1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 ** 15 ** $Id: expr.c,v 1.310 2007/08/29 14:06:23 danielk1977 Exp $ 16 */ 17 #include "sqliteInt.h" 18 #include <ctype.h> 19 20 /* 21 ** Return the 'affinity' of the expression pExpr if any. 22 ** 23 ** If pExpr is a column, a reference to a column via an 'AS' alias, 24 ** or a sub-select with a column as the return value, then the 25 ** affinity of that column is returned. Otherwise, 0x00 is returned, 26 ** indicating no affinity for the expression. 27 ** 28 ** i.e. the WHERE clause expresssions in the following statements all 29 ** have an affinity: 30 ** 31 ** CREATE TABLE t1(a); 32 ** SELECT * FROM t1 WHERE a; 33 ** SELECT a AS b FROM t1 WHERE b; 34 ** SELECT * FROM t1 WHERE (select a from t1); 35 */ 36 char sqlite3ExprAffinity(Expr *pExpr){ 37 int op = pExpr->op; 38 if( op==TK_SELECT ){ 39 return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); 40 } 41 #ifndef SQLITE_OMIT_CAST 42 if( op==TK_CAST ){ 43 return sqlite3AffinityType(&pExpr->token); 44 } 45 #endif 46 return pExpr->affinity; 47 } 48 49 /* 50 ** Set the collating sequence for expression pExpr to be the collating 51 ** sequence named by pToken. Return a pointer to the revised expression. 52 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 53 ** flag. An explicit collating sequence will override implicit 54 ** collating sequences. 55 */ 56 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){ 57 CollSeq *pColl; 58 if( pExpr==0 ) return 0; 59 pColl = sqlite3LocateCollSeq(pParse, (char*)pName->z, pName->n); 60 if( pColl ){ 61 pExpr->pColl = pColl; 62 pExpr->flags |= EP_ExpCollate; 63 } 64 return pExpr; 65 } 66 67 /* 68 ** Return the default collation sequence for the expression pExpr. If 69 ** there is no default collation type, return 0. 70 */ 71 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 72 CollSeq *pColl = 0; 73 if( pExpr ){ 74 int op; 75 pColl = pExpr->pColl; 76 op = pExpr->op; 77 if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){ 78 return sqlite3ExprCollSeq(pParse, pExpr->pLeft); 79 } 80 } 81 if( sqlite3CheckCollSeq(pParse, pColl) ){ 82 pColl = 0; 83 } 84 return pColl; 85 } 86 87 /* 88 ** pExpr is an operand of a comparison operator. aff2 is the 89 ** type affinity of the other operand. This routine returns the 90 ** type affinity that should be used for the comparison operator. 91 */ 92 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 93 char aff1 = sqlite3ExprAffinity(pExpr); 94 if( aff1 && aff2 ){ 95 /* Both sides of the comparison are columns. If one has numeric 96 ** affinity, use that. Otherwise use no affinity. 97 */ 98 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 99 return SQLITE_AFF_NUMERIC; 100 }else{ 101 return SQLITE_AFF_NONE; 102 } 103 }else if( !aff1 && !aff2 ){ 104 /* Neither side of the comparison is a column. Compare the 105 ** results directly. 106 */ 107 return SQLITE_AFF_NONE; 108 }else{ 109 /* One side is a column, the other is not. Use the columns affinity. */ 110 assert( aff1==0 || aff2==0 ); 111 return (aff1 + aff2); 112 } 113 } 114 115 /* 116 ** pExpr is a comparison operator. Return the type affinity that should 117 ** be applied to both operands prior to doing the comparison. 118 */ 119 static char comparisonAffinity(Expr *pExpr){ 120 char aff; 121 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 122 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 123 pExpr->op==TK_NE ); 124 assert( pExpr->pLeft ); 125 aff = sqlite3ExprAffinity(pExpr->pLeft); 126 if( pExpr->pRight ){ 127 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 128 } 129 else if( pExpr->pSelect ){ 130 aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); 131 } 132 else if( !aff ){ 133 aff = SQLITE_AFF_NONE; 134 } 135 return aff; 136 } 137 138 /* 139 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 140 ** idx_affinity is the affinity of an indexed column. Return true 141 ** if the index with affinity idx_affinity may be used to implement 142 ** the comparison in pExpr. 143 */ 144 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 145 char aff = comparisonAffinity(pExpr); 146 switch( aff ){ 147 case SQLITE_AFF_NONE: 148 return 1; 149 case SQLITE_AFF_TEXT: 150 return idx_affinity==SQLITE_AFF_TEXT; 151 default: 152 return sqlite3IsNumericAffinity(idx_affinity); 153 } 154 } 155 156 /* 157 ** Return the P1 value that should be used for a binary comparison 158 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 159 ** If jumpIfNull is true, then set the low byte of the returned 160 ** P1 value to tell the opcode to jump if either expression 161 ** evaluates to NULL. 162 */ 163 static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 164 char aff = sqlite3ExprAffinity(pExpr2); 165 return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0); 166 } 167 168 /* 169 ** Return a pointer to the collation sequence that should be used by 170 ** a binary comparison operator comparing pLeft and pRight. 171 ** 172 ** If the left hand expression has a collating sequence type, then it is 173 ** used. Otherwise the collation sequence for the right hand expression 174 ** is used, or the default (BINARY) if neither expression has a collating 175 ** type. 176 ** 177 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 178 ** it is not considered. 179 */ 180 CollSeq *sqlite3BinaryCompareCollSeq( 181 Parse *pParse, 182 Expr *pLeft, 183 Expr *pRight 184 ){ 185 CollSeq *pColl; 186 assert( pLeft ); 187 if( pLeft->flags & EP_ExpCollate ){ 188 assert( pLeft->pColl ); 189 pColl = pLeft->pColl; 190 }else if( pRight && pRight->flags & EP_ExpCollate ){ 191 assert( pRight->pColl ); 192 pColl = pRight->pColl; 193 }else{ 194 pColl = sqlite3ExprCollSeq(pParse, pLeft); 195 if( !pColl ){ 196 pColl = sqlite3ExprCollSeq(pParse, pRight); 197 } 198 } 199 return pColl; 200 } 201 202 /* 203 ** Generate code for a comparison operator. 204 */ 205 static int codeCompare( 206 Parse *pParse, /* The parsing (and code generating) context */ 207 Expr *pLeft, /* The left operand */ 208 Expr *pRight, /* The right operand */ 209 int opcode, /* The comparison opcode */ 210 int dest, /* Jump here if true. */ 211 int jumpIfNull /* If true, jump if either operand is NULL */ 212 ){ 213 int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull); 214 CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 215 return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ); 216 } 217 218 /* 219 ** Construct a new expression node and return a pointer to it. Memory 220 ** for this node is obtained from sqlite3_malloc(). The calling function 221 ** is responsible for making sure the node eventually gets freed. 222 */ 223 Expr *sqlite3Expr( 224 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 225 int op, /* Expression opcode */ 226 Expr *pLeft, /* Left operand */ 227 Expr *pRight, /* Right operand */ 228 const Token *pToken /* Argument token */ 229 ){ 230 Expr *pNew; 231 pNew = sqlite3DbMallocZero(db, sizeof(Expr)); 232 if( pNew==0 ){ 233 /* When malloc fails, delete pLeft and pRight. Expressions passed to 234 ** this function must always be allocated with sqlite3Expr() for this 235 ** reason. 236 */ 237 sqlite3ExprDelete(pLeft); 238 sqlite3ExprDelete(pRight); 239 return 0; 240 } 241 pNew->op = op; 242 pNew->pLeft = pLeft; 243 pNew->pRight = pRight; 244 pNew->iAgg = -1; 245 if( pToken ){ 246 assert( pToken->dyn==0 ); 247 pNew->span = pNew->token = *pToken; 248 }else if( pLeft ){ 249 if( pRight ){ 250 sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); 251 if( pRight->flags & EP_ExpCollate ){ 252 pNew->flags |= EP_ExpCollate; 253 pNew->pColl = pRight->pColl; 254 } 255 } 256 if( pLeft->flags & EP_ExpCollate ){ 257 pNew->flags |= EP_ExpCollate; 258 pNew->pColl = pLeft->pColl; 259 } 260 } 261 262 sqlite3ExprSetHeight(pNew); 263 return pNew; 264 } 265 266 /* 267 ** Works like sqlite3Expr() except that it takes an extra Parse* 268 ** argument and notifies the associated connection object if malloc fails. 269 */ 270 Expr *sqlite3PExpr( 271 Parse *pParse, /* Parsing context */ 272 int op, /* Expression opcode */ 273 Expr *pLeft, /* Left operand */ 274 Expr *pRight, /* Right operand */ 275 const Token *pToken /* Argument token */ 276 ){ 277 return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken); 278 } 279 280 /* 281 ** When doing a nested parse, you can include terms in an expression 282 ** that look like this: #0 #1 #2 ... These terms refer to elements 283 ** on the stack. "#0" means the top of the stack. 284 ** "#1" means the next down on the stack. And so forth. 285 ** 286 ** This routine is called by the parser to deal with on of those terms. 287 ** It immediately generates code to store the value in a memory location. 288 ** The returns an expression that will code to extract the value from 289 ** that memory location as needed. 290 */ 291 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ 292 Vdbe *v = pParse->pVdbe; 293 Expr *p; 294 int depth; 295 if( pParse->nested==0 ){ 296 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); 297 return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); 298 } 299 if( v==0 ) return 0; 300 p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken); 301 if( p==0 ){ 302 return 0; /* Malloc failed */ 303 } 304 depth = atoi((char*)&pToken->z[1]); 305 p->iTable = pParse->nMem++; 306 sqlite3VdbeAddOp(v, OP_Dup, depth, 0); 307 sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1); 308 return p; 309 } 310 311 /* 312 ** Join two expressions using an AND operator. If either expression is 313 ** NULL, then just return the other expression. 314 */ 315 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 316 if( pLeft==0 ){ 317 return pRight; 318 }else if( pRight==0 ){ 319 return pLeft; 320 }else{ 321 Expr *p = sqlite3Expr(db, TK_AND, pLeft, pRight, 0); 322 if( p==0 ){ 323 db->mallocFailed = 1; 324 } 325 return p; 326 } 327 } 328 329 /* 330 ** Set the Expr.span field of the given expression to span all 331 ** text between the two given tokens. 332 */ 333 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ 334 assert( pRight!=0 ); 335 assert( pLeft!=0 ); 336 if( pExpr && pRight->z && pLeft->z ){ 337 assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 ); 338 if( pLeft->dyn==0 && pRight->dyn==0 ){ 339 pExpr->span.z = pLeft->z; 340 pExpr->span.n = pRight->n + (pRight->z - pLeft->z); 341 }else{ 342 pExpr->span.z = 0; 343 } 344 } 345 } 346 347 /* 348 ** Construct a new expression node for a function with multiple 349 ** arguments. 