1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 ** 15 ** $Id: expr.c,v 1.312 2007/09/01 18:24:55 danielk1977 Exp $ 16 */ 17 #include "sqliteInt.h" 18 #include <ctype.h> 19 20 /* 21 ** Return the 'affinity' of the expression pExpr if any. 22 ** 23 ** If pExpr is a column, a reference to a column via an 'AS' alias, 24 ** or a sub-select with a column as the return value, then the 25 ** affinity of that column is returned. Otherwise, 0x00 is returned, 26 ** indicating no affinity for the expression. 27 ** 28 ** i.e. the WHERE clause expresssions in the following statements all 29 ** have an affinity: 30 ** 31 ** CREATE TABLE t1(a); 32 ** SELECT * FROM t1 WHERE a; 33 ** SELECT a AS b FROM t1 WHERE b; 34 ** SELECT * FROM t1 WHERE (select a from t1); 35 */ 36 char sqlite3ExprAffinity(Expr *pExpr){ 37 int op = pExpr->op; 38 if( op==TK_SELECT ){ 39 return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); 40 } 41 #ifndef SQLITE_OMIT_CAST 42 if( op==TK_CAST ){ 43 return sqlite3AffinityType(&pExpr->token); 44 } 45 #endif 46 return pExpr->affinity; 47 } 48 49 /* 50 ** Set the collating sequence for expression pExpr to be the collating 51 ** sequence named by pToken. Return a pointer to the revised expression. 52 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 53 ** flag. An explicit collating sequence will override implicit 54 ** collating sequences. 55 */ 56 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){ 57 CollSeq *pColl; 58 if( pExpr==0 ) return 0; 59 pColl = sqlite3LocateCollSeq(pParse, (char*)pName->z, pName->n); 60 if( pColl ){ 61 pExpr->pColl = pColl; 62 pExpr->flags |= EP_ExpCollate; 63 } 64 return pExpr; 65 } 66 67 /* 68 ** Return the default collation sequence for the expression pExpr. If 69 ** there is no default collation type, return 0. 70 */ 71 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 72 CollSeq *pColl = 0; 73 if( pExpr ){ 74 int op; 75 pColl = pExpr->pColl; 76 op = pExpr->op; 77 if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){ 78 return sqlite3ExprCollSeq(pParse, pExpr->pLeft); 79 } 80 } 81 if( sqlite3CheckCollSeq(pParse, pColl) ){ 82 pColl = 0; 83 } 84 return pColl; 85 } 86 87 /* 88 ** pExpr is an operand of a comparison operator. aff2 is the 89 ** type affinity of the other operand. This routine returns the 90 ** type affinity that should be used for the comparison operator. 91 */ 92 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 93 char aff1 = sqlite3ExprAffinity(pExpr); 94 if( aff1 && aff2 ){ 95 /* Both sides of the comparison are columns. If one has numeric 96 ** affinity, use that. Otherwise use no affinity. 97 */ 98 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 99 return SQLITE_AFF_NUMERIC; 100 }else{ 101 return SQLITE_AFF_NONE; 102 } 103 }else if( !aff1 && !aff2 ){ 104 /* Neither side of the comparison is a column. Compare the 105 ** results directly. 106 */ 107 return SQLITE_AFF_NONE; 108 }else{ 109 /* One side is a column, the other is not. Use the columns affinity. */ 110 assert( aff1==0 || aff2==0 ); 111 return (aff1 + aff2); 112 } 113 } 114 115 /* 116 ** pExpr is a comparison operator. Return the type affinity that should 117 ** be applied to both operands prior to doing the comparison. 118 */ 119 static char comparisonAffinity(Expr *pExpr){ 120 char aff; 121 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 122 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 123 pExpr->op==TK_NE ); 124 assert( pExpr->pLeft ); 125 aff = sqlite3ExprAffinity(pExpr->pLeft); 126 if( pExpr->pRight ){ 127 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 128 } 129 else if( pExpr->pSelect ){ 130 aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); 131 } 132 else if( !aff ){ 133 aff = SQLITE_AFF_NONE; 134 } 135 return aff; 136 } 137 138 /* 139 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 140 ** idx_affinity is the affinity of an indexed column. Return true 141 ** if the index with affinity idx_affinity may be used to implement 142 ** the comparison in pExpr. 143 */ 144 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 145 char aff = comparisonAffinity(pExpr); 146 switch( aff ){ 147 case SQLITE_AFF_NONE: 148 return 1; 149 case SQLITE_AFF_TEXT: 150 return idx_affinity==SQLITE_AFF_TEXT; 151 default: 152 return sqlite3IsNumericAffinity(idx_affinity); 153 } 154 } 155 156 /* 157 ** Return the P1 value that should be used for a binary comparison 158 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 159 ** If jumpIfNull is true, then set the low byte of the returned 160 ** P1 value to tell the opcode to jump if either expression 161 ** evaluates to NULL. 162 */ 163 static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 164 char aff = sqlite3ExprAffinity(pExpr2); 165 return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0); 166 } 167 168 /* 169 ** Return a pointer to the collation sequence that should be used by 170 ** a binary comparison operator comparing pLeft and pRight. 171 ** 172 ** If the left hand expression has a collating sequence type, then it is 173 ** used. Otherwise the collation sequence for the right hand expression 174 ** is used, or the default (BINARY) if neither expression has a collating 175 ** type. 176 ** 177 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 178 ** it is not considered. 179 */ 180 CollSeq *sqlite3BinaryCompareCollSeq( 181 Parse *pParse, 182 Expr *pLeft, 183 Expr *pRight 184 ){ 185 CollSeq *pColl; 186 assert( pLeft ); 187 if( pLeft->flags & EP_ExpCollate ){ 188 assert( pLeft->pColl ); 189 pColl = pLeft->pColl; 190 }else if( pRight && pRight->flags & EP_ExpCollate ){ 191 assert( pRight->pColl ); 192 pColl = pRight->pColl; 193 }else{ 194 pColl = sqlite3ExprCollSeq(pParse, pLeft); 195 if( !pColl ){ 196 pColl = sqlite3ExprCollSeq(pParse, pRight); 197 } 198 } 199 return pColl; 200 } 201 202 /* 203 ** Generate code for a comparison operator. 204 */ 205 static int codeCompare( 206 Parse *pParse, /* The parsing (and code generating) context */ 207 Expr *pLeft, /* The left operand */ 208 Expr *pRight, /* The right operand */ 209 int opcode, /* The comparison opcode */ 210 int dest, /* Jump here if true. */ 211 int jumpIfNull /* If true, jump if either operand is NULL */ 212 ){ 213 int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull); 214 CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 215 return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ); 216 } 217 218 /* 219 ** Construct a new expression node and return a pointer to it. Memory 220 ** for this node is obtained from sqlite3_malloc(). The calling function 221 ** is responsible for making sure the node eventually gets freed. 222 */ 223 Expr *sqlite3Expr( 224 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 225 int op, /* Expression opcode */ 226 Expr *pLeft, /* Left operand */ 227 Expr *pRight, /* Right operand */ 228 const Token *pToken /* Argument token */ 229 ){ 230 Expr *pNew; 231 pNew = sqlite3DbMallocZero(db, sizeof(Expr)); 232 if( pNew==0 ){ 233 /* When malloc fails, delete pLeft and pRight. Expressions passed to 234 ** this function must always be allocated with sqlite3Expr() for this 235 ** reason. 236 */ 237 sqlite3ExprDelete(pLeft); 238 sqlite3ExprDelete(pRight); 239 return 0; 240 } 241 pNew->op = op; 242 pNew->pLeft = pLeft; 243 pNew->pRight = pRight; 244 pNew->iAgg = -1; 245 if( pToken ){ 246 assert( pToken->dyn==0 ); 247 pNew->span = pNew->token = *pToken; 248 }else if( pLeft ){ 249 if( pRight ){ 250 sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); 251 if( pRight->flags & EP_ExpCollate ){ 252 pNew->flags |= EP_ExpCollate; 253 pNew->pColl = pRight->pColl; 254 } 255 } 256 if( pLeft->flags & EP_ExpCollate ){ 257 pNew->flags |= EP_ExpCollate; 258 pNew->pColl = pLeft->pColl; 259 } 260 } 261 262 sqlite3ExprSetHeight(pNew); 263 return pNew; 264 } 265 266 /* 267 ** Works like sqlite3Expr() except that it takes an extra Parse* 268 ** argument and notifies the associated connection object if malloc fails. 269 */ 270 Expr *sqlite3PExpr( 271 Parse *pParse, /* Parsing context */ 272 int op, /* Expression opcode */ 273 Expr *pLeft, /* Left operand */ 274 Expr *pRight, /* Right operand */ 275 const Token *pToken /* Argument token */ 276 ){ 277 return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken); 278 } 279 280 /* 281 ** When doing a nested parse, you can include terms in an expression 282 ** that look like this: #0 #1 #2 ... These terms refer to elements 283 ** on the stack. "#0" means the top of the stack. 284 ** "#1" means the next down on the stack. And so forth. 285 ** 286 ** This routine is called by the parser to deal with on of those terms. 287 ** It immediately generates code to store the value in a memory location. 288 ** The returns an expression that will code to extract the value from 289 ** that memory location as needed. 290 */ 291 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ 292 Vdbe *v = pParse->pVdbe; 293 Expr *p; 294 int depth; 295 if( pParse->nested==0 ){ 296 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); 297 return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); 298 } 299 if( v==0 ) return 0; 300 p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken); 301 if( p==0 ){ 302 return 0; /* Malloc failed */ 303 } 304 depth = atoi((char*)&pToken->z[1]); 305 p->iTable = pParse->nMem++; 306 sqlite3VdbeAddOp(v, OP_Dup, depth, 0); 307 sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1); 308 return p; 309 } 310 311 /* 312 ** Join two expressions using an AND operator. If either expression is 313 ** NULL, then just return the other expression. 314 */ 315 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 316 if( pLeft==0 ){ 317 return pRight; 318 }else if( pRight==0 ){ 319 return pLeft; 320 }else{ 321 return sqlite3Expr(db, TK_AND, pLeft, pRight, 0); 322 } 323 } 324 325 /* 326 ** Set the Expr.span field of the given expression to span all 327 ** text between the two given tokens. 328 */ 329 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ 330 assert( pRight!=0 ); 331 assert( pLeft!=0 ); 332 if( pExpr && pRight->z && pLeft->z ){ 333 assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 ); 334 if( pLeft->dyn==0 && pRight->dyn==0 ){ 335 pExpr->span.z = pLeft->z; 336 pExpr->span.n = pRight->n + (pRight->z - pLeft->z); 337 }else{ 338 pExpr->span.z = 0; 339 } 340 } 341 } 342 343 /* 344 ** Construct a new expression node for a function with multiple 345 ** arguments. 