1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expresssions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op; 35 pExpr = sqlite3ExprSkipCollate(pExpr); 36 op = pExpr->op; 37 if( op==TK_SELECT ){ 38 assert( pExpr->flags&EP_xIsSelect ); 39 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 40 } 41 #ifndef SQLITE_OMIT_CAST 42 if( op==TK_CAST ){ 43 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 44 return sqlite3AffinityType(pExpr->u.zToken, 0); 45 } 46 #endif 47 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 48 && pExpr->pTab!=0 49 ){ 50 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 51 ** a TK_COLUMN but was previously evaluated and cached in a register */ 52 int j = pExpr->iColumn; 53 if( j<0 ) return SQLITE_AFF_INTEGER; 54 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 55 return pExpr->pTab->aCol[j].affinity; 56 } 57 return pExpr->affinity; 58 } 59 60 /* 61 ** Set the collating sequence for expression pExpr to be the collating 62 ** sequence named by pToken. Return a pointer to a new Expr node that 63 ** implements the COLLATE operator. 64 ** 65 ** If a memory allocation error occurs, that fact is recorded in pParse->db 66 ** and the pExpr parameter is returned unchanged. 67 */ 68 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr *pExpr, Token *pCollName){ 69 if( pCollName->n>0 ){ 70 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1); 71 if( pNew ){ 72 pNew->pLeft = pExpr; 73 pNew->flags |= EP_Collate|EP_Skip; 74 pExpr = pNew; 75 } 76 } 77 return pExpr; 78 } 79 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 80 Token s; 81 assert( zC!=0 ); 82 s.z = zC; 83 s.n = sqlite3Strlen30(s.z); 84 return sqlite3ExprAddCollateToken(pParse, pExpr, &s); 85 } 86 87 /* 88 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely() 89 ** or likelihood() function at the root of an expression. 90 */ 91 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 92 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 93 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 94 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 95 assert( pExpr->x.pList->nExpr>0 ); 96 assert( pExpr->op==TK_FUNCTION ); 97 pExpr = pExpr->x.pList->a[0].pExpr; 98 }else{ 99 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS ); 100 pExpr = pExpr->pLeft; 101 } 102 } 103 return pExpr; 104 } 105 106 /* 107 ** Return the collation sequence for the expression pExpr. If 108 ** there is no defined collating sequence, return NULL. 109 ** 110 ** The collating sequence might be determined by a COLLATE operator 111 ** or by the presence of a column with a defined collating sequence. 112 ** COLLATE operators take first precedence. Left operands take 113 ** precedence over right operands. 114 */ 115 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 116 sqlite3 *db = pParse->db; 117 CollSeq *pColl = 0; 118 Expr *p = pExpr; 119 while( p ){ 120 int op = p->op; 121 if( op==TK_CAST || op==TK_UPLUS ){ 122 p = p->pLeft; 123 continue; 124 } 125 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 126 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 127 break; 128 } 129 if( p->pTab!=0 130 && (op==TK_AGG_COLUMN || op==TK_COLUMN 131 || op==TK_REGISTER || op==TK_TRIGGER) 132 ){ 133 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 134 ** a TK_COLUMN but was previously evaluated and cached in a register */ 135 int j = p->iColumn; 136 if( j>=0 ){ 137 const char *zColl = p->pTab->aCol[j].zColl; 138 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 139 } 140 break; 141 } 142 if( p->flags & EP_Collate ){ 143 if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){ 144 p = p->pLeft; 145 }else{ 146 p = p->pRight; 147 } 148 }else{ 149 break; 150 } 151 } 152 if( sqlite3CheckCollSeq(pParse, pColl) ){ 153 pColl = 0; 154 } 155 return pColl; 156 } 157 158 /* 159 ** pExpr is an operand of a comparison operator. aff2 is the 160 ** type affinity of the other operand. This routine returns the 161 ** type affinity that should be used for the comparison operator. 162 */ 163 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 164 char aff1 = sqlite3ExprAffinity(pExpr); 165 if( aff1 && aff2 ){ 166 /* Both sides of the comparison are columns. If one has numeric 167 ** affinity, use that. Otherwise use no affinity. 168 */ 169 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 170 return SQLITE_AFF_NUMERIC; 171 }else{ 172 return SQLITE_AFF_NONE; 173 } 174 }else if( !aff1 && !aff2 ){ 175 /* Neither side of the comparison is a column. Compare the 176 ** results directly. 177 */ 178 return SQLITE_AFF_NONE; 179 }else{ 180 /* One side is a column, the other is not. Use the columns affinity. */ 181 assert( aff1==0 || aff2==0 ); 182 return (aff1 + aff2); 183 } 184 } 185 186 /* 187 ** pExpr is a comparison operator. Return the type affinity that should 188 ** be applied to both operands prior to doing the comparison. 189 */ 190 static char comparisonAffinity(Expr *pExpr){ 191 char aff; 192 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 193 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 194 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 195 assert( pExpr->pLeft ); 196 aff = sqlite3ExprAffinity(pExpr->pLeft); 197 if( pExpr->pRight ){ 198 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 199 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 200 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 201 }else if( !aff ){ 202 aff = SQLITE_AFF_NONE; 203 } 204 return aff; 205 } 206 207 /* 208 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 209 ** idx_affinity is the affinity of an indexed column. Return true 210 ** if the index with affinity idx_affinity may be used to implement 211 ** the comparison in pExpr. 212 */ 213 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 214 char aff = comparisonAffinity(pExpr); 215 switch( aff ){ 216 case SQLITE_AFF_NONE: 217 return 1; 218 case SQLITE_AFF_TEXT: 219 return idx_affinity==SQLITE_AFF_TEXT; 220 default: 221 return sqlite3IsNumericAffinity(idx_affinity); 222 } 223 } 224 225 /* 226 ** Return the P5 value that should be used for a binary comparison 227 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 228 */ 229 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 230 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 231 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 232 return aff; 233 } 234 235 /* 236 ** Return a pointer to the collation sequence that should be used by 237 ** a binary comparison operator comparing pLeft and pRight. 238 ** 239 ** If the left hand expression has a collating sequence type, then it is 240 ** used. Otherwise the collation sequence for the right hand expression 241 ** is used, or the default (BINARY) if neither expression has a collating 242 ** type. 243 ** 244 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 245 ** it is not considered. 246 */ 247 CollSeq *sqlite3BinaryCompareCollSeq( 248 Parse *pParse, 249 Expr *pLeft, 250 Expr *pRight 251 ){ 252 CollSeq *pColl; 253 assert( pLeft ); 254 if( pLeft->flags & EP_Collate ){ 255 pColl = sqlite3ExprCollSeq(pParse, pLeft); 256 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 257 pColl = sqlite3ExprCollSeq(pParse, pRight); 258 }else{ 259 pColl = sqlite3ExprCollSeq(pParse, pLeft); 260 if( !pColl ){ 261 pColl = sqlite3ExprCollSeq(pParse, pRight); 262 } 263 } 264 return pColl; 265 } 266 267 /* 268 ** Generate code for a comparison operator. 269 */ 270 static int codeCompare( 271 Parse *pParse, /* The parsing (and code generating) context */ 272 Expr *pLeft, /* The left operand */ 273 Expr *pRight, /* The right operand */ 274 int opcode, /* The comparison opcode */ 275 int in1, int in2, /* Register holding operands */ 276 int dest, /* Jump here if true. */ 277 int jumpIfNull /* If true, jump if either operand is NULL */ 278 ){ 279 int p5; 280 int addr; 281 CollSeq *p4; 282 283 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 284 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 285 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 286 (void*)p4, P4_COLLSEQ); 287 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 288 return addr; 289 } 290 291 #if SQLITE_MAX_EXPR_DEPTH>0 292 /* 293 ** Check that argument nHeight is less than or equal to the maximum 294 ** expression depth allowed. If it is not, leave an error message in 295 ** pParse. 296 */ 297 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 298 int rc = SQLITE_OK; 299 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 300 if( nHeight>mxHeight ){ 301 sqlite3ErrorMsg(pParse, 302 "Expression tree is too large (maximum depth %d)", mxHeight 303 ); 304 rc = SQLITE_ERROR; 305 } 306 return rc; 307 } 308 309 /* The following three functions, heightOfExpr(), heightOfExprList() 310 ** and heightOfSelect(), are used to determine the maximum height 311 ** of any expression tree referenced by the structure passed as the 312 ** first argument. 313 ** 314 ** If this maximum height is greater than the current value pointed 315 ** to by pnHeight, the second parameter, then set *pnHeight to that 316 ** value. 317 */ 318 static void heightOfExpr(Expr *p, int *pnHeight){ 319 if( p ){ 320 if( p->nHeight>*pnHeight ){ 321 *pnHeight = p->nHeight; 322 } 323 } 324 } 325 static void heightOfExprList(ExprList *p, int *pnHeight){ 326 if( p ){ 327 int i; 328 for(i=0; i<p->nExpr; i++){ 329 heightOfExpr(p->a[i].pExpr, pnHeight); 330 } 331 } 332 } 333 static void heightOfSelect(Select *p, int *pnHeight){ 334 if( p ){ 335 heightOfExpr(p->pWhere, pnHeight); 336 heightOfExpr(p->pHaving, pnHeight); 337 heightOfExpr(p->pLimit, pnHeight); 338 heightOfExpr(p->pOffset, pnHeight); 339 heightOfExprList(p->pEList, pnHeight); 340 heightOfExprList(p->pGroupBy, pnHeight); 341 heightOfExprList(p->pOrderBy, pnHeight); 342 heightOfSelect(p->pPrior, pnHeight); 343 } 344 } 345 346 /* 347 ** Set the Expr.nHeight variable in the structure passed as an 348 ** argument. An expression with no children, Expr.pList or 349 ** Expr.pSelect member has a height of 1. Any other expression 350 ** has a height equal to the maximum height of any other 351 ** referenced Expr plus one. 352 */ 353 static void exprSetHeight(Expr *p){ 354 int nHeight = 0; 355 heightOfExpr(p->pLeft, &nHeight); 356 heightOfExpr(p->pRight, &nHeight); 357 if( ExprHasProperty(p, EP_xIsSelect) ){ 358 heightOfSelect(p->x.pSelect, &nHeight); 359 }else{ 360 heightOfExprList(p->x.pList, &nHeight); 361 } 362 p->nHeight = nHeight + 1; 363 } 364 365 /* 366 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 367 ** the height is greater than the maximum allowed expression depth, 368 ** leave an error in pParse. 369 */ 370 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 371 exprSetHeight(p); 372 sqlite3ExprCheckHeight(pParse, p->nHeight); 373 } 374 375 /* 376 ** Return the maximum height of any expression tree referenced 377 ** by the select statement passed as an argument. 378 */ 379 int sqlite3SelectExprHeight(Select *p){ 380 int nHeight = 0; 381 heightOfSelect(p, &nHeight); 382 return nHeight; 383 } 384 #else 385 #define exprSetHeight(y) 386 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 387 388 /* 389 ** This routine is the core allocator for Expr nodes. 390 ** 391 ** Construct a new expression node and return a pointer to it. Memory 392 ** for this node and for the pToken argument is a single allocation 393 ** obtained from sqlite3DbMalloc(). The calling function 394 ** is responsible for making sure the node eventually gets freed. 395 ** 396 ** If dequote is true, then the token (if it exists) is dequoted. 397 ** If dequote is false, no dequoting is performance. The deQuote 398 ** parameter is ignored if pToken is NULL or if the token does not 399 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 400 ** then the EP_DblQuoted flag is set on the expression node. 401 ** 402 ** Special case: If op==TK_INTEGER and pToken points to a string that 403 ** can be translated into a 32-bit integer, then the token is not 404 ** stored in u.zToken. Instead, the integer values is written 405 ** into u.iValue and the EP_IntValue flag is set. No extra storage 406 ** is allocated to hold the integer text and the dequote flag is ignored. 407 */ 408 Expr *sqlite3ExprAlloc( 409 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 410 int op, /* Expression opcode */ 411 const Token *pToken, /* Token argument. Might be NULL */ 412 int dequote /* True to dequote */ 413 ){ 414 Expr *pNew; 415 int nExtra = 0; 416 int iValue = 0; 417 418 if( pToken ){ 419 if( op!=TK_INTEGER || pToken->z==0 420 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 421 nExtra = pToken->n+1; 422 assert( iValue>=0 ); 423 } 424 } 425 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 426 if( pNew ){ 427 pNew->op = (u8)op; 428 pNew->iAgg = -1; 429 if( pToken ){ 430 if( nExtra==0 ){ 431 pNew->flags |= EP_IntValue; 432 pNew->u.iValue = iValue; 433 }else{ 434 int c; 435 pNew->u.zToken = (char*)&pNew[1]; 436 assert( pToken->z!=0 || pToken->n==0 ); 437 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 438 pNew->u.zToken[pToken->n] = 0; 439 if( dequote && nExtra>=3 440 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 441 sqlite3Dequote(pNew->u.zToken); 442 if( c=='"' ) pNew->flags |= EP_DblQuoted; 443 } 444 } 445 } 446 #if SQLITE_MAX_EXPR_DEPTH>0 447 pNew->nHeight = 1; 448 #endif 449 } 450 return pNew; 451 } 452 453 /* 454 ** Allocate a new expression node from a zero-terminated token that has 455 ** already been dequoted. 456 */ 457 Expr *sqlite3Expr( 458 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 459 int op, /* Expression opcode */ 460 const char *zToken /* Token argument. Might be NULL */ 461 ){ 462 Token x; 463 x.z = zToken; 464 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 465 return sqlite3ExprAlloc(db, op, &x, 0); 466 } 467 468 /* 469 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 470 ** 471 ** If pRoot==NULL that means that a memory allocation error has occurred. 472 ** In that case, delete the subtrees pLeft and pRight. 473 */ 474 void sqlite3ExprAttachSubtrees( 475 sqlite3 *db, 476 Expr *pRoot, 477 Expr *pLeft, 478 Expr *pRight 479 ){ 480 if( pRoot==0 ){ 481 assert( db->mallocFailed ); 482 sqlite3ExprDelete(db, pLeft); 483 sqlite3ExprDelete(db, pRight); 484 }else{ 485 if( pRight ){ 486 pRoot->pRight = pRight; 487 pRoot->flags |= EP_Collate & pRight->flags; 488 } 489 if( pLeft ){ 490 pRoot->pLeft = pLeft; 491 pRoot->flags |= EP_Collate & pLeft->flags; 492 } 493 exprSetHeight(pRoot); 494 } 495 } 496 497 /* 498 ** Allocate a Expr node which joins as many as two subtrees. 499 ** 500 ** One or both of the subtrees can be NULL. Return a pointer to the new 501 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 502 ** free the subtrees and return NULL. 503 */ 504 Expr *sqlite3PExpr( 505 Parse *pParse, /* Parsing context */ 506 int op, /* Expression opcode */ 507 Expr *pLeft, /* Left operand */ 508 Expr *pRight, /* Right operand */ 509 const Token *pToken /* Argument token */ 510 ){ 511 Expr *p; 512 if( op==TK_AND && pLeft && pRight ){ 513 /* Take advantage of short-circuit false optimization for AND */ 514 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 515 }else{ 516 p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 517 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 518 } 519 if( p ) { 520 sqlite3ExprCheckHeight(pParse, p->nHeight); 521 } 522 return p; 523 } 524 525 /* 526 ** If the expression is always either TRUE or FALSE (respectively), 527 ** then return 1. If one cannot determine the truth value of the 528 ** expression at compile-time return 0. 529 ** 530 ** This is an optimization. If is OK to return 0 here even if 531 ** the expression really is always false or false (a false negative). 532 ** But it is a bug to return 1 if the expression might have different 533 ** boolean values in different circumstances (a false positive.) 534 ** 535 ** Note that if the expression is part of conditional for a 536 ** LEFT JOIN, then we cannot determine at compile-time whether or not 537 ** is it true or false, so always return 0. 538 */ 539 static int exprAlwaysTrue(Expr *p){ 540 int v = 0; 541 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 542 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 543 return v!=0; 544 } 545 static int exprAlwaysFalse(Expr *p){ 546 int v = 0; 547 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 548 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 549 return v==0; 550 } 551 552 /* 553 ** Join two expressions using an AND operator. If either expression is 554 ** NULL, then just return the other expression. 555 ** 556 ** If one side or the other of the AND is known to be false, then instead 557 ** of returning an AND expression, just return a constant expression with 558 ** a value of false. 559 */ 560 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 561 if( pLeft==0 ){ 562 return pRight; 563 }else if( pRight==0 ){ 564 return pLeft; 565 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 566 sqlite3ExprDelete(db, pLeft); 567 sqlite3ExprDelete(db, pRight); 568 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 569 }else{ 570 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 571 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 572 return pNew; 573 } 574 } 575 576 /* 577 ** Construct a new expression node for a function with multiple 578 ** arguments. 579 */ 580 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 581 Expr *pNew; 582 sqlite3 *db = pParse->db; 583 assert( pToken ); 584 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 585 if( pNew==0 ){ 586 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 587 return 0; 588 } 589 pNew->x.pList = pList; 590 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 591 sqlite3ExprSetHeight(pParse, pNew); 592 return pNew; 593 } 594 595 /* 596 ** Assign a variable number to an expression that encodes a wildcard 597 ** in the original SQL statement. 598 ** 599 ** Wildcards consisting of a single "?" are assigned the next sequential 600 ** variable number. 