350 */ 351 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 352 Expr *pNew; 353 assert( pToken ); 354 pNew = sqlite3DbMallocZero(pParse->db, sizeof(Expr) ); 355 if( pNew==0 ){ 356 sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */ 357 return 0; 358 } 359 pNew->op = TK_FUNCTION; 360 pNew->pList = pList; 361 assert( pToken->dyn==0 ); 362 pNew->token = *pToken; 363 pNew->span = pNew->token; 364 365 sqlite3ExprSetHeight(pNew); 366 return pNew; 367 } 368 369 /* 370 ** Assign a variable number to an expression that encodes a wildcard 371 ** in the original SQL statement. 372 ** 373 ** Wildcards consisting of a single "?" are assigned the next sequential 374 ** variable number. 375 ** 376 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 377 ** sure "nnn" is not too be to avoid a denial of service attack when 378 ** the SQL statement comes from an external source. 379 ** 380 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number 381 ** as the previous instance of the same wildcard. Or if this is the first 382 ** instance of the wildcard, the next sequenial variable number is 383 ** assigned. 384 */ 385 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 386 Token *pToken; 387 sqlite3 *db = pParse->db; 388 389 if( pExpr==0 ) return; 390 pToken = &pExpr->token; 391 assert( pToken->n>=1 ); 392 assert( pToken->z!=0 ); 393 assert( pToken->z[0]!=0 ); 394 if( pToken->n==1 ){ 395 /* Wildcard of the form "?". Assign the next variable number */ 396 pExpr->iTable = ++pParse->nVar; 397 }else if( pToken->z[0]=='?' ){ 398 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 399 ** use it as the variable number */ 400 int i; 401 pExpr->iTable = i = atoi((char*)&pToken->z[1]); 402 if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){ 403 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 404 SQLITE_MAX_VARIABLE_NUMBER); 405 } 406 if( i>pParse->nVar ){ 407 pParse->nVar = i; 408 } 409 }else{ 410 /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable 411 ** number as the prior appearance of the same name, or if the name 412 ** has never appeared before, reuse the same variable number 413 */ 414 int i, n; 415 n = pToken->n; 416 for(i=0; i<pParse->nVarExpr; i++){ 417 Expr *pE; 418 if( (pE = pParse->apVarExpr[i])!=0 419 && pE->token.n==n 420 && memcmp(pE->token.z, pToken->z, n)==0 ){ 421 pExpr->iTable = pE->iTable; 422 break; 423 } 424 } 425 if( i>=pParse->nVarExpr ){ 426 pExpr->iTable = ++pParse->nVar; 427 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ 428 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; 429 pParse->apVarExpr = 430 sqlite3DbReallocOrFree( 431 db, 432 pParse->apVarExpr, 433 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) 434 ); 435 } 436 if( !db->mallocFailed ){ 437 assert( pParse->apVarExpr!=0 ); 438 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; 439 } 440 } 441 } 442 if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){ 443 sqlite3ErrorMsg(pParse, "too many SQL variables"); 444 } 445 } 446 447 /* 448 ** Recursively delete an expression tree. 449 */ 450 void sqlite3ExprDelete(Expr *p){ 451 if( p==0 ) return; 452 if( p->span.dyn ) sqlite3_free((char*)p->span.z); 453 if( p->token.dyn ) sqlite3_free((char*)p->token.z); 454 sqlite3ExprDelete(p->pLeft); 455 sqlite3ExprDelete(p->pRight); 456 sqlite3ExprListDelete(p->pList); 457 sqlite3SelectDelete(p->pSelect); 458 sqlite3_free(p); 459 } 460 461 /* 462 ** The Expr.token field might be a string literal that is quoted. 463 ** If so, remove the quotation marks. 464 */ 465 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){ 466 if( ExprHasAnyProperty(p, EP_Dequoted) ){ 467 return; 468 } 469 ExprSetProperty(p, EP_Dequoted); 470 if( p->token.dyn==0 ){ 471 sqlite3TokenCopy(db, &p->token, &p->token); 472 } 473 sqlite3Dequote((char*)p->token.z); 474 } 475 476 477 /* 478 ** The following group of routines make deep copies of expressions, 479 ** expression lists, ID lists, and select statements. The copies can 480 ** be deleted (by being passed to their respective ...Delete() routines) 481 ** without effecting the originals. 482 ** 483 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 484 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 485 ** by subsequent calls to sqlite*ListAppend() routines. 486 ** 487 ** Any tables that the SrcList might point to are not duplicated. 488 */ 489 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){ 490 Expr *pNew; 491 if( p==0 ) return 0; 492 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 493 if( pNew==0 ) return 0; 494 memcpy(pNew, p, sizeof(*pNew)); 495 if( p->token.z!=0 ){ 496 pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n); 497 pNew->token.dyn = 1; 498 }else{ 499 assert( pNew->token.z==0 ); 500 } 501 pNew->span.z = 0; 502 pNew->pLeft = sqlite3ExprDup(db, p->pLeft); 503 pNew->pRight = sqlite3ExprDup(db, p->pRight); 504 pNew->pList = sqlite3ExprListDup(db, p->pList); 505 pNew->pSelect = sqlite3SelectDup(db, p->pSelect); 506 return pNew; 507 } 508 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){ 509 if( pTo->dyn ) sqlite3_free((char*)pTo->z); 510 if( pFrom->z ){ 511 pTo->n = pFrom->n; 512 pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n); 513 pTo->dyn = 1; 514 }else{ 515 pTo->z = 0; 516 } 517 } 518 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){ 519 ExprList *pNew; 520 struct ExprList_item *pItem, *pOldItem; 521 int i; 522 if( p==0 ) return 0; 523 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 524 if( pNew==0 ) return 0; 525 pNew->iECursor = 0; 526 pNew->nExpr = pNew->nAlloc = p->nExpr; 527 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); 528 if( pItem==0 ){ 529 sqlite3_free(pNew); 530 return 0; 531 } 532 pOldItem = p->a; 533 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 534 Expr *pNewExpr, *pOldExpr; 535 pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr); 536 if( pOldExpr->span.z!=0 && pNewExpr ){ 537 /* Always make a copy of the span for top-level expressions in the 538 ** expression list. The logic in SELECT processing that determines 539 ** the names of columns in the result set needs this information */ 540 sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span); 541 } 542 assert( pNewExpr==0 || pNewExpr->span.z!=0 543 || pOldExpr->span.z==0 544 || db->mallocFailed ); 545 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 546 pItem->sortOrder = pOldItem->sortOrder; 547 pItem->isAgg = pOldItem->isAgg; 548 pItem->done = 0; 549 } 550 return pNew; 551 } 552 553 /* 554 ** If cursors, triggers, views and subqueries are all omitted from 555 ** the build, then none of the following routines, except for 556 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 557 ** called with a NULL argument. 558 */ 559 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 560 || !defined(SQLITE_OMIT_SUBQUERY) 561 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){ 562 SrcList *pNew; 563 int i; 564 int nByte; 565 if( p==0 ) return 0; 566 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 567 pNew = sqlite3DbMallocRaw(db, nByte ); 568 if( pNew==0 ) return 0; 569 pNew->nSrc = pNew->nAlloc = p->nSrc; 570 for(i=0; i<p->nSrc; i++){ 571 struct SrcList_item *pNewItem = &pNew->a[i]; 572 struct SrcList_item *pOldItem = &p->a[i]; 573 Table *pTab; 574 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 575 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 576 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 577 pNewItem->jointype = pOldItem->jointype; 578 pNewItem->iCursor = pOldItem->iCursor; 579 pNewItem->isPopulated = pOldItem->isPopulated; 580 pTab = pNewItem->pTab = pOldItem->pTab; 581 if( pTab ){ 582 pTab->nRef++; 583 } 584 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect); 585 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn); 586 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 587 pNewItem->colUsed = pOldItem->colUsed; 588 } 589 return pNew; 590 } 591 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 592 IdList *pNew; 593 int i; 594 if( p==0 ) return 0; 595 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 596 if( pNew==0 ) return 0; 597 pNew->nId = pNew->nAlloc = p->nId; 598 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 599 if( pNew->a==0 ){ 600 sqlite3_free(pNew); 601 return 0; 602 } 603 for(i=0; i<p->nId; i++){ 604 struct IdList_item *pNewItem = &pNew->a[i]; 605 struct IdList_item *pOldItem = &p->a[i]; 606 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 607 pNewItem->idx = pOldItem->idx; 608 } 609 return pNew; 610 } 611 Select *sqlite3SelectDup(sqlite3 *db, Select *p){ 612 Select *pNew; 613 if( p==0 ) return 0; 614 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 615 if( pNew==0 ) return 0; 616 pNew->isDistinct = p->isDistinct; 617 pNew->pEList = sqlite3ExprListDup(db, p->pEList); 618 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc); 619 pNew->pWhere = sqlite3ExprDup(db, p->pWhere); 620 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy); 621 pNew->pHaving = sqlite3ExprDup(db, p->pHaving); 622 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy); 623 pNew->op = p->op; 624 pNew->pPrior = sqlite3SelectDup(db, p->pPrior); 625 pNew->pLimit = sqlite3ExprDup(db, p->pLimit); 626 pNew->pOffset = sqlite3ExprDup(db, p->pOffset); 627 pNew->iLimit = -1; 628 pNew->iOffset = -1; 629 pNew->isResolved = p->isResolved; 630 pNew->isAgg = p->isAgg; 631 pNew->usesEphm = 0; 632 pNew->disallowOrderBy = 0; 633 pNew->pRightmost = 0; 634 pNew->addrOpenEphm[0] = -1; 635 pNew->addrOpenEphm[1] = -1; 636 pNew->addrOpenEphm[2] = -1; 637 return pNew; 638 } 639 #else 640 Select *sqlite3SelectDup(sqlite3 *db, Select *p){ 641 assert( p==0 ); 642 return 0; 643 } 644 #endif 645 646 647 /* 648 ** Add a new element to the end of an expression list. If pList is 649 ** initially NULL, then create a new expression list. 650 */ 651 ExprList *sqlite3ExprListAppend( 652 Parse *pParse, /* Parsing context */ 653 ExprList *pList, /* List to which to append. Might be NULL */ 654 Expr *pExpr, /* Expression to be appended */ 655 Token *pName /* AS keyword for the expression */ 656 ){ 657 sqlite3 *db = pParse->db; 658 if( pList==0 ){ 659 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 660 if( pList==0 ){ 661 goto no_mem; 662 } 663 assert( pList->nAlloc==0 ); 664 } 665 if( pList->nAlloc<=pList->nExpr ){ 666 struct ExprList_item *a; 667 int n = pList->nAlloc*2 + 4; 668 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); 669 if( a==0 ){ 670 goto no_mem; 671 } 672 pList->a = a; 673 pList->nAlloc = n; 674 } 675 assert( pList->a!