xref: /sqlite-3.40.0/src/expr.c (revision 8d889afc)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
48     assert( pExpr->op==TK_COLLATE
49          || pExpr->op==TK_IF_NULL_ROW
50          || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
51     pExpr = pExpr->pLeft;
52     assert( pExpr!=0 );
53   }
54   op = pExpr->op;
55   if( op==TK_REGISTER ) op = pExpr->op2;
56   if( (op==TK_COLUMN || op==TK_AGG_COLUMN) && pExpr->y.pTab ){
57     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
58   }
59   if( op==TK_SELECT ){
60     assert( pExpr->flags&EP_xIsSelect );
61     assert( pExpr->x.pSelect!=0 );
62     assert( pExpr->x.pSelect->pEList!=0 );
63     assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
64     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
65   }
66 #ifndef SQLITE_OMIT_CAST
67   if( op==TK_CAST ){
68     assert( !ExprHasProperty(pExpr, EP_IntValue) );
69     return sqlite3AffinityType(pExpr->u.zToken, 0);
70   }
71 #endif
72   if( op==TK_SELECT_COLUMN ){
73     assert( pExpr->pLeft->flags&EP_xIsSelect );
74     return sqlite3ExprAffinity(
75         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
76     );
77   }
78   if( op==TK_VECTOR ){
79     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
80   }
81   return pExpr->affExpr;
82 }
83 
84 /*
85 ** Set the collating sequence for expression pExpr to be the collating
86 ** sequence named by pToken.   Return a pointer to a new Expr node that
87 ** implements the COLLATE operator.
88 **
89 ** If a memory allocation error occurs, that fact is recorded in pParse->db
90 ** and the pExpr parameter is returned unchanged.
91 */
92 Expr *sqlite3ExprAddCollateToken(
93   Parse *pParse,           /* Parsing context */
94   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
95   const Token *pCollName,  /* Name of collating sequence */
96   int dequote              /* True to dequote pCollName */
97 ){
98   if( pCollName->n>0 ){
99     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
100     if( pNew ){
101       pNew->pLeft = pExpr;
102       pNew->flags |= EP_Collate|EP_Skip;
103       pExpr = pNew;
104     }
105   }
106   return pExpr;
107 }
108 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
109   Token s;
110   assert( zC!=0 );
111   sqlite3TokenInit(&s, (char*)zC);
112   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
113 }
114 
115 /*
116 ** Skip over any TK_COLLATE operators.
117 */
118 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
119   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
120     assert( pExpr->op==TK_COLLATE );
121     pExpr = pExpr->pLeft;
122   }
123   return pExpr;
124 }
125 
126 /*
127 ** Skip over any TK_COLLATE operators and/or any unlikely()
128 ** or likelihood() or likely() functions at the root of an
129 ** expression.
130 */
131 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
132   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
133     if( ExprHasProperty(pExpr, EP_Unlikely) ){
134       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
135       assert( pExpr->x.pList->nExpr>0 );
136       assert( pExpr->op==TK_FUNCTION );
137       pExpr = pExpr->x.pList->a[0].pExpr;
138     }else{
139       assert( pExpr->op==TK_COLLATE );
140       pExpr = pExpr->pLeft;
141     }
142   }
143   return pExpr;
144 }
145 
146 /*
147 ** Return the collation sequence for the expression pExpr. If
148 ** there is no defined collating sequence, return NULL.
149 **
150 ** See also: sqlite3ExprNNCollSeq()
151 **
152 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
153 ** default collation if pExpr has no defined collation.
154 **
155 ** The collating sequence might be determined by a COLLATE operator
156 ** or by the presence of a column with a defined collating sequence.
157 ** COLLATE operators take first precedence.  Left operands take
158 ** precedence over right operands.
159 */
160 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
161   sqlite3 *db = pParse->db;
162   CollSeq *pColl = 0;
163   const Expr *p = pExpr;
164   while( p ){
165     int op = p->op;
166     if( op==TK_REGISTER ) op = p->op2;
167     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
168      && p->y.pTab!=0
169     ){
170       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
171       ** a TK_COLUMN but was previously evaluated and cached in a register */
172       int j = p->iColumn;
173       if( j>=0 ){
174         const char *zColl = p->y.pTab->aCol[j].zColl;
175         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
176       }
177       break;
178     }
179     if( op==TK_CAST || op==TK_UPLUS ){
180       p = p->pLeft;
181       continue;
182     }
183     if( op==TK_VECTOR ){
184       p = p->x.pList->a[0].pExpr;
185       continue;
186     }
187     if( op==TK_COLLATE ){
188       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
189       break;
190     }
191     if( p->flags & EP_Collate ){
192       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
193         p = p->pLeft;
194       }else{
195         Expr *pNext  = p->pRight;
196         /* The Expr.x union is never used at the same time as Expr.pRight */
197         assert( p->x.pList==0 || p->pRight==0 );
198         if( p->x.pList!=0
199          && !db->mallocFailed
200          && ALWAYS(!ExprHasProperty(p, EP_xIsSelect))
201         ){
202           int i;
203           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
204             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
205               pNext = p->x.pList->a[i].pExpr;
206               break;
207             }
208           }
209         }
210         p = pNext;
211       }
212     }else{
213       break;
214     }
215   }
216   if( sqlite3CheckCollSeq(pParse, pColl) ){
217     pColl = 0;
218   }
219   return pColl;
220 }
221 
222 /*
223 ** Return the collation sequence for the expression pExpr. If
224 ** there is no defined collating sequence, return a pointer to the
225 ** defautl collation sequence.
226 **
227 ** See also: sqlite3ExprCollSeq()
228 **
229 ** The sqlite3ExprCollSeq() routine works the same except that it
230 ** returns NULL if there is no defined collation.
231 */
232 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
233   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
234   if( p==0 ) p = pParse->db->pDfltColl;
235   assert( p!=0 );
236   return p;
237 }
238 
239 /*
240 ** Return TRUE if the two expressions have equivalent collating sequences.
241 */
242 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
243   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
244   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
245   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
246 }
247 
248 /*
249 ** pExpr is an operand of a comparison operator.  aff2 is the
250 ** type affinity of the other operand.  This routine returns the
251 ** type affinity that should be used for the comparison operator.
252 */
253 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
254   char aff1 = sqlite3ExprAffinity(pExpr);
255   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
256     /* Both sides of the comparison are columns. If one has numeric
257     ** affinity, use that. Otherwise use no affinity.
258     */
259     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
260       return SQLITE_AFF_NUMERIC;
261     }else{
262       return SQLITE_AFF_BLOB;
263     }
264   }else{
265     /* One side is a column, the other is not. Use the columns affinity. */
266     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
267     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
268   }
269 }
270 
271 /*
272 ** pExpr is a comparison operator.  Return the type affinity that should
273 ** be applied to both operands prior to doing the comparison.
274 */
275 static char comparisonAffinity(const Expr *pExpr){
276   char aff;
277   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
278           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
279           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
280   assert( pExpr->pLeft );
281   aff = sqlite3ExprAffinity(pExpr->pLeft);
282   if( pExpr->pRight ){
283     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
284   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
285     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
286   }else if( aff==0 ){
287     aff = SQLITE_AFF_BLOB;
288   }
289   return aff;
290 }
291 
292 /*
293 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
294 ** idx_affinity is the affinity of an indexed column. Return true
295 ** if the index with affinity idx_affinity may be used to implement
296 ** the comparison in pExpr.
297 */
298 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
299   char aff = comparisonAffinity(pExpr);
300   if( aff<SQLITE_AFF_TEXT ){
301     return 1;
302   }
303   if( aff==SQLITE_AFF_TEXT ){
304     return idx_affinity==SQLITE_AFF_TEXT;
305   }
306   return sqlite3IsNumericAffinity(idx_affinity);
307 }
308 
309 /*
310 ** Return the P5 value that should be used for a binary comparison
311 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
312 */
313 static u8 binaryCompareP5(
314   const Expr *pExpr1,   /* Left operand */
315   const Expr *pExpr2,   /* Right operand */
316   int jumpIfNull        /* Extra flags added to P5 */
317 ){
318   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
319   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
320   return aff;
321 }
322 
323 /*
324 ** Return a pointer to the collation sequence that should be used by
325 ** a binary comparison operator comparing pLeft and pRight.
326 **
327 ** If the left hand expression has a collating sequence type, then it is
328 ** used. Otherwise the collation sequence for the right hand expression
329 ** is used, or the default (BINARY) if neither expression has a collating
330 ** type.
331 **
332 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
333 ** it is not considered.
334 */
335 CollSeq *sqlite3BinaryCompareCollSeq(
336   Parse *pParse,
337   const Expr *pLeft,
338   const Expr *pRight
339 ){
340   CollSeq *pColl;
341   assert( pLeft );
342   if( pLeft->flags & EP_Collate ){
343     pColl = sqlite3ExprCollSeq(pParse, pLeft);
344   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
345     pColl = sqlite3ExprCollSeq(pParse, pRight);
346   }else{
347     pColl = sqlite3ExprCollSeq(pParse, pLeft);
348     if( !pColl ){
349       pColl = sqlite3ExprCollSeq(pParse, pRight);
350     }
351   }
352   return pColl;
353 }
354 
355 /* Expresssion p is a comparison operator.  Return a collation sequence
356 ** appropriate for the comparison operator.
357 **
358 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
359 ** However, if the OP_Commuted flag is set, then the order of the operands
360 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
361 ** correct collating sequence is found.
362 */
363 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
364   if( ExprHasProperty(p, EP_Commuted) ){
365     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
366   }else{
367     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
368   }
369 }
370 
371 /*
372 ** Generate code for a comparison operator.
373 */
374 static int codeCompare(
375   Parse *pParse,    /* The parsing (and code generating) context */
376   Expr *pLeft,      /* The left operand */
377   Expr *pRight,     /* The right operand */
378   int opcode,       /* The comparison opcode */
379   int in1, int in2, /* Register holding operands */
380   int dest,         /* Jump here if true.  */
381   int jumpIfNull,   /* If true, jump if either operand is NULL */
382   int isCommuted    /* The comparison has been commuted */
383 ){
384   int p5;
385   int addr;
386   CollSeq *p4;
387 
388   if( pParse->nErr ) return 0;
389   if( isCommuted ){
390     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
391   }else{
392     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
393   }
394   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
395   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
396                            (void*)p4, P4_COLLSEQ);
397   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
398   return addr;
399 }
400 
401 /*
402 ** Return true if expression pExpr is a vector, or false otherwise.
403 **
404 ** A vector is defined as any expression that results in two or more
405 ** columns of result.  Every TK_VECTOR node is an vector because the
406 ** parser will not generate a TK_VECTOR with fewer than two entries.
407 ** But a TK_SELECT might be either a vector or a scalar. It is only
408 ** considered a vector if it has two or more result columns.
409 */
410 int sqlite3ExprIsVector(Expr *pExpr){
411   return sqlite3ExprVectorSize(pExpr)>1;
412 }
413 
414 /*
415 ** If the expression passed as the only argument is of type TK_VECTOR
416 ** return the number of expressions in the vector. Or, if the expression
417 ** is a sub-select, return the number of columns in the sub-select. For
418 ** any other type of expression, return 1.
419 */
420 int sqlite3ExprVectorSize(Expr *pExpr){
421   u8 op = pExpr->op;
422   if( op==TK_REGISTER ) op = pExpr->op2;
423   if( op==TK_VECTOR ){
424     return pExpr->x.pList->nExpr;
425   }else if( op==TK_SELECT ){
426     return pExpr->x.pSelect->pEList->nExpr;
427   }else{
428     return 1;
429   }
430 }
431 
432 /*
433 ** Return a pointer to a subexpression of pVector that is the i-th
434 ** column of the vector (numbered starting with 0).  The caller must
435 ** ensure that i is within range.
436 **
437 ** If pVector is really a scalar (and "scalar" here includes subqueries
438 ** that return a single column!) then return pVector unmodified.
439 **
440 ** pVector retains ownership of the returned subexpression.
441 **
442 ** If the vector is a (SELECT ...) then the expression returned is
443 ** just the expression for the i-th term of the result set, and may
444 ** not be ready for evaluation because the table cursor has not yet
445 ** been positioned.
446 */
447 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
448   assert( i<sqlite3ExprVectorSize(pVector) );
449   if( sqlite3ExprIsVector(pVector) ){
450     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
451     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
452       return pVector->x.pSelect->pEList->a[i].pExpr;
453     }else{
454       return pVector->x.pList->a[i].pExpr;
455     }
456   }
457   return pVector;
458 }
459 
460 /*
461 ** Compute and return a new Expr object which when passed to
462 ** sqlite3ExprCode() will generate all necessary code to compute
463 ** the iField-th column of the vector expression pVector.
464 **
465 ** It is ok for pVector to be a scalar (as long as iField==0).
466 ** In that case, this routine works like sqlite3ExprDup().
467 **
468 ** The caller owns the returned Expr object and is responsible for
469 ** ensuring that the returned value eventually gets freed.
470 **
471 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
472 ** then the returned object will reference pVector and so pVector must remain
473 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
474 ** or a scalar expression, then it can be deleted as soon as this routine
475 ** returns.
476 **
477 ** A trick to cause a TK_SELECT pVector to be deleted together with
478 ** the returned Expr object is to attach the pVector to the pRight field
479 ** of the returned TK_SELECT_COLUMN Expr object.
480 */
481 Expr *sqlite3ExprForVectorField(
482   Parse *pParse,       /* Parsing context */
483   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
484   int iField           /* Which column of the vector to return */
485 ){
486   Expr *pRet;
487   if( pVector->op==TK_SELECT ){
488     assert( pVector->flags & EP_xIsSelect );
489     /* The TK_SELECT_COLUMN Expr node:
490     **
491     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
492     ** pRight:          not used.  But recursively deleted.
493     ** iColumn:         Index of a column in pVector
494     ** iTable:          0 or the number of columns on the LHS of an assignment
495     ** pLeft->iTable:   First in an array of register holding result, or 0
496     **                  if the result is not yet computed.
497     **
498     ** sqlite3ExprDelete() specifically skips the recursive delete of
499     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
500     ** can be attached to pRight to cause this node to take ownership of
501     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
502     ** with the same pLeft pointer to the pVector, but only one of them
503     ** will own the pVector.
504     */
505     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
506     if( pRet ){
507       pRet->iColumn = iField;
508       pRet->pLeft = pVector;
509     }
510     assert( pRet==0 || pRet->iTable==0 );
511   }else{
512     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
513     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
514     sqlite3RenameTokenRemap(pParse, pRet, pVector);
515   }
516   return pRet;
517 }
518 
519 /*
520 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
521 ** it. Return the register in which the result is stored (or, if the
522 ** sub-select returns more than one column, the first in an array
523 ** of registers in which the result is stored).
524 **
525 ** If pExpr is not a TK_SELECT expression, return 0.
526 */
527 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
528   int reg = 0;
529 #ifndef SQLITE_OMIT_SUBQUERY
530   if( pExpr->op==TK_SELECT ){
531     reg = sqlite3CodeSubselect(pParse, pExpr);
532   }
533 #endif
534   return reg;
535 }
536 
537 /*
538 ** Argument pVector points to a vector expression - either a TK_VECTOR
539 ** or TK_SELECT that returns more than one column. This function returns
540 ** the register number of a register that contains the value of
541 ** element iField of the vector.
542 **
543 ** If pVector is a TK_SELECT expression, then code for it must have
544 ** already been generated using the exprCodeSubselect() routine. In this
545 ** case parameter regSelect should be the first in an array of registers
546 ** containing the results of the sub-select.
547 **
548 ** If pVector is of type TK_VECTOR, then code for the requested field
549 ** is generated. In this case (*pRegFree) may be set to the number of
550 ** a temporary register to be freed by the caller before returning.
551 **
552 ** Before returning, output parameter (*ppExpr) is set to point to the
553 ** Expr object corresponding to element iElem of the vector.
554 */
555 static int exprVectorRegister(
556   Parse *pParse,                  /* Parse context */
557   Expr *pVector,                  /* Vector to extract element from */
558   int iField,                     /* Field to extract from pVector */
559   int regSelect,                  /* First in array of registers */
560   Expr **ppExpr,                  /* OUT: Expression element */
561   int *pRegFree                   /* OUT: Temp register to free */
562 ){
563   u8 op = pVector->op;
564   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
565   if( op==TK_REGISTER ){
566     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
567     return pVector->iTable+iField;
568   }
569   if( op==TK_SELECT ){
570     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
571      return regSelect+iField;
572   }
573   *ppExpr = pVector->x.pList->a[iField].pExpr;
574   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
575 }
576 
577 /*
578 ** Expression pExpr is a comparison between two vector values. Compute
579 ** the result of the comparison (1, 0, or NULL) and write that
580 ** result into register dest.
581 **
582 ** The caller must satisfy the following preconditions:
583 **
584 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
585 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
586 **    otherwise:                op==pExpr->op and p5==0
587 */
588 static void codeVectorCompare(
589   Parse *pParse,        /* Code generator context */
590   Expr *pExpr,          /* The comparison operation */
591   int dest,             /* Write results into this register */
592   u8 op,                /* Comparison operator */
593   u8 p5                 /* SQLITE_NULLEQ or zero */
594 ){
595   Vdbe *v = pParse->pVdbe;
596   Expr *pLeft = pExpr->pLeft;
597   Expr *pRight = pExpr->pRight;
598   int nLeft = sqlite3ExprVectorSize(pLeft);
599   int i;
600   int regLeft = 0;
601   int regRight = 0;
602   u8 opx = op;
603   int addrCmp = 0;
604   int addrDone = sqlite3VdbeMakeLabel(pParse);
605   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
606 
607   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
608   if( pParse->nErr ) return;
609   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
610     sqlite3ErrorMsg(pParse, "row value misused");
611     return;
612   }
613   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
614        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
615        || pExpr->op==TK_LT || pExpr->op==TK_GT
616        || pExpr->op==TK_LE || pExpr->op==TK_GE
617   );
618   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
619             || (pExpr->op==TK_ISNOT && op==TK_NE) );
620   assert( p5==0 || pExpr->op!=op );
621   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
622 
623   if( op==TK_LE ) opx = TK_LT;
624   if( op==TK_GE ) opx = TK_GT;
625   if( op==TK_NE ) opx = TK_EQ;
626 
627   regLeft = exprCodeSubselect(pParse, pLeft);
628   regRight = exprCodeSubselect(pParse, pRight);
629 
630   sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
631   for(i=0; 1 /*Loop exits by "break"*/; i++){
632     int regFree1 = 0, regFree2 = 0;
633     Expr *pL, *pR;
634     int r1, r2;
635     assert( i>=0 && i<nLeft );
636     if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
637     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
638     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
639     addrCmp = sqlite3VdbeCurrentAddr(v);
640     codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
641     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
642     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
643     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
644     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
645     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
646     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
647     sqlite3ReleaseTempReg(pParse, regFree1);
648     sqlite3ReleaseTempReg(pParse, regFree2);
649     if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
650       addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
651       testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
652       testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
653     }
654     if( p5==SQLITE_NULLEQ ){
655       sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
656     }else{
657       sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
658     }
659     if( i==nLeft-1 ){
660       break;
661     }
662     if( opx==TK_EQ ){
663       sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
664     }else{
665       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
666       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
667       if( i==nLeft-2 ) opx = op;
668     }
669   }
670   sqlite3VdbeJumpHere(v, addrCmp);
671   sqlite3VdbeResolveLabel(v, addrDone);
672   if( op==TK_NE ){
673     sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
674   }
675 }
676 
677 #if SQLITE_MAX_EXPR_DEPTH>0
678 /*
679 ** Check that argument nHeight is less than or equal to the maximum
680 ** expression depth allowed. If it is not, leave an error message in
681 ** pParse.
682 */
683 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
684   int rc = SQLITE_OK;
685   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
686   if( nHeight>mxHeight ){
687     sqlite3ErrorMsg(pParse,
688        "Expression tree is too large (maximum depth %d)", mxHeight
689     );
690     rc = SQLITE_ERROR;
691   }
692   return rc;
693 }
694 
695 /* The following three functions, heightOfExpr(), heightOfExprList()
696 ** and heightOfSelect(), are used to determine the maximum height
697 ** of any expression tree referenced by the structure passed as the
698 ** first argument.
699 **
700 ** If this maximum height is greater than the current value pointed
701 ** to by pnHeight, the second parameter, then set *pnHeight to that
702 ** value.
703 */
704 static void heightOfExpr(Expr *p, int *pnHeight){
705   if( p ){
706     if( p->nHeight>*pnHeight ){
707       *pnHeight = p->nHeight;
708     }
709   }
710 }
711 static void heightOfExprList(ExprList *p, int *pnHeight){
712   if( p ){
713     int i;
714     for(i=0; i<p->nExpr; i++){
715       heightOfExpr(p->a[i].pExpr, pnHeight);
716     }
717   }
718 }
719 static void heightOfSelect(Select *pSelect, int *pnHeight){
720   Select *p;
721   for(p=pSelect; p; p=p->pPrior){
722     heightOfExpr(p->pWhere, pnHeight);
723     heightOfExpr(p->pHaving, pnHeight);
724     heightOfExpr(p->pLimit, pnHeight);
725     heightOfExprList(p->pEList, pnHeight);
726     heightOfExprList(p->pGroupBy, pnHeight);
727     heightOfExprList(p->pOrderBy, pnHeight);
728   }
729 }
730 
731 /*
732 ** Set the Expr.nHeight variable in the structure passed as an
733 ** argument. An expression with no children, Expr.pList or
734 ** Expr.pSelect member has a height of 1. Any other expression
735 ** has a height equal to the maximum height of any other
736 ** referenced Expr plus one.
737 **
738 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
739 ** if appropriate.
740 */
741 static void exprSetHeight(Expr *p){
742   int nHeight = 0;
743   heightOfExpr(p->pLeft, &nHeight);
744   heightOfExpr(p->pRight, &nHeight);
745   if( ExprHasProperty(p, EP_xIsSelect) ){
746     heightOfSelect(p->x.pSelect, &nHeight);
747   }else if( p->x.pList ){
748     heightOfExprList(p->x.pList, &nHeight);
749     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
750   }
751   p->nHeight = nHeight + 1;
752 }
753 
754 /*
755 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
756 ** the height is greater than the maximum allowed expression depth,
757 ** leave an error in pParse.
758 **
759 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
760 ** Expr.flags.
761 */
762 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
763   if( pParse->nErr ) return;
764   exprSetHeight(p);
765   sqlite3ExprCheckHeight(pParse, p->nHeight);
766 }
767 
768 /*
769 ** Return the maximum height of any expression tree referenced
770 ** by the select statement passed as an argument.
771 */
772 int sqlite3SelectExprHeight(Select *p){
773   int nHeight = 0;
774   heightOfSelect(p, &nHeight);
775   return nHeight;
776 }
777 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
778 /*
779 ** Propagate all EP_Propagate flags from the Expr.x.pList into
780 ** Expr.flags.
781 */
782 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
783   if( pParse->nErr ) return;
784   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
785     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
786   }
787 }
788 #define exprSetHeight(y)
789 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
790 
791 /*
792 ** This routine is the core allocator for Expr nodes.
793 **
794 ** Construct a new expression node and return a pointer to it.  Memory
795 ** for this node and for the pToken argument is a single allocation
796 ** obtained from sqlite3DbMalloc().  The calling function
797 ** is responsible for making sure the node eventually gets freed.
798 **
799 ** If dequote is true, then the token (if it exists) is dequoted.
800 ** If dequote is false, no dequoting is performed.  The deQuote
801 ** parameter is ignored if pToken is NULL or if the token does not
802 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
803 ** then the EP_DblQuoted flag is set on the expression node.
804 **
805 ** Special case:  If op==TK_INTEGER and pToken points to a string that
806 ** can be translated into a 32-bit integer, then the token is not
807 ** stored in u.zToken.  Instead, the integer values is written
808 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
809 ** is allocated to hold the integer text and the dequote flag is ignored.
