xref: /sqlite-3.40.0/src/expr.c (revision 9a243e69)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(Expr *pExpr){
46   int op;
47   pExpr = sqlite3ExprSkipCollate(pExpr);
48   if( pExpr->flags & EP_Generic ) return 0;
49   op = pExpr->op;
50   if( op==TK_SELECT ){
51     assert( pExpr->flags&EP_xIsSelect );
52     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
53   }
54   if( op==TK_REGISTER ) op = pExpr->op2;
55 #ifndef SQLITE_OMIT_CAST
56   if( op==TK_CAST ){
57     assert( !ExprHasProperty(pExpr, EP_IntValue) );
58     return sqlite3AffinityType(pExpr->u.zToken, 0);
59   }
60 #endif
61   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){
62     return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn);
63   }
64   if( op==TK_SELECT_COLUMN ){
65     assert( pExpr->pLeft->flags&EP_xIsSelect );
66     return sqlite3ExprAffinity(
67         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
68     );
69   }
70   return pExpr->affinity;
71 }
72 
73 /*
74 ** Set the collating sequence for expression pExpr to be the collating
75 ** sequence named by pToken.   Return a pointer to a new Expr node that
76 ** implements the COLLATE operator.
77 **
78 ** If a memory allocation error occurs, that fact is recorded in pParse->db
79 ** and the pExpr parameter is returned unchanged.
80 */
81 Expr *sqlite3ExprAddCollateToken(
82   Parse *pParse,           /* Parsing context */
83   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
84   const Token *pCollName,  /* Name of collating sequence */
85   int dequote              /* True to dequote pCollName */
86 ){
87   if( pCollName->n>0 ){
88     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
89     if( pNew ){
90       pNew->pLeft = pExpr;
91       pNew->flags |= EP_Collate|EP_Skip;
92       pExpr = pNew;
93     }
94   }
95   return pExpr;
96 }
97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
98   Token s;
99   assert( zC!=0 );
100   sqlite3TokenInit(&s, (char*)zC);
101   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
102 }
103 
104 /*
105 ** Skip over any TK_COLLATE operators and any unlikely()
106 ** or likelihood() function at the root of an expression.
107 */
108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
109   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
110     if( ExprHasProperty(pExpr, EP_Unlikely) ){
111       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
112       assert( pExpr->x.pList->nExpr>0 );
113       assert( pExpr->op==TK_FUNCTION );
114       pExpr = pExpr->x.pList->a[0].pExpr;
115     }else{
116       assert( pExpr->op==TK_COLLATE );
117       pExpr = pExpr->pLeft;
118     }
119   }
120   return pExpr;
121 }
122 
123 /*
124 ** Return the collation sequence for the expression pExpr. If
125 ** there is no defined collating sequence, return NULL.
126 **
127 ** The collating sequence might be determined by a COLLATE operator
128 ** or by the presence of a column with a defined collating sequence.
129 ** COLLATE operators take first precedence.  Left operands take
130 ** precedence over right operands.
131 */
132 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
133   sqlite3 *db = pParse->db;
134   CollSeq *pColl = 0;
135   Expr *p = pExpr;
136   while( p ){
137     int op = p->op;
138     if( p->flags & EP_Generic ) break;
139     if( op==TK_CAST || op==TK_UPLUS ){
140       p = p->pLeft;
141       continue;
142     }
143     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
144       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
145       break;
146     }
147     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
148           || op==TK_REGISTER || op==TK_TRIGGER)
149      && p->pTab!=0
150     ){
151       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
152       ** a TK_COLUMN but was previously evaluated and cached in a register */
153       int j = p->iColumn;
154       if( j>=0 ){
155         const char *zColl = p->pTab->aCol[j].zColl;
156         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
157       }
158       break;
159     }
160     if( p->flags & EP_Collate ){
161       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
162         p = p->pLeft;
163       }else{
164         Expr *pNext  = p->pRight;
165         /* The Expr.x union is never used at the same time as Expr.pRight */
166         assert( p->x.pList==0 || p->pRight==0 );
167         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
168         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
169         ** least one EP_Collate. Thus the following two ALWAYS. */
170         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
171           int i;
172           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
173             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
174               pNext = p->x.pList->a[i].pExpr;
175               break;
176             }
177           }
178         }
179         p = pNext;
180       }
181     }else{
182       break;
183     }
184   }
185   if( sqlite3CheckCollSeq(pParse, pColl) ){
186     pColl = 0;
187   }
188   return pColl;
189 }
190 
191 /*
192 ** pExpr is an operand of a comparison operator.  aff2 is the
193 ** type affinity of the other operand.  This routine returns the
194 ** type affinity that should be used for the comparison operator.
195 */
196 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
197   char aff1 = sqlite3ExprAffinity(pExpr);
198   if( aff1 && aff2 ){
199     /* Both sides of the comparison are columns. If one has numeric
200     ** affinity, use that. Otherwise use no affinity.
201     */
202     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
203       return SQLITE_AFF_NUMERIC;
204     }else{
205       return SQLITE_AFF_BLOB;
206     }
207   }else if( !aff1 && !aff2 ){
208     /* Neither side of the comparison is a column.  Compare the
209     ** results directly.
210     */
211     return SQLITE_AFF_BLOB;
212   }else{
213     /* One side is a column, the other is not. Use the columns affinity. */
214     assert( aff1==0 || aff2==0 );
215     return (aff1 + aff2);
216   }
217 }
218 
219 /*
220 ** pExpr is a comparison operator.  Return the type affinity that should
221 ** be applied to both operands prior to doing the comparison.
222 */
223 static char comparisonAffinity(Expr *pExpr){
224   char aff;
225   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
226           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
227           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
228   assert( pExpr->pLeft );
229   aff = sqlite3ExprAffinity(pExpr->pLeft);
230   if( pExpr->pRight ){
231     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
232   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
233     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
234   }else if( aff==0 ){
235     aff = SQLITE_AFF_BLOB;
236   }
237   return aff;
238 }
239 
240 /*
241 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
242 ** idx_affinity is the affinity of an indexed column. Return true
243 ** if the index with affinity idx_affinity may be used to implement
244 ** the comparison in pExpr.
245 */
246 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
247   char aff = comparisonAffinity(pExpr);
248   switch( aff ){
249     case SQLITE_AFF_BLOB:
250       return 1;
251     case SQLITE_AFF_TEXT:
252       return idx_affinity==SQLITE_AFF_TEXT;
253     default:
254       return sqlite3IsNumericAffinity(idx_affinity);
255   }
256 }
257 
258 /*
259 ** Return the P5 value that should be used for a binary comparison
260 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
261 */
262 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
263   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
264   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
265   return aff;
266 }
267 
268 /*
269 ** Return a pointer to the collation sequence that should be used by
270 ** a binary comparison operator comparing pLeft and pRight.
271 **
272 ** If the left hand expression has a collating sequence type, then it is
273 ** used. Otherwise the collation sequence for the right hand expression
274 ** is used, or the default (BINARY) if neither expression has a collating
275 ** type.
276 **
277 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
278 ** it is not considered.
279 */
280 CollSeq *sqlite3BinaryCompareCollSeq(
281   Parse *pParse,
282   Expr *pLeft,
283   Expr *pRight
284 ){
285   CollSeq *pColl;
286   assert( pLeft );
287   if( pLeft->flags & EP_Collate ){
288     pColl = sqlite3ExprCollSeq(pParse, pLeft);
289   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
290     pColl = sqlite3ExprCollSeq(pParse, pRight);
291   }else{
292     pColl = sqlite3ExprCollSeq(pParse, pLeft);
293     if( !pColl ){
294       pColl = sqlite3ExprCollSeq(pParse, pRight);
295     }
296   }
297   return pColl;
298 }
299 
300 /*
301 ** Generate code for a comparison operator.
302 */
303 static int codeCompare(
304   Parse *pParse,    /* The parsing (and code generating) context */
305   Expr *pLeft,      /* The left operand */
306   Expr *pRight,     /* The right operand */
307   int opcode,       /* The comparison opcode */
308   int in1, int in2, /* Register holding operands */
309   int dest,         /* Jump here if true.  */
310   int jumpIfNull    /* If true, jump if either operand is NULL */
311 ){
312   int p5;
313   int addr;
314   CollSeq *p4;
315 
316   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
317   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
318   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
319                            (void*)p4, P4_COLLSEQ);
320   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
321   return addr;
322 }
323 
324 /*
325 ** Return true if expression pExpr is a vector, or false otherwise.
326 **
327 ** A vector is defined as any expression that results in two or more
328 ** columns of result.  Every TK_VECTOR node is an vector because the
329 ** parser will not generate a TK_VECTOR with fewer than two entries.
330 ** But a TK_SELECT might be either a vector or a scalar. It is only
331 ** considered a vector if it has two or more result columns.
332 */
333 int sqlite3ExprIsVector(Expr *pExpr){
334   return sqlite3ExprVectorSize(pExpr)>1;
335 }
336 
337 /*
338 ** If the expression passed as the only argument is of type TK_VECTOR
339 ** return the number of expressions in the vector. Or, if the expression
340 ** is a sub-select, return the number of columns in the sub-select. For
341 ** any other type of expression, return 1.
342 */
343 int sqlite3ExprVectorSize(Expr *pExpr){
344   u8 op = pExpr->op;
345   if( op==TK_REGISTER ) op = pExpr->op2;
346   if( op==TK_VECTOR ){
347     return pExpr->x.pList->nExpr;
348   }else if( op==TK_SELECT ){
349     return pExpr->x.pSelect->pEList->nExpr;
350   }else{
351     return 1;
352   }
353 }
354 
355 /*
356 ** Return a pointer to a subexpression of pVector that is the i-th
357 ** column of the vector (numbered starting with 0).  The caller must
358 ** ensure that i is within range.
359 **
360 ** If pVector is really a scalar (and "scalar" here includes subqueries
361 ** that return a single column!) then return pVector unmodified.
362 **
363 ** pVector retains ownership of the returned subexpression.
364 **
365 ** If the vector is a (SELECT ...) then the expression returned is
366 ** just the expression for the i-th term of the result set, and may
367 ** not be ready for evaluation because the table cursor has not yet
368 ** been positioned.
369 */
370 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
371   assert( i<sqlite3ExprVectorSize(pVector) );
372   if( sqlite3ExprIsVector(pVector) ){
373     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
374     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
375       return pVector->x.pSelect->pEList->a[i].pExpr;
376     }else{
377       return pVector->x.pList->a[i].pExpr;
378     }
379   }
380   return pVector;
381 }
382 
383 /*
384 ** Compute and return a new Expr object which when passed to
385 ** sqlite3ExprCode() will generate all necessary code to compute
386 ** the iField-th column of the vector expression pVector.
387 **
388 ** It is ok for pVector to be a scalar (as long as iField==0).
389 ** In that case, this routine works like sqlite3ExprDup().
390 **
391 ** The caller owns the returned Expr object and is responsible for
392 ** ensuring that the returned value eventually gets freed.
393 **
394 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
395 ** then the returned object will reference pVector and so pVector must remain
396 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
397 ** or a scalar expression, then it can be deleted as soon as this routine
398 ** returns.
399 **
400 ** A trick to cause a TK_SELECT pVector to be deleted together with
401 ** the returned Expr object is to attach the pVector to the pRight field
402 ** of the returned TK_SELECT_COLUMN Expr object.
403 */
404 Expr *sqlite3ExprForVectorField(
405   Parse *pParse,       /* Parsing context */
406   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
407   int iField           /* Which column of the vector to return */
408 ){
409   Expr *pRet;
410   if( pVector->op==TK_SELECT ){
411     assert( pVector->flags & EP_xIsSelect );
412     /* The TK_SELECT_COLUMN Expr node:
413     **
414     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
415     ** pRight:          not used.  But recursively deleted.
416     ** iColumn:         Index of a column in pVector
417     ** iTable:          0 or the number of columns on the LHS of an assignment
418     ** pLeft->iTable:   First in an array of register holding result, or 0
419     **                  if the result is not yet computed.
420     **
421     ** sqlite3ExprDelete() specifically skips the recursive delete of
422     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
423     ** can be attached to pRight to cause this node to take ownership of
424     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
425     ** with the same pLeft pointer to the pVector, but only one of them
426     ** will own the pVector.
427     */
428     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
429     if( pRet ){
430       pRet->iColumn = iField;
431       pRet->pLeft = pVector;
432     }
433     assert( pRet==0 || pRet->iTable==0 );
434   }else{
435     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
436     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
437   }
438   return pRet;
439 }
440 
441 /*
442 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
443 ** it. Return the register in which the result is stored (or, if the
444 ** sub-select returns more than one column, the first in an array
445 ** of registers in which the result is stored).
446 **
447 ** If pExpr is not a TK_SELECT expression, return 0.
448 */
449 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
450   int reg = 0;
451 #ifndef SQLITE_OMIT_SUBQUERY
452   if( pExpr->op==TK_SELECT ){
453     reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
454   }
455 #endif
456   return reg;
457 }
458 
459 /*
460 ** Argument pVector points to a vector expression - either a TK_VECTOR
461 ** or TK_SELECT that returns more than one column. This function returns
462 ** the register number of a register that contains the value of
463 ** element iField of the vector.
464 **
465 ** If pVector is a TK_SELECT expression, then code for it must have
466 ** already been generated using the exprCodeSubselect() routine. In this
467 ** case parameter regSelect should be the first in an array of registers
468 ** containing the results of the sub-select.
469 **
470 ** If pVector is of type TK_VECTOR, then code for the requested field
471 ** is generated. In this case (*pRegFree) may be set to the number of
472 ** a temporary register to be freed by the caller before returning.
473 **
474 ** Before returning, output parameter (*ppExpr) is set to point to the
475 ** Expr object corresponding to element iElem of the vector.
476 */
477 static int exprVectorRegister(
478   Parse *pParse,                  /* Parse context */
479   Expr *pVector,                  /* Vector to extract element from */
480   int iField,                     /* Field to extract from pVector */
481   int regSelect,                  /* First in array of registers */
482   Expr **ppExpr,                  /* OUT: Expression element */
483   int *pRegFree                   /* OUT: Temp register to free */
484 ){
485   u8 op = pVector->op;
486   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
487   if( op==TK_REGISTER ){
488     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
489     return pVector->iTable+iField;
490   }
491   if( op==TK_SELECT ){
492     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
493      return regSelect+iField;
494   }
495   *ppExpr = pVector->x.pList->a[iField].pExpr;
496   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
497 }
498 
499 /*
500 ** Expression pExpr is a comparison between two vector values. Compute
501 ** the result of the comparison (1, 0, or NULL) and write that
502 ** result into register dest.
503 **
504 ** The caller must satisfy the following preconditions:
505 **
506 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
507 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
508 **    otherwise:                op==pExpr->op and p5==0
509 */
510 static void codeVectorCompare(
511   Parse *pParse,        /* Code generator context */
512   Expr *pExpr,          /* The comparison operation */
513   int dest,             /* Write results into this register */
514   u8 op,                /* Comparison operator */
515   u8 p5                 /* SQLITE_NULLEQ or zero */
516 ){
517   Vdbe *v = pParse->pVdbe;
518   Expr *pLeft = pExpr->pLeft;
519   Expr *pRight = pExpr->pRight;
520   int nLeft = sqlite3ExprVectorSize(pLeft);
521   int i;
522   int regLeft = 0;
523   int regRight = 0;
524   u8 opx = op;
525   int addrDone = sqlite3VdbeMakeLabel(v);
526 
527   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
528     sqlite3ErrorMsg(pParse, "row value misused");
529     return;
530   }
531   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
532        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
533        || pExpr->op==TK_LT || pExpr->op==TK_GT
534        || pExpr->op==TK_LE || pExpr->op==TK_GE
535   );
536   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
537             || (pExpr->op==TK_ISNOT && op==TK_NE) );
538   assert( p5==0 || pExpr->op!=op );
539   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
540 
541   p5 |= SQLITE_STOREP2;
542   if( opx==TK_LE ) opx = TK_LT;
543   if( opx==TK_GE ) opx = TK_GT;
544 
545   regLeft = exprCodeSubselect(pParse, pLeft);
546   regRight = exprCodeSubselect(pParse, pRight);
547 
548   for(i=0; 1 /*Loop exits by "break"*/; i++){
549     int regFree1 = 0, regFree2 = 0;
550     Expr *pL, *pR;
551     int r1, r2;
552     assert( i>=0 && i<nLeft );
553     if( i>0 ) sqlite3ExprCachePush(pParse);
554     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
555     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
556     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5);
557     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
558     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
559     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
560     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
561     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
562     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
563     sqlite3ReleaseTempReg(pParse, regFree1);
564     sqlite3ReleaseTempReg(pParse, regFree2);
565     if( i>0 ) sqlite3ExprCachePop(pParse);
566     if( i==nLeft-1 ){
567       break;
568     }
569     if( opx==TK_EQ ){
570       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
571       p5 |= SQLITE_KEEPNULL;
572     }else if( opx==TK_NE ){
573       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
574       p5 |= SQLITE_KEEPNULL;
575     }else{
576       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
577       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
578       VdbeCoverageIf(v, op==TK_LT);
579       VdbeCoverageIf(v, op==TK_GT);
580       VdbeCoverageIf(v, op==TK_LE);
581       VdbeCoverageIf(v, op==TK_GE);
582       if( i==nLeft-2 ) opx = op;
583     }
584   }
585   sqlite3VdbeResolveLabel(v, addrDone);
586 }
587 
588 #if SQLITE_MAX_EXPR_DEPTH>0
589 /*
590 ** Check that argument nHeight is less than or equal to the maximum
591 ** expression depth allowed. If it is not, leave an error message in
592 ** pParse.
593 */
594 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
595   int rc = SQLITE_OK;
596   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
597   if( nHeight>mxHeight ){
598     sqlite3ErrorMsg(pParse,
599        "Expression tree is too large (maximum depth %d)", mxHeight
600     );
601     rc = SQLITE_ERROR;
602   }
603   return rc;
604 }
605 
606 /* The following three functions, heightOfExpr(), heightOfExprList()
607 ** and heightOfSelect(), are used to determine the maximum height
608 ** of any expression tree referenced by the structure passed as the
609 ** first argument.
610 **
611 ** If this maximum height is greater than the current value pointed
612 ** to by pnHeight, the second parameter, then set *pnHeight to that
613 ** value.
614 */
615 static void heightOfExpr(Expr *p, int *pnHeight){
616   if( p ){
617     if( p->nHeight>*pnHeight ){
618       *pnHeight = p->nHeight;
619     }
620   }
621 }
622 static void heightOfExprList(ExprList *p, int *pnHeight){
623   if( p ){
624     int i;
625     for(i=0; i<p->nExpr; i++){
626       heightOfExpr(p->a[i].pExpr, pnHeight);
627     }
628   }
629 }
630 static void heightOfSelect(Select *p, int *pnHeight){
631   if( p ){
632     heightOfExpr(p->pWhere, pnHeight);
633     heightOfExpr(p->pHaving, pnHeight);
634     heightOfExpr(p->pLimit, pnHeight);
635     heightOfExpr(p->pOffset, pnHeight);
636     heightOfExprList(p->pEList, pnHeight);
637     heightOfExprList(p->pGroupBy, pnHeight);
638     heightOfExprList(p->pOrderBy, pnHeight);
639     heightOfSelect(p->pPrior, pnHeight);
640   }
641 }
642 
643 /*
644 ** Set the Expr.nHeight variable in the structure passed as an
645 ** argument. An expression with no children, Expr.pList or
646 ** Expr.pSelect member has a height of 1. Any other expression
647 ** has a height equal to the maximum height of any other
648 ** referenced Expr plus one.
649 **
650 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
651 ** if appropriate.
652 */
653 static void exprSetHeight(Expr *p){
654   int nHeight = 0;
655   heightOfExpr(p->pLeft, &nHeight);
656   heightOfExpr(p->pRight, &nHeight);
657   if( ExprHasProperty(p, EP_xIsSelect) ){
658     heightOfSelect(p->x.pSelect, &nHeight);
659   }else if( p->x.pList ){
660     heightOfExprList(p->x.pList, &nHeight);
661     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
662   }
663   p->nHeight = nHeight + 1;
664 }
665 
666 /*
667 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
668 ** the height is greater than the maximum allowed expression depth,
669 ** leave an error in pParse.
670 **
671 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
672 ** Expr.flags.
673 */
674 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
675   if( pParse->nErr ) return;
676   exprSetHeight(p);
677   sqlite3ExprCheckHeight(pParse, p->nHeight);
678 }
679 
680 /*
681 ** Return the maximum height of any expression tree referenced
682 ** by the select statement passed as an argument.
683 */
684 int sqlite3SelectExprHeight(Select *p){
685   int nHeight = 0;
686   heightOfSelect(p, &nHeight);
687   return nHeight;
688 }
689 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
690 /*
691 ** Propagate all EP_Propagate flags from the Expr.x.pList into
692 ** Expr.flags.