601 ** 602 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 603 ** sure "nnn" is not too be to avoid a denial of service attack when 604 ** the SQL statement comes from an external source. 605 ** 606 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 607 ** as the previous instance of the same wildcard. Or if this is the first 608 ** instance of the wildcard, the next sequenial variable number is 609 ** assigned. 610 */ 611 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 612 sqlite3 *db = pParse->db; 613 const char *z; 614 615 if( pExpr==0 ) return; 616 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 617 z = pExpr->u.zToken; 618 assert( z!=0 ); 619 assert( z[0]!=0 ); 620 if( z[1]==0 ){ 621 /* Wildcard of the form "?". Assign the next variable number */ 622 assert( z[0]=='?' ); 623 pExpr->iColumn = (ynVar)(++pParse->nVar); 624 }else{ 625 ynVar x = 0; 626 u32 n = sqlite3Strlen30(z); 627 if( z[0]=='?' ){ 628 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 629 ** use it as the variable number */ 630 i64 i; 631 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 632 pExpr->iColumn = x = (ynVar)i; 633 testcase( i==0 ); 634 testcase( i==1 ); 635 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 636 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 637 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 638 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 639 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 640 x = 0; 641 } 642 if( i>pParse->nVar ){ 643 pParse->nVar = (int)i; 644 } 645 }else{ 646 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 647 ** number as the prior appearance of the same name, or if the name 648 ** has never appeared before, reuse the same variable number 649 */ 650 ynVar i; 651 for(i=0; i<pParse->nzVar; i++){ 652 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 653 pExpr->iColumn = x = (ynVar)i+1; 654 break; 655 } 656 } 657 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 658 } 659 if( x>0 ){ 660 if( x>pParse->nzVar ){ 661 char **a; 662 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 663 if( a==0 ) return; /* Error reported through db->mallocFailed */ 664 pParse->azVar = a; 665 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 666 pParse->nzVar = x; 667 } 668 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 669 sqlite3DbFree(db, pParse->azVar[x-1]); 670 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 671 } 672 } 673 } 674 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 675 sqlite3ErrorMsg(pParse, "too many SQL variables"); 676 } 677 } 678 679 /* 680 ** Recursively delete an expression tree. 681 */ 682 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 683 if( p==0 ) return; 684 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 685 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 686 if( !ExprHasProperty(p, EP_TokenOnly) ){ 687 /* The Expr.x union is never used at the same time as Expr.pRight */ 688 assert( p->x.pList==0 || p->pRight==0 ); 689 sqlite3ExprDelete(db, p->pLeft); 690 sqlite3ExprDelete(db, p->pRight); 691 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 692 if( ExprHasProperty(p, EP_xIsSelect) ){ 693 sqlite3SelectDelete(db, p->x.pSelect); 694 }else{ 695 sqlite3ExprListDelete(db, p->x.pList); 696 } 697 } 698 if( !ExprHasProperty(p, EP_Static) ){ 699 sqlite3DbFree(db, p); 700 } 701 } 702 703 /* 704 ** Return the number of bytes allocated for the expression structure 705 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 706 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 707 */ 708 static int exprStructSize(Expr *p){ 709 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 710 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 711 return EXPR_FULLSIZE; 712 } 713 714 /* 715 ** The dupedExpr*Size() routines each return the number of bytes required 716 ** to store a copy of an expression or expression tree. They differ in 717 ** how much of the tree is measured. 718 ** 719 ** dupedExprStructSize() Size of only the Expr structure 720 ** dupedExprNodeSize() Size of Expr + space for token 721 ** dupedExprSize() Expr + token + subtree components 722 ** 723 *************************************************************************** 724 ** 725 ** The dupedExprStructSize() function returns two values OR-ed together: 726 ** (1) the space required for a copy of the Expr structure only and 727 ** (2) the EP_xxx flags that indicate what the structure size should be. 728 ** The return values is always one of: 729 ** 730 ** EXPR_FULLSIZE 731 ** EXPR_REDUCEDSIZE | EP_Reduced 732 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 733 ** 734 ** The size of the structure can be found by masking the return value 735 ** of this routine with 0xfff. The flags can be found by masking the 736 ** return value with EP_Reduced|EP_TokenOnly. 737 ** 738 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 739 ** (unreduced) Expr objects as they or originally constructed by the parser. 740 ** During expression analysis, extra information is computed and moved into 741 ** later parts of teh Expr object and that extra information might get chopped 742 ** off if the expression is reduced. Note also that it does not work to 743 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal 744 ** to reduce a pristine expression tree from the parser. The implementation 745 ** of dupedExprStructSize() contain multiple assert() statements that attempt 746 ** to enforce this constraint. 747 */ 748 static int dupedExprStructSize(Expr *p, int flags){ 749 int nSize; 750 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 751 assert( EXPR_FULLSIZE<=0xfff ); 752 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 753 if( 0==(flags&EXPRDUP_REDUCE) ){ 754 nSize = EXPR_FULLSIZE; 755 }else{ 756 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 757 assert( !ExprHasProperty(p, EP_FromJoin) ); 758 assert( !ExprHasProperty(p, EP_MemToken) ); 759 assert( !ExprHasProperty(p, EP_NoReduce) ); 760 if( p->pLeft || p->x.pList ){ 761 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 762 }else{ 763 assert( p->pRight==0 ); 764 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 765 } 766 } 767 return nSize; 768 } 769 770 /* 771 ** This function returns the space in bytes required to store the copy 772 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 773 ** string is defined.) 774 */ 775 static int dupedExprNodeSize(Expr *p, int flags){ 776 int nByte = dupedExprStructSize(p, flags) & 0xfff; 777 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 778 nByte += sqlite3Strlen30(p->u.zToken)+1; 779 } 780 return ROUND8(nByte); 781 } 782 783 /* 784 ** Return the number of bytes required to create a duplicate of the 785 ** expression passed as the first argument. The second argument is a 786 ** mask containing EXPRDUP_XXX flags. 787 ** 788 ** The value returned includes space to create a copy of the Expr struct 789 ** itself and the buffer referred to by Expr.u.zToken, if any. 790 ** 791 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 792 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 793 ** and Expr.pRight variables (but not for any structures pointed to or 794 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 795 */ 796 static int dupedExprSize(Expr *p, int flags){ 797 int nByte = 0; 798 if( p ){ 799 nByte = dupedExprNodeSize(p, flags); 800 if( flags&EXPRDUP_REDUCE ){ 801 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 802 } 803 } 804 return nByte; 805 } 806 807 /* 808 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 809 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 810 ** to store the copy of expression p, the copies of p->u.zToken 811 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 812 ** if any. Before returning, *pzBuffer is set to the first byte passed the 813 ** portion of the buffer copied into by this function. 814 */ 815 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 816 Expr *pNew = 0; /* Value to return */ 817 if( p ){ 818 const int isReduced = (flags&EXPRDUP_REDUCE); 819 u8 *zAlloc; 820 u32 staticFlag = 0; 821 822 assert( pzBuffer==0 || isReduced ); 823 824 /* Figure out where to write the new Expr structure. */ 825 if( pzBuffer ){ 826 zAlloc = *pzBuffer; 827 staticFlag = EP_Static; 828 }else{ 829 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 830 } 831 pNew = (Expr *)zAlloc; 832 833 if( pNew ){ 834 /* Set nNewSize to the size allocated for the structure pointed to 835 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 836 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 837 ** by the copy of the p->u.zToken string (if any). 838 */ 839 const unsigned nStructSize = dupedExprStructSize(p, flags); 840 const int nNewSize = nStructSize & 0xfff; 841 int nToken; 842 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 843 nToken = sqlite3Strlen30(p->u.zToken) + 1; 844 }else{ 845 nToken = 0; 846 } 847 if( isReduced ){ 848 assert( ExprHasProperty(p, EP_Reduced)==0 ); 849 memcpy(zAlloc, p, nNewSize); 850 }else{ 851 int nSize = exprStructSize(p); 852 memcpy(zAlloc, p, nSize); 853 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 854 } 855 856 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 857 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 858 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 859 pNew->flags |= staticFlag; 860 861 /* Copy the p->u.zToken string, if any. */ 862 if( nToken ){ 863 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 864 memcpy(zToken, p->u.zToken, nToken); 865 } 866 867 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 868 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 869 if( ExprHasProperty(p, EP_xIsSelect) ){ 870 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 871 }else{ 872 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 873 } 874 } 875 876 /* Fill in pNew->pLeft and pNew->pRight. */ 877 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 878 zAlloc += dupedExprNodeSize(p, flags); 879 if( ExprHasProperty(pNew, EP_Reduced) ){ 880 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 881 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 882 } 883 if( pzBuffer ){ 884 *pzBuffer = zAlloc; 885 } 886 }else{ 887 if( !ExprHasProperty(p, EP_TokenOnly) ){ 888 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 889 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 890 } 891 } 892 893 } 894 } 895 return pNew; 896 } 897 898 /* 899 ** Create and return a deep copy of the object passed as the second 900 ** argument. If an OOM condition is encountered, NULL is returned 901 ** and the db->mallocFailed flag set. 902 */ 903 #ifndef SQLITE_OMIT_CTE 904 static With *withDup(sqlite3 *db, With *p){ 905 With *pRet = 0; 906 if( p ){ 907 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 908 pRet = sqlite3DbMallocZero(db, nByte); 909 if( pRet ){ 910 int i; 911 pRet->nCte = p->nCte; 912 for(i=0; i<p->nCte; i++){ 913 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 914 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 915 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 916 } 917 } 918 } 919 return pRet; 920 } 921 #else 922 # define withDup(x,y) 0 923 #endif 924 925 /* 926 ** The following group of routines make deep copies of expressions, 927 ** expression lists, ID lists, and select statements. The copies can 928 ** be deleted (by being passed to their respective ...Delete() routines) 929 ** without effecting the originals. 930 ** 931 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 932 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 933 ** by subsequent calls to sqlite*ListAppend() routines. 934 ** 935 ** Any tables that the SrcList might point to are not duplicated. 936 ** 937 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 938 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 939 ** truncated version of the usual Expr structure that will be stored as 940 ** part of the in-memory representation of the database schema. 941 */ 942 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 943 return exprDup(db, p, flags, 0); 944 } 945 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 946 ExprList *pNew; 947 struct ExprList_item *pItem, *pOldItem; 948 int i; 949 if( p==0 ) return 0; 950 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 951 if( pNew==0 ) return 0; 952 pNew->iECursor = 0; 953 pNew->nExpr = i = p->nExpr; 954 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 955 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 956 if( pItem==0 ){ 957 sqlite3DbFree(db, pNew); 958 return 0; 959 } 960 pOldItem = p->a; 961 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 962 Expr *pOldExpr = pOldItem->pExpr; 963 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 964 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 965 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 966 pItem->sortOrder = pOldItem->sortOrder; 967 pItem->done = 0; 968 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 969 pItem->u = pOldItem->u; 970 } 971 return pNew; 972 } 973 974 /* 975 ** If cursors, triggers, views and subqueries are all omitted from 976 ** the build, then none of the following routines, except for 977 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 978 ** called with a NULL argument. 979 */ 980 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 981 || !defined(SQLITE_OMIT_SUBQUERY) 982 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 983 SrcList *pNew; 984 int i; 985 int nByte; 986 if( p==0 ) return 0; 987 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 988 pNew = sqlite3DbMallocRaw(db, nByte ); 989 if( pNew==0 ) return 0; 990 pNew->nSrc = pNew->nAlloc = p->nSrc; 991 for(i=0; i<p->nSrc; i++){ 992 struct SrcList_item *pNewItem = &pNew->a[i]; 993 struct SrcList_item *pOldItem = &p->a[i]; 994 Table *pTab; 995 pNewItem->pSchema = pOldItem->pSchema; 996 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 997 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 998 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 999 pNewItem->jointype = pOldItem->jointype; 1000 pNewItem->iCursor = pOldItem->iCursor; 1001 pNewItem->addrFillSub = pOldItem->addrFillSub; 1002 pNewItem->regReturn = pOldItem->regReturn; 1003 pNewItem->isCorrelated = pOldItem->isCorrelated; 1004 pNewItem->viaCoroutine = pOldItem->viaCoroutine; 1005 pNewItem->isRecursive = pOldItem->isRecursive; 1006 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 1007 pNewItem->notIndexed = pOldItem->notIndexed; 1008 pNewItem->pIndex = pOldItem->pIndex; 1009 pTab = pNewItem->pTab = pOldItem->pTab; 1010 if( pTab ){ 1011 pTab->nRef++; 1012 } 1013 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1014 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1015 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1016 pNewItem->colUsed = pOldItem->colUsed; 1017 } 1018 return pNew; 1019 } 1020 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1021 IdList *pNew; 1022 int i; 1023 if( p==0 ) return 0; 1024 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 1025 if( pNew==0 ) return 0; 1026 pNew->nId = p->nId; 1027 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 1028 if( pNew->a==0 ){ 1029 sqlite3DbFree(db, pNew); 1030 return 0; 1031 } 1032 /* Note that because the size of the allocation for p->a[] is not 1033 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1034 ** on the duplicate created by this function. */ 1035 for(i=0; i<p->nId; i++){ 1036 struct IdList_item *pNewItem = &pNew->a[i]; 1037 struct IdList_item *pOldItem = &p->a[i]; 1038 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1039 pNewItem->idx = pOldItem->idx; 1040 } 1041 return pNew; 1042 } 1043 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1044 Select *pNew, *pPrior; 1045 if( p==0 ) return 0; 1046 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 1047 if( pNew==0 ) return 0; 1048 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1049 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1050 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1051 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1052 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1053 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1054 pNew->op = p->op; 1055 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1056 if( pPrior ) pPrior->pNext = pNew; 1057 pNew->pNext = 0; 1058 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1059 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1060 pNew->iLimit = 0; 1061 pNew->iOffset = 0; 1062 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1063 pNew->addrOpenEphm[0] = -1; 1064 pNew->addrOpenEphm[1] = -1; 1065 pNew->addrOpenEphm[2] = -1; 1066 pNew->nSelectRow = p->nSelectRow; 1067 pNew->pWith = withDup(db, p->pWith); 1068 return pNew; 1069 } 1070 #else 1071 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1072 assert( p==0 ); 1073 return 0; 1074 } 1075 #endif 1076 1077 1078 /* 1079 ** Add a new element to the end of an expression list. If pList is 1080 ** initially NULL, then create a new expression list. 1081 ** 1082 ** If a memory allocation error occurs, the entire list is freed and 1083 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1084 ** that the new entry was successfully appended. 1085 */ 1086 ExprList *sqlite3ExprListAppend( 1087 Parse *pParse, /* Parsing context */ 1088 ExprList *pList, /* List to which to append. Might be NULL */ 1089 Expr *pExpr /* Expression to be appended. Might be NULL */ 1090 ){ 1091 sqlite3 *db = pParse->db; 1092 if( pList==0 ){ 1093 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1094 if( pList==0 ){ 1095 goto no_mem; 1096 } 1097 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1098 if( pList->a==0 ) goto no_mem; 1099 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1100 struct ExprList_item *a; 1101 assert( pList->nExpr>0 ); 1102 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1103 if( a==0 ){ 1104 goto no_mem; 1105 } 1106 pList->a = a; 1107 } 1108 assert( pList->a!