=0 ); 676 if( pExpr || pName ){ 677 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 678 memset(pItem, 0, sizeof(*pItem)); 679 pItem->zName = sqlite3NameFromToken(db, pName); 680 pItem->pExpr = pExpr; 681 } 682 return pList; 683 684 no_mem: 685 /* Avoid leaking memory if malloc has failed. */ 686 sqlite3ExprDelete(pExpr); 687 sqlite3ExprListDelete(pList); 688 return 0; 689 } 690 691 /* 692 ** If the expression list pEList contains more than iLimit elements, 693 ** leave an error message in pParse. 694 */ 695 void sqlite3ExprListCheckLength( 696 Parse *pParse, 697 ExprList *pEList, 698 int iLimit, 699 const char *zObject 700 ){ 701 if( pEList && pEList->nExpr>iLimit ){ 702 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 703 } 704 } 705 706 707 #if SQLITE_MAX_EXPR_DEPTH>0 708 /* The following three functions, heightOfExpr(), heightOfExprList() 709 ** and heightOfSelect(), are used to determine the maximum height 710 ** of any expression tree referenced by the structure passed as the 711 ** first argument. 712 ** 713 ** If this maximum height is greater than the current value pointed 714 ** to by pnHeight, the second parameter, then set *pnHeight to that 715 ** value. 716 */ 717 static void heightOfExpr(Expr *p, int *pnHeight){ 718 if( p ){ 719 if( p->nHeight>*pnHeight ){ 720 *pnHeight = p->nHeight; 721 } 722 } 723 } 724 static void heightOfExprList(ExprList *p, int *pnHeight){ 725 if( p ){ 726 int i; 727 for(i=0; i<p->nExpr; i++){ 728 heightOfExpr(p->a[i].pExpr, pnHeight); 729 } 730 } 731 } 732 static void heightOfSelect(Select *p, int *pnHeight){ 733 if( p ){ 734 heightOfExpr(p->pWhere, pnHeight); 735 heightOfExpr(p->pHaving, pnHeight); 736 heightOfExpr(p->pLimit, pnHeight); 737 heightOfExpr(p->pOffset, pnHeight); 738 heightOfExprList(p->pEList, pnHeight); 739 heightOfExprList(p->pGroupBy, pnHeight); 740 heightOfExprList(p->pOrderBy, pnHeight); 741 heightOfSelect(p->pPrior, pnHeight); 742 } 743 } 744 745 /* 746 ** Set the Expr.nHeight variable in the structure passed as an 747 ** argument. An expression with no children, Expr.pList or 748 ** Expr.pSelect member has a height of 1. Any other expression 749 ** has a height equal to the maximum height of any other 750 ** referenced Expr plus one. 751 */ 752 void sqlite3ExprSetHeight(Expr *p){ 753 int nHeight = 0; 754 heightOfExpr(p->pLeft, &nHeight); 755 heightOfExpr(p->pRight, &nHeight); 756 heightOfExprList(p->pList, &nHeight); 757 heightOfSelect(p->pSelect, &nHeight); 758 p->nHeight = nHeight + 1; 759 } 760 761 /* 762 ** Return the maximum height of any expression tree referenced 763 ** by the select statement passed as an argument. 764 */ 765 int sqlite3SelectExprHeight(Select *p){ 766 int nHeight = 0; 767 heightOfSelect(p, &nHeight); 768 return nHeight; 769 } 770 #endif 771 772 /* 773 ** Delete an entire expression list. 774 */ 775 void sqlite3ExprListDelete(ExprList *pList){ 776 int i; 777 struct ExprList_item *pItem; 778 if( pList==0 ) return; 779 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 780 assert( pList->nExpr<=pList->nAlloc ); 781 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 782 sqlite3ExprDelete(pItem->pExpr); 783 sqlite3_free(pItem->zName); 784 } 785 sqlite3_free(pList->a); 786 sqlite3_free(pList); 787 } 788 789 /* 790 ** Walk an expression tree. Call xFunc for each node visited. 791 ** 792 ** The return value from xFunc determines whether the tree walk continues. 793 ** 0 means continue walking the tree. 1 means do not walk children 794 ** of the current node but continue with siblings. 2 means abandon 795 ** the tree walk completely. 796 ** 797 ** The return value from this routine is 1 to abandon the tree walk 798 ** and 0 to continue. 799 ** 800 ** NOTICE: This routine does *not* descend into subqueries. 801 */ 802 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); 803 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ 804 int rc; 805 if( pExpr==0 ) return 0; 806 rc = (*xFunc)(pArg, pExpr); 807 if( rc==0 ){ 808 if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; 809 if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; 810 if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; 811 } 812 return rc>1; 813 } 814 815 /* 816 ** Call walkExprTree() for every expression in list p. 817 */ 818 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ 819 int i; 820 struct ExprList_item *pItem; 821 if( !p ) return 0; 822 for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ 823 if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; 824 } 825 return 0; 826 } 827 828 /* 829 ** Call walkExprTree() for every expression in Select p, not including 830 ** expressions that are part of sub-selects in any FROM clause or the LIMIT 831 ** or OFFSET expressions.. 832 */ 833 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ 834 walkExprList(p->pEList, xFunc, pArg); 835 walkExprTree(p->pWhere, xFunc, pArg); 836 walkExprList(p->pGroupBy, xFunc, pArg); 837 walkExprTree(p->pHaving, xFunc, pArg); 838 walkExprList(p->pOrderBy, xFunc, pArg); 839 if( p->pPrior ){ 840 walkSelectExpr(p->pPrior, xFunc, pArg); 841 } 842 return 0; 843 } 844 845 846 /* 847 ** This routine is designed as an xFunc for walkExprTree(). 848 ** 849 ** pArg is really a pointer to an integer. If we can tell by looking 850 ** at pExpr that the expression that contains pExpr is not a constant 851 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk. 852 ** If pExpr does does not disqualify the expression from being a constant 853 ** then do nothing. 854 ** 855 ** After walking the whole tree, if no nodes are found that disqualify 856 ** the expression as constant, then we assume the whole expression 857 ** is constant. See sqlite3ExprIsConstant() for additional information. 858 */ 859 static int exprNodeIsConstant(void *pArg, Expr *pExpr){ 860 int *pN = (int*)pArg; 861 862 /* If *pArg is 3 then any term of the expression that comes from 863 ** the ON or USING clauses of a join disqualifies the expression 864 ** from being considered constant. */ 865 if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 866 *pN = 0; 867 return 2; 868 } 869 870 switch( pExpr->op ){ 871 /* Consider functions to be constant if all their arguments are constant 872 ** and *pArg==2 */ 873 case TK_FUNCTION: 874 if( (*pN)==2 ) return 0; 875 /* Fall through */ 876 case TK_ID: 877 case TK_COLUMN: 878 case TK_DOT: 879 case TK_AGG_FUNCTION: 880 case TK_AGG_COLUMN: 881 #ifndef SQLITE_OMIT_SUBQUERY 882 case TK_SELECT: 883 case TK_EXISTS: 884 #endif 885 *pN = 0; 886 return 2; 887 case TK_IN: 888 if( pExpr->pSelect ){ 889 *pN = 0; 890 return 2; 891 } 892 default: 893 return 0; 894 } 895 } 896 897 /* 898 ** Walk an expression tree. Return 1 if the expression is constant 899 ** and 0 if it involves variables or function calls. 900 ** 901 ** For the purposes of this function, a double-quoted string (ex: "abc") 902 ** is considered a variable but a single-quoted string (ex: 'abc') is 903 ** a constant. 904 */ 905 int sqlite3ExprIsConstant(Expr *p){ 906 int isConst = 1; 907 walkExprTree(p, exprNodeIsConstant, &isConst); 908 return isConst; 909 } 910 911 /* 912 ** Walk an expression tree. Return 1 if the expression is constant 913 ** that does no originate from the ON or USING clauses of a join. 914 ** Return 0 if it involves variables or function calls or terms from 915 ** an ON or USING clause. 916 */ 917 int sqlite3ExprIsConstantNotJoin(Expr *p){ 918 int isConst = 3; 919 walkExprTree(p, exprNodeIsConstant, &isConst); 920 return isConst!=0; 921 } 922 923 /* 924 ** Walk an expression tree. Return 1 if the expression is constant 925 ** or a function call with constant arguments. Return and 0 if there 926 ** are any variables. 927 ** 928 ** For the purposes of this function, a double-quoted string (ex: "abc") 929 ** is considered a variable but a single-quoted string (ex: 'abc') is 930 ** a constant. 931 */ 932 int sqlite3ExprIsConstantOrFunction(Expr *p){ 933 int isConst = 2; 934 walkExprTree(p, exprNodeIsConstant, &isConst); 935 return isConst!=0; 936 } 937 938 /* 939 ** If the expression p codes a constant integer that is small enough 940 ** to fit in a 32-bit integer, return 1 and put the value of the integer 941 ** in *pValue. If the expression is not an integer or if it is too big 942 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 943 */ 944 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 945 switch( p->op ){ 946 case TK_INTEGER: { 947 if( sqlite3GetInt32((char*)p->token.z, pValue) ){ 948 return 1; 949 } 950 break; 951 } 952 case TK_UPLUS: { 953 return sqlite3ExprIsInteger(p->pLeft, pValue); 954 } 955 case TK_UMINUS: { 956 int v; 957 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 958 *pValue = -v; 959 return 1; 960 } 961 break; 962 } 963 default: break; 964 } 965 return 0; 966 } 967 968 /* 969 ** Return TRUE if the given string is a row-id column name. 970 */ 971 int sqlite3IsRowid(const char *z){ 972 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 973 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 974 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 975 return 0; 976 } 977 978 /* 979 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up 980 ** that name in the set of source tables in pSrcList and make the pExpr 981 ** expression node refer back to that source column. The following changes 982 ** are made to pExpr: 983 ** 984 ** pExpr->iDb Set the index in db->aDb[] of the database holding 985 ** the table. 986 ** pExpr->iTable Set to the cursor number for the table obtained 987 ** from pSrcList. 988 ** pExpr->iColumn Set to the column number within the table. 989 ** pExpr->op Set to TK_COLUMN. 990 ** pExpr->pLeft Any expression this points to is deleted 991 ** pExpr->pRight Any expression this points to is deleted. 992 ** 993 ** The pDbToken is the name of the database (the "X"). This value may be 994 ** NULL meaning that name is of the form Y.Z or Z. Any available database 995 ** can be used. The pTableToken is the name of the table (the "Y"). This 996 ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it 997 ** means that the form of the name is Z and that columns from any table 998 ** can be used. 999 ** 1000 ** If the name cannot be resolved unambiguously, leave an error message 1001 ** in pParse and return non-zero. Return zero on success. 