xref: /sqlite-3.40.0/src/expr.c (revision 962f9669)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expresssions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op;
35   pExpr = sqlite3ExprSkipCollate(pExpr);
36   op = pExpr->op;
37   if( op==TK_SELECT ){
38     assert( pExpr->flags&EP_xIsSelect );
39     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
40   }
41 #ifndef SQLITE_OMIT_CAST
42   if( op==TK_CAST ){
43     assert( !ExprHasProperty(pExpr, EP_IntValue) );
44     return sqlite3AffinityType(pExpr->u.zToken, 0);
45   }
46 #endif
47   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
48    && pExpr->pTab!=0
49   ){
50     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
51     ** a TK_COLUMN but was previously evaluated and cached in a register */
52     int j = pExpr->iColumn;
53     if( j<0 ) return SQLITE_AFF_INTEGER;
54     assert( pExpr->pTab && j<pExpr->pTab->nCol );
55     return pExpr->pTab->aCol[j].affinity;
56   }
57   return pExpr->affinity;
58 }
59 
60 /*
61 ** Set the collating sequence for expression pExpr to be the collating
62 ** sequence named by pToken.   Return a pointer to a new Expr node that
63 ** implements the COLLATE operator.
64 **
65 ** If a memory allocation error occurs, that fact is recorded in pParse->db
66 ** and the pExpr parameter is returned unchanged.
67 */
68 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr *pExpr, Token *pCollName){
69   if( pCollName->n>0 ){
70     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1);
71     if( pNew ){
72       pNew->pLeft = pExpr;
73       pNew->flags |= EP_Collate|EP_Skip;
74       pExpr = pNew;
75     }
76   }
77   return pExpr;
78 }
79 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
80   Token s;
81   assert( zC!=0 );
82   s.z = zC;
83   s.n = sqlite3Strlen30(s.z);
84   return sqlite3ExprAddCollateToken(pParse, pExpr, &s);
85 }
86 
87 /*
88 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely()
89 ** or likelihood() function at the root of an expression.
90 */
91 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
92   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
93     if( ExprHasProperty(pExpr, EP_Unlikely) ){
94       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
95       assert( pExpr->x.pList->nExpr>0 );
96       assert( pExpr->op==TK_FUNCTION );
97       pExpr = pExpr->x.pList->a[0].pExpr;
98     }else{
99       assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS );
100       pExpr = pExpr->pLeft;
101     }
102   }
103   return pExpr;
104 }
105 
106 /*
107 ** Return the collation sequence for the expression pExpr. If
108 ** there is no defined collating sequence, return NULL.
109 **
110 ** The collating sequence might be determined by a COLLATE operator
111 ** or by the presence of a column with a defined collating sequence.
112 ** COLLATE operators take first precedence.  Left operands take
113 ** precedence over right operands.
114 */
115 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
116   sqlite3 *db = pParse->db;
117   CollSeq *pColl = 0;
118   Expr *p = pExpr;
119   while( p ){
120     int op = p->op;
121     if( op==TK_CAST || op==TK_UPLUS ){
122       p = p->pLeft;
123       continue;
124     }
125     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
126       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
127       break;
128     }
129     if( p->pTab!=0
130      && (op==TK_AGG_COLUMN || op==TK_COLUMN
131           || op==TK_REGISTER || op==TK_TRIGGER)
132     ){
133       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
134       ** a TK_COLUMN but was previously evaluated and cached in a register */
135       int j = p->iColumn;
136       if( j>=0 ){
137         const char *zColl = p->pTab->aCol[j].zColl;
138         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
139       }
140       break;
141     }
142     if( p->flags & EP_Collate ){
143       if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){
144         p = p->pLeft;
145       }else{
146         p = p->pRight;
147       }
148     }else{
149       break;
150     }
151   }
152   if( sqlite3CheckCollSeq(pParse, pColl) ){
153     pColl = 0;
154   }
155   return pColl;
156 }
157 
158 /*
159 ** pExpr is an operand of a comparison operator.  aff2 is the
160 ** type affinity of the other operand.  This routine returns the
161 ** type affinity that should be used for the comparison operator.
162 */
163 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
164   char aff1 = sqlite3ExprAffinity(pExpr);
165   if( aff1 && aff2 ){
166     /* Both sides of the comparison are columns. If one has numeric
167     ** affinity, use that. Otherwise use no affinity.
168     */
169     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
170       return SQLITE_AFF_NUMERIC;
171     }else{
172       return SQLITE_AFF_NONE;
173     }
174   }else if( !aff1 && !aff2 ){
175     /* Neither side of the comparison is a column.  Compare the
176     ** results directly.
177     */
178     return SQLITE_AFF_NONE;
179   }else{
180     /* One side is a column, the other is not. Use the columns affinity. */
181     assert( aff1==0 || aff2==0 );
182     return (aff1 + aff2);
183   }
184 }
185 
186 /*
187 ** pExpr is a comparison operator.  Return the type affinity that should
188 ** be applied to both operands prior to doing the comparison.
189 */
190 static char comparisonAffinity(Expr *pExpr){
191   char aff;
192   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
193           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
194           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
195   assert( pExpr->pLeft );
196   aff = sqlite3ExprAffinity(pExpr->pLeft);
197   if( pExpr->pRight ){
198     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
199   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
200     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
201   }else if( !aff ){
202     aff = SQLITE_AFF_NONE;
203   }
204   return aff;
205 }
206 
207 /*
208 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
209 ** idx_affinity is the affinity of an indexed column. Return true
210 ** if the index with affinity idx_affinity may be used to implement
211 ** the comparison in pExpr.
212 */
213 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
214   char aff = comparisonAffinity(pExpr);
215   switch( aff ){
216     case SQLITE_AFF_NONE:
217       return 1;
218     case SQLITE_AFF_TEXT:
219       return idx_affinity==SQLITE_AFF_TEXT;
220     default:
221       return sqlite3IsNumericAffinity(idx_affinity);
222   }
223 }
224 
225 /*
226 ** Return the P5 value that should be used for a binary comparison
227 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
228 */
229 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
230   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
231   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
232   return aff;
233 }
234 
235 /*
236 ** Return a pointer to the collation sequence that should be used by
237 ** a binary comparison operator comparing pLeft and pRight.
238 **
239 ** If the left hand expression has a collating sequence type, then it is
240 ** used. Otherwise the collation sequence for the right hand expression
241 ** is used, or the default (BINARY) if neither expression has a collating
242 ** type.
243 **
244 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
245 ** it is not considered.
246 */
247 CollSeq *sqlite3BinaryCompareCollSeq(
248   Parse *pParse,
249   Expr *pLeft,
250   Expr *pRight
251 ){
252   CollSeq *pColl;
253   assert( pLeft );
254   if( pLeft->flags & EP_Collate ){
255     pColl = sqlite3ExprCollSeq(pParse, pLeft);
256   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
257     pColl = sqlite3ExprCollSeq(pParse, pRight);
258   }else{
259     pColl = sqlite3ExprCollSeq(pParse, pLeft);
260     if( !pColl ){
261       pColl = sqlite3ExprCollSeq(pParse, pRight);
262     }
263   }
264   return pColl;
265 }
266 
267 /*
268 ** Generate code for a comparison operator.
269 */
270 static int codeCompare(
271   Parse *pParse,    /* The parsing (and code generating) context */
272   Expr *pLeft,      /* The left operand */
273   Expr *pRight,     /* The right operand */
274   int opcode,       /* The comparison opcode */
275   int in1, int in2, /* Register holding operands */
276   int dest,         /* Jump here if true.  */
277   int jumpIfNull    /* If true, jump if either operand is NULL */
278 ){
279   int p5;
280   int addr;
281   CollSeq *p4;
282 
283   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
284   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
285   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
286                            (void*)p4, P4_COLLSEQ);
287   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
288   return addr;
289 }
290 
291 #if SQLITE_MAX_EXPR_DEPTH>0
292 /*
293 ** Check that argument nHeight is less than or equal to the maximum
294 ** expression depth allowed. If it is not, leave an error message in
295 ** pParse.
296 */
297 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
298   int rc = SQLITE_OK;
299   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
300   if( nHeight>mxHeight ){
301     sqlite3ErrorMsg(pParse,
302        "Expression tree is too large (maximum depth %d)", mxHeight
303     );
304     rc = SQLITE_ERROR;
305   }
306   return rc;
307 }
308 
309 /* The following three functions, heightOfExpr(), heightOfExprList()
310 ** and heightOfSelect(), are used to determine the maximum height
311 ** of any expression tree referenced by the structure passed as the
312 ** first argument.
313 **
314 ** If this maximum height is greater than the current value pointed
315 ** to by pnHeight, the second parameter, then set *pnHeight to that
316 ** value.
317 */
318 static void heightOfExpr(Expr *p, int *pnHeight){
319   if( p ){
320     if( p->nHeight>*pnHeight ){
321       *pnHeight = p->nHeight;
322     }
323   }
324 }
325 static void heightOfExprList(ExprList *p, int *pnHeight){
326   if( p ){
327     int i;
328     for(i=0; i<p->nExpr; i++){
329       heightOfExpr(p->a[i].pExpr, pnHeight);
330     }
331   }
332 }
333 static void heightOfSelect(Select *p, int *pnHeight){
334   if( p ){
335     heightOfExpr(p->pWhere, pnHeight);
336     heightOfExpr(p->pHaving, pnHeight);
337     heightOfExpr(p->pLimit, pnHeight);
338     heightOfExpr(p->pOffset, pnHeight);
339     heightOfExprList(p->pEList, pnHeight);
340     heightOfExprList(p->pGroupBy, pnHeight);
341     heightOfExprList(p->pOrderBy, pnHeight);
342     heightOfSelect(p->pPrior, pnHeight);
343   }
344 }
345 
346 /*
347 ** Set the Expr.nHeight variable in the structure passed as an
348 ** argument. An expression with no children, Expr.pList or
349 ** Expr.pSelect member has a height of 1. Any other expression
350 ** has a height equal to the maximum height of any other
351 ** referenced Expr plus one.
352 */
353 static void exprSetHeight(Expr *p){
354   int nHeight = 0;
355   heightOfExpr(p->pLeft, &nHeight);
356   heightOfExpr(p->pRight, &nHeight);
357   if( ExprHasProperty(p, EP_xIsSelect) ){
358     heightOfSelect(p->x.pSelect, &nHeight);
359   }else{
360     heightOfExprList(p->x.pList, &nHeight);
361   }
362   p->nHeight = nHeight + 1;
363 }
364 
365 /*
366 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
367 ** the height is greater than the maximum allowed expression depth,
368 ** leave an error in pParse.
369 */
370 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
371   exprSetHeight(p);
372   sqlite3ExprCheckHeight(pParse, p->nHeight);
373 }
374 
375 /*
376 ** Return the maximum height of any expression tree referenced
377 ** by the select statement passed as an argument.
378 */
379 int sqlite3SelectExprHeight(Select *p){
380   int nHeight = 0;
381   heightOfSelect(p, &nHeight);
382   return nHeight;
383 }
384 #else
385   #define exprSetHeight(y)
386 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
387 
388 /*
389 ** This routine is the core allocator for Expr nodes.
390 **
391 ** Construct a new expression node and return a pointer to it.  Memory
392 ** for this node and for the pToken argument is a single allocation
393 ** obtained from sqlite3DbMalloc().  The calling function
394 ** is responsible for making sure the node eventually gets freed.
395 **
396 ** If dequote is true, then the token (if it exists) is dequoted.
397 ** If dequote is false, no dequoting is performance.  The deQuote
398 ** parameter is ignored if pToken is NULL or if the token does not
399 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
400 ** then the EP_DblQuoted flag is set on the expression node.
401 **
402 ** Special case:  If op==TK_INTEGER and pToken points to a string that
403 ** can be translated into a 32-bit integer, then the token is not
404 ** stored in u.zToken.  Instead, the integer values is written
405 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
406 ** is allocated to hold the integer text and the dequote flag is ignored.
407 */
408 Expr *sqlite3ExprAlloc(
409   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
410   int op,                 /* Expression opcode */
411   const Token *pToken,    /* Token argument.  Might be NULL */
412   int dequote             /* True to dequote */
413 ){
414   Expr *pNew;
415   int nExtra = 0;
416   int iValue = 0;
417 
418   if( pToken ){
419     if( op!=TK_INTEGER || pToken->z==0
420           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
421       nExtra = pToken->n+1;
422       assert( iValue>=0 );
423     }
424   }
425   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
426   if( pNew ){
427     pNew->op = (u8)op;
428     pNew->iAgg = -1;
429     if( pToken ){
430       if( nExtra==0 ){
431         pNew->flags |= EP_IntValue;
432         pNew->u.iValue = iValue;
433       }else{
434         int c;
435         pNew->u.zToken = (char*)&pNew[1];
436         assert( pToken->z!=0 || pToken->n==0 );
437         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
438         pNew->u.zToken[pToken->n] = 0;
439         if( dequote && nExtra>=3
440              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
441           sqlite3Dequote(pNew->u.zToken);
442           if( c=='"' ) pNew->flags |= EP_DblQuoted;
443         }
444       }
445     }
446 #if SQLITE_MAX_EXPR_DEPTH>0
447     pNew->nHeight = 1;
448 #endif
449   }
450   return pNew;
451 }
452 
453 /*
454 ** Allocate a new expression node from a zero-terminated token that has
455 ** already been dequoted.
456 */
457 Expr *sqlite3Expr(
458   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
459   int op,                 /* Expression opcode */
460   const char *zToken      /* Token argument.  Might be NULL */
461 ){
462   Token x;
463   x.z = zToken;
464   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
465   return sqlite3ExprAlloc(db, op, &x, 0);
466 }
467 
468 /*
469 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
470 **
471 ** If pRoot==NULL that means that a memory allocation error has occurred.
472 ** In that case, delete the subtrees pLeft and pRight.
473 */
474 void sqlite3ExprAttachSubtrees(
475   sqlite3 *db,
476   Expr *pRoot,
477   Expr *pLeft,
478   Expr *pRight
479 ){
480   if( pRoot==0 ){
481     assert( db->mallocFailed );
482     sqlite3ExprDelete(db, pLeft);
483     sqlite3ExprDelete(db, pRight);
484   }else{
485     if( pRight ){
486       pRoot->pRight = pRight;
487       pRoot->flags |= EP_Collate & pRight->flags;
488     }
489     if( pLeft ){
490       pRoot->pLeft = pLeft;
491       pRoot->flags |= EP_Collate & pLeft->flags;
492     }
493     exprSetHeight(pRoot);
494   }
495 }
496 
497 /*
498 ** Allocate a Expr node which joins as many as two subtrees.
499 **
500 ** One or both of the subtrees can be NULL.  Return a pointer to the new
501 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
502 ** free the subtrees and return NULL.
503 */
504 Expr *sqlite3PExpr(
505   Parse *pParse,          /* Parsing context */
506   int op,                 /* Expression opcode */
507   Expr *pLeft,            /* Left operand */
508   Expr *pRight,           /* Right operand */
509   const Token *pToken     /* Argument token */
510 ){
511   Expr *p;
512   if( op==TK_AND && pLeft && pRight ){
513     /* Take advantage of short-circuit false optimization for AND */
514     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
515   }else{
516     p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
517     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
518   }
519   if( p ) {
520     sqlite3ExprCheckHeight(pParse, p->nHeight);
521   }
522   return p;
523 }
524 
525 /*
526 ** If the expression is always either TRUE or FALSE (respectively),
527 ** then return 1.  If one cannot determine the truth value of the
528 ** expression at compile-time return 0.
529 **
530 ** This is an optimization.  If is OK to return 0 here even if
531 ** the expression really is always false or false (a false negative).
532 ** But it is a bug to return 1 if the expression might have different
533 ** boolean values in different circumstances (a false positive.)
534 **
535 ** Note that if the expression is part of conditional for a
536 ** LEFT JOIN, then we cannot determine at compile-time whether or not
537 ** is it true or false, so always return 0.
538 */
539 static int exprAlwaysTrue(Expr *p){
540   int v = 0;
541   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
542   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
543   return v!=0;
544 }
545 static int exprAlwaysFalse(Expr *p){
546   int v = 0;
547   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
548   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
549   return v==0;
550 }
551 
552 /*
553 ** Join two expressions using an AND operator.  If either expression is
554 ** NULL, then just return the other expression.
555 **
556 ** If one side or the other of the AND is known to be false, then instead
557 ** of returning an AND expression, just return a constant expression with
558 ** a value of false.
559 */
560 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
561   if( pLeft==0 ){
562     return pRight;
563   }else if( pRight==0 ){
564     return pLeft;
565   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
566     sqlite3ExprDelete(db, pLeft);
567     sqlite3ExprDelete(db, pRight);
568     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
569   }else{
570     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
571     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
572     return pNew;
573   }
574 }
575 
576 /*
577 ** Construct a new expression node for a function with multiple
578 ** arguments.