693 */
694 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
695   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
696     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
697   }
698 }
699 #define exprSetHeight(y)
700 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
701 
702 /*
703 ** This routine is the core allocator for Expr nodes.
704 **
705 ** Construct a new expression node and return a pointer to it.  Memory
706 ** for this node and for the pToken argument is a single allocation
707 ** obtained from sqlite3DbMalloc().  The calling function
708 ** is responsible for making sure the node eventually gets freed.
709 **
710 ** If dequote is true, then the token (if it exists) is dequoted.
711 ** If dequote is false, no dequoting is performed.  The deQuote
712 ** parameter is ignored if pToken is NULL or if the token does not
713 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
714 ** then the EP_DblQuoted flag is set on the expression node.
715 **
716 ** Special case:  If op==TK_INTEGER and pToken points to a string that
717 ** can be translated into a 32-bit integer, then the token is not
718 ** stored in u.zToken.  Instead, the integer values is written
719 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
720 ** is allocated to hold the integer text and the dequote flag is ignored.
721 */
722 Expr *sqlite3ExprAlloc(
723   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
724   int op,                 /* Expression opcode */
725   const Token *pToken,    /* Token argument.  Might be NULL */
726   int dequote             /* True to dequote */
727 ){
728   Expr *pNew;
729   int nExtra = 0;
730   int iValue = 0;
731 
732   assert( db!=0 );
733   if( pToken ){
734     if( op!=TK_INTEGER || pToken->z==0
735           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
736       nExtra = pToken->n+1;
737       assert( iValue>=0 );
738     }
739   }
740   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
741   if( pNew ){
742     memset(pNew, 0, sizeof(Expr));
743     pNew->op = (u8)op;
744     pNew->iAgg = -1;
745     if( pToken ){
746       if( nExtra==0 ){
747         pNew->flags |= EP_IntValue|EP_Leaf;
748         pNew->u.iValue = iValue;
749       }else{
750         pNew->u.zToken = (char*)&pNew[1];
751         assert( pToken->z!=0 || pToken->n==0 );
752         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
753         pNew->u.zToken[pToken->n] = 0;
754         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
755           if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted;
756           sqlite3Dequote(pNew->u.zToken);
757         }
758       }
759     }
760 #if SQLITE_MAX_EXPR_DEPTH>0
761     pNew->nHeight = 1;
762 #endif
763   }
764   return pNew;
765 }
766 
767 /*
768 ** Allocate a new expression node from a zero-terminated token that has
769 ** already been dequoted.
770 */
771 Expr *sqlite3Expr(
772   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
773   int op,                 /* Expression opcode */
774   const char *zToken      /* Token argument.  Might be NULL */
775 ){
776   Token x;
777   x.z = zToken;
778   x.n = sqlite3Strlen30(zToken);
779   return sqlite3ExprAlloc(db, op, &x, 0);
780 }
781 
782 /*
783 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
784 **
785 ** If pRoot==NULL that means that a memory allocation error has occurred.
786 ** In that case, delete the subtrees pLeft and pRight.
787 */
788 void sqlite3ExprAttachSubtrees(
789   sqlite3 *db,
790   Expr *pRoot,
791   Expr *pLeft,
792   Expr *pRight
793 ){
794   if( pRoot==0 ){
795     assert( db->mallocFailed );
796     sqlite3ExprDelete(db, pLeft);
797     sqlite3ExprDelete(db, pRight);
798   }else{
799     if( pRight ){
800       pRoot->pRight = pRight;
801       pRoot->flags |= EP_Propagate & pRight->flags;
802     }
803     if( pLeft ){
804       pRoot->pLeft = pLeft;
805       pRoot->flags |= EP_Propagate & pLeft->flags;
806     }
807     exprSetHeight(pRoot);
808   }
809 }
810 
811 /*
812 ** Allocate an Expr node which joins as many as two subtrees.
813 **
814 ** One or both of the subtrees can be NULL.  Return a pointer to the new
815 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
816 ** free the subtrees and return NULL.
817 */
818 Expr *sqlite3PExpr(
819   Parse *pParse,          /* Parsing context */
820   int op,                 /* Expression opcode */
821   Expr *pLeft,            /* Left operand */
822   Expr *pRight            /* Right operand */
823 ){
824   Expr *p;
825   if( op==TK_AND && pParse->nErr==0 ){
826     /* Take advantage of short-circuit false optimization for AND */
827     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
828   }else{
829     p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
830     if( p ){
831       memset(p, 0, sizeof(Expr));
832       p->op = op & TKFLG_MASK;
833       p->iAgg = -1;
834     }
835     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
836   }
837   if( p ) {
838     sqlite3ExprCheckHeight(pParse, p->nHeight);
839   }
840   return p;
841 }
842 
843 /*
844 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
845 ** do a memory allocation failure) then delete the pSelect object.
846 */
847 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
848   if( pExpr ){
849     pExpr->x.pSelect = pSelect;
850     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
851     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
852   }else{
853     assert( pParse->db->mallocFailed );
854     sqlite3SelectDelete(pParse->db, pSelect);
855   }
856 }
857 
858 
859 /*
860 ** If the expression is always either TRUE or FALSE (respectively),
861 ** then return 1.  If one cannot determine the truth value of the
862 ** expression at compile-time return 0.
863 **
864 ** This is an optimization.  If is OK to return 0 here even if
865 ** the expression really is always false or false (a false negative).
866 ** But it is a bug to return 1 if the expression might have different
867 ** boolean values in different circumstances (a false positive.)
868 **
869 ** Note that if the expression is part of conditional for a
870 ** LEFT JOIN, then we cannot determine at compile-time whether or not
871 ** is it true or false, so always return 0.
872 */
873 static int exprAlwaysTrue(Expr *p){
874   int v = 0;
875   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
876   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
877   return v!=0;
878 }
879 static int exprAlwaysFalse(Expr *p){
880   int v = 0;
881   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
882   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
883   return v==0;
884 }
885 
886 /*
887 ** Join two expressions using an AND operator.  If either expression is
888 ** NULL, then just return the other expression.
889 **
890 ** If one side or the other of the AND is known to be false, then instead
891 ** of returning an AND expression, just return a constant expression with
892 ** a value of false.
893 */
894 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
895   if( pLeft==0 ){
896     return pRight;
897   }else if( pRight==0 ){
898     return pLeft;
899   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
900     sqlite3ExprDelete(db, pLeft);
901     sqlite3ExprDelete(db, pRight);
902     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
903   }else{
904     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
905     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
906     return pNew;
907   }
908 }
909 
910 /*
911 ** Construct a new expression node for a function with multiple
912 ** arguments.
913 */
914 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
915   Expr *pNew;
916   sqlite3 *db = pParse->db;
917   assert( pToken );
918   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
919   if( pNew==0 ){
920     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
921     return 0;
922   }
923   pNew->x.pList = pList;
924   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
925   sqlite3ExprSetHeightAndFlags(pParse, pNew);
926   return pNew;
927 }
928 
929 /*
930 ** Assign a variable number to an expression that encodes a wildcard
931 ** in the original SQL statement.
932 **
933 ** Wildcards consisting of a single "?" are assigned the next sequential
934 ** variable number.
935 **
936 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
937 ** sure "nnn" is not too big to avoid a denial of service attack when
938 ** the SQL statement comes from an external source.
939 **
940 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
941 ** as the previous instance of the same wildcard.  Or if this is the first
942 ** instance of the wildcard, the next sequential variable number is
943 ** assigned.
944 */
945 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
946   sqlite3 *db = pParse->db;
947   const char *z;
948   ynVar x;
949 
950   if( pExpr==0 ) return;
951   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
952   z = pExpr->u.zToken;
953   assert( z!=0 );
954   assert( z[0]!=0 );
955   assert( n==(u32)sqlite3Strlen30(z) );
956   if( z[1]==0 ){
957     /* Wildcard of the form "?".  Assign the next variable number */
958     assert( z[0]=='?' );
959     x = (ynVar)(++pParse->nVar);
960   }else{
961     int doAdd = 0;
962     if( z[0]=='?' ){
963       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
964       ** use it as the variable number */
965       i64 i;
966       int bOk;
967       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
968         i = z[1]-'0';  /* The common case of ?N for a single digit N */
969         bOk = 1;
970       }else{
971         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
972       }
973       testcase( i==0 );
974       testcase( i==1 );
975       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
976       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
977       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
978         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
979             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
980         return;
981       }
982       x = (ynVar)i;
983       if( x>pParse->nVar ){
984         pParse->nVar = (int)x;
985         doAdd = 1;
986       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
987         doAdd = 1;
988       }
989     }else{
990       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
991       ** number as the prior appearance of the same name, or if the name
992       ** has never appeared before, reuse the same variable number
993       */
994       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
995       if( x==0 ){
996         x = (ynVar)(++pParse->nVar);
997         doAdd = 1;
998       }
999     }
1000     if( doAdd ){
1001       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1002     }
1003   }
1004   pExpr->iColumn = x;
1005   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1006     sqlite3ErrorMsg(pParse, "too many SQL variables");
1007   }
1008 }
1009 
1010 /*
1011 ** Recursively delete an expression tree.
1012 */
1013 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1014   assert( p!=0 );
1015   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1016   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1017 #ifdef SQLITE_DEBUG
1018   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1019     assert( p->pLeft==0 );
1020     assert( p->pRight==0 );
1021     assert( p->x.pSelect==0 );
1022   }
1023 #endif
1024   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1025     /* The Expr.x union is never used at the same time as Expr.pRight */
1026     assert( p->x.pList==0 || p->pRight==0 );
1027     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1028     if( p->pRight ){
1029       sqlite3ExprDeleteNN(db, p->pRight);
1030     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1031       sqlite3SelectDelete(db, p->x.pSelect);
1032     }else{
1033       sqlite3ExprListDelete(db, p->x.pList);
1034     }
1035   }
1036   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1037   if( !ExprHasProperty(p, EP_Static) ){
1038     sqlite3DbFreeNN(db, p);
1039   }
1040 }
1041 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1042   if( p ) sqlite3ExprDeleteNN(db, p);
1043 }
1044 
1045 /*
1046 ** Return the number of bytes allocated for the expression structure
1047 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1048 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1049 */
1050 static int exprStructSize(Expr *p){
1051   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1052   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1053   return EXPR_FULLSIZE;
1054 }
1055 
1056 /*
1057 ** The dupedExpr*Size() routines each return the number of bytes required
1058 ** to store a copy of an expression or expression tree.  They differ in
1059 ** how much of the tree is measured.
1060 **
1061 **     dupedExprStructSize()     Size of only the Expr structure
1062 **     dupedExprNodeSize()       Size of Expr + space for token
1063 **     dupedExprSize()           Expr + token + subtree components
1064 **
1065 ***************************************************************************
1066 **
1067 ** The dupedExprStructSize() function returns two values OR-ed together:
1068 ** (1) the space required for a copy of the Expr structure only and
1069 ** (2) the EP_xxx flags that indicate what the structure size should be.
1070 ** The return values is always one of:
1071 **
1072 **      EXPR_FULLSIZE
1073 **      EXPR_REDUCEDSIZE   | EP_Reduced
1074 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1075 **
1076 ** The size of the structure can be found by masking the return value
1077 ** of this routine with 0xfff.  The flags can be found by masking the
1078 ** return value with EP_Reduced|EP_TokenOnly.
1079 **
1080 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1081 ** (unreduced) Expr objects as they or originally constructed by the parser.
1082 ** During expression analysis, extra information is computed and moved into
1083 ** later parts of teh Expr object and that extra information might get chopped
1084 ** off if the expression is reduced.  Note also that it does not work to
1085 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1086 ** to reduce a pristine expression tree from the parser.  The implementation
1087 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1088 ** to enforce this constraint.
1089 */
1090 static int dupedExprStructSize(Expr *p, int flags){
1091   int nSize;
1092   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1093   assert( EXPR_FULLSIZE<=0xfff );
1094   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1095   if( 0==flags || p->op==TK_SELECT_COLUMN ){
1096     nSize = EXPR_FULLSIZE;
1097   }else{
1098     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1099     assert( !ExprHasProperty(p, EP_FromJoin) );
1100     assert( !ExprHasProperty(p, EP_MemToken) );
1101     assert( !ExprHasProperty(p, EP_NoReduce) );
1102     if( p->pLeft || p->x.pList ){
1103       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1104     }else{
1105       assert( p->pRight==0 );
1106       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1107     }
1108   }
1109   return nSize;
1110 }
1111 
1112 /*
1113 ** This function returns the space in bytes required to store the copy
1114 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1115 ** string is defined.)
1116 */
1117 static int dupedExprNodeSize(Expr *p, int flags){
1118   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1119   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1120     nByte += sqlite3Strlen30(p->u.zToken)+1;
1121   }
1122   return ROUND8(nByte);
1123 }
1124 
1125 /*
1126 ** Return the number of bytes required to create a duplicate of the
1127 ** expression passed as the first argument. The second argument is a
1128 ** mask containing EXPRDUP_XXX flags.
1129 **
1130 ** The value returned includes space to create a copy of the Expr struct
1131 ** itself and the buffer referred to by Expr.u.zToken, if any.
1132 **
1133 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1134 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1135 ** and Expr.pRight variables (but not for any structures pointed to or
1136 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1137 */
1138 static int dupedExprSize(Expr *p, int flags){
1139   int nByte = 0;
1140   if( p ){
1141     nByte = dupedExprNodeSize(p, flags);
1142     if( flags&EXPRDUP_REDUCE ){
1143       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1144     }
1145   }
1146   return nByte;
1147 }
1148 
1149 /*
1150 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1151 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1152 ** to store the copy of expression p, the copies of p->u.zToken
1153 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1154 ** if any. Before returning, *pzBuffer is set to the first byte past the
1155 ** portion of the buffer copied into by this function.
1156 */
1157 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1158   Expr *pNew;           /* Value to return */
1159   u8 *zAlloc;           /* Memory space from which to build Expr object */
1160   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1161 
1162   assert( db!=0 );
1163   assert( p );
1164   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1165   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1166 
1167   /* Figure out where to write the new Expr structure. */
1168   if( pzBuffer ){
1169     zAlloc = *pzBuffer;
1170     staticFlag = EP_Static;
1171   }else{
1172     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1173     staticFlag = 0;
1174   }
1175   pNew = (Expr *)zAlloc;
1176 
1177   if( pNew ){
1178     /* Set nNewSize to the size allocated for the structure pointed to
1179     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1180     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1181     ** by the copy of the p->u.zToken string (if any).
1182     */
1183     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1184     const int nNewSize = nStructSize & 0xfff;
1185     int nToken;
1186     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1187       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1188     }else{
1189       nToken = 0;
1190     }
1191     if( dupFlags ){
1192       assert( ExprHasProperty(p, EP_Reduced)==0 );
1193       memcpy(zAlloc, p, nNewSize);
1194     }else{
1195       u32 nSize = (u32)exprStructSize(p);
1196       memcpy(zAlloc, p, nSize);
1197       if( nSize<EXPR_FULLSIZE ){
1198         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1199       }
1200     }
1201 
1202     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1203     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1204     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1205     pNew->flags |= staticFlag;
1206 
1207     /* Copy the p->u.zToken string, if any. */
1208     if( nToken ){
1209       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1210       memcpy(zToken, p->u.zToken, nToken);
1211     }
1212 
1213     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1214       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1215       if( ExprHasProperty(p, EP_xIsSelect) ){
1216         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1217       }else{
1218         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1219       }
1220     }
1221 
1222     /* Fill in pNew->pLeft and pNew->pRight. */
1223     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
1224       zAlloc += dupedExprNodeSize(p, dupFlags);
1225       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1226         pNew->pLeft = p->pLeft ?
1227                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1228         pNew->pRight = p->pRight ?
1229                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1230       }
1231       if( pzBuffer ){
1232         *pzBuffer = zAlloc;
1233       }
1234     }else{
1235       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1236         if( pNew->op==TK_SELECT_COLUMN ){
1237           pNew->pLeft = p->pLeft;
1238           assert( p->iColumn==0 || p->pRight==0 );
1239           assert( p->pRight==0  || p->pRight==p->pLeft );
1240         }else{
1241           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1242         }
1243         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1244       }
1245     }
1246   }
1247   return pNew;
1248 }
1249 
1250 /*
1251 ** Create and return a deep copy of the object passed as the second
1252 ** argument. If an OOM condition is encountered, NULL is returned
1253 ** and the db->mallocFailed flag set.
1254 */
1255 #ifndef SQLITE_OMIT_CTE
1256 static With *withDup(sqlite3 *db, With *p){
1257   With *pRet = 0;
1258   if( p ){
1259     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1260     pRet = sqlite3DbMallocZero(db, nByte);
1261     if( pRet ){
1262       int i;
1263       pRet->nCte = p->nCte;
1264       for(i=0; i<p->nCte; i++){
1265         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1266         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1267         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1268       }
1269     }
1270   }
1271   return pRet;
1272 }
1273 #else
1274 # define withDup(x,y) 0
1275 #endif
1276 
1277 /*
1278 ** The following group of routines make deep copies of expressions,
1279 ** expression lists, ID lists, and select statements.  The copies can
1280 ** be deleted (by being passed to their respective ...Delete() routines)
1281 ** without effecting the originals.
1282 **
1283 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1284 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1285 ** by subsequent calls to sqlite*ListAppend() routines.
1286 **
1287 ** Any tables that the SrcList might point to are not duplicated.
1288 **
1289 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1290 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1291 ** truncated version of the usual Expr structure that will be stored as
1292 ** part of the in-memory representation of the database schema.
1293 */
1294 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1295   assert( flags==0 || flags==EXPRDUP_REDUCE );
1296   return p ? exprDup(db, p, flags, 0) : 0;
1297 }
1298 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1299   ExprList *pNew;
1300   struct ExprList_item *pItem, *pOldItem;
1301   int i;
1302   Expr *pPriorSelectCol = 0;
1303   assert( db!=0 );
1304   if( p==0 ) return 0;
1305   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1306   if( pNew==0 ) return 0;
1307   pNew->nExpr = p->nExpr;
1308   pItem = pNew->a;
1309   pOldItem = p->a;
1310   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1311     Expr *pOldExpr = pOldItem->pExpr;
1312     Expr *pNewExpr;
1313     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1314     if( pOldExpr
1315      && pOldExpr->op==TK_SELECT_COLUMN
1316      && (pNewExpr = pItem->pExpr)!=0
1317     ){
1318       assert( pNewExpr->iColumn==0 || i>0 );
1319       if( pNewExpr->iColumn==0 ){
1320         assert( pOldExpr->pLeft==pOldExpr->pRight );
1321         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1322       }else{
1323         assert( i>0 );
1324         assert( pItem[-1].pExpr!=0 );
1325         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1326         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1327         pNewExpr->pLeft = pPriorSelectCol;
1328       }
1329     }
1330     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1331     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1332     pItem->sortOrder = pOldItem->sortOrder;
1333     pItem->done = 0;
1334     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1335     pItem->u = pOldItem->u;
1336   }
1337   return pNew;
1338 }
1339 
1340 /*
1341 ** If cursors, triggers, views and subqueries are all omitted from
1342 ** the build, then none of the following routines, except for
1343 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1344 ** called with a NULL argument.