1002 */ 1003 static int lookupName( 1004 Parse *pParse, /* The parsing context */ 1005 Token *pDbToken, /* Name of the database containing table, or NULL */ 1006 Token *pTableToken, /* Name of table containing column, or NULL */ 1007 Token *pColumnToken, /* Name of the column. */ 1008 NameContext *pNC, /* The name context used to resolve the name */ 1009 Expr *pExpr /* Make this EXPR node point to the selected column */ 1010 ){ 1011 char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ 1012 char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ 1013 char *zCol = 0; /* Name of the column. The "Z" */ 1014 int i, j; /* Loop counters */ 1015 int cnt = 0; /* Number of matching column names */ 1016 int cntTab = 0; /* Number of matching table names */ 1017 sqlite3 *db = pParse->db; /* The database */ 1018 struct SrcList_item *pItem; /* Use for looping over pSrcList items */ 1019 struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ 1020 NameContext *pTopNC = pNC; /* First namecontext in the list */ 1021 1022 assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ 1023 zDb = sqlite3NameFromToken(db, pDbToken); 1024 zTab = sqlite3NameFromToken(db, pTableToken); 1025 zCol = sqlite3NameFromToken(db, pColumnToken); 1026 if( db->mallocFailed ){ 1027 goto lookupname_end; 1028 } 1029 1030 pExpr->iTable = -1; 1031 while( pNC && cnt==0 ){ 1032 ExprList *pEList; 1033 SrcList *pSrcList = pNC->pSrcList; 1034 1035 if( pSrcList ){ 1036 for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ 1037 Table *pTab; 1038 int iDb; 1039 Column *pCol; 1040 1041 pTab = pItem->pTab; 1042 assert( pTab!=0 ); 1043 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1044 assert( pTab->nCol>0 ); 1045 if( zTab ){ 1046 if( pItem->zAlias ){ 1047 char *zTabName = pItem->zAlias; 1048 if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 1049 }else{ 1050 char *zTabName = pTab->zName; 1051 if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 1052 if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){ 1053 continue; 1054 } 1055 } 1056 } 1057 if( 0==(cntTab++) ){ 1058 pExpr->iTable = pItem->iCursor; 1059 pExpr->pSchema = pTab->pSchema; 1060 pMatch = pItem; 1061 } 1062 for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ 1063 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 1064 const char *zColl = pTab->aCol[j].zColl; 1065 IdList *pUsing; 1066 cnt++; 1067 pExpr->iTable = pItem->iCursor; 1068 pMatch = pItem; 1069 pExpr->pSchema = pTab->pSchema; 1070 /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ 1071 pExpr->iColumn = j==pTab->iPKey ? -1 : j; 1072 pExpr->affinity = pTab->aCol[j].affinity; 1073 if( (pExpr->flags & EP_ExpCollate)==0 ){ 1074 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); 1075 } 1076 if( i<pSrcList->nSrc-1 ){ 1077 if( pItem[1].jointype & JT_NATURAL ){ 1078 /* If this match occurred in the left table of a natural join, 1079 ** then skip the right table to avoid a duplicate match */ 1080 pItem++; 1081 i++; 1082 }else if( (pUsing = pItem[1].pUsing)!=0 ){ 1083 /* If this match occurs on a column that is in the USING clause 1084 ** of a join, skip the search of the right table of the join 1085 ** to avoid a duplicate match there. */ 1086 int k; 1087 for(k=0; k<pUsing->nId; k++){ 1088 if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ 1089 pItem++; 1090 i++; 1091 break; 1092 } 1093 } 1094 } 1095 } 1096 break; 1097 } 1098 } 1099 } 1100 } 1101 1102 #ifndef SQLITE_OMIT_TRIGGER 1103 /* If we have not already resolved the name, then maybe 1104 ** it is a new.* or old.* trigger argument reference 1105 */ 1106 if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ 1107 TriggerStack *pTriggerStack = pParse->trigStack; 1108 Table *pTab = 0; 1109 if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ 1110 pExpr->iTable = pTriggerStack->newIdx; 1111 assert( pTriggerStack->pTab ); 1112 pTab = pTriggerStack->pTab; 1113 }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ 1114 pExpr->iTable = pTriggerStack->oldIdx; 1115 assert( pTriggerStack->pTab ); 1116 pTab = pTriggerStack->pTab; 1117 } 1118 1119 if( pTab ){ 1120 int iCol; 1121 Column *pCol = pTab->aCol; 1122 1123 pExpr->pSchema = pTab->pSchema; 1124 cntTab++; 1125 for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) { 1126 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 1127 const char *zColl = pTab->aCol[iCol].zColl; 1128 cnt++; 1129 pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol; 1130 pExpr->affinity = pTab->aCol[iCol].affinity; 1131 if( (pExpr->flags & EP_ExpCollate)==0 ){ 1132 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); 1133 } 1134 pExpr->pTab = pTab; 1135 break; 1136 } 1137 } 1138 } 1139 } 1140 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ 1141 1142 /* 1143 ** Perhaps the name is a reference to the ROWID 1144 */ 1145 if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ 1146 cnt = 1; 1147 pExpr->iColumn = -1; 1148 pExpr->affinity = SQLITE_AFF_INTEGER; 1149 } 1150 1151 /* 1152 ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z 1153 ** might refer to an result-set alias. This happens, for example, when 1154 ** we are resolving names in the WHERE clause of the following command: 1155 ** 1156 ** SELECT a+b AS x FROM table WHERE x<10; 1157 ** 1158 ** In cases like this, replace pExpr with a copy of the expression that 1159 ** forms the result set entry ("a+b" in the example) and return immediately. 1160 ** Note that the expression in the result set should have already been 1161 ** resolved by the time the WHERE clause is resolved. 1162 */ 1163 if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ 1164 for(j=0; j<pEList->nExpr; j++){ 1165 char *zAs = pEList->a[j].zName; 1166 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ 1167 Expr *pDup, *pOrig; 1168 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 1169 assert( pExpr->pList==0 ); 1170 assert( pExpr->pSelect==0 ); 1171 pOrig = pEList->a[j].pExpr; 1172 if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){ 1173 sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); 1174 sqlite3_free(zCol); 1175 return 2; 1176 } 1177 pDup = sqlite3ExprDup(db, pOrig); 1178 if( pExpr->flags & EP_ExpCollate ){ 1179 pDup->pColl = pExpr->pColl; 1180 pDup->flags |= EP_ExpCollate; 1181 } 1182 if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z); 1183 if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z); 1184 memcpy(pExpr, pDup, sizeof(*pExpr)); 1185 sqlite3_free(pDup); 1186 cnt = 1; 1187 pMatch = 0; 1188 assert( zTab==0 && zDb==0 ); 1189 goto lookupname_end_2; 1190 } 1191 } 1192 } 1193 1194 /* Advance to the next name context. The loop will exit when either 1195 ** we have a match (cnt>0) or when we run out of name contexts. 1196 */ 1197 if( cnt==0 ){ 1198 pNC = pNC->pNext; 1199 } 1200 } 1201 1202 /* 1203 ** If X and Y are NULL (in other words if only the column name Z is 1204 ** supplied) and the value of Z is enclosed in double-quotes, then 1205 ** Z is a string literal if it doesn't match any column names. In that 1206 ** case, we need to return right away and not make any changes to 1207 ** pExpr. 1208 ** 1209 ** Because no reference was made to outer contexts, the pNC->nRef 1210 ** fields are not changed in any context. 1211 */ 1212 if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ 1213 sqlite3_free(zCol); 1214 return 0; 1215 } 1216 1217 /* 1218 ** cnt==0 means there was not match. cnt>1 means there were two or 1219 ** more matches. Either way, we have an error. 1220 */ 1221 if( cnt!=1 ){ 1222 char *z = 0; 1223 char *zErr; 1224 zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s"; 1225 if( zDb ){ 1226 sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0); 1227 }else if( zTab ){ 1228 sqlite3SetString(&z, zTab, ".", zCol, (char*)0); 1229 }else{ 1230 z = sqlite3StrDup(zCol); 1231 } 1232 if( z ){ 1233 sqlite3ErrorMsg(pParse, zErr, z); 1234 sqlite3_free(z); 1235 pTopNC->nErr++; 1236 }else{ 1237 db->mallocFailed = 1; 1238 } 1239 } 1240 1241 /* If a column from a table in pSrcList is referenced, then record 1242 ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes 1243 ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the 1244 ** column number is greater than the number of bits in the bitmask 1245 ** then set the high-order bit of the bitmask. 1246 */ 1247 if( pExpr->iColumn>=0 && pMatch!=0 ){ 1248 int n = pExpr->iColumn; 1249 if( n>=sizeof(Bitmask)*8 ){ 1250 n = sizeof(Bitmask)*8-1; 1251 } 1252 assert( pMatch->iCursor==pExpr->iTable ); 1253 pMatch->colUsed |= ((Bitmask)1)<<n; 1254 } 1255 1256 lookupname_end: 1257 /* Clean up and return 1258 */ 1259 sqlite3_free(zDb); 1260 sqlite3_free(zTab); 1261 sqlite3ExprDelete(pExpr->pLeft); 1262 pExpr->pLeft = 0; 1263 sqlite3ExprDelete(pExpr->pRight); 1264 pExpr->pRight = 0; 1265 pExpr->op = TK_COLUMN; 1266 lookupname_end_2: 1267 sqlite3_free(zCol); 1268 if( cnt==1 ){ 1269 assert( pNC!=0 ); 1270 sqlite3AuthRead(pParse, pExpr, pNC->pSrcList); 1271 if( pMatch && !pMatch->pSelect ){ 1272 pExpr->pTab = pMatch->pTab; 1273 } 1274 /* Increment the nRef value on all name contexts from TopNC up to 1275 ** the point where the name matched. */ 1276 for(;;){ 1277 assert( pTopNC!=0 ); 1278 pTopNC->nRef++; 1279 if( pTopNC==pNC ) break; 1280 pTopNC = pTopNC->pNext; 1281 } 1282 return 0; 1283 } else { 1284 return 1; 1285 } 1286 } 1287 1288 /* 1289 ** This routine is designed as an xFunc for walkExprTree(). 1290 ** 1291 ** Resolve symbolic names into TK_COLUMN operators for the current 1292 ** node in the expression tree. Return 0 to continue the search down 1293 ** the tree or 2 to abort the tree walk. 1294 ** 1295 ** This routine also does error checking and name resolution for 1296 ** function names. The operator for aggregate functions is changed 1297 ** to TK_AGG_FUNCTION. 1298 */ 1299 static int nameResolverStep(void *pArg, Expr *pExpr){ 1300 NameContext *pNC = (NameContext*)pArg; 1301 Parse *pParse; 1302 1303 if( pExpr==0 ) return 1; 1304 assert( pNC!=0 ); 1305 pParse = pNC->pParse; 1306 1307 if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; 1308 ExprSetProperty(pExpr, EP_Resolved); 1309 #ifndef NDEBUG 1310 if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ 1311 SrcList *pSrcList = pNC->pSrcList; 1312 int i; 1313 for(i=0; i<pNC->pSrcList->nSrc; i++){ 1314 assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); 1315 } 1316 } 1317 #endif 1318 switch( pExpr->op ){ 1319 /* Double-quoted strings (ex: "abc") are used as identifiers if 1320 ** possible. Otherwise they remain as strings. Single-quoted 1321 ** strings (ex: 'abc') are always string literals. 