346 */ 347 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 348 Expr *pNew; 349 assert( pToken ); 350 pNew = sqlite3DbMallocZero(pParse->db, sizeof(Expr) ); 351 if( pNew==0 ){ 352 sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */ 353 return 0; 354 } 355 pNew->op = TK_FUNCTION; 356 pNew->pList = pList; 357 assert( pToken->dyn==0 ); 358 pNew->token = *pToken; 359 pNew->span = pNew->token; 360 361 sqlite3ExprSetHeight(pNew); 362 return pNew; 363 } 364 365 /* 366 ** Assign a variable number to an expression that encodes a wildcard 367 ** in the original SQL statement. 368 ** 369 ** Wildcards consisting of a single "?" are assigned the next sequential 370 ** variable number. 371 ** 372 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 373 ** sure "nnn" is not too be to avoid a denial of service attack when 374 ** the SQL statement comes from an external source. 375 ** 376 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number 377 ** as the previous instance of the same wildcard. Or if this is the first 378 ** instance of the wildcard, the next sequenial variable number is 379 ** assigned. 380 */ 381 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 382 Token *pToken; 383 sqlite3 *db = pParse->db; 384 385 if( pExpr==0 ) return; 386 pToken = &pExpr->token; 387 assert( pToken->n>=1 ); 388 assert( pToken->z!=0 ); 389 assert( pToken->z[0]!=0 ); 390 if( pToken->n==1 ){ 391 /* Wildcard of the form "?". Assign the next variable number */ 392 pExpr->iTable = ++pParse->nVar; 393 }else if( pToken->z[0]=='?' ){ 394 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 395 ** use it as the variable number */ 396 int i; 397 pExpr->iTable = i = atoi((char*)&pToken->z[1]); 398 if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){ 399 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 400 SQLITE_MAX_VARIABLE_NUMBER); 401 } 402 if( i>pParse->nVar ){ 403 pParse->nVar = i; 404 } 405 }else{ 406 /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable 407 ** number as the prior appearance of the same name, or if the name 408 ** has never appeared before, reuse the same variable number 409 */ 410 int i, n; 411 n = pToken->n; 412 for(i=0; i<pParse->nVarExpr; i++){ 413 Expr *pE; 414 if( (pE = pParse->apVarExpr[i])!=0 415 && pE->token.n==n 416 && memcmp(pE->token.z, pToken->z, n)==0 ){ 417 pExpr->iTable = pE->iTable; 418 break; 419 } 420 } 421 if( i>=pParse->nVarExpr ){ 422 pExpr->iTable = ++pParse->nVar; 423 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ 424 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; 425 pParse->apVarExpr = 426 sqlite3DbReallocOrFree( 427 db, 428 pParse->apVarExpr, 429 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) 430 ); 431 } 432 if( !db->mallocFailed ){ 433 assert( pParse->apVarExpr!=0 ); 434 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; 435 } 436 } 437 } 438 if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){ 439 sqlite3ErrorMsg(pParse, "too many SQL variables"); 440 } 441 } 442 443 /* 444 ** Recursively delete an expression tree. 445 */ 446 void sqlite3ExprDelete(Expr *p){ 447 if( p==0 ) return; 448 if( p->span.dyn ) sqlite3_free((char*)p->span.z); 449 if( p->token.dyn ) sqlite3_free((char*)p->token.z); 450 sqlite3ExprDelete(p->pLeft); 451 sqlite3ExprDelete(p->pRight); 452 sqlite3ExprListDelete(p->pList); 453 sqlite3SelectDelete(p->pSelect); 454 sqlite3_free(p); 455 } 456 457 /* 458 ** The Expr.token field might be a string literal that is quoted. 459 ** If so, remove the quotation marks. 460 */ 461 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){ 462 if( ExprHasAnyProperty(p, EP_Dequoted) ){ 463 return; 464 } 465 ExprSetProperty(p, EP_Dequoted); 466 if( p->token.dyn==0 ){ 467 sqlite3TokenCopy(db, &p->token, &p->token); 468 } 469 sqlite3Dequote((char*)p->token.z); 470 } 471 472 473 /* 474 ** The following group of routines make deep copies of expressions, 475 ** expression lists, ID lists, and select statements. The copies can 476 ** be deleted (by being passed to their respective ...Delete() routines) 477 ** without effecting the originals. 478 ** 479 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 480 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 481 ** by subsequent calls to sqlite*ListAppend() routines. 482 ** 483 ** Any tables that the SrcList might point to are not duplicated. 484 */ 485 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){ 486 Expr *pNew; 487 if( p==0 ) return 0; 488 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 489 if( pNew==0 ) return 0; 490 memcpy(pNew, p, sizeof(*pNew)); 491 if( p->token.z!=0 ){ 492 pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n); 493 pNew->token.dyn = 1; 494 }else{ 495 assert( pNew->token.z==0 ); 496 } 497 pNew->span.z = 0; 498 pNew->pLeft = sqlite3ExprDup(db, p->pLeft); 499 pNew->pRight = sqlite3ExprDup(db, p->pRight); 500 pNew->pList = sqlite3ExprListDup(db, p->pList); 501 pNew->pSelect = sqlite3SelectDup(db, p->pSelect); 502 return pNew; 503 } 504 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){ 505 if( pTo->dyn ) sqlite3_free((char*)pTo->z); 506 if( pFrom->z ){ 507 pTo->n = pFrom->n; 508 pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n); 509 pTo->dyn = 1; 510 }else{ 511 pTo->z = 0; 512 } 513 } 514 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){ 515 ExprList *pNew; 516 struct ExprList_item *pItem, *pOldItem; 517 int i; 518 if( p==0 ) return 0; 519 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 520 if( pNew==0 ) return 0; 521 pNew->iECursor = 0; 522 pNew->nExpr = pNew->nAlloc = p->nExpr; 523 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); 524 if( pItem==0 ){ 525 sqlite3_free(pNew); 526 return 0; 527 } 528 pOldItem = p->a; 529 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 530 Expr *pNewExpr, *pOldExpr; 531 pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr); 532 if( pOldExpr->span.z!=0 && pNewExpr ){ 533 /* Always make a copy of the span for top-level expressions in the 534 ** expression list. The logic in SELECT processing that determines 535 ** the names of columns in the result set needs this information */ 536 sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span); 537 } 538 assert( pNewExpr==0 || pNewExpr->span.z!=0 539 || pOldExpr->span.z==0 540 || db->mallocFailed ); 541 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 542 pItem->sortOrder = pOldItem->sortOrder; 543 pItem->isAgg = pOldItem->isAgg; 544 pItem->done = 0; 545 } 546 return pNew; 547 } 548 549 /* 550 ** If cursors, triggers, views and subqueries are all omitted from 551 ** the build, then none of the following routines, except for 552 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 553 ** called with a NULL argument. 554 */ 555 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 556 || !defined(SQLITE_OMIT_SUBQUERY) 557 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){ 558 SrcList *pNew; 559 int i; 560 int nByte; 561 if( p==0 ) return 0; 562 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 563 pNew = sqlite3DbMallocRaw(db, nByte ); 564 if( pNew==0 ) return 0; 565 pNew->nSrc = pNew->nAlloc = p->nSrc; 566 for(i=0; i<p->nSrc; i++){ 567 struct SrcList_item *pNewItem = &pNew->a[i]; 568 struct SrcList_item *pOldItem = &p->a[i]; 569 Table *pTab; 570 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 571 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 572 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 573 pNewItem->jointype = pOldItem->jointype; 574 pNewItem->iCursor = pOldItem->iCursor; 575 pNewItem->isPopulated = pOldItem->isPopulated; 576 pTab = pNewItem->pTab = pOldItem->pTab; 577 if( pTab ){ 578 pTab->nRef++; 579 } 580 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect); 581 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn); 582 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 583 pNewItem->colUsed = pOldItem->colUsed; 584 } 585 return pNew; 586 } 587 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 588 IdList *pNew; 589 int i; 590 if( p==0 ) return 0; 591 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 592 if( pNew==0 ) return 0; 593 pNew->nId = pNew->nAlloc = p->nId; 594 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 595 if( pNew->a==0 ){ 596 sqlite3_free(pNew); 597 return 0; 598 } 599 for(i=0; i<p->nId; i++){ 600 struct IdList_item *pNewItem = &pNew->a[i]; 601 struct IdList_item *pOldItem = &p->a[i]; 602 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 603 pNewItem->idx = pOldItem->idx; 604 } 605 return pNew; 606 } 607 Select *sqlite3SelectDup(sqlite3 *db, Select *p){ 608 Select *pNew; 609 if( p==0 ) return 0; 610 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 611 if( pNew==0 ) return 0; 612 pNew->isDistinct = p->isDistinct; 613 pNew->pEList = sqlite3ExprListDup(db, p->pEList); 614 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc); 615 pNew->pWhere = sqlite3ExprDup(db, p->pWhere); 616 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy); 617 pNew->pHaving = sqlite3ExprDup(db, p->pHaving); 618 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy); 619 pNew->op = p->op; 620 pNew->pPrior = sqlite3SelectDup(db, p->pPrior); 621 pNew->pLimit = sqlite3ExprDup(db, p->pLimit); 622 pNew->pOffset = sqlite3ExprDup(db, p->pOffset); 623 pNew->iLimit = -1; 624 pNew->iOffset = -1; 625 pNew->isResolved = p->isResolved; 626 pNew->isAgg = p->isAgg; 627 pNew->usesEphm = 0; 628 pNew->disallowOrderBy = 0; 629 pNew->pRightmost = 0; 630 pNew->addrOpenEphm[0] = -1; 631 pNew->addrOpenEphm[1] = -1; 632 pNew->addrOpenEphm[2] = -1; 633 return pNew; 634 } 635 #else 636 Select *sqlite3SelectDup(sqlite3 *db, Select *p){ 637 assert( p==0 ); 638 return 0; 639 } 640 #endif 641 642 643 /* 644 ** Add a new element to the end of an expression list. If pList is 645 ** initially NULL, then create a new expression list. 646 */ 647 ExprList *sqlite3ExprListAppend( 648 Parse *pParse, /* Parsing context */ 649 ExprList *pList, /* List to which to append. Might be NULL */ 650 Expr *pExpr, /* Expression to be appended */ 651 Token *pName /* AS keyword for the expression */ 652 ){ 653 sqlite3 *db = pParse->db; 654 if( pList==0 ){ 655 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 656 if( pList==0 ){ 657 goto no_mem; 658 } 659 assert( pList->nAlloc==0 ); 660 } 661 if( pList->nAlloc<=pList->nExpr ){ 662 struct ExprList_item *a; 663 int n = pList->nAlloc*2 + 4; 664 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); 665 if( a==0 ){ 666 goto no_mem; 667 } 668 pList->a = a; 669 pList->nAlloc = n; 670 } 671 assert( pList->a!