1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expressions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op; 35 pExpr = sqlite3ExprSkipCollate(pExpr); 36 if( pExpr->flags & EP_Generic ) return 0; 37 op = pExpr->op; 38 if( op==TK_SELECT ){ 39 assert( pExpr->flags&EP_xIsSelect ); 40 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 41 } 42 #ifndef SQLITE_OMIT_CAST 43 if( op==TK_CAST ){ 44 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 45 return sqlite3AffinityType(pExpr->u.zToken, 0); 46 } 47 #endif 48 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 49 && pExpr->pTab!=0 50 ){ 51 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 52 ** a TK_COLUMN but was previously evaluated and cached in a register */ 53 int j = pExpr->iColumn; 54 if( j<0 ) return SQLITE_AFF_INTEGER; 55 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 56 return pExpr->pTab->aCol[j].affinity; 57 } 58 return pExpr->affinity; 59 } 60 61 /* 62 ** Set the collating sequence for expression pExpr to be the collating 63 ** sequence named by pToken. Return a pointer to a new Expr node that 64 ** implements the COLLATE operator. 65 ** 66 ** If a memory allocation error occurs, that fact is recorded in pParse->db 67 ** and the pExpr parameter is returned unchanged. 68 */ 69 Expr *sqlite3ExprAddCollateToken( 70 Parse *pParse, /* Parsing context */ 71 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 72 const Token *pCollName, /* Name of collating sequence */ 73 int dequote /* True to dequote pCollName */ 74 ){ 75 if( pCollName->n>0 ){ 76 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 77 if( pNew ){ 78 pNew->pLeft = pExpr; 79 pNew->flags |= EP_Collate|EP_Skip; 80 pExpr = pNew; 81 } 82 } 83 return pExpr; 84 } 85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 86 Token s; 87 assert( zC!=0 ); 88 s.z = zC; 89 s.n = sqlite3Strlen30(s.z); 90 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 91 } 92 93 /* 94 ** Skip over any TK_COLLATE operators and any unlikely() 95 ** or likelihood() function at the root of an expression. 96 */ 97 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 98 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 99 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 100 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 101 assert( pExpr->x.pList->nExpr>0 ); 102 assert( pExpr->op==TK_FUNCTION ); 103 pExpr = pExpr->x.pList->a[0].pExpr; 104 }else{ 105 assert( pExpr->op==TK_COLLATE ); 106 pExpr = pExpr->pLeft; 107 } 108 } 109 return pExpr; 110 } 111 112 /* 113 ** Return the collation sequence for the expression pExpr. If 114 ** there is no defined collating sequence, return NULL. 115 ** 116 ** The collating sequence might be determined by a COLLATE operator 117 ** or by the presence of a column with a defined collating sequence. 118 ** COLLATE operators take first precedence. Left operands take 119 ** precedence over right operands. 120 */ 121 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 122 sqlite3 *db = pParse->db; 123 CollSeq *pColl = 0; 124 Expr *p = pExpr; 125 while( p ){ 126 int op = p->op; 127 if( p->flags & EP_Generic ) break; 128 if( op==TK_CAST || op==TK_UPLUS ){ 129 p = p->pLeft; 130 continue; 131 } 132 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 133 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 134 break; 135 } 136 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 137 || op==TK_REGISTER || op==TK_TRIGGER) 138 && p->pTab!=0 139 ){ 140 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 141 ** a TK_COLUMN but was previously evaluated and cached in a register */ 142 int j = p->iColumn; 143 if( j>=0 ){ 144 const char *zColl = p->pTab->aCol[j].zColl; 145 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 146 } 147 break; 148 } 149 if( p->flags & EP_Collate ){ 150 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 151 p = p->pLeft; 152 }else{ 153 Expr *pNext = p->pRight; 154 /* The Expr.x union is never used at the same time as Expr.pRight */ 155 assert( p->x.pList==0 || p->pRight==0 ); 156 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 157 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 158 ** least one EP_Collate. Thus the following two ALWAYS. */ 159 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 160 int i; 161 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 162 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 163 pNext = p->x.pList->a[i].pExpr; 164 break; 165 } 166 } 167 } 168 p = pNext; 169 } 170 }else{ 171 break; 172 } 173 } 174 if( sqlite3CheckCollSeq(pParse, pColl) ){ 175 pColl = 0; 176 } 177 return pColl; 178 } 179 180 /* 181 ** pExpr is an operand of a comparison operator. aff2 is the 182 ** type affinity of the other operand. This routine returns the 183 ** type affinity that should be used for the comparison operator. 184 */ 185 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 186 char aff1 = sqlite3ExprAffinity(pExpr); 187 if( aff1 && aff2 ){ 188 /* Both sides of the comparison are columns. If one has numeric 189 ** affinity, use that. Otherwise use no affinity. 190 */ 191 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 192 return SQLITE_AFF_NUMERIC; 193 }else{ 194 return SQLITE_AFF_BLOB; 195 } 196 }else if( !aff1 && !aff2 ){ 197 /* Neither side of the comparison is a column. Compare the 198 ** results directly. 199 */ 200 return SQLITE_AFF_BLOB; 201 }else{ 202 /* One side is a column, the other is not. Use the columns affinity. */ 203 assert( aff1==0 || aff2==0 ); 204 return (aff1 + aff2); 205 } 206 } 207 208 /* 209 ** pExpr is a comparison operator. Return the type affinity that should 210 ** be applied to both operands prior to doing the comparison. 211 */ 212 static char comparisonAffinity(Expr *pExpr){ 213 char aff; 214 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 215 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 216 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 217 assert( pExpr->pLeft ); 218 aff = sqlite3ExprAffinity(pExpr->pLeft); 219 if( pExpr->pRight ){ 220 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 221 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 222 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 223 }else if( !aff ){ 224 aff = SQLITE_AFF_BLOB; 225 } 226 return aff; 227 } 228 229 /* 230 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 231 ** idx_affinity is the affinity of an indexed column. Return true 232 ** if the index with affinity idx_affinity may be used to implement 233 ** the comparison in pExpr. 234 */ 235 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 236 char aff = comparisonAffinity(pExpr); 237 switch( aff ){ 238 case SQLITE_AFF_BLOB: 239 return 1; 240 case SQLITE_AFF_TEXT: 241 return idx_affinity==SQLITE_AFF_TEXT; 242 default: 243 return sqlite3IsNumericAffinity(idx_affinity); 244 } 245 } 246 247 /* 248 ** Return the P5 value that should be used for a binary comparison 249 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 250 */ 251 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 252 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 253 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 254 return aff; 255 } 256 257 /* 258 ** Return a pointer to the collation sequence that should be used by 259 ** a binary comparison operator comparing pLeft and pRight. 260 ** 261 ** If the left hand expression has a collating sequence type, then it is 262 ** used. Otherwise the collation sequence for the right hand expression 263 ** is used, or the default (BINARY) if neither expression has a collating 264 ** type. 265 ** 266 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 267 ** it is not considered. 268 */ 269 CollSeq *sqlite3BinaryCompareCollSeq( 270 Parse *pParse, 271 Expr *pLeft, 272 Expr *pRight 273 ){ 274 CollSeq *pColl; 275 assert( pLeft ); 276 if( pLeft->flags & EP_Collate ){ 277 pColl = sqlite3ExprCollSeq(pParse, pLeft); 278 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 279 pColl = sqlite3ExprCollSeq(pParse, pRight); 280 }else{ 281 pColl = sqlite3ExprCollSeq(pParse, pLeft); 282 if( !pColl ){ 283 pColl = sqlite3ExprCollSeq(pParse, pRight); 284 } 285 } 286 return pColl; 287 } 288 289 /* 290 ** Generate code for a comparison operator. 291 */ 292 static int codeCompare( 293 Parse *pParse, /* The parsing (and code generating) context */ 294 Expr *pLeft, /* The left operand */ 295 Expr *pRight, /* The right operand */ 296 int opcode, /* The comparison opcode */ 297 int in1, int in2, /* Register holding operands */ 298 int dest, /* Jump here if true. */ 299 int jumpIfNull /* If true, jump if either operand is NULL */ 300 ){ 301 int p5; 302 int addr; 303 CollSeq *p4; 304 305 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 306 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 307 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 308 (void*)p4, P4_COLLSEQ); 309 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 310 return addr; 311 } 312 313 #if SQLITE_MAX_EXPR_DEPTH>0 314 /* 315 ** Check that argument nHeight is less than or equal to the maximum 316 ** expression depth allowed. If it is not, leave an error message in 317 ** pParse. 318 */ 319 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 320 int rc = SQLITE_OK; 321 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 322 if( nHeight>mxHeight ){ 323 sqlite3ErrorMsg(pParse, 324 "Expression tree is too large (maximum depth %d)", mxHeight 325 ); 326 rc = SQLITE_ERROR; 327 } 328 return rc; 329 } 330 331 /* The following three functions, heightOfExpr(), heightOfExprList() 332 ** and heightOfSelect(), are used to determine the maximum height 333 ** of any expression tree referenced by the structure passed as the 334 ** first argument. 335 ** 336 ** If this maximum height is greater than the current value pointed 337 ** to by pnHeight, the second parameter, then set *pnHeight to that 338 ** value. 339 */ 340 static void heightOfExpr(Expr *p, int *pnHeight){ 341 if( p ){ 342 if( p->nHeight>*pnHeight ){ 343 *pnHeight = p->nHeight; 344 } 345 } 346 } 347 static void heightOfExprList(ExprList *p, int *pnHeight){ 348 if( p ){ 349 int i; 350 for(i=0; i<p->nExpr; i++){ 351 heightOfExpr(p->a[i].pExpr, pnHeight); 352 } 353 } 354 } 355 static void heightOfSelect(Select *p, int *pnHeight){ 356 if( p ){ 357 heightOfExpr(p->pWhere, pnHeight); 358 heightOfExpr(p->pHaving, pnHeight); 359 heightOfExpr(p->pLimit, pnHeight); 360 heightOfExpr(p->pOffset, pnHeight); 361 heightOfExprList(p->pEList, pnHeight); 362 heightOfExprList(p->pGroupBy, pnHeight); 363 heightOfExprList(p->pOrderBy, pnHeight); 364 heightOfSelect(p->pPrior, pnHeight); 365 } 366 } 367 368 /* 369 ** Set the Expr.nHeight variable in the structure passed as an 370 ** argument. An expression with no children, Expr.pList or 371 ** Expr.pSelect member has a height of 1. Any other expression 372 ** has a height equal to the maximum height of any other 373 ** referenced Expr plus one. 374 ** 375 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 376 ** if appropriate. 377 */ 378 static void exprSetHeight(Expr *p){ 379 int nHeight = 0; 380 heightOfExpr(p->pLeft, &nHeight); 381 heightOfExpr(p->pRight, &nHeight); 382 if( ExprHasProperty(p, EP_xIsSelect) ){ 383 heightOfSelect(p->x.pSelect, &nHeight); 384 }else if( p->x.pList ){ 385 heightOfExprList(p->x.pList, &nHeight); 386 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 387 } 388 p->nHeight = nHeight + 1; 389 } 390 391 /* 392 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 393 ** the height is greater than the maximum allowed expression depth, 394 ** leave an error in pParse. 395 ** 396 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 397 ** Expr.flags. 398 */ 399 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 400 if( pParse->nErr ) return; 401 exprSetHeight(p); 402 sqlite3ExprCheckHeight(pParse, p->nHeight); 403 } 404 405 /* 406 ** Return the maximum height of any expression tree referenced 407 ** by the select statement passed as an argument. 408 */ 409 int sqlite3SelectExprHeight(Select *p){ 410 int nHeight = 0; 411 heightOfSelect(p, &nHeight); 412 return nHeight; 413 } 414 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 415 /* 416 ** Propagate all EP_Propagate flags from the Expr.x.pList into 417 ** Expr.flags. 418 */ 419 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 420 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 421 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 422 } 423 } 424 #define exprSetHeight(y) 425 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 426 427 /* 428 ** This routine is the core allocator for Expr nodes. 429 ** 430 ** Construct a new expression node and return a pointer to it. Memory 431 ** for this node and for the pToken argument is a single allocation 432 ** obtained from sqlite3DbMalloc(). The calling function 433 ** is responsible for making sure the node eventually gets freed. 434 ** 435 ** If dequote is true, then the token (if it exists) is dequoted. 436 ** If dequote is false, no dequoting is performed. The deQuote 437 ** parameter is ignored if pToken is NULL or if the token does not 438 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 439 ** then the EP_DblQuoted flag is set on the expression node. 440 ** 441 ** Special case: If op==TK_INTEGER and pToken points to a string that 442 ** can be translated into a 32-bit integer, then the token is not 443 ** stored in u.zToken. Instead, the integer values is written 444 ** into u.iValue and the EP_IntValue flag is set. No extra storage 445 ** is allocated to hold the integer text and the dequote flag is ignored. 446 */ 447 Expr *sqlite3ExprAlloc( 448 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 449 int op, /* Expression opcode */ 450 const Token *pToken, /* Token argument. Might be NULL */ 451 int dequote /* True to dequote */ 452 ){ 453 Expr *pNew; 454 int nExtra = 0; 455 int iValue = 0; 456 457 if( pToken ){ 458 if( op!=TK_INTEGER || pToken->z==0 459 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 460 nExtra = pToken->n+1; 461 assert( iValue>=0 ); 462 } 463 } 464 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 465 if( pNew ){ 466 pNew->op = (u8)op; 467 pNew->iAgg = -1; 468 if( pToken ){ 469 if( nExtra==0 ){ 470 pNew->flags |= EP_IntValue; 471 pNew->u.iValue = iValue; 472 }else{ 473 int c; 474 pNew->u.zToken = (char*)&pNew[1]; 475 assert( pToken->z!=0 || pToken->n==0 ); 476 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 477 pNew->u.zToken[pToken->n] = 0; 478 if( dequote && nExtra>=3 479 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 480 sqlite3Dequote(pNew->u.zToken); 481 if( c=='"' ) pNew->flags |= EP_DblQuoted; 482 } 483 } 484 } 485 #if SQLITE_MAX_EXPR_DEPTH>0 486 pNew->nHeight = 1; 487 #endif 488 } 489 return pNew; 490 } 491 492 /* 493 ** Allocate a new expression node from a zero-terminated token that has 494 ** already been dequoted. 495 */ 496 Expr *sqlite3Expr( 497 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 498 int op, /* Expression opcode */ 499 const char *zToken /* Token argument. Might be NULL */ 500 ){ 501 Token x; 502 x.z = zToken; 503 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 504 return sqlite3ExprAlloc(db, op, &x, 0); 505 } 506 507 /* 508 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 509 ** 510 ** If pRoot==NULL that means that a memory allocation error has occurred. 511 ** In that case, delete the subtrees pLeft and pRight. 512 */ 513 void sqlite3ExprAttachSubtrees( 514 sqlite3 *db, 515 Expr *pRoot, 516 Expr *pLeft, 517 Expr *pRight 518 ){ 519 if( pRoot==0 ){ 520 assert( db->mallocFailed ); 521 sqlite3ExprDelete(db, pLeft); 522 sqlite3ExprDelete(db, pRight); 523 }else{ 524 if( pRight ){ 525 pRoot->pRight = pRight; 526 pRoot->flags |= EP_Propagate & pRight->flags; 527 } 528 if( pLeft ){ 529 pRoot->pLeft = pLeft; 530 pRoot->flags |= EP_Propagate & pLeft->flags; 531 } 532 exprSetHeight(pRoot); 533 } 534 } 535 536 /* 537 ** Allocate an Expr node which joins as many as two subtrees. 538 ** 539 ** One or both of the subtrees can be NULL. Return a pointer to the new 540 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 541 ** free the subtrees and return NULL. 542 */ 543 Expr *sqlite3PExpr( 544 Parse *pParse, /* Parsing context */ 545 int op, /* Expression opcode */ 546 Expr *pLeft, /* Left operand */ 547 Expr *pRight, /* Right operand */ 548 const Token *pToken /* Argument token */ 549 ){ 550 Expr *p; 551 if( op==TK_AND && pParse->nErr==0 ){ 552 /* Take advantage of short-circuit false optimization for AND */ 553 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 554 }else{ 555 p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1); 556 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 557 } 558 if( p ) { 559 sqlite3ExprCheckHeight(pParse, p->nHeight); 560 } 561 return p; 562 } 563 564 /* 565 ** If the expression is always either TRUE or FALSE (respectively), 566 ** then return 1. If one cannot determine the truth value of the 567 ** expression at compile-time return 0. 568 ** 569 ** This is an optimization. If is OK to return 0 here even if 570 ** the expression really is always false or false (a false negative). 571 ** But it is a bug to return 1 if the expression might have different 572 ** boolean values in different circumstances (a false positive.) 573 ** 574 ** Note that if the expression is part of conditional for a 575 ** LEFT JOIN, then we cannot determine at compile-time whether or not 576 ** is it true or false, so always return 0. 577 */ 578 static int exprAlwaysTrue(Expr *p){ 579 int v = 0; 580 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 581 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 582 return v!=0; 583 } 584 static int exprAlwaysFalse(Expr *p){ 585 int v = 0; 586 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 587 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 588 return v==0; 589 } 590 591 /* 592 ** Join two expressions using an AND operator. If either expression is 593 ** NULL, then just return the other expression. 