_IS: 4589 case TK_ISNOT: 4590 testcase( pExpr->op==TK_IS ); 4591 testcase( pExpr->op==TK_ISNOT ); 4592 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4593 jumpIfNull = SQLITE_NULLEQ; 4594 /* Fall thru */ 4595 case TK_LT: 4596 case TK_LE: 4597 case TK_GT: 4598 case TK_GE: 4599 case TK_NE: 4600 case TK_EQ: { 4601 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4602 testcase( jumpIfNull==0 ); 4603 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4604 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4605 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4606 r1, r2, dest, jumpIfNull); 4607 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4608 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4609 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4610 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4611 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4612 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4613 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4614 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4615 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4616 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4617 testcase( regFree1==0 ); 4618 testcase( regFree2==0 ); 4619 break; 4620 } 4621 case TK_ISNULL: 4622 case TK_NOTNULL: { 4623 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4624 sqlite3VdbeAddOp2(v, op, r1, dest); 4625 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4626 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4627 testcase( regFree1==0 ); 4628 break; 4629 } 4630 case TK_BETWEEN: { 4631 testcase( jumpIfNull==0 ); 4632 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4633 break; 4634 } 4635 #ifndef SQLITE_OMIT_SUBQUERY 4636 case TK_IN: { 4637 if( jumpIfNull ){ 4638 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4639 }else{ 4640 int destIfNull = sqlite3VdbeMakeLabel(v); 4641 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4642 sqlite3VdbeResolveLabel(v, destIfNull); 4643 } 4644 break; 4645 } 4646 #endif 4647 default: { 4648 default_expr: 4649 if( exprAlwaysFalse(pExpr) ){ 4650 sqlite3VdbeGoto(v, dest); 4651 }else if( exprAlwaysTrue(pExpr) ){ 4652 /* no-op */ 4653 }else{ 4654 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4655 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4656 VdbeCoverage(v); 4657 testcase( regFree1==0 ); 4658 testcase( jumpIfNull==0 ); 4659 } 4660 break; 4661 } 4662 } 4663 sqlite3ReleaseTempReg(pParse, regFree1); 4664 sqlite3ReleaseTempReg(pParse, regFree2); 4665 } 4666 4667 /* 4668 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4669 ** code generation, and that copy is deleted after code generation. This 4670 ** ensures that the original pExpr is unchanged. 4671 */ 4672 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4673 sqlite3 *db = pParse->db; 4674 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4675 if( db->mallocFailed==0 ){ 4676 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4677 } 4678 sqlite3ExprDelete(db, pCopy); 4679 } 4680 4681 /* 4682 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 4683 ** type of expression. 4684 ** 4685 ** If pExpr is a simple SQL value - an integer, real, string, blob 4686 ** or NULL value - then the VDBE currently being prepared is configured 4687 ** to re-prepare each time a new value is bound to variable pVar. 4688 ** 4689 ** Additionally, if pExpr is a simple SQL value and the value is the 4690 ** same as that currently bound to variable pVar, non-zero is returned. 4691 ** Otherwise, if the values are not the same or if pExpr is not a simple 4692 ** SQL value, zero is returned. 4693 */ 4694 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 4695 int res = 0; 4696 int iVar; 4697 sqlite3_value *pL, *pR = 0; 4698 4699 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 4700 if( pR ){ 4701 iVar = pVar->iColumn; 4702 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 4703 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 4704 if( pL ){ 4705 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 4706 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 4707 } 4708 res = 0==sqlite3MemCompare(pL, pR, 0); 4709 } 4710 sqlite3ValueFree(pR); 4711 sqlite3ValueFree(pL); 4712 } 4713 4714 return res; 4715 } 4716 4717 /* 4718 ** Do a deep comparison of two expression trees. Return 0 if the two 4719 ** expressions are completely identical. Return 1 if they differ only 4720 ** by a COLLATE operator at the top level. Return 2 if there are differences 4721 ** other than the top-level COLLATE operator. 