1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_REGISTER ) op = pExpr->op2; 56 if( (op==TK_COLUMN || op==TK_AGG_COLUMN) && pExpr->y.pTab ){ 57 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 58 } 59 if( op==TK_SELECT ){ 60 assert( pExpr->flags&EP_xIsSelect ); 61 assert( pExpr->x.pSelect!=0 ); 62 assert( pExpr->x.pSelect->pEList!=0 ); 63 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 64 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 65 } 66 #ifndef SQLITE_OMIT_CAST 67 if( op==TK_CAST ){ 68 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 69 return sqlite3AffinityType(pExpr->u.zToken, 0); 70 } 71 #endif 72 if( op==TK_SELECT_COLUMN ){ 73 assert( pExpr->pLeft->flags&EP_xIsSelect ); 74 return sqlite3ExprAffinity( 75 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 76 ); 77 } 78 if( op==TK_VECTOR ){ 79 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 80 } 81 return pExpr->affExpr; 82 } 83 84 /* 85 ** Set the collating sequence for expression pExpr to be the collating 86 ** sequence named by pToken. Return a pointer to a new Expr node that 87 ** implements the COLLATE operator. 88 ** 89 ** If a memory allocation error occurs, that fact is recorded in pParse->db 90 ** and the pExpr parameter is returned unchanged. 91 */ 92 Expr *sqlite3ExprAddCollateToken( 93 Parse *pParse, /* Parsing context */ 94 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 95 const Token *pCollName, /* Name of collating sequence */ 96 int dequote /* True to dequote pCollName */ 97 ){ 98 if( pCollName->n>0 ){ 99 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 100 if( pNew ){ 101 pNew->pLeft = pExpr; 102 pNew->flags |= EP_Collate|EP_Skip; 103 pExpr = pNew; 104 } 105 } 106 return pExpr; 107 } 108 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 109 Token s; 110 assert( zC!=0 ); 111 sqlite3TokenInit(&s, (char*)zC); 112 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 113 } 114 115 /* 116 ** Skip over any TK_COLLATE operators. 117 */ 118 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 119 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 120 assert( pExpr->op==TK_COLLATE ); 121 pExpr = pExpr->pLeft; 122 } 123 return pExpr; 124 } 125 126 /* 127 ** Skip over any TK_COLLATE operators and/or any unlikely() 128 ** or likelihood() or likely() functions at the root of an 129 ** expression. 130 */ 131 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 132 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 133 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 134 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 135 assert( pExpr->x.pList->nExpr>0 ); 136 assert( pExpr->op==TK_FUNCTION ); 137 pExpr = pExpr->x.pList->a[0].pExpr; 138 }else{ 139 assert( pExpr->op==TK_COLLATE ); 140 pExpr = pExpr->pLeft; 141 } 142 } 143 return pExpr; 144 } 145 146 /* 147 ** Return the collation sequence for the expression pExpr. If 148 ** there is no defined collating sequence, return NULL. 149 ** 150 ** See also: sqlite3ExprNNCollSeq() 151 ** 152 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 153 ** default collation if pExpr has no defined collation. 154 ** 155 ** The collating sequence might be determined by a COLLATE operator 156 ** or by the presence of a column with a defined collating sequence. 157 ** COLLATE operators take first precedence. Left operands take 158 ** precedence over right operands. 159 */ 160 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 161 sqlite3 *db = pParse->db; 162 CollSeq *pColl = 0; 163 const Expr *p = pExpr; 164 while( p ){ 165 int op = p->op; 166 if( op==TK_REGISTER ) op = p->op2; 167 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 168 && p->y.pTab!=0 169 ){ 170 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 171 ** a TK_COLUMN but was previously evaluated and cached in a register */ 172 int j = p->iColumn; 173 if( j>=0 ){ 174 const char *zColl = p->y.pTab->aCol[j].zColl; 175 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 176 } 177 break; 178 } 179 if( op==TK_CAST || op==TK_UPLUS ){ 180 p = p->pLeft; 181 continue; 182 } 183 if( op==TK_VECTOR ){ 184 p = p->x.pList->a[0].pExpr; 185 continue; 186 } 187 if( op==TK_COLLATE ){ 188 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 189 break; 190 } 191 if( p->flags & EP_Collate ){ 192 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 193 p = p->pLeft; 194 }else{ 195 Expr *pNext = p->pRight; 196 /* The Expr.x union is never used at the same time as Expr.pRight */ 197 assert( p->x.pList==0 || p->pRight==0 ); 198 if( p->x.pList!=0 199 && !db->mallocFailed 200 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 201 ){ 202 int i; 203 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 204 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 205 pNext = p->x.pList->a[i].pExpr; 206 break; 207 } 208 } 209 } 210 p = pNext; 211 } 212 }else{ 213 break; 214 } 215 } 216 if( sqlite3CheckCollSeq(pParse, pColl) ){ 217 pColl = 0; 218 } 219 return pColl; 220 } 221 222 /* 223 ** Return the collation sequence for the expression pExpr. If 224 ** there is no defined collating sequence, return a pointer to the 225 ** defautl collation sequence. 226 ** 227 ** See also: sqlite3ExprCollSeq() 228 ** 229 ** The sqlite3ExprCollSeq() routine works the same except that it 230 ** returns NULL if there is no defined collation. 231 */ 232 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 233 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 234 if( p==0 ) p = pParse->db->pDfltColl; 235 assert( p!=0 ); 236 return p; 237 } 238 239 /* 240 ** Return TRUE if the two expressions have equivalent collating sequences. 241 */ 242 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 243 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 244 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 245 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 246 } 247 248 /* 249 ** pExpr is an operand of a comparison operator. aff2 is the 250 ** type affinity of the other operand. This routine returns the 251 ** type affinity that should be used for the comparison operator. 252 */ 253 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 254 char aff1 = sqlite3ExprAffinity(pExpr); 255 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 256 /* Both sides of the comparison are columns. If one has numeric 257 ** affinity, use that. Otherwise use no affinity. 258 */ 259 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 260 return SQLITE_AFF_NUMERIC; 261 }else{ 262 return SQLITE_AFF_BLOB; 263 } 264 }else{ 265 /* One side is a column, the other is not. Use the columns affinity. */ 266 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 267 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 268 } 269 } 270 271 /* 272 ** pExpr is a comparison operator. Return the type affinity that should 273 ** be applied to both operands prior to doing the comparison. 274 */ 275 static char comparisonAffinity(const Expr *pExpr){ 276 char aff; 277 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 278 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 279 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 280 assert( pExpr->pLeft ); 281 aff = sqlite3ExprAffinity(pExpr->pLeft); 282 if( pExpr->pRight ){ 283 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 284 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 285 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 286 }else if( aff==0 ){ 287 aff = SQLITE_AFF_BLOB; 288 } 289 return aff; 290 } 291 292 /* 293 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 294 ** idx_affinity is the affinity of an indexed column. Return true 295 ** if the index with affinity idx_affinity may be used to implement 296 ** the comparison in pExpr. 297 */ 298 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 299 char aff = comparisonAffinity(pExpr); 300 if( aff<SQLITE_AFF_TEXT ){ 301 return 1; 302 } 303 if( aff==SQLITE_AFF_TEXT ){ 304 return idx_affinity==SQLITE_AFF_TEXT; 305 } 306 return sqlite3IsNumericAffinity(idx_affinity); 307 } 308 309 /* 310 ** Return the P5 value that should be used for a binary comparison 311 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 312 */ 313 static u8 binaryCompareP5( 314 const Expr *pExpr1, /* Left operand */ 315 const Expr *pExpr2, /* Right operand */ 316 int jumpIfNull /* Extra flags added to P5 */ 317 ){ 318 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 319 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 320 return aff; 321 } 322 323 /* 324 ** Return a pointer to the collation sequence that should be used by 325 ** a binary comparison operator comparing pLeft and pRight. 326 ** 327 ** If the left hand expression has a collating sequence type, then it is 328 ** used. Otherwise the collation sequence for the right hand expression 329 ** is used, or the default (BINARY) if neither expression has a collating 330 ** type. 331 ** 332 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 333 ** it is not considered. 334 */ 335 CollSeq *sqlite3BinaryCompareCollSeq( 336 Parse *pParse, 337 const Expr *pLeft, 338 const Expr *pRight 339 ){ 340 CollSeq *pColl; 341 assert( pLeft ); 342 if( pLeft->flags & EP_Collate ){ 343 pColl = sqlite3ExprCollSeq(pParse, pLeft); 344 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 345 pColl = sqlite3ExprCollSeq(pParse, pRight); 346 }else{ 347 pColl = sqlite3ExprCollSeq(pParse, pLeft); 348 if( !pColl ){ 349 pColl = sqlite3ExprCollSeq(pParse, pRight); 350 } 351 } 352 return pColl; 353 } 354 355 /* Expresssion p is a comparison operator. Return a collation sequence 356 ** appropriate for the comparison operator. 357 ** 358 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 359 ** However, if the OP_Commuted flag is set, then the order of the operands 360 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 361 ** correct collating sequence is found. 362 */ 363 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 364 if( ExprHasProperty(p, EP_Commuted) ){ 365 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 366 }else{ 367 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 368 } 369 } 370 371 /* 372 ** Generate code for a comparison operator. 373 */ 374 static int codeCompare( 375 Parse *pParse, /* The parsing (and code generating) context */ 376 Expr *pLeft, /* The left operand */ 377 Expr *pRight, /* The right operand */ 378 int opcode, /* The comparison opcode */ 379 int in1, int in2, /* Register holding operands */ 380 int dest, /* Jump here if true. */ 381 int jumpIfNull, /* If true, jump if either operand is NULL */ 382 int isCommuted /* The comparison has been commuted */ 383 ){ 384 int p5; 385 int addr; 386 CollSeq *p4; 387 388 if( pParse->nErr ) return 0; 389 if( isCommuted ){ 390 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 391 }else{ 392 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 393 } 394 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 395 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 396 (void*)p4, P4_COLLSEQ); 397 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 398 return addr; 399 } 400 401 /* 402 ** Return true if expression pExpr is a vector, or false otherwise. 403 ** 404 ** A vector is defined as any expression that results in two or more 405 ** columns of result. Every TK_VECTOR node is an vector because the 406 ** parser will not generate a TK_VECTOR with fewer than two entries. 407 ** But a TK_SELECT might be either a vector or a scalar. It is only 408 ** considered a vector if it has two or more result columns. 409 */ 410 int sqlite3ExprIsVector(Expr *pExpr){ 411 return sqlite3ExprVectorSize(pExpr)>1; 412 } 413 414 /* 415 ** If the expression passed as the only argument is of type TK_VECTOR 416 ** return the number of expressions in the vector. Or, if the expression 417 ** is a sub-select, return the number of columns in the sub-select. For 418 ** any other type of expression, return 1. 419 */ 420 int sqlite3ExprVectorSize(Expr *pExpr){ 421 u8 op = pExpr->op; 422 if( op==TK_REGISTER ) op = pExpr->op2; 423 if( op==TK_VECTOR ){ 424 return pExpr->x.pList->nExpr; 425 }else if( op==TK_SELECT ){ 426 return pExpr->x.pSelect->pEList->nExpr; 427 }else{ 428 return 1; 429 } 430 } 431 432 /* 433 ** Return a pointer to a subexpression of pVector that is the i-th 434 ** column of the vector (numbered starting with 0). The caller must 435 ** ensure that i is within range. 436 ** 437 ** If pVector is really a scalar (and "scalar" here includes subqueries 438 ** that return a single column!) then return pVector unmodified. 439 ** 440 ** pVector retains ownership of the returned subexpression. 441 ** 442 ** If the vector is a (SELECT ...) then the expression returned is 443 ** just the expression for the i-th term of the result set, and may 444 ** not be ready for evaluation because the table cursor has not yet 445 ** been positioned. 446 */ 447 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 448 assert( i<sqlite3ExprVectorSize(pVector) ); 449 if( sqlite3ExprIsVector(pVector) ){ 450 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 451 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 452 return pVector->x.pSelect->pEList->a[i].pExpr; 453 }else{ 454 return pVector->x.pList->a[i].pExpr; 455 } 456 } 457 return pVector; 458 } 459 460 /* 461 ** Compute and return a new Expr object which when passed to 462 ** sqlite3ExprCode() will generate all necessary code to compute 463 ** the iField-th column of the vector expression pVector. 464 ** 465 ** It is ok for pVector to be a scalar (as long as iField==0). 466 ** In that case, this routine works like sqlite3ExprDup(). 467 ** 468 ** The caller owns the returned Expr object and is responsible for 469 ** ensuring that the returned value eventually gets freed. 470 ** 471 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 472 ** then the returned object will reference pVector and so pVector must remain 473 ** valid for the life of the returned object. If pVector is a TK_VECTOR 474 ** or a scalar expression, then it can be deleted as soon as this routine 475 ** returns. 476 ** 477 ** A trick to cause a TK_SELECT pVector to be deleted together with 478 ** the returned Expr object is to attach the pVector to the pRight field 479 ** of the returned TK_SELECT_COLUMN Expr object. 480 */ 481 Expr *sqlite3ExprForVectorField( 482 Parse *pParse, /* Parsing context */ 483 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 484 int iField /* Which column of the vector to return */ 485 ){ 486 Expr *pRet; 487 if( pVector->op==TK_SELECT ){ 488 assert( pVector->flags & EP_xIsSelect ); 489 /* The TK_SELECT_COLUMN Expr node: 490 ** 491 ** pLeft: pVector containing TK_SELECT. Not deleted. 492 ** pRight: not used. But recursively deleted. 493 ** iColumn: Index of a column in pVector 494 ** iTable: 0 or the number of columns on the LHS of an assignment 495 ** pLeft->iTable: First in an array of register holding result, or 0 496 ** if the result is not yet computed. 497 ** 498 ** sqlite3ExprDelete() specifically skips the recursive delete of 499 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 500 ** can be attached to pRight to cause this node to take ownership of 501 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 502 ** with the same pLeft pointer to the pVector, but only one of them 503 ** will own the pVector. 504 */ 505 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 506 if( pRet ){ 507 pRet->iColumn = iField; 508 pRet->pLeft = pVector; 509 } 510 assert( pRet==0 || pRet->iTable==0 ); 511 }else{ 512 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 513 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 514 sqlite3RenameTokenRemap(pParse, pRet, pVector); 515 } 516 return pRet; 517 } 518 519 /* 520 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 521 ** it. Return the register in which the result is stored (or, if the 522 ** sub-select returns more than one column, the first in an array 523 ** of registers in which the result is stored). 524 ** 525 ** If pExpr is not a TK_SELECT expression, return 0. 526 */ 527 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 528 int reg = 0; 529 #ifndef SQLITE_OMIT_SUBQUERY 530 if( pExpr->op==TK_SELECT ){ 531 reg = sqlite3CodeSubselect(pParse, pExpr); 532 } 533 #endif 534 return reg; 535 } 536 537 /* 538 ** Argument pVector points to a vector expression - either a TK_VECTOR 539 ** or TK_SELECT that returns more than one column. This function returns 540 ** the register number of a register that contains the value of 541 ** element iField of the vector. 542 ** 543 ** If pVector is a TK_SELECT expression, then code for it must have 544 ** already been generated using the exprCodeSubselect() routine. In this 545 ** case parameter regSelect should be the first in an array of registers 546 ** containing the results of the sub-select. 547 ** 548 ** If pVector is of type TK_VECTOR, then code for the requested field 549 ** is generated. In this case (*pRegFree) may be set to the number of 550 ** a temporary register to be freed by the caller before returning. 551 ** 552 ** Before returning, output parameter (*ppExpr) is set to point to the 553 ** Expr object corresponding to element iElem of the vector. 554 */ 555 static int exprVectorRegister( 556 Parse *pParse, /* Parse context */ 557 Expr *pVector, /* Vector to extract element from */ 558 int iField, /* Field to extract from pVector */ 559 int regSelect, /* First in array of registers */ 560 Expr **ppExpr, /* OUT: Expression element */ 561 int *pRegFree /* OUT: Temp register to free */ 562 ){ 563 u8 op = pVector->op; 564 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 565 if( op==TK_REGISTER ){ 566 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 567 return pVector->iTable+iField; 568 } 569 if( op==TK_SELECT ){ 570 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 571 return regSelect+iField; 572 } 573 *ppExpr = pVector->x.pList->a[iField].pExpr; 574 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 575 } 576 577 /* 578 ** Expression pExpr is a comparison between two vector values. Compute 579 ** the result of the comparison (1, 0, or NULL) and write that 580 ** result into register dest. 581 ** 582 ** The caller must satisfy the following preconditions: 583 ** 584 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 585 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 586 ** otherwise: op==pExpr->op and p5==0 587 */ 588 static void codeVectorCompare( 589 Parse *pParse, /* Code generator context */ 590 Expr *pExpr, /* The comparison operation */ 591 int dest, /* Write results into this register */ 592 u8 op, /* Comparison operator */ 593 u8 p5 /* SQLITE_NULLEQ or zero */ 594 ){ 595 Vdbe *v = pParse->pVdbe; 596 Expr *pLeft = pExpr->pLeft; 597 Expr *pRight = pExpr->pRight; 598 int nLeft = sqlite3ExprVectorSize(pLeft); 599 int i; 600 int regLeft = 0; 601 int regRight = 0; 602 u8 opx = op; 603 int addrCmp = 0; 604 int addrDone = sqlite3VdbeMakeLabel(pParse); 605 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 606 607 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 608 if( pParse->nErr ) return; 609 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 610 sqlite3ErrorMsg(pParse, "row value misused"); 611 return; 612 } 613 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 614 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 615 || pExpr->op==TK_LT || pExpr->op==TK_GT 616 || pExpr->op==TK_LE || pExpr->op==TK_GE 617 ); 618 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 619 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 620 assert( p5==0 || pExpr->op!=op ); 621 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 622 623 if( op==TK_LE ) opx = TK_LT; 624 if( op==TK_GE ) opx = TK_GT; 625 if( op==TK_NE ) opx = TK_EQ; 626 627 regLeft = exprCodeSubselect(pParse, pLeft); 628 regRight = exprCodeSubselect(pParse, pRight); 629 630 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 631 for(i=0; 1 /*Loop exits by "break"*/; i++){ 632 int regFree1 = 0, regFree2 = 0; 633 Expr *pL, *pR; 634 int r1, r2; 635 assert( i>=0 && i<nLeft ); 636 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 637 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 638 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 639 addrCmp = sqlite3VdbeCurrentAddr(v); 640 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 641 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 642 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 643 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 644 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 645 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 646 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 647 sqlite3ReleaseTempReg(pParse, regFree1); 648 sqlite3ReleaseTempReg(pParse, regFree2); 649 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 650 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 651 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 652 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 653 } 654 if( p5==SQLITE_NULLEQ ){ 655 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 656 }else{ 657 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 658 } 659 if( i==nLeft-1 ){ 660 break; 661 } 662 if( opx==TK_EQ ){ 663 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 664 }else{ 665 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 666 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 667 if( i==nLeft-2 ) opx = op; 668 } 669 } 670 sqlite3VdbeJumpHere(v, addrCmp); 671 sqlite3VdbeResolveLabel(v, addrDone); 672 if( op==TK_NE ){ 673 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 674 } 675 } 676 677 #if SQLITE_MAX_EXPR_DEPTH>0 678 /* 679 ** Check that argument nHeight is less than or equal to the maximum 680 ** expression depth allowed. If it is not, leave an error message in 681 ** pParse. 682 */ 683 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 684 int rc = SQLITE_OK; 685 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 686 if( nHeight>mxHeight ){ 687 sqlite3ErrorMsg(pParse, 688 "Expression tree is too large (maximum depth %d)", mxHeight 689 ); 690 rc = SQLITE_ERROR; 691 } 692 return rc; 693 } 694 695 /* The following three functions, heightOfExpr(), heightOfExprList() 696 ** and heightOfSelect(), are used to determine the maximum height 697 ** of any expression tree referenced by the structure passed as the 698 ** first argument. 699 ** 700 ** If this maximum height is greater than the current value pointed 701 ** to by pnHeight, the second parameter, then set *pnHeight to that 702 ** value. 703 */ 704 static void heightOfExpr(Expr *p, int *pnHeight){ 705 if( p ){ 706 if( p->nHeight>*pnHeight ){ 707 *pnHeight = p->nHeight; 708 } 709 } 710 } 711 static void heightOfExprList(ExprList *p, int *pnHeight){ 712 if( p ){ 713 int i; 714 for(i=0; i<p->nExpr; i++){ 715 heightOfExpr(p->a[i].pExpr, pnHeight); 716 } 717 } 718 } 719 static void heightOfSelect(Select *pSelect, int *pnHeight){ 720 Select *p; 721 for(p=pSelect; p; p=p->pPrior){ 722 heightOfExpr(p->pWhere, pnHeight); 723 heightOfExpr(p->pHaving, pnHeight); 724 heightOfExpr(p->pLimit, pnHeight); 725 heightOfExprList(p->pEList, pnHeight); 726 heightOfExprList(p->pGroupBy, pnHeight); 727 heightOfExprList(p->pOrderBy, pnHeight); 728 } 729 } 730 731 /* 732 ** Set the Expr.nHeight variable in the structure passed as an 733 ** argument. An expression with no children, Expr.pList or 734 ** Expr.pSelect member has a height of 1. Any other expression 735 ** has a height equal to the maximum height of any other 736 ** referenced Expr plus one. 737 ** 738 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 739 ** if appropriate. 740 */ 741 static void exprSetHeight(Expr *p){ 742 int nHeight = 0; 743 heightOfExpr(p->pLeft, &nHeight); 744 heightOfExpr(p->pRight, &nHeight); 745 if( ExprHasProperty(p, EP_xIsSelect) ){ 746 heightOfSelect(p->x.pSelect, &nHeight); 747 }else if( p->x.pList ){ 748 heightOfExprList(p->x.pList, &nHeight); 749 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 750 } 751 p->nHeight = nHeight + 1; 752 } 753 754 /* 755 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 756 ** the height is greater than the maximum allowed expression depth, 757 ** leave an error in pParse. 758 ** 759 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 760 ** Expr.flags. 761 */ 762 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 763 if( pParse->nErr ) return; 764 exprSetHeight(p); 765 sqlite3ExprCheckHeight(pParse, p->nHeight); 766 } 767 768 /* 769 ** Return the maximum height of any expression tree referenced 770 ** by the select statement passed as an argument. 771 */ 772 int sqlite3SelectExprHeight(Select *p){ 773 int nHeight = 0; 774 heightOfSelect(p, &nHeight); 775 return nHeight; 776 } 777 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 778 /* 779 ** Propagate all EP_Propagate flags from the Expr.x.pList into 780 ** Expr.flags. 781 */ 782 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 783 if( pParse->nErr ) return; 784 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 785 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 786 } 787 } 788 #define exprSetHeight(y) 789 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 790 791 /* 792 ** This routine is the core allocator for Expr nodes. 793 ** 794 ** Construct a new expression node and return a pointer to it. Memory 795 ** for this node and for the pToken argument is a single allocation 796 ** obtained from sqlite3DbMalloc(). The calling function 797 ** is responsible for making sure the node eventually gets freed. 798 ** 799 ** If dequote is true, then the token (if it exists) is dequoted. 800 ** If dequote is false, no dequoting is performed. The deQuote 801 ** parameter is ignored if pToken is NULL or if the token does not 802 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 803 ** then the EP_DblQuoted flag is set on the expression node. 804 ** 805 ** Special case: If op==TK_INTEGER and pToken points to a string that 806 ** can be translated into a 32-bit integer, then the token is not 807 ** stored in u.zToken. Instead, the integer values is written 808 ** into u.iValue and the EP_IntValue flag is set. No extra storage 809 ** is allocated to hold the integer text and the dequote flag is ignored. 810 */ 811 Expr *sqlite3ExprAlloc( 812 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 813 int op, /* Expression opcode */ 814 const Token *pToken, /* Token argument. Might be NULL */ 815 int dequote /* True to dequote */ 816 ){ 817 Expr *pNew; 818 int nExtra = 0; 819 int iValue = 0; 820 821 assert( db!=0 ); 822 if( pToken ){ 823 if( op!