594 ** 595 ** If one side or the other of the AND is known to be false, then instead 596 ** of returning an AND expression, just return a constant expression with 597 ** a value of false. 598 */ 599 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 600 if( pLeft==0 ){ 601 return pRight; 602 }else if( pRight==0 ){ 603 return pLeft; 604 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 605 sqlite3ExprDelete(db, pLeft); 606 sqlite3ExprDelete(db, pRight); 607 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 608 }else{ 609 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 610 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 611 return pNew; 612 } 613 } 614 615 /* 616 ** Construct a new expression node for a function with multiple 617 ** arguments. 618 */ 619 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 620 Expr *pNew; 621 sqlite3 *db = pParse->db; 622 assert( pToken ); 623 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 624 if( pNew==0 ){ 625 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 626 return 0; 627 } 628 pNew->x.pList = pList; 629 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 630 sqlite3ExprSetHeightAndFlags(pParse, pNew); 631 return pNew; 632 } 633 634 /* 635 ** Assign a variable number to an expression that encodes a wildcard 636 ** in the original SQL statement. 637 ** 638 ** Wildcards consisting of a single "?" are assigned the next sequential 639 ** variable number. 640 ** 641 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 642 ** sure "nnn" is not too be to avoid a denial of service attack when 643 ** the SQL statement comes from an external source. 644 ** 645 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 646 ** as the previous instance of the same wildcard. Or if this is the first 647 ** instance of the wildcard, the next sequential variable number is 648 ** assigned. 649 */ 650 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 651 sqlite3 *db = pParse->db; 652 const char *z; 653 654 if( pExpr==0 ) return; 655 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 656 z = pExpr->u.zToken; 657 assert( z!=0 ); 658 assert( z[0]!=0 ); 659 if( z[1]==0 ){ 660 /* Wildcard of the form "?". Assign the next variable number */ 661 assert( z[0]=='?' ); 662 pExpr->iColumn = (ynVar)(++pParse->nVar); 663 }else{ 664 ynVar x = 0; 665 u32 n = sqlite3Strlen30(z); 666 if( z[0]=='?' ){ 667 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 668 ** use it as the variable number */ 669 i64 i; 670 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 671 pExpr->iColumn = x = (ynVar)i; 672 testcase( i==0 ); 673 testcase( i==1 ); 674 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 675 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 676 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 677 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 678 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 679 x = 0; 680 } 681 if( i>pParse->nVar ){ 682 pParse->nVar = (int)i; 683 } 684 }else{ 685 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 686 ** number as the prior appearance of the same name, or if the name 687 ** has never appeared before, reuse the same variable number 688 */ 689 ynVar i; 690 for(i=0; i<pParse->nzVar; i++){ 691 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 692 pExpr->iColumn = x = (ynVar)i+1; 693 break; 694 } 695 } 696 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 697 } 698 if( x>0 ){ 699 if( x>pParse->nzVar ){ 700 char **a; 701 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 702 if( a==0 ) return; /* Error reported through db->mallocFailed */ 703 pParse->azVar = a; 704 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 705 pParse->nzVar = x; 706 } 707 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 708 sqlite3DbFree(db, pParse->azVar[x-1]); 709 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 710 } 711 } 712 } 713 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 714 sqlite3ErrorMsg(pParse, "too many SQL variables"); 715 } 716 } 717 718 /* 719 ** Recursively delete an expression tree. 720 */ 721 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 722 if( p==0 ) return; 723 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 724 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 725 if( !ExprHasProperty(p, EP_TokenOnly) ){ 726 /* The Expr.x union is never used at the same time as Expr.pRight */ 727 assert( p->x.pList==0 || p->pRight==0 ); 728 sqlite3ExprDelete(db, p->pLeft); 729 sqlite3ExprDelete(db, p->pRight); 730 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 731 if( ExprHasProperty(p, EP_xIsSelect) ){ 732 sqlite3SelectDelete(db, p->x.pSelect); 733 }else{ 734 sqlite3ExprListDelete(db, p->x.pList); 735 } 736 } 737 if( !ExprHasProperty(p, EP_Static) ){ 738 sqlite3DbFree(db, p); 739 } 740 } 741 742 /* 743 ** Return the number of bytes allocated for the expression structure 744 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 745 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 746 */ 747 static int exprStructSize(Expr *p){ 748 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 749 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 750 return EXPR_FULLSIZE; 751 } 752 753 /* 754 ** The dupedExpr*Size() routines each return the number of bytes required 755 ** to store a copy of an expression or expression tree. They differ in 756 ** how much of the tree is measured. 757 ** 758 ** dupedExprStructSize() Size of only the Expr structure 759 ** dupedExprNodeSize() Size of Expr + space for token 760 ** dupedExprSize() Expr + token + subtree components 761 ** 762 *************************************************************************** 763 ** 764 ** The dupedExprStructSize() function returns two values OR-ed together: 765 ** (1) the space required for a copy of the Expr structure only and 766 ** (2) the EP_xxx flags that indicate what the structure size should be. 767 ** The return values is always one of: 768 ** 769 ** EXPR_FULLSIZE 770 ** EXPR_REDUCEDSIZE | EP_Reduced 771 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 772 ** 773 ** The size of the structure can be found by masking the return value 774 ** of this routine with 0xfff. The flags can be found by masking the 775 ** return value with EP_Reduced|EP_TokenOnly. 776 ** 777 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 778 ** (unreduced) Expr objects as they or originally constructed by the parser. 779 ** During expression analysis, extra information is computed and moved into 780 ** later parts of teh Expr object and that extra information might get chopped 781 ** off if the expression is reduced. Note also that it does not work to 782 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 783 ** to reduce a pristine expression tree from the parser. The implementation 784 ** of dupedExprStructSize() contain multiple assert() statements that attempt 785 ** to enforce this constraint. 786 */ 787 static int dupedExprStructSize(Expr *p, int flags){ 788 int nSize; 789 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 790 assert( EXPR_FULLSIZE<=0xfff ); 791 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 792 if( 0==(flags&EXPRDUP_REDUCE) ){ 793 nSize = EXPR_FULLSIZE; 794 }else{ 795 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 796 assert( !ExprHasProperty(p, EP_FromJoin) ); 797 assert( !ExprHasProperty(p, EP_MemToken) ); 798 assert( !ExprHasProperty(p, EP_NoReduce) ); 799 if( p->pLeft || p->x.pList ){ 800 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 801 }else{ 802 assert( p->pRight==0 ); 803 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 804 } 805 } 806 return nSize; 807 } 808 809 /* 810 ** This function returns the space in bytes required to store the copy 811 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 812 ** string is defined.) 813 */ 814 static int dupedExprNodeSize(Expr *p, int flags){ 815 int nByte = dupedExprStructSize(p, flags) & 0xfff; 816 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 817 nByte += sqlite3Strlen30(p->u.zToken)+1; 818 } 819 return ROUND8(nByte); 820 } 821 822 /* 823 ** Return the number of bytes required to create a duplicate of the 824 ** expression passed as the first argument. The second argument is a 825 ** mask containing EXPRDUP_XXX flags. 826 ** 827 ** The value returned includes space to create a copy of the Expr struct 828 ** itself and the buffer referred to by Expr.u.zToken, if any. 829 ** 830 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 831 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 832 ** and Expr.pRight variables (but not for any structures pointed to or 833 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 834 */ 835 static int dupedExprSize(Expr *p, int flags){ 836 int nByte = 0; 837 if( p ){ 838 nByte = dupedExprNodeSize(p, flags); 839 if( flags&EXPRDUP_REDUCE ){ 840 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 841 } 842 } 843 return nByte; 844 } 845 846 /* 847 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 848 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 849 ** to store the copy of expression p, the copies of p->u.zToken 850 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 851 ** if any. Before returning, *pzBuffer is set to the first byte past the 852 ** portion of the buffer copied into by this function. 853 */ 854 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 855 Expr *pNew = 0; /* Value to return */ 856 assert( flags==0 || flags==EXPRDUP_REDUCE ); 857 if( p ){ 858 const int isReduced = (flags&EXPRDUP_REDUCE); 859 u8 *zAlloc; 860 u32 staticFlag = 0; 861 862 assert( pzBuffer==0 || isReduced ); 863 864 /* Figure out where to write the new Expr structure. */ 865 if( pzBuffer ){ 866 zAlloc = *pzBuffer; 867 staticFlag = EP_Static; 868 }else{ 869 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 870 } 871 pNew = (Expr *)zAlloc; 872 873 if( pNew ){ 874 /* Set nNewSize to the size allocated for the structure pointed to 875 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 876 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 877 ** by the copy of the p->u.zToken string (if any). 878 */ 879 const unsigned nStructSize = dupedExprStructSize(p, flags); 880 const int nNewSize = nStructSize & 0xfff; 881 int nToken; 882 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 883 nToken = sqlite3Strlen30(p->u.zToken) + 1; 884 }else{ 885 nToken = 0; 886 } 887 if( isReduced ){ 888 assert( ExprHasProperty(p, EP_Reduced)==0 ); 889 memcpy(zAlloc, p, nNewSize); 890 }else{ 891 int nSize = exprStructSize(p); 892 memcpy(zAlloc, p, nSize); 893 if( nSize<EXPR_FULLSIZE ){ 894 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 895 } 896 } 897 898 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 899 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 900 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 901 pNew->flags |= staticFlag; 902 903 /* Copy the p->u.zToken string, if any. */ 904 if( nToken ){ 905 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 906 memcpy(zToken, p->u.zToken, nToken); 907 } 908 909 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 910 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 911 if( ExprHasProperty(p, EP_xIsSelect) ){ 912 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 913 }else{ 914 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 915 } 916 } 917 918 /* Fill in pNew->pLeft and pNew->pRight. */ 919 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 920 zAlloc += dupedExprNodeSize(p, flags); 921 if( ExprHasProperty(pNew, EP_Reduced) ){ 922 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 923 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 924 } 925 if( pzBuffer ){ 926 *pzBuffer = zAlloc; 927 } 928 }else{ 929 if( !ExprHasProperty(p, EP_TokenOnly) ){ 930 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 931 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 932 } 933 } 934 935 } 936 } 937 return pNew; 938 } 939 940 /* 941 ** Create and return a deep copy of the object passed as the second 942 ** argument. If an OOM condition is encountered, NULL is returned 943 ** and the db->mallocFailed flag set. 944 */ 945 #ifndef SQLITE_OMIT_CTE 946 static With *withDup(sqlite3 *db, With *p){ 947 With *pRet = 0; 948 if( p ){ 949 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 950 pRet = sqlite3DbMallocZero(db, nByte); 951 if( pRet ){ 952 int i; 953 pRet->nCte = p->nCte; 954 for(i=0; i<p->nCte; i++){ 955 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 956 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 957 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 958 } 959 } 960 } 961 return pRet; 962 } 963 #else 964 # define withDup(x,y) 0 965 #endif 966 967 /* 968 ** The following group of routines make deep copies of expressions, 969 ** expression lists, ID lists, and select statements. The copies can 970 ** be deleted (by being passed to their respective ...Delete() routines) 971 ** without effecting the originals. 972 ** 973 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 974 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 975 ** by subsequent calls to sqlite*ListAppend() routines. 976 ** 977 ** Any tables that the SrcList might point to are not duplicated. 978 ** 979 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 980 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 981 ** truncated version of the usual Expr structure that will be stored as 982 ** part of the in-memory representation of the database schema. 983 */ 984 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 985 assert( flags==0 || flags==EXPRDUP_REDUCE ); 986 return exprDup(db, p, flags, 0); 987 } 988 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 989 ExprList *pNew; 990 struct ExprList_item *pItem, *pOldItem; 991 int i; 992 if( p==0 ) return 0; 993 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 994 if( pNew==0 ) return 0; 995 pNew->nExpr = i = p->nExpr; 996 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 997 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 998 if( pItem==0 ){ 999 sqlite3DbFree(db, pNew); 1000 return 0; 1001 } 1002 pOldItem = p->a; 1003 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1004 Expr *pOldExpr = pOldItem->pExpr; 1005 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1006 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1007 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1008 pItem->sortOrder = pOldItem->sortOrder; 1009 pItem->done = 0; 1010 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1011 pItem->u = pOldItem->u; 1012 } 1013 return pNew; 1014 } 1015 1016 /* 1017 ** If cursors, triggers, views and subqueries are all omitted from 1018 ** the build, then none of the following routines, except for 1019 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1020 ** called with a NULL argument. 1021 */ 1022 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1023 || !defined(SQLITE_OMIT_SUBQUERY) 1024 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1025 SrcList *pNew; 1026 int i; 1027 int nByte; 1028 if( p==0 ) return 0; 1029 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1030 pNew = sqlite3DbMallocRaw(db, nByte ); 1031 if( pNew==0 ) return 0; 1032 pNew->nSrc = pNew->nAlloc = p->nSrc; 1033 for(i=0; i<p->nSrc; i++){ 1034 struct SrcList_item *pNewItem = &pNew->a[i]; 1035 struct SrcList_item *pOldItem = &p->a[i]; 1036 Table *pTab; 1037 pNewItem->pSchema = pOldItem->pSchema; 1038 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1039 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1040 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1041 pNewItem->fg = pOldItem->fg; 1042 pNewItem->iCursor = pOldItem->iCursor; 1043 pNewItem->addrFillSub = pOldItem->addrFillSub; 1044 pNewItem->regReturn = pOldItem->regReturn; 1045 if( pNewItem->fg.isIndexedBy ){ 1046 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1047 } 1048 pNewItem->pIBIndex = pOldItem->pIBIndex; 1049 if( pNewItem->fg.isTabFunc ){ 1050 pNewItem->u1.pFuncArg = 1051 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1052 } 1053 pTab = pNewItem->pTab = pOldItem->pTab; 1054 if( pTab ){ 1055 pTab->nRef++; 1056 } 1057 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1058 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1059 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1060 pNewItem->colUsed = pOldItem->colUsed; 1061 } 1062 return pNew; 1063 } 1064 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1065 IdList *pNew; 1066 int i; 1067 if( p==0 ) return 0; 1068 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 1069 if( pNew==0 ) return 0; 1070 pNew->nId = p->nId; 1071 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 1072 if( pNew->a==0 ){ 1073 sqlite3DbFree(db, pNew); 1074 return 0; 1075 } 1076 /* Note that because the size of the allocation for p->a[] is not 1077 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1078 ** on the duplicate created by this function. */ 1079 for(i=0; i<p->nId; i++){ 1080 struct IdList_item *pNewItem = &pNew->a[i]; 1081 struct IdList_item *pOldItem = &p->a[i]; 1082 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1083 pNewItem->idx = pOldItem->idx; 1084 } 1085 return pNew; 1086 } 1087 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1088 Select *pNew, *pPrior; 1089 if( p==0 ) return 0; 1090 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 1091 if( pNew==0 ) return 0; 1092 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1093 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1094 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1095 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1096 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1097 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1098 pNew->op = p->op; 1099 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1100 if( pPrior ) pPrior->pNext = pNew; 1101 pNew->pNext = 0; 1102 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1103 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1104 pNew->iLimit = 0; 1105 pNew->iOffset = 0; 1106 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1107 pNew->addrOpenEphm[0] = -1; 1108 pNew->addrOpenEphm[1] = -1; 1109 pNew->nSelectRow = p->nSelectRow; 1110 pNew->pWith = withDup(db, p->pWith); 1111 sqlite3SelectSetName(pNew, p->zSelName); 1112 return pNew; 1113 } 1114 #else 1115 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1116 assert( p==0 ); 1117 return 0; 1118 } 1119 #endif 1120 1121 1122 /* 1123 ** Add a new element to the end of an expression list. If pList is 1124 ** initially NULL, then create a new expression list. 1125 ** 1126 ** If a memory allocation error occurs, the entire list is freed and 1127 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1128 ** that the new entry was successfully appended. 