4722 ** 4723 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4724 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4725 ** 4726 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4727 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4728 ** 4729 ** Sometimes this routine will return 2 even if the two expressions 4730 ** really are equivalent. If we cannot prove that the expressions are 4731 ** identical, we return 2 just to be safe. So if this routine 4732 ** returns 2, then you do not really know for certain if the two 4733 ** expressions are the same. But if you get a 0 or 1 return, then you 4734 ** can be sure the expressions are the same. In the places where 4735 ** this routine is used, it does not hurt to get an extra 2 - that 4736 ** just might result in some slightly slower code. But returning 4737 ** an incorrect 0 or 1 could lead to a malfunction. 4738 ** 4739 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 4740 ** pParse->pReprepare can be matched against literals in pB. The 4741 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 4742 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 4743 ** Argument pParse should normally be NULL. If it is not NULL and pA or 4744 ** pB causes a return value of 2. 4745 */ 4746 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 4747 u32 combinedFlags; 4748 if( pA==0 || pB==0 ){ 4749 return pB==pA ? 0 : 2; 4750 } 4751 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 4752 return 0; 4753 } 4754 combinedFlags = pA->flags | pB->flags; 4755 if( combinedFlags & EP_IntValue ){ 4756 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 4757 return 0; 4758 } 4759 return 2; 4760 } 4761 if( pA->op!=pB->op ){ 4762 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 4763 return 1; 4764 } 4765 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 4766 return 1; 4767 } 4768 return 2; 4769 } 4770 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 4771 if( pA->op==TK_FUNCTION ){ 4772 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4773 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4774 return pA->op==TK_COLLATE ? 1 : 2; 4775 } 4776 } 4777 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4778 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 4779 if( combinedFlags & EP_xIsSelect ) return 2; 4780 if( sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 4781 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 4782 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4783 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ 4784 if( pA->iColumn!=pB->iColumn ) return 2; 4785 if( pA->iTable!=pB->iTable 4786 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4787 } 4788 } 4789 return 0; 4790 } 4791 4792 /* 4793 ** Compare two ExprList objects. Return 0 if they are identical and 4794 ** non-zero if they differ in any way. 4795 ** 4796 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4797 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4798 ** 4799 ** This routine might return non-zero for equivalent ExprLists. The 4800 ** only consequence will be disabled optimizations. But this routine 4801 ** must never return 0 if the two ExprList objects are different, or 4802 ** a malfunction will result. 4803 ** 4804 ** Two NULL pointers are considered to be the same. But a NULL pointer 4805 ** always differs from a non-NULL pointer. 4806 */ 4807 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4808 int i; 4809 if( pA==0 && pB==0 ) return 0; 4810 if( pA==0 || pB==0 ) return 1; 4811 if( pA->nExpr!=pB->nExpr ) return 1; 4812 for(i=0; i<pA->nExpr; i++){ 4813 Expr *pExprA = pA->a[i].pExpr; 4814 Expr *pExprB = pB->a[i].pExpr; 4815 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 4816 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1; 4817 } 4818 return 0; 4819 } 4820 4821 /* 4822 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 4823 ** are ignored. 4824 */ 4825 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 4826 return sqlite3ExprCompare(0, 4827 sqlite3ExprSkipCollate(pA), 4828 sqlite3ExprSkipCollate(pB), 4829 iTab); 4830 } 4831 4832 /* 4833 ** Return true if we can prove the pE2 will always be true if pE1 is 4834 ** true. Return false if we cannot complete the proof or if pE2 might 4835 ** be false. Examples: 4836 ** 4837 ** pE1: x==5 pE2: x==5 Result: true 4838 ** pE1: x>0 pE2: x==5 Result: false 4839 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 4840 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 4841 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 4842 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 4843 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 4844 ** 4845 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 4846 ** Expr.iTable<0 then assume a table number given by iTab. 4847 ** 4848 ** If pParse is not NULL, then the values of bound variables in pE1 are 4849 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 4850 ** modified to record which bound variables are referenced. If pParse 4851 ** is NULL, then false will be returned if pE1 contains any bound variables. 