=TK_INTEGER || pToken->z==0 824 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 825 nExtra = pToken->n+1; 826 assert( iValue>=0 ); 827 } 828 } 829 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 830 if( pNew ){ 831 memset(pNew, 0, sizeof(Expr)); 832 pNew->op = (u8)op; 833 pNew->iAgg = -1; 834 if( pToken ){ 835 if( nExtra==0 ){ 836 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 837 pNew->u.iValue = iValue; 838 }else{ 839 pNew->u.zToken = (char*)&pNew[1]; 840 assert( pToken->z!=0 || pToken->n==0 ); 841 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 842 pNew->u.zToken[pToken->n] = 0; 843 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 844 sqlite3DequoteExpr(pNew); 845 } 846 } 847 } 848 #if SQLITE_MAX_EXPR_DEPTH>0 849 pNew->nHeight = 1; 850 #endif 851 } 852 return pNew; 853 } 854 855 /* 856 ** Allocate a new expression node from a zero-terminated token that has 857 ** already been dequoted. 858 */ 859 Expr *sqlite3Expr( 860 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 861 int op, /* Expression opcode */ 862 const char *zToken /* Token argument. Might be NULL */ 863 ){ 864 Token x; 865 x.z = zToken; 866 x.n = sqlite3Strlen30(zToken); 867 return sqlite3ExprAlloc(db, op, &x, 0); 868 } 869 870 /* 871 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 872 ** 873 ** If pRoot==NULL that means that a memory allocation error has occurred. 874 ** In that case, delete the subtrees pLeft and pRight. 875 */ 876 void sqlite3ExprAttachSubtrees( 877 sqlite3 *db, 878 Expr *pRoot, 879 Expr *pLeft, 880 Expr *pRight 881 ){ 882 if( pRoot==0 ){ 883 assert( db->mallocFailed ); 884 sqlite3ExprDelete(db, pLeft); 885 sqlite3ExprDelete(db, pRight); 886 }else{ 887 if( pRight ){ 888 pRoot->pRight = pRight; 889 pRoot->flags |= EP_Propagate & pRight->flags; 890 } 891 if( pLeft ){ 892 pRoot->pLeft = pLeft; 893 pRoot->flags |= EP_Propagate & pLeft->flags; 894 } 895 exprSetHeight(pRoot); 896 } 897 } 898 899 /* 900 ** Allocate an Expr node which joins as many as two subtrees. 901 ** 902 ** One or both of the subtrees can be NULL. Return a pointer to the new 903 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 904 ** free the subtrees and return NULL. 905 */ 906 Expr *sqlite3PExpr( 907 Parse *pParse, /* Parsing context */ 908 int op, /* Expression opcode */ 909 Expr *pLeft, /* Left operand */ 910 Expr *pRight /* Right operand */ 911 ){ 912 Expr *p; 913 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 914 if( p ){ 915 memset(p, 0, sizeof(Expr)); 916 p->op = op & 0xff; 917 p->iAgg = -1; 918 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 919 sqlite3ExprCheckHeight(pParse, p->nHeight); 920 }else{ 921 sqlite3ExprDelete(pParse->db, pLeft); 922 sqlite3ExprDelete(pParse->db, pRight); 923 } 924 return p; 925 } 926 927 /* 928 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 929 ** do a memory allocation failure) then delete the pSelect object. 930 */ 931 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 932 if( pExpr ){ 933 pExpr->x.pSelect = pSelect; 934 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 935 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 936 }else{ 937 assert( pParse->db->mallocFailed ); 938 sqlite3SelectDelete(pParse->db, pSelect); 939 } 940 } 941 942 943 /* 944 ** Join two expressions using an AND operator. If either expression is 945 ** NULL, then just return the other expression. 946 ** 947 ** If one side or the other of the AND is known to be false, then instead 948 ** of returning an AND expression, just return a constant expression with 949 ** a value of false. 950 */ 951 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 952 sqlite3 *db = pParse->db; 953 if( pLeft==0 ){ 954 return pRight; 955 }else if( pRight==0 ){ 956 return pLeft; 957 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 958 && !IN_RENAME_OBJECT 959 ){ 960 sqlite3ExprDeferredDelete(pParse, pLeft); 961 sqlite3ExprDeferredDelete(pParse, pRight); 962 return sqlite3Expr(db, TK_INTEGER, "0"); 963 }else{ 964 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 965 } 966 } 967 968 /* 969 ** Construct a new expression node for a function with multiple 970 ** arguments. 971 */ 972 Expr *sqlite3ExprFunction( 973 Parse *pParse, /* Parsing context */ 974 ExprList *pList, /* Argument list */ 975 Token *pToken, /* Name of the function */ 976 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 977 ){ 978 Expr *pNew; 979 sqlite3 *db = pParse->db; 980 assert( pToken ); 981 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 982 if( pNew==0 ){ 983 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 984 return 0; 985 } 986 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 987 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 988 } 989 pNew->x.pList = pList; 990 ExprSetProperty(pNew, EP_HasFunc); 991 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 992 sqlite3ExprSetHeightAndFlags(pParse, pNew); 993 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 994 return pNew; 995 } 996 997 /* 998 ** Check to see if a function is usable according to current access 999 ** rules: 1000 ** 1001 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1002 ** 1003 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1004 ** top-level SQL 1005 ** 1006 ** If the function is not usable, create an error. 1007 */ 1008 void sqlite3ExprFunctionUsable( 1009 Parse *pParse, /* Parsing and code generating context */ 1010 Expr *pExpr, /* The function invocation */ 1011 FuncDef *pDef /* The function being invoked */ 1012 ){ 1013 assert( !IN_RENAME_OBJECT ); 1014 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1015 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1016 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1017 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1018 ){ 1019 /* Functions prohibited in triggers and views if: 1020 ** (1) tagged with SQLITE_DIRECTONLY 1021 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1022 ** is tagged with SQLITE_FUNC_UNSAFE) and 1023 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1024 ** that the schema is possibly tainted). 1025 */ 1026 sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName); 1027 } 1028 } 1029 } 1030 1031 /* 1032 ** Assign a variable number to an expression that encodes a wildcard 1033 ** in the original SQL statement. 1034 ** 1035 ** Wildcards consisting of a single "?" are assigned the next sequential 1036 ** variable number. 1037 ** 1038 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1039 ** sure "nnn" is not too big to avoid a denial of service attack when 1040 ** the SQL statement comes from an external source. 1041 ** 1042 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1043 ** as the previous instance of the same wildcard. Or if this is the first 1044 ** instance of the wildcard, the next sequential variable number is 1045 ** assigned. 1046 */ 1047 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1048 sqlite3 *db = pParse->db; 1049 const char *z; 1050 ynVar x; 1051 1052 if( pExpr==0 ) return; 1053 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1054 z = pExpr->u.zToken; 1055 assert( z!=0 ); 1056 assert( z[0]!=0 ); 1057 assert( n==(u32)sqlite3Strlen30(z) ); 1058 if( z[1]==0 ){ 1059 /* Wildcard of the form "?". Assign the next variable number */ 1060 assert( z[0]=='?' ); 1061 x = (ynVar)(++pParse->nVar); 1062 }else{ 1063 int doAdd = 0; 1064 if( z[0]=='?' ){ 1065 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1066 ** use it as the variable number */ 1067 i64 i; 1068 int bOk; 1069 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1070 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1071 bOk = 1; 1072 }else{ 1073 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1074 } 1075 testcase( i==0 ); 1076 testcase( i==1 ); 1077 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1078 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1079 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1080 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1081 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1082 return; 1083 } 1084 x = (ynVar)i; 1085 if( x>pParse->nVar ){ 1086 pParse->nVar = (int)x; 1087 doAdd = 1; 1088 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1089 doAdd = 1; 1090 } 1091 }else{ 1092 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1093 ** number as the prior appearance of the same name, or if the name 1094 ** has never appeared before, reuse the same variable number 1095 */ 1096 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1097 if( x==0 ){ 1098 x = (ynVar)(++pParse->nVar); 1099 doAdd = 1; 1100 } 1101 } 1102 if( doAdd ){ 1103 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1104 } 1105 } 1106 pExpr->iColumn = x; 1107 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1108 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1109 } 1110 } 1111 1112 /* 1113 ** Recursively delete an expression tree. 1114 */ 1115 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1116 assert( p!=0 ); 1117 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1118 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1119 1120 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1121 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1122 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1123 #ifdef SQLITE_DEBUG 1124 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1125 assert( p->pLeft==0 ); 1126 assert( p->pRight==0 ); 1127 assert( p->x.pSelect==0 ); 1128 } 1129 #endif 1130 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1131 /* The Expr.x union is never used at the same time as Expr.pRight */ 1132 assert( p->x.pList==0 || p->pRight==0 ); 1133 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1134 if( p->pRight ){ 1135 assert( !ExprHasProperty(p, EP_WinFunc) ); 1136 sqlite3ExprDeleteNN(db, p->pRight); 1137 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1138 assert( !ExprHasProperty(p, EP_WinFunc) ); 1139 sqlite3SelectDelete(db, p->x.pSelect); 1140 }else{ 1141 sqlite3ExprListDelete(db, p->x.pList); 1142 #ifndef SQLITE_OMIT_WINDOWFUNC 1143 if( ExprHasProperty(p, EP_WinFunc) ){ 1144 sqlite3WindowDelete(db, p->y.pWin); 1145 } 1146 #endif 1147 } 1148 } 1149 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1150 if( !ExprHasProperty(p, EP_Static) ){ 1151 sqlite3DbFreeNN(db, p); 1152 } 1153 } 1154 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1155 if( p ) sqlite3ExprDeleteNN(db, p); 1156 } 1157 1158 1159 /* 1160 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 1161 ** This is similar to sqlite3ExprDelete() except that the delete is 1162 ** deferred untilthe pParse is deleted. 1163 ** 1164 ** The pExpr might be deleted immediately on an OOM error. 1165 ** 1166 ** The deferred delete is (currently) implemented by adding the 1167 ** pExpr to the pParse->pConstExpr list with a register number of 0. 1168 */ 1169 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 1170 pParse->pConstExpr = 1171 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 1172 } 1173 1174 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1175 ** expression. 1176 */ 1177 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1178 if( p ){ 1179 if( IN_RENAME_OBJECT ){ 1180 sqlite3RenameExprUnmap(pParse, p); 1181 } 1182 sqlite3ExprDeleteNN(pParse->db, p); 1183 } 1184 } 1185 1186 /* 1187 ** Return the number of bytes allocated for the expression structure 1188 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1189 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1190 */ 1191 static int exprStructSize(Expr *p){ 1192 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1193 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1194 return EXPR_FULLSIZE; 1195 } 1196 1197 /* 1198 ** The dupedExpr*Size() routines each return the number of bytes required 1199 ** to store a copy of an expression or expression tree. They differ in 1200 ** how much of the tree is measured. 1201 ** 1202 ** dupedExprStructSize() Size of only the Expr structure 1203 ** dupedExprNodeSize() Size of Expr + space for token 1204 ** dupedExprSize() Expr + token + subtree components 1205 ** 1206 *************************************************************************** 1207 ** 1208 ** The dupedExprStructSize() function returns two values OR-ed together: 1209 ** (1) the space required for a copy of the Expr structure only and 1210 ** (2) the EP_xxx flags that indicate what the structure size should be. 1211 ** The return values is always one of: 1212 ** 1213 ** EXPR_FULLSIZE 1214 ** EXPR_REDUCEDSIZE | EP_Reduced 1215 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1216 ** 1217 ** The size of the structure can be found by masking the return value 1218 ** of this routine with 0xfff. The flags can be found by masking the 1219 ** return value with EP_Reduced|EP_TokenOnly. 1220 ** 1221 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1222 ** (unreduced) Expr objects as they or originally constructed by the parser. 1223 ** During expression analysis, extra information is computed and moved into 1224 ** later parts of the Expr object and that extra information might get chopped 1225 ** off if the expression is reduced. Note also that it does not work to 1226 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1227 ** to reduce a pristine expression tree from the parser. The implementation 1228 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1229 ** to enforce this constraint. 1230 */ 1231 static int dupedExprStructSize(Expr *p, int flags){ 1232 int nSize; 1233 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1234 assert( EXPR_FULLSIZE<=0xfff ); 1235 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1236 if( 0==flags || p->op==TK_SELECT_COLUMN 1237 #ifndef SQLITE_OMIT_WINDOWFUNC 1238 || ExprHasProperty(p, EP_WinFunc) 1239 #endif 1240 ){ 1241 nSize = EXPR_FULLSIZE; 1242 }else{ 1243 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1244 assert( !ExprHasProperty(p, EP_FromJoin) ); 1245 assert( !ExprHasProperty(p, EP_MemToken) ); 1246 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1247 if( p->pLeft || p->x.pList ){ 1248 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1249 }else{ 1250 assert( p->pRight==0 ); 1251 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1252 } 1253 } 1254 return nSize; 1255 } 1256 1257 /* 1258 ** This function returns the space in bytes required to store the copy 1259 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1260 ** string is defined.) 1261 */ 1262 static int dupedExprNodeSize(Expr *p, int flags){ 1263 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1264 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1265 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1266 } 1267 return ROUND8(nByte); 1268 } 1269 1270 /* 1271 ** Return the number of bytes required to create a duplicate of the 1272 ** expression passed as the first argument. The second argument is a 1273 ** mask containing EXPRDUP_XXX flags. 1274 ** 1275 ** The value returned includes space to create a copy of the Expr struct 1276 ** itself and the buffer referred to by Expr.u.zToken, if any. 1277 ** 1278 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1279 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1280 ** and Expr.pRight variables (but not for any structures pointed to or 1281 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1282 */ 1283 static int dupedExprSize(Expr *p, int flags){ 1284 int nByte = 0; 1285 if( p ){ 1286 nByte = dupedExprNodeSize(p, flags); 1287 if( flags&EXPRDUP_REDUCE ){ 1288 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1289 } 1290 } 1291 return nByte; 1292 } 1293 1294 /* 1295 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1296 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1297 ** to store the copy of expression p, the copies of p->u.zToken 1298 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1299 ** if any. Before returning, *pzBuffer is set to the first byte past the 1300 ** portion of the buffer copied into by this function. 1301 */ 1302 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1303 Expr *pNew; /* Value to return */ 1304 u8 *zAlloc; /* Memory space from which to build Expr object */ 1305 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1306 1307 assert( db!=0 ); 1308 assert( p ); 1309 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1310 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1311 1312 /* Figure out where to write the new Expr structure. */ 1313 if( pzBuffer ){ 1314 zAlloc = *pzBuffer; 1315 staticFlag = EP_Static; 1316 assert( zAlloc!=0 ); 1317 }else{ 1318 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1319 staticFlag = 0; 1320 } 1321 pNew = (Expr *)zAlloc; 1322 1323 if( pNew ){ 1324 /* Set nNewSize to the size allocated for the structure pointed to 1325 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1326 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1327 ** by the copy of the p->u.zToken string (if any). 1328 */ 1329 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1330 const int nNewSize = nStructSize & 0xfff; 1331 int nToken; 1332 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1333 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1334 }else{ 1335 nToken = 0; 1336 } 1337 if( dupFlags ){ 1338 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1339 memcpy(zAlloc, p, nNewSize); 1340 }else{ 1341 u32 nSize = (u32)exprStructSize(p); 1342 memcpy(zAlloc, p, nSize); 1343 if( nSize<EXPR_FULLSIZE ){ 1344 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1345 } 1346 } 1347 1348 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1349 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1350 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1351 pNew->flags |= staticFlag; 1352 ExprClearVVAProperties(pNew); 1353 if( dupFlags ){ 1354 ExprSetVVAProperty(pNew, EP_Immutable); 1355 } 1356 1357 /* Copy the p->u.zToken string, if any. */ 1358 if( nToken ){ 1359 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1360 memcpy(zToken, p->u.zToken, nToken); 1361 } 1362 1363 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1364 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1365 if( ExprHasProperty(p, EP_xIsSelect) ){ 1366 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1367 }else{ 1368 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1369 } 1370 } 1371 1372 /* Fill in pNew->pLeft and pNew->pRight. */ 1373 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1374 zAlloc += dupedExprNodeSize(p, dupFlags); 1375 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1376 pNew->pLeft = p->pLeft ? 1377 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1378 pNew->pRight = p->pRight ? 1379 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1380 } 1381 #ifndef SQLITE_OMIT_WINDOWFUNC 1382 if( ExprHasProperty(p, EP_WinFunc) ){ 1383 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1384 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1385 } 1386 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1387 if( pzBuffer ){ 1388 *pzBuffer = zAlloc; 1389 } 1390 }else{ 1391 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1392 if( pNew->op==TK_SELECT_COLUMN ){ 1393 pNew->pLeft = p->pLeft; 1394 assert( p->iColumn==0 || p->pRight==0 ); 1395 assert( p->pRight==0 || p->pRight==p->pLeft 1396 || ExprHasProperty(p->pLeft, EP_Subquery) ); 1397 }else{ 1398 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1399 } 1400 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1401 } 1402 } 1403 } 1404 return pNew; 1405 } 1406 1407 /* 1408 ** Create and return a deep copy of the object passed as the second 1409 ** argument. If an OOM condition is encountered, NULL is returned 1410 ** and the db->mallocFailed flag set. 1411 */ 1412 #ifndef SQLITE_OMIT_CTE 1413 static With *withDup(sqlite3 *db, With *p){ 1414 With *pRet = 0; 1415 if( p ){ 1416 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1417 pRet = sqlite3DbMallocZero(db, nByte); 1418 if( pRet ){ 1419 int i; 1420 pRet->nCte = p->nCte; 1421 for(i=0; i<p->nCte; i++){ 1422 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1423 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1424 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1425 } 1426 } 1427 } 1428 return pRet; 1429 } 1430 #else 1431 # define withDup(x,y) 0 1432 #endif 1433 1434 #ifndef SQLITE_OMIT_WINDOWFUNC 1435 /* 1436 ** The gatherSelectWindows() procedure and its helper routine 1437 ** gatherSelectWindowsCallback() are used to scan all the expressions 1438 ** an a newly duplicated SELECT statement and gather all of the Window 1439 ** objects found there, assembling them onto the linked list at Select->pWin. 1440 */ 1441 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1442 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1443 Select *pSelect = pWalker->u.pSelect; 1444 Window *pWin = pExpr->y.pWin; 1445 assert( pWin ); 1446 assert( IsWindowFunc(pExpr) ); 1447 assert( pWin->ppThis==0 ); 1448 sqlite3WindowLink(pSelect, pWin); 1449 } 1450 return WRC_Continue; 1451 } 1452 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1453 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1454 } 1455 static void gatherSelectWindows(Select *p){ 1456 Walker w; 1457 w.xExprCallback = gatherSelectWindowsCallback; 1458 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1459 w.xSelectCallback2 = 0; 1460 w.pParse = 0; 1461 w.u.pSelect = p; 1462 sqlite3WalkSelect(&w, p); 1463 } 1464 #endif 1465 1466 1467 /* 1468 ** The following group of routines make deep copies of expressions, 1469 ** expression lists, ID lists, and select statements. The copies can 1470 ** be deleted (by being passed to their respective ...Delete() routines) 1471 ** without effecting the originals. 1472 ** 1473 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1474 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1475 ** by subsequent calls to sqlite*ListAppend() routines. 1476 ** 1477 ** Any tables that the SrcList might point to are not duplicated. 1478 ** 1479 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1480 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1481 ** truncated version of the usual Expr structure that will be stored as 1482 ** part of the in-memory representation of the database schema. 1483 */ 1484 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1485 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1486 return p ? exprDup(db, p, flags, 0) : 0; 1487 } 1488 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1489 ExprList *pNew; 1490 struct ExprList_item *pItem, *pOldItem; 1491 int i; 1492 Expr *pPriorSelectCol = 0; 1493 assert( db!=0 ); 1494 if( p==0 ) return 0; 1495 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1496 if( pNew==0 ) return 0; 1497 pNew->nExpr = p->nExpr; 1498 pNew->nAlloc = p->nAlloc; 1499 pItem = pNew->a; 1500 pOldItem = p->a; 1501 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1502 Expr *pOldExpr = pOldItem->pExpr; 1503 Expr *pNewExpr; 1504 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1505 if( pOldExpr 1506 && pOldExpr->op==TK_SELECT_COLUMN 1507 && (pNewExpr = pItem->pExpr)!=0 1508 ){ 1509 assert( pNewExpr->iColumn==0 || i>0 ); 1510 if( pNewExpr->iColumn==0 ){ 1511 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1512 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1513 }else{ 1514 assert( i>0 ); 1515 assert( pItem[-1].pExpr!=0 ); 1516 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1517 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1518 pNewExpr->pLeft = pPriorSelectCol; 1519 } 1520 } 1521 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1522 pItem->sortFlags = pOldItem->sortFlags; 1523 pItem->eEName = pOldItem->eEName; 1524 pItem->done = 0; 1525 pItem->bNulls = pOldItem->bNulls; 1526 pItem->bSorterRef = pOldItem->bSorterRef; 1527 pItem->u = pOldItem->u; 1528 } 1529 return pNew; 1530 } 1531 1532 /* 1533 ** If cursors, triggers, views and subqueries are all omitted from 1534 ** the build, then none of the following routines, except for 1535 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1536 ** called with a NULL argument. 1537 */ 1538 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1539 || !defined(SQLITE_OMIT_SUBQUERY) 1540 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1541 SrcList *pNew; 1542 int i; 1543 int nByte; 1544 assert( db!=0 ); 1545 if( p==0 ) return 0; 1546 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1547 pNew = sqlite3DbMallocRawNN(db, nByte ); 1548 if( pNew==0 ) return 0; 1549 pNew->nSrc = pNew->nAlloc = p->nSrc; 1550 for(i=0; i<p->nSrc; i++){ 1551 SrcItem *pNewItem = &pNew->a[i]; 1552 SrcItem *pOldItem = &p->a[i]; 1553 Table *pTab; 1554 pNewItem->pSchema = pOldItem->pSchema; 1555 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1556 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1557 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1558 pNewItem->fg = pOldItem->fg; 1559 pNewItem->iCursor = pOldItem->iCursor; 1560 pNewItem->addrFillSub = pOldItem->addrFillSub; 1561 pNewItem->regReturn = pOldItem->regReturn; 1562 if( pNewItem->fg.isIndexedBy ){ 1563 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1564 } 1565 pNewItem->u2 = pOldItem->u2; 1566 if( pNewItem->fg.isCte ){ 1567 pNewItem->u2.pCteUse->nUse++; 1568 } 1569 if( pNewItem->fg.isTabFunc ){ 1570 pNewItem->u1.pFuncArg = 1571 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1572 } 1573 pTab = pNewItem->pTab = pOldItem->pTab; 1574 if( pTab ){ 1575 pTab->nTabRef++; 1576 } 1577 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1578 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1579 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1580 pNewItem->colUsed = pOldItem->colUsed; 1581 } 1582 return pNew; 1583 } 1584 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1585 IdList *pNew; 1586 int i; 1587 assert( db!=0 ); 1588 if( p==0 ) return 0; 1589 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1590 if( pNew==0 ) return 0; 1591 pNew->nId = p->nId; 1592 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1593 if( pNew->a==0 ){ 1594 sqlite3DbFreeNN(db, pNew); 1595 return 0; 1596 } 1597 /* Note that because the size of the allocation for p->a[] is not 1598 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1599 ** on the duplicate created by this function. */ 1600 for(i=0; i<p->nId; i++){ 1601 struct IdList_item *pNewItem = &pNew->a[i]; 1602 struct IdList_item *pOldItem = &p->a[i]; 1603 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1604 pNewItem->idx = pOldItem->idx; 1605 } 1606 return pNew; 1607 } 1608 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1609 Select *pRet = 0; 1610 Select *pNext = 0; 1611 Select **pp = &pRet; 1612 Select *p; 1613 1614 assert( db!