xref: /sqlite-3.40.0/src/expr.c (revision 8ccdef6b)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expressions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op;
35   pExpr = sqlite3ExprSkipCollate(pExpr);
36   if( pExpr->flags & EP_Generic ) return 0;
37   op = pExpr->op;
38   if( op==TK_SELECT ){
39     assert( pExpr->flags&EP_xIsSelect );
40     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
41   }
42 #ifndef SQLITE_OMIT_CAST
43   if( op==TK_CAST ){
44     assert( !ExprHasProperty(pExpr, EP_IntValue) );
45     return sqlite3AffinityType(pExpr->u.zToken, 0);
46   }
47 #endif
48   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
49    && pExpr->pTab!=0
50   ){
51     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
52     ** a TK_COLUMN but was previously evaluated and cached in a register */
53     int j = pExpr->iColumn;
54     if( j<0 ) return SQLITE_AFF_INTEGER;
55     assert( pExpr->pTab && j<pExpr->pTab->nCol );
56     return pExpr->pTab->aCol[j].affinity;
57   }
58   return pExpr->affinity;
59 }
60 
61 /*
62 ** Set the collating sequence for expression pExpr to be the collating
63 ** sequence named by pToken.   Return a pointer to a new Expr node that
64 ** implements the COLLATE operator.
65 **
66 ** If a memory allocation error occurs, that fact is recorded in pParse->db
67 ** and the pExpr parameter is returned unchanged.
68 */
69 Expr *sqlite3ExprAddCollateToken(
70   Parse *pParse,           /* Parsing context */
71   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
72   const Token *pCollName,  /* Name of collating sequence */
73   int dequote              /* True to dequote pCollName */
74 ){
75   if( pCollName->n>0 ){
76     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
77     if( pNew ){
78       pNew->pLeft = pExpr;
79       pNew->flags |= EP_Collate|EP_Skip;
80       pExpr = pNew;
81     }
82   }
83   return pExpr;
84 }
85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
86   Token s;
87   assert( zC!=0 );
88   s.z = zC;
89   s.n = sqlite3Strlen30(s.z);
90   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
91 }
92 
93 /*
94 ** Skip over any TK_COLLATE operators and any unlikely()
95 ** or likelihood() function at the root of an expression.
96 */
97 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
98   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
99     if( ExprHasProperty(pExpr, EP_Unlikely) ){
100       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
101       assert( pExpr->x.pList->nExpr>0 );
102       assert( pExpr->op==TK_FUNCTION );
103       pExpr = pExpr->x.pList->a[0].pExpr;
104     }else{
105       assert( pExpr->op==TK_COLLATE );
106       pExpr = pExpr->pLeft;
107     }
108   }
109   return pExpr;
110 }
111 
112 /*
113 ** Return the collation sequence for the expression pExpr. If
114 ** there is no defined collating sequence, return NULL.
115 **
116 ** The collating sequence might be determined by a COLLATE operator
117 ** or by the presence of a column with a defined collating sequence.
118 ** COLLATE operators take first precedence.  Left operands take
119 ** precedence over right operands.
120 */
121 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
122   sqlite3 *db = pParse->db;
123   CollSeq *pColl = 0;
124   Expr *p = pExpr;
125   while( p ){
126     int op = p->op;
127     if( p->flags & EP_Generic ) break;
128     if( op==TK_CAST || op==TK_UPLUS ){
129       p = p->pLeft;
130       continue;
131     }
132     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
133       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
134       break;
135     }
136     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
137           || op==TK_REGISTER || op==TK_TRIGGER)
138      && p->pTab!=0
139     ){
140       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
141       ** a TK_COLUMN but was previously evaluated and cached in a register */
142       int j = p->iColumn;
143       if( j>=0 ){
144         const char *zColl = p->pTab->aCol[j].zColl;
145         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
146       }
147       break;
148     }
149     if( p->flags & EP_Collate ){
150       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
151         p = p->pLeft;
152       }else{
153         Expr *pNext  = p->pRight;
154         /* The Expr.x union is never used at the same time as Expr.pRight */
155         assert( p->x.pList==0 || p->pRight==0 );
156         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
157         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
158         ** least one EP_Collate. Thus the following two ALWAYS. */
159         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
160           int i;
161           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
162             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
163               pNext = p->x.pList->a[i].pExpr;
164               break;
165             }
166           }
167         }
168         p = pNext;
169       }
170     }else{
171       break;
172     }
173   }
174   if( sqlite3CheckCollSeq(pParse, pColl) ){
175     pColl = 0;
176   }
177   return pColl;
178 }
179 
180 /*
181 ** pExpr is an operand of a comparison operator.  aff2 is the
182 ** type affinity of the other operand.  This routine returns the
183 ** type affinity that should be used for the comparison operator.
184 */
185 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
186   char aff1 = sqlite3ExprAffinity(pExpr);
187   if( aff1 && aff2 ){
188     /* Both sides of the comparison are columns. If one has numeric
189     ** affinity, use that. Otherwise use no affinity.
190     */
191     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
192       return SQLITE_AFF_NUMERIC;
193     }else{
194       return SQLITE_AFF_BLOB;
195     }
196   }else if( !aff1 && !aff2 ){
197     /* Neither side of the comparison is a column.  Compare the
198     ** results directly.
199     */
200     return SQLITE_AFF_BLOB;
201   }else{
202     /* One side is a column, the other is not. Use the columns affinity. */
203     assert( aff1==0 || aff2==0 );
204     return (aff1 + aff2);
205   }
206 }
207 
208 /*
209 ** pExpr is a comparison operator.  Return the type affinity that should
210 ** be applied to both operands prior to doing the comparison.
211 */
212 static char comparisonAffinity(Expr *pExpr){
213   char aff;
214   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
215           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
216           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
217   assert( pExpr->pLeft );
218   aff = sqlite3ExprAffinity(pExpr->pLeft);
219   if( pExpr->pRight ){
220     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
221   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
222     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
223   }else if( !aff ){
224     aff = SQLITE_AFF_BLOB;
225   }
226   return aff;
227 }
228 
229 /*
230 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
231 ** idx_affinity is the affinity of an indexed column. Return true
232 ** if the index with affinity idx_affinity may be used to implement
233 ** the comparison in pExpr.
234 */
235 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
236   char aff = comparisonAffinity(pExpr);
237   switch( aff ){
238     case SQLITE_AFF_BLOB:
239       return 1;
240     case SQLITE_AFF_TEXT:
241       return idx_affinity==SQLITE_AFF_TEXT;
242     default:
243       return sqlite3IsNumericAffinity(idx_affinity);
244   }
245 }
246 
247 /*
248 ** Return the P5 value that should be used for a binary comparison
249 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
250 */
251 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
252   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
253   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
254   return aff;
255 }
256 
257 /*
258 ** Return a pointer to the collation sequence that should be used by
259 ** a binary comparison operator comparing pLeft and pRight.
260 **
261 ** If the left hand expression has a collating sequence type, then it is
262 ** used. Otherwise the collation sequence for the right hand expression
263 ** is used, or the default (BINARY) if neither expression has a collating
264 ** type.
265 **
266 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
267 ** it is not considered.
268 */
269 CollSeq *sqlite3BinaryCompareCollSeq(
270   Parse *pParse,
271   Expr *pLeft,
272   Expr *pRight
273 ){
274   CollSeq *pColl;
275   assert( pLeft );
276   if( pLeft->flags & EP_Collate ){
277     pColl = sqlite3ExprCollSeq(pParse, pLeft);
278   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
279     pColl = sqlite3ExprCollSeq(pParse, pRight);
280   }else{
281     pColl = sqlite3ExprCollSeq(pParse, pLeft);
282     if( !pColl ){
283       pColl = sqlite3ExprCollSeq(pParse, pRight);
284     }
285   }
286   return pColl;
287 }
288 
289 /*
290 ** Generate code for a comparison operator.
291 */
292 static int codeCompare(
293   Parse *pParse,    /* The parsing (and code generating) context */
294   Expr *pLeft,      /* The left operand */
295   Expr *pRight,     /* The right operand */
296   int opcode,       /* The comparison opcode */
297   int in1, int in2, /* Register holding operands */
298   int dest,         /* Jump here if true.  */
299   int jumpIfNull    /* If true, jump if either operand is NULL */
300 ){
301   int p5;
302   int addr;
303   CollSeq *p4;
304 
305   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
306   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
307   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
308                            (void*)p4, P4_COLLSEQ);
309   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
310   return addr;
311 }
312 
313 #if SQLITE_MAX_EXPR_DEPTH>0
314 /*
315 ** Check that argument nHeight is less than or equal to the maximum
316 ** expression depth allowed. If it is not, leave an error message in
317 ** pParse.
318 */
319 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
320   int rc = SQLITE_OK;
321   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
322   if( nHeight>mxHeight ){
323     sqlite3ErrorMsg(pParse,
324        "Expression tree is too large (maximum depth %d)", mxHeight
325     );
326     rc = SQLITE_ERROR;
327   }
328   return rc;
329 }
330 
331 /* The following three functions, heightOfExpr(), heightOfExprList()
332 ** and heightOfSelect(), are used to determine the maximum height
333 ** of any expression tree referenced by the structure passed as the
334 ** first argument.
335 **
336 ** If this maximum height is greater than the current value pointed
337 ** to by pnHeight, the second parameter, then set *pnHeight to that
338 ** value.
339 */
340 static void heightOfExpr(Expr *p, int *pnHeight){
341   if( p ){
342     if( p->nHeight>*pnHeight ){
343       *pnHeight = p->nHeight;
344     }
345   }
346 }
347 static void heightOfExprList(ExprList *p, int *pnHeight){
348   if( p ){
349     int i;
350     for(i=0; i<p->nExpr; i++){
351       heightOfExpr(p->a[i].pExpr, pnHeight);
352     }
353   }
354 }
355 static void heightOfSelect(Select *p, int *pnHeight){
356   if( p ){
357     heightOfExpr(p->pWhere, pnHeight);
358     heightOfExpr(p->pHaving, pnHeight);
359     heightOfExpr(p->pLimit, pnHeight);
360     heightOfExpr(p->pOffset, pnHeight);
361     heightOfExprList(p->pEList, pnHeight);
362     heightOfExprList(p->pGroupBy, pnHeight);
363     heightOfExprList(p->pOrderBy, pnHeight);
364     heightOfSelect(p->pPrior, pnHeight);
365   }
366 }
367 
368 /*
369 ** Set the Expr.nHeight variable in the structure passed as an
370 ** argument. An expression with no children, Expr.pList or
371 ** Expr.pSelect member has a height of 1. Any other expression
372 ** has a height equal to the maximum height of any other
373 ** referenced Expr plus one.
374 **
375 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
376 ** if appropriate.
377 */
378 static void exprSetHeight(Expr *p){
379   int nHeight = 0;
380   heightOfExpr(p->pLeft, &nHeight);
381   heightOfExpr(p->pRight, &nHeight);
382   if( ExprHasProperty(p, EP_xIsSelect) ){
383     heightOfSelect(p->x.pSelect, &nHeight);
384   }else if( p->x.pList ){
385     heightOfExprList(p->x.pList, &nHeight);
386     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
387   }
388   p->nHeight = nHeight + 1;
389 }
390 
391 /*
392 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
393 ** the height is greater than the maximum allowed expression depth,
394 ** leave an error in pParse.
395 **
396 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
397 ** Expr.flags.
398 */
399 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
400   if( pParse->nErr ) return;
401   exprSetHeight(p);
402   sqlite3ExprCheckHeight(pParse, p->nHeight);
403 }
404 
405 /*
406 ** Return the maximum height of any expression tree referenced
407 ** by the select statement passed as an argument.
408 */
409 int sqlite3SelectExprHeight(Select *p){
410   int nHeight = 0;
411   heightOfSelect(p, &nHeight);
412   return nHeight;
413 }
414 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
415 /*
416 ** Propagate all EP_Propagate flags from the Expr.x.pList into
417 ** Expr.flags.
418 */
419 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
420   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
421     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
422   }
423 }
424 #define exprSetHeight(y)
425 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
426 
427 /*
428 ** This routine is the core allocator for Expr nodes.
429 **
430 ** Construct a new expression node and return a pointer to it.  Memory
431 ** for this node and for the pToken argument is a single allocation
432 ** obtained from sqlite3DbMalloc().  The calling function
433 ** is responsible for making sure the node eventually gets freed.
434 **
435 ** If dequote is true, then the token (if it exists) is dequoted.
436 ** If dequote is false, no dequoting is performed.  The deQuote
437 ** parameter is ignored if pToken is NULL or if the token does not
438 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
439 ** then the EP_DblQuoted flag is set on the expression node.
440 **
441 ** Special case:  If op==TK_INTEGER and pToken points to a string that
442 ** can be translated into a 32-bit integer, then the token is not
443 ** stored in u.zToken.  Instead, the integer values is written
444 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
445 ** is allocated to hold the integer text and the dequote flag is ignored.
446 */
447 Expr *sqlite3ExprAlloc(
448   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
449   int op,                 /* Expression opcode */
450   const Token *pToken,    /* Token argument.  Might be NULL */
451   int dequote             /* True to dequote */
452 ){
453   Expr *pNew;
454   int nExtra = 0;
455   int iValue = 0;
456 
457   if( pToken ){
458     if( op!=TK_INTEGER || pToken->z==0
459           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
460       nExtra = pToken->n+1;
461       assert( iValue>=0 );
462     }
463   }
464   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
465   if( pNew ){
466     pNew->op = (u8)op;
467     pNew->iAgg = -1;
468     if( pToken ){
469       if( nExtra==0 ){
470         pNew->flags |= EP_IntValue;
471         pNew->u.iValue = iValue;
472       }else{
473         int c;
474         pNew->u.zToken = (char*)&pNew[1];
475         assert( pToken->z!=0 || pToken->n==0 );
476         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
477         pNew->u.zToken[pToken->n] = 0;
478         if( dequote && nExtra>=3
479              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
480           sqlite3Dequote(pNew->u.zToken);
481           if( c=='"' ) pNew->flags |= EP_DblQuoted;
482         }
483       }
484     }
485 #if SQLITE_MAX_EXPR_DEPTH>0
486     pNew->nHeight = 1;
487 #endif
488   }
489   return pNew;
490 }
491 
492 /*
493 ** Allocate a new expression node from a zero-terminated token that has
494 ** already been dequoted.
495 */
496 Expr *sqlite3Expr(
497   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
498   int op,                 /* Expression opcode */
499   const char *zToken      /* Token argument.  Might be NULL */
500 ){
501   Token x;
502   x.z = zToken;
503   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
504   return sqlite3ExprAlloc(db, op, &x, 0);
505 }
506 
507 /*
508 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
509 **
510 ** If pRoot==NULL that means that a memory allocation error has occurred.
511 ** In that case, delete the subtrees pLeft and pRight.
512 */
513 void sqlite3ExprAttachSubtrees(
514   sqlite3 *db,
515   Expr *pRoot,
516   Expr *pLeft,
517   Expr *pRight
518 ){
519   if( pRoot==0 ){
520     assert( db->mallocFailed );
521     sqlite3ExprDelete(db, pLeft);
522     sqlite3ExprDelete(db, pRight);
523   }else{
524     if( pRight ){
525       pRoot->pRight = pRight;
526       pRoot->flags |= EP_Propagate & pRight->flags;
527     }
528     if( pLeft ){
529       pRoot->pLeft = pLeft;
530       pRoot->flags |= EP_Propagate & pLeft->flags;
531     }
532     exprSetHeight(pRoot);
533   }
534 }
535 
536 /*
537 ** Allocate an Expr node which joins as many as two subtrees.