4852 ** 4853 ** When in doubt, return false. Returning true might give a performance 4854 ** improvement. Returning false might cause a performance reduction, but 4855 ** it will always give the correct answer and is hence always safe. 4856 */ 4857 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 4858 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 4859 return 1; 4860 } 4861 if( pE2->op==TK_OR 4862 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 4863 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 4864 ){ 4865 return 1; 4866 } 4867 if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){ 4868 Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft); 4869 testcase( pX!=pE1->pLeft ); 4870 if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1; 4871 } 4872 return 0; 4873 } 4874 4875 /* 4876 ** An instance of the following structure is used by the tree walker 4877 ** to determine if an expression can be evaluated by reference to the 4878 ** index only, without having to do a search for the corresponding 4879 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 4880 ** is the cursor for the table. 4881 */ 4882 struct IdxCover { 4883 Index *pIdx; /* The index to be tested for coverage */ 4884 int iCur; /* Cursor number for the table corresponding to the index */ 4885 }; 4886 4887 /* 4888 ** Check to see if there are references to columns in table 4889 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 4890 ** pWalker->u.pIdxCover->pIdx. 4891 */ 4892 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 4893 if( pExpr->op==TK_COLUMN 4894 && pExpr->iTable==pWalker->u.pIdxCover->iCur 4895 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 4896 ){ 4897 pWalker->eCode = 1; 4898 return WRC_Abort; 4899 } 4900 return WRC_Continue; 4901 } 4902 4903 /* 4904 ** Determine if an index pIdx on table with cursor iCur contains will 4905 ** the expression pExpr. Return true if the index does cover the 4906 ** expression and false if the pExpr expression references table columns 4907 ** that are not found in the index pIdx. 4908 ** 4909 ** An index covering an expression means that the expression can be 4910 ** evaluated using only the index and without having to lookup the 4911 ** corresponding table entry. 4912 */ 4913 int sqlite3ExprCoveredByIndex( 4914 Expr *pExpr, /* The index to be tested */ 4915 int iCur, /* The cursor number for the corresponding table */ 4916 Index *pIdx /* The index that might be used for coverage */ 4917 ){ 4918 Walker w; 4919 struct IdxCover xcov; 4920 memset(&w, 0, sizeof(w)); 4921 xcov.iCur = iCur; 4922 xcov.pIdx = pIdx; 4923 w.xExprCallback = exprIdxCover; 4924 w.u.pIdxCover = &xcov; 4925 sqlite3WalkExpr(&w, pExpr); 4926 return !w.eCode; 4927 } 4928 4929 4930 /* 4931 ** An instance of the following structure is used by the tree walker 4932 ** to count references to table columns in the arguments of an 4933 ** aggregate function, in order to implement the 4934 ** sqlite3FunctionThisSrc() routine. 4935 */ 4936 struct SrcCount { 4937 SrcList *pSrc; /* One particular FROM clause in a nested query */ 4938 int nThis; /* Number of references to columns in pSrcList */ 4939 int nOther; /* Number of references to columns in other FROM clauses */ 4940 }; 4941 4942 /* 4943 ** Count the number of references to columns. 4944 */ 4945 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 4946 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 4947 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 4948 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 4949 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 4950 ** NEVER() will need to be removed. */ 4951 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 4952 int i; 4953 struct SrcCount *p = pWalker->u.pSrcCount; 4954 SrcList *pSrc = p->pSrc; 4955 int nSrc = pSrc ? pSrc->nSrc : 0; 4956 for(i=0; i<nSrc; i++){ 4957 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 4958 } 4959 if( i<nSrc ){ 4960 p->nThis++; 4961 }else{ 4962 p->nOther++; 4963 } 4964 } 4965 return WRC_Continue; 4966 } 4967 4968 /* 4969 ** Determine if any of the arguments to the pExpr Function reference 4970 ** pSrcList. Return true if they do. Also return true if the function 4971 ** has no arguments or has only constant arguments. Return false if pExpr 4972 ** references columns but not columns of tables found in pSrcList. 