810 */
811 Expr *sqlite3ExprAlloc(
812   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
813   int op,                 /* Expression opcode */
814   const Token *pToken,    /* Token argument.  Might be NULL */
815   int dequote             /* True to dequote */
816 ){
817   Expr *pNew;
818   int nExtra = 0;
819   int iValue = 0;
820 
821   assert( db!=0 );
822   if( pToken ){
823     if( op!=TK_INTEGER || pToken->z==0
824           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
825       nExtra = pToken->n+1;
826       assert( iValue>=0 );
827     }
828   }
829   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
830   if( pNew ){
831     memset(pNew, 0, sizeof(Expr));
832     pNew->op = (u8)op;
833     pNew->iAgg = -1;
834     if( pToken ){
835       if( nExtra==0 ){
836         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
837         pNew->u.iValue = iValue;
838       }else{
839         pNew->u.zToken = (char*)&pNew[1];
840         assert( pToken->z!=0 || pToken->n==0 );
841         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
842         pNew->u.zToken[pToken->n] = 0;
843         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
844           sqlite3DequoteExpr(pNew);
845         }
846       }
847     }
848 #if SQLITE_MAX_EXPR_DEPTH>0
849     pNew->nHeight = 1;
850 #endif
851   }
852   return pNew;
853 }
854 
855 /*
856 ** Allocate a new expression node from a zero-terminated token that has
857 ** already been dequoted.
858 */
859 Expr *sqlite3Expr(
860   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
861   int op,                 /* Expression opcode */
862   const char *zToken      /* Token argument.  Might be NULL */
863 ){
864   Token x;
865   x.z = zToken;
866   x.n = sqlite3Strlen30(zToken);
867   return sqlite3ExprAlloc(db, op, &x, 0);
868 }
869 
870 /*
871 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
872 **
873 ** If pRoot==NULL that means that a memory allocation error has occurred.
874 ** In that case, delete the subtrees pLeft and pRight.
875 */
876 void sqlite3ExprAttachSubtrees(
877   sqlite3 *db,
878   Expr *pRoot,
879   Expr *pLeft,
880   Expr *pRight
881 ){
882   if( pRoot==0 ){
883     assert( db->mallocFailed );
884     sqlite3ExprDelete(db, pLeft);
885     sqlite3ExprDelete(db, pRight);
886   }else{
887     if( pRight ){
888       pRoot->pRight = pRight;
889       pRoot->flags |= EP_Propagate & pRight->flags;
890     }
891     if( pLeft ){
892       pRoot->pLeft = pLeft;
893       pRoot->flags |= EP_Propagate & pLeft->flags;
894     }
895     exprSetHeight(pRoot);
896   }
897 }
898 
899 /*
900 ** Allocate an Expr node which joins as many as two subtrees.
901 **
902 ** One or both of the subtrees can be NULL.  Return a pointer to the new
903 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
904 ** free the subtrees and return NULL.
905 */
906 Expr *sqlite3PExpr(
907   Parse *pParse,          /* Parsing context */
908   int op,                 /* Expression opcode */
909   Expr *pLeft,            /* Left operand */
910   Expr *pRight            /* Right operand */
911 ){
912   Expr *p;
913   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
914   if( p ){
915     memset(p, 0, sizeof(Expr));
916     p->op = op & 0xff;
917     p->iAgg = -1;
918     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
919     sqlite3ExprCheckHeight(pParse, p->nHeight);
920   }else{
921     sqlite3ExprDelete(pParse->db, pLeft);
922     sqlite3ExprDelete(pParse->db, pRight);
923   }
924   return p;
925 }
926 
927 /*
928 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
929 ** do a memory allocation failure) then delete the pSelect object.
930 */
931 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
932   if( pExpr ){
933     pExpr->x.pSelect = pSelect;
934     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
935     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
936   }else{
937     assert( pParse->db->mallocFailed );
938     sqlite3SelectDelete(pParse->db, pSelect);
939   }
940 }
941 
942 
943 /*
944 ** Join two expressions using an AND operator.  If either expression is
945 ** NULL, then just return the other expression.
946 **
947 ** If one side or the other of the AND is known to be false, then instead
948 ** of returning an AND expression, just return a constant expression with
949 ** a value of false.
950 */
951 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
952   sqlite3 *db = pParse->db;
953   if( pLeft==0  ){
954     return pRight;
955   }else if( pRight==0 ){
956     return pLeft;
957   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
958          && !IN_RENAME_OBJECT
959   ){
960     sqlite3ExprDeferredDelete(pParse, pLeft);
961     sqlite3ExprDeferredDelete(pParse, pRight);
962     return sqlite3Expr(db, TK_INTEGER, "0");
963   }else{
964     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
965   }
966 }
967 
968 /*
969 ** Construct a new expression node for a function with multiple
970 ** arguments.
971 */
972 Expr *sqlite3ExprFunction(
973   Parse *pParse,        /* Parsing context */
974   ExprList *pList,      /* Argument list */
975   Token *pToken,        /* Name of the function */
976   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
977 ){
978   Expr *pNew;
979   sqlite3 *db = pParse->db;
980   assert( pToken );
981   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
982   if( pNew==0 ){
983     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
984     return 0;
985   }
986   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
987     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
988   }
989   pNew->x.pList = pList;
990   ExprSetProperty(pNew, EP_HasFunc);
991   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
992   sqlite3ExprSetHeightAndFlags(pParse, pNew);
993   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
994   return pNew;
995 }
996 
997 /*
998 ** Check to see if a function is usable according to current access
999 ** rules:
1000 **
1001 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
1002 **
1003 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
1004 **                                top-level SQL
1005 **
1006 ** If the function is not usable, create an error.
1007 */
1008 void sqlite3ExprFunctionUsable(
1009   Parse *pParse,         /* Parsing and code generating context */
1010   Expr *pExpr,           /* The function invocation */
1011   FuncDef *pDef          /* The function being invoked */
1012 ){
1013   assert( !IN_RENAME_OBJECT );
1014   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1015   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1016     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1017      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1018     ){
1019       /* Functions prohibited in triggers and views if:
1020       **     (1) tagged with SQLITE_DIRECTONLY
1021       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1022       **         is tagged with SQLITE_FUNC_UNSAFE) and
1023       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1024       **         that the schema is possibly tainted).
1025       */
1026       sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName);
1027     }
1028   }
1029 }
1030 
1031 /*
1032 ** Assign a variable number to an expression that encodes a wildcard
1033 ** in the original SQL statement.
1034 **
1035 ** Wildcards consisting of a single "?" are assigned the next sequential
1036 ** variable number.
1037 **
1038 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1039 ** sure "nnn" is not too big to avoid a denial of service attack when
1040 ** the SQL statement comes from an external source.
1041 **
1042 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1043 ** as the previous instance of the same wildcard.  Or if this is the first
1044 ** instance of the wildcard, the next sequential variable number is
1045 ** assigned.
1046 */
1047 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1048   sqlite3 *db = pParse->db;
1049   const char *z;
1050   ynVar x;
1051 
1052   if( pExpr==0 ) return;
1053   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1054   z = pExpr->u.zToken;
1055   assert( z!=0 );
1056   assert( z[0]!=0 );
1057   assert( n==(u32)sqlite3Strlen30(z) );
1058   if( z[1]==0 ){
1059     /* Wildcard of the form "?".  Assign the next variable number */
1060     assert( z[0]=='?' );
1061     x = (ynVar)(++pParse->nVar);
1062   }else{
1063     int doAdd = 0;
1064     if( z[0]=='?' ){
1065       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1066       ** use it as the variable number */
1067       i64 i;
1068       int bOk;
1069       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1070         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1071         bOk = 1;
1072       }else{
1073         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1074       }
1075       testcase( i==0 );
1076       testcase( i==1 );
1077       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1078       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1079       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1080         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1081             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1082         return;
1083       }
1084       x = (ynVar)i;
1085       if( x>pParse->nVar ){
1086         pParse->nVar = (int)x;
1087         doAdd = 1;
1088       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1089         doAdd = 1;
1090       }
1091     }else{
1092       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1093       ** number as the prior appearance of the same name, or if the name
1094       ** has never appeared before, reuse the same variable number
1095       */
1096       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1097       if( x==0 ){
1098         x = (ynVar)(++pParse->nVar);
1099         doAdd = 1;
1100       }
1101     }
1102     if( doAdd ){
1103       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1104     }
1105   }
1106   pExpr->iColumn = x;
1107   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1108     sqlite3ErrorMsg(pParse, "too many SQL variables");
1109   }
1110 }
1111 
1112 /*
1113 ** Recursively delete an expression tree.
1114 */
1115 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1116   assert( p!=0 );
1117   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1118   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1119 
1120   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1121   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1122           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1123 #ifdef SQLITE_DEBUG
1124   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1125     assert( p->pLeft==0 );
1126     assert( p->pRight==0 );
1127     assert( p->x.pSelect==0 );
1128   }
1129 #endif
1130   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1131     /* The Expr.x union is never used at the same time as Expr.pRight */
1132     assert( p->x.pList==0 || p->pRight==0 );
1133     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1134     if( p->pRight ){
1135       assert( !ExprHasProperty(p, EP_WinFunc) );
1136       sqlite3ExprDeleteNN(db, p->pRight);
1137     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1138       assert( !ExprHasProperty(p, EP_WinFunc) );
1139       sqlite3SelectDelete(db, p->x.pSelect);
1140     }else{
1141       sqlite3ExprListDelete(db, p->x.pList);
1142 #ifndef SQLITE_OMIT_WINDOWFUNC
1143       if( ExprHasProperty(p, EP_WinFunc) ){
1144         sqlite3WindowDelete(db, p->y.pWin);
1145       }
1146 #endif
1147     }
1148   }
1149   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1150   if( !ExprHasProperty(p, EP_Static) ){
1151     sqlite3DbFreeNN(db, p);
1152   }
1153 }
1154 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1155   if( p ) sqlite3ExprDeleteNN(db, p);
1156 }
1157 
1158 
1159 /*
1160 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1161 ** This is similar to sqlite3ExprDelete() except that the delete is
1162 ** deferred untilthe pParse is deleted.
1163 **
1164 ** The pExpr might be deleted immediately on an OOM error.
1165 **
1166 ** The deferred delete is (currently) implemented by adding the
1167 ** pExpr to the pParse->pConstExpr list with a register number of 0.
1168 */
1169 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
1170   pParse->pConstExpr =
1171       sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
1172 }
1173 
1174 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1175 ** expression.
1176 */
1177 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1178   if( p ){
1179     if( IN_RENAME_OBJECT ){
1180       sqlite3RenameExprUnmap(pParse, p);
1181     }
1182     sqlite3ExprDeleteNN(pParse->db, p);
1183   }
1184 }
1185 
1186 /*
1187 ** Return the number of bytes allocated for the expression structure
1188 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1189 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1190 */
1191 static int exprStructSize(Expr *p){
1192   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1193   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1194   return EXPR_FULLSIZE;
1195 }
1196 
1197 /*
1198 ** The dupedExpr*Size() routines each return the number of bytes required
1199 ** to store a copy of an expression or expression tree.  They differ in
1200 ** how much of the tree is measured.
1201 **
1202 **     dupedExprStructSize()     Size of only the Expr structure
1203 **     dupedExprNodeSize()       Size of Expr + space for token
1204 **     dupedExprSize()           Expr + token + subtree components
1205 **
1206 ***************************************************************************
1207 **
1208 ** The dupedExprStructSize() function returns two values OR-ed together:
1209 ** (1) the space required for a copy of the Expr structure only and
1210 ** (2) the EP_xxx flags that indicate what the structure size should be.
1211 ** The return values is always one of:
1212 **
1213 **      EXPR_FULLSIZE
1214 **      EXPR_REDUCEDSIZE   | EP_Reduced
1215 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1216 **
1217 ** The size of the structure can be found by masking the return value
1218 ** of this routine with 0xfff.  The flags can be found by masking the
1219 ** return value with EP_Reduced|EP_TokenOnly.
1220 **
1221 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1222 ** (unreduced) Expr objects as they or originally constructed by the parser.
1223 ** During expression analysis, extra information is computed and moved into
1224 ** later parts of the Expr object and that extra information might get chopped
1225 ** off if the expression is reduced.  Note also that it does not work to
1226 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1227 ** to reduce a pristine expression tree from the parser.  The implementation
1228 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1229 ** to enforce this constraint.
1230 */
1231 static int dupedExprStructSize(Expr *p, int flags){
1232   int nSize;
1233   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1234   assert( EXPR_FULLSIZE<=0xfff );
1235   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1236   if( 0==flags || p->op==TK_SELECT_COLUMN
1237 #ifndef SQLITE_OMIT_WINDOWFUNC
1238    || ExprHasProperty(p, EP_WinFunc)
1239 #endif
1240   ){
1241     nSize = EXPR_FULLSIZE;
1242   }else{
1243     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1244     assert( !ExprHasProperty(p, EP_FromJoin) );
1245     assert( !ExprHasProperty(p, EP_MemToken) );
1246     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1247     if( p->pLeft || p->x.pList ){
1248       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1249     }else{
1250       assert( p->pRight==0 );
1251       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1252     }
1253   }
1254   return nSize;
1255 }
1256 
1257 /*
1258 ** This function returns the space in bytes required to store the copy
1259 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1260 ** string is defined.)
1261 */
1262 static int dupedExprNodeSize(Expr *p, int flags){
1263   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1264   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1265     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1266   }
1267   return ROUND8(nByte);
1268 }
1269 
1270 /*
1271 ** Return the number of bytes required to create a duplicate of the
1272 ** expression passed as the first argument. The second argument is a
1273 ** mask containing EXPRDUP_XXX flags.
1274 **
1275 ** The value returned includes space to create a copy of the Expr struct
1276 ** itself and the buffer referred to by Expr.u.zToken, if any.
1277 **
1278 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1279 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1280 ** and Expr.pRight variables (but not for any structures pointed to or
1281 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1282 */
1283 static int dupedExprSize(Expr *p, int flags){
1284   int nByte = 0;
1285   if( p ){
1286     nByte = dupedExprNodeSize(p, flags);
1287     if( flags&EXPRDUP_REDUCE ){
1288       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1289     }
1290   }
1291   return nByte;
1292 }
1293 
1294 /*
1295 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1296 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1297 ** to store the copy of expression p, the copies of p->u.zToken
1298 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1299 ** if any. Before returning, *pzBuffer is set to the first byte past the
1300 ** portion of the buffer copied into by this function.
1301 */
1302 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1303   Expr *pNew;           /* Value to return */
1304   u8 *zAlloc;           /* Memory space from which to build Expr object */
1305   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1306 
1307   assert( db!=0 );
1308   assert( p );
1309   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1310   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1311 
1312   /* Figure out where to write the new Expr structure. */
1313   if( pzBuffer ){
1314     zAlloc = *pzBuffer;
1315     staticFlag = EP_Static;
1316     assert( zAlloc!=0 );
1317   }else{
1318     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1319     staticFlag = 0;
1320   }
1321   pNew = (Expr *)zAlloc;
1322 
1323   if( pNew ){
1324     /* Set nNewSize to the size allocated for the structure pointed to
1325     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1326     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1327     ** by the copy of the p->u.zToken string (if any).
1328     */
1329     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1330     const int nNewSize = nStructSize & 0xfff;
1331     int nToken;
1332     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1333       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1334     }else{
1335       nToken = 0;
1336     }
1337     if( dupFlags ){
1338       assert( ExprHasProperty(p, EP_Reduced)==0 );
1339       memcpy(zAlloc, p, nNewSize);
1340     }else{
1341       u32 nSize = (u32)exprStructSize(p);
1342       memcpy(zAlloc, p, nSize);
1343       if( nSize<EXPR_FULLSIZE ){
1344         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1345       }
1346     }
1347 
1348     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1349     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1350     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1351     pNew->flags |= staticFlag;
1352     ExprClearVVAProperties(pNew);
1353     if( dupFlags ){
1354       ExprSetVVAProperty(pNew, EP_Immutable);
1355     }
1356 
1357     /* Copy the p->u.zToken string, if any. */
1358     if( nToken ){
1359       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1360       memcpy(zToken, p->u.zToken, nToken);
1361     }
1362 
1363     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1364       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1365       if( ExprHasProperty(p, EP_xIsSelect) ){
1366         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1367       }else{
1368         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1369       }
1370     }
1371 
1372     /* Fill in pNew->pLeft and pNew->pRight. */
1373     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1374       zAlloc += dupedExprNodeSize(p, dupFlags);
1375       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1376         pNew->pLeft = p->pLeft ?
1377                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1378         pNew->pRight = p->pRight ?
1379                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1380       }
1381 #ifndef SQLITE_OMIT_WINDOWFUNC
1382       if( ExprHasProperty(p, EP_WinFunc) ){
1383         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1384         assert( ExprHasProperty(pNew, EP_WinFunc) );
1385       }
1386 #endif /* SQLITE_OMIT_WINDOWFUNC */
1387       if( pzBuffer ){
1388         *pzBuffer = zAlloc;
1389       }
1390     }else{
1391       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1392         if( pNew->op==TK_SELECT_COLUMN ){
1393           pNew->pLeft = p->pLeft;
1394           assert( p->iColumn==0 || p->pRight==0 );
1395           assert( p->pRight==0  || p->pRight==p->pLeft
1396                                 || ExprHasProperty(p->pLeft, EP_Subquery) );
1397         }else{
1398           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1399         }
1400         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1401       }
1402     }
1403   }
1404   return pNew;
1405 }
1406 
1407 /*
1408 ** Create and return a deep copy of the object passed as the second
1409 ** argument. If an OOM condition is encountered, NULL is returned
1410 ** and the db->mallocFailed flag set.
1411 */
1412 #ifndef SQLITE_OMIT_CTE
1413 static With *withDup(sqlite3 *db, With *p){
1414   With *pRet = 0;
1415   if( p ){
1416     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1417     pRet = sqlite3DbMallocZero(db, nByte);
1418     if( pRet ){
1419       int i;
1420       pRet->nCte = p->nCte;
1421       for(i=0; i<p->nCte; i++){
1422         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1423         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1424         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1425       }
1426     }
1427   }
1428   return pRet;
1429 }
1430 #else
1431 # define withDup(x,y) 0
1432 #endif
1433 
1434 #ifndef SQLITE_OMIT_WINDOWFUNC
1435 /*
1436 ** The gatherSelectWindows() procedure and its helper routine
1437 ** gatherSelectWindowsCallback() are used to scan all the expressions
1438 ** an a newly duplicated SELECT statement and gather all of the Window
1439 ** objects found there, assembling them onto the linked list at Select->pWin.
1440 */
1441 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1442   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1443     Select *pSelect = pWalker->u.pSelect;
1444     Window *pWin = pExpr->y.pWin;
1445     assert( pWin );
1446     assert( IsWindowFunc(pExpr) );
1447     assert( pWin->ppThis==0 );
1448     sqlite3WindowLink(pSelect, pWin);
1449   }
1450   return WRC_Continue;
1451 }
1452 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1453   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1454 }
1455 static void gatherSelectWindows(Select *p){
1456   Walker w;
1457   w.xExprCallback = gatherSelectWindowsCallback;
1458   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1459   w.xSelectCallback2 = 0;
1460   w.pParse = 0;
1461   w.u.pSelect = p;
1462   sqlite3WalkSelect(&w, p);
1463 }
1464 #endif
1465 
1466 
1467 /*
1468 ** The following group of routines make deep copies of expressions,
1469 ** expression lists, ID lists, and select statements.  The copies can
1470 ** be deleted (by being passed to their respective ...Delete() routines)
1471 ** without effecting the originals.
1472 **
1473 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1474 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1475 ** by subsequent calls to sqlite*ListAppend() routines.
1476 **
1477 ** Any tables that the SrcList might point to are not duplicated.
1478 **
1479 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1480 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1481 ** truncated version of the usual Expr structure that will be stored as
1482 ** part of the in-memory representation of the database schema.
1483 */
1484 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1485   assert( flags==0 || flags==EXPRDUP_REDUCE );
1486   return p ? exprDup(db, p, flags, 0) : 0;
1487 }
1488 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1489   ExprList *pNew;
1490   struct ExprList_item *pItem, *pOldItem;
1491   int i;
1492   Expr *pPriorSelectCol = 0;
1493   assert( db!=0 );
1494   if( p==0 ) return 0;
1495   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1496   if( pNew==0 ) return 0;
1497   pNew->nExpr = p->nExpr;
1498   pNew->nAlloc = p->nAlloc;
1499   pItem = pNew->a;
1500   pOldItem = p->a;
1501   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1502     Expr *pOldExpr = pOldItem->pExpr;
1503     Expr *pNewExpr;
1504     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1505     if( pOldExpr
1506      && pOldExpr->op==TK_SELECT_COLUMN
1507      && (pNewExpr = pItem->pExpr)!=0
1508     ){
1509       assert( pNewExpr->iColumn==0 || i>0 );
1510       if( pNewExpr->iColumn==0 ){
1511         assert( pOldExpr->pLeft==pOldExpr->pRight );
1512         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1513       }else{
1514         assert( i>0 );
1515         assert( pItem[-1].pExpr!=0 );
1516         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1517         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1518         pNewExpr->pLeft = pPriorSelectCol;
1519       }
1520     }
1521     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1522     pItem->sortFlags = pOldItem->sortFlags;
1523     pItem->eEName = pOldItem->eEName;
1524     pItem->done = 0;
1525     pItem->bNulls = pOldItem->bNulls;
1526     pItem->bSorterRef = pOldItem->bSorterRef;
1527     pItem->u = pOldItem->u;
1528   }
1529   return pNew;
1530 }
1531 
1532 /*
1533 ** If cursors, triggers, views and subqueries are all omitted from
1534 ** the build, then none of the following routines, except for
1535 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1536 ** called with a NULL argument.
1537 */
1538 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1539  || !defined(SQLITE_OMIT_SUBQUERY)
1540 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1541   SrcList *pNew;
1542   int i;
1543   int nByte;
1544   assert( db!=0 );
1545   if( p==0 ) return 0;
1546   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1547   pNew = sqlite3DbMallocRawNN(db, nByte );
1548   if( pNew==0 ) return 0;
1549   pNew->nSrc = pNew->nAlloc = p->nSrc;
1550   for(i=0; i<p->nSrc; i++){
1551     SrcItem *pNewItem = &pNew->a[i];
1552     SrcItem *pOldItem = &p->a[i];
1553     Table *pTab;
1554     pNewItem->pSchema = pOldItem->pSchema;
1555     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1556     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1557     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1558     pNewItem->fg = pOldItem->fg;
1559     pNewItem->iCursor = pOldItem->iCursor;
1560     pNewItem->addrFillSub = pOldItem->addrFillSub;
1561     pNewItem->regReturn = pOldItem->regReturn;
1562     if( pNewItem->fg.isIndexedBy ){
1563       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1564     }
1565     pNewItem->u2 = pOldItem->u2;
1566     if( pNewItem->fg.isCte ){
1567       pNewItem->u2.pCteUse->nUse++;
1568     }
1569     if( pNewItem->fg.isTabFunc ){
1570       pNewItem->u1.pFuncArg =
1571           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1572     }
1573     pTab = pNewItem->pTab = pOldItem->pTab;
1574     if( pTab ){
1575       pTab->nTabRef++;
1576     }
1577     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1578     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1579     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1580     pNewItem->colUsed = pOldItem->colUsed;
1581   }
1582   return pNew;
1583 }
1584 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1585   IdList *pNew;
1586   int i;
1587   assert( db!=0 );
1588   if( p==0 ) return 0;
1589   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1590   if( pNew==0 ) return 0;
1591   pNew->nId = p->nId;
1592   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1593   if( pNew->a==0 ){
1594     sqlite3DbFreeNN(db, pNew);
1595     return 0;
1596   }
1597   /* Note that because the size of the allocation for p->a[] is not
1598   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1599   ** on the duplicate created by this function. */
1600   for(i=0; i<p->nId; i++){
1601     struct IdList_item *pNewItem = &pNew->a[i];
1602     struct IdList_item *pOldItem = &p->a[i];
1603     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1604     pNewItem->idx = pOldItem->idx;
1605   }
1606   return pNew;
1607 }
1608 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1609   Select *pRet = 0;
1610   Select *pNext = 0;
1611   Select **pp = &pRet;
1612   Select *p;
1613 
1614   assert( db!=0 );
1615   for(p=pDup; p; p=p->pPrior){
1616     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1617     if( pNew==0 ) break;
1618     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1619     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1620     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1621     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1622     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1623     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1624     pNew->op = p->op;
1625     pNew->pNext = pNext;
1626     pNew->pPrior = 0;
1627     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1628     pNew->iLimit = 0;
1629     pNew->iOffset = 0;
1630     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1631     pNew->addrOpenEphm[0] = -1;
1632     pNew->addrOpenEphm[1] = -1;
1633     pNew->nSelectRow = p->nSelectRow;
1634     pNew->pWith = withDup(db, p->pWith);
1635 #ifndef SQLITE_OMIT_WINDOWFUNC
1636     pNew->pWin = 0;
1637     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1638     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1639 #endif
1640     pNew->selId = p->selId;
1641     if( db->mallocFailed ){
1642       /* Any prior OOM might have left the Select object incomplete.