=0 ); 672 if( pExpr || pName ){ 673 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 674 memset(pItem, 0, sizeof(*pItem)); 675 pItem->zName = sqlite3NameFromToken(db, pName); 676 pItem->pExpr = pExpr; 677 } 678 return pList; 679 680 no_mem: 681 /* Avoid leaking memory if malloc has failed. */ 682 sqlite3ExprDelete(pExpr); 683 sqlite3ExprListDelete(pList); 684 return 0; 685 } 686 687 /* 688 ** If the expression list pEList contains more than iLimit elements, 689 ** leave an error message in pParse. 690 */ 691 void sqlite3ExprListCheckLength( 692 Parse *pParse, 693 ExprList *pEList, 694 int iLimit, 695 const char *zObject 696 ){ 697 if( pEList && pEList->nExpr>iLimit ){ 698 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 699 } 700 } 701 702 703 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 704 /* The following three functions, heightOfExpr(), heightOfExprList() 705 ** and heightOfSelect(), are used to determine the maximum height 706 ** of any expression tree referenced by the structure passed as the 707 ** first argument. 708 ** 709 ** If this maximum height is greater than the current value pointed 710 ** to by pnHeight, the second parameter, then set *pnHeight to that 711 ** value. 712 */ 713 static void heightOfExpr(Expr *p, int *pnHeight){ 714 if( p ){ 715 if( p->nHeight>*pnHeight ){ 716 *pnHeight = p->nHeight; 717 } 718 } 719 } 720 static void heightOfExprList(ExprList *p, int *pnHeight){ 721 if( p ){ 722 int i; 723 for(i=0; i<p->nExpr; i++){ 724 heightOfExpr(p->a[i].pExpr, pnHeight); 725 } 726 } 727 } 728 static void heightOfSelect(Select *p, int *pnHeight){ 729 if( p ){ 730 heightOfExpr(p->pWhere, pnHeight); 731 heightOfExpr(p->pHaving, pnHeight); 732 heightOfExpr(p->pLimit, pnHeight); 733 heightOfExpr(p->pOffset, pnHeight); 734 heightOfExprList(p->pEList, pnHeight); 735 heightOfExprList(p->pGroupBy, pnHeight); 736 heightOfExprList(p->pOrderBy, pnHeight); 737 heightOfSelect(p->pPrior, pnHeight); 738 } 739 } 740 741 /* 742 ** Set the Expr.nHeight variable in the structure passed as an 743 ** argument. An expression with no children, Expr.pList or 744 ** Expr.pSelect member has a height of 1. Any other expression 745 ** has a height equal to the maximum height of any other 746 ** referenced Expr plus one. 747 */ 748 void sqlite3ExprSetHeight(Expr *p){ 749 int nHeight = 0; 750 heightOfExpr(p->pLeft, &nHeight); 751 heightOfExpr(p->pRight, &nHeight); 752 heightOfExprList(p->pList, &nHeight); 753 heightOfSelect(p->pSelect, &nHeight); 754 p->nHeight = nHeight + 1; 755 } 756 757 /* 758 ** Return the maximum height of any expression tree referenced 759 ** by the select statement passed as an argument. 760 */ 761 int sqlite3SelectExprHeight(Select *p){ 762 int nHeight = 0; 763 heightOfSelect(p, &nHeight); 764 return nHeight; 765 } 766 #endif 767 768 /* 769 ** Delete an entire expression list. 770 */ 771 void sqlite3ExprListDelete(ExprList *pList){ 772 int i; 773 struct ExprList_item *pItem; 774 if( pList==0 ) return; 775 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 776 assert( pList->nExpr<=pList->nAlloc ); 777 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 778 sqlite3ExprDelete(pItem->pExpr); 779 sqlite3_free(pItem->zName); 780 } 781 sqlite3_free(pList->a); 782 sqlite3_free(pList); 783 } 784 785 /* 786 ** Walk an expression tree. Call xFunc for each node visited. 787 ** 788 ** The return value from xFunc determines whether the tree walk continues. 789 ** 0 means continue walking the tree. 1 means do not walk children 790 ** of the current node but continue with siblings. 2 means abandon 791 ** the tree walk completely. 792 ** 793 ** The return value from this routine is 1 to abandon the tree walk 794 ** and 0 to continue. 795 ** 796 ** NOTICE: This routine does *not* descend into subqueries. 797 */ 798 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); 799 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ 800 int rc; 801 if( pExpr==0 ) return 0; 802 rc = (*xFunc)(pArg, pExpr); 803 if( rc==0 ){ 804 if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; 805 if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; 806 if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; 807 } 808 return rc>1; 809 } 810 811 /* 812 ** Call walkExprTree() for every expression in list p. 813 */ 814 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ 815 int i; 816 struct ExprList_item *pItem; 817 if( !p ) return 0; 818 for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ 819 if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; 820 } 821 return 0; 822 } 823 824 /* 825 ** Call walkExprTree() for every expression in Select p, not including 826 ** expressions that are part of sub-selects in any FROM clause or the LIMIT 827 ** or OFFSET expressions.. 828 */ 829 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ 830 walkExprList(p->pEList, xFunc, pArg); 831 walkExprTree(p->pWhere, xFunc, pArg); 832 walkExprList(p->pGroupBy, xFunc, pArg); 833 walkExprTree(p->pHaving, xFunc, pArg); 834 walkExprList(p->pOrderBy, xFunc, pArg); 835 if( p->pPrior ){ 836 walkSelectExpr(p->pPrior, xFunc, pArg); 837 } 838 return 0; 839 } 840 841 842 /* 843 ** This routine is designed as an xFunc for walkExprTree(). 844 ** 845 ** pArg is really a pointer to an integer. If we can tell by looking 846 ** at pExpr that the expression that contains pExpr is not a constant 847 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk. 848 ** If pExpr does does not disqualify the expression from being a constant 849 ** then do nothing. 850 ** 851 ** After walking the whole tree, if no nodes are found that disqualify 852 ** the expression as constant, then we assume the whole expression 853 ** is constant. See sqlite3ExprIsConstant() for additional information. 854 */ 855 static int exprNodeIsConstant(void *pArg, Expr *pExpr){ 856 int *pN = (int*)pArg; 857 858 /* If *pArg is 3 then any term of the expression that comes from 859 ** the ON or USING clauses of a join disqualifies the expression 860 ** from being considered constant. */ 861 if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 862 *pN = 0; 863 return 2; 864 } 865 866 switch( pExpr->op ){ 867 /* Consider functions to be constant if all their arguments are constant 868 ** and *pArg==2 */ 869 case TK_FUNCTION: 870 if( (*pN)==2 ) return 0; 871 /* Fall through */ 872 case TK_ID: 873 case TK_COLUMN: 874 case TK_DOT: 875 case TK_AGG_FUNCTION: 876 case TK_AGG_COLUMN: 877 #ifndef SQLITE_OMIT_SUBQUERY 878 case TK_SELECT: 879 case TK_EXISTS: 880 #endif 881 *pN = 0; 882 return 2; 883 case TK_IN: 884 if( pExpr->pSelect ){ 885 *pN = 0; 886 return 2; 887 } 888 default: 889 return 0; 890 } 891 } 892 893 /* 894 ** Walk an expression tree. Return 1 if the expression is constant 895 ** and 0 if it involves variables or function calls. 896 ** 897 ** For the purposes of this function, a double-quoted string (ex: "abc") 898 ** is considered a variable but a single-quoted string (ex: 'abc') is 899 ** a constant. 900 */ 901 int sqlite3ExprIsConstant(Expr *p){ 902 int isConst = 1; 903 walkExprTree(p, exprNodeIsConstant, &isConst); 904 return isConst; 905 } 906 907 /* 908 ** Walk an expression tree. Return 1 if the expression is constant 909 ** that does no originate from the ON or USING clauses of a join. 910 ** Return 0 if it involves variables or function calls or terms from 911 ** an ON or USING clause. 912 */ 913 int sqlite3ExprIsConstantNotJoin(Expr *p){ 914 int isConst = 3; 915 walkExprTree(p, exprNodeIsConstant, &isConst); 916 return isConst!=0; 917 } 918 919 /* 920 ** Walk an expression tree. Return 1 if the expression is constant 921 ** or a function call with constant arguments. Return and 0 if there 922 ** are any variables. 923 ** 924 ** For the purposes of this function, a double-quoted string (ex: "abc") 925 ** is considered a variable but a single-quoted string (ex: 'abc') is 926 ** a constant. 927 */ 928 int sqlite3ExprIsConstantOrFunction(Expr *p){ 929 int isConst = 2; 930 walkExprTree(p, exprNodeIsConstant, &isConst); 931 return isConst!=0; 932 } 933 934 /* 935 ** If the expression p codes a constant integer that is small enough 936 ** to fit in a 32-bit integer, return 1 and put the value of the integer 937 ** in *pValue. If the expression is not an integer or if it is too big 938 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 939 */ 940 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 941 switch( p->op ){ 942 case TK_INTEGER: { 943 if( sqlite3GetInt32((char*)p->token.z, pValue) ){ 944 return 1; 945 } 946 break; 947 } 948 case TK_UPLUS: { 949 return sqlite3ExprIsInteger(p->pLeft, pValue); 950 } 951 case TK_UMINUS: { 952 int v; 953 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 954 *pValue = -v; 955 return 1; 956 } 957 break; 958 } 959 default: break; 960 } 961 return 0; 962 } 963 964 /* 965 ** Return TRUE if the given string is a row-id column name. 966 */ 967 int sqlite3IsRowid(const char *z){ 968 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 969 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 970 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 971 return 0; 972 } 973 974 /* 975 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up 976 ** that name in the set of source tables in pSrcList and make the pExpr 977 ** expression node refer back to that source column. The following changes 978 ** are made to pExpr: 979 ** 980 ** pExpr->iDb Set the index in db->aDb[] of the database holding 981 ** the table. 982 ** pExpr->iTable Set to the cursor number for the table obtained 983 ** from pSrcList. 984 ** pExpr->iColumn Set to the column number within the table. 985 ** pExpr->op Set to TK_COLUMN. 986 ** pExpr->pLeft Any expression this points to is deleted 987 ** pExpr->pRight Any expression this points to is deleted. 988 ** 989 ** The pDbToken is the name of the database (the "X"). This value may be 990 ** NULL meaning that name is of the form Y.Z or Z. Any available database 991 ** can be used. The pTableToken is the name of the table (the "Y"). This 992 ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it 993 ** means that the form of the name is Z and that columns from any table 994 ** can be used. 995 ** 996 ** If the name cannot be resolved unambiguously, leave an error message 997 ** in pParse and return non-zero. Return zero on success. 