538 **
539 ** One or both of the subtrees can be NULL.  Return a pointer to the new
540 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
541 ** free the subtrees and return NULL.
542 */
543 Expr *sqlite3PExpr(
544   Parse *pParse,          /* Parsing context */
545   int op,                 /* Expression opcode */
546   Expr *pLeft,            /* Left operand */
547   Expr *pRight,           /* Right operand */
548   const Token *pToken     /* Argument token */
549 ){
550   Expr *p;
551   if( op==TK_AND && pParse->nErr==0 ){
552     /* Take advantage of short-circuit false optimization for AND */
553     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
554   }else{
555     p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1);
556     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
557   }
558   if( p ) {
559     sqlite3ExprCheckHeight(pParse, p->nHeight);
560   }
561   return p;
562 }
563 
564 /*
565 ** If the expression is always either TRUE or FALSE (respectively),
566 ** then return 1.  If one cannot determine the truth value of the
567 ** expression at compile-time return 0.
568 **
569 ** This is an optimization.  If is OK to return 0 here even if
570 ** the expression really is always false or false (a false negative).
571 ** But it is a bug to return 1 if the expression might have different
572 ** boolean values in different circumstances (a false positive.)
573 **
574 ** Note that if the expression is part of conditional for a
575 ** LEFT JOIN, then we cannot determine at compile-time whether or not
576 ** is it true or false, so always return 0.
577 */
578 static int exprAlwaysTrue(Expr *p){
579   int v = 0;
580   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
581   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
582   return v!=0;
583 }
584 static int exprAlwaysFalse(Expr *p){
585   int v = 0;
586   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
587   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
588   return v==0;
589 }
590 
591 /*
592 ** Join two expressions using an AND operator.  If either expression is
593 ** NULL, then just return the other expression.
594 **
595 ** If one side or the other of the AND is known to be false, then instead
596 ** of returning an AND expression, just return a constant expression with
597 ** a value of false.
598 */
599 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
600   if( pLeft==0 ){
601     return pRight;
602   }else if( pRight==0 ){
603     return pLeft;
604   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
605     sqlite3ExprDelete(db, pLeft);
606     sqlite3ExprDelete(db, pRight);
607     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
608   }else{
609     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
610     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
611     return pNew;
612   }
613 }
614 
615 /*
616 ** Construct a new expression node for a function with multiple
617 ** arguments.
618 */
619 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
620   Expr *pNew;
621   sqlite3 *db = pParse->db;
622   assert( pToken );
623   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
624   if( pNew==0 ){
625     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
626     return 0;
627   }
628   pNew->x.pList = pList;
629   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
630   sqlite3ExprSetHeightAndFlags(pParse, pNew);
631   return pNew;
632 }
633 
634 /*
635 ** Assign a variable number to an expression that encodes a wildcard
636 ** in the original SQL statement.
637 **
638 ** Wildcards consisting of a single "?" are assigned the next sequential
639 ** variable number.
640 **
641 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
642 ** sure "nnn" is not too be to avoid a denial of service attack when
643 ** the SQL statement comes from an external source.
644 **
645 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
646 ** as the previous instance of the same wildcard.  Or if this is the first
647 ** instance of the wildcard, the next sequential variable number is
648 ** assigned.
649 */
650 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
651   sqlite3 *db = pParse->db;
652   const char *z;
653 
654   if( pExpr==0 ) return;
655   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
656   z = pExpr->u.zToken;
657   assert( z!=0 );
658   assert( z[0]!=0 );
659   if( z[1]==0 ){
660     /* Wildcard of the form "?".  Assign the next variable number */
661     assert( z[0]=='?' );
662     pExpr->iColumn = (ynVar)(++pParse->nVar);
663   }else{
664     ynVar x = 0;
665     u32 n = sqlite3Strlen30(z);
666     if( z[0]=='?' ){
667       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
668       ** use it as the variable number */
669       i64 i;
670       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
671       pExpr->iColumn = x = (ynVar)i;
672       testcase( i==0 );
673       testcase( i==1 );
674       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
675       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
676       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
677         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
678             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
679         x = 0;
680       }
681       if( i>pParse->nVar ){
682         pParse->nVar = (int)i;
683       }
684     }else{
685       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
686       ** number as the prior appearance of the same name, or if the name
687       ** has never appeared before, reuse the same variable number
688       */
689       ynVar i;
690       for(i=0; i<pParse->nzVar; i++){
691         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
692           pExpr->iColumn = x = (ynVar)i+1;
693           break;
694         }
695       }
696       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
697     }
698     if( x>0 ){
699       if( x>pParse->nzVar ){
700         char **a;
701         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
702         if( a==0 ) return;  /* Error reported through db->mallocFailed */
703         pParse->azVar = a;
704         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
705         pParse->nzVar = x;
706       }
707       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
708         sqlite3DbFree(db, pParse->azVar[x-1]);
709         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
710       }
711     }
712   }
713   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
714     sqlite3ErrorMsg(pParse, "too many SQL variables");
715   }
716 }
717 
718 /*
719 ** Recursively delete an expression tree.
720 */
721 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
722   if( p==0 ) return;
723   /* Sanity check: Assert that the IntValue is non-negative if it exists */
724   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
725   if( !ExprHasProperty(p, EP_TokenOnly) ){
726     /* The Expr.x union is never used at the same time as Expr.pRight */
727     assert( p->x.pList==0 || p->pRight==0 );
728     sqlite3ExprDelete(db, p->pLeft);
729     sqlite3ExprDelete(db, p->pRight);
730     if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
731     if( ExprHasProperty(p, EP_xIsSelect) ){
732       sqlite3SelectDelete(db, p->x.pSelect);
733     }else{
734       sqlite3ExprListDelete(db, p->x.pList);
735     }
736   }
737   if( !ExprHasProperty(p, EP_Static) ){
738     sqlite3DbFree(db, p);
739   }
740 }
741 
742 /*
743 ** Return the number of bytes allocated for the expression structure
744 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
745 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
746 */
747 static int exprStructSize(Expr *p){
748   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
749   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
750   return EXPR_FULLSIZE;
751 }
752 
753 /*
754 ** The dupedExpr*Size() routines each return the number of bytes required
755 ** to store a copy of an expression or expression tree.  They differ in
756 ** how much of the tree is measured.
757 **
758 **     dupedExprStructSize()     Size of only the Expr structure
759 **     dupedExprNodeSize()       Size of Expr + space for token
760 **     dupedExprSize()           Expr + token + subtree components
761 **
762 ***************************************************************************
763 **
764 ** The dupedExprStructSize() function returns two values OR-ed together:
765 ** (1) the space required for a copy of the Expr structure only and
766 ** (2) the EP_xxx flags that indicate what the structure size should be.
767 ** The return values is always one of:
768 **
769 **      EXPR_FULLSIZE
770 **      EXPR_REDUCEDSIZE   | EP_Reduced
771 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
772 **
773 ** The size of the structure can be found by masking the return value
774 ** of this routine with 0xfff.  The flags can be found by masking the
775 ** return value with EP_Reduced|EP_TokenOnly.
776 **
777 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
778 ** (unreduced) Expr objects as they or originally constructed by the parser.
779 ** During expression analysis, extra information is computed and moved into
780 ** later parts of teh Expr object and that extra information might get chopped
781 ** off if the expression is reduced.  Note also that it does not work to
782 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
783 ** to reduce a pristine expression tree from the parser.  The implementation
784 ** of dupedExprStructSize() contain multiple assert() statements that attempt
785 ** to enforce this constraint.
786 */
787 static int dupedExprStructSize(Expr *p, int flags){
788   int nSize;
789   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
790   assert( EXPR_FULLSIZE<=0xfff );
791   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
792   if( 0==(flags&EXPRDUP_REDUCE) ){
793     nSize = EXPR_FULLSIZE;
794   }else{
795     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
796     assert( !ExprHasProperty(p, EP_FromJoin) );
797     assert( !ExprHasProperty(p, EP_MemToken) );
798     assert( !ExprHasProperty(p, EP_NoReduce) );
799     if( p->pLeft || p->x.pList ){
800       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
801     }else{
802       assert( p->pRight==0 );
803       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
804     }
805   }
806   return nSize;
807 }
808 
809 /*
810 ** This function returns the space in bytes required to store the copy
811 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
812 ** string is defined.)
813 */
814 static int dupedExprNodeSize(Expr *p, int flags){
815   int nByte = dupedExprStructSize(p, flags) & 0xfff;
816   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
817     nByte += sqlite3Strlen30(p->u.zToken)+1;
818   }
819   return ROUND8(nByte);
820 }
821 
822 /*
823 ** Return the number of bytes required to create a duplicate of the
824 ** expression passed as the first argument. The second argument is a
825 ** mask containing EXPRDUP_XXX flags.
826 **
827 ** The value returned includes space to create a copy of the Expr struct
828 ** itself and the buffer referred to by Expr.u.zToken, if any.
829 **
830 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
831 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
832 ** and Expr.pRight variables (but not for any structures pointed to or
833 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
834 */
835 static int dupedExprSize(Expr *p, int flags){
836   int nByte = 0;
837   if( p ){
838     nByte = dupedExprNodeSize(p, flags);
839     if( flags&EXPRDUP_REDUCE ){
840       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
841     }
842   }
843   return nByte;
844 }
845 
846 /*
847 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
848 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
849 ** to store the copy of expression p, the copies of p->u.zToken
850 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
851 ** if any. Before returning, *pzBuffer is set to the first byte past the
852 ** portion of the buffer copied into by this function.
853 */
854 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
855   Expr *pNew = 0;                      /* Value to return */
856   assert( flags==0 || flags==EXPRDUP_REDUCE );
857   if( p ){
858     const int isReduced = (flags&EXPRDUP_REDUCE);
859     u8 *zAlloc;
860     u32 staticFlag = 0;
861 
862     assert( pzBuffer==0 || isReduced );
863 
864     /* Figure out where to write the new Expr structure. */
865     if( pzBuffer ){
866       zAlloc = *pzBuffer;
867       staticFlag = EP_Static;
868     }else{
869       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
870     }
871     pNew = (Expr *)zAlloc;
872 
873     if( pNew ){
874       /* Set nNewSize to the size allocated for the structure pointed to
875       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
876       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
877       ** by the copy of the p->u.zToken string (if any).
878       */
879       const unsigned nStructSize = dupedExprStructSize(p, flags);
880       const int nNewSize = nStructSize & 0xfff;
881       int nToken;
882       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
883         nToken = sqlite3Strlen30(p->u.zToken) + 1;
884       }else{
885         nToken = 0;
886       }
887       if( isReduced ){
888         assert( ExprHasProperty(p, EP_Reduced)==0 );
889         memcpy(zAlloc, p, nNewSize);
890       }else{
891         int nSize = exprStructSize(p);
892         memcpy(zAlloc, p, nSize);
893         if( nSize<EXPR_FULLSIZE ){
894           memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
895         }
896       }
897 
898       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
899       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
900       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
901       pNew->flags |= staticFlag;
902 
903       /* Copy the p->u.zToken string, if any. */
904       if( nToken ){
905         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
906         memcpy(zToken, p->u.zToken, nToken);
907       }
908 
909       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
910         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
911         if( ExprHasProperty(p, EP_xIsSelect) ){
912           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
913         }else{
914           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
915         }
916       }
917 
918       /* Fill in pNew->pLeft and pNew->pRight. */
919       if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
920         zAlloc += dupedExprNodeSize(p, flags);
921         if( ExprHasProperty(pNew, EP_Reduced) ){
922           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
923           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
924         }
925         if( pzBuffer ){
926           *pzBuffer = zAlloc;
927         }
928       }else{
929         if( !ExprHasProperty(p, EP_TokenOnly) ){
930           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
931           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
932         }
933       }
934 
935     }
936   }
937   return pNew;
938 }
939 
940 /*
941 ** Create and return a deep copy of the object passed as the second
942 ** argument. If an OOM condition is encountered, NULL is returned
943 ** and the db->mallocFailed flag set.
944 */
945 #ifndef SQLITE_OMIT_CTE
946 static With *withDup(sqlite3 *db, With *p){
947   With *pRet = 0;
948   if( p ){
949     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
950     pRet = sqlite3DbMallocZero(db, nByte);
951     if( pRet ){
952       int i;
953       pRet->nCte = p->nCte;
954       for(i=0; i<p->nCte; i++){
955         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
956         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
957         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
958       }
959     }
960   }
961   return pRet;
962 }
963 #else
964 # define withDup(x,y) 0
965 #endif
966 
967 /*
968 ** The following group of routines make deep copies of expressions,
969 ** expression lists, ID lists, and select statements.  The copies can
970 ** be deleted (by being passed to their respective ...Delete() routines)
971 ** without effecting the originals.
972 **
973 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
974 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
975 ** by subsequent calls to sqlite*ListAppend() routines.
976 **
977 ** Any tables that the SrcList might point to are not duplicated.
978 **
979 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
980 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
981 ** truncated version of the usual Expr structure that will be stored as
982 ** part of the in-memory representation of the database schema.
983 */
984 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
985   assert( flags==0 || flags==EXPRDUP_REDUCE );
986   return exprDup(db, p, flags, 0);
987 }
988 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
989   ExprList *pNew;
990   struct ExprList_item *pItem, *pOldItem;
991   int i;
992   if( p==0 ) return 0;
993   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
994   if( pNew==0 ) return 0;
995   pNew->nExpr = i = p->nExpr;
996   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
997   pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
998   if( pItem==0 ){
999     sqlite3DbFree(db, pNew);
1000     return 0;
1001   }
1002   pOldItem = p->a;
1003   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1004     Expr *pOldExpr = pOldItem->pExpr;
1005     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1006     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1007     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1008     pItem->sortOrder = pOldItem->sortOrder;
1009     pItem->done = 0;
1010     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1011     pItem->u = pOldItem->u;
1012   }
1013   return pNew;
1014 }
1015 
1016 /*
1017 ** If cursors, triggers, views and subqueries are all omitted from
1018 ** the build, then none of the following routines, except for
1019 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1020 ** called with a NULL argument.