=0 ); 1615 for(p=pDup; p; p=p->pPrior){ 1616 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1617 if( pNew==0 ) break; 1618 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1619 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1620 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1621 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1622 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1623 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1624 pNew->op = p->op; 1625 pNew->pNext = pNext; 1626 pNew->pPrior = 0; 1627 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1628 pNew->iLimit = 0; 1629 pNew->iOffset = 0; 1630 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1631 pNew->addrOpenEphm[0] = -1; 1632 pNew->addrOpenEphm[1] = -1; 1633 pNew->nSelectRow = p->nSelectRow; 1634 pNew->pWith = withDup(db, p->pWith); 1635 #ifndef SQLITE_OMIT_WINDOWFUNC 1636 pNew->pWin = 0; 1637 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1638 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1639 #endif 1640 pNew->selId = p->selId; 1641 if( db->mallocFailed ){ 1642 /* Any prior OOM might have left the Select object incomplete. 1643 ** Delete the whole thing rather than allow an incomplete Select 1644 ** to be used by the code generator. */ 1645 pNew->pNext = 0; 1646 sqlite3SelectDelete(db, pNew); 1647 break; 1648 } 1649 *pp = pNew; 1650 pp = &pNew->pPrior; 1651 pNext = pNew; 1652 } 1653 1654 return pRet; 1655 } 1656 #else 1657 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1658 assert( p==0 ); 1659 return 0; 1660 } 1661 #endif 1662 1663 1664 /* 1665 ** Add a new element to the end of an expression list. If pList is 1666 ** initially NULL, then create a new expression list. 1667 ** 1668 ** The pList argument must be either NULL or a pointer to an ExprList 1669 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1670 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1671 ** Reason: This routine assumes that the number of slots in pList->a[] 1672 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1673 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1674 ** 1675 ** If a memory allocation error occurs, the entire list is freed and 1676 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1677 ** that the new entry was successfully appended. 1678 */ 1679 static const struct ExprList_item zeroItem = {0}; 1680 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 1681 sqlite3 *db, /* Database handle. Used for memory allocation */ 1682 Expr *pExpr /* Expression to be appended. Might be NULL */ 1683 ){ 1684 struct ExprList_item *pItem; 1685 ExprList *pList; 1686 1687 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 1688 if( pList==0 ){ 1689 sqlite3ExprDelete(db, pExpr); 1690 return 0; 1691 } 1692 pList->nAlloc = 4; 1693 pList->nExpr = 1; 1694 pItem = &pList->a[0]; 1695 *pItem = zeroItem; 1696 pItem->pExpr = pExpr; 1697 return pList; 1698 } 1699 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 1700 sqlite3 *db, /* Database handle. Used for memory allocation */ 1701 ExprList *pList, /* List to which to append. Might be NULL */ 1702 Expr *pExpr /* Expression to be appended. Might be NULL */ 1703 ){ 1704 struct ExprList_item *pItem; 1705 ExprList *pNew; 1706 pList->nAlloc *= 2; 1707 pNew = sqlite3DbRealloc(db, pList, 1708 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 1709 if( pNew==0 ){ 1710 sqlite3ExprListDelete(db, pList); 1711 sqlite3ExprDelete(db, pExpr); 1712 return 0; 1713 }else{ 1714 pList = pNew; 1715 } 1716 pItem = &pList->a[pList->nExpr++]; 1717 *pItem = zeroItem; 1718 pItem->pExpr = pExpr; 1719 return pList; 1720 } 1721 ExprList *sqlite3ExprListAppend( 1722 Parse *pParse, /* Parsing context */ 1723 ExprList *pList, /* List to which to append. Might be NULL */ 1724 Expr *pExpr /* Expression to be appended. Might be NULL */ 1725 ){ 1726 struct ExprList_item *pItem; 1727 if( pList==0 ){ 1728 return sqlite3ExprListAppendNew(pParse->db,pExpr); 1729 } 1730 if( pList->nAlloc<pList->nExpr+1 ){ 1731 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 1732 } 1733 pItem = &pList->a[pList->nExpr++]; 1734 *pItem = zeroItem; 1735 pItem->pExpr = pExpr; 1736 return pList; 1737 } 1738 1739 /* 1740 ** pColumns and pExpr form a vector assignment which is part of the SET 1741 ** clause of an UPDATE statement. Like this: 1742 ** 1743 ** (a,b,c) = (expr1,expr2,expr3) 1744 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1745 ** 1746 ** For each term of the vector assignment, append new entries to the 1747 ** expression list pList. In the case of a subquery on the RHS, append 1748 ** TK_SELECT_COLUMN expressions. 1749 */ 1750 ExprList *sqlite3ExprListAppendVector( 1751 Parse *pParse, /* Parsing context */ 1752 ExprList *pList, /* List to which to append. Might be NULL */ 1753 IdList *pColumns, /* List of names of LHS of the assignment */ 1754 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1755 ){ 1756 sqlite3 *db = pParse->db; 1757 int n; 1758 int i; 1759 int iFirst = pList ? pList->nExpr : 0; 1760 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1761 ** exit prior to this routine being invoked */ 1762 if( NEVER(pColumns==0) ) goto vector_append_error; 1763 if( pExpr==0 ) goto vector_append_error; 1764 1765 /* If the RHS is a vector, then we can immediately check to see that 1766 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1767 ** wildcards ("*") in the result set of the SELECT must be expanded before 1768 ** we can do the size check, so defer the size check until code generation. 1769 */ 1770 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1771 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1772 pColumns->nId, n); 1773 goto vector_append_error; 1774 } 1775 1776 for(i=0; i<pColumns->nId; i++){ 1777 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1778 assert( pSubExpr!=0 || db->mallocFailed ); 1779 assert( pSubExpr==0 || pSubExpr->iTable==0 ); 1780 if( pSubExpr==0 ) continue; 1781 pSubExpr->iTable = pColumns->nId; 1782 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1783 if( pList ){ 1784 assert( pList->nExpr==iFirst+i+1 ); 1785 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1786 pColumns->a[i].zName = 0; 1787 } 1788 } 1789 1790 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1791 Expr *pFirst = pList->a[iFirst].pExpr; 1792 assert( pFirst!=0 ); 1793 assert( pFirst->op==TK_SELECT_COLUMN ); 1794 1795 /* Store the SELECT statement in pRight so it will be deleted when 1796 ** sqlite3ExprListDelete() is called */ 1797 pFirst->pRight = pExpr; 1798 pExpr = 0; 1799 1800 /* Remember the size of the LHS in iTable so that we can check that 1801 ** the RHS and LHS sizes match during code generation. */ 1802 pFirst->iTable = pColumns->nId; 1803 } 1804 1805 vector_append_error: 1806 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1807 sqlite3IdListDelete(db, pColumns); 1808 return pList; 1809 } 1810 1811 /* 1812 ** Set the sort order for the last element on the given ExprList. 1813 */ 1814 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1815 struct ExprList_item *pItem; 1816 if( p==0 ) return; 1817 assert( p->nExpr>0 ); 1818 1819 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1820 assert( iSortOrder==SQLITE_SO_UNDEFINED 1821 || iSortOrder==SQLITE_SO_ASC 1822 || iSortOrder==SQLITE_SO_DESC 1823 ); 1824 assert( eNulls==SQLITE_SO_UNDEFINED 1825 || eNulls==SQLITE_SO_ASC 1826 || eNulls==SQLITE_SO_DESC 1827 ); 1828 1829 pItem = &p->a[p->nExpr-1]; 1830 assert( pItem->bNulls==0 ); 1831 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1832 iSortOrder = SQLITE_SO_ASC; 1833 } 1834 pItem->sortFlags = (u8)iSortOrder; 1835 1836 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1837 pItem->bNulls = 1; 1838 if( iSortOrder!=eNulls ){ 1839 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1840 } 1841 } 1842 } 1843 1844 /* 1845 ** Set the ExprList.a[].zEName element of the most recently added item 1846 ** on the expression list. 1847 ** 1848 ** pList might be NULL following an OOM error. But pName should never be 1849 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1850 ** is set. 1851 */ 1852 void sqlite3ExprListSetName( 1853 Parse *pParse, /* Parsing context */ 1854 ExprList *pList, /* List to which to add the span. */ 1855 Token *pName, /* Name to be added */ 1856 int dequote /* True to cause the name to be dequoted */ 1857 ){ 1858 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1859 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1860 if( pList ){ 1861 struct ExprList_item *pItem; 1862 assert( pList->nExpr>0 ); 1863 pItem = &pList->a[pList->nExpr-1]; 1864 assert( pItem->zEName==0 ); 1865 assert( pItem->eEName==ENAME_NAME ); 1866 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1867 if( dequote ){ 1868 /* If dequote==0, then pName->z does not point to part of a DDL 1869 ** statement handled by the parser. And so no token need be added 1870 ** to the token-map. */ 1871 sqlite3Dequote(pItem->zEName); 1872 if( IN_RENAME_OBJECT ){ 1873 sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName); 1874 } 1875 } 1876 } 1877 } 1878 1879 /* 1880 ** Set the ExprList.a[].zSpan element of the most recently added item 1881 ** on the expression list. 1882 ** 1883 ** pList might be NULL following an OOM error. But pSpan should never be 1884 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1885 ** is set. 1886 */ 1887 void sqlite3ExprListSetSpan( 1888 Parse *pParse, /* Parsing context */ 1889 ExprList *pList, /* List to which to add the span. */ 1890 const char *zStart, /* Start of the span */ 1891 const char *zEnd /* End of the span */ 1892 ){ 1893 sqlite3 *db = pParse->db; 1894 assert( pList!=0 || db->mallocFailed!=0 ); 1895 if( pList ){ 1896 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1897 assert( pList->nExpr>0 ); 1898 if( pItem->zEName==0 ){ 1899 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1900 pItem->eEName = ENAME_SPAN; 1901 } 1902 } 1903 } 1904 1905 /* 1906 ** If the expression list pEList contains more than iLimit elements, 1907 ** leave an error message in pParse. 1908 */ 1909 void sqlite3ExprListCheckLength( 1910 Parse *pParse, 1911 ExprList *pEList, 1912 const char *zObject 1913 ){ 1914 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1915 testcase( pEList && pEList->nExpr==mx ); 1916 testcase( pEList && pEList->nExpr==mx+1 ); 1917 if( pEList && pEList->nExpr>mx ){ 1918 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1919 } 1920 } 1921 1922 /* 1923 ** Delete an entire expression list. 1924 */ 1925 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1926 int i = pList->nExpr; 1927 struct ExprList_item *pItem = pList->a; 1928 assert( pList->nExpr>0 ); 1929 do{ 1930 sqlite3ExprDelete(db, pItem->pExpr); 1931 sqlite3DbFree(db, pItem->zEName); 1932 pItem++; 1933 }while( --i>0 ); 1934 sqlite3DbFreeNN(db, pList); 1935 } 1936 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1937 if( pList ) exprListDeleteNN(db, pList); 1938 } 1939 1940 /* 1941 ** Return the bitwise-OR of all Expr.flags fields in the given 1942 ** ExprList. 1943 */ 1944 u32 sqlite3ExprListFlags(const ExprList *pList){ 1945 int i; 1946 u32 m = 0; 1947 assert( pList!=0 ); 1948 for(i=0; i<pList->nExpr; i++){ 1949 Expr *pExpr = pList->a[i].pExpr; 1950 assert( pExpr!=0 ); 1951 m |= pExpr->flags; 1952 } 1953 return m; 1954 } 1955 1956 /* 1957 ** This is a SELECT-node callback for the expression walker that 1958 ** always "fails". By "fail" in this case, we mean set 1959 ** pWalker->eCode to zero and abort. 1960 ** 1961 ** This callback is used by multiple expression walkers. 1962 */ 1963 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1964 UNUSED_PARAMETER(NotUsed); 1965 pWalker->eCode = 0; 1966 return WRC_Abort; 1967 } 1968 1969 /* 1970 ** Check the input string to see if it is "true" or "false" (in any case). 1971 ** 1972 ** If the string is.... Return 1973 ** "true" EP_IsTrue 1974 ** "false" EP_IsFalse 1975 ** anything else 0 1976 */ 1977 u32 sqlite3IsTrueOrFalse(const char *zIn){ 1978 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 1979 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 1980 return 0; 1981 } 1982 1983 1984 /* 1985 ** If the input expression is an ID with the name "true" or "false" 1986 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1987 ** the conversion happened, and zero if the expression is unaltered. 1988 */ 1989 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1990 u32 v; 1991 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1992 if( !ExprHasProperty(pExpr, EP_Quoted) 1993 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 1994 ){ 1995 pExpr->op = TK_TRUEFALSE; 1996 ExprSetProperty(pExpr, v); 1997 return 1; 1998 } 1999 return 0; 2000 } 2001 2002 /* 2003 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 2004 ** and 0 if it is FALSE. 2005 */ 2006 int sqlite3ExprTruthValue(const Expr *pExpr){ 2007 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 2008 assert( pExpr->op==TK_TRUEFALSE ); 2009 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 2010 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 2011 return pExpr->u.zToken[4]==0; 2012 } 2013 2014 /* 2015 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 2016 ** terms that are always true or false. Return the simplified expression. 2017 ** Or return the original expression if no simplification is possible. 2018 ** 2019 ** Examples: 2020 ** 2021 ** (x<10) AND true => (x<10) 2022 ** (x<10) AND false => false 2023 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 2024 ** (x<10) AND (y=22 OR true) => (x<10) 2025 ** (y=22) OR true => true 2026 */ 2027 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 2028 assert( pExpr!=0 ); 2029 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 2030 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 2031 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 2032 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 2033 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 2034 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 2035 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 2036 } 2037 } 2038 return pExpr; 2039 } 2040 2041 2042 /* 2043 ** These routines are Walker callbacks used to check expressions to 2044 ** see if they are "constant" for some definition of constant. The 2045 ** Walker.eCode value determines the type of "constant" we are looking 2046 ** for. 2047 ** 2048 ** These callback routines are used to implement the following: 2049 ** 2050 ** sqlite3ExprIsConstant() pWalker->eCode==1 2051 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2052 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2053 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2054 ** 2055 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2056 ** is found to not be a constant. 2057 ** 2058 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2059 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2060 ** when parsing an existing schema out of the sqlite_schema table and 4 2061 ** when processing a new CREATE TABLE statement. A bound parameter raises 2062 ** an error for new statements, but is silently converted 2063 ** to NULL for existing schemas. This allows sqlite_schema tables that 2064 ** contain a bound parameter because they were generated by older versions 2065 ** of SQLite to be parsed by newer versions of SQLite without raising a 2066 ** malformed schema error. 2067 */ 2068 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2069 2070 /* If pWalker->eCode is 2 then any term of the expression that comes from 2071 ** the ON or USING clauses of a left join disqualifies the expression 2072 ** from being considered constant. */ 2073 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2074 pWalker->eCode = 0; 2075 return WRC_Abort; 2076 } 2077 2078 switch( pExpr->op ){ 2079 /* Consider functions to be constant if all their arguments are constant 2080 ** and either pWalker->eCode==4 or 5 or the function has the 2081 ** SQLITE_FUNC_CONST flag. */ 2082 case TK_FUNCTION: 2083 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2084 && !ExprHasProperty(pExpr, EP_WinFunc) 2085 ){ 2086 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2087 return WRC_Continue; 2088 }else{ 2089 pWalker->eCode = 0; 2090 return WRC_Abort; 2091 } 2092 case TK_ID: 2093 /* Convert "true" or "false" in a DEFAULT clause into the 2094 ** appropriate TK_TRUEFALSE operator */ 2095 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2096 return WRC_Prune; 2097 } 2098 /* no break */ deliberate_fall_through 2099 case TK_COLUMN: 2100 case TK_AGG_FUNCTION: 2101 case TK_AGG_COLUMN: 2102 testcase( pExpr->op==TK_ID ); 2103 testcase( pExpr->op==TK_COLUMN ); 2104 testcase( pExpr->op==TK_AGG_FUNCTION ); 2105 testcase( pExpr->op==TK_AGG_COLUMN ); 2106 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2107 return WRC_Continue; 2108 } 2109 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2110 return WRC_Continue; 2111 } 2112 /* no break */ deliberate_fall_through 2113 case TK_IF_NULL_ROW: 2114 case TK_REGISTER: 2115 case TK_DOT: 2116 testcase( pExpr->op==TK_REGISTER ); 2117 testcase( pExpr->op==TK_IF_NULL_ROW ); 2118 testcase( pExpr->op==TK_DOT ); 2119 pWalker->eCode = 0; 2120 return WRC_Abort; 2121 case TK_VARIABLE: 2122 if( pWalker->eCode==5 ){ 2123 /* Silently convert bound parameters that appear inside of CREATE 2124 ** statements into a NULL when parsing the CREATE statement text out 2125 ** of the sqlite_schema table */ 2126 pExpr->op = TK_NULL; 2127 }else if( pWalker->eCode==4 ){ 2128 /* A bound parameter in a CREATE statement that originates from 2129 ** sqlite3_prepare() causes an error */ 2130 pWalker->eCode = 0; 2131 return WRC_Abort; 2132 } 2133 /* no break */ deliberate_fall_through 2134 default: 2135 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2136 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2137 return WRC_Continue; 2138 } 2139 } 2140 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2141 Walker w; 2142 w.eCode = initFlag; 2143 w.xExprCallback = exprNodeIsConstant; 2144 w.xSelectCallback = sqlite3SelectWalkFail; 2145 #ifdef SQLITE_DEBUG 2146 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2147 #endif 2148 w.u.iCur = iCur; 2149 sqlite3WalkExpr(&w, p); 2150 return w.eCode; 2151 } 2152 2153 /* 2154 ** Walk an expression tree. Return non-zero if the expression is constant 2155 ** and 0 if it involves variables or function calls. 2156 ** 2157 ** For the purposes of this function, a double-quoted string (ex: "abc") 2158 ** is considered a variable but a single-quoted string (ex: 'abc') is 2159 ** a constant. 2160 */ 2161 int sqlite3ExprIsConstant(Expr *p){ 2162 return exprIsConst(p, 1, 0); 2163 } 2164 2165 /* 2166 ** Walk an expression tree. Return non-zero if 2167 ** 2168 ** (1) the expression is constant, and 2169 ** (2) the expression does originate in the ON or USING clause 2170 ** of a LEFT JOIN, and 2171 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2172 ** operands created by the constant propagation optimization. 2173 ** 2174 ** When this routine returns true, it indicates that the expression 2175 ** can be added to the pParse->pConstExpr list and evaluated once when 2176 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2177 */ 2178 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2179 return exprIsConst(p, 2, 0); 2180 } 2181 2182 /* 2183 ** Walk an expression tree. Return non-zero if the expression is constant 2184 ** for any single row of the table with cursor iCur. In other words, the 2185 ** expression must not refer to any non-deterministic function nor any 2186 ** table other than iCur. 2187 */ 2188 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2189 return exprIsConst(p, 3, iCur); 2190 } 2191 2192 2193 /* 2194 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2195 */ 2196 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2197 ExprList *pGroupBy = pWalker->u.pGroupBy; 2198 int i; 2199 2200 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2201 ** it constant. */ 2202 for(i=0; i<pGroupBy->nExpr; i++){ 2203 Expr *p = pGroupBy->a[i].pExpr; 2204 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2205 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2206 if( sqlite3IsBinary(pColl) ){ 2207 return WRC_Prune; 2208 } 2209 } 2210 } 2211 2212 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2213 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2214 pWalker->eCode = 0; 2215 return WRC_Abort; 2216 } 2217 2218 return exprNodeIsConstant(pWalker, pExpr); 2219 } 2220 2221 /* 2222 ** Walk the expression tree passed as the first argument. Return non-zero 2223 ** if the expression consists entirely of constants or copies of terms 2224 ** in pGroupBy that sort with the BINARY collation sequence. 2225 ** 2226 ** This routine is used to determine if a term of the HAVING clause can 2227 ** be promoted into the WHERE clause. In order for such a promotion to work, 2228 ** the value of the HAVING clause term must be the same for all members of 2229 ** a "group". The requirement that the GROUP BY term must be BINARY 2230 ** assumes that no other collating sequence will have a finer-grained 2231 ** grouping than binary. In other words (A=B COLLATE binary) implies 2232 ** A=B in every other collating sequence. The requirement that the 2233 ** GROUP BY be BINARY is stricter than necessary. It would also work 2234 ** to promote HAVING clauses that use the same alternative collating 2235 ** sequence as the GROUP BY term, but that is much harder to check, 2236 ** alternative collating sequences are uncommon, and this is only an 2237 ** optimization, so we take the easy way out and simply require the 2238 ** GROUP BY to use the BINARY collating sequence. 2239 */ 2240 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2241 Walker w; 2242 w.eCode = 1; 2243 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2244 w.xSelectCallback = 0; 2245 w.u.pGroupBy = pGroupBy; 2246 w.pParse = pParse; 2247 sqlite3WalkExpr(&w, p); 2248 return w.eCode; 2249 } 2250 2251 /* 2252 ** Walk an expression tree for the DEFAULT field of a column definition 2253 ** in a CREATE TABLE statement. Return non-zero if the expression is 2254 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2255 ** the expression is constant or a function call with constant arguments. 2256 ** Return and 0 if there are any variables. 2257 ** 2258 ** isInit is true when parsing from sqlite_schema. isInit is false when 2259 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2260 ** (such as ? or $abc) in the expression are converted into NULL. When 2261 ** isInit is false, parameters raise an error. Parameters should not be 2262 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2263 ** allowed it, so we need to support it when reading sqlite_schema for 2264 ** backwards compatibility. 2265 ** 2266 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2267 ** 2268 ** For the purposes of this function, a double-quoted string (ex: "abc") 2269 ** is considered a variable but a single-quoted string (ex: 'abc') is 2270 ** a constant. 2271 */ 2272 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2273 assert( isInit==0 || isInit==1 ); 2274 return exprIsConst(p, 4+isInit, 0); 2275 } 2276 2277 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2278 /* 2279 ** Walk an expression tree. Return 1 if the expression contains a 2280 ** subquery of some kind. Return 0 if there are no subqueries. 2281 */ 2282 int sqlite3ExprContainsSubquery(Expr *p){ 2283 Walker w; 2284 w.eCode = 1; 2285 w.xExprCallback = sqlite3ExprWalkNoop; 2286 w.xSelectCallback = sqlite3SelectWalkFail; 2287 #ifdef SQLITE_DEBUG 2288 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2289 #endif 2290 sqlite3WalkExpr(&w, p); 2291 return w.eCode==0; 2292 } 2293 #endif 2294 2295 /* 2296 ** If the expression p codes a constant integer that is small enough 2297 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2298 ** in *pValue. If the expression is not an integer or if it is too big 2299 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2300 */ 2301 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2302 int rc = 0; 2303 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2304 2305 /* If an expression is an integer literal that fits in a signed 32-bit 2306 ** integer, then the EP_IntValue flag will have already been set */ 2307 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2308 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2309 2310 if( p->flags & EP_IntValue ){ 2311 *pValue = p->u.iValue; 2312 return 1; 2313 } 2314 switch( p->op ){ 2315 case TK_UPLUS: { 2316 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2317 break; 2318 } 2319 case TK_UMINUS: { 2320 int v; 2321 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2322 assert( v!=(-2147483647-1) ); 2323 *pValue = -v; 2324 rc = 1; 2325 } 2326 break; 2327 } 2328 default: break; 2329 } 2330 return rc; 2331 } 2332 2333 /* 2334 ** Return FALSE if there is no chance that the expression can be NULL. 2335 ** 2336 ** If the expression might be NULL or if the expression is too complex 2337 ** to tell return TRUE. 2338 ** 2339 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2340 ** when we know that a value cannot be NULL. Hence, a false positive 2341 ** (returning TRUE when in fact the expression can never be NULL) might 2342 ** be a small performance hit but is otherwise harmless. On the other 2343 ** hand, a false negative (returning FALSE when the result could be NULL) 2344 ** will likely result in an incorrect answer. So when in doubt, return 2345 ** TRUE. 2346 */ 2347 int sqlite3ExprCanBeNull(const Expr *p){ 2348 u8 op; 2349 assert( p!=0 ); 2350 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2351 p = p->pLeft; 2352 assert( p!=0 ); 2353 } 2354 op = p->op; 2355 if( op==TK_REGISTER ) op = p->op2; 2356 switch( op ){ 2357 case TK_INTEGER: 2358 case TK_STRING: 2359 case TK_FLOAT: 2360 case TK_BLOB: 2361 return 0; 2362 case TK_COLUMN: 2363 return ExprHasProperty(p, EP_CanBeNull) || 2364 p->y.pTab==0 || /* Reference to column of index on expression */ 2365 (p->iColumn>=0 2366 && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ 2367 && p->y.pTab->aCol[p->iColumn].notNull==0); 2368 default: 2369 return 1; 2370 } 2371 } 2372 2373 /* 2374 ** Return TRUE if the given expression is a constant which would be 2375 ** unchanged by OP_Affinity with the affinity given in the second 2376 ** argument. 2377 ** 2378 ** This routine is used to determine if the OP_Affinity operation 2379 ** can be omitted. When in doubt return FALSE. A false negative 2380 ** is harmless. A false positive, however, can result in the wrong 2381 ** answer. 