1345 */
1346 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1347  || !defined(SQLITE_OMIT_SUBQUERY)
1348 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1349   SrcList *pNew;
1350   int i;
1351   int nByte;
1352   assert( db!=0 );
1353   if( p==0 ) return 0;
1354   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1355   pNew = sqlite3DbMallocRawNN(db, nByte );
1356   if( pNew==0 ) return 0;
1357   pNew->nSrc = pNew->nAlloc = p->nSrc;
1358   for(i=0; i<p->nSrc; i++){
1359     struct SrcList_item *pNewItem = &pNew->a[i];
1360     struct SrcList_item *pOldItem = &p->a[i];
1361     Table *pTab;
1362     pNewItem->pSchema = pOldItem->pSchema;
1363     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1364     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1365     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1366     pNewItem->fg = pOldItem->fg;
1367     pNewItem->iCursor = pOldItem->iCursor;
1368     pNewItem->addrFillSub = pOldItem->addrFillSub;
1369     pNewItem->regReturn = pOldItem->regReturn;
1370     if( pNewItem->fg.isIndexedBy ){
1371       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1372     }
1373     pNewItem->pIBIndex = pOldItem->pIBIndex;
1374     if( pNewItem->fg.isTabFunc ){
1375       pNewItem->u1.pFuncArg =
1376           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1377     }
1378     pTab = pNewItem->pTab = pOldItem->pTab;
1379     if( pTab ){
1380       pTab->nTabRef++;
1381     }
1382     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1383     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1384     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1385     pNewItem->colUsed = pOldItem->colUsed;
1386   }
1387   return pNew;
1388 }
1389 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1390   IdList *pNew;
1391   int i;
1392   assert( db!=0 );
1393   if( p==0 ) return 0;
1394   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1395   if( pNew==0 ) return 0;
1396   pNew->nId = p->nId;
1397   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1398   if( pNew->a==0 ){
1399     sqlite3DbFreeNN(db, pNew);
1400     return 0;
1401   }
1402   /* Note that because the size of the allocation for p->a[] is not
1403   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1404   ** on the duplicate created by this function. */
1405   for(i=0; i<p->nId; i++){
1406     struct IdList_item *pNewItem = &pNew->a[i];
1407     struct IdList_item *pOldItem = &p->a[i];
1408     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1409     pNewItem->idx = pOldItem->idx;
1410   }
1411   return pNew;
1412 }
1413 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1414   Select *pRet = 0;
1415   Select *pNext = 0;
1416   Select **pp = &pRet;
1417   Select *p;
1418 
1419   assert( db!=0 );
1420   for(p=pDup; p; p=p->pPrior){
1421     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1422     if( pNew==0 ) break;
1423     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1424     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1425     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1426     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1427     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1428     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1429     pNew->op = p->op;
1430     pNew->pNext = pNext;
1431     pNew->pPrior = 0;
1432     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1433     pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1434     pNew->iLimit = 0;
1435     pNew->iOffset = 0;
1436     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1437     pNew->addrOpenEphm[0] = -1;
1438     pNew->addrOpenEphm[1] = -1;
1439     pNew->nSelectRow = p->nSelectRow;
1440     pNew->pWith = withDup(db, p->pWith);
1441     sqlite3SelectSetName(pNew, p->zSelName);
1442     *pp = pNew;
1443     pp = &pNew->pPrior;
1444     pNext = pNew;
1445   }
1446 
1447   return pRet;
1448 }
1449 #else
1450 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1451   assert( p==0 );
1452   return 0;
1453 }
1454 #endif
1455 
1456 
1457 /*
1458 ** Add a new element to the end of an expression list.  If pList is
1459 ** initially NULL, then create a new expression list.
1460 **
1461 ** The pList argument must be either NULL or a pointer to an ExprList
1462 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1463 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1464 ** Reason:  This routine assumes that the number of slots in pList->a[]
1465 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1466 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1467 **
1468 ** If a memory allocation error occurs, the entire list is freed and
1469 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1470 ** that the new entry was successfully appended.
1471 */
1472 ExprList *sqlite3ExprListAppend(
1473   Parse *pParse,          /* Parsing context */
1474   ExprList *pList,        /* List to which to append. Might be NULL */
1475   Expr *pExpr             /* Expression to be appended. Might be NULL */
1476 ){
1477   struct ExprList_item *pItem;
1478   sqlite3 *db = pParse->db;
1479   assert( db!=0 );
1480   if( pList==0 ){
1481     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1482     if( pList==0 ){
1483       goto no_mem;
1484     }
1485     pList->nExpr = 0;
1486   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1487     ExprList *pNew;
1488     pNew = sqlite3DbRealloc(db, pList,
1489              sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0]));
1490     if( pNew==0 ){
1491       goto no_mem;
1492     }
1493     pList = pNew;
1494   }
1495   pItem = &pList->a[pList->nExpr++];
1496   assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) );
1497   assert( offsetof(struct ExprList_item,pExpr)==0 );
1498   memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName));
1499   pItem->pExpr = pExpr;
1500   return pList;
1501 
1502 no_mem:
1503   /* Avoid leaking memory if malloc has failed. */
1504   sqlite3ExprDelete(db, pExpr);
1505   sqlite3ExprListDelete(db, pList);
1506   return 0;
1507 }
1508 
1509 /*
1510 ** pColumns and pExpr form a vector assignment which is part of the SET
1511 ** clause of an UPDATE statement.  Like this:
1512 **
1513 **        (a,b,c) = (expr1,expr2,expr3)
1514 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1515 **
1516 ** For each term of the vector assignment, append new entries to the
1517 ** expression list pList.  In the case of a subquery on the RHS, append
1518 ** TK_SELECT_COLUMN expressions.
1519 */
1520 ExprList *sqlite3ExprListAppendVector(
1521   Parse *pParse,         /* Parsing context */
1522   ExprList *pList,       /* List to which to append. Might be NULL */
1523   IdList *pColumns,      /* List of names of LHS of the assignment */
1524   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1525 ){
1526   sqlite3 *db = pParse->db;
1527   int n;
1528   int i;
1529   int iFirst = pList ? pList->nExpr : 0;
1530   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1531   ** exit prior to this routine being invoked */
1532   if( NEVER(pColumns==0) ) goto vector_append_error;
1533   if( pExpr==0 ) goto vector_append_error;
1534 
1535   /* If the RHS is a vector, then we can immediately check to see that
1536   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1537   ** wildcards ("*") in the result set of the SELECT must be expanded before
1538   ** we can do the size check, so defer the size check until code generation.
1539   */
1540   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1541     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1542                     pColumns->nId, n);
1543     goto vector_append_error;
1544   }
1545 
1546   for(i=0; i<pColumns->nId; i++){
1547     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1548     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1549     if( pList ){
1550       assert( pList->nExpr==iFirst+i+1 );
1551       pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1552       pColumns->a[i].zName = 0;
1553     }
1554   }
1555 
1556   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1557     Expr *pFirst = pList->a[iFirst].pExpr;
1558     assert( pFirst!=0 );
1559     assert( pFirst->op==TK_SELECT_COLUMN );
1560 
1561     /* Store the SELECT statement in pRight so it will be deleted when
1562     ** sqlite3ExprListDelete() is called */
1563     pFirst->pRight = pExpr;
1564     pExpr = 0;
1565 
1566     /* Remember the size of the LHS in iTable so that we can check that
1567     ** the RHS and LHS sizes match during code generation. */
1568     pFirst->iTable = pColumns->nId;
1569   }
1570 
1571 vector_append_error:
1572   sqlite3ExprDelete(db, pExpr);
1573   sqlite3IdListDelete(db, pColumns);
1574   return pList;
1575 }
1576 
1577 /*
1578 ** Set the sort order for the last element on the given ExprList.
1579 */
1580 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1581   if( p==0 ) return;
1582   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1583   assert( p->nExpr>0 );
1584   if( iSortOrder<0 ){
1585     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1586     return;
1587   }
1588   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1589 }
1590 
1591 /*
1592 ** Set the ExprList.a[].zName element of the most recently added item
1593 ** on the expression list.
1594 **
1595 ** pList might be NULL following an OOM error.  But pName should never be
1596 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1597 ** is set.
1598 */
1599 void sqlite3ExprListSetName(
1600   Parse *pParse,          /* Parsing context */
1601   ExprList *pList,        /* List to which to add the span. */
1602   Token *pName,           /* Name to be added */
1603   int dequote             /* True to cause the name to be dequoted */
1604 ){
1605   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1606   if( pList ){
1607     struct ExprList_item *pItem;
1608     assert( pList->nExpr>0 );
1609     pItem = &pList->a[pList->nExpr-1];
1610     assert( pItem->zName==0 );
1611     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1612     if( dequote ) sqlite3Dequote(pItem->zName);
1613   }
1614 }
1615 
1616 /*
1617 ** Set the ExprList.a[].zSpan element of the most recently added item
1618 ** on the expression list.
1619 **
1620 ** pList might be NULL following an OOM error.  But pSpan should never be
1621 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1622 ** is set.
1623 */
1624 void sqlite3ExprListSetSpan(
1625   Parse *pParse,          /* Parsing context */
1626   ExprList *pList,        /* List to which to add the span. */
1627   ExprSpan *pSpan         /* The span to be added */
1628 ){
1629   sqlite3 *db = pParse->db;
1630   assert( pList!=0 || db->mallocFailed!=0 );
1631   if( pList ){
1632     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1633     assert( pList->nExpr>0 );
1634     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1635     sqlite3DbFree(db, pItem->zSpan);
1636     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1637                                     (int)(pSpan->zEnd - pSpan->zStart));
1638   }
1639 }
1640 
1641 /*
1642 ** If the expression list pEList contains more than iLimit elements,
1643 ** leave an error message in pParse.
1644 */
1645 void sqlite3ExprListCheckLength(
1646   Parse *pParse,
1647   ExprList *pEList,
1648   const char *zObject
1649 ){
1650   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1651   testcase( pEList && pEList->nExpr==mx );
1652   testcase( pEList && pEList->nExpr==mx+1 );
1653   if( pEList && pEList->nExpr>mx ){
1654     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1655   }
1656 }
1657 
1658 /*
1659 ** Delete an entire expression list.
1660 */
1661 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1662   int i = pList->nExpr;
1663   struct ExprList_item *pItem =  pList->a;
1664   assert( pList->nExpr>0 );
1665   do{
1666     sqlite3ExprDelete(db, pItem->pExpr);
1667     sqlite3DbFree(db, pItem->zName);
1668     sqlite3DbFree(db, pItem->zSpan);
1669     pItem++;
1670   }while( --i>0 );
1671   sqlite3DbFreeNN(db, pList);
1672 }
1673 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1674   if( pList ) exprListDeleteNN(db, pList);
1675 }
1676 
1677 /*
1678 ** Return the bitwise-OR of all Expr.flags fields in the given
1679 ** ExprList.
1680 */
1681 u32 sqlite3ExprListFlags(const ExprList *pList){
1682   int i;
1683   u32 m = 0;
1684   if( pList ){
1685     for(i=0; i<pList->nExpr; i++){
1686        Expr *pExpr = pList->a[i].pExpr;
1687        assert( pExpr!=0 );
1688        m |= pExpr->flags;
1689     }
1690   }
1691   return m;
1692 }
1693 
1694 /*
1695 ** This is a SELECT-node callback for the expression walker that
1696 ** always "fails".  By "fail" in this case, we mean set
1697 ** pWalker->eCode to zero and abort.
1698 **
1699 ** This callback is used by multiple expression walkers.
1700 */
1701 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1702   UNUSED_PARAMETER(NotUsed);
1703   pWalker->eCode = 0;
1704   return WRC_Abort;
1705 }
1706 
1707 /*
1708 ** These routines are Walker callbacks used to check expressions to
1709 ** see if they are "constant" for some definition of constant.  The
1710 ** Walker.eCode value determines the type of "constant" we are looking
1711 ** for.
1712 **
1713 ** These callback routines are used to implement the following:
1714 **
1715 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1716 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1717 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1718 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1719 **
1720 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1721 ** is found to not be a constant.
1722 **
1723 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1724 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1725 ** an existing schema and 4 when processing a new statement.  A bound
1726 ** parameter raises an error for new statements, but is silently converted
1727 ** to NULL for existing schemas.  This allows sqlite_master tables that
1728 ** contain a bound parameter because they were generated by older versions
1729 ** of SQLite to be parsed by newer versions of SQLite without raising a
1730 ** malformed schema error.
1731 */
1732 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1733 
1734   /* If pWalker->eCode is 2 then any term of the expression that comes from
1735   ** the ON or USING clauses of a left join disqualifies the expression
1736   ** from being considered constant. */
1737   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1738     pWalker->eCode = 0;
1739     return WRC_Abort;
1740   }
1741 
1742   switch( pExpr->op ){
1743     /* Consider functions to be constant if all their arguments are constant
1744     ** and either pWalker->eCode==4 or 5 or the function has the
1745     ** SQLITE_FUNC_CONST flag. */
1746     case TK_FUNCTION:
1747       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1748         return WRC_Continue;
1749       }else{
1750         pWalker->eCode = 0;
1751         return WRC_Abort;
1752       }
1753     case TK_ID:
1754     case TK_COLUMN:
1755     case TK_AGG_FUNCTION:
1756     case TK_AGG_COLUMN:
1757       testcase( pExpr->op==TK_ID );
1758       testcase( pExpr->op==TK_COLUMN );
1759       testcase( pExpr->op==TK_AGG_FUNCTION );
1760       testcase( pExpr->op==TK_AGG_COLUMN );
1761       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1762         return WRC_Continue;
1763       }
1764       /* Fall through */
1765     case TK_IF_NULL_ROW:
1766       testcase( pExpr->op==TK_IF_NULL_ROW );
1767       pWalker->eCode = 0;
1768       return WRC_Abort;
1769     case TK_VARIABLE:
1770       if( pWalker->eCode==5 ){
1771         /* Silently convert bound parameters that appear inside of CREATE
1772         ** statements into a NULL when parsing the CREATE statement text out
1773         ** of the sqlite_master table */
1774         pExpr->op = TK_NULL;
1775       }else if( pWalker->eCode==4 ){
1776         /* A bound parameter in a CREATE statement that originates from
1777         ** sqlite3_prepare() causes an error */
1778         pWalker->eCode = 0;
1779         return WRC_Abort;
1780       }
1781       /* Fall through */
1782     default:
1783       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail will disallow */
1784       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail will disallow */
1785       return WRC_Continue;
1786   }
1787 }
1788 static int exprIsConst(Expr *p, int initFlag, int iCur){
1789   Walker w;
1790   w.eCode = initFlag;
1791   w.xExprCallback = exprNodeIsConstant;
1792   w.xSelectCallback = sqlite3SelectWalkFail;
1793 #ifdef SQLITE_DEBUG
1794   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1795 #endif
1796   w.u.iCur = iCur;
1797   sqlite3WalkExpr(&w, p);
1798   return w.eCode;
1799 }
1800 
1801 /*
1802 ** Walk an expression tree.  Return non-zero if the expression is constant
1803 ** and 0 if it involves variables or function calls.
1804 **
1805 ** For the purposes of this function, a double-quoted string (ex: "abc")
1806 ** is considered a variable but a single-quoted string (ex: 'abc') is
1807 ** a constant.
1808 */
1809 int sqlite3ExprIsConstant(Expr *p){
1810   return exprIsConst(p, 1, 0);
1811 }
1812 
1813 /*
1814 ** Walk an expression tree.  Return non-zero if the expression is constant
1815 ** that does no originate from the ON or USING clauses of a join.
1816 ** Return 0 if it involves variables or function calls or terms from
1817 ** an ON or USING clause.
1818 */
1819 int sqlite3ExprIsConstantNotJoin(Expr *p){
1820   return exprIsConst(p, 2, 0);
1821 }
1822 
1823 /*
1824 ** Walk an expression tree.  Return non-zero if the expression is constant
1825 ** for any single row of the table with cursor iCur.  In other words, the
1826 ** expression must not refer to any non-deterministic function nor any
1827 ** table other than iCur.
1828 */
1829 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1830   return exprIsConst(p, 3, iCur);
1831 }
1832 
1833 
1834 /*
1835 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
1836 */
1837 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
1838   ExprList *pGroupBy = pWalker->u.pGroupBy;
1839   int i;
1840 
1841   /* Check if pExpr is identical to any GROUP BY term. If so, consider
1842   ** it constant.  */
1843   for(i=0; i<pGroupBy->nExpr; i++){
1844     Expr *p = pGroupBy->a[i].pExpr;
1845     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
1846       CollSeq *pColl = sqlite3ExprCollSeq(pWalker->pParse, p);
1847       if( pColl==0 || sqlite3_stricmp("BINARY", pColl->zName)==0 ){
1848         return WRC_Prune;
1849       }
1850     }
1851   }
1852 
1853   /* Check if pExpr is a sub-select. If so, consider it variable. */
1854   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1855     pWalker->eCode = 0;
1856     return WRC_Abort;
1857   }
1858 
1859   return exprNodeIsConstant(pWalker, pExpr);
1860 }
1861 
1862 /*
1863 ** Walk the expression tree passed as the first argument. Return non-zero
1864 ** if the expression consists entirely of constants or copies of terms
1865 ** in pGroupBy that sort with the BINARY collation sequence.
1866 **
1867 ** This routine is used to determine if a term of the HAVING clause can
1868 ** be promoted into the WHERE clause.  In order for such a promotion to work,
1869 ** the value of the HAVING clause term must be the same for all members of
1870 ** a "group".  The requirement that the GROUP BY term must be BINARY
1871 ** assumes that no other collating sequence will have a finer-grained
1872 ** grouping than binary.  In other words (A=B COLLATE binary) implies
1873 ** A=B in every other collating sequence.  The requirement that the
1874 ** GROUP BY be BINARY is stricter than necessary.  It would also work
1875 ** to promote HAVING clauses that use the same alternative collating
1876 ** sequence as the GROUP BY term, but that is much harder to check,
1877 ** alternative collating sequences are uncommon, and this is only an
1878 ** optimization, so we take the easy way out and simply require the
1879 ** GROUP BY to use the BINARY collating sequence.
1880 */
1881 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
1882   Walker w;
1883   w.eCode = 1;
1884   w.xExprCallback = exprNodeIsConstantOrGroupBy;
1885   w.xSelectCallback = 0;
1886   w.u.pGroupBy = pGroupBy;
1887   w.pParse = pParse;
1888   sqlite3WalkExpr(&w, p);
1889   return w.eCode;
1890 }
1891 
1892 /*
1893 ** Walk an expression tree.  Return non-zero if the expression is constant
1894 ** or a function call with constant arguments.  Return and 0 if there
1895 ** are any variables.
1896 **
1897 ** For the purposes of this function, a double-quoted string (ex: "abc")
1898 ** is considered a variable but a single-quoted string (ex: 'abc') is
1899 ** a constant.
1900 */
1901 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1902   assert( isInit==0 || isInit==1 );
1903   return exprIsConst(p, 4+isInit, 0);
1904 }
1905 
1906 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1907 /*
1908 ** Walk an expression tree.  Return 1 if the expression contains a
1909 ** subquery of some kind.  Return 0 if there are no subqueries.
1910 */
1911 int sqlite3ExprContainsSubquery(Expr *p){
1912   Walker w;
1913   w.eCode = 1;
1914   w.xExprCallback = sqlite3ExprWalkNoop;
1915   w.xSelectCallback = sqlite3SelectWalkFail;
1916 #ifdef SQLITE_DEBUG
1917   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1918 #endif
1919   sqlite3WalkExpr(&w, p);
1920   return w.eCode==0;
1921 }
1922 #endif
1923 
1924 /*
1925 ** If the expression p codes a constant integer that is small enough
1926 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1927 ** in *pValue.  If the expression is not an integer or if it is too big
1928 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1929 */
1930 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1931   int rc = 0;
1932   if( p==0 ) return 0;  /* Can only happen following on OOM */
1933 
1934   /* If an expression is an integer literal that fits in a signed 32-bit
1935   ** integer, then the EP_IntValue flag will have already been set */
1936   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1937            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1938 
1939   if( p->flags & EP_IntValue ){
1940     *pValue = p->u.iValue;
1941     return 1;
1942   }
1943   switch( p->op ){
1944     case TK_UPLUS: {
1945       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1946       break;
1947     }
1948     case TK_UMINUS: {
1949       int v;
1950       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1951         assert( v!=(-2147483647-1) );
1952         *pValue = -v;
1953         rc = 1;
1954       }
1955       break;
1956     }
1957     default: break;
1958   }
1959   return rc;
1960 }
1961 
1962 /*
1963 ** Return FALSE if there is no chance that the expression can be NULL.
1964 **
1965 ** If the expression might be NULL or if the expression is too complex
1966 ** to tell return TRUE.
1967 **
1968 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1969 ** when we know that a value cannot be NULL.  Hence, a false positive
1970 ** (returning TRUE when in fact the expression can never be NULL) might
1971 ** be a small performance hit but is otherwise harmless.  On the other
1972 ** hand, a false negative (returning FALSE when the result could be NULL)
1973 ** will likely result in an incorrect answer.  So when in doubt, return
1974 ** TRUE.
1975 */
1976 int sqlite3ExprCanBeNull(const Expr *p){
1977   u8 op;
1978   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1979   op = p->op;
1980   if( op==TK_REGISTER ) op = p->op2;
1981   switch( op ){
1982     case TK_INTEGER:
1983     case TK_STRING:
1984     case TK_FLOAT:
1985     case TK_BLOB:
1986       return 0;
1987     case TK_COLUMN:
1988       return ExprHasProperty(p, EP_CanBeNull) ||
1989              p->pTab==0 ||  /* Reference to column of index on expression */
1990              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
1991     default:
1992       return 1;
1993   }
1994 }
1995 
1996 /*
1997 ** Return TRUE if the given expression is a constant which would be
1998 ** unchanged by OP_Affinity with the affinity given in the second
1999 ** argument.
2000 **
2001 ** This routine is used to determine if the OP_Affinity operation
2002 ** can be omitted.  When in doubt return FALSE.  A false negative
2003 ** is harmless.  A false positive, however, can result in the wrong
2004 ** answer.