1129 */ 1130 ExprList *sqlite3ExprListAppend( 1131 Parse *pParse, /* Parsing context */ 1132 ExprList *pList, /* List to which to append. Might be NULL */ 1133 Expr *pExpr /* Expression to be appended. Might be NULL */ 1134 ){ 1135 sqlite3 *db = pParse->db; 1136 if( pList==0 ){ 1137 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1138 if( pList==0 ){ 1139 goto no_mem; 1140 } 1141 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1142 if( pList->a==0 ) goto no_mem; 1143 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1144 struct ExprList_item *a; 1145 assert( pList->nExpr>0 ); 1146 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1147 if( a==0 ){ 1148 goto no_mem; 1149 } 1150 pList->a = a; 1151 } 1152 assert( pList->a!=0 ); 1153 if( 1 ){ 1154 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1155 memset(pItem, 0, sizeof(*pItem)); 1156 pItem->pExpr = pExpr; 1157 } 1158 return pList; 1159 1160 no_mem: 1161 /* Avoid leaking memory if malloc has failed. */ 1162 sqlite3ExprDelete(db, pExpr); 1163 sqlite3ExprListDelete(db, pList); 1164 return 0; 1165 } 1166 1167 /* 1168 ** Set the sort order for the last element on the given ExprList. 1169 */ 1170 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1171 if( p==0 ) return; 1172 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1173 assert( p->nExpr>0 ); 1174 if( iSortOrder<0 ){ 1175 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1176 return; 1177 } 1178 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1179 } 1180 1181 /* 1182 ** Set the ExprList.a[].zName element of the most recently added item 1183 ** on the expression list. 1184 ** 1185 ** pList might be NULL following an OOM error. But pName should never be 1186 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1187 ** is set. 1188 */ 1189 void sqlite3ExprListSetName( 1190 Parse *pParse, /* Parsing context */ 1191 ExprList *pList, /* List to which to add the span. */ 1192 Token *pName, /* Name to be added */ 1193 int dequote /* True to cause the name to be dequoted */ 1194 ){ 1195 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1196 if( pList ){ 1197 struct ExprList_item *pItem; 1198 assert( pList->nExpr>0 ); 1199 pItem = &pList->a[pList->nExpr-1]; 1200 assert( pItem->zName==0 ); 1201 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1202 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1203 } 1204 } 1205 1206 /* 1207 ** Set the ExprList.a[].zSpan element of the most recently added item 1208 ** on the expression list. 1209 ** 1210 ** pList might be NULL following an OOM error. But pSpan should never be 1211 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1212 ** is set. 1213 */ 1214 void sqlite3ExprListSetSpan( 1215 Parse *pParse, /* Parsing context */ 1216 ExprList *pList, /* List to which to add the span. */ 1217 ExprSpan *pSpan /* The span to be added */ 1218 ){ 1219 sqlite3 *db = pParse->db; 1220 assert( pList!=0 || db->mallocFailed!=0 ); 1221 if( pList ){ 1222 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1223 assert( pList->nExpr>0 ); 1224 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1225 sqlite3DbFree(db, pItem->zSpan); 1226 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1227 (int)(pSpan->zEnd - pSpan->zStart)); 1228 } 1229 } 1230 1231 /* 1232 ** If the expression list pEList contains more than iLimit elements, 1233 ** leave an error message in pParse. 1234 */ 1235 void sqlite3ExprListCheckLength( 1236 Parse *pParse, 1237 ExprList *pEList, 1238 const char *zObject 1239 ){ 1240 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1241 testcase( pEList && pEList->nExpr==mx ); 1242 testcase( pEList && pEList->nExpr==mx+1 ); 1243 if( pEList && pEList->nExpr>mx ){ 1244 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1245 } 1246 } 1247 1248 /* 1249 ** Delete an entire expression list. 1250 */ 1251 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1252 int i; 1253 struct ExprList_item *pItem; 1254 if( pList==0 ) return; 1255 assert( pList->a!=0 || pList->nExpr==0 ); 1256 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1257 sqlite3ExprDelete(db, pItem->pExpr); 1258 sqlite3DbFree(db, pItem->zName); 1259 sqlite3DbFree(db, pItem->zSpan); 1260 } 1261 sqlite3DbFree(db, pList->a); 1262 sqlite3DbFree(db, pList); 1263 } 1264 1265 /* 1266 ** Return the bitwise-OR of all Expr.flags fields in the given 1267 ** ExprList. 1268 */ 1269 u32 sqlite3ExprListFlags(const ExprList *pList){ 1270 int i; 1271 u32 m = 0; 1272 if( pList ){ 1273 for(i=0; i<pList->nExpr; i++){ 1274 Expr *pExpr = pList->a[i].pExpr; 1275 if( ALWAYS(pExpr) ) m |= pExpr->flags; 1276 } 1277 } 1278 return m; 1279 } 1280 1281 /* 1282 ** These routines are Walker callbacks used to check expressions to 1283 ** see if they are "constant" for some definition of constant. The 1284 ** Walker.eCode value determines the type of "constant" we are looking 1285 ** for. 1286 ** 1287 ** These callback routines are used to implement the following: 1288 ** 1289 ** sqlite3ExprIsConstant() pWalker->eCode==1 1290 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1291 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1292 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1293 ** 1294 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1295 ** is found to not be a constant. 1296 ** 1297 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1298 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1299 ** an existing schema and 4 when processing a new statement. A bound 1300 ** parameter raises an error for new statements, but is silently converted 1301 ** to NULL for existing schemas. This allows sqlite_master tables that 1302 ** contain a bound parameter because they were generated by older versions 1303 ** of SQLite to be parsed by newer versions of SQLite without raising a 1304 ** malformed schema error. 1305 */ 1306 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1307 1308 /* If pWalker->eCode is 2 then any term of the expression that comes from 1309 ** the ON or USING clauses of a left join disqualifies the expression 1310 ** from being considered constant. */ 1311 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1312 pWalker->eCode = 0; 1313 return WRC_Abort; 1314 } 1315 1316 switch( pExpr->op ){ 1317 /* Consider functions to be constant if all their arguments are constant 1318 ** and either pWalker->eCode==4 or 5 or the function has the 1319 ** SQLITE_FUNC_CONST flag. */ 1320 case TK_FUNCTION: 1321 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1322 return WRC_Continue; 1323 }else{ 1324 pWalker->eCode = 0; 1325 return WRC_Abort; 1326 } 1327 case TK_ID: 1328 case TK_COLUMN: 1329 case TK_AGG_FUNCTION: 1330 case TK_AGG_COLUMN: 1331 testcase( pExpr->op==TK_ID ); 1332 testcase( pExpr->op==TK_COLUMN ); 1333 testcase( pExpr->op==TK_AGG_FUNCTION ); 1334 testcase( pExpr->op==TK_AGG_COLUMN ); 1335 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1336 return WRC_Continue; 1337 }else{ 1338 pWalker->eCode = 0; 1339 return WRC_Abort; 1340 } 1341 case TK_VARIABLE: 1342 if( pWalker->eCode==5 ){ 1343 /* Silently convert bound parameters that appear inside of CREATE 1344 ** statements into a NULL when parsing the CREATE statement text out 1345 ** of the sqlite_master table */ 1346 pExpr->op = TK_NULL; 1347 }else if( pWalker->eCode==4 ){ 1348 /* A bound parameter in a CREATE statement that originates from 1349 ** sqlite3_prepare() causes an error */ 1350 pWalker->eCode = 0; 1351 return WRC_Abort; 1352 } 1353 /* Fall through */ 1354 default: 1355 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1356 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1357 return WRC_Continue; 1358 } 1359 } 1360 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1361 UNUSED_PARAMETER(NotUsed); 1362 pWalker->eCode = 0; 1363 return WRC_Abort; 1364 } 1365 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1366 Walker w; 1367 memset(&w, 0, sizeof(w)); 1368 w.eCode = initFlag; 1369 w.xExprCallback = exprNodeIsConstant; 1370 w.xSelectCallback = selectNodeIsConstant; 1371 w.u.iCur = iCur; 1372 sqlite3WalkExpr(&w, p); 1373 return w.eCode; 1374 } 1375 1376 /* 1377 ** Walk an expression tree. Return non-zero if the expression is constant 1378 ** and 0 if it involves variables or function calls. 1379 ** 1380 ** For the purposes of this function, a double-quoted string (ex: "abc") 1381 ** is considered a variable but a single-quoted string (ex: 'abc') is 1382 ** a constant. 1383 */ 1384 int sqlite3ExprIsConstant(Expr *p){ 1385 return exprIsConst(p, 1, 0); 1386 } 1387 1388 /* 1389 ** Walk an expression tree. Return non-zero if the expression is constant 1390 ** that does no originate from the ON or USING clauses of a join. 1391 ** Return 0 if it involves variables or function calls or terms from 1392 ** an ON or USING clause. 1393 */ 1394 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1395 return exprIsConst(p, 2, 0); 1396 } 1397 1398 /* 1399 ** Walk an expression tree. Return non-zero if the expression is constant 1400 ** for any single row of the table with cursor iCur. In other words, the 1401 ** expression must not refer to any non-deterministic function nor any 1402 ** table other than iCur. 1403 */ 1404 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1405 return exprIsConst(p, 3, iCur); 1406 } 1407 1408 /* 1409 ** Walk an expression tree. Return non-zero if the expression is constant 1410 ** or a function call with constant arguments. Return and 0 if there 1411 ** are any variables. 1412 ** 1413 ** For the purposes of this function, a double-quoted string (ex: "abc") 1414 ** is considered a variable but a single-quoted string (ex: 'abc') is 1415 ** a constant. 1416 */ 1417 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1418 assert( isInit==0 || isInit==1 ); 1419 return exprIsConst(p, 4+isInit, 0); 1420 } 1421 1422 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1423 /* 1424 ** Walk an expression tree. Return 1 if the expression contains a 1425 ** subquery of some kind. Return 0 if there are no subqueries. 1426 */ 1427 int sqlite3ExprContainsSubquery(Expr *p){ 1428 Walker w; 1429 memset(&w, 0, sizeof(w)); 1430 w.eCode = 1; 1431 w.xExprCallback = sqlite3ExprWalkNoop; 1432 w.xSelectCallback = selectNodeIsConstant; 1433 sqlite3WalkExpr(&w, p); 1434 return w.eCode==0; 1435 } 1436 #endif 1437 1438 /* 1439 ** If the expression p codes a constant integer that is small enough 1440 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1441 ** in *pValue. If the expression is not an integer or if it is too big 1442 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1443 */ 1444 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1445 int rc = 0; 1446 1447 /* If an expression is an integer literal that fits in a signed 32-bit 1448 ** integer, then the EP_IntValue flag will have already been set */ 1449 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1450 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1451 1452 if( p->flags & EP_IntValue ){ 1453 *pValue = p->u.iValue; 1454 return 1; 1455 } 1456 switch( p->op ){ 1457 case TK_UPLUS: { 1458 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1459 break; 1460 } 1461 case TK_UMINUS: { 1462 int v; 1463 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1464 assert( v!=(-2147483647-1) ); 1465 *pValue = -v; 1466 rc = 1; 1467 } 1468 break; 1469 } 1470 default: break; 1471 } 1472 return rc; 1473 } 1474 1475 /* 1476 ** Return FALSE if there is no chance that the expression can be NULL. 1477 ** 1478 ** If the expression might be NULL or if the expression is too complex 1479 ** to tell return TRUE. 1480 ** 1481 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1482 ** when we know that a value cannot be NULL. Hence, a false positive 1483 ** (returning TRUE when in fact the expression can never be NULL) might 1484 ** be a small performance hit but is otherwise harmless. On the other 1485 ** hand, a false negative (returning FALSE when the result could be NULL) 1486 ** will likely result in an incorrect answer. So when in doubt, return 1487 ** TRUE. 1488 */ 1489 int sqlite3ExprCanBeNull(const Expr *p){ 1490 u8 op; 1491 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1492 op = p->op; 1493 if( op==TK_REGISTER ) op = p->op2; 1494 switch( op ){ 1495 case TK_INTEGER: 1496 case TK_STRING: 1497 case TK_FLOAT: 1498 case TK_BLOB: 1499 return 0; 1500 case TK_COLUMN: 1501 assert( p->pTab!=0 ); 1502 return ExprHasProperty(p, EP_CanBeNull) || 1503 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 1504 default: 1505 return 1; 1506 } 1507 } 1508 1509 /* 1510 ** Return TRUE if the given expression is a constant which would be 1511 ** unchanged by OP_Affinity with the affinity given in the second 1512 ** argument. 1513 ** 1514 ** This routine is used to determine if the OP_Affinity operation 1515 ** can be omitted. When in doubt return FALSE. A false negative 1516 ** is harmless. A false positive, however, can result in the wrong 1517 ** answer. 1518 */ 1519 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1520 u8 op; 1521 if( aff==SQLITE_AFF_BLOB ) return 1; 1522 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1523 op = p->op; 1524 if( op==TK_REGISTER ) op = p->op2; 1525 switch( op ){ 1526 case TK_INTEGER: { 1527 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1528 } 1529 case TK_FLOAT: { 1530 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1531 } 1532 case TK_STRING: { 1533 return aff==SQLITE_AFF_TEXT; 1534 } 1535 case TK_BLOB: { 1536 return 1; 1537 } 1538 case TK_COLUMN: { 1539 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1540 return p->iColumn<0 1541 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1542 } 1543 default: { 1544 return 0; 1545 } 1546 } 1547 } 1548 1549 /* 1550 ** Return TRUE if the given string is a row-id column name. 1551 */ 1552 int sqlite3IsRowid(const char *z){ 1553 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1554 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1555 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1556 return 0; 1557 } 1558 1559 /* 1560 ** Return true if we are able to the IN operator optimization on a 1561 ** query of the form 1562 ** 1563 ** x IN (SELECT ...) 1564 ** 1565 ** Where the SELECT... clause is as specified by the parameter to this 1566 ** routine. 1567 ** 1568 ** The Select object passed in has already been preprocessed and no 1569 ** errors have been found. 1570 */ 1571 #ifndef SQLITE_OMIT_SUBQUERY 1572 static int isCandidateForInOpt(Select *p){ 1573 SrcList *pSrc; 1574 ExprList *pEList; 1575 Table *pTab; 1576 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1577 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1578 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1579 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1580 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1581 return 0; /* No DISTINCT keyword and no aggregate functions */ 1582 } 1583 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1584 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1585 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1586 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1587 pSrc = p->pSrc; 1588 assert( pSrc!=0 ); 1589 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1590 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1591 pTab = pSrc->a[0].pTab; 1592 if( NEVER(pTab==0) ) return 0; 1593 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1594 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1595 pEList = p->pEList; 1596 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1597 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1598 return 1; 1599 } 1600 #endif /* SQLITE_OMIT_SUBQUERY */ 1601 1602 /* 1603 ** Code an OP_Once instruction and allocate space for its flag. Return the 1604 ** address of the new instruction. 1605 */ 1606 int sqlite3CodeOnce(Parse *pParse){ 1607 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1608 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1609 } 1610 1611 /* 1612 ** Generate code that checks the left-most column of index table iCur to see if 1613 ** it contains any NULL entries. Cause the register at regHasNull to be set 1614 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 1615 ** to be set to NULL if iCur contains one or more NULL values. 1616 */ 1617 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 1618 int addr1; 1619 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 1620 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1621 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 1622 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1623 VdbeComment((v, "first_entry_in(%d)", iCur)); 1624 sqlite3VdbeJumpHere(v, addr1); 1625 } 1626 1627 1628 #ifndef SQLITE_OMIT_SUBQUERY 1629 /* 1630 ** The argument is an IN operator with a list (not a subquery) on the 1631 ** right-hand side. Return TRUE if that list is constant. 1632 */ 1633 static int sqlite3InRhsIsConstant(Expr *pIn){ 1634 Expr *pLHS; 1635 int res; 1636 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 1637 pLHS = pIn->pLeft; 1638 pIn->pLeft = 0; 1639 res = sqlite3ExprIsConstant(pIn); 1640 pIn->pLeft = pLHS; 1641 return res; 1642 } 1643 #endif 1644 1645 /* 1646 ** This function is used by the implementation of the IN (...) operator. 1647 ** The pX parameter is the expression on the RHS of the IN operator, which 1648 ** might be either a list of expressions or a subquery. 