1322 */ 1323 case TK_STRING: { 1324 if( pExpr->token.z[0]=='\'' ) break; 1325 /* Fall thru into the TK_ID case if this is a double-quoted string */ 1326 } 1327 /* A lone identifier is the name of a column. 1328 */ 1329 case TK_ID: { 1330 lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); 1331 return 1; 1332 } 1333 1334 /* A table name and column name: ID.ID 1335 ** Or a database, table and column: ID.ID.ID 1336 */ 1337 case TK_DOT: { 1338 Token *pColumn; 1339 Token *pTable; 1340 Token *pDb; 1341 Expr *pRight; 1342 1343 /* if( pSrcList==0 ) break; */ 1344 pRight = pExpr->pRight; 1345 if( pRight->op==TK_ID ){ 1346 pDb = 0; 1347 pTable = &pExpr->pLeft->token; 1348 pColumn = &pRight->token; 1349 }else{ 1350 assert( pRight->op==TK_DOT ); 1351 pDb = &pExpr->pLeft->token; 1352 pTable = &pRight->pLeft->token; 1353 pColumn = &pRight->pRight->token; 1354 } 1355 lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); 1356 return 1; 1357 } 1358 1359 /* Resolve function names 1360 */ 1361 case TK_CONST_FUNC: 1362 case TK_FUNCTION: { 1363 ExprList *pList = pExpr->pList; /* The argument list */ 1364 int n = pList ? pList->nExpr : 0; /* Number of arguments */ 1365 int no_such_func = 0; /* True if no such function exists */ 1366 int wrong_num_args = 0; /* True if wrong number of arguments */ 1367 int is_agg = 0; /* True if is an aggregate function */ 1368 int i; 1369 int auth; /* Authorization to use the function */ 1370 int nId; /* Number of characters in function name */ 1371 const char *zId; /* The function name. */ 1372 FuncDef *pDef; /* Information about the function */ 1373 int enc = ENC(pParse->db); /* The database encoding */ 1374 1375 zId = (char*)pExpr->token.z; 1376 nId = pExpr->token.n; 1377 pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); 1378 if( pDef==0 ){ 1379 pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); 1380 if( pDef==0 ){ 1381 no_such_func = 1; 1382 }else{ 1383 wrong_num_args = 1; 1384 } 1385 }else{ 1386 is_agg = pDef->xFunc==0; 1387 } 1388 #ifndef SQLITE_OMIT_AUTHORIZATION 1389 if( pDef ){ 1390 auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); 1391 if( auth!=SQLITE_OK ){ 1392 if( auth==SQLITE_DENY ){ 1393 sqlite3ErrorMsg(pParse, "not authorized to use function: %s", 1394 pDef->zName); 1395 pNC->nErr++; 1396 } 1397 pExpr->op = TK_NULL; 1398 return 1; 1399 } 1400 } 1401 #endif 1402 if( is_agg && !pNC->allowAgg ){ 1403 sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); 1404 pNC->nErr++; 1405 is_agg = 0; 1406 }else if( no_such_func ){ 1407 sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); 1408 pNC->nErr++; 1409 }else if( wrong_num_args ){ 1410 sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", 1411 nId, zId); 1412 pNC->nErr++; 1413 } 1414 if( is_agg ){ 1415 pExpr->op = TK_AGG_FUNCTION; 1416 pNC->hasAgg = 1; 1417 } 1418 if( is_agg ) pNC->allowAgg = 0; 1419 for(i=0; pNC->nErr==0 && i<n; i++){ 1420 walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC); 1421 } 1422 if( is_agg ) pNC->allowAgg = 1; 1423 /* FIX ME: Compute pExpr->affinity based on the expected return 1424 ** type of the function 1425 */ 1426 return is_agg; 1427 } 1428 #ifndef SQLITE_OMIT_SUBQUERY 1429 case TK_SELECT: 1430 case TK_EXISTS: 1431 #endif 1432 case TK_IN: { 1433 if( pExpr->pSelect ){ 1434 int nRef = pNC->nRef; 1435 #ifndef SQLITE_OMIT_CHECK 1436 if( pNC->isCheck ){ 1437 sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); 1438 } 1439 #endif 1440 sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); 1441 assert( pNC->nRef>=nRef ); 1442 if( nRef!=pNC->nRef ){ 1443 ExprSetProperty(pExpr, EP_VarSelect); 1444 } 1445 } 1446 break; 1447 } 1448 #ifndef SQLITE_OMIT_CHECK 1449 case TK_VARIABLE: { 1450 if( pNC->isCheck ){ 1451 sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); 1452 } 1453 break; 1454 } 1455 #endif 1456 } 1457 return 0; 1458 } 1459 1460 /* 1461 ** This routine walks an expression tree and resolves references to 1462 ** table columns. Nodes of the form ID.ID or ID resolve into an 1463 ** index to the table in the table list and a column offset. The 1464 ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable 1465 ** value is changed to the index of the referenced table in pTabList 1466 ** plus the "base" value. The base value will ultimately become the 1467 ** VDBE cursor number for a cursor that is pointing into the referenced 1468 ** table. The Expr.iColumn value is changed to the index of the column 1469 ** of the referenced table. The Expr.iColumn value for the special 1470 ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an 1471 ** alias for ROWID. 1472 ** 1473 ** Also resolve function names and check the functions for proper 1474 ** usage. Make sure all function names are recognized and all functions 1475 ** have the correct number of arguments. Leave an error message 1476 ** in pParse->zErrMsg if anything is amiss. Return the number of errors. 1477 ** 1478 ** If the expression contains aggregate functions then set the EP_Agg 1479 ** property on the expression. 1480 */ 1481 int sqlite3ExprResolveNames( 1482 NameContext *pNC, /* Namespace to resolve expressions in. */ 1483 Expr *pExpr /* The expression to be analyzed. */ 1484 ){ 1485 int savedHasAgg; 1486 if( pExpr==0 ) return 0; 1487 #if SQLITE_MAX_EXPR_DEPTH>0 1488 if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){ 1489 sqlite3ErrorMsg(pNC->pParse, 1490 "Expression tree is too large (maximum depth %d)", 1491 SQLITE_MAX_EXPR_DEPTH 1492 ); 1493 return 1; 1494 } 1495 pNC->pParse->nHeight += pExpr->nHeight; 1496 #endif 1497 savedHasAgg = pNC->hasAgg; 1498 pNC->hasAgg = 0; 1499 walkExprTree(pExpr, nameResolverStep, pNC); 1500 #if SQLITE_MAX_EXPR_DEPTH>0 1501 pNC->pParse->nHeight -= pExpr->nHeight; 1502 #endif 1503 if( pNC->nErr>0 ){ 1504 ExprSetProperty(pExpr, EP_Error); 1505 } 1506 if( pNC->hasAgg ){ 1507 ExprSetProperty(pExpr, EP_Agg); 1508 }else if( savedHasAgg ){ 1509 pNC->hasAgg = 1; 1510 } 1511 return ExprHasProperty(pExpr, EP_Error); 1512 } 1513 1514 /* 1515 ** A pointer instance of this structure is used to pass information 1516 ** through walkExprTree into codeSubqueryStep(). 1517 */ 1518 typedef struct QueryCoder QueryCoder; 1519 struct QueryCoder { 1520 Parse *pParse; /* The parsing context */ 1521 NameContext *pNC; /* Namespace of first enclosing query */ 1522 }; 1523 1524 1525 /* 1526 ** Generate code for scalar subqueries used as an expression 1527 ** and IN operators. Examples: 1528 ** 1529 ** (SELECT a FROM b) -- subquery 1530 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1531 ** x IN (4,5,11) -- IN operator with list on right-hand side 1532 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1533 ** 1534 ** The pExpr parameter describes the expression that contains the IN 1535 ** operator or subquery. 1536 */ 1537 #ifndef SQLITE_OMIT_SUBQUERY 1538 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 1539 int testAddr = 0; /* One-time test address */ 1540 Vdbe *v = sqlite3GetVdbe(pParse); 1541 if( v==0 ) return; 1542 1543 1544 /* This code must be run in its entirety every time it is encountered 1545 ** if any of the following is true: 1546 ** 1547 ** * The right-hand side is a correlated subquery 1548 ** * The right-hand side is an expression list containing variables 1549 ** * We are inside a trigger 1550 ** 1551 ** If all of the above are false, then we can run this code just once 1552 ** save the results, and reuse the same result on subsequent invocations. 1553 */ 1554 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ 1555 int mem = pParse->nMem++; 1556 sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0); 1557 testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0); 1558 assert( testAddr>0 || pParse->db->mallocFailed ); 1559 sqlite3VdbeAddOp(v, OP_MemInt, 1, mem); 1560 } 1561 1562 switch( pExpr->op ){ 1563 case TK_IN: { 1564 char affinity; 1565 KeyInfo keyInfo; 1566 int addr; /* Address of OP_OpenEphemeral instruction */ 1567 1568 affinity = sqlite3ExprAffinity(pExpr->pLeft); 1569 1570 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1571 ** expression it is handled the same way. A virtual table is 1572 ** filled with single-field index keys representing the results 1573 ** from the SELECT or the <exprlist>. 1574 ** 1575 ** If the 'x' expression is a column value, or the SELECT... 1576 ** statement returns a column value, then the affinity of that 1577 ** column is used to build the index keys. If both 'x' and the 1578 ** SELECT... statement are columns, then numeric affinity is used 1579 ** if either column has NUMERIC or INTEGER affinity. If neither 1580 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1581 ** is used. 1582 */ 1583 pExpr->iTable = pParse->nTab++; 1584 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0); 1585 memset(&keyInfo, 0, sizeof(keyInfo)); 1586 keyInfo.nField = 1; 1587 sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1); 1588 1589 if( pExpr->pSelect ){ 1590 /* Case 1: expr IN (SELECT ...) 1591 ** 1592 ** Generate code to write the results of the select into the temporary 1593 ** table allocated and opened above. 1594 */ 1595 int iParm = pExpr->iTable + (((int)affinity)<<16); 1596 ExprList *pEList; 1597 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1598 if( sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0) ){ 1599 return; 1600 } 1601 pEList = pExpr->pSelect->pEList; 1602 if( pEList && pEList->nExpr>0 ){ 1603 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1604 pEList->a[0].pExpr); 1605 } 1606 }else if( pExpr->pList ){ 1607 /* Case 2: expr IN (exprlist) 1608 ** 1609 ** For each expression, build an index key from the evaluation and 1610 ** store it in the temporary table. If <expr> is a column, then use 1611 ** that columns affinity when building index keys. If <expr> is not 1612 ** a column, use numeric affinity. 1613 */ 1614 int i; 1615 ExprList *pList = pExpr->pList; 1616 struct ExprList_item *pItem; 1617 1618 if( !affinity ){ 1619 affinity = SQLITE_AFF_NONE; 1620 } 1621 keyInfo.aColl[0] = pExpr->pLeft->pColl; 1622 1623 /* Loop through each expression in <exprlist>. */ 1624 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1625 Expr *pE2 = pItem->pExpr; 1626 1627 /* If the expression is not constant then we will need to 1628 ** disable the test that was generated above that makes sure 1629 ** this code only executes once. Because for a non-constant 1630 ** expression we need to rerun this code each time. 1631 */ 1632 if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){ 1633 sqlite3VdbeChangeToNoop(v, testAddr-1, 3); 1634 testAddr = 0; 1635 } 1636 1637 /* Evaluate the expression and insert it into the temp table */ 1638 sqlite3ExprCode(pParse, pE2); 1639 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); 1640 sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0); 1641 } 1642 } 1643 sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO); 1644 break; 1645 } 1646 1647 case TK_EXISTS: 1648 case TK_SELECT: { 1649 /* This has to be a scalar SELECT. Generate code to put the 1650 ** value of this select in a memory cell and record the number 1651 ** of the memory cell in iColumn. 