579 */
580 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
581   Expr *pNew;
582   sqlite3 *db = pParse->db;
583   assert( pToken );
584   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
585   if( pNew==0 ){
586     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
587     return 0;
588   }
589   pNew->x.pList = pList;
590   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
591   sqlite3ExprSetHeight(pParse, pNew);
592   return pNew;
593 }
594 
595 /*
596 ** Assign a variable number to an expression that encodes a wildcard
597 ** in the original SQL statement.
598 **
599 ** Wildcards consisting of a single "?" are assigned the next sequential
600 ** variable number.
601 **
602 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
603 ** sure "nnn" is not too be to avoid a denial of service attack when
604 ** the SQL statement comes from an external source.
605 **
606 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
607 ** as the previous instance of the same wildcard.  Or if this is the first
608 ** instance of the wildcard, the next sequenial variable number is
609 ** assigned.
610 */
611 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
612   sqlite3 *db = pParse->db;
613   const char *z;
614 
615   if( pExpr==0 ) return;
616   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
617   z = pExpr->u.zToken;
618   assert( z!=0 );
619   assert( z[0]!=0 );
620   if( z[1]==0 ){
621     /* Wildcard of the form "?".  Assign the next variable number */
622     assert( z[0]=='?' );
623     pExpr->iColumn = (ynVar)(++pParse->nVar);
624   }else{
625     ynVar x = 0;
626     u32 n = sqlite3Strlen30(z);
627     if( z[0]=='?' ){
628       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
629       ** use it as the variable number */
630       i64 i;
631       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
632       pExpr->iColumn = x = (ynVar)i;
633       testcase( i==0 );
634       testcase( i==1 );
635       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
636       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
637       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
638         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
639             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
640         x = 0;
641       }
642       if( i>pParse->nVar ){
643         pParse->nVar = (int)i;
644       }
645     }else{
646       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
647       ** number as the prior appearance of the same name, or if the name
648       ** has never appeared before, reuse the same variable number
649       */
650       ynVar i;
651       for(i=0; i<pParse->nzVar; i++){
652         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
653           pExpr->iColumn = x = (ynVar)i+1;
654           break;
655         }
656       }
657       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
658     }
659     if( x>0 ){
660       if( x>pParse->nzVar ){
661         char **a;
662         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
663         if( a==0 ) return;  /* Error reported through db->mallocFailed */
664         pParse->azVar = a;
665         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
666         pParse->nzVar = x;
667       }
668       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
669         sqlite3DbFree(db, pParse->azVar[x-1]);
670         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
671       }
672     }
673   }
674   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
675     sqlite3ErrorMsg(pParse, "too many SQL variables");
676   }
677 }
678 
679 /*
680 ** Recursively delete an expression tree.
681 */
682 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
683   if( p==0 ) return;
684   /* Sanity check: Assert that the IntValue is non-negative if it exists */
685   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
686   if( !ExprHasProperty(p, EP_TokenOnly) ){
687     /* The Expr.x union is never used at the same time as Expr.pRight */
688     assert( p->x.pList==0 || p->pRight==0 );
689     sqlite3ExprDelete(db, p->pLeft);
690     sqlite3ExprDelete(db, p->pRight);
691     if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
692     if( ExprHasProperty(p, EP_xIsSelect) ){
693       sqlite3SelectDelete(db, p->x.pSelect);
694     }else{
695       sqlite3ExprListDelete(db, p->x.pList);
696     }
697   }
698   if( !ExprHasProperty(p, EP_Static) ){
699     sqlite3DbFree(db, p);
700   }
701 }
702 
703 /*
704 ** Return the number of bytes allocated for the expression structure
705 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
706 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
707 */
708 static int exprStructSize(Expr *p){
709   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
710   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
711   return EXPR_FULLSIZE;
712 }
713 
714 /*
715 ** The dupedExpr*Size() routines each return the number of bytes required
716 ** to store a copy of an expression or expression tree.  They differ in
717 ** how much of the tree is measured.
718 **
719 **     dupedExprStructSize()     Size of only the Expr structure
720 **     dupedExprNodeSize()       Size of Expr + space for token
721 **     dupedExprSize()           Expr + token + subtree components
722 **
723 ***************************************************************************
724 **
725 ** The dupedExprStructSize() function returns two values OR-ed together:
726 ** (1) the space required for a copy of the Expr structure only and
727 ** (2) the EP_xxx flags that indicate what the structure size should be.
728 ** The return values is always one of:
729 **
730 **      EXPR_FULLSIZE
731 **      EXPR_REDUCEDSIZE   | EP_Reduced
732 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
733 **
734 ** The size of the structure can be found by masking the return value
735 ** of this routine with 0xfff.  The flags can be found by masking the
736 ** return value with EP_Reduced|EP_TokenOnly.
737 **
738 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
739 ** (unreduced) Expr objects as they or originally constructed by the parser.
740 ** During expression analysis, extra information is computed and moved into
741 ** later parts of teh Expr object and that extra information might get chopped
742 ** off if the expression is reduced.  Note also that it does not work to
743 ** make a EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
744 ** to reduce a pristine expression tree from the parser.  The implementation
745 ** of dupedExprStructSize() contain multiple assert() statements that attempt
746 ** to enforce this constraint.
747 */
748 static int dupedExprStructSize(Expr *p, int flags){
749   int nSize;
750   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
751   assert( EXPR_FULLSIZE<=0xfff );
752   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
753   if( 0==(flags&EXPRDUP_REDUCE) ){
754     nSize = EXPR_FULLSIZE;
755   }else{
756     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
757     assert( !ExprHasProperty(p, EP_FromJoin) );
758     assert( !ExprHasProperty(p, EP_MemToken) );
759     assert( !ExprHasProperty(p, EP_NoReduce) );
760     if( p->pLeft || p->x.pList ){
761       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
762     }else{
763       assert( p->pRight==0 );
764       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
765     }
766   }
767   return nSize;
768 }
769 
770 /*
771 ** This function returns the space in bytes required to store the copy
772 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
773 ** string is defined.)
774 */
775 static int dupedExprNodeSize(Expr *p, int flags){
776   int nByte = dupedExprStructSize(p, flags) & 0xfff;
777   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
778     nByte += sqlite3Strlen30(p->u.zToken)+1;
779   }
780   return ROUND8(nByte);
781 }
782 
783 /*
784 ** Return the number of bytes required to create a duplicate of the
785 ** expression passed as the first argument. The second argument is a
786 ** mask containing EXPRDUP_XXX flags.
787 **
788 ** The value returned includes space to create a copy of the Expr struct
789 ** itself and the buffer referred to by Expr.u.zToken, if any.
790 **
791 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
792 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
793 ** and Expr.pRight variables (but not for any structures pointed to or
794 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
795 */
796 static int dupedExprSize(Expr *p, int flags){
797   int nByte = 0;
798   if( p ){
799     nByte = dupedExprNodeSize(p, flags);
800     if( flags&EXPRDUP_REDUCE ){
801       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
802     }
803   }
804   return nByte;
805 }
806 
807 /*
808 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
809 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
810 ** to store the copy of expression p, the copies of p->u.zToken
811 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
812 ** if any. Before returning, *pzBuffer is set to the first byte passed the
813 ** portion of the buffer copied into by this function.
814 */
815 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
816   Expr *pNew = 0;                      /* Value to return */
817   if( p ){
818     const int isReduced = (flags&EXPRDUP_REDUCE);
819     u8 *zAlloc;
820     u32 staticFlag = 0;
821 
822     assert( pzBuffer==0 || isReduced );
823 
824     /* Figure out where to write the new Expr structure. */
825     if( pzBuffer ){
826       zAlloc = *pzBuffer;
827       staticFlag = EP_Static;
828     }else{
829       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
830     }
831     pNew = (Expr *)zAlloc;
832 
833     if( pNew ){
834       /* Set nNewSize to the size allocated for the structure pointed to
835       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
836       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
837       ** by the copy of the p->u.zToken string (if any).
838       */
839       const unsigned nStructSize = dupedExprStructSize(p, flags);
840       const int nNewSize = nStructSize & 0xfff;
841       int nToken;
842       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
843         nToken = sqlite3Strlen30(p->u.zToken) + 1;
844       }else{
845         nToken = 0;
846       }
847       if( isReduced ){
848         assert( ExprHasProperty(p, EP_Reduced)==0 );
849         memcpy(zAlloc, p, nNewSize);
850       }else{
851         int nSize = exprStructSize(p);
852         memcpy(zAlloc, p, nSize);
853         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
854       }
855 
856       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
857       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
858       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
859       pNew->flags |= staticFlag;
860 
861       /* Copy the p->u.zToken string, if any. */
862       if( nToken ){
863         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
864         memcpy(zToken, p->u.zToken, nToken);
865       }
866 
867       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
868         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
869         if( ExprHasProperty(p, EP_xIsSelect) ){
870           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
871         }else{
872           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
873         }
874       }
875 
876       /* Fill in pNew->pLeft and pNew->pRight. */
877       if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
878         zAlloc += dupedExprNodeSize(p, flags);
879         if( ExprHasProperty(pNew, EP_Reduced) ){
880           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
881           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
882         }
883         if( pzBuffer ){
884           *pzBuffer = zAlloc;
885         }
886       }else{
887         if( !ExprHasProperty(p, EP_TokenOnly) ){
888           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
889           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
890         }
891       }
892 
893     }
894   }
895   return pNew;
896 }
897 
898 /*
899 ** Create and return a deep copy of the object passed as the second
900 ** argument. If an OOM condition is encountered, NULL is returned
901 ** and the db->mallocFailed flag set.
902 */
903 #ifndef SQLITE_OMIT_CTE
904 static With *withDup(sqlite3 *db, With *p){
905   With *pRet = 0;
906   if( p ){
907     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
908     pRet = sqlite3DbMallocZero(db, nByte);
909     if( pRet ){
910       int i;
911       pRet->nCte = p->nCte;
912       for(i=0; i<p->nCte; i++){
913         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
914         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
915         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
916       }
917     }
918   }
919   return pRet;
920 }
921 #else
922 # define withDup(x,y) 0
923 #endif
924 
925 /*
926 ** The following group of routines make deep copies of expressions,
927 ** expression lists, ID lists, and select statements.  The copies can
928 ** be deleted (by being passed to their respective ...Delete() routines)
929 ** without effecting the originals.
930 **
931 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
932 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
933 ** by subsequent calls to sqlite*ListAppend() routines.
934 **
935 ** Any tables that the SrcList might point to are not duplicated.
936 **
937 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
938 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
939 ** truncated version of the usual Expr structure that will be stored as
940 ** part of the in-memory representation of the database schema.
941 */
942 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
943   return exprDup(db, p, flags, 0);
944 }
945 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
946   ExprList *pNew;
947   struct ExprList_item *pItem, *pOldItem;
948   int i;
949   if( p==0 ) return 0;
950   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
951   if( pNew==0 ) return 0;
952   pNew->iECursor = 0;
953   pNew->nExpr = i = p->nExpr;
954   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
955   pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
956   if( pItem==0 ){
957     sqlite3DbFree(db, pNew);
958     return 0;
959   }
960   pOldItem = p->a;
961   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
962     Expr *pOldExpr = pOldItem->pExpr;
963     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
964     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
965     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
966     pItem->sortOrder = pOldItem->sortOrder;
967     pItem->done = 0;
968     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
969     pItem->u = pOldItem->u;
970   }
971   return pNew;
972 }
973 
974 /*
975 ** If cursors, triggers, views and subqueries are all omitted from
976 ** the build, then none of the following routines, except for
977 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
978 ** called with a NULL argument.
979 */
980 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
981  || !defined(SQLITE_OMIT_SUBQUERY)
982 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
983   SrcList *pNew;
984   int i;
985   int nByte;
986   if( p==0 ) return 0;
987   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
988   pNew = sqlite3DbMallocRaw(db, nByte );
989   if( pNew==0 ) return 0;
990   pNew->nSrc = pNew->nAlloc = p->nSrc;
991   for(i=0; i<p->nSrc; i++){
992     struct SrcList_item *pNewItem = &pNew->a[i];
993     struct SrcList_item *pOldItem = &p->a[i];
994     Table *pTab;
995     pNewItem->pSchema = pOldItem->pSchema;
996     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
997     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
998     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
999     pNewItem->jointype = pOldItem->jointype;
1000     pNewItem->iCursor = pOldItem->iCursor;
1001     pNewItem->addrFillSub = pOldItem->addrFillSub;
1002     pNewItem->regReturn = pOldItem->regReturn;
1003     pNewItem->isCorrelated = pOldItem->isCorrelated;
1004     pNewItem->viaCoroutine = pOldItem->viaCoroutine;
1005     pNewItem->isRecursive = pOldItem->isRecursive;
1006     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
1007     pNewItem->notIndexed = pOldItem->notIndexed;
1008     pNewItem->pIndex = pOldItem->pIndex;
1009     pTab = pNewItem->pTab = pOldItem->pTab;
1010     if( pTab ){
1011       pTab->nRef++;
1012     }
1013     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1014     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1015     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1016     pNewItem->colUsed = pOldItem->colUsed;
1017   }
1018   return pNew;
1019 }
1020 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1021   IdList *pNew;
1022   int i;
1023   if( p==0 ) return 0;
1024   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
1025   if( pNew==0 ) return 0;
1026   pNew->nId = p->nId;
1027   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
1028   if( pNew->a==0 ){
1029     sqlite3DbFree(db, pNew);
1030     return 0;
1031   }
1032   /* Note that because the size of the allocation for p->a[] is not
1033   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1034   ** on the duplicate created by this function. */
1035   for(i=0; i<p->nId; i++){
1036     struct IdList_item *pNewItem = &pNew->a[i];
1037     struct IdList_item *pOldItem = &p->a[i];
1038     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1039     pNewItem->idx = pOldItem->idx;
1040   }
1041   return pNew;
1042 }
1043 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1044   Select *pNew, *pPrior;
1045   if( p==0 ) return 0;
1046   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
1047   if( pNew==0 ) return 0;
1048   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1049   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1050   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1051   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1052   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1053   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1054   pNew->op = p->op;
1055   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1056   if( pPrior ) pPrior->pNext = pNew;
1057   pNew->pNext = 0;
1058   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1059   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1060   pNew->iLimit = 0;
1061   pNew->iOffset = 0;
1062   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1063   pNew->addrOpenEphm[0] = -1;
1064   pNew->addrOpenEphm[1] = -1;
1065   pNew->addrOpenEphm[2] = -1;
1066   pNew->nSelectRow = p->nSelectRow;
1067   pNew->pWith = withDup(db, p->pWith);
1068   return pNew;
1069 }
1070 #else
1071 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1072   assert( p==0 );
1073   return 0;
1074 }
1075 #endif
1076 
1077 
1078 /*
1079 ** Add a new element to the end of an expression list.  If pList is
1080 ** initially NULL, then create a new expression list.
1081 **
1082 ** If a memory allocation error occurs, the entire list is freed and
1083 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1084 ** that the new entry was successfully appended.
1085 */
1086 ExprList *sqlite3ExprListAppend(
1087   Parse *pParse,          /* Parsing context */
1088   ExprList *pList,        /* List to which to append. Might be NULL */
1089   Expr *pExpr             /* Expression to be appended. Might be NULL */
1090 ){
1091   sqlite3 *db = pParse->db;
1092   if( pList==0 ){
1093     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1094     if( pList==0 ){
1095       goto no_mem;
1096     }
1097     pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1098     if( pList->a==0 ) goto no_mem;
1099   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1100     struct ExprList_item *a;
1101     assert( pList->nExpr>0 );
1102     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1103     if( a==0 ){
1104       goto no_mem;
1105     }
1106     pList->a = a;
1107   }
1108   assert( pList->a!=0 );
1109   if( 1 ){
1110     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1111     memset(pItem, 0, sizeof(*pItem));
1112     pItem->pExpr = pExpr;
1113   }
1114   return pList;
1115 
1116 no_mem:
1117   /* Avoid leaking memory if malloc has failed. */
1118   sqlite3ExprDelete(db, pExpr);
1119   sqlite3ExprListDelete(db, pList);
1120   return 0;
1121 }
1122 
1123 /*
1124 ** Set the ExprList.a[].zName element of the most recently added item
1125 ** on the expression list.
1126 **
1127 ** pList might be NULL following an OOM error.  But pName should never be
1128 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1129 ** is set.
1130 */
1131 void sqlite3ExprListSetName(
1132   Parse *pParse,          /* Parsing context */
1133   ExprList *pList,        /* List to which to add the span. */
1134   Token *pName,           /* Name to be added */
1135   int dequote             /* True to cause the name to be dequoted */
1136 ){
1137   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1138   if( pList ){
1139     struct ExprList_item *pItem;
1140     assert( pList->nExpr>0 );
1141     pItem = &pList->a[pList->nExpr-1];
1142     assert( pItem->zName==0 );
1143     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1144     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1145   }
1146 }
1147 
1148 /*
1149 ** Set the ExprList.a[].zSpan element of the most recently added item
1150 ** on the expression list.
1151 **
1152 ** pList might be NULL following an OOM error.  But pSpan should never be
1153 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1154 ** is set.