2005 */
2006 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2007   u8 op;
2008   if( aff==SQLITE_AFF_BLOB ) return 1;
2009   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2010   op = p->op;
2011   if( op==TK_REGISTER ) op = p->op2;
2012   switch( op ){
2013     case TK_INTEGER: {
2014       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
2015     }
2016     case TK_FLOAT: {
2017       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
2018     }
2019     case TK_STRING: {
2020       return aff==SQLITE_AFF_TEXT;
2021     }
2022     case TK_BLOB: {
2023       return 1;
2024     }
2025     case TK_COLUMN: {
2026       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2027       return p->iColumn<0
2028           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
2029     }
2030     default: {
2031       return 0;
2032     }
2033   }
2034 }
2035 
2036 /*
2037 ** Return TRUE if the given string is a row-id column name.
2038 */
2039 int sqlite3IsRowid(const char *z){
2040   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2041   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2042   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2043   return 0;
2044 }
2045 
2046 /*
2047 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2048 ** that can be simplified to a direct table access, then return
2049 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2050 ** or if the SELECT statement needs to be manifested into a transient
2051 ** table, then return NULL.
2052 */
2053 #ifndef SQLITE_OMIT_SUBQUERY
2054 static Select *isCandidateForInOpt(Expr *pX){
2055   Select *p;
2056   SrcList *pSrc;
2057   ExprList *pEList;
2058   Table *pTab;
2059   int i;
2060   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2061   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2062   p = pX->x.pSelect;
2063   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2064   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2065     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2066     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2067     return 0; /* No DISTINCT keyword and no aggregate functions */
2068   }
2069   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2070   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2071   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
2072   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2073   pSrc = p->pSrc;
2074   assert( pSrc!=0 );
2075   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2076   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2077   pTab = pSrc->a[0].pTab;
2078   assert( pTab!=0 );
2079   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2080   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2081   pEList = p->pEList;
2082   assert( pEList!=0 );
2083   /* All SELECT results must be columns. */
2084   for(i=0; i<pEList->nExpr; i++){
2085     Expr *pRes = pEList->a[i].pExpr;
2086     if( pRes->op!=TK_COLUMN ) return 0;
2087     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2088   }
2089   return p;
2090 }
2091 #endif /* SQLITE_OMIT_SUBQUERY */
2092 
2093 #ifndef SQLITE_OMIT_SUBQUERY
2094 /*
2095 ** Generate code that checks the left-most column of index table iCur to see if
2096 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2097 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2098 ** to be set to NULL if iCur contains one or more NULL values.
2099 */
2100 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2101   int addr1;
2102   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2103   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2104   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2105   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2106   VdbeComment((v, "first_entry_in(%d)", iCur));
2107   sqlite3VdbeJumpHere(v, addr1);
2108 }
2109 #endif
2110 
2111 
2112 #ifndef SQLITE_OMIT_SUBQUERY
2113 /*
2114 ** The argument is an IN operator with a list (not a subquery) on the
2115 ** right-hand side.  Return TRUE if that list is constant.
2116 */
2117 static int sqlite3InRhsIsConstant(Expr *pIn){
2118   Expr *pLHS;
2119   int res;
2120   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2121   pLHS = pIn->pLeft;
2122   pIn->pLeft = 0;
2123   res = sqlite3ExprIsConstant(pIn);
2124   pIn->pLeft = pLHS;
2125   return res;
2126 }
2127 #endif
2128 
2129 /*
2130 ** This function is used by the implementation of the IN (...) operator.
2131 ** The pX parameter is the expression on the RHS of the IN operator, which
2132 ** might be either a list of expressions or a subquery.
2133 **
2134 ** The job of this routine is to find or create a b-tree object that can
2135 ** be used either to test for membership in the RHS set or to iterate through
2136 ** all members of the RHS set, skipping duplicates.
2137 **
2138 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2139 ** and pX->iTable is set to the index of that cursor.
2140 **
2141 ** The returned value of this function indicates the b-tree type, as follows:
2142 **
2143 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2144 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2145 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2146 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2147 **                         populated epheremal table.
2148 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2149 **                         implemented as a sequence of comparisons.
2150 **
2151 ** An existing b-tree might be used if the RHS expression pX is a simple
2152 ** subquery such as:
2153 **
2154 **     SELECT <column1>, <column2>... FROM <table>
2155 **
2156 ** If the RHS of the IN operator is a list or a more complex subquery, then
2157 ** an ephemeral table might need to be generated from the RHS and then
2158 ** pX->iTable made to point to the ephemeral table instead of an
2159 ** existing table.
2160 **
2161 ** The inFlags parameter must contain exactly one of the bits
2162 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
2163 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
2164 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
2165 ** IN index will be used to loop over all values of the RHS of the
2166 ** IN operator.
2167 **
2168 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2169 ** through the set members) then the b-tree must not contain duplicates.
2170 ** An epheremal table must be used unless the selected columns are guaranteed
2171 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2172 ** a UNIQUE constraint or index.
2173 **
2174 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2175 ** for fast set membership tests) then an epheremal table must
2176 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2177 ** index can be found with the specified <columns> as its left-most.
2178 **
2179 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2180 ** if the RHS of the IN operator is a list (not a subquery) then this
2181 ** routine might decide that creating an ephemeral b-tree for membership
2182 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2183 ** calling routine should implement the IN operator using a sequence
2184 ** of Eq or Ne comparison operations.
2185 **
2186 ** When the b-tree is being used for membership tests, the calling function
2187 ** might need to know whether or not the RHS side of the IN operator
2188 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2189 ** if there is any chance that the (...) might contain a NULL value at
2190 ** runtime, then a register is allocated and the register number written
2191 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2192 ** NULL value, then *prRhsHasNull is left unchanged.
2193 **
2194 ** If a register is allocated and its location stored in *prRhsHasNull, then
2195 ** the value in that register will be NULL if the b-tree contains one or more
2196 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2197 ** NULL values.
2198 **
2199 ** If the aiMap parameter is not NULL, it must point to an array containing
2200 ** one element for each column returned by the SELECT statement on the RHS
2201 ** of the IN(...) operator. The i'th entry of the array is populated with the
2202 ** offset of the index column that matches the i'th column returned by the
2203 ** SELECT. For example, if the expression and selected index are:
2204 **
2205 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2206 **   CREATE INDEX i1 ON t1(b, c, a);
2207 **
2208 ** then aiMap[] is populated with {2, 0, 1}.
2209 */
2210 #ifndef SQLITE_OMIT_SUBQUERY
2211 int sqlite3FindInIndex(
2212   Parse *pParse,             /* Parsing context */
2213   Expr *pX,                  /* The right-hand side (RHS) of the IN operator */
2214   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2215   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2216   int *aiMap                 /* Mapping from Index fields to RHS fields */
2217 ){
2218   Select *p;                            /* SELECT to the right of IN operator */
2219   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2220   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2221   int mustBeUnique;                     /* True if RHS must be unique */
2222   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2223 
2224   assert( pX->op==TK_IN );
2225   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2226 
2227   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2228   ** whether or not the SELECT result contains NULL values, check whether
2229   ** or not NULL is actually possible (it may not be, for example, due
2230   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2231   ** set prRhsHasNull to 0 before continuing.  */
2232   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2233     int i;
2234     ExprList *pEList = pX->x.pSelect->pEList;
2235     for(i=0; i<pEList->nExpr; i++){
2236       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2237     }
2238     if( i==pEList->nExpr ){
2239       prRhsHasNull = 0;
2240     }
2241   }
2242 
2243   /* Check to see if an existing table or index can be used to
2244   ** satisfy the query.  This is preferable to generating a new
2245   ** ephemeral table.  */
2246   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2247     sqlite3 *db = pParse->db;              /* Database connection */
2248     Table *pTab;                           /* Table <table>. */
2249     i16 iDb;                               /* Database idx for pTab */
2250     ExprList *pEList = p->pEList;
2251     int nExpr = pEList->nExpr;
2252 
2253     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2254     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2255     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2256     pTab = p->pSrc->a[0].pTab;
2257 
2258     /* Code an OP_Transaction and OP_TableLock for <table>. */
2259     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2260     sqlite3CodeVerifySchema(pParse, iDb);
2261     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2262 
2263     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2264     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2265       /* The "x IN (SELECT rowid FROM table)" case */
2266       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2267       VdbeCoverage(v);
2268 
2269       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2270       eType = IN_INDEX_ROWID;
2271 
2272       sqlite3VdbeJumpHere(v, iAddr);
2273     }else{
2274       Index *pIdx;                         /* Iterator variable */
2275       int affinity_ok = 1;
2276       int i;
2277 
2278       /* Check that the affinity that will be used to perform each
2279       ** comparison is the same as the affinity of each column in table
2280       ** on the RHS of the IN operator.  If it not, it is not possible to
2281       ** use any index of the RHS table.  */
2282       for(i=0; i<nExpr && affinity_ok; i++){
2283         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2284         int iCol = pEList->a[i].pExpr->iColumn;
2285         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2286         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2287         testcase( cmpaff==SQLITE_AFF_BLOB );
2288         testcase( cmpaff==SQLITE_AFF_TEXT );
2289         switch( cmpaff ){
2290           case SQLITE_AFF_BLOB:
2291             break;
2292           case SQLITE_AFF_TEXT:
2293             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2294             ** other has no affinity and the other side is TEXT.  Hence,
2295             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2296             ** and for the term on the LHS of the IN to have no affinity. */
2297             assert( idxaff==SQLITE_AFF_TEXT );
2298             break;
2299           default:
2300             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2301         }
2302       }
2303 
2304       if( affinity_ok ){
2305         /* Search for an existing index that will work for this IN operator */
2306         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2307           Bitmask colUsed;      /* Columns of the index used */
2308           Bitmask mCol;         /* Mask for the current column */
2309           if( pIdx->nColumn<nExpr ) continue;
2310           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2311           ** BITMASK(nExpr) without overflowing */
2312           testcase( pIdx->nColumn==BMS-2 );
2313           testcase( pIdx->nColumn==BMS-1 );
2314           if( pIdx->nColumn>=BMS-1 ) continue;
2315           if( mustBeUnique ){
2316             if( pIdx->nKeyCol>nExpr
2317              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2318             ){
2319               continue;  /* This index is not unique over the IN RHS columns */
2320             }
2321           }
2322 
2323           colUsed = 0;   /* Columns of index used so far */
2324           for(i=0; i<nExpr; i++){
2325             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2326             Expr *pRhs = pEList->a[i].pExpr;
2327             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2328             int j;
2329 
2330             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2331             for(j=0; j<nExpr; j++){
2332               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2333               assert( pIdx->azColl[j] );
2334               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2335                 continue;
2336               }
2337               break;
2338             }
2339             if( j==nExpr ) break;
2340             mCol = MASKBIT(j);
2341             if( mCol & colUsed ) break; /* Each column used only once */
2342             colUsed |= mCol;
2343             if( aiMap ) aiMap[i] = j;
2344           }
2345 
2346           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2347           if( colUsed==(MASKBIT(nExpr)-1) ){
2348             /* If we reach this point, that means the index pIdx is usable */
2349             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2350 #ifndef SQLITE_OMIT_EXPLAIN
2351             sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0,
2352               sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName),
2353               P4_DYNAMIC);
2354 #endif
2355             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2356             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2357             VdbeComment((v, "%s", pIdx->zName));
2358             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2359             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2360 
2361             if( prRhsHasNull ){
2362 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2363               i64 mask = (1<<nExpr)-1;
2364               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2365                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2366 #endif
2367               *prRhsHasNull = ++pParse->nMem;
2368               if( nExpr==1 ){
2369                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2370               }
2371             }
2372             sqlite3VdbeJumpHere(v, iAddr);
2373           }
2374         } /* End loop over indexes */
2375       } /* End if( affinity_ok ) */
2376     } /* End if not an rowid index */
2377   } /* End attempt to optimize using an index */
2378 
2379   /* If no preexisting index is available for the IN clause
2380   ** and IN_INDEX_NOOP is an allowed reply
2381   ** and the RHS of the IN operator is a list, not a subquery
2382   ** and the RHS is not constant or has two or fewer terms,
2383   ** then it is not worth creating an ephemeral table to evaluate
2384   ** the IN operator so return IN_INDEX_NOOP.
2385   */
2386   if( eType==0
2387    && (inFlags & IN_INDEX_NOOP_OK)
2388    && !ExprHasProperty(pX, EP_xIsSelect)
2389    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2390   ){
2391     eType = IN_INDEX_NOOP;
2392   }
2393 
2394   if( eType==0 ){
2395     /* Could not find an existing table or index to use as the RHS b-tree.
2396     ** We will have to generate an ephemeral table to do the job.
2397     */
2398     u32 savedNQueryLoop = pParse->nQueryLoop;
2399     int rMayHaveNull = 0;
2400     eType = IN_INDEX_EPH;
2401     if( inFlags & IN_INDEX_LOOP ){
2402       pParse->nQueryLoop = 0;
2403       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
2404         eType = IN_INDEX_ROWID;
2405       }
2406     }else if( prRhsHasNull ){
2407       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2408     }
2409     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
2410     pParse->nQueryLoop = savedNQueryLoop;
2411   }else{
2412     pX->iTable = iTab;
2413   }
2414 
2415   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2416     int i, n;
2417     n = sqlite3ExprVectorSize(pX->pLeft);
2418     for(i=0; i<n; i++) aiMap[i] = i;
2419   }
2420   return eType;
2421 }
2422 #endif
2423 
2424 #ifndef SQLITE_OMIT_SUBQUERY
2425 /*
2426 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2427 ** function allocates and returns a nul-terminated string containing
2428 ** the affinities to be used for each column of the comparison.
2429 **
2430 ** It is the responsibility of the caller to ensure that the returned
2431 ** string is eventually freed using sqlite3DbFree().
2432 */
2433 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2434   Expr *pLeft = pExpr->pLeft;
2435   int nVal = sqlite3ExprVectorSize(pLeft);
2436   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2437   char *zRet;
2438 
2439   assert( pExpr->op==TK_IN );
2440   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2441   if( zRet ){
2442     int i;
2443     for(i=0; i<nVal; i++){
2444       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2445       char a = sqlite3ExprAffinity(pA);
2446       if( pSelect ){
2447         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2448       }else{
2449         zRet[i] = a;
2450       }
2451     }
2452     zRet[nVal] = '\0';
2453   }
2454   return zRet;
2455 }
2456 #endif
2457 
2458 #ifndef SQLITE_OMIT_SUBQUERY
2459 /*
2460 ** Load the Parse object passed as the first argument with an error
2461 ** message of the form:
2462 **
2463 **   "sub-select returns N columns - expected M"
2464 */
2465 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2466   const char *zFmt = "sub-select returns %d columns - expected %d";
2467   sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2468 }
2469 #endif
2470 
2471 /*
2472 ** Expression pExpr is a vector that has been used in a context where
2473 ** it is not permitted. If pExpr is a sub-select vector, this routine
2474 ** loads the Parse object with a message of the form:
2475 **
2476 **   "sub-select returns N columns - expected 1"
2477 **
2478 ** Or, if it is a regular scalar vector:
2479 **
2480 **   "row value misused"
2481 */
2482 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2483 #ifndef SQLITE_OMIT_SUBQUERY
2484   if( pExpr->flags & EP_xIsSelect ){
2485     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2486   }else
2487 #endif
2488   {
2489     sqlite3ErrorMsg(pParse, "row value misused");
2490   }
2491 }
2492 
2493 /*
2494 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
2495 ** or IN operators.  Examples:
2496 **
2497 **     (SELECT a FROM b)          -- subquery
2498 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
2499 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2500 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2501 **
2502 ** The pExpr parameter describes the expression that contains the IN
2503 ** operator or subquery.
2504 **
2505 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
2506 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
2507 ** to some integer key column of a table B-Tree. In this case, use an
2508 ** intkey B-Tree to store the set of IN(...) values instead of the usual
2509 ** (slower) variable length keys B-Tree.
2510 **
2511 ** If rMayHaveNull is non-zero, that means that the operation is an IN
2512 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
2513 ** All this routine does is initialize the register given by rMayHaveNull
2514 ** to NULL.  Calling routines will take care of changing this register
2515 ** value to non-NULL if the RHS is NULL-free.
2516 **
2517 ** For a SELECT or EXISTS operator, return the register that holds the
2518 ** result.  For a multi-column SELECT, the result is stored in a contiguous
2519 ** array of registers and the return value is the register of the left-most
2520 ** result column.  Return 0 for IN operators or if an error occurs.
2521 */
2522 #ifndef SQLITE_OMIT_SUBQUERY
2523 int sqlite3CodeSubselect(
2524   Parse *pParse,          /* Parsing context */
2525   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
2526   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
2527   int isRowid             /* If true, LHS of IN operator is a rowid */
2528 ){
2529   int jmpIfDynamic = -1;                      /* One-time test address */
2530   int rReg = 0;                           /* Register storing resulting */
2531   Vdbe *v = sqlite3GetVdbe(pParse);
2532   if( NEVER(v==0) ) return 0;
2533   sqlite3ExprCachePush(pParse);
2534 
2535   /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it
2536   ** is encountered if any of the following is true:
2537   **
2538   **    *  The right-hand side is a correlated subquery
2539   **    *  The right-hand side is an expression list containing variables
2540   **    *  We are inside a trigger
2541   **
2542   ** If all of the above are false, then we can run this code just once
2543   ** save the results, and reuse the same result on subsequent invocations.
2544   */
2545   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2546     jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2547   }
2548 
2549 #ifndef SQLITE_OMIT_EXPLAIN
2550   if( pParse->explain==2 ){
2551     char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d",
2552         jmpIfDynamic>=0?"":"CORRELATED ",
2553         pExpr->op==TK_IN?"LIST":"SCALAR",
2554         pParse->iNextSelectId
2555     );
2556     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
2557   }
2558 #endif
2559 
2560   switch( pExpr->op ){
2561     case TK_IN: {
2562       int addr;                   /* Address of OP_OpenEphemeral instruction */
2563       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
2564       KeyInfo *pKeyInfo = 0;      /* Key information */
2565       int nVal;                   /* Size of vector pLeft */
2566 
2567       nVal = sqlite3ExprVectorSize(pLeft);
2568       assert( !isRowid || nVal==1 );
2569 
2570       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
2571       ** expression it is handled the same way.  An ephemeral table is
2572       ** filled with index keys representing the results from the
2573       ** SELECT or the <exprlist>.
2574       **
2575       ** If the 'x' expression is a column value, or the SELECT...
2576       ** statement returns a column value, then the affinity of that
2577       ** column is used to build the index keys. If both 'x' and the
2578       ** SELECT... statement are columns, then numeric affinity is used
2579       ** if either column has NUMERIC or INTEGER affinity. If neither
2580       ** 'x' nor the SELECT... statement are columns, then numeric affinity
2581       ** is used.
2582       */
2583       pExpr->iTable = pParse->nTab++;
2584       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral,
2585           pExpr->iTable, (isRowid?0:nVal));
2586       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2587 
2588       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2589         /* Case 1:     expr IN (SELECT ...)
2590         **
2591         ** Generate code to write the results of the select into the temporary
2592         ** table allocated and opened above.
2593         */
2594         Select *pSelect = pExpr->x.pSelect;
2595         ExprList *pEList = pSelect->pEList;
2596 
2597         assert( !isRowid );
2598         /* If the LHS and RHS of the IN operator do not match, that
2599         ** error will have been caught long before we reach this point. */
2600         if( ALWAYS(pEList->nExpr==nVal) ){
2601           SelectDest dest;
2602           int i;
2603           sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
2604           dest.zAffSdst = exprINAffinity(pParse, pExpr);
2605           pSelect->iLimit = 0;
2606           testcase( pSelect->selFlags & SF_Distinct );
2607           testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2608           if( sqlite3Select(pParse, pSelect, &dest) ){
2609             sqlite3DbFree(pParse->db, dest.zAffSdst);
2610             sqlite3KeyInfoUnref(pKeyInfo);
2611             return 0;
2612           }
2613           sqlite3DbFree(pParse->db, dest.zAffSdst);
2614           assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2615           assert( pEList!=0 );
2616           assert( pEList->nExpr>0 );
2617           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2618           for(i=0; i<nVal; i++){
2619             Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2620             pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2621                 pParse, p, pEList->a[i].pExpr
2622             );
2623           }
2624         }
2625       }else if( ALWAYS(pExpr->x.pList!=0) ){
2626         /* Case 2:     expr IN (exprlist)
2627         **
2628         ** For each expression, build an index key from the evaluation and
2629         ** store it in the temporary table. If <expr> is a column, then use
2630         ** that columns affinity when building index keys. If <expr> is not
2631         ** a column, use numeric affinity.
2632         */
2633         char affinity;            /* Affinity of the LHS of the IN */
2634         int i;
2635         ExprList *pList = pExpr->x.pList;
2636         struct ExprList_item *pItem;
2637         int r1, r2, r3;
2638 
2639         affinity = sqlite3ExprAffinity(pLeft);
2640         if( !affinity ){
2641           affinity = SQLITE_AFF_BLOB;
2642         }
2643         if( pKeyInfo ){
2644           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2645           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2646         }
2647 
2648         /* Loop through each expression in <exprlist>. */
2649         r1 = sqlite3GetTempReg(pParse);
2650         r2 = sqlite3GetTempReg(pParse);
2651         if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
2652         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2653           Expr *pE2 = pItem->pExpr;
2654           int iValToIns;
2655 
2656           /* If the expression is not constant then we will need to
2657           ** disable the test that was generated above that makes sure
2658           ** this code only executes once.  Because for a non-constant
2659           ** expression we need to rerun this code each time.