2382 */ 2383 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2384 u8 op; 2385 int unaryMinus = 0; 2386 if( aff==SQLITE_AFF_BLOB ) return 1; 2387 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2388 if( p->op==TK_UMINUS ) unaryMinus = 1; 2389 p = p->pLeft; 2390 } 2391 op = p->op; 2392 if( op==TK_REGISTER ) op = p->op2; 2393 switch( op ){ 2394 case TK_INTEGER: { 2395 return aff>=SQLITE_AFF_NUMERIC; 2396 } 2397 case TK_FLOAT: { 2398 return aff>=SQLITE_AFF_NUMERIC; 2399 } 2400 case TK_STRING: { 2401 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2402 } 2403 case TK_BLOB: { 2404 return !unaryMinus; 2405 } 2406 case TK_COLUMN: { 2407 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2408 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2409 } 2410 default: { 2411 return 0; 2412 } 2413 } 2414 } 2415 2416 /* 2417 ** Return TRUE if the given string is a row-id column name. 2418 */ 2419 int sqlite3IsRowid(const char *z){ 2420 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2421 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2422 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2423 return 0; 2424 } 2425 2426 /* 2427 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2428 ** that can be simplified to a direct table access, then return 2429 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2430 ** or if the SELECT statement needs to be manifested into a transient 2431 ** table, then return NULL. 2432 */ 2433 #ifndef SQLITE_OMIT_SUBQUERY 2434 static Select *isCandidateForInOpt(Expr *pX){ 2435 Select *p; 2436 SrcList *pSrc; 2437 ExprList *pEList; 2438 Table *pTab; 2439 int i; 2440 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2441 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2442 p = pX->x.pSelect; 2443 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2444 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2445 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2446 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2447 return 0; /* No DISTINCT keyword and no aggregate functions */ 2448 } 2449 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2450 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2451 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2452 pSrc = p->pSrc; 2453 assert( pSrc!=0 ); 2454 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2455 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2456 pTab = pSrc->a[0].pTab; 2457 assert( pTab!=0 ); 2458 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2459 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2460 pEList = p->pEList; 2461 assert( pEList!=0 ); 2462 /* All SELECT results must be columns. */ 2463 for(i=0; i<pEList->nExpr; i++){ 2464 Expr *pRes = pEList->a[i].pExpr; 2465 if( pRes->op!=TK_COLUMN ) return 0; 2466 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2467 } 2468 return p; 2469 } 2470 #endif /* SQLITE_OMIT_SUBQUERY */ 2471 2472 #ifndef SQLITE_OMIT_SUBQUERY 2473 /* 2474 ** Generate code that checks the left-most column of index table iCur to see if 2475 ** it contains any NULL entries. Cause the register at regHasNull to be set 2476 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2477 ** to be set to NULL if iCur contains one or more NULL values. 2478 */ 2479 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2480 int addr1; 2481 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2482 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2483 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2484 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2485 VdbeComment((v, "first_entry_in(%d)", iCur)); 2486 sqlite3VdbeJumpHere(v, addr1); 2487 } 2488 #endif 2489 2490 2491 #ifndef SQLITE_OMIT_SUBQUERY 2492 /* 2493 ** The argument is an IN operator with a list (not a subquery) on the 2494 ** right-hand side. Return TRUE if that list is constant. 2495 */ 2496 static int sqlite3InRhsIsConstant(Expr *pIn){ 2497 Expr *pLHS; 2498 int res; 2499 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2500 pLHS = pIn->pLeft; 2501 pIn->pLeft = 0; 2502 res = sqlite3ExprIsConstant(pIn); 2503 pIn->pLeft = pLHS; 2504 return res; 2505 } 2506 #endif 2507 2508 /* 2509 ** This function is used by the implementation of the IN (...) operator. 2510 ** The pX parameter is the expression on the RHS of the IN operator, which 2511 ** might be either a list of expressions or a subquery. 2512 ** 2513 ** The job of this routine is to find or create a b-tree object that can 2514 ** be used either to test for membership in the RHS set or to iterate through 2515 ** all members of the RHS set, skipping duplicates. 2516 ** 2517 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2518 ** and pX->iTable is set to the index of that cursor. 2519 ** 2520 ** The returned value of this function indicates the b-tree type, as follows: 2521 ** 2522 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2523 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2524 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2525 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2526 ** populated epheremal table. 2527 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2528 ** implemented as a sequence of comparisons. 2529 ** 2530 ** An existing b-tree might be used if the RHS expression pX is a simple 2531 ** subquery such as: 2532 ** 2533 ** SELECT <column1>, <column2>... FROM <table> 2534 ** 2535 ** If the RHS of the IN operator is a list or a more complex subquery, then 2536 ** an ephemeral table might need to be generated from the RHS and then 2537 ** pX->iTable made to point to the ephemeral table instead of an 2538 ** existing table. 2539 ** 2540 ** The inFlags parameter must contain, at a minimum, one of the bits 2541 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2542 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2543 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2544 ** be used to loop over all values of the RHS of the IN operator. 2545 ** 2546 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2547 ** through the set members) then the b-tree must not contain duplicates. 2548 ** An epheremal table will be created unless the selected columns are guaranteed 2549 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2550 ** a UNIQUE constraint or index. 2551 ** 2552 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2553 ** for fast set membership tests) then an epheremal table must 2554 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2555 ** index can be found with the specified <columns> as its left-most. 2556 ** 2557 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2558 ** if the RHS of the IN operator is a list (not a subquery) then this 2559 ** routine might decide that creating an ephemeral b-tree for membership 2560 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2561 ** calling routine should implement the IN operator using a sequence 2562 ** of Eq or Ne comparison operations. 2563 ** 2564 ** When the b-tree is being used for membership tests, the calling function 2565 ** might need to know whether or not the RHS side of the IN operator 2566 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2567 ** if there is any chance that the (...) might contain a NULL value at 2568 ** runtime, then a register is allocated and the register number written 2569 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2570 ** NULL value, then *prRhsHasNull is left unchanged. 2571 ** 2572 ** If a register is allocated and its location stored in *prRhsHasNull, then 2573 ** the value in that register will be NULL if the b-tree contains one or more 2574 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2575 ** NULL values. 2576 ** 2577 ** If the aiMap parameter is not NULL, it must point to an array containing 2578 ** one element for each column returned by the SELECT statement on the RHS 2579 ** of the IN(...) operator. The i'th entry of the array is populated with the 2580 ** offset of the index column that matches the i'th column returned by the 2581 ** SELECT. For example, if the expression and selected index are: 2582 ** 2583 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2584 ** CREATE INDEX i1 ON t1(b, c, a); 2585 ** 2586 ** then aiMap[] is populated with {2, 0, 1}. 2587 */ 2588 #ifndef SQLITE_OMIT_SUBQUERY 2589 int sqlite3FindInIndex( 2590 Parse *pParse, /* Parsing context */ 2591 Expr *pX, /* The IN expression */ 2592 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2593 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2594 int *aiMap, /* Mapping from Index fields to RHS fields */ 2595 int *piTab /* OUT: index to use */ 2596 ){ 2597 Select *p; /* SELECT to the right of IN operator */ 2598 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2599 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2600 int mustBeUnique; /* True if RHS must be unique */ 2601 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2602 2603 assert( pX->op==TK_IN ); 2604 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2605 2606 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2607 ** whether or not the SELECT result contains NULL values, check whether 2608 ** or not NULL is actually possible (it may not be, for example, due 2609 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2610 ** set prRhsHasNull to 0 before continuing. */ 2611 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2612 int i; 2613 ExprList *pEList = pX->x.pSelect->pEList; 2614 for(i=0; i<pEList->nExpr; i++){ 2615 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2616 } 2617 if( i==pEList->nExpr ){ 2618 prRhsHasNull = 0; 2619 } 2620 } 2621 2622 /* Check to see if an existing table or index can be used to 2623 ** satisfy the query. This is preferable to generating a new 2624 ** ephemeral table. */ 2625 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2626 sqlite3 *db = pParse->db; /* Database connection */ 2627 Table *pTab; /* Table <table>. */ 2628 int iDb; /* Database idx for pTab */ 2629 ExprList *pEList = p->pEList; 2630 int nExpr = pEList->nExpr; 2631 2632 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2633 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2634 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2635 pTab = p->pSrc->a[0].pTab; 2636 2637 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2638 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2639 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 2640 sqlite3CodeVerifySchema(pParse, iDb); 2641 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2642 2643 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2644 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2645 /* The "x IN (SELECT rowid FROM table)" case */ 2646 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2647 VdbeCoverage(v); 2648 2649 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2650 eType = IN_INDEX_ROWID; 2651 ExplainQueryPlan((pParse, 0, 2652 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2653 sqlite3VdbeJumpHere(v, iAddr); 2654 }else{ 2655 Index *pIdx; /* Iterator variable */ 2656 int affinity_ok = 1; 2657 int i; 2658 2659 /* Check that the affinity that will be used to perform each 2660 ** comparison is the same as the affinity of each column in table 2661 ** on the RHS of the IN operator. If it not, it is not possible to 2662 ** use any index of the RHS table. */ 2663 for(i=0; i<nExpr && affinity_ok; i++){ 2664 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2665 int iCol = pEList->a[i].pExpr->iColumn; 2666 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2667 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2668 testcase( cmpaff==SQLITE_AFF_BLOB ); 2669 testcase( cmpaff==SQLITE_AFF_TEXT ); 2670 switch( cmpaff ){ 2671 case SQLITE_AFF_BLOB: 2672 break; 2673 case SQLITE_AFF_TEXT: 2674 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2675 ** other has no affinity and the other side is TEXT. Hence, 2676 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2677 ** and for the term on the LHS of the IN to have no affinity. */ 2678 assert( idxaff==SQLITE_AFF_TEXT ); 2679 break; 2680 default: 2681 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2682 } 2683 } 2684 2685 if( affinity_ok ){ 2686 /* Search for an existing index that will work for this IN operator */ 2687 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2688 Bitmask colUsed; /* Columns of the index used */ 2689 Bitmask mCol; /* Mask for the current column */ 2690 if( pIdx->nColumn<nExpr ) continue; 2691 if( pIdx->pPartIdxWhere!=0 ) continue; 2692 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2693 ** BITMASK(nExpr) without overflowing */ 2694 testcase( pIdx->nColumn==BMS-2 ); 2695 testcase( pIdx->nColumn==BMS-1 ); 2696 if( pIdx->nColumn>=BMS-1 ) continue; 2697 if( mustBeUnique ){ 2698 if( pIdx->nKeyCol>nExpr 2699 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2700 ){ 2701 continue; /* This index is not unique over the IN RHS columns */ 2702 } 2703 } 2704 2705 colUsed = 0; /* Columns of index used so far */ 2706 for(i=0; i<nExpr; i++){ 2707 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2708 Expr *pRhs = pEList->a[i].pExpr; 2709 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2710 int j; 2711 2712 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2713 for(j=0; j<nExpr; j++){ 2714 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2715 assert( pIdx->azColl[j] ); 2716 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2717 continue; 2718 } 2719 break; 2720 } 2721 if( j==nExpr ) break; 2722 mCol = MASKBIT(j); 2723 if( mCol & colUsed ) break; /* Each column used only once */ 2724 colUsed |= mCol; 2725 if( aiMap ) aiMap[i] = j; 2726 } 2727 2728 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2729 if( colUsed==(MASKBIT(nExpr)-1) ){ 2730 /* If we reach this point, that means the index pIdx is usable */ 2731 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2732 ExplainQueryPlan((pParse, 0, 2733 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2734 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2735 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2736 VdbeComment((v, "%s", pIdx->zName)); 2737 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2738 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2739 2740 if( prRhsHasNull ){ 2741 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2742 i64 mask = (1<<nExpr)-1; 2743 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2744 iTab, 0, 0, (u8*)&mask, P4_INT64); 2745 #endif 2746 *prRhsHasNull = ++pParse->nMem; 2747 if( nExpr==1 ){ 2748 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2749 } 2750 } 2751 sqlite3VdbeJumpHere(v, iAddr); 2752 } 2753 } /* End loop over indexes */ 2754 } /* End if( affinity_ok ) */ 2755 } /* End if not an rowid index */ 2756 } /* End attempt to optimize using an index */ 2757 2758 /* If no preexisting index is available for the IN clause 2759 ** and IN_INDEX_NOOP is an allowed reply 2760 ** and the RHS of the IN operator is a list, not a subquery 2761 ** and the RHS is not constant or has two or fewer terms, 2762 ** then it is not worth creating an ephemeral table to evaluate 2763 ** the IN operator so return IN_INDEX_NOOP. 2764 */ 2765 if( eType==0 2766 && (inFlags & IN_INDEX_NOOP_OK) 2767 && !ExprHasProperty(pX, EP_xIsSelect) 2768 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2769 ){ 2770 eType = IN_INDEX_NOOP; 2771 } 2772 2773 if( eType==0 ){ 2774 /* Could not find an existing table or index to use as the RHS b-tree. 2775 ** We will have to generate an ephemeral table to do the job. 2776 */ 2777 u32 savedNQueryLoop = pParse->nQueryLoop; 2778 int rMayHaveNull = 0; 2779 eType = IN_INDEX_EPH; 2780 if( inFlags & IN_INDEX_LOOP ){ 2781 pParse->nQueryLoop = 0; 2782 }else if( prRhsHasNull ){ 2783 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2784 } 2785 assert( pX->op==TK_IN ); 2786 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2787 if( rMayHaveNull ){ 2788 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2789 } 2790 pParse->nQueryLoop = savedNQueryLoop; 2791 } 2792 2793 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2794 int i, n; 2795 n = sqlite3ExprVectorSize(pX->pLeft); 2796 for(i=0; i<n; i++) aiMap[i] = i; 2797 } 2798 *piTab = iTab; 2799 return eType; 2800 } 2801 #endif 2802 2803 #ifndef SQLITE_OMIT_SUBQUERY 2804 /* 2805 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2806 ** function allocates and returns a nul-terminated string containing 2807 ** the affinities to be used for each column of the comparison. 2808 ** 2809 ** It is the responsibility of the caller to ensure that the returned 2810 ** string is eventually freed using sqlite3DbFree(). 2811 */ 2812 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2813 Expr *pLeft = pExpr->pLeft; 2814 int nVal = sqlite3ExprVectorSize(pLeft); 2815 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2816 char *zRet; 2817 2818 assert( pExpr->op==TK_IN ); 2819 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2820 if( zRet ){ 2821 int i; 2822 for(i=0; i<nVal; i++){ 2823 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2824 char a = sqlite3ExprAffinity(pA); 2825 if( pSelect ){ 2826 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2827 }else{ 2828 zRet[i] = a; 2829 } 2830 } 2831 zRet[nVal] = '\0'; 2832 } 2833 return zRet; 2834 } 2835 #endif 2836 2837 #ifndef SQLITE_OMIT_SUBQUERY 2838 /* 2839 ** Load the Parse object passed as the first argument with an error 2840 ** message of the form: 2841 ** 2842 ** "sub-select returns N columns - expected M" 2843 */ 2844 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2845 if( pParse->nErr==0 ){ 2846 const char *zFmt = "sub-select returns %d columns - expected %d"; 2847 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2848 } 2849 } 2850 #endif 2851 2852 /* 2853 ** Expression pExpr is a vector that has been used in a context where 2854 ** it is not permitted. If pExpr is a sub-select vector, this routine 2855 ** loads the Parse object with a message of the form: 2856 ** 2857 ** "sub-select returns N columns - expected 1" 2858 ** 2859 ** Or, if it is a regular scalar vector: 2860 ** 2861 ** "row value misused" 2862 */ 2863 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2864 #ifndef SQLITE_OMIT_SUBQUERY 2865 if( pExpr->flags & EP_xIsSelect ){ 2866 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2867 }else 2868 #endif 2869 { 2870 sqlite3ErrorMsg(pParse, "row value misused"); 2871 } 2872 } 2873 2874 #ifndef SQLITE_OMIT_SUBQUERY 2875 /* 2876 ** Generate code that will construct an ephemeral table containing all terms 2877 ** in the RHS of an IN operator. The IN operator can be in either of two 2878 ** forms: 2879 ** 2880 ** x IN (4,5,11) -- IN operator with list on right-hand side 2881 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2882 ** 2883 ** The pExpr parameter is the IN operator. The cursor number for the 2884 ** constructed ephermeral table is returned. The first time the ephemeral 2885 ** table is computed, the cursor number is also stored in pExpr->iTable, 2886 ** however the cursor number returned might not be the same, as it might 2887 ** have been duplicated using OP_OpenDup. 2888 ** 2889 ** If the LHS expression ("x" in the examples) is a column value, or 2890 ** the SELECT statement returns a column value, then the affinity of that 2891 ** column is used to build the index keys. If both 'x' and the 2892 ** SELECT... statement are columns, then numeric affinity is used 2893 ** if either column has NUMERIC or INTEGER affinity. If neither 2894 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2895 ** is used. 2896 */ 2897 void sqlite3CodeRhsOfIN( 2898 Parse *pParse, /* Parsing context */ 2899 Expr *pExpr, /* The IN operator */ 2900 int iTab /* Use this cursor number */ 2901 ){ 2902 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2903 int addr; /* Address of OP_OpenEphemeral instruction */ 2904 Expr *pLeft; /* the LHS of the IN operator */ 2905 KeyInfo *pKeyInfo = 0; /* Key information */ 2906 int nVal; /* Size of vector pLeft */ 2907 Vdbe *v; /* The prepared statement under construction */ 2908 2909 v = pParse->pVdbe; 2910 assert( v!=0 ); 2911 2912 /* The evaluation of the IN must be repeated every time it 2913 ** is encountered if any of the following is true: 2914 ** 2915 ** * The right-hand side is a correlated subquery 2916 ** * The right-hand side is an expression list containing variables 2917 ** * We are inside a trigger 2918 ** 2919 ** If all of the above are false, then we can compute the RHS just once 2920 ** and reuse it many names. 2921 */ 2922 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2923 /* Reuse of the RHS is allowed */ 2924 /* If this routine has already been coded, but the previous code 2925 ** might not have been invoked yet, so invoke it now as a subroutine. 2926 */ 2927 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2928 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2929 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2930 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2931 pExpr->x.pSelect->selId)); 2932 } 2933 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2934 pExpr->y.sub.iAddr); 2935 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2936 sqlite3VdbeJumpHere(v, addrOnce); 2937 return; 2938 } 2939 2940 /* Begin coding the subroutine */ 2941 ExprSetProperty(pExpr, EP_Subrtn); 2942 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 2943 pExpr->y.sub.regReturn = ++pParse->nMem; 2944 pExpr->y.sub.iAddr = 2945 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2946 VdbeComment((v, "return address")); 2947 2948 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2949 } 2950 2951 /* Check to see if this is a vector IN operator */ 2952 pLeft = pExpr->pLeft; 2953 nVal = sqlite3ExprVectorSize(pLeft); 2954 2955 /* Construct the ephemeral table that will contain the content of 2956 ** RHS of the IN operator. 2957 */ 2958 pExpr->iTable = iTab; 2959 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2960 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2961 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2962 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2963 }else{ 2964 VdbeComment((v, "RHS of IN operator")); 2965 } 2966 #endif 2967 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2968 2969 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2970 /* Case 1: expr IN (SELECT ...) 2971 ** 2972 ** Generate code to write the results of the select into the temporary 2973 ** table allocated and opened above. 2974 */ 2975 Select *pSelect = pExpr->x.pSelect; 2976 ExprList *pEList = pSelect->pEList; 2977 2978 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2979 addrOnce?"":"CORRELATED ", pSelect->selId 2980 )); 2981 /* If the LHS and RHS of the IN operator do not match, that 2982 ** error will have been caught long before we reach this point. */ 2983 if( ALWAYS(pEList->nExpr==nVal) ){ 2984 SelectDest dest; 2985 int i; 2986 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2987 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2988 pSelect->iLimit = 0; 2989 testcase( pSelect->selFlags & SF_Distinct ); 2990 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2991 if( sqlite3Select(pParse, pSelect, &dest) ){ 2992 sqlite3DbFree(pParse->db, dest.zAffSdst); 2993 sqlite3KeyInfoUnref(pKeyInfo); 2994 return; 2995 } 2996 sqlite3DbFree(pParse->db, dest.zAffSdst); 2997 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2998 assert( pEList!=0 ); 2999 assert( pEList->nExpr>0 ); 3000 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3001 for(i=0; i<nVal; i++){ 3002 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 3003 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 3004 pParse, p, pEList->a[i].pExpr 3005 ); 3006 } 3007 } 3008 }else if( ALWAYS(pExpr->x.pList!=0) ){ 3009 /* Case 2: expr IN (exprlist) 3010 ** 3011 ** For each expression, build an index key from the evaluation and 3012 ** store it in the temporary table. If <expr> is a column, then use 3013 ** that columns affinity when building index keys. If <expr> is not 3014 ** a column, use numeric affinity. 3015 */ 3016 char affinity; /* Affinity of the LHS of the IN */ 3017 int i; 3018 ExprList *pList = pExpr->x.pList; 3019 struct ExprList_item *pItem; 3020 int r1, r2; 3021 affinity = sqlite3ExprAffinity(pLeft); 3022 if( affinity<=SQLITE_AFF_NONE ){ 3023 affinity = SQLITE_AFF_BLOB; 3024 }else if( affinity==SQLITE_AFF_REAL ){ 3025 affinity = SQLITE_AFF_NUMERIC; 3026 } 3027 if( pKeyInfo ){ 3028 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3029 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3030 } 3031 3032 /* Loop through each expression in <exprlist>. */ 3033 r1 = sqlite3GetTempReg(pParse); 3034 r2 = sqlite3GetTempReg(pParse); 3035 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 3036 Expr *pE2 = pItem->pExpr; 3037 3038 /* If the expression is not constant then we will need to 3039 ** disable the test that was generated above that makes sure 3040 ** this code only executes once. Because for a non-constant 3041 ** expression we need to rerun this code each time. 3042 */ 3043 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 3044 sqlite3VdbeChangeToNoop(v, addrOnce); 3045 ExprClearProperty(pExpr, EP_Subrtn); 3046 addrOnce = 0; 3047 } 3048 3049 /* Evaluate the expression and insert it into the temp table */ 3050 sqlite3ExprCode(pParse, pE2, r1); 3051 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3052 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3053 } 3054 sqlite3ReleaseTempReg(pParse, r1); 3055 sqlite3ReleaseTempReg(pParse, r2); 3056 } 3057 if( pKeyInfo ){ 3058 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3059 } 3060 if( addrOnce ){ 3061 sqlite3VdbeJumpHere(v, addrOnce); 3062 /* Subroutine return */ 3063 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3064 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3065 sqlite3ClearTempRegCache(pParse); 3066 } 3067 } 3068 #endif /* SQLITE_OMIT_SUBQUERY */ 3069 3070 /* 3071 ** Generate code for scalar subqueries used as a subquery expression 3072 ** or EXISTS operator: 3073 ** 3074 ** (SELECT a FROM b) -- subquery 3075 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3076 ** 3077 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3078 ** 3079 ** Return the register that holds the result. For a multi-column SELECT, 3080 ** the result is stored in a contiguous array of registers and the 3081 ** return value is the register of the left-most result column. 3082 ** Return 0 if an error occurs. 3083 */ 3084 #ifndef SQLITE_OMIT_SUBQUERY 3085 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3086 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3087 int rReg = 0; /* Register storing resulting */ 3088 Select *pSel; /* SELECT statement to encode */ 3089 SelectDest dest; /* How to deal with SELECT result */ 3090 int nReg; /* Registers to allocate */ 3091 Expr *pLimit; /* New limit expression */ 3092 3093 Vdbe *v = pParse->pVdbe; 3094 assert( v!