1649 ** 1650 ** The job of this routine is to find or create a b-tree object that can 1651 ** be used either to test for membership in the RHS set or to iterate through 1652 ** all members of the RHS set, skipping duplicates. 1653 ** 1654 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 1655 ** and pX->iTable is set to the index of that cursor. 1656 ** 1657 ** The returned value of this function indicates the b-tree type, as follows: 1658 ** 1659 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1660 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 1661 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 1662 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1663 ** populated epheremal table. 1664 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 1665 ** implemented as a sequence of comparisons. 1666 ** 1667 ** An existing b-tree might be used if the RHS expression pX is a simple 1668 ** subquery such as: 1669 ** 1670 ** SELECT <column> FROM <table> 1671 ** 1672 ** If the RHS of the IN operator is a list or a more complex subquery, then 1673 ** an ephemeral table might need to be generated from the RHS and then 1674 ** pX->iTable made to point to the ephemeral table instead of an 1675 ** existing table. 1676 ** 1677 ** The inFlags parameter must contain exactly one of the bits 1678 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 1679 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 1680 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 1681 ** IN index will be used to loop over all values of the RHS of the 1682 ** IN operator. 1683 ** 1684 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 1685 ** through the set members) then the b-tree must not contain duplicates. 1686 ** An epheremal table must be used unless the selected <column> is guaranteed 1687 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1688 ** has a UNIQUE constraint or UNIQUE index. 1689 ** 1690 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 1691 ** for fast set membership tests) then an epheremal table must 1692 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1693 ** be found with <column> as its left-most column. 1694 ** 1695 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 1696 ** if the RHS of the IN operator is a list (not a subquery) then this 1697 ** routine might decide that creating an ephemeral b-tree for membership 1698 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 1699 ** calling routine should implement the IN operator using a sequence 1700 ** of Eq or Ne comparison operations. 1701 ** 1702 ** When the b-tree is being used for membership tests, the calling function 1703 ** might need to know whether or not the RHS side of the IN operator 1704 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 1705 ** if there is any chance that the (...) might contain a NULL value at 1706 ** runtime, then a register is allocated and the register number written 1707 ** to *prRhsHasNull. If there is no chance that the (...) contains a 1708 ** NULL value, then *prRhsHasNull is left unchanged. 1709 ** 1710 ** If a register is allocated and its location stored in *prRhsHasNull, then 1711 ** the value in that register will be NULL if the b-tree contains one or more 1712 ** NULL values, and it will be some non-NULL value if the b-tree contains no 1713 ** NULL values. 1714 */ 1715 #ifndef SQLITE_OMIT_SUBQUERY 1716 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){ 1717 Select *p; /* SELECT to the right of IN operator */ 1718 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1719 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1720 int mustBeUnique; /* True if RHS must be unique */ 1721 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1722 1723 assert( pX->op==TK_IN ); 1724 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 1725 1726 /* Check to see if an existing table or index can be used to 1727 ** satisfy the query. This is preferable to generating a new 1728 ** ephemeral table. 1729 */ 1730 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1731 if( pParse->nErr==0 && isCandidateForInOpt(p) ){ 1732 sqlite3 *db = pParse->db; /* Database connection */ 1733 Table *pTab; /* Table <table>. */ 1734 Expr *pExpr; /* Expression <column> */ 1735 i16 iCol; /* Index of column <column> */ 1736 i16 iDb; /* Database idx for pTab */ 1737 1738 assert( p ); /* Because of isCandidateForInOpt(p) */ 1739 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1740 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1741 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1742 pTab = p->pSrc->a[0].pTab; 1743 pExpr = p->pEList->a[0].pExpr; 1744 iCol = (i16)pExpr->iColumn; 1745 1746 /* Code an OP_Transaction and OP_TableLock for <table>. */ 1747 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1748 sqlite3CodeVerifySchema(pParse, iDb); 1749 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1750 1751 /* This function is only called from two places. In both cases the vdbe 1752 ** has already been allocated. So assume sqlite3GetVdbe() is always 1753 ** successful here. 1754 */ 1755 assert(v); 1756 if( iCol<0 ){ 1757 int iAddr = sqlite3CodeOnce(pParse); 1758 VdbeCoverage(v); 1759 1760 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1761 eType = IN_INDEX_ROWID; 1762 1763 sqlite3VdbeJumpHere(v, iAddr); 1764 }else{ 1765 Index *pIdx; /* Iterator variable */ 1766 1767 /* The collation sequence used by the comparison. If an index is to 1768 ** be used in place of a temp-table, it must be ordered according 1769 ** to this collation sequence. */ 1770 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1771 1772 /* Check that the affinity that will be used to perform the 1773 ** comparison is the same as the affinity of the column. If 1774 ** it is not, it is not possible to use any index. 1775 */ 1776 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1777 1778 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1779 if( (pIdx->aiColumn[0]==iCol) 1780 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1781 && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx))) 1782 ){ 1783 int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1784 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 1785 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1786 VdbeComment((v, "%s", pIdx->zName)); 1787 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 1788 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 1789 1790 if( prRhsHasNull && !pTab->aCol[iCol].notNull ){ 1791 *prRhsHasNull = ++pParse->nMem; 1792 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 1793 } 1794 sqlite3VdbeJumpHere(v, iAddr); 1795 } 1796 } 1797 } 1798 } 1799 1800 /* If no preexisting index is available for the IN clause 1801 ** and IN_INDEX_NOOP is an allowed reply 1802 ** and the RHS of the IN operator is a list, not a subquery 1803 ** and the RHS is not contant or has two or fewer terms, 1804 ** then it is not worth creating an ephemeral table to evaluate 1805 ** the IN operator so return IN_INDEX_NOOP. 1806 */ 1807 if( eType==0 1808 && (inFlags & IN_INDEX_NOOP_OK) 1809 && !ExprHasProperty(pX, EP_xIsSelect) 1810 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 1811 ){ 1812 eType = IN_INDEX_NOOP; 1813 } 1814 1815 1816 if( eType==0 ){ 1817 /* Could not find an existing table or index to use as the RHS b-tree. 1818 ** We will have to generate an ephemeral table to do the job. 1819 */ 1820 u32 savedNQueryLoop = pParse->nQueryLoop; 1821 int rMayHaveNull = 0; 1822 eType = IN_INDEX_EPH; 1823 if( inFlags & IN_INDEX_LOOP ){ 1824 pParse->nQueryLoop = 0; 1825 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 1826 eType = IN_INDEX_ROWID; 1827 } 1828 }else if( prRhsHasNull ){ 1829 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 1830 } 1831 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1832 pParse->nQueryLoop = savedNQueryLoop; 1833 }else{ 1834 pX->iTable = iTab; 1835 } 1836 return eType; 1837 } 1838 #endif 1839 1840 /* 1841 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1842 ** or IN operators. Examples: 1843 ** 1844 ** (SELECT a FROM b) -- subquery 1845 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1846 ** x IN (4,5,11) -- IN operator with list on right-hand side 1847 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1848 ** 1849 ** The pExpr parameter describes the expression that contains the IN 1850 ** operator or subquery. 1851 ** 1852 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1853 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1854 ** to some integer key column of a table B-Tree. In this case, use an 1855 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1856 ** (slower) variable length keys B-Tree. 1857 ** 1858 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1859 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1860 ** All this routine does is initialize the register given by rMayHaveNull 1861 ** to NULL. Calling routines will take care of changing this register 1862 ** value to non-NULL if the RHS is NULL-free. 1863 ** 1864 ** For a SELECT or EXISTS operator, return the register that holds the 1865 ** result. For IN operators or if an error occurs, the return value is 0. 1866 */ 1867 #ifndef SQLITE_OMIT_SUBQUERY 1868 int sqlite3CodeSubselect( 1869 Parse *pParse, /* Parsing context */ 1870 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1871 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 1872 int isRowid /* If true, LHS of IN operator is a rowid */ 1873 ){ 1874 int jmpIfDynamic = -1; /* One-time test address */ 1875 int rReg = 0; /* Register storing resulting */ 1876 Vdbe *v = sqlite3GetVdbe(pParse); 1877 if( NEVER(v==0) ) return 0; 1878 sqlite3ExprCachePush(pParse); 1879 1880 /* This code must be run in its entirety every time it is encountered 1881 ** if any of the following is true: 1882 ** 1883 ** * The right-hand side is a correlated subquery 1884 ** * The right-hand side is an expression list containing variables 1885 ** * We are inside a trigger 1886 ** 1887 ** If all of the above are false, then we can run this code just once 1888 ** save the results, and reuse the same result on subsequent invocations. 1889 */ 1890 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 1891 jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1892 } 1893 1894 #ifndef SQLITE_OMIT_EXPLAIN 1895 if( pParse->explain==2 ){ 1896 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d", 1897 jmpIfDynamic>=0?"":"CORRELATED ", 1898 pExpr->op==TK_IN?"LIST":"SCALAR", 1899 pParse->iNextSelectId 1900 ); 1901 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1902 } 1903 #endif 1904 1905 switch( pExpr->op ){ 1906 case TK_IN: { 1907 char affinity; /* Affinity of the LHS of the IN */ 1908 int addr; /* Address of OP_OpenEphemeral instruction */ 1909 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1910 KeyInfo *pKeyInfo = 0; /* Key information */ 1911 1912 affinity = sqlite3ExprAffinity(pLeft); 1913 1914 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1915 ** expression it is handled the same way. An ephemeral table is 1916 ** filled with single-field index keys representing the results 1917 ** from the SELECT or the <exprlist>. 1918 ** 1919 ** If the 'x' expression is a column value, or the SELECT... 1920 ** statement returns a column value, then the affinity of that 1921 ** column is used to build the index keys. If both 'x' and the 1922 ** SELECT... statement are columns, then numeric affinity is used 1923 ** if either column has NUMERIC or INTEGER affinity. If neither 1924 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1925 ** is used. 1926 */ 1927 pExpr->iTable = pParse->nTab++; 1928 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1929 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); 1930 1931 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1932 /* Case 1: expr IN (SELECT ...) 1933 ** 1934 ** Generate code to write the results of the select into the temporary 1935 ** table allocated and opened above. 1936 */ 1937 Select *pSelect = pExpr->x.pSelect; 1938 SelectDest dest; 1939 ExprList *pEList; 1940 1941 assert( !isRowid ); 1942 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1943 dest.affSdst = (u8)affinity; 1944 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1945 pSelect->iLimit = 0; 1946 testcase( pSelect->selFlags & SF_Distinct ); 1947 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 1948 if( sqlite3Select(pParse, pSelect, &dest) ){ 1949 sqlite3KeyInfoUnref(pKeyInfo); 1950 return 0; 1951 } 1952 pEList = pSelect->pEList; 1953 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 1954 assert( pEList!=0 ); 1955 assert( pEList->nExpr>0 ); 1956 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1957 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1958 pEList->a[0].pExpr); 1959 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1960 /* Case 2: expr IN (exprlist) 1961 ** 1962 ** For each expression, build an index key from the evaluation and 1963 ** store it in the temporary table. If <expr> is a column, then use 1964 ** that columns affinity when building index keys. If <expr> is not 1965 ** a column, use numeric affinity. 1966 */ 1967 int i; 1968 ExprList *pList = pExpr->x.pList; 1969 struct ExprList_item *pItem; 1970 int r1, r2, r3; 1971 1972 if( !affinity ){ 1973 affinity = SQLITE_AFF_BLOB; 1974 } 1975 if( pKeyInfo ){ 1976 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1977 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1978 } 1979 1980 /* Loop through each expression in <exprlist>. */ 1981 r1 = sqlite3GetTempReg(pParse); 1982 r2 = sqlite3GetTempReg(pParse); 1983 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1984 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1985 Expr *pE2 = pItem->pExpr; 1986 int iValToIns; 1987 1988 /* If the expression is not constant then we will need to 1989 ** disable the test that was generated above that makes sure 1990 ** this code only executes once. Because for a non-constant 1991 ** expression we need to rerun this code each time. 1992 */ 1993 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 1994 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 1995 jmpIfDynamic = -1; 1996 } 1997 1998 /* Evaluate the expression and insert it into the temp table */ 1999 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 2000 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 2001 }else{ 2002 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2003 if( isRowid ){ 2004 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2005 sqlite3VdbeCurrentAddr(v)+2); 2006 VdbeCoverage(v); 2007 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 2008 }else{ 2009 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2010 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 2011 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 2012 } 2013 } 2014 } 2015 sqlite3ReleaseTempReg(pParse, r1); 2016 sqlite3ReleaseTempReg(pParse, r2); 2017 } 2018 if( pKeyInfo ){ 2019 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2020 } 2021 break; 2022 } 2023 2024 case TK_EXISTS: 2025 case TK_SELECT: 2026 default: { 2027 /* If this has to be a scalar SELECT. Generate code to put the 2028 ** value of this select in a memory cell and record the number 2029 ** of the memory cell in iColumn. If this is an EXISTS, write 2030 ** an integer 0 (not exists) or 1 (exists) into a memory cell 2031 ** and record that memory cell in iColumn. 2032 */ 2033 Select *pSel; /* SELECT statement to encode */ 2034 SelectDest dest; /* How to deal with SELECt result */ 2035 2036 testcase( pExpr->op==TK_EXISTS ); 2037 testcase( pExpr->op==TK_SELECT ); 2038 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2039 2040 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2041 pSel = pExpr->x.pSelect; 2042 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 2043 if( pExpr->op==TK_SELECT ){ 2044 dest.eDest = SRT_Mem; 2045 dest.iSdst = dest.iSDParm; 2046 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 2047 VdbeComment((v, "Init subquery result")); 2048 }else{ 2049 dest.eDest = SRT_Exists; 2050 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2051 VdbeComment((v, "Init EXISTS result")); 2052 } 2053 sqlite3ExprDelete(pParse->db, pSel->pLimit); 2054 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 2055 &sqlite3IntTokens[1]); 2056 pSel->iLimit = 0; 2057 pSel->selFlags &= ~SF_MultiValue; 2058 if( sqlite3Select(pParse, pSel, &dest) ){ 2059 return 0; 2060 } 2061 rReg = dest.iSDParm; 2062 ExprSetVVAProperty(pExpr, EP_NoReduce); 2063 break; 2064 } 2065 } 2066 2067 if( rHasNullFlag ){ 2068 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2069 } 2070 2071 if( jmpIfDynamic>=0 ){ 2072 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2073 } 2074 sqlite3ExprCachePop(pParse); 2075 2076 return rReg; 2077 } 2078 #endif /* SQLITE_OMIT_SUBQUERY */ 2079 2080 #ifndef SQLITE_OMIT_SUBQUERY 2081 /* 2082 ** Generate code for an IN expression. 2083 ** 2084 ** x IN (SELECT ...) 2085 ** x IN (value, value, ...) 2086 ** 2087 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 2088 ** is an array of zero or more values. The expression is true if the LHS is 2089 ** contained within the RHS. The value of the expression is unknown (NULL) 2090 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 2091 ** RHS contains one or more NULL values. 2092 ** 2093 ** This routine generates code that jumps to destIfFalse if the LHS is not 2094 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2095 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2096 ** within the RHS then fall through. 2097 */ 2098 static void sqlite3ExprCodeIN( 2099 Parse *pParse, /* Parsing and code generating context */ 2100 Expr *pExpr, /* The IN expression */ 2101 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2102 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2103 ){ 2104 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2105 char affinity; /* Comparison affinity to use */ 2106 int eType; /* Type of the RHS */ 2107 int r1; /* Temporary use register */ 2108 Vdbe *v; /* Statement under construction */ 2109 2110 /* Compute the RHS. After this step, the table with cursor 2111 ** pExpr->iTable will contains the values that make up the RHS. 2112 */ 2113 v = pParse->pVdbe; 2114 assert( v!