998 */ 999 static int lookupName( 1000 Parse *pParse, /* The parsing context */ 1001 Token *pDbToken, /* Name of the database containing table, or NULL */ 1002 Token *pTableToken, /* Name of table containing column, or NULL */ 1003 Token *pColumnToken, /* Name of the column. */ 1004 NameContext *pNC, /* The name context used to resolve the name */ 1005 Expr *pExpr /* Make this EXPR node point to the selected column */ 1006 ){ 1007 char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ 1008 char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ 1009 char *zCol = 0; /* Name of the column. The "Z" */ 1010 int i, j; /* Loop counters */ 1011 int cnt = 0; /* Number of matching column names */ 1012 int cntTab = 0; /* Number of matching table names */ 1013 sqlite3 *db = pParse->db; /* The database */ 1014 struct SrcList_item *pItem; /* Use for looping over pSrcList items */ 1015 struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ 1016 NameContext *pTopNC = pNC; /* First namecontext in the list */ 1017 1018 assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ 1019 zDb = sqlite3NameFromToken(db, pDbToken); 1020 zTab = sqlite3NameFromToken(db, pTableToken); 1021 zCol = sqlite3NameFromToken(db, pColumnToken); 1022 if( db->mallocFailed ){ 1023 goto lookupname_end; 1024 } 1025 1026 pExpr->iTable = -1; 1027 while( pNC && cnt==0 ){ 1028 ExprList *pEList; 1029 SrcList *pSrcList = pNC->pSrcList; 1030 1031 if( pSrcList ){ 1032 for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ 1033 Table *pTab; 1034 int iDb; 1035 Column *pCol; 1036 1037 pTab = pItem->pTab; 1038 assert( pTab!=0 ); 1039 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1040 assert( pTab->nCol>0 ); 1041 if( zTab ){ 1042 if( pItem->zAlias ){ 1043 char *zTabName = pItem->zAlias; 1044 if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 1045 }else{ 1046 char *zTabName = pTab->zName; 1047 if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 1048 if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){ 1049 continue; 1050 } 1051 } 1052 } 1053 if( 0==(cntTab++) ){ 1054 pExpr->iTable = pItem->iCursor; 1055 pExpr->pSchema = pTab->pSchema; 1056 pMatch = pItem; 1057 } 1058 for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ 1059 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 1060 const char *zColl = pTab->aCol[j].zColl; 1061 IdList *pUsing; 1062 cnt++; 1063 pExpr->iTable = pItem->iCursor; 1064 pMatch = pItem; 1065 pExpr->pSchema = pTab->pSchema; 1066 /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ 1067 pExpr->iColumn = j==pTab->iPKey ? -1 : j; 1068 pExpr->affinity = pTab->aCol[j].affinity; 1069 if( (pExpr->flags & EP_ExpCollate)==0 ){ 1070 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); 1071 } 1072 if( i<pSrcList->nSrc-1 ){ 1073 if( pItem[1].jointype & JT_NATURAL ){ 1074 /* If this match occurred in the left table of a natural join, 1075 ** then skip the right table to avoid a duplicate match */ 1076 pItem++; 1077 i++; 1078 }else if( (pUsing = pItem[1].pUsing)!=0 ){ 1079 /* If this match occurs on a column that is in the USING clause 1080 ** of a join, skip the search of the right table of the join 1081 ** to avoid a duplicate match there. */ 1082 int k; 1083 for(k=0; k<pUsing->nId; k++){ 1084 if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ 1085 pItem++; 1086 i++; 1087 break; 1088 } 1089 } 1090 } 1091 } 1092 break; 1093 } 1094 } 1095 } 1096 } 1097 1098 #ifndef SQLITE_OMIT_TRIGGER 1099 /* If we have not already resolved the name, then maybe 1100 ** it is a new.* or old.* trigger argument reference 1101 */ 1102 if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ 1103 TriggerStack *pTriggerStack = pParse->trigStack; 1104 Table *pTab = 0; 1105 if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ 1106 pExpr->iTable = pTriggerStack->newIdx; 1107 assert( pTriggerStack->pTab ); 1108 pTab = pTriggerStack->pTab; 1109 }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ 1110 pExpr->iTable = pTriggerStack->oldIdx; 1111 assert( pTriggerStack->pTab ); 1112 pTab = pTriggerStack->pTab; 1113 } 1114 1115 if( pTab ){ 1116 int iCol; 1117 Column *pCol = pTab->aCol; 1118 1119 pExpr->pSchema = pTab->pSchema; 1120 cntTab++; 1121 for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) { 1122 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 1123 const char *zColl = pTab->aCol[iCol].zColl; 1124 cnt++; 1125 pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol; 1126 pExpr->affinity = pTab->aCol[iCol].affinity; 1127 if( (pExpr->flags & EP_ExpCollate)==0 ){ 1128 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); 1129 } 1130 pExpr->pTab = pTab; 1131 break; 1132 } 1133 } 1134 } 1135 } 1136 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ 1137 1138 /* 1139 ** Perhaps the name is a reference to the ROWID 1140 */ 1141 if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ 1142 cnt = 1; 1143 pExpr->iColumn = -1; 1144 pExpr->affinity = SQLITE_AFF_INTEGER; 1145 } 1146 1147 /* 1148 ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z 1149 ** might refer to an result-set alias. This happens, for example, when 1150 ** we are resolving names in the WHERE clause of the following command: 1151 ** 1152 ** SELECT a+b AS x FROM table WHERE x<10; 1153 ** 1154 ** In cases like this, replace pExpr with a copy of the expression that 1155 ** forms the result set entry ("a+b" in the example) and return immediately. 1156 ** Note that the expression in the result set should have already been 1157 ** resolved by the time the WHERE clause is resolved. 1158 */ 1159 if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ 1160 for(j=0; j<pEList->nExpr; j++){ 1161 char *zAs = pEList->a[j].zName; 1162 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ 1163 Expr *pDup, *pOrig; 1164 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 1165 assert( pExpr->pList==0 ); 1166 assert( pExpr->pSelect==0 ); 1167 pOrig = pEList->a[j].pExpr; 1168 if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){ 1169 sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); 1170 sqlite3_free(zCol); 1171 return 2; 1172 } 1173 pDup = sqlite3ExprDup(db, pOrig); 1174 if( pExpr->flags & EP_ExpCollate ){ 1175 pDup->pColl = pExpr->pColl; 1176 pDup->flags |= EP_ExpCollate; 1177 } 1178 if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z); 1179 if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z); 1180 memcpy(pExpr, pDup, sizeof(*pExpr)); 1181 sqlite3_free(pDup); 1182 cnt = 1; 1183 pMatch = 0; 1184 assert( zTab==0 && zDb==0 ); 1185 goto lookupname_end_2; 1186 } 1187 } 1188 } 1189 1190 /* Advance to the next name context. The loop will exit when either 1191 ** we have a match (cnt>0) or when we run out of name contexts. 1192 */ 1193 if( cnt==0 ){ 1194 pNC = pNC->pNext; 1195 } 1196 } 1197 1198 /* 1199 ** If X and Y are NULL (in other words if only the column name Z is 1200 ** supplied) and the value of Z is enclosed in double-quotes, then 1201 ** Z is a string literal if it doesn't match any column names. In that 1202 ** case, we need to return right away and not make any changes to 1203 ** pExpr. 1204 ** 1205 ** Because no reference was made to outer contexts, the pNC->nRef 1206 ** fields are not changed in any context. 1207 */ 1208 if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ 1209 sqlite3_free(zCol); 1210 return 0; 1211 } 1212 1213 /* 1214 ** cnt==0 means there was not match. cnt>1 means there were two or 1215 ** more matches. Either way, we have an error. 1216 */ 1217 if( cnt!=1 ){ 1218 char *z = 0; 1219 char *zErr; 1220 zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s"; 1221 if( zDb ){ 1222 sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0); 1223 }else if( zTab ){ 1224 sqlite3SetString(&z, zTab, ".", zCol, (char*)0); 1225 }else{ 1226 z = sqlite3StrDup(zCol); 1227 } 1228 if( z ){ 1229 sqlite3ErrorMsg(pParse, zErr, z); 1230 sqlite3_free(z); 1231 pTopNC->nErr++; 1232 }else{ 1233 db->mallocFailed = 1; 1234 } 1235 } 1236 1237 /* If a column from a table in pSrcList is referenced, then record 1238 ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes 1239 ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the 1240 ** column number is greater than the number of bits in the bitmask 1241 ** then set the high-order bit of the bitmask. 1242 */ 1243 if( pExpr->iColumn>=0 && pMatch!=0 ){ 1244 int n = pExpr->iColumn; 1245 if( n>=sizeof(Bitmask)*8 ){ 1246 n = sizeof(Bitmask)*8-1; 1247 } 1248 assert( pMatch->iCursor==pExpr->iTable ); 1249 pMatch->colUsed |= ((Bitmask)1)<<n; 1250 } 1251 1252 lookupname_end: 1253 /* Clean up and return 1254 */ 1255 sqlite3_free(zDb); 1256 sqlite3_free(zTab); 1257 sqlite3ExprDelete(pExpr->pLeft); 1258 pExpr->pLeft = 0; 1259 sqlite3ExprDelete(pExpr->pRight); 1260 pExpr->pRight = 0; 1261 pExpr->op = TK_COLUMN; 1262 lookupname_end_2: 1263 sqlite3_free(zCol); 1264 if( cnt==1 ){ 1265 assert( pNC!=0 ); 1266 sqlite3AuthRead(pParse, pExpr, pNC->pSrcList); 1267 if( pMatch && !pMatch->pSelect ){ 1268 pExpr->pTab = pMatch->pTab; 1269 } 1270 /* Increment the nRef value on all name contexts from TopNC up to 1271 ** the point where the name matched. */ 1272 for(;;){ 1273 assert( pTopNC!=0 ); 1274 pTopNC->nRef++; 1275 if( pTopNC==pNC ) break; 1276 pTopNC = pTopNC->pNext; 1277 } 1278 return 0; 1279 } else { 1280 return 1; 1281 } 1282 } 1283 1284 /* 1285 ** This routine is designed as an xFunc for walkExprTree(). 1286 ** 1287 ** Resolve symbolic names into TK_COLUMN operators for the current 1288 ** node in the expression tree. Return 0 to continue the search down 1289 ** the tree or 2 to abort the tree walk. 1290 ** 1291 ** This routine also does error checking and name resolution for 1292 ** function names. The operator for aggregate functions is changed 1293 ** to TK_AGG_FUNCTION. 1294 */ 1295 static int nameResolverStep(void *pArg, Expr *pExpr){ 1296 NameContext *pNC = (NameContext*)pArg; 1297 Parse *pParse; 1298 1299 if( pExpr==0 ) return 1; 1300 assert( pNC!=0 ); 1301 pParse = pNC->pParse; 1302 1303 if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; 1304 ExprSetProperty(pExpr, EP_Resolved); 1305 #ifndef NDEBUG 1306 if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ 1307 SrcList *pSrcList = pNC->pSrcList; 1308 int i; 1309 for(i=0; i<pNC->pSrcList->nSrc; i++){ 1310 assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); 1311 } 1312 } 1313 #endif 1314 switch( pExpr->op ){ 1315 /* Double-quoted strings (ex: "abc") are used as identifiers if 1316 ** possible. Otherwise they remain as strings. Single-quoted 1317 ** strings (ex: 'abc') are always string literals. 