1652 */ 1653 static const Token one = { (u8*)"1", 0, 1 }; 1654 Select *pSel; 1655 int iMem; 1656 int sop; 1657 1658 pExpr->iColumn = iMem = pParse->nMem++; 1659 pSel = pExpr->pSelect; 1660 if( pExpr->op==TK_SELECT ){ 1661 sop = SRT_Mem; 1662 sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0); 1663 VdbeComment((v, "# Init subquery result")); 1664 }else{ 1665 sop = SRT_Exists; 1666 sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem); 1667 VdbeComment((v, "# Init EXISTS result")); 1668 } 1669 sqlite3ExprDelete(pSel->pLimit); 1670 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); 1671 if( sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0) ){ 1672 return; 1673 } 1674 break; 1675 } 1676 } 1677 1678 if( testAddr ){ 1679 sqlite3VdbeJumpHere(v, testAddr); 1680 } 1681 1682 return; 1683 } 1684 #endif /* SQLITE_OMIT_SUBQUERY */ 1685 1686 /* 1687 ** Generate an instruction that will put the integer describe by 1688 ** text z[0..n-1] on the stack. 1689 */ 1690 static void codeInteger(Vdbe *v, const char *z, int n){ 1691 assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); 1692 if( z ){ 1693 int i; 1694 if( sqlite3GetInt32(z, &i) ){ 1695 sqlite3VdbeAddOp(v, OP_Integer, i, 0); 1696 }else if( sqlite3FitsIn64Bits(z) ){ 1697 sqlite3VdbeOp3(v, OP_Int64, 0, 0, z, n); 1698 }else{ 1699 sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n); 1700 } 1701 } 1702 } 1703 1704 1705 /* 1706 ** Generate code that will extract the iColumn-th column from 1707 ** table pTab and push that column value on the stack. There 1708 ** is an open cursor to pTab in iTable. If iColumn<0 then 1709 ** code is generated that extracts the rowid. 1710 */ 1711 void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){ 1712 if( iColumn<0 ){ 1713 int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid; 1714 sqlite3VdbeAddOp(v, op, iTable, 0); 1715 }else if( pTab==0 ){ 1716 sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn); 1717 }else{ 1718 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 1719 sqlite3VdbeAddOp(v, op, iTable, iColumn); 1720 sqlite3ColumnDefault(v, pTab, iColumn); 1721 #ifndef SQLITE_OMIT_FLOATING_POINT 1722 if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){ 1723 sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0); 1724 } 1725 #endif 1726 } 1727 } 1728 1729 /* 1730 ** Generate code into the current Vdbe to evaluate the given 1731 ** expression and leave the result on the top of stack. 1732 ** 1733 ** This code depends on the fact that certain token values (ex: TK_EQ) 1734 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 1735 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 1736 ** the make process cause these values to align. Assert()s in the code 1737 ** below verify that the numbers are aligned correctly. 1738 */ 1739 void sqlite3ExprCode(Parse *pParse, Expr *pExpr){ 1740 Vdbe *v = pParse->pVdbe; 1741 int op; 1742 int stackChng = 1; /* Amount of change to stack depth */ 1743 1744 if( v==0 ) return; 1745 if( pExpr==0 ){ 1746 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1747 return; 1748 } 1749 op = pExpr->op; 1750 switch( op ){ 1751 case TK_AGG_COLUMN: { 1752 AggInfo *pAggInfo = pExpr->pAggInfo; 1753 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 1754 if( !pAggInfo->directMode ){ 1755 sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0); 1756 break; 1757 }else if( pAggInfo->useSortingIdx ){ 1758 sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx, 1759 pCol->iSorterColumn); 1760 break; 1761 } 1762 /* Otherwise, fall thru into the TK_COLUMN case */ 1763 } 1764 case TK_COLUMN: { 1765 if( pExpr->iTable<0 ){ 1766 /* This only happens when coding check constraints */ 1767 assert( pParse->ckOffset>0 ); 1768 sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1); 1769 }else{ 1770 sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable); 1771 } 1772 break; 1773 } 1774 case TK_INTEGER: { 1775 codeInteger(v, (char*)pExpr->token.z, pExpr->token.n); 1776 break; 1777 } 1778 case TK_FLOAT: 1779 case TK_STRING: { 1780 assert( TK_FLOAT==OP_Real ); 1781 assert( TK_STRING==OP_String8 ); 1782 sqlite3DequoteExpr(pParse->db, pExpr); 1783 sqlite3VdbeOp3(v, op, 0, 0, (char*)pExpr->token.z, pExpr->token.n); 1784 break; 1785 } 1786 case TK_NULL: { 1787 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1788 break; 1789 } 1790 #ifndef SQLITE_OMIT_BLOB_LITERAL 1791 case TK_BLOB: { 1792 int n; 1793 const char *z; 1794 assert( TK_BLOB==OP_HexBlob ); 1795 n = pExpr->token.n - 3; 1796 z = (char*)pExpr->token.z + 2; 1797 assert( n>=0 ); 1798 if( n==0 ){ 1799 z = ""; 1800 } 1801 sqlite3VdbeOp3(v, op, 0, 0, z, n); 1802 break; 1803 } 1804 #endif 1805 case TK_VARIABLE: { 1806 sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0); 1807 if( pExpr->token.n>1 ){ 1808 sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n); 1809 } 1810 break; 1811 } 1812 case TK_REGISTER: { 1813 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0); 1814 break; 1815 } 1816 #ifndef SQLITE_OMIT_CAST 1817 case TK_CAST: { 1818 /* Expressions of the form: CAST(pLeft AS token) */ 1819 int aff, to_op; 1820 sqlite3ExprCode(pParse, pExpr->pLeft); 1821 aff = sqlite3AffinityType(&pExpr->token); 1822 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 1823 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 1824 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 1825 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 1826 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 1827 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 1828 sqlite3VdbeAddOp(v, to_op, 0, 0); 1829 stackChng = 0; 1830 break; 1831 } 1832 #endif /* SQLITE_OMIT_CAST */ 1833 case TK_LT: 1834 case TK_LE: 1835 case TK_GT: 1836 case TK_GE: 1837 case TK_NE: 1838 case TK_EQ: { 1839 assert( TK_LT==OP_Lt ); 1840 assert( TK_LE==OP_Le ); 1841 assert( TK_GT==OP_Gt ); 1842 assert( TK_GE==OP_Ge ); 1843 assert( TK_EQ==OP_Eq ); 1844 assert( TK_NE==OP_Ne ); 1845 sqlite3ExprCode(pParse, pExpr->pLeft); 1846 sqlite3ExprCode(pParse, pExpr->pRight); 1847 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0); 1848 stackChng = -1; 1849 break; 1850 } 1851 case TK_AND: 1852 case TK_OR: 1853 case TK_PLUS: 1854 case TK_STAR: 1855 case TK_MINUS: 1856 case TK_REM: 1857 case TK_BITAND: 1858 case TK_BITOR: 1859 case TK_SLASH: 1860 case TK_LSHIFT: 1861 case TK_RSHIFT: 1862 case TK_CONCAT: { 1863 assert( TK_AND==OP_And ); 1864 assert( TK_OR==OP_Or ); 1865 assert( TK_PLUS==OP_Add ); 1866 assert( TK_MINUS==OP_Subtract ); 1867 assert( TK_REM==OP_Remainder ); 1868 assert( TK_BITAND==OP_BitAnd ); 1869 assert( TK_BITOR==OP_BitOr ); 1870 assert( TK_SLASH==OP_Divide ); 1871 assert( TK_LSHIFT==OP_ShiftLeft ); 1872 assert( TK_RSHIFT==OP_ShiftRight ); 1873 assert( TK_CONCAT==OP_Concat ); 1874 sqlite3ExprCode(pParse, pExpr->pLeft); 1875 sqlite3ExprCode(pParse, pExpr->pRight); 1876 sqlite3VdbeAddOp(v, op, 0, 0); 1877 stackChng = -1; 1878 break; 1879 } 1880 case TK_UMINUS: { 1881 Expr *pLeft = pExpr->pLeft; 1882 assert( pLeft ); 1883 if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ 1884 Token *p = &pLeft->token; 1885 char *z = sqlite3MPrintf(pParse->db, "-%.*s", p->n, p->z); 1886 if( pLeft->op==TK_FLOAT ){ 1887 sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1); 1888 }else{ 1889 codeInteger(v, z, p->n+1); 1890 } 1891 sqlite3_free(z); 1892 break; 1893 } 1894 /* Fall through into TK_NOT */ 1895 } 1896 case TK_BITNOT: 1897 case TK_NOT: { 1898 assert( TK_BITNOT==OP_BitNot ); 1899 assert( TK_NOT==OP_Not ); 1900 sqlite3ExprCode(pParse, pExpr->pLeft); 1901 sqlite3VdbeAddOp(v, op, 0, 0); 1902 stackChng = 0; 1903 break; 1904 } 1905 case TK_ISNULL: 1906 case TK_NOTNULL: { 1907 int dest; 1908 assert( TK_ISNULL==OP_IsNull ); 1909 assert( TK_NOTNULL==OP_NotNull ); 1910 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 1911 sqlite3ExprCode(pParse, pExpr->pLeft); 1912 dest = sqlite3VdbeCurrentAddr(v) + 2; 1913 sqlite3VdbeAddOp(v, op, 1, dest); 1914 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); 1915 stackChng = 0; 1916 break; 1917 } 1918 case TK_AGG_FUNCTION: { 1919 AggInfo *pInfo = pExpr->pAggInfo; 1920 if( pInfo==0 ){ 1921 sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", 1922 &pExpr->span); 1923 }else{ 1924 sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0); 1925 } 1926 break; 1927 } 1928 case TK_CONST_FUNC: 1929 case TK_FUNCTION: { 1930 ExprList *pList = pExpr->pList; 1931 int nExpr = pList ? pList->nExpr : 0; 1932 FuncDef *pDef; 1933 int nId; 1934 const char *zId; 1935 int constMask = 0; 1936 int i; 1937 sqlite3 *db = pParse->db; 1938 u8 enc = ENC(db); 1939 CollSeq *pColl = 0; 1940 1941 zId = (char*)pExpr->token.z; 1942 nId = pExpr->token.n; 1943 pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); 1944 assert( pDef!=0 ); 1945 nExpr = sqlite3ExprCodeExprList(pParse, pList); 1946 #ifndef SQLITE_OMIT_VIRTUALTABLE 1947 /* Possibly overload the function if the first argument is 1948 ** a virtual table column. 1949 ** 1950 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 1951 ** second argument, not the first, as the argument to test to 1952 ** see if it is a column in a virtual table. This is done because 1953 ** the left operand of infix functions (the operand we want to 1954 ** control overloading) ends up as the second argument to the 1955 ** function. The expression "A glob B" is equivalent to 1956 ** "glob(B,A). We want to use the A in "A glob B" to test 1957 ** for function overloading. But we use the B term in "glob(B,A)". 