=0 ); 3095 testcase( pExpr->op==TK_EXISTS ); 3096 testcase( pExpr->op==TK_SELECT ); 3097 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3098 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 3099 pSel = pExpr->x.pSelect; 3100 3101 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3102 ** is encountered if any of the following is true: 3103 ** 3104 ** * The right-hand side is a correlated subquery 3105 ** * The right-hand side is an expression list containing variables 3106 ** * We are inside a trigger 3107 ** 3108 ** If all of the above are false, then we can run this code just once 3109 ** save the results, and reuse the same result on subsequent invocations. 3110 */ 3111 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3112 /* If this routine has already been coded, then invoke it as a 3113 ** subroutine. */ 3114 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3115 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3116 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3117 pExpr->y.sub.iAddr); 3118 return pExpr->iTable; 3119 } 3120 3121 /* Begin coding the subroutine */ 3122 ExprSetProperty(pExpr, EP_Subrtn); 3123 pExpr->y.sub.regReturn = ++pParse->nMem; 3124 pExpr->y.sub.iAddr = 3125 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3126 VdbeComment((v, "return address")); 3127 3128 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3129 } 3130 3131 /* For a SELECT, generate code to put the values for all columns of 3132 ** the first row into an array of registers and return the index of 3133 ** the first register. 3134 ** 3135 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3136 ** into a register and return that register number. 3137 ** 3138 ** In both cases, the query is augmented with "LIMIT 1". Any 3139 ** preexisting limit is discarded in place of the new LIMIT 1. 3140 */ 3141 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3142 addrOnce?"":"CORRELATED ", pSel->selId)); 3143 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3144 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3145 pParse->nMem += nReg; 3146 if( pExpr->op==TK_SELECT ){ 3147 dest.eDest = SRT_Mem; 3148 dest.iSdst = dest.iSDParm; 3149 dest.nSdst = nReg; 3150 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3151 VdbeComment((v, "Init subquery result")); 3152 }else{ 3153 dest.eDest = SRT_Exists; 3154 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3155 VdbeComment((v, "Init EXISTS result")); 3156 } 3157 if( pSel->pLimit ){ 3158 /* The subquery already has a limit. If the pre-existing limit is X 3159 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3160 sqlite3 *db = pParse->db; 3161 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3162 if( pLimit ){ 3163 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3164 pLimit = sqlite3PExpr(pParse, TK_NE, 3165 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3166 } 3167 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3168 pSel->pLimit->pLeft = pLimit; 3169 }else{ 3170 /* If there is no pre-existing limit add a limit of 1 */ 3171 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3172 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3173 } 3174 pSel->iLimit = 0; 3175 if( sqlite3Select(pParse, pSel, &dest) ){ 3176 return 0; 3177 } 3178 pExpr->iTable = rReg = dest.iSDParm; 3179 ExprSetVVAProperty(pExpr, EP_NoReduce); 3180 if( addrOnce ){ 3181 sqlite3VdbeJumpHere(v, addrOnce); 3182 3183 /* Subroutine return */ 3184 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3185 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3186 sqlite3ClearTempRegCache(pParse); 3187 } 3188 3189 return rReg; 3190 } 3191 #endif /* SQLITE_OMIT_SUBQUERY */ 3192 3193 #ifndef SQLITE_OMIT_SUBQUERY 3194 /* 3195 ** Expr pIn is an IN(...) expression. This function checks that the 3196 ** sub-select on the RHS of the IN() operator has the same number of 3197 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3198 ** a sub-query, that the LHS is a vector of size 1. 3199 */ 3200 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3201 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3202 if( (pIn->flags & EP_xIsSelect)!=0 && !pParse->db->mallocFailed ){ 3203 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3204 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3205 return 1; 3206 } 3207 }else if( nVector!=1 ){ 3208 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3209 return 1; 3210 } 3211 return 0; 3212 } 3213 #endif 3214 3215 #ifndef SQLITE_OMIT_SUBQUERY 3216 /* 3217 ** Generate code for an IN expression. 3218 ** 3219 ** x IN (SELECT ...) 3220 ** x IN (value, value, ...) 3221 ** 3222 ** The left-hand side (LHS) is a scalar or vector expression. The 3223 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3224 ** subquery. If the RHS is a subquery, the number of result columns must 3225 ** match the number of columns in the vector on the LHS. If the RHS is 3226 ** a list of values, the LHS must be a scalar. 3227 ** 3228 ** The IN operator is true if the LHS value is contained within the RHS. 3229 ** The result is false if the LHS is definitely not in the RHS. The 3230 ** result is NULL if the presence of the LHS in the RHS cannot be 3231 ** determined due to NULLs. 3232 ** 3233 ** This routine generates code that jumps to destIfFalse if the LHS is not 3234 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3235 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3236 ** within the RHS then fall through. 3237 ** 3238 ** See the separate in-operator.md documentation file in the canonical 3239 ** SQLite source tree for additional information. 3240 */ 3241 static void sqlite3ExprCodeIN( 3242 Parse *pParse, /* Parsing and code generating context */ 3243 Expr *pExpr, /* The IN expression */ 3244 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3245 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3246 ){ 3247 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3248 int eType; /* Type of the RHS */ 3249 int rLhs; /* Register(s) holding the LHS values */ 3250 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3251 Vdbe *v; /* Statement under construction */ 3252 int *aiMap = 0; /* Map from vector field to index column */ 3253 char *zAff = 0; /* Affinity string for comparisons */ 3254 int nVector; /* Size of vectors for this IN operator */ 3255 int iDummy; /* Dummy parameter to exprCodeVector() */ 3256 Expr *pLeft; /* The LHS of the IN operator */ 3257 int i; /* loop counter */ 3258 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3259 int destStep6 = 0; /* Start of code for Step 6 */ 3260 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3261 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3262 int addrTop; /* Top of the step-6 loop */ 3263 int iTab = 0; /* Index to use */ 3264 u8 okConstFactor = pParse->okConstFactor; 3265 3266 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3267 pLeft = pExpr->pLeft; 3268 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3269 zAff = exprINAffinity(pParse, pExpr); 3270 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3271 aiMap = (int*)sqlite3DbMallocZero( 3272 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3273 ); 3274 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3275 3276 /* Attempt to compute the RHS. After this step, if anything other than 3277 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3278 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3279 ** the RHS has not yet been coded. */ 3280 v = pParse->pVdbe; 3281 assert( v!=0 ); /* OOM detected prior to this routine */ 3282 VdbeNoopComment((v, "begin IN expr")); 3283 eType = sqlite3FindInIndex(pParse, pExpr, 3284 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3285 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3286 aiMap, &iTab); 3287 3288 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3289 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3290 ); 3291 #ifdef SQLITE_DEBUG 3292 /* Confirm that aiMap[] contains nVector integer values between 0 and 3293 ** nVector-1. */ 3294 for(i=0; i<nVector; i++){ 3295 int j, cnt; 3296 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3297 assert( cnt==1 ); 3298 } 3299 #endif 3300 3301 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3302 ** vector, then it is stored in an array of nVector registers starting 3303 ** at r1. 3304 ** 3305 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3306 ** so that the fields are in the same order as an existing index. The 3307 ** aiMap[] array contains a mapping from the original LHS field order to 3308 ** the field order that matches the RHS index. 3309 ** 3310 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3311 ** even if it is constant, as OP_Affinity may be used on the register 3312 ** by code generated below. */ 3313 assert( pParse->okConstFactor==okConstFactor ); 3314 pParse->okConstFactor = 0; 3315 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3316 pParse->okConstFactor = okConstFactor; 3317 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3318 if( i==nVector ){ 3319 /* LHS fields are not reordered */ 3320 rLhs = rLhsOrig; 3321 }else{ 3322 /* Need to reorder the LHS fields according to aiMap */ 3323 rLhs = sqlite3GetTempRange(pParse, nVector); 3324 for(i=0; i<nVector; i++){ 3325 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3326 } 3327 } 3328 3329 /* If sqlite3FindInIndex() did not find or create an index that is 3330 ** suitable for evaluating the IN operator, then evaluate using a 3331 ** sequence of comparisons. 3332 ** 3333 ** This is step (1) in the in-operator.md optimized algorithm. 3334 */ 3335 if( eType==IN_INDEX_NOOP ){ 3336 ExprList *pList = pExpr->x.pList; 3337 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3338 int labelOk = sqlite3VdbeMakeLabel(pParse); 3339 int r2, regToFree; 3340 int regCkNull = 0; 3341 int ii; 3342 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3343 if( destIfNull!=destIfFalse ){ 3344 regCkNull = sqlite3GetTempReg(pParse); 3345 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3346 } 3347 for(ii=0; ii<pList->nExpr; ii++){ 3348 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3349 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3350 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3351 } 3352 sqlite3ReleaseTempReg(pParse, regToFree); 3353 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3354 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3355 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3356 (void*)pColl, P4_COLLSEQ); 3357 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3358 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3359 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3360 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3361 sqlite3VdbeChangeP5(v, zAff[0]); 3362 }else{ 3363 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3364 assert( destIfNull==destIfFalse ); 3365 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3366 (void*)pColl, P4_COLLSEQ); 3367 VdbeCoverageIf(v, op==OP_Ne); 3368 VdbeCoverageIf(v, op==OP_IsNull); 3369 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3370 } 3371 } 3372 if( regCkNull ){ 3373 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3374 sqlite3VdbeGoto(v, destIfFalse); 3375 } 3376 sqlite3VdbeResolveLabel(v, labelOk); 3377 sqlite3ReleaseTempReg(pParse, regCkNull); 3378 goto sqlite3ExprCodeIN_finished; 3379 } 3380 3381 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3382 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3383 ** We will then skip the binary search of the RHS. 3384 */ 3385 if( destIfNull==destIfFalse ){ 3386 destStep2 = destIfFalse; 3387 }else{ 3388 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3389 } 3390 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3391 for(i=0; i<nVector; i++){ 3392 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3393 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3394 if( sqlite3ExprCanBeNull(p) ){ 3395 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3396 VdbeCoverage(v); 3397 } 3398 } 3399 3400 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3401 ** of the RHS using the LHS as a probe. If found, the result is 3402 ** true. 3403 */ 3404 if( eType==IN_INDEX_ROWID ){ 3405 /* In this case, the RHS is the ROWID of table b-tree and so we also 3406 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3407 ** into a single opcode. */ 3408 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3409 VdbeCoverage(v); 3410 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3411 }else{ 3412 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3413 if( destIfFalse==destIfNull ){ 3414 /* Combine Step 3 and Step 5 into a single opcode */ 3415 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3416 rLhs, nVector); VdbeCoverage(v); 3417 goto sqlite3ExprCodeIN_finished; 3418 } 3419 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3420 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3421 rLhs, nVector); VdbeCoverage(v); 3422 } 3423 3424 /* Step 4. If the RHS is known to be non-NULL and we did not find 3425 ** an match on the search above, then the result must be FALSE. 3426 */ 3427 if( rRhsHasNull && nVector==1 ){ 3428 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3429 VdbeCoverage(v); 3430 } 3431 3432 /* Step 5. If we do not care about the difference between NULL and 3433 ** FALSE, then just return false. 3434 */ 3435 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3436 3437 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3438 ** If any comparison is NULL, then the result is NULL. If all 3439 ** comparisons are FALSE then the final result is FALSE. 3440 ** 3441 ** For a scalar LHS, it is sufficient to check just the first row 3442 ** of the RHS. 3443 */ 3444 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3445 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3446 VdbeCoverage(v); 3447 if( nVector>1 ){ 3448 destNotNull = sqlite3VdbeMakeLabel(pParse); 3449 }else{ 3450 /* For nVector==1, combine steps 6 and 7 by immediately returning 3451 ** FALSE if the first comparison is not NULL */ 3452 destNotNull = destIfFalse; 3453 } 3454 for(i=0; i<nVector; i++){ 3455 Expr *p; 3456 CollSeq *pColl; 3457 int r3 = sqlite3GetTempReg(pParse); 3458 p = sqlite3VectorFieldSubexpr(pLeft, i); 3459 pColl = sqlite3ExprCollSeq(pParse, p); 3460 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3461 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3462 (void*)pColl, P4_COLLSEQ); 3463 VdbeCoverage(v); 3464 sqlite3ReleaseTempReg(pParse, r3); 3465 } 3466 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3467 if( nVector>1 ){ 3468 sqlite3VdbeResolveLabel(v, destNotNull); 3469 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3470 VdbeCoverage(v); 3471 3472 /* Step 7: If we reach this point, we know that the result must 3473 ** be false. */ 3474 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3475 } 3476 3477 /* Jumps here in order to return true. */ 3478 sqlite3VdbeJumpHere(v, addrTruthOp); 3479 3480 sqlite3ExprCodeIN_finished: 3481 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3482 VdbeComment((v, "end IN expr")); 3483 sqlite3ExprCodeIN_oom_error: 3484 sqlite3DbFree(pParse->db, aiMap); 3485 sqlite3DbFree(pParse->db, zAff); 3486 } 3487 #endif /* SQLITE_OMIT_SUBQUERY */ 3488 3489 #ifndef SQLITE_OMIT_FLOATING_POINT 3490 /* 3491 ** Generate an instruction that will put the floating point 3492 ** value described by z[0..n-1] into register iMem. 3493 ** 3494 ** The z[] string will probably not be zero-terminated. But the 3495 ** z[n] character is guaranteed to be something that does not look 3496 ** like the continuation of the number. 3497 */ 3498 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3499 if( ALWAYS(z!=0) ){ 3500 double value; 3501 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3502 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3503 if( negateFlag ) value = -value; 3504 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3505 } 3506 } 3507 #endif 3508 3509 3510 /* 3511 ** Generate an instruction that will put the integer describe by 3512 ** text z[0..n-1] into register iMem. 3513 ** 3514 ** Expr.u.zToken is always UTF8 and zero-terminated. 3515 */ 3516 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3517 Vdbe *v = pParse->pVdbe; 3518 if( pExpr->flags & EP_IntValue ){ 3519 int i = pExpr->u.iValue; 3520 assert( i>=0 ); 3521 if( negFlag ) i = -i; 3522 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3523 }else{ 3524 int c; 3525 i64 value; 3526 const char *z = pExpr->u.zToken; 3527 assert( z!=0 ); 3528 c = sqlite3DecOrHexToI64(z, &value); 3529 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3530 #ifdef SQLITE_OMIT_FLOATING_POINT 3531 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3532 #else 3533 #ifndef SQLITE_OMIT_HEX_INTEGER 3534 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3535 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3536 }else 3537 #endif 3538 { 3539 codeReal(v, z, negFlag, iMem); 3540 } 3541 #endif 3542 }else{ 3543 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3544 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3545 } 3546 } 3547 } 3548 3549 3550 /* Generate code that will load into register regOut a value that is 3551 ** appropriate for the iIdxCol-th column of index pIdx. 3552 */ 3553 void sqlite3ExprCodeLoadIndexColumn( 3554 Parse *pParse, /* The parsing context */ 3555 Index *pIdx, /* The index whose column is to be loaded */ 3556 int iTabCur, /* Cursor pointing to a table row */ 3557 int iIdxCol, /* The column of the index to be loaded */ 3558 int regOut /* Store the index column value in this register */ 3559 ){ 3560 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3561 if( iTabCol==XN_EXPR ){ 3562 assert( pIdx->aColExpr ); 3563 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3564 pParse->iSelfTab = iTabCur + 1; 3565 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3566 pParse->iSelfTab = 0; 3567 }else{ 3568 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3569 iTabCol, regOut); 3570 } 3571 } 3572 3573 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3574 /* 3575 ** Generate code that will compute the value of generated column pCol 3576 ** and store the result in register regOut 3577 */ 3578 void sqlite3ExprCodeGeneratedColumn( 3579 Parse *pParse, 3580 Column *pCol, 3581 int regOut 3582 ){ 3583 int iAddr; 3584 Vdbe *v = pParse->pVdbe; 3585 assert( v!=0 ); 3586 assert( pParse->iSelfTab!=0 ); 3587 if( pParse->iSelfTab>0 ){ 3588 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3589 }else{ 3590 iAddr = 0; 3591 } 3592 sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut); 3593 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3594 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3595 } 3596 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3597 } 3598 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3599 3600 /* 3601 ** Generate code to extract the value of the iCol-th column of a table. 3602 */ 3603 void sqlite3ExprCodeGetColumnOfTable( 3604 Vdbe *v, /* Parsing context */ 3605 Table *pTab, /* The table containing the value */ 3606 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3607 int iCol, /* Index of the column to extract */ 3608 int regOut /* Extract the value into this register */ 3609 ){ 3610 Column *pCol; 3611 assert( v!=0 ); 3612 if( pTab==0 ){ 3613 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3614 return; 3615 } 3616 if( iCol<0 || iCol==pTab->iPKey ){ 3617 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3618 }else{ 3619 int op; 3620 int x; 3621 if( IsVirtual(pTab) ){ 3622 op = OP_VColumn; 3623 x = iCol; 3624 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3625 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3626 Parse *pParse = sqlite3VdbeParser(v); 3627 if( pCol->colFlags & COLFLAG_BUSY ){ 3628 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName); 3629 }else{ 3630 int savedSelfTab = pParse->iSelfTab; 3631 pCol->colFlags |= COLFLAG_BUSY; 3632 pParse->iSelfTab = iTabCur+1; 3633 sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut); 3634 pParse->iSelfTab = savedSelfTab; 3635 pCol->colFlags &= ~COLFLAG_BUSY; 3636 } 3637 return; 3638 #endif 3639 }else if( !HasRowid(pTab) ){ 3640 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3641 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3642 op = OP_Column; 3643 }else{ 3644 x = sqlite3TableColumnToStorage(pTab,iCol); 3645 testcase( x!=iCol ); 3646 op = OP_Column; 3647 } 3648 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3649 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3650 } 3651 } 3652 3653 /* 3654 ** Generate code that will extract the iColumn-th column from 3655 ** table pTab and store the column value in register iReg. 3656 ** 3657 ** There must be an open cursor to pTab in iTable when this routine 3658 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3659 */ 3660 int sqlite3ExprCodeGetColumn( 3661 Parse *pParse, /* Parsing and code generating context */ 3662 Table *pTab, /* Description of the table we are reading from */ 3663 int iColumn, /* Index of the table column */ 3664 int iTable, /* The cursor pointing to the table */ 3665 int iReg, /* Store results here */ 3666 u8 p5 /* P5 value for OP_Column + FLAGS */ 3667 ){ 3668 assert( pParse->pVdbe!=0 ); 3669 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3670 if( p5 ){ 3671 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3672 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3673 } 3674 return iReg; 3675 } 3676 3677 /* 3678 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3679 ** over to iTo..iTo+nReg-1. 3680 */ 3681 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3682 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3683 } 3684 3685 /* 3686 ** Convert a scalar expression node to a TK_REGISTER referencing 3687 ** register iReg. The caller must ensure that iReg already contains 3688 ** the correct value for the expression. 3689 */ 3690 static void exprToRegister(Expr *pExpr, int iReg){ 3691 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3692 if( NEVER(p==0) ) return; 3693 p->op2 = p->op; 3694 p->op = TK_REGISTER; 3695 p->iTable = iReg; 3696 ExprClearProperty(p, EP_Skip); 3697 } 3698 3699 /* 3700 ** Evaluate an expression (either a vector or a scalar expression) and store 3701 ** the result in continguous temporary registers. Return the index of 3702 ** the first register used to store the result. 3703 ** 3704 ** If the returned result register is a temporary scalar, then also write 3705 ** that register number into *piFreeable. If the returned result register 3706 ** is not a temporary or if the expression is a vector set *piFreeable 3707 ** to 0. 3708 */ 3709 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3710 int iResult; 3711 int nResult = sqlite3ExprVectorSize(p); 3712 if( nResult==1 ){ 3713 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3714 }else{ 3715 *piFreeable = 0; 3716 if( p->op==TK_SELECT ){ 3717 #if SQLITE_OMIT_SUBQUERY 3718 iResult = 0; 3719 #else 3720 iResult = sqlite3CodeSubselect(pParse, p); 3721 #endif 3722 }else{ 3723 int i; 3724 iResult = pParse->nMem+1; 3725 pParse->nMem += nResult; 3726 for(i=0; i<nResult; i++){ 3727 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3728 } 3729 } 3730 } 3731 return iResult; 3732 } 3733 3734 /* 3735 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3736 ** so that a subsequent copy will not be merged into this one. 3737 */ 3738 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3739 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3740 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3741 } 3742 } 3743 3744 /* 3745 ** Generate code to implement special SQL functions that are implemented 3746 ** in-line rather than by using the usual callbacks. 3747 */ 3748 static int exprCodeInlineFunction( 3749 Parse *pParse, /* Parsing context */ 3750 ExprList *pFarg, /* List of function arguments */ 3751 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3752 int target /* Store function result in this register */ 3753 ){ 3754 int nFarg; 3755 Vdbe *v = pParse->pVdbe; 3756 assert( v!=0 ); 3757 assert( pFarg!=0 ); 3758 nFarg = pFarg->nExpr; 3759 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3760 switch( iFuncId ){ 3761 case INLINEFUNC_coalesce: { 3762 /* Attempt a direct implementation of the built-in COALESCE() and 3763 ** IFNULL() functions. This avoids unnecessary evaluation of 3764 ** arguments past the first non-NULL argument. 3765 */ 3766 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3767 int i; 3768 assert( nFarg>=2 ); 3769 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3770 for(i=1; i<nFarg; i++){ 3771 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3772 VdbeCoverage(v); 3773 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3774 } 3775 setDoNotMergeFlagOnCopy(v); 3776 sqlite3VdbeResolveLabel(v, endCoalesce); 3777 break; 3778 } 3779 case INLINEFUNC_iif: { 3780 Expr caseExpr; 3781 memset(&caseExpr, 0, sizeof(caseExpr)); 3782 caseExpr.op = TK_CASE; 3783 caseExpr.x.pList = pFarg; 3784 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3785 } 3786 3787 default: { 3788 /* The UNLIKELY() function is a no-op. The result is the value 3789 ** of the first argument. 3790 */ 3791 assert( nFarg==1 || nFarg==2 ); 3792 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3793 break; 3794 } 3795 3796 /*********************************************************************** 3797 ** Test-only SQL functions that are only usable if enabled 3798 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3799 */ 3800 case INLINEFUNC_expr_compare: { 3801 /* Compare two expressions using sqlite3ExprCompare() */ 3802 assert( nFarg==2 ); 3803 sqlite3VdbeAddOp2(v, OP_Integer, 3804 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3805 target); 3806 break; 3807 } 3808 3809 case INLINEFUNC_expr_implies_expr: { 3810 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3811 assert( nFarg==2 ); 3812 sqlite3VdbeAddOp2(v, OP_Integer, 3813 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3814 target); 3815 break; 3816 } 3817 3818 case INLINEFUNC_implies_nonnull_row: { 3819 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3820 Expr *pA1; 3821 assert( nFarg==2 ); 3822 pA1 = pFarg->a[1].pExpr; 3823 if( pA1->op==TK_COLUMN ){ 3824 sqlite3VdbeAddOp2(v, OP_Integer, 3825 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3826 target); 3827 }else{ 3828 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3829 } 3830 break; 3831 } 3832 3833 #ifdef SQLITE_DEBUG 3834 case INLINEFUNC_affinity: { 3835 /* The AFFINITY() function evaluates to a string that describes 3836 ** the type affinity of the argument. This is used for testing of 3837 ** the SQLite type logic. 