1155 */
1156 void sqlite3ExprListSetSpan(
1157   Parse *pParse,          /* Parsing context */
1158   ExprList *pList,        /* List to which to add the span. */
1159   ExprSpan *pSpan         /* The span to be added */
1160 ){
1161   sqlite3 *db = pParse->db;
1162   assert( pList!=0 || db->mallocFailed!=0 );
1163   if( pList ){
1164     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1165     assert( pList->nExpr>0 );
1166     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1167     sqlite3DbFree(db, pItem->zSpan);
1168     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1169                                     (int)(pSpan->zEnd - pSpan->zStart));
1170   }
1171 }
1172 
1173 /*
1174 ** If the expression list pEList contains more than iLimit elements,
1175 ** leave an error message in pParse.
1176 */
1177 void sqlite3ExprListCheckLength(
1178   Parse *pParse,
1179   ExprList *pEList,
1180   const char *zObject
1181 ){
1182   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1183   testcase( pEList && pEList->nExpr==mx );
1184   testcase( pEList && pEList->nExpr==mx+1 );
1185   if( pEList && pEList->nExpr>mx ){
1186     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1187   }
1188 }
1189 
1190 /*
1191 ** Delete an entire expression list.
1192 */
1193 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1194   int i;
1195   struct ExprList_item *pItem;
1196   if( pList==0 ) return;
1197   assert( pList->a!=0 || pList->nExpr==0 );
1198   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1199     sqlite3ExprDelete(db, pItem->pExpr);
1200     sqlite3DbFree(db, pItem->zName);
1201     sqlite3DbFree(db, pItem->zSpan);
1202   }
1203   sqlite3DbFree(db, pList->a);
1204   sqlite3DbFree(db, pList);
1205 }
1206 
1207 /*
1208 ** These routines are Walker callbacks.  Walker.u.pi is a pointer
1209 ** to an integer.  These routines are checking an expression to see
1210 ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
1211 ** not constant.
1212 **
1213 ** These callback routines are used to implement the following:
1214 **
1215 **     sqlite3ExprIsConstant()
1216 **     sqlite3ExprIsConstantNotJoin()
1217 **     sqlite3ExprIsConstantOrFunction()
1218 **
1219 */
1220 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1221 
1222   /* If pWalker->u.i is 3 then any term of the expression that comes from
1223   ** the ON or USING clauses of a join disqualifies the expression
1224   ** from being considered constant. */
1225   if( pWalker->u.i==3 && ExprHasProperty(pExpr, EP_FromJoin) ){
1226     pWalker->u.i = 0;
1227     return WRC_Abort;
1228   }
1229 
1230   switch( pExpr->op ){
1231     /* Consider functions to be constant if all their arguments are constant
1232     ** and either pWalker->u.i==2 or the function as the SQLITE_FUNC_CONST
1233     ** flag. */
1234     case TK_FUNCTION:
1235       if( pWalker->u.i==2 || ExprHasProperty(pExpr,EP_Constant) ){
1236         return WRC_Continue;
1237       }
1238       /* Fall through */
1239     case TK_ID:
1240     case TK_COLUMN:
1241     case TK_AGG_FUNCTION:
1242     case TK_AGG_COLUMN:
1243       testcase( pExpr->op==TK_ID );
1244       testcase( pExpr->op==TK_COLUMN );
1245       testcase( pExpr->op==TK_AGG_FUNCTION );
1246       testcase( pExpr->op==TK_AGG_COLUMN );
1247       pWalker->u.i = 0;
1248       return WRC_Abort;
1249     default:
1250       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1251       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1252       return WRC_Continue;
1253   }
1254 }
1255 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1256   UNUSED_PARAMETER(NotUsed);
1257   pWalker->u.i = 0;
1258   return WRC_Abort;
1259 }
1260 static int exprIsConst(Expr *p, int initFlag){
1261   Walker w;
1262   memset(&w, 0, sizeof(w));
1263   w.u.i = initFlag;
1264   w.xExprCallback = exprNodeIsConstant;
1265   w.xSelectCallback = selectNodeIsConstant;
1266   sqlite3WalkExpr(&w, p);
1267   return w.u.i;
1268 }
1269 
1270 /*
1271 ** Walk an expression tree.  Return 1 if the expression is constant
1272 ** and 0 if it involves variables or function calls.
1273 **
1274 ** For the purposes of this function, a double-quoted string (ex: "abc")
1275 ** is considered a variable but a single-quoted string (ex: 'abc') is
1276 ** a constant.
1277 */
1278 int sqlite3ExprIsConstant(Expr *p){
1279   return exprIsConst(p, 1);
1280 }
1281 
1282 /*
1283 ** Walk an expression tree.  Return 1 if the expression is constant
1284 ** that does no originate from the ON or USING clauses of a join.
1285 ** Return 0 if it involves variables or function calls or terms from
1286 ** an ON or USING clause.
1287 */
1288 int sqlite3ExprIsConstantNotJoin(Expr *p){
1289   return exprIsConst(p, 3);
1290 }
1291 
1292 /*
1293 ** Walk an expression tree.  Return 1 if the expression is constant
1294 ** or a function call with constant arguments.  Return and 0 if there
1295 ** are any variables.
1296 **
1297 ** For the purposes of this function, a double-quoted string (ex: "abc")
1298 ** is considered a variable but a single-quoted string (ex: 'abc') is
1299 ** a constant.
1300 */
1301 int sqlite3ExprIsConstantOrFunction(Expr *p){
1302   return exprIsConst(p, 2);
1303 }
1304 
1305 /*
1306 ** If the expression p codes a constant integer that is small enough
1307 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1308 ** in *pValue.  If the expression is not an integer or if it is too big
1309 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1310 */
1311 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1312   int rc = 0;
1313 
1314   /* If an expression is an integer literal that fits in a signed 32-bit
1315   ** integer, then the EP_IntValue flag will have already been set */
1316   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1317            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1318 
1319   if( p->flags & EP_IntValue ){
1320     *pValue = p->u.iValue;
1321     return 1;
1322   }
1323   switch( p->op ){
1324     case TK_UPLUS: {
1325       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1326       break;
1327     }
1328     case TK_UMINUS: {
1329       int v;
1330       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1331         assert( v!=(-2147483647-1) );
1332         *pValue = -v;
1333         rc = 1;
1334       }
1335       break;
1336     }
1337     default: break;
1338   }
1339   return rc;
1340 }
1341 
1342 /*
1343 ** Return FALSE if there is no chance that the expression can be NULL.
1344 **
1345 ** If the expression might be NULL or if the expression is too complex
1346 ** to tell return TRUE.
1347 **
1348 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1349 ** when we know that a value cannot be NULL.  Hence, a false positive
1350 ** (returning TRUE when in fact the expression can never be NULL) might
1351 ** be a small performance hit but is otherwise harmless.  On the other
1352 ** hand, a false negative (returning FALSE when the result could be NULL)
1353 ** will likely result in an incorrect answer.  So when in doubt, return
1354 ** TRUE.
1355 */
1356 int sqlite3ExprCanBeNull(const Expr *p){
1357   u8 op;
1358   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1359   op = p->op;
1360   if( op==TK_REGISTER ) op = p->op2;
1361   switch( op ){
1362     case TK_INTEGER:
1363     case TK_STRING:
1364     case TK_FLOAT:
1365     case TK_BLOB:
1366       return 0;
1367     default:
1368       return 1;
1369   }
1370 }
1371 
1372 /*
1373 ** Generate an OP_IsNull instruction that tests register iReg and jumps
1374 ** to location iDest if the value in iReg is NULL.  The value in iReg
1375 ** was computed by pExpr.  If we can look at pExpr at compile-time and
1376 ** determine that it can never generate a NULL, then the OP_IsNull operation
1377 ** can be omitted.
1378 */
1379 void sqlite3ExprCodeIsNullJump(
1380   Vdbe *v,            /* The VDBE under construction */
1381   const Expr *pExpr,  /* Only generate OP_IsNull if this expr can be NULL */
1382   int iReg,           /* Test the value in this register for NULL */
1383   int iDest           /* Jump here if the value is null */
1384 ){
1385   if( sqlite3ExprCanBeNull(pExpr) ){
1386     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
1387   }
1388 }
1389 
1390 /*
1391 ** Return TRUE if the given expression is a constant which would be
1392 ** unchanged by OP_Affinity with the affinity given in the second
1393 ** argument.
1394 **
1395 ** This routine is used to determine if the OP_Affinity operation
1396 ** can be omitted.  When in doubt return FALSE.  A false negative
1397 ** is harmless.  A false positive, however, can result in the wrong
1398 ** answer.
1399 */
1400 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1401   u8 op;
1402   if( aff==SQLITE_AFF_NONE ) return 1;
1403   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1404   op = p->op;
1405   if( op==TK_REGISTER ) op = p->op2;
1406   switch( op ){
1407     case TK_INTEGER: {
1408       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1409     }
1410     case TK_FLOAT: {
1411       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1412     }
1413     case TK_STRING: {
1414       return aff==SQLITE_AFF_TEXT;
1415     }
1416     case TK_BLOB: {
1417       return 1;
1418     }
1419     case TK_COLUMN: {
1420       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1421       return p->iColumn<0
1422           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1423     }
1424     default: {
1425       return 0;
1426     }
1427   }
1428 }
1429 
1430 /*
1431 ** Return TRUE if the given string is a row-id column name.
1432 */
1433 int sqlite3IsRowid(const char *z){
1434   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1435   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1436   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1437   return 0;
1438 }
1439 
1440 /*
1441 ** Return true if we are able to the IN operator optimization on a
1442 ** query of the form
1443 **
1444 **       x IN (SELECT ...)
1445 **
1446 ** Where the SELECT... clause is as specified by the parameter to this
1447 ** routine.
1448 **
1449 ** The Select object passed in has already been preprocessed and no
1450 ** errors have been found.
1451 */
1452 #ifndef SQLITE_OMIT_SUBQUERY
1453 static int isCandidateForInOpt(Select *p){
1454   SrcList *pSrc;
1455   ExprList *pEList;
1456   Table *pTab;
1457   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1458   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1459   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1460     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1461     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1462     return 0; /* No DISTINCT keyword and no aggregate functions */
1463   }
1464   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1465   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1466   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1467   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1468   pSrc = p->pSrc;
1469   assert( pSrc!=0 );
1470   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1471   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1472   pTab = pSrc->a[0].pTab;
1473   if( NEVER(pTab==0) ) return 0;
1474   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1475   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1476   pEList = p->pEList;
1477   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1478   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1479   return 1;
1480 }
1481 #endif /* SQLITE_OMIT_SUBQUERY */
1482 
1483 /*
1484 ** Code an OP_Once instruction and allocate space for its flag. Return the
1485 ** address of the new instruction.
1486 */
1487 int sqlite3CodeOnce(Parse *pParse){
1488   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1489   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1490 }
1491 
1492 /*
1493 ** This function is used by the implementation of the IN (...) operator.
1494 ** The pX parameter is the expression on the RHS of the IN operator, which
1495 ** might be either a list of expressions or a subquery.
1496 **
1497 ** The job of this routine is to find or create a b-tree object that can
1498 ** be used either to test for membership in the RHS set or to iterate through
1499 ** all members of the RHS set, skipping duplicates.
1500 **
1501 ** A cursor is opened on the b-tree object that the RHS of the IN operator
1502 ** and pX->iTable is set to the index of that cursor.
1503 **
1504 ** The returned value of this function indicates the b-tree type, as follows:
1505 **
1506 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
1507 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
1508 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1509 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
1510 **                         populated epheremal table.
1511 **
1512 ** An existing b-tree might be used if the RHS expression pX is a simple
1513 ** subquery such as:
1514 **
1515 **     SELECT <column> FROM <table>
1516 **
1517 ** If the RHS of the IN operator is a list or a more complex subquery, then
1518 ** an ephemeral table might need to be generated from the RHS and then
1519 ** pX->iTable made to point to the ephermeral table instead of an
1520 ** existing table.
1521 **
1522 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
1523 ** through the set members, skipping any duplicates. In this case an
1524 ** epheremal table must be used unless the selected <column> is guaranteed
1525 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1526 ** has a UNIQUE constraint or UNIQUE index.
1527 **
1528 ** If the prNotFound parameter is not 0, then the b-tree will be used
1529 ** for fast set membership tests. In this case an epheremal table must
1530 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1531 ** be found with <column> as its left-most column.
1532 **
1533 ** When the b-tree is being used for membership tests, the calling function
1534 ** needs to know whether or not the structure contains an SQL NULL
1535 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1536 ** If there is any chance that the (...) might contain a NULL value at
1537 ** runtime, then a register is allocated and the register number written
1538 ** to *prNotFound. If there is no chance that the (...) contains a
1539 ** NULL value, then *prNotFound is left unchanged.
1540 **
1541 ** If a register is allocated and its location stored in *prNotFound, then
1542 ** its initial value is NULL.  If the (...) does not remain constant
1543 ** for the duration of the query (i.e. the SELECT within the (...)
1544 ** is a correlated subquery) then the value of the allocated register is
1545 ** reset to NULL each time the subquery is rerun. This allows the
1546 ** caller to use vdbe code equivalent to the following:
1547 **
1548 **   if( register==NULL ){
1549 **     has_null = <test if data structure contains null>
1550 **     register = 1
1551 **   }
1552 **
1553 ** in order to avoid running the <test if data structure contains null>
1554 ** test more often than is necessary.
1555 */
1556 #ifndef SQLITE_OMIT_SUBQUERY
1557 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1558   Select *p;                            /* SELECT to the right of IN operator */
1559   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1560   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1561   int mustBeUnique = (prNotFound==0);   /* True if RHS must be unique */
1562   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1563 
1564   assert( pX->op==TK_IN );
1565 
1566   /* Check to see if an existing table or index can be used to
1567   ** satisfy the query.  This is preferable to generating a new
1568   ** ephemeral table.
1569   */
1570   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1571   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1572     sqlite3 *db = pParse->db;              /* Database connection */
1573     Table *pTab;                           /* Table <table>. */
1574     Expr *pExpr;                           /* Expression <column> */
1575     i16 iCol;                              /* Index of column <column> */
1576     i16 iDb;                               /* Database idx for pTab */
1577 
1578     assert( p );                        /* Because of isCandidateForInOpt(p) */
1579     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1580     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1581     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1582     pTab = p->pSrc->a[0].pTab;
1583     pExpr = p->pEList->a[0].pExpr;
1584     iCol = (i16)pExpr->iColumn;
1585 
1586     /* Code an OP_Transaction and OP_TableLock for <table>. */
1587     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1588     sqlite3CodeVerifySchema(pParse, iDb);
1589     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1590 
1591     /* This function is only called from two places. In both cases the vdbe
1592     ** has already been allocated. So assume sqlite3GetVdbe() is always
1593     ** successful here.
1594     */
1595     assert(v);
1596     if( iCol<0 ){
1597       int iAddr;
1598 
1599       iAddr = sqlite3CodeOnce(pParse);
1600 
1601       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1602       eType = IN_INDEX_ROWID;
1603 
1604       sqlite3VdbeJumpHere(v, iAddr);
1605     }else{
1606       Index *pIdx;                         /* Iterator variable */
1607 
1608       /* The collation sequence used by the comparison. If an index is to
1609       ** be used in place of a temp-table, it must be ordered according
1610       ** to this collation sequence.  */
1611       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1612 
1613       /* Check that the affinity that will be used to perform the
1614       ** comparison is the same as the affinity of the column. If
1615       ** it is not, it is not possible to use any index.
1616       */
1617       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1618 
1619       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1620         if( (pIdx->aiColumn[0]==iCol)
1621          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1622          && (!mustBeUnique || (pIdx->nKeyCol==1 && pIdx->onError!=OE_None))
1623         ){
1624           int iAddr = sqlite3CodeOnce(pParse);
1625           sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1626           sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1627           VdbeComment((v, "%s", pIdx->zName));
1628           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1629           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1630 
1631           sqlite3VdbeJumpHere(v, iAddr);
1632           if( prNotFound && !pTab->aCol[iCol].notNull ){
1633             *prNotFound = ++pParse->nMem;
1634             sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
1635           }
1636         }
1637       }
1638     }
1639   }
1640 
1641   if( eType==0 ){
1642     /* Could not found an existing table or index to use as the RHS b-tree.
1643     ** We will have to generate an ephemeral table to do the job.
1644     */
1645     u32 savedNQueryLoop = pParse->nQueryLoop;
1646     int rMayHaveNull = 0;
1647     eType = IN_INDEX_EPH;
1648     if( prNotFound ){
1649       *prNotFound = rMayHaveNull = ++pParse->nMem;
1650       sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
1651     }else{
1652       testcase( pParse->nQueryLoop>0 );
1653       pParse->nQueryLoop = 0;
1654       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1655         eType = IN_INDEX_ROWID;
1656       }
1657     }
1658     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1659     pParse->nQueryLoop = savedNQueryLoop;
1660   }else{
1661     pX->iTable = iTab;
1662   }
1663   return eType;
1664 }
1665 #endif
1666 
1667 /*
1668 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1669 ** or IN operators.  Examples:
1670 **
1671 **     (SELECT a FROM b)          -- subquery
1672 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1673 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1674 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1675 **
1676 ** The pExpr parameter describes the expression that contains the IN
1677 ** operator or subquery.