=0 ); 1109 if( 1 ){ 1110 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1111 memset(pItem, 0, sizeof(*pItem)); 1112 pItem->pExpr = pExpr; 1113 } 1114 return pList; 1115 1116 no_mem: 1117 /* Avoid leaking memory if malloc has failed. */ 1118 sqlite3ExprDelete(db, pExpr); 1119 sqlite3ExprListDelete(db, pList); 1120 return 0; 1121 } 1122 1123 /* 1124 ** Set the ExprList.a[].zName element of the most recently added item 1125 ** on the expression list. 1126 ** 1127 ** pList might be NULL following an OOM error. But pName should never be 1128 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1129 ** is set. 1130 */ 1131 void sqlite3ExprListSetName( 1132 Parse *pParse, /* Parsing context */ 1133 ExprList *pList, /* List to which to add the span. */ 1134 Token *pName, /* Name to be added */ 1135 int dequote /* True to cause the name to be dequoted */ 1136 ){ 1137 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1138 if( pList ){ 1139 struct ExprList_item *pItem; 1140 assert( pList->nExpr>0 ); 1141 pItem = &pList->a[pList->nExpr-1]; 1142 assert( pItem->zName==0 ); 1143 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1144 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1145 } 1146 } 1147 1148 /* 1149 ** Set the ExprList.a[].zSpan element of the most recently added item 1150 ** on the expression list. 1151 ** 1152 ** pList might be NULL following an OOM error. But pSpan should never be 1153 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1154 ** is set. 1155 */ 1156 void sqlite3ExprListSetSpan( 1157 Parse *pParse, /* Parsing context */ 1158 ExprList *pList, /* List to which to add the span. */ 1159 ExprSpan *pSpan /* The span to be added */ 1160 ){ 1161 sqlite3 *db = pParse->db; 1162 assert( pList!=0 || db->mallocFailed!=0 ); 1163 if( pList ){ 1164 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1165 assert( pList->nExpr>0 ); 1166 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1167 sqlite3DbFree(db, pItem->zSpan); 1168 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1169 (int)(pSpan->zEnd - pSpan->zStart)); 1170 } 1171 } 1172 1173 /* 1174 ** If the expression list pEList contains more than iLimit elements, 1175 ** leave an error message in pParse. 1176 */ 1177 void sqlite3ExprListCheckLength( 1178 Parse *pParse, 1179 ExprList *pEList, 1180 const char *zObject 1181 ){ 1182 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1183 testcase( pEList && pEList->nExpr==mx ); 1184 testcase( pEList && pEList->nExpr==mx+1 ); 1185 if( pEList && pEList->nExpr>mx ){ 1186 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1187 } 1188 } 1189 1190 /* 1191 ** Delete an entire expression list. 1192 */ 1193 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1194 int i; 1195 struct ExprList_item *pItem; 1196 if( pList==0 ) return; 1197 assert( pList->a!=0 || pList->nExpr==0 ); 1198 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1199 sqlite3ExprDelete(db, pItem->pExpr); 1200 sqlite3DbFree(db, pItem->zName); 1201 sqlite3DbFree(db, pItem->zSpan); 1202 } 1203 sqlite3DbFree(db, pList->a); 1204 sqlite3DbFree(db, pList); 1205 } 1206 1207 /* 1208 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1209 ** to an integer. These routines are checking an expression to see 1210 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1211 ** not constant. 1212 ** 1213 ** These callback routines are used to implement the following: 1214 ** 1215 ** sqlite3ExprIsConstant() 1216 ** sqlite3ExprIsConstantNotJoin() 1217 ** sqlite3ExprIsConstantOrFunction() 1218 ** 1219 */ 1220 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1221 1222 /* If pWalker->u.i is 3 then any term of the expression that comes from 1223 ** the ON or USING clauses of a join disqualifies the expression 1224 ** from being considered constant. */ 1225 if( pWalker->u.i==3 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1226 pWalker->u.i = 0; 1227 return WRC_Abort; 1228 } 1229 1230 switch( pExpr->op ){ 1231 /* Consider functions to be constant if all their arguments are constant 1232 ** and either pWalker->u.i==2 or the function as the SQLITE_FUNC_CONST 1233 ** flag. */ 1234 case TK_FUNCTION: 1235 if( pWalker->u.i==2 || ExprHasProperty(pExpr,EP_Constant) ){ 1236 return WRC_Continue; 1237 } 1238 /* Fall through */ 1239 case TK_ID: 1240 case TK_COLUMN: 1241 case TK_AGG_FUNCTION: 1242 case TK_AGG_COLUMN: 1243 testcase( pExpr->op==TK_ID ); 1244 testcase( pExpr->op==TK_COLUMN ); 1245 testcase( pExpr->op==TK_AGG_FUNCTION ); 1246 testcase( pExpr->op==TK_AGG_COLUMN ); 1247 pWalker->u.i = 0; 1248 return WRC_Abort; 1249 default: 1250 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1251 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1252 return WRC_Continue; 1253 } 1254 } 1255 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1256 UNUSED_PARAMETER(NotUsed); 1257 pWalker->u.i = 0; 1258 return WRC_Abort; 1259 } 1260 static int exprIsConst(Expr *p, int initFlag){ 1261 Walker w; 1262 memset(&w, 0, sizeof(w)); 1263 w.u.i = initFlag; 1264 w.xExprCallback = exprNodeIsConstant; 1265 w.xSelectCallback = selectNodeIsConstant; 1266 sqlite3WalkExpr(&w, p); 1267 return w.u.i; 1268 } 1269 1270 /* 1271 ** Walk an expression tree. Return 1 if the expression is constant 1272 ** and 0 if it involves variables or function calls. 1273 ** 1274 ** For the purposes of this function, a double-quoted string (ex: "abc") 1275 ** is considered a variable but a single-quoted string (ex: 'abc') is 1276 ** a constant. 1277 */ 1278 int sqlite3ExprIsConstant(Expr *p){ 1279 return exprIsConst(p, 1); 1280 } 1281 1282 /* 1283 ** Walk an expression tree. Return 1 if the expression is constant 1284 ** that does no originate from the ON or USING clauses of a join. 1285 ** Return 0 if it involves variables or function calls or terms from 1286 ** an ON or USING clause. 1287 */ 1288 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1289 return exprIsConst(p, 3); 1290 } 1291 1292 /* 1293 ** Walk an expression tree. Return 1 if the expression is constant 1294 ** or a function call with constant arguments. Return and 0 if there 1295 ** are any variables. 1296 ** 1297 ** For the purposes of this function, a double-quoted string (ex: "abc") 1298 ** is considered a variable but a single-quoted string (ex: 'abc') is 1299 ** a constant. 1300 */ 1301 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1302 return exprIsConst(p, 2); 1303 } 1304 1305 /* 1306 ** If the expression p codes a constant integer that is small enough 1307 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1308 ** in *pValue. If the expression is not an integer or if it is too big 1309 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1310 */ 1311 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1312 int rc = 0; 1313 1314 /* If an expression is an integer literal that fits in a signed 32-bit 1315 ** integer, then the EP_IntValue flag will have already been set */ 1316 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1317 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1318 1319 if( p->flags & EP_IntValue ){ 1320 *pValue = p->u.iValue; 1321 return 1; 1322 } 1323 switch( p->op ){ 1324 case TK_UPLUS: { 1325 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1326 break; 1327 } 1328 case TK_UMINUS: { 1329 int v; 1330 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1331 assert( v!=(-2147483647-1) ); 1332 *pValue = -v; 1333 rc = 1; 1334 } 1335 break; 1336 } 1337 default: break; 1338 } 1339 return rc; 1340 } 1341 1342 /* 1343 ** Return FALSE if there is no chance that the expression can be NULL. 1344 ** 1345 ** If the expression might be NULL or if the expression is too complex 1346 ** to tell return TRUE. 1347 ** 1348 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1349 ** when we know that a value cannot be NULL. Hence, a false positive 1350 ** (returning TRUE when in fact the expression can never be NULL) might 1351 ** be a small performance hit but is otherwise harmless. On the other 1352 ** hand, a false negative (returning FALSE when the result could be NULL) 1353 ** will likely result in an incorrect answer. So when in doubt, return 1354 ** TRUE. 1355 */ 1356 int sqlite3ExprCanBeNull(const Expr *p){ 1357 u8 op; 1358 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1359 op = p->op; 1360 if( op==TK_REGISTER ) op = p->op2; 1361 switch( op ){ 1362 case TK_INTEGER: 1363 case TK_STRING: 1364 case TK_FLOAT: 1365 case TK_BLOB: 1366 return 0; 1367 default: 1368 return 1; 1369 } 1370 } 1371 1372 /* 1373 ** Generate an OP_IsNull instruction that tests register iReg and jumps 1374 ** to location iDest if the value in iReg is NULL. The value in iReg 1375 ** was computed by pExpr. If we can look at pExpr at compile-time and 1376 ** determine that it can never generate a NULL, then the OP_IsNull operation 1377 ** can be omitted. 1378 */ 1379 void sqlite3ExprCodeIsNullJump( 1380 Vdbe *v, /* The VDBE under construction */ 1381 const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */ 1382 int iReg, /* Test the value in this register for NULL */ 1383 int iDest /* Jump here if the value is null */ 1384 ){ 1385 if( sqlite3ExprCanBeNull(pExpr) ){ 1386 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest); 1387 } 1388 } 1389 1390 /* 1391 ** Return TRUE if the given expression is a constant which would be 1392 ** unchanged by OP_Affinity with the affinity given in the second 1393 ** argument. 1394 ** 1395 ** This routine is used to determine if the OP_Affinity operation 1396 ** can be omitted. When in doubt return FALSE. A false negative 1397 ** is harmless. A false positive, however, can result in the wrong 1398 ** answer. 1399 */ 1400 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1401 u8 op; 1402 if( aff==SQLITE_AFF_NONE ) return 1; 1403 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1404 op = p->op; 1405 if( op==TK_REGISTER ) op = p->op2; 1406 switch( op ){ 1407 case TK_INTEGER: { 1408 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1409 } 1410 case TK_FLOAT: { 1411 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1412 } 1413 case TK_STRING: { 1414 return aff==SQLITE_AFF_TEXT; 1415 } 1416 case TK_BLOB: { 1417 return 1; 1418 } 1419 case TK_COLUMN: { 1420 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1421 return p->iColumn<0 1422 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1423 } 1424 default: { 1425 return 0; 1426 } 1427 } 1428 } 1429 1430 /* 1431 ** Return TRUE if the given string is a row-id column name. 1432 */ 1433 int sqlite3IsRowid(const char *z){ 1434 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1435 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1436 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1437 return 0; 1438 } 1439 1440 /* 1441 ** Return true if we are able to the IN operator optimization on a 1442 ** query of the form 1443 ** 1444 ** x IN (SELECT ...) 1445 ** 1446 ** Where the SELECT... clause is as specified by the parameter to this 1447 ** routine. 1448 ** 1449 ** The Select object passed in has already been preprocessed and no 1450 ** errors have been found. 1451 */ 1452 #ifndef SQLITE_OMIT_SUBQUERY 1453 static int isCandidateForInOpt(Select *p){ 1454 SrcList *pSrc; 1455 ExprList *pEList; 1456 Table *pTab; 1457 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1458 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1459 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1460 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1461 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1462 return 0; /* No DISTINCT keyword and no aggregate functions */ 1463 } 1464 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1465 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1466 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1467 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1468 pSrc = p->pSrc; 1469 assert( pSrc!=0 ); 1470 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1471 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1472 pTab = pSrc->a[0].pTab; 1473 if( NEVER(pTab==0) ) return 0; 1474 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1475 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1476 pEList = p->pEList; 1477 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1478 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1479 return 1; 1480 } 1481 #endif /* SQLITE_OMIT_SUBQUERY */ 1482 1483 /* 1484 ** Code an OP_Once instruction and allocate space for its flag. Return the 1485 ** address of the new instruction. 1486 */ 1487 int sqlite3CodeOnce(Parse *pParse){ 1488 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1489 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1490 } 1491 1492 /* 1493 ** This function is used by the implementation of the IN (...) operator. 1494 ** The pX parameter is the expression on the RHS of the IN operator, which 1495 ** might be either a list of expressions or a subquery. 1496 ** 1497 ** The job of this routine is to find or create a b-tree object that can 1498 ** be used either to test for membership in the RHS set or to iterate through 1499 ** all members of the RHS set, skipping duplicates. 1500 ** 1501 ** A cursor is opened on the b-tree object that the RHS of the IN operator 1502 ** and pX->iTable is set to the index of that cursor. 1503 ** 1504 ** The returned value of this function indicates the b-tree type, as follows: 1505 ** 1506 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1507 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 1508 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 1509 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1510 ** populated epheremal table. 1511 ** 1512 ** An existing b-tree might be used if the RHS expression pX is a simple 1513 ** subquery such as: 1514 ** 1515 ** SELECT <column> FROM <table> 1516 ** 1517 ** If the RHS of the IN operator is a list or a more complex subquery, then 1518 ** an ephemeral table might need to be generated from the RHS and then 1519 ** pX->iTable made to point to the ephermeral table instead of an 1520 ** existing table. 1521 ** 1522 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate 1523 ** through the set members, skipping any duplicates. In this case an 1524 ** epheremal table must be used unless the selected <column> is guaranteed 1525 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1526 ** has a UNIQUE constraint or UNIQUE index. 1527 ** 1528 ** If the prNotFound parameter is not 0, then the b-tree will be used 1529 ** for fast set membership tests. In this case an epheremal table must 1530 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1531 ** be found with <column> as its left-most column. 1532 ** 1533 ** When the b-tree is being used for membership tests, the calling function 1534 ** needs to know whether or not the structure contains an SQL NULL 1535 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1536 ** If there is any chance that the (...) might contain a NULL value at 1537 ** runtime, then a register is allocated and the register number written 1538 ** to *prNotFound. If there is no chance that the (...) contains a 1539 ** NULL value, then *prNotFound is left unchanged. 1540 ** 1541 ** If a register is allocated and its location stored in *prNotFound, then 1542 ** its initial value is NULL. If the (...) does not remain constant 1543 ** for the duration of the query (i.e. the SELECT within the (...) 1544 ** is a correlated subquery) then the value of the allocated register is 1545 ** reset to NULL each time the subquery is rerun. This allows the 1546 ** caller to use vdbe code equivalent to the following: 1547 ** 1548 ** if( register==NULL ){ 1549 ** has_null = <test if data structure contains null> 1550 ** register = 1 1551 ** } 1552 ** 1553 ** in order to avoid running the <test if data structure contains null> 1554 ** test more often than is necessary. 1555 */ 1556 #ifndef SQLITE_OMIT_SUBQUERY 1557 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1558 Select *p; /* SELECT to the right of IN operator */ 1559 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1560 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1561 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ 1562 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1563 1564 assert( pX->op==TK_IN ); 1565 1566 /* Check to see if an existing table or index can be used to 1567 ** satisfy the query. This is preferable to generating a new 1568 ** ephemeral table. 1569 */ 1570 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1571 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1572 sqlite3 *db = pParse->db; /* Database connection */ 1573 Table *pTab; /* Table <table>. */ 1574 Expr *pExpr; /* Expression <column> */ 1575 i16 iCol; /* Index of column <column> */ 1576 i16 iDb; /* Database idx for pTab */ 1577 1578 assert( p ); /* Because of isCandidateForInOpt(p) */ 1579 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1580 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1581 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1582 pTab = p->pSrc->a[0].pTab; 1583 pExpr = p->pEList->a[0].pExpr; 1584 iCol = (i16)pExpr->iColumn; 1585 1586 /* Code an OP_Transaction and OP_TableLock for <table>. */ 1587 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1588 sqlite3CodeVerifySchema(pParse, iDb); 1589 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1590 1591 /* This function is only called from two places. In both cases the vdbe 1592 ** has already been allocated. So assume sqlite3GetVdbe() is always 1593 ** successful here. 1594 */ 1595 assert(v); 1596 if( iCol<0 ){ 1597 int iAddr; 1598 1599 iAddr = sqlite3CodeOnce(pParse); 1600 1601 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1602 eType = IN_INDEX_ROWID; 1603 1604 sqlite3VdbeJumpHere(v, iAddr); 1605 }else{ 1606 Index *pIdx; /* Iterator variable */ 1607 1608 /* The collation sequence used by the comparison. If an index is to 1609 ** be used in place of a temp-table, it must be ordered according 1610 ** to this collation sequence. */ 1611 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1612 1613 /* Check that the affinity that will be used to perform the 1614 ** comparison is the same as the affinity of the column. If 1615 ** it is not, it is not possible to use any index. 