1958 */ 1959 if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){ 1960 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr); 1961 }else if( nExpr>0 ){ 1962 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr); 1963 } 1964 #endif 1965 for(i=0; i<nExpr && i<32; i++){ 1966 if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ 1967 constMask |= (1<<i); 1968 } 1969 if( pDef->needCollSeq && !pColl ){ 1970 pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); 1971 } 1972 } 1973 if( pDef->needCollSeq ){ 1974 if( !pColl ) pColl = pParse->db->pDfltColl; 1975 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); 1976 } 1977 sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF); 1978 stackChng = 1-nExpr; 1979 break; 1980 } 1981 #ifndef SQLITE_OMIT_SUBQUERY 1982 case TK_EXISTS: 1983 case TK_SELECT: { 1984 if( pExpr->iColumn==0 ){ 1985 sqlite3CodeSubselect(pParse, pExpr); 1986 } 1987 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); 1988 VdbeComment((v, "# load subquery result")); 1989 break; 1990 } 1991 case TK_IN: { 1992 int addr; 1993 char affinity; 1994 int ckOffset = pParse->ckOffset; 1995 sqlite3CodeSubselect(pParse, pExpr); 1996 1997 /* Figure out the affinity to use to create a key from the results 1998 ** of the expression. affinityStr stores a static string suitable for 1999 ** P3 of OP_MakeRecord. 2000 */ 2001 affinity = comparisonAffinity(pExpr); 2002 2003 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 2004 pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0); 2005 2006 /* Code the <expr> from "<expr> IN (...)". The temporary table 2007 ** pExpr->iTable contains the values that make up the (...) set. 2008 */ 2009 sqlite3ExprCode(pParse, pExpr->pLeft); 2010 addr = sqlite3VdbeCurrentAddr(v); 2011 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4); /* addr + 0 */ 2012 sqlite3VdbeAddOp(v, OP_Pop, 2, 0); 2013 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 2014 sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7); 2015 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); /* addr + 4 */ 2016 sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7); 2017 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */ 2018 2019 break; 2020 } 2021 #endif 2022 case TK_BETWEEN: { 2023 Expr *pLeft = pExpr->pLeft; 2024 struct ExprList_item *pLItem = pExpr->pList->a; 2025 Expr *pRight = pLItem->pExpr; 2026 sqlite3ExprCode(pParse, pLeft); 2027 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 2028 sqlite3ExprCode(pParse, pRight); 2029 codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0); 2030 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 2031 pLItem++; 2032 pRight = pLItem->pExpr; 2033 sqlite3ExprCode(pParse, pRight); 2034 codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0); 2035 sqlite3VdbeAddOp(v, OP_And, 0, 0); 2036 break; 2037 } 2038 case TK_UPLUS: { 2039 sqlite3ExprCode(pParse, pExpr->pLeft); 2040 stackChng = 0; 2041 break; 2042 } 2043 case TK_CASE: { 2044 int expr_end_label; 2045 int jumpInst; 2046 int nExpr; 2047 int i; 2048 ExprList *pEList; 2049 struct ExprList_item *aListelem; 2050 2051 assert(pExpr->pList); 2052 assert((pExpr->pList->nExpr % 2) == 0); 2053 assert(pExpr->pList->nExpr > 0); 2054 pEList = pExpr->pList; 2055 aListelem = pEList->a; 2056 nExpr = pEList->nExpr; 2057 expr_end_label = sqlite3VdbeMakeLabel(v); 2058 if( pExpr->pLeft ){ 2059 sqlite3ExprCode(pParse, pExpr->pLeft); 2060 } 2061 for(i=0; i<nExpr; i=i+2){ 2062 sqlite3ExprCode(pParse, aListelem[i].pExpr); 2063 if( pExpr->pLeft ){ 2064 sqlite3VdbeAddOp(v, OP_Dup, 1, 1); 2065 jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr, 2066 OP_Ne, 0, 1); 2067 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2068 }else{ 2069 jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0); 2070 } 2071 sqlite3ExprCode(pParse, aListelem[i+1].pExpr); 2072 sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label); 2073 sqlite3VdbeJumpHere(v, jumpInst); 2074 } 2075 if( pExpr->pLeft ){ 2076 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2077 } 2078 if( pExpr->pRight ){ 2079 sqlite3ExprCode(pParse, pExpr->pRight); 2080 }else{ 2081 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 2082 } 2083 sqlite3VdbeResolveLabel(v, expr_end_label); 2084 break; 2085 } 2086 #ifndef SQLITE_OMIT_TRIGGER 2087 case TK_RAISE: { 2088 if( !pParse->trigStack ){ 2089 sqlite3ErrorMsg(pParse, 2090 "RAISE() may only be used within a trigger-program"); 2091 return; 2092 } 2093 if( pExpr->iColumn!=OE_Ignore ){ 2094 assert( pExpr->iColumn==OE_Rollback || 2095 pExpr->iColumn == OE_Abort || 2096 pExpr->iColumn == OE_Fail ); 2097 sqlite3DequoteExpr(pParse->db, pExpr); 2098 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 2099 (char*)pExpr->token.z, pExpr->token.n); 2100 } else { 2101 assert( pExpr->iColumn == OE_Ignore ); 2102 sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0); 2103 sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump); 2104 VdbeComment((v, "# raise(IGNORE)")); 2105 } 2106 stackChng = 0; 2107 break; 2108 } 2109 #endif 2110 } 2111 2112 if( pParse->ckOffset ){ 2113 pParse->ckOffset += stackChng; 2114 assert( pParse->ckOffset ); 2115 } 2116 } 2117 2118 #ifndef SQLITE_OMIT_TRIGGER 2119 /* 2120 ** Generate code that evalutes the given expression and leaves the result 2121 ** on the stack. See also sqlite3ExprCode(). 2122 ** 2123 ** This routine might also cache the result and modify the pExpr tree 2124 ** so that it will make use of the cached result on subsequent evaluations 2125 ** rather than evaluate the whole expression again. Trivial expressions are 2126 ** not cached. If the expression is cached, its result is stored in a 2127 ** memory location. 2128 */ 2129 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){ 2130 Vdbe *v = pParse->pVdbe; 2131 int iMem; 2132 int addr1, addr2; 2133 if( v==0 ) return; 2134 addr1 = sqlite3VdbeCurrentAddr(v); 2135 sqlite3ExprCode(pParse, pExpr); 2136 addr2 = sqlite3VdbeCurrentAddr(v); 2137 if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){ 2138 iMem = pExpr->iTable = pParse->nMem++; 2139 sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); 2140 pExpr->op = TK_REGISTER; 2141 } 2142 } 2143 #endif 2144 2145 /* 2146 ** Generate code that pushes the value of every element of the given 2147 ** expression list onto the stack. 2148 ** 2149 ** Return the number of elements pushed onto the stack. 2150 */ 2151 int sqlite3ExprCodeExprList( 2152 Parse *pParse, /* Parsing context */ 2153 ExprList *pList /* The expression list to be coded */ 2154 ){ 2155 struct ExprList_item *pItem; 2156 int i, n; 2157 if( pList==0 ) return 0; 2158 n = pList->nExpr; 2159 for(pItem=pList->a, i=n; i>0; i--, pItem++){ 2160 sqlite3ExprCode(pParse, pItem->pExpr); 2161 } 2162 return n; 2163 } 2164 2165 /* 2166 ** Generate code for a boolean expression such that a jump is made 2167 ** to the label "dest" if the expression is true but execution 2168 ** continues straight thru if the expression is false. 2169 ** 2170 ** If the expression evaluates to NULL (neither true nor false), then 2171 ** take the jump if the jumpIfNull flag is true. 2172 ** 2173 ** This code depends on the fact that certain token values (ex: TK_EQ) 2174 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 2175 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 2176 ** the make process cause these values to align. Assert()s in the code 2177 ** below verify that the numbers are aligned correctly. 2178 */ 2179 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2180 Vdbe *v = pParse->pVdbe; 2181 int op = 0; 2182 int ckOffset = pParse->ckOffset; 2183 if( v==0 || pExpr==0 ) return; 2184 op = pExpr->op; 2185 switch( op ){ 2186 case TK_AND: { 2187 int d2 = sqlite3VdbeMakeLabel(v); 2188 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull); 2189 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2190 sqlite3VdbeResolveLabel(v, d2); 2191 break; 2192 } 2193 case TK_OR: { 2194 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 2195 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2196 break; 2197 } 2198 case TK_NOT: { 2199 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 2200 break; 2201 } 2202 case TK_LT: 2203 case TK_LE: 2204 case TK_GT: 2205 case TK_GE: 2206 case TK_NE: 2207 case TK_EQ: { 2208 assert( TK_LT==OP_Lt ); 2209 assert( TK_LE==OP_Le ); 2210 assert( TK_GT==OP_Gt ); 2211 assert( TK_GE==OP_Ge ); 2212 assert( TK_EQ==OP_Eq ); 2213 assert( TK_NE==OP_Ne ); 2214 sqlite3ExprCode(pParse, pExpr->pLeft); 2215 sqlite3ExprCode(pParse, pExpr->pRight); 2216 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); 2217 break; 2218 } 2219 case TK_ISNULL: 2220 case TK_NOTNULL: { 2221 assert( TK_ISNULL==OP_IsNull ); 2222 assert( TK_NOTNULL==OP_NotNull ); 2223 sqlite3ExprCode(pParse, pExpr->pLeft); 2224 sqlite3VdbeAddOp(v, op, 1, dest); 2225 break; 2226 } 2227 case TK_BETWEEN: { 2228 /* The expression "x BETWEEN y AND z" is implemented as: 2229 ** 2230 ** 1 IF (x < y) GOTO 3 2231 ** 2 IF (x <= z) GOTO <dest> 2232 ** 3 ... 2233 */ 2234 int addr; 2235 Expr *pLeft = pExpr->pLeft; 2236 Expr *pRight = pExpr->pList->a[0].pExpr; 2237 sqlite3ExprCode(pParse, pLeft); 2238 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 2239 sqlite3ExprCode(pParse, pRight); 2240 addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull); 2241 2242 pRight = pExpr->pList->a[1].pExpr; 2243 sqlite3ExprCode(pParse, pRight); 2244 codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull); 2245 2246 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 2247 sqlite3VdbeJumpHere(v, addr); 2248 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2249 break; 2250 } 2251 default: { 2252 sqlite3ExprCode(pParse, pExpr); 2253 sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest); 2254 break; 2255 } 2256 } 2257 pParse->ckOffset = ckOffset; 2258 } 2259 2260 /* 2261 ** Generate code for a boolean expression such that a jump is made 2262 ** to the label "dest" if the expression is false but execution 2263 ** continues straight thru if the expression is true. 2264 ** 2265 ** If the expression evaluates to NULL (neither true nor false) then 2266 ** jump if jumpIfNull is true or fall through if jumpIfNull is false. 2267 */ 2268 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2269 Vdbe *v = pParse->pVdbe; 2270 int op = 0; 2271 int ckOffset = pParse->ckOffset; 2272 if( v==0 || pExpr==0 ) return; 2273 2274 /* The value of pExpr->op and op are related as follows: 2275 ** 2276 ** pExpr->op op 2277 ** --------- ---------- 2278 ** TK_ISNULL OP_NotNull 2279 ** TK_NOTNULL OP_IsNull 2280 ** TK_NE OP_Eq 2281 ** TK_EQ OP_Ne 2282 ** TK_GT OP_Le 2283 ** TK_LE OP_Gt 2284 ** TK_GE OP_Lt 2285 ** TK_LT OP_Ge 2286 ** 2287 ** For other values of pExpr->op, op is undefined and unused. 2288 ** The value of TK_ and OP_ constants are arranged such that we 2289 ** can compute the mapping above using the following expression. 