=0 ); /* OOM detected prior to this routine */ 2115 VdbeNoopComment((v, "begin IN expr")); 2116 eType = sqlite3FindInIndex(pParse, pExpr, 2117 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2118 destIfFalse==destIfNull ? 0 : &rRhsHasNull); 2119 2120 /* Figure out the affinity to use to create a key from the results 2121 ** of the expression. affinityStr stores a static string suitable for 2122 ** P4 of OP_MakeRecord. 2123 */ 2124 affinity = comparisonAffinity(pExpr); 2125 2126 /* Code the LHS, the <expr> from "<expr> IN (...)". 2127 */ 2128 sqlite3ExprCachePush(pParse); 2129 r1 = sqlite3GetTempReg(pParse); 2130 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 2131 2132 /* If sqlite3FindInIndex() did not find or create an index that is 2133 ** suitable for evaluating the IN operator, then evaluate using a 2134 ** sequence of comparisons. 2135 */ 2136 if( eType==IN_INDEX_NOOP ){ 2137 ExprList *pList = pExpr->x.pList; 2138 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2139 int labelOk = sqlite3VdbeMakeLabel(v); 2140 int r2, regToFree; 2141 int regCkNull = 0; 2142 int ii; 2143 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2144 if( destIfNull!=destIfFalse ){ 2145 regCkNull = sqlite3GetTempReg(pParse); 2146 sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull); 2147 } 2148 for(ii=0; ii<pList->nExpr; ii++){ 2149 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2150 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2151 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2152 } 2153 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2154 sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2, 2155 (void*)pColl, P4_COLLSEQ); 2156 VdbeCoverageIf(v, ii<pList->nExpr-1); 2157 VdbeCoverageIf(v, ii==pList->nExpr-1); 2158 sqlite3VdbeChangeP5(v, affinity); 2159 }else{ 2160 assert( destIfNull==destIfFalse ); 2161 sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2, 2162 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2163 sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL); 2164 } 2165 sqlite3ReleaseTempReg(pParse, regToFree); 2166 } 2167 if( regCkNull ){ 2168 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2169 sqlite3VdbeGoto(v, destIfFalse); 2170 } 2171 sqlite3VdbeResolveLabel(v, labelOk); 2172 sqlite3ReleaseTempReg(pParse, regCkNull); 2173 }else{ 2174 2175 /* If the LHS is NULL, then the result is either false or NULL depending 2176 ** on whether the RHS is empty or not, respectively. 2177 */ 2178 if( sqlite3ExprCanBeNull(pExpr->pLeft) ){ 2179 if( destIfNull==destIfFalse ){ 2180 /* Shortcut for the common case where the false and NULL outcomes are 2181 ** the same. */ 2182 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); 2183 }else{ 2184 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); 2185 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2186 VdbeCoverage(v); 2187 sqlite3VdbeGoto(v, destIfNull); 2188 sqlite3VdbeJumpHere(v, addr1); 2189 } 2190 } 2191 2192 if( eType==IN_INDEX_ROWID ){ 2193 /* In this case, the RHS is the ROWID of table b-tree 2194 */ 2195 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); 2196 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 2197 VdbeCoverage(v); 2198 }else{ 2199 /* In this case, the RHS is an index b-tree. 2200 */ 2201 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 2202 2203 /* If the set membership test fails, then the result of the 2204 ** "x IN (...)" expression must be either 0 or NULL. If the set 2205 ** contains no NULL values, then the result is 0. If the set 2206 ** contains one or more NULL values, then the result of the 2207 ** expression is also NULL. 2208 */ 2209 assert( destIfFalse!=destIfNull || rRhsHasNull==0 ); 2210 if( rRhsHasNull==0 ){ 2211 /* This branch runs if it is known at compile time that the RHS 2212 ** cannot contain NULL values. This happens as the result 2213 ** of a "NOT NULL" constraint in the database schema. 2214 ** 2215 ** Also run this branch if NULL is equivalent to FALSE 2216 ** for this particular IN operator. 2217 */ 2218 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 2219 VdbeCoverage(v); 2220 }else{ 2221 /* In this branch, the RHS of the IN might contain a NULL and 2222 ** the presence of a NULL on the RHS makes a difference in the 2223 ** outcome. 2224 */ 2225 int addr1; 2226 2227 /* First check to see if the LHS is contained in the RHS. If so, 2228 ** then the answer is TRUE the presence of NULLs in the RHS does 2229 ** not matter. If the LHS is not contained in the RHS, then the 2230 ** answer is NULL if the RHS contains NULLs and the answer is 2231 ** FALSE if the RHS is NULL-free. 2232 */ 2233 addr1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 2234 VdbeCoverage(v); 2235 sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull); 2236 VdbeCoverage(v); 2237 sqlite3VdbeGoto(v, destIfFalse); 2238 sqlite3VdbeJumpHere(v, addr1); 2239 } 2240 } 2241 } 2242 sqlite3ReleaseTempReg(pParse, r1); 2243 sqlite3ExprCachePop(pParse); 2244 VdbeComment((v, "end IN expr")); 2245 } 2246 #endif /* SQLITE_OMIT_SUBQUERY */ 2247 2248 #ifndef SQLITE_OMIT_FLOATING_POINT 2249 /* 2250 ** Generate an instruction that will put the floating point 2251 ** value described by z[0..n-1] into register iMem. 2252 ** 2253 ** The z[] string will probably not be zero-terminated. But the 2254 ** z[n] character is guaranteed to be something that does not look 2255 ** like the continuation of the number. 2256 */ 2257 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2258 if( ALWAYS(z!=0) ){ 2259 double value; 2260 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2261 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2262 if( negateFlag ) value = -value; 2263 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 2264 } 2265 } 2266 #endif 2267 2268 2269 /* 2270 ** Generate an instruction that will put the integer describe by 2271 ** text z[0..n-1] into register iMem. 2272 ** 2273 ** Expr.u.zToken is always UTF8 and zero-terminated. 2274 */ 2275 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2276 Vdbe *v = pParse->pVdbe; 2277 if( pExpr->flags & EP_IntValue ){ 2278 int i = pExpr->u.iValue; 2279 assert( i>=0 ); 2280 if( negFlag ) i = -i; 2281 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2282 }else{ 2283 int c; 2284 i64 value; 2285 const char *z = pExpr->u.zToken; 2286 assert( z!=0 ); 2287 c = sqlite3DecOrHexToI64(z, &value); 2288 if( c==0 || (c==2 && negFlag) ){ 2289 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2290 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 2291 }else{ 2292 #ifdef SQLITE_OMIT_FLOATING_POINT 2293 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2294 #else 2295 #ifndef SQLITE_OMIT_HEX_INTEGER 2296 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 2297 sqlite3ErrorMsg(pParse, "hex literal too big: %s", z); 2298 }else 2299 #endif 2300 { 2301 codeReal(v, z, negFlag, iMem); 2302 } 2303 #endif 2304 } 2305 } 2306 } 2307 2308 /* 2309 ** Clear a cache entry. 2310 */ 2311 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2312 if( p->tempReg ){ 2313 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2314 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2315 } 2316 p->tempReg = 0; 2317 } 2318 } 2319 2320 2321 /* 2322 ** Record in the column cache that a particular column from a 2323 ** particular table is stored in a particular register. 2324 */ 2325 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2326 int i; 2327 int minLru; 2328 int idxLru; 2329 struct yColCache *p; 2330 2331 /* Unless an error has occurred, register numbers are always positive. */ 2332 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 2333 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2334 2335 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2336 ** for testing only - to verify that SQLite always gets the same answer 2337 ** with and without the column cache. 2338 */ 2339 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2340 2341 /* First replace any existing entry. 2342 ** 2343 ** Actually, the way the column cache is currently used, we are guaranteed 2344 ** that the object will never already be in cache. Verify this guarantee. 2345 */ 2346 #ifndef NDEBUG 2347 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2348 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2349 } 2350 #endif 2351 2352 /* Find an empty slot and replace it */ 2353 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2354 if( p->iReg==0 ){ 2355 p->iLevel = pParse->iCacheLevel; 2356 p->iTable = iTab; 2357 p->iColumn = iCol; 2358 p->iReg = iReg; 2359 p->tempReg = 0; 2360 p->lru = pParse->iCacheCnt++; 2361 return; 2362 } 2363 } 2364 2365 /* Replace the last recently used */ 2366 minLru = 0x7fffffff; 2367 idxLru = -1; 2368 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2369 if( p->lru<minLru ){ 2370 idxLru = i; 2371 minLru = p->lru; 2372 } 2373 } 2374 if( ALWAYS(idxLru>=0) ){ 2375 p = &pParse->aColCache[idxLru]; 2376 p->iLevel = pParse->iCacheLevel; 2377 p->iTable = iTab; 2378 p->iColumn = iCol; 2379 p->iReg = iReg; 2380 p->tempReg = 0; 2381 p->lru = pParse->iCacheCnt++; 2382 return; 2383 } 2384 } 2385 2386 /* 2387 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2388 ** Purge the range of registers from the column cache. 2389 */ 2390 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2391 int i; 2392 int iLast = iReg + nReg - 1; 2393 struct yColCache *p; 2394 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2395 int r = p->iReg; 2396 if( r>=iReg && r<=iLast ){ 2397 cacheEntryClear(pParse, p); 2398 p->iReg = 0; 2399 } 2400 } 2401 } 2402 2403 /* 2404 ** Remember the current column cache context. Any new entries added 2405 ** added to the column cache after this call are removed when the 2406 ** corresponding pop occurs. 2407 */ 2408 void sqlite3ExprCachePush(Parse *pParse){ 2409 pParse->iCacheLevel++; 2410 #ifdef SQLITE_DEBUG 2411 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2412 printf("PUSH to %d\n", pParse->iCacheLevel); 2413 } 2414 #endif 2415 } 2416 2417 /* 2418 ** Remove from the column cache any entries that were added since the 2419 ** the previous sqlite3ExprCachePush operation. In other words, restore 2420 ** the cache to the state it was in prior the most recent Push. 2421 */ 2422 void sqlite3ExprCachePop(Parse *pParse){ 2423 int i; 2424 struct yColCache *p; 2425 assert( pParse->iCacheLevel>=1 ); 2426 pParse->iCacheLevel--; 2427 #ifdef SQLITE_DEBUG 2428 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2429 printf("POP to %d\n", pParse->iCacheLevel); 2430 } 2431 #endif 2432 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2433 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2434 cacheEntryClear(pParse, p); 2435 p->iReg = 0; 2436 } 2437 } 2438 } 2439 2440 /* 2441 ** When a cached column is reused, make sure that its register is 2442 ** no longer available as a temp register. ticket #3879: that same 2443 ** register might be in the cache in multiple places, so be sure to 2444 ** get them all. 2445 */ 2446 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2447 int i; 2448 struct yColCache *p; 2449 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2450 if( p->iReg==iReg ){ 2451 p->tempReg = 0; 2452 } 2453 } 2454 } 2455 2456 /* Generate code that will load into register regOut a value that is 2457 ** appropriate for the iIdxCol-th column of index pIdx. 2458 */ 2459 void sqlite3ExprCodeLoadIndexColumn( 2460 Parse *pParse, /* The parsing context */ 2461 Index *pIdx, /* The index whose column is to be loaded */ 2462 int iTabCur, /* Cursor pointing to a table row */ 2463 int iIdxCol, /* The column of the index to be loaded */ 2464 int regOut /* Store the index column value in this register */ 2465 ){ 2466 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 2467 if( iTabCol==XN_EXPR ){ 2468 assert( pIdx->aColExpr ); 2469 assert( pIdx->aColExpr->nExpr>iIdxCol ); 2470 pParse->iSelfTab = iTabCur; 2471 sqlite3ExprCode(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 2472 }else{ 2473 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 2474 iTabCol, regOut); 2475 } 2476 } 2477 2478 /* 2479 ** Generate code to extract the value of the iCol-th column of a table. 2480 */ 2481 void sqlite3ExprCodeGetColumnOfTable( 2482 Vdbe *v, /* The VDBE under construction */ 2483 Table *pTab, /* The table containing the value */ 2484 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 2485 int iCol, /* Index of the column to extract */ 2486 int regOut /* Extract the value into this register */ 2487 ){ 2488 if( iCol<0 || iCol==pTab->iPKey ){ 2489 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2490 }else{ 2491 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2492 int x = iCol; 2493 if( !HasRowid(pTab) ){ 2494 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 2495 } 2496 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 2497 } 2498 if( iCol>=0 ){ 2499 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2500 } 2501 } 2502 2503 /* 2504 ** Generate code that will extract the iColumn-th column from 2505 ** table pTab and store the column value in a register. 2506 ** 2507 ** An effort is made to store the column value in register iReg. This 2508 ** is not garanteeed for GetColumn() - the result can be stored in 2509 ** any register. But the result is guaranteed to land in register iReg 2510 ** for GetColumnToReg(). 2511 ** 2512 ** There must be an open cursor to pTab in iTable when this routine 2513 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2514 */ 2515 int sqlite3ExprCodeGetColumn( 2516 Parse *pParse, /* Parsing and code generating context */ 2517 Table *pTab, /* Description of the table we are reading from */ 2518 int iColumn, /* Index of the table column */ 2519 int iTable, /* The cursor pointing to the table */ 2520 int iReg, /* Store results here */ 2521 u8 p5 /* P5 value for OP_Column + FLAGS */ 2522 ){ 2523 Vdbe *v = pParse->pVdbe; 2524 int i; 2525 struct yColCache *p; 2526 2527 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2528 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2529 p->lru = pParse->iCacheCnt++; 2530 sqlite3ExprCachePinRegister(pParse, p->iReg); 2531 return p->iReg; 2532 } 2533 } 2534 assert( v!=0 ); 2535 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2536 if( p5 ){ 2537 sqlite3VdbeChangeP5(v, p5); 2538 }else{ 2539 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2540 } 2541 return iReg; 2542 } 2543 void sqlite3ExprCodeGetColumnToReg( 2544 Parse *pParse, /* Parsing and code generating context */ 2545 Table *pTab, /* Description of the table we are reading from */ 2546 int iColumn, /* Index of the table column */ 2547 int iTable, /* The cursor pointing to the table */ 2548 int iReg /* Store results here */ 2549 ){ 2550 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); 2551 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); 2552 } 2553 2554 2555 /* 2556 ** Clear all column cache entries. 2557 */ 2558 void sqlite3ExprCacheClear(Parse *pParse){ 2559 int i; 2560 struct yColCache *p; 2561 2562 #if SQLITE_DEBUG 2563 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2564 printf("CLEAR\n"); 2565 } 2566 #endif 2567 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2568 if( p->iReg ){ 2569 cacheEntryClear(pParse, p); 2570 p->iReg = 0; 2571 } 2572 } 2573 } 2574 2575 /* 2576 ** Record the fact that an affinity change has occurred on iCount 2577 ** registers starting with iStart. 2578 */ 2579 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2580 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2581 } 2582 2583 /* 2584 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2585 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2586 */ 2587 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2588 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2589 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2590 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 2591 } 2592 2593 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2594 /* 2595 ** Return true if any register in the range iFrom..iTo (inclusive) 2596 ** is used as part of the column cache. 2597 ** 2598 ** This routine is used within assert() and testcase() macros only 2599 ** and does not appear in a normal build. 2600 */ 2601 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2602 int i; 2603 struct yColCache *p; 2604 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2605 int r = p->iReg; 2606 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2607 } 2608 return 0; 2609 } 2610 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2611 2612 /* 2613 ** Convert an expression node to a TK_REGISTER 2614 */ 2615 static void exprToRegister(Expr *p, int iReg){ 2616 p->op2 = p->op; 2617 p->op = TK_REGISTER; 2618 p->iTable = iReg; 2619 ExprClearProperty(p, EP_Skip); 2620 } 2621 2622 /* 2623 ** Generate code into the current Vdbe to evaluate the given 2624 ** expression. Attempt to store the results in register "target". 2625 ** Return the register where results are stored. 2626 ** 2627 ** With this routine, there is no guarantee that results will 2628 ** be stored in target. The result might be stored in some other 2629 ** register if it is convenient to do so. The calling function 2630 ** must check the return code and move the results to the desired 2631 ** register. 