1643       ** Delete the whole thing rather than allow an incomplete Select
1644       ** to be used by the code generator. */
1645       pNew->pNext = 0;
1646       sqlite3SelectDelete(db, pNew);
1647       break;
1648     }
1649     *pp = pNew;
1650     pp = &pNew->pPrior;
1651     pNext = pNew;
1652   }
1653 
1654   return pRet;
1655 }
1656 #else
1657 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1658   assert( p==0 );
1659   return 0;
1660 }
1661 #endif
1662 
1663 
1664 /*
1665 ** Add a new element to the end of an expression list.  If pList is
1666 ** initially NULL, then create a new expression list.
1667 **
1668 ** The pList argument must be either NULL or a pointer to an ExprList
1669 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1670 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1671 ** Reason:  This routine assumes that the number of slots in pList->a[]
1672 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1673 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1674 **
1675 ** If a memory allocation error occurs, the entire list is freed and
1676 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1677 ** that the new entry was successfully appended.
1678 */
1679 static const struct ExprList_item zeroItem = {0};
1680 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
1681   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1682   Expr *pExpr             /* Expression to be appended. Might be NULL */
1683 ){
1684   struct ExprList_item *pItem;
1685   ExprList *pList;
1686 
1687   pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
1688   if( pList==0 ){
1689     sqlite3ExprDelete(db, pExpr);
1690     return 0;
1691   }
1692   pList->nAlloc = 4;
1693   pList->nExpr = 1;
1694   pItem = &pList->a[0];
1695   *pItem = zeroItem;
1696   pItem->pExpr = pExpr;
1697   return pList;
1698 }
1699 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
1700   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1701   ExprList *pList,        /* List to which to append. Might be NULL */
1702   Expr *pExpr             /* Expression to be appended. Might be NULL */
1703 ){
1704   struct ExprList_item *pItem;
1705   ExprList *pNew;
1706   pList->nAlloc *= 2;
1707   pNew = sqlite3DbRealloc(db, pList,
1708        sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
1709   if( pNew==0 ){
1710     sqlite3ExprListDelete(db, pList);
1711     sqlite3ExprDelete(db, pExpr);
1712     return 0;
1713   }else{
1714     pList = pNew;
1715   }
1716   pItem = &pList->a[pList->nExpr++];
1717   *pItem = zeroItem;
1718   pItem->pExpr = pExpr;
1719   return pList;
1720 }
1721 ExprList *sqlite3ExprListAppend(
1722   Parse *pParse,          /* Parsing context */
1723   ExprList *pList,        /* List to which to append. Might be NULL */
1724   Expr *pExpr             /* Expression to be appended. Might be NULL */
1725 ){
1726   struct ExprList_item *pItem;
1727   if( pList==0 ){
1728     return sqlite3ExprListAppendNew(pParse->db,pExpr);
1729   }
1730   if( pList->nAlloc<pList->nExpr+1 ){
1731     return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
1732   }
1733   pItem = &pList->a[pList->nExpr++];
1734   *pItem = zeroItem;
1735   pItem->pExpr = pExpr;
1736   return pList;
1737 }
1738 
1739 /*
1740 ** pColumns and pExpr form a vector assignment which is part of the SET
1741 ** clause of an UPDATE statement.  Like this:
1742 **
1743 **        (a,b,c) = (expr1,expr2,expr3)
1744 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1745 **
1746 ** For each term of the vector assignment, append new entries to the
1747 ** expression list pList.  In the case of a subquery on the RHS, append
1748 ** TK_SELECT_COLUMN expressions.
1749 */
1750 ExprList *sqlite3ExprListAppendVector(
1751   Parse *pParse,         /* Parsing context */
1752   ExprList *pList,       /* List to which to append. Might be NULL */
1753   IdList *pColumns,      /* List of names of LHS of the assignment */
1754   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1755 ){
1756   sqlite3 *db = pParse->db;
1757   int n;
1758   int i;
1759   int iFirst = pList ? pList->nExpr : 0;
1760   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1761   ** exit prior to this routine being invoked */
1762   if( NEVER(pColumns==0) ) goto vector_append_error;
1763   if( pExpr==0 ) goto vector_append_error;
1764 
1765   /* If the RHS is a vector, then we can immediately check to see that
1766   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1767   ** wildcards ("*") in the result set of the SELECT must be expanded before
1768   ** we can do the size check, so defer the size check until code generation.
1769   */
1770   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1771     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1772                     pColumns->nId, n);
1773     goto vector_append_error;
1774   }
1775 
1776   for(i=0; i<pColumns->nId; i++){
1777     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1778     assert( pSubExpr!=0 || db->mallocFailed );
1779     assert( pSubExpr==0 || pSubExpr->iTable==0 );
1780     if( pSubExpr==0 ) continue;
1781     pSubExpr->iTable = pColumns->nId;
1782     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1783     if( pList ){
1784       assert( pList->nExpr==iFirst+i+1 );
1785       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1786       pColumns->a[i].zName = 0;
1787     }
1788   }
1789 
1790   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1791     Expr *pFirst = pList->a[iFirst].pExpr;
1792     assert( pFirst!=0 );
1793     assert( pFirst->op==TK_SELECT_COLUMN );
1794 
1795     /* Store the SELECT statement in pRight so it will be deleted when
1796     ** sqlite3ExprListDelete() is called */
1797     pFirst->pRight = pExpr;
1798     pExpr = 0;
1799 
1800     /* Remember the size of the LHS in iTable so that we can check that
1801     ** the RHS and LHS sizes match during code generation. */
1802     pFirst->iTable = pColumns->nId;
1803   }
1804 
1805 vector_append_error:
1806   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1807   sqlite3IdListDelete(db, pColumns);
1808   return pList;
1809 }
1810 
1811 /*
1812 ** Set the sort order for the last element on the given ExprList.
1813 */
1814 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1815   struct ExprList_item *pItem;
1816   if( p==0 ) return;
1817   assert( p->nExpr>0 );
1818 
1819   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1820   assert( iSortOrder==SQLITE_SO_UNDEFINED
1821        || iSortOrder==SQLITE_SO_ASC
1822        || iSortOrder==SQLITE_SO_DESC
1823   );
1824   assert( eNulls==SQLITE_SO_UNDEFINED
1825        || eNulls==SQLITE_SO_ASC
1826        || eNulls==SQLITE_SO_DESC
1827   );
1828 
1829   pItem = &p->a[p->nExpr-1];
1830   assert( pItem->bNulls==0 );
1831   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1832     iSortOrder = SQLITE_SO_ASC;
1833   }
1834   pItem->sortFlags = (u8)iSortOrder;
1835 
1836   if( eNulls!=SQLITE_SO_UNDEFINED ){
1837     pItem->bNulls = 1;
1838     if( iSortOrder!=eNulls ){
1839       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1840     }
1841   }
1842 }
1843 
1844 /*
1845 ** Set the ExprList.a[].zEName element of the most recently added item
1846 ** on the expression list.
1847 **
1848 ** pList might be NULL following an OOM error.  But pName should never be
1849 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1850 ** is set.
1851 */
1852 void sqlite3ExprListSetName(
1853   Parse *pParse,          /* Parsing context */
1854   ExprList *pList,        /* List to which to add the span. */
1855   Token *pName,           /* Name to be added */
1856   int dequote             /* True to cause the name to be dequoted */
1857 ){
1858   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1859   assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1860   if( pList ){
1861     struct ExprList_item *pItem;
1862     assert( pList->nExpr>0 );
1863     pItem = &pList->a[pList->nExpr-1];
1864     assert( pItem->zEName==0 );
1865     assert( pItem->eEName==ENAME_NAME );
1866     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1867     if( dequote ){
1868       /* If dequote==0, then pName->z does not point to part of a DDL
1869       ** statement handled by the parser. And so no token need be added
1870       ** to the token-map.  */
1871       sqlite3Dequote(pItem->zEName);
1872       if( IN_RENAME_OBJECT ){
1873         sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName);
1874       }
1875     }
1876   }
1877 }
1878 
1879 /*
1880 ** Set the ExprList.a[].zSpan element of the most recently added item
1881 ** on the expression list.
1882 **
1883 ** pList might be NULL following an OOM error.  But pSpan should never be
1884 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1885 ** is set.
1886 */
1887 void sqlite3ExprListSetSpan(
1888   Parse *pParse,          /* Parsing context */
1889   ExprList *pList,        /* List to which to add the span. */
1890   const char *zStart,     /* Start of the span */
1891   const char *zEnd        /* End of the span */
1892 ){
1893   sqlite3 *db = pParse->db;
1894   assert( pList!=0 || db->mallocFailed!=0 );
1895   if( pList ){
1896     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1897     assert( pList->nExpr>0 );
1898     if( pItem->zEName==0 ){
1899       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
1900       pItem->eEName = ENAME_SPAN;
1901     }
1902   }
1903 }
1904 
1905 /*
1906 ** If the expression list pEList contains more than iLimit elements,
1907 ** leave an error message in pParse.
1908 */
1909 void sqlite3ExprListCheckLength(
1910   Parse *pParse,
1911   ExprList *pEList,
1912   const char *zObject
1913 ){
1914   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1915   testcase( pEList && pEList->nExpr==mx );
1916   testcase( pEList && pEList->nExpr==mx+1 );
1917   if( pEList && pEList->nExpr>mx ){
1918     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1919   }
1920 }
1921 
1922 /*
1923 ** Delete an entire expression list.
1924 */
1925 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1926   int i = pList->nExpr;
1927   struct ExprList_item *pItem =  pList->a;
1928   assert( pList->nExpr>0 );
1929   do{
1930     sqlite3ExprDelete(db, pItem->pExpr);
1931     sqlite3DbFree(db, pItem->zEName);
1932     pItem++;
1933   }while( --i>0 );
1934   sqlite3DbFreeNN(db, pList);
1935 }
1936 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1937   if( pList ) exprListDeleteNN(db, pList);
1938 }
1939 
1940 /*
1941 ** Return the bitwise-OR of all Expr.flags fields in the given
1942 ** ExprList.
1943 */
1944 u32 sqlite3ExprListFlags(const ExprList *pList){
1945   int i;
1946   u32 m = 0;
1947   assert( pList!=0 );
1948   for(i=0; i<pList->nExpr; i++){
1949      Expr *pExpr = pList->a[i].pExpr;
1950      assert( pExpr!=0 );
1951      m |= pExpr->flags;
1952   }
1953   return m;
1954 }
1955 
1956 /*
1957 ** This is a SELECT-node callback for the expression walker that
1958 ** always "fails".  By "fail" in this case, we mean set
1959 ** pWalker->eCode to zero and abort.
1960 **
1961 ** This callback is used by multiple expression walkers.
1962 */
1963 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1964   UNUSED_PARAMETER(NotUsed);
1965   pWalker->eCode = 0;
1966   return WRC_Abort;
1967 }
1968 
1969 /*
1970 ** Check the input string to see if it is "true" or "false" (in any case).
1971 **
1972 **       If the string is....           Return
1973 **         "true"                         EP_IsTrue
1974 **         "false"                        EP_IsFalse
1975 **         anything else                  0
1976 */
1977 u32 sqlite3IsTrueOrFalse(const char *zIn){
1978   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
1979   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
1980   return 0;
1981 }
1982 
1983 
1984 /*
1985 ** If the input expression is an ID with the name "true" or "false"
1986 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1987 ** the conversion happened, and zero if the expression is unaltered.
1988 */
1989 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1990   u32 v;
1991   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1992   if( !ExprHasProperty(pExpr, EP_Quoted)
1993    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
1994   ){
1995     pExpr->op = TK_TRUEFALSE;
1996     ExprSetProperty(pExpr, v);
1997     return 1;
1998   }
1999   return 0;
2000 }
2001 
2002 /*
2003 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
2004 ** and 0 if it is FALSE.
2005 */
2006 int sqlite3ExprTruthValue(const Expr *pExpr){
2007   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
2008   assert( pExpr->op==TK_TRUEFALSE );
2009   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
2010        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
2011   return pExpr->u.zToken[4]==0;
2012 }
2013 
2014 /*
2015 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2016 ** terms that are always true or false.  Return the simplified expression.
2017 ** Or return the original expression if no simplification is possible.
2018 **
2019 ** Examples:
2020 **
2021 **     (x<10) AND true                =>   (x<10)
2022 **     (x<10) AND false               =>   false
2023 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
2024 **     (x<10) AND (y=22 OR true)      =>   (x<10)
2025 **     (y=22) OR true                 =>   true
2026 */
2027 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
2028   assert( pExpr!=0 );
2029   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
2030     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
2031     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
2032     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
2033       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
2034     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
2035       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
2036     }
2037   }
2038   return pExpr;
2039 }
2040 
2041 
2042 /*
2043 ** These routines are Walker callbacks used to check expressions to
2044 ** see if they are "constant" for some definition of constant.  The
2045 ** Walker.eCode value determines the type of "constant" we are looking
2046 ** for.
2047 **
2048 ** These callback routines are used to implement the following:
2049 **
2050 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
2051 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
2052 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
2053 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
2054 **
2055 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2056 ** is found to not be a constant.
2057 **
2058 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2059 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
2060 ** when parsing an existing schema out of the sqlite_schema table and 4
2061 ** when processing a new CREATE TABLE statement.  A bound parameter raises
2062 ** an error for new statements, but is silently converted
2063 ** to NULL for existing schemas.  This allows sqlite_schema tables that
2064 ** contain a bound parameter because they were generated by older versions
2065 ** of SQLite to be parsed by newer versions of SQLite without raising a
2066 ** malformed schema error.
2067 */
2068 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2069 
2070   /* If pWalker->eCode is 2 then any term of the expression that comes from
2071   ** the ON or USING clauses of a left join disqualifies the expression
2072   ** from being considered constant. */
2073   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
2074     pWalker->eCode = 0;
2075     return WRC_Abort;
2076   }
2077 
2078   switch( pExpr->op ){
2079     /* Consider functions to be constant if all their arguments are constant
2080     ** and either pWalker->eCode==4 or 5 or the function has the
2081     ** SQLITE_FUNC_CONST flag. */
2082     case TK_FUNCTION:
2083       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2084        && !ExprHasProperty(pExpr, EP_WinFunc)
2085       ){
2086         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2087         return WRC_Continue;
2088       }else{
2089         pWalker->eCode = 0;
2090         return WRC_Abort;
2091       }
2092     case TK_ID:
2093       /* Convert "true" or "false" in a DEFAULT clause into the
2094       ** appropriate TK_TRUEFALSE operator */
2095       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2096         return WRC_Prune;
2097       }
2098       /* no break */ deliberate_fall_through
2099     case TK_COLUMN:
2100     case TK_AGG_FUNCTION:
2101     case TK_AGG_COLUMN:
2102       testcase( pExpr->op==TK_ID );
2103       testcase( pExpr->op==TK_COLUMN );
2104       testcase( pExpr->op==TK_AGG_FUNCTION );
2105       testcase( pExpr->op==TK_AGG_COLUMN );
2106       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2107         return WRC_Continue;
2108       }
2109       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2110         return WRC_Continue;
2111       }
2112       /* no break */ deliberate_fall_through
2113     case TK_IF_NULL_ROW:
2114     case TK_REGISTER:
2115     case TK_DOT:
2116       testcase( pExpr->op==TK_REGISTER );
2117       testcase( pExpr->op==TK_IF_NULL_ROW );
2118       testcase( pExpr->op==TK_DOT );
2119       pWalker->eCode = 0;
2120       return WRC_Abort;
2121     case TK_VARIABLE:
2122       if( pWalker->eCode==5 ){
2123         /* Silently convert bound parameters that appear inside of CREATE
2124         ** statements into a NULL when parsing the CREATE statement text out
2125         ** of the sqlite_schema table */
2126         pExpr->op = TK_NULL;
2127       }else if( pWalker->eCode==4 ){
2128         /* A bound parameter in a CREATE statement that originates from
2129         ** sqlite3_prepare() causes an error */
2130         pWalker->eCode = 0;
2131         return WRC_Abort;
2132       }
2133       /* no break */ deliberate_fall_through
2134     default:
2135       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2136       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2137       return WRC_Continue;
2138   }
2139 }
2140 static int exprIsConst(Expr *p, int initFlag, int iCur){
2141   Walker w;
2142   w.eCode = initFlag;
2143   w.xExprCallback = exprNodeIsConstant;
2144   w.xSelectCallback = sqlite3SelectWalkFail;
2145 #ifdef SQLITE_DEBUG
2146   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2147 #endif
2148   w.u.iCur = iCur;
2149   sqlite3WalkExpr(&w, p);
2150   return w.eCode;
2151 }
2152 
2153 /*
2154 ** Walk an expression tree.  Return non-zero if the expression is constant
2155 ** and 0 if it involves variables or function calls.
2156 **
2157 ** For the purposes of this function, a double-quoted string (ex: "abc")
2158 ** is considered a variable but a single-quoted string (ex: 'abc') is
2159 ** a constant.
2160 */
2161 int sqlite3ExprIsConstant(Expr *p){
2162   return exprIsConst(p, 1, 0);
2163 }
2164 
2165 /*
2166 ** Walk an expression tree.  Return non-zero if
2167 **
2168 **   (1) the expression is constant, and
2169 **   (2) the expression does originate in the ON or USING clause
2170 **       of a LEFT JOIN, and
2171 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2172 **       operands created by the constant propagation optimization.
2173 **
2174 ** When this routine returns true, it indicates that the expression
2175 ** can be added to the pParse->pConstExpr list and evaluated once when
2176 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2177 */
2178 int sqlite3ExprIsConstantNotJoin(Expr *p){
2179   return exprIsConst(p, 2, 0);
2180 }
2181 
2182 /*
2183 ** Walk an expression tree.  Return non-zero if the expression is constant
2184 ** for any single row of the table with cursor iCur.  In other words, the
2185 ** expression must not refer to any non-deterministic function nor any
2186 ** table other than iCur.
2187 */
2188 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2189   return exprIsConst(p, 3, iCur);
2190 }
2191 
2192 
2193 /*
2194 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2195 */
2196 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2197   ExprList *pGroupBy = pWalker->u.pGroupBy;
2198   int i;
2199 
2200   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2201   ** it constant.  */
2202   for(i=0; i<pGroupBy->nExpr; i++){
2203     Expr *p = pGroupBy->a[i].pExpr;
2204     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2205       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2206       if( sqlite3IsBinary(pColl) ){
2207         return WRC_Prune;
2208       }
2209     }
2210   }
2211 
2212   /* Check if pExpr is a sub-select. If so, consider it variable. */
2213   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2214     pWalker->eCode = 0;
2215     return WRC_Abort;
2216   }
2217 
2218   return exprNodeIsConstant(pWalker, pExpr);
2219 }
2220 
2221 /*
2222 ** Walk the expression tree passed as the first argument. Return non-zero
2223 ** if the expression consists entirely of constants or copies of terms
2224 ** in pGroupBy that sort with the BINARY collation sequence.
2225 **
2226 ** This routine is used to determine if a term of the HAVING clause can
2227 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2228 ** the value of the HAVING clause term must be the same for all members of
2229 ** a "group".  The requirement that the GROUP BY term must be BINARY
2230 ** assumes that no other collating sequence will have a finer-grained
2231 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2232 ** A=B in every other collating sequence.  The requirement that the
2233 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2234 ** to promote HAVING clauses that use the same alternative collating
2235 ** sequence as the GROUP BY term, but that is much harder to check,
2236 ** alternative collating sequences are uncommon, and this is only an
2237 ** optimization, so we take the easy way out and simply require the
2238 ** GROUP BY to use the BINARY collating sequence.
2239 */
2240 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2241   Walker w;
2242   w.eCode = 1;
2243   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2244   w.xSelectCallback = 0;
2245   w.u.pGroupBy = pGroupBy;
2246   w.pParse = pParse;
2247   sqlite3WalkExpr(&w, p);
2248   return w.eCode;
2249 }
2250 
2251 /*
2252 ** Walk an expression tree for the DEFAULT field of a column definition
2253 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2254 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2255 ** the expression is constant or a function call with constant arguments.
2256 ** Return and 0 if there are any variables.
2257 **
2258 ** isInit is true when parsing from sqlite_schema.  isInit is false when
2259 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2260 ** (such as ? or $abc) in the expression are converted into NULL.  When
2261 ** isInit is false, parameters raise an error.  Parameters should not be
2262 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2263 ** allowed it, so we need to support it when reading sqlite_schema for
2264 ** backwards compatibility.
2265 **
2266 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2267 **
2268 ** For the purposes of this function, a double-quoted string (ex: "abc")
2269 ** is considered a variable but a single-quoted string (ex: 'abc') is
2270 ** a constant.
2271 */
2272 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2273   assert( isInit==0 || isInit==1 );
2274   return exprIsConst(p, 4+isInit, 0);
2275 }
2276 
2277 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2278 /*
2279 ** Walk an expression tree.  Return 1 if the expression contains a
2280 ** subquery of some kind.  Return 0 if there are no subqueries.
2281 */
2282 int sqlite3ExprContainsSubquery(Expr *p){
2283   Walker w;
2284   w.eCode = 1;
2285   w.xExprCallback = sqlite3ExprWalkNoop;
2286   w.xSelectCallback = sqlite3SelectWalkFail;
2287 #ifdef SQLITE_DEBUG
2288   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2289 #endif
2290   sqlite3WalkExpr(&w, p);
2291   return w.eCode==0;
2292 }
2293 #endif
2294 
2295 /*
2296 ** If the expression p codes a constant integer that is small enough
2297 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2298 ** in *pValue.  If the expression is not an integer or if it is too big
2299 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2300 */
2301 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2302   int rc = 0;
2303   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2304 
2305   /* If an expression is an integer literal that fits in a signed 32-bit
2306   ** integer, then the EP_IntValue flag will have already been set */
2307   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2308            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2309 
2310   if( p->flags & EP_IntValue ){
2311     *pValue = p->u.iValue;
2312     return 1;
2313   }
2314   switch( p->op ){
2315     case TK_UPLUS: {
2316       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2317       break;
2318     }
2319     case TK_UMINUS: {
2320       int v;
2321       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2322         assert( v!=(-2147483647-1) );
2323         *pValue = -v;
2324         rc = 1;
2325       }
2326       break;
2327     }
2328     default: break;
2329   }
2330   return rc;
2331 }
2332 
2333 /*
2334 ** Return FALSE if there is no chance that the expression can be NULL.
2335 **
2336 ** If the expression might be NULL or if the expression is too complex
2337 ** to tell return TRUE.
2338 **
2339 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2340 ** when we know that a value cannot be NULL.  Hence, a false positive
2341 ** (returning TRUE when in fact the expression can never be NULL) might
2342 ** be a small performance hit but is otherwise harmless.  On the other
2343 ** hand, a false negative (returning FALSE when the result could be NULL)
2344 ** will likely result in an incorrect answer.  So when in doubt, return
2345 ** TRUE.