1021 */
1022 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1023  || !defined(SQLITE_OMIT_SUBQUERY)
1024 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1025   SrcList *pNew;
1026   int i;
1027   int nByte;
1028   if( p==0 ) return 0;
1029   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1030   pNew = sqlite3DbMallocRaw(db, nByte );
1031   if( pNew==0 ) return 0;
1032   pNew->nSrc = pNew->nAlloc = p->nSrc;
1033   for(i=0; i<p->nSrc; i++){
1034     struct SrcList_item *pNewItem = &pNew->a[i];
1035     struct SrcList_item *pOldItem = &p->a[i];
1036     Table *pTab;
1037     pNewItem->pSchema = pOldItem->pSchema;
1038     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1039     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1040     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1041     pNewItem->fg = pOldItem->fg;
1042     pNewItem->iCursor = pOldItem->iCursor;
1043     pNewItem->addrFillSub = pOldItem->addrFillSub;
1044     pNewItem->regReturn = pOldItem->regReturn;
1045     if( pNewItem->fg.isIndexedBy ){
1046       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1047     }
1048     pNewItem->pIBIndex = pOldItem->pIBIndex;
1049     if( pNewItem->fg.isTabFunc ){
1050       pNewItem->u1.pFuncArg =
1051           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1052     }
1053     pTab = pNewItem->pTab = pOldItem->pTab;
1054     if( pTab ){
1055       pTab->nRef++;
1056     }
1057     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1058     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1059     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1060     pNewItem->colUsed = pOldItem->colUsed;
1061   }
1062   return pNew;
1063 }
1064 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1065   IdList *pNew;
1066   int i;
1067   if( p==0 ) return 0;
1068   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
1069   if( pNew==0 ) return 0;
1070   pNew->nId = p->nId;
1071   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
1072   if( pNew->a==0 ){
1073     sqlite3DbFree(db, pNew);
1074     return 0;
1075   }
1076   /* Note that because the size of the allocation for p->a[] is not
1077   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1078   ** on the duplicate created by this function. */
1079   for(i=0; i<p->nId; i++){
1080     struct IdList_item *pNewItem = &pNew->a[i];
1081     struct IdList_item *pOldItem = &p->a[i];
1082     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1083     pNewItem->idx = pOldItem->idx;
1084   }
1085   return pNew;
1086 }
1087 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1088   Select *pNew, *pPrior;
1089   if( p==0 ) return 0;
1090   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
1091   if( pNew==0 ) return 0;
1092   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1093   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1094   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1095   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1096   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1097   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1098   pNew->op = p->op;
1099   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1100   if( pPrior ) pPrior->pNext = pNew;
1101   pNew->pNext = 0;
1102   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1103   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1104   pNew->iLimit = 0;
1105   pNew->iOffset = 0;
1106   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1107   pNew->addrOpenEphm[0] = -1;
1108   pNew->addrOpenEphm[1] = -1;
1109   pNew->nSelectRow = p->nSelectRow;
1110   pNew->pWith = withDup(db, p->pWith);
1111   sqlite3SelectSetName(pNew, p->zSelName);
1112   return pNew;
1113 }
1114 #else
1115 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1116   assert( p==0 );
1117   return 0;
1118 }
1119 #endif
1120 
1121 
1122 /*
1123 ** Add a new element to the end of an expression list.  If pList is
1124 ** initially NULL, then create a new expression list.
1125 **
1126 ** If a memory allocation error occurs, the entire list is freed and
1127 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1128 ** that the new entry was successfully appended.
1129 */
1130 ExprList *sqlite3ExprListAppend(
1131   Parse *pParse,          /* Parsing context */
1132   ExprList *pList,        /* List to which to append. Might be NULL */
1133   Expr *pExpr             /* Expression to be appended. Might be NULL */
1134 ){
1135   sqlite3 *db = pParse->db;
1136   if( pList==0 ){
1137     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1138     if( pList==0 ){
1139       goto no_mem;
1140     }
1141     pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1142     if( pList->a==0 ) goto no_mem;
1143   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1144     struct ExprList_item *a;
1145     assert( pList->nExpr>0 );
1146     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1147     if( a==0 ){
1148       goto no_mem;
1149     }
1150     pList->a = a;
1151   }
1152   assert( pList->a!=0 );
1153   if( 1 ){
1154     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1155     memset(pItem, 0, sizeof(*pItem));
1156     pItem->pExpr = pExpr;
1157   }
1158   return pList;
1159 
1160 no_mem:
1161   /* Avoid leaking memory if malloc has failed. */
1162   sqlite3ExprDelete(db, pExpr);
1163   sqlite3ExprListDelete(db, pList);
1164   return 0;
1165 }
1166 
1167 /*
1168 ** Set the sort order for the last element on the given ExprList.
1169 */
1170 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1171   if( p==0 ) return;
1172   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1173   assert( p->nExpr>0 );
1174   if( iSortOrder<0 ){
1175     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1176     return;
1177   }
1178   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1179 }
1180 
1181 /*
1182 ** Set the ExprList.a[].zName element of the most recently added item
1183 ** on the expression list.
1184 **
1185 ** pList might be NULL following an OOM error.  But pName should never be
1186 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1187 ** is set.
1188 */
1189 void sqlite3ExprListSetName(
1190   Parse *pParse,          /* Parsing context */
1191   ExprList *pList,        /* List to which to add the span. */
1192   Token *pName,           /* Name to be added */
1193   int dequote             /* True to cause the name to be dequoted */
1194 ){
1195   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1196   if( pList ){
1197     struct ExprList_item *pItem;
1198     assert( pList->nExpr>0 );
1199     pItem = &pList->a[pList->nExpr-1];
1200     assert( pItem->zName==0 );
1201     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1202     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1203   }
1204 }
1205 
1206 /*
1207 ** Set the ExprList.a[].zSpan element of the most recently added item
1208 ** on the expression list.
1209 **
1210 ** pList might be NULL following an OOM error.  But pSpan should never be
1211 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1212 ** is set.
1213 */
1214 void sqlite3ExprListSetSpan(
1215   Parse *pParse,          /* Parsing context */
1216   ExprList *pList,        /* List to which to add the span. */
1217   ExprSpan *pSpan         /* The span to be added */
1218 ){
1219   sqlite3 *db = pParse->db;
1220   assert( pList!=0 || db->mallocFailed!=0 );
1221   if( pList ){
1222     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1223     assert( pList->nExpr>0 );
1224     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1225     sqlite3DbFree(db, pItem->zSpan);
1226     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1227                                     (int)(pSpan->zEnd - pSpan->zStart));
1228   }
1229 }
1230 
1231 /*
1232 ** If the expression list pEList contains more than iLimit elements,
1233 ** leave an error message in pParse.
1234 */
1235 void sqlite3ExprListCheckLength(
1236   Parse *pParse,
1237   ExprList *pEList,
1238   const char *zObject
1239 ){
1240   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1241   testcase( pEList && pEList->nExpr==mx );
1242   testcase( pEList && pEList->nExpr==mx+1 );
1243   if( pEList && pEList->nExpr>mx ){
1244     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1245   }
1246 }
1247 
1248 /*
1249 ** Delete an entire expression list.
1250 */
1251 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1252   int i;
1253   struct ExprList_item *pItem;
1254   if( pList==0 ) return;
1255   assert( pList->a!=0 || pList->nExpr==0 );
1256   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1257     sqlite3ExprDelete(db, pItem->pExpr);
1258     sqlite3DbFree(db, pItem->zName);
1259     sqlite3DbFree(db, pItem->zSpan);
1260   }
1261   sqlite3DbFree(db, pList->a);
1262   sqlite3DbFree(db, pList);
1263 }
1264 
1265 /*
1266 ** Return the bitwise-OR of all Expr.flags fields in the given
1267 ** ExprList.
1268 */
1269 u32 sqlite3ExprListFlags(const ExprList *pList){
1270   int i;
1271   u32 m = 0;
1272   if( pList ){
1273     for(i=0; i<pList->nExpr; i++){
1274        Expr *pExpr = pList->a[i].pExpr;
1275        if( ALWAYS(pExpr) ) m |= pExpr->flags;
1276     }
1277   }
1278   return m;
1279 }
1280 
1281 /*
1282 ** These routines are Walker callbacks used to check expressions to
1283 ** see if they are "constant" for some definition of constant.  The
1284 ** Walker.eCode value determines the type of "constant" we are looking
1285 ** for.
1286 **
1287 ** These callback routines are used to implement the following:
1288 **
1289 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1290 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1291 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1292 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1293 **
1294 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1295 ** is found to not be a constant.
1296 **
1297 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1298 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1299 ** an existing schema and 4 when processing a new statement.  A bound
1300 ** parameter raises an error for new statements, but is silently converted
1301 ** to NULL for existing schemas.  This allows sqlite_master tables that
1302 ** contain a bound parameter because they were generated by older versions
1303 ** of SQLite to be parsed by newer versions of SQLite without raising a
1304 ** malformed schema error.
1305 */
1306 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1307 
1308   /* If pWalker->eCode is 2 then any term of the expression that comes from
1309   ** the ON or USING clauses of a left join disqualifies the expression
1310   ** from being considered constant. */
1311   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1312     pWalker->eCode = 0;
1313     return WRC_Abort;
1314   }
1315 
1316   switch( pExpr->op ){
1317     /* Consider functions to be constant if all their arguments are constant
1318     ** and either pWalker->eCode==4 or 5 or the function has the
1319     ** SQLITE_FUNC_CONST flag. */
1320     case TK_FUNCTION:
1321       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1322         return WRC_Continue;
1323       }else{
1324         pWalker->eCode = 0;
1325         return WRC_Abort;
1326       }
1327     case TK_ID:
1328     case TK_COLUMN:
1329     case TK_AGG_FUNCTION:
1330     case TK_AGG_COLUMN:
1331       testcase( pExpr->op==TK_ID );
1332       testcase( pExpr->op==TK_COLUMN );
1333       testcase( pExpr->op==TK_AGG_FUNCTION );
1334       testcase( pExpr->op==TK_AGG_COLUMN );
1335       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1336         return WRC_Continue;
1337       }else{
1338         pWalker->eCode = 0;
1339         return WRC_Abort;
1340       }
1341     case TK_VARIABLE:
1342       if( pWalker->eCode==5 ){
1343         /* Silently convert bound parameters that appear inside of CREATE
1344         ** statements into a NULL when parsing the CREATE statement text out
1345         ** of the sqlite_master table */
1346         pExpr->op = TK_NULL;
1347       }else if( pWalker->eCode==4 ){
1348         /* A bound parameter in a CREATE statement that originates from
1349         ** sqlite3_prepare() causes an error */
1350         pWalker->eCode = 0;
1351         return WRC_Abort;
1352       }
1353       /* Fall through */
1354     default:
1355       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1356       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1357       return WRC_Continue;
1358   }
1359 }
1360 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1361   UNUSED_PARAMETER(NotUsed);
1362   pWalker->eCode = 0;
1363   return WRC_Abort;
1364 }
1365 static int exprIsConst(Expr *p, int initFlag, int iCur){
1366   Walker w;
1367   memset(&w, 0, sizeof(w));
1368   w.eCode = initFlag;
1369   w.xExprCallback = exprNodeIsConstant;
1370   w.xSelectCallback = selectNodeIsConstant;
1371   w.u.iCur = iCur;
1372   sqlite3WalkExpr(&w, p);
1373   return w.eCode;
1374 }
1375 
1376 /*
1377 ** Walk an expression tree.  Return non-zero if the expression is constant
1378 ** and 0 if it involves variables or function calls.
1379 **
1380 ** For the purposes of this function, a double-quoted string (ex: "abc")
1381 ** is considered a variable but a single-quoted string (ex: 'abc') is
1382 ** a constant.
1383 */
1384 int sqlite3ExprIsConstant(Expr *p){
1385   return exprIsConst(p, 1, 0);
1386 }
1387 
1388 /*
1389 ** Walk an expression tree.  Return non-zero if the expression is constant
1390 ** that does no originate from the ON or USING clauses of a join.
1391 ** Return 0 if it involves variables or function calls or terms from
1392 ** an ON or USING clause.
1393 */
1394 int sqlite3ExprIsConstantNotJoin(Expr *p){
1395   return exprIsConst(p, 2, 0);
1396 }
1397 
1398 /*
1399 ** Walk an expression tree.  Return non-zero if the expression is constant
1400 ** for any single row of the table with cursor iCur.  In other words, the
1401 ** expression must not refer to any non-deterministic function nor any
1402 ** table other than iCur.
1403 */
1404 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1405   return exprIsConst(p, 3, iCur);
1406 }
1407 
1408 /*
1409 ** Walk an expression tree.  Return non-zero if the expression is constant
1410 ** or a function call with constant arguments.  Return and 0 if there
1411 ** are any variables.
1412 **
1413 ** For the purposes of this function, a double-quoted string (ex: "abc")
1414 ** is considered a variable but a single-quoted string (ex: 'abc') is
1415 ** a constant.
1416 */
1417 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1418   assert( isInit==0 || isInit==1 );
1419   return exprIsConst(p, 4+isInit, 0);
1420 }
1421 
1422 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1423 /*
1424 ** Walk an expression tree.  Return 1 if the expression contains a
1425 ** subquery of some kind.  Return 0 if there are no subqueries.
1426 */
1427 int sqlite3ExprContainsSubquery(Expr *p){
1428   Walker w;
1429   memset(&w, 0, sizeof(w));
1430   w.eCode = 1;
1431   w.xExprCallback = sqlite3ExprWalkNoop;
1432   w.xSelectCallback = selectNodeIsConstant;
1433   sqlite3WalkExpr(&w, p);
1434   return w.eCode==0;
1435 }
1436 #endif
1437 
1438 /*
1439 ** If the expression p codes a constant integer that is small enough
1440 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1441 ** in *pValue.  If the expression is not an integer or if it is too big
1442 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1443 */
1444 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1445   int rc = 0;
1446 
1447   /* If an expression is an integer literal that fits in a signed 32-bit
1448   ** integer, then the EP_IntValue flag will have already been set */
1449   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1450            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1451 
1452   if( p->flags & EP_IntValue ){
1453     *pValue = p->u.iValue;
1454     return 1;
1455   }
1456   switch( p->op ){
1457     case TK_UPLUS: {
1458       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1459       break;
1460     }
1461     case TK_UMINUS: {
1462       int v;
1463       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1464         assert( v!=(-2147483647-1) );
1465         *pValue = -v;
1466         rc = 1;
1467       }
1468       break;
1469     }
1470     default: break;
1471   }
1472   return rc;
1473 }
1474 
1475 /*
1476 ** Return FALSE if there is no chance that the expression can be NULL.
1477 **
1478 ** If the expression might be NULL or if the expression is too complex
1479 ** to tell return TRUE.
1480 **
1481 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1482 ** when we know that a value cannot be NULL.  Hence, a false positive
1483 ** (returning TRUE when in fact the expression can never be NULL) might
1484 ** be a small performance hit but is otherwise harmless.  On the other
1485 ** hand, a false negative (returning FALSE when the result could be NULL)
1486 ** will likely result in an incorrect answer.  So when in doubt, return
1487 ** TRUE.
1488 */
1489 int sqlite3ExprCanBeNull(const Expr *p){
1490   u8 op;
1491   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1492   op = p->op;
1493   if( op==TK_REGISTER ) op = p->op2;
1494   switch( op ){
1495     case TK_INTEGER:
1496     case TK_STRING:
1497     case TK_FLOAT:
1498     case TK_BLOB:
1499       return 0;
1500     case TK_COLUMN:
1501       assert( p->pTab!=0 );
1502       return ExprHasProperty(p, EP_CanBeNull) ||
1503              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
1504     default:
1505       return 1;
1506   }
1507 }
1508 
1509 /*
1510 ** Return TRUE if the given expression is a constant which would be
1511 ** unchanged by OP_Affinity with the affinity given in the second
1512 ** argument.
1513 **
1514 ** This routine is used to determine if the OP_Affinity operation
1515 ** can be omitted.  When in doubt return FALSE.  A false negative
1516 ** is harmless.  A false positive, however, can result in the wrong
1517 ** answer.