1678 **
1679 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1680 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1681 ** to some integer key column of a table B-Tree. In this case, use an
1682 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1683 ** (slower) variable length keys B-Tree.
1684 **
1685 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1686 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1687 ** Furthermore, the IN is in a WHERE clause and that we really want
1688 ** to iterate over the RHS of the IN operator in order to quickly locate
1689 ** all corresponding LHS elements.  All this routine does is initialize
1690 ** the register given by rMayHaveNull to NULL.  Calling routines will take
1691 ** care of changing this register value to non-NULL if the RHS is NULL-free.
1692 **
1693 ** If rMayHaveNull is zero, that means that the subquery is being used
1694 ** for membership testing only.  There is no need to initialize any
1695 ** registers to indicate the presence or absence of NULLs on the RHS.
1696 **
1697 ** For a SELECT or EXISTS operator, return the register that holds the
1698 ** result.  For IN operators or if an error occurs, the return value is 0.
1699 */
1700 #ifndef SQLITE_OMIT_SUBQUERY
1701 int sqlite3CodeSubselect(
1702   Parse *pParse,          /* Parsing context */
1703   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1704   int rMayHaveNull,       /* Register that records whether NULLs exist in RHS */
1705   int isRowid             /* If true, LHS of IN operator is a rowid */
1706 ){
1707   int testAddr = -1;                      /* One-time test address */
1708   int rReg = 0;                           /* Register storing resulting */
1709   Vdbe *v = sqlite3GetVdbe(pParse);
1710   if( NEVER(v==0) ) return 0;
1711   sqlite3ExprCachePush(pParse);
1712 
1713   /* This code must be run in its entirety every time it is encountered
1714   ** if any of the following is true:
1715   **
1716   **    *  The right-hand side is a correlated subquery
1717   **    *  The right-hand side is an expression list containing variables
1718   **    *  We are inside a trigger
1719   **
1720   ** If all of the above are false, then we can run this code just once
1721   ** save the results, and reuse the same result on subsequent invocations.
1722   */
1723   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1724     testAddr = sqlite3CodeOnce(pParse);
1725   }
1726 
1727 #ifndef SQLITE_OMIT_EXPLAIN
1728   if( pParse->explain==2 ){
1729     char *zMsg = sqlite3MPrintf(
1730         pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ",
1731         pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1732     );
1733     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1734   }
1735 #endif
1736 
1737   switch( pExpr->op ){
1738     case TK_IN: {
1739       char affinity;              /* Affinity of the LHS of the IN */
1740       int addr;                   /* Address of OP_OpenEphemeral instruction */
1741       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1742       KeyInfo *pKeyInfo = 0;      /* Key information */
1743 
1744       if( rMayHaveNull ){
1745         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1746       }
1747 
1748       affinity = sqlite3ExprAffinity(pLeft);
1749 
1750       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1751       ** expression it is handled the same way.  An ephemeral table is
1752       ** filled with single-field index keys representing the results
1753       ** from the SELECT or the <exprlist>.
1754       **
1755       ** If the 'x' expression is a column value, or the SELECT...
1756       ** statement returns a column value, then the affinity of that
1757       ** column is used to build the index keys. If both 'x' and the
1758       ** SELECT... statement are columns, then numeric affinity is used
1759       ** if either column has NUMERIC or INTEGER affinity. If neither
1760       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1761       ** is used.
1762       */
1763       pExpr->iTable = pParse->nTab++;
1764       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1765       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1766 
1767       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1768         /* Case 1:     expr IN (SELECT ...)
1769         **
1770         ** Generate code to write the results of the select into the temporary
1771         ** table allocated and opened above.
1772         */
1773         SelectDest dest;
1774         ExprList *pEList;
1775 
1776         assert( !isRowid );
1777         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1778         dest.affSdst = (u8)affinity;
1779         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1780         pExpr->x.pSelect->iLimit = 0;
1781         testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1782         if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
1783           sqlite3KeyInfoUnref(pKeyInfo);
1784           return 0;
1785         }
1786         pEList = pExpr->x.pSelect->pEList;
1787         assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1788         assert( pEList!=0 );
1789         assert( pEList->nExpr>0 );
1790         assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1791         pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1792                                                          pEList->a[0].pExpr);
1793       }else if( ALWAYS(pExpr->x.pList!=0) ){
1794         /* Case 2:     expr IN (exprlist)
1795         **
1796         ** For each expression, build an index key from the evaluation and
1797         ** store it in the temporary table. If <expr> is a column, then use
1798         ** that columns affinity when building index keys. If <expr> is not
1799         ** a column, use numeric affinity.
1800         */
1801         int i;
1802         ExprList *pList = pExpr->x.pList;
1803         struct ExprList_item *pItem;
1804         int r1, r2, r3;
1805 
1806         if( !affinity ){
1807           affinity = SQLITE_AFF_NONE;
1808         }
1809         if( pKeyInfo ){
1810           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1811           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1812         }
1813 
1814         /* Loop through each expression in <exprlist>. */
1815         r1 = sqlite3GetTempReg(pParse);
1816         r2 = sqlite3GetTempReg(pParse);
1817         sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1818         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1819           Expr *pE2 = pItem->pExpr;
1820           int iValToIns;
1821 
1822           /* If the expression is not constant then we will need to
1823           ** disable the test that was generated above that makes sure
1824           ** this code only executes once.  Because for a non-constant
1825           ** expression we need to rerun this code each time.
1826           */
1827           if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){
1828             sqlite3VdbeChangeToNoop(v, testAddr);
1829             testAddr = -1;
1830           }
1831 
1832           /* Evaluate the expression and insert it into the temp table */
1833           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1834             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1835           }else{
1836             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1837             if( isRowid ){
1838               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1839                                 sqlite3VdbeCurrentAddr(v)+2);
1840               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1841             }else{
1842               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1843               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1844               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1845             }
1846           }
1847         }
1848         sqlite3ReleaseTempReg(pParse, r1);
1849         sqlite3ReleaseTempReg(pParse, r2);
1850       }
1851       if( pKeyInfo ){
1852         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
1853       }
1854       break;
1855     }
1856 
1857     case TK_EXISTS:
1858     case TK_SELECT:
1859     default: {
1860       /* If this has to be a scalar SELECT.  Generate code to put the
1861       ** value of this select in a memory cell and record the number
1862       ** of the memory cell in iColumn.  If this is an EXISTS, write
1863       ** an integer 0 (not exists) or 1 (exists) into a memory cell
1864       ** and record that memory cell in iColumn.
1865       */
1866       Select *pSel;                         /* SELECT statement to encode */
1867       SelectDest dest;                      /* How to deal with SELECt result */
1868 
1869       testcase( pExpr->op==TK_EXISTS );
1870       testcase( pExpr->op==TK_SELECT );
1871       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1872 
1873       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1874       pSel = pExpr->x.pSelect;
1875       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1876       if( pExpr->op==TK_SELECT ){
1877         dest.eDest = SRT_Mem;
1878         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
1879         VdbeComment((v, "Init subquery result"));
1880       }else{
1881         dest.eDest = SRT_Exists;
1882         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
1883         VdbeComment((v, "Init EXISTS result"));
1884       }
1885       sqlite3ExprDelete(pParse->db, pSel->pLimit);
1886       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
1887                                   &sqlite3IntTokens[1]);
1888       pSel->iLimit = 0;
1889       if( sqlite3Select(pParse, pSel, &dest) ){
1890         return 0;
1891       }
1892       rReg = dest.iSDParm;
1893       ExprSetVVAProperty(pExpr, EP_NoReduce);
1894       break;
1895     }
1896   }
1897 
1898   if( testAddr>=0 ){
1899     sqlite3VdbeJumpHere(v, testAddr);
1900   }
1901   sqlite3ExprCachePop(pParse, 1);
1902 
1903   return rReg;
1904 }
1905 #endif /* SQLITE_OMIT_SUBQUERY */
1906 
1907 #ifndef SQLITE_OMIT_SUBQUERY
1908 /*
1909 ** Generate code for an IN expression.
1910 **
1911 **      x IN (SELECT ...)
1912 **      x IN (value, value, ...)
1913 **
1914 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
1915 ** is an array of zero or more values.  The expression is true if the LHS is
1916 ** contained within the RHS.  The value of the expression is unknown (NULL)
1917 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
1918 ** RHS contains one or more NULL values.
1919 **
1920 ** This routine generates code will jump to destIfFalse if the LHS is not
1921 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
1922 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
1923 ** within the RHS then fall through.
1924 */
1925 static void sqlite3ExprCodeIN(
1926   Parse *pParse,        /* Parsing and code generating context */
1927   Expr *pExpr,          /* The IN expression */
1928   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
1929   int destIfNull        /* Jump here if the results are unknown due to NULLs */
1930 ){
1931   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
1932   char affinity;        /* Comparison affinity to use */
1933   int eType;            /* Type of the RHS */
1934   int r1;               /* Temporary use register */
1935   Vdbe *v;              /* Statement under construction */
1936 
1937   /* Compute the RHS.   After this step, the table with cursor
1938   ** pExpr->iTable will contains the values that make up the RHS.
1939   */
1940   v = pParse->pVdbe;
1941   assert( v!=0 );       /* OOM detected prior to this routine */
1942   VdbeNoopComment((v, "begin IN expr"));
1943   eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
1944 
1945   /* Figure out the affinity to use to create a key from the results
1946   ** of the expression. affinityStr stores a static string suitable for
1947   ** P4 of OP_MakeRecord.
1948   */
1949   affinity = comparisonAffinity(pExpr);
1950 
1951   /* Code the LHS, the <expr> from "<expr> IN (...)".
1952   */
1953   sqlite3ExprCachePush(pParse);
1954   r1 = sqlite3GetTempReg(pParse);
1955   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
1956 
1957   /* If the LHS is NULL, then the result is either false or NULL depending
1958   ** on whether the RHS is empty or not, respectively.
1959   */
1960   if( destIfNull==destIfFalse ){
1961     /* Shortcut for the common case where the false and NULL outcomes are
1962     ** the same. */
1963     sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
1964   }else{
1965     int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
1966     sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
1967     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
1968     sqlite3VdbeJumpHere(v, addr1);
1969   }
1970 
1971   if( eType==IN_INDEX_ROWID ){
1972     /* In this case, the RHS is the ROWID of table b-tree
1973     */
1974     sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
1975     sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
1976   }else{
1977     /* In this case, the RHS is an index b-tree.
1978     */
1979     sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
1980 
1981     /* If the set membership test fails, then the result of the
1982     ** "x IN (...)" expression must be either 0 or NULL. If the set
1983     ** contains no NULL values, then the result is 0. If the set
1984     ** contains one or more NULL values, then the result of the
1985     ** expression is also NULL.
1986     */
1987     if( rRhsHasNull==0 || destIfFalse==destIfNull ){
1988       /* This branch runs if it is known at compile time that the RHS
1989       ** cannot contain NULL values. This happens as the result
1990       ** of a "NOT NULL" constraint in the database schema.
1991       **
1992       ** Also run this branch if NULL is equivalent to FALSE
1993       ** for this particular IN operator.
1994       */
1995       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
1996 
1997     }else{
1998       /* In this branch, the RHS of the IN might contain a NULL and
1999       ** the presence of a NULL on the RHS makes a difference in the
2000       ** outcome.
2001       */
2002       int j1, j2, j3;
2003 
2004       /* First check to see if the LHS is contained in the RHS.  If so,
2005       ** then the presence of NULLs in the RHS does not matter, so jump
2006       ** over all of the code that follows.
2007       */
2008       j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
2009 
2010       /* Here we begin generating code that runs if the LHS is not
2011       ** contained within the RHS.  Generate additional code that
2012       ** tests the RHS for NULLs.  If the RHS contains a NULL then
2013       ** jump to destIfNull.  If there are no NULLs in the RHS then
2014       ** jump to destIfFalse.
2015       */
2016       j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
2017       j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
2018       sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
2019       sqlite3VdbeJumpHere(v, j3);
2020       sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
2021       sqlite3VdbeJumpHere(v, j2);
2022 
2023       /* Jump to the appropriate target depending on whether or not
2024       ** the RHS contains a NULL
2025       */
2026       sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
2027       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2028 
2029       /* The OP_Found at the top of this branch jumps here when true,
2030       ** causing the overall IN expression evaluation to fall through.
2031       */
2032       sqlite3VdbeJumpHere(v, j1);
2033     }
2034   }
2035   sqlite3ReleaseTempReg(pParse, r1);
2036   sqlite3ExprCachePop(pParse, 1);
2037   VdbeComment((v, "end IN expr"));
2038 }
2039 #endif /* SQLITE_OMIT_SUBQUERY */
2040 
2041 /*
2042 ** Duplicate an 8-byte value
2043 */
2044 static char *dup8bytes(Vdbe *v, const char *in){
2045   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
2046   if( out ){
2047     memcpy(out, in, 8);
2048   }
2049   return out;
2050 }
2051 
2052 #ifndef SQLITE_OMIT_FLOATING_POINT
2053 /*
2054 ** Generate an instruction that will put the floating point
2055 ** value described by z[0..n-1] into register iMem.
2056 **
2057 ** The z[] string will probably not be zero-terminated.  But the
2058 ** z[n] character is guaranteed to be something that does not look
2059 ** like the continuation of the number.
2060 */
2061 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2062   if( ALWAYS(z!=0) ){
2063     double value;
2064     char *zV;
2065     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2066     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2067     if( negateFlag ) value = -value;
2068     zV = dup8bytes(v, (char*)&value);
2069     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
2070   }
2071 }
2072 #endif
2073 
2074 
2075 /*
2076 ** Generate an instruction that will put the integer describe by
2077 ** text z[0..n-1] into register iMem.
2078 **
2079 ** Expr.u.zToken is always UTF8 and zero-terminated.
2080 */
2081 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2082   Vdbe *v = pParse->pVdbe;
2083   if( pExpr->flags & EP_IntValue ){
2084     int i = pExpr->u.iValue;
2085     assert( i>=0 );
2086     if( negFlag ) i = -i;
2087     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2088   }else{
2089     int c;
2090     i64 value;
2091     const char *z = pExpr->u.zToken;
2092     assert( z!=0 );
2093     c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2094     if( c==0 || (c==2 && negFlag) ){
2095       char *zV;
2096       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2097       zV = dup8bytes(v, (char*)&value);
2098       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
2099     }else{
2100 #ifdef SQLITE_OMIT_FLOATING_POINT
2101       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2102 #else
2103       codeReal(v, z, negFlag, iMem);
2104 #endif
2105     }
2106   }
2107 }
2108 
2109 /*
2110 ** Clear a cache entry.
2111 */
2112 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2113   if( p->tempReg ){
2114     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2115       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2116     }
2117     p->tempReg = 0;
2118   }
2119 }
2120 
2121 
2122 /*
2123 ** Record in the column cache that a particular column from a
2124 ** particular table is stored in a particular register.
2125 */
2126 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2127   int i;
2128   int minLru;
2129   int idxLru;
2130   struct yColCache *p;
2131 
2132   assert( iReg>0 );  /* Register numbers are always positive */
2133   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2134 
2135   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2136   ** for testing only - to verify that SQLite always gets the same answer
2137   ** with and without the column cache.
2138   */
2139   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2140 
2141   /* First replace any existing entry.
2142   **
2143   ** Actually, the way the column cache is currently used, we are guaranteed
2144   ** that the object will never already be in cache.  Verify this guarantee.
2145   */
2146 #ifndef NDEBUG
2147   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2148     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2149   }
2150 #endif
2151 
2152   /* Find an empty slot and replace it */
2153   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2154     if( p->iReg==0 ){
2155       p->iLevel = pParse->iCacheLevel;
2156       p->iTable = iTab;
2157       p->iColumn = iCol;
2158       p->iReg = iReg;
2159       p->tempReg = 0;
2160       p->lru = pParse->iCacheCnt++;
2161       return;
2162     }
2163   }
2164 
2165   /* Replace the last recently used */
2166   minLru = 0x7fffffff;
2167   idxLru = -1;
2168   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2169     if( p->lru<minLru ){
2170       idxLru = i;
2171       minLru = p->lru;
2172     }
2173   }
2174   if( ALWAYS(idxLru>=0) ){
2175     p = &pParse->aColCache[idxLru];
2176     p->iLevel = pParse->iCacheLevel;
2177     p->iTable = iTab;
2178     p->iColumn = iCol;
2179     p->iReg = iReg;
2180     p->tempReg = 0;
2181     p->lru = pParse->iCacheCnt++;
2182     return;
2183   }
2184 }
2185 
2186 /*
2187 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2188 ** Purge the range of registers from the column cache.
2189 */
2190 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2191   int i;
2192   int iLast = iReg + nReg - 1;
2193   struct yColCache *p;
2194   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2195     int r = p->iReg;
2196     if( r>=iReg && r<=iLast ){
2197       cacheEntryClear(pParse, p);
2198       p->iReg = 0;
2199     }
2200   }
2201 }
2202 
2203 /*
2204 ** Remember the current column cache context.  Any new entries added
2205 ** added to the column cache after this call are removed when the
2206 ** corresponding pop occurs.