1318 */ 1319 case TK_STRING: { 1320 if( pExpr->token.z[0]=='\'' ) break; 1321 /* Fall thru into the TK_ID case if this is a double-quoted string */ 1322 } 1323 /* A lone identifier is the name of a column. 1324 */ 1325 case TK_ID: { 1326 lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); 1327 return 1; 1328 } 1329 1330 /* A table name and column name: ID.ID 1331 ** Or a database, table and column: ID.ID.ID 1332 */ 1333 case TK_DOT: { 1334 Token *pColumn; 1335 Token *pTable; 1336 Token *pDb; 1337 Expr *pRight; 1338 1339 /* if( pSrcList==0 ) break; */ 1340 pRight = pExpr->pRight; 1341 if( pRight->op==TK_ID ){ 1342 pDb = 0; 1343 pTable = &pExpr->pLeft->token; 1344 pColumn = &pRight->token; 1345 }else{ 1346 assert( pRight->op==TK_DOT ); 1347 pDb = &pExpr->pLeft->token; 1348 pTable = &pRight->pLeft->token; 1349 pColumn = &pRight->pRight->token; 1350 } 1351 lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); 1352 return 1; 1353 } 1354 1355 /* Resolve function names 1356 */ 1357 case TK_CONST_FUNC: 1358 case TK_FUNCTION: { 1359 ExprList *pList = pExpr->pList; /* The argument list */ 1360 int n = pList ? pList->nExpr : 0; /* Number of arguments */ 1361 int no_such_func = 0; /* True if no such function exists */ 1362 int wrong_num_args = 0; /* True if wrong number of arguments */ 1363 int is_agg = 0; /* True if is an aggregate function */ 1364 int i; 1365 int auth; /* Authorization to use the function */ 1366 int nId; /* Number of characters in function name */ 1367 const char *zId; /* The function name. */ 1368 FuncDef *pDef; /* Information about the function */ 1369 int enc = ENC(pParse->db); /* The database encoding */ 1370 1371 zId = (char*)pExpr->token.z; 1372 nId = pExpr->token.n; 1373 pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); 1374 if( pDef==0 ){ 1375 pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); 1376 if( pDef==0 ){ 1377 no_such_func = 1; 1378 }else{ 1379 wrong_num_args = 1; 1380 } 1381 }else{ 1382 is_agg = pDef->xFunc==0; 1383 } 1384 #ifndef SQLITE_OMIT_AUTHORIZATION 1385 if( pDef ){ 1386 auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); 1387 if( auth!=SQLITE_OK ){ 1388 if( auth==SQLITE_DENY ){ 1389 sqlite3ErrorMsg(pParse, "not authorized to use function: %s", 1390 pDef->zName); 1391 pNC->nErr++; 1392 } 1393 pExpr->op = TK_NULL; 1394 return 1; 1395 } 1396 } 1397 #endif 1398 if( is_agg && !pNC->allowAgg ){ 1399 sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); 1400 pNC->nErr++; 1401 is_agg = 0; 1402 }else if( no_such_func ){ 1403 sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); 1404 pNC->nErr++; 1405 }else if( wrong_num_args ){ 1406 sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", 1407 nId, zId); 1408 pNC->nErr++; 1409 } 1410 if( is_agg ){ 1411 pExpr->op = TK_AGG_FUNCTION; 1412 pNC->hasAgg = 1; 1413 } 1414 if( is_agg ) pNC->allowAgg = 0; 1415 for(i=0; pNC->nErr==0 && i<n; i++){ 1416 walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC); 1417 } 1418 if( is_agg ) pNC->allowAgg = 1; 1419 /* FIX ME: Compute pExpr->affinity based on the expected return 1420 ** type of the function 1421 */ 1422 return is_agg; 1423 } 1424 #ifndef SQLITE_OMIT_SUBQUERY 1425 case TK_SELECT: 1426 case TK_EXISTS: 1427 #endif 1428 case TK_IN: { 1429 if( pExpr->pSelect ){ 1430 int nRef = pNC->nRef; 1431 #ifndef SQLITE_OMIT_CHECK 1432 if( pNC->isCheck ){ 1433 sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); 1434 } 1435 #endif 1436 sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); 1437 assert( pNC->nRef>=nRef ); 1438 if( nRef!=pNC->nRef ){ 1439 ExprSetProperty(pExpr, EP_VarSelect); 1440 } 1441 } 1442 break; 1443 } 1444 #ifndef SQLITE_OMIT_CHECK 1445 case TK_VARIABLE: { 1446 if( pNC->isCheck ){ 1447 sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); 1448 } 1449 break; 1450 } 1451 #endif 1452 } 1453 return 0; 1454 } 1455 1456 /* 1457 ** This routine walks an expression tree and resolves references to 1458 ** table columns. Nodes of the form ID.ID or ID resolve into an 1459 ** index to the table in the table list and a column offset. The 1460 ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable 1461 ** value is changed to the index of the referenced table in pTabList 1462 ** plus the "base" value. The base value will ultimately become the 1463 ** VDBE cursor number for a cursor that is pointing into the referenced 1464 ** table. The Expr.iColumn value is changed to the index of the column 1465 ** of the referenced table. The Expr.iColumn value for the special 1466 ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an 1467 ** alias for ROWID. 1468 ** 1469 ** Also resolve function names and check the functions for proper 1470 ** usage. Make sure all function names are recognized and all functions 1471 ** have the correct number of arguments. Leave an error message 1472 ** in pParse->zErrMsg if anything is amiss. Return the number of errors. 1473 ** 1474 ** If the expression contains aggregate functions then set the EP_Agg 1475 ** property on the expression. 1476 */ 1477 int sqlite3ExprResolveNames( 1478 NameContext *pNC, /* Namespace to resolve expressions in. */ 1479 Expr *pExpr /* The expression to be analyzed. */ 1480 ){ 1481 int savedHasAgg; 1482 if( pExpr==0 ) return 0; 1483 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 1484 if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){ 1485 sqlite3ErrorMsg(pNC->pParse, 1486 "Expression tree is too large (maximum depth %d)", 1487 SQLITE_MAX_EXPR_DEPTH 1488 ); 1489 return 1; 1490 } 1491 pNC->pParse->nHeight += pExpr->nHeight; 1492 #endif 1493 savedHasAgg = pNC->hasAgg; 1494 pNC->hasAgg = 0; 1495 walkExprTree(pExpr, nameResolverStep, pNC); 1496 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 1497 pNC->pParse->nHeight -= pExpr->nHeight; 1498 #endif 1499 if( pNC->nErr>0 ){ 1500 ExprSetProperty(pExpr, EP_Error); 1501 } 1502 if( pNC->hasAgg ){ 1503 ExprSetProperty(pExpr, EP_Agg); 1504 }else if( savedHasAgg ){ 1505 pNC->hasAgg = 1; 1506 } 1507 return ExprHasProperty(pExpr, EP_Error); 1508 } 1509 1510 /* 1511 ** A pointer instance of this structure is used to pass information 1512 ** through walkExprTree into codeSubqueryStep(). 1513 */ 1514 typedef struct QueryCoder QueryCoder; 1515 struct QueryCoder { 1516 Parse *pParse; /* The parsing context */ 1517 NameContext *pNC; /* Namespace of first enclosing query */ 1518 }; 1519 1520 1521 /* 1522 ** Generate code for scalar subqueries used as an expression 1523 ** and IN operators. Examples: 1524 ** 1525 ** (SELECT a FROM b) -- subquery 1526 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1527 ** x IN (4,5,11) -- IN operator with list on right-hand side 1528 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1529 ** 1530 ** The pExpr parameter describes the expression that contains the IN 1531 ** operator or subquery. 1532 */ 1533 #ifndef SQLITE_OMIT_SUBQUERY 1534 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 1535 int testAddr = 0; /* One-time test address */ 1536 Vdbe *v = sqlite3GetVdbe(pParse); 1537 if( v==0 ) return; 1538 1539 1540 /* This code must be run in its entirety every time it is encountered 1541 ** if any of the following is true: 1542 ** 1543 ** * The right-hand side is a correlated subquery 1544 ** * The right-hand side is an expression list containing variables 1545 ** * We are inside a trigger 1546 ** 1547 ** If all of the above are false, then we can run this code just once 1548 ** save the results, and reuse the same result on subsequent invocations. 1549 */ 1550 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ 1551 int mem = pParse->nMem++; 1552 sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0); 1553 testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0); 1554 assert( testAddr>0 || pParse->db->mallocFailed ); 1555 sqlite3VdbeAddOp(v, OP_MemInt, 1, mem); 1556 } 1557 1558 switch( pExpr->op ){ 1559 case TK_IN: { 1560 char affinity; 1561 KeyInfo keyInfo; 1562 int addr; /* Address of OP_OpenEphemeral instruction */ 1563 1564 affinity = sqlite3ExprAffinity(pExpr->pLeft); 1565 1566 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1567 ** expression it is handled the same way. A virtual table is 1568 ** filled with single-field index keys representing the results 1569 ** from the SELECT or the <exprlist>. 1570 ** 1571 ** If the 'x' expression is a column value, or the SELECT... 1572 ** statement returns a column value, then the affinity of that 1573 ** column is used to build the index keys. If both 'x' and the 1574 ** SELECT... statement are columns, then numeric affinity is used 1575 ** if either column has NUMERIC or INTEGER affinity. If neither 1576 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1577 ** is used. 1578 */ 1579 pExpr->iTable = pParse->nTab++; 1580 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0); 1581 memset(&keyInfo, 0, sizeof(keyInfo)); 1582 keyInfo.nField = 1; 1583 sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1); 1584 1585 if( pExpr->pSelect ){ 1586 /* Case 1: expr IN (SELECT ...) 1587 ** 1588 ** Generate code to write the results of the select into the temporary 1589 ** table allocated and opened above. 1590 */ 1591 int iParm = pExpr->iTable + (((int)affinity)<<16); 1592 ExprList *pEList; 1593 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1594 if( sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0) ){ 1595 return; 1596 } 1597 pEList = pExpr->pSelect->pEList; 1598 if( pEList && pEList->nExpr>0 ){ 1599 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1600 pEList->a[0].pExpr); 1601 } 1602 }else if( pExpr->pList ){ 1603 /* Case 2: expr IN (exprlist) 1604 ** 1605 ** For each expression, build an index key from the evaluation and 1606 ** store it in the temporary table. If <expr> is a column, then use 1607 ** that columns affinity when building index keys. If <expr> is not 1608 ** a column, use numeric affinity. 1609 */ 1610 int i; 1611 ExprList *pList = pExpr->pList; 1612 struct ExprList_item *pItem; 1613 1614 if( !affinity ){ 1615 affinity = SQLITE_AFF_NONE; 1616 } 1617 keyInfo.aColl[0] = pExpr->pLeft->pColl; 1618 1619 /* Loop through each expression in <exprlist>. */ 1620 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1621 Expr *pE2 = pItem->pExpr; 1622 1623 /* If the expression is not constant then we will need to 1624 ** disable the test that was generated above that makes sure 1625 ** this code only executes once. Because for a non-constant 1626 ** expression we need to rerun this code each time. 1627 */ 1628 if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){ 1629 sqlite3VdbeChangeToNoop(v, testAddr-1, 3); 1630 testAddr = 0; 1631 } 1632 1633 /* Evaluate the expression and insert it into the temp table */ 1634 sqlite3ExprCode(pParse, pE2); 1635 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); 1636 sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0); 1637 } 1638 } 1639 sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO); 1640 break; 1641 } 1642 1643 case TK_EXISTS: 1644 case TK_SELECT: { 1645 /* This has to be a scalar SELECT. Generate code to put the 1646 ** value of this select in a memory cell and record the number 1647 ** of the memory cell in iColumn. 