1518 */
1519 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1520   u8 op;
1521   if( aff==SQLITE_AFF_BLOB ) return 1;
1522   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1523   op = p->op;
1524   if( op==TK_REGISTER ) op = p->op2;
1525   switch( op ){
1526     case TK_INTEGER: {
1527       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1528     }
1529     case TK_FLOAT: {
1530       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1531     }
1532     case TK_STRING: {
1533       return aff==SQLITE_AFF_TEXT;
1534     }
1535     case TK_BLOB: {
1536       return 1;
1537     }
1538     case TK_COLUMN: {
1539       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1540       return p->iColumn<0
1541           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1542     }
1543     default: {
1544       return 0;
1545     }
1546   }
1547 }
1548 
1549 /*
1550 ** Return TRUE if the given string is a row-id column name.
1551 */
1552 int sqlite3IsRowid(const char *z){
1553   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1554   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1555   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1556   return 0;
1557 }
1558 
1559 /*
1560 ** Return true if we are able to the IN operator optimization on a
1561 ** query of the form
1562 **
1563 **       x IN (SELECT ...)
1564 **
1565 ** Where the SELECT... clause is as specified by the parameter to this
1566 ** routine.
1567 **
1568 ** The Select object passed in has already been preprocessed and no
1569 ** errors have been found.
1570 */
1571 #ifndef SQLITE_OMIT_SUBQUERY
1572 static int isCandidateForInOpt(Select *p){
1573   SrcList *pSrc;
1574   ExprList *pEList;
1575   Table *pTab;
1576   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1577   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1578   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1579     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1580     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1581     return 0; /* No DISTINCT keyword and no aggregate functions */
1582   }
1583   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1584   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1585   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1586   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1587   pSrc = p->pSrc;
1588   assert( pSrc!=0 );
1589   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1590   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1591   pTab = pSrc->a[0].pTab;
1592   if( NEVER(pTab==0) ) return 0;
1593   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1594   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1595   pEList = p->pEList;
1596   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1597   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1598   return 1;
1599 }
1600 #endif /* SQLITE_OMIT_SUBQUERY */
1601 
1602 /*
1603 ** Code an OP_Once instruction and allocate space for its flag. Return the
1604 ** address of the new instruction.
1605 */
1606 int sqlite3CodeOnce(Parse *pParse){
1607   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1608   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1609 }
1610 
1611 /*
1612 ** Generate code that checks the left-most column of index table iCur to see if
1613 ** it contains any NULL entries.  Cause the register at regHasNull to be set
1614 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
1615 ** to be set to NULL if iCur contains one or more NULL values.
1616 */
1617 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
1618   int addr1;
1619   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
1620   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1621   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
1622   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1623   VdbeComment((v, "first_entry_in(%d)", iCur));
1624   sqlite3VdbeJumpHere(v, addr1);
1625 }
1626 
1627 
1628 #ifndef SQLITE_OMIT_SUBQUERY
1629 /*
1630 ** The argument is an IN operator with a list (not a subquery) on the
1631 ** right-hand side.  Return TRUE if that list is constant.
1632 */
1633 static int sqlite3InRhsIsConstant(Expr *pIn){
1634   Expr *pLHS;
1635   int res;
1636   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
1637   pLHS = pIn->pLeft;
1638   pIn->pLeft = 0;
1639   res = sqlite3ExprIsConstant(pIn);
1640   pIn->pLeft = pLHS;
1641   return res;
1642 }
1643 #endif
1644 
1645 /*
1646 ** This function is used by the implementation of the IN (...) operator.
1647 ** The pX parameter is the expression on the RHS of the IN operator, which
1648 ** might be either a list of expressions or a subquery.
1649 **
1650 ** The job of this routine is to find or create a b-tree object that can
1651 ** be used either to test for membership in the RHS set or to iterate through
1652 ** all members of the RHS set, skipping duplicates.
1653 **
1654 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
1655 ** and pX->iTable is set to the index of that cursor.
1656 **
1657 ** The returned value of this function indicates the b-tree type, as follows:
1658 **
1659 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
1660 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
1661 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1662 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
1663 **                         populated epheremal table.
1664 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
1665 **                         implemented as a sequence of comparisons.
1666 **
1667 ** An existing b-tree might be used if the RHS expression pX is a simple
1668 ** subquery such as:
1669 **
1670 **     SELECT <column> FROM <table>
1671 **
1672 ** If the RHS of the IN operator is a list or a more complex subquery, then
1673 ** an ephemeral table might need to be generated from the RHS and then
1674 ** pX->iTable made to point to the ephemeral table instead of an
1675 ** existing table.
1676 **
1677 ** The inFlags parameter must contain exactly one of the bits
1678 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
1679 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
1680 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
1681 ** IN index will be used to loop over all values of the RHS of the
1682 ** IN operator.
1683 **
1684 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
1685 ** through the set members) then the b-tree must not contain duplicates.
1686 ** An epheremal table must be used unless the selected <column> is guaranteed
1687 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1688 ** has a UNIQUE constraint or UNIQUE index.
1689 **
1690 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
1691 ** for fast set membership tests) then an epheremal table must
1692 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1693 ** be found with <column> as its left-most column.
1694 **
1695 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
1696 ** if the RHS of the IN operator is a list (not a subquery) then this
1697 ** routine might decide that creating an ephemeral b-tree for membership
1698 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
1699 ** calling routine should implement the IN operator using a sequence
1700 ** of Eq or Ne comparison operations.
1701 **
1702 ** When the b-tree is being used for membership tests, the calling function
1703 ** might need to know whether or not the RHS side of the IN operator
1704 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
1705 ** if there is any chance that the (...) might contain a NULL value at
1706 ** runtime, then a register is allocated and the register number written
1707 ** to *prRhsHasNull. If there is no chance that the (...) contains a
1708 ** NULL value, then *prRhsHasNull is left unchanged.
1709 **
1710 ** If a register is allocated and its location stored in *prRhsHasNull, then
1711 ** the value in that register will be NULL if the b-tree contains one or more
1712 ** NULL values, and it will be some non-NULL value if the b-tree contains no
1713 ** NULL values.
1714 */
1715 #ifndef SQLITE_OMIT_SUBQUERY
1716 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
1717   Select *p;                            /* SELECT to the right of IN operator */
1718   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1719   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1720   int mustBeUnique;                     /* True if RHS must be unique */
1721   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1722 
1723   assert( pX->op==TK_IN );
1724   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
1725 
1726   /* Check to see if an existing table or index can be used to
1727   ** satisfy the query.  This is preferable to generating a new
1728   ** ephemeral table.
1729   */
1730   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1731   if( pParse->nErr==0 && isCandidateForInOpt(p) ){
1732     sqlite3 *db = pParse->db;              /* Database connection */
1733     Table *pTab;                           /* Table <table>. */
1734     Expr *pExpr;                           /* Expression <column> */
1735     i16 iCol;                              /* Index of column <column> */
1736     i16 iDb;                               /* Database idx for pTab */
1737 
1738     assert( p );                        /* Because of isCandidateForInOpt(p) */
1739     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1740     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1741     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1742     pTab = p->pSrc->a[0].pTab;
1743     pExpr = p->pEList->a[0].pExpr;
1744     iCol = (i16)pExpr->iColumn;
1745 
1746     /* Code an OP_Transaction and OP_TableLock for <table>. */
1747     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1748     sqlite3CodeVerifySchema(pParse, iDb);
1749     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1750 
1751     /* This function is only called from two places. In both cases the vdbe
1752     ** has already been allocated. So assume sqlite3GetVdbe() is always
1753     ** successful here.
1754     */
1755     assert(v);
1756     if( iCol<0 ){
1757       int iAddr = sqlite3CodeOnce(pParse);
1758       VdbeCoverage(v);
1759 
1760       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1761       eType = IN_INDEX_ROWID;
1762 
1763       sqlite3VdbeJumpHere(v, iAddr);
1764     }else{
1765       Index *pIdx;                         /* Iterator variable */
1766 
1767       /* The collation sequence used by the comparison. If an index is to
1768       ** be used in place of a temp-table, it must be ordered according
1769       ** to this collation sequence.  */
1770       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1771 
1772       /* Check that the affinity that will be used to perform the
1773       ** comparison is the same as the affinity of the column. If
1774       ** it is not, it is not possible to use any index.
1775       */
1776       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1777 
1778       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1779         if( (pIdx->aiColumn[0]==iCol)
1780          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1781          && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
1782         ){
1783           int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1784           sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1785           sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1786           VdbeComment((v, "%s", pIdx->zName));
1787           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1788           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1789 
1790           if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
1791             *prRhsHasNull = ++pParse->nMem;
1792             sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
1793           }
1794           sqlite3VdbeJumpHere(v, iAddr);
1795         }
1796       }
1797     }
1798   }
1799 
1800   /* If no preexisting index is available for the IN clause
1801   ** and IN_INDEX_NOOP is an allowed reply
1802   ** and the RHS of the IN operator is a list, not a subquery
1803   ** and the RHS is not contant or has two or fewer terms,
1804   ** then it is not worth creating an ephemeral table to evaluate
1805   ** the IN operator so return IN_INDEX_NOOP.
1806   */
1807   if( eType==0
1808    && (inFlags & IN_INDEX_NOOP_OK)
1809    && !ExprHasProperty(pX, EP_xIsSelect)
1810    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
1811   ){
1812     eType = IN_INDEX_NOOP;
1813   }
1814 
1815 
1816   if( eType==0 ){
1817     /* Could not find an existing table or index to use as the RHS b-tree.
1818     ** We will have to generate an ephemeral table to do the job.
1819     */
1820     u32 savedNQueryLoop = pParse->nQueryLoop;
1821     int rMayHaveNull = 0;
1822     eType = IN_INDEX_EPH;
1823     if( inFlags & IN_INDEX_LOOP ){
1824       pParse->nQueryLoop = 0;
1825       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1826         eType = IN_INDEX_ROWID;
1827       }
1828     }else if( prRhsHasNull ){
1829       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
1830     }
1831     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1832     pParse->nQueryLoop = savedNQueryLoop;
1833   }else{
1834     pX->iTable = iTab;
1835   }
1836   return eType;
1837 }
1838 #endif
1839 
1840 /*
1841 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1842 ** or IN operators.  Examples:
1843 **
1844 **     (SELECT a FROM b)          -- subquery
1845 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1846 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1847 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1848 **
1849 ** The pExpr parameter describes the expression that contains the IN
1850 ** operator or subquery.
1851 **
1852 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1853 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1854 ** to some integer key column of a table B-Tree. In this case, use an
1855 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1856 ** (slower) variable length keys B-Tree.
1857 **
1858 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1859 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1860 ** All this routine does is initialize the register given by rMayHaveNull
1861 ** to NULL.  Calling routines will take care of changing this register
1862 ** value to non-NULL if the RHS is NULL-free.
1863 **
1864 ** For a SELECT or EXISTS operator, return the register that holds the
1865 ** result.  For IN operators or if an error occurs, the return value is 0.
1866 */
1867 #ifndef SQLITE_OMIT_SUBQUERY
1868 int sqlite3CodeSubselect(
1869   Parse *pParse,          /* Parsing context */
1870   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1871   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
1872   int isRowid             /* If true, LHS of IN operator is a rowid */
1873 ){
1874   int jmpIfDynamic = -1;                      /* One-time test address */
1875   int rReg = 0;                           /* Register storing resulting */
1876   Vdbe *v = sqlite3GetVdbe(pParse);
1877   if( NEVER(v==0) ) return 0;
1878   sqlite3ExprCachePush(pParse);
1879 
1880   /* This code must be run in its entirety every time it is encountered
1881   ** if any of the following is true:
1882   **
1883   **    *  The right-hand side is a correlated subquery
1884   **    *  The right-hand side is an expression list containing variables
1885   **    *  We are inside a trigger
1886   **
1887   ** If all of the above are false, then we can run this code just once
1888   ** save the results, and reuse the same result on subsequent invocations.
1889   */
1890   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1891     jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1892   }
1893 
1894 #ifndef SQLITE_OMIT_EXPLAIN
1895   if( pParse->explain==2 ){
1896     char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d",
1897         jmpIfDynamic>=0?"":"CORRELATED ",
1898         pExpr->op==TK_IN?"LIST":"SCALAR",
1899         pParse->iNextSelectId
1900     );
1901     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1902   }
1903 #endif
1904 
1905   switch( pExpr->op ){
1906     case TK_IN: {
1907       char affinity;              /* Affinity of the LHS of the IN */
1908       int addr;                   /* Address of OP_OpenEphemeral instruction */
1909       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1910       KeyInfo *pKeyInfo = 0;      /* Key information */
1911 
1912       affinity = sqlite3ExprAffinity(pLeft);
1913 
1914       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1915       ** expression it is handled the same way.  An ephemeral table is
1916       ** filled with single-field index keys representing the results
1917       ** from the SELECT or the <exprlist>.
1918       **
1919       ** If the 'x' expression is a column value, or the SELECT...
1920       ** statement returns a column value, then the affinity of that
1921       ** column is used to build the index keys. If both 'x' and the
1922       ** SELECT... statement are columns, then numeric affinity is used
1923       ** if either column has NUMERIC or INTEGER affinity. If neither
1924       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1925       ** is used.
1926       */
1927       pExpr->iTable = pParse->nTab++;
1928       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1929       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1930 
1931       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1932         /* Case 1:     expr IN (SELECT ...)
1933         **
1934         ** Generate code to write the results of the select into the temporary
1935         ** table allocated and opened above.
1936         */
1937         Select *pSelect = pExpr->x.pSelect;
1938         SelectDest dest;
1939         ExprList *pEList;
1940 
1941         assert( !isRowid );
1942         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1943         dest.affSdst = (u8)affinity;
1944         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1945         pSelect->iLimit = 0;
1946         testcase( pSelect->selFlags & SF_Distinct );
1947         testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1948         if( sqlite3Select(pParse, pSelect, &dest) ){
1949           sqlite3KeyInfoUnref(pKeyInfo);
1950           return 0;
1951         }
1952         pEList = pSelect->pEList;
1953         assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1954         assert( pEList!=0 );
1955         assert( pEList->nExpr>0 );
1956         assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1957         pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1958                                                          pEList->a[0].pExpr);
1959       }else if( ALWAYS(pExpr->x.pList!=0) ){
1960         /* Case 2:     expr IN (exprlist)
1961         **
1962         ** For each expression, build an index key from the evaluation and
1963         ** store it in the temporary table. If <expr> is a column, then use
1964         ** that columns affinity when building index keys. If <expr> is not
1965         ** a column, use numeric affinity.
1966         */
1967         int i;
1968         ExprList *pList = pExpr->x.pList;
1969         struct ExprList_item *pItem;
1970         int r1, r2, r3;
1971 
1972         if( !affinity ){
1973           affinity = SQLITE_AFF_BLOB;
1974         }
1975         if( pKeyInfo ){
1976           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1977           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1978         }
1979 
1980         /* Loop through each expression in <exprlist>. */
1981         r1 = sqlite3GetTempReg(pParse);
1982         r2 = sqlite3GetTempReg(pParse);
1983         if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1984         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1985           Expr *pE2 = pItem->pExpr;
1986           int iValToIns;
1987 
1988           /* If the expression is not constant then we will need to
1989           ** disable the test that was generated above that makes sure
1990           ** this code only executes once.  Because for a non-constant
1991           ** expression we need to rerun this code each time.