2660           */
2661           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
2662             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
2663             jmpIfDynamic = -1;
2664           }
2665 
2666           /* Evaluate the expression and insert it into the temp table */
2667           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2668             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2669           }else{
2670             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2671             if( isRowid ){
2672               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2673                                 sqlite3VdbeCurrentAddr(v)+2);
2674               VdbeCoverage(v);
2675               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2676             }else{
2677               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2678               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
2679               sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1);
2680             }
2681           }
2682         }
2683         sqlite3ReleaseTempReg(pParse, r1);
2684         sqlite3ReleaseTempReg(pParse, r2);
2685       }
2686       if( pKeyInfo ){
2687         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2688       }
2689       break;
2690     }
2691 
2692     case TK_EXISTS:
2693     case TK_SELECT:
2694     default: {
2695       /* Case 3:    (SELECT ... FROM ...)
2696       **     or:    EXISTS(SELECT ... FROM ...)
2697       **
2698       ** For a SELECT, generate code to put the values for all columns of
2699       ** the first row into an array of registers and return the index of
2700       ** the first register.
2701       **
2702       ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2703       ** into a register and return that register number.
2704       **
2705       ** In both cases, the query is augmented with "LIMIT 1".  Any
2706       ** preexisting limit is discarded in place of the new LIMIT 1.
2707       */
2708       Select *pSel;                         /* SELECT statement to encode */
2709       SelectDest dest;                      /* How to deal with SELECT result */
2710       int nReg;                             /* Registers to allocate */
2711 
2712       testcase( pExpr->op==TK_EXISTS );
2713       testcase( pExpr->op==TK_SELECT );
2714       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2715       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2716 
2717       pSel = pExpr->x.pSelect;
2718       nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2719       sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2720       pParse->nMem += nReg;
2721       if( pExpr->op==TK_SELECT ){
2722         dest.eDest = SRT_Mem;
2723         dest.iSdst = dest.iSDParm;
2724         dest.nSdst = nReg;
2725         sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2726         VdbeComment((v, "Init subquery result"));
2727       }else{
2728         dest.eDest = SRT_Exists;
2729         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2730         VdbeComment((v, "Init EXISTS result"));
2731       }
2732       sqlite3ExprDelete(pParse->db, pSel->pLimit);
2733       pSel->pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,
2734                                   &sqlite3IntTokens[1], 0);
2735       pSel->iLimit = 0;
2736       pSel->selFlags &= ~SF_MultiValue;
2737       if( sqlite3Select(pParse, pSel, &dest) ){
2738         return 0;
2739       }
2740       rReg = dest.iSDParm;
2741       ExprSetVVAProperty(pExpr, EP_NoReduce);
2742       break;
2743     }
2744   }
2745 
2746   if( rHasNullFlag ){
2747     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2748   }
2749 
2750   if( jmpIfDynamic>=0 ){
2751     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2752   }
2753   sqlite3ExprCachePop(pParse);
2754 
2755   return rReg;
2756 }
2757 #endif /* SQLITE_OMIT_SUBQUERY */
2758 
2759 #ifndef SQLITE_OMIT_SUBQUERY
2760 /*
2761 ** Expr pIn is an IN(...) expression. This function checks that the
2762 ** sub-select on the RHS of the IN() operator has the same number of
2763 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
2764 ** a sub-query, that the LHS is a vector of size 1.
2765 */
2766 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
2767   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
2768   if( (pIn->flags & EP_xIsSelect) ){
2769     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
2770       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
2771       return 1;
2772     }
2773   }else if( nVector!=1 ){
2774     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
2775     return 1;
2776   }
2777   return 0;
2778 }
2779 #endif
2780 
2781 #ifndef SQLITE_OMIT_SUBQUERY
2782 /*
2783 ** Generate code for an IN expression.
2784 **
2785 **      x IN (SELECT ...)
2786 **      x IN (value, value, ...)
2787 **
2788 ** The left-hand side (LHS) is a scalar or vector expression.  The
2789 ** right-hand side (RHS) is an array of zero or more scalar values, or a
2790 ** subquery.  If the RHS is a subquery, the number of result columns must
2791 ** match the number of columns in the vector on the LHS.  If the RHS is
2792 ** a list of values, the LHS must be a scalar.
2793 **
2794 ** The IN operator is true if the LHS value is contained within the RHS.
2795 ** The result is false if the LHS is definitely not in the RHS.  The
2796 ** result is NULL if the presence of the LHS in the RHS cannot be
2797 ** determined due to NULLs.
2798 **
2799 ** This routine generates code that jumps to destIfFalse if the LHS is not
2800 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2801 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2802 ** within the RHS then fall through.
2803 **
2804 ** See the separate in-operator.md documentation file in the canonical
2805 ** SQLite source tree for additional information.
2806 */
2807 static void sqlite3ExprCodeIN(
2808   Parse *pParse,        /* Parsing and code generating context */
2809   Expr *pExpr,          /* The IN expression */
2810   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2811   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2812 ){
2813   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2814   int eType;            /* Type of the RHS */
2815   int rLhs;             /* Register(s) holding the LHS values */
2816   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
2817   Vdbe *v;              /* Statement under construction */
2818   int *aiMap = 0;       /* Map from vector field to index column */
2819   char *zAff = 0;       /* Affinity string for comparisons */
2820   int nVector;          /* Size of vectors for this IN operator */
2821   int iDummy;           /* Dummy parameter to exprCodeVector() */
2822   Expr *pLeft;          /* The LHS of the IN operator */
2823   int i;                /* loop counter */
2824   int destStep2;        /* Where to jump when NULLs seen in step 2 */
2825   int destStep6 = 0;    /* Start of code for Step 6 */
2826   int addrTruthOp;      /* Address of opcode that determines the IN is true */
2827   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
2828   int addrTop;          /* Top of the step-6 loop */
2829 
2830   pLeft = pExpr->pLeft;
2831   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
2832   zAff = exprINAffinity(pParse, pExpr);
2833   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
2834   aiMap = (int*)sqlite3DbMallocZero(
2835       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
2836   );
2837   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
2838 
2839   /* Attempt to compute the RHS. After this step, if anything other than
2840   ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable
2841   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
2842   ** the RHS has not yet been coded.  */
2843   v = pParse->pVdbe;
2844   assert( v!=0 );       /* OOM detected prior to this routine */
2845   VdbeNoopComment((v, "begin IN expr"));
2846   eType = sqlite3FindInIndex(pParse, pExpr,
2847                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2848                              destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap);
2849 
2850   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
2851        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
2852   );
2853 #ifdef SQLITE_DEBUG
2854   /* Confirm that aiMap[] contains nVector integer values between 0 and
2855   ** nVector-1. */
2856   for(i=0; i<nVector; i++){
2857     int j, cnt;
2858     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
2859     assert( cnt==1 );
2860   }
2861 #endif
2862 
2863   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
2864   ** vector, then it is stored in an array of nVector registers starting
2865   ** at r1.
2866   **
2867   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
2868   ** so that the fields are in the same order as an existing index.   The
2869   ** aiMap[] array contains a mapping from the original LHS field order to
2870   ** the field order that matches the RHS index.
2871   */
2872   sqlite3ExprCachePush(pParse);
2873   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
2874   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
2875   if( i==nVector ){
2876     /* LHS fields are not reordered */
2877     rLhs = rLhsOrig;
2878   }else{
2879     /* Need to reorder the LHS fields according to aiMap */
2880     rLhs = sqlite3GetTempRange(pParse, nVector);
2881     for(i=0; i<nVector; i++){
2882       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
2883     }
2884   }
2885 
2886   /* If sqlite3FindInIndex() did not find or create an index that is
2887   ** suitable for evaluating the IN operator, then evaluate using a
2888   ** sequence of comparisons.
2889   **
2890   ** This is step (1) in the in-operator.md optimized algorithm.
2891   */
2892   if( eType==IN_INDEX_NOOP ){
2893     ExprList *pList = pExpr->x.pList;
2894     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2895     int labelOk = sqlite3VdbeMakeLabel(v);
2896     int r2, regToFree;
2897     int regCkNull = 0;
2898     int ii;
2899     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2900     if( destIfNull!=destIfFalse ){
2901       regCkNull = sqlite3GetTempReg(pParse);
2902       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
2903     }
2904     for(ii=0; ii<pList->nExpr; ii++){
2905       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2906       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2907         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2908       }
2909       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2910         sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
2911                           (void*)pColl, P4_COLLSEQ);
2912         VdbeCoverageIf(v, ii<pList->nExpr-1);
2913         VdbeCoverageIf(v, ii==pList->nExpr-1);
2914         sqlite3VdbeChangeP5(v, zAff[0]);
2915       }else{
2916         assert( destIfNull==destIfFalse );
2917         sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
2918                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2919         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
2920       }
2921       sqlite3ReleaseTempReg(pParse, regToFree);
2922     }
2923     if( regCkNull ){
2924       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2925       sqlite3VdbeGoto(v, destIfFalse);
2926     }
2927     sqlite3VdbeResolveLabel(v, labelOk);
2928     sqlite3ReleaseTempReg(pParse, regCkNull);
2929     goto sqlite3ExprCodeIN_finished;
2930   }
2931 
2932   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
2933   ** LHS does contain NULLs then the result must be either FALSE or NULL.
2934   ** We will then skip the binary search of the RHS.
2935   */
2936   if( destIfNull==destIfFalse ){
2937     destStep2 = destIfFalse;
2938   }else{
2939     destStep2 = destStep6 = sqlite3VdbeMakeLabel(v);
2940   }
2941   for(i=0; i<nVector; i++){
2942     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
2943     if( sqlite3ExprCanBeNull(p) ){
2944       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
2945       VdbeCoverage(v);
2946     }
2947   }
2948 
2949   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
2950   ** of the RHS using the LHS as a probe.  If found, the result is
2951   ** true.
2952   */
2953   if( eType==IN_INDEX_ROWID ){
2954     /* In this case, the RHS is the ROWID of table b-tree and so we also
2955     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
2956     ** into a single opcode. */
2957     sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs);
2958     VdbeCoverage(v);
2959     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
2960   }else{
2961     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
2962     if( destIfFalse==destIfNull ){
2963       /* Combine Step 3 and Step 5 into a single opcode */
2964       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse,
2965                            rLhs, nVector); VdbeCoverage(v);
2966       goto sqlite3ExprCodeIN_finished;
2967     }
2968     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
2969     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0,
2970                                       rLhs, nVector); VdbeCoverage(v);
2971   }
2972 
2973   /* Step 4.  If the RHS is known to be non-NULL and we did not find
2974   ** an match on the search above, then the result must be FALSE.
2975   */
2976   if( rRhsHasNull && nVector==1 ){
2977     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
2978     VdbeCoverage(v);
2979   }
2980 
2981   /* Step 5.  If we do not care about the difference between NULL and
2982   ** FALSE, then just return false.
2983   */
2984   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
2985 
2986   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
2987   ** If any comparison is NULL, then the result is NULL.  If all
2988   ** comparisons are FALSE then the final result is FALSE.
2989   **
2990   ** For a scalar LHS, it is sufficient to check just the first row
2991   ** of the RHS.
2992   */
2993   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
2994   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2995   VdbeCoverage(v);
2996   if( nVector>1 ){
2997     destNotNull = sqlite3VdbeMakeLabel(v);
2998   }else{
2999     /* For nVector==1, combine steps 6 and 7 by immediately returning
3000     ** FALSE if the first comparison is not NULL */
3001     destNotNull = destIfFalse;
3002   }
3003   for(i=0; i<nVector; i++){
3004     Expr *p;
3005     CollSeq *pColl;
3006     int r3 = sqlite3GetTempReg(pParse);
3007     p = sqlite3VectorFieldSubexpr(pLeft, i);
3008     pColl = sqlite3ExprCollSeq(pParse, p);
3009     sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3);
3010     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3011                       (void*)pColl, P4_COLLSEQ);
3012     VdbeCoverage(v);
3013     sqlite3ReleaseTempReg(pParse, r3);
3014   }
3015   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3016   if( nVector>1 ){
3017     sqlite3VdbeResolveLabel(v, destNotNull);
3018     sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1);
3019     VdbeCoverage(v);
3020 
3021     /* Step 7:  If we reach this point, we know that the result must
3022     ** be false. */
3023     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3024   }
3025 
3026   /* Jumps here in order to return true. */
3027   sqlite3VdbeJumpHere(v, addrTruthOp);
3028 
3029 sqlite3ExprCodeIN_finished:
3030   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3031   sqlite3ExprCachePop(pParse);
3032   VdbeComment((v, "end IN expr"));
3033 sqlite3ExprCodeIN_oom_error:
3034   sqlite3DbFree(pParse->db, aiMap);
3035   sqlite3DbFree(pParse->db, zAff);
3036 }
3037 #endif /* SQLITE_OMIT_SUBQUERY */
3038 
3039 #ifndef SQLITE_OMIT_FLOATING_POINT
3040 /*
3041 ** Generate an instruction that will put the floating point
3042 ** value described by z[0..n-1] into register iMem.
3043 **
3044 ** The z[] string will probably not be zero-terminated.  But the
3045 ** z[n] character is guaranteed to be something that does not look
3046 ** like the continuation of the number.
3047 */
3048 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3049   if( ALWAYS(z!=0) ){
3050     double value;
3051     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3052     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3053     if( negateFlag ) value = -value;
3054     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3055   }
3056 }
3057 #endif
3058 
3059 
3060 /*
3061 ** Generate an instruction that will put the integer describe by
3062 ** text z[0..n-1] into register iMem.
3063 **
3064 ** Expr.u.zToken is always UTF8 and zero-terminated.
3065 */
3066 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3067   Vdbe *v = pParse->pVdbe;
3068   if( pExpr->flags & EP_IntValue ){
3069     int i = pExpr->u.iValue;
3070     assert( i>=0 );
3071     if( negFlag ) i = -i;
3072     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3073   }else{
3074     int c;
3075     i64 value;
3076     const char *z = pExpr->u.zToken;
3077     assert( z!=0 );
3078     c = sqlite3DecOrHexToI64(z, &value);
3079     if( c==1 || (c==2 && !negFlag) || (negFlag && value==SMALLEST_INT64)){
3080 #ifdef SQLITE_OMIT_FLOATING_POINT
3081       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3082 #else
3083 #ifndef SQLITE_OMIT_HEX_INTEGER
3084       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3085         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3086       }else
3087 #endif
3088       {
3089         codeReal(v, z, negFlag, iMem);
3090       }
3091 #endif
3092     }else{
3093       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
3094       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3095     }
3096   }
3097 }
3098 
3099 /*
3100 ** Erase column-cache entry number i
3101 */
3102 static void cacheEntryClear(Parse *pParse, int i){
3103   if( pParse->aColCache[i].tempReg ){
3104     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3105       pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3106     }
3107   }
3108   pParse->nColCache--;
3109   if( i<pParse->nColCache ){
3110     pParse->aColCache[i] = pParse->aColCache[pParse->nColCache];
3111   }
3112 }
3113 
3114 
3115 /*
3116 ** Record in the column cache that a particular column from a
3117 ** particular table is stored in a particular register.
3118 */
3119 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
3120   int i;
3121   int minLru;
3122   int idxLru;
3123   struct yColCache *p;
3124 
3125   /* Unless an error has occurred, register numbers are always positive. */
3126   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
3127   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
3128 
3129   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
3130   ** for testing only - to verify that SQLite always gets the same answer
3131   ** with and without the column cache.
3132   */
3133   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
3134 
3135   /* First replace any existing entry.
3136   **
3137   ** Actually, the way the column cache is currently used, we are guaranteed
3138   ** that the object will never already be in cache.  Verify this guarantee.
3139   */
3140 #ifndef NDEBUG
3141   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3142     assert( p->iTable!=iTab || p->iColumn!=iCol );
3143   }
3144 #endif
3145 
3146   /* If the cache is already full, delete the least recently used entry */
3147   if( pParse->nColCache>=SQLITE_N_COLCACHE ){
3148     minLru = 0x7fffffff;
3149     idxLru = -1;
3150     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3151       if( p->lru<minLru ){
3152         idxLru = i;
3153         minLru = p->lru;
3154       }
3155     }
3156     p = &pParse->aColCache[idxLru];
3157   }else{
3158     p = &pParse->aColCache[pParse->nColCache++];
3159   }
3160 
3161   /* Add the new entry to the end of the cache */
3162   p->iLevel = pParse->iCacheLevel;
3163   p->iTable = iTab;
3164   p->iColumn = iCol;
3165   p->iReg = iReg;
3166   p->tempReg = 0;
3167   p->lru = pParse->iCacheCnt++;
3168 }
3169 
3170 /*
3171 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
3172 ** Purge the range of registers from the column cache.
3173 */
3174 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
3175   int i = 0;
3176   while( i<pParse->nColCache ){
3177     struct yColCache *p = &pParse->aColCache[i];
3178     if( p->iReg >= iReg && p->iReg < iReg+nReg ){
3179       cacheEntryClear(pParse, i);
3180     }else{
3181       i++;
3182     }
3183   }
3184 }
3185 
3186 /*
3187 ** Remember the current column cache context.  Any new entries added
3188 ** added to the column cache after this call are removed when the
3189 ** corresponding pop occurs.
3190 */
3191 void sqlite3ExprCachePush(Parse *pParse){
3192   pParse->iCacheLevel++;
3193 #ifdef SQLITE_DEBUG
3194   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3195     printf("PUSH to %d\n", pParse->iCacheLevel);
3196   }
3197 #endif
3198 }
3199 
3200 /*
3201 ** Remove from the column cache any entries that were added since the
3202 ** the previous sqlite3ExprCachePush operation.  In other words, restore
3203 ** the cache to the state it was in prior the most recent Push.
3204 */
3205 void sqlite3ExprCachePop(Parse *pParse){
3206   int i = 0;
3207   assert( pParse->iCacheLevel>=1 );
3208   pParse->iCacheLevel--;
3209 #ifdef SQLITE_DEBUG
3210   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3211     printf("POP  to %d\n", pParse->iCacheLevel);
3212   }
3213 #endif
3214   while( i<pParse->nColCache ){
3215     if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){
3216       cacheEntryClear(pParse, i);
3217     }else{
3218       i++;
3219     }
3220   }
3221 }
3222 
3223 /*
3224 ** When a cached column is reused, make sure that its register is
3225 ** no longer available as a temp register.  ticket #3879:  that same
3226 ** register might be in the cache in multiple places, so be sure to
3227 ** get them all.
3228 */
3229 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
3230   int i;
3231   struct yColCache *p;
3232   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3233     if( p->iReg==iReg ){
3234       p->tempReg = 0;
3235     }
3236   }
3237 }
3238 
3239 /* Generate code that will load into register regOut a value that is
3240 ** appropriate for the iIdxCol-th column of index pIdx.
3241 */
3242 void sqlite3ExprCodeLoadIndexColumn(
3243   Parse *pParse,  /* The parsing context */
3244   Index *pIdx,    /* The index whose column is to be loaded */
3245   int iTabCur,    /* Cursor pointing to a table row */
3246   int iIdxCol,    /* The column of the index to be loaded */
3247   int regOut      /* Store the index column value in this register */
3248 ){
3249   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3250   if( iTabCol==XN_EXPR ){
3251     assert( pIdx->aColExpr );
3252     assert( pIdx->aColExpr->nExpr>iIdxCol );
3253     pParse->iSelfTab = iTabCur + 1;
3254     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3255     pParse->iSelfTab = 0;
3256   }else{
3257     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3258                                     iTabCol, regOut);
3259   }
3260 }
3261 
3262 /*
3263 ** Generate code to extract the value of the iCol-th column of a table.
3264 */
3265 void sqlite3ExprCodeGetColumnOfTable(
3266   Vdbe *v,        /* The VDBE under construction */
3267   Table *pTab,    /* The table containing the value */
3268   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3269   int iCol,       /* Index of the column to extract */
3270   int regOut      /* Extract the value into this register */
3271 ){
3272   if( pTab==0 ){
3273     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3274     return;
3275   }
3276   if( iCol<0 || iCol==pTab->iPKey ){
3277     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3278   }else{
3279     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
3280     int x = iCol;
3281     if( !HasRowid(pTab) && !IsVirtual(pTab) ){
3282       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3283     }
3284     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3285   }
3286   if( iCol>=0 ){
3287     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3288   }
3289 }
3290 
3291 /*
3292 ** Generate code that will extract the iColumn-th column from
3293 ** table pTab and store the column value in a register.