3838 */ 3839 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3840 char aff; 3841 assert( nFarg==1 ); 3842 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3843 sqlite3VdbeLoadString(v, target, 3844 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3845 break; 3846 } 3847 #endif 3848 } 3849 return target; 3850 } 3851 3852 3853 /* 3854 ** Generate code into the current Vdbe to evaluate the given 3855 ** expression. Attempt to store the results in register "target". 3856 ** Return the register where results are stored. 3857 ** 3858 ** With this routine, there is no guarantee that results will 3859 ** be stored in target. The result might be stored in some other 3860 ** register if it is convenient to do so. The calling function 3861 ** must check the return code and move the results to the desired 3862 ** register. 3863 */ 3864 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3865 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3866 int op; /* The opcode being coded */ 3867 int inReg = target; /* Results stored in register inReg */ 3868 int regFree1 = 0; /* If non-zero free this temporary register */ 3869 int regFree2 = 0; /* If non-zero free this temporary register */ 3870 int r1, r2; /* Various register numbers */ 3871 Expr tempX; /* Temporary expression node */ 3872 int p5 = 0; 3873 3874 assert( target>0 && target<=pParse->nMem ); 3875 assert( v!=0 ); 3876 3877 expr_code_doover: 3878 if( pExpr==0 ){ 3879 op = TK_NULL; 3880 }else{ 3881 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3882 op = pExpr->op; 3883 } 3884 switch( op ){ 3885 case TK_AGG_COLUMN: { 3886 AggInfo *pAggInfo = pExpr->pAggInfo; 3887 struct AggInfo_col *pCol; 3888 assert( pAggInfo!=0 ); 3889 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 3890 pCol = &pAggInfo->aCol[pExpr->iAgg]; 3891 if( !pAggInfo->directMode ){ 3892 assert( pCol->iMem>0 ); 3893 return pCol->iMem; 3894 }else if( pAggInfo->useSortingIdx ){ 3895 Table *pTab = pCol->pTab; 3896 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3897 pCol->iSorterColumn, target); 3898 if( pCol->iColumn<0 ){ 3899 VdbeComment((v,"%s.rowid",pTab->zName)); 3900 }else{ 3901 VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName)); 3902 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 3903 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3904 } 3905 } 3906 return target; 3907 } 3908 /* Otherwise, fall thru into the TK_COLUMN case */ 3909 /* no break */ deliberate_fall_through 3910 } 3911 case TK_COLUMN: { 3912 int iTab = pExpr->iTable; 3913 int iReg; 3914 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3915 /* This COLUMN expression is really a constant due to WHERE clause 3916 ** constraints, and that constant is coded by the pExpr->pLeft 3917 ** expresssion. However, make sure the constant has the correct 3918 ** datatype by applying the Affinity of the table column to the 3919 ** constant. 3920 */ 3921 int aff; 3922 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3923 if( pExpr->y.pTab ){ 3924 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3925 }else{ 3926 aff = pExpr->affExpr; 3927 } 3928 if( aff>SQLITE_AFF_BLOB ){ 3929 static const char zAff[] = "B\000C\000D\000E"; 3930 assert( SQLITE_AFF_BLOB=='A' ); 3931 assert( SQLITE_AFF_TEXT=='B' ); 3932 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3933 &zAff[(aff-'B')*2], P4_STATIC); 3934 } 3935 return iReg; 3936 } 3937 if( iTab<0 ){ 3938 if( pParse->iSelfTab<0 ){ 3939 /* Other columns in the same row for CHECK constraints or 3940 ** generated columns or for inserting into partial index. 3941 ** The row is unpacked into registers beginning at 3942 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 3943 ** immediately prior to the first column. 3944 */ 3945 Column *pCol; 3946 Table *pTab = pExpr->y.pTab; 3947 int iSrc; 3948 int iCol = pExpr->iColumn; 3949 assert( pTab!=0 ); 3950 assert( iCol>=XN_ROWID ); 3951 assert( iCol<pTab->nCol ); 3952 if( iCol<0 ){ 3953 return -1-pParse->iSelfTab; 3954 } 3955 pCol = pTab->aCol + iCol; 3956 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 3957 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 3958 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3959 if( pCol->colFlags & COLFLAG_GENERATED ){ 3960 if( pCol->colFlags & COLFLAG_BUSY ){ 3961 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3962 pCol->zName); 3963 return 0; 3964 } 3965 pCol->colFlags |= COLFLAG_BUSY; 3966 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 3967 sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc); 3968 } 3969 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 3970 return iSrc; 3971 }else 3972 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3973 if( pCol->affinity==SQLITE_AFF_REAL ){ 3974 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 3975 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3976 return target; 3977 }else{ 3978 return iSrc; 3979 } 3980 }else{ 3981 /* Coding an expression that is part of an index where column names 3982 ** in the index refer to the table to which the index belongs */ 3983 iTab = pParse->iSelfTab - 1; 3984 } 3985 } 3986 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3987 pExpr->iColumn, iTab, target, 3988 pExpr->op2); 3989 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 3990 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 3991 } 3992 return iReg; 3993 } 3994 case TK_INTEGER: { 3995 codeInteger(pParse, pExpr, 0, target); 3996 return target; 3997 } 3998 case TK_TRUEFALSE: { 3999 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 4000 return target; 4001 } 4002 #ifndef SQLITE_OMIT_FLOATING_POINT 4003 case TK_FLOAT: { 4004 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4005 codeReal(v, pExpr->u.zToken, 0, target); 4006 return target; 4007 } 4008 #endif 4009 case TK_STRING: { 4010 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4011 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 4012 return target; 4013 } 4014 default: { 4015 /* Make NULL the default case so that if a bug causes an illegal 4016 ** Expr node to be passed into this function, it will be handled 4017 ** sanely and not crash. But keep the assert() to bring the problem 4018 ** to the attention of the developers. */ 4019 assert( op==TK_NULL || pParse->db->mallocFailed ); 4020 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4021 return target; 4022 } 4023 #ifndef SQLITE_OMIT_BLOB_LITERAL 4024 case TK_BLOB: { 4025 int n; 4026 const char *z; 4027 char *zBlob; 4028 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4029 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 4030 assert( pExpr->u.zToken[1]=='\'' ); 4031 z = &pExpr->u.zToken[2]; 4032 n = sqlite3Strlen30(z) - 1; 4033 assert( z[n]=='\'' ); 4034 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 4035 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 4036 return target; 4037 } 4038 #endif 4039 case TK_VARIABLE: { 4040 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4041 assert( pExpr->u.zToken!=0 ); 4042 assert( pExpr->u.zToken[0]!=0 ); 4043 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 4044 if( pExpr->u.zToken[1]!=0 ){ 4045 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 4046 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 4047 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 4048 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 4049 } 4050 return target; 4051 } 4052 case TK_REGISTER: { 4053 return pExpr->iTable; 4054 } 4055 #ifndef SQLITE_OMIT_CAST 4056 case TK_CAST: { 4057 /* Expressions of the form: CAST(pLeft AS token) */ 4058 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4059 if( inReg!=target ){ 4060 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4061 inReg = target; 4062 } 4063 sqlite3VdbeAddOp2(v, OP_Cast, target, 4064 sqlite3AffinityType(pExpr->u.zToken, 0)); 4065 return inReg; 4066 } 4067 #endif /* SQLITE_OMIT_CAST */ 4068 case TK_IS: 4069 case TK_ISNOT: 4070 op = (op==TK_IS) ? TK_EQ : TK_NE; 4071 p5 = SQLITE_NULLEQ; 4072 /* fall-through */ 4073 case TK_LT: 4074 case TK_LE: 4075 case TK_GT: 4076 case TK_GE: 4077 case TK_NE: 4078 case TK_EQ: { 4079 Expr *pLeft = pExpr->pLeft; 4080 if( sqlite3ExprIsVector(pLeft) ){ 4081 codeVectorCompare(pParse, pExpr, target, op, p5); 4082 }else{ 4083 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4084 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4085 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 4086 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 4087 sqlite3VdbeCurrentAddr(v)+2, p5, 4088 ExprHasProperty(pExpr,EP_Commuted)); 4089 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4090 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4091 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4092 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4093 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4094 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4095 if( p5==SQLITE_NULLEQ ){ 4096 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 4097 }else{ 4098 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 4099 } 4100 testcase( regFree1==0 ); 4101 testcase( regFree2==0 ); 4102 } 4103 break; 4104 } 4105 case TK_AND: 4106 case TK_OR: 4107 case TK_PLUS: 4108 case TK_STAR: 4109 case TK_MINUS: 4110 case TK_REM: 4111 case TK_BITAND: 4112 case TK_BITOR: 4113 case TK_SLASH: 4114 case TK_LSHIFT: 4115 case TK_RSHIFT: 4116 case TK_CONCAT: { 4117 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4118 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4119 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4120 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4121 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4122 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4123 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4124 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4125 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4126 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4127 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4128 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4129 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4130 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4131 testcase( regFree1==0 ); 4132 testcase( regFree2==0 ); 4133 break; 4134 } 4135 case TK_UMINUS: { 4136 Expr *pLeft = pExpr->pLeft; 4137 assert( pLeft ); 4138 if( pLeft->op==TK_INTEGER ){ 4139 codeInteger(pParse, pLeft, 1, target); 4140 return target; 4141 #ifndef SQLITE_OMIT_FLOATING_POINT 4142 }else if( pLeft->op==TK_FLOAT ){ 4143 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4144 codeReal(v, pLeft->u.zToken, 1, target); 4145 return target; 4146 #endif 4147 }else{ 4148 tempX.op = TK_INTEGER; 4149 tempX.flags = EP_IntValue|EP_TokenOnly; 4150 tempX.u.iValue = 0; 4151 ExprClearVVAProperties(&tempX); 4152 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4153 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4154 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4155 testcase( regFree2==0 ); 4156 } 4157 break; 4158 } 4159 case TK_BITNOT: 4160 case TK_NOT: { 4161 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4162 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4163 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4164 testcase( regFree1==0 ); 4165 sqlite3VdbeAddOp2(v, op, r1, inReg); 4166 break; 4167 } 4168 case TK_TRUTH: { 4169 int isTrue; /* IS TRUE or IS NOT TRUE */ 4170 int bNormal; /* IS TRUE or IS FALSE */ 4171 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4172 testcase( regFree1==0 ); 4173 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4174 bNormal = pExpr->op2==TK_IS; 4175 testcase( isTrue && bNormal); 4176 testcase( !isTrue && bNormal); 4177 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4178 break; 4179 } 4180 case TK_ISNULL: 4181 case TK_NOTNULL: { 4182 int addr; 4183 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4184 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4185 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4186 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4187 testcase( regFree1==0 ); 4188 addr = sqlite3VdbeAddOp1(v, op, r1); 4189 VdbeCoverageIf(v, op==TK_ISNULL); 4190 VdbeCoverageIf(v, op==TK_NOTNULL); 4191 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4192 sqlite3VdbeJumpHere(v, addr); 4193 break; 4194 } 4195 case TK_AGG_FUNCTION: { 4196 AggInfo *pInfo = pExpr->pAggInfo; 4197 if( pInfo==0 4198 || NEVER(pExpr->iAgg<0) 4199 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4200 ){ 4201 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4202 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 4203 }else{ 4204 return pInfo->aFunc[pExpr->iAgg].iMem; 4205 } 4206 break; 4207 } 4208 case TK_FUNCTION: { 4209 ExprList *pFarg; /* List of function arguments */ 4210 int nFarg; /* Number of function arguments */ 4211 FuncDef *pDef; /* The function definition object */ 4212 const char *zId; /* The function name */ 4213 u32 constMask = 0; /* Mask of function arguments that are constant */ 4214 int i; /* Loop counter */ 4215 sqlite3 *db = pParse->db; /* The database connection */ 4216 u8 enc = ENC(db); /* The text encoding used by this database */ 4217 CollSeq *pColl = 0; /* A collating sequence */ 4218 4219 #ifndef SQLITE_OMIT_WINDOWFUNC 4220 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4221 return pExpr->y.pWin->regResult; 4222 } 4223 #endif 4224 4225 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4226 /* SQL functions can be expensive. So try to avoid running them 4227 ** multiple times if we know they always give the same result */ 4228 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4229 } 4230 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4231 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4232 pFarg = pExpr->x.pList; 4233 nFarg = pFarg ? pFarg->nExpr : 0; 4234 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4235 zId = pExpr->u.zToken; 4236 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4237 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4238 if( pDef==0 && pParse->explain ){ 4239 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4240 } 4241 #endif 4242 if( pDef==0 || pDef->xFinalize!=0 ){ 4243 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 4244 break; 4245 } 4246 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4247 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4248 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4249 return exprCodeInlineFunction(pParse, pFarg, 4250 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4251 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4252 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4253 } 4254 4255 for(i=0; i<nFarg; i++){ 4256 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4257 testcase( i==31 ); 4258 constMask |= MASKBIT32(i); 4259 } 4260 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4261 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4262 } 4263 } 4264 if( pFarg ){ 4265 if( constMask ){ 4266 r1 = pParse->nMem+1; 4267 pParse->nMem += nFarg; 4268 }else{ 4269 r1 = sqlite3GetTempRange(pParse, nFarg); 4270 } 4271 4272 /* For length() and typeof() functions with a column argument, 4273 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4274 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4275 ** loading. 4276 */ 4277 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4278 u8 exprOp; 4279 assert( nFarg==1 ); 4280 assert( pFarg->a[0].pExpr!=0 ); 4281 exprOp = pFarg->a[0].pExpr->op; 4282 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4283 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4284 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4285 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4286 pFarg->a[0].pExpr->op2 = 4287 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4288 } 4289 } 4290 4291 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4292 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4293 }else{ 4294 r1 = 0; 4295 } 4296 #ifndef SQLITE_OMIT_VIRTUALTABLE 4297 /* Possibly overload the function if the first argument is 4298 ** a virtual table column. 4299 ** 4300 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4301 ** second argument, not the first, as the argument to test to 4302 ** see if it is a column in a virtual table. This is done because 4303 ** the left operand of infix functions (the operand we want to 4304 ** control overloading) ends up as the second argument to the 4305 ** function. The expression "A glob B" is equivalent to 4306 ** "glob(B,A). We want to use the A in "A glob B" to test 4307 ** for function overloading. But we use the B term in "glob(B,A)". 4308 */ 4309 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4310 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4311 }else if( nFarg>0 ){ 4312 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4313 } 4314 #endif 4315 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4316 if( !pColl ) pColl = db->pDfltColl; 4317 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4318 } 4319 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4320 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4321 Expr *pArg = pFarg->a[0].pExpr; 4322 if( pArg->op==TK_COLUMN ){ 4323 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4324 }else{ 4325 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4326 } 4327 }else 4328 #endif 4329 { 4330 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4331 pDef, pExpr->op2); 4332 } 4333 if( nFarg ){ 4334 if( constMask==0 ){ 4335 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4336 }else{ 4337 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4338 } 4339 } 4340 return target; 4341 } 4342 #ifndef SQLITE_OMIT_SUBQUERY 4343 case TK_EXISTS: 4344 case TK_SELECT: { 4345 int nCol; 4346 testcase( op==TK_EXISTS ); 4347 testcase( op==TK_SELECT ); 4348 if( pParse->db->mallocFailed ){ 4349 return 0; 4350 }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4351 sqlite3SubselectError(pParse, nCol, 1); 4352 }else{ 4353 return sqlite3CodeSubselect(pParse, pExpr); 4354 } 4355 break; 4356 } 4357 case TK_SELECT_COLUMN: { 4358 int n; 4359 if( pExpr->pLeft->iTable==0 ){ 4360 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4361 } 4362 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 4363 if( pExpr->iTable!=0 4364 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 4365 ){ 4366 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4367 pExpr->iTable, n); 4368 } 4369 return pExpr->pLeft->iTable + pExpr->iColumn; 4370 } 4371 case TK_IN: { 4372 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4373 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4374 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4375 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4376 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4377 sqlite3VdbeResolveLabel(v, destIfFalse); 4378 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4379 sqlite3VdbeResolveLabel(v, destIfNull); 4380 return target; 4381 } 4382 #endif /* SQLITE_OMIT_SUBQUERY */ 4383 4384 4385 /* 4386 ** x BETWEEN y AND z 4387 ** 4388 ** This is equivalent to 4389 ** 4390 ** x>=y AND x<=z 4391 ** 4392 ** X is stored in pExpr->pLeft. 4393 ** Y is stored in pExpr->pList->a[0].pExpr. 4394 ** Z is stored in pExpr->pList->a[1].pExpr. 4395 */ 4396 case TK_BETWEEN: { 4397 exprCodeBetween(pParse, pExpr, target, 0, 0); 4398 return target; 4399 } 4400 case TK_SPAN: 4401 case TK_COLLATE: 4402 case TK_UPLUS: { 4403 pExpr = pExpr->pLeft; 4404 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4405 } 4406 4407 case TK_TRIGGER: { 4408 /* If the opcode is TK_TRIGGER, then the expression is a reference 4409 ** to a column in the new.* or old.* pseudo-tables available to 4410 ** trigger programs. In this case Expr.iTable is set to 1 for the 4411 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4412 ** is set to the column of the pseudo-table to read, or to -1 to 4413 ** read the rowid field. 4414 ** 4415 ** The expression is implemented using an OP_Param opcode. The p1 4416 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4417 ** to reference another column of the old.* pseudo-table, where 4418 ** i is the index of the column. For a new.rowid reference, p1 is 4419 ** set to (n+1), where n is the number of columns in each pseudo-table. 4420 ** For a reference to any other column in the new.* pseudo-table, p1 4421 ** is set to (n+2+i), where n and i are as defined previously. For 4422 ** example, if the table on which triggers are being fired is 4423 ** declared as: 4424 ** 4425 ** CREATE TABLE t1(a, b); 4426 ** 4427 ** Then p1 is interpreted as follows: 4428 ** 4429 ** p1==0 -> old.rowid p1==3 -> new.rowid 4430 ** p1==1 -> old.a p1==4 -> new.a 4431 ** p1==2 -> old.b p1==5 -> new.b 4432 */ 4433 Table *pTab = pExpr->y.pTab; 4434 int iCol = pExpr->iColumn; 4435 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4436 + sqlite3TableColumnToStorage(pTab, iCol); 4437 4438 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4439 assert( iCol>=-1 && iCol<pTab->nCol ); 4440 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4441 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4442 4443 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4444 VdbeComment((v, "r[%d]=%s.%s", target, 4445 (pExpr->iTable ? "new" : "old"), 4446 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName) 4447 )); 4448 4449 #ifndef SQLITE_OMIT_FLOATING_POINT 4450 /* If the column has REAL affinity, it may currently be stored as an 4451 ** integer. Use OP_RealAffinity to make sure it is really real. 4452 ** 4453 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4454 ** floating point when extracting it from the record. */ 4455 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4456 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4457 } 4458 #endif 4459 break; 4460 } 4461 4462 case TK_VECTOR: { 4463 sqlite3ErrorMsg(pParse, "row value misused"); 4464 break; 4465 } 4466 4467 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4468 ** that derive from the right-hand table of a LEFT JOIN. The 4469 ** Expr.iTable value is the table number for the right-hand table. 4470 ** The expression is only evaluated if that table is not currently 4471 ** on a LEFT JOIN NULL row. 4472 */ 4473 case TK_IF_NULL_ROW: { 4474 int addrINR; 4475 u8 okConstFactor = pParse->okConstFactor; 4476 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4477 /* Temporarily disable factoring of constant expressions, since 4478 ** even though expressions may appear to be constant, they are not 4479 ** really constant because they originate from the right-hand side 4480 ** of a LEFT JOIN. */ 4481 pParse->okConstFactor = 0; 4482 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4483 pParse->okConstFactor = okConstFactor; 4484 sqlite3VdbeJumpHere(v, addrINR); 4485 sqlite3VdbeChangeP3(v, addrINR, inReg); 4486 break; 4487 } 4488 4489 /* 4490 ** Form A: 4491 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4492 ** 4493 ** Form B: 4494 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4495 ** 4496 ** Form A is can be transformed into the equivalent form B as follows: 4497 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4498 ** WHEN x=eN THEN rN ELSE y END 4499 ** 4500 ** X (if it exists) is in pExpr->pLeft. 4501 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4502 ** odd. The Y is also optional. If the number of elements in x.pList 4503 ** is even, then Y is omitted and the "otherwise" result is NULL. 4504 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4505 ** 4506 ** The result of the expression is the Ri for the first matching Ei, 4507 ** or if there is no matching Ei, the ELSE term Y, or if there is 4508 ** no ELSE term, NULL. 4509 */ 4510 case TK_CASE: { 4511 int endLabel; /* GOTO label for end of CASE stmt */ 4512 int nextCase; /* GOTO label for next WHEN clause */ 4513 int nExpr; /* 2x number of WHEN terms */ 4514 int i; /* Loop counter */ 4515 ExprList *pEList; /* List of WHEN terms */ 4516 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4517 Expr opCompare; /* The X==Ei expression */ 4518 Expr *pX; /* The X expression */ 4519 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4520 Expr *pDel = 0; 4521 sqlite3 *db = pParse->db; 4522 4523 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4524 assert(pExpr->x.pList->nExpr > 0); 4525 pEList = pExpr->x.pList; 4526 aListelem = pEList->a; 4527 nExpr = pEList->nExpr; 4528 endLabel = sqlite3VdbeMakeLabel(pParse); 4529 if( (pX = pExpr->pLeft)!=0 ){ 4530 pDel = sqlite3ExprDup(db, pX, 0); 4531 if( db->mallocFailed ){ 4532 sqlite3ExprDelete(db, pDel); 4533 break; 4534 } 4535 testcase( pX->op==TK_COLUMN ); 4536 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4537 testcase( regFree1==0 ); 4538 memset(&opCompare, 0, sizeof(opCompare)); 4539 opCompare.op = TK_EQ; 4540 opCompare.pLeft = pDel; 4541 pTest = &opCompare; 4542 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4543 ** The value in regFree1 might get SCopy-ed into the file result. 4544 ** So make sure that the regFree1 register is not reused for other 4545 ** purposes and possibly overwritten. */ 4546 regFree1 = 0; 4547 } 4548 for(i=0; i<nExpr-1; i=i+2){ 4549 if( pX ){ 4550 assert( pTest!=0 ); 4551 opCompare.pRight = aListelem[i].pExpr; 4552 }else{ 4553 pTest = aListelem[i].pExpr; 4554 } 4555 nextCase = sqlite3VdbeMakeLabel(pParse); 4556 testcase( pTest->op==TK_COLUMN ); 4557 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4558 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4559 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4560 sqlite3VdbeGoto(v, endLabel); 4561 sqlite3VdbeResolveLabel(v, nextCase); 4562 } 4563 if( (nExpr&1)!