1648 */ 1649 static const Token one = { (u8*)"1", 0, 1 }; 1650 Select *pSel; 1651 int iMem; 1652 int sop; 1653 1654 pExpr->iColumn = iMem = pParse->nMem++; 1655 pSel = pExpr->pSelect; 1656 if( pExpr->op==TK_SELECT ){ 1657 sop = SRT_Mem; 1658 sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0); 1659 VdbeComment((v, "# Init subquery result")); 1660 }else{ 1661 sop = SRT_Exists; 1662 sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem); 1663 VdbeComment((v, "# Init EXISTS result")); 1664 } 1665 sqlite3ExprDelete(pSel->pLimit); 1666 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); 1667 if( sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0) ){ 1668 return; 1669 } 1670 break; 1671 } 1672 } 1673 1674 if( testAddr ){ 1675 sqlite3VdbeJumpHere(v, testAddr); 1676 } 1677 1678 return; 1679 } 1680 #endif /* SQLITE_OMIT_SUBQUERY */ 1681 1682 /* 1683 ** Generate an instruction that will put the integer describe by 1684 ** text z[0..n-1] on the stack. 1685 */ 1686 static void codeInteger(Vdbe *v, const char *z, int n){ 1687 assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); 1688 if( z ){ 1689 int i; 1690 if( sqlite3GetInt32(z, &i) ){ 1691 sqlite3VdbeAddOp(v, OP_Integer, i, 0); 1692 }else if( sqlite3FitsIn64Bits(z) ){ 1693 sqlite3VdbeOp3(v, OP_Int64, 0, 0, z, n); 1694 }else{ 1695 sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n); 1696 } 1697 } 1698 } 1699 1700 1701 /* 1702 ** Generate code that will extract the iColumn-th column from 1703 ** table pTab and push that column value on the stack. There 1704 ** is an open cursor to pTab in iTable. If iColumn<0 then 1705 ** code is generated that extracts the rowid. 1706 */ 1707 void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){ 1708 if( iColumn<0 ){ 1709 int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid; 1710 sqlite3VdbeAddOp(v, op, iTable, 0); 1711 }else if( pTab==0 ){ 1712 sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn); 1713 }else{ 1714 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 1715 sqlite3VdbeAddOp(v, op, iTable, iColumn); 1716 sqlite3ColumnDefault(v, pTab, iColumn); 1717 #ifndef SQLITE_OMIT_FLOATING_POINT 1718 if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){ 1719 sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0); 1720 } 1721 #endif 1722 } 1723 } 1724 1725 /* 1726 ** Generate code into the current Vdbe to evaluate the given 1727 ** expression and leave the result on the top of stack. 1728 ** 1729 ** This code depends on the fact that certain token values (ex: TK_EQ) 1730 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 1731 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 1732 ** the make process cause these values to align. Assert()s in the code 1733 ** below verify that the numbers are aligned correctly. 1734 */ 1735 void sqlite3ExprCode(Parse *pParse, Expr *pExpr){ 1736 Vdbe *v = pParse->pVdbe; 1737 int op; 1738 int stackChng = 1; /* Amount of change to stack depth */ 1739 1740 if( v==0 ) return; 1741 if( pExpr==0 ){ 1742 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1743 return; 1744 } 1745 op = pExpr->op; 1746 switch( op ){ 1747 case TK_AGG_COLUMN: { 1748 AggInfo *pAggInfo = pExpr->pAggInfo; 1749 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 1750 if( !pAggInfo->directMode ){ 1751 sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0); 1752 break; 1753 }else if( pAggInfo->useSortingIdx ){ 1754 sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx, 1755 pCol->iSorterColumn); 1756 break; 1757 } 1758 /* Otherwise, fall thru into the TK_COLUMN case */ 1759 } 1760 case TK_COLUMN: { 1761 if( pExpr->iTable<0 ){ 1762 /* This only happens when coding check constraints */ 1763 assert( pParse->ckOffset>0 ); 1764 sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1); 1765 }else{ 1766 sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable); 1767 } 1768 break; 1769 } 1770 case TK_INTEGER: { 1771 codeInteger(v, (char*)pExpr->token.z, pExpr->token.n); 1772 break; 1773 } 1774 case TK_FLOAT: 1775 case TK_STRING: { 1776 assert( TK_FLOAT==OP_Real ); 1777 assert( TK_STRING==OP_String8 ); 1778 sqlite3DequoteExpr(pParse->db, pExpr); 1779 sqlite3VdbeOp3(v, op, 0, 0, (char*)pExpr->token.z, pExpr->token.n); 1780 break; 1781 } 1782 case TK_NULL: { 1783 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1784 break; 1785 } 1786 #ifndef SQLITE_OMIT_BLOB_LITERAL 1787 case TK_BLOB: { 1788 int n; 1789 const char *z; 1790 assert( TK_BLOB==OP_HexBlob ); 1791 n = pExpr->token.n - 3; 1792 z = (char*)pExpr->token.z + 2; 1793 assert( n>=0 ); 1794 if( n==0 ){ 1795 z = ""; 1796 } 1797 sqlite3VdbeOp3(v, op, 0, 0, z, n); 1798 break; 1799 } 1800 #endif 1801 case TK_VARIABLE: { 1802 sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0); 1803 if( pExpr->token.n>1 ){ 1804 sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n); 1805 } 1806 break; 1807 } 1808 case TK_REGISTER: { 1809 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0); 1810 break; 1811 } 1812 #ifndef SQLITE_OMIT_CAST 1813 case TK_CAST: { 1814 /* Expressions of the form: CAST(pLeft AS token) */ 1815 int aff, to_op; 1816 sqlite3ExprCode(pParse, pExpr->pLeft); 1817 aff = sqlite3AffinityType(&pExpr->token); 1818 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 1819 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 1820 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 1821 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 1822 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 1823 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 1824 sqlite3VdbeAddOp(v, to_op, 0, 0); 1825 stackChng = 0; 1826 break; 1827 } 1828 #endif /* SQLITE_OMIT_CAST */ 1829 case TK_LT: 1830 case TK_LE: 1831 case TK_GT: 1832 case TK_GE: 1833 case TK_NE: 1834 case TK_EQ: { 1835 assert( TK_LT==OP_Lt ); 1836 assert( TK_LE==OP_Le ); 1837 assert( TK_GT==OP_Gt ); 1838 assert( TK_GE==OP_Ge ); 1839 assert( TK_EQ==OP_Eq ); 1840 assert( TK_NE==OP_Ne ); 1841 sqlite3ExprCode(pParse, pExpr->pLeft); 1842 sqlite3ExprCode(pParse, pExpr->pRight); 1843 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0); 1844 stackChng = -1; 1845 break; 1846 } 1847 case TK_AND: 1848 case TK_OR: 1849 case TK_PLUS: 1850 case TK_STAR: 1851 case TK_MINUS: 1852 case TK_REM: 1853 case TK_BITAND: 1854 case TK_BITOR: 1855 case TK_SLASH: 1856 case TK_LSHIFT: 1857 case TK_RSHIFT: 1858 case TK_CONCAT: { 1859 assert( TK_AND==OP_And ); 1860 assert( TK_OR==OP_Or ); 1861 assert( TK_PLUS==OP_Add ); 1862 assert( TK_MINUS==OP_Subtract ); 1863 assert( TK_REM==OP_Remainder ); 1864 assert( TK_BITAND==OP_BitAnd ); 1865 assert( TK_BITOR==OP_BitOr ); 1866 assert( TK_SLASH==OP_Divide ); 1867 assert( TK_LSHIFT==OP_ShiftLeft ); 1868 assert( TK_RSHIFT==OP_ShiftRight ); 1869 assert( TK_CONCAT==OP_Concat ); 1870 sqlite3ExprCode(pParse, pExpr->pLeft); 1871 sqlite3ExprCode(pParse, pExpr->pRight); 1872 sqlite3VdbeAddOp(v, op, 0, 0); 1873 stackChng = -1; 1874 break; 1875 } 1876 case TK_UMINUS: { 1877 Expr *pLeft = pExpr->pLeft; 1878 assert( pLeft ); 1879 if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ 1880 Token *p = &pLeft->token; 1881 char *z = sqlite3MPrintf(pParse->db, "-%.*s", p->n, p->z); 1882 if( pLeft->op==TK_FLOAT ){ 1883 sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1); 1884 }else{ 1885 codeInteger(v, z, p->n+1); 1886 } 1887 sqlite3_free(z); 1888 break; 1889 } 1890 /* Fall through into TK_NOT */ 1891 } 1892 case TK_BITNOT: 1893 case TK_NOT: { 1894 assert( TK_BITNOT==OP_BitNot ); 1895 assert( TK_NOT==OP_Not ); 1896 sqlite3ExprCode(pParse, pExpr->pLeft); 1897 sqlite3VdbeAddOp(v, op, 0, 0); 1898 stackChng = 0; 1899 break; 1900 } 1901 case TK_ISNULL: 1902 case TK_NOTNULL: { 1903 int dest; 1904 assert( TK_ISNULL==OP_IsNull ); 1905 assert( TK_NOTNULL==OP_NotNull ); 1906 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 1907 sqlite3ExprCode(pParse, pExpr->pLeft); 1908 dest = sqlite3VdbeCurrentAddr(v) + 2; 1909 sqlite3VdbeAddOp(v, op, 1, dest); 1910 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); 1911 stackChng = 0; 1912 break; 1913 } 1914 case TK_AGG_FUNCTION: { 1915 AggInfo *pInfo = pExpr->pAggInfo; 1916 if( pInfo==0 ){ 1917 sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", 1918 &pExpr->span); 1919 }else{ 1920 sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0); 1921 } 1922 break; 1923 } 1924 case TK_CONST_FUNC: 1925 case TK_FUNCTION: { 1926 ExprList *pList = pExpr->pList; 1927 int nExpr = pList ? pList->nExpr : 0; 1928 FuncDef *pDef; 1929 int nId; 1930 const char *zId; 1931 int constMask = 0; 1932 int i; 1933 sqlite3 *db = pParse->db; 1934 u8 enc = ENC(db); 1935 CollSeq *pColl = 0; 1936 1937 zId = (char*)pExpr->token.z; 1938 nId = pExpr->token.n; 1939 pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); 1940 assert( pDef!=0 ); 1941 nExpr = sqlite3ExprCodeExprList(pParse, pList); 1942 #ifndef SQLITE_OMIT_VIRTUALTABLE 1943 /* Possibly overload the function if the first argument is 1944 ** a virtual table column. 1945 ** 1946 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 1947 ** second argument, not the first, as the argument to test to 1948 ** see if it is a column in a virtual table. This is done because 1949 ** the left operand of infix functions (the operand we want to 1950 ** control overloading) ends up as the second argument to the 1951 ** function. The expression "A glob B" is equivalent to 1952 ** "glob(B,A). We want to use the A in "A glob B" to test 1953 ** for function overloading. But we use the B term in "glob(B,A)". 