2346 */
2347 int sqlite3ExprCanBeNull(const Expr *p){
2348   u8 op;
2349   assert( p!=0 );
2350   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2351     p = p->pLeft;
2352     assert( p!=0 );
2353   }
2354   op = p->op;
2355   if( op==TK_REGISTER ) op = p->op2;
2356   switch( op ){
2357     case TK_INTEGER:
2358     case TK_STRING:
2359     case TK_FLOAT:
2360     case TK_BLOB:
2361       return 0;
2362     case TK_COLUMN:
2363       return ExprHasProperty(p, EP_CanBeNull) ||
2364              p->y.pTab==0 ||  /* Reference to column of index on expression */
2365              (p->iColumn>=0
2366               && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */
2367               && p->y.pTab->aCol[p->iColumn].notNull==0);
2368     default:
2369       return 1;
2370   }
2371 }
2372 
2373 /*
2374 ** Return TRUE if the given expression is a constant which would be
2375 ** unchanged by OP_Affinity with the affinity given in the second
2376 ** argument.
2377 **
2378 ** This routine is used to determine if the OP_Affinity operation
2379 ** can be omitted.  When in doubt return FALSE.  A false negative
2380 ** is harmless.  A false positive, however, can result in the wrong
2381 ** answer.
2382 */
2383 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2384   u8 op;
2385   int unaryMinus = 0;
2386   if( aff==SQLITE_AFF_BLOB ) return 1;
2387   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2388     if( p->op==TK_UMINUS ) unaryMinus = 1;
2389     p = p->pLeft;
2390   }
2391   op = p->op;
2392   if( op==TK_REGISTER ) op = p->op2;
2393   switch( op ){
2394     case TK_INTEGER: {
2395       return aff>=SQLITE_AFF_NUMERIC;
2396     }
2397     case TK_FLOAT: {
2398       return aff>=SQLITE_AFF_NUMERIC;
2399     }
2400     case TK_STRING: {
2401       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2402     }
2403     case TK_BLOB: {
2404       return !unaryMinus;
2405     }
2406     case TK_COLUMN: {
2407       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2408       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2409     }
2410     default: {
2411       return 0;
2412     }
2413   }
2414 }
2415 
2416 /*
2417 ** Return TRUE if the given string is a row-id column name.
2418 */
2419 int sqlite3IsRowid(const char *z){
2420   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2421   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2422   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2423   return 0;
2424 }
2425 
2426 /*
2427 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2428 ** that can be simplified to a direct table access, then return
2429 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2430 ** or if the SELECT statement needs to be manifested into a transient
2431 ** table, then return NULL.
2432 */
2433 #ifndef SQLITE_OMIT_SUBQUERY
2434 static Select *isCandidateForInOpt(Expr *pX){
2435   Select *p;
2436   SrcList *pSrc;
2437   ExprList *pEList;
2438   Table *pTab;
2439   int i;
2440   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2441   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2442   p = pX->x.pSelect;
2443   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2444   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2445     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2446     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2447     return 0; /* No DISTINCT keyword and no aggregate functions */
2448   }
2449   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2450   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2451   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2452   pSrc = p->pSrc;
2453   assert( pSrc!=0 );
2454   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2455   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2456   pTab = pSrc->a[0].pTab;
2457   assert( pTab!=0 );
2458   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2459   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2460   pEList = p->pEList;
2461   assert( pEList!=0 );
2462   /* All SELECT results must be columns. */
2463   for(i=0; i<pEList->nExpr; i++){
2464     Expr *pRes = pEList->a[i].pExpr;
2465     if( pRes->op!=TK_COLUMN ) return 0;
2466     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2467   }
2468   return p;
2469 }
2470 #endif /* SQLITE_OMIT_SUBQUERY */
2471 
2472 #ifndef SQLITE_OMIT_SUBQUERY
2473 /*
2474 ** Generate code that checks the left-most column of index table iCur to see if
2475 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2476 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2477 ** to be set to NULL if iCur contains one or more NULL values.
2478 */
2479 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2480   int addr1;
2481   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2482   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2483   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2484   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2485   VdbeComment((v, "first_entry_in(%d)", iCur));
2486   sqlite3VdbeJumpHere(v, addr1);
2487 }
2488 #endif
2489 
2490 
2491 #ifndef SQLITE_OMIT_SUBQUERY
2492 /*
2493 ** The argument is an IN operator with a list (not a subquery) on the
2494 ** right-hand side.  Return TRUE if that list is constant.
2495 */
2496 static int sqlite3InRhsIsConstant(Expr *pIn){
2497   Expr *pLHS;
2498   int res;
2499   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2500   pLHS = pIn->pLeft;
2501   pIn->pLeft = 0;
2502   res = sqlite3ExprIsConstant(pIn);
2503   pIn->pLeft = pLHS;
2504   return res;
2505 }
2506 #endif
2507 
2508 /*
2509 ** This function is used by the implementation of the IN (...) operator.
2510 ** The pX parameter is the expression on the RHS of the IN operator, which
2511 ** might be either a list of expressions or a subquery.
2512 **
2513 ** The job of this routine is to find or create a b-tree object that can
2514 ** be used either to test for membership in the RHS set or to iterate through
2515 ** all members of the RHS set, skipping duplicates.
2516 **
2517 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2518 ** and pX->iTable is set to the index of that cursor.
2519 **
2520 ** The returned value of this function indicates the b-tree type, as follows:
2521 **
2522 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2523 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2524 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2525 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2526 **                         populated epheremal table.
2527 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2528 **                         implemented as a sequence of comparisons.
2529 **
2530 ** An existing b-tree might be used if the RHS expression pX is a simple
2531 ** subquery such as:
2532 **
2533 **     SELECT <column1>, <column2>... FROM <table>
2534 **
2535 ** If the RHS of the IN operator is a list or a more complex subquery, then
2536 ** an ephemeral table might need to be generated from the RHS and then
2537 ** pX->iTable made to point to the ephemeral table instead of an
2538 ** existing table.
2539 **
2540 ** The inFlags parameter must contain, at a minimum, one of the bits
2541 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2542 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2543 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2544 ** be used to loop over all values of the RHS of the IN operator.
2545 **
2546 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2547 ** through the set members) then the b-tree must not contain duplicates.
2548 ** An epheremal table will be created unless the selected columns are guaranteed
2549 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2550 ** a UNIQUE constraint or index.
2551 **
2552 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2553 ** for fast set membership tests) then an epheremal table must
2554 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2555 ** index can be found with the specified <columns> as its left-most.
2556 **
2557 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2558 ** if the RHS of the IN operator is a list (not a subquery) then this
2559 ** routine might decide that creating an ephemeral b-tree for membership
2560 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2561 ** calling routine should implement the IN operator using a sequence
2562 ** of Eq or Ne comparison operations.
2563 **
2564 ** When the b-tree is being used for membership tests, the calling function
2565 ** might need to know whether or not the RHS side of the IN operator
2566 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2567 ** if there is any chance that the (...) might contain a NULL value at
2568 ** runtime, then a register is allocated and the register number written
2569 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2570 ** NULL value, then *prRhsHasNull is left unchanged.
2571 **
2572 ** If a register is allocated and its location stored in *prRhsHasNull, then
2573 ** the value in that register will be NULL if the b-tree contains one or more
2574 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2575 ** NULL values.
2576 **
2577 ** If the aiMap parameter is not NULL, it must point to an array containing
2578 ** one element for each column returned by the SELECT statement on the RHS
2579 ** of the IN(...) operator. The i'th entry of the array is populated with the
2580 ** offset of the index column that matches the i'th column returned by the
2581 ** SELECT. For example, if the expression and selected index are:
2582 **
2583 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2584 **   CREATE INDEX i1 ON t1(b, c, a);
2585 **
2586 ** then aiMap[] is populated with {2, 0, 1}.
2587 */
2588 #ifndef SQLITE_OMIT_SUBQUERY
2589 int sqlite3FindInIndex(
2590   Parse *pParse,             /* Parsing context */
2591   Expr *pX,                  /* The IN expression */
2592   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2593   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2594   int *aiMap,                /* Mapping from Index fields to RHS fields */
2595   int *piTab                 /* OUT: index to use */
2596 ){
2597   Select *p;                            /* SELECT to the right of IN operator */
2598   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2599   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2600   int mustBeUnique;                     /* True if RHS must be unique */
2601   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2602 
2603   assert( pX->op==TK_IN );
2604   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2605 
2606   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2607   ** whether or not the SELECT result contains NULL values, check whether
2608   ** or not NULL is actually possible (it may not be, for example, due
2609   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2610   ** set prRhsHasNull to 0 before continuing.  */
2611   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2612     int i;
2613     ExprList *pEList = pX->x.pSelect->pEList;
2614     for(i=0; i<pEList->nExpr; i++){
2615       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2616     }
2617     if( i==pEList->nExpr ){
2618       prRhsHasNull = 0;
2619     }
2620   }
2621 
2622   /* Check to see if an existing table or index can be used to
2623   ** satisfy the query.  This is preferable to generating a new
2624   ** ephemeral table.  */
2625   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2626     sqlite3 *db = pParse->db;              /* Database connection */
2627     Table *pTab;                           /* Table <table>. */
2628     int iDb;                               /* Database idx for pTab */
2629     ExprList *pEList = p->pEList;
2630     int nExpr = pEList->nExpr;
2631 
2632     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2633     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2634     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2635     pTab = p->pSrc->a[0].pTab;
2636 
2637     /* Code an OP_Transaction and OP_TableLock for <table>. */
2638     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2639     assert( iDb>=0 && iDb<SQLITE_MAX_DB );
2640     sqlite3CodeVerifySchema(pParse, iDb);
2641     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2642 
2643     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2644     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2645       /* The "x IN (SELECT rowid FROM table)" case */
2646       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2647       VdbeCoverage(v);
2648 
2649       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2650       eType = IN_INDEX_ROWID;
2651       ExplainQueryPlan((pParse, 0,
2652             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2653       sqlite3VdbeJumpHere(v, iAddr);
2654     }else{
2655       Index *pIdx;                         /* Iterator variable */
2656       int affinity_ok = 1;
2657       int i;
2658 
2659       /* Check that the affinity that will be used to perform each
2660       ** comparison is the same as the affinity of each column in table
2661       ** on the RHS of the IN operator.  If it not, it is not possible to
2662       ** use any index of the RHS table.  */
2663       for(i=0; i<nExpr && affinity_ok; i++){
2664         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2665         int iCol = pEList->a[i].pExpr->iColumn;
2666         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2667         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2668         testcase( cmpaff==SQLITE_AFF_BLOB );
2669         testcase( cmpaff==SQLITE_AFF_TEXT );
2670         switch( cmpaff ){
2671           case SQLITE_AFF_BLOB:
2672             break;
2673           case SQLITE_AFF_TEXT:
2674             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2675             ** other has no affinity and the other side is TEXT.  Hence,
2676             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2677             ** and for the term on the LHS of the IN to have no affinity. */
2678             assert( idxaff==SQLITE_AFF_TEXT );
2679             break;
2680           default:
2681             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2682         }
2683       }
2684 
2685       if( affinity_ok ){
2686         /* Search for an existing index that will work for this IN operator */
2687         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2688           Bitmask colUsed;      /* Columns of the index used */
2689           Bitmask mCol;         /* Mask for the current column */
2690           if( pIdx->nColumn<nExpr ) continue;
2691           if( pIdx->pPartIdxWhere!=0 ) continue;
2692           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2693           ** BITMASK(nExpr) without overflowing */
2694           testcase( pIdx->nColumn==BMS-2 );
2695           testcase( pIdx->nColumn==BMS-1 );
2696           if( pIdx->nColumn>=BMS-1 ) continue;
2697           if( mustBeUnique ){
2698             if( pIdx->nKeyCol>nExpr
2699              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2700             ){
2701               continue;  /* This index is not unique over the IN RHS columns */
2702             }
2703           }
2704 
2705           colUsed = 0;   /* Columns of index used so far */
2706           for(i=0; i<nExpr; i++){
2707             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2708             Expr *pRhs = pEList->a[i].pExpr;
2709             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2710             int j;
2711 
2712             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2713             for(j=0; j<nExpr; j++){
2714               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2715               assert( pIdx->azColl[j] );
2716               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2717                 continue;
2718               }
2719               break;
2720             }
2721             if( j==nExpr ) break;
2722             mCol = MASKBIT(j);
2723             if( mCol & colUsed ) break; /* Each column used only once */
2724             colUsed |= mCol;
2725             if( aiMap ) aiMap[i] = j;
2726           }
2727 
2728           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2729           if( colUsed==(MASKBIT(nExpr)-1) ){
2730             /* If we reach this point, that means the index pIdx is usable */
2731             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2732             ExplainQueryPlan((pParse, 0,
2733                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2734             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2735             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2736             VdbeComment((v, "%s", pIdx->zName));
2737             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2738             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2739 
2740             if( prRhsHasNull ){
2741 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2742               i64 mask = (1<<nExpr)-1;
2743               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2744                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2745 #endif
2746               *prRhsHasNull = ++pParse->nMem;
2747               if( nExpr==1 ){
2748                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2749               }
2750             }
2751             sqlite3VdbeJumpHere(v, iAddr);
2752           }
2753         } /* End loop over indexes */
2754       } /* End if( affinity_ok ) */
2755     } /* End if not an rowid index */
2756   } /* End attempt to optimize using an index */
2757 
2758   /* If no preexisting index is available for the IN clause
2759   ** and IN_INDEX_NOOP is an allowed reply
2760   ** and the RHS of the IN operator is a list, not a subquery
2761   ** and the RHS is not constant or has two or fewer terms,
2762   ** then it is not worth creating an ephemeral table to evaluate
2763   ** the IN operator so return IN_INDEX_NOOP.
2764   */
2765   if( eType==0
2766    && (inFlags & IN_INDEX_NOOP_OK)
2767    && !ExprHasProperty(pX, EP_xIsSelect)
2768    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2769   ){
2770     eType = IN_INDEX_NOOP;
2771   }
2772 
2773   if( eType==0 ){
2774     /* Could not find an existing table or index to use as the RHS b-tree.
2775     ** We will have to generate an ephemeral table to do the job.
2776     */
2777     u32 savedNQueryLoop = pParse->nQueryLoop;
2778     int rMayHaveNull = 0;
2779     eType = IN_INDEX_EPH;
2780     if( inFlags & IN_INDEX_LOOP ){
2781       pParse->nQueryLoop = 0;
2782     }else if( prRhsHasNull ){
2783       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2784     }
2785     assert( pX->op==TK_IN );
2786     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2787     if( rMayHaveNull ){
2788       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2789     }
2790     pParse->nQueryLoop = savedNQueryLoop;
2791   }
2792 
2793   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2794     int i, n;
2795     n = sqlite3ExprVectorSize(pX->pLeft);
2796     for(i=0; i<n; i++) aiMap[i] = i;
2797   }
2798   *piTab = iTab;
2799   return eType;
2800 }
2801 #endif
2802 
2803 #ifndef SQLITE_OMIT_SUBQUERY
2804 /*
2805 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2806 ** function allocates and returns a nul-terminated string containing
2807 ** the affinities to be used for each column of the comparison.
2808 **
2809 ** It is the responsibility of the caller to ensure that the returned
2810 ** string is eventually freed using sqlite3DbFree().
2811 */
2812 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2813   Expr *pLeft = pExpr->pLeft;
2814   int nVal = sqlite3ExprVectorSize(pLeft);
2815   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2816   char *zRet;
2817 
2818   assert( pExpr->op==TK_IN );
2819   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2820   if( zRet ){
2821     int i;
2822     for(i=0; i<nVal; i++){
2823       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2824       char a = sqlite3ExprAffinity(pA);
2825       if( pSelect ){
2826         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2827       }else{
2828         zRet[i] = a;
2829       }
2830     }
2831     zRet[nVal] = '\0';
2832   }
2833   return zRet;
2834 }
2835 #endif
2836 
2837 #ifndef SQLITE_OMIT_SUBQUERY
2838 /*
2839 ** Load the Parse object passed as the first argument with an error
2840 ** message of the form:
2841 **
2842 **   "sub-select returns N columns - expected M"
2843 */
2844 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2845   if( pParse->nErr==0 ){
2846     const char *zFmt = "sub-select returns %d columns - expected %d";
2847     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2848   }
2849 }
2850 #endif
2851 
2852 /*
2853 ** Expression pExpr is a vector that has been used in a context where
2854 ** it is not permitted. If pExpr is a sub-select vector, this routine
2855 ** loads the Parse object with a message of the form:
2856 **
2857 **   "sub-select returns N columns - expected 1"
2858 **
2859 ** Or, if it is a regular scalar vector:
2860 **
2861 **   "row value misused"
2862 */
2863 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2864 #ifndef SQLITE_OMIT_SUBQUERY
2865   if( pExpr->flags & EP_xIsSelect ){
2866     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2867   }else
2868 #endif
2869   {
2870     sqlite3ErrorMsg(pParse, "row value misused");
2871   }
2872 }
2873 
2874 #ifndef SQLITE_OMIT_SUBQUERY
2875 /*
2876 ** Generate code that will construct an ephemeral table containing all terms
2877 ** in the RHS of an IN operator.  The IN operator can be in either of two
2878 ** forms:
2879 **
2880 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2881 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2882 **
2883 ** The pExpr parameter is the IN operator.  The cursor number for the
2884 ** constructed ephermeral table is returned.  The first time the ephemeral
2885 ** table is computed, the cursor number is also stored in pExpr->iTable,
2886 ** however the cursor number returned might not be the same, as it might
2887 ** have been duplicated using OP_OpenDup.
2888 **
2889 ** If the LHS expression ("x" in the examples) is a column value, or
2890 ** the SELECT statement returns a column value, then the affinity of that
2891 ** column is used to build the index keys. If both 'x' and the
2892 ** SELECT... statement are columns, then numeric affinity is used
2893 ** if either column has NUMERIC or INTEGER affinity. If neither
2894 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2895 ** is used.
2896 */
2897 void sqlite3CodeRhsOfIN(
2898   Parse *pParse,          /* Parsing context */
2899   Expr *pExpr,            /* The IN operator */
2900   int iTab                /* Use this cursor number */
2901 ){
2902   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2903   int addr;                   /* Address of OP_OpenEphemeral instruction */
2904   Expr *pLeft;                /* the LHS of the IN operator */
2905   KeyInfo *pKeyInfo = 0;      /* Key information */
2906   int nVal;                   /* Size of vector pLeft */
2907   Vdbe *v;                    /* The prepared statement under construction */
2908 
2909   v = pParse->pVdbe;
2910   assert( v!=0 );
2911 
2912   /* The evaluation of the IN must be repeated every time it
2913   ** is encountered if any of the following is true:
2914   **
2915   **    *  The right-hand side is a correlated subquery
2916   **    *  The right-hand side is an expression list containing variables
2917   **    *  We are inside a trigger
2918   **
2919   ** If all of the above are false, then we can compute the RHS just once
2920   ** and reuse it many names.
2921   */
2922   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2923     /* Reuse of the RHS is allowed */
2924     /* If this routine has already been coded, but the previous code
2925     ** might not have been invoked yet, so invoke it now as a subroutine.
2926     */
2927     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2928       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2929       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2930         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
2931               pExpr->x.pSelect->selId));
2932       }
2933       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2934                         pExpr->y.sub.iAddr);
2935       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
2936       sqlite3VdbeJumpHere(v, addrOnce);
2937       return;
2938     }
2939 
2940     /* Begin coding the subroutine */
2941     ExprSetProperty(pExpr, EP_Subrtn);
2942     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
2943     pExpr->y.sub.regReturn = ++pParse->nMem;
2944     pExpr->y.sub.iAddr =
2945       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2946     VdbeComment((v, "return address"));
2947 
2948     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2949   }
2950 
2951   /* Check to see if this is a vector IN operator */
2952   pLeft = pExpr->pLeft;
2953   nVal = sqlite3ExprVectorSize(pLeft);
2954 
2955   /* Construct the ephemeral table that will contain the content of
2956   ** RHS of the IN operator.
2957   */
2958   pExpr->iTable = iTab;
2959   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
2960 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2961   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2962     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
2963   }else{
2964     VdbeComment((v, "RHS of IN operator"));
2965   }
2966 #endif
2967   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2968 
2969   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2970     /* Case 1:     expr IN (SELECT ...)
2971     **
2972     ** Generate code to write the results of the select into the temporary
2973     ** table allocated and opened above.
2974     */
2975     Select *pSelect = pExpr->x.pSelect;
2976     ExprList *pEList = pSelect->pEList;
2977 
2978     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
2979         addrOnce?"":"CORRELATED ", pSelect->selId
2980     ));
2981     /* If the LHS and RHS of the IN operator do not match, that
2982     ** error will have been caught long before we reach this point. */
2983     if( ALWAYS(pEList->nExpr==nVal) ){
2984       SelectDest dest;
2985       int i;
2986       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
2987       dest.zAffSdst = exprINAffinity(pParse, pExpr);
2988       pSelect->iLimit = 0;
2989       testcase( pSelect->selFlags & SF_Distinct );
2990       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2991       if( sqlite3Select(pParse, pSelect, &dest) ){
2992         sqlite3DbFree(pParse->db, dest.zAffSdst);
2993         sqlite3KeyInfoUnref(pKeyInfo);
2994         return;
2995       }
2996       sqlite3DbFree(pParse->db, dest.zAffSdst);
2997       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2998       assert( pEList!=0 );
2999       assert( pEList->nExpr>0 );
3000       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3001       for(i=0; i<nVal; i++){
3002         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
3003         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
3004             pParse, p, pEList->a[i].pExpr
3005         );
3006       }
3007     }
3008   }else if( ALWAYS(pExpr->x.pList!=0) ){
3009     /* Case 2:     expr IN (exprlist)
3010     **
3011     ** For each expression, build an index key from the evaluation and
3012     ** store it in the temporary table. If <expr> is a column, then use
3013     ** that columns affinity when building index keys. If <expr> is not
3014     ** a column, use numeric affinity.
3015     */
3016     char affinity;            /* Affinity of the LHS of the IN */
3017     int i;
3018     ExprList *pList = pExpr->x.pList;
3019     struct ExprList_item *pItem;
3020     int r1, r2;
3021     affinity = sqlite3ExprAffinity(pLeft);
3022     if( affinity<=SQLITE_AFF_NONE ){
3023       affinity = SQLITE_AFF_BLOB;
3024     }else if( affinity==SQLITE_AFF_REAL ){
3025       affinity = SQLITE_AFF_NUMERIC;
3026     }
3027     if( pKeyInfo ){
3028       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3029       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3030     }
3031 
3032     /* Loop through each expression in <exprlist>. */
3033     r1 = sqlite3GetTempReg(pParse);
3034     r2 = sqlite3GetTempReg(pParse);
3035     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
3036       Expr *pE2 = pItem->pExpr;
3037 
3038       /* If the expression is not constant then we will need to
3039       ** disable the test that was generated above that makes sure
3040       ** this code only executes once.  Because for a non-constant
3041       ** expression we need to rerun this code each time.
3042       */
3043       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
3044         sqlite3VdbeChangeToNoop(v, addrOnce);
3045         ExprClearProperty(pExpr, EP_Subrtn);
3046         addrOnce = 0;
3047       }
3048 
3049       /* Evaluate the expression and insert it into the temp table */
3050       sqlite3ExprCode(pParse, pE2, r1);
3051       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3052       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3053     }
3054     sqlite3ReleaseTempReg(pParse, r1);
3055     sqlite3ReleaseTempReg(pParse, r2);
3056   }
3057   if( pKeyInfo ){
3058     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3059   }
3060   if( addrOnce ){
3061     sqlite3VdbeJumpHere(v, addrOnce);
3062     /* Subroutine return */
3063     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3064     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3065     sqlite3ClearTempRegCache(pParse);
3066   }
3067 }
3068 #endif /* SQLITE_OMIT_SUBQUERY */
3069 
3070 /*
3071 ** Generate code for scalar subqueries used as a subquery expression
3072 ** or EXISTS operator:
3073 **
3074 **     (SELECT a FROM b)          -- subquery
3075 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
3076 **
3077 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3078 **
3079 ** Return the register that holds the result.  For a multi-column SELECT,
3080 ** the result is stored in a contiguous array of registers and the
3081 ** return value is the register of the left-most result column.
3082 ** Return 0 if an error occurs.