3294 **
3295 ** An effort is made to store the column value in register iReg.  This
3296 ** is not garanteeed for GetColumn() - the result can be stored in
3297 ** any register.  But the result is guaranteed to land in register iReg
3298 ** for GetColumnToReg().
3299 **
3300 ** There must be an open cursor to pTab in iTable when this routine
3301 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3302 */
3303 int sqlite3ExprCodeGetColumn(
3304   Parse *pParse,   /* Parsing and code generating context */
3305   Table *pTab,     /* Description of the table we are reading from */
3306   int iColumn,     /* Index of the table column */
3307   int iTable,      /* The cursor pointing to the table */
3308   int iReg,        /* Store results here */
3309   u8 p5            /* P5 value for OP_Column + FLAGS */
3310 ){
3311   Vdbe *v = pParse->pVdbe;
3312   int i;
3313   struct yColCache *p;
3314 
3315   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3316     if( p->iTable==iTable && p->iColumn==iColumn ){
3317       p->lru = pParse->iCacheCnt++;
3318       sqlite3ExprCachePinRegister(pParse, p->iReg);
3319       return p->iReg;
3320     }
3321   }
3322   assert( v!=0 );
3323   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
3324   if( p5 ){
3325     sqlite3VdbeChangeP5(v, p5);
3326   }else{
3327     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
3328   }
3329   return iReg;
3330 }
3331 void sqlite3ExprCodeGetColumnToReg(
3332   Parse *pParse,   /* Parsing and code generating context */
3333   Table *pTab,     /* Description of the table we are reading from */
3334   int iColumn,     /* Index of the table column */
3335   int iTable,      /* The cursor pointing to the table */
3336   int iReg         /* Store results here */
3337 ){
3338   int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
3339   if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
3340 }
3341 
3342 
3343 /*
3344 ** Clear all column cache entries.
3345 */
3346 void sqlite3ExprCacheClear(Parse *pParse){
3347   int i;
3348 
3349 #ifdef SQLITE_DEBUG
3350   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3351     printf("CLEAR\n");
3352   }
3353 #endif
3354   for(i=0; i<pParse->nColCache; i++){
3355     if( pParse->aColCache[i].tempReg
3356      && pParse->nTempReg<ArraySize(pParse->aTempReg)
3357     ){
3358        pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3359     }
3360   }
3361   pParse->nColCache = 0;
3362 }
3363 
3364 /*
3365 ** Record the fact that an affinity change has occurred on iCount
3366 ** registers starting with iStart.
3367 */
3368 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
3369   sqlite3ExprCacheRemove(pParse, iStart, iCount);
3370 }
3371 
3372 /*
3373 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3374 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
3375 */
3376 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3377   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
3378   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3379   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
3380 }
3381 
3382 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
3383 /*
3384 ** Return true if any register in the range iFrom..iTo (inclusive)
3385 ** is used as part of the column cache.
3386 **
3387 ** This routine is used within assert() and testcase() macros only
3388 ** and does not appear in a normal build.
3389 */
3390 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
3391   int i;
3392   struct yColCache *p;
3393   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3394     int r = p->iReg;
3395     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
3396   }
3397   return 0;
3398 }
3399 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
3400 
3401 
3402 /*
3403 ** Convert a scalar expression node to a TK_REGISTER referencing
3404 ** register iReg.  The caller must ensure that iReg already contains
3405 ** the correct value for the expression.
3406 */
3407 static void exprToRegister(Expr *p, int iReg){
3408   p->op2 = p->op;
3409   p->op = TK_REGISTER;
3410   p->iTable = iReg;
3411   ExprClearProperty(p, EP_Skip);
3412 }
3413 
3414 /*
3415 ** Evaluate an expression (either a vector or a scalar expression) and store
3416 ** the result in continguous temporary registers.  Return the index of
3417 ** the first register used to store the result.
3418 **
3419 ** If the returned result register is a temporary scalar, then also write
3420 ** that register number into *piFreeable.  If the returned result register
3421 ** is not a temporary or if the expression is a vector set *piFreeable
3422 ** to 0.
3423 */
3424 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3425   int iResult;
3426   int nResult = sqlite3ExprVectorSize(p);
3427   if( nResult==1 ){
3428     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3429   }else{
3430     *piFreeable = 0;
3431     if( p->op==TK_SELECT ){
3432 #if SQLITE_OMIT_SUBQUERY
3433       iResult = 0;
3434 #else
3435       iResult = sqlite3CodeSubselect(pParse, p, 0, 0);
3436 #endif
3437     }else{
3438       int i;
3439       iResult = pParse->nMem+1;
3440       pParse->nMem += nResult;
3441       for(i=0; i<nResult; i++){
3442         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3443       }
3444     }
3445   }
3446   return iResult;
3447 }
3448 
3449 
3450 /*
3451 ** Generate code into the current Vdbe to evaluate the given
3452 ** expression.  Attempt to store the results in register "target".
3453 ** Return the register where results are stored.
3454 **
3455 ** With this routine, there is no guarantee that results will
3456 ** be stored in target.  The result might be stored in some other
3457 ** register if it is convenient to do so.  The calling function
3458 ** must check the return code and move the results to the desired
3459 ** register.
3460 */
3461 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3462   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3463   int op;                   /* The opcode being coded */
3464   int inReg = target;       /* Results stored in register inReg */
3465   int regFree1 = 0;         /* If non-zero free this temporary register */
3466   int regFree2 = 0;         /* If non-zero free this temporary register */
3467   int r1, r2;               /* Various register numbers */
3468   Expr tempX;               /* Temporary expression node */
3469   int p5 = 0;
3470 
3471   assert( target>0 && target<=pParse->nMem );
3472   if( v==0 ){
3473     assert( pParse->db->mallocFailed );
3474     return 0;
3475   }
3476 
3477   if( pExpr==0 ){
3478     op = TK_NULL;
3479   }else{
3480     op = pExpr->op;
3481   }
3482   switch( op ){
3483     case TK_AGG_COLUMN: {
3484       AggInfo *pAggInfo = pExpr->pAggInfo;
3485       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3486       if( !pAggInfo->directMode ){
3487         assert( pCol->iMem>0 );
3488         return pCol->iMem;
3489       }else if( pAggInfo->useSortingIdx ){
3490         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3491                               pCol->iSorterColumn, target);
3492         return target;
3493       }
3494       /* Otherwise, fall thru into the TK_COLUMN case */
3495     }
3496     case TK_COLUMN: {
3497       int iTab = pExpr->iTable;
3498       if( iTab<0 ){
3499         if( pParse->iSelfTab<0 ){
3500           /* Generating CHECK constraints or inserting into partial index */
3501           return pExpr->iColumn - pParse->iSelfTab;
3502         }else{
3503           /* Coding an expression that is part of an index where column names
3504           ** in the index refer to the table to which the index belongs */
3505           iTab = pParse->iSelfTab - 1;
3506         }
3507       }
3508       return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
3509                                pExpr->iColumn, iTab, target,
3510                                pExpr->op2);
3511     }
3512     case TK_INTEGER: {
3513       codeInteger(pParse, pExpr, 0, target);
3514       return target;
3515     }
3516 #ifndef SQLITE_OMIT_FLOATING_POINT
3517     case TK_FLOAT: {
3518       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3519       codeReal(v, pExpr->u.zToken, 0, target);
3520       return target;
3521     }
3522 #endif
3523     case TK_STRING: {
3524       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3525       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3526       return target;
3527     }
3528     case TK_NULL: {
3529       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3530       return target;
3531     }
3532 #ifndef SQLITE_OMIT_BLOB_LITERAL
3533     case TK_BLOB: {
3534       int n;
3535       const char *z;
3536       char *zBlob;
3537       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3538       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3539       assert( pExpr->u.zToken[1]=='\'' );
3540       z = &pExpr->u.zToken[2];
3541       n = sqlite3Strlen30(z) - 1;
3542       assert( z[n]=='\'' );
3543       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3544       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3545       return target;
3546     }
3547 #endif
3548     case TK_VARIABLE: {
3549       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3550       assert( pExpr->u.zToken!=0 );
3551       assert( pExpr->u.zToken[0]!=0 );
3552       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3553       if( pExpr->u.zToken[1]!=0 ){
3554         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3555         assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 );
3556         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3557         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3558       }
3559       return target;
3560     }
3561     case TK_REGISTER: {
3562       return pExpr->iTable;
3563     }
3564 #ifndef SQLITE_OMIT_CAST
3565     case TK_CAST: {
3566       /* Expressions of the form:   CAST(pLeft AS token) */
3567       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3568       if( inReg!=target ){
3569         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3570         inReg = target;
3571       }
3572       sqlite3VdbeAddOp2(v, OP_Cast, target,
3573                         sqlite3AffinityType(pExpr->u.zToken, 0));
3574       testcase( usedAsColumnCache(pParse, inReg, inReg) );
3575       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
3576       return inReg;
3577     }
3578 #endif /* SQLITE_OMIT_CAST */
3579     case TK_IS:
3580     case TK_ISNOT:
3581       op = (op==TK_IS) ? TK_EQ : TK_NE;
3582       p5 = SQLITE_NULLEQ;
3583       /* fall-through */
3584     case TK_LT:
3585     case TK_LE:
3586     case TK_GT:
3587     case TK_GE:
3588     case TK_NE:
3589     case TK_EQ: {
3590       Expr *pLeft = pExpr->pLeft;
3591       if( sqlite3ExprIsVector(pLeft) ){
3592         codeVectorCompare(pParse, pExpr, target, op, p5);
3593       }else{
3594         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3595         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3596         codeCompare(pParse, pLeft, pExpr->pRight, op,
3597             r1, r2, inReg, SQLITE_STOREP2 | p5);
3598         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3599         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3600         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3601         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3602         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3603         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3604         testcase( regFree1==0 );
3605         testcase( regFree2==0 );
3606       }
3607       break;
3608     }
3609     case TK_AND:
3610     case TK_OR:
3611     case TK_PLUS:
3612     case TK_STAR:
3613     case TK_MINUS:
3614     case TK_REM:
3615     case TK_BITAND:
3616     case TK_BITOR:
3617     case TK_SLASH:
3618     case TK_LSHIFT:
3619     case TK_RSHIFT:
3620     case TK_CONCAT: {
3621       assert( TK_AND==OP_And );            testcase( op==TK_AND );
3622       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
3623       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
3624       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
3625       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
3626       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
3627       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
3628       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
3629       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
3630       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
3631       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
3632       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3633       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3634       sqlite3VdbeAddOp3(v, op, r2, r1, target);
3635       testcase( regFree1==0 );
3636       testcase( regFree2==0 );
3637       break;
3638     }
3639     case TK_UMINUS: {
3640       Expr *pLeft = pExpr->pLeft;
3641       assert( pLeft );
3642       if( pLeft->op==TK_INTEGER ){
3643         codeInteger(pParse, pLeft, 1, target);
3644         return target;
3645 #ifndef SQLITE_OMIT_FLOATING_POINT
3646       }else if( pLeft->op==TK_FLOAT ){
3647         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3648         codeReal(v, pLeft->u.zToken, 1, target);
3649         return target;
3650 #endif
3651       }else{
3652         tempX.op = TK_INTEGER;
3653         tempX.flags = EP_IntValue|EP_TokenOnly;
3654         tempX.u.iValue = 0;
3655         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3656         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3657         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3658         testcase( regFree2==0 );
3659       }
3660       break;
3661     }
3662     case TK_BITNOT:
3663     case TK_NOT: {
3664       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
3665       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
3666       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3667       testcase( regFree1==0 );
3668       sqlite3VdbeAddOp2(v, op, r1, inReg);
3669       break;
3670     }
3671     case TK_ISNULL:
3672     case TK_NOTNULL: {
3673       int addr;
3674       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3675       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3676       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3677       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3678       testcase( regFree1==0 );
3679       addr = sqlite3VdbeAddOp1(v, op, r1);
3680       VdbeCoverageIf(v, op==TK_ISNULL);
3681       VdbeCoverageIf(v, op==TK_NOTNULL);
3682       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3683       sqlite3VdbeJumpHere(v, addr);
3684       break;
3685     }
3686     case TK_AGG_FUNCTION: {
3687       AggInfo *pInfo = pExpr->pAggInfo;
3688       if( pInfo==0 ){
3689         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3690         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3691       }else{
3692         return pInfo->aFunc[pExpr->iAgg].iMem;
3693       }
3694       break;
3695     }
3696     case TK_FUNCTION: {
3697       ExprList *pFarg;       /* List of function arguments */
3698       int nFarg;             /* Number of function arguments */
3699       FuncDef *pDef;         /* The function definition object */
3700       const char *zId;       /* The function name */
3701       u32 constMask = 0;     /* Mask of function arguments that are constant */
3702       int i;                 /* Loop counter */
3703       sqlite3 *db = pParse->db;  /* The database connection */
3704       u8 enc = ENC(db);      /* The text encoding used by this database */
3705       CollSeq *pColl = 0;    /* A collating sequence */
3706 
3707       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
3708         /* SQL functions can be expensive. So try to move constant functions
3709         ** out of the inner loop, even if that means an extra OP_Copy. */
3710         return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
3711       }
3712       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3713       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3714         pFarg = 0;
3715       }else{
3716         pFarg = pExpr->x.pList;
3717       }
3718       nFarg = pFarg ? pFarg->nExpr : 0;
3719       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3720       zId = pExpr->u.zToken;
3721       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3722 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3723       if( pDef==0 && pParse->explain ){
3724         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3725       }
3726 #endif
3727       if( pDef==0 || pDef->xFinalize!=0 ){
3728         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3729         break;
3730       }
3731 
3732       /* Attempt a direct implementation of the built-in COALESCE() and
3733       ** IFNULL() functions.  This avoids unnecessary evaluation of
3734       ** arguments past the first non-NULL argument.
3735       */
3736       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3737         int endCoalesce = sqlite3VdbeMakeLabel(v);
3738         assert( nFarg>=2 );
3739         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3740         for(i=1; i<nFarg; i++){
3741           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3742           VdbeCoverage(v);
3743           sqlite3ExprCacheRemove(pParse, target, 1);
3744           sqlite3ExprCachePush(pParse);
3745           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3746           sqlite3ExprCachePop(pParse);
3747         }
3748         sqlite3VdbeResolveLabel(v, endCoalesce);
3749         break;
3750       }
3751 
3752       /* The UNLIKELY() function is a no-op.  The result is the value
3753       ** of the first argument.
3754       */
3755       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3756         assert( nFarg>=1 );
3757         return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3758       }
3759 
3760 #ifdef SQLITE_DEBUG
3761       /* The AFFINITY() function evaluates to a string that describes
3762       ** the type affinity of the argument.  This is used for testing of
3763       ** the SQLite type logic.
3764       */
3765       if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
3766         const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3767         char aff;
3768         assert( nFarg==1 );
3769         aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3770         sqlite3VdbeLoadString(v, target,
3771                               aff ? azAff[aff-SQLITE_AFF_BLOB] : "none");
3772         return target;
3773       }
3774 #endif
3775 
3776       for(i=0; i<nFarg; i++){
3777         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3778           testcase( i==31 );
3779           constMask |= MASKBIT32(i);
3780         }
3781         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
3782           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
3783         }
3784       }
3785       if( pFarg ){
3786         if( constMask ){
3787           r1 = pParse->nMem+1;
3788           pParse->nMem += nFarg;
3789         }else{
3790           r1 = sqlite3GetTempRange(pParse, nFarg);
3791         }
3792 
3793         /* For length() and typeof() functions with a column argument,
3794         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3795         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3796         ** loading.
3797         */
3798         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3799           u8 exprOp;
3800           assert( nFarg==1 );
3801           assert( pFarg->a[0].pExpr!=0 );
3802           exprOp = pFarg->a[0].pExpr->op;
3803           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3804             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3805             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3806             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3807             pFarg->a[0].pExpr->op2 =
3808                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3809           }
3810         }
3811 
3812         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
3813         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3814                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3815         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
3816       }else{
3817         r1 = 0;
3818       }
3819 #ifndef SQLITE_OMIT_VIRTUALTABLE
3820       /* Possibly overload the function if the first argument is
3821       ** a virtual table column.
3822       **
3823       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3824       ** second argument, not the first, as the argument to test to
3825       ** see if it is a column in a virtual table.  This is done because
3826       ** the left operand of infix functions (the operand we want to
3827       ** control overloading) ends up as the second argument to the
3828       ** function.  The expression "A glob B" is equivalent to
3829       ** "glob(B,A).  We want to use the A in "A glob B" to test
3830       ** for function overloading.  But we use the B term in "glob(B,A)".
3831       */
3832       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
3833         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3834       }else if( nFarg>0 ){
3835         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3836       }
3837 #endif
3838       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3839         if( !pColl ) pColl = db->pDfltColl;
3840         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3841       }
3842       sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0,
3843                         constMask, r1, target, (char*)pDef, P4_FUNCDEF);
3844       sqlite3VdbeChangeP5(v, (u8)nFarg);
3845       if( nFarg && constMask==0 ){
3846         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3847       }
3848       return target;
3849     }
3850 #ifndef SQLITE_OMIT_SUBQUERY
3851     case TK_EXISTS:
3852     case TK_SELECT: {
3853       int nCol;
3854       testcase( op==TK_EXISTS );
3855       testcase( op==TK_SELECT );
3856       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
3857         sqlite3SubselectError(pParse, nCol, 1);
3858       }else{
3859         return sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3860       }
3861       break;
3862     }
3863     case TK_SELECT_COLUMN: {
3864       int n;
3865       if( pExpr->pLeft->iTable==0 ){
3866         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0);
3867       }
3868       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
3869       if( pExpr->iTable
3870        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
3871       ){
3872         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
3873                                 pExpr->iTable, n);
3874       }
3875       return pExpr->pLeft->iTable + pExpr->iColumn;
3876     }
3877     case TK_IN: {
3878       int destIfFalse = sqlite3VdbeMakeLabel(v);
3879       int destIfNull = sqlite3VdbeMakeLabel(v);
3880       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3881       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3882       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3883       sqlite3VdbeResolveLabel(v, destIfFalse);
3884       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3885       sqlite3VdbeResolveLabel(v, destIfNull);
3886       return target;
3887     }
3888 #endif /* SQLITE_OMIT_SUBQUERY */
3889 
3890 
3891     /*
3892     **    x BETWEEN y AND z
3893     **
3894     ** This is equivalent to
3895     **
3896     **    x>=y AND x<=z
3897     **
3898     ** X is stored in pExpr->pLeft.
3899     ** Y is stored in pExpr->pList->a[0].pExpr.
3900     ** Z is stored in pExpr->pList->a[1].pExpr.
3901     */
3902     case TK_BETWEEN: {
3903       exprCodeBetween(pParse, pExpr, target, 0, 0);
3904       return target;
3905     }
3906     case TK_SPAN:
3907     case TK_COLLATE:
3908     case TK_UPLUS: {
3909       return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3910     }
3911 
3912     case TK_TRIGGER: {
3913       /* If the opcode is TK_TRIGGER, then the expression is a reference
3914       ** to a column in the new.* or old.* pseudo-tables available to
3915       ** trigger programs. In this case Expr.iTable is set to 1 for the
3916       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3917       ** is set to the column of the pseudo-table to read, or to -1 to
3918       ** read the rowid field.
3919       **
3920       ** The expression is implemented using an OP_Param opcode. The p1
3921       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3922       ** to reference another column of the old.* pseudo-table, where
3923       ** i is the index of the column. For a new.rowid reference, p1 is
3924       ** set to (n+1), where n is the number of columns in each pseudo-table.
3925       ** For a reference to any other column in the new.* pseudo-table, p1
3926       ** is set to (n+2+i), where n and i are as defined previously. For
3927       ** example, if the table on which triggers are being fired is
3928       ** declared as:
3929       **
3930       **   CREATE TABLE t1(a, b);
3931       **
3932       ** Then p1 is interpreted as follows:
3933       **
3934       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3935       **   p1==1   ->    old.a         p1==4   ->    new.a
3936       **   p1==2   ->    old.b         p1==5   ->    new.b
3937       */
3938       Table *pTab = pExpr->pTab;
3939       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3940 
3941       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3942       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3943       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3944       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3945 
3946       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3947       VdbeComment((v, "%s.%s -> $%d",
3948         (pExpr->iTable ? "new" : "old"),
3949         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3950         target
3951       ));
3952 
3953 #ifndef SQLITE_OMIT_FLOATING_POINT
3954       /* If the column has REAL affinity, it may currently be stored as an
3955       ** integer. Use OP_RealAffinity to make sure it is really real.