2290 ** Assert()s verify that the computation is correct. 2291 */ 2292 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 2293 2294 /* Verify correct alignment of TK_ and OP_ constants 2295 */ 2296 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 2297 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 2298 assert( pExpr->op!=TK_NE || op==OP_Eq ); 2299 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 2300 assert( pExpr->op!=TK_LT || op==OP_Ge ); 2301 assert( pExpr->op!=TK_LE || op==OP_Gt ); 2302 assert( pExpr->op!=TK_GT || op==OP_Le ); 2303 assert( pExpr->op!=TK_GE || op==OP_Lt ); 2304 2305 switch( pExpr->op ){ 2306 case TK_AND: { 2307 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 2308 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 2309 break; 2310 } 2311 case TK_OR: { 2312 int d2 = sqlite3VdbeMakeLabel(v); 2313 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull); 2314 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 2315 sqlite3VdbeResolveLabel(v, d2); 2316 break; 2317 } 2318 case TK_NOT: { 2319 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 2320 break; 2321 } 2322 case TK_LT: 2323 case TK_LE: 2324 case TK_GT: 2325 case TK_GE: 2326 case TK_NE: 2327 case TK_EQ: { 2328 sqlite3ExprCode(pParse, pExpr->pLeft); 2329 sqlite3ExprCode(pParse, pExpr->pRight); 2330 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); 2331 break; 2332 } 2333 case TK_ISNULL: 2334 case TK_NOTNULL: { 2335 sqlite3ExprCode(pParse, pExpr->pLeft); 2336 sqlite3VdbeAddOp(v, op, 1, dest); 2337 break; 2338 } 2339 case TK_BETWEEN: { 2340 /* The expression is "x BETWEEN y AND z". It is implemented as: 2341 ** 2342 ** 1 IF (x >= y) GOTO 3 2343 ** 2 GOTO <dest> 2344 ** 3 IF (x > z) GOTO <dest> 2345 */ 2346 int addr; 2347 Expr *pLeft = pExpr->pLeft; 2348 Expr *pRight = pExpr->pList->a[0].pExpr; 2349 sqlite3ExprCode(pParse, pLeft); 2350 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 2351 sqlite3ExprCode(pParse, pRight); 2352 addr = sqlite3VdbeCurrentAddr(v); 2353 codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull); 2354 2355 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2356 sqlite3VdbeAddOp(v, OP_Goto, 0, dest); 2357 pRight = pExpr->pList->a[1].pExpr; 2358 sqlite3ExprCode(pParse, pRight); 2359 codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull); 2360 break; 2361 } 2362 default: { 2363 sqlite3ExprCode(pParse, pExpr); 2364 sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest); 2365 break; 2366 } 2367 } 2368 pParse->ckOffset = ckOffset; 2369 } 2370 2371 /* 2372 ** Do a deep comparison of two expression trees. Return TRUE (non-zero) 2373 ** if they are identical and return FALSE if they differ in any way. 2374 ** 2375 ** Sometimes this routine will return FALSE even if the two expressions 2376 ** really are equivalent. If we cannot prove that the expressions are 2377 ** identical, we return FALSE just to be safe. So if this routine 2378 ** returns false, then you do not really know for certain if the two 2379 ** expressions are the same. But if you get a TRUE return, then you 2380 ** can be sure the expressions are the same. In the places where 2381 ** this routine is used, it does not hurt to get an extra FALSE - that 2382 ** just might result in some slightly slower code. But returning 2383 ** an incorrect TRUE could lead to a malfunction. 2384 */ 2385 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 2386 int i; 2387 if( pA==0||pB==0 ){ 2388 return pB==pA; 2389 } 2390 if( pA->op!=pB->op ) return 0; 2391 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; 2392 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; 2393 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; 2394 if( pA->pList ){ 2395 if( pB->pList==0 ) return 0; 2396 if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; 2397 for(i=0; i<pA->pList->nExpr; i++){ 2398 if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ 2399 return 0; 2400 } 2401 } 2402 }else if( pB->pList ){ 2403 return 0; 2404 } 2405 if( pA->pSelect || pB->pSelect ) return 0; 2406 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; 2407 if( pA->op!=TK_COLUMN && pA->token.z ){ 2408 if( pB->token.z==0 ) return 0; 2409 if( pB->token.n!=pA->token.n ) return 0; 2410 if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ 2411 return 0; 2412 } 2413 } 2414 return 1; 2415 } 2416 2417 2418 /* 2419 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 2420 ** the new element. Return a negative number if malloc fails. 2421 */ 2422 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 2423 int i; 2424 pInfo->aCol = sqlite3ArrayAllocate( 2425 db, 2426 pInfo->aCol, 2427 sizeof(pInfo->aCol[0]), 2428 3, 2429 &pInfo->nColumn, 2430 &pInfo->nColumnAlloc, 2431 &i 2432 ); 2433 return i; 2434 } 2435 2436 /* 2437 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 2438 ** the new element. Return a negative number if malloc fails. 2439 */ 2440 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 2441 int i; 2442 pInfo->aFunc = sqlite3ArrayAllocate( 2443 db, 2444 pInfo->aFunc, 2445 sizeof(pInfo->aFunc[0]), 2446 3, 2447 &pInfo->nFunc, 2448 &pInfo->nFuncAlloc, 2449 &i 2450 ); 2451 return i; 2452 } 2453 2454 /* 2455 ** This is an xFunc for walkExprTree() used to implement 2456 ** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 2457 ** for additional information. 2458 ** 2459 ** This routine analyzes the aggregate function at pExpr. 2460 */ 2461 static int analyzeAggregate(void *pArg, Expr *pExpr){ 2462 int i; 2463 NameContext *pNC = (NameContext *)pArg; 2464 Parse *pParse = pNC->pParse; 2465 SrcList *pSrcList = pNC->pSrcList; 2466 AggInfo *pAggInfo = pNC->pAggInfo; 2467 2468 switch( pExpr->op ){ 2469 case TK_AGG_COLUMN: 2470 case TK_COLUMN: { 2471 /* Check to see if the column is in one of the tables in the FROM 2472 ** clause of the aggregate query */ 2473 if( pSrcList ){ 2474 struct SrcList_item *pItem = pSrcList->a; 2475 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 2476 struct AggInfo_col *pCol; 2477 if( pExpr->iTable==pItem->iCursor ){ 2478 /* If we reach this point, it means that pExpr refers to a table 2479 ** that is in the FROM clause of the aggregate query. 2480 ** 2481 ** Make an entry for the column in pAggInfo->aCol[] if there 2482 ** is not an entry there already. 2483 */ 2484 int k; 2485 pCol = pAggInfo->aCol; 2486 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 2487 if( pCol->iTable==pExpr->iTable && 2488 pCol->iColumn==pExpr->iColumn ){ 2489 break; 2490 } 2491 } 2492 if( (k>=pAggInfo->nColumn) 2493 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 2494 ){ 2495 pCol = &pAggInfo->aCol[k]; 2496 pCol->pTab = pExpr->pTab; 2497 pCol->iTable = pExpr->iTable; 2498 pCol->iColumn = pExpr->iColumn; 2499 pCol->iMem = pParse->nMem++; 2500 pCol->iSorterColumn = -1; 2501 pCol->pExpr = pExpr; 2502 if( pAggInfo->pGroupBy ){ 2503 int j, n; 2504 ExprList *pGB = pAggInfo->pGroupBy; 2505 struct ExprList_item *pTerm = pGB->a; 2506 n = pGB->nExpr; 2507 for(j=0; j<n; j++, pTerm++){ 2508 Expr *pE = pTerm->pExpr; 2509 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 2510 pE->iColumn==pExpr->iColumn ){ 2511 pCol->iSorterColumn = j; 2512 break; 2513 } 2514 } 2515 } 2516 if( pCol->iSorterColumn<0 ){ 2517 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 2518 } 2519 } 2520 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 2521 ** because it was there before or because we just created it). 2522 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 2523 ** pAggInfo->aCol[] entry. 2524 */ 2525 pExpr->pAggInfo = pAggInfo; 2526 pExpr->op = TK_AGG_COLUMN; 2527 pExpr->iAgg = k; 2528 break; 2529 } /* endif pExpr->iTable==pItem->iCursor */ 2530 } /* end loop over pSrcList */ 2531 } 2532 return 1; 2533 } 2534 case TK_AGG_FUNCTION: { 2535 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 2536 ** to be ignored */ 2537 if( pNC->nDepth==0 ){ 2538 /* Check to see if pExpr is a duplicate of another aggregate 2539 ** function that is already in the pAggInfo structure 2540 */ 2541 struct AggInfo_func *pItem = pAggInfo->aFunc; 2542 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 2543 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ 2544 break; 2545 } 2546 } 2547 if( i>=pAggInfo->nFunc ){ 2548 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 2549 */ 2550 u8 enc = ENC(pParse->db); 2551 i = addAggInfoFunc(pParse->db, pAggInfo); 2552 if( i>=0 ){ 2553 pItem = &pAggInfo->aFunc[i]; 2554 pItem->pExpr = pExpr; 2555 pItem->iMem = pParse->nMem++; 2556 pItem->pFunc = sqlite3FindFunction(pParse->db, 2557 (char*)pExpr->token.z, pExpr->token.n, 2558 pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); 2559 if( pExpr->flags & EP_Distinct ){ 2560 pItem->iDistinct = pParse->nTab++; 2561 }else{ 2562 pItem->iDistinct = -1; 2563 } 2564 } 2565 } 2566 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 2567 */ 2568 pExpr->iAgg = i; 2569 pExpr->pAggInfo = pAggInfo; 2570 return 1; 2571 } 2572 } 2573 } 2574 2575 /* Recursively walk subqueries looking for TK_COLUMN nodes that need 2576 ** to be changed to TK_AGG_COLUMN. But increment nDepth so that 2577 ** TK_AGG_FUNCTION nodes in subqueries will be unchanged. 2578 */ 2579 if( pExpr->pSelect ){ 2580 pNC->nDepth++; 2581 walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); 2582 pNC->nDepth--; 2583 } 2584 return 0; 2585 } 2586 2587 /* 2588 ** Analyze the given expression looking for aggregate functions and 2589 ** for variables that need to be added to the pParse->aAgg[] array. 2590 ** Make additional entries to the pParse->aAgg[] array as necessary. 2591 ** 2592 ** This routine should only be called after the expression has been 2593 ** analyzed by sqlite3ExprResolveNames(). 2594 ** 2595 ** If errors are seen, leave an error message in zErrMsg and return 2596 ** the number of errors. 2597 */ 2598 int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 2599 int nErr = pNC->pParse->nErr; 2600 walkExprTree(pExpr, analyzeAggregate, pNC); 2601 return pNC->pParse->nErr - nErr; 2602 } 2603 2604 /* 2605 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 2606 ** expression list. Return the number of errors. 2607 ** 2608 ** If an error is found, the analysis is cut short. 2609 */ 2610 int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 2611 struct ExprList_item *pItem; 2612 int i; 2613 int nErr = 0; 2614 if( pList ){ 2615 for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){ 2616 nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 2617 } 2618 } 2619 return nErr; 2620 } 2621