1992           */
1993           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
1994             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
1995             jmpIfDynamic = -1;
1996           }
1997 
1998           /* Evaluate the expression and insert it into the temp table */
1999           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2000             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2001           }else{
2002             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2003             if( isRowid ){
2004               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2005                                 sqlite3VdbeCurrentAddr(v)+2);
2006               VdbeCoverage(v);
2007               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2008             }else{
2009               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2010               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
2011               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
2012             }
2013           }
2014         }
2015         sqlite3ReleaseTempReg(pParse, r1);
2016         sqlite3ReleaseTempReg(pParse, r2);
2017       }
2018       if( pKeyInfo ){
2019         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2020       }
2021       break;
2022     }
2023 
2024     case TK_EXISTS:
2025     case TK_SELECT:
2026     default: {
2027       /* If this has to be a scalar SELECT.  Generate code to put the
2028       ** value of this select in a memory cell and record the number
2029       ** of the memory cell in iColumn.  If this is an EXISTS, write
2030       ** an integer 0 (not exists) or 1 (exists) into a memory cell
2031       ** and record that memory cell in iColumn.
2032       */
2033       Select *pSel;                         /* SELECT statement to encode */
2034       SelectDest dest;                      /* How to deal with SELECt result */
2035 
2036       testcase( pExpr->op==TK_EXISTS );
2037       testcase( pExpr->op==TK_SELECT );
2038       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2039 
2040       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2041       pSel = pExpr->x.pSelect;
2042       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
2043       if( pExpr->op==TK_SELECT ){
2044         dest.eDest = SRT_Mem;
2045         dest.iSdst = dest.iSDParm;
2046         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
2047         VdbeComment((v, "Init subquery result"));
2048       }else{
2049         dest.eDest = SRT_Exists;
2050         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2051         VdbeComment((v, "Init EXISTS result"));
2052       }
2053       sqlite3ExprDelete(pParse->db, pSel->pLimit);
2054       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
2055                                   &sqlite3IntTokens[1]);
2056       pSel->iLimit = 0;
2057       pSel->selFlags &= ~SF_MultiValue;
2058       if( sqlite3Select(pParse, pSel, &dest) ){
2059         return 0;
2060       }
2061       rReg = dest.iSDParm;
2062       ExprSetVVAProperty(pExpr, EP_NoReduce);
2063       break;
2064     }
2065   }
2066 
2067   if( rHasNullFlag ){
2068     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2069   }
2070 
2071   if( jmpIfDynamic>=0 ){
2072     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2073   }
2074   sqlite3ExprCachePop(pParse);
2075 
2076   return rReg;
2077 }
2078 #endif /* SQLITE_OMIT_SUBQUERY */
2079 
2080 #ifndef SQLITE_OMIT_SUBQUERY
2081 /*
2082 ** Generate code for an IN expression.
2083 **
2084 **      x IN (SELECT ...)
2085 **      x IN (value, value, ...)
2086 **
2087 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
2088 ** is an array of zero or more values.  The expression is true if the LHS is
2089 ** contained within the RHS.  The value of the expression is unknown (NULL)
2090 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
2091 ** RHS contains one or more NULL values.
2092 **
2093 ** This routine generates code that jumps to destIfFalse if the LHS is not
2094 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2095 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2096 ** within the RHS then fall through.
2097 */
2098 static void sqlite3ExprCodeIN(
2099   Parse *pParse,        /* Parsing and code generating context */
2100   Expr *pExpr,          /* The IN expression */
2101   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2102   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2103 ){
2104   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2105   char affinity;        /* Comparison affinity to use */
2106   int eType;            /* Type of the RHS */
2107   int r1;               /* Temporary use register */
2108   Vdbe *v;              /* Statement under construction */
2109 
2110   /* Compute the RHS.   After this step, the table with cursor
2111   ** pExpr->iTable will contains the values that make up the RHS.
2112   */
2113   v = pParse->pVdbe;
2114   assert( v!=0 );       /* OOM detected prior to this routine */
2115   VdbeNoopComment((v, "begin IN expr"));
2116   eType = sqlite3FindInIndex(pParse, pExpr,
2117                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2118                              destIfFalse==destIfNull ? 0 : &rRhsHasNull);
2119 
2120   /* Figure out the affinity to use to create a key from the results
2121   ** of the expression. affinityStr stores a static string suitable for
2122   ** P4 of OP_MakeRecord.
2123   */
2124   affinity = comparisonAffinity(pExpr);
2125 
2126   /* Code the LHS, the <expr> from "<expr> IN (...)".
2127   */
2128   sqlite3ExprCachePush(pParse);
2129   r1 = sqlite3GetTempReg(pParse);
2130   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
2131 
2132   /* If sqlite3FindInIndex() did not find or create an index that is
2133   ** suitable for evaluating the IN operator, then evaluate using a
2134   ** sequence of comparisons.
2135   */
2136   if( eType==IN_INDEX_NOOP ){
2137     ExprList *pList = pExpr->x.pList;
2138     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2139     int labelOk = sqlite3VdbeMakeLabel(v);
2140     int r2, regToFree;
2141     int regCkNull = 0;
2142     int ii;
2143     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2144     if( destIfNull!=destIfFalse ){
2145       regCkNull = sqlite3GetTempReg(pParse);
2146       sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
2147     }
2148     for(ii=0; ii<pList->nExpr; ii++){
2149       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2150       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2151         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2152       }
2153       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2154         sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
2155                           (void*)pColl, P4_COLLSEQ);
2156         VdbeCoverageIf(v, ii<pList->nExpr-1);
2157         VdbeCoverageIf(v, ii==pList->nExpr-1);
2158         sqlite3VdbeChangeP5(v, affinity);
2159       }else{
2160         assert( destIfNull==destIfFalse );
2161         sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
2162                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2163         sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
2164       }
2165       sqlite3ReleaseTempReg(pParse, regToFree);
2166     }
2167     if( regCkNull ){
2168       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2169       sqlite3VdbeGoto(v, destIfFalse);
2170     }
2171     sqlite3VdbeResolveLabel(v, labelOk);
2172     sqlite3ReleaseTempReg(pParse, regCkNull);
2173   }else{
2174 
2175     /* If the LHS is NULL, then the result is either false or NULL depending
2176     ** on whether the RHS is empty or not, respectively.
2177     */
2178     if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
2179       if( destIfNull==destIfFalse ){
2180         /* Shortcut for the common case where the false and NULL outcomes are
2181         ** the same. */
2182         sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
2183       }else{
2184         int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
2185         sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2186         VdbeCoverage(v);
2187         sqlite3VdbeGoto(v, destIfNull);
2188         sqlite3VdbeJumpHere(v, addr1);
2189       }
2190     }
2191 
2192     if( eType==IN_INDEX_ROWID ){
2193       /* In this case, the RHS is the ROWID of table b-tree
2194       */
2195       sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
2196       sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
2197       VdbeCoverage(v);
2198     }else{
2199       /* In this case, the RHS is an index b-tree.
2200       */
2201       sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
2202 
2203       /* If the set membership test fails, then the result of the
2204       ** "x IN (...)" expression must be either 0 or NULL. If the set
2205       ** contains no NULL values, then the result is 0. If the set
2206       ** contains one or more NULL values, then the result of the
2207       ** expression is also NULL.
2208       */
2209       assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
2210       if( rRhsHasNull==0 ){
2211         /* This branch runs if it is known at compile time that the RHS
2212         ** cannot contain NULL values. This happens as the result
2213         ** of a "NOT NULL" constraint in the database schema.
2214         **
2215         ** Also run this branch if NULL is equivalent to FALSE
2216         ** for this particular IN operator.
2217         */
2218         sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
2219         VdbeCoverage(v);
2220       }else{
2221         /* In this branch, the RHS of the IN might contain a NULL and
2222         ** the presence of a NULL on the RHS makes a difference in the
2223         ** outcome.
2224         */
2225         int addr1;
2226 
2227         /* First check to see if the LHS is contained in the RHS.  If so,
2228         ** then the answer is TRUE the presence of NULLs in the RHS does
2229         ** not matter.  If the LHS is not contained in the RHS, then the
2230         ** answer is NULL if the RHS contains NULLs and the answer is
2231         ** FALSE if the RHS is NULL-free.
2232         */
2233         addr1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
2234         VdbeCoverage(v);
2235         sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
2236         VdbeCoverage(v);
2237         sqlite3VdbeGoto(v, destIfFalse);
2238         sqlite3VdbeJumpHere(v, addr1);
2239       }
2240     }
2241   }
2242   sqlite3ReleaseTempReg(pParse, r1);
2243   sqlite3ExprCachePop(pParse);
2244   VdbeComment((v, "end IN expr"));
2245 }
2246 #endif /* SQLITE_OMIT_SUBQUERY */
2247 
2248 #ifndef SQLITE_OMIT_FLOATING_POINT
2249 /*
2250 ** Generate an instruction that will put the floating point
2251 ** value described by z[0..n-1] into register iMem.
2252 **
2253 ** The z[] string will probably not be zero-terminated.  But the
2254 ** z[n] character is guaranteed to be something that does not look
2255 ** like the continuation of the number.
2256 */
2257 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2258   if( ALWAYS(z!=0) ){
2259     double value;
2260     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2261     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2262     if( negateFlag ) value = -value;
2263     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
2264   }
2265 }
2266 #endif
2267 
2268 
2269 /*
2270 ** Generate an instruction that will put the integer describe by
2271 ** text z[0..n-1] into register iMem.
2272 **
2273 ** Expr.u.zToken is always UTF8 and zero-terminated.
2274 */
2275 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2276   Vdbe *v = pParse->pVdbe;
2277   if( pExpr->flags & EP_IntValue ){
2278     int i = pExpr->u.iValue;
2279     assert( i>=0 );
2280     if( negFlag ) i = -i;
2281     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2282   }else{
2283     int c;
2284     i64 value;
2285     const char *z = pExpr->u.zToken;
2286     assert( z!=0 );
2287     c = sqlite3DecOrHexToI64(z, &value);
2288     if( c==0 || (c==2 && negFlag) ){
2289       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2290       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
2291     }else{
2292 #ifdef SQLITE_OMIT_FLOATING_POINT
2293       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2294 #else
2295 #ifndef SQLITE_OMIT_HEX_INTEGER
2296       if( sqlite3_strnicmp(z,"0x",2)==0 ){
2297         sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
2298       }else
2299 #endif
2300       {
2301         codeReal(v, z, negFlag, iMem);
2302       }
2303 #endif
2304     }
2305   }
2306 }
2307 
2308 /*
2309 ** Clear a cache entry.
2310 */
2311 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2312   if( p->tempReg ){
2313     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2314       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2315     }
2316     p->tempReg = 0;
2317   }
2318 }
2319 
2320 
2321 /*
2322 ** Record in the column cache that a particular column from a
2323 ** particular table is stored in a particular register.
2324 */
2325 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2326   int i;
2327   int minLru;
2328   int idxLru;
2329   struct yColCache *p;
2330 
2331   /* Unless an error has occurred, register numbers are always positive. */
2332   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
2333   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2334 
2335   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2336   ** for testing only - to verify that SQLite always gets the same answer
2337   ** with and without the column cache.
2338   */
2339   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2340 
2341   /* First replace any existing entry.
2342   **
2343   ** Actually, the way the column cache is currently used, we are guaranteed
2344   ** that the object will never already be in cache.  Verify this guarantee.
2345   */
2346 #ifndef NDEBUG
2347   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2348     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2349   }
2350 #endif
2351 
2352   /* Find an empty slot and replace it */
2353   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2354     if( p->iReg==0 ){
2355       p->iLevel = pParse->iCacheLevel;
2356       p->iTable = iTab;
2357       p->iColumn = iCol;
2358       p->iReg = iReg;
2359       p->tempReg = 0;
2360       p->lru = pParse->iCacheCnt++;
2361       return;
2362     }
2363   }
2364 
2365   /* Replace the last recently used */
2366   minLru = 0x7fffffff;
2367   idxLru = -1;
2368   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2369     if( p->lru<minLru ){
2370       idxLru = i;
2371       minLru = p->lru;
2372     }
2373   }
2374   if( ALWAYS(idxLru>=0) ){
2375     p = &pParse->aColCache[idxLru];
2376     p->iLevel = pParse->iCacheLevel;
2377     p->iTable = iTab;
2378     p->iColumn = iCol;
2379     p->iReg = iReg;
2380     p->tempReg = 0;
2381     p->lru = pParse->iCacheCnt++;
2382     return;
2383   }
2384 }
2385 
2386 /*
2387 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2388 ** Purge the range of registers from the column cache.
2389 */
2390 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2391   int i;
2392   int iLast = iReg + nReg - 1;
2393   struct yColCache *p;
2394   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2395     int r = p->iReg;
2396     if( r>=iReg && r<=iLast ){
2397       cacheEntryClear(pParse, p);
2398       p->iReg = 0;
2399     }
2400   }
2401 }
2402 
2403 /*
2404 ** Remember the current column cache context.  Any new entries added
2405 ** added to the column cache after this call are removed when the
2406 ** corresponding pop occurs.
2407 */
2408 void sqlite3ExprCachePush(Parse *pParse){
2409   pParse->iCacheLevel++;
2410 #ifdef SQLITE_DEBUG
2411   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2412     printf("PUSH to %d\n", pParse->iCacheLevel);
2413   }
2414 #endif
2415 }
2416 
2417 /*
2418 ** Remove from the column cache any entries that were added since the
2419 ** the previous sqlite3ExprCachePush operation.  In other words, restore
2420 ** the cache to the state it was in prior the most recent Push.
2421 */
2422 void sqlite3ExprCachePop(Parse *pParse){
2423   int i;
2424   struct yColCache *p;
2425   assert( pParse->iCacheLevel>=1 );
2426   pParse->iCacheLevel--;
2427 #ifdef SQLITE_DEBUG
2428   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2429     printf("POP  to %d\n", pParse->iCacheLevel);
2430   }
2431 #endif
2432   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2433     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2434       cacheEntryClear(pParse, p);
2435       p->iReg = 0;
2436     }
2437   }
2438 }
2439 
2440 /*
2441 ** When a cached column is reused, make sure that its register is
2442 ** no longer available as a temp register.  ticket #3879:  that same
2443 ** register might be in the cache in multiple places, so be sure to
2444 ** get them all.
2445 */
2446 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2447   int i;
2448   struct yColCache *p;
2449   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2450     if( p->iReg==iReg ){
2451       p->tempReg = 0;
2452     }
2453   }
2454 }
2455 
2456 /* Generate code that will load into register regOut a value that is
2457 ** appropriate for the iIdxCol-th column of index pIdx.
2458 */
2459 void sqlite3ExprCodeLoadIndexColumn(
2460   Parse *pParse,  /* The parsing context */
2461   Index *pIdx,    /* The index whose column is to be loaded */
2462   int iTabCur,    /* Cursor pointing to a table row */
2463   int iIdxCol,    /* The column of the index to be loaded */
2464   int regOut      /* Store the index column value in this register */
2465 ){
2466   i16 iTabCol = pIdx->aiColumn[iIdxCol];
2467   if( iTabCol==XN_EXPR ){
2468     assert( pIdx->aColExpr );
2469     assert( pIdx->aColExpr->nExpr>iIdxCol );
2470     pParse->iSelfTab = iTabCur;
2471     sqlite3ExprCode(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
2472   }else{
2473     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
2474                                     iTabCol, regOut);
2475   }
2476 }
2477 
2478 /*
2479 ** Generate code to extract the value of the iCol-th column of a table.