2207 */
2208 void sqlite3ExprCachePush(Parse *pParse){
2209   pParse->iCacheLevel++;
2210 #ifdef SQLITE_DEBUG
2211   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2212     printf("PUSH to %d\n", pParse->iCacheLevel);
2213   }
2214 #endif
2215 }
2216 
2217 /*
2218 ** Remove from the column cache any entries that were added since the
2219 ** the previous N Push operations.  In other words, restore the cache
2220 ** to the state it was in N Pushes ago.
2221 */
2222 void sqlite3ExprCachePop(Parse *pParse, int N){
2223   int i;
2224   struct yColCache *p;
2225   assert( N>0 );
2226   assert( pParse->iCacheLevel>=N );
2227   pParse->iCacheLevel -= N;
2228 #ifdef SQLITE_DEBUG
2229   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2230     printf("POP  to %d\n", pParse->iCacheLevel);
2231   }
2232 #endif
2233   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2234     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2235       cacheEntryClear(pParse, p);
2236       p->iReg = 0;
2237     }
2238   }
2239 }
2240 
2241 /*
2242 ** When a cached column is reused, make sure that its register is
2243 ** no longer available as a temp register.  ticket #3879:  that same
2244 ** register might be in the cache in multiple places, so be sure to
2245 ** get them all.
2246 */
2247 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2248   int i;
2249   struct yColCache *p;
2250   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2251     if( p->iReg==iReg ){
2252       p->tempReg = 0;
2253     }
2254   }
2255 }
2256 
2257 /*
2258 ** Generate code to extract the value of the iCol-th column of a table.
2259 */
2260 void sqlite3ExprCodeGetColumnOfTable(
2261   Vdbe *v,        /* The VDBE under construction */
2262   Table *pTab,    /* The table containing the value */
2263   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
2264   int iCol,       /* Index of the column to extract */
2265   int regOut      /* Extract the value into this register */
2266 ){
2267   if( iCol<0 || iCol==pTab->iPKey ){
2268     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2269   }else{
2270     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2271     int x = iCol;
2272     if( !HasRowid(pTab) ){
2273       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2274     }
2275     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2276   }
2277   if( iCol>=0 ){
2278     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2279   }
2280 }
2281 
2282 /*
2283 ** Generate code that will extract the iColumn-th column from
2284 ** table pTab and store the column value in a register.  An effort
2285 ** is made to store the column value in register iReg, but this is
2286 ** not guaranteed.  The location of the column value is returned.
2287 **
2288 ** There must be an open cursor to pTab in iTable when this routine
2289 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2290 */
2291 int sqlite3ExprCodeGetColumn(
2292   Parse *pParse,   /* Parsing and code generating context */
2293   Table *pTab,     /* Description of the table we are reading from */
2294   int iColumn,     /* Index of the table column */
2295   int iTable,      /* The cursor pointing to the table */
2296   int iReg,        /* Store results here */
2297   u8 p5            /* P5 value for OP_Column */
2298 ){
2299   Vdbe *v = pParse->pVdbe;
2300   int i;
2301   struct yColCache *p;
2302 
2303   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2304     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2305       p->lru = pParse->iCacheCnt++;
2306       sqlite3ExprCachePinRegister(pParse, p->iReg);
2307       return p->iReg;
2308     }
2309   }
2310   assert( v!=0 );
2311   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2312   if( p5 ){
2313     sqlite3VdbeChangeP5(v, p5);
2314   }else{
2315     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2316   }
2317   return iReg;
2318 }
2319 
2320 /*
2321 ** Clear all column cache entries.
2322 */
2323 void sqlite3ExprCacheClear(Parse *pParse){
2324   int i;
2325   struct yColCache *p;
2326 
2327 #if SQLITE_DEBUG
2328   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2329     printf("CLEAR\n");
2330   }
2331 #endif
2332   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2333     if( p->iReg ){
2334       cacheEntryClear(pParse, p);
2335       p->iReg = 0;
2336     }
2337   }
2338 }
2339 
2340 /*
2341 ** Record the fact that an affinity change has occurred on iCount
2342 ** registers starting with iStart.
2343 */
2344 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2345   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2346 }
2347 
2348 /*
2349 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2350 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2351 */
2352 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2353   int i;
2354   struct yColCache *p;
2355   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2356   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg-1);
2357   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2358     int x = p->iReg;
2359     if( x>=iFrom && x<iFrom+nReg ){
2360       p->iReg += iTo-iFrom;
2361     }
2362   }
2363 }
2364 
2365 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2366 /*
2367 ** Return true if any register in the range iFrom..iTo (inclusive)
2368 ** is used as part of the column cache.
2369 **
2370 ** This routine is used within assert() and testcase() macros only
2371 ** and does not appear in a normal build.
2372 */
2373 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2374   int i;
2375   struct yColCache *p;
2376   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2377     int r = p->iReg;
2378     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2379   }
2380   return 0;
2381 }
2382 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2383 
2384 /*
2385 ** Convert an expression node to a TK_REGISTER
2386 */
2387 static void exprToRegister(Expr *p, int iReg){
2388   p->op2 = p->op;
2389   p->op = TK_REGISTER;
2390   p->iTable = iReg;
2391   ExprClearProperty(p, EP_Skip);
2392 }
2393 
2394 /*
2395 ** Generate code into the current Vdbe to evaluate the given
2396 ** expression.  Attempt to store the results in register "target".
2397 ** Return the register where results are stored.
2398 **
2399 ** With this routine, there is no guarantee that results will
2400 ** be stored in target.  The result might be stored in some other
2401 ** register if it is convenient to do so.  The calling function
2402 ** must check the return code and move the results to the desired
2403 ** register.
2404 */
2405 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2406   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2407   int op;                   /* The opcode being coded */
2408   int inReg = target;       /* Results stored in register inReg */
2409   int regFree1 = 0;         /* If non-zero free this temporary register */
2410   int regFree2 = 0;         /* If non-zero free this temporary register */
2411   int r1, r2, r3, r4;       /* Various register numbers */
2412   sqlite3 *db = pParse->db; /* The database connection */
2413   Expr tempX;               /* Temporary expression node */
2414 
2415   assert( target>0 && target<=pParse->nMem );
2416   if( v==0 ){
2417     assert( pParse->db->mallocFailed );
2418     return 0;
2419   }
2420 
2421   if( pExpr==0 ){
2422     op = TK_NULL;
2423   }else{
2424     op = pExpr->op;
2425   }
2426   switch( op ){
2427     case TK_AGG_COLUMN: {
2428       AggInfo *pAggInfo = pExpr->pAggInfo;
2429       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2430       if( !pAggInfo->directMode ){
2431         assert( pCol->iMem>0 );
2432         inReg = pCol->iMem;
2433         break;
2434       }else if( pAggInfo->useSortingIdx ){
2435         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2436                               pCol->iSorterColumn, target);
2437         break;
2438       }
2439       /* Otherwise, fall thru into the TK_COLUMN case */
2440     }
2441     case TK_COLUMN: {
2442       int iTab = pExpr->iTable;
2443       if( iTab<0 ){
2444         if( pParse->ckBase>0 ){
2445           /* Generating CHECK constraints or inserting into partial index */
2446           inReg = pExpr->iColumn + pParse->ckBase;
2447           break;
2448         }else{
2449           /* Deleting from a partial index */
2450           iTab = pParse->iPartIdxTab;
2451         }
2452       }
2453       inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2454                                pExpr->iColumn, iTab, target,
2455                                pExpr->op2);
2456       break;
2457     }
2458     case TK_INTEGER: {
2459       codeInteger(pParse, pExpr, 0, target);
2460       break;
2461     }
2462 #ifndef SQLITE_OMIT_FLOATING_POINT
2463     case TK_FLOAT: {
2464       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2465       codeReal(v, pExpr->u.zToken, 0, target);
2466       break;
2467     }
2468 #endif
2469     case TK_STRING: {
2470       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2471       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2472       break;
2473     }
2474     case TK_NULL: {
2475       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2476       break;
2477     }
2478 #ifndef SQLITE_OMIT_BLOB_LITERAL
2479     case TK_BLOB: {
2480       int n;
2481       const char *z;
2482       char *zBlob;
2483       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2484       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2485       assert( pExpr->u.zToken[1]=='\'' );
2486       z = &pExpr->u.zToken[2];
2487       n = sqlite3Strlen30(z) - 1;
2488       assert( z[n]=='\'' );
2489       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2490       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2491       break;
2492     }
2493 #endif
2494     case TK_VARIABLE: {
2495       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2496       assert( pExpr->u.zToken!=0 );
2497       assert( pExpr->u.zToken[0]!=0 );
2498       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2499       if( pExpr->u.zToken[1]!=0 ){
2500         assert( pExpr->u.zToken[0]=='?'
2501              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2502         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2503       }
2504       break;
2505     }
2506     case TK_REGISTER: {
2507       inReg = pExpr->iTable;
2508       break;
2509     }
2510     case TK_AS: {
2511       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2512       break;
2513     }
2514 #ifndef SQLITE_OMIT_CAST
2515     case TK_CAST: {
2516       /* Expressions of the form:   CAST(pLeft AS token) */
2517       int aff, to_op;
2518       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2519       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2520       aff = sqlite3AffinityType(pExpr->u.zToken, 0);
2521       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2522       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
2523       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
2524       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2525       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
2526       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
2527       testcase( to_op==OP_ToText );
2528       testcase( to_op==OP_ToBlob );
2529       testcase( to_op==OP_ToNumeric );
2530       testcase( to_op==OP_ToInt );
2531       testcase( to_op==OP_ToReal );
2532       if( inReg!=target ){
2533         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2534         inReg = target;
2535       }
2536       sqlite3VdbeAddOp1(v, to_op, inReg);
2537       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2538       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2539       break;
2540     }
2541 #endif /* SQLITE_OMIT_CAST */
2542     case TK_LT:
2543     case TK_LE:
2544     case TK_GT:
2545     case TK_GE:
2546     case TK_NE:
2547     case TK_EQ: {
2548       assert( TK_LT==OP_Lt );
2549       assert( TK_LE==OP_Le );
2550       assert( TK_GT==OP_Gt );
2551       assert( TK_GE==OP_Ge );
2552       assert( TK_EQ==OP_Eq );
2553       assert( TK_NE==OP_Ne );
2554       testcase( op==TK_LT );
2555       testcase( op==TK_LE );
2556       testcase( op==TK_GT );
2557       testcase( op==TK_GE );
2558       testcase( op==TK_EQ );
2559       testcase( op==TK_NE );
2560       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2561       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2562       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2563                   r1, r2, inReg, SQLITE_STOREP2);
2564       testcase( regFree1==0 );
2565       testcase( regFree2==0 );
2566       break;
2567     }
2568     case TK_IS:
2569     case TK_ISNOT: {
2570       testcase( op==TK_IS );
2571       testcase( op==TK_ISNOT );
2572       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2573       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2574       op = (op==TK_IS) ? TK_EQ : TK_NE;
2575       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2576                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2577       testcase( regFree1==0 );
2578       testcase( regFree2==0 );
2579       break;
2580     }
2581     case TK_AND:
2582     case TK_OR:
2583     case TK_PLUS:
2584     case TK_STAR:
2585     case TK_MINUS:
2586     case TK_REM:
2587     case TK_BITAND:
2588     case TK_BITOR:
2589     case TK_SLASH:
2590     case TK_LSHIFT:
2591     case TK_RSHIFT:
2592     case TK_CONCAT: {
2593       assert( TK_AND==OP_And );
2594       assert( TK_OR==OP_Or );
2595       assert( TK_PLUS==OP_Add );
2596       assert( TK_MINUS==OP_Subtract );
2597       assert( TK_REM==OP_Remainder );
2598       assert( TK_BITAND==OP_BitAnd );
2599       assert( TK_BITOR==OP_BitOr );
2600       assert( TK_SLASH==OP_Divide );
2601       assert( TK_LSHIFT==OP_ShiftLeft );
2602       assert( TK_RSHIFT==OP_ShiftRight );
2603       assert( TK_CONCAT==OP_Concat );
2604       testcase( op==TK_AND );
2605       testcase( op==TK_OR );
2606       testcase( op==TK_PLUS );
2607       testcase( op==TK_MINUS );
2608       testcase( op==TK_REM );
2609       testcase( op==TK_BITAND );
2610       testcase( op==TK_BITOR );
2611       testcase( op==TK_SLASH );
2612       testcase( op==TK_LSHIFT );
2613       testcase( op==TK_RSHIFT );
2614       testcase( op==TK_CONCAT );
2615       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2616       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2617       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2618       testcase( regFree1==0 );
2619       testcase( regFree2==0 );
2620       break;
2621     }
2622     case TK_UMINUS: {
2623       Expr *pLeft = pExpr->pLeft;
2624       assert( pLeft );
2625       if( pLeft->op==TK_INTEGER ){
2626         codeInteger(pParse, pLeft, 1, target);
2627 #ifndef SQLITE_OMIT_FLOATING_POINT
2628       }else if( pLeft->op==TK_FLOAT ){
2629         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2630         codeReal(v, pLeft->u.zToken, 1, target);
2631 #endif
2632       }else{
2633         tempX.op = TK_INTEGER;
2634         tempX.flags = EP_IntValue|EP_TokenOnly;
2635         tempX.u.iValue = 0;
2636         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2637         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2638         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2639         testcase( regFree2==0 );
2640       }
2641       inReg = target;
2642       break;
2643     }
2644     case TK_BITNOT:
2645     case TK_NOT: {
2646       assert( TK_BITNOT==OP_BitNot );
2647       assert( TK_NOT==OP_Not );
2648       testcase( op==TK_BITNOT );
2649       testcase( op==TK_NOT );
2650       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2651       testcase( regFree1==0 );
2652       inReg = target;
2653       sqlite3VdbeAddOp2(v, op, r1, inReg);
2654       break;
2655     }
2656     case TK_ISNULL:
2657     case TK_NOTNULL: {
2658       int addr;
2659       assert( TK_ISNULL==OP_IsNull );
2660       assert( TK_NOTNULL==OP_NotNull );
2661       testcase( op==TK_ISNULL );
2662       testcase( op==TK_NOTNULL );
2663       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2664       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2665       testcase( regFree1==0 );
2666       addr = sqlite3VdbeAddOp1(v, op, r1);
2667       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2668       sqlite3VdbeJumpHere(v, addr);
2669       break;
2670     }
2671     case TK_AGG_FUNCTION: {
2672       AggInfo *pInfo = pExpr->pAggInfo;
2673       if( pInfo==0 ){
2674         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2675         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2676       }else{
2677         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2678       }
2679       break;
2680     }
2681     case TK_FUNCTION: {
2682       ExprList *pFarg;       /* List of function arguments */
2683       int nFarg;             /* Number of function arguments */
2684       FuncDef *pDef;         /* The function definition object */
2685       int nId;               /* Length of the function name in bytes */
2686       const char *zId;       /* The function name */
2687       u32 constMask = 0;     /* Mask of function arguments that are constant */
2688       int i;                 /* Loop counter */
2689       u8 enc = ENC(db);      /* The text encoding used by this database */
2690       CollSeq *pColl = 0;    /* A collating sequence */
2691 
2692       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2693       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2694         pFarg = 0;
2695       }else{
2696         pFarg = pExpr->x.pList;
2697       }
2698       nFarg = pFarg ? pFarg->nExpr : 0;
2699       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2700       zId = pExpr->u.zToken;
2701       nId = sqlite3Strlen30(zId);
2702       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2703       if( pDef==0 ){
2704         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2705         break;
2706       }
2707 
2708       /* Attempt a direct implementation of the built-in COALESCE() and
2709       ** IFNULL() functions.  This avoids unnecessary evalation of
2710       ** arguments past the first non-NULL argument.
2711       */
2712       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2713         int endCoalesce = sqlite3VdbeMakeLabel(v);
2714         assert( nFarg>=2 );
2715         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2716         for(i=1; i<nFarg; i++){
2717           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2718           sqlite3ExprCacheRemove(pParse, target, 1);
2719           sqlite3ExprCachePush(pParse);
2720           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2721           sqlite3ExprCachePop(pParse, 1);
2722         }
2723         sqlite3VdbeResolveLabel(v, endCoalesce);
2724         break;
2725       }
2726 
2727       /* The UNLIKELY() function is a no-op.  The result is the value
2728       ** of the first argument.
2729       */
2730       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2731         assert( nFarg>=1 );
2732         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2733         break;
2734       }
2735 
2736       for(i=0; i<nFarg; i++){
2737         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2738           testcase( i==31 );
2739           constMask |= MASKBIT32(i);
2740         }
2741         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2742           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2743         }
2744       }
2745       if( pFarg ){
2746         if( constMask ){
2747           r1 = pParse->nMem+1;
2748           pParse->nMem += nFarg;
2749         }else{
2750           r1 = sqlite3GetTempRange(pParse, nFarg);
2751         }
2752 
2753         /* For length() and typeof() functions with a column argument,
2754         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2755         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2756         ** loading.