3083 */
3084 #ifndef SQLITE_OMIT_SUBQUERY
3085 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3086   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3087   int rReg = 0;               /* Register storing resulting */
3088   Select *pSel;               /* SELECT statement to encode */
3089   SelectDest dest;            /* How to deal with SELECT result */
3090   int nReg;                   /* Registers to allocate */
3091   Expr *pLimit;               /* New limit expression */
3092 
3093   Vdbe *v = pParse->pVdbe;
3094   assert( v!=0 );
3095   testcase( pExpr->op==TK_EXISTS );
3096   testcase( pExpr->op==TK_SELECT );
3097   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3098   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
3099   pSel = pExpr->x.pSelect;
3100 
3101   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3102   ** is encountered if any of the following is true:
3103   **
3104   **    *  The right-hand side is a correlated subquery
3105   **    *  The right-hand side is an expression list containing variables
3106   **    *  We are inside a trigger
3107   **
3108   ** If all of the above are false, then we can run this code just once
3109   ** save the results, and reuse the same result on subsequent invocations.
3110   */
3111   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3112     /* If this routine has already been coded, then invoke it as a
3113     ** subroutine. */
3114     if( ExprHasProperty(pExpr, EP_Subrtn) ){
3115       ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3116       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3117                         pExpr->y.sub.iAddr);
3118       return pExpr->iTable;
3119     }
3120 
3121     /* Begin coding the subroutine */
3122     ExprSetProperty(pExpr, EP_Subrtn);
3123     pExpr->y.sub.regReturn = ++pParse->nMem;
3124     pExpr->y.sub.iAddr =
3125       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
3126     VdbeComment((v, "return address"));
3127 
3128     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3129   }
3130 
3131   /* For a SELECT, generate code to put the values for all columns of
3132   ** the first row into an array of registers and return the index of
3133   ** the first register.
3134   **
3135   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3136   ** into a register and return that register number.
3137   **
3138   ** In both cases, the query is augmented with "LIMIT 1".  Any
3139   ** preexisting limit is discarded in place of the new LIMIT 1.
3140   */
3141   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3142         addrOnce?"":"CORRELATED ", pSel->selId));
3143   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3144   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3145   pParse->nMem += nReg;
3146   if( pExpr->op==TK_SELECT ){
3147     dest.eDest = SRT_Mem;
3148     dest.iSdst = dest.iSDParm;
3149     dest.nSdst = nReg;
3150     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3151     VdbeComment((v, "Init subquery result"));
3152   }else{
3153     dest.eDest = SRT_Exists;
3154     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3155     VdbeComment((v, "Init EXISTS result"));
3156   }
3157   if( pSel->pLimit ){
3158     /* The subquery already has a limit.  If the pre-existing limit is X
3159     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3160     sqlite3 *db = pParse->db;
3161     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3162     if( pLimit ){
3163       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3164       pLimit = sqlite3PExpr(pParse, TK_NE,
3165                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3166     }
3167     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3168     pSel->pLimit->pLeft = pLimit;
3169   }else{
3170     /* If there is no pre-existing limit add a limit of 1 */
3171     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3172     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3173   }
3174   pSel->iLimit = 0;
3175   if( sqlite3Select(pParse, pSel, &dest) ){
3176     return 0;
3177   }
3178   pExpr->iTable = rReg = dest.iSDParm;
3179   ExprSetVVAProperty(pExpr, EP_NoReduce);
3180   if( addrOnce ){
3181     sqlite3VdbeJumpHere(v, addrOnce);
3182 
3183     /* Subroutine return */
3184     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3185     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3186     sqlite3ClearTempRegCache(pParse);
3187   }
3188 
3189   return rReg;
3190 }
3191 #endif /* SQLITE_OMIT_SUBQUERY */
3192 
3193 #ifndef SQLITE_OMIT_SUBQUERY
3194 /*
3195 ** Expr pIn is an IN(...) expression. This function checks that the
3196 ** sub-select on the RHS of the IN() operator has the same number of
3197 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3198 ** a sub-query, that the LHS is a vector of size 1.
3199 */
3200 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3201   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3202   if( (pIn->flags & EP_xIsSelect)!=0 && !pParse->db->mallocFailed ){
3203     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3204       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3205       return 1;
3206     }
3207   }else if( nVector!=1 ){
3208     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3209     return 1;
3210   }
3211   return 0;
3212 }
3213 #endif
3214 
3215 #ifndef SQLITE_OMIT_SUBQUERY
3216 /*
3217 ** Generate code for an IN expression.
3218 **
3219 **      x IN (SELECT ...)
3220 **      x IN (value, value, ...)
3221 **
3222 ** The left-hand side (LHS) is a scalar or vector expression.  The
3223 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3224 ** subquery.  If the RHS is a subquery, the number of result columns must
3225 ** match the number of columns in the vector on the LHS.  If the RHS is
3226 ** a list of values, the LHS must be a scalar.
3227 **
3228 ** The IN operator is true if the LHS value is contained within the RHS.
3229 ** The result is false if the LHS is definitely not in the RHS.  The
3230 ** result is NULL if the presence of the LHS in the RHS cannot be
3231 ** determined due to NULLs.
3232 **
3233 ** This routine generates code that jumps to destIfFalse if the LHS is not
3234 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3235 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3236 ** within the RHS then fall through.
3237 **
3238 ** See the separate in-operator.md documentation file in the canonical
3239 ** SQLite source tree for additional information.
3240 */
3241 static void sqlite3ExprCodeIN(
3242   Parse *pParse,        /* Parsing and code generating context */
3243   Expr *pExpr,          /* The IN expression */
3244   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3245   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3246 ){
3247   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3248   int eType;            /* Type of the RHS */
3249   int rLhs;             /* Register(s) holding the LHS values */
3250   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3251   Vdbe *v;              /* Statement under construction */
3252   int *aiMap = 0;       /* Map from vector field to index column */
3253   char *zAff = 0;       /* Affinity string for comparisons */
3254   int nVector;          /* Size of vectors for this IN operator */
3255   int iDummy;           /* Dummy parameter to exprCodeVector() */
3256   Expr *pLeft;          /* The LHS of the IN operator */
3257   int i;                /* loop counter */
3258   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3259   int destStep6 = 0;    /* Start of code for Step 6 */
3260   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3261   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3262   int addrTop;          /* Top of the step-6 loop */
3263   int iTab = 0;         /* Index to use */
3264   u8 okConstFactor = pParse->okConstFactor;
3265 
3266   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3267   pLeft = pExpr->pLeft;
3268   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3269   zAff = exprINAffinity(pParse, pExpr);
3270   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3271   aiMap = (int*)sqlite3DbMallocZero(
3272       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3273   );
3274   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3275 
3276   /* Attempt to compute the RHS. After this step, if anything other than
3277   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3278   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3279   ** the RHS has not yet been coded.  */
3280   v = pParse->pVdbe;
3281   assert( v!=0 );       /* OOM detected prior to this routine */
3282   VdbeNoopComment((v, "begin IN expr"));
3283   eType = sqlite3FindInIndex(pParse, pExpr,
3284                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3285                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3286                              aiMap, &iTab);
3287 
3288   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3289        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3290   );
3291 #ifdef SQLITE_DEBUG
3292   /* Confirm that aiMap[] contains nVector integer values between 0 and
3293   ** nVector-1. */
3294   for(i=0; i<nVector; i++){
3295     int j, cnt;
3296     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3297     assert( cnt==1 );
3298   }
3299 #endif
3300 
3301   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3302   ** vector, then it is stored in an array of nVector registers starting
3303   ** at r1.
3304   **
3305   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3306   ** so that the fields are in the same order as an existing index.   The
3307   ** aiMap[] array contains a mapping from the original LHS field order to
3308   ** the field order that matches the RHS index.
3309   **
3310   ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3311   ** even if it is constant, as OP_Affinity may be used on the register
3312   ** by code generated below.  */
3313   assert( pParse->okConstFactor==okConstFactor );
3314   pParse->okConstFactor = 0;
3315   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3316   pParse->okConstFactor = okConstFactor;
3317   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3318   if( i==nVector ){
3319     /* LHS fields are not reordered */
3320     rLhs = rLhsOrig;
3321   }else{
3322     /* Need to reorder the LHS fields according to aiMap */
3323     rLhs = sqlite3GetTempRange(pParse, nVector);
3324     for(i=0; i<nVector; i++){
3325       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3326     }
3327   }
3328 
3329   /* If sqlite3FindInIndex() did not find or create an index that is
3330   ** suitable for evaluating the IN operator, then evaluate using a
3331   ** sequence of comparisons.
3332   **
3333   ** This is step (1) in the in-operator.md optimized algorithm.
3334   */
3335   if( eType==IN_INDEX_NOOP ){
3336     ExprList *pList = pExpr->x.pList;
3337     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3338     int labelOk = sqlite3VdbeMakeLabel(pParse);
3339     int r2, regToFree;
3340     int regCkNull = 0;
3341     int ii;
3342     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3343     if( destIfNull!=destIfFalse ){
3344       regCkNull = sqlite3GetTempReg(pParse);
3345       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3346     }
3347     for(ii=0; ii<pList->nExpr; ii++){
3348       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3349       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3350         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3351       }
3352       sqlite3ReleaseTempReg(pParse, regToFree);
3353       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3354         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3355         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3356                           (void*)pColl, P4_COLLSEQ);
3357         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3358         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3359         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3360         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3361         sqlite3VdbeChangeP5(v, zAff[0]);
3362       }else{
3363         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3364         assert( destIfNull==destIfFalse );
3365         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3366                           (void*)pColl, P4_COLLSEQ);
3367         VdbeCoverageIf(v, op==OP_Ne);
3368         VdbeCoverageIf(v, op==OP_IsNull);
3369         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3370       }
3371     }
3372     if( regCkNull ){
3373       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3374       sqlite3VdbeGoto(v, destIfFalse);
3375     }
3376     sqlite3VdbeResolveLabel(v, labelOk);
3377     sqlite3ReleaseTempReg(pParse, regCkNull);
3378     goto sqlite3ExprCodeIN_finished;
3379   }
3380 
3381   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3382   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3383   ** We will then skip the binary search of the RHS.
3384   */
3385   if( destIfNull==destIfFalse ){
3386     destStep2 = destIfFalse;
3387   }else{
3388     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3389   }
3390   if( pParse->nErr ) goto sqlite3ExprCodeIN_finished;
3391   for(i=0; i<nVector; i++){
3392     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3393     if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3394     if( sqlite3ExprCanBeNull(p) ){
3395       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3396       VdbeCoverage(v);
3397     }
3398   }
3399 
3400   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3401   ** of the RHS using the LHS as a probe.  If found, the result is
3402   ** true.
3403   */
3404   if( eType==IN_INDEX_ROWID ){
3405     /* In this case, the RHS is the ROWID of table b-tree and so we also
3406     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3407     ** into a single opcode. */
3408     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3409     VdbeCoverage(v);
3410     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3411   }else{
3412     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3413     if( destIfFalse==destIfNull ){
3414       /* Combine Step 3 and Step 5 into a single opcode */
3415       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3416                            rLhs, nVector); VdbeCoverage(v);
3417       goto sqlite3ExprCodeIN_finished;
3418     }
3419     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3420     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3421                                       rLhs, nVector); VdbeCoverage(v);
3422   }
3423 
3424   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3425   ** an match on the search above, then the result must be FALSE.
3426   */
3427   if( rRhsHasNull && nVector==1 ){
3428     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3429     VdbeCoverage(v);
3430   }
3431 
3432   /* Step 5.  If we do not care about the difference between NULL and
3433   ** FALSE, then just return false.
3434   */
3435   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3436 
3437   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3438   ** If any comparison is NULL, then the result is NULL.  If all
3439   ** comparisons are FALSE then the final result is FALSE.
3440   **
3441   ** For a scalar LHS, it is sufficient to check just the first row
3442   ** of the RHS.
3443   */
3444   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3445   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3446   VdbeCoverage(v);
3447   if( nVector>1 ){
3448     destNotNull = sqlite3VdbeMakeLabel(pParse);
3449   }else{
3450     /* For nVector==1, combine steps 6 and 7 by immediately returning
3451     ** FALSE if the first comparison is not NULL */
3452     destNotNull = destIfFalse;
3453   }
3454   for(i=0; i<nVector; i++){
3455     Expr *p;
3456     CollSeq *pColl;
3457     int r3 = sqlite3GetTempReg(pParse);
3458     p = sqlite3VectorFieldSubexpr(pLeft, i);
3459     pColl = sqlite3ExprCollSeq(pParse, p);
3460     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3461     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3462                       (void*)pColl, P4_COLLSEQ);
3463     VdbeCoverage(v);
3464     sqlite3ReleaseTempReg(pParse, r3);
3465   }
3466   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3467   if( nVector>1 ){
3468     sqlite3VdbeResolveLabel(v, destNotNull);
3469     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3470     VdbeCoverage(v);
3471 
3472     /* Step 7:  If we reach this point, we know that the result must
3473     ** be false. */
3474     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3475   }
3476 
3477   /* Jumps here in order to return true. */
3478   sqlite3VdbeJumpHere(v, addrTruthOp);
3479 
3480 sqlite3ExprCodeIN_finished:
3481   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3482   VdbeComment((v, "end IN expr"));
3483 sqlite3ExprCodeIN_oom_error:
3484   sqlite3DbFree(pParse->db, aiMap);
3485   sqlite3DbFree(pParse->db, zAff);
3486 }
3487 #endif /* SQLITE_OMIT_SUBQUERY */
3488 
3489 #ifndef SQLITE_OMIT_FLOATING_POINT
3490 /*
3491 ** Generate an instruction that will put the floating point
3492 ** value described by z[0..n-1] into register iMem.
3493 **
3494 ** The z[] string will probably not be zero-terminated.  But the
3495 ** z[n] character is guaranteed to be something that does not look
3496 ** like the continuation of the number.
3497 */
3498 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3499   if( ALWAYS(z!=0) ){
3500     double value;
3501     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3502     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3503     if( negateFlag ) value = -value;
3504     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3505   }
3506 }
3507 #endif
3508 
3509 
3510 /*
3511 ** Generate an instruction that will put the integer describe by
3512 ** text z[0..n-1] into register iMem.
3513 **
3514 ** Expr.u.zToken is always UTF8 and zero-terminated.
3515 */
3516 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3517   Vdbe *v = pParse->pVdbe;
3518   if( pExpr->flags & EP_IntValue ){
3519     int i = pExpr->u.iValue;
3520     assert( i>=0 );
3521     if( negFlag ) i = -i;
3522     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3523   }else{
3524     int c;
3525     i64 value;
3526     const char *z = pExpr->u.zToken;
3527     assert( z!=0 );
3528     c = sqlite3DecOrHexToI64(z, &value);
3529     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3530 #ifdef SQLITE_OMIT_FLOATING_POINT
3531       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3532 #else
3533 #ifndef SQLITE_OMIT_HEX_INTEGER
3534       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3535         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3536       }else
3537 #endif
3538       {
3539         codeReal(v, z, negFlag, iMem);
3540       }
3541 #endif
3542     }else{
3543       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3544       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3545     }
3546   }
3547 }
3548 
3549 
3550 /* Generate code that will load into register regOut a value that is
3551 ** appropriate for the iIdxCol-th column of index pIdx.
3552 */
3553 void sqlite3ExprCodeLoadIndexColumn(
3554   Parse *pParse,  /* The parsing context */
3555   Index *pIdx,    /* The index whose column is to be loaded */
3556   int iTabCur,    /* Cursor pointing to a table row */
3557   int iIdxCol,    /* The column of the index to be loaded */
3558   int regOut      /* Store the index column value in this register */
3559 ){
3560   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3561   if( iTabCol==XN_EXPR ){
3562     assert( pIdx->aColExpr );
3563     assert( pIdx->aColExpr->nExpr>iIdxCol );
3564     pParse->iSelfTab = iTabCur + 1;
3565     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3566     pParse->iSelfTab = 0;
3567   }else{
3568     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3569                                     iTabCol, regOut);
3570   }
3571 }
3572 
3573 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3574 /*
3575 ** Generate code that will compute the value of generated column pCol
3576 ** and store the result in register regOut
3577 */
3578 void sqlite3ExprCodeGeneratedColumn(
3579   Parse *pParse,
3580   Column *pCol,
3581   int regOut
3582 ){
3583   int iAddr;
3584   Vdbe *v = pParse->pVdbe;
3585   assert( v!=0 );
3586   assert( pParse->iSelfTab!=0 );
3587   if( pParse->iSelfTab>0 ){
3588     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3589   }else{
3590     iAddr = 0;
3591   }
3592   sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut);
3593   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3594     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3595   }
3596   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3597 }
3598 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3599 
3600 /*
3601 ** Generate code to extract the value of the iCol-th column of a table.
3602 */
3603 void sqlite3ExprCodeGetColumnOfTable(
3604   Vdbe *v,        /* Parsing context */
3605   Table *pTab,    /* The table containing the value */
3606   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3607   int iCol,       /* Index of the column to extract */
3608   int regOut      /* Extract the value into this register */
3609 ){
3610   Column *pCol;
3611   assert( v!=0 );
3612   if( pTab==0 ){
3613     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3614     return;
3615   }
3616   if( iCol<0 || iCol==pTab->iPKey ){
3617     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3618   }else{
3619     int op;
3620     int x;
3621     if( IsVirtual(pTab) ){
3622       op = OP_VColumn;
3623       x = iCol;
3624 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3625     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3626       Parse *pParse = sqlite3VdbeParser(v);
3627       if( pCol->colFlags & COLFLAG_BUSY ){
3628         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName);
3629       }else{
3630         int savedSelfTab = pParse->iSelfTab;
3631         pCol->colFlags |= COLFLAG_BUSY;
3632         pParse->iSelfTab = iTabCur+1;
3633         sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut);
3634         pParse->iSelfTab = savedSelfTab;
3635         pCol->colFlags &= ~COLFLAG_BUSY;
3636       }
3637       return;
3638 #endif
3639     }else if( !HasRowid(pTab) ){
3640       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3641       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3642       op = OP_Column;
3643     }else{
3644       x = sqlite3TableColumnToStorage(pTab,iCol);
3645       testcase( x!=iCol );
3646       op = OP_Column;
3647     }
3648     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3649     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3650   }
3651 }
3652 
3653 /*
3654 ** Generate code that will extract the iColumn-th column from
3655 ** table pTab and store the column value in register iReg.
3656 **
3657 ** There must be an open cursor to pTab in iTable when this routine
3658 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3659 */
3660 int sqlite3ExprCodeGetColumn(
3661   Parse *pParse,   /* Parsing and code generating context */
3662   Table *pTab,     /* Description of the table we are reading from */
3663   int iColumn,     /* Index of the table column */
3664   int iTable,      /* The cursor pointing to the table */
3665   int iReg,        /* Store results here */
3666   u8 p5            /* P5 value for OP_Column + FLAGS */
3667 ){
3668   assert( pParse->pVdbe!=0 );
3669   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3670   if( p5 ){
3671     VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3672     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3673   }
3674   return iReg;
3675 }
3676 
3677 /*
3678 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3679 ** over to iTo..iTo+nReg-1.
3680 */
3681 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3682   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3683 }
3684 
3685 /*
3686 ** Convert a scalar expression node to a TK_REGISTER referencing
3687 ** register iReg.  The caller must ensure that iReg already contains
3688 ** the correct value for the expression.
3689 */
3690 static void exprToRegister(Expr *pExpr, int iReg){
3691   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3692   if( NEVER(p==0) ) return;
3693   p->op2 = p->op;
3694   p->op = TK_REGISTER;
3695   p->iTable = iReg;
3696   ExprClearProperty(p, EP_Skip);
3697 }
3698 
3699 /*
3700 ** Evaluate an expression (either a vector or a scalar expression) and store
3701 ** the result in continguous temporary registers.  Return the index of
3702 ** the first register used to store the result.
3703 **
3704 ** If the returned result register is a temporary scalar, then also write
3705 ** that register number into *piFreeable.  If the returned result register
3706 ** is not a temporary or if the expression is a vector set *piFreeable
3707 ** to 0.
3708 */
3709 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3710   int iResult;
3711   int nResult = sqlite3ExprVectorSize(p);
3712   if( nResult==1 ){
3713     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3714   }else{
3715     *piFreeable = 0;
3716     if( p->op==TK_SELECT ){
3717 #if SQLITE_OMIT_SUBQUERY
3718       iResult = 0;
3719 #else
3720       iResult = sqlite3CodeSubselect(pParse, p);
3721 #endif
3722     }else{
3723       int i;
3724       iResult = pParse->nMem+1;
3725       pParse->nMem += nResult;
3726       for(i=0; i<nResult; i++){
3727         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3728       }
3729     }
3730   }
3731   return iResult;
3732 }
3733 
3734 /*
3735 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3736 ** so that a subsequent copy will not be merged into this one.
3737 */
3738 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3739   if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
3740     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3741   }
3742 }
3743 
3744 /*
3745 ** Generate code to implement special SQL functions that are implemented
3746 ** in-line rather than by using the usual callbacks.
3747 */
3748 static int exprCodeInlineFunction(
3749   Parse *pParse,        /* Parsing context */
3750   ExprList *pFarg,      /* List of function arguments */
3751   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3752   int target            /* Store function result in this register */
3753 ){
3754   int nFarg;
3755   Vdbe *v = pParse->pVdbe;
3756   assert( v!=0 );
3757   assert( pFarg!=0 );
3758   nFarg = pFarg->nExpr;
3759   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3760   switch( iFuncId ){
3761     case INLINEFUNC_coalesce: {
3762       /* Attempt a direct implementation of the built-in COALESCE() and
3763       ** IFNULL() functions.  This avoids unnecessary evaluation of
3764       ** arguments past the first non-NULL argument.
3765       */
3766       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3767       int i;
3768       assert( nFarg>=2 );
3769       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3770       for(i=1; i<nFarg; i++){
3771         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3772         VdbeCoverage(v);
3773         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3774       }
3775       setDoNotMergeFlagOnCopy(v);
3776       sqlite3VdbeResolveLabel(v, endCoalesce);
3777       break;
3778     }
3779     case INLINEFUNC_iif: {
3780       Expr caseExpr;
3781       memset(&caseExpr, 0, sizeof(caseExpr));
3782       caseExpr.op = TK_CASE;
3783       caseExpr.x.pList = pFarg;
3784       return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3785     }
3786 
3787     default: {
3788       /* The UNLIKELY() function is a no-op.  The result is the value
3789       ** of the first argument.
3790       */
3791       assert( nFarg==1 || nFarg==2 );
3792       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3793       break;
3794     }
3795 
3796   /***********************************************************************
3797   ** Test-only SQL functions that are only usable if enabled
3798   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3799   */
3800     case INLINEFUNC_expr_compare: {
3801       /* Compare two expressions using sqlite3ExprCompare() */
3802       assert( nFarg==2 );
3803       sqlite3VdbeAddOp2(v, OP_Integer,
3804          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3805          target);
3806       break;
3807     }
3808 
3809     case INLINEFUNC_expr_implies_expr: {
3810       /* Compare two expressions using sqlite3ExprImpliesExpr() */
3811       assert( nFarg==2 );
3812       sqlite3VdbeAddOp2(v, OP_Integer,
3813          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3814          target);
3815       break;
3816     }
3817 
3818     case INLINEFUNC_implies_nonnull_row: {
3819       /* REsult of sqlite3ExprImpliesNonNullRow() */
3820       Expr *pA1;
3821       assert( nFarg==2 );
3822       pA1 = pFarg->a[1].pExpr;
3823       if( pA1->op==TK_COLUMN ){
3824         sqlite3VdbeAddOp2(v, OP_Integer,
3825            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
3826            target);
3827       }else{
3828         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3829       }
3830       break;
3831     }
3832 
3833 #ifdef SQLITE_DEBUG
3834     case INLINEFUNC_affinity: {
3835       /* The AFFINITY() function evaluates to a string that describes
3836       ** the type affinity of the argument.  This is used for testing of
3837       ** the SQLite type logic.
3838       */
3839       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3840       char aff;
3841       assert( nFarg==1 );
3842       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3843       sqlite3VdbeLoadString(v, target,
3844               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3845       break;
3846     }
3847 #endif
3848   }
3849   return target;
3850 }
3851 
3852 
3853 /*
3854 ** Generate code into the current Vdbe to evaluate the given
3855 ** expression.  Attempt to store the results in register "target".