2480 */
2481 void sqlite3ExprCodeGetColumnOfTable(
2482   Vdbe *v,        /* The VDBE under construction */
2483   Table *pTab,    /* The table containing the value */
2484   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
2485   int iCol,       /* Index of the column to extract */
2486   int regOut      /* Extract the value into this register */
2487 ){
2488   if( iCol<0 || iCol==pTab->iPKey ){
2489     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2490   }else{
2491     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2492     int x = iCol;
2493     if( !HasRowid(pTab) ){
2494       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2495     }
2496     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2497   }
2498   if( iCol>=0 ){
2499     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2500   }
2501 }
2502 
2503 /*
2504 ** Generate code that will extract the iColumn-th column from
2505 ** table pTab and store the column value in a register.
2506 **
2507 ** An effort is made to store the column value in register iReg.  This
2508 ** is not garanteeed for GetColumn() - the result can be stored in
2509 ** any register.  But the result is guaranteed to land in register iReg
2510 ** for GetColumnToReg().
2511 **
2512 ** There must be an open cursor to pTab in iTable when this routine
2513 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2514 */
2515 int sqlite3ExprCodeGetColumn(
2516   Parse *pParse,   /* Parsing and code generating context */
2517   Table *pTab,     /* Description of the table we are reading from */
2518   int iColumn,     /* Index of the table column */
2519   int iTable,      /* The cursor pointing to the table */
2520   int iReg,        /* Store results here */
2521   u8 p5            /* P5 value for OP_Column + FLAGS */
2522 ){
2523   Vdbe *v = pParse->pVdbe;
2524   int i;
2525   struct yColCache *p;
2526 
2527   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2528     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2529       p->lru = pParse->iCacheCnt++;
2530       sqlite3ExprCachePinRegister(pParse, p->iReg);
2531       return p->iReg;
2532     }
2533   }
2534   assert( v!=0 );
2535   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2536   if( p5 ){
2537     sqlite3VdbeChangeP5(v, p5);
2538   }else{
2539     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2540   }
2541   return iReg;
2542 }
2543 void sqlite3ExprCodeGetColumnToReg(
2544   Parse *pParse,   /* Parsing and code generating context */
2545   Table *pTab,     /* Description of the table we are reading from */
2546   int iColumn,     /* Index of the table column */
2547   int iTable,      /* The cursor pointing to the table */
2548   int iReg         /* Store results here */
2549 ){
2550   int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
2551   if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
2552 }
2553 
2554 
2555 /*
2556 ** Clear all column cache entries.
2557 */
2558 void sqlite3ExprCacheClear(Parse *pParse){
2559   int i;
2560   struct yColCache *p;
2561 
2562 #if SQLITE_DEBUG
2563   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2564     printf("CLEAR\n");
2565   }
2566 #endif
2567   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2568     if( p->iReg ){
2569       cacheEntryClear(pParse, p);
2570       p->iReg = 0;
2571     }
2572   }
2573 }
2574 
2575 /*
2576 ** Record the fact that an affinity change has occurred on iCount
2577 ** registers starting with iStart.
2578 */
2579 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2580   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2581 }
2582 
2583 /*
2584 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2585 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2586 */
2587 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2588   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2589   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2590   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
2591 }
2592 
2593 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2594 /*
2595 ** Return true if any register in the range iFrom..iTo (inclusive)
2596 ** is used as part of the column cache.
2597 **
2598 ** This routine is used within assert() and testcase() macros only
2599 ** and does not appear in a normal build.
2600 */
2601 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2602   int i;
2603   struct yColCache *p;
2604   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2605     int r = p->iReg;
2606     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2607   }
2608   return 0;
2609 }
2610 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2611 
2612 /*
2613 ** Convert an expression node to a TK_REGISTER
2614 */
2615 static void exprToRegister(Expr *p, int iReg){
2616   p->op2 = p->op;
2617   p->op = TK_REGISTER;
2618   p->iTable = iReg;
2619   ExprClearProperty(p, EP_Skip);
2620 }
2621 
2622 /*
2623 ** Generate code into the current Vdbe to evaluate the given
2624 ** expression.  Attempt to store the results in register "target".
2625 ** Return the register where results are stored.
2626 **
2627 ** With this routine, there is no guarantee that results will
2628 ** be stored in target.  The result might be stored in some other
2629 ** register if it is convenient to do so.  The calling function
2630 ** must check the return code and move the results to the desired
2631 ** register.
2632 */
2633 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2634   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2635   int op;                   /* The opcode being coded */
2636   int inReg = target;       /* Results stored in register inReg */
2637   int regFree1 = 0;         /* If non-zero free this temporary register */
2638   int regFree2 = 0;         /* If non-zero free this temporary register */
2639   int r1, r2, r3, r4;       /* Various register numbers */
2640   sqlite3 *db = pParse->db; /* The database connection */
2641   Expr tempX;               /* Temporary expression node */
2642 
2643   assert( target>0 && target<=pParse->nMem );
2644   if( v==0 ){
2645     assert( pParse->db->mallocFailed );
2646     return 0;
2647   }
2648 
2649   if( pExpr==0 ){
2650     op = TK_NULL;
2651   }else{
2652     op = pExpr->op;
2653   }
2654   switch( op ){
2655     case TK_AGG_COLUMN: {
2656       AggInfo *pAggInfo = pExpr->pAggInfo;
2657       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2658       if( !pAggInfo->directMode ){
2659         assert( pCol->iMem>0 );
2660         inReg = pCol->iMem;
2661         break;
2662       }else if( pAggInfo->useSortingIdx ){
2663         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2664                               pCol->iSorterColumn, target);
2665         break;
2666       }
2667       /* Otherwise, fall thru into the TK_COLUMN case */
2668     }
2669     case TK_COLUMN: {
2670       int iTab = pExpr->iTable;
2671       if( iTab<0 ){
2672         if( pParse->ckBase>0 ){
2673           /* Generating CHECK constraints or inserting into partial index */
2674           inReg = pExpr->iColumn + pParse->ckBase;
2675           break;
2676         }else{
2677           /* Coding an expression that is part of an index where column names
2678           ** in the index refer to the table to which the index belongs */
2679           iTab = pParse->iSelfTab;
2680         }
2681       }
2682       inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2683                                pExpr->iColumn, iTab, target,
2684                                pExpr->op2);
2685       break;
2686     }
2687     case TK_INTEGER: {
2688       codeInteger(pParse, pExpr, 0, target);
2689       break;
2690     }
2691 #ifndef SQLITE_OMIT_FLOATING_POINT
2692     case TK_FLOAT: {
2693       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2694       codeReal(v, pExpr->u.zToken, 0, target);
2695       break;
2696     }
2697 #endif
2698     case TK_STRING: {
2699       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2700       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
2701       break;
2702     }
2703     case TK_NULL: {
2704       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2705       break;
2706     }
2707 #ifndef SQLITE_OMIT_BLOB_LITERAL
2708     case TK_BLOB: {
2709       int n;
2710       const char *z;
2711       char *zBlob;
2712       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2713       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2714       assert( pExpr->u.zToken[1]=='\'' );
2715       z = &pExpr->u.zToken[2];
2716       n = sqlite3Strlen30(z) - 1;
2717       assert( z[n]=='\'' );
2718       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2719       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2720       break;
2721     }
2722 #endif
2723     case TK_VARIABLE: {
2724       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2725       assert( pExpr->u.zToken!=0 );
2726       assert( pExpr->u.zToken[0]!=0 );
2727       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2728       if( pExpr->u.zToken[1]!=0 ){
2729         assert( pExpr->u.zToken[0]=='?'
2730              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2731         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2732       }
2733       break;
2734     }
2735     case TK_REGISTER: {
2736       inReg = pExpr->iTable;
2737       break;
2738     }
2739 #ifndef SQLITE_OMIT_CAST
2740     case TK_CAST: {
2741       /* Expressions of the form:   CAST(pLeft AS token) */
2742       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2743       if( inReg!=target ){
2744         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2745         inReg = target;
2746       }
2747       sqlite3VdbeAddOp2(v, OP_Cast, target,
2748                         sqlite3AffinityType(pExpr->u.zToken, 0));
2749       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2750       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2751       break;
2752     }
2753 #endif /* SQLITE_OMIT_CAST */
2754     case TK_LT:
2755     case TK_LE:
2756     case TK_GT:
2757     case TK_GE:
2758     case TK_NE:
2759     case TK_EQ: {
2760       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2761       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2762       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2763                   r1, r2, inReg, SQLITE_STOREP2);
2764       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
2765       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
2766       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
2767       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
2768       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
2769       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
2770       testcase( regFree1==0 );
2771       testcase( regFree2==0 );
2772       break;
2773     }
2774     case TK_IS:
2775     case TK_ISNOT: {
2776       testcase( op==TK_IS );
2777       testcase( op==TK_ISNOT );
2778       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2779       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2780       op = (op==TK_IS) ? TK_EQ : TK_NE;
2781       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2782                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2783       VdbeCoverageIf(v, op==TK_EQ);
2784       VdbeCoverageIf(v, op==TK_NE);
2785       testcase( regFree1==0 );
2786       testcase( regFree2==0 );
2787       break;
2788     }
2789     case TK_AND:
2790     case TK_OR:
2791     case TK_PLUS:
2792     case TK_STAR:
2793     case TK_MINUS:
2794     case TK_REM:
2795     case TK_BITAND:
2796     case TK_BITOR:
2797     case TK_SLASH:
2798     case TK_LSHIFT:
2799     case TK_RSHIFT:
2800     case TK_CONCAT: {
2801       assert( TK_AND==OP_And );            testcase( op==TK_AND );
2802       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
2803       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
2804       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
2805       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
2806       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
2807       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
2808       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
2809       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
2810       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
2811       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
2812       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2813       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2814       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2815       testcase( regFree1==0 );
2816       testcase( regFree2==0 );
2817       break;
2818     }
2819     case TK_UMINUS: {
2820       Expr *pLeft = pExpr->pLeft;
2821       assert( pLeft );
2822       if( pLeft->op==TK_INTEGER ){
2823         codeInteger(pParse, pLeft, 1, target);
2824 #ifndef SQLITE_OMIT_FLOATING_POINT
2825       }else if( pLeft->op==TK_FLOAT ){
2826         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2827         codeReal(v, pLeft->u.zToken, 1, target);
2828 #endif
2829       }else{
2830         tempX.op = TK_INTEGER;
2831         tempX.flags = EP_IntValue|EP_TokenOnly;
2832         tempX.u.iValue = 0;
2833         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2834         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2835         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2836         testcase( regFree2==0 );
2837       }
2838       inReg = target;
2839       break;
2840     }
2841     case TK_BITNOT:
2842     case TK_NOT: {
2843       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
2844       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
2845       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2846       testcase( regFree1==0 );
2847       inReg = target;
2848       sqlite3VdbeAddOp2(v, op, r1, inReg);
2849       break;
2850     }
2851     case TK_ISNULL:
2852     case TK_NOTNULL: {
2853       int addr;
2854       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
2855       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
2856       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2857       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2858       testcase( regFree1==0 );
2859       addr = sqlite3VdbeAddOp1(v, op, r1);
2860       VdbeCoverageIf(v, op==TK_ISNULL);
2861       VdbeCoverageIf(v, op==TK_NOTNULL);
2862       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2863       sqlite3VdbeJumpHere(v, addr);
2864       break;
2865     }
2866     case TK_AGG_FUNCTION: {
2867       AggInfo *pInfo = pExpr->pAggInfo;
2868       if( pInfo==0 ){
2869         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2870         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2871       }else{
2872         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2873       }
2874       break;
2875     }
2876     case TK_FUNCTION: {
2877       ExprList *pFarg;       /* List of function arguments */
2878       int nFarg;             /* Number of function arguments */
2879       FuncDef *pDef;         /* The function definition object */
2880       int nId;               /* Length of the function name in bytes */
2881       const char *zId;       /* The function name */
2882       u32 constMask = 0;     /* Mask of function arguments that are constant */
2883       int i;                 /* Loop counter */
2884       u8 enc = ENC(db);      /* The text encoding used by this database */
2885       CollSeq *pColl = 0;    /* A collating sequence */
2886 
2887       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2888       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2889         pFarg = 0;
2890       }else{
2891         pFarg = pExpr->x.pList;
2892       }
2893       nFarg = pFarg ? pFarg->nExpr : 0;
2894       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2895       zId = pExpr->u.zToken;
2896       nId = sqlite3Strlen30(zId);
2897       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2898       if( pDef==0 || pDef->xFunc==0 ){
2899         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2900         break;
2901       }
2902 
2903       /* Attempt a direct implementation of the built-in COALESCE() and
2904       ** IFNULL() functions.  This avoids unnecessary evaluation of
2905       ** arguments past the first non-NULL argument.
2906       */
2907       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2908         int endCoalesce = sqlite3VdbeMakeLabel(v);
2909         assert( nFarg>=2 );
2910         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2911         for(i=1; i<nFarg; i++){
2912           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2913           VdbeCoverage(v);
2914           sqlite3ExprCacheRemove(pParse, target, 1);
2915           sqlite3ExprCachePush(pParse);
2916           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2917           sqlite3ExprCachePop(pParse);
2918         }
2919         sqlite3VdbeResolveLabel(v, endCoalesce);
2920         break;
2921       }
2922 
2923       /* The UNLIKELY() function is a no-op.  The result is the value
2924       ** of the first argument.
2925       */
2926       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2927         assert( nFarg>=1 );
2928         inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
2929         break;
2930       }
2931 
2932       for(i=0; i<nFarg; i++){
2933         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2934           testcase( i==31 );
2935           constMask |= MASKBIT32(i);
2936         }
2937         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2938           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2939         }
2940       }
2941       if( pFarg ){
2942         if( constMask ){
2943           r1 = pParse->nMem+1;
2944           pParse->nMem += nFarg;
2945         }else{
2946           r1 = sqlite3GetTempRange(pParse, nFarg);
2947         }
2948 
2949         /* For length() and typeof() functions with a column argument,
2950         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2951         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2952         ** loading.
2953         */
2954         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2955           u8 exprOp;
2956           assert( nFarg==1 );
2957           assert( pFarg->a[0].pExpr!=0 );
2958           exprOp = pFarg->a[0].pExpr->op;
2959           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2960             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2961             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2962             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
2963             pFarg->a[0].pExpr->op2 =
2964                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
2965           }
2966         }
2967 
2968         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2969         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
2970                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
2971         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
2972       }else{
2973         r1 = 0;
2974       }
2975 #ifndef SQLITE_OMIT_VIRTUALTABLE
2976       /* Possibly overload the function if the first argument is
2977       ** a virtual table column.
2978       **
2979       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2980       ** second argument, not the first, as the argument to test to
2981       ** see if it is a column in a virtual table.  This is done because
2982       ** the left operand of infix functions (the operand we want to
2983       ** control overloading) ends up as the second argument to the
2984       ** function.  The expression "A glob B" is equivalent to
2985       ** "glob(B,A).  We want to use the A in "A glob B" to test
2986       ** for function overloading.  But we use the B term in "glob(B,A)".