2757         */
2758         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2759           u8 exprOp;
2760           assert( nFarg==1 );
2761           assert( pFarg->a[0].pExpr!=0 );
2762           exprOp = pFarg->a[0].pExpr->op;
2763           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2764             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2765             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2766             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
2767             pFarg->a[0].pExpr->op2 =
2768                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
2769           }
2770         }
2771 
2772         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2773         sqlite3ExprCodeExprList(pParse, pFarg, r1,
2774                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
2775         sqlite3ExprCachePop(pParse, 1);   /* Ticket 2ea2425d34be */
2776       }else{
2777         r1 = 0;
2778       }
2779 #ifndef SQLITE_OMIT_VIRTUALTABLE
2780       /* Possibly overload the function if the first argument is
2781       ** a virtual table column.
2782       **
2783       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2784       ** second argument, not the first, as the argument to test to
2785       ** see if it is a column in a virtual table.  This is done because
2786       ** the left operand of infix functions (the operand we want to
2787       ** control overloading) ends up as the second argument to the
2788       ** function.  The expression "A glob B" is equivalent to
2789       ** "glob(B,A).  We want to use the A in "A glob B" to test
2790       ** for function overloading.  But we use the B term in "glob(B,A)".
2791       */
2792       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2793         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2794       }else if( nFarg>0 ){
2795         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2796       }
2797 #endif
2798       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
2799         if( !pColl ) pColl = db->pDfltColl;
2800         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2801       }
2802       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2803                         (char*)pDef, P4_FUNCDEF);
2804       sqlite3VdbeChangeP5(v, (u8)nFarg);
2805       if( nFarg && constMask==0 ){
2806         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2807       }
2808       break;
2809     }
2810 #ifndef SQLITE_OMIT_SUBQUERY
2811     case TK_EXISTS:
2812     case TK_SELECT: {
2813       testcase( op==TK_EXISTS );
2814       testcase( op==TK_SELECT );
2815       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2816       break;
2817     }
2818     case TK_IN: {
2819       int destIfFalse = sqlite3VdbeMakeLabel(v);
2820       int destIfNull = sqlite3VdbeMakeLabel(v);
2821       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2822       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2823       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2824       sqlite3VdbeResolveLabel(v, destIfFalse);
2825       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2826       sqlite3VdbeResolveLabel(v, destIfNull);
2827       break;
2828     }
2829 #endif /* SQLITE_OMIT_SUBQUERY */
2830 
2831 
2832     /*
2833     **    x BETWEEN y AND z
2834     **
2835     ** This is equivalent to
2836     **
2837     **    x>=y AND x<=z
2838     **
2839     ** X is stored in pExpr->pLeft.
2840     ** Y is stored in pExpr->pList->a[0].pExpr.
2841     ** Z is stored in pExpr->pList->a[1].pExpr.
2842     */
2843     case TK_BETWEEN: {
2844       Expr *pLeft = pExpr->pLeft;
2845       struct ExprList_item *pLItem = pExpr->x.pList->a;
2846       Expr *pRight = pLItem->pExpr;
2847 
2848       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2849       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2850       testcase( regFree1==0 );
2851       testcase( regFree2==0 );
2852       r3 = sqlite3GetTempReg(pParse);
2853       r4 = sqlite3GetTempReg(pParse);
2854       codeCompare(pParse, pLeft, pRight, OP_Ge,
2855                   r1, r2, r3, SQLITE_STOREP2);
2856       pLItem++;
2857       pRight = pLItem->pExpr;
2858       sqlite3ReleaseTempReg(pParse, regFree2);
2859       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2860       testcase( regFree2==0 );
2861       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2862       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2863       sqlite3ReleaseTempReg(pParse, r3);
2864       sqlite3ReleaseTempReg(pParse, r4);
2865       break;
2866     }
2867     case TK_COLLATE:
2868     case TK_UPLUS: {
2869       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2870       break;
2871     }
2872 
2873     case TK_TRIGGER: {
2874       /* If the opcode is TK_TRIGGER, then the expression is a reference
2875       ** to a column in the new.* or old.* pseudo-tables available to
2876       ** trigger programs. In this case Expr.iTable is set to 1 for the
2877       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2878       ** is set to the column of the pseudo-table to read, or to -1 to
2879       ** read the rowid field.
2880       **
2881       ** The expression is implemented using an OP_Param opcode. The p1
2882       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2883       ** to reference another column of the old.* pseudo-table, where
2884       ** i is the index of the column. For a new.rowid reference, p1 is
2885       ** set to (n+1), where n is the number of columns in each pseudo-table.
2886       ** For a reference to any other column in the new.* pseudo-table, p1
2887       ** is set to (n+2+i), where n and i are as defined previously. For
2888       ** example, if the table on which triggers are being fired is
2889       ** declared as:
2890       **
2891       **   CREATE TABLE t1(a, b);
2892       **
2893       ** Then p1 is interpreted as follows:
2894       **
2895       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
2896       **   p1==1   ->    old.a         p1==4   ->    new.a
2897       **   p1==2   ->    old.b         p1==5   ->    new.b
2898       */
2899       Table *pTab = pExpr->pTab;
2900       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2901 
2902       assert( pExpr->iTable==0 || pExpr->iTable==1 );
2903       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2904       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2905       assert( p1>=0 && p1<(pTab->nCol*2+2) );
2906 
2907       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
2908       VdbeComment((v, "%s.%s -> $%d",
2909         (pExpr->iTable ? "new" : "old"),
2910         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
2911         target
2912       ));
2913 
2914 #ifndef SQLITE_OMIT_FLOATING_POINT
2915       /* If the column has REAL affinity, it may currently be stored as an
2916       ** integer. Use OP_RealAffinity to make sure it is really real.  */
2917       if( pExpr->iColumn>=0
2918        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
2919       ){
2920         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
2921       }
2922 #endif
2923       break;
2924     }
2925 
2926 
2927     /*
2928     ** Form A:
2929     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2930     **
2931     ** Form B:
2932     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2933     **
2934     ** Form A is can be transformed into the equivalent form B as follows:
2935     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2936     **        WHEN x=eN THEN rN ELSE y END
2937     **
2938     ** X (if it exists) is in pExpr->pLeft.
2939     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
2940     ** odd.  The Y is also optional.  If the number of elements in x.pList
2941     ** is even, then Y is omitted and the "otherwise" result is NULL.
2942     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2943     **
2944     ** The result of the expression is the Ri for the first matching Ei,
2945     ** or if there is no matching Ei, the ELSE term Y, or if there is
2946     ** no ELSE term, NULL.
2947     */
2948     default: assert( op==TK_CASE ); {
2949       int endLabel;                     /* GOTO label for end of CASE stmt */
2950       int nextCase;                     /* GOTO label for next WHEN clause */
2951       int nExpr;                        /* 2x number of WHEN terms */
2952       int i;                            /* Loop counter */
2953       ExprList *pEList;                 /* List of WHEN terms */
2954       struct ExprList_item *aListelem;  /* Array of WHEN terms */
2955       Expr opCompare;                   /* The X==Ei expression */
2956       Expr *pX;                         /* The X expression */
2957       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
2958       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
2959 
2960       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
2961       assert(pExpr->x.pList->nExpr > 0);
2962       pEList = pExpr->x.pList;
2963       aListelem = pEList->a;
2964       nExpr = pEList->nExpr;
2965       endLabel = sqlite3VdbeMakeLabel(v);
2966       if( (pX = pExpr->pLeft)!=0 ){
2967         tempX = *pX;
2968         testcase( pX->op==TK_COLUMN );
2969         exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
2970         testcase( regFree1==0 );
2971         opCompare.op = TK_EQ;
2972         opCompare.pLeft = &tempX;
2973         pTest = &opCompare;
2974         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
2975         ** The value in regFree1 might get SCopy-ed into the file result.
2976         ** So make sure that the regFree1 register is not reused for other
2977         ** purposes and possibly overwritten.  */
2978         regFree1 = 0;
2979       }
2980       for(i=0; i<nExpr-1; i=i+2){
2981         sqlite3ExprCachePush(pParse);
2982         if( pX ){
2983           assert( pTest!=0 );
2984           opCompare.pRight = aListelem[i].pExpr;
2985         }else{
2986           pTest = aListelem[i].pExpr;
2987         }
2988         nextCase = sqlite3VdbeMakeLabel(v);
2989         testcase( pTest->op==TK_COLUMN );
2990         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2991         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2992         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2993         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2994         sqlite3ExprCachePop(pParse, 1);
2995         sqlite3VdbeResolveLabel(v, nextCase);
2996       }
2997       if( (nExpr&1)!=0 ){
2998         sqlite3ExprCachePush(pParse);
2999         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3000         sqlite3ExprCachePop(pParse, 1);
3001       }else{
3002         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3003       }
3004       assert( db->mallocFailed || pParse->nErr>0
3005            || pParse->iCacheLevel==iCacheLevel );
3006       sqlite3VdbeResolveLabel(v, endLabel);
3007       break;
3008     }
3009 #ifndef SQLITE_OMIT_TRIGGER
3010     case TK_RAISE: {
3011       assert( pExpr->affinity==OE_Rollback
3012            || pExpr->affinity==OE_Abort
3013            || pExpr->affinity==OE_Fail
3014            || pExpr->affinity==OE_Ignore
3015       );
3016       if( !pParse->pTriggerTab ){
3017         sqlite3ErrorMsg(pParse,
3018                        "RAISE() may only be used within a trigger-program");
3019         return 0;
3020       }
3021       if( pExpr->affinity==OE_Abort ){
3022         sqlite3MayAbort(pParse);
3023       }
3024       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3025       if( pExpr->affinity==OE_Ignore ){
3026         sqlite3VdbeAddOp4(
3027             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3028       }else{
3029         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3030                               pExpr->affinity, pExpr->u.zToken, 0, 0);
3031       }
3032 
3033       break;
3034     }
3035 #endif
3036   }
3037   sqlite3ReleaseTempReg(pParse, regFree1);
3038   sqlite3ReleaseTempReg(pParse, regFree2);
3039   return inReg;
3040 }
3041 
3042 /*
3043 ** Factor out the code of the given expression to initialization time.
3044 */
3045 void sqlite3ExprCodeAtInit(
3046   Parse *pParse,    /* Parsing context */
3047   Expr *pExpr,      /* The expression to code when the VDBE initializes */
3048   int regDest,      /* Store the value in this register */
3049   u8 reusable       /* True if this expression is reusable */
3050 ){
3051   ExprList *p;
3052   assert( ConstFactorOk(pParse) );
3053   p = pParse->pConstExpr;
3054   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3055   p = sqlite3ExprListAppend(pParse, p, pExpr);
3056   if( p ){
3057      struct ExprList_item *pItem = &p->a[p->nExpr-1];
3058      pItem->u.iConstExprReg = regDest;
3059      pItem->reusable = reusable;
3060   }
3061   pParse->pConstExpr = p;
3062 }
3063 
3064 /*
3065 ** Generate code to evaluate an expression and store the results
3066 ** into a register.  Return the register number where the results
3067 ** are stored.
3068 **
3069 ** If the register is a temporary register that can be deallocated,
3070 ** then write its number into *pReg.  If the result register is not
3071 ** a temporary, then set *pReg to zero.
3072 **
3073 ** If pExpr is a constant, then this routine might generate this
3074 ** code to fill the register in the initialization section of the
3075 ** VDBE program, in order to factor it out of the evaluation loop.
3076 */
3077 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3078   int r2;
3079   pExpr = sqlite3ExprSkipCollate(pExpr);
3080   if( ConstFactorOk(pParse)
3081    && pExpr->op!=TK_REGISTER
3082    && sqlite3ExprIsConstantNotJoin(pExpr)
3083   ){
3084     ExprList *p = pParse->pConstExpr;
3085     int i;
3086     *pReg  = 0;
3087     if( p ){
3088       struct ExprList_item *pItem;
3089       for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3090         if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3091           return pItem->u.iConstExprReg;
3092         }
3093       }
3094     }
3095     r2 = ++pParse->nMem;
3096     sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3097   }else{
3098     int r1 = sqlite3GetTempReg(pParse);
3099     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3100     if( r2==r1 ){
3101       *pReg = r1;
3102     }else{
3103       sqlite3ReleaseTempReg(pParse, r1);
3104       *pReg = 0;
3105     }
3106   }
3107   return r2;
3108 }
3109 
3110 /*
3111 ** Generate code that will evaluate expression pExpr and store the
3112 ** results in register target.  The results are guaranteed to appear
3113 ** in register target.
3114 */
3115 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3116   int inReg;
3117 
3118   assert( target>0 && target<=pParse->nMem );
3119   if( pExpr && pExpr->op==TK_REGISTER ){
3120     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3121   }else{
3122     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3123     assert( pParse->pVdbe || pParse->db->mallocFailed );
3124     if( inReg!=target && pParse->pVdbe ){
3125       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
3126     }
3127   }
3128   return target;
3129 }
3130 
3131 /*
3132 ** Generate code that evalutes the given expression and puts the result
3133 ** in register target.
3134 **
3135 ** Also make a copy of the expression results into another "cache" register
3136 ** and modify the expression so that the next time it is evaluated,
3137 ** the result is a copy of the cache register.
3138 **
3139 ** This routine is used for expressions that are used multiple
3140 ** times.  They are evaluated once and the results of the expression
3141 ** are reused.
3142 */
3143 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3144   Vdbe *v = pParse->pVdbe;
3145   int inReg;
3146   inReg = sqlite3ExprCode(pParse, pExpr, target);
3147   assert( target>0 );
3148   /* The only place, other than this routine, where expressions can be
3149   ** converted to TK_REGISTER is internal subexpressions in BETWEEN and
3150   ** CASE operators.  Neither ever calls this routine.  And this routine
3151   ** is never called twice on the same expression.  Hence it is impossible
3152   ** for the input to this routine to already be a register.  Nevertheless,
3153   ** it seems prudent to keep the ALWAYS() in case the conditions above
3154   ** change with future modifications or enhancements. */
3155   if( ALWAYS(pExpr->op!=TK_REGISTER) ){
3156     int iMem;
3157     iMem = ++pParse->nMem;
3158     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
3159     exprToRegister(pExpr, iMem);
3160   }
3161   return inReg;
3162 }
3163 
3164 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3165 /*
3166 ** Generate a human-readable explanation of an expression tree.