2632 */ 2633 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2634 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2635 int op; /* The opcode being coded */ 2636 int inReg = target; /* Results stored in register inReg */ 2637 int regFree1 = 0; /* If non-zero free this temporary register */ 2638 int regFree2 = 0; /* If non-zero free this temporary register */ 2639 int r1, r2, r3, r4; /* Various register numbers */ 2640 sqlite3 *db = pParse->db; /* The database connection */ 2641 Expr tempX; /* Temporary expression node */ 2642 2643 assert( target>0 && target<=pParse->nMem ); 2644 if( v==0 ){ 2645 assert( pParse->db->mallocFailed ); 2646 return 0; 2647 } 2648 2649 if( pExpr==0 ){ 2650 op = TK_NULL; 2651 }else{ 2652 op = pExpr->op; 2653 } 2654 switch( op ){ 2655 case TK_AGG_COLUMN: { 2656 AggInfo *pAggInfo = pExpr->pAggInfo; 2657 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2658 if( !pAggInfo->directMode ){ 2659 assert( pCol->iMem>0 ); 2660 inReg = pCol->iMem; 2661 break; 2662 }else if( pAggInfo->useSortingIdx ){ 2663 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2664 pCol->iSorterColumn, target); 2665 break; 2666 } 2667 /* Otherwise, fall thru into the TK_COLUMN case */ 2668 } 2669 case TK_COLUMN: { 2670 int iTab = pExpr->iTable; 2671 if( iTab<0 ){ 2672 if( pParse->ckBase>0 ){ 2673 /* Generating CHECK constraints or inserting into partial index */ 2674 inReg = pExpr->iColumn + pParse->ckBase; 2675 break; 2676 }else{ 2677 /* Coding an expression that is part of an index where column names 2678 ** in the index refer to the table to which the index belongs */ 2679 iTab = pParse->iSelfTab; 2680 } 2681 } 2682 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2683 pExpr->iColumn, iTab, target, 2684 pExpr->op2); 2685 break; 2686 } 2687 case TK_INTEGER: { 2688 codeInteger(pParse, pExpr, 0, target); 2689 break; 2690 } 2691 #ifndef SQLITE_OMIT_FLOATING_POINT 2692 case TK_FLOAT: { 2693 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2694 codeReal(v, pExpr->u.zToken, 0, target); 2695 break; 2696 } 2697 #endif 2698 case TK_STRING: { 2699 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2700 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 2701 break; 2702 } 2703 case TK_NULL: { 2704 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2705 break; 2706 } 2707 #ifndef SQLITE_OMIT_BLOB_LITERAL 2708 case TK_BLOB: { 2709 int n; 2710 const char *z; 2711 char *zBlob; 2712 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2713 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2714 assert( pExpr->u.zToken[1]=='\'' ); 2715 z = &pExpr->u.zToken[2]; 2716 n = sqlite3Strlen30(z) - 1; 2717 assert( z[n]=='\'' ); 2718 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2719 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2720 break; 2721 } 2722 #endif 2723 case TK_VARIABLE: { 2724 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2725 assert( pExpr->u.zToken!=0 ); 2726 assert( pExpr->u.zToken[0]!=0 ); 2727 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2728 if( pExpr->u.zToken[1]!=0 ){ 2729 assert( pExpr->u.zToken[0]=='?' 2730 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2731 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2732 } 2733 break; 2734 } 2735 case TK_REGISTER: { 2736 inReg = pExpr->iTable; 2737 break; 2738 } 2739 #ifndef SQLITE_OMIT_CAST 2740 case TK_CAST: { 2741 /* Expressions of the form: CAST(pLeft AS token) */ 2742 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2743 if( inReg!=target ){ 2744 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2745 inReg = target; 2746 } 2747 sqlite3VdbeAddOp2(v, OP_Cast, target, 2748 sqlite3AffinityType(pExpr->u.zToken, 0)); 2749 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2750 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2751 break; 2752 } 2753 #endif /* SQLITE_OMIT_CAST */ 2754 case TK_LT: 2755 case TK_LE: 2756 case TK_GT: 2757 case TK_GE: 2758 case TK_NE: 2759 case TK_EQ: { 2760 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2761 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2762 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2763 r1, r2, inReg, SQLITE_STOREP2); 2764 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 2765 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 2766 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 2767 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 2768 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 2769 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 2770 testcase( regFree1==0 ); 2771 testcase( regFree2==0 ); 2772 break; 2773 } 2774 case TK_IS: 2775 case TK_ISNOT: { 2776 testcase( op==TK_IS ); 2777 testcase( op==TK_ISNOT ); 2778 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2779 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2780 op = (op==TK_IS) ? TK_EQ : TK_NE; 2781 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2782 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2783 VdbeCoverageIf(v, op==TK_EQ); 2784 VdbeCoverageIf(v, op==TK_NE); 2785 testcase( regFree1==0 ); 2786 testcase( regFree2==0 ); 2787 break; 2788 } 2789 case TK_AND: 2790 case TK_OR: 2791 case TK_PLUS: 2792 case TK_STAR: 2793 case TK_MINUS: 2794 case TK_REM: 2795 case TK_BITAND: 2796 case TK_BITOR: 2797 case TK_SLASH: 2798 case TK_LSHIFT: 2799 case TK_RSHIFT: 2800 case TK_CONCAT: { 2801 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 2802 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 2803 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 2804 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 2805 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 2806 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 2807 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 2808 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 2809 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 2810 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 2811 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 2812 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2813 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2814 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2815 testcase( regFree1==0 ); 2816 testcase( regFree2==0 ); 2817 break; 2818 } 2819 case TK_UMINUS: { 2820 Expr *pLeft = pExpr->pLeft; 2821 assert( pLeft ); 2822 if( pLeft->op==TK_INTEGER ){ 2823 codeInteger(pParse, pLeft, 1, target); 2824 #ifndef SQLITE_OMIT_FLOATING_POINT 2825 }else if( pLeft->op==TK_FLOAT ){ 2826 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2827 codeReal(v, pLeft->u.zToken, 1, target); 2828 #endif 2829 }else{ 2830 tempX.op = TK_INTEGER; 2831 tempX.flags = EP_IntValue|EP_TokenOnly; 2832 tempX.u.iValue = 0; 2833 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 2834 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2835 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2836 testcase( regFree2==0 ); 2837 } 2838 inReg = target; 2839 break; 2840 } 2841 case TK_BITNOT: 2842 case TK_NOT: { 2843 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 2844 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 2845 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2846 testcase( regFree1==0 ); 2847 inReg = target; 2848 sqlite3VdbeAddOp2(v, op, r1, inReg); 2849 break; 2850 } 2851 case TK_ISNULL: 2852 case TK_NOTNULL: { 2853 int addr; 2854 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 2855 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 2856 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2857 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2858 testcase( regFree1==0 ); 2859 addr = sqlite3VdbeAddOp1(v, op, r1); 2860 VdbeCoverageIf(v, op==TK_ISNULL); 2861 VdbeCoverageIf(v, op==TK_NOTNULL); 2862 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2863 sqlite3VdbeJumpHere(v, addr); 2864 break; 2865 } 2866 case TK_AGG_FUNCTION: { 2867 AggInfo *pInfo = pExpr->pAggInfo; 2868 if( pInfo==0 ){ 2869 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2870 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2871 }else{ 2872 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2873 } 2874 break; 2875 } 2876 case TK_FUNCTION: { 2877 ExprList *pFarg; /* List of function arguments */ 2878 int nFarg; /* Number of function arguments */ 2879 FuncDef *pDef; /* The function definition object */ 2880 int nId; /* Length of the function name in bytes */ 2881 const char *zId; /* The function name */ 2882 u32 constMask = 0; /* Mask of function arguments that are constant */ 2883 int i; /* Loop counter */ 2884 u8 enc = ENC(db); /* The text encoding used by this database */ 2885 CollSeq *pColl = 0; /* A collating sequence */ 2886 2887 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2888 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 2889 pFarg = 0; 2890 }else{ 2891 pFarg = pExpr->x.pList; 2892 } 2893 nFarg = pFarg ? pFarg->nExpr : 0; 2894 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2895 zId = pExpr->u.zToken; 2896 nId = sqlite3Strlen30(zId); 2897 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2898 if( pDef==0 || pDef->xFunc==0 ){ 2899 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2900 break; 2901 } 2902 2903 /* Attempt a direct implementation of the built-in COALESCE() and 2904 ** IFNULL() functions. This avoids unnecessary evaluation of 2905 ** arguments past the first non-NULL argument. 2906 */ 2907 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 2908 int endCoalesce = sqlite3VdbeMakeLabel(v); 2909 assert( nFarg>=2 ); 2910 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2911 for(i=1; i<nFarg; i++){ 2912 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2913 VdbeCoverage(v); 2914 sqlite3ExprCacheRemove(pParse, target, 1); 2915 sqlite3ExprCachePush(pParse); 2916 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2917 sqlite3ExprCachePop(pParse); 2918 } 2919 sqlite3VdbeResolveLabel(v, endCoalesce); 2920 break; 2921 } 2922 2923 /* The UNLIKELY() function is a no-op. The result is the value 2924 ** of the first argument. 2925 */ 2926 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 2927 assert( nFarg>=1 ); 2928 inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 2929 break; 2930 } 2931 2932 for(i=0; i<nFarg; i++){ 2933 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2934 testcase( i==31 ); 2935 constMask |= MASKBIT32(i); 2936 } 2937 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2938 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2939 } 2940 } 2941 if( pFarg ){ 2942 if( constMask ){ 2943 r1 = pParse->nMem+1; 2944 pParse->nMem += nFarg; 2945 }else{ 2946 r1 = sqlite3GetTempRange(pParse, nFarg); 2947 } 2948 2949 /* For length() and typeof() functions with a column argument, 2950 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2951 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2952 ** loading. 2953 */ 2954 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2955 u8 exprOp; 2956 assert( nFarg==1 ); 2957 assert( pFarg->a[0].pExpr!=0 ); 2958 exprOp = pFarg->a[0].pExpr->op; 2959 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2960 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2961 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2962 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 2963 pFarg->a[0].pExpr->op2 = 2964 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 2965 } 2966 } 2967 2968 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2969 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 2970 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 2971 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 2972 }else{ 2973 r1 = 0; 2974 } 2975 #ifndef SQLITE_OMIT_VIRTUALTABLE 2976 /* Possibly overload the function if the first argument is 2977 ** a virtual table column. 2978 ** 2979 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2980 ** second argument, not the first, as the argument to test to 2981 ** see if it is a column in a virtual table. This is done because 2982 ** the left operand of infix functions (the operand we want to 2983 ** control overloading) ends up as the second argument to the 2984 ** function. The expression "A glob B" is equivalent to 2985 ** "glob(B,A). We want to use the A in "A glob B" to test 2986 ** for function overloading. But we use the B term in "glob(B,A)". 2987 */ 2988 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2989 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2990 }else if( nFarg>0 ){ 2991 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2992 } 2993 #endif 2994 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 2995 if( !pColl ) pColl = db->pDfltColl; 2996 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2997 } 2998 sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target, 2999 (char*)pDef, P4_FUNCDEF); 3000 sqlite3VdbeChangeP5(v, (u8)nFarg); 3001 if( nFarg && constMask==0 ){ 3002 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3003 } 3004 break; 3005 } 3006 #ifndef SQLITE_OMIT_SUBQUERY 3007 case TK_EXISTS: 3008 case TK_SELECT: { 3009 testcase( op==TK_EXISTS ); 3010 testcase( op==TK_SELECT ); 3011 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 3012 break; 3013 } 3014 case TK_IN: { 3015 int destIfFalse = sqlite3VdbeMakeLabel(v); 3016 int destIfNull = sqlite3VdbeMakeLabel(v); 3017 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3018 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3019 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3020 sqlite3VdbeResolveLabel(v, destIfFalse); 3021 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3022 sqlite3VdbeResolveLabel(v, destIfNull); 3023 break; 3024 } 3025 #endif /* SQLITE_OMIT_SUBQUERY */ 3026 3027 3028 /* 3029 ** x BETWEEN y AND z 3030 ** 3031 ** This is equivalent to 3032 ** 3033 ** x>=y AND x<=z 3034 ** 3035 ** X is stored in pExpr->pLeft. 3036 ** Y is stored in pExpr->pList->a[0].pExpr. 3037 ** Z is stored in pExpr->pList->a[1].pExpr. 3038 */ 3039 case TK_BETWEEN: { 3040 Expr *pLeft = pExpr->pLeft; 3041 struct ExprList_item *pLItem = pExpr->x.pList->a; 3042 Expr *pRight = pLItem->pExpr; 3043 3044 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3045 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 3046 testcase( regFree1==0 ); 3047 testcase( regFree2==0 ); 3048 r3 = sqlite3GetTempReg(pParse); 3049 r4 = sqlite3GetTempReg(pParse); 3050 codeCompare(pParse, pLeft, pRight, OP_Ge, 3051 r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); 3052 pLItem++; 3053 pRight = pLItem->pExpr; 3054 sqlite3ReleaseTempReg(pParse, regFree2); 3055 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 3056 testcase( regFree2==0 ); 3057 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 3058 VdbeCoverage(v); 3059 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 3060 sqlite3ReleaseTempReg(pParse, r3); 3061 sqlite3ReleaseTempReg(pParse, r4); 3062 break; 3063 } 3064 case TK_COLLATE: 3065 case TK_UPLUS: { 3066 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3067 break; 3068 } 3069 3070 case TK_TRIGGER: { 3071 /* If the opcode is TK_TRIGGER, then the expression is a reference 3072 ** to a column in the new.* or old.* pseudo-tables available to 3073 ** trigger programs. In this case Expr.iTable is set to 1 for the 3074 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3075 ** is set to the column of the pseudo-table to read, or to -1 to 3076 ** read the rowid field. 3077 ** 3078 ** The expression is implemented using an OP_Param opcode. The p1 3079 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3080 ** to reference another column of the old.* pseudo-table, where 3081 ** i is the index of the column. For a new.rowid reference, p1 is 3082 ** set to (n+1), where n is the number of columns in each pseudo-table. 3083 ** For a reference to any other column in the new.* pseudo-table, p1 3084 ** is set to (n+2+i), where n and i are as defined previously. For 3085 ** example, if the table on which triggers are being fired is 3086 ** declared as: 3087 ** 3088 ** CREATE TABLE t1(a, b); 3089 ** 3090 ** Then p1 is interpreted as follows: 3091 ** 3092 ** p1==0 -> old.rowid p1==3 -> new.rowid 3093 ** p1==1 -> old.a p1==4 -> new.a 3094 ** p1==2 -> old.b p1==5 -> new.b 3095 */ 3096 Table *pTab = pExpr->pTab; 3097 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3098 3099 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3100 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3101 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3102 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3103 3104 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3105 VdbeComment((v, "%s.%s -> $%d", 3106 (pExpr->iTable ? "new" : "old"), 3107 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3108 target 3109 )); 3110 3111 #ifndef SQLITE_OMIT_FLOATING_POINT 3112 /* If the column has REAL affinity, it may currently be stored as an 3113 ** integer. Use OP_RealAffinity to make sure it is really real. 3114 ** 3115 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3116 ** floating point when extracting it from the record. */ 3117 if( pExpr->iColumn>=0 3118 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3119 ){ 3120 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3121 } 3122 #endif 3123 break; 3124 } 3125 3126 3127 /* 3128 ** Form A: 3129 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3130 ** 3131 ** Form B: 3132 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3133 ** 3134 ** Form A is can be transformed into the equivalent form B as follows: 3135 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3136 ** WHEN x=eN THEN rN ELSE y END 3137 ** 3138 ** X (if it exists) is in pExpr->pLeft. 3139 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3140 ** odd. The Y is also optional. If the number of elements in x.pList 3141 ** is even, then Y is omitted and the "otherwise" result is NULL. 3142 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3143 ** 3144 ** The result of the expression is the Ri for the first matching Ei, 3145 ** or if there is no matching Ei, the ELSE term Y, or if there is 3146 ** no ELSE term, NULL. 3147 */ 3148 default: assert( op==TK_CASE ); { 3149 int endLabel; /* GOTO label for end of CASE stmt */ 3150 int nextCase; /* GOTO label for next WHEN clause */ 3151 int nExpr; /* 2x number of WHEN terms */ 3152 int i; /* Loop counter */ 3153 ExprList *pEList; /* List of WHEN terms */ 3154 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3155 Expr opCompare; /* The X==Ei expression */ 3156 Expr *pX; /* The X expression */ 3157 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 3158 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 3159 3160 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 3161 assert(pExpr->x.pList->nExpr > 0); 3162 pEList = pExpr->x.pList; 3163 aListelem = pEList->a; 3164 nExpr = pEList->nExpr; 3165 endLabel = sqlite3VdbeMakeLabel(v); 3166 if( (pX = pExpr->pLeft)!