=0 ){ 4564 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4565 }else{ 4566 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4567 } 4568 sqlite3ExprDelete(db, pDel); 4569 setDoNotMergeFlagOnCopy(v); 4570 sqlite3VdbeResolveLabel(v, endLabel); 4571 break; 4572 } 4573 #ifndef SQLITE_OMIT_TRIGGER 4574 case TK_RAISE: { 4575 assert( pExpr->affExpr==OE_Rollback 4576 || pExpr->affExpr==OE_Abort 4577 || pExpr->affExpr==OE_Fail 4578 || pExpr->affExpr==OE_Ignore 4579 ); 4580 if( !pParse->pTriggerTab && !pParse->nested ){ 4581 sqlite3ErrorMsg(pParse, 4582 "RAISE() may only be used within a trigger-program"); 4583 return 0; 4584 } 4585 if( pExpr->affExpr==OE_Abort ){ 4586 sqlite3MayAbort(pParse); 4587 } 4588 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4589 if( pExpr->affExpr==OE_Ignore ){ 4590 sqlite3VdbeAddOp4( 4591 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4592 VdbeCoverage(v); 4593 }else{ 4594 sqlite3HaltConstraint(pParse, 4595 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4596 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4597 } 4598 4599 break; 4600 } 4601 #endif 4602 } 4603 sqlite3ReleaseTempReg(pParse, regFree1); 4604 sqlite3ReleaseTempReg(pParse, regFree2); 4605 return inReg; 4606 } 4607 4608 /* 4609 ** Generate code that will evaluate expression pExpr just one time 4610 ** per prepared statement execution. 4611 ** 4612 ** If the expression uses functions (that might throw an exception) then 4613 ** guard them with an OP_Once opcode to ensure that the code is only executed 4614 ** once. If no functions are involved, then factor the code out and put it at 4615 ** the end of the prepared statement in the initialization section. 4616 ** 4617 ** If regDest>=0 then the result is always stored in that register and the 4618 ** result is not reusable. If regDest<0 then this routine is free to 4619 ** store the value whereever it wants. The register where the expression 4620 ** is stored is returned. When regDest<0, two identical expressions might 4621 ** code to the same register, if they do not contain function calls and hence 4622 ** are factored out into the initialization section at the end of the 4623 ** prepared statement. 4624 */ 4625 int sqlite3ExprCodeRunJustOnce( 4626 Parse *pParse, /* Parsing context */ 4627 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4628 int regDest /* Store the value in this register */ 4629 ){ 4630 ExprList *p; 4631 assert( ConstFactorOk(pParse) ); 4632 p = pParse->pConstExpr; 4633 if( regDest<0 && p ){ 4634 struct ExprList_item *pItem; 4635 int i; 4636 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4637 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4638 return pItem->u.iConstExprReg; 4639 } 4640 } 4641 } 4642 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4643 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4644 Vdbe *v = pParse->pVdbe; 4645 int addr; 4646 assert( v ); 4647 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4648 pParse->okConstFactor = 0; 4649 if( !pParse->db->mallocFailed ){ 4650 if( regDest<0 ) regDest = ++pParse->nMem; 4651 sqlite3ExprCode(pParse, pExpr, regDest); 4652 } 4653 pParse->okConstFactor = 1; 4654 sqlite3ExprDelete(pParse->db, pExpr); 4655 sqlite3VdbeJumpHere(v, addr); 4656 }else{ 4657 p = sqlite3ExprListAppend(pParse, p, pExpr); 4658 if( p ){ 4659 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4660 pItem->reusable = regDest<0; 4661 if( regDest<0 ) regDest = ++pParse->nMem; 4662 pItem->u.iConstExprReg = regDest; 4663 } 4664 pParse->pConstExpr = p; 4665 } 4666 return regDest; 4667 } 4668 4669 /* 4670 ** Generate code to evaluate an expression and store the results 4671 ** into a register. Return the register number where the results 4672 ** are stored. 4673 ** 4674 ** If the register is a temporary register that can be deallocated, 4675 ** then write its number into *pReg. If the result register is not 4676 ** a temporary, then set *pReg to zero. 4677 ** 4678 ** If pExpr is a constant, then this routine might generate this 4679 ** code to fill the register in the initialization section of the 4680 ** VDBE program, in order to factor it out of the evaluation loop. 4681 */ 4682 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4683 int r2; 4684 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4685 if( ConstFactorOk(pParse) 4686 && ALWAYS(pExpr!=0) 4687 && pExpr->op!=TK_REGISTER 4688 && sqlite3ExprIsConstantNotJoin(pExpr) 4689 ){ 4690 *pReg = 0; 4691 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4692 }else{ 4693 int r1 = sqlite3GetTempReg(pParse); 4694 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4695 if( r2==r1 ){ 4696 *pReg = r1; 4697 }else{ 4698 sqlite3ReleaseTempReg(pParse, r1); 4699 *pReg = 0; 4700 } 4701 } 4702 return r2; 4703 } 4704 4705 /* 4706 ** Generate code that will evaluate expression pExpr and store the 4707 ** results in register target. The results are guaranteed to appear 4708 ** in register target. 4709 */ 4710 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4711 int inReg; 4712 4713 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4714 assert( target>0 && target<=pParse->nMem ); 4715 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4716 if( pParse->pVdbe==0 ) return; 4717 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4718 if( inReg!=target ){ 4719 u8 op; 4720 if( ExprHasProperty(pExpr,EP_Subquery) ){ 4721 op = OP_Copy; 4722 }else{ 4723 op = OP_SCopy; 4724 } 4725 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4726 } 4727 } 4728 4729 /* 4730 ** Make a transient copy of expression pExpr and then code it using 4731 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4732 ** except that the input expression is guaranteed to be unchanged. 4733 */ 4734 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4735 sqlite3 *db = pParse->db; 4736 pExpr = sqlite3ExprDup(db, pExpr, 0); 4737 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4738 sqlite3ExprDelete(db, pExpr); 4739 } 4740 4741 /* 4742 ** Generate code that will evaluate expression pExpr and store the 4743 ** results in register target. The results are guaranteed to appear 4744 ** in register target. If the expression is constant, then this routine 4745 ** might choose to code the expression at initialization time. 4746 */ 4747 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4748 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4749 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4750 }else{ 4751 sqlite3ExprCodeCopy(pParse, pExpr, target); 4752 } 4753 } 4754 4755 /* 4756 ** Generate code that pushes the value of every element of the given 4757 ** expression list into a sequence of registers beginning at target. 4758 ** 4759 ** Return the number of elements evaluated. The number returned will 4760 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4761 ** is defined. 4762 ** 4763 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4764 ** filled using OP_SCopy. OP_Copy must be used instead. 4765 ** 4766 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4767 ** factored out into initialization code. 4768 ** 4769 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4770 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4771 ** in registers at srcReg, and so the value can be copied from there. 4772 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4773 ** are simply omitted rather than being copied from srcReg. 4774 */ 4775 int sqlite3ExprCodeExprList( 4776 Parse *pParse, /* Parsing context */ 4777 ExprList *pList, /* The expression list to be coded */ 4778 int target, /* Where to write results */ 4779 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4780 u8 flags /* SQLITE_ECEL_* flags */ 4781 ){ 4782 struct ExprList_item *pItem; 4783 int i, j, n; 4784 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4785 Vdbe *v = pParse->pVdbe; 4786 assert( pList!=0 ); 4787 assert( target>0 ); 4788 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4789 n = pList->nExpr; 4790 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4791 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4792 Expr *pExpr = pItem->pExpr; 4793 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4794 if( pItem->bSorterRef ){ 4795 i--; 4796 n--; 4797 }else 4798 #endif 4799 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4800 if( flags & SQLITE_ECEL_OMITREF ){ 4801 i--; 4802 n--; 4803 }else{ 4804 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4805 } 4806 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4807 && sqlite3ExprIsConstantNotJoin(pExpr) 4808 ){ 4809 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4810 }else{ 4811 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4812 if( inReg!=target+i ){ 4813 VdbeOp *pOp; 4814 if( copyOp==OP_Copy 4815 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4816 && pOp->p1+pOp->p3+1==inReg 4817 && pOp->p2+pOp->p3+1==target+i 4818 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4819 ){ 4820 pOp->p3++; 4821 }else{ 4822 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4823 } 4824 } 4825 } 4826 } 4827 return n; 4828 } 4829 4830 /* 4831 ** Generate code for a BETWEEN operator. 4832 ** 4833 ** x BETWEEN y AND z 4834 ** 4835 ** The above is equivalent to 4836 ** 4837 ** x>=y AND x<=z 4838 ** 4839 ** Code it as such, taking care to do the common subexpression 4840 ** elimination of x. 4841 ** 4842 ** The xJumpIf parameter determines details: 4843 ** 4844 ** NULL: Store the boolean result in reg[dest] 4845 ** sqlite3ExprIfTrue: Jump to dest if true 4846 ** sqlite3ExprIfFalse: Jump to dest if false 4847 ** 4848 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4849 */ 4850 static void exprCodeBetween( 4851 Parse *pParse, /* Parsing and code generating context */ 4852 Expr *pExpr, /* The BETWEEN expression */ 4853 int dest, /* Jump destination or storage location */ 4854 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4855 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4856 ){ 4857 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4858 Expr compLeft; /* The x>=y term */ 4859 Expr compRight; /* The x<=z term */ 4860 int regFree1 = 0; /* Temporary use register */ 4861 Expr *pDel = 0; 4862 sqlite3 *db = pParse->db; 4863 4864 memset(&compLeft, 0, sizeof(Expr)); 4865 memset(&compRight, 0, sizeof(Expr)); 4866 memset(&exprAnd, 0, sizeof(Expr)); 4867 4868 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4869 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4870 if( db->mallocFailed==0 ){ 4871 exprAnd.op = TK_AND; 4872 exprAnd.pLeft = &compLeft; 4873 exprAnd.pRight = &compRight; 4874 compLeft.op = TK_GE; 4875 compLeft.pLeft = pDel; 4876 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4877 compRight.op = TK_LE; 4878 compRight.pLeft = pDel; 4879 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4880 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4881 if( xJump ){ 4882 xJump(pParse, &exprAnd, dest, jumpIfNull); 4883 }else{ 4884 /* Mark the expression is being from the ON or USING clause of a join 4885 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4886 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4887 ** for clarity, but we are out of bits in the Expr.flags field so we 4888 ** have to reuse the EP_FromJoin bit. Bummer. */ 4889 pDel->flags |= EP_FromJoin; 4890 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4891 } 4892 sqlite3ReleaseTempReg(pParse, regFree1); 4893 } 4894 sqlite3ExprDelete(db, pDel); 4895 4896 /* Ensure adequate test coverage */ 4897 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4898 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4899 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4900 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4901 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4902 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4903 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4904 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4905 testcase( xJump==0 ); 4906 } 4907 4908 /* 4909 ** Generate code for a boolean expression such that a jump is made 4910 ** to the label "dest" if the expression is true but execution 4911 ** continues straight thru if the expression is false. 4912 ** 4913 ** If the expression evaluates to NULL (neither true nor false), then 4914 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4915 ** 4916 ** This code depends on the fact that certain token values (ex: TK_EQ) 4917 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4918 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4919 ** the make process cause these values to align. Assert()s in the code 4920 ** below verify that the numbers are aligned correctly. 4921 */ 4922 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4923 Vdbe *v = pParse->pVdbe; 4924 int op = 0; 4925 int regFree1 = 0; 4926 int regFree2 = 0; 4927 int r1, r2; 4928 4929 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4930 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4931 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4932 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 4933 op = pExpr->op; 4934 switch( op ){ 4935 case TK_AND: 4936 case TK_OR: { 4937 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4938 if( pAlt!=pExpr ){ 4939 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4940 }else if( op==TK_AND ){ 4941 int d2 = sqlite3VdbeMakeLabel(pParse); 4942 testcase( jumpIfNull==0 ); 4943 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4944 jumpIfNull^SQLITE_JUMPIFNULL); 4945 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4946 sqlite3VdbeResolveLabel(v, d2); 4947 }else{ 4948 testcase( jumpIfNull==0 ); 4949 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4950 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4951 } 4952 break; 4953 } 4954 case TK_NOT: { 4955 testcase( jumpIfNull==0 ); 4956 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4957 break; 4958 } 4959 case TK_TRUTH: { 4960 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4961 int isTrue; /* IS TRUE or IS NOT TRUE */ 4962 testcase( jumpIfNull==0 ); 4963 isNot = pExpr->op2==TK_ISNOT; 4964 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4965 testcase( isTrue && isNot ); 4966 testcase( !isTrue && isNot ); 4967 if( isTrue ^ isNot ){ 4968 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4969 isNot ? SQLITE_JUMPIFNULL : 0); 4970 }else{ 4971 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4972 isNot ? SQLITE_JUMPIFNULL : 0); 4973 } 4974 break; 4975 } 4976 case TK_IS: 4977 case TK_ISNOT: 4978 testcase( op==TK_IS ); 4979 testcase( op==TK_ISNOT ); 4980 op = (op==TK_IS) ? TK_EQ : TK_NE; 4981 jumpIfNull = SQLITE_NULLEQ; 4982 /* no break */ deliberate_fall_through 4983 case TK_LT: 4984 case TK_LE: 4985 case TK_GT: 4986 case TK_GE: 4987 case TK_NE: 4988 case TK_EQ: { 4989 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4990 testcase( jumpIfNull==0 ); 4991 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4992 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4993 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4994 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 4995 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4996 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4997 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4998 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4999 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5000 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5001 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5002 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5003 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5004 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5005 testcase( regFree1==0 ); 5006 testcase( regFree2==0 ); 5007 break; 5008 } 5009 case TK_ISNULL: 5010 case TK_NOTNULL: { 5011 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 5012 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 5013 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5014 sqlite3VdbeAddOp2(v, op, r1, dest); 5015 VdbeCoverageIf(v, op==TK_ISNULL); 5016 VdbeCoverageIf(v, op==TK_NOTNULL); 5017 testcase( regFree1==0 ); 5018 break; 5019 } 5020 case TK_BETWEEN: { 5021 testcase( jumpIfNull==0 ); 5022 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 5023 break; 5024 } 5025 #ifndef SQLITE_OMIT_SUBQUERY 5026 case TK_IN: { 5027 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 5028 int destIfNull = jumpIfNull ? dest : destIfFalse; 5029 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 5030 sqlite3VdbeGoto(v, dest); 5031 sqlite3VdbeResolveLabel(v, destIfFalse); 5032 break; 5033 } 5034 #endif 5035 default: { 5036 default_expr: 5037 if( ExprAlwaysTrue(pExpr) ){ 5038 sqlite3VdbeGoto(v, dest); 5039 }else if( ExprAlwaysFalse(pExpr) ){ 5040 /* No-op */ 5041 }else{ 5042 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5043 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 5044 VdbeCoverage(v); 5045 testcase( regFree1==0 ); 5046 testcase( jumpIfNull==0 ); 5047 } 5048 break; 5049 } 5050 } 5051 sqlite3ReleaseTempReg(pParse, regFree1); 5052 sqlite3ReleaseTempReg(pParse, regFree2); 5053 } 5054 5055 /* 5056 ** Generate code for a boolean expression such that a jump is made 5057 ** to the label "dest" if the expression is false but execution 5058 ** continues straight thru if the expression is true. 5059 ** 5060 ** If the expression evaluates to NULL (neither true nor false) then 5061 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5062 ** is 0. 5063 */ 5064 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5065 Vdbe *v = pParse->pVdbe; 5066 int op = 0; 5067 int regFree1 = 0; 5068 int regFree2 = 0; 5069 int r1, r2; 5070 5071 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5072 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5073 if( pExpr==0 ) return; 5074 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5075 5076 /* The value of pExpr->op and op are related as follows: 5077 ** 5078 ** pExpr->op op 5079 ** --------- ---------- 5080 ** TK_ISNULL OP_NotNull 5081 ** TK_NOTNULL OP_IsNull 5082 ** TK_NE OP_Eq 5083 ** TK_EQ OP_Ne 5084 ** TK_GT OP_Le 5085 ** TK_LE OP_Gt 5086 ** TK_GE OP_Lt 5087 ** TK_LT OP_Ge 5088 ** 5089 ** For other values of pExpr->op, op is undefined and unused. 5090 ** The value of TK_ and OP_ constants are arranged such that we 5091 ** can compute the mapping above using the following expression. 5092 ** Assert()s verify that the computation is correct. 5093 */ 5094 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5095 5096 /* Verify correct alignment of TK_ and OP_ constants 5097 */ 5098 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5099 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5100 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5101 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5102 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5103 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5104 assert( pExpr->op!=TK_GT || op==OP_Le ); 5105 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5106 5107 switch( pExpr->op ){ 5108 case TK_AND: 5109 case TK_OR: { 5110 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5111 if( pAlt!=pExpr ){ 5112 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5113 }else if( pExpr->op==TK_AND ){ 5114 testcase( jumpIfNull==0 ); 5115 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5116 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5117 }else{ 5118 int d2 = sqlite3VdbeMakeLabel(pParse); 5119 testcase( jumpIfNull==0 ); 5120 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5121 jumpIfNull^SQLITE_JUMPIFNULL); 5122 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5123 sqlite3VdbeResolveLabel(v, d2); 5124 } 5125 break; 5126 } 5127 case TK_NOT: { 5128 testcase( jumpIfNull==0 ); 5129 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5130 break; 5131 } 5132 case TK_TRUTH: { 5133 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5134 int isTrue; /* IS TRUE or IS NOT TRUE */ 5135 testcase( jumpIfNull==0 ); 5136 isNot = pExpr->op2==TK_ISNOT; 5137 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5138 testcase( isTrue && isNot ); 5139 testcase( !isTrue && isNot ); 5140 if( isTrue ^ isNot ){ 5141 /* IS TRUE and IS NOT FALSE */ 5142 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5143 isNot ? 0 : SQLITE_JUMPIFNULL); 5144 5145 }else{ 5146 /* IS FALSE and IS NOT TRUE */ 5147 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5148 isNot ? 0 : SQLITE_JUMPIFNULL); 5149 } 5150 break; 5151 } 5152 case TK_IS: 5153 case TK_ISNOT: 5154 testcase( pExpr->op==TK_IS ); 5155 testcase( pExpr->op==TK_ISNOT ); 5156 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5157 jumpIfNull = SQLITE_NULLEQ; 5158 /* no break */ deliberate_fall_through 5159 case TK_LT: 5160 case TK_LE: 5161 case TK_GT: 5162 case TK_GE: 5163 case TK_NE: 5164 case TK_EQ: { 5165 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5166 testcase( jumpIfNull==0 ); 5167 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5168 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5169 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5170 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5171 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5172 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5173 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5174 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5175 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5176 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5177 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5178 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5179 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5180 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5181 testcase( regFree1==0 ); 5182 testcase( regFree2==0 ); 5183 break; 5184 } 5185 case TK_ISNULL: 5186 case TK_NOTNULL: { 5187 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5188 sqlite3VdbeAddOp2(v, op, r1, dest); 5189 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5190 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5191 testcase( regFree1==0 ); 5192 break; 5193 } 5194 case TK_BETWEEN: { 5195 testcase( jumpIfNull==0 ); 5196 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5197 break; 5198 } 5199 #ifndef SQLITE_OMIT_SUBQUERY 5200 case TK_IN: { 5201 if( jumpIfNull ){ 5202 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5203 }else{ 5204 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5205 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5206 sqlite3VdbeResolveLabel(v, destIfNull); 5207 } 5208 break; 5209 } 5210 #endif 5211 default: { 5212 default_expr: 5213 if( ExprAlwaysFalse(pExpr) ){ 5214 sqlite3VdbeGoto(v, dest); 5215 }else if( ExprAlwaysTrue(pExpr) ){ 5216 /* no-op */ 5217 }else{ 5218 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5219 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5220 VdbeCoverage(v); 5221 testcase( regFree1==0 ); 5222 testcase( jumpIfNull==0 ); 5223 } 5224 break; 5225 } 5226 } 5227 sqlite3ReleaseTempReg(pParse, regFree1); 5228 sqlite3ReleaseTempReg(pParse, regFree2); 5229 } 5230 5231 /* 5232 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5233 ** code generation, and that copy is deleted after code generation. This 5234 ** ensures that the original pExpr is unchanged. 5235 */ 5236 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5237 sqlite3 *db = pParse->db; 5238 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5239 if( db->mallocFailed==0 ){ 5240 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5241 } 5242 sqlite3ExprDelete(db, pCopy); 5243 } 5244 5245 /* 5246 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5247 ** type of expression. 5248 ** 5249 ** If pExpr is a simple SQL value - an integer, real, string, blob 5250 ** or NULL value - then the VDBE currently being prepared is configured 5251 ** to re-prepare each time a new value is bound to variable pVar. 5252 ** 5253 ** Additionally, if pExpr is a simple SQL value and the value is the 5254 ** same as that currently bound to variable pVar, non-zero is returned. 5255 ** Otherwise, if the values are not the same or if pExpr is not a simple 5256 ** SQL value, zero is returned. 5257 */ 5258 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 5259 int res = 0; 5260 int iVar; 5261 sqlite3_value *pL, *pR = 0; 5262 5263 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5264 if( pR ){ 5265 iVar = pVar->iColumn; 5266 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5267 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5268 if( pL ){ 5269 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5270 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5271 } 5272 res = 0==sqlite3MemCompare(pL, pR, 0); 5273 } 5274 sqlite3ValueFree(pR); 5275 sqlite3ValueFree(pL); 5276 } 5277 5278 return res; 5279 } 5280 5281 /* 5282 ** Do a deep comparison of two expression trees. Return 0 if the two 5283 ** expressions are completely identical. Return 1 if they differ only 5284 ** by a COLLATE operator at the top level. Return 2 if there are differences 5285 ** other than the top-level COLLATE operator. 5286 ** 5287 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5288 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5289 ** 5290 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5291 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5292 ** 5293 ** Sometimes this routine will return 2 even if the two expressions 5294 ** really are equivalent. If we cannot prove that the expressions are 5295 ** identical, we return 2 just to be safe. So if this routine 5296 ** returns 2, then you do not really know for certain if the two 5297 ** expressions are the same. But if you get a 0 or 1 return, then you 5298 ** can be sure the expressions are the same. In the places where 5299 ** this routine is used, it does not hurt to get an extra 2 - that 5300 ** just might result in some slightly slower code. But returning 5301 ** an incorrect 0 or 1 could lead to a malfunction. 5302 ** 5303 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5304 ** pParse->pReprepare can be matched against literals in pB. The 5305 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5306 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5307 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5308 ** pB causes a return value of 2. 5309 */ 5310 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 5311 u32 combinedFlags; 5312 if( pA==0 || pB==0 ){ 5313 return pB==pA ? 