1616 */ 1617 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1618 1619 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1620 if( (pIdx->aiColumn[0]==iCol) 1621 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1622 && (!mustBeUnique || (pIdx->nKeyCol==1 && pIdx->onError!=OE_None)) 1623 ){ 1624 int iAddr = sqlite3CodeOnce(pParse); 1625 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 1626 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1627 VdbeComment((v, "%s", pIdx->zName)); 1628 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 1629 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 1630 1631 sqlite3VdbeJumpHere(v, iAddr); 1632 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1633 *prNotFound = ++pParse->nMem; 1634 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1635 } 1636 } 1637 } 1638 } 1639 } 1640 1641 if( eType==0 ){ 1642 /* Could not found an existing table or index to use as the RHS b-tree. 1643 ** We will have to generate an ephemeral table to do the job. 1644 */ 1645 u32 savedNQueryLoop = pParse->nQueryLoop; 1646 int rMayHaveNull = 0; 1647 eType = IN_INDEX_EPH; 1648 if( prNotFound ){ 1649 *prNotFound = rMayHaveNull = ++pParse->nMem; 1650 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1651 }else{ 1652 testcase( pParse->nQueryLoop>0 ); 1653 pParse->nQueryLoop = 0; 1654 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 1655 eType = IN_INDEX_ROWID; 1656 } 1657 } 1658 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1659 pParse->nQueryLoop = savedNQueryLoop; 1660 }else{ 1661 pX->iTable = iTab; 1662 } 1663 return eType; 1664 } 1665 #endif 1666 1667 /* 1668 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1669 ** or IN operators. Examples: 1670 ** 1671 ** (SELECT a FROM b) -- subquery 1672 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1673 ** x IN (4,5,11) -- IN operator with list on right-hand side 1674 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1675 ** 1676 ** The pExpr parameter describes the expression that contains the IN 1677 ** operator or subquery. 1678 ** 1679 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1680 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1681 ** to some integer key column of a table B-Tree. In this case, use an 1682 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1683 ** (slower) variable length keys B-Tree. 1684 ** 1685 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1686 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1687 ** Furthermore, the IN is in a WHERE clause and that we really want 1688 ** to iterate over the RHS of the IN operator in order to quickly locate 1689 ** all corresponding LHS elements. All this routine does is initialize 1690 ** the register given by rMayHaveNull to NULL. Calling routines will take 1691 ** care of changing this register value to non-NULL if the RHS is NULL-free. 1692 ** 1693 ** If rMayHaveNull is zero, that means that the subquery is being used 1694 ** for membership testing only. There is no need to initialize any 1695 ** registers to indicate the presence or absence of NULLs on the RHS. 1696 ** 1697 ** For a SELECT or EXISTS operator, return the register that holds the 1698 ** result. For IN operators or if an error occurs, the return value is 0. 1699 */ 1700 #ifndef SQLITE_OMIT_SUBQUERY 1701 int sqlite3CodeSubselect( 1702 Parse *pParse, /* Parsing context */ 1703 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1704 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ 1705 int isRowid /* If true, LHS of IN operator is a rowid */ 1706 ){ 1707 int testAddr = -1; /* One-time test address */ 1708 int rReg = 0; /* Register storing resulting */ 1709 Vdbe *v = sqlite3GetVdbe(pParse); 1710 if( NEVER(v==0) ) return 0; 1711 sqlite3ExprCachePush(pParse); 1712 1713 /* This code must be run in its entirety every time it is encountered 1714 ** if any of the following is true: 1715 ** 1716 ** * The right-hand side is a correlated subquery 1717 ** * The right-hand side is an expression list containing variables 1718 ** * We are inside a trigger 1719 ** 1720 ** If all of the above are false, then we can run this code just once 1721 ** save the results, and reuse the same result on subsequent invocations. 1722 */ 1723 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 1724 testAddr = sqlite3CodeOnce(pParse); 1725 } 1726 1727 #ifndef SQLITE_OMIT_EXPLAIN 1728 if( pParse->explain==2 ){ 1729 char *zMsg = sqlite3MPrintf( 1730 pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ", 1731 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId 1732 ); 1733 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1734 } 1735 #endif 1736 1737 switch( pExpr->op ){ 1738 case TK_IN: { 1739 char affinity; /* Affinity of the LHS of the IN */ 1740 int addr; /* Address of OP_OpenEphemeral instruction */ 1741 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1742 KeyInfo *pKeyInfo = 0; /* Key information */ 1743 1744 if( rMayHaveNull ){ 1745 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1746 } 1747 1748 affinity = sqlite3ExprAffinity(pLeft); 1749 1750 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1751 ** expression it is handled the same way. An ephemeral table is 1752 ** filled with single-field index keys representing the results 1753 ** from the SELECT or the <exprlist>. 1754 ** 1755 ** If the 'x' expression is a column value, or the SELECT... 1756 ** statement returns a column value, then the affinity of that 1757 ** column is used to build the index keys. If both 'x' and the 1758 ** SELECT... statement are columns, then numeric affinity is used 1759 ** if either column has NUMERIC or INTEGER affinity. If neither 1760 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1761 ** is used. 1762 */ 1763 pExpr->iTable = pParse->nTab++; 1764 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1765 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); 1766 1767 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1768 /* Case 1: expr IN (SELECT ...) 1769 ** 1770 ** Generate code to write the results of the select into the temporary 1771 ** table allocated and opened above. 1772 */ 1773 SelectDest dest; 1774 ExprList *pEList; 1775 1776 assert( !isRowid ); 1777 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1778 dest.affSdst = (u8)affinity; 1779 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1780 pExpr->x.pSelect->iLimit = 0; 1781 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 1782 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1783 sqlite3KeyInfoUnref(pKeyInfo); 1784 return 0; 1785 } 1786 pEList = pExpr->x.pSelect->pEList; 1787 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 1788 assert( pEList!=0 ); 1789 assert( pEList->nExpr>0 ); 1790 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1791 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1792 pEList->a[0].pExpr); 1793 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1794 /* Case 2: expr IN (exprlist) 1795 ** 1796 ** For each expression, build an index key from the evaluation and 1797 ** store it in the temporary table. If <expr> is a column, then use 1798 ** that columns affinity when building index keys. If <expr> is not 1799 ** a column, use numeric affinity. 1800 */ 1801 int i; 1802 ExprList *pList = pExpr->x.pList; 1803 struct ExprList_item *pItem; 1804 int r1, r2, r3; 1805 1806 if( !affinity ){ 1807 affinity = SQLITE_AFF_NONE; 1808 } 1809 if( pKeyInfo ){ 1810 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1811 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1812 } 1813 1814 /* Loop through each expression in <exprlist>. */ 1815 r1 = sqlite3GetTempReg(pParse); 1816 r2 = sqlite3GetTempReg(pParse); 1817 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1818 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1819 Expr *pE2 = pItem->pExpr; 1820 int iValToIns; 1821 1822 /* If the expression is not constant then we will need to 1823 ** disable the test that was generated above that makes sure 1824 ** this code only executes once. Because for a non-constant 1825 ** expression we need to rerun this code each time. 1826 */ 1827 if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){ 1828 sqlite3VdbeChangeToNoop(v, testAddr); 1829 testAddr = -1; 1830 } 1831 1832 /* Evaluate the expression and insert it into the temp table */ 1833 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1834 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1835 }else{ 1836 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1837 if( isRowid ){ 1838 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1839 sqlite3VdbeCurrentAddr(v)+2); 1840 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1841 }else{ 1842 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1843 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1844 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1845 } 1846 } 1847 } 1848 sqlite3ReleaseTempReg(pParse, r1); 1849 sqlite3ReleaseTempReg(pParse, r2); 1850 } 1851 if( pKeyInfo ){ 1852 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 1853 } 1854 break; 1855 } 1856 1857 case TK_EXISTS: 1858 case TK_SELECT: 1859 default: { 1860 /* If this has to be a scalar SELECT. Generate code to put the 1861 ** value of this select in a memory cell and record the number 1862 ** of the memory cell in iColumn. If this is an EXISTS, write 1863 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1864 ** and record that memory cell in iColumn. 1865 */ 1866 Select *pSel; /* SELECT statement to encode */ 1867 SelectDest dest; /* How to deal with SELECt result */ 1868 1869 testcase( pExpr->op==TK_EXISTS ); 1870 testcase( pExpr->op==TK_SELECT ); 1871 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1872 1873 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1874 pSel = pExpr->x.pSelect; 1875 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1876 if( pExpr->op==TK_SELECT ){ 1877 dest.eDest = SRT_Mem; 1878 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 1879 VdbeComment((v, "Init subquery result")); 1880 }else{ 1881 dest.eDest = SRT_Exists; 1882 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 1883 VdbeComment((v, "Init EXISTS result")); 1884 } 1885 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1886 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 1887 &sqlite3IntTokens[1]); 1888 pSel->iLimit = 0; 1889 if( sqlite3Select(pParse, pSel, &dest) ){ 1890 return 0; 1891 } 1892 rReg = dest.iSDParm; 1893 ExprSetVVAProperty(pExpr, EP_NoReduce); 1894 break; 1895 } 1896 } 1897 1898 if( testAddr>=0 ){ 1899 sqlite3VdbeJumpHere(v, testAddr); 1900 } 1901 sqlite3ExprCachePop(pParse, 1); 1902 1903 return rReg; 1904 } 1905 #endif /* SQLITE_OMIT_SUBQUERY */ 1906 1907 #ifndef SQLITE_OMIT_SUBQUERY 1908 /* 1909 ** Generate code for an IN expression. 1910 ** 1911 ** x IN (SELECT ...) 1912 ** x IN (value, value, ...) 1913 ** 1914 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 1915 ** is an array of zero or more values. The expression is true if the LHS is 1916 ** contained within the RHS. The value of the expression is unknown (NULL) 1917 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 1918 ** RHS contains one or more NULL values. 1919 ** 1920 ** This routine generates code will jump to destIfFalse if the LHS is not 1921 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 1922 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 1923 ** within the RHS then fall through. 1924 */ 1925 static void sqlite3ExprCodeIN( 1926 Parse *pParse, /* Parsing and code generating context */ 1927 Expr *pExpr, /* The IN expression */ 1928 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 1929 int destIfNull /* Jump here if the results are unknown due to NULLs */ 1930 ){ 1931 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 1932 char affinity; /* Comparison affinity to use */ 1933 int eType; /* Type of the RHS */ 1934 int r1; /* Temporary use register */ 1935 Vdbe *v; /* Statement under construction */ 1936 1937 /* Compute the RHS. After this step, the table with cursor 1938 ** pExpr->iTable will contains the values that make up the RHS. 1939 */ 1940 v = pParse->pVdbe; 1941 assert( v!=0 ); /* OOM detected prior to this routine */ 1942 VdbeNoopComment((v, "begin IN expr")); 1943 eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull); 1944 1945 /* Figure out the affinity to use to create a key from the results 1946 ** of the expression. affinityStr stores a static string suitable for 1947 ** P4 of OP_MakeRecord. 1948 */ 1949 affinity = comparisonAffinity(pExpr); 1950 1951 /* Code the LHS, the <expr> from "<expr> IN (...)". 1952 */ 1953 sqlite3ExprCachePush(pParse); 1954 r1 = sqlite3GetTempReg(pParse); 1955 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 1956 1957 /* If the LHS is NULL, then the result is either false or NULL depending 1958 ** on whether the RHS is empty or not, respectively. 1959 */ 1960 if( destIfNull==destIfFalse ){ 1961 /* Shortcut for the common case where the false and NULL outcomes are 1962 ** the same. */ 1963 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); 1964 }else{ 1965 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); 1966 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 1967 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 1968 sqlite3VdbeJumpHere(v, addr1); 1969 } 1970 1971 if( eType==IN_INDEX_ROWID ){ 1972 /* In this case, the RHS is the ROWID of table b-tree 1973 */ 1974 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); 1975 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 1976 }else{ 1977 /* In this case, the RHS is an index b-tree. 1978 */ 1979 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 1980 1981 /* If the set membership test fails, then the result of the 1982 ** "x IN (...)" expression must be either 0 or NULL. If the set 1983 ** contains no NULL values, then the result is 0. If the set 1984 ** contains one or more NULL values, then the result of the 1985 ** expression is also NULL. 1986 */ 1987 if( rRhsHasNull==0 || destIfFalse==destIfNull ){ 1988 /* This branch runs if it is known at compile time that the RHS 1989 ** cannot contain NULL values. This happens as the result 1990 ** of a "NOT NULL" constraint in the database schema. 1991 ** 1992 ** Also run this branch if NULL is equivalent to FALSE 1993 ** for this particular IN operator. 1994 */ 1995 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 1996 1997 }else{ 1998 /* In this branch, the RHS of the IN might contain a NULL and 1999 ** the presence of a NULL on the RHS makes a difference in the 2000 ** outcome. 2001 */ 2002 int j1, j2, j3; 2003 2004 /* First check to see if the LHS is contained in the RHS. If so, 2005 ** then the presence of NULLs in the RHS does not matter, so jump 2006 ** over all of the code that follows. 2007 */ 2008 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 2009 2010 /* Here we begin generating code that runs if the LHS is not 2011 ** contained within the RHS. Generate additional code that 2012 ** tests the RHS for NULLs. If the RHS contains a NULL then 2013 ** jump to destIfNull. If there are no NULLs in the RHS then 2014 ** jump to destIfFalse. 2015 */ 2016 j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull); 2017 j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); 2018 sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull); 2019 sqlite3VdbeJumpHere(v, j3); 2020 sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1); 2021 sqlite3VdbeJumpHere(v, j2); 2022 2023 /* Jump to the appropriate target depending on whether or not 2024 ** the RHS contains a NULL 2025 */ 2026 sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); 2027 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 2028 2029 /* The OP_Found at the top of this branch jumps here when true, 2030 ** causing the overall IN expression evaluation to fall through. 2031 */ 2032 sqlite3VdbeJumpHere(v, j1); 2033 } 2034 } 2035 sqlite3ReleaseTempReg(pParse, r1); 2036 sqlite3ExprCachePop(pParse, 1); 2037 VdbeComment((v, "end IN expr")); 2038 } 2039 #endif /* SQLITE_OMIT_SUBQUERY */ 2040 2041 /* 2042 ** Duplicate an 8-byte value 2043 */ 2044 static char *dup8bytes(Vdbe *v, const char *in){ 2045 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 2046 if( out ){ 2047 memcpy(out, in, 8); 2048 } 2049 return out; 2050 } 2051 2052 #ifndef SQLITE_OMIT_FLOATING_POINT 2053 /* 2054 ** Generate an instruction that will put the floating point 2055 ** value described by z[0..n-1] into register iMem. 2056 ** 2057 ** The z[] string will probably not be zero-terminated. But the 2058 ** z[n] character is guaranteed to be something that does not look 2059 ** like the continuation of the number. 2060 */ 2061 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2062 if( ALWAYS(z!=0) ){ 2063 double value; 2064 char *zV; 2065 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2066 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2067 if( negateFlag ) value = -value; 2068 zV = dup8bytes(v, (char*)&value); 2069 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 2070 } 2071 } 2072 #endif 2073 2074 2075 /* 2076 ** Generate an instruction that will put the integer describe by 2077 ** text z[0..n-1] into register iMem. 2078 ** 2079 ** Expr.u.zToken is always UTF8 and zero-terminated. 2080 */ 2081 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2082 Vdbe *v = pParse->pVdbe; 2083 if( pExpr->flags & EP_IntValue ){ 2084 int i = pExpr->u.iValue; 2085 assert( i>=0 ); 2086 if( negFlag ) i = -i; 2087 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2088 }else{ 2089 int c; 2090 i64 value; 2091 const char *z = pExpr->u.zToken; 2092 assert( z!