=0 ){ 3167 tempX = *pX; 3168 testcase( pX->op==TK_COLUMN ); 3169 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); 3170 testcase( regFree1==0 ); 3171 opCompare.op = TK_EQ; 3172 opCompare.pLeft = &tempX; 3173 pTest = &opCompare; 3174 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 3175 ** The value in regFree1 might get SCopy-ed into the file result. 3176 ** So make sure that the regFree1 register is not reused for other 3177 ** purposes and possibly overwritten. */ 3178 regFree1 = 0; 3179 } 3180 for(i=0; i<nExpr-1; i=i+2){ 3181 sqlite3ExprCachePush(pParse); 3182 if( pX ){ 3183 assert( pTest!=0 ); 3184 opCompare.pRight = aListelem[i].pExpr; 3185 }else{ 3186 pTest = aListelem[i].pExpr; 3187 } 3188 nextCase = sqlite3VdbeMakeLabel(v); 3189 testcase( pTest->op==TK_COLUMN ); 3190 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 3191 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 3192 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 3193 sqlite3VdbeGoto(v, endLabel); 3194 sqlite3ExprCachePop(pParse); 3195 sqlite3VdbeResolveLabel(v, nextCase); 3196 } 3197 if( (nExpr&1)!=0 ){ 3198 sqlite3ExprCachePush(pParse); 3199 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3200 sqlite3ExprCachePop(pParse); 3201 }else{ 3202 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3203 } 3204 assert( db->mallocFailed || pParse->nErr>0 3205 || pParse->iCacheLevel==iCacheLevel ); 3206 sqlite3VdbeResolveLabel(v, endLabel); 3207 break; 3208 } 3209 #ifndef SQLITE_OMIT_TRIGGER 3210 case TK_RAISE: { 3211 assert( pExpr->affinity==OE_Rollback 3212 || pExpr->affinity==OE_Abort 3213 || pExpr->affinity==OE_Fail 3214 || pExpr->affinity==OE_Ignore 3215 ); 3216 if( !pParse->pTriggerTab ){ 3217 sqlite3ErrorMsg(pParse, 3218 "RAISE() may only be used within a trigger-program"); 3219 return 0; 3220 } 3221 if( pExpr->affinity==OE_Abort ){ 3222 sqlite3MayAbort(pParse); 3223 } 3224 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3225 if( pExpr->affinity==OE_Ignore ){ 3226 sqlite3VdbeAddOp4( 3227 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 3228 VdbeCoverage(v); 3229 }else{ 3230 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 3231 pExpr->affinity, pExpr->u.zToken, 0, 0); 3232 } 3233 3234 break; 3235 } 3236 #endif 3237 } 3238 sqlite3ReleaseTempReg(pParse, regFree1); 3239 sqlite3ReleaseTempReg(pParse, regFree2); 3240 return inReg; 3241 } 3242 3243 /* 3244 ** Factor out the code of the given expression to initialization time. 3245 */ 3246 void sqlite3ExprCodeAtInit( 3247 Parse *pParse, /* Parsing context */ 3248 Expr *pExpr, /* The expression to code when the VDBE initializes */ 3249 int regDest, /* Store the value in this register */ 3250 u8 reusable /* True if this expression is reusable */ 3251 ){ 3252 ExprList *p; 3253 assert( ConstFactorOk(pParse) ); 3254 p = pParse->pConstExpr; 3255 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 3256 p = sqlite3ExprListAppend(pParse, p, pExpr); 3257 if( p ){ 3258 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 3259 pItem->u.iConstExprReg = regDest; 3260 pItem->reusable = reusable; 3261 } 3262 pParse->pConstExpr = p; 3263 } 3264 3265 /* 3266 ** Generate code to evaluate an expression and store the results 3267 ** into a register. Return the register number where the results 3268 ** are stored. 3269 ** 3270 ** If the register is a temporary register that can be deallocated, 3271 ** then write its number into *pReg. If the result register is not 3272 ** a temporary, then set *pReg to zero. 3273 ** 3274 ** If pExpr is a constant, then this routine might generate this 3275 ** code to fill the register in the initialization section of the 3276 ** VDBE program, in order to factor it out of the evaluation loop. 3277 */ 3278 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 3279 int r2; 3280 pExpr = sqlite3ExprSkipCollate(pExpr); 3281 if( ConstFactorOk(pParse) 3282 && pExpr->op!=TK_REGISTER 3283 && sqlite3ExprIsConstantNotJoin(pExpr) 3284 ){ 3285 ExprList *p = pParse->pConstExpr; 3286 int i; 3287 *pReg = 0; 3288 if( p ){ 3289 struct ExprList_item *pItem; 3290 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 3291 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 3292 return pItem->u.iConstExprReg; 3293 } 3294 } 3295 } 3296 r2 = ++pParse->nMem; 3297 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); 3298 }else{ 3299 int r1 = sqlite3GetTempReg(pParse); 3300 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3301 if( r2==r1 ){ 3302 *pReg = r1; 3303 }else{ 3304 sqlite3ReleaseTempReg(pParse, r1); 3305 *pReg = 0; 3306 } 3307 } 3308 return r2; 3309 } 3310 3311 /* 3312 ** Generate code that will evaluate expression pExpr and store the 3313 ** results in register target. The results are guaranteed to appear 3314 ** in register target. 3315 */ 3316 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 3317 int inReg; 3318 3319 assert( target>0 && target<=pParse->nMem ); 3320 if( pExpr && pExpr->op==TK_REGISTER ){ 3321 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 3322 }else{ 3323 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 3324 assert( pParse->pVdbe || pParse->db->mallocFailed ); 3325 if( inReg!=target && pParse->pVdbe ){ 3326 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 3327 } 3328 } 3329 } 3330 3331 /* 3332 ** Generate code that will evaluate expression pExpr and store the 3333 ** results in register target. The results are guaranteed to appear 3334 ** in register target. If the expression is constant, then this routine 3335 ** might choose to code the expression at initialization time. 3336 */ 3337 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 3338 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 3339 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); 3340 }else{ 3341 sqlite3ExprCode(pParse, pExpr, target); 3342 } 3343 } 3344 3345 /* 3346 ** Generate code that evaluates the given expression and puts the result 3347 ** in register target. 3348 ** 3349 ** Also make a copy of the expression results into another "cache" register 3350 ** and modify the expression so that the next time it is evaluated, 3351 ** the result is a copy of the cache register. 3352 ** 3353 ** This routine is used for expressions that are used multiple 3354 ** times. They are evaluated once and the results of the expression 3355 ** are reused. 3356 */ 3357 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3358 Vdbe *v = pParse->pVdbe; 3359 int iMem; 3360 3361 assert( target>0 ); 3362 assert( pExpr->op!=TK_REGISTER ); 3363 sqlite3ExprCode(pParse, pExpr, target); 3364 iMem = ++pParse->nMem; 3365 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 3366 exprToRegister(pExpr, iMem); 3367 } 3368 3369 /* 3370 ** Generate code that pushes the value of every element of the given 3371 ** expression list into a sequence of registers beginning at target. 3372 ** 3373 ** Return the number of elements evaluated. 3374 ** 3375 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 3376 ** filled using OP_SCopy. OP_Copy must be used instead. 3377 ** 3378 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 3379 ** factored out into initialization code. 3380 ** 3381 ** The SQLITE_ECEL_REF flag means that expressions in the list with 3382 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 3383 ** in registers at srcReg, and so the value can be copied from there. 3384 */ 3385 int sqlite3ExprCodeExprList( 3386 Parse *pParse, /* Parsing context */ 3387 ExprList *pList, /* The expression list to be coded */ 3388 int target, /* Where to write results */ 3389 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 3390 u8 flags /* SQLITE_ECEL_* flags */ 3391 ){ 3392 struct ExprList_item *pItem; 3393 int i, j, n; 3394 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 3395 Vdbe *v = pParse->pVdbe; 3396 assert( pList!=0 ); 3397 assert( target>0 ); 3398 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3399 n = pList->nExpr; 3400 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 3401 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3402 Expr *pExpr = pItem->pExpr; 3403 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){ 3404 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 3405 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 3406 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); 3407 }else{ 3408 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3409 if( inReg!=target+i ){ 3410 VdbeOp *pOp; 3411 if( copyOp==OP_Copy 3412 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 3413 && pOp->p1+pOp->p3+1==inReg 3414 && pOp->p2+pOp->p3+1==target+i 3415 ){ 3416 pOp->p3++; 3417 }else{ 3418 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 3419 } 3420 } 3421 } 3422 } 3423 return n; 3424 } 3425 3426 /* 3427 ** Generate code for a BETWEEN operator. 3428 ** 3429 ** x BETWEEN y AND z 3430 ** 3431 ** The above is equivalent to 3432 ** 3433 ** x>=y AND x<=z 3434 ** 3435 ** Code it as such, taking care to do the common subexpression 3436 ** elimination of x. 3437 */ 3438 static void exprCodeBetween( 3439 Parse *pParse, /* Parsing and code generating context */ 3440 Expr *pExpr, /* The BETWEEN expression */ 3441 int dest, /* Jump here if the jump is taken */ 3442 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3443 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3444 ){ 3445 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3446 Expr compLeft; /* The x>=y term */ 3447 Expr compRight; /* The x<=z term */ 3448 Expr exprX; /* The x subexpression */ 3449 int regFree1 = 0; /* Temporary use register */ 3450 3451 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3452 exprX = *pExpr->pLeft; 3453 exprAnd.op = TK_AND; 3454 exprAnd.pLeft = &compLeft; 3455 exprAnd.pRight = &compRight; 3456 compLeft.op = TK_GE; 3457 compLeft.pLeft = &exprX; 3458 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3459 compRight.op = TK_LE; 3460 compRight.pLeft = &exprX; 3461 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3462 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); 3463 if( jumpIfTrue ){ 3464 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3465 }else{ 3466 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3467 } 3468 sqlite3ReleaseTempReg(pParse, regFree1); 3469 3470 /* Ensure adequate test coverage */ 3471 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3472 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3473 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3474 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3475 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3476 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3477 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3478 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3479 } 3480 3481 /* 3482 ** Generate code for a boolean expression such that a jump is made 3483 ** to the label "dest" if the expression is true but execution 3484 ** continues straight thru if the expression is false. 3485 ** 3486 ** If the expression evaluates to NULL (neither true nor false), then 3487 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3488 ** 3489 ** This code depends on the fact that certain token values (ex: TK_EQ) 3490 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3491 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3492 ** the make process cause these values to align. Assert()s in the code 3493 ** below verify that the numbers are aligned correctly. 3494 */ 3495 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3496 Vdbe *v = pParse->pVdbe; 3497 int op = 0; 3498 int regFree1 = 0; 3499 int regFree2 = 0; 3500 int r1, r2; 3501 3502 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3503 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3504 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3505 op = pExpr->op; 3506 switch( op ){ 3507 case TK_AND: { 3508 int d2 = sqlite3VdbeMakeLabel(v); 3509 testcase( jumpIfNull==0 ); 3510 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3511 sqlite3ExprCachePush(pParse); 3512 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3513 sqlite3VdbeResolveLabel(v, d2); 3514 sqlite3ExprCachePop(pParse); 3515 break; 3516 } 3517 case TK_OR: { 3518 testcase( jumpIfNull==0 ); 3519 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3520 sqlite3ExprCachePush(pParse); 3521 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3522 sqlite3ExprCachePop(pParse); 3523 break; 3524 } 3525 case TK_NOT: { 3526 testcase( jumpIfNull==0 ); 3527 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3528 break; 3529 } 3530 case TK_LT: 3531 case TK_LE: 3532 case TK_GT: 3533 case TK_GE: 3534 case TK_NE: 3535 case TK_EQ: { 3536 testcase( jumpIfNull==0 ); 3537 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3538 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3539 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3540 r1, r2, dest, jumpIfNull); 3541 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3542 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3543 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3544 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3545 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3546 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3547 testcase( regFree1==0 ); 3548 testcase( regFree2==0 ); 3549 break; 3550 } 3551 case TK_IS: 3552 case TK_ISNOT: { 3553 testcase( op==TK_IS ); 3554 testcase( op==TK_ISNOT ); 3555 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3556 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3557 op = (op==TK_IS) ? TK_EQ : TK_NE; 3558 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3559 r1, r2, dest, SQLITE_NULLEQ); 3560 VdbeCoverageIf(v, op==TK_EQ); 3561 VdbeCoverageIf(v, op==TK_NE); 3562 testcase( regFree1==0 ); 3563 testcase( regFree2==0 ); 3564 break; 3565 } 3566 case TK_ISNULL: 3567 case TK_NOTNULL: { 3568 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3569 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3570 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3571 sqlite3VdbeAddOp2(v, op, r1, dest); 3572 VdbeCoverageIf(v, op==TK_ISNULL); 3573 VdbeCoverageIf(v, op==TK_NOTNULL); 3574 testcase( regFree1==0 ); 3575 break; 3576 } 3577 case TK_BETWEEN: { 3578 testcase( jumpIfNull==0 ); 3579 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3580 break; 3581 } 3582 #ifndef SQLITE_OMIT_SUBQUERY 3583 case TK_IN: { 3584 int destIfFalse = sqlite3VdbeMakeLabel(v); 3585 int destIfNull = jumpIfNull ? dest : destIfFalse; 3586 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3587 sqlite3VdbeGoto(v, dest); 3588 sqlite3VdbeResolveLabel(v, destIfFalse); 3589 break; 3590 } 3591 #endif 3592 default: { 3593 if( exprAlwaysTrue(pExpr) ){ 3594 sqlite3VdbeGoto(v, dest); 3595 }else if( exprAlwaysFalse(pExpr) ){ 3596 /* No-op */ 3597 }else{ 3598 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3599 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3600 VdbeCoverage(v); 3601 testcase( regFree1==0 ); 3602 testcase( jumpIfNull==0 ); 3603 } 3604 break; 3605 } 3606 } 3607 sqlite3ReleaseTempReg(pParse, regFree1); 3608 sqlite3ReleaseTempReg(pParse, regFree2); 3609 } 3610 3611 /* 3612 ** Generate code for a boolean expression such that a jump is made 3613 ** to the label "dest" if the expression is false but execution 3614 ** continues straight thru if the expression is true. 3615 ** 3616 ** If the expression evaluates to NULL (neither true nor false) then 3617 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3618 ** is 0. 3619 */ 3620 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3621 Vdbe *v = pParse->pVdbe; 3622 int op = 0; 3623 int regFree1 = 0; 3624 int regFree2 = 0; 3625 int r1, r2; 3626 3627 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3628 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3629 if( pExpr==0 ) return; 3630 3631 /* The value of pExpr->op and op are related as follows: 3632 ** 3633 ** pExpr->op op 3634 ** --------- ---------- 3635 ** TK_ISNULL OP_NotNull 3636 ** TK_NOTNULL OP_IsNull 3637 ** TK_NE OP_Eq 3638 ** TK_EQ OP_Ne 3639 ** TK_GT OP_Le 3640 ** TK_LE OP_Gt 3641 ** TK_GE OP_Lt 3642 ** TK_LT OP_Ge 3643 ** 3644 ** For other values of pExpr->op, op is undefined and unused. 3645 ** The value of TK_ and OP_ constants are arranged such that we 3646 ** can compute the mapping above using the following expression. 3647 ** Assert()s verify that the computation is correct. 3648 */ 3649 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3650 3651 /* Verify correct alignment of TK_ and OP_ constants 3652 */ 3653 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3654 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3655 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3656 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3657 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3658 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3659 assert( pExpr->op!