3167 */
3168 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){
3169   int op;                   /* The opcode being coded */
3170   const char *zBinOp = 0;   /* Binary operator */
3171   const char *zUniOp = 0;   /* Unary operator */
3172   if( pExpr==0 ){
3173     op = TK_NULL;
3174   }else{
3175     op = pExpr->op;
3176   }
3177   switch( op ){
3178     case TK_AGG_COLUMN: {
3179       sqlite3ExplainPrintf(pOut, "AGG{%d:%d}",
3180             pExpr->iTable, pExpr->iColumn);
3181       break;
3182     }
3183     case TK_COLUMN: {
3184       if( pExpr->iTable<0 ){
3185         /* This only happens when coding check constraints */
3186         sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn);
3187       }else{
3188         sqlite3ExplainPrintf(pOut, "{%d:%d}",
3189                              pExpr->iTable, pExpr->iColumn);
3190       }
3191       break;
3192     }
3193     case TK_INTEGER: {
3194       if( pExpr->flags & EP_IntValue ){
3195         sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue);
3196       }else{
3197         sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken);
3198       }
3199       break;
3200     }
3201 #ifndef SQLITE_OMIT_FLOATING_POINT
3202     case TK_FLOAT: {
3203       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
3204       break;
3205     }
3206 #endif
3207     case TK_STRING: {
3208       sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken);
3209       break;
3210     }
3211     case TK_NULL: {
3212       sqlite3ExplainPrintf(pOut,"NULL");
3213       break;
3214     }
3215 #ifndef SQLITE_OMIT_BLOB_LITERAL
3216     case TK_BLOB: {
3217       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
3218       break;
3219     }
3220 #endif
3221     case TK_VARIABLE: {
3222       sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)",
3223                            pExpr->u.zToken, pExpr->iColumn);
3224       break;
3225     }
3226     case TK_REGISTER: {
3227       sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable);
3228       break;
3229     }
3230     case TK_AS: {
3231       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3232       break;
3233     }
3234 #ifndef SQLITE_OMIT_CAST
3235     case TK_CAST: {
3236       /* Expressions of the form:   CAST(pLeft AS token) */
3237       const char *zAff = "unk";
3238       switch( sqlite3AffinityType(pExpr->u.zToken, 0) ){
3239         case SQLITE_AFF_TEXT:    zAff = "TEXT";     break;
3240         case SQLITE_AFF_NONE:    zAff = "NONE";     break;
3241         case SQLITE_AFF_NUMERIC: zAff = "NUMERIC";  break;
3242         case SQLITE_AFF_INTEGER: zAff = "INTEGER";  break;
3243         case SQLITE_AFF_REAL:    zAff = "REAL";     break;
3244       }
3245       sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff);
3246       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3247       sqlite3ExplainPrintf(pOut, ")");
3248       break;
3249     }
3250 #endif /* SQLITE_OMIT_CAST */
3251     case TK_LT:      zBinOp = "LT";     break;
3252     case TK_LE:      zBinOp = "LE";     break;
3253     case TK_GT:      zBinOp = "GT";     break;
3254     case TK_GE:      zBinOp = "GE";     break;
3255     case TK_NE:      zBinOp = "NE";     break;
3256     case TK_EQ:      zBinOp = "EQ";     break;
3257     case TK_IS:      zBinOp = "IS";     break;
3258     case TK_ISNOT:   zBinOp = "ISNOT";  break;
3259     case TK_AND:     zBinOp = "AND";    break;
3260     case TK_OR:      zBinOp = "OR";     break;
3261     case TK_PLUS:    zBinOp = "ADD";    break;
3262     case TK_STAR:    zBinOp = "MUL";    break;
3263     case TK_MINUS:   zBinOp = "SUB";    break;
3264     case TK_REM:     zBinOp = "REM";    break;
3265     case TK_BITAND:  zBinOp = "BITAND"; break;
3266     case TK_BITOR:   zBinOp = "BITOR";  break;
3267     case TK_SLASH:   zBinOp = "DIV";    break;
3268     case TK_LSHIFT:  zBinOp = "LSHIFT"; break;
3269     case TK_RSHIFT:  zBinOp = "RSHIFT"; break;
3270     case TK_CONCAT:  zBinOp = "CONCAT"; break;
3271 
3272     case TK_UMINUS:  zUniOp = "UMINUS"; break;
3273     case TK_UPLUS:   zUniOp = "UPLUS";  break;
3274     case TK_BITNOT:  zUniOp = "BITNOT"; break;
3275     case TK_NOT:     zUniOp = "NOT";    break;
3276     case TK_ISNULL:  zUniOp = "ISNULL"; break;
3277     case TK_NOTNULL: zUniOp = "NOTNULL"; break;
3278 
3279     case TK_COLLATE: {
3280       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3281       sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken);
3282       break;
3283     }
3284 
3285     case TK_AGG_FUNCTION:
3286     case TK_FUNCTION: {
3287       ExprList *pFarg;       /* List of function arguments */
3288       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3289         pFarg = 0;
3290       }else{
3291         pFarg = pExpr->x.pList;
3292       }
3293       if( op==TK_AGG_FUNCTION ){
3294         sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(",
3295                              pExpr->op2, pExpr->u.zToken);
3296       }else{
3297         sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken);
3298       }
3299       if( pFarg ){
3300         sqlite3ExplainExprList(pOut, pFarg);
3301       }
3302       sqlite3ExplainPrintf(pOut, ")");
3303       break;
3304     }
3305 #ifndef SQLITE_OMIT_SUBQUERY
3306     case TK_EXISTS: {
3307       sqlite3ExplainPrintf(pOut, "EXISTS(");
3308       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3309       sqlite3ExplainPrintf(pOut,")");
3310       break;
3311     }
3312     case TK_SELECT: {
3313       sqlite3ExplainPrintf(pOut, "(");
3314       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3315       sqlite3ExplainPrintf(pOut, ")");
3316       break;
3317     }
3318     case TK_IN: {
3319       sqlite3ExplainPrintf(pOut, "IN(");
3320       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3321       sqlite3ExplainPrintf(pOut, ",");
3322       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3323         sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3324       }else{
3325         sqlite3ExplainExprList(pOut, pExpr->x.pList);
3326       }
3327       sqlite3ExplainPrintf(pOut, ")");
3328       break;
3329     }
3330 #endif /* SQLITE_OMIT_SUBQUERY */
3331 
3332     /*
3333     **    x BETWEEN y AND z
3334     **
3335     ** This is equivalent to
3336     **
3337     **    x>=y AND x<=z
3338     **
3339     ** X is stored in pExpr->pLeft.
3340     ** Y is stored in pExpr->pList->a[0].pExpr.
3341     ** Z is stored in pExpr->pList->a[1].pExpr.
3342     */
3343     case TK_BETWEEN: {
3344       Expr *pX = pExpr->pLeft;
3345       Expr *pY = pExpr->x.pList->a[0].pExpr;
3346       Expr *pZ = pExpr->x.pList->a[1].pExpr;
3347       sqlite3ExplainPrintf(pOut, "BETWEEN(");
3348       sqlite3ExplainExpr(pOut, pX);
3349       sqlite3ExplainPrintf(pOut, ",");
3350       sqlite3ExplainExpr(pOut, pY);
3351       sqlite3ExplainPrintf(pOut, ",");
3352       sqlite3ExplainExpr(pOut, pZ);
3353       sqlite3ExplainPrintf(pOut, ")");
3354       break;
3355     }
3356     case TK_TRIGGER: {
3357       /* If the opcode is TK_TRIGGER, then the expression is a reference
3358       ** to a column in the new.* or old.* pseudo-tables available to
3359       ** trigger programs. In this case Expr.iTable is set to 1 for the
3360       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3361       ** is set to the column of the pseudo-table to read, or to -1 to
3362       ** read the rowid field.
3363       */
3364       sqlite3ExplainPrintf(pOut, "%s(%d)",
3365           pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
3366       break;
3367     }
3368     case TK_CASE: {
3369       sqlite3ExplainPrintf(pOut, "CASE(");
3370       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3371       sqlite3ExplainPrintf(pOut, ",");
3372       sqlite3ExplainExprList(pOut, pExpr->x.pList);
3373       break;
3374     }
3375 #ifndef SQLITE_OMIT_TRIGGER
3376     case TK_RAISE: {
3377       const char *zType = "unk";
3378       switch( pExpr->affinity ){
3379         case OE_Rollback:   zType = "rollback";  break;
3380         case OE_Abort:      zType = "abort";     break;
3381         case OE_Fail:       zType = "fail";      break;
3382         case OE_Ignore:     zType = "ignore";    break;
3383       }
3384       sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken);
3385       break;
3386     }
3387 #endif
3388   }
3389   if( zBinOp ){
3390     sqlite3ExplainPrintf(pOut,"%s(", zBinOp);
3391     sqlite3ExplainExpr(pOut, pExpr->pLeft);
3392     sqlite3ExplainPrintf(pOut,",");
3393     sqlite3ExplainExpr(pOut, pExpr->pRight);
3394     sqlite3ExplainPrintf(pOut,")");
3395   }else if( zUniOp ){
3396     sqlite3ExplainPrintf(pOut,"%s(", zUniOp);
3397     sqlite3ExplainExpr(pOut, pExpr->pLeft);
3398     sqlite3ExplainPrintf(pOut,")");
3399   }
3400 }
3401 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
3402 
3403 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3404 /*
3405 ** Generate a human-readable explanation of an expression list.
3406 */
3407 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){
3408   int i;
3409   if( pList==0 || pList->nExpr==0 ){
3410     sqlite3ExplainPrintf(pOut, "(empty-list)");
3411     return;
3412   }else if( pList->nExpr==1 ){
3413     sqlite3ExplainExpr(pOut, pList->a[0].pExpr);
3414   }else{
3415     sqlite3ExplainPush(pOut);
3416     for(i=0; i<pList->nExpr; i++){
3417       sqlite3ExplainPrintf(pOut, "item[%d] = ", i);
3418       sqlite3ExplainPush(pOut);
3419       sqlite3ExplainExpr(pOut, pList->a[i].pExpr);
3420       sqlite3ExplainPop(pOut);
3421       if( pList->a[i].zName ){
3422         sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
3423       }
3424       if( pList->a[i].bSpanIsTab ){
3425         sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
3426       }
3427       if( i<pList->nExpr-1 ){
3428         sqlite3ExplainNL(pOut);
3429       }
3430     }
3431     sqlite3ExplainPop(pOut);
3432   }
3433 }
3434 #endif /* SQLITE_DEBUG */
3435 
3436 /*
3437 ** Generate code that pushes the value of every element of the given
3438 ** expression list into a sequence of registers beginning at target.
3439 **
3440 ** Return the number of elements evaluated.
3441 **
3442 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3443 ** filled using OP_SCopy.  OP_Copy must be used instead.
3444 **
3445 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3446 ** factored out into initialization code.
3447 */
3448 int sqlite3ExprCodeExprList(
3449   Parse *pParse,     /* Parsing context */
3450   ExprList *pList,   /* The expression list to be coded */
3451   int target,        /* Where to write results */
3452   u8 flags           /* SQLITE_ECEL_* flags */
3453 ){
3454   struct ExprList_item *pItem;
3455   int i, n;
3456   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3457   assert( pList!=0 );
3458   assert( target>0 );
3459   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3460   n = pList->nExpr;
3461   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3462   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3463     Expr *pExpr = pItem->pExpr;
3464     if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3465       sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3466     }else{
3467       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3468       if( inReg!=target+i ){
3469         VdbeOp *pOp;
3470         Vdbe *v = pParse->pVdbe;
3471         if( copyOp==OP_Copy
3472          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3473          && pOp->p1+pOp->p3+1==inReg
3474          && pOp->p2+pOp->p3+1==target+i
3475         ){
3476           pOp->p3++;
3477         }else{
3478           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3479         }
3480       }
3481     }
3482   }
3483   return n;
3484 }
3485 
3486 /*
3487 ** Generate code for a BETWEEN operator.
3488 **
3489 **    x BETWEEN y AND z
3490 **
3491 ** The above is equivalent to
3492 **
3493 **    x>=y AND x<=z
3494 **
3495 ** Code it as such, taking care to do the common subexpression
3496 ** elementation of x.
3497 */
3498 static void exprCodeBetween(
3499   Parse *pParse,    /* Parsing and code generating context */
3500   Expr *pExpr,      /* The BETWEEN expression */
3501   int dest,         /* Jump here if the jump is taken */
3502   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3503   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3504 ){
3505   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3506   Expr compLeft;    /* The  x>=y  term */
3507   Expr compRight;   /* The  x<=z  term */
3508   Expr exprX;       /* The  x  subexpression */
3509   int regFree1 = 0; /* Temporary use register */
3510 
3511   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3512   exprX = *pExpr->pLeft;
3513   exprAnd.op = TK_AND;
3514   exprAnd.pLeft = &compLeft;
3515   exprAnd.pRight = &compRight;
3516   compLeft.op = TK_GE;
3517   compLeft.pLeft = &exprX;
3518   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3519   compRight.op = TK_LE;
3520   compRight.pLeft = &exprX;
3521   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3522   exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3523   if( jumpIfTrue ){
3524     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3525   }else{
3526     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3527   }
3528   sqlite3ReleaseTempReg(pParse, regFree1);
3529 
3530   /* Ensure adequate test coverage */
3531   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3532   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3533   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3534   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3535   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3536   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3537   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3538   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3539 }
3540 
3541 /*
3542 ** Generate code for a boolean expression such that a jump is made
3543 ** to the label "dest" if the expression is true but execution
3544 ** continues straight thru if the expression is false.
3545 **
3546 ** If the expression evaluates to NULL (neither true nor false), then
3547 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3548 **
3549 ** This code depends on the fact that certain token values (ex: TK_EQ)
3550 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3551 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3552 ** the make process cause these values to align.  Assert()s in the code
3553 ** below verify that the numbers are aligned correctly.
3554 */
3555 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3556   Vdbe *v = pParse->pVdbe;
3557   int op = 0;
3558   int regFree1 = 0;
3559   int regFree2 = 0;
3560   int r1, r2;
3561 
3562   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3563   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
3564   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3565   op = pExpr->op;
3566   switch( op ){
3567     case TK_AND: {
3568       int d2 = sqlite3VdbeMakeLabel(v);
3569       testcase( jumpIfNull==0 );
3570       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3571       sqlite3ExprCachePush(pParse);
3572       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3573       sqlite3VdbeResolveLabel(v, d2);
3574       sqlite3ExprCachePop(pParse, 1);
3575       break;
3576     }
3577     case TK_OR: {
3578       testcase( jumpIfNull==0 );
3579       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3580       sqlite3ExprCachePush(pParse);
3581       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3582       sqlite3ExprCachePop(pParse, 1);
3583       break;
3584     }
3585     case TK_NOT: {
3586       testcase( jumpIfNull==0 );
3587       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3588       break;
3589     }
3590     case TK_LT:
3591     case TK_LE:
3592     case TK_GT:
3593     case TK_GE:
3594     case TK_NE:
3595     case TK_EQ: {
3596       assert( TK_LT==OP_Lt );
3597       assert( TK_LE==OP_Le );
3598       assert( TK_GT==OP_Gt );
3599       assert( TK_GE==OP_Ge );
3600       assert( TK_EQ==OP_Eq );
3601       assert( TK_NE==OP_Ne );
3602       testcase( op==TK_LT );
3603       testcase( op==TK_LE );
3604       testcase( op==TK_GT );
3605       testcase( op==TK_GE );
3606       testcase( op==TK_EQ );
3607       testcase( op==TK_NE );
3608       testcase( jumpIfNull==0 );
3609       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3610       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3611       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3612                   r1, r2, dest, jumpIfNull);
3613       testcase( regFree1==0 );
3614       testcase( regFree2==0 );
3615       break;
3616     }
3617     case TK_IS:
3618     case TK_ISNOT: {
3619       testcase( op==TK_IS );
3620       testcase( op==TK_ISNOT );
3621       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3622       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3623       op = (op==TK_IS) ? TK_EQ : TK_NE;
3624       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3625                   r1, r2, dest, SQLITE_NULLEQ);
3626       testcase( regFree1==0 );
3627       testcase( regFree2==0 );
3628       break;
3629     }
3630     case TK_ISNULL:
3631     case TK_NOTNULL: {
3632       assert( TK_ISNULL==OP_IsNull );
3633       assert( TK_NOTNULL==OP_NotNull );
3634       testcase( op==TK_ISNULL );
3635       testcase( op==TK_NOTNULL );
3636       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3637       sqlite3VdbeAddOp2(v, op, r1, dest);
3638       testcase( regFree1==0 );
3639       break;
3640     }
3641     case TK_BETWEEN: {
3642       testcase( jumpIfNull==0 );
3643       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3644       break;
3645     }
3646 #ifndef SQLITE_OMIT_SUBQUERY
3647     case TK_IN: {
3648       int destIfFalse = sqlite3VdbeMakeLabel(v);
3649       int destIfNull = jumpIfNull ? dest : destIfFalse;
3650       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3651       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3652       sqlite3VdbeResolveLabel(v, destIfFalse);
3653       break;
3654     }
3655 #endif
3656     default: {
3657       if( exprAlwaysTrue(pExpr) ){
3658         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3659       }else if( exprAlwaysFalse(pExpr) ){
3660         /* No-op */
3661       }else{
3662         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3663         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3664         testcase( regFree1==0 );
3665         testcase( jumpIfNull==0 );
3666       }
3667       break;
3668     }
3669   }
3670   sqlite3ReleaseTempReg(pParse, regFree1);
3671   sqlite3ReleaseTempReg(pParse, regFree2);
3672 }
3673 
3674 /*
3675 ** Generate code for a boolean expression such that a jump is made
3676 ** to the label "dest" if the expression is false but execution
3677 ** continues straight thru if the expression is true.
3678 **
3679 ** If the expression evaluates to NULL (neither true nor false) then
3680 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3681 ** is 0.
3682 */
3683 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3684   Vdbe *v = pParse->pVdbe;
3685   int op = 0;
3686   int regFree1 = 0;
3687   int regFree2 = 0;
3688   int r1, r2;
3689 
3690   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3691   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3692   if( pExpr==0 )    return;
3693 
3694   /* The value of pExpr->op and op are related as follows:
3695   **
3696   **       pExpr->op            op
3697   **       ---------          ----------
3698   **       TK_ISNULL          OP_NotNull
3699   **       TK_NOTNULL         OP_IsNull
3700   **       TK_NE              OP_Eq
3701   **       TK_EQ              OP_Ne
3702   **       TK_GT              OP_Le
3703   **       TK_LE              OP_Gt
3704   **       TK_GE              OP_Lt
3705   **       TK_LT              OP_Ge
3706   **
3707   ** For other values of pExpr->op, op is undefined and unused.
3708   ** The value of TK_ and OP_ constants are arranged such that we
3709   ** can compute the mapping above using the following expression.
3710   ** Assert()s verify that the computation is correct.