=0 ); 2093 c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2094 if( c==0 || (c==2 && negFlag) ){ 2095 char *zV; 2096 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2097 zV = dup8bytes(v, (char*)&value); 2098 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 2099 }else{ 2100 #ifdef SQLITE_OMIT_FLOATING_POINT 2101 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2102 #else 2103 codeReal(v, z, negFlag, iMem); 2104 #endif 2105 } 2106 } 2107 } 2108 2109 /* 2110 ** Clear a cache entry. 2111 */ 2112 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2113 if( p->tempReg ){ 2114 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2115 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2116 } 2117 p->tempReg = 0; 2118 } 2119 } 2120 2121 2122 /* 2123 ** Record in the column cache that a particular column from a 2124 ** particular table is stored in a particular register. 2125 */ 2126 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2127 int i; 2128 int minLru; 2129 int idxLru; 2130 struct yColCache *p; 2131 2132 assert( iReg>0 ); /* Register numbers are always positive */ 2133 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2134 2135 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2136 ** for testing only - to verify that SQLite always gets the same answer 2137 ** with and without the column cache. 2138 */ 2139 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2140 2141 /* First replace any existing entry. 2142 ** 2143 ** Actually, the way the column cache is currently used, we are guaranteed 2144 ** that the object will never already be in cache. Verify this guarantee. 2145 */ 2146 #ifndef NDEBUG 2147 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2148 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2149 } 2150 #endif 2151 2152 /* Find an empty slot and replace it */ 2153 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2154 if( p->iReg==0 ){ 2155 p->iLevel = pParse->iCacheLevel; 2156 p->iTable = iTab; 2157 p->iColumn = iCol; 2158 p->iReg = iReg; 2159 p->tempReg = 0; 2160 p->lru = pParse->iCacheCnt++; 2161 return; 2162 } 2163 } 2164 2165 /* Replace the last recently used */ 2166 minLru = 0x7fffffff; 2167 idxLru = -1; 2168 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2169 if( p->lru<minLru ){ 2170 idxLru = i; 2171 minLru = p->lru; 2172 } 2173 } 2174 if( ALWAYS(idxLru>=0) ){ 2175 p = &pParse->aColCache[idxLru]; 2176 p->iLevel = pParse->iCacheLevel; 2177 p->iTable = iTab; 2178 p->iColumn = iCol; 2179 p->iReg = iReg; 2180 p->tempReg = 0; 2181 p->lru = pParse->iCacheCnt++; 2182 return; 2183 } 2184 } 2185 2186 /* 2187 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2188 ** Purge the range of registers from the column cache. 2189 */ 2190 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2191 int i; 2192 int iLast = iReg + nReg - 1; 2193 struct yColCache *p; 2194 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2195 int r = p->iReg; 2196 if( r>=iReg && r<=iLast ){ 2197 cacheEntryClear(pParse, p); 2198 p->iReg = 0; 2199 } 2200 } 2201 } 2202 2203 /* 2204 ** Remember the current column cache context. Any new entries added 2205 ** added to the column cache after this call are removed when the 2206 ** corresponding pop occurs. 2207 */ 2208 void sqlite3ExprCachePush(Parse *pParse){ 2209 pParse->iCacheLevel++; 2210 #ifdef SQLITE_DEBUG 2211 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2212 printf("PUSH to %d\n", pParse->iCacheLevel); 2213 } 2214 #endif 2215 } 2216 2217 /* 2218 ** Remove from the column cache any entries that were added since the 2219 ** the previous N Push operations. In other words, restore the cache 2220 ** to the state it was in N Pushes ago. 2221 */ 2222 void sqlite3ExprCachePop(Parse *pParse, int N){ 2223 int i; 2224 struct yColCache *p; 2225 assert( N>0 ); 2226 assert( pParse->iCacheLevel>=N ); 2227 pParse->iCacheLevel -= N; 2228 #ifdef SQLITE_DEBUG 2229 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2230 printf("POP to %d\n", pParse->iCacheLevel); 2231 } 2232 #endif 2233 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2234 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2235 cacheEntryClear(pParse, p); 2236 p->iReg = 0; 2237 } 2238 } 2239 } 2240 2241 /* 2242 ** When a cached column is reused, make sure that its register is 2243 ** no longer available as a temp register. ticket #3879: that same 2244 ** register might be in the cache in multiple places, so be sure to 2245 ** get them all. 2246 */ 2247 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2248 int i; 2249 struct yColCache *p; 2250 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2251 if( p->iReg==iReg ){ 2252 p->tempReg = 0; 2253 } 2254 } 2255 } 2256 2257 /* 2258 ** Generate code to extract the value of the iCol-th column of a table. 2259 */ 2260 void sqlite3ExprCodeGetColumnOfTable( 2261 Vdbe *v, /* The VDBE under construction */ 2262 Table *pTab, /* The table containing the value */ 2263 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 2264 int iCol, /* Index of the column to extract */ 2265 int regOut /* Extract the value into this register */ 2266 ){ 2267 if( iCol<0 || iCol==pTab->iPKey ){ 2268 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2269 }else{ 2270 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2271 int x = iCol; 2272 if( !HasRowid(pTab) ){ 2273 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 2274 } 2275 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 2276 } 2277 if( iCol>=0 ){ 2278 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2279 } 2280 } 2281 2282 /* 2283 ** Generate code that will extract the iColumn-th column from 2284 ** table pTab and store the column value in a register. An effort 2285 ** is made to store the column value in register iReg, but this is 2286 ** not guaranteed. The location of the column value is returned. 2287 ** 2288 ** There must be an open cursor to pTab in iTable when this routine 2289 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2290 */ 2291 int sqlite3ExprCodeGetColumn( 2292 Parse *pParse, /* Parsing and code generating context */ 2293 Table *pTab, /* Description of the table we are reading from */ 2294 int iColumn, /* Index of the table column */ 2295 int iTable, /* The cursor pointing to the table */ 2296 int iReg, /* Store results here */ 2297 u8 p5 /* P5 value for OP_Column */ 2298 ){ 2299 Vdbe *v = pParse->pVdbe; 2300 int i; 2301 struct yColCache *p; 2302 2303 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2304 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2305 p->lru = pParse->iCacheCnt++; 2306 sqlite3ExprCachePinRegister(pParse, p->iReg); 2307 return p->iReg; 2308 } 2309 } 2310 assert( v!=0 ); 2311 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2312 if( p5 ){ 2313 sqlite3VdbeChangeP5(v, p5); 2314 }else{ 2315 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2316 } 2317 return iReg; 2318 } 2319 2320 /* 2321 ** Clear all column cache entries. 2322 */ 2323 void sqlite3ExprCacheClear(Parse *pParse){ 2324 int i; 2325 struct yColCache *p; 2326 2327 #if SQLITE_DEBUG 2328 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2329 printf("CLEAR\n"); 2330 } 2331 #endif 2332 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2333 if( p->iReg ){ 2334 cacheEntryClear(pParse, p); 2335 p->iReg = 0; 2336 } 2337 } 2338 } 2339 2340 /* 2341 ** Record the fact that an affinity change has occurred on iCount 2342 ** registers starting with iStart. 2343 */ 2344 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2345 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2346 } 2347 2348 /* 2349 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2350 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2351 */ 2352 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2353 int i; 2354 struct yColCache *p; 2355 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2356 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg-1); 2357 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2358 int x = p->iReg; 2359 if( x>=iFrom && x<iFrom+nReg ){ 2360 p->iReg += iTo-iFrom; 2361 } 2362 } 2363 } 2364 2365 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2366 /* 2367 ** Return true if any register in the range iFrom..iTo (inclusive) 2368 ** is used as part of the column cache. 2369 ** 2370 ** This routine is used within assert() and testcase() macros only 2371 ** and does not appear in a normal build. 2372 */ 2373 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2374 int i; 2375 struct yColCache *p; 2376 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2377 int r = p->iReg; 2378 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2379 } 2380 return 0; 2381 } 2382 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2383 2384 /* 2385 ** Convert an expression node to a TK_REGISTER 2386 */ 2387 static void exprToRegister(Expr *p, int iReg){ 2388 p->op2 = p->op; 2389 p->op = TK_REGISTER; 2390 p->iTable = iReg; 2391 ExprClearProperty(p, EP_Skip); 2392 } 2393 2394 /* 2395 ** Generate code into the current Vdbe to evaluate the given 2396 ** expression. Attempt to store the results in register "target". 2397 ** Return the register where results are stored. 2398 ** 2399 ** With this routine, there is no guarantee that results will 2400 ** be stored in target. The result might be stored in some other 2401 ** register if it is convenient to do so. The calling function 2402 ** must check the return code and move the results to the desired 2403 ** register. 2404 */ 2405 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2406 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2407 int op; /* The opcode being coded */ 2408 int inReg = target; /* Results stored in register inReg */ 2409 int regFree1 = 0; /* If non-zero free this temporary register */ 2410 int regFree2 = 0; /* If non-zero free this temporary register */ 2411 int r1, r2, r3, r4; /* Various register numbers */ 2412 sqlite3 *db = pParse->db; /* The database connection */ 2413 Expr tempX; /* Temporary expression node */ 2414 2415 assert( target>0 && target<=pParse->nMem ); 2416 if( v==0 ){ 2417 assert( pParse->db->mallocFailed ); 2418 return 0; 2419 } 2420 2421 if( pExpr==0 ){ 2422 op = TK_NULL; 2423 }else{ 2424 op = pExpr->op; 2425 } 2426 switch( op ){ 2427 case TK_AGG_COLUMN: { 2428 AggInfo *pAggInfo = pExpr->pAggInfo; 2429 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2430 if( !pAggInfo->directMode ){ 2431 assert( pCol->iMem>0 ); 2432 inReg = pCol->iMem; 2433 break; 2434 }else if( pAggInfo->useSortingIdx ){ 2435 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2436 pCol->iSorterColumn, target); 2437 break; 2438 } 2439 /* Otherwise, fall thru into the TK_COLUMN case */ 2440 } 2441 case TK_COLUMN: { 2442 int iTab = pExpr->iTable; 2443 if( iTab<0 ){ 2444 if( pParse->ckBase>0 ){ 2445 /* Generating CHECK constraints or inserting into partial index */ 2446 inReg = pExpr->iColumn + pParse->ckBase; 2447 break; 2448 }else{ 2449 /* Deleting from a partial index */ 2450 iTab = pParse->iPartIdxTab; 2451 } 2452 } 2453 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2454 pExpr->iColumn, iTab, target, 2455 pExpr->op2); 2456 break; 2457 } 2458 case TK_INTEGER: { 2459 codeInteger(pParse, pExpr, 0, target); 2460 break; 2461 } 2462 #ifndef SQLITE_OMIT_FLOATING_POINT 2463 case TK_FLOAT: { 2464 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2465 codeReal(v, pExpr->u.zToken, 0, target); 2466 break; 2467 } 2468 #endif 2469 case TK_STRING: { 2470 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2471 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2472 break; 2473 } 2474 case TK_NULL: { 2475 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2476 break; 2477 } 2478 #ifndef SQLITE_OMIT_BLOB_LITERAL 2479 case TK_BLOB: { 2480 int n; 2481 const char *z; 2482 char *zBlob; 2483 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2484 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2485 assert( pExpr->u.zToken[1]=='\'' ); 2486 z = &pExpr->u.zToken[2]; 2487 n = sqlite3Strlen30(z) - 1; 2488 assert( z[n]=='\'' ); 2489 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2490 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2491 break; 2492 } 2493 #endif 2494 case TK_VARIABLE: { 2495 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2496 assert( pExpr->u.zToken!=0 ); 2497 assert( pExpr->u.zToken[0]!=0 ); 2498 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2499 if( pExpr->u.zToken[1]!=0 ){ 2500 assert( pExpr->u.zToken[0]=='?' 2501 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2502 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2503 } 2504 break; 2505 } 2506 case TK_REGISTER: { 2507 inReg = pExpr->iTable; 2508 break; 2509 } 2510 case TK_AS: { 2511 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2512 break; 2513 } 2514 #ifndef SQLITE_OMIT_CAST 2515 case TK_CAST: { 2516 /* Expressions of the form: CAST(pLeft AS token) */ 2517 int aff, to_op; 2518 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2519 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2520 aff = sqlite3AffinityType(pExpr->u.zToken, 0); 2521 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2522 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2523 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2524 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2525 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2526 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2527 testcase( to_op==OP_ToText ); 2528 testcase( to_op==OP_ToBlob ); 2529 testcase( to_op==OP_ToNumeric ); 2530 testcase( to_op==OP_ToInt ); 2531 testcase( to_op==OP_ToReal ); 2532 if( inReg!=target ){ 2533 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2534 inReg = target; 2535 } 2536 sqlite3VdbeAddOp1(v, to_op, inReg); 2537 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2538 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2539 break; 2540 } 2541 #endif /* SQLITE_OMIT_CAST */ 2542 case TK_LT: 2543 case TK_LE: 2544 case TK_GT: 2545 case TK_GE: 2546 case TK_NE: 2547 case TK_EQ: { 2548 assert( TK_LT==OP_Lt ); 2549 assert( TK_LE==OP_Le ); 2550 assert( TK_GT==OP_Gt ); 2551 assert( TK_GE==OP_Ge ); 2552 assert( TK_EQ==OP_Eq ); 2553 assert( TK_NE==OP_Ne ); 2554 testcase( op==TK_LT ); 2555 testcase( op==TK_LE ); 2556 testcase( op==TK_GT ); 2557 testcase( op==TK_GE ); 2558 testcase( op==TK_EQ ); 2559 testcase( op==TK_NE ); 2560 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2561 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2562 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2563 r1, r2, inReg, SQLITE_STOREP2); 2564 testcase( regFree1==0 ); 2565 testcase( regFree2==0 ); 2566 break; 2567 } 2568 case TK_IS: 2569 case TK_ISNOT: { 2570 testcase( op==TK_IS ); 2571 testcase( op==TK_ISNOT ); 2572 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2573 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2574 op = (op==TK_IS) ? TK_EQ : TK_NE; 2575 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2576 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2577 testcase( regFree1==0 ); 2578 testcase( regFree2==0 ); 2579 break; 2580 } 2581 case TK_AND: 2582 case TK_OR: 2583 case TK_PLUS: 2584 case TK_STAR: 2585 case TK_MINUS: 2586 case TK_REM: 2587 case TK_BITAND: 2588 case TK_BITOR: 2589 case TK_SLASH: 2590 case TK_LSHIFT: 2591 case TK_RSHIFT: 2592 case TK_CONCAT: { 2593 assert( TK_AND==OP_And ); 2594 assert( TK_OR==OP_Or ); 2595 assert( TK_PLUS==OP_Add ); 2596 assert( TK_MINUS==OP_Subtract ); 2597 assert( TK_REM==OP_Remainder ); 2598 assert( TK_BITAND==OP_BitAnd ); 2599 assert( TK_BITOR==OP_BitOr ); 2600 assert( TK_SLASH==OP_Divide ); 2601 assert( TK_LSHIFT==OP_ShiftLeft ); 2602 assert( TK_RSHIFT==OP_ShiftRight ); 2603 assert( TK_CONCAT==OP_Concat ); 2604 testcase( op==TK_AND ); 2605 testcase( op==TK_OR ); 2606 testcase( op==TK_PLUS ); 2607 testcase( op==TK_MINUS ); 2608 testcase( op==TK_REM ); 2609 testcase( op==TK_BITAND ); 2610 testcase( op==TK_BITOR ); 2611 testcase( op==TK_SLASH ); 2612 testcase( op==TK_LSHIFT ); 2613 testcase( op==TK_RSHIFT ); 2614 testcase( op==TK_CONCAT ); 2615 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2616 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2617 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2618 testcase( regFree1==0 ); 2619 testcase( regFree2==0 ); 2620 break; 2621 } 2622 case TK_UMINUS: { 2623 Expr *pLeft = pExpr->pLeft; 2624 assert( pLeft ); 2625 if( pLeft->op==TK_INTEGER ){ 2626 codeInteger(pParse, pLeft, 1, target); 2627 #ifndef SQLITE_OMIT_FLOATING_POINT 2628 }else if( pLeft->op==TK_FLOAT ){ 2629 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2630 codeReal(v, pLeft->u.zToken, 1, target); 2631 #endif 2632 }else{ 2633 tempX.op = TK_INTEGER; 2634 tempX.flags = EP_IntValue|EP_TokenOnly; 2635 tempX.u.iValue = 0; 2636 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 2637 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2638 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2639 testcase( regFree2==0 ); 2640 } 2641 inReg = target; 2642 break; 2643 } 2644 case TK_BITNOT: 2645 case TK_NOT: { 2646 assert( TK_BITNOT==OP_BitNot ); 2647 assert( TK_NOT==OP_Not ); 2648 testcase( op==TK_BITNOT ); 2649 testcase( op==TK_NOT ); 2650 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2651 testcase( regFree1==0 ); 2652 inReg = target; 2653 sqlite3VdbeAddOp2(v, op, r1, inReg); 2654 break; 2655 } 2656 case TK_ISNULL: 2657 case TK_NOTNULL: { 2658 int addr; 2659 assert( TK_ISNULL==OP_IsNull ); 2660 assert( TK_NOTNULL==OP_NotNull ); 2661 testcase( op==TK_ISNULL ); 2662 testcase( op==TK_NOTNULL ); 2663 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2664 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2665 testcase( regFree1==0 ); 2666 addr = sqlite3VdbeAddOp1(v, op, r1); 2667 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2668 sqlite3VdbeJumpHere(v, addr); 2669 break; 2670 } 2671 case TK_AGG_FUNCTION: { 2672 AggInfo *pInfo = pExpr->pAggInfo; 2673 if( pInfo==0 ){ 2674 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2675 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2676 }else{ 2677 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2678 } 2679 break; 2680 } 2681 case TK_FUNCTION: { 2682 ExprList *pFarg; /* List of function arguments */ 2683 int nFarg; /* Number of function arguments */ 2684 FuncDef *pDef; /* The function definition object */ 2685 int nId; /* Length of the function name in bytes */ 2686 const char *zId; /* The function name */ 2687 u32 constMask = 0; /* Mask of function arguments that are constant */ 2688 int i; /* Loop counter */ 2689 u8 enc = ENC(db); /* The text encoding used by this database */ 2690 CollSeq *pColl = 0; /* A collating sequence */ 2691 2692 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2693 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 2694 pFarg = 0; 2695 }else{ 2696 pFarg = pExpr->x.pList; 2697 } 2698 nFarg = pFarg ? pFarg->nExpr : 0; 2699 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2700 zId = pExpr->u.zToken; 2701 nId = sqlite3Strlen30(zId); 2702 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2703 if( pDef==0 ){ 2704 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2705 break; 2706 } 2707 2708 /* Attempt a direct implementation of the built-in COALESCE() and 2709 ** IFNULL() functions. This avoids unnecessary evalation of 2710 ** arguments past the first non-NULL argument. 