=TK_GT || op==OP_Le ); 3660 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3661 3662 switch( pExpr->op ){ 3663 case TK_AND: { 3664 testcase( jumpIfNull==0 ); 3665 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3666 sqlite3ExprCachePush(pParse); 3667 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3668 sqlite3ExprCachePop(pParse); 3669 break; 3670 } 3671 case TK_OR: { 3672 int d2 = sqlite3VdbeMakeLabel(v); 3673 testcase( jumpIfNull==0 ); 3674 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3675 sqlite3ExprCachePush(pParse); 3676 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3677 sqlite3VdbeResolveLabel(v, d2); 3678 sqlite3ExprCachePop(pParse); 3679 break; 3680 } 3681 case TK_NOT: { 3682 testcase( jumpIfNull==0 ); 3683 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3684 break; 3685 } 3686 case TK_LT: 3687 case TK_LE: 3688 case TK_GT: 3689 case TK_GE: 3690 case TK_NE: 3691 case TK_EQ: { 3692 testcase( jumpIfNull==0 ); 3693 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3694 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3695 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3696 r1, r2, dest, jumpIfNull); 3697 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3698 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3699 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3700 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3701 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3702 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3703 testcase( regFree1==0 ); 3704 testcase( regFree2==0 ); 3705 break; 3706 } 3707 case TK_IS: 3708 case TK_ISNOT: { 3709 testcase( pExpr->op==TK_IS ); 3710 testcase( pExpr->op==TK_ISNOT ); 3711 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3712 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3713 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3714 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3715 r1, r2, dest, SQLITE_NULLEQ); 3716 VdbeCoverageIf(v, op==TK_EQ); 3717 VdbeCoverageIf(v, op==TK_NE); 3718 testcase( regFree1==0 ); 3719 testcase( regFree2==0 ); 3720 break; 3721 } 3722 case TK_ISNULL: 3723 case TK_NOTNULL: { 3724 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3725 sqlite3VdbeAddOp2(v, op, r1, dest); 3726 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 3727 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 3728 testcase( regFree1==0 ); 3729 break; 3730 } 3731 case TK_BETWEEN: { 3732 testcase( jumpIfNull==0 ); 3733 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3734 break; 3735 } 3736 #ifndef SQLITE_OMIT_SUBQUERY 3737 case TK_IN: { 3738 if( jumpIfNull ){ 3739 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3740 }else{ 3741 int destIfNull = sqlite3VdbeMakeLabel(v); 3742 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3743 sqlite3VdbeResolveLabel(v, destIfNull); 3744 } 3745 break; 3746 } 3747 #endif 3748 default: { 3749 if( exprAlwaysFalse(pExpr) ){ 3750 sqlite3VdbeGoto(v, dest); 3751 }else if( exprAlwaysTrue(pExpr) ){ 3752 /* no-op */ 3753 }else{ 3754 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3755 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3756 VdbeCoverage(v); 3757 testcase( regFree1==0 ); 3758 testcase( jumpIfNull==0 ); 3759 } 3760 break; 3761 } 3762 } 3763 sqlite3ReleaseTempReg(pParse, regFree1); 3764 sqlite3ReleaseTempReg(pParse, regFree2); 3765 } 3766 3767 /* 3768 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 3769 ** code generation, and that copy is deleted after code generation. This 3770 ** ensures that the original pExpr is unchanged. 3771 */ 3772 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 3773 sqlite3 *db = pParse->db; 3774 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 3775 if( db->mallocFailed==0 ){ 3776 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 3777 } 3778 sqlite3ExprDelete(db, pCopy); 3779 } 3780 3781 3782 /* 3783 ** Do a deep comparison of two expression trees. Return 0 if the two 3784 ** expressions are completely identical. Return 1 if they differ only 3785 ** by a COLLATE operator at the top level. Return 2 if there are differences 3786 ** other than the top-level COLLATE operator. 3787 ** 3788 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3789 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3790 ** 3791 ** The pA side might be using TK_REGISTER. If that is the case and pB is 3792 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 3793 ** 3794 ** Sometimes this routine will return 2 even if the two expressions 3795 ** really are equivalent. If we cannot prove that the expressions are 3796 ** identical, we return 2 just to be safe. So if this routine 3797 ** returns 2, then you do not really know for certain if the two 3798 ** expressions are the same. But if you get a 0 or 1 return, then you 3799 ** can be sure the expressions are the same. In the places where 3800 ** this routine is used, it does not hurt to get an extra 2 - that 3801 ** just might result in some slightly slower code. But returning 3802 ** an incorrect 0 or 1 could lead to a malfunction. 3803 */ 3804 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 3805 u32 combinedFlags; 3806 if( pA==0 || pB==0 ){ 3807 return pB==pA ? 0 : 2; 3808 } 3809 combinedFlags = pA->flags | pB->flags; 3810 if( combinedFlags & EP_IntValue ){ 3811 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 3812 return 0; 3813 } 3814 return 2; 3815 } 3816 if( pA->op!=pB->op ){ 3817 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 3818 return 1; 3819 } 3820 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 3821 return 1; 3822 } 3823 return 2; 3824 } 3825 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 3826 if( pA->op==TK_FUNCTION ){ 3827 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 3828 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3829 return pA->op==TK_COLLATE ? 1 : 2; 3830 } 3831 } 3832 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3833 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 3834 if( combinedFlags & EP_xIsSelect ) return 2; 3835 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 3836 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 3837 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 3838 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ 3839 if( pA->iColumn!=pB->iColumn ) return 2; 3840 if( pA->iTable!=pB->iTable 3841 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 3842 } 3843 } 3844 return 0; 3845 } 3846 3847 /* 3848 ** Compare two ExprList objects. Return 0 if they are identical and 3849 ** non-zero if they differ in any way. 3850 ** 3851 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3852 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3853 ** 3854 ** This routine might return non-zero for equivalent ExprLists. The 3855 ** only consequence will be disabled optimizations. But this routine 3856 ** must never return 0 if the two ExprList objects are different, or 3857 ** a malfunction will result. 3858 ** 3859 ** Two NULL pointers are considered to be the same. But a NULL pointer 3860 ** always differs from a non-NULL pointer. 3861 */ 3862 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 3863 int i; 3864 if( pA==0 && pB==0 ) return 0; 3865 if( pA==0 || pB==0 ) return 1; 3866 if( pA->nExpr!=pB->nExpr ) return 1; 3867 for(i=0; i<pA->nExpr; i++){ 3868 Expr *pExprA = pA->a[i].pExpr; 3869 Expr *pExprB = pB->a[i].pExpr; 3870 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3871 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 3872 } 3873 return 0; 3874 } 3875 3876 /* 3877 ** Return true if we can prove the pE2 will always be true if pE1 is 3878 ** true. Return false if we cannot complete the proof or if pE2 might 3879 ** be false. Examples: 3880 ** 3881 ** pE1: x==5 pE2: x==5 Result: true 3882 ** pE1: x>0 pE2: x==5 Result: false 3883 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 3884 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 3885 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 3886 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 3887 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 3888 ** 3889 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 3890 ** Expr.iTable<0 then assume a table number given by iTab. 3891 ** 3892 ** When in doubt, return false. Returning true might give a performance 3893 ** improvement. Returning false might cause a performance reduction, but 3894 ** it will always give the correct answer and is hence always safe. 3895 */ 3896 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 3897 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 3898 return 1; 3899 } 3900 if( pE2->op==TK_OR 3901 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 3902 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 3903 ){ 3904 return 1; 3905 } 3906 if( pE2->op==TK_NOTNULL 3907 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 3908 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) 3909 ){ 3910 return 1; 3911 } 3912 return 0; 3913 } 3914 3915 /* 3916 ** An instance of the following structure is used by the tree walker 3917 ** to count references to table columns in the arguments of an 3918 ** aggregate function, in order to implement the 3919 ** sqlite3FunctionThisSrc() routine. 3920 */ 3921 struct SrcCount { 3922 SrcList *pSrc; /* One particular FROM clause in a nested query */ 3923 int nThis; /* Number of references to columns in pSrcList */ 3924 int nOther; /* Number of references to columns in other FROM clauses */ 3925 }; 3926 3927 /* 3928 ** Count the number of references to columns. 3929 */ 3930 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 3931 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 3932 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 3933 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 3934 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 3935 ** NEVER() will need to be removed. */ 3936 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 3937 int i; 3938 struct SrcCount *p = pWalker->u.pSrcCount; 3939 SrcList *pSrc = p->pSrc; 3940 int nSrc = pSrc ? pSrc->nSrc : 0; 3941 for(i=0; i<nSrc; i++){ 3942 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 3943 } 3944 if( i<nSrc ){ 3945 p->nThis++; 3946 }else{ 3947 p->nOther++; 3948 } 3949 } 3950 return WRC_Continue; 3951 } 3952 3953 /* 3954 ** Determine if any of the arguments to the pExpr Function reference 3955 ** pSrcList. Return true if they do. Also return true if the function 3956 ** has no arguments or has only constant arguments. Return false if pExpr 3957 ** references columns but not columns of tables found in pSrcList. 3958 */ 3959 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 3960 Walker w; 3961 struct SrcCount cnt; 3962 assert( pExpr->op==TK_AGG_FUNCTION ); 3963 memset(&w, 0, sizeof(w)); 3964 w.xExprCallback = exprSrcCount; 3965 w.u.pSrcCount = &cnt; 3966 cnt.pSrc = pSrcList; 3967 cnt.nThis = 0; 3968 cnt.nOther = 0; 3969 sqlite3WalkExprList(&w, pExpr->x.pList); 3970 return cnt.nThis>0 || cnt.nOther==0; 3971 } 3972 3973 /* 3974 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3975 ** the new element. Return a negative number if malloc fails. 3976 */ 3977 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3978 int i; 3979 pInfo->aCol = sqlite3ArrayAllocate( 3980 db, 3981 pInfo->aCol, 3982 sizeof(pInfo->aCol[0]), 3983 &pInfo->nColumn, 3984 &i 3985 ); 3986 return i; 3987 } 3988 3989 /* 3990 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3991 ** the new element. Return a negative number if malloc fails. 3992 */ 3993 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3994 int i; 3995 pInfo->aFunc = sqlite3ArrayAllocate( 3996 db, 3997 pInfo->aFunc, 3998 sizeof(pInfo->aFunc[0]), 3999 &pInfo->nFunc, 4000 &i 4001 ); 4002 return i; 4003 } 4004 4005 /* 4006 ** This is the xExprCallback for a tree walker. It is used to 4007 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 4008 ** for additional information. 4009 */ 4010 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 4011 int i; 4012 NameContext *pNC = pWalker->u.pNC; 4013 Parse *pParse = pNC->pParse; 4014 SrcList *pSrcList = pNC->pSrcList; 4015 AggInfo *pAggInfo = pNC->pAggInfo; 4016 4017 switch( pExpr->op ){ 4018 case TK_AGG_COLUMN: 4019 case TK_COLUMN: { 4020 testcase( pExpr->op==TK_AGG_COLUMN ); 4021 testcase( pExpr->op==TK_COLUMN ); 4022 /* Check to see if the column is in one of the tables in the FROM 4023 ** clause of the aggregate query */ 4024 if( ALWAYS(pSrcList!=0) ){ 4025 struct SrcList_item *pItem = pSrcList->a; 4026 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 4027 struct AggInfo_col *pCol; 4028 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4029 if( pExpr->iTable==pItem->iCursor ){ 4030 /* If we reach this point, it means that pExpr refers to a table 4031 ** that is in the FROM clause of the aggregate query. 4032 ** 4033 ** Make an entry for the column in pAggInfo->aCol[] if there 4034 ** is not an entry there already. 4035 */ 4036 int k; 4037 pCol = pAggInfo->aCol; 4038 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4039 if( pCol->iTable==pExpr->iTable && 4040 pCol->iColumn==pExpr->iColumn ){ 4041 break; 4042 } 4043 } 4044 if( (k>=pAggInfo->nColumn) 4045 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4046 ){ 4047 pCol = &pAggInfo->aCol[k]; 4048 pCol->pTab = pExpr->pTab; 4049 pCol->iTable = pExpr->iTable; 4050 pCol->iColumn = pExpr->iColumn; 4051 pCol->iMem = ++pParse->nMem; 4052 pCol->iSorterColumn = -1; 4053 pCol->pExpr = pExpr; 4054 if( pAggInfo->pGroupBy ){ 4055 int j, n; 4056 ExprList *pGB = pAggInfo->pGroupBy; 4057 struct ExprList_item *pTerm = pGB->a; 4058 n = pGB->nExpr; 4059 for(j=0; j<n; j++, pTerm++){ 4060 Expr *pE = pTerm->pExpr; 4061 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4062 pE->iColumn==pExpr->iColumn ){ 4063 pCol->iSorterColumn = j; 4064 break; 4065 } 4066 } 4067 } 4068 if( pCol->iSorterColumn<0 ){ 4069 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4070 } 4071 } 4072 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4073 ** because it was there before or because we just created it). 4074 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4075 ** pAggInfo->aCol[] entry. 4076 */ 4077 ExprSetVVAProperty(pExpr, EP_NoReduce); 4078 pExpr->pAggInfo = pAggInfo; 4079 pExpr->op = TK_AGG_COLUMN; 4080 pExpr->iAgg = (i16)k; 4081 break; 4082 } /* endif pExpr->iTable==pItem->iCursor */ 4083 } /* end loop over pSrcList */ 4084 } 4085 return WRC_Prune; 4086 } 4087 case TK_AGG_FUNCTION: { 4088 if( (pNC->ncFlags & NC_InAggFunc)==0 4089 && pWalker->walkerDepth==pExpr->op2 4090 ){ 4091 /* Check to see if pExpr is a duplicate of another aggregate 4092 ** function that is already in the pAggInfo structure 4093 */ 4094 struct AggInfo_func *pItem = pAggInfo->aFunc; 4095 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4096 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 4097 break; 4098 } 4099 } 4100 if( i>=pAggInfo->nFunc ){ 4101 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4102 */ 4103 u8 enc = ENC(pParse->db); 4104 i = addAggInfoFunc(pParse->db, pAggInfo); 4105 if( i>=0 ){ 4106 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4107 pItem = &pAggInfo->aFunc[i]; 4108 pItem->pExpr = pExpr; 4109 pItem->iMem = ++pParse->nMem; 4110 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4111 pItem->pFunc = sqlite3FindFunction(pParse->db, 4112 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 4113 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4114 if( pExpr->flags & EP_Distinct ){ 4115 pItem->iDistinct = pParse->nTab++; 4116 }else{ 4117 pItem->iDistinct = -1; 4118 } 4119 } 4120 } 4121 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4122 */ 4123 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4124 ExprSetVVAProperty(pExpr, EP_NoReduce); 4125 pExpr->iAgg = (i16)i; 4126 pExpr->pAggInfo = pAggInfo; 4127 return WRC_Prune; 4128 }else{ 4129 return WRC_Continue; 4130 } 4131 } 4132 } 4133 return WRC_Continue; 4134 } 4135 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4136 UNUSED_PARAMETER(pWalker); 4137 UNUSED_PARAMETER(pSelect); 4138 return WRC_Continue; 4139 } 4140 4141 /* 4142 ** Analyze the pExpr expression looking for aggregate functions and 4143 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4144 ** points to. Additional entries are made on the AggInfo object as 4145 ** necessary. 4146 ** 4147 ** This routine should only be called after the expression has been 4148 ** analyzed by sqlite3ResolveExprNames(). 4149 */ 4150 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4151 Walker w; 4152 memset(&w, 0, sizeof(w)); 4153 w.xExprCallback = analyzeAggregate; 4154 w.xSelectCallback = analyzeAggregatesInSelect; 4155 w.u.pNC = pNC; 4156 assert( pNC->pSrcList!=0 ); 4157 sqlite3WalkExpr(&w, pExpr); 4158 } 4159 4160 /* 4161 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4162 ** expression list. Return the number of errors. 4163 ** 4164 ** If an error is found, the analysis is cut short. 4165 */ 4166 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4167 struct ExprList_item *pItem; 4168 int i; 4169 if( pList ){ 4170 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4171 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4172 } 4173 } 4174 } 4175 4176 /* 4177 ** Allocate a single new register for use to hold some intermediate result. 4178 */ 4179 int sqlite3GetTempReg(Parse *pParse){ 4180 if( pParse->nTempReg==0 ){ 4181 return ++pParse->nMem; 4182 } 4183 return pParse->aTempReg[--pParse->nTempReg]; 4184 } 4185 4186 /* 4187 ** Deallocate a register, making available for reuse for some other 4188 ** purpose. 4189 ** 4190 ** If a register is currently being used by the column cache, then 4191 ** the deallocation is deferred until the column cache line that uses 4192 ** the register becomes stale. 4193 */ 4194 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4195 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4196 int i; 4197 struct yColCache *p; 4198 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4199 if( p->iReg==iReg ){ 4200 p->tempReg = 1; 4201 return; 4202 } 4203 } 4204 pParse->aTempReg[pParse->nTempReg++] = iReg; 4205 } 4206 } 4207 4208 /* 4209 ** Allocate or deallocate a block of nReg consecutive registers 4210 */ 4211 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4212 int i, n; 4213 i = pParse->iRangeReg; 4214 n = pParse->nRangeReg; 4215 if( nReg<=n ){ 4216 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4217 pParse->iRangeReg += nReg; 4218 pParse->nRangeReg -= nReg; 4219 }else{ 4220 i = pParse->nMem+1; 4221 pParse->nMem += nReg; 4222 } 4223 return i; 4224 } 4225 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4226 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4227 if( nReg>pParse->nRangeReg ){ 4228 pParse->nRangeReg = nReg; 4229 pParse->iRangeReg = iReg; 4230 } 4231 } 4232 4233 /* 4234 ** Mark all temporary registers as being unavailable for reuse. 4235 */ 4236 void sqlite3ClearTempRegCache(Parse *pParse){ 4237 pParse->nTempReg = 0; 4238 pParse->nRangeReg = 0; 4239 } 4240