2987       */
2988       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2989         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2990       }else if( nFarg>0 ){
2991         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2992       }
2993 #endif
2994       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
2995         if( !pColl ) pColl = db->pDfltColl;
2996         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2997       }
2998       sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target,
2999                         (char*)pDef, P4_FUNCDEF);
3000       sqlite3VdbeChangeP5(v, (u8)nFarg);
3001       if( nFarg && constMask==0 ){
3002         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3003       }
3004       break;
3005     }
3006 #ifndef SQLITE_OMIT_SUBQUERY
3007     case TK_EXISTS:
3008     case TK_SELECT: {
3009       testcase( op==TK_EXISTS );
3010       testcase( op==TK_SELECT );
3011       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3012       break;
3013     }
3014     case TK_IN: {
3015       int destIfFalse = sqlite3VdbeMakeLabel(v);
3016       int destIfNull = sqlite3VdbeMakeLabel(v);
3017       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3018       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3019       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3020       sqlite3VdbeResolveLabel(v, destIfFalse);
3021       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3022       sqlite3VdbeResolveLabel(v, destIfNull);
3023       break;
3024     }
3025 #endif /* SQLITE_OMIT_SUBQUERY */
3026 
3027 
3028     /*
3029     **    x BETWEEN y AND z
3030     **
3031     ** This is equivalent to
3032     **
3033     **    x>=y AND x<=z
3034     **
3035     ** X is stored in pExpr->pLeft.
3036     ** Y is stored in pExpr->pList->a[0].pExpr.
3037     ** Z is stored in pExpr->pList->a[1].pExpr.
3038     */
3039     case TK_BETWEEN: {
3040       Expr *pLeft = pExpr->pLeft;
3041       struct ExprList_item *pLItem = pExpr->x.pList->a;
3042       Expr *pRight = pLItem->pExpr;
3043 
3044       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3045       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
3046       testcase( regFree1==0 );
3047       testcase( regFree2==0 );
3048       r3 = sqlite3GetTempReg(pParse);
3049       r4 = sqlite3GetTempReg(pParse);
3050       codeCompare(pParse, pLeft, pRight, OP_Ge,
3051                   r1, r2, r3, SQLITE_STOREP2);  VdbeCoverage(v);
3052       pLItem++;
3053       pRight = pLItem->pExpr;
3054       sqlite3ReleaseTempReg(pParse, regFree2);
3055       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
3056       testcase( regFree2==0 );
3057       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
3058       VdbeCoverage(v);
3059       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
3060       sqlite3ReleaseTempReg(pParse, r3);
3061       sqlite3ReleaseTempReg(pParse, r4);
3062       break;
3063     }
3064     case TK_COLLATE:
3065     case TK_UPLUS: {
3066       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3067       break;
3068     }
3069 
3070     case TK_TRIGGER: {
3071       /* If the opcode is TK_TRIGGER, then the expression is a reference
3072       ** to a column in the new.* or old.* pseudo-tables available to
3073       ** trigger programs. In this case Expr.iTable is set to 1 for the
3074       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3075       ** is set to the column of the pseudo-table to read, or to -1 to
3076       ** read the rowid field.
3077       **
3078       ** The expression is implemented using an OP_Param opcode. The p1
3079       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3080       ** to reference another column of the old.* pseudo-table, where
3081       ** i is the index of the column. For a new.rowid reference, p1 is
3082       ** set to (n+1), where n is the number of columns in each pseudo-table.
3083       ** For a reference to any other column in the new.* pseudo-table, p1
3084       ** is set to (n+2+i), where n and i are as defined previously. For
3085       ** example, if the table on which triggers are being fired is
3086       ** declared as:
3087       **
3088       **   CREATE TABLE t1(a, b);
3089       **
3090       ** Then p1 is interpreted as follows:
3091       **
3092       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3093       **   p1==1   ->    old.a         p1==4   ->    new.a
3094       **   p1==2   ->    old.b         p1==5   ->    new.b
3095       */
3096       Table *pTab = pExpr->pTab;
3097       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3098 
3099       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3100       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3101       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3102       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3103 
3104       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3105       VdbeComment((v, "%s.%s -> $%d",
3106         (pExpr->iTable ? "new" : "old"),
3107         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3108         target
3109       ));
3110 
3111 #ifndef SQLITE_OMIT_FLOATING_POINT
3112       /* If the column has REAL affinity, it may currently be stored as an
3113       ** integer. Use OP_RealAffinity to make sure it is really real.
3114       **
3115       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3116       ** floating point when extracting it from the record.  */
3117       if( pExpr->iColumn>=0
3118        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3119       ){
3120         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3121       }
3122 #endif
3123       break;
3124     }
3125 
3126 
3127     /*
3128     ** Form A:
3129     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3130     **
3131     ** Form B:
3132     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3133     **
3134     ** Form A is can be transformed into the equivalent form B as follows:
3135     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3136     **        WHEN x=eN THEN rN ELSE y END
3137     **
3138     ** X (if it exists) is in pExpr->pLeft.
3139     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3140     ** odd.  The Y is also optional.  If the number of elements in x.pList
3141     ** is even, then Y is omitted and the "otherwise" result is NULL.
3142     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3143     **
3144     ** The result of the expression is the Ri for the first matching Ei,
3145     ** or if there is no matching Ei, the ELSE term Y, or if there is
3146     ** no ELSE term, NULL.
3147     */
3148     default: assert( op==TK_CASE ); {
3149       int endLabel;                     /* GOTO label for end of CASE stmt */
3150       int nextCase;                     /* GOTO label for next WHEN clause */
3151       int nExpr;                        /* 2x number of WHEN terms */
3152       int i;                            /* Loop counter */
3153       ExprList *pEList;                 /* List of WHEN terms */
3154       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3155       Expr opCompare;                   /* The X==Ei expression */
3156       Expr *pX;                         /* The X expression */
3157       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3158       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
3159 
3160       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3161       assert(pExpr->x.pList->nExpr > 0);
3162       pEList = pExpr->x.pList;
3163       aListelem = pEList->a;
3164       nExpr = pEList->nExpr;
3165       endLabel = sqlite3VdbeMakeLabel(v);
3166       if( (pX = pExpr->pLeft)!=0 ){
3167         tempX = *pX;
3168         testcase( pX->op==TK_COLUMN );
3169         exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
3170         testcase( regFree1==0 );
3171         opCompare.op = TK_EQ;
3172         opCompare.pLeft = &tempX;
3173         pTest = &opCompare;
3174         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3175         ** The value in regFree1 might get SCopy-ed into the file result.
3176         ** So make sure that the regFree1 register is not reused for other
3177         ** purposes and possibly overwritten.  */
3178         regFree1 = 0;
3179       }
3180       for(i=0; i<nExpr-1; i=i+2){
3181         sqlite3ExprCachePush(pParse);
3182         if( pX ){
3183           assert( pTest!=0 );
3184           opCompare.pRight = aListelem[i].pExpr;
3185         }else{
3186           pTest = aListelem[i].pExpr;
3187         }
3188         nextCase = sqlite3VdbeMakeLabel(v);
3189         testcase( pTest->op==TK_COLUMN );
3190         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3191         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3192         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3193         sqlite3VdbeGoto(v, endLabel);
3194         sqlite3ExprCachePop(pParse);
3195         sqlite3VdbeResolveLabel(v, nextCase);
3196       }
3197       if( (nExpr&1)!=0 ){
3198         sqlite3ExprCachePush(pParse);
3199         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3200         sqlite3ExprCachePop(pParse);
3201       }else{
3202         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3203       }
3204       assert( db->mallocFailed || pParse->nErr>0
3205            || pParse->iCacheLevel==iCacheLevel );
3206       sqlite3VdbeResolveLabel(v, endLabel);
3207       break;
3208     }
3209 #ifndef SQLITE_OMIT_TRIGGER
3210     case TK_RAISE: {
3211       assert( pExpr->affinity==OE_Rollback
3212            || pExpr->affinity==OE_Abort
3213            || pExpr->affinity==OE_Fail
3214            || pExpr->affinity==OE_Ignore
3215       );
3216       if( !pParse->pTriggerTab ){
3217         sqlite3ErrorMsg(pParse,
3218                        "RAISE() may only be used within a trigger-program");
3219         return 0;
3220       }
3221       if( pExpr->affinity==OE_Abort ){
3222         sqlite3MayAbort(pParse);
3223       }
3224       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3225       if( pExpr->affinity==OE_Ignore ){
3226         sqlite3VdbeAddOp4(
3227             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3228         VdbeCoverage(v);
3229       }else{
3230         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3231                               pExpr->affinity, pExpr->u.zToken, 0, 0);
3232       }
3233 
3234       break;
3235     }
3236 #endif
3237   }
3238   sqlite3ReleaseTempReg(pParse, regFree1);
3239   sqlite3ReleaseTempReg(pParse, regFree2);
3240   return inReg;
3241 }
3242 
3243 /*
3244 ** Factor out the code of the given expression to initialization time.
3245 */
3246 void sqlite3ExprCodeAtInit(
3247   Parse *pParse,    /* Parsing context */
3248   Expr *pExpr,      /* The expression to code when the VDBE initializes */
3249   int regDest,      /* Store the value in this register */
3250   u8 reusable       /* True if this expression is reusable */
3251 ){
3252   ExprList *p;
3253   assert( ConstFactorOk(pParse) );
3254   p = pParse->pConstExpr;
3255   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3256   p = sqlite3ExprListAppend(pParse, p, pExpr);
3257   if( p ){
3258      struct ExprList_item *pItem = &p->a[p->nExpr-1];
3259      pItem->u.iConstExprReg = regDest;
3260      pItem->reusable = reusable;
3261   }
3262   pParse->pConstExpr = p;
3263 }
3264 
3265 /*
3266 ** Generate code to evaluate an expression and store the results
3267 ** into a register.  Return the register number where the results
3268 ** are stored.
3269 **
3270 ** If the register is a temporary register that can be deallocated,
3271 ** then write its number into *pReg.  If the result register is not
3272 ** a temporary, then set *pReg to zero.
3273 **
3274 ** If pExpr is a constant, then this routine might generate this
3275 ** code to fill the register in the initialization section of the
3276 ** VDBE program, in order to factor it out of the evaluation loop.
3277 */
3278 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3279   int r2;
3280   pExpr = sqlite3ExprSkipCollate(pExpr);
3281   if( ConstFactorOk(pParse)
3282    && pExpr->op!=TK_REGISTER
3283    && sqlite3ExprIsConstantNotJoin(pExpr)
3284   ){
3285     ExprList *p = pParse->pConstExpr;
3286     int i;
3287     *pReg  = 0;
3288     if( p ){
3289       struct ExprList_item *pItem;
3290       for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3291         if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3292           return pItem->u.iConstExprReg;
3293         }
3294       }
3295     }
3296     r2 = ++pParse->nMem;
3297     sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3298   }else{
3299     int r1 = sqlite3GetTempReg(pParse);
3300     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3301     if( r2==r1 ){
3302       *pReg = r1;
3303     }else{
3304       sqlite3ReleaseTempReg(pParse, r1);
3305       *pReg = 0;
3306     }
3307   }
3308   return r2;
3309 }
3310 
3311 /*
3312 ** Generate code that will evaluate expression pExpr and store the
3313 ** results in register target.  The results are guaranteed to appear
3314 ** in register target.
3315 */
3316 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3317   int inReg;
3318 
3319   assert( target>0 && target<=pParse->nMem );
3320   if( pExpr && pExpr->op==TK_REGISTER ){
3321     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3322   }else{
3323     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3324     assert( pParse->pVdbe || pParse->db->mallocFailed );
3325     if( inReg!=target && pParse->pVdbe ){
3326       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
3327     }
3328   }
3329 }
3330 
3331 /*
3332 ** Generate code that will evaluate expression pExpr and store the
3333 ** results in register target.  The results are guaranteed to appear
3334 ** in register target.  If the expression is constant, then this routine
3335 ** might choose to code the expression at initialization time.
3336 */
3337 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
3338   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
3339     sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
3340   }else{
3341     sqlite3ExprCode(pParse, pExpr, target);
3342   }
3343 }
3344 
3345 /*
3346 ** Generate code that evaluates the given expression and puts the result
3347 ** in register target.
3348 **
3349 ** Also make a copy of the expression results into another "cache" register
3350 ** and modify the expression so that the next time it is evaluated,
3351 ** the result is a copy of the cache register.
3352 **
3353 ** This routine is used for expressions that are used multiple
3354 ** times.  They are evaluated once and the results of the expression
3355 ** are reused.
3356 */
3357 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3358   Vdbe *v = pParse->pVdbe;
3359   int iMem;
3360 
3361   assert( target>0 );
3362   assert( pExpr->op!=TK_REGISTER );
3363   sqlite3ExprCode(pParse, pExpr, target);
3364   iMem = ++pParse->nMem;
3365   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
3366   exprToRegister(pExpr, iMem);
3367 }
3368 
3369 /*
3370 ** Generate code that pushes the value of every element of the given
3371 ** expression list into a sequence of registers beginning at target.
3372 **
3373 ** Return the number of elements evaluated.
3374 **
3375 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3376 ** filled using OP_SCopy.  OP_Copy must be used instead.
3377 **
3378 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3379 ** factored out into initialization code.
3380 **
3381 ** The SQLITE_ECEL_REF flag means that expressions in the list with
3382 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
3383 ** in registers at srcReg, and so the value can be copied from there.
3384 */
3385 int sqlite3ExprCodeExprList(
3386   Parse *pParse,     /* Parsing context */
3387   ExprList *pList,   /* The expression list to be coded */
3388   int target,        /* Where to write results */
3389   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
3390   u8 flags           /* SQLITE_ECEL_* flags */
3391 ){
3392   struct ExprList_item *pItem;
3393   int i, j, n;
3394   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3395   Vdbe *v = pParse->pVdbe;
3396   assert( pList!=0 );
3397   assert( target>0 );
3398   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3399   n = pList->nExpr;
3400   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3401   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3402     Expr *pExpr = pItem->pExpr;
3403     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){
3404       sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
3405     }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3406       sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3407     }else{
3408       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3409       if( inReg!=target+i ){
3410         VdbeOp *pOp;
3411         if( copyOp==OP_Copy
3412          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3413          && pOp->p1+pOp->p3+1==inReg
3414          && pOp->p2+pOp->p3+1==target+i
3415         ){
3416           pOp->p3++;
3417         }else{
3418           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3419         }
3420       }
3421     }
3422   }
3423   return n;
3424 }
3425 
3426 /*
3427 ** Generate code for a BETWEEN operator.
3428 **
3429 **    x BETWEEN y AND z
3430 **
3431 ** The above is equivalent to
3432 **
3433 **    x>=y AND x<=z
3434 **
3435 ** Code it as such, taking care to do the common subexpression
3436 ** elimination of x.
3437 */
3438 static void exprCodeBetween(
3439   Parse *pParse,    /* Parsing and code generating context */
3440   Expr *pExpr,      /* The BETWEEN expression */
3441   int dest,         /* Jump here if the jump is taken */
3442   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3443   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3444 ){
3445   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3446   Expr compLeft;    /* The  x>=y  term */
3447   Expr compRight;   /* The  x<=z  term */
3448   Expr exprX;       /* The  x  subexpression */
3449   int regFree1 = 0; /* Temporary use register */
3450 
3451   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3452   exprX = *pExpr->pLeft;
3453   exprAnd.op = TK_AND;
3454   exprAnd.pLeft = &compLeft;
3455   exprAnd.pRight = &compRight;
3456   compLeft.op = TK_GE;
3457   compLeft.pLeft = &exprX;
3458   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3459   compRight.op = TK_LE;
3460   compRight.pLeft = &exprX;
3461   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3462   exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3463   if( jumpIfTrue ){
3464     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3465   }else{
3466     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3467   }
3468   sqlite3ReleaseTempReg(pParse, regFree1);
3469 
3470   /* Ensure adequate test coverage */
3471   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3472   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3473   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3474   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3475   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3476   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3477   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3478   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3479 }
3480 
3481 /*
3482 ** Generate code for a boolean expression such that a jump is made
3483 ** to the label "dest" if the expression is true but execution
3484 ** continues straight thru if the expression is false.