2711 */ 2712 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 2713 int endCoalesce = sqlite3VdbeMakeLabel(v); 2714 assert( nFarg>=2 ); 2715 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2716 for(i=1; i<nFarg; i++){ 2717 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2718 sqlite3ExprCacheRemove(pParse, target, 1); 2719 sqlite3ExprCachePush(pParse); 2720 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2721 sqlite3ExprCachePop(pParse, 1); 2722 } 2723 sqlite3VdbeResolveLabel(v, endCoalesce); 2724 break; 2725 } 2726 2727 /* The UNLIKELY() function is a no-op. The result is the value 2728 ** of the first argument. 2729 */ 2730 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 2731 assert( nFarg>=1 ); 2732 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2733 break; 2734 } 2735 2736 for(i=0; i<nFarg; i++){ 2737 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2738 testcase( i==31 ); 2739 constMask |= MASKBIT32(i); 2740 } 2741 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2742 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2743 } 2744 } 2745 if( pFarg ){ 2746 if( constMask ){ 2747 r1 = pParse->nMem+1; 2748 pParse->nMem += nFarg; 2749 }else{ 2750 r1 = sqlite3GetTempRange(pParse, nFarg); 2751 } 2752 2753 /* For length() and typeof() functions with a column argument, 2754 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2755 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2756 ** loading. 2757 */ 2758 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2759 u8 exprOp; 2760 assert( nFarg==1 ); 2761 assert( pFarg->a[0].pExpr!=0 ); 2762 exprOp = pFarg->a[0].pExpr->op; 2763 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2764 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2765 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2766 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 2767 pFarg->a[0].pExpr->op2 = 2768 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 2769 } 2770 } 2771 2772 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2773 sqlite3ExprCodeExprList(pParse, pFarg, r1, 2774 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 2775 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ 2776 }else{ 2777 r1 = 0; 2778 } 2779 #ifndef SQLITE_OMIT_VIRTUALTABLE 2780 /* Possibly overload the function if the first argument is 2781 ** a virtual table column. 2782 ** 2783 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2784 ** second argument, not the first, as the argument to test to 2785 ** see if it is a column in a virtual table. This is done because 2786 ** the left operand of infix functions (the operand we want to 2787 ** control overloading) ends up as the second argument to the 2788 ** function. The expression "A glob B" is equivalent to 2789 ** "glob(B,A). We want to use the A in "A glob B" to test 2790 ** for function overloading. But we use the B term in "glob(B,A)". 2791 */ 2792 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2793 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2794 }else if( nFarg>0 ){ 2795 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2796 } 2797 #endif 2798 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 2799 if( !pColl ) pColl = db->pDfltColl; 2800 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2801 } 2802 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2803 (char*)pDef, P4_FUNCDEF); 2804 sqlite3VdbeChangeP5(v, (u8)nFarg); 2805 if( nFarg && constMask==0 ){ 2806 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2807 } 2808 break; 2809 } 2810 #ifndef SQLITE_OMIT_SUBQUERY 2811 case TK_EXISTS: 2812 case TK_SELECT: { 2813 testcase( op==TK_EXISTS ); 2814 testcase( op==TK_SELECT ); 2815 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2816 break; 2817 } 2818 case TK_IN: { 2819 int destIfFalse = sqlite3VdbeMakeLabel(v); 2820 int destIfNull = sqlite3VdbeMakeLabel(v); 2821 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2822 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2823 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2824 sqlite3VdbeResolveLabel(v, destIfFalse); 2825 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2826 sqlite3VdbeResolveLabel(v, destIfNull); 2827 break; 2828 } 2829 #endif /* SQLITE_OMIT_SUBQUERY */ 2830 2831 2832 /* 2833 ** x BETWEEN y AND z 2834 ** 2835 ** This is equivalent to 2836 ** 2837 ** x>=y AND x<=z 2838 ** 2839 ** X is stored in pExpr->pLeft. 2840 ** Y is stored in pExpr->pList->a[0].pExpr. 2841 ** Z is stored in pExpr->pList->a[1].pExpr. 2842 */ 2843 case TK_BETWEEN: { 2844 Expr *pLeft = pExpr->pLeft; 2845 struct ExprList_item *pLItem = pExpr->x.pList->a; 2846 Expr *pRight = pLItem->pExpr; 2847 2848 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 2849 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2850 testcase( regFree1==0 ); 2851 testcase( regFree2==0 ); 2852 r3 = sqlite3GetTempReg(pParse); 2853 r4 = sqlite3GetTempReg(pParse); 2854 codeCompare(pParse, pLeft, pRight, OP_Ge, 2855 r1, r2, r3, SQLITE_STOREP2); 2856 pLItem++; 2857 pRight = pLItem->pExpr; 2858 sqlite3ReleaseTempReg(pParse, regFree2); 2859 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2860 testcase( regFree2==0 ); 2861 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2862 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2863 sqlite3ReleaseTempReg(pParse, r3); 2864 sqlite3ReleaseTempReg(pParse, r4); 2865 break; 2866 } 2867 case TK_COLLATE: 2868 case TK_UPLUS: { 2869 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2870 break; 2871 } 2872 2873 case TK_TRIGGER: { 2874 /* If the opcode is TK_TRIGGER, then the expression is a reference 2875 ** to a column in the new.* or old.* pseudo-tables available to 2876 ** trigger programs. In this case Expr.iTable is set to 1 for the 2877 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 2878 ** is set to the column of the pseudo-table to read, or to -1 to 2879 ** read the rowid field. 2880 ** 2881 ** The expression is implemented using an OP_Param opcode. The p1 2882 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 2883 ** to reference another column of the old.* pseudo-table, where 2884 ** i is the index of the column. For a new.rowid reference, p1 is 2885 ** set to (n+1), where n is the number of columns in each pseudo-table. 2886 ** For a reference to any other column in the new.* pseudo-table, p1 2887 ** is set to (n+2+i), where n and i are as defined previously. For 2888 ** example, if the table on which triggers are being fired is 2889 ** declared as: 2890 ** 2891 ** CREATE TABLE t1(a, b); 2892 ** 2893 ** Then p1 is interpreted as follows: 2894 ** 2895 ** p1==0 -> old.rowid p1==3 -> new.rowid 2896 ** p1==1 -> old.a p1==4 -> new.a 2897 ** p1==2 -> old.b p1==5 -> new.b 2898 */ 2899 Table *pTab = pExpr->pTab; 2900 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 2901 2902 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 2903 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 2904 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 2905 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 2906 2907 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 2908 VdbeComment((v, "%s.%s -> $%d", 2909 (pExpr->iTable ? "new" : "old"), 2910 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 2911 target 2912 )); 2913 2914 #ifndef SQLITE_OMIT_FLOATING_POINT 2915 /* If the column has REAL affinity, it may currently be stored as an 2916 ** integer. Use OP_RealAffinity to make sure it is really real. */ 2917 if( pExpr->iColumn>=0 2918 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 2919 ){ 2920 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 2921 } 2922 #endif 2923 break; 2924 } 2925 2926 2927 /* 2928 ** Form A: 2929 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2930 ** 2931 ** Form B: 2932 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2933 ** 2934 ** Form A is can be transformed into the equivalent form B as follows: 2935 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2936 ** WHEN x=eN THEN rN ELSE y END 2937 ** 2938 ** X (if it exists) is in pExpr->pLeft. 2939 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 2940 ** odd. The Y is also optional. If the number of elements in x.pList 2941 ** is even, then Y is omitted and the "otherwise" result is NULL. 2942 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2943 ** 2944 ** The result of the expression is the Ri for the first matching Ei, 2945 ** or if there is no matching Ei, the ELSE term Y, or if there is 2946 ** no ELSE term, NULL. 2947 */ 2948 default: assert( op==TK_CASE ); { 2949 int endLabel; /* GOTO label for end of CASE stmt */ 2950 int nextCase; /* GOTO label for next WHEN clause */ 2951 int nExpr; /* 2x number of WHEN terms */ 2952 int i; /* Loop counter */ 2953 ExprList *pEList; /* List of WHEN terms */ 2954 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2955 Expr opCompare; /* The X==Ei expression */ 2956 Expr *pX; /* The X expression */ 2957 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 2958 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 2959 2960 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 2961 assert(pExpr->x.pList->nExpr > 0); 2962 pEList = pExpr->x.pList; 2963 aListelem = pEList->a; 2964 nExpr = pEList->nExpr; 2965 endLabel = sqlite3VdbeMakeLabel(v); 2966 if( (pX = pExpr->pLeft)!=0 ){ 2967 tempX = *pX; 2968 testcase( pX->op==TK_COLUMN ); 2969 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); 2970 testcase( regFree1==0 ); 2971 opCompare.op = TK_EQ; 2972 opCompare.pLeft = &tempX; 2973 pTest = &opCompare; 2974 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 2975 ** The value in regFree1 might get SCopy-ed into the file result. 2976 ** So make sure that the regFree1 register is not reused for other 2977 ** purposes and possibly overwritten. */ 2978 regFree1 = 0; 2979 } 2980 for(i=0; i<nExpr-1; i=i+2){ 2981 sqlite3ExprCachePush(pParse); 2982 if( pX ){ 2983 assert( pTest!=0 ); 2984 opCompare.pRight = aListelem[i].pExpr; 2985 }else{ 2986 pTest = aListelem[i].pExpr; 2987 } 2988 nextCase = sqlite3VdbeMakeLabel(v); 2989 testcase( pTest->op==TK_COLUMN ); 2990 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2991 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2992 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2993 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2994 sqlite3ExprCachePop(pParse, 1); 2995 sqlite3VdbeResolveLabel(v, nextCase); 2996 } 2997 if( (nExpr&1)!=0 ){ 2998 sqlite3ExprCachePush(pParse); 2999 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3000 sqlite3ExprCachePop(pParse, 1); 3001 }else{ 3002 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3003 } 3004 assert( db->mallocFailed || pParse->nErr>0 3005 || pParse->iCacheLevel==iCacheLevel ); 3006 sqlite3VdbeResolveLabel(v, endLabel); 3007 break; 3008 } 3009 #ifndef SQLITE_OMIT_TRIGGER 3010 case TK_RAISE: { 3011 assert( pExpr->affinity==OE_Rollback 3012 || pExpr->affinity==OE_Abort 3013 || pExpr->affinity==OE_Fail 3014 || pExpr->affinity==OE_Ignore 3015 ); 3016 if( !pParse->pTriggerTab ){ 3017 sqlite3ErrorMsg(pParse, 3018 "RAISE() may only be used within a trigger-program"); 3019 return 0; 3020 } 3021 if( pExpr->affinity==OE_Abort ){ 3022 sqlite3MayAbort(pParse); 3023 } 3024 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3025 if( pExpr->affinity==OE_Ignore ){ 3026 sqlite3VdbeAddOp4( 3027 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 3028 }else{ 3029 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 3030 pExpr->affinity, pExpr->u.zToken, 0, 0); 3031 } 3032 3033 break; 3034 } 3035 #endif 3036 } 3037 sqlite3ReleaseTempReg(pParse, regFree1); 3038 sqlite3ReleaseTempReg(pParse, regFree2); 3039 return inReg; 3040 } 3041 3042 /* 3043 ** Factor out the code of the given expression to initialization time. 3044 */ 3045 void sqlite3ExprCodeAtInit( 3046 Parse *pParse, /* Parsing context */ 3047 Expr *pExpr, /* The expression to code when the VDBE initializes */ 3048 int regDest, /* Store the value in this register */ 3049 u8 reusable /* True if this expression is reusable */ 3050 ){ 3051 ExprList *p; 3052 assert( ConstFactorOk(pParse) ); 3053 p = pParse->pConstExpr; 3054 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 3055 p = sqlite3ExprListAppend(pParse, p, pExpr); 3056 if( p ){ 3057 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 3058 pItem->u.iConstExprReg = regDest; 3059 pItem->reusable = reusable; 3060 } 3061 pParse->pConstExpr = p; 3062 } 3063 3064 /* 3065 ** Generate code to evaluate an expression and store the results 3066 ** into a register. Return the register number where the results 3067 ** are stored. 3068 ** 3069 ** If the register is a temporary register that can be deallocated, 3070 ** then write its number into *pReg. If the result register is not 3071 ** a temporary, then set *pReg to zero. 3072 ** 3073 ** If pExpr is a constant, then this routine might generate this 3074 ** code to fill the register in the initialization section of the 3075 ** VDBE program, in order to factor it out of the evaluation loop. 3076 */ 3077 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 3078 int r2; 3079 pExpr = sqlite3ExprSkipCollate(pExpr); 3080 if( ConstFactorOk(pParse) 3081 && pExpr->op!=TK_REGISTER 3082 && sqlite3ExprIsConstantNotJoin(pExpr) 3083 ){ 3084 ExprList *p = pParse->pConstExpr; 3085 int i; 3086 *pReg = 0; 3087 if( p ){ 3088 struct ExprList_item *pItem; 3089 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 3090 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 3091 return pItem->u.iConstExprReg; 3092 } 3093 } 3094 } 3095 r2 = ++pParse->nMem; 3096 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); 3097 }else{ 3098 int r1 = sqlite3GetTempReg(pParse); 3099 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3100 if( r2==r1 ){ 3101 *pReg = r1; 3102 }else{ 3103 sqlite3ReleaseTempReg(pParse, r1); 3104 *pReg = 0; 3105 } 3106 } 3107 return r2; 3108 } 3109 3110 /* 3111 ** Generate code that will evaluate expression pExpr and store the 3112 ** results in register target. The results are guaranteed to appear 3113 ** in register target. 3114 */ 3115 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 3116 int inReg; 3117 3118 assert( target>0 && target<=pParse->nMem ); 3119 if( pExpr && pExpr->op==TK_REGISTER ){ 3120 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 3121 }else{ 3122 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 3123 assert( pParse->pVdbe || pParse->db->mallocFailed ); 3124 if( inReg!=target && pParse->pVdbe ){ 3125 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 3126 } 3127 } 3128 return target; 3129 } 3130 3131 /* 3132 ** Generate code that evalutes the given expression and puts the result 3133 ** in register target. 3134 ** 3135 ** Also make a copy of the expression results into another "cache" register 3136 ** and modify the expression so that the next time it is evaluated, 3137 ** the result is a copy of the cache register. 3138 ** 3139 ** This routine is used for expressions that are used multiple 3140 ** times. They are evaluated once and the results of the expression 3141 ** are reused. 3142 */ 3143 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3144 Vdbe *v = pParse->pVdbe; 3145 int inReg; 3146 inReg = sqlite3ExprCode(pParse, pExpr, target); 3147 assert( target>0 ); 3148 /* The only place, other than this routine, where expressions can be 3149 ** converted to TK_REGISTER is internal subexpressions in BETWEEN and 3150 ** CASE operators. Neither ever calls this routine. And this routine 3151 ** is never called twice on the same expression. Hence it is impossible 3152 ** for the input to this routine to already be a register. Nevertheless, 3153 ** it seems prudent to keep the ALWAYS() in case the conditions above 3154 ** change with future modifications or enhancements. */ 3155 if( ALWAYS(pExpr->op!