3956       **
3957       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3958       ** floating point when extracting it from the record.  */
3959       if( pExpr->iColumn>=0
3960        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3961       ){
3962         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3963       }
3964 #endif
3965       break;
3966     }
3967 
3968     case TK_VECTOR: {
3969       sqlite3ErrorMsg(pParse, "row value misused");
3970       break;
3971     }
3972 
3973     case TK_IF_NULL_ROW: {
3974       int addrINR;
3975       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
3976       sqlite3ExprCachePush(pParse);
3977       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3978       sqlite3ExprCachePop(pParse);
3979       sqlite3VdbeJumpHere(v, addrINR);
3980       sqlite3VdbeChangeP3(v, addrINR, inReg);
3981       break;
3982     }
3983 
3984     /*
3985     ** Form A:
3986     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3987     **
3988     ** Form B:
3989     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3990     **
3991     ** Form A is can be transformed into the equivalent form B as follows:
3992     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3993     **        WHEN x=eN THEN rN ELSE y END
3994     **
3995     ** X (if it exists) is in pExpr->pLeft.
3996     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3997     ** odd.  The Y is also optional.  If the number of elements in x.pList
3998     ** is even, then Y is omitted and the "otherwise" result is NULL.
3999     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4000     **
4001     ** The result of the expression is the Ri for the first matching Ei,
4002     ** or if there is no matching Ei, the ELSE term Y, or if there is
4003     ** no ELSE term, NULL.
4004     */
4005     default: assert( op==TK_CASE ); {
4006       int endLabel;                     /* GOTO label for end of CASE stmt */
4007       int nextCase;                     /* GOTO label for next WHEN clause */
4008       int nExpr;                        /* 2x number of WHEN terms */
4009       int i;                            /* Loop counter */
4010       ExprList *pEList;                 /* List of WHEN terms */
4011       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4012       Expr opCompare;                   /* The X==Ei expression */
4013       Expr *pX;                         /* The X expression */
4014       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4015       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
4016 
4017       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4018       assert(pExpr->x.pList->nExpr > 0);
4019       pEList = pExpr->x.pList;
4020       aListelem = pEList->a;
4021       nExpr = pEList->nExpr;
4022       endLabel = sqlite3VdbeMakeLabel(v);
4023       if( (pX = pExpr->pLeft)!=0 ){
4024         tempX = *pX;
4025         testcase( pX->op==TK_COLUMN );
4026         exprToRegister(&tempX, exprCodeVector(pParse, &tempX, &regFree1));
4027         testcase( regFree1==0 );
4028         memset(&opCompare, 0, sizeof(opCompare));
4029         opCompare.op = TK_EQ;
4030         opCompare.pLeft = &tempX;
4031         pTest = &opCompare;
4032         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4033         ** The value in regFree1 might get SCopy-ed into the file result.
4034         ** So make sure that the regFree1 register is not reused for other
4035         ** purposes and possibly overwritten.  */
4036         regFree1 = 0;
4037       }
4038       for(i=0; i<nExpr-1; i=i+2){
4039         sqlite3ExprCachePush(pParse);
4040         if( pX ){
4041           assert( pTest!=0 );
4042           opCompare.pRight = aListelem[i].pExpr;
4043         }else{
4044           pTest = aListelem[i].pExpr;
4045         }
4046         nextCase = sqlite3VdbeMakeLabel(v);
4047         testcase( pTest->op==TK_COLUMN );
4048         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4049         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4050         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4051         sqlite3VdbeGoto(v, endLabel);
4052         sqlite3ExprCachePop(pParse);
4053         sqlite3VdbeResolveLabel(v, nextCase);
4054       }
4055       if( (nExpr&1)!=0 ){
4056         sqlite3ExprCachePush(pParse);
4057         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4058         sqlite3ExprCachePop(pParse);
4059       }else{
4060         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4061       }
4062       assert( pParse->db->mallocFailed || pParse->nErr>0
4063            || pParse->iCacheLevel==iCacheLevel );
4064       sqlite3VdbeResolveLabel(v, endLabel);
4065       break;
4066     }
4067 #ifndef SQLITE_OMIT_TRIGGER
4068     case TK_RAISE: {
4069       assert( pExpr->affinity==OE_Rollback
4070            || pExpr->affinity==OE_Abort
4071            || pExpr->affinity==OE_Fail
4072            || pExpr->affinity==OE_Ignore
4073       );
4074       if( !pParse->pTriggerTab ){
4075         sqlite3ErrorMsg(pParse,
4076                        "RAISE() may only be used within a trigger-program");
4077         return 0;
4078       }
4079       if( pExpr->affinity==OE_Abort ){
4080         sqlite3MayAbort(pParse);
4081       }
4082       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4083       if( pExpr->affinity==OE_Ignore ){
4084         sqlite3VdbeAddOp4(
4085             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4086         VdbeCoverage(v);
4087       }else{
4088         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4089                               pExpr->affinity, pExpr->u.zToken, 0, 0);
4090       }
4091 
4092       break;
4093     }
4094 #endif
4095   }
4096   sqlite3ReleaseTempReg(pParse, regFree1);
4097   sqlite3ReleaseTempReg(pParse, regFree2);
4098   return inReg;
4099 }
4100 
4101 /*
4102 ** Factor out the code of the given expression to initialization time.
4103 **
4104 ** If regDest>=0 then the result is always stored in that register and the
4105 ** result is not reusable.  If regDest<0 then this routine is free to
4106 ** store the value whereever it wants.  The register where the expression
4107 ** is stored is returned.  When regDest<0, two identical expressions will
4108 ** code to the same register.
4109 */
4110 int sqlite3ExprCodeAtInit(
4111   Parse *pParse,    /* Parsing context */
4112   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4113   int regDest       /* Store the value in this register */
4114 ){
4115   ExprList *p;
4116   assert( ConstFactorOk(pParse) );
4117   p = pParse->pConstExpr;
4118   if( regDest<0 && p ){
4119     struct ExprList_item *pItem;
4120     int i;
4121     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4122       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4123         return pItem->u.iConstExprReg;
4124       }
4125     }
4126   }
4127   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4128   p = sqlite3ExprListAppend(pParse, p, pExpr);
4129   if( p ){
4130      struct ExprList_item *pItem = &p->a[p->nExpr-1];
4131      pItem->reusable = regDest<0;
4132      if( regDest<0 ) regDest = ++pParse->nMem;
4133      pItem->u.iConstExprReg = regDest;
4134   }
4135   pParse->pConstExpr = p;
4136   return regDest;
4137 }
4138 
4139 /*
4140 ** Generate code to evaluate an expression and store the results
4141 ** into a register.  Return the register number where the results
4142 ** are stored.
4143 **
4144 ** If the register is a temporary register that can be deallocated,
4145 ** then write its number into *pReg.  If the result register is not
4146 ** a temporary, then set *pReg to zero.
4147 **
4148 ** If pExpr is a constant, then this routine might generate this
4149 ** code to fill the register in the initialization section of the
4150 ** VDBE program, in order to factor it out of the evaluation loop.
4151 */
4152 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4153   int r2;
4154   pExpr = sqlite3ExprSkipCollate(pExpr);
4155   if( ConstFactorOk(pParse)
4156    && pExpr->op!=TK_REGISTER
4157    && sqlite3ExprIsConstantNotJoin(pExpr)
4158   ){
4159     *pReg  = 0;
4160     r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4161   }else{
4162     int r1 = sqlite3GetTempReg(pParse);
4163     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4164     if( r2==r1 ){
4165       *pReg = r1;
4166     }else{
4167       sqlite3ReleaseTempReg(pParse, r1);
4168       *pReg = 0;
4169     }
4170   }
4171   return r2;
4172 }
4173 
4174 /*
4175 ** Generate code that will evaluate expression pExpr and store the
4176 ** results in register target.  The results are guaranteed to appear
4177 ** in register target.
4178 */
4179 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4180   int inReg;
4181 
4182   assert( target>0 && target<=pParse->nMem );
4183   if( pExpr && pExpr->op==TK_REGISTER ){
4184     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
4185   }else{
4186     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4187     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4188     if( inReg!=target && pParse->pVdbe ){
4189       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4190     }
4191   }
4192 }
4193 
4194 /*
4195 ** Make a transient copy of expression pExpr and then code it using
4196 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4197 ** except that the input expression is guaranteed to be unchanged.
4198 */
4199 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4200   sqlite3 *db = pParse->db;
4201   pExpr = sqlite3ExprDup(db, pExpr, 0);
4202   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4203   sqlite3ExprDelete(db, pExpr);
4204 }
4205 
4206 /*
4207 ** Generate code that will evaluate expression pExpr and store the
4208 ** results in register target.  The results are guaranteed to appear
4209 ** in register target.  If the expression is constant, then this routine
4210 ** might choose to code the expression at initialization time.
4211 */
4212 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4213   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
4214     sqlite3ExprCodeAtInit(pParse, pExpr, target);
4215   }else{
4216     sqlite3ExprCode(pParse, pExpr, target);
4217   }
4218 }
4219 
4220 /*
4221 ** Generate code that evaluates the given expression and puts the result
4222 ** in register target.
4223 **
4224 ** Also make a copy of the expression results into another "cache" register
4225 ** and modify the expression so that the next time it is evaluated,
4226 ** the result is a copy of the cache register.
4227 **
4228 ** This routine is used for expressions that are used multiple
4229 ** times.  They are evaluated once and the results of the expression
4230 ** are reused.
4231 */
4232 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
4233   Vdbe *v = pParse->pVdbe;
4234   int iMem;
4235 
4236   assert( target>0 );
4237   assert( pExpr->op!=TK_REGISTER );
4238   sqlite3ExprCode(pParse, pExpr, target);
4239   iMem = ++pParse->nMem;
4240   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
4241   exprToRegister(pExpr, iMem);
4242 }
4243 
4244 /*
4245 ** Generate code that pushes the value of every element of the given
4246 ** expression list into a sequence of registers beginning at target.
4247 **
4248 ** Return the number of elements evaluated.  The number returned will
4249 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4250 ** is defined.
4251 **
4252 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4253 ** filled using OP_SCopy.  OP_Copy must be used instead.
4254 **
4255 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4256 ** factored out into initialization code.
4257 **
4258 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4259 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4260 ** in registers at srcReg, and so the value can be copied from there.
4261 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4262 ** are simply omitted rather than being copied from srcReg.
4263 */
4264 int sqlite3ExprCodeExprList(
4265   Parse *pParse,     /* Parsing context */
4266   ExprList *pList,   /* The expression list to be coded */
4267   int target,        /* Where to write results */
4268   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4269   u8 flags           /* SQLITE_ECEL_* flags */
4270 ){
4271   struct ExprList_item *pItem;
4272   int i, j, n;
4273   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4274   Vdbe *v = pParse->pVdbe;
4275   assert( pList!=0 );
4276   assert( target>0 );
4277   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4278   n = pList->nExpr;
4279   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4280   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4281     Expr *pExpr = pItem->pExpr;
4282     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4283       if( flags & SQLITE_ECEL_OMITREF ){
4284         i--;
4285         n--;
4286       }else{
4287         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4288       }
4289     }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
4290       sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4291     }else{
4292       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4293       if( inReg!=target+i ){
4294         VdbeOp *pOp;
4295         if( copyOp==OP_Copy
4296          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4297          && pOp->p1+pOp->p3+1==inReg
4298          && pOp->p2+pOp->p3+1==target+i
4299         ){
4300           pOp->p3++;
4301         }else{
4302           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4303         }
4304       }
4305     }
4306   }
4307   return n;
4308 }
4309 
4310 /*
4311 ** Generate code for a BETWEEN operator.
4312 **
4313 **    x BETWEEN y AND z
4314 **
4315 ** The above is equivalent to
4316 **
4317 **    x>=y AND x<=z
4318 **
4319 ** Code it as such, taking care to do the common subexpression
4320 ** elimination of x.
4321 **
4322 ** The xJumpIf parameter determines details:
4323 **
4324 **    NULL:                   Store the boolean result in reg[dest]
4325 **    sqlite3ExprIfTrue:      Jump to dest if true
4326 **    sqlite3ExprIfFalse:     Jump to dest if false
4327 **
4328 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4329 */
4330 static void exprCodeBetween(
4331   Parse *pParse,    /* Parsing and code generating context */
4332   Expr *pExpr,      /* The BETWEEN expression */
4333   int dest,         /* Jump destination or storage location */
4334   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4335   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4336 ){
4337  Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4338   Expr compLeft;    /* The  x>=y  term */
4339   Expr compRight;   /* The  x<=z  term */
4340   Expr exprX;       /* The  x  subexpression */
4341   int regFree1 = 0; /* Temporary use register */
4342 
4343 
4344   memset(&compLeft, 0, sizeof(Expr));
4345   memset(&compRight, 0, sizeof(Expr));
4346   memset(&exprAnd, 0, sizeof(Expr));
4347 
4348   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4349   exprX = *pExpr->pLeft;
4350   exprAnd.op = TK_AND;
4351   exprAnd.pLeft = &compLeft;
4352   exprAnd.pRight = &compRight;
4353   compLeft.op = TK_GE;
4354   compLeft.pLeft = &exprX;
4355   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4356   compRight.op = TK_LE;
4357   compRight.pLeft = &exprX;
4358   compRight.pRight = pExpr->x.pList->a[1].pExpr;
4359   exprToRegister(&exprX, exprCodeVector(pParse, &exprX, &regFree1));
4360   if( xJump ){
4361     xJump(pParse, &exprAnd, dest, jumpIfNull);
4362   }else{
4363     /* Mark the expression is being from the ON or USING clause of a join
4364     ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4365     ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4366     ** for clarity, but we are out of bits in the Expr.flags field so we
4367     ** have to reuse the EP_FromJoin bit.  Bummer. */
4368     exprX.flags |= EP_FromJoin;
4369     sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4370   }
4371   sqlite3ReleaseTempReg(pParse, regFree1);
4372 
4373   /* Ensure adequate test coverage */
4374   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4375   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4376   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4377   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4378   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4379   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4380   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4381   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4382   testcase( xJump==0 );
4383 }
4384 
4385 /*
4386 ** Generate code for a boolean expression such that a jump is made
4387 ** to the label "dest" if the expression is true but execution
4388 ** continues straight thru if the expression is false.
4389 **
4390 ** If the expression evaluates to NULL (neither true nor false), then
4391 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4392 **
4393 ** This code depends on the fact that certain token values (ex: TK_EQ)
4394 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4395 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4396 ** the make process cause these values to align.  Assert()s in the code
4397 ** below verify that the numbers are aligned correctly.
4398 */
4399 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4400   Vdbe *v = pParse->pVdbe;
4401   int op = 0;
4402   int regFree1 = 0;
4403   int regFree2 = 0;
4404   int r1, r2;
4405 
4406   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4407   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4408   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4409   op = pExpr->op;
4410   switch( op ){
4411     case TK_AND: {
4412       int d2 = sqlite3VdbeMakeLabel(v);
4413       testcase( jumpIfNull==0 );
4414       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
4415       sqlite3ExprCachePush(pParse);
4416       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4417       sqlite3VdbeResolveLabel(v, d2);
4418       sqlite3ExprCachePop(pParse);
4419       break;
4420     }
4421     case TK_OR: {
4422       testcase( jumpIfNull==0 );
4423       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4424       sqlite3ExprCachePush(pParse);
4425       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4426       sqlite3ExprCachePop(pParse);
4427       break;
4428     }
4429     case TK_NOT: {
4430       testcase( jumpIfNull==0 );
4431       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4432       break;
4433     }
4434     case TK_IS:
4435     case TK_ISNOT:
4436       testcase( op==TK_IS );
4437       testcase( op==TK_ISNOT );
4438       op = (op==TK_IS) ? TK_EQ : TK_NE;
4439       jumpIfNull = SQLITE_NULLEQ;
4440       /* Fall thru */
4441     case TK_LT:
4442     case TK_LE:
4443     case TK_GT:
4444     case TK_GE:
4445     case TK_NE:
4446     case TK_EQ: {
4447       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4448       testcase( jumpIfNull==0 );
4449       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4450       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4451       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4452                   r1, r2, dest, jumpIfNull);
4453       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4454       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4455       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4456       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4457       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4458       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4459       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4460       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4461       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4462       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4463       testcase( regFree1==0 );
4464       testcase( regFree2==0 );
4465       break;
4466     }
4467     case TK_ISNULL:
4468     case TK_NOTNULL: {
4469       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4470       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4471       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4472       sqlite3VdbeAddOp2(v, op, r1, dest);
4473       VdbeCoverageIf(v, op==TK_ISNULL);
4474       VdbeCoverageIf(v, op==TK_NOTNULL);
4475       testcase( regFree1==0 );
4476       break;
4477     }
4478     case TK_BETWEEN: {
4479       testcase( jumpIfNull==0 );
4480       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4481       break;
4482     }
4483 #ifndef SQLITE_OMIT_SUBQUERY
4484     case TK_IN: {
4485       int destIfFalse = sqlite3VdbeMakeLabel(v);
4486       int destIfNull = jumpIfNull ? dest : destIfFalse;
4487       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4488       sqlite3VdbeGoto(v, dest);
4489       sqlite3VdbeResolveLabel(v, destIfFalse);
4490       break;
4491     }
4492 #endif
4493     default: {
4494     default_expr:
4495       if( exprAlwaysTrue(pExpr) ){
4496         sqlite3VdbeGoto(v, dest);
4497       }else if( exprAlwaysFalse(pExpr) ){
4498         /* No-op */
4499       }else{
4500         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4501         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4502         VdbeCoverage(v);
4503         testcase( regFree1==0 );
4504         testcase( jumpIfNull==0 );
4505       }
4506       break;
4507     }
4508   }
4509   sqlite3ReleaseTempReg(pParse, regFree1);
4510   sqlite3ReleaseTempReg(pParse, regFree2);
4511 }
4512 
4513 /*
4514 ** Generate code for a boolean expression such that a jump is made
4515 ** to the label "dest" if the expression is false but execution
4516 ** continues straight thru if the expression is true.
4517 **
4518 ** If the expression evaluates to NULL (neither true nor false) then
4519 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4520 ** is 0.
4521 */
4522 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4523   Vdbe *v = pParse->pVdbe;
4524   int op = 0;
4525   int regFree1 = 0;
4526   int regFree2 = 0;
4527   int r1, r2;
4528 
4529   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4530   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4531   if( pExpr==0 )    return;
4532 
4533   /* The value of pExpr->op and op are related as follows:
4534   **
4535   **       pExpr->op            op
4536   **       ---------          ----------
4537   **       TK_ISNULL          OP_NotNull
4538   **       TK_NOTNULL         OP_IsNull
4539   **       TK_NE              OP_Eq
4540   **       TK_EQ              OP_Ne
4541   **       TK_GT              OP_Le
4542   **       TK_LE              OP_Gt
4543   **       TK_GE              OP_Lt
4544   **       TK_LT              OP_Ge
4545   **
4546   ** For other values of pExpr->op, op is undefined and unused.
4547   ** The value of TK_ and OP_ constants are arranged such that we
4548   ** can compute the mapping above using the following expression.
4549   ** Assert()s verify that the computation is correct.
4550   */
4551   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4552 
4553   /* Verify correct alignment of TK_ and OP_ constants
4554   */
4555   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4556   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4557   assert( pExpr->op!=TK_NE || op==OP_Eq );
4558   assert( pExpr->op!=TK_EQ || op==OP_Ne );
4559   assert( pExpr->op!=TK_LT || op==OP_Ge );
4560   assert( pExpr->op!=TK_LE || op==OP_Gt );
4561   assert( pExpr->op!=TK_GT || op==OP_Le );
4562   assert( pExpr->op!=TK_GE || op==OP_Lt );
4563 
4564   switch( pExpr->op ){
4565     case TK_AND: {
4566       testcase( jumpIfNull==0 );
4567       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4568       sqlite3ExprCachePush(pParse);
4569       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4570       sqlite3ExprCachePop(pParse);
4571       break;
4572     }
4573     case TK_OR: {
4574       int d2 = sqlite3VdbeMakeLabel(v);
4575       testcase( jumpIfNull==0 );
4576       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
4577       sqlite3ExprCachePush(pParse);
4578       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4579       sqlite3VdbeResolveLabel(v, d2);
4580       sqlite3ExprCachePop(pParse);
4581       break;
4582     }
4583     case TK_NOT: {
4584       testcase( jumpIfNull==0 );
4585       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4586       break;
4587     }
4588     case TK_IS:
4589     case TK_ISNOT:
4590       testcase( pExpr->op==TK_IS );
4591       testcase( pExpr->op==TK_ISNOT );
4592       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4593       jumpIfNull = SQLITE_NULLEQ;
4594       /* Fall thru */
4595     case TK_LT:
4596     case TK_LE:
4597     case TK_GT:
4598     case TK_GE:
4599     case TK_NE:
4600     case TK_EQ: {
4601       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4602       testcase( jumpIfNull==0 );
4603       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4604       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4605       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4606                   r1, r2, dest, jumpIfNull);
4607       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4608       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4609       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4610       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4611       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4612       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4613       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4614       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4615       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4616       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4617       testcase( regFree1==0 );
4618       testcase( regFree2==0 );
4619       break;
4620     }
4621     case TK_ISNULL:
4622     case TK_NOTNULL: {
4623       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4624       sqlite3VdbeAddOp2(v, op, r1, dest);
4625       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
4626       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
4627       testcase( regFree1==0 );
4628       break;
4629     }
4630     case TK_BETWEEN: {
4631       testcase( jumpIfNull==0 );
4632       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4633       break;
4634     }
4635 #ifndef SQLITE_OMIT_SUBQUERY
4636     case TK_IN: {
4637       if( jumpIfNull ){
4638         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4639       }else{
4640         int destIfNull = sqlite3VdbeMakeLabel(v);
4641         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4642         sqlite3VdbeResolveLabel(v, destIfNull);
4643       }
4644       break;
4645     }
4646 #endif
4647     default: {
4648     default_expr:
4649       if( exprAlwaysFalse(pExpr) ){
4650         sqlite3VdbeGoto(v, dest);
4651       }else if( exprAlwaysTrue(pExpr) ){
4652         /* no-op */
4653       }else{
4654         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4655         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4656         VdbeCoverage(v);
4657         testcase( regFree1==0 );
4658         testcase( jumpIfNull==0 );
4659       }
4660       break;
4661     }
4662   }
4663   sqlite3ReleaseTempReg(pParse, regFree1);
4664   sqlite3ReleaseTempReg(pParse, regFree2);
4665 }
4666 
4667 /*
4668 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4669 ** code generation, and that copy is deleted after code generation. This
4670 ** ensures that the original pExpr is unchanged.