4973 */ 4974 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 4975 Walker w; 4976 struct SrcCount cnt; 4977 assert( pExpr->op==TK_AGG_FUNCTION ); 4978 w.xExprCallback = exprSrcCount; 4979 w.xSelectCallback = 0; 4980 w.u.pSrcCount = &cnt; 4981 cnt.pSrc = pSrcList; 4982 cnt.nThis = 0; 4983 cnt.nOther = 0; 4984 sqlite3WalkExprList(&w, pExpr->x.pList); 4985 return cnt.nThis>0 || cnt.nOther==0; 4986 } 4987 4988 /* 4989 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 4990 ** the new element. Return a negative number if malloc fails. 4991 */ 4992 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 4993 int i; 4994 pInfo->aCol = sqlite3ArrayAllocate( 4995 db, 4996 pInfo->aCol, 4997 sizeof(pInfo->aCol[0]), 4998 &pInfo->nColumn, 4999 &i 5000 ); 5001 return i; 5002 } 5003 5004 /* 5005 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5006 ** the new element. Return a negative number if malloc fails. 5007 */ 5008 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5009 int i; 5010 pInfo->aFunc = sqlite3ArrayAllocate( 5011 db, 5012 pInfo->aFunc, 5013 sizeof(pInfo->aFunc[0]), 5014 &pInfo->nFunc, 5015 &i 5016 ); 5017 return i; 5018 } 5019 5020 /* 5021 ** This is the xExprCallback for a tree walker. It is used to 5022 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5023 ** for additional information. 5024 */ 5025 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5026 int i; 5027 NameContext *pNC = pWalker->u.pNC; 5028 Parse *pParse = pNC->pParse; 5029 SrcList *pSrcList = pNC->pSrcList; 5030 AggInfo *pAggInfo = pNC->pAggInfo; 5031 5032 switch( pExpr->op ){ 5033 case TK_AGG_COLUMN: 5034 case TK_COLUMN: { 5035 testcase( pExpr->op==TK_AGG_COLUMN ); 5036 testcase( pExpr->op==TK_COLUMN ); 5037 /* Check to see if the column is in one of the tables in the FROM 5038 ** clause of the aggregate query */ 5039 if( ALWAYS(pSrcList!=0) ){ 5040 struct SrcList_item *pItem = pSrcList->a; 5041 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5042 struct AggInfo_col *pCol; 5043 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5044 if( pExpr->iTable==pItem->iCursor ){ 5045 /* If we reach this point, it means that pExpr refers to a table 5046 ** that is in the FROM clause of the aggregate query. 5047 ** 5048 ** Make an entry for the column in pAggInfo->aCol[] if there 5049 ** is not an entry there already. 5050 */ 5051 int k; 5052 pCol = pAggInfo->aCol; 5053 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5054 if( pCol->iTable==pExpr->iTable && 5055 pCol->iColumn==pExpr->iColumn ){ 5056 break; 5057 } 5058 } 5059 if( (k>=pAggInfo->nColumn) 5060 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5061 ){ 5062 pCol = &pAggInfo->aCol[k]; 5063 pCol->pTab = pExpr->pTab; 5064 pCol->iTable = pExpr->iTable; 5065 pCol->iColumn = pExpr->iColumn; 5066 pCol->iMem = ++pParse->nMem; 5067 pCol->iSorterColumn = -1; 5068 pCol->pExpr = pExpr; 5069 if( pAggInfo->pGroupBy ){ 5070 int j, n; 5071 ExprList *pGB = pAggInfo->pGroupBy; 5072 struct ExprList_item *pTerm = pGB->a; 5073 n = pGB->nExpr; 5074 for(j=0; j<n; j++, pTerm++){ 5075 Expr *pE = pTerm->pExpr; 5076 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5077 pE->iColumn==pExpr->iColumn ){ 5078 pCol->iSorterColumn = j; 5079 break; 5080 } 5081 } 5082 } 5083 if( pCol->iSorterColumn<0 ){ 5084 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5085 } 5086 } 5087 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5088 ** because it was there before or because we just created it). 5089 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5090 ** pAggInfo->aCol[] entry. 5091 */ 5092 ExprSetVVAProperty(pExpr, EP_NoReduce); 5093 pExpr->pAggInfo = pAggInfo; 5094 pExpr->op = TK_AGG_COLUMN; 5095 pExpr->iAgg = (i16)k; 5096 break; 5097 } /* endif pExpr->iTable==pItem->iCursor */ 5098 } /* end loop over pSrcList */ 5099 } 5100 return WRC_Prune; 5101 } 5102 case TK_AGG_FUNCTION: { 5103 if( (pNC->ncFlags & NC_InAggFunc)==0 5104 && pWalker->walkerDepth==pExpr->op2 5105 ){ 5106 /* Check to see if pExpr is a duplicate of another aggregate 5107 ** function that is already in the pAggInfo structure 5108 */ 5109 struct AggInfo_func *pItem = pAggInfo->aFunc; 5110 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5111 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5112 break; 5113 } 5114 } 5115 if( i>=pAggInfo->nFunc ){ 5116 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5117 */ 5118 u8 enc = ENC(pParse->db); 5119 i = addAggInfoFunc(pParse->db, pAggInfo); 5120 if( i>=0 ){ 5121 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5122 pItem = &pAggInfo->aFunc[i]; 5123 pItem->pExpr = pExpr; 5124 pItem->iMem = ++pParse->nMem; 5125 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5126 pItem->pFunc = sqlite3FindFunction(pParse->db, 5127 pExpr->u.zToken, 5128 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5129 if( pExpr->flags & EP_Distinct ){ 5130 pItem->iDistinct = pParse->nTab++; 5131 }else{ 5132 pItem->iDistinct = -1; 5133 } 5134 } 5135 } 5136 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5137 */ 5138 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5139 ExprSetVVAProperty(pExpr, EP_NoReduce); 5140 pExpr->iAgg = (i16)i; 5141 pExpr->pAggInfo = pAggInfo; 5142 return WRC_Prune; 5143 }else{ 5144 return WRC_Continue; 5145 } 5146 } 5147 } 5148 return WRC_Continue; 5149 } 5150 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5151 UNUSED_PARAMETER(pSelect); 5152 pWalker->walkerDepth++; 5153 return WRC_Continue; 5154 } 5155 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5156 UNUSED_PARAMETER(pSelect); 5157 pWalker->walkerDepth--; 5158 } 5159 5160 /* 5161 ** Analyze the pExpr expression looking for aggregate functions and 5162 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5163 ** points to. Additional entries are made on the AggInfo object as 5164 ** necessary. 5165 ** 5166 ** This routine should only be called after the expression has been 5167 ** analyzed by sqlite3ResolveExprNames(). 5168 */ 5169 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5170 Walker w; 5171 w.xExprCallback = analyzeAggregate; 5172 w.xSelectCallback = analyzeAggregatesInSelect; 5173 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5174 w.walkerDepth = 0; 5175 w.u.pNC = pNC; 5176 assert( pNC->pSrcList!=0 ); 5177 sqlite3WalkExpr(&w, pExpr); 5178 } 5179 5180 /* 5181 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5182 ** expression list. Return the number of errors. 5183 ** 5184 ** If an error is found, the analysis is cut short. 5185 */ 5186 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5187 struct ExprList_item *pItem; 5188 int i; 5189 if( pList ){ 5190 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5191 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5192 } 5193 } 5194 } 5195 5196 /* 5197 ** Allocate a single new register for use to hold some intermediate result. 5198 */ 5199 int sqlite3GetTempReg(Parse *pParse){ 5200 if( pParse->nTempReg==0 ){ 5201 return ++pParse->nMem; 5202 } 5203 return pParse->aTempReg[--pParse->nTempReg]; 5204 } 5205 5206 /* 5207 ** Deallocate a register, making available for reuse for some other 5208 ** purpose. 5209 ** 5210 ** If a register is currently being used by the column cache, then 5211 ** the deallocation is deferred until the column cache line that uses 5212 ** the register becomes stale. 5213 */ 5214 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5215 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5216 int i; 5217 struct yColCache *p; 5218 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 5219 if( p->iReg==iReg ){ 5220 p->tempReg = 1; 5221 return; 5222 } 5223 } 5224 pParse->aTempReg[pParse->nTempReg++] = iReg; 5225 } 5226 } 5227 5228 /* 5229 ** Allocate or deallocate a block of nReg consecutive registers. 5230 */ 5231 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5232 int i, n; 5233 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5234 i = pParse->iRangeReg; 5235 n = pParse->nRangeReg; 5236 if( nReg<=n ){ 5237 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 5238 pParse->iRangeReg += nReg; 5239 pParse->nRangeReg -= nReg; 5240 }else{ 5241 i = pParse->nMem+1; 5242 pParse->nMem += nReg; 5243 } 5244 return i; 5245 } 5246 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5247 if( nReg==1 ){ 5248 sqlite3ReleaseTempReg(pParse, iReg); 5249 return; 5250 } 5251 sqlite3ExprCacheRemove(pParse, iReg, nReg); 5252 if( nReg>pParse->nRangeReg ){ 5253 pParse->nRangeReg = nReg; 5254 pParse->iRangeReg = iReg; 5255 } 5256 } 5257 5258 /* 5259 ** Mark all temporary registers as being unavailable for reuse. 5260 */ 5261 void sqlite3ClearTempRegCache(Parse *pParse){ 5262 pParse->nTempReg = 0; 5263 pParse->nRangeReg = 0; 5264 } 5265 5266 /* 5267 ** Validate that no temporary register falls within the range of 5268 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5269 ** statements. 5270 */ 5271 #ifdef SQLITE_DEBUG 5272 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5273 int i; 5274 if( pParse->nRangeReg>0 5275 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5276 && pParse->iRangeReg <= iLast 5277 ){ 5278 return 0; 5279 } 5280 for(i=0; i<pParse->nTempReg; i++){ 5281 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5282 return 0; 5283 } 5284 } 5285 return 1; 5286 } 5287 #endif /* SQLITE_DEBUG */ 5288