=TK_REGISTER) ){ 3156 int iMem; 3157 iMem = ++pParse->nMem; 3158 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 3159 exprToRegister(pExpr, iMem); 3160 } 3161 return inReg; 3162 } 3163 3164 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3165 /* 3166 ** Generate a human-readable explanation of an expression tree. 3167 */ 3168 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){ 3169 int op; /* The opcode being coded */ 3170 const char *zBinOp = 0; /* Binary operator */ 3171 const char *zUniOp = 0; /* Unary operator */ 3172 if( pExpr==0 ){ 3173 op = TK_NULL; 3174 }else{ 3175 op = pExpr->op; 3176 } 3177 switch( op ){ 3178 case TK_AGG_COLUMN: { 3179 sqlite3ExplainPrintf(pOut, "AGG{%d:%d}", 3180 pExpr->iTable, pExpr->iColumn); 3181 break; 3182 } 3183 case TK_COLUMN: { 3184 if( pExpr->iTable<0 ){ 3185 /* This only happens when coding check constraints */ 3186 sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn); 3187 }else{ 3188 sqlite3ExplainPrintf(pOut, "{%d:%d}", 3189 pExpr->iTable, pExpr->iColumn); 3190 } 3191 break; 3192 } 3193 case TK_INTEGER: { 3194 if( pExpr->flags & EP_IntValue ){ 3195 sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue); 3196 }else{ 3197 sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken); 3198 } 3199 break; 3200 } 3201 #ifndef SQLITE_OMIT_FLOATING_POINT 3202 case TK_FLOAT: { 3203 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3204 break; 3205 } 3206 #endif 3207 case TK_STRING: { 3208 sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken); 3209 break; 3210 } 3211 case TK_NULL: { 3212 sqlite3ExplainPrintf(pOut,"NULL"); 3213 break; 3214 } 3215 #ifndef SQLITE_OMIT_BLOB_LITERAL 3216 case TK_BLOB: { 3217 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3218 break; 3219 } 3220 #endif 3221 case TK_VARIABLE: { 3222 sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)", 3223 pExpr->u.zToken, pExpr->iColumn); 3224 break; 3225 } 3226 case TK_REGISTER: { 3227 sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable); 3228 break; 3229 } 3230 case TK_AS: { 3231 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3232 break; 3233 } 3234 #ifndef SQLITE_OMIT_CAST 3235 case TK_CAST: { 3236 /* Expressions of the form: CAST(pLeft AS token) */ 3237 const char *zAff = "unk"; 3238 switch( sqlite3AffinityType(pExpr->u.zToken, 0) ){ 3239 case SQLITE_AFF_TEXT: zAff = "TEXT"; break; 3240 case SQLITE_AFF_NONE: zAff = "NONE"; break; 3241 case SQLITE_AFF_NUMERIC: zAff = "NUMERIC"; break; 3242 case SQLITE_AFF_INTEGER: zAff = "INTEGER"; break; 3243 case SQLITE_AFF_REAL: zAff = "REAL"; break; 3244 } 3245 sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff); 3246 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3247 sqlite3ExplainPrintf(pOut, ")"); 3248 break; 3249 } 3250 #endif /* SQLITE_OMIT_CAST */ 3251 case TK_LT: zBinOp = "LT"; break; 3252 case TK_LE: zBinOp = "LE"; break; 3253 case TK_GT: zBinOp = "GT"; break; 3254 case TK_GE: zBinOp = "GE"; break; 3255 case TK_NE: zBinOp = "NE"; break; 3256 case TK_EQ: zBinOp = "EQ"; break; 3257 case TK_IS: zBinOp = "IS"; break; 3258 case TK_ISNOT: zBinOp = "ISNOT"; break; 3259 case TK_AND: zBinOp = "AND"; break; 3260 case TK_OR: zBinOp = "OR"; break; 3261 case TK_PLUS: zBinOp = "ADD"; break; 3262 case TK_STAR: zBinOp = "MUL"; break; 3263 case TK_MINUS: zBinOp = "SUB"; break; 3264 case TK_REM: zBinOp = "REM"; break; 3265 case TK_BITAND: zBinOp = "BITAND"; break; 3266 case TK_BITOR: zBinOp = "BITOR"; break; 3267 case TK_SLASH: zBinOp = "DIV"; break; 3268 case TK_LSHIFT: zBinOp = "LSHIFT"; break; 3269 case TK_RSHIFT: zBinOp = "RSHIFT"; break; 3270 case TK_CONCAT: zBinOp = "CONCAT"; break; 3271 3272 case TK_UMINUS: zUniOp = "UMINUS"; break; 3273 case TK_UPLUS: zUniOp = "UPLUS"; break; 3274 case TK_BITNOT: zUniOp = "BITNOT"; break; 3275 case TK_NOT: zUniOp = "NOT"; break; 3276 case TK_ISNULL: zUniOp = "ISNULL"; break; 3277 case TK_NOTNULL: zUniOp = "NOTNULL"; break; 3278 3279 case TK_COLLATE: { 3280 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3281 sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken); 3282 break; 3283 } 3284 3285 case TK_AGG_FUNCTION: 3286 case TK_FUNCTION: { 3287 ExprList *pFarg; /* List of function arguments */ 3288 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3289 pFarg = 0; 3290 }else{ 3291 pFarg = pExpr->x.pList; 3292 } 3293 if( op==TK_AGG_FUNCTION ){ 3294 sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(", 3295 pExpr->op2, pExpr->u.zToken); 3296 }else{ 3297 sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken); 3298 } 3299 if( pFarg ){ 3300 sqlite3ExplainExprList(pOut, pFarg); 3301 } 3302 sqlite3ExplainPrintf(pOut, ")"); 3303 break; 3304 } 3305 #ifndef SQLITE_OMIT_SUBQUERY 3306 case TK_EXISTS: { 3307 sqlite3ExplainPrintf(pOut, "EXISTS("); 3308 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3309 sqlite3ExplainPrintf(pOut,")"); 3310 break; 3311 } 3312 case TK_SELECT: { 3313 sqlite3ExplainPrintf(pOut, "("); 3314 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3315 sqlite3ExplainPrintf(pOut, ")"); 3316 break; 3317 } 3318 case TK_IN: { 3319 sqlite3ExplainPrintf(pOut, "IN("); 3320 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3321 sqlite3ExplainPrintf(pOut, ","); 3322 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3323 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3324 }else{ 3325 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3326 } 3327 sqlite3ExplainPrintf(pOut, ")"); 3328 break; 3329 } 3330 #endif /* SQLITE_OMIT_SUBQUERY */ 3331 3332 /* 3333 ** x BETWEEN y AND z 3334 ** 3335 ** This is equivalent to 3336 ** 3337 ** x>=y AND x<=z 3338 ** 3339 ** X is stored in pExpr->pLeft. 3340 ** Y is stored in pExpr->pList->a[0].pExpr. 3341 ** Z is stored in pExpr->pList->a[1].pExpr. 3342 */ 3343 case TK_BETWEEN: { 3344 Expr *pX = pExpr->pLeft; 3345 Expr *pY = pExpr->x.pList->a[0].pExpr; 3346 Expr *pZ = pExpr->x.pList->a[1].pExpr; 3347 sqlite3ExplainPrintf(pOut, "BETWEEN("); 3348 sqlite3ExplainExpr(pOut, pX); 3349 sqlite3ExplainPrintf(pOut, ","); 3350 sqlite3ExplainExpr(pOut, pY); 3351 sqlite3ExplainPrintf(pOut, ","); 3352 sqlite3ExplainExpr(pOut, pZ); 3353 sqlite3ExplainPrintf(pOut, ")"); 3354 break; 3355 } 3356 case TK_TRIGGER: { 3357 /* If the opcode is TK_TRIGGER, then the expression is a reference 3358 ** to a column in the new.* or old.* pseudo-tables available to 3359 ** trigger programs. In this case Expr.iTable is set to 1 for the 3360 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3361 ** is set to the column of the pseudo-table to read, or to -1 to 3362 ** read the rowid field. 3363 */ 3364 sqlite3ExplainPrintf(pOut, "%s(%d)", 3365 pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); 3366 break; 3367 } 3368 case TK_CASE: { 3369 sqlite3ExplainPrintf(pOut, "CASE("); 3370 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3371 sqlite3ExplainPrintf(pOut, ","); 3372 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3373 break; 3374 } 3375 #ifndef SQLITE_OMIT_TRIGGER 3376 case TK_RAISE: { 3377 const char *zType = "unk"; 3378 switch( pExpr->affinity ){ 3379 case OE_Rollback: zType = "rollback"; break; 3380 case OE_Abort: zType = "abort"; break; 3381 case OE_Fail: zType = "fail"; break; 3382 case OE_Ignore: zType = "ignore"; break; 3383 } 3384 sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken); 3385 break; 3386 } 3387 #endif 3388 } 3389 if( zBinOp ){ 3390 sqlite3ExplainPrintf(pOut,"%s(", zBinOp); 3391 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3392 sqlite3ExplainPrintf(pOut,","); 3393 sqlite3ExplainExpr(pOut, pExpr->pRight); 3394 sqlite3ExplainPrintf(pOut,")"); 3395 }else if( zUniOp ){ 3396 sqlite3ExplainPrintf(pOut,"%s(", zUniOp); 3397 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3398 sqlite3ExplainPrintf(pOut,")"); 3399 } 3400 } 3401 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 3402 3403 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3404 /* 3405 ** Generate a human-readable explanation of an expression list. 3406 */ 3407 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){ 3408 int i; 3409 if( pList==0 || pList->nExpr==0 ){ 3410 sqlite3ExplainPrintf(pOut, "(empty-list)"); 3411 return; 3412 }else if( pList->nExpr==1 ){ 3413 sqlite3ExplainExpr(pOut, pList->a[0].pExpr); 3414 }else{ 3415 sqlite3ExplainPush(pOut); 3416 for(i=0; i<pList->nExpr; i++){ 3417 sqlite3ExplainPrintf(pOut, "item[%d] = ", i); 3418 sqlite3ExplainPush(pOut); 3419 sqlite3ExplainExpr(pOut, pList->a[i].pExpr); 3420 sqlite3ExplainPop(pOut); 3421 if( pList->a[i].zName ){ 3422 sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName); 3423 } 3424 if( pList->a[i].bSpanIsTab ){ 3425 sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan); 3426 } 3427 if( i<pList->nExpr-1 ){ 3428 sqlite3ExplainNL(pOut); 3429 } 3430 } 3431 sqlite3ExplainPop(pOut); 3432 } 3433 } 3434 #endif /* SQLITE_DEBUG */ 3435 3436 /* 3437 ** Generate code that pushes the value of every element of the given 3438 ** expression list into a sequence of registers beginning at target. 3439 ** 3440 ** Return the number of elements evaluated. 3441 ** 3442 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 3443 ** filled using OP_SCopy. OP_Copy must be used instead. 3444 ** 3445 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 3446 ** factored out into initialization code. 3447 */ 3448 int sqlite3ExprCodeExprList( 3449 Parse *pParse, /* Parsing context */ 3450 ExprList *pList, /* The expression list to be coded */ 3451 int target, /* Where to write results */ 3452 u8 flags /* SQLITE_ECEL_* flags */ 3453 ){ 3454 struct ExprList_item *pItem; 3455 int i, n; 3456 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 3457 assert( pList!=0 ); 3458 assert( target>0 ); 3459 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3460 n = pList->nExpr; 3461 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 3462 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3463 Expr *pExpr = pItem->pExpr; 3464 if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 3465 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); 3466 }else{ 3467 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3468 if( inReg!=target+i ){ 3469 VdbeOp *pOp; 3470 Vdbe *v = pParse->pVdbe; 3471 if( copyOp==OP_Copy 3472 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 3473 && pOp->p1+pOp->p3+1==inReg 3474 && pOp->p2+pOp->p3+1==target+i 3475 ){ 3476 pOp->p3++; 3477 }else{ 3478 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 3479 } 3480 } 3481 } 3482 } 3483 return n; 3484 } 3485 3486 /* 3487 ** Generate code for a BETWEEN operator. 3488 ** 3489 ** x BETWEEN y AND z 3490 ** 3491 ** The above is equivalent to 3492 ** 3493 ** x>=y AND x<=z 3494 ** 3495 ** Code it as such, taking care to do the common subexpression 3496 ** elementation of x. 3497 */ 3498 static void exprCodeBetween( 3499 Parse *pParse, /* Parsing and code generating context */ 3500 Expr *pExpr, /* The BETWEEN expression */ 3501 int dest, /* Jump here if the jump is taken */ 3502 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3503 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3504 ){ 3505 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3506 Expr compLeft; /* The x>=y term */ 3507 Expr compRight; /* The x<=z term */ 3508 Expr exprX; /* The x subexpression */ 3509 int regFree1 = 0; /* Temporary use register */ 3510 3511 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3512 exprX = *pExpr->pLeft; 3513 exprAnd.op = TK_AND; 3514 exprAnd.pLeft = &compLeft; 3515 exprAnd.pRight = &compRight; 3516 compLeft.op = TK_GE; 3517 compLeft.pLeft = &exprX; 3518 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3519 compRight.op = TK_LE; 3520 compRight.pLeft = &exprX; 3521 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3522 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); 3523 if( jumpIfTrue ){ 3524 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3525 }else{ 3526 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3527 } 3528 sqlite3ReleaseTempReg(pParse, regFree1); 3529 3530 /* Ensure adequate test coverage */ 3531 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3532 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3533 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3534 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3535 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3536 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3537 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3538 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3539 } 3540 3541 /* 3542 ** Generate code for a boolean expression such that a jump is made 3543 ** to the label "dest" if the expression is true but execution 3544 ** continues straight thru if the expression is false. 3545 ** 3546 ** If the expression evaluates to NULL (neither true nor false), then 3547 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3548 ** 3549 ** This code depends on the fact that certain token values (ex: TK_EQ) 3550 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3551 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3552 ** the make process cause these values to align. Assert()s in the code 3553 ** below verify that the numbers are aligned correctly. 3554 */ 3555 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3556 Vdbe *v = pParse->pVdbe; 3557 int op = 0; 3558 int regFree1 = 0; 3559 int regFree2 = 0; 3560 int r1, r2; 3561 3562 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3563 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3564 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3565 op = pExpr->op; 3566 switch( op ){ 3567 case TK_AND: { 3568 int d2 = sqlite3VdbeMakeLabel(v); 3569 testcase( jumpIfNull==0 ); 3570 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3571 sqlite3ExprCachePush(pParse); 3572 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3573 sqlite3VdbeResolveLabel(v, d2); 3574 sqlite3ExprCachePop(pParse, 1); 3575 break; 3576 } 3577 case TK_OR: { 3578 testcase( jumpIfNull==0 ); 3579 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3580 sqlite3ExprCachePush(pParse); 3581 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3582 sqlite3ExprCachePop(pParse, 1); 3583 break; 3584 } 3585 case TK_NOT: { 3586 testcase( jumpIfNull==0 ); 3587 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3588 break; 3589 } 3590 case TK_LT: 3591 case TK_LE: 3592 case TK_GT: 3593 case TK_GE: 3594 case TK_NE: 3595 case TK_EQ: { 3596 assert( TK_LT==OP_Lt ); 3597 assert( TK_LE==OP_Le ); 3598 assert( TK_GT==OP_Gt ); 3599 assert( TK_GE==OP_Ge ); 3600 assert( TK_EQ==OP_Eq ); 3601 assert( TK_NE==OP_Ne ); 3602 testcase( op==TK_LT ); 3603 testcase( op==TK_LE ); 3604 testcase( op==TK_GT ); 3605 testcase( op==TK_GE ); 3606 testcase( op==TK_EQ ); 3607 testcase( op==TK_NE ); 3608 testcase( jumpIfNull==0 ); 3609 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3610 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3611 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3612 r1, r2, dest, jumpIfNull); 3613 testcase( regFree1==0 ); 3614 testcase( regFree2==0 ); 3615 break; 3616 } 3617 case TK_IS: 3618 case TK_ISNOT: { 3619 testcase( op==TK_IS ); 3620 testcase( op==TK_ISNOT ); 3621 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3622 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3623 op = (op==TK_IS) ? TK_EQ : TK_NE; 3624 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3625 r1, r2, dest, SQLITE_NULLEQ); 3626 testcase( regFree1==0 ); 3627 testcase( regFree2==0 ); 3628 break; 3629 } 3630 case TK_ISNULL: 3631 case TK_NOTNULL: { 3632 assert( TK_ISNULL==OP_IsNull ); 3633 assert( TK_NOTNULL==OP_NotNull ); 3634 testcase( op==TK_ISNULL ); 3635 testcase( op==TK_NOTNULL ); 3636 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3637 sqlite3VdbeAddOp2(v, op, r1, dest); 3638 testcase( regFree1==0 ); 3639 break; 3640 } 3641 case TK_BETWEEN: { 3642 testcase( jumpIfNull==0 ); 3643 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3644 break; 3645 } 3646 #ifndef SQLITE_OMIT_SUBQUERY 3647 case TK_IN: { 3648 int destIfFalse = sqlite3VdbeMakeLabel(v); 3649 int destIfNull = jumpIfNull ? dest : destIfFalse; 3650 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3651 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3652 sqlite3VdbeResolveLabel(v, destIfFalse); 3653 break; 3654 } 3655 #endif 3656 default: { 3657 if( exprAlwaysTrue(pExpr) ){ 3658 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3659 }else if( exprAlwaysFalse(pExpr) ){ 3660 /* No-op */ 3661 }else{ 3662 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3663 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3664 testcase( regFree1==0 ); 3665 testcase( jumpIfNull==0 ); 3666 } 3667 break; 3668 } 3669 } 3670 sqlite3ReleaseTempReg(pParse, regFree1); 3671 sqlite3ReleaseTempReg(pParse, regFree2); 3672 } 3673 3674 /* 3675 ** Generate code for a boolean expression such that a jump is made 3676 ** to the label "dest" if the expression is false but execution 3677 ** continues straight thru if the expression is true. 3678 ** 3679 ** If the expression evaluates to NULL (neither true nor false) then 3680 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3681 ** is 0. 3682 */ 3683 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3684 Vdbe *v = pParse->pVdbe; 3685 int op = 0; 3686 int regFree1 = 0; 3687 int regFree2 = 0; 3688 int r1, r2; 3689 3690 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3691 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3692 if( pExpr==0 ) return; 3693 3694 /* The value of pExpr->op and op are related as follows: 3695 ** 3696 ** pExpr->op op 3697 ** --------- ---------- 3698 ** TK_ISNULL OP_NotNull 3699 ** TK_NOTNULL OP_IsNull 3700 ** TK_NE OP_Eq 3701 ** TK_EQ OP_Ne 3702 ** TK_GT OP_Le 3703 ** TK_LE OP_Gt 3704 ** TK_GE OP_Lt 3705 ** TK_LT OP_Ge 3706 ** 3707 ** For other values of pExpr->op, op is undefined and unused. 3708 ** The value of TK_ and OP_ constants are arranged such that we 3709 ** can compute the mapping above using the following expression. 3710 ** Assert()s verify that the computation is correct. 3711 */ 3712 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3713 3714 /* Verify correct alignment of TK_ and OP_ constants 3715 */ 3716 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3717 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3718 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3719 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3720 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3721 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3722 assert( pExpr->op!