1954 */ 1955 if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){ 1956 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr); 1957 }else if( nExpr>0 ){ 1958 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr); 1959 } 1960 #endif 1961 for(i=0; i<nExpr && i<32; i++){ 1962 if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ 1963 constMask |= (1<<i); 1964 } 1965 if( pDef->needCollSeq && !pColl ){ 1966 pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); 1967 } 1968 } 1969 if( pDef->needCollSeq ){ 1970 if( !pColl ) pColl = pParse->db->pDfltColl; 1971 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); 1972 } 1973 sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF); 1974 stackChng = 1-nExpr; 1975 break; 1976 } 1977 #ifndef SQLITE_OMIT_SUBQUERY 1978 case TK_EXISTS: 1979 case TK_SELECT: { 1980 if( pExpr->iColumn==0 ){ 1981 sqlite3CodeSubselect(pParse, pExpr); 1982 } 1983 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); 1984 VdbeComment((v, "# load subquery result")); 1985 break; 1986 } 1987 case TK_IN: { 1988 int addr; 1989 char affinity; 1990 int ckOffset = pParse->ckOffset; 1991 sqlite3CodeSubselect(pParse, pExpr); 1992 1993 /* Figure out the affinity to use to create a key from the results 1994 ** of the expression. affinityStr stores a static string suitable for 1995 ** P3 of OP_MakeRecord. 1996 */ 1997 affinity = comparisonAffinity(pExpr); 1998 1999 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 2000 pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0); 2001 2002 /* Code the <expr> from "<expr> IN (...)". The temporary table 2003 ** pExpr->iTable contains the values that make up the (...) set. 2004 */ 2005 sqlite3ExprCode(pParse, pExpr->pLeft); 2006 addr = sqlite3VdbeCurrentAddr(v); 2007 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4); /* addr + 0 */ 2008 sqlite3VdbeAddOp(v, OP_Pop, 2, 0); 2009 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 2010 sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7); 2011 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); /* addr + 4 */ 2012 sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7); 2013 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */ 2014 2015 break; 2016 } 2017 #endif 2018 case TK_BETWEEN: { 2019 Expr *pLeft = pExpr->pLeft; 2020 struct ExprList_item *pLItem = pExpr->pList->a; 2021 Expr *pRight = pLItem->pExpr; 2022 sqlite3ExprCode(pParse, pLeft); 2023 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 2024 sqlite3ExprCode(pParse, pRight); 2025 codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0); 2026 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 2027 pLItem++; 2028 pRight = pLItem->pExpr; 2029 sqlite3ExprCode(pParse, pRight); 2030 codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0); 2031 sqlite3VdbeAddOp(v, OP_And, 0, 0); 2032 break; 2033 } 2034 case TK_UPLUS: { 2035 sqlite3ExprCode(pParse, pExpr->pLeft); 2036 stackChng = 0; 2037 break; 2038 } 2039 case TK_CASE: { 2040 int expr_end_label; 2041 int jumpInst; 2042 int nExpr; 2043 int i; 2044 ExprList *pEList; 2045 struct ExprList_item *aListelem; 2046 2047 assert(pExpr->pList); 2048 assert((pExpr->pList->nExpr % 2) == 0); 2049 assert(pExpr->pList->nExpr > 0); 2050 pEList = pExpr->pList; 2051 aListelem = pEList->a; 2052 nExpr = pEList->nExpr; 2053 expr_end_label = sqlite3VdbeMakeLabel(v); 2054 if( pExpr->pLeft ){ 2055 sqlite3ExprCode(pParse, pExpr->pLeft); 2056 } 2057 for(i=0; i<nExpr; i=i+2){ 2058 sqlite3ExprCode(pParse, aListelem[i].pExpr); 2059 if( pExpr->pLeft ){ 2060 sqlite3VdbeAddOp(v, OP_Dup, 1, 1); 2061 jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr, 2062 OP_Ne, 0, 1); 2063 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2064 }else{ 2065 jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0); 2066 } 2067 sqlite3ExprCode(pParse, aListelem[i+1].pExpr); 2068 sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label); 2069 sqlite3VdbeJumpHere(v, jumpInst); 2070 } 2071 if( pExpr->pLeft ){ 2072 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2073 } 2074 if( pExpr->pRight ){ 2075 sqlite3ExprCode(pParse, pExpr->pRight); 2076 }else{ 2077 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 2078 } 2079 sqlite3VdbeResolveLabel(v, expr_end_label); 2080 break; 2081 } 2082 #ifndef SQLITE_OMIT_TRIGGER 2083 case TK_RAISE: { 2084 if( !pParse->trigStack ){ 2085 sqlite3ErrorMsg(pParse, 2086 "RAISE() may only be used within a trigger-program"); 2087 return; 2088 } 2089 if( pExpr->iColumn!=OE_Ignore ){ 2090 assert( pExpr->iColumn==OE_Rollback || 2091 pExpr->iColumn == OE_Abort || 2092 pExpr->iColumn == OE_Fail ); 2093 sqlite3DequoteExpr(pParse->db, pExpr); 2094 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 2095 (char*)pExpr->token.z, pExpr->token.n); 2096 } else { 2097 assert( pExpr->iColumn == OE_Ignore ); 2098 sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0); 2099 sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump); 2100 VdbeComment((v, "# raise(IGNORE)")); 2101 } 2102 stackChng = 0; 2103 break; 2104 } 2105 #endif 2106 } 2107 2108 if( pParse->ckOffset ){ 2109 pParse->ckOffset += stackChng; 2110 assert( pParse->ckOffset ); 2111 } 2112 } 2113 2114 #ifndef SQLITE_OMIT_TRIGGER 2115 /* 2116 ** Generate code that evalutes the given expression and leaves the result 2117 ** on the stack. See also sqlite3ExprCode(). 2118 ** 2119 ** This routine might also cache the result and modify the pExpr tree 2120 ** so that it will make use of the cached result on subsequent evaluations 2121 ** rather than evaluate the whole expression again. Trivial expressions are 2122 ** not cached. If the expression is cached, its result is stored in a 2123 ** memory location. 2124 */ 2125 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){ 2126 Vdbe *v = pParse->pVdbe; 2127 int iMem; 2128 int addr1, addr2; 2129 if( v==0 ) return; 2130 addr1 = sqlite3VdbeCurrentAddr(v); 2131 sqlite3ExprCode(pParse, pExpr); 2132 addr2 = sqlite3VdbeCurrentAddr(v); 2133 if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){ 2134 iMem = pExpr->iTable = pParse->nMem++; 2135 sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); 2136 pExpr->op = TK_REGISTER; 2137 } 2138 } 2139 #endif 2140 2141 /* 2142 ** Generate code that pushes the value of every element of the given 2143 ** expression list onto the stack. 2144 ** 2145 ** Return the number of elements pushed onto the stack. 2146 */ 2147 int sqlite3ExprCodeExprList( 2148 Parse *pParse, /* Parsing context */ 2149 ExprList *pList /* The expression list to be coded */ 2150 ){ 2151 struct ExprList_item *pItem; 2152 int i, n; 2153 if( pList==0 ) return 0; 2154 n = pList->nExpr; 2155 for(pItem=pList->a, i=n; i>0; i--, pItem++){ 2156 sqlite3ExprCode(pParse, pItem->pExpr); 2157 } 2158 return n; 2159 } 2160 2161 /* 2162 ** Generate code for a boolean expression such that a jump is made 2163 ** to the label "dest" if the expression is true but execution 2164 ** continues straight thru if the expression is false. 2165 ** 2166 ** If the expression evaluates to NULL (neither true nor false), then 2167 ** take the jump if the jumpIfNull flag is true. 2168 ** 2169 ** This code depends on the fact that certain token values (ex: TK_EQ) 2170 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 2171 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 2172 ** the make process cause these values to align. Assert()s in the code 2173 ** below verify that the numbers are aligned correctly. 2174 */ 2175 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2176 Vdbe *v = pParse->pVdbe; 2177 int op = 0; 2178 int ckOffset = pParse->ckOffset; 2179 if( v==0 || pExpr==0 ) return; 2180 op = pExpr->op; 2181 switch( op ){ 2182 case TK_AND: { 2183 int d2 = sqlite3VdbeMakeLabel(v); 2184 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull); 2185 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2186 sqlite3VdbeResolveLabel(v, d2); 2187 break; 2188 } 2189 case TK_OR: { 2190 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 2191 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2192 break; 2193 } 2194 case TK_NOT: { 2195 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 2196 break; 2197 } 2198 case TK_LT: 2199 case TK_LE: 2200 case TK_GT: 2201 case TK_GE: 2202 case TK_NE: 2203 case TK_EQ: { 2204 assert( TK_LT==OP_Lt ); 2205 assert( TK_LE==OP_Le ); 2206 assert( TK_GT==OP_Gt ); 2207 assert( TK_GE==OP_Ge ); 2208 assert( TK_EQ==OP_Eq ); 2209 assert( TK_NE==OP_Ne ); 2210 sqlite3ExprCode(pParse, pExpr->pLeft); 2211 sqlite3ExprCode(pParse, pExpr->pRight); 2212 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); 2213 break; 2214 } 2215 case TK_ISNULL: 2216 case TK_NOTNULL: { 2217 assert( TK_ISNULL==OP_IsNull ); 2218 assert( TK_NOTNULL==OP_NotNull ); 2219 sqlite3ExprCode(pParse, pExpr->pLeft); 2220 sqlite3VdbeAddOp(v, op, 1, dest); 2221 break; 2222 } 2223 case TK_BETWEEN: { 2224 /* The expression "x BETWEEN y AND z" is implemented as: 2225 ** 2226 ** 1 IF (x < y) GOTO 3 2227 ** 2 IF (x <= z) GOTO <dest> 2228 ** 3 ... 2229 */ 2230 int addr; 2231 Expr *pLeft = pExpr->pLeft; 2232 Expr *pRight = pExpr->pList->a[0].pExpr; 2233 sqlite3ExprCode(pParse, pLeft); 2234 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 2235 sqlite3ExprCode(pParse, pRight); 2236 addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull); 2237 2238 pRight = pExpr->pList->a[1].pExpr; 2239 sqlite3ExprCode(pParse, pRight); 2240 codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull); 2241 2242 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 2243 sqlite3VdbeJumpHere(v, addr); 2244 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2245 break; 2246 } 2247 default: { 2248 sqlite3ExprCode(pParse, pExpr); 2249 sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest); 2250 break; 2251 } 2252 } 2253 pParse->ckOffset = ckOffset; 2254 } 2255 2256 /* 2257 ** Generate code for a boolean expression such that a jump is made 2258 ** to the label "dest" if the expression is false but execution 2259 ** continues straight thru if the expression is true. 2260 ** 2261 ** If the expression evaluates to NULL (neither true nor false) then 2262 ** jump if jumpIfNull is true or fall through if jumpIfNull is false. 2263 */ 2264 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2265 Vdbe *v = pParse->pVdbe; 2266 int op = 0; 2267 int ckOffset = pParse->ckOffset; 2268 if( v==0 || pExpr==0 ) return; 2269 2270 /* The value of pExpr->op and op are related as follows: 2271 ** 2272 ** pExpr->op op 2273 ** --------- ---------- 2274 ** TK_ISNULL OP_NotNull 2275 ** TK_NOTNULL OP_IsNull 2276 ** TK_NE OP_Eq 2277 ** TK_EQ OP_Ne 2278 ** TK_GT OP_Le 2279 ** TK_LE OP_Gt 2280 ** TK_GE OP_Lt 2281 ** TK_LT OP_Ge 2282 ** 2283 ** For other values of pExpr->op, op is undefined and unused. 2284 ** The value of TK_ and OP_ constants are arranged such that we 2285 ** can compute the mapping above using the following expression. 