3856 ** Return the register where results are stored.
3857 **
3858 ** With this routine, there is no guarantee that results will
3859 ** be stored in target.  The result might be stored in some other
3860 ** register if it is convenient to do so.  The calling function
3861 ** must check the return code and move the results to the desired
3862 ** register.
3863 */
3864 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3865   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3866   int op;                   /* The opcode being coded */
3867   int inReg = target;       /* Results stored in register inReg */
3868   int regFree1 = 0;         /* If non-zero free this temporary register */
3869   int regFree2 = 0;         /* If non-zero free this temporary register */
3870   int r1, r2;               /* Various register numbers */
3871   Expr tempX;               /* Temporary expression node */
3872   int p5 = 0;
3873 
3874   assert( target>0 && target<=pParse->nMem );
3875   assert( v!=0 );
3876 
3877 expr_code_doover:
3878   if( pExpr==0 ){
3879     op = TK_NULL;
3880   }else{
3881     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3882     op = pExpr->op;
3883   }
3884   switch( op ){
3885     case TK_AGG_COLUMN: {
3886       AggInfo *pAggInfo = pExpr->pAggInfo;
3887       struct AggInfo_col *pCol;
3888       assert( pAggInfo!=0 );
3889       assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
3890       pCol = &pAggInfo->aCol[pExpr->iAgg];
3891       if( !pAggInfo->directMode ){
3892         assert( pCol->iMem>0 );
3893         return pCol->iMem;
3894       }else if( pAggInfo->useSortingIdx ){
3895         Table *pTab = pCol->pTab;
3896         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3897                               pCol->iSorterColumn, target);
3898         if( pCol->iColumn<0 ){
3899           VdbeComment((v,"%s.rowid",pTab->zName));
3900         }else{
3901           VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName));
3902           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
3903             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3904           }
3905         }
3906         return target;
3907       }
3908       /* Otherwise, fall thru into the TK_COLUMN case */
3909       /* no break */ deliberate_fall_through
3910     }
3911     case TK_COLUMN: {
3912       int iTab = pExpr->iTable;
3913       int iReg;
3914       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3915         /* This COLUMN expression is really a constant due to WHERE clause
3916         ** constraints, and that constant is coded by the pExpr->pLeft
3917         ** expresssion.  However, make sure the constant has the correct
3918         ** datatype by applying the Affinity of the table column to the
3919         ** constant.
3920         */
3921         int aff;
3922         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3923         if( pExpr->y.pTab ){
3924           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3925         }else{
3926           aff = pExpr->affExpr;
3927         }
3928         if( aff>SQLITE_AFF_BLOB ){
3929           static const char zAff[] = "B\000C\000D\000E";
3930           assert( SQLITE_AFF_BLOB=='A' );
3931           assert( SQLITE_AFF_TEXT=='B' );
3932           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3933                             &zAff[(aff-'B')*2], P4_STATIC);
3934         }
3935         return iReg;
3936       }
3937       if( iTab<0 ){
3938         if( pParse->iSelfTab<0 ){
3939           /* Other columns in the same row for CHECK constraints or
3940           ** generated columns or for inserting into partial index.
3941           ** The row is unpacked into registers beginning at
3942           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
3943           ** immediately prior to the first column.
3944           */
3945           Column *pCol;
3946           Table *pTab = pExpr->y.pTab;
3947           int iSrc;
3948           int iCol = pExpr->iColumn;
3949           assert( pTab!=0 );
3950           assert( iCol>=XN_ROWID );
3951           assert( iCol<pTab->nCol );
3952           if( iCol<0 ){
3953             return -1-pParse->iSelfTab;
3954           }
3955           pCol = pTab->aCol + iCol;
3956           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
3957           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
3958 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3959           if( pCol->colFlags & COLFLAG_GENERATED ){
3960             if( pCol->colFlags & COLFLAG_BUSY ){
3961               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3962                               pCol->zName);
3963               return 0;
3964             }
3965             pCol->colFlags |= COLFLAG_BUSY;
3966             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
3967               sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc);
3968             }
3969             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
3970             return iSrc;
3971           }else
3972 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3973           if( pCol->affinity==SQLITE_AFF_REAL ){
3974             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
3975             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3976             return target;
3977           }else{
3978             return iSrc;
3979           }
3980         }else{
3981           /* Coding an expression that is part of an index where column names
3982           ** in the index refer to the table to which the index belongs */
3983           iTab = pParse->iSelfTab - 1;
3984         }
3985       }
3986       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
3987                                pExpr->iColumn, iTab, target,
3988                                pExpr->op2);
3989       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
3990         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
3991       }
3992       return iReg;
3993     }
3994     case TK_INTEGER: {
3995       codeInteger(pParse, pExpr, 0, target);
3996       return target;
3997     }
3998     case TK_TRUEFALSE: {
3999       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
4000       return target;
4001     }
4002 #ifndef SQLITE_OMIT_FLOATING_POINT
4003     case TK_FLOAT: {
4004       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4005       codeReal(v, pExpr->u.zToken, 0, target);
4006       return target;
4007     }
4008 #endif
4009     case TK_STRING: {
4010       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4011       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
4012       return target;
4013     }
4014     default: {
4015       /* Make NULL the default case so that if a bug causes an illegal
4016       ** Expr node to be passed into this function, it will be handled
4017       ** sanely and not crash.  But keep the assert() to bring the problem
4018       ** to the attention of the developers. */
4019       assert( op==TK_NULL || pParse->db->mallocFailed );
4020       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4021       return target;
4022     }
4023 #ifndef SQLITE_OMIT_BLOB_LITERAL
4024     case TK_BLOB: {
4025       int n;
4026       const char *z;
4027       char *zBlob;
4028       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4029       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
4030       assert( pExpr->u.zToken[1]=='\'' );
4031       z = &pExpr->u.zToken[2];
4032       n = sqlite3Strlen30(z) - 1;
4033       assert( z[n]=='\'' );
4034       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
4035       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
4036       return target;
4037     }
4038 #endif
4039     case TK_VARIABLE: {
4040       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4041       assert( pExpr->u.zToken!=0 );
4042       assert( pExpr->u.zToken[0]!=0 );
4043       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
4044       if( pExpr->u.zToken[1]!=0 ){
4045         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
4046         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
4047         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
4048         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
4049       }
4050       return target;
4051     }
4052     case TK_REGISTER: {
4053       return pExpr->iTable;
4054     }
4055 #ifndef SQLITE_OMIT_CAST
4056     case TK_CAST: {
4057       /* Expressions of the form:   CAST(pLeft AS token) */
4058       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4059       if( inReg!=target ){
4060         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4061         inReg = target;
4062       }
4063       sqlite3VdbeAddOp2(v, OP_Cast, target,
4064                         sqlite3AffinityType(pExpr->u.zToken, 0));
4065       return inReg;
4066     }
4067 #endif /* SQLITE_OMIT_CAST */
4068     case TK_IS:
4069     case TK_ISNOT:
4070       op = (op==TK_IS) ? TK_EQ : TK_NE;
4071       p5 = SQLITE_NULLEQ;
4072       /* fall-through */
4073     case TK_LT:
4074     case TK_LE:
4075     case TK_GT:
4076     case TK_GE:
4077     case TK_NE:
4078     case TK_EQ: {
4079       Expr *pLeft = pExpr->pLeft;
4080       if( sqlite3ExprIsVector(pLeft) ){
4081         codeVectorCompare(pParse, pExpr, target, op, p5);
4082       }else{
4083         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4084         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4085         sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
4086         codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
4087             sqlite3VdbeCurrentAddr(v)+2, p5,
4088             ExprHasProperty(pExpr,EP_Commuted));
4089         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4090         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4091         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4092         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4093         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4094         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4095         if( p5==SQLITE_NULLEQ ){
4096           sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
4097         }else{
4098           sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
4099         }
4100         testcase( regFree1==0 );
4101         testcase( regFree2==0 );
4102       }
4103       break;
4104     }
4105     case TK_AND:
4106     case TK_OR:
4107     case TK_PLUS:
4108     case TK_STAR:
4109     case TK_MINUS:
4110     case TK_REM:
4111     case TK_BITAND:
4112     case TK_BITOR:
4113     case TK_SLASH:
4114     case TK_LSHIFT:
4115     case TK_RSHIFT:
4116     case TK_CONCAT: {
4117       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4118       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4119       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4120       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4121       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4122       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4123       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4124       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4125       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4126       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4127       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4128       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4129       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4130       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4131       testcase( regFree1==0 );
4132       testcase( regFree2==0 );
4133       break;
4134     }
4135     case TK_UMINUS: {
4136       Expr *pLeft = pExpr->pLeft;
4137       assert( pLeft );
4138       if( pLeft->op==TK_INTEGER ){
4139         codeInteger(pParse, pLeft, 1, target);
4140         return target;
4141 #ifndef SQLITE_OMIT_FLOATING_POINT
4142       }else if( pLeft->op==TK_FLOAT ){
4143         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4144         codeReal(v, pLeft->u.zToken, 1, target);
4145         return target;
4146 #endif
4147       }else{
4148         tempX.op = TK_INTEGER;
4149         tempX.flags = EP_IntValue|EP_TokenOnly;
4150         tempX.u.iValue = 0;
4151         ExprClearVVAProperties(&tempX);
4152         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4153         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4154         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4155         testcase( regFree2==0 );
4156       }
4157       break;
4158     }
4159     case TK_BITNOT:
4160     case TK_NOT: {
4161       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4162       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4163       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4164       testcase( regFree1==0 );
4165       sqlite3VdbeAddOp2(v, op, r1, inReg);
4166       break;
4167     }
4168     case TK_TRUTH: {
4169       int isTrue;    /* IS TRUE or IS NOT TRUE */
4170       int bNormal;   /* IS TRUE or IS FALSE */
4171       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4172       testcase( regFree1==0 );
4173       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4174       bNormal = pExpr->op2==TK_IS;
4175       testcase( isTrue && bNormal);
4176       testcase( !isTrue && bNormal);
4177       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4178       break;
4179     }
4180     case TK_ISNULL:
4181     case TK_NOTNULL: {
4182       int addr;
4183       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4184       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4185       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4186       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4187       testcase( regFree1==0 );
4188       addr = sqlite3VdbeAddOp1(v, op, r1);
4189       VdbeCoverageIf(v, op==TK_ISNULL);
4190       VdbeCoverageIf(v, op==TK_NOTNULL);
4191       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4192       sqlite3VdbeJumpHere(v, addr);
4193       break;
4194     }
4195     case TK_AGG_FUNCTION: {
4196       AggInfo *pInfo = pExpr->pAggInfo;
4197       if( pInfo==0
4198        || NEVER(pExpr->iAgg<0)
4199        || NEVER(pExpr->iAgg>=pInfo->nFunc)
4200       ){
4201         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4202         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
4203       }else{
4204         return pInfo->aFunc[pExpr->iAgg].iMem;
4205       }
4206       break;
4207     }
4208     case TK_FUNCTION: {
4209       ExprList *pFarg;       /* List of function arguments */
4210       int nFarg;             /* Number of function arguments */
4211       FuncDef *pDef;         /* The function definition object */
4212       const char *zId;       /* The function name */
4213       u32 constMask = 0;     /* Mask of function arguments that are constant */
4214       int i;                 /* Loop counter */
4215       sqlite3 *db = pParse->db;  /* The database connection */
4216       u8 enc = ENC(db);      /* The text encoding used by this database */
4217       CollSeq *pColl = 0;    /* A collating sequence */
4218 
4219 #ifndef SQLITE_OMIT_WINDOWFUNC
4220       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4221         return pExpr->y.pWin->regResult;
4222       }
4223 #endif
4224 
4225       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4226         /* SQL functions can be expensive. So try to avoid running them
4227         ** multiple times if we know they always give the same result */
4228         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4229       }
4230       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4231       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4232       pFarg = pExpr->x.pList;
4233       nFarg = pFarg ? pFarg->nExpr : 0;
4234       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4235       zId = pExpr->u.zToken;
4236       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4237 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4238       if( pDef==0 && pParse->explain ){
4239         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4240       }
4241 #endif
4242       if( pDef==0 || pDef->xFinalize!=0 ){
4243         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
4244         break;
4245       }
4246       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4247         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4248         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4249         return exprCodeInlineFunction(pParse, pFarg,
4250              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4251       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4252         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4253       }
4254 
4255       for(i=0; i<nFarg; i++){
4256         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4257           testcase( i==31 );
4258           constMask |= MASKBIT32(i);
4259         }
4260         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4261           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4262         }
4263       }
4264       if( pFarg ){
4265         if( constMask ){
4266           r1 = pParse->nMem+1;
4267           pParse->nMem += nFarg;
4268         }else{
4269           r1 = sqlite3GetTempRange(pParse, nFarg);
4270         }
4271 
4272         /* For length() and typeof() functions with a column argument,
4273         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4274         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4275         ** loading.
4276         */
4277         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4278           u8 exprOp;
4279           assert( nFarg==1 );
4280           assert( pFarg->a[0].pExpr!=0 );
4281           exprOp = pFarg->a[0].pExpr->op;
4282           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4283             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4284             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4285             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4286             pFarg->a[0].pExpr->op2 =
4287                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4288           }
4289         }
4290 
4291         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4292                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4293       }else{
4294         r1 = 0;
4295       }
4296 #ifndef SQLITE_OMIT_VIRTUALTABLE
4297       /* Possibly overload the function if the first argument is
4298       ** a virtual table column.
4299       **
4300       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4301       ** second argument, not the first, as the argument to test to
4302       ** see if it is a column in a virtual table.  This is done because
4303       ** the left operand of infix functions (the operand we want to
4304       ** control overloading) ends up as the second argument to the
4305       ** function.  The expression "A glob B" is equivalent to
4306       ** "glob(B,A).  We want to use the A in "A glob B" to test
4307       ** for function overloading.  But we use the B term in "glob(B,A)".
4308       */
4309       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4310         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4311       }else if( nFarg>0 ){
4312         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4313       }
4314 #endif
4315       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4316         if( !pColl ) pColl = db->pDfltColl;
4317         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4318       }
4319 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4320       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
4321         Expr *pArg = pFarg->a[0].pExpr;
4322         if( pArg->op==TK_COLUMN ){
4323           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4324         }else{
4325           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4326         }
4327       }else
4328 #endif
4329       {
4330         sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4331                                    pDef, pExpr->op2);
4332       }
4333       if( nFarg ){
4334         if( constMask==0 ){
4335           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4336         }else{
4337           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4338         }
4339       }
4340       return target;
4341     }
4342 #ifndef SQLITE_OMIT_SUBQUERY
4343     case TK_EXISTS:
4344     case TK_SELECT: {
4345       int nCol;
4346       testcase( op==TK_EXISTS );
4347       testcase( op==TK_SELECT );
4348       if( pParse->db->mallocFailed ){
4349         return 0;
4350       }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
4351         sqlite3SubselectError(pParse, nCol, 1);
4352       }else{
4353         return sqlite3CodeSubselect(pParse, pExpr);
4354       }
4355       break;
4356     }
4357     case TK_SELECT_COLUMN: {
4358       int n;
4359       if( pExpr->pLeft->iTable==0 ){
4360         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
4361       }
4362       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
4363       if( pExpr->iTable!=0
4364        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
4365       ){
4366         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4367                                 pExpr->iTable, n);
4368       }
4369       return pExpr->pLeft->iTable + pExpr->iColumn;
4370     }
4371     case TK_IN: {
4372       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4373       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4374       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4375       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4376       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4377       sqlite3VdbeResolveLabel(v, destIfFalse);
4378       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4379       sqlite3VdbeResolveLabel(v, destIfNull);
4380       return target;
4381     }
4382 #endif /* SQLITE_OMIT_SUBQUERY */
4383 
4384 
4385     /*
4386     **    x BETWEEN y AND z
4387     **
4388     ** This is equivalent to
4389     **
4390     **    x>=y AND x<=z
4391     **
4392     ** X is stored in pExpr->pLeft.
4393     ** Y is stored in pExpr->pList->a[0].pExpr.
4394     ** Z is stored in pExpr->pList->a[1].pExpr.
4395     */
4396     case TK_BETWEEN: {
4397       exprCodeBetween(pParse, pExpr, target, 0, 0);
4398       return target;
4399     }
4400     case TK_SPAN:
4401     case TK_COLLATE:
4402     case TK_UPLUS: {
4403       pExpr = pExpr->pLeft;
4404       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4405     }
4406 
4407     case TK_TRIGGER: {
4408       /* If the opcode is TK_TRIGGER, then the expression is a reference
4409       ** to a column in the new.* or old.* pseudo-tables available to
4410       ** trigger programs. In this case Expr.iTable is set to 1 for the
4411       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4412       ** is set to the column of the pseudo-table to read, or to -1 to
4413       ** read the rowid field.
4414       **
4415       ** The expression is implemented using an OP_Param opcode. The p1
4416       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4417       ** to reference another column of the old.* pseudo-table, where
4418       ** i is the index of the column. For a new.rowid reference, p1 is
4419       ** set to (n+1), where n is the number of columns in each pseudo-table.
4420       ** For a reference to any other column in the new.* pseudo-table, p1
4421       ** is set to (n+2+i), where n and i are as defined previously. For
4422       ** example, if the table on which triggers are being fired is
4423       ** declared as:
4424       **
4425       **   CREATE TABLE t1(a, b);
4426       **
4427       ** Then p1 is interpreted as follows:
4428       **
4429       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4430       **   p1==1   ->    old.a         p1==4   ->    new.a
4431       **   p1==2   ->    old.b         p1==5   ->    new.b
4432       */
4433       Table *pTab = pExpr->y.pTab;
4434       int iCol = pExpr->iColumn;
4435       int p1 = pExpr->iTable * (pTab->nCol+1) + 1
4436                      + sqlite3TableColumnToStorage(pTab, iCol);
4437 
4438       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4439       assert( iCol>=-1 && iCol<pTab->nCol );
4440       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4441       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4442 
4443       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4444       VdbeComment((v, "r[%d]=%s.%s", target,
4445         (pExpr->iTable ? "new" : "old"),
4446         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName)
4447       ));
4448 
4449 #ifndef SQLITE_OMIT_FLOATING_POINT
4450       /* If the column has REAL affinity, it may currently be stored as an
4451       ** integer. Use OP_RealAffinity to make sure it is really real.
4452       **
4453       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4454       ** floating point when extracting it from the record.  */
4455       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4456         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4457       }
4458 #endif
4459       break;
4460     }
4461 
4462     case TK_VECTOR: {
4463       sqlite3ErrorMsg(pParse, "row value misused");
4464       break;
4465     }
4466 
4467     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4468     ** that derive from the right-hand table of a LEFT JOIN.  The
4469     ** Expr.iTable value is the table number for the right-hand table.
4470     ** The expression is only evaluated if that table is not currently
4471     ** on a LEFT JOIN NULL row.
4472     */
4473     case TK_IF_NULL_ROW: {
4474       int addrINR;
4475       u8 okConstFactor = pParse->okConstFactor;
4476       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4477       /* Temporarily disable factoring of constant expressions, since
4478       ** even though expressions may appear to be constant, they are not
4479       ** really constant because they originate from the right-hand side
4480       ** of a LEFT JOIN. */
4481       pParse->okConstFactor = 0;
4482       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4483       pParse->okConstFactor = okConstFactor;
4484       sqlite3VdbeJumpHere(v, addrINR);
4485       sqlite3VdbeChangeP3(v, addrINR, inReg);
4486       break;
4487     }
4488 
4489     /*
4490     ** Form A:
4491     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4492     **
4493     ** Form B:
4494     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4495     **
4496     ** Form A is can be transformed into the equivalent form B as follows:
4497     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4498     **        WHEN x=eN THEN rN ELSE y END
4499     **
4500     ** X (if it exists) is in pExpr->pLeft.
4501     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4502     ** odd.  The Y is also optional.  If the number of elements in x.pList
4503     ** is even, then Y is omitted and the "otherwise" result is NULL.
4504     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4505     **
4506     ** The result of the expression is the Ri for the first matching Ei,
4507     ** or if there is no matching Ei, the ELSE term Y, or if there is
4508     ** no ELSE term, NULL.
4509     */
4510     case TK_CASE: {
4511       int endLabel;                     /* GOTO label for end of CASE stmt */
4512       int nextCase;                     /* GOTO label for next WHEN clause */
4513       int nExpr;                        /* 2x number of WHEN terms */
4514       int i;                            /* Loop counter */
4515       ExprList *pEList;                 /* List of WHEN terms */
4516       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4517       Expr opCompare;                   /* The X==Ei expression */
4518       Expr *pX;                         /* The X expression */
4519       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4520       Expr *pDel = 0;
4521       sqlite3 *db = pParse->db;
4522 
4523       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4524       assert(pExpr->x.pList->nExpr > 0);
4525       pEList = pExpr->x.pList;
4526       aListelem = pEList->a;
4527       nExpr = pEList->nExpr;
4528       endLabel = sqlite3VdbeMakeLabel(pParse);
4529       if( (pX = pExpr->pLeft)!=0 ){
4530         pDel = sqlite3ExprDup(db, pX, 0);
4531         if( db->mallocFailed ){
4532           sqlite3ExprDelete(db, pDel);
4533           break;
4534         }
4535         testcase( pX->op==TK_COLUMN );
4536         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4537         testcase( regFree1==0 );
4538         memset(&opCompare, 0, sizeof(opCompare));
4539         opCompare.op = TK_EQ;
4540         opCompare.pLeft = pDel;
4541         pTest = &opCompare;
4542         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4543         ** The value in regFree1 might get SCopy-ed into the file result.
4544         ** So make sure that the regFree1 register is not reused for other
4545         ** purposes and possibly overwritten.  */
4546         regFree1 = 0;
4547       }
4548       for(i=0; i<nExpr-1; i=i+2){
4549         if( pX ){
4550           assert( pTest!=0 );
4551           opCompare.pRight = aListelem[i].pExpr;
4552         }else{
4553           pTest = aListelem[i].pExpr;
4554         }
4555         nextCase = sqlite3VdbeMakeLabel(pParse);
4556         testcase( pTest->op==TK_COLUMN );
4557         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4558         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4559         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4560         sqlite3VdbeGoto(v, endLabel);
4561         sqlite3VdbeResolveLabel(v, nextCase);
4562       }
4563       if( (nExpr&1)!=0 ){
4564         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4565       }else{
4566         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4567       }
4568       sqlite3ExprDelete(db, pDel);
4569       setDoNotMergeFlagOnCopy(v);
4570       sqlite3VdbeResolveLabel(v, endLabel);
4571       break;
4572     }
4573 #ifndef SQLITE_OMIT_TRIGGER
4574     case TK_RAISE: {
4575       assert( pExpr->affExpr==OE_Rollback
4576            || pExpr->affExpr==OE_Abort
4577            || pExpr->affExpr==OE_Fail
4578            || pExpr->affExpr==OE_Ignore
4579       );
4580       if( !pParse->pTriggerTab && !pParse->nested ){
4581         sqlite3ErrorMsg(pParse,
4582                        "RAISE() may only be used within a trigger-program");
4583         return 0;
4584       }
4585       if( pExpr->affExpr==OE_Abort ){
4586         sqlite3MayAbort(pParse);
4587       }
4588       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4589       if( pExpr->affExpr==OE_Ignore ){
4590         sqlite3VdbeAddOp4(
4591             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4592         VdbeCoverage(v);
4593       }else{
4594         sqlite3HaltConstraint(pParse,
4595              pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4596              pExpr->affExpr, pExpr->u.zToken, 0, 0);
4597       }
4598 
4599       break;
4600     }
4601 #endif
4602   }
4603   sqlite3ReleaseTempReg(pParse, regFree1);
4604   sqlite3ReleaseTempReg(pParse, regFree2);
4605   return inReg;
4606 }
4607 
4608 /*
4609 ** Generate code that will evaluate expression pExpr just one time
4610 ** per prepared statement execution.
4611 **
4612 ** If the expression uses functions (that might throw an exception) then
4613 ** guard them with an OP_Once opcode to ensure that the code is only executed
4614 ** once. If no functions are involved, then factor the code out and put it at
4615 ** the end of the prepared statement in the initialization section.