3711   */
3712   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3713 
3714   /* Verify correct alignment of TK_ and OP_ constants
3715   */
3716   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3717   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3718   assert( pExpr->op!=TK_NE || op==OP_Eq );
3719   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3720   assert( pExpr->op!=TK_LT || op==OP_Ge );
3721   assert( pExpr->op!=TK_LE || op==OP_Gt );
3722   assert( pExpr->op!=TK_GT || op==OP_Le );
3723   assert( pExpr->op!=TK_GE || op==OP_Lt );
3724 
3725   switch( pExpr->op ){
3726     case TK_AND: {
3727       testcase( jumpIfNull==0 );
3728       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3729       sqlite3ExprCachePush(pParse);
3730       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3731       sqlite3ExprCachePop(pParse, 1);
3732       break;
3733     }
3734     case TK_OR: {
3735       int d2 = sqlite3VdbeMakeLabel(v);
3736       testcase( jumpIfNull==0 );
3737       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3738       sqlite3ExprCachePush(pParse);
3739       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3740       sqlite3VdbeResolveLabel(v, d2);
3741       sqlite3ExprCachePop(pParse, 1);
3742       break;
3743     }
3744     case TK_NOT: {
3745       testcase( jumpIfNull==0 );
3746       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3747       break;
3748     }
3749     case TK_LT:
3750     case TK_LE:
3751     case TK_GT:
3752     case TK_GE:
3753     case TK_NE:
3754     case TK_EQ: {
3755       testcase( op==TK_LT );
3756       testcase( op==TK_LE );
3757       testcase( op==TK_GT );
3758       testcase( op==TK_GE );
3759       testcase( op==TK_EQ );
3760       testcase( op==TK_NE );
3761       testcase( jumpIfNull==0 );
3762       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3763       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3764       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3765                   r1, r2, dest, jumpIfNull);
3766       testcase( regFree1==0 );
3767       testcase( regFree2==0 );
3768       break;
3769     }
3770     case TK_IS:
3771     case TK_ISNOT: {
3772       testcase( pExpr->op==TK_IS );
3773       testcase( pExpr->op==TK_ISNOT );
3774       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3775       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3776       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3777       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3778                   r1, r2, dest, SQLITE_NULLEQ);
3779       testcase( regFree1==0 );
3780       testcase( regFree2==0 );
3781       break;
3782     }
3783     case TK_ISNULL:
3784     case TK_NOTNULL: {
3785       testcase( op==TK_ISNULL );
3786       testcase( op==TK_NOTNULL );
3787       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3788       sqlite3VdbeAddOp2(v, op, r1, dest);
3789       testcase( regFree1==0 );
3790       break;
3791     }
3792     case TK_BETWEEN: {
3793       testcase( jumpIfNull==0 );
3794       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3795       break;
3796     }
3797 #ifndef SQLITE_OMIT_SUBQUERY
3798     case TK_IN: {
3799       if( jumpIfNull ){
3800         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3801       }else{
3802         int destIfNull = sqlite3VdbeMakeLabel(v);
3803         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3804         sqlite3VdbeResolveLabel(v, destIfNull);
3805       }
3806       break;
3807     }
3808 #endif
3809     default: {
3810       if( exprAlwaysFalse(pExpr) ){
3811         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3812       }else if( exprAlwaysTrue(pExpr) ){
3813         /* no-op */
3814       }else{
3815         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3816         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3817         testcase( regFree1==0 );
3818         testcase( jumpIfNull==0 );
3819       }
3820       break;
3821     }
3822   }
3823   sqlite3ReleaseTempReg(pParse, regFree1);
3824   sqlite3ReleaseTempReg(pParse, regFree2);
3825 }
3826 
3827 /*
3828 ** Do a deep comparison of two expression trees.  Return 0 if the two
3829 ** expressions are completely identical.  Return 1 if they differ only
3830 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3831 ** other than the top-level COLLATE operator.
3832 **
3833 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3834 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3835 **
3836 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
3837 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3838 **
3839 ** Sometimes this routine will return 2 even if the two expressions
3840 ** really are equivalent.  If we cannot prove that the expressions are
3841 ** identical, we return 2 just to be safe.  So if this routine
3842 ** returns 2, then you do not really know for certain if the two
3843 ** expressions are the same.  But if you get a 0 or 1 return, then you
3844 ** can be sure the expressions are the same.  In the places where
3845 ** this routine is used, it does not hurt to get an extra 2 - that
3846 ** just might result in some slightly slower code.  But returning
3847 ** an incorrect 0 or 1 could lead to a malfunction.
3848 */
3849 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3850   u32 combinedFlags;
3851   if( pA==0 || pB==0 ){
3852     return pB==pA ? 0 : 2;
3853   }
3854   combinedFlags = pA->flags | pB->flags;
3855   if( combinedFlags & EP_IntValue ){
3856     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3857       return 0;
3858     }
3859     return 2;
3860   }
3861   if( pA->op!=pB->op ){
3862     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
3863       return 1;
3864     }
3865     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
3866       return 1;
3867     }
3868     return 2;
3869   }
3870   if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){
3871     if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3872       return pA->op==TK_COLLATE ? 1 : 2;
3873     }
3874   }
3875   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3876   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
3877     if( combinedFlags & EP_xIsSelect ) return 2;
3878     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
3879     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
3880     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
3881     if( ALWAYS((combinedFlags & EP_Reduced)==0) ){
3882       if( pA->iColumn!=pB->iColumn ) return 2;
3883       if( pA->iTable!=pB->iTable
3884        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
3885     }
3886   }
3887   return 0;
3888 }
3889 
3890 /*
3891 ** Compare two ExprList objects.  Return 0 if they are identical and
3892 ** non-zero if they differ in any way.
3893 **
3894 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3895 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3896 **
3897 ** This routine might return non-zero for equivalent ExprLists.  The
3898 ** only consequence will be disabled optimizations.  But this routine
3899 ** must never return 0 if the two ExprList objects are different, or
3900 ** a malfunction will result.
3901 **
3902 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3903 ** always differs from a non-NULL pointer.
3904 */
3905 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
3906   int i;
3907   if( pA==0 && pB==0 ) return 0;
3908   if( pA==0 || pB==0 ) return 1;
3909   if( pA->nExpr!=pB->nExpr ) return 1;
3910   for(i=0; i<pA->nExpr; i++){
3911     Expr *pExprA = pA->a[i].pExpr;
3912     Expr *pExprB = pB->a[i].pExpr;
3913     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3914     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
3915   }
3916   return 0;
3917 }
3918 
3919 /*
3920 ** Return true if we can prove the pE2 will always be true if pE1 is
3921 ** true.  Return false if we cannot complete the proof or if pE2 might
3922 ** be false.  Examples:
3923 **
3924 **     pE1: x==5       pE2: x==5             Result: true
3925 **     pE1: x>0        pE2: x==5             Result: false
3926 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
3927 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
3928 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
3929 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
3930 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
3931 **
3932 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
3933 ** Expr.iTable<0 then assume a table number given by iTab.
3934 **
3935 ** When in doubt, return false.  Returning true might give a performance
3936 ** improvement.  Returning false might cause a performance reduction, but
3937 ** it will always give the correct answer and is hence always safe.
3938 */
3939 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
3940   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
3941     return 1;
3942   }
3943   if( pE2->op==TK_OR
3944    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
3945              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
3946   ){
3947     return 1;
3948   }
3949   if( pE2->op==TK_NOTNULL
3950    && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
3951    && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
3952   ){
3953     return 1;
3954   }
3955   return 0;
3956 }
3957 
3958 /*
3959 ** An instance of the following structure is used by the tree walker
3960 ** to count references to table columns in the arguments of an
3961 ** aggregate function, in order to implement the
3962 ** sqlite3FunctionThisSrc() routine.
3963 */
3964 struct SrcCount {
3965   SrcList *pSrc;   /* One particular FROM clause in a nested query */
3966   int nThis;       /* Number of references to columns in pSrcList */
3967   int nOther;      /* Number of references to columns in other FROM clauses */
3968 };
3969 
3970 /*
3971 ** Count the number of references to columns.
3972 */
3973 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
3974   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
3975   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
3976   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
3977   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
3978   ** NEVER() will need to be removed. */
3979   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
3980     int i;
3981     struct SrcCount *p = pWalker->u.pSrcCount;
3982     SrcList *pSrc = p->pSrc;
3983     for(i=0; i<pSrc->nSrc; i++){
3984       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
3985     }
3986     if( i<pSrc->nSrc ){
3987       p->nThis++;
3988     }else{
3989       p->nOther++;
3990     }
3991   }
3992   return WRC_Continue;
3993 }
3994 
3995 /*
3996 ** Determine if any of the arguments to the pExpr Function reference
3997 ** pSrcList.  Return true if they do.  Also return true if the function
3998 ** has no arguments or has only constant arguments.  Return false if pExpr
3999 ** references columns but not columns of tables found in pSrcList.
4000 */
4001 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
4002   Walker w;
4003   struct SrcCount cnt;
4004   assert( pExpr->op==TK_AGG_FUNCTION );
4005   memset(&w, 0, sizeof(w));
4006   w.xExprCallback = exprSrcCount;
4007   w.u.pSrcCount = &cnt;
4008   cnt.pSrc = pSrcList;
4009   cnt.nThis = 0;
4010   cnt.nOther = 0;
4011   sqlite3WalkExprList(&w, pExpr->x.pList);
4012   return cnt.nThis>0 || cnt.nOther==0;
4013 }
4014 
4015 /*
4016 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
4017 ** the new element.  Return a negative number if malloc fails.
4018 */
4019 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
4020   int i;
4021   pInfo->aCol = sqlite3ArrayAllocate(
4022        db,
4023        pInfo->aCol,
4024        sizeof(pInfo->aCol[0]),
4025        &pInfo->nColumn,
4026        &i
4027   );
4028   return i;
4029 }
4030 
4031 /*
4032 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
4033 ** the new element.  Return a negative number if malloc fails.
4034 */
4035 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
4036   int i;
4037   pInfo->aFunc = sqlite3ArrayAllocate(
4038        db,
4039        pInfo->aFunc,
4040        sizeof(pInfo->aFunc[0]),
4041        &pInfo->nFunc,
4042        &i
4043   );
4044   return i;
4045 }
4046 
4047 /*
4048 ** This is the xExprCallback for a tree walker.  It is used to
4049 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
4050 ** for additional information.
4051 */
4052 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4053   int i;
4054   NameContext *pNC = pWalker->u.pNC;
4055   Parse *pParse = pNC->pParse;
4056   SrcList *pSrcList = pNC->pSrcList;
4057   AggInfo *pAggInfo = pNC->pAggInfo;
4058 
4059   switch( pExpr->op ){
4060     case TK_AGG_COLUMN:
4061     case TK_COLUMN: {
4062       testcase( pExpr->op==TK_AGG_COLUMN );
4063       testcase( pExpr->op==TK_COLUMN );
4064       /* Check to see if the column is in one of the tables in the FROM
4065       ** clause of the aggregate query */
4066       if( ALWAYS(pSrcList!=0) ){
4067         struct SrcList_item *pItem = pSrcList->a;
4068         for(i=0; i<pSrcList->nSrc; i++, pItem++){
4069           struct AggInfo_col *pCol;
4070           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4071           if( pExpr->iTable==pItem->iCursor ){
4072             /* If we reach this point, it means that pExpr refers to a table
4073             ** that is in the FROM clause of the aggregate query.
4074             **
4075             ** Make an entry for the column in pAggInfo->aCol[] if there
4076             ** is not an entry there already.
4077             */
4078             int k;
4079             pCol = pAggInfo->aCol;
4080             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4081               if( pCol->iTable==pExpr->iTable &&
4082                   pCol->iColumn==pExpr->iColumn ){
4083                 break;
4084               }
4085             }
4086             if( (k>=pAggInfo->nColumn)
4087              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4088             ){
4089               pCol = &pAggInfo->aCol[k];
4090               pCol->pTab = pExpr->pTab;
4091               pCol->iTable = pExpr->iTable;
4092               pCol->iColumn = pExpr->iColumn;
4093               pCol->iMem = ++pParse->nMem;
4094               pCol->iSorterColumn = -1;
4095               pCol->pExpr = pExpr;
4096               if( pAggInfo->pGroupBy ){
4097                 int j, n;
4098                 ExprList *pGB = pAggInfo->pGroupBy;
4099                 struct ExprList_item *pTerm = pGB->a;
4100                 n = pGB->nExpr;
4101                 for(j=0; j<n; j++, pTerm++){
4102                   Expr *pE = pTerm->pExpr;
4103                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4104                       pE->iColumn==pExpr->iColumn ){
4105                     pCol->iSorterColumn = j;
4106                     break;
4107                   }
4108                 }
4109               }
4110               if( pCol->iSorterColumn<0 ){
4111                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4112               }
4113             }
4114             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4115             ** because it was there before or because we just created it).
4116             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4117             ** pAggInfo->aCol[] entry.
4118             */
4119             ExprSetVVAProperty(pExpr, EP_NoReduce);
4120             pExpr->pAggInfo = pAggInfo;
4121             pExpr->op = TK_AGG_COLUMN;
4122             pExpr->iAgg = (i16)k;
4123             break;
4124           } /* endif pExpr->iTable==pItem->iCursor */
4125         } /* end loop over pSrcList */
4126       }
4127       return WRC_Prune;
4128     }
4129     case TK_AGG_FUNCTION: {
4130       if( (pNC->ncFlags & NC_InAggFunc)==0
4131        && pWalker->walkerDepth==pExpr->op2
4132       ){
4133         /* Check to see if pExpr is a duplicate of another aggregate
4134         ** function that is already in the pAggInfo structure
4135         */
4136         struct AggInfo_func *pItem = pAggInfo->aFunc;
4137         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4138           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4139             break;
4140           }
4141         }
4142         if( i>=pAggInfo->nFunc ){
4143           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4144           */
4145           u8 enc = ENC(pParse->db);
4146           i = addAggInfoFunc(pParse->db, pAggInfo);
4147           if( i>=0 ){
4148             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4149             pItem = &pAggInfo->aFunc[i];
4150             pItem->pExpr = pExpr;
4151             pItem->iMem = ++pParse->nMem;
4152             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4153             pItem->pFunc = sqlite3FindFunction(pParse->db,
4154                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4155                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4156             if( pExpr->flags & EP_Distinct ){
4157               pItem->iDistinct = pParse->nTab++;
4158             }else{
4159               pItem->iDistinct = -1;
4160             }
4161           }
4162         }
4163         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4164         */
4165         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4166         ExprSetVVAProperty(pExpr, EP_NoReduce);
4167         pExpr->iAgg = (i16)i;
4168         pExpr->pAggInfo = pAggInfo;
4169         return WRC_Prune;
4170       }else{
4171         return WRC_Continue;
4172       }
4173     }
4174   }
4175   return WRC_Continue;
4176 }
4177 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4178   UNUSED_PARAMETER(pWalker);
4179   UNUSED_PARAMETER(pSelect);
4180   return WRC_Continue;
4181 }
4182 
4183 /*
4184 ** Analyze the pExpr expression looking for aggregate functions and
4185 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4186 ** points to.  Additional entries are made on the AggInfo object as
4187 ** necessary.
4188 **
4189 ** This routine should only be called after the expression has been
4190 ** analyzed by sqlite3ResolveExprNames().
4191 */
4192 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4193   Walker w;
4194   memset(&w, 0, sizeof(w));
4195   w.xExprCallback = analyzeAggregate;
4196   w.xSelectCallback = analyzeAggregatesInSelect;
4197   w.u.pNC = pNC;
4198   assert( pNC->pSrcList!=0 );
4199   sqlite3WalkExpr(&w, pExpr);
4200 }
4201 
4202 /*
4203 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4204 ** expression list.  Return the number of errors.
4205 **
4206 ** If an error is found, the analysis is cut short.
4207 */
4208 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4209   struct ExprList_item *pItem;
4210   int i;
4211   if( pList ){
4212     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4213       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4214     }
4215   }
4216 }
4217 
4218 /*
4219 ** Allocate a single new register for use to hold some intermediate result.
4220 */
4221 int sqlite3GetTempReg(Parse *pParse){
4222   if( pParse->nTempReg==0 ){
4223     return ++pParse->nMem;
4224   }
4225   return pParse->aTempReg[--pParse->nTempReg];
4226 }
4227 
4228 /*
4229 ** Deallocate a register, making available for reuse for some other
4230 ** purpose.
4231 **
4232 ** If a register is currently being used by the column cache, then
4233 ** the dallocation is deferred until the column cache line that uses
4234 ** the register becomes stale.
4235 */
4236 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4237   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4238     int i;
4239     struct yColCache *p;
4240     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4241       if( p->iReg==iReg ){
4242         p->tempReg = 1;
4243         return;
4244       }
4245     }
4246     pParse->aTempReg[pParse->nTempReg++] = iReg;
4247   }
4248 }
4249 
4250 /*
4251 ** Allocate or deallocate a block of nReg consecutive registers
4252 */
4253 int sqlite3GetTempRange(Parse *pParse, int nReg){
4254   int i, n;
4255   i = pParse->iRangeReg;
4256   n = pParse->nRangeReg;
4257   if( nReg<=n ){
4258     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4259     pParse->iRangeReg += nReg;
4260     pParse->nRangeReg -= nReg;
4261   }else{
4262     i = pParse->nMem+1;
4263     pParse->nMem += nReg;
4264   }
4265   return i;
4266 }
4267 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4268   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4269   if( nReg>pParse->nRangeReg ){
4270     pParse->nRangeReg = nReg;
4271     pParse->iRangeReg = iReg;
4272   }
4273 }
4274 
4275 /*
4276 ** Mark all temporary registers as being unavailable for reuse.
4277 */
4278 void sqlite3ClearTempRegCache(Parse *pParse){
4279   pParse->nTempReg = 0;
4280   pParse->nRangeReg = 0;
4281 }
4282