2286 ** Assert()s verify that the computation is correct. 2287 */ 2288 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 2289 2290 /* Verify correct alignment of TK_ and OP_ constants 2291 */ 2292 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 2293 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 2294 assert( pExpr->op!=TK_NE || op==OP_Eq ); 2295 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 2296 assert( pExpr->op!=TK_LT || op==OP_Ge ); 2297 assert( pExpr->op!=TK_LE || op==OP_Gt ); 2298 assert( pExpr->op!=TK_GT || op==OP_Le ); 2299 assert( pExpr->op!=TK_GE || op==OP_Lt ); 2300 2301 switch( pExpr->op ){ 2302 case TK_AND: { 2303 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 2304 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 2305 break; 2306 } 2307 case TK_OR: { 2308 int d2 = sqlite3VdbeMakeLabel(v); 2309 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull); 2310 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 2311 sqlite3VdbeResolveLabel(v, d2); 2312 break; 2313 } 2314 case TK_NOT: { 2315 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 2316 break; 2317 } 2318 case TK_LT: 2319 case TK_LE: 2320 case TK_GT: 2321 case TK_GE: 2322 case TK_NE: 2323 case TK_EQ: { 2324 sqlite3ExprCode(pParse, pExpr->pLeft); 2325 sqlite3ExprCode(pParse, pExpr->pRight); 2326 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); 2327 break; 2328 } 2329 case TK_ISNULL: 2330 case TK_NOTNULL: { 2331 sqlite3ExprCode(pParse, pExpr->pLeft); 2332 sqlite3VdbeAddOp(v, op, 1, dest); 2333 break; 2334 } 2335 case TK_BETWEEN: { 2336 /* The expression is "x BETWEEN y AND z". It is implemented as: 2337 ** 2338 ** 1 IF (x >= y) GOTO 3 2339 ** 2 GOTO <dest> 2340 ** 3 IF (x > z) GOTO <dest> 2341 */ 2342 int addr; 2343 Expr *pLeft = pExpr->pLeft; 2344 Expr *pRight = pExpr->pList->a[0].pExpr; 2345 sqlite3ExprCode(pParse, pLeft); 2346 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 2347 sqlite3ExprCode(pParse, pRight); 2348 addr = sqlite3VdbeCurrentAddr(v); 2349 codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull); 2350 2351 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2352 sqlite3VdbeAddOp(v, OP_Goto, 0, dest); 2353 pRight = pExpr->pList->a[1].pExpr; 2354 sqlite3ExprCode(pParse, pRight); 2355 codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull); 2356 break; 2357 } 2358 default: { 2359 sqlite3ExprCode(pParse, pExpr); 2360 sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest); 2361 break; 2362 } 2363 } 2364 pParse->ckOffset = ckOffset; 2365 } 2366 2367 /* 2368 ** Do a deep comparison of two expression trees. Return TRUE (non-zero) 2369 ** if they are identical and return FALSE if they differ in any way. 2370 ** 2371 ** Sometimes this routine will return FALSE even if the two expressions 2372 ** really are equivalent. If we cannot prove that the expressions are 2373 ** identical, we return FALSE just to be safe. So if this routine 2374 ** returns false, then you do not really know for certain if the two 2375 ** expressions are the same. But if you get a TRUE return, then you 2376 ** can be sure the expressions are the same. In the places where 2377 ** this routine is used, it does not hurt to get an extra FALSE - that 2378 ** just might result in some slightly slower code. But returning 2379 ** an incorrect TRUE could lead to a malfunction. 2380 */ 2381 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 2382 int i; 2383 if( pA==0||pB==0 ){ 2384 return pB==pA; 2385 } 2386 if( pA->op!=pB->op ) return 0; 2387 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; 2388 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; 2389 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; 2390 if( pA->pList ){ 2391 if( pB->pList==0 ) return 0; 2392 if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; 2393 for(i=0; i<pA->pList->nExpr; i++){ 2394 if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ 2395 return 0; 2396 } 2397 } 2398 }else if( pB->pList ){ 2399 return 0; 2400 } 2401 if( pA->pSelect || pB->pSelect ) return 0; 2402 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; 2403 if( pA->op!=TK_COLUMN && pA->token.z ){ 2404 if( pB->token.z==0 ) return 0; 2405 if( pB->token.n!=pA->token.n ) return 0; 2406 if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ 2407 return 0; 2408 } 2409 } 2410 return 1; 2411 } 2412 2413 2414 /* 2415 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 2416 ** the new element. Return a negative number if malloc fails. 2417 */ 2418 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 2419 int i; 2420 pInfo->aCol = sqlite3ArrayAllocate( 2421 db, 2422 pInfo->aCol, 2423 sizeof(pInfo->aCol[0]), 2424 3, 2425 &pInfo->nColumn, 2426 &pInfo->nColumnAlloc, 2427 &i 2428 ); 2429 return i; 2430 } 2431 2432 /* 2433 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 2434 ** the new element. Return a negative number if malloc fails. 2435 */ 2436 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 2437 int i; 2438 pInfo->aFunc = sqlite3ArrayAllocate( 2439 db, 2440 pInfo->aFunc, 2441 sizeof(pInfo->aFunc[0]), 2442 3, 2443 &pInfo->nFunc, 2444 &pInfo->nFuncAlloc, 2445 &i 2446 ); 2447 return i; 2448 } 2449 2450 /* 2451 ** This is an xFunc for walkExprTree() used to implement 2452 ** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 2453 ** for additional information. 2454 ** 2455 ** This routine analyzes the aggregate function at pExpr. 2456 */ 2457 static int analyzeAggregate(void *pArg, Expr *pExpr){ 2458 int i; 2459 NameContext *pNC = (NameContext *)pArg; 2460 Parse *pParse = pNC->pParse; 2461 SrcList *pSrcList = pNC->pSrcList; 2462 AggInfo *pAggInfo = pNC->pAggInfo; 2463 2464 switch( pExpr->op ){ 2465 case TK_AGG_COLUMN: 2466 case TK_COLUMN: { 2467 /* Check to see if the column is in one of the tables in the FROM 2468 ** clause of the aggregate query */ 2469 if( pSrcList ){ 2470 struct SrcList_item *pItem = pSrcList->a; 2471 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 2472 struct AggInfo_col *pCol; 2473 if( pExpr->iTable==pItem->iCursor ){ 2474 /* If we reach this point, it means that pExpr refers to a table 2475 ** that is in the FROM clause of the aggregate query. 2476 ** 2477 ** Make an entry for the column in pAggInfo->aCol[] if there 2478 ** is not an entry there already. 2479 */ 2480 int k; 2481 pCol = pAggInfo->aCol; 2482 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 2483 if( pCol->iTable==pExpr->iTable && 2484 pCol->iColumn==pExpr->iColumn ){ 2485 break; 2486 } 2487 } 2488 if( (k>=pAggInfo->nColumn) 2489 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 2490 ){ 2491 pCol = &pAggInfo->aCol[k]; 2492 pCol->pTab = pExpr->pTab; 2493 pCol->iTable = pExpr->iTable; 2494 pCol->iColumn = pExpr->iColumn; 2495 pCol->iMem = pParse->nMem++; 2496 pCol->iSorterColumn = -1; 2497 pCol->pExpr = pExpr; 2498 if( pAggInfo->pGroupBy ){ 2499 int j, n; 2500 ExprList *pGB = pAggInfo->pGroupBy; 2501 struct ExprList_item *pTerm = pGB->a; 2502 n = pGB->nExpr; 2503 for(j=0; j<n; j++, pTerm++){ 2504 Expr *pE = pTerm->pExpr; 2505 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 2506 pE->iColumn==pExpr->iColumn ){ 2507 pCol->iSorterColumn = j; 2508 break; 2509 } 2510 } 2511 } 2512 if( pCol->iSorterColumn<0 ){ 2513 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 2514 } 2515 } 2516 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 2517 ** because it was there before or because we just created it). 2518 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 2519 ** pAggInfo->aCol[] entry. 2520 */ 2521 pExpr->pAggInfo = pAggInfo; 2522 pExpr->op = TK_AGG_COLUMN; 2523 pExpr->iAgg = k; 2524 break; 2525 } /* endif pExpr->iTable==pItem->iCursor */ 2526 } /* end loop over pSrcList */ 2527 } 2528 return 1; 2529 } 2530 case TK_AGG_FUNCTION: { 2531 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 2532 ** to be ignored */ 2533 if( pNC->nDepth==0 ){ 2534 /* Check to see if pExpr is a duplicate of another aggregate 2535 ** function that is already in the pAggInfo structure 2536 */ 2537 struct AggInfo_func *pItem = pAggInfo->aFunc; 2538 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 2539 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ 2540 break; 2541 } 2542 } 2543 if( i>=pAggInfo->nFunc ){ 2544 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 2545 */ 2546 u8 enc = ENC(pParse->db); 2547 i = addAggInfoFunc(pParse->db, pAggInfo); 2548 if( i>=0 ){ 2549 pItem = &pAggInfo->aFunc[i]; 2550 pItem->pExpr = pExpr; 2551 pItem->iMem = pParse->nMem++; 2552 pItem->pFunc = sqlite3FindFunction(pParse->db, 2553 (char*)pExpr->token.z, pExpr->token.n, 2554 pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); 2555 if( pExpr->flags & EP_Distinct ){ 2556 pItem->iDistinct = pParse->nTab++; 2557 }else{ 2558 pItem->iDistinct = -1; 2559 } 2560 } 2561 } 2562 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 2563 */ 2564 pExpr->iAgg = i; 2565 pExpr->pAggInfo = pAggInfo; 2566 return 1; 2567 } 2568 } 2569 } 2570 2571 /* Recursively walk subqueries looking for TK_COLUMN nodes that need 2572 ** to be changed to TK_AGG_COLUMN. But increment nDepth so that 2573 ** TK_AGG_FUNCTION nodes in subqueries will be unchanged. 2574 */ 2575 if( pExpr->pSelect ){ 2576 pNC->nDepth++; 2577 walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); 2578 pNC->nDepth--; 2579 } 2580 return 0; 2581 } 2582 2583 /* 2584 ** Analyze the given expression looking for aggregate functions and 2585 ** for variables that need to be added to the pParse->aAgg[] array. 2586 ** Make additional entries to the pParse->aAgg[] array as necessary. 2587 ** 2588 ** This routine should only be called after the expression has been 2589 ** analyzed by sqlite3ExprResolveNames(). 2590 ** 2591 ** If errors are seen, leave an error message in zErrMsg and return 2592 ** the number of errors. 2593 */ 2594 int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 2595 int nErr = pNC->pParse->nErr; 2596 walkExprTree(pExpr, analyzeAggregate, pNC); 2597 return pNC->pParse->nErr - nErr; 2598 } 2599 2600 /* 2601 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 2602 ** expression list. Return the number of errors. 2603 ** 2604 ** If an error is found, the analysis is cut short. 2605 */ 2606 int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 2607 struct ExprList_item *pItem; 2608 int i; 2609 int nErr = 0; 2610 if( pList ){ 2611 for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){ 2612 nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 2613 } 2614 } 2615 return nErr; 2616 } 2617