4616 **
4617 ** If regDest>=0 then the result is always stored in that register and the
4618 ** result is not reusable.  If regDest<0 then this routine is free to
4619 ** store the value whereever it wants.  The register where the expression
4620 ** is stored is returned.  When regDest<0, two identical expressions might
4621 ** code to the same register, if they do not contain function calls and hence
4622 ** are factored out into the initialization section at the end of the
4623 ** prepared statement.
4624 */
4625 int sqlite3ExprCodeRunJustOnce(
4626   Parse *pParse,    /* Parsing context */
4627   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4628   int regDest       /* Store the value in this register */
4629 ){
4630   ExprList *p;
4631   assert( ConstFactorOk(pParse) );
4632   p = pParse->pConstExpr;
4633   if( regDest<0 && p ){
4634     struct ExprList_item *pItem;
4635     int i;
4636     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4637       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4638         return pItem->u.iConstExprReg;
4639       }
4640     }
4641   }
4642   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4643   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4644     Vdbe *v = pParse->pVdbe;
4645     int addr;
4646     assert( v );
4647     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4648     pParse->okConstFactor = 0;
4649     if( !pParse->db->mallocFailed ){
4650       if( regDest<0 ) regDest = ++pParse->nMem;
4651       sqlite3ExprCode(pParse, pExpr, regDest);
4652     }
4653     pParse->okConstFactor = 1;
4654     sqlite3ExprDelete(pParse->db, pExpr);
4655     sqlite3VdbeJumpHere(v, addr);
4656   }else{
4657     p = sqlite3ExprListAppend(pParse, p, pExpr);
4658     if( p ){
4659        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4660        pItem->reusable = regDest<0;
4661        if( regDest<0 ) regDest = ++pParse->nMem;
4662        pItem->u.iConstExprReg = regDest;
4663     }
4664     pParse->pConstExpr = p;
4665   }
4666   return regDest;
4667 }
4668 
4669 /*
4670 ** Generate code to evaluate an expression and store the results
4671 ** into a register.  Return the register number where the results
4672 ** are stored.
4673 **
4674 ** If the register is a temporary register that can be deallocated,
4675 ** then write its number into *pReg.  If the result register is not
4676 ** a temporary, then set *pReg to zero.
4677 **
4678 ** If pExpr is a constant, then this routine might generate this
4679 ** code to fill the register in the initialization section of the
4680 ** VDBE program, in order to factor it out of the evaluation loop.
4681 */
4682 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4683   int r2;
4684   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4685   if( ConstFactorOk(pParse)
4686    && ALWAYS(pExpr!=0)
4687    && pExpr->op!=TK_REGISTER
4688    && sqlite3ExprIsConstantNotJoin(pExpr)
4689   ){
4690     *pReg  = 0;
4691     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4692   }else{
4693     int r1 = sqlite3GetTempReg(pParse);
4694     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4695     if( r2==r1 ){
4696       *pReg = r1;
4697     }else{
4698       sqlite3ReleaseTempReg(pParse, r1);
4699       *pReg = 0;
4700     }
4701   }
4702   return r2;
4703 }
4704 
4705 /*
4706 ** Generate code that will evaluate expression pExpr and store the
4707 ** results in register target.  The results are guaranteed to appear
4708 ** in register target.
4709 */
4710 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4711   int inReg;
4712 
4713   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4714   assert( target>0 && target<=pParse->nMem );
4715   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4716   if( pParse->pVdbe==0 ) return;
4717   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4718   if( inReg!=target ){
4719     u8 op;
4720     if( ExprHasProperty(pExpr,EP_Subquery) ){
4721       op = OP_Copy;
4722     }else{
4723       op = OP_SCopy;
4724     }
4725     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4726   }
4727 }
4728 
4729 /*
4730 ** Make a transient copy of expression pExpr and then code it using
4731 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4732 ** except that the input expression is guaranteed to be unchanged.
4733 */
4734 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4735   sqlite3 *db = pParse->db;
4736   pExpr = sqlite3ExprDup(db, pExpr, 0);
4737   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4738   sqlite3ExprDelete(db, pExpr);
4739 }
4740 
4741 /*
4742 ** Generate code that will evaluate expression pExpr and store the
4743 ** results in register target.  The results are guaranteed to appear
4744 ** in register target.  If the expression is constant, then this routine
4745 ** might choose to code the expression at initialization time.
4746 */
4747 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4748   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4749     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4750   }else{
4751     sqlite3ExprCodeCopy(pParse, pExpr, target);
4752   }
4753 }
4754 
4755 /*
4756 ** Generate code that pushes the value of every element of the given
4757 ** expression list into a sequence of registers beginning at target.
4758 **
4759 ** Return the number of elements evaluated.  The number returned will
4760 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4761 ** is defined.
4762 **
4763 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4764 ** filled using OP_SCopy.  OP_Copy must be used instead.
4765 **
4766 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4767 ** factored out into initialization code.
4768 **
4769 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4770 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4771 ** in registers at srcReg, and so the value can be copied from there.
4772 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4773 ** are simply omitted rather than being copied from srcReg.
4774 */
4775 int sqlite3ExprCodeExprList(
4776   Parse *pParse,     /* Parsing context */
4777   ExprList *pList,   /* The expression list to be coded */
4778   int target,        /* Where to write results */
4779   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4780   u8 flags           /* SQLITE_ECEL_* flags */
4781 ){
4782   struct ExprList_item *pItem;
4783   int i, j, n;
4784   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4785   Vdbe *v = pParse->pVdbe;
4786   assert( pList!=0 );
4787   assert( target>0 );
4788   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4789   n = pList->nExpr;
4790   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4791   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4792     Expr *pExpr = pItem->pExpr;
4793 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4794     if( pItem->bSorterRef ){
4795       i--;
4796       n--;
4797     }else
4798 #endif
4799     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4800       if( flags & SQLITE_ECEL_OMITREF ){
4801         i--;
4802         n--;
4803       }else{
4804         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4805       }
4806     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4807            && sqlite3ExprIsConstantNotJoin(pExpr)
4808     ){
4809       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
4810     }else{
4811       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4812       if( inReg!=target+i ){
4813         VdbeOp *pOp;
4814         if( copyOp==OP_Copy
4815          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4816          && pOp->p1+pOp->p3+1==inReg
4817          && pOp->p2+pOp->p3+1==target+i
4818          && pOp->p5==0  /* The do-not-merge flag must be clear */
4819         ){
4820           pOp->p3++;
4821         }else{
4822           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4823         }
4824       }
4825     }
4826   }
4827   return n;
4828 }
4829 
4830 /*
4831 ** Generate code for a BETWEEN operator.
4832 **
4833 **    x BETWEEN y AND z
4834 **
4835 ** The above is equivalent to
4836 **
4837 **    x>=y AND x<=z
4838 **
4839 ** Code it as such, taking care to do the common subexpression
4840 ** elimination of x.
4841 **
4842 ** The xJumpIf parameter determines details:
4843 **
4844 **    NULL:                   Store the boolean result in reg[dest]
4845 **    sqlite3ExprIfTrue:      Jump to dest if true
4846 **    sqlite3ExprIfFalse:     Jump to dest if false
4847 **
4848 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4849 */
4850 static void exprCodeBetween(
4851   Parse *pParse,    /* Parsing and code generating context */
4852   Expr *pExpr,      /* The BETWEEN expression */
4853   int dest,         /* Jump destination or storage location */
4854   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4855   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4856 ){
4857   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4858   Expr compLeft;    /* The  x>=y  term */
4859   Expr compRight;   /* The  x<=z  term */
4860   int regFree1 = 0; /* Temporary use register */
4861   Expr *pDel = 0;
4862   sqlite3 *db = pParse->db;
4863 
4864   memset(&compLeft, 0, sizeof(Expr));
4865   memset(&compRight, 0, sizeof(Expr));
4866   memset(&exprAnd, 0, sizeof(Expr));
4867 
4868   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4869   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4870   if( db->mallocFailed==0 ){
4871     exprAnd.op = TK_AND;
4872     exprAnd.pLeft = &compLeft;
4873     exprAnd.pRight = &compRight;
4874     compLeft.op = TK_GE;
4875     compLeft.pLeft = pDel;
4876     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4877     compRight.op = TK_LE;
4878     compRight.pLeft = pDel;
4879     compRight.pRight = pExpr->x.pList->a[1].pExpr;
4880     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4881     if( xJump ){
4882       xJump(pParse, &exprAnd, dest, jumpIfNull);
4883     }else{
4884       /* Mark the expression is being from the ON or USING clause of a join
4885       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4886       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4887       ** for clarity, but we are out of bits in the Expr.flags field so we
4888       ** have to reuse the EP_FromJoin bit.  Bummer. */
4889       pDel->flags |= EP_FromJoin;
4890       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4891     }
4892     sqlite3ReleaseTempReg(pParse, regFree1);
4893   }
4894   sqlite3ExprDelete(db, pDel);
4895 
4896   /* Ensure adequate test coverage */
4897   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4898   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4899   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4900   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4901   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4902   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4903   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4904   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4905   testcase( xJump==0 );
4906 }
4907 
4908 /*
4909 ** Generate code for a boolean expression such that a jump is made
4910 ** to the label "dest" if the expression is true but execution
4911 ** continues straight thru if the expression is false.
4912 **
4913 ** If the expression evaluates to NULL (neither true nor false), then
4914 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4915 **
4916 ** This code depends on the fact that certain token values (ex: TK_EQ)
4917 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4918 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4919 ** the make process cause these values to align.  Assert()s in the code
4920 ** below verify that the numbers are aligned correctly.
4921 */
4922 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4923   Vdbe *v = pParse->pVdbe;
4924   int op = 0;
4925   int regFree1 = 0;
4926   int regFree2 = 0;
4927   int r1, r2;
4928 
4929   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4930   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4931   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4932   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
4933   op = pExpr->op;
4934   switch( op ){
4935     case TK_AND:
4936     case TK_OR: {
4937       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4938       if( pAlt!=pExpr ){
4939         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
4940       }else if( op==TK_AND ){
4941         int d2 = sqlite3VdbeMakeLabel(pParse);
4942         testcase( jumpIfNull==0 );
4943         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
4944                            jumpIfNull^SQLITE_JUMPIFNULL);
4945         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4946         sqlite3VdbeResolveLabel(v, d2);
4947       }else{
4948         testcase( jumpIfNull==0 );
4949         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4950         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4951       }
4952       break;
4953     }
4954     case TK_NOT: {
4955       testcase( jumpIfNull==0 );
4956       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4957       break;
4958     }
4959     case TK_TRUTH: {
4960       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4961       int isTrue;     /* IS TRUE or IS NOT TRUE */
4962       testcase( jumpIfNull==0 );
4963       isNot = pExpr->op2==TK_ISNOT;
4964       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4965       testcase( isTrue && isNot );
4966       testcase( !isTrue && isNot );
4967       if( isTrue ^ isNot ){
4968         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4969                           isNot ? SQLITE_JUMPIFNULL : 0);
4970       }else{
4971         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4972                            isNot ? SQLITE_JUMPIFNULL : 0);
4973       }
4974       break;
4975     }
4976     case TK_IS:
4977     case TK_ISNOT:
4978       testcase( op==TK_IS );
4979       testcase( op==TK_ISNOT );
4980       op = (op==TK_IS) ? TK_EQ : TK_NE;
4981       jumpIfNull = SQLITE_NULLEQ;
4982       /* no break */ deliberate_fall_through
4983     case TK_LT:
4984     case TK_LE:
4985     case TK_GT:
4986     case TK_GE:
4987     case TK_NE:
4988     case TK_EQ: {
4989       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4990       testcase( jumpIfNull==0 );
4991       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4992       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4993       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4994                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
4995       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4996       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4997       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4998       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4999       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5000       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5001       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5002       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5003       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5004       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5005       testcase( regFree1==0 );
5006       testcase( regFree2==0 );
5007       break;
5008     }
5009     case TK_ISNULL:
5010     case TK_NOTNULL: {
5011       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
5012       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
5013       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5014       sqlite3VdbeAddOp2(v, op, r1, dest);
5015       VdbeCoverageIf(v, op==TK_ISNULL);
5016       VdbeCoverageIf(v, op==TK_NOTNULL);
5017       testcase( regFree1==0 );
5018       break;
5019     }
5020     case TK_BETWEEN: {
5021       testcase( jumpIfNull==0 );
5022       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
5023       break;
5024     }
5025 #ifndef SQLITE_OMIT_SUBQUERY
5026     case TK_IN: {
5027       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
5028       int destIfNull = jumpIfNull ? dest : destIfFalse;
5029       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
5030       sqlite3VdbeGoto(v, dest);
5031       sqlite3VdbeResolveLabel(v, destIfFalse);
5032       break;
5033     }
5034 #endif
5035     default: {
5036     default_expr:
5037       if( ExprAlwaysTrue(pExpr) ){
5038         sqlite3VdbeGoto(v, dest);
5039       }else if( ExprAlwaysFalse(pExpr) ){
5040         /* No-op */
5041       }else{
5042         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5043         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
5044         VdbeCoverage(v);
5045         testcase( regFree1==0 );
5046         testcase( jumpIfNull==0 );
5047       }
5048       break;
5049     }
5050   }
5051   sqlite3ReleaseTempReg(pParse, regFree1);
5052   sqlite3ReleaseTempReg(pParse, regFree2);
5053 }
5054 
5055 /*
5056 ** Generate code for a boolean expression such that a jump is made
5057 ** to the label "dest" if the expression is false but execution
5058 ** continues straight thru if the expression is true.
5059 **
5060 ** If the expression evaluates to NULL (neither true nor false) then
5061 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5062 ** is 0.
5063 */
5064 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5065   Vdbe *v = pParse->pVdbe;
5066   int op = 0;
5067   int regFree1 = 0;
5068   int regFree2 = 0;
5069   int r1, r2;
5070 
5071   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5072   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5073   if( pExpr==0 )    return;
5074   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5075 
5076   /* The value of pExpr->op and op are related as follows:
5077   **
5078   **       pExpr->op            op
5079   **       ---------          ----------
5080   **       TK_ISNULL          OP_NotNull
5081   **       TK_NOTNULL         OP_IsNull
5082   **       TK_NE              OP_Eq
5083   **       TK_EQ              OP_Ne
5084   **       TK_GT              OP_Le
5085   **       TK_LE              OP_Gt
5086   **       TK_GE              OP_Lt
5087   **       TK_LT              OP_Ge
5088   **
5089   ** For other values of pExpr->op, op is undefined and unused.
5090   ** The value of TK_ and OP_ constants are arranged such that we
5091   ** can compute the mapping above using the following expression.
5092   ** Assert()s verify that the computation is correct.
5093   */
5094   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5095 
5096   /* Verify correct alignment of TK_ and OP_ constants
5097   */
5098   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5099   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5100   assert( pExpr->op!=TK_NE || op==OP_Eq );
5101   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5102   assert( pExpr->op!=TK_LT || op==OP_Ge );
5103   assert( pExpr->op!=TK_LE || op==OP_Gt );
5104   assert( pExpr->op!=TK_GT || op==OP_Le );
5105   assert( pExpr->op!=TK_GE || op==OP_Lt );
5106 
5107   switch( pExpr->op ){
5108     case TK_AND:
5109     case TK_OR: {
5110       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5111       if( pAlt!=pExpr ){
5112         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5113       }else if( pExpr->op==TK_AND ){
5114         testcase( jumpIfNull==0 );
5115         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5116         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5117       }else{
5118         int d2 = sqlite3VdbeMakeLabel(pParse);
5119         testcase( jumpIfNull==0 );
5120         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5121                           jumpIfNull^SQLITE_JUMPIFNULL);
5122         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5123         sqlite3VdbeResolveLabel(v, d2);
5124       }
5125       break;
5126     }
5127     case TK_NOT: {
5128       testcase( jumpIfNull==0 );
5129       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5130       break;
5131     }
5132     case TK_TRUTH: {
5133       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5134       int isTrue;  /* IS TRUE or IS NOT TRUE */
5135       testcase( jumpIfNull==0 );
5136       isNot = pExpr->op2==TK_ISNOT;
5137       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5138       testcase( isTrue && isNot );
5139       testcase( !isTrue && isNot );
5140       if( isTrue ^ isNot ){
5141         /* IS TRUE and IS NOT FALSE */
5142         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5143                            isNot ? 0 : SQLITE_JUMPIFNULL);
5144 
5145       }else{
5146         /* IS FALSE and IS NOT TRUE */
5147         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5148                           isNot ? 0 : SQLITE_JUMPIFNULL);
5149       }
5150       break;
5151     }
5152     case TK_IS:
5153     case TK_ISNOT:
5154       testcase( pExpr->op==TK_IS );
5155       testcase( pExpr->op==TK_ISNOT );
5156       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5157       jumpIfNull = SQLITE_NULLEQ;
5158       /* no break */ deliberate_fall_through
5159     case TK_LT:
5160     case TK_LE:
5161     case TK_GT:
5162     case TK_GE:
5163     case TK_NE:
5164     case TK_EQ: {
5165       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5166       testcase( jumpIfNull==0 );
5167       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5168       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5169       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5170                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5171       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5172       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5173       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5174       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5175       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5176       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5177       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5178       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5179       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5180       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5181       testcase( regFree1==0 );
5182       testcase( regFree2==0 );
5183       break;
5184     }
5185     case TK_ISNULL:
5186     case TK_NOTNULL: {
5187       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5188       sqlite3VdbeAddOp2(v, op, r1, dest);
5189       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5190       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5191       testcase( regFree1==0 );
5192       break;
5193     }
5194     case TK_BETWEEN: {
5195       testcase( jumpIfNull==0 );
5196       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5197       break;
5198     }
5199 #ifndef SQLITE_OMIT_SUBQUERY
5200     case TK_IN: {
5201       if( jumpIfNull ){
5202         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5203       }else{
5204         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5205         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5206         sqlite3VdbeResolveLabel(v, destIfNull);
5207       }
5208       break;
5209     }
5210 #endif
5211     default: {
5212     default_expr:
5213       if( ExprAlwaysFalse(pExpr) ){
5214         sqlite3VdbeGoto(v, dest);
5215       }else if( ExprAlwaysTrue(pExpr) ){
5216         /* no-op */
5217       }else{
5218         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5219         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5220         VdbeCoverage(v);
5221         testcase( regFree1==0 );
5222         testcase( jumpIfNull==0 );
5223       }
5224       break;
5225     }
5226   }
5227   sqlite3ReleaseTempReg(pParse, regFree1);
5228   sqlite3ReleaseTempReg(pParse, regFree2);
5229 }
5230 
5231 /*
5232 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5233 ** code generation, and that copy is deleted after code generation. This
5234 ** ensures that the original pExpr is unchanged.
5235 */
5236 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5237   sqlite3 *db = pParse->db;
5238   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5239   if( db->mallocFailed==0 ){
5240     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5241   }
5242   sqlite3ExprDelete(db, pCopy);
5243 }
5244 
5245 /*
5246 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5247 ** type of expression.
5248 **
5249 ** If pExpr is a simple SQL value - an integer, real, string, blob
5250 ** or NULL value - then the VDBE currently being prepared is configured
5251 ** to re-prepare each time a new value is bound to variable pVar.
5252 **
5253 ** Additionally, if pExpr is a simple SQL value and the value is the
5254 ** same as that currently bound to variable pVar, non-zero is returned.
5255 ** Otherwise, if the values are not the same or if pExpr is not a simple
5256 ** SQL value, zero is returned.
5257 */
5258 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
5259   int res = 0;
5260   int iVar;
5261   sqlite3_value *pL, *pR = 0;
5262 
5263   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5264   if( pR ){
5265     iVar = pVar->iColumn;
5266     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5267     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5268     if( pL ){
5269       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5270         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5271       }
5272       res =  0==sqlite3MemCompare(pL, pR, 0);
5273     }
5274     sqlite3ValueFree(pR);
5275     sqlite3ValueFree(pL);
5276   }
5277 
5278   return res;
5279 }
5280 
5281 /*
5282 ** Do a deep comparison of two expression trees.  Return 0 if the two
5283 ** expressions are completely identical.  Return 1 if they differ only
5284 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5285 ** other than the top-level COLLATE operator.
5286 **
5287 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5288 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5289 **
5290 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5291 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5292 **
5293 ** Sometimes this routine will return 2 even if the two expressions
5294 ** really are equivalent.  If we cannot prove that the expressions are
5295 ** identical, we return 2 just to be safe.  So if this routine
5296 ** returns 2, then you do not really know for certain if the two
5297 ** expressions are the same.  But if you get a 0 or 1 return, then you
5298 ** can be sure the expressions are the same.  In the places where
5299 ** this routine is used, it does not hurt to get an extra 2 - that
5300 ** just might result in some slightly slower code.  But returning
5301 ** an incorrect 0 or 1 could lead to a malfunction.
5302 **
5303 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5304 ** pParse->pReprepare can be matched against literals in pB.  The
5305 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5306 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5307 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5308 ** pB causes a return value of 2.
5309 */
5310 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
5311   u32 combinedFlags;
5312   if( pA==0 || pB==0 ){
5313     return pB==pA ? 0 : 2;
5314   }
5315   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5316     return 0;
5317   }
5318   combinedFlags = pA->flags | pB->flags;
5319   if( combinedFlags & EP_IntValue ){
5320     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5321       return 0;
5322     }
5323     return 2;
5324   }
5325   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5326     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5327       return 1;
5328     }
5329     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5330       return 1;
5331     }
5332     return 2;
5333   }
5334   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
5335     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5336       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5337 #ifndef SQLITE_OMIT_WINDOWFUNC
5338       assert( pA->op==pB->op );
5339       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5340         return 2;
5341       }
5342       if( ExprHasProperty(pA,EP_WinFunc) ){
5343         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5344           return 2;
5345         }
5346       }
5347 #endif
5348     }else if( pA->op==TK_NULL ){
5349       return 0;
5350     }else if( pA->op==TK_COLLATE ){
5351       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5352     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
5353       return 2;
5354     }
5355   }
5356   if( (pA->flags & (EP_Distinct|EP_Commuted))
5357      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5358   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5359     if( combinedFlags & EP_xIsSelect ) return 2;
5360     if( (combinedFlags & EP_FixedCol)==0
5361      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5362     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5363     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5364     if( pA->op!=TK_STRING
5365      && pA->op!=TK_TRUEFALSE
5366      && ALWAYS((combinedFlags & EP_Reduced)==0)
5367     ){
5368       if( pA->iColumn!=pB->iColumn ) return 2;
5369       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5370       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5371         return 2;
5372       }
5373     }
5374   }
5375   return 0;
5376 }
5377 
5378 /*
5379 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5380 ** if they are certainly different, or 2 if it is not possible to
5381 ** determine if they are identical or not.
5382 **
5383 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5384 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5385 **
5386 ** This routine might return non-zero for equivalent ExprLists.  The
5387 ** only consequence will be disabled optimizations.  But this routine
5388 ** must never return 0 if the two ExprList objects are different, or
5389 ** a malfunction will result.
5390 **
5391 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5392 ** always differs from a non-NULL pointer.
5393 */
5394 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
5395   int i;
5396   if( pA==0 && pB==0 ) return 0;
5397   if( pA==0 || pB==0 ) return 1;
5398   if( pA->nExpr!=pB->nExpr ) return 1;
5399   for(i=0; i<pA->nExpr; i++){
5400     int res;
5401     Expr *pExprA = pA->a[i].pExpr;
5402     Expr *pExprB = pB->a[i].pExpr;
5403     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
5404     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5405   }
5406   return 0;
5407 }
5408 
5409 /*
5410 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5411 ** are ignored.