4671 */
4672 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4673   sqlite3 *db = pParse->db;
4674   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4675   if( db->mallocFailed==0 ){
4676     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4677   }
4678   sqlite3ExprDelete(db, pCopy);
4679 }
4680 
4681 /*
4682 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
4683 ** type of expression.
4684 **
4685 ** If pExpr is a simple SQL value - an integer, real, string, blob
4686 ** or NULL value - then the VDBE currently being prepared is configured
4687 ** to re-prepare each time a new value is bound to variable pVar.
4688 **
4689 ** Additionally, if pExpr is a simple SQL value and the value is the
4690 ** same as that currently bound to variable pVar, non-zero is returned.
4691 ** Otherwise, if the values are not the same or if pExpr is not a simple
4692 ** SQL value, zero is returned.
4693 */
4694 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
4695   int res = 0;
4696   int iVar;
4697   sqlite3_value *pL, *pR = 0;
4698 
4699   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
4700   if( pR ){
4701     iVar = pVar->iColumn;
4702     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
4703     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
4704     if( pL ){
4705       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
4706         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
4707       }
4708       res =  0==sqlite3MemCompare(pL, pR, 0);
4709     }
4710     sqlite3ValueFree(pR);
4711     sqlite3ValueFree(pL);
4712   }
4713 
4714   return res;
4715 }
4716 
4717 /*
4718 ** Do a deep comparison of two expression trees.  Return 0 if the two
4719 ** expressions are completely identical.  Return 1 if they differ only
4720 ** by a COLLATE operator at the top level.  Return 2 if there are differences
4721 ** other than the top-level COLLATE operator.
4722 **
4723 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4724 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4725 **
4726 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
4727 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4728 **
4729 ** Sometimes this routine will return 2 even if the two expressions
4730 ** really are equivalent.  If we cannot prove that the expressions are
4731 ** identical, we return 2 just to be safe.  So if this routine
4732 ** returns 2, then you do not really know for certain if the two
4733 ** expressions are the same.  But if you get a 0 or 1 return, then you
4734 ** can be sure the expressions are the same.  In the places where
4735 ** this routine is used, it does not hurt to get an extra 2 - that
4736 ** just might result in some slightly slower code.  But returning
4737 ** an incorrect 0 or 1 could lead to a malfunction.
4738 **
4739 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
4740 ** pParse->pReprepare can be matched against literals in pB.  The
4741 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
4742 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
4743 ** Argument pParse should normally be NULL. If it is not NULL and pA or
4744 ** pB causes a return value of 2.
4745 */
4746 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
4747   u32 combinedFlags;
4748   if( pA==0 || pB==0 ){
4749     return pB==pA ? 0 : 2;
4750   }
4751   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
4752     return 0;
4753   }
4754   combinedFlags = pA->flags | pB->flags;
4755   if( combinedFlags & EP_IntValue ){
4756     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
4757       return 0;
4758     }
4759     return 2;
4760   }
4761   if( pA->op!=pB->op ){
4762     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
4763       return 1;
4764     }
4765     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
4766       return 1;
4767     }
4768     return 2;
4769   }
4770   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
4771     if( pA->op==TK_FUNCTION ){
4772       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4773     }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4774       return pA->op==TK_COLLATE ? 1 : 2;
4775     }
4776   }
4777   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4778   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
4779     if( combinedFlags & EP_xIsSelect ) return 2;
4780     if( sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
4781     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
4782     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4783     if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){
4784       if( pA->iColumn!=pB->iColumn ) return 2;
4785       if( pA->iTable!=pB->iTable
4786        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4787     }
4788   }
4789   return 0;
4790 }
4791 
4792 /*
4793 ** Compare two ExprList objects.  Return 0 if they are identical and
4794 ** non-zero if they differ in any way.
4795 **
4796 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4797 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4798 **
4799 ** This routine might return non-zero for equivalent ExprLists.  The
4800 ** only consequence will be disabled optimizations.  But this routine
4801 ** must never return 0 if the two ExprList objects are different, or
4802 ** a malfunction will result.
4803 **
4804 ** Two NULL pointers are considered to be the same.  But a NULL pointer
4805 ** always differs from a non-NULL pointer.
4806 */
4807 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4808   int i;
4809   if( pA==0 && pB==0 ) return 0;
4810   if( pA==0 || pB==0 ) return 1;
4811   if( pA->nExpr!=pB->nExpr ) return 1;
4812   for(i=0; i<pA->nExpr; i++){
4813     Expr *pExprA = pA->a[i].pExpr;
4814     Expr *pExprB = pB->a[i].pExpr;
4815     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4816     if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1;
4817   }
4818   return 0;
4819 }
4820 
4821 /*
4822 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
4823 ** are ignored.
4824 */
4825 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
4826   return sqlite3ExprCompare(0,
4827              sqlite3ExprSkipCollate(pA),
4828              sqlite3ExprSkipCollate(pB),
4829              iTab);
4830 }
4831 
4832 /*
4833 ** Return true if we can prove the pE2 will always be true if pE1 is
4834 ** true.  Return false if we cannot complete the proof or if pE2 might
4835 ** be false.  Examples:
4836 **
4837 **     pE1: x==5       pE2: x==5             Result: true
4838 **     pE1: x>0        pE2: x==5             Result: false
4839 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
4840 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
4841 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
4842 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
4843 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
4844 **
4845 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
4846 ** Expr.iTable<0 then assume a table number given by iTab.
4847 **
4848 ** If pParse is not NULL, then the values of bound variables in pE1 are
4849 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
4850 ** modified to record which bound variables are referenced.  If pParse
4851 ** is NULL, then false will be returned if pE1 contains any bound variables.
4852 **
4853 ** When in doubt, return false.  Returning true might give a performance
4854 ** improvement.  Returning false might cause a performance reduction, but
4855 ** it will always give the correct answer and is hence always safe.
4856 */
4857 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
4858   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
4859     return 1;
4860   }
4861   if( pE2->op==TK_OR
4862    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
4863              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
4864   ){
4865     return 1;
4866   }
4867   if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){
4868     Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft);
4869     testcase( pX!=pE1->pLeft );
4870     if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1;
4871   }
4872   return 0;
4873 }
4874 
4875 /*
4876 ** An instance of the following structure is used by the tree walker
4877 ** to determine if an expression can be evaluated by reference to the
4878 ** index only, without having to do a search for the corresponding
4879 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
4880 ** is the cursor for the table.
4881 */
4882 struct IdxCover {
4883   Index *pIdx;     /* The index to be tested for coverage */
4884   int iCur;        /* Cursor number for the table corresponding to the index */
4885 };
4886 
4887 /*
4888 ** Check to see if there are references to columns in table
4889 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
4890 ** pWalker->u.pIdxCover->pIdx.
4891 */
4892 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
4893   if( pExpr->op==TK_COLUMN
4894    && pExpr->iTable==pWalker->u.pIdxCover->iCur
4895    && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
4896   ){
4897     pWalker->eCode = 1;
4898     return WRC_Abort;
4899   }
4900   return WRC_Continue;
4901 }
4902 
4903 /*
4904 ** Determine if an index pIdx on table with cursor iCur contains will
4905 ** the expression pExpr.  Return true if the index does cover the
4906 ** expression and false if the pExpr expression references table columns
4907 ** that are not found in the index pIdx.
4908 **
4909 ** An index covering an expression means that the expression can be
4910 ** evaluated using only the index and without having to lookup the
4911 ** corresponding table entry.
4912 */
4913 int sqlite3ExprCoveredByIndex(
4914   Expr *pExpr,        /* The index to be tested */
4915   int iCur,           /* The cursor number for the corresponding table */
4916   Index *pIdx         /* The index that might be used for coverage */
4917 ){
4918   Walker w;
4919   struct IdxCover xcov;
4920   memset(&w, 0, sizeof(w));
4921   xcov.iCur = iCur;
4922   xcov.pIdx = pIdx;
4923   w.xExprCallback = exprIdxCover;
4924   w.u.pIdxCover = &xcov;
4925   sqlite3WalkExpr(&w, pExpr);
4926   return !w.eCode;
4927 }
4928 
4929 
4930 /*
4931 ** An instance of the following structure is used by the tree walker
4932 ** to count references to table columns in the arguments of an
4933 ** aggregate function, in order to implement the
4934 ** sqlite3FunctionThisSrc() routine.
4935 */
4936 struct SrcCount {
4937   SrcList *pSrc;   /* One particular FROM clause in a nested query */
4938   int nThis;       /* Number of references to columns in pSrcList */
4939   int nOther;      /* Number of references to columns in other FROM clauses */
4940 };
4941 
4942 /*
4943 ** Count the number of references to columns.
4944 */
4945 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
4946   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
4947   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
4948   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
4949   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
4950   ** NEVER() will need to be removed. */
4951   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
4952     int i;
4953     struct SrcCount *p = pWalker->u.pSrcCount;
4954     SrcList *pSrc = p->pSrc;
4955     int nSrc = pSrc ? pSrc->nSrc : 0;
4956     for(i=0; i<nSrc; i++){
4957       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
4958     }
4959     if( i<nSrc ){
4960       p->nThis++;
4961     }else{
4962       p->nOther++;
4963     }
4964   }
4965   return WRC_Continue;
4966 }
4967 
4968 /*
4969 ** Determine if any of the arguments to the pExpr Function reference
4970 ** pSrcList.  Return true if they do.  Also return true if the function
4971 ** has no arguments or has only constant arguments.  Return false if pExpr
4972 ** references columns but not columns of tables found in pSrcList.
4973 */
4974 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
4975   Walker w;
4976   struct SrcCount cnt;
4977   assert( pExpr->op==TK_AGG_FUNCTION );
4978   w.xExprCallback = exprSrcCount;
4979   w.xSelectCallback = 0;
4980   w.u.pSrcCount = &cnt;
4981   cnt.pSrc = pSrcList;
4982   cnt.nThis = 0;
4983   cnt.nOther = 0;
4984   sqlite3WalkExprList(&w, pExpr->x.pList);
4985   return cnt.nThis>0 || cnt.nOther==0;
4986 }
4987 
4988 /*
4989 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
4990 ** the new element.  Return a negative number if malloc fails.
4991 */
4992 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
4993   int i;
4994   pInfo->aCol = sqlite3ArrayAllocate(
4995        db,
4996        pInfo->aCol,
4997        sizeof(pInfo->aCol[0]),
4998        &pInfo->nColumn,
4999        &i
5000   );
5001   return i;
5002 }
5003 
5004 /*
5005 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5006 ** the new element.  Return a negative number if malloc fails.
5007 */
5008 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5009   int i;
5010   pInfo->aFunc = sqlite3ArrayAllocate(
5011        db,
5012        pInfo->aFunc,
5013        sizeof(pInfo->aFunc[0]),
5014        &pInfo->nFunc,
5015        &i
5016   );
5017   return i;
5018 }
5019 
5020 /*
5021 ** This is the xExprCallback for a tree walker.  It is used to
5022 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5023 ** for additional information.
5024 */
5025 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5026   int i;
5027   NameContext *pNC = pWalker->u.pNC;
5028   Parse *pParse = pNC->pParse;
5029   SrcList *pSrcList = pNC->pSrcList;
5030   AggInfo *pAggInfo = pNC->pAggInfo;
5031 
5032   switch( pExpr->op ){
5033     case TK_AGG_COLUMN:
5034     case TK_COLUMN: {
5035       testcase( pExpr->op==TK_AGG_COLUMN );
5036       testcase( pExpr->op==TK_COLUMN );
5037       /* Check to see if the column is in one of the tables in the FROM
5038       ** clause of the aggregate query */
5039       if( ALWAYS(pSrcList!=0) ){
5040         struct SrcList_item *pItem = pSrcList->a;
5041         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5042           struct AggInfo_col *pCol;
5043           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5044           if( pExpr->iTable==pItem->iCursor ){
5045             /* If we reach this point, it means that pExpr refers to a table
5046             ** that is in the FROM clause of the aggregate query.
5047             **
5048             ** Make an entry for the column in pAggInfo->aCol[] if there
5049             ** is not an entry there already.
5050             */
5051             int k;
5052             pCol = pAggInfo->aCol;
5053             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5054               if( pCol->iTable==pExpr->iTable &&
5055                   pCol->iColumn==pExpr->iColumn ){
5056                 break;
5057               }
5058             }
5059             if( (k>=pAggInfo->nColumn)
5060              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5061             ){
5062               pCol = &pAggInfo->aCol[k];
5063               pCol->pTab = pExpr->pTab;
5064               pCol->iTable = pExpr->iTable;
5065               pCol->iColumn = pExpr->iColumn;
5066               pCol->iMem = ++pParse->nMem;
5067               pCol->iSorterColumn = -1;
5068               pCol->pExpr = pExpr;
5069               if( pAggInfo->pGroupBy ){
5070                 int j, n;
5071                 ExprList *pGB = pAggInfo->pGroupBy;
5072                 struct ExprList_item *pTerm = pGB->a;
5073                 n = pGB->nExpr;
5074                 for(j=0; j<n; j++, pTerm++){
5075                   Expr *pE = pTerm->pExpr;
5076                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5077                       pE->iColumn==pExpr->iColumn ){
5078                     pCol->iSorterColumn = j;
5079                     break;
5080                   }
5081                 }
5082               }
5083               if( pCol->iSorterColumn<0 ){
5084                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5085               }
5086             }
5087             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5088             ** because it was there before or because we just created it).
5089             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5090             ** pAggInfo->aCol[] entry.
5091             */
5092             ExprSetVVAProperty(pExpr, EP_NoReduce);
5093             pExpr->pAggInfo = pAggInfo;
5094             pExpr->op = TK_AGG_COLUMN;
5095             pExpr->iAgg = (i16)k;
5096             break;
5097           } /* endif pExpr->iTable==pItem->iCursor */
5098         } /* end loop over pSrcList */
5099       }
5100       return WRC_Prune;
5101     }
5102     case TK_AGG_FUNCTION: {
5103       if( (pNC->ncFlags & NC_InAggFunc)==0
5104        && pWalker->walkerDepth==pExpr->op2
5105       ){
5106         /* Check to see if pExpr is a duplicate of another aggregate
5107         ** function that is already in the pAggInfo structure
5108         */
5109         struct AggInfo_func *pItem = pAggInfo->aFunc;
5110         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5111           if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5112             break;
5113           }
5114         }
5115         if( i>=pAggInfo->nFunc ){
5116           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5117           */
5118           u8 enc = ENC(pParse->db);
5119           i = addAggInfoFunc(pParse->db, pAggInfo);
5120           if( i>=0 ){
5121             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5122             pItem = &pAggInfo->aFunc[i];
5123             pItem->pExpr = pExpr;
5124             pItem->iMem = ++pParse->nMem;
5125             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5126             pItem->pFunc = sqlite3FindFunction(pParse->db,
5127                    pExpr->u.zToken,
5128                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5129             if( pExpr->flags & EP_Distinct ){
5130               pItem->iDistinct = pParse->nTab++;
5131             }else{
5132               pItem->iDistinct = -1;
5133             }
5134           }
5135         }
5136         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5137         */
5138         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5139         ExprSetVVAProperty(pExpr, EP_NoReduce);
5140         pExpr->iAgg = (i16)i;
5141         pExpr->pAggInfo = pAggInfo;
5142         return WRC_Prune;
5143       }else{
5144         return WRC_Continue;
5145       }
5146     }
5147   }
5148   return WRC_Continue;
5149 }
5150 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5151   UNUSED_PARAMETER(pSelect);
5152   pWalker->walkerDepth++;
5153   return WRC_Continue;
5154 }
5155 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5156   UNUSED_PARAMETER(pSelect);
5157   pWalker->walkerDepth--;
5158 }
5159 
5160 /*
5161 ** Analyze the pExpr expression looking for aggregate functions and
5162 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5163 ** points to.  Additional entries are made on the AggInfo object as
5164 ** necessary.
5165 **
5166 ** This routine should only be called after the expression has been
5167 ** analyzed by sqlite3ResolveExprNames().
5168 */
5169 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5170   Walker w;
5171   w.xExprCallback = analyzeAggregate;
5172   w.xSelectCallback = analyzeAggregatesInSelect;
5173   w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5174   w.walkerDepth = 0;
5175   w.u.pNC = pNC;
5176   assert( pNC->pSrcList!=0 );
5177   sqlite3WalkExpr(&w, pExpr);
5178 }
5179 
5180 /*
5181 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5182 ** expression list.  Return the number of errors.
5183 **
5184 ** If an error is found, the analysis is cut short.
5185 */
5186 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5187   struct ExprList_item *pItem;
5188   int i;
5189   if( pList ){
5190     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5191       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5192     }
5193   }
5194 }
5195 
5196 /*
5197 ** Allocate a single new register for use to hold some intermediate result.
5198 */
5199 int sqlite3GetTempReg(Parse *pParse){
5200   if( pParse->nTempReg==0 ){
5201     return ++pParse->nMem;
5202   }
5203   return pParse->aTempReg[--pParse->nTempReg];
5204 }
5205 
5206 /*
5207 ** Deallocate a register, making available for reuse for some other
5208 ** purpose.
5209 **
5210 ** If a register is currently being used by the column cache, then
5211 ** the deallocation is deferred until the column cache line that uses
5212 ** the register becomes stale.
5213 */
5214 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5215   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5216     int i;
5217     struct yColCache *p;
5218     for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
5219       if( p->iReg==iReg ){
5220         p->tempReg = 1;
5221         return;
5222       }
5223     }
5224     pParse->aTempReg[pParse->nTempReg++] = iReg;
5225   }
5226 }
5227 
5228 /*
5229 ** Allocate or deallocate a block of nReg consecutive registers.
5230 */
5231 int sqlite3GetTempRange(Parse *pParse, int nReg){
5232   int i, n;
5233   if( nReg==1 ) return sqlite3GetTempReg(pParse);
5234   i = pParse->iRangeReg;
5235   n = pParse->nRangeReg;
5236   if( nReg<=n ){
5237     assert( !usedAsColumnCache(pParse, i, i+n-1) );
5238     pParse->iRangeReg += nReg;
5239     pParse->nRangeReg -= nReg;
5240   }else{
5241     i = pParse->nMem+1;
5242     pParse->nMem += nReg;
5243   }
5244   return i;
5245 }
5246 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5247   if( nReg==1 ){
5248     sqlite3ReleaseTempReg(pParse, iReg);
5249     return;
5250   }
5251   sqlite3ExprCacheRemove(pParse, iReg, nReg);
5252   if( nReg>pParse->nRangeReg ){
5253     pParse->nRangeReg = nReg;
5254     pParse->iRangeReg = iReg;
5255   }
5256 }
5257 
5258 /*
5259 ** Mark all temporary registers as being unavailable for reuse.
5260 */
5261 void sqlite3ClearTempRegCache(Parse *pParse){
5262   pParse->nTempReg = 0;
5263   pParse->nRangeReg = 0;
5264 }
5265 
5266 /*
5267 ** Validate that no temporary register falls within the range of
5268 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5269 ** statements.
5270 */
5271 #ifdef SQLITE_DEBUG
5272 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5273   int i;
5274   if( pParse->nRangeReg>0
5275    && pParse->iRangeReg+pParse->nRangeReg > iFirst
5276    && pParse->iRangeReg <= iLast
5277   ){
5278      return 0;
5279   }
5280   for(i=0; i<pParse->nTempReg; i++){
5281     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5282       return 0;
5283     }
5284   }
5285   return 1;
5286 }
5287 #endif /* SQLITE_DEBUG */
5288