0 : 2; 5314 } 5315 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5316 return 0; 5317 } 5318 combinedFlags = pA->flags | pB->flags; 5319 if( combinedFlags & EP_IntValue ){ 5320 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5321 return 0; 5322 } 5323 return 2; 5324 } 5325 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5326 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5327 return 1; 5328 } 5329 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5330 return 1; 5331 } 5332 return 2; 5333 } 5334 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5335 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5336 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5337 #ifndef SQLITE_OMIT_WINDOWFUNC 5338 assert( pA->op==pB->op ); 5339 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5340 return 2; 5341 } 5342 if( ExprHasProperty(pA,EP_WinFunc) ){ 5343 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5344 return 2; 5345 } 5346 } 5347 #endif 5348 }else if( pA->op==TK_NULL ){ 5349 return 0; 5350 }else if( pA->op==TK_COLLATE ){ 5351 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5352 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5353 return 2; 5354 } 5355 } 5356 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5357 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5358 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5359 if( combinedFlags & EP_xIsSelect ) return 2; 5360 if( (combinedFlags & EP_FixedCol)==0 5361 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5362 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5363 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5364 if( pA->op!=TK_STRING 5365 && pA->op!=TK_TRUEFALSE 5366 && ALWAYS((combinedFlags & EP_Reduced)==0) 5367 ){ 5368 if( pA->iColumn!=pB->iColumn ) return 2; 5369 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5370 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5371 return 2; 5372 } 5373 } 5374 } 5375 return 0; 5376 } 5377 5378 /* 5379 ** Compare two ExprList objects. Return 0 if they are identical, 1 5380 ** if they are certainly different, or 2 if it is not possible to 5381 ** determine if they are identical or not. 5382 ** 5383 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5384 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5385 ** 5386 ** This routine might return non-zero for equivalent ExprLists. The 5387 ** only consequence will be disabled optimizations. But this routine 5388 ** must never return 0 if the two ExprList objects are different, or 5389 ** a malfunction will result. 5390 ** 5391 ** Two NULL pointers are considered to be the same. But a NULL pointer 5392 ** always differs from a non-NULL pointer. 5393 */ 5394 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 5395 int i; 5396 if( pA==0 && pB==0 ) return 0; 5397 if( pA==0 || pB==0 ) return 1; 5398 if( pA->nExpr!=pB->nExpr ) return 1; 5399 for(i=0; i<pA->nExpr; i++){ 5400 int res; 5401 Expr *pExprA = pA->a[i].pExpr; 5402 Expr *pExprB = pB->a[i].pExpr; 5403 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5404 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5405 } 5406 return 0; 5407 } 5408 5409 /* 5410 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5411 ** are ignored. 5412 */ 5413 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 5414 return sqlite3ExprCompare(0, 5415 sqlite3ExprSkipCollateAndLikely(pA), 5416 sqlite3ExprSkipCollateAndLikely(pB), 5417 iTab); 5418 } 5419 5420 /* 5421 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5422 ** 5423 ** Or if seenNot is true, return non-zero if Expr p can only be 5424 ** non-NULL if pNN is not NULL 5425 */ 5426 static int exprImpliesNotNull( 5427 Parse *pParse, /* Parsing context */ 5428 Expr *p, /* The expression to be checked */ 5429 Expr *pNN, /* The expression that is NOT NULL */ 5430 int iTab, /* Table being evaluated */ 5431 int seenNot /* Return true only if p can be any non-NULL value */ 5432 ){ 5433 assert( p ); 5434 assert( pNN ); 5435 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5436 return pNN->op!=TK_NULL; 5437 } 5438 switch( p->op ){ 5439 case TK_IN: { 5440 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5441 assert( ExprHasProperty(p,EP_xIsSelect) 5442 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5443 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5444 } 5445 case TK_BETWEEN: { 5446 ExprList *pList = p->x.pList; 5447 assert( pList!=0 ); 5448 assert( pList->nExpr==2 ); 5449 if( seenNot ) return 0; 5450 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5451 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5452 ){ 5453 return 1; 5454 } 5455 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5456 } 5457 case TK_EQ: 5458 case TK_NE: 5459 case TK_LT: 5460 case TK_LE: 5461 case TK_GT: 5462 case TK_GE: 5463 case TK_PLUS: 5464 case TK_MINUS: 5465 case TK_BITOR: 5466 case TK_LSHIFT: 5467 case TK_RSHIFT: 5468 case TK_CONCAT: 5469 seenNot = 1; 5470 /* no break */ deliberate_fall_through 5471 case TK_STAR: 5472 case TK_REM: 5473 case TK_BITAND: 5474 case TK_SLASH: { 5475 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5476 /* no break */ deliberate_fall_through 5477 } 5478 case TK_SPAN: 5479 case TK_COLLATE: 5480 case TK_UPLUS: 5481 case TK_UMINUS: { 5482 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5483 } 5484 case TK_TRUTH: { 5485 if( seenNot ) return 0; 5486 if( p->op2!=TK_IS ) return 0; 5487 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5488 } 5489 case TK_BITNOT: 5490 case TK_NOT: { 5491 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5492 } 5493 } 5494 return 0; 5495 } 5496 5497 /* 5498 ** Return true if we can prove the pE2 will always be true if pE1 is 5499 ** true. Return false if we cannot complete the proof or if pE2 might 5500 ** be false. Examples: 5501 ** 5502 ** pE1: x==5 pE2: x==5 Result: true 5503 ** pE1: x>0 pE2: x==5 Result: false 5504 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5505 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5506 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5507 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5508 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5509 ** 5510 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5511 ** Expr.iTable<0 then assume a table number given by iTab. 5512 ** 5513 ** If pParse is not NULL, then the values of bound variables in pE1 are 5514 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5515 ** modified to record which bound variables are referenced. If pParse 5516 ** is NULL, then false will be returned if pE1 contains any bound variables. 5517 ** 5518 ** When in doubt, return false. Returning true might give a performance 5519 ** improvement. Returning false might cause a performance reduction, but 5520 ** it will always give the correct answer and is hence always safe. 5521 */ 5522 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5523 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5524 return 1; 5525 } 5526 if( pE2->op==TK_OR 5527 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5528 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5529 ){ 5530 return 1; 5531 } 5532 if( pE2->op==TK_NOTNULL 5533 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5534 ){ 5535 return 1; 5536 } 5537 return 0; 5538 } 5539 5540 /* 5541 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5542 ** If the expression node requires that the table at pWalker->iCur 5543 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5544 ** 5545 ** This routine controls an optimization. False positives (setting 5546 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5547 ** (never setting pWalker->eCode) is a harmless missed optimization. 5548 */ 5549 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5550 testcase( pExpr->op==TK_AGG_COLUMN ); 5551 testcase( pExpr->op==TK_AGG_FUNCTION ); 5552 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5553 switch( pExpr->op ){ 5554 case TK_ISNOT: 5555 case TK_ISNULL: 5556 case TK_NOTNULL: 5557 case TK_IS: 5558 case TK_OR: 5559 case TK_VECTOR: 5560 case TK_CASE: 5561 case TK_IN: 5562 case TK_FUNCTION: 5563 case TK_TRUTH: 5564 testcase( pExpr->op==TK_ISNOT ); 5565 testcase( pExpr->op==TK_ISNULL ); 5566 testcase( pExpr->op==TK_NOTNULL ); 5567 testcase( pExpr->op==TK_IS ); 5568 testcase( pExpr->op==TK_OR ); 5569 testcase( pExpr->op==TK_VECTOR ); 5570 testcase( pExpr->op==TK_CASE ); 5571 testcase( pExpr->op==TK_IN ); 5572 testcase( pExpr->op==TK_FUNCTION ); 5573 testcase( pExpr->op==TK_TRUTH ); 5574 return WRC_Prune; 5575 case TK_COLUMN: 5576 if( pWalker->u.iCur==pExpr->iTable ){ 5577 pWalker->eCode = 1; 5578 return WRC_Abort; 5579 } 5580 return WRC_Prune; 5581 5582 case TK_AND: 5583 if( pWalker->eCode==0 ){ 5584 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5585 if( pWalker->eCode ){ 5586 pWalker->eCode = 0; 5587 sqlite3WalkExpr(pWalker, pExpr->pRight); 5588 } 5589 } 5590 return WRC_Prune; 5591 5592 case TK_BETWEEN: 5593 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5594 assert( pWalker->eCode ); 5595 return WRC_Abort; 5596 } 5597 return WRC_Prune; 5598 5599 /* Virtual tables are allowed to use constraints like x=NULL. So 5600 ** a term of the form x=y does not prove that y is not null if x 5601 ** is the column of a virtual table */ 5602 case TK_EQ: 5603 case TK_NE: 5604 case TK_LT: 5605 case TK_LE: 5606 case TK_GT: 5607 case TK_GE: { 5608 Expr *pLeft = pExpr->pLeft; 5609 Expr *pRight = pExpr->pRight; 5610 testcase( pExpr->op==TK_EQ ); 5611 testcase( pExpr->op==TK_NE ); 5612 testcase( pExpr->op==TK_LT ); 5613 testcase( pExpr->op==TK_LE ); 5614 testcase( pExpr->op==TK_GT ); 5615 testcase( pExpr->op==TK_GE ); 5616 /* The y.pTab=0 assignment in wherecode.c always happens after the 5617 ** impliesNotNullRow() test */ 5618 if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0) 5619 && IsVirtual(pLeft->y.pTab)) 5620 || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0) 5621 && IsVirtual(pRight->y.pTab)) 5622 ){ 5623 return WRC_Prune; 5624 } 5625 /* no break */ deliberate_fall_through 5626 } 5627 default: 5628 return WRC_Continue; 5629 } 5630 } 5631 5632 /* 5633 ** Return true (non-zero) if expression p can only be true if at least 5634 ** one column of table iTab is non-null. In other words, return true 5635 ** if expression p will always be NULL or false if every column of iTab 5636 ** is NULL. 5637 ** 5638 ** False negatives are acceptable. In other words, it is ok to return 5639 ** zero even if expression p will never be true of every column of iTab 5640 ** is NULL. A false negative is merely a missed optimization opportunity. 5641 ** 5642 ** False positives are not allowed, however. A false positive may result 5643 ** in an incorrect answer. 5644 ** 5645 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5646 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5647 ** 5648 ** This routine is used to check if a LEFT JOIN can be converted into 5649 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5650 ** clause requires that some column of the right table of the LEFT JOIN 5651 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5652 ** ordinary join. 5653 */ 5654 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5655 Walker w; 5656 p = sqlite3ExprSkipCollateAndLikely(p); 5657 if( p==0 ) return 0; 5658 if( p->op==TK_NOTNULL ){ 5659 p = p->pLeft; 5660 }else{ 5661 while( p->op==TK_AND ){ 5662 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5663 p = p->pRight; 5664 } 5665 } 5666 w.xExprCallback = impliesNotNullRow; 5667 w.xSelectCallback = 0; 5668 w.xSelectCallback2 = 0; 5669 w.eCode = 0; 5670 w.u.iCur = iTab; 5671 sqlite3WalkExpr(&w, p); 5672 return w.eCode; 5673 } 5674 5675 /* 5676 ** An instance of the following structure is used by the tree walker 5677 ** to determine if an expression can be evaluated by reference to the 5678 ** index only, without having to do a search for the corresponding 5679 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5680 ** is the cursor for the table. 5681 */ 5682 struct IdxCover { 5683 Index *pIdx; /* The index to be tested for coverage */ 5684 int iCur; /* Cursor number for the table corresponding to the index */ 5685 }; 5686 5687 /* 5688 ** Check to see if there are references to columns in table 5689 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5690 ** pWalker->u.pIdxCover->pIdx. 5691 */ 5692 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5693 if( pExpr->op==TK_COLUMN 5694 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5695 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5696 ){ 5697 pWalker->eCode = 1; 5698 return WRC_Abort; 5699 } 5700 return WRC_Continue; 5701 } 5702 5703 /* 5704 ** Determine if an index pIdx on table with cursor iCur contains will 5705 ** the expression pExpr. Return true if the index does cover the 5706 ** expression and false if the pExpr expression references table columns 5707 ** that are not found in the index pIdx. 5708 ** 5709 ** An index covering an expression means that the expression can be 5710 ** evaluated using only the index and without having to lookup the 5711 ** corresponding table entry. 5712 */ 5713 int sqlite3ExprCoveredByIndex( 5714 Expr *pExpr, /* The index to be tested */ 5715 int iCur, /* The cursor number for the corresponding table */ 5716 Index *pIdx /* The index that might be used for coverage */ 5717 ){ 5718 Walker w; 5719 struct IdxCover xcov; 5720 memset(&w, 0, sizeof(w)); 5721 xcov.iCur = iCur; 5722 xcov.pIdx = pIdx; 5723 w.xExprCallback = exprIdxCover; 5724 w.u.pIdxCover = &xcov; 5725 sqlite3WalkExpr(&w, pExpr); 5726 return !w.eCode; 5727 } 5728 5729 5730 /* 5731 ** An instance of the following structure is used by the tree walker 5732 ** to count references to table columns in the arguments of an 5733 ** aggregate function, in order to implement the 5734 ** sqlite3FunctionThisSrc() routine. 5735 */ 5736 struct SrcCount { 5737 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5738 int iSrcInner; /* Smallest cursor number in this context */ 5739 int nThis; /* Number of references to columns in pSrcList */ 5740 int nOther; /* Number of references to columns in other FROM clauses */ 5741 }; 5742 5743 /* 5744 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first 5745 ** SELECT with a FROM clause encountered during this iteration, set 5746 ** SrcCount.iSrcInner to the cursor number of the leftmost object in 5747 ** the FROM cause. 5748 */ 5749 static int selectSrcCount(Walker *pWalker, Select *pSel){ 5750 struct SrcCount *p = pWalker->u.pSrcCount; 5751 if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){ 5752 pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor; 5753 } 5754 return WRC_Continue; 5755 } 5756 5757 /* 5758 ** Count the number of references to columns. 5759 */ 5760 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5761 /* There was once a NEVER() on the second term on the grounds that 5762 ** sqlite3FunctionUsesThisSrc() was always called before 5763 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet 5764 ** been converted into TK_AGG_COLUMN. But this is no longer true due 5765 ** to window functions - sqlite3WindowRewrite() may now indirectly call 5766 ** FunctionUsesThisSrc() when creating a new sub-select. */ 5767 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 5768 int i; 5769 struct SrcCount *p = pWalker->u.pSrcCount; 5770 SrcList *pSrc = p->pSrc; 5771 int nSrc = pSrc ? pSrc->nSrc : 0; 5772 for(i=0; i<nSrc; i++){ 5773 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5774 } 5775 if( i<nSrc ){ 5776 p->nThis++; 5777 }else if( pExpr->iTable<p->iSrcInner ){ 5778 /* In a well-formed parse tree (no name resolution errors), 5779 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5780 ** outer context. Those are the only ones to count as "other" */ 5781 p->nOther++; 5782 } 5783 } 5784 return WRC_Continue; 5785 } 5786 5787 /* 5788 ** Determine if any of the arguments to the pExpr Function reference 5789 ** pSrcList. Return true if they do. Also return true if the function 5790 ** has no arguments or has only constant arguments. Return false if pExpr 5791 ** references columns but not columns of tables found in pSrcList. 5792 */ 5793 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5794 Walker w; 5795 struct SrcCount cnt; 5796 assert( pExpr->op==TK_AGG_FUNCTION ); 5797 memset(&w, 0, sizeof(w)); 5798 w.xExprCallback = exprSrcCount; 5799 w.xSelectCallback = selectSrcCount; 5800 w.u.pSrcCount = &cnt; 5801 cnt.pSrc = pSrcList; 5802 cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF; 5803 cnt.nThis = 0; 5804 cnt.nOther = 0; 5805 sqlite3WalkExprList(&w, pExpr->x.pList); 5806 #ifndef SQLITE_OMIT_WINDOWFUNC 5807 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5808 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5809 } 5810 #endif 5811 return cnt.nThis>0 || cnt.nOther==0; 5812 } 5813 5814 /* 5815 ** This is a Walker expression node callback. 5816 ** 5817 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 5818 ** object that is referenced does not refer directly to the Expr. If 5819 ** it does, make a copy. This is done because the pExpr argument is 5820 ** subject to change. 5821 ** 5822 ** The copy is stored on pParse->pConstExpr with a register number of 0. 5823 ** This will cause the expression to be deleted automatically when the 5824 ** Parse object is destroyed, but the zero register number means that it 5825 ** will not generate any code in the preamble. 5826 */ 5827 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 5828 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 5829 && pExpr->pAggInfo!=0 5830 ){ 5831 AggInfo *pAggInfo = pExpr->pAggInfo; 5832 int iAgg = pExpr->iAgg; 5833 Parse *pParse = pWalker->pParse; 5834 sqlite3 *db = pParse->db; 5835 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 5836 if( pExpr->op==TK_AGG_COLUMN ){ 5837 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 5838 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 5839 pExpr = sqlite3ExprDup(db, pExpr, 0); 5840 if( pExpr ){ 5841 pAggInfo->aCol[iAgg].pCExpr = pExpr; 5842 sqlite3ExprDeferredDelete(pParse, pExpr); 5843 } 5844 } 5845 }else{ 5846 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 5847 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 5848 pExpr = sqlite3ExprDup(db, pExpr, 0); 5849 if( pExpr ){ 5850 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 5851 sqlite3ExprDeferredDelete(pParse, pExpr); 5852 } 5853 } 5854 } 5855 } 5856 return WRC_Continue; 5857 } 5858 5859 /* 5860 ** Initialize a Walker object so that will persist AggInfo entries referenced 5861 ** by the tree that is walked. 5862 */ 5863 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 5864 memset(pWalker, 0, sizeof(*pWalker)); 5865 pWalker->pParse = pParse; 5866 pWalker->xExprCallback = agginfoPersistExprCb; 5867 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 5868 } 5869 5870 /* 5871 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5872 ** the new element. Return a negative number if malloc fails. 5873 */ 5874 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5875 int i; 5876 pInfo->aCol = sqlite3ArrayAllocate( 5877 db, 5878 pInfo->aCol, 5879 sizeof(pInfo->aCol[0]), 5880 &pInfo->nColumn, 5881 &i 5882 ); 5883 return i; 5884 } 5885 5886 /* 5887 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5888 ** the new element. Return a negative number if malloc fails. 5889 */ 5890 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5891 int i; 5892 pInfo->aFunc = sqlite3ArrayAllocate( 5893 db, 5894 pInfo->aFunc, 5895 sizeof(pInfo->aFunc[0]), 5896 &pInfo->nFunc, 5897 &i 5898 ); 5899 return i; 5900 } 5901 5902 /* 5903 ** This is the xExprCallback for a tree walker. It is used to 5904 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5905 ** for additional information. 5906 */ 5907 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5908 int i; 5909 NameContext *pNC = pWalker->u.pNC; 5910 Parse *pParse = pNC->pParse; 5911 SrcList *pSrcList = pNC->pSrcList; 5912 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5913 5914 assert( pNC->ncFlags & NC_UAggInfo ); 5915 switch( pExpr->op ){ 5916 case TK_AGG_COLUMN: 5917 case TK_COLUMN: { 5918 testcase( pExpr->op==TK_AGG_COLUMN ); 5919 testcase( pExpr->op==TK_COLUMN ); 5920 /* Check to see if the column is in one of the tables in the FROM 5921 ** clause of the aggregate query */ 5922 if( ALWAYS(pSrcList!=0) ){ 5923 SrcItem *pItem = pSrcList->a; 5924 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5925 struct AggInfo_col *pCol; 5926 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5927 if( pExpr->iTable==pItem->iCursor ){ 5928 /* If we reach this point, it means that pExpr refers to a table 5929 ** that is in the FROM clause of the aggregate query. 5930 ** 5931 ** Make an entry for the column in pAggInfo->aCol[] if there 5932 ** is not an entry there already. 5933 */ 5934 int k; 5935 pCol = pAggInfo->aCol; 5936 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5937 if( pCol->iTable==pExpr->iTable && 5938 pCol->iColumn==pExpr->iColumn ){ 5939 break; 5940 } 5941 } 5942 if( (k>=pAggInfo->nColumn) 5943 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5944 ){ 5945 pCol = &pAggInfo->aCol[k]; 5946 pCol->pTab = pExpr->y.pTab; 5947 pCol->iTable = pExpr->iTable; 5948 pCol->iColumn = pExpr->iColumn; 5949 pCol->iMem = ++pParse->nMem; 5950 pCol->iSorterColumn = -1; 5951 pCol->pCExpr = pExpr; 5952 if( pAggInfo->pGroupBy ){ 5953 int j, n; 5954 ExprList *pGB = pAggInfo->pGroupBy; 5955 struct ExprList_item *pTerm = pGB->a; 5956 n = pGB->nExpr; 5957 for(j=0; j<n; j++, pTerm++){ 5958 Expr *pE = pTerm->pExpr; 5959 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5960 pE->iColumn==pExpr->iColumn ){ 5961 pCol->iSorterColumn = j; 5962 break; 5963 } 5964 } 5965 } 5966 if( pCol->iSorterColumn<0 ){ 5967 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5968 } 5969 } 5970 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5971 ** because it was there before or because we just created it). 5972 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5973 ** pAggInfo->aCol[] entry. 5974 */ 5975 ExprSetVVAProperty(pExpr, EP_NoReduce); 5976 pExpr->pAggInfo = pAggInfo; 5977 pExpr->op = TK_AGG_COLUMN; 5978 pExpr->iAgg = (i16)k; 5979 break; 5980 } /* endif pExpr->iTable==pItem->iCursor */ 5981 } /* end loop over pSrcList */ 5982 } 5983 return WRC_Prune; 5984 } 5985 case TK_AGG_FUNCTION: { 5986 if( (pNC->ncFlags & NC_InAggFunc)==0 5987 && pWalker->walkerDepth==pExpr->op2 5988 ){ 5989 /* Check to see if pExpr is a duplicate of another aggregate 5990 ** function that is already in the pAggInfo structure 5991 */ 5992 struct AggInfo_func *pItem = pAggInfo->aFunc; 5993 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5994 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 5995 break; 5996 } 5997 } 5998 if( i>=pAggInfo->nFunc ){ 5999 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 6000 */ 6001 u8 enc = ENC(pParse->db); 6002 i = addAggInfoFunc(pParse->db, pAggInfo); 6003 if( i>=0 ){ 6004 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6005 pItem = &pAggInfo->aFunc[i]; 6006 pItem->pFExpr = pExpr; 6007 pItem->iMem = ++pParse->nMem; 6008 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 6009 pItem->pFunc = sqlite3FindFunction(pParse->db, 6010 pExpr->u.zToken, 6011 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 6012 if( pExpr->flags & EP_Distinct ){ 6013 pItem->iDistinct = pParse->nTab++; 6014 }else{ 6015 pItem->iDistinct = -1; 6016 } 6017 } 6018 } 6019 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 6020 */ 6021 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6022 ExprSetVVAProperty(pExpr, EP_NoReduce); 6023 pExpr->iAgg = (i16)i; 6024 pExpr->pAggInfo = pAggInfo; 6025 return WRC_Prune; 6026 }else{ 6027 return WRC_Continue; 6028 } 6029 } 6030 } 6031 return WRC_Continue; 6032 } 6033 6034 /* 6035 ** Analyze the pExpr expression looking for aggregate functions and 6036 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 6037 ** points to. Additional entries are made on the AggInfo object as 6038 ** necessary. 6039 ** 6040 ** This routine should only be called after the expression has been 6041 ** analyzed by sqlite3ResolveExprNames(). 6042 */ 6043 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 6044 Walker w; 6045 w.xExprCallback = analyzeAggregate; 6046 w.xSelectCallback = sqlite3WalkerDepthIncrease; 6047 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 6048 w.walkerDepth = 0; 6049 w.u.pNC = pNC; 6050 w.pParse = 0; 6051 assert( pNC->pSrcList!=0 ); 6052 sqlite3WalkExpr(&w, pExpr); 6053 } 6054 6055 /* 6056 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6057 ** expression list. Return the number of errors. 6058 ** 6059 ** If an error is found, the analysis is cut short. 6060 */ 6061 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6062 struct ExprList_item *pItem; 6063 int i; 6064 if( pList ){ 6065 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6066 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6067 } 6068 } 6069 } 6070 6071 /* 6072 ** Allocate a single new register for use to hold some intermediate result. 6073 */ 6074 int sqlite3GetTempReg(Parse *pParse){ 6075 if( pParse->nTempReg==0 ){ 6076 return ++pParse->nMem; 6077 } 6078 return pParse->aTempReg[--pParse->nTempReg]; 6079 } 6080 6081 /* 6082 ** Deallocate a register, making available for reuse for some other 6083 ** purpose. 6084 */ 6085 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6086 if( iReg ){ 6087 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6088 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6089 pParse->aTempReg[pParse->nTempReg++] = iReg; 6090 } 6091 } 6092 } 6093 6094 /* 6095 ** Allocate or deallocate a block of nReg consecutive registers. 6096 */ 6097 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6098 int i, n; 6099 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6100 i = pParse->iRangeReg; 6101 n = pParse->nRangeReg; 6102 if( nReg<=n ){ 6103 pParse->iRangeReg += nReg; 6104 pParse->nRangeReg -= nReg; 6105 }else{ 6106 i = pParse->nMem+1; 6107 pParse->nMem += nReg; 6108 } 6109 return i; 6110 } 6111 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6112 if( nReg==1 ){ 6113 sqlite3ReleaseTempReg(pParse, iReg); 6114 return; 6115 } 6116 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6117 if( nReg>pParse->nRangeReg ){ 6118 pParse->nRangeReg = nReg; 6119 pParse->iRangeReg = iReg; 6120 } 6121 } 6122 6123 /* 6124 ** Mark all temporary registers as being unavailable for reuse. 6125 ** 6126 ** Always invoke this procedure after coding a subroutine or co-routine 6127 ** that might be invoked from other parts of the code, to ensure that 6128 ** the sub/co-routine does not use registers in common with the code that 6129 ** invokes the sub/co-routine. 6130 */ 6131 void sqlite3ClearTempRegCache(Parse *pParse){ 6132 pParse->nTempReg = 0; 6133 pParse->nRangeReg = 0; 6134 } 6135 6136 /* 6137 ** Validate that no temporary register falls within the range of 6138 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6139 ** statements. 6140 */ 6141 #ifdef SQLITE_DEBUG 6142 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6143 int i; 6144 if( pParse->nRangeReg>0 6145 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6146 && pParse->iRangeReg <= iLast 6147 ){ 6148 return 0; 6149 } 6150 for(i=0; i<pParse->nTempReg; i++){ 6151 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6152 return 0; 6153 } 6154 } 6155 return 1; 6156 } 6157 #endif /* SQLITE_DEBUG */ 6158