=TK_GT || op==OP_Le ); 3723 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3724 3725 switch( pExpr->op ){ 3726 case TK_AND: { 3727 testcase( jumpIfNull==0 ); 3728 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3729 sqlite3ExprCachePush(pParse); 3730 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3731 sqlite3ExprCachePop(pParse, 1); 3732 break; 3733 } 3734 case TK_OR: { 3735 int d2 = sqlite3VdbeMakeLabel(v); 3736 testcase( jumpIfNull==0 ); 3737 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3738 sqlite3ExprCachePush(pParse); 3739 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3740 sqlite3VdbeResolveLabel(v, d2); 3741 sqlite3ExprCachePop(pParse, 1); 3742 break; 3743 } 3744 case TK_NOT: { 3745 testcase( jumpIfNull==0 ); 3746 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3747 break; 3748 } 3749 case TK_LT: 3750 case TK_LE: 3751 case TK_GT: 3752 case TK_GE: 3753 case TK_NE: 3754 case TK_EQ: { 3755 testcase( op==TK_LT ); 3756 testcase( op==TK_LE ); 3757 testcase( op==TK_GT ); 3758 testcase( op==TK_GE ); 3759 testcase( op==TK_EQ ); 3760 testcase( op==TK_NE ); 3761 testcase( jumpIfNull==0 ); 3762 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3763 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3764 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3765 r1, r2, dest, jumpIfNull); 3766 testcase( regFree1==0 ); 3767 testcase( regFree2==0 ); 3768 break; 3769 } 3770 case TK_IS: 3771 case TK_ISNOT: { 3772 testcase( pExpr->op==TK_IS ); 3773 testcase( pExpr->op==TK_ISNOT ); 3774 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3775 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3776 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3777 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3778 r1, r2, dest, SQLITE_NULLEQ); 3779 testcase( regFree1==0 ); 3780 testcase( regFree2==0 ); 3781 break; 3782 } 3783 case TK_ISNULL: 3784 case TK_NOTNULL: { 3785 testcase( op==TK_ISNULL ); 3786 testcase( op==TK_NOTNULL ); 3787 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3788 sqlite3VdbeAddOp2(v, op, r1, dest); 3789 testcase( regFree1==0 ); 3790 break; 3791 } 3792 case TK_BETWEEN: { 3793 testcase( jumpIfNull==0 ); 3794 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3795 break; 3796 } 3797 #ifndef SQLITE_OMIT_SUBQUERY 3798 case TK_IN: { 3799 if( jumpIfNull ){ 3800 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3801 }else{ 3802 int destIfNull = sqlite3VdbeMakeLabel(v); 3803 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3804 sqlite3VdbeResolveLabel(v, destIfNull); 3805 } 3806 break; 3807 } 3808 #endif 3809 default: { 3810 if( exprAlwaysFalse(pExpr) ){ 3811 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3812 }else if( exprAlwaysTrue(pExpr) ){ 3813 /* no-op */ 3814 }else{ 3815 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3816 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3817 testcase( regFree1==0 ); 3818 testcase( jumpIfNull==0 ); 3819 } 3820 break; 3821 } 3822 } 3823 sqlite3ReleaseTempReg(pParse, regFree1); 3824 sqlite3ReleaseTempReg(pParse, regFree2); 3825 } 3826 3827 /* 3828 ** Do a deep comparison of two expression trees. Return 0 if the two 3829 ** expressions are completely identical. Return 1 if they differ only 3830 ** by a COLLATE operator at the top level. Return 2 if there are differences 3831 ** other than the top-level COLLATE operator. 3832 ** 3833 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3834 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3835 ** 3836 ** The pA side might be using TK_REGISTER. If that is the case and pB is 3837 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 3838 ** 3839 ** Sometimes this routine will return 2 even if the two expressions 3840 ** really are equivalent. If we cannot prove that the expressions are 3841 ** identical, we return 2 just to be safe. So if this routine 3842 ** returns 2, then you do not really know for certain if the two 3843 ** expressions are the same. But if you get a 0 or 1 return, then you 3844 ** can be sure the expressions are the same. In the places where 3845 ** this routine is used, it does not hurt to get an extra 2 - that 3846 ** just might result in some slightly slower code. But returning 3847 ** an incorrect 0 or 1 could lead to a malfunction. 3848 */ 3849 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 3850 u32 combinedFlags; 3851 if( pA==0 || pB==0 ){ 3852 return pB==pA ? 0 : 2; 3853 } 3854 combinedFlags = pA->flags | pB->flags; 3855 if( combinedFlags & EP_IntValue ){ 3856 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 3857 return 0; 3858 } 3859 return 2; 3860 } 3861 if( pA->op!=pB->op ){ 3862 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 3863 return 1; 3864 } 3865 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 3866 return 1; 3867 } 3868 return 2; 3869 } 3870 if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){ 3871 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3872 return pA->op==TK_COLLATE ? 1 : 2; 3873 } 3874 } 3875 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3876 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 3877 if( combinedFlags & EP_xIsSelect ) return 2; 3878 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 3879 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 3880 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 3881 if( ALWAYS((combinedFlags & EP_Reduced)==0) ){ 3882 if( pA->iColumn!=pB->iColumn ) return 2; 3883 if( pA->iTable!=pB->iTable 3884 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 3885 } 3886 } 3887 return 0; 3888 } 3889 3890 /* 3891 ** Compare two ExprList objects. Return 0 if they are identical and 3892 ** non-zero if they differ in any way. 3893 ** 3894 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3895 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3896 ** 3897 ** This routine might return non-zero for equivalent ExprLists. The 3898 ** only consequence will be disabled optimizations. But this routine 3899 ** must never return 0 if the two ExprList objects are different, or 3900 ** a malfunction will result. 3901 ** 3902 ** Two NULL pointers are considered to be the same. But a NULL pointer 3903 ** always differs from a non-NULL pointer. 3904 */ 3905 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 3906 int i; 3907 if( pA==0 && pB==0 ) return 0; 3908 if( pA==0 || pB==0 ) return 1; 3909 if( pA->nExpr!=pB->nExpr ) return 1; 3910 for(i=0; i<pA->nExpr; i++){ 3911 Expr *pExprA = pA->a[i].pExpr; 3912 Expr *pExprB = pB->a[i].pExpr; 3913 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3914 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 3915 } 3916 return 0; 3917 } 3918 3919 /* 3920 ** Return true if we can prove the pE2 will always be true if pE1 is 3921 ** true. Return false if we cannot complete the proof or if pE2 might 3922 ** be false. Examples: 3923 ** 3924 ** pE1: x==5 pE2: x==5 Result: true 3925 ** pE1: x>0 pE2: x==5 Result: false 3926 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 3927 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 3928 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 3929 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 3930 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 3931 ** 3932 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 3933 ** Expr.iTable<0 then assume a table number given by iTab. 3934 ** 3935 ** When in doubt, return false. Returning true might give a performance 3936 ** improvement. Returning false might cause a performance reduction, but 3937 ** it will always give the correct answer and is hence always safe. 3938 */ 3939 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 3940 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 3941 return 1; 3942 } 3943 if( pE2->op==TK_OR 3944 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 3945 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 3946 ){ 3947 return 1; 3948 } 3949 if( pE2->op==TK_NOTNULL 3950 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 3951 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) 3952 ){ 3953 return 1; 3954 } 3955 return 0; 3956 } 3957 3958 /* 3959 ** An instance of the following structure is used by the tree walker 3960 ** to count references to table columns in the arguments of an 3961 ** aggregate function, in order to implement the 3962 ** sqlite3FunctionThisSrc() routine. 3963 */ 3964 struct SrcCount { 3965 SrcList *pSrc; /* One particular FROM clause in a nested query */ 3966 int nThis; /* Number of references to columns in pSrcList */ 3967 int nOther; /* Number of references to columns in other FROM clauses */ 3968 }; 3969 3970 /* 3971 ** Count the number of references to columns. 3972 */ 3973 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 3974 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 3975 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 3976 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 3977 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 3978 ** NEVER() will need to be removed. */ 3979 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 3980 int i; 3981 struct SrcCount *p = pWalker->u.pSrcCount; 3982 SrcList *pSrc = p->pSrc; 3983 for(i=0; i<pSrc->nSrc; i++){ 3984 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 3985 } 3986 if( i<pSrc->nSrc ){ 3987 p->nThis++; 3988 }else{ 3989 p->nOther++; 3990 } 3991 } 3992 return WRC_Continue; 3993 } 3994 3995 /* 3996 ** Determine if any of the arguments to the pExpr Function reference 3997 ** pSrcList. Return true if they do. Also return true if the function 3998 ** has no arguments or has only constant arguments. Return false if pExpr 3999 ** references columns but not columns of tables found in pSrcList. 4000 */ 4001 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 4002 Walker w; 4003 struct SrcCount cnt; 4004 assert( pExpr->op==TK_AGG_FUNCTION ); 4005 memset(&w, 0, sizeof(w)); 4006 w.xExprCallback = exprSrcCount; 4007 w.u.pSrcCount = &cnt; 4008 cnt.pSrc = pSrcList; 4009 cnt.nThis = 0; 4010 cnt.nOther = 0; 4011 sqlite3WalkExprList(&w, pExpr->x.pList); 4012 return cnt.nThis>0 || cnt.nOther==0; 4013 } 4014 4015 /* 4016 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 4017 ** the new element. Return a negative number if malloc fails. 4018 */ 4019 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 4020 int i; 4021 pInfo->aCol = sqlite3ArrayAllocate( 4022 db, 4023 pInfo->aCol, 4024 sizeof(pInfo->aCol[0]), 4025 &pInfo->nColumn, 4026 &i 4027 ); 4028 return i; 4029 } 4030 4031 /* 4032 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 4033 ** the new element. Return a negative number if malloc fails. 4034 */ 4035 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 4036 int i; 4037 pInfo->aFunc = sqlite3ArrayAllocate( 4038 db, 4039 pInfo->aFunc, 4040 sizeof(pInfo->aFunc[0]), 4041 &pInfo->nFunc, 4042 &i 4043 ); 4044 return i; 4045 } 4046 4047 /* 4048 ** This is the xExprCallback for a tree walker. It is used to 4049 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 4050 ** for additional information. 4051 */ 4052 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 4053 int i; 4054 NameContext *pNC = pWalker->u.pNC; 4055 Parse *pParse = pNC->pParse; 4056 SrcList *pSrcList = pNC->pSrcList; 4057 AggInfo *pAggInfo = pNC->pAggInfo; 4058 4059 switch( pExpr->op ){ 4060 case TK_AGG_COLUMN: 4061 case TK_COLUMN: { 4062 testcase( pExpr->op==TK_AGG_COLUMN ); 4063 testcase( pExpr->op==TK_COLUMN ); 4064 /* Check to see if the column is in one of the tables in the FROM 4065 ** clause of the aggregate query */ 4066 if( ALWAYS(pSrcList!=0) ){ 4067 struct SrcList_item *pItem = pSrcList->a; 4068 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 4069 struct AggInfo_col *pCol; 4070 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4071 if( pExpr->iTable==pItem->iCursor ){ 4072 /* If we reach this point, it means that pExpr refers to a table 4073 ** that is in the FROM clause of the aggregate query. 4074 ** 4075 ** Make an entry for the column in pAggInfo->aCol[] if there 4076 ** is not an entry there already. 4077 */ 4078 int k; 4079 pCol = pAggInfo->aCol; 4080 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4081 if( pCol->iTable==pExpr->iTable && 4082 pCol->iColumn==pExpr->iColumn ){ 4083 break; 4084 } 4085 } 4086 if( (k>=pAggInfo->nColumn) 4087 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4088 ){ 4089 pCol = &pAggInfo->aCol[k]; 4090 pCol->pTab = pExpr->pTab; 4091 pCol->iTable = pExpr->iTable; 4092 pCol->iColumn = pExpr->iColumn; 4093 pCol->iMem = ++pParse->nMem; 4094 pCol->iSorterColumn = -1; 4095 pCol->pExpr = pExpr; 4096 if( pAggInfo->pGroupBy ){ 4097 int j, n; 4098 ExprList *pGB = pAggInfo->pGroupBy; 4099 struct ExprList_item *pTerm = pGB->a; 4100 n = pGB->nExpr; 4101 for(j=0; j<n; j++, pTerm++){ 4102 Expr *pE = pTerm->pExpr; 4103 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4104 pE->iColumn==pExpr->iColumn ){ 4105 pCol->iSorterColumn = j; 4106 break; 4107 } 4108 } 4109 } 4110 if( pCol->iSorterColumn<0 ){ 4111 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4112 } 4113 } 4114 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4115 ** because it was there before or because we just created it). 4116 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4117 ** pAggInfo->aCol[] entry. 4118 */ 4119 ExprSetVVAProperty(pExpr, EP_NoReduce); 4120 pExpr->pAggInfo = pAggInfo; 4121 pExpr->op = TK_AGG_COLUMN; 4122 pExpr->iAgg = (i16)k; 4123 break; 4124 } /* endif pExpr->iTable==pItem->iCursor */ 4125 } /* end loop over pSrcList */ 4126 } 4127 return WRC_Prune; 4128 } 4129 case TK_AGG_FUNCTION: { 4130 if( (pNC->ncFlags & NC_InAggFunc)==0 4131 && pWalker->walkerDepth==pExpr->op2 4132 ){ 4133 /* Check to see if pExpr is a duplicate of another aggregate 4134 ** function that is already in the pAggInfo structure 4135 */ 4136 struct AggInfo_func *pItem = pAggInfo->aFunc; 4137 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4138 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 4139 break; 4140 } 4141 } 4142 if( i>=pAggInfo->nFunc ){ 4143 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4144 */ 4145 u8 enc = ENC(pParse->db); 4146 i = addAggInfoFunc(pParse->db, pAggInfo); 4147 if( i>=0 ){ 4148 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4149 pItem = &pAggInfo->aFunc[i]; 4150 pItem->pExpr = pExpr; 4151 pItem->iMem = ++pParse->nMem; 4152 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4153 pItem->pFunc = sqlite3FindFunction(pParse->db, 4154 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 4155 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4156 if( pExpr->flags & EP_Distinct ){ 4157 pItem->iDistinct = pParse->nTab++; 4158 }else{ 4159 pItem->iDistinct = -1; 4160 } 4161 } 4162 } 4163 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4164 */ 4165 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4166 ExprSetVVAProperty(pExpr, EP_NoReduce); 4167 pExpr->iAgg = (i16)i; 4168 pExpr->pAggInfo = pAggInfo; 4169 return WRC_Prune; 4170 }else{ 4171 return WRC_Continue; 4172 } 4173 } 4174 } 4175 return WRC_Continue; 4176 } 4177 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4178 UNUSED_PARAMETER(pWalker); 4179 UNUSED_PARAMETER(pSelect); 4180 return WRC_Continue; 4181 } 4182 4183 /* 4184 ** Analyze the pExpr expression looking for aggregate functions and 4185 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4186 ** points to. Additional entries are made on the AggInfo object as 4187 ** necessary. 4188 ** 4189 ** This routine should only be called after the expression has been 4190 ** analyzed by sqlite3ResolveExprNames(). 4191 */ 4192 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4193 Walker w; 4194 memset(&w, 0, sizeof(w)); 4195 w.xExprCallback = analyzeAggregate; 4196 w.xSelectCallback = analyzeAggregatesInSelect; 4197 w.u.pNC = pNC; 4198 assert( pNC->pSrcList!=0 ); 4199 sqlite3WalkExpr(&w, pExpr); 4200 } 4201 4202 /* 4203 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4204 ** expression list. Return the number of errors. 4205 ** 4206 ** If an error is found, the analysis is cut short. 4207 */ 4208 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4209 struct ExprList_item *pItem; 4210 int i; 4211 if( pList ){ 4212 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4213 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4214 } 4215 } 4216 } 4217 4218 /* 4219 ** Allocate a single new register for use to hold some intermediate result. 4220 */ 4221 int sqlite3GetTempReg(Parse *pParse){ 4222 if( pParse->nTempReg==0 ){ 4223 return ++pParse->nMem; 4224 } 4225 return pParse->aTempReg[--pParse->nTempReg]; 4226 } 4227 4228 /* 4229 ** Deallocate a register, making available for reuse for some other 4230 ** purpose. 4231 ** 4232 ** If a register is currently being used by the column cache, then 4233 ** the dallocation is deferred until the column cache line that uses 4234 ** the register becomes stale. 4235 */ 4236 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4237 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4238 int i; 4239 struct yColCache *p; 4240 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4241 if( p->iReg==iReg ){ 4242 p->tempReg = 1; 4243 return; 4244 } 4245 } 4246 pParse->aTempReg[pParse->nTempReg++] = iReg; 4247 } 4248 } 4249 4250 /* 4251 ** Allocate or deallocate a block of nReg consecutive registers 4252 */ 4253 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4254 int i, n; 4255 i = pParse->iRangeReg; 4256 n = pParse->nRangeReg; 4257 if( nReg<=n ){ 4258 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4259 pParse->iRangeReg += nReg; 4260 pParse->nRangeReg -= nReg; 4261 }else{ 4262 i = pParse->nMem+1; 4263 pParse->nMem += nReg; 4264 } 4265 return i; 4266 } 4267 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4268 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4269 if( nReg>pParse->nRangeReg ){ 4270 pParse->nRangeReg = nReg; 4271 pParse->iRangeReg = iReg; 4272 } 4273 } 4274 4275 /* 4276 ** Mark all temporary registers as being unavailable for reuse. 4277 */ 4278 void sqlite3ClearTempRegCache(Parse *pParse){ 4279 pParse->nTempReg = 0; 4280 pParse->nRangeReg = 0; 4281 } 4282