5412 */
5413 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
5414   return sqlite3ExprCompare(0,
5415              sqlite3ExprSkipCollateAndLikely(pA),
5416              sqlite3ExprSkipCollateAndLikely(pB),
5417              iTab);
5418 }
5419 
5420 /*
5421 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5422 **
5423 ** Or if seenNot is true, return non-zero if Expr p can only be
5424 ** non-NULL if pNN is not NULL
5425 */
5426 static int exprImpliesNotNull(
5427   Parse *pParse,      /* Parsing context */
5428   Expr *p,            /* The expression to be checked */
5429   Expr *pNN,          /* The expression that is NOT NULL */
5430   int iTab,           /* Table being evaluated */
5431   int seenNot         /* Return true only if p can be any non-NULL value */
5432 ){
5433   assert( p );
5434   assert( pNN );
5435   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5436     return pNN->op!=TK_NULL;
5437   }
5438   switch( p->op ){
5439     case TK_IN: {
5440       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5441       assert( ExprHasProperty(p,EP_xIsSelect)
5442            || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5443       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5444     }
5445     case TK_BETWEEN: {
5446       ExprList *pList = p->x.pList;
5447       assert( pList!=0 );
5448       assert( pList->nExpr==2 );
5449       if( seenNot ) return 0;
5450       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5451        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5452       ){
5453         return 1;
5454       }
5455       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5456     }
5457     case TK_EQ:
5458     case TK_NE:
5459     case TK_LT:
5460     case TK_LE:
5461     case TK_GT:
5462     case TK_GE:
5463     case TK_PLUS:
5464     case TK_MINUS:
5465     case TK_BITOR:
5466     case TK_LSHIFT:
5467     case TK_RSHIFT:
5468     case TK_CONCAT:
5469       seenNot = 1;
5470       /* no break */ deliberate_fall_through
5471     case TK_STAR:
5472     case TK_REM:
5473     case TK_BITAND:
5474     case TK_SLASH: {
5475       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5476       /* no break */ deliberate_fall_through
5477     }
5478     case TK_SPAN:
5479     case TK_COLLATE:
5480     case TK_UPLUS:
5481     case TK_UMINUS: {
5482       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5483     }
5484     case TK_TRUTH: {
5485       if( seenNot ) return 0;
5486       if( p->op2!=TK_IS ) return 0;
5487       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5488     }
5489     case TK_BITNOT:
5490     case TK_NOT: {
5491       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5492     }
5493   }
5494   return 0;
5495 }
5496 
5497 /*
5498 ** Return true if we can prove the pE2 will always be true if pE1 is
5499 ** true.  Return false if we cannot complete the proof or if pE2 might
5500 ** be false.  Examples:
5501 **
5502 **     pE1: x==5       pE2: x==5             Result: true
5503 **     pE1: x>0        pE2: x==5             Result: false
5504 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5505 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5506 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5507 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5508 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5509 **
5510 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5511 ** Expr.iTable<0 then assume a table number given by iTab.
5512 **
5513 ** If pParse is not NULL, then the values of bound variables in pE1 are
5514 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5515 ** modified to record which bound variables are referenced.  If pParse
5516 ** is NULL, then false will be returned if pE1 contains any bound variables.
5517 **
5518 ** When in doubt, return false.  Returning true might give a performance
5519 ** improvement.  Returning false might cause a performance reduction, but
5520 ** it will always give the correct answer and is hence always safe.
5521 */
5522 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5523   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5524     return 1;
5525   }
5526   if( pE2->op==TK_OR
5527    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5528              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5529   ){
5530     return 1;
5531   }
5532   if( pE2->op==TK_NOTNULL
5533    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5534   ){
5535     return 1;
5536   }
5537   return 0;
5538 }
5539 
5540 /*
5541 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5542 ** If the expression node requires that the table at pWalker->iCur
5543 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5544 **
5545 ** This routine controls an optimization.  False positives (setting
5546 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5547 ** (never setting pWalker->eCode) is a harmless missed optimization.
5548 */
5549 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5550   testcase( pExpr->op==TK_AGG_COLUMN );
5551   testcase( pExpr->op==TK_AGG_FUNCTION );
5552   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5553   switch( pExpr->op ){
5554     case TK_ISNOT:
5555     case TK_ISNULL:
5556     case TK_NOTNULL:
5557     case TK_IS:
5558     case TK_OR:
5559     case TK_VECTOR:
5560     case TK_CASE:
5561     case TK_IN:
5562     case TK_FUNCTION:
5563     case TK_TRUTH:
5564       testcase( pExpr->op==TK_ISNOT );
5565       testcase( pExpr->op==TK_ISNULL );
5566       testcase( pExpr->op==TK_NOTNULL );
5567       testcase( pExpr->op==TK_IS );
5568       testcase( pExpr->op==TK_OR );
5569       testcase( pExpr->op==TK_VECTOR );
5570       testcase( pExpr->op==TK_CASE );
5571       testcase( pExpr->op==TK_IN );
5572       testcase( pExpr->op==TK_FUNCTION );
5573       testcase( pExpr->op==TK_TRUTH );
5574       return WRC_Prune;
5575     case TK_COLUMN:
5576       if( pWalker->u.iCur==pExpr->iTable ){
5577         pWalker->eCode = 1;
5578         return WRC_Abort;
5579       }
5580       return WRC_Prune;
5581 
5582     case TK_AND:
5583       if( pWalker->eCode==0 ){
5584         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5585         if( pWalker->eCode ){
5586           pWalker->eCode = 0;
5587           sqlite3WalkExpr(pWalker, pExpr->pRight);
5588         }
5589       }
5590       return WRC_Prune;
5591 
5592     case TK_BETWEEN:
5593       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5594         assert( pWalker->eCode );
5595         return WRC_Abort;
5596       }
5597       return WRC_Prune;
5598 
5599     /* Virtual tables are allowed to use constraints like x=NULL.  So
5600     ** a term of the form x=y does not prove that y is not null if x
5601     ** is the column of a virtual table */
5602     case TK_EQ:
5603     case TK_NE:
5604     case TK_LT:
5605     case TK_LE:
5606     case TK_GT:
5607     case TK_GE: {
5608       Expr *pLeft = pExpr->pLeft;
5609       Expr *pRight = pExpr->pRight;
5610       testcase( pExpr->op==TK_EQ );
5611       testcase( pExpr->op==TK_NE );
5612       testcase( pExpr->op==TK_LT );
5613       testcase( pExpr->op==TK_LE );
5614       testcase( pExpr->op==TK_GT );
5615       testcase( pExpr->op==TK_GE );
5616       /* The y.pTab=0 assignment in wherecode.c always happens after the
5617       ** impliesNotNullRow() test */
5618       if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0)
5619                                && IsVirtual(pLeft->y.pTab))
5620        || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0)
5621                                && IsVirtual(pRight->y.pTab))
5622       ){
5623         return WRC_Prune;
5624       }
5625       /* no break */ deliberate_fall_through
5626     }
5627     default:
5628       return WRC_Continue;
5629   }
5630 }
5631 
5632 /*
5633 ** Return true (non-zero) if expression p can only be true if at least
5634 ** one column of table iTab is non-null.  In other words, return true
5635 ** if expression p will always be NULL or false if every column of iTab
5636 ** is NULL.
5637 **
5638 ** False negatives are acceptable.  In other words, it is ok to return
5639 ** zero even if expression p will never be true of every column of iTab
5640 ** is NULL.  A false negative is merely a missed optimization opportunity.
5641 **
5642 ** False positives are not allowed, however.  A false positive may result
5643 ** in an incorrect answer.
5644 **
5645 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5646 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5647 **
5648 ** This routine is used to check if a LEFT JOIN can be converted into
5649 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5650 ** clause requires that some column of the right table of the LEFT JOIN
5651 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5652 ** ordinary join.
5653 */
5654 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5655   Walker w;
5656   p = sqlite3ExprSkipCollateAndLikely(p);
5657   if( p==0 ) return 0;
5658   if( p->op==TK_NOTNULL ){
5659     p = p->pLeft;
5660   }else{
5661     while( p->op==TK_AND ){
5662       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5663       p = p->pRight;
5664     }
5665   }
5666   w.xExprCallback = impliesNotNullRow;
5667   w.xSelectCallback = 0;
5668   w.xSelectCallback2 = 0;
5669   w.eCode = 0;
5670   w.u.iCur = iTab;
5671   sqlite3WalkExpr(&w, p);
5672   return w.eCode;
5673 }
5674 
5675 /*
5676 ** An instance of the following structure is used by the tree walker
5677 ** to determine if an expression can be evaluated by reference to the
5678 ** index only, without having to do a search for the corresponding
5679 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5680 ** is the cursor for the table.
5681 */
5682 struct IdxCover {
5683   Index *pIdx;     /* The index to be tested for coverage */
5684   int iCur;        /* Cursor number for the table corresponding to the index */
5685 };
5686 
5687 /*
5688 ** Check to see if there are references to columns in table
5689 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5690 ** pWalker->u.pIdxCover->pIdx.
5691 */
5692 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5693   if( pExpr->op==TK_COLUMN
5694    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5695    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5696   ){
5697     pWalker->eCode = 1;
5698     return WRC_Abort;
5699   }
5700   return WRC_Continue;
5701 }
5702 
5703 /*
5704 ** Determine if an index pIdx on table with cursor iCur contains will
5705 ** the expression pExpr.  Return true if the index does cover the
5706 ** expression and false if the pExpr expression references table columns
5707 ** that are not found in the index pIdx.
5708 **
5709 ** An index covering an expression means that the expression can be
5710 ** evaluated using only the index and without having to lookup the
5711 ** corresponding table entry.
5712 */
5713 int sqlite3ExprCoveredByIndex(
5714   Expr *pExpr,        /* The index to be tested */
5715   int iCur,           /* The cursor number for the corresponding table */
5716   Index *pIdx         /* The index that might be used for coverage */
5717 ){
5718   Walker w;
5719   struct IdxCover xcov;
5720   memset(&w, 0, sizeof(w));
5721   xcov.iCur = iCur;
5722   xcov.pIdx = pIdx;
5723   w.xExprCallback = exprIdxCover;
5724   w.u.pIdxCover = &xcov;
5725   sqlite3WalkExpr(&w, pExpr);
5726   return !w.eCode;
5727 }
5728 
5729 
5730 /*
5731 ** An instance of the following structure is used by the tree walker
5732 ** to count references to table columns in the arguments of an
5733 ** aggregate function, in order to implement the
5734 ** sqlite3FunctionThisSrc() routine.
5735 */
5736 struct SrcCount {
5737   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5738   int iSrcInner;   /* Smallest cursor number in this context */
5739   int nThis;       /* Number of references to columns in pSrcList */
5740   int nOther;      /* Number of references to columns in other FROM clauses */
5741 };
5742 
5743 /*
5744 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first
5745 ** SELECT with a FROM clause encountered during this iteration, set
5746 ** SrcCount.iSrcInner to the cursor number of the leftmost object in
5747 ** the FROM cause.
5748 */
5749 static int selectSrcCount(Walker *pWalker, Select *pSel){
5750   struct SrcCount *p = pWalker->u.pSrcCount;
5751   if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){
5752     pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor;
5753   }
5754   return WRC_Continue;
5755 }
5756 
5757 /*
5758 ** Count the number of references to columns.
5759 */
5760 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5761   /* There was once a NEVER() on the second term on the grounds that
5762   ** sqlite3FunctionUsesThisSrc() was always called before
5763   ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet
5764   ** been converted into TK_AGG_COLUMN. But this is no longer true due
5765   ** to window functions - sqlite3WindowRewrite() may now indirectly call
5766   ** FunctionUsesThisSrc() when creating a new sub-select. */
5767   if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){
5768     int i;
5769     struct SrcCount *p = pWalker->u.pSrcCount;
5770     SrcList *pSrc = p->pSrc;
5771     int nSrc = pSrc ? pSrc->nSrc : 0;
5772     for(i=0; i<nSrc; i++){
5773       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5774     }
5775     if( i<nSrc ){
5776       p->nThis++;
5777     }else if( pExpr->iTable<p->iSrcInner ){
5778       /* In a well-formed parse tree (no name resolution errors),
5779       ** TK_COLUMN nodes with smaller Expr.iTable values are in an
5780       ** outer context.  Those are the only ones to count as "other" */
5781       p->nOther++;
5782     }
5783   }
5784   return WRC_Continue;
5785 }
5786 
5787 /*
5788 ** Determine if any of the arguments to the pExpr Function reference
5789 ** pSrcList.  Return true if they do.  Also return true if the function
5790 ** has no arguments or has only constant arguments.  Return false if pExpr
5791 ** references columns but not columns of tables found in pSrcList.
5792 */
5793 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5794   Walker w;
5795   struct SrcCount cnt;
5796   assert( pExpr->op==TK_AGG_FUNCTION );
5797   memset(&w, 0, sizeof(w));
5798   w.xExprCallback = exprSrcCount;
5799   w.xSelectCallback = selectSrcCount;
5800   w.u.pSrcCount = &cnt;
5801   cnt.pSrc = pSrcList;
5802   cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF;
5803   cnt.nThis = 0;
5804   cnt.nOther = 0;
5805   sqlite3WalkExprList(&w, pExpr->x.pList);
5806 #ifndef SQLITE_OMIT_WINDOWFUNC
5807   if( ExprHasProperty(pExpr, EP_WinFunc) ){
5808     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
5809   }
5810 #endif
5811   return cnt.nThis>0 || cnt.nOther==0;
5812 }
5813 
5814 /*
5815 ** This is a Walker expression node callback.
5816 **
5817 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
5818 ** object that is referenced does not refer directly to the Expr.  If
5819 ** it does, make a copy.  This is done because the pExpr argument is
5820 ** subject to change.
5821 **
5822 ** The copy is stored on pParse->pConstExpr with a register number of 0.
5823 ** This will cause the expression to be deleted automatically when the
5824 ** Parse object is destroyed, but the zero register number means that it
5825 ** will not generate any code in the preamble.
5826 */
5827 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
5828   if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
5829    && pExpr->pAggInfo!=0
5830   ){
5831     AggInfo *pAggInfo = pExpr->pAggInfo;
5832     int iAgg = pExpr->iAgg;
5833     Parse *pParse = pWalker->pParse;
5834     sqlite3 *db = pParse->db;
5835     assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION );
5836     if( pExpr->op==TK_AGG_COLUMN ){
5837       assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
5838       if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
5839         pExpr = sqlite3ExprDup(db, pExpr, 0);
5840         if( pExpr ){
5841           pAggInfo->aCol[iAgg].pCExpr = pExpr;
5842           sqlite3ExprDeferredDelete(pParse, pExpr);
5843         }
5844       }
5845     }else{
5846       assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
5847       if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
5848         pExpr = sqlite3ExprDup(db, pExpr, 0);
5849         if( pExpr ){
5850           pAggInfo->aFunc[iAgg].pFExpr = pExpr;
5851           sqlite3ExprDeferredDelete(pParse, pExpr);
5852         }
5853       }
5854     }
5855   }
5856   return WRC_Continue;
5857 }
5858 
5859 /*
5860 ** Initialize a Walker object so that will persist AggInfo entries referenced
5861 ** by the tree that is walked.
5862 */
5863 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
5864   memset(pWalker, 0, sizeof(*pWalker));
5865   pWalker->pParse = pParse;
5866   pWalker->xExprCallback = agginfoPersistExprCb;
5867   pWalker->xSelectCallback = sqlite3SelectWalkNoop;
5868 }
5869 
5870 /*
5871 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5872 ** the new element.  Return a negative number if malloc fails.
5873 */
5874 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5875   int i;
5876   pInfo->aCol = sqlite3ArrayAllocate(
5877        db,
5878        pInfo->aCol,
5879        sizeof(pInfo->aCol[0]),
5880        &pInfo->nColumn,
5881        &i
5882   );
5883   return i;
5884 }
5885 
5886 /*
5887 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5888 ** the new element.  Return a negative number if malloc fails.
5889 */
5890 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5891   int i;
5892   pInfo->aFunc = sqlite3ArrayAllocate(
5893        db,
5894        pInfo->aFunc,
5895        sizeof(pInfo->aFunc[0]),
5896        &pInfo->nFunc,
5897        &i
5898   );
5899   return i;
5900 }
5901 
5902 /*
5903 ** This is the xExprCallback for a tree walker.  It is used to
5904 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5905 ** for additional information.
5906 */
5907 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5908   int i;
5909   NameContext *pNC = pWalker->u.pNC;
5910   Parse *pParse = pNC->pParse;
5911   SrcList *pSrcList = pNC->pSrcList;
5912   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5913 
5914   assert( pNC->ncFlags & NC_UAggInfo );
5915   switch( pExpr->op ){
5916     case TK_AGG_COLUMN:
5917     case TK_COLUMN: {
5918       testcase( pExpr->op==TK_AGG_COLUMN );
5919       testcase( pExpr->op==TK_COLUMN );
5920       /* Check to see if the column is in one of the tables in the FROM
5921       ** clause of the aggregate query */
5922       if( ALWAYS(pSrcList!=0) ){
5923         SrcItem *pItem = pSrcList->a;
5924         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5925           struct AggInfo_col *pCol;
5926           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5927           if( pExpr->iTable==pItem->iCursor ){
5928             /* If we reach this point, it means that pExpr refers to a table
5929             ** that is in the FROM clause of the aggregate query.
5930             **
5931             ** Make an entry for the column in pAggInfo->aCol[] if there
5932             ** is not an entry there already.
5933             */
5934             int k;
5935             pCol = pAggInfo->aCol;
5936             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5937               if( pCol->iTable==pExpr->iTable &&
5938                   pCol->iColumn==pExpr->iColumn ){
5939                 break;
5940               }
5941             }
5942             if( (k>=pAggInfo->nColumn)
5943              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5944             ){
5945               pCol = &pAggInfo->aCol[k];
5946               pCol->pTab = pExpr->y.pTab;
5947               pCol->iTable = pExpr->iTable;
5948               pCol->iColumn = pExpr->iColumn;
5949               pCol->iMem = ++pParse->nMem;
5950               pCol->iSorterColumn = -1;
5951               pCol->pCExpr = pExpr;
5952               if( pAggInfo->pGroupBy ){
5953                 int j, n;
5954                 ExprList *pGB = pAggInfo->pGroupBy;
5955                 struct ExprList_item *pTerm = pGB->a;
5956                 n = pGB->nExpr;
5957                 for(j=0; j<n; j++, pTerm++){
5958                   Expr *pE = pTerm->pExpr;
5959                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5960                       pE->iColumn==pExpr->iColumn ){
5961                     pCol->iSorterColumn = j;
5962                     break;
5963                   }
5964                 }
5965               }
5966               if( pCol->iSorterColumn<0 ){
5967                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5968               }
5969             }
5970             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5971             ** because it was there before or because we just created it).
5972             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5973             ** pAggInfo->aCol[] entry.
5974             */
5975             ExprSetVVAProperty(pExpr, EP_NoReduce);
5976             pExpr->pAggInfo = pAggInfo;
5977             pExpr->op = TK_AGG_COLUMN;
5978             pExpr->iAgg = (i16)k;
5979             break;
5980           } /* endif pExpr->iTable==pItem->iCursor */
5981         } /* end loop over pSrcList */
5982       }
5983       return WRC_Prune;
5984     }
5985     case TK_AGG_FUNCTION: {
5986       if( (pNC->ncFlags & NC_InAggFunc)==0
5987        && pWalker->walkerDepth==pExpr->op2
5988       ){
5989         /* Check to see if pExpr is a duplicate of another aggregate
5990         ** function that is already in the pAggInfo structure
5991         */
5992         struct AggInfo_func *pItem = pAggInfo->aFunc;
5993         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5994           if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
5995             break;
5996           }
5997         }
5998         if( i>=pAggInfo->nFunc ){
5999           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
6000           */
6001           u8 enc = ENC(pParse->db);
6002           i = addAggInfoFunc(pParse->db, pAggInfo);
6003           if( i>=0 ){
6004             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6005             pItem = &pAggInfo->aFunc[i];
6006             pItem->pFExpr = pExpr;
6007             pItem->iMem = ++pParse->nMem;
6008             assert( !ExprHasProperty(pExpr, EP_IntValue) );
6009             pItem->pFunc = sqlite3FindFunction(pParse->db,
6010                    pExpr->u.zToken,
6011                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
6012             if( pExpr->flags & EP_Distinct ){
6013               pItem->iDistinct = pParse->nTab++;
6014             }else{
6015               pItem->iDistinct = -1;
6016             }
6017           }
6018         }
6019         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
6020         */
6021         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6022         ExprSetVVAProperty(pExpr, EP_NoReduce);
6023         pExpr->iAgg = (i16)i;
6024         pExpr->pAggInfo = pAggInfo;
6025         return WRC_Prune;
6026       }else{
6027         return WRC_Continue;
6028       }
6029     }
6030   }
6031   return WRC_Continue;
6032 }
6033 
6034 /*
6035 ** Analyze the pExpr expression looking for aggregate functions and
6036 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6037 ** points to.  Additional entries are made on the AggInfo object as
6038 ** necessary.
6039 **
6040 ** This routine should only be called after the expression has been
6041 ** analyzed by sqlite3ResolveExprNames().
6042 */
6043 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
6044   Walker w;
6045   w.xExprCallback = analyzeAggregate;
6046   w.xSelectCallback = sqlite3WalkerDepthIncrease;
6047   w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
6048   w.walkerDepth = 0;
6049   w.u.pNC = pNC;
6050   w.pParse = 0;
6051   assert( pNC->pSrcList!=0 );
6052   sqlite3WalkExpr(&w, pExpr);
6053 }
6054 
6055 /*
6056 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6057 ** expression list.  Return the number of errors.
6058 **
6059 ** If an error is found, the analysis is cut short.
6060 */
6061 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6062   struct ExprList_item *pItem;
6063   int i;
6064   if( pList ){
6065     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6066       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
6067     }
6068   }
6069 }
6070 
6071 /*
6072 ** Allocate a single new register for use to hold some intermediate result.
6073 */
6074 int sqlite3GetTempReg(Parse *pParse){
6075   if( pParse->nTempReg==0 ){
6076     return ++pParse->nMem;
6077   }
6078   return pParse->aTempReg[--pParse->nTempReg];
6079 }
6080 
6081 /*
6082 ** Deallocate a register, making available for reuse for some other
6083 ** purpose.
6084 */
6085 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6086   if( iReg ){
6087     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6088     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6089       pParse->aTempReg[pParse->nTempReg++] = iReg;
6090     }
6091   }
6092 }
6093 
6094 /*
6095 ** Allocate or deallocate a block of nReg consecutive registers.
6096 */
6097 int sqlite3GetTempRange(Parse *pParse, int nReg){
6098   int i, n;
6099   if( nReg==1 ) return sqlite3GetTempReg(pParse);
6100   i = pParse->iRangeReg;
6101   n = pParse->nRangeReg;
6102   if( nReg<=n ){
6103     pParse->iRangeReg += nReg;
6104     pParse->nRangeReg -= nReg;
6105   }else{
6106     i = pParse->nMem+1;
6107     pParse->nMem += nReg;
6108   }
6109   return i;
6110 }
6111 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6112   if( nReg==1 ){
6113     sqlite3ReleaseTempReg(pParse, iReg);
6114     return;
6115   }
6116   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6117   if( nReg>pParse->nRangeReg ){
6118     pParse->nRangeReg = nReg;
6119     pParse->iRangeReg = iReg;
6120   }
6121 }
6122 
6123 /*
6124 ** Mark all temporary registers as being unavailable for reuse.
6125 **
6126 ** Always invoke this procedure after coding a subroutine or co-routine
6127 ** that might be invoked from other parts of the code, to ensure that
6128 ** the sub/co-routine does not use registers in common with the code that
6129 ** invokes the sub/co-routine.
6130 */
6131 void sqlite3ClearTempRegCache(Parse *pParse){
6132   pParse->nTempReg = 0;
6133   pParse->nRangeReg = 0;
6134 }
6135 
6136 /*
6137 ** Validate that no temporary register falls within the range of
6138 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
6139 ** statements.
6140 */
6141 #ifdef SQLITE_DEBUG
6142 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6143   int i;
6144   if( pParse->nRangeReg>0
6145    && pParse->iRangeReg+pParse->nRangeReg > iFirst
6146    && pParse->iRangeReg <= iLast
6147   ){
6148      return 0;
6149   }
6150   for(i=0; i<pParse->nTempReg; i++){
6151     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6152       return 0;
6153     }
6154   }
6155   return 1;
6156 }
6157 #endif /* SQLITE_DEBUG */
6158