3485 **
3486 ** If the expression evaluates to NULL (neither true nor false), then
3487 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3488 **
3489 ** This code depends on the fact that certain token values (ex: TK_EQ)
3490 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3491 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3492 ** the make process cause these values to align.  Assert()s in the code
3493 ** below verify that the numbers are aligned correctly.
3494 */
3495 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3496   Vdbe *v = pParse->pVdbe;
3497   int op = 0;
3498   int regFree1 = 0;
3499   int regFree2 = 0;
3500   int r1, r2;
3501 
3502   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3503   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
3504   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3505   op = pExpr->op;
3506   switch( op ){
3507     case TK_AND: {
3508       int d2 = sqlite3VdbeMakeLabel(v);
3509       testcase( jumpIfNull==0 );
3510       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3511       sqlite3ExprCachePush(pParse);
3512       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3513       sqlite3VdbeResolveLabel(v, d2);
3514       sqlite3ExprCachePop(pParse);
3515       break;
3516     }
3517     case TK_OR: {
3518       testcase( jumpIfNull==0 );
3519       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3520       sqlite3ExprCachePush(pParse);
3521       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3522       sqlite3ExprCachePop(pParse);
3523       break;
3524     }
3525     case TK_NOT: {
3526       testcase( jumpIfNull==0 );
3527       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3528       break;
3529     }
3530     case TK_LT:
3531     case TK_LE:
3532     case TK_GT:
3533     case TK_GE:
3534     case TK_NE:
3535     case TK_EQ: {
3536       testcase( jumpIfNull==0 );
3537       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3538       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3539       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3540                   r1, r2, dest, jumpIfNull);
3541       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3542       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3543       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3544       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3545       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3546       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3547       testcase( regFree1==0 );
3548       testcase( regFree2==0 );
3549       break;
3550     }
3551     case TK_IS:
3552     case TK_ISNOT: {
3553       testcase( op==TK_IS );
3554       testcase( op==TK_ISNOT );
3555       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3556       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3557       op = (op==TK_IS) ? TK_EQ : TK_NE;
3558       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3559                   r1, r2, dest, SQLITE_NULLEQ);
3560       VdbeCoverageIf(v, op==TK_EQ);
3561       VdbeCoverageIf(v, op==TK_NE);
3562       testcase( regFree1==0 );
3563       testcase( regFree2==0 );
3564       break;
3565     }
3566     case TK_ISNULL:
3567     case TK_NOTNULL: {
3568       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3569       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3570       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3571       sqlite3VdbeAddOp2(v, op, r1, dest);
3572       VdbeCoverageIf(v, op==TK_ISNULL);
3573       VdbeCoverageIf(v, op==TK_NOTNULL);
3574       testcase( regFree1==0 );
3575       break;
3576     }
3577     case TK_BETWEEN: {
3578       testcase( jumpIfNull==0 );
3579       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3580       break;
3581     }
3582 #ifndef SQLITE_OMIT_SUBQUERY
3583     case TK_IN: {
3584       int destIfFalse = sqlite3VdbeMakeLabel(v);
3585       int destIfNull = jumpIfNull ? dest : destIfFalse;
3586       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3587       sqlite3VdbeGoto(v, dest);
3588       sqlite3VdbeResolveLabel(v, destIfFalse);
3589       break;
3590     }
3591 #endif
3592     default: {
3593       if( exprAlwaysTrue(pExpr) ){
3594         sqlite3VdbeGoto(v, dest);
3595       }else if( exprAlwaysFalse(pExpr) ){
3596         /* No-op */
3597       }else{
3598         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3599         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3600         VdbeCoverage(v);
3601         testcase( regFree1==0 );
3602         testcase( jumpIfNull==0 );
3603       }
3604       break;
3605     }
3606   }
3607   sqlite3ReleaseTempReg(pParse, regFree1);
3608   sqlite3ReleaseTempReg(pParse, regFree2);
3609 }
3610 
3611 /*
3612 ** Generate code for a boolean expression such that a jump is made
3613 ** to the label "dest" if the expression is false but execution
3614 ** continues straight thru if the expression is true.
3615 **
3616 ** If the expression evaluates to NULL (neither true nor false) then
3617 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3618 ** is 0.
3619 */
3620 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3621   Vdbe *v = pParse->pVdbe;
3622   int op = 0;
3623   int regFree1 = 0;
3624   int regFree2 = 0;
3625   int r1, r2;
3626 
3627   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3628   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3629   if( pExpr==0 )    return;
3630 
3631   /* The value of pExpr->op and op are related as follows:
3632   **
3633   **       pExpr->op            op
3634   **       ---------          ----------
3635   **       TK_ISNULL          OP_NotNull
3636   **       TK_NOTNULL         OP_IsNull
3637   **       TK_NE              OP_Eq
3638   **       TK_EQ              OP_Ne
3639   **       TK_GT              OP_Le
3640   **       TK_LE              OP_Gt
3641   **       TK_GE              OP_Lt
3642   **       TK_LT              OP_Ge
3643   **
3644   ** For other values of pExpr->op, op is undefined and unused.
3645   ** The value of TK_ and OP_ constants are arranged such that we
3646   ** can compute the mapping above using the following expression.
3647   ** Assert()s verify that the computation is correct.
3648   */
3649   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3650 
3651   /* Verify correct alignment of TK_ and OP_ constants
3652   */
3653   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3654   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3655   assert( pExpr->op!=TK_NE || op==OP_Eq );
3656   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3657   assert( pExpr->op!=TK_LT || op==OP_Ge );
3658   assert( pExpr->op!=TK_LE || op==OP_Gt );
3659   assert( pExpr->op!=TK_GT || op==OP_Le );
3660   assert( pExpr->op!=TK_GE || op==OP_Lt );
3661 
3662   switch( pExpr->op ){
3663     case TK_AND: {
3664       testcase( jumpIfNull==0 );
3665       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3666       sqlite3ExprCachePush(pParse);
3667       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3668       sqlite3ExprCachePop(pParse);
3669       break;
3670     }
3671     case TK_OR: {
3672       int d2 = sqlite3VdbeMakeLabel(v);
3673       testcase( jumpIfNull==0 );
3674       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3675       sqlite3ExprCachePush(pParse);
3676       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3677       sqlite3VdbeResolveLabel(v, d2);
3678       sqlite3ExprCachePop(pParse);
3679       break;
3680     }
3681     case TK_NOT: {
3682       testcase( jumpIfNull==0 );
3683       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3684       break;
3685     }
3686     case TK_LT:
3687     case TK_LE:
3688     case TK_GT:
3689     case TK_GE:
3690     case TK_NE:
3691     case TK_EQ: {
3692       testcase( jumpIfNull==0 );
3693       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3694       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3695       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3696                   r1, r2, dest, jumpIfNull);
3697       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3698       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3699       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3700       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3701       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3702       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3703       testcase( regFree1==0 );
3704       testcase( regFree2==0 );
3705       break;
3706     }
3707     case TK_IS:
3708     case TK_ISNOT: {
3709       testcase( pExpr->op==TK_IS );
3710       testcase( pExpr->op==TK_ISNOT );
3711       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3712       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3713       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3714       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3715                   r1, r2, dest, SQLITE_NULLEQ);
3716       VdbeCoverageIf(v, op==TK_EQ);
3717       VdbeCoverageIf(v, op==TK_NE);
3718       testcase( regFree1==0 );
3719       testcase( regFree2==0 );
3720       break;
3721     }
3722     case TK_ISNULL:
3723     case TK_NOTNULL: {
3724       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3725       sqlite3VdbeAddOp2(v, op, r1, dest);
3726       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
3727       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
3728       testcase( regFree1==0 );
3729       break;
3730     }
3731     case TK_BETWEEN: {
3732       testcase( jumpIfNull==0 );
3733       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3734       break;
3735     }
3736 #ifndef SQLITE_OMIT_SUBQUERY
3737     case TK_IN: {
3738       if( jumpIfNull ){
3739         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3740       }else{
3741         int destIfNull = sqlite3VdbeMakeLabel(v);
3742         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3743         sqlite3VdbeResolveLabel(v, destIfNull);
3744       }
3745       break;
3746     }
3747 #endif
3748     default: {
3749       if( exprAlwaysFalse(pExpr) ){
3750         sqlite3VdbeGoto(v, dest);
3751       }else if( exprAlwaysTrue(pExpr) ){
3752         /* no-op */
3753       }else{
3754         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3755         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3756         VdbeCoverage(v);
3757         testcase( regFree1==0 );
3758         testcase( jumpIfNull==0 );
3759       }
3760       break;
3761     }
3762   }
3763   sqlite3ReleaseTempReg(pParse, regFree1);
3764   sqlite3ReleaseTempReg(pParse, regFree2);
3765 }
3766 
3767 /*
3768 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
3769 ** code generation, and that copy is deleted after code generation. This
3770 ** ensures that the original pExpr is unchanged.
3771 */
3772 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
3773   sqlite3 *db = pParse->db;
3774   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
3775   if( db->mallocFailed==0 ){
3776     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
3777   }
3778   sqlite3ExprDelete(db, pCopy);
3779 }
3780 
3781 
3782 /*
3783 ** Do a deep comparison of two expression trees.  Return 0 if the two
3784 ** expressions are completely identical.  Return 1 if they differ only
3785 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3786 ** other than the top-level COLLATE operator.
3787 **
3788 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3789 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3790 **
3791 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
3792 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3793 **
3794 ** Sometimes this routine will return 2 even if the two expressions
3795 ** really are equivalent.  If we cannot prove that the expressions are
3796 ** identical, we return 2 just to be safe.  So if this routine
3797 ** returns 2, then you do not really know for certain if the two
3798 ** expressions are the same.  But if you get a 0 or 1 return, then you
3799 ** can be sure the expressions are the same.  In the places where
3800 ** this routine is used, it does not hurt to get an extra 2 - that
3801 ** just might result in some slightly slower code.  But returning
3802 ** an incorrect 0 or 1 could lead to a malfunction.
3803 */
3804 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3805   u32 combinedFlags;
3806   if( pA==0 || pB==0 ){
3807     return pB==pA ? 0 : 2;
3808   }
3809   combinedFlags = pA->flags | pB->flags;
3810   if( combinedFlags & EP_IntValue ){
3811     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3812       return 0;
3813     }
3814     return 2;
3815   }
3816   if( pA->op!=pB->op ){
3817     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
3818       return 1;
3819     }
3820     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
3821       return 1;
3822     }
3823     return 2;
3824   }
3825   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
3826     if( pA->op==TK_FUNCTION ){
3827       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
3828     }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3829       return pA->op==TK_COLLATE ? 1 : 2;
3830     }
3831   }
3832   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3833   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
3834     if( combinedFlags & EP_xIsSelect ) return 2;
3835     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
3836     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
3837     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
3838     if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){
3839       if( pA->iColumn!=pB->iColumn ) return 2;
3840       if( pA->iTable!=pB->iTable
3841        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
3842     }
3843   }
3844   return 0;
3845 }
3846 
3847 /*
3848 ** Compare two ExprList objects.  Return 0 if they are identical and
3849 ** non-zero if they differ in any way.
3850 **
3851 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3852 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3853 **
3854 ** This routine might return non-zero for equivalent ExprLists.  The
3855 ** only consequence will be disabled optimizations.  But this routine
3856 ** must never return 0 if the two ExprList objects are different, or
3857 ** a malfunction will result.
3858 **
3859 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3860 ** always differs from a non-NULL pointer.
3861 */
3862 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
3863   int i;
3864   if( pA==0 && pB==0 ) return 0;
3865   if( pA==0 || pB==0 ) return 1;
3866   if( pA->nExpr!=pB->nExpr ) return 1;
3867   for(i=0; i<pA->nExpr; i++){
3868     Expr *pExprA = pA->a[i].pExpr;
3869     Expr *pExprB = pB->a[i].pExpr;
3870     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3871     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
3872   }
3873   return 0;
3874 }
3875 
3876 /*
3877 ** Return true if we can prove the pE2 will always be true if pE1 is
3878 ** true.  Return false if we cannot complete the proof or if pE2 might
3879 ** be false.  Examples:
3880 **
3881 **     pE1: x==5       pE2: x==5             Result: true
3882 **     pE1: x>0        pE2: x==5             Result: false
3883 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
3884 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
3885 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
3886 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
3887 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
3888 **
3889 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
3890 ** Expr.iTable<0 then assume a table number given by iTab.
3891 **
3892 ** When in doubt, return false.  Returning true might give a performance
3893 ** improvement.  Returning false might cause a performance reduction, but
3894 ** it will always give the correct answer and is hence always safe.
3895 */
3896 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
3897   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
3898     return 1;
3899   }
3900   if( pE2->op==TK_OR
3901    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
3902              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
3903   ){
3904     return 1;
3905   }
3906   if( pE2->op==TK_NOTNULL
3907    && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
3908    && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
3909   ){
3910     return 1;
3911   }
3912   return 0;
3913 }
3914 
3915 /*
3916 ** An instance of the following structure is used by the tree walker
3917 ** to count references to table columns in the arguments of an
3918 ** aggregate function, in order to implement the
3919 ** sqlite3FunctionThisSrc() routine.
3920 */
3921 struct SrcCount {
3922   SrcList *pSrc;   /* One particular FROM clause in a nested query */
3923   int nThis;       /* Number of references to columns in pSrcList */
3924   int nOther;      /* Number of references to columns in other FROM clauses */
3925 };
3926 
3927 /*
3928 ** Count the number of references to columns.
3929 */
3930 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
3931   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
3932   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
3933   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
3934   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
3935   ** NEVER() will need to be removed. */
3936   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
3937     int i;
3938     struct SrcCount *p = pWalker->u.pSrcCount;
3939     SrcList *pSrc = p->pSrc;
3940     int nSrc = pSrc ? pSrc->nSrc : 0;
3941     for(i=0; i<nSrc; i++){
3942       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
3943     }
3944     if( i<nSrc ){
3945       p->nThis++;
3946     }else{
3947       p->nOther++;
3948     }
3949   }
3950   return WRC_Continue;
3951 }
3952 
3953 /*
3954 ** Determine if any of the arguments to the pExpr Function reference
3955 ** pSrcList.  Return true if they do.  Also return true if the function
3956 ** has no arguments or has only constant arguments.  Return false if pExpr
3957 ** references columns but not columns of tables found in pSrcList.
3958 */
3959 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
3960   Walker w;
3961   struct SrcCount cnt;
3962   assert( pExpr->op==TK_AGG_FUNCTION );
3963   memset(&w, 0, sizeof(w));
3964   w.xExprCallback = exprSrcCount;
3965   w.u.pSrcCount = &cnt;
3966   cnt.pSrc = pSrcList;
3967   cnt.nThis = 0;
3968   cnt.nOther = 0;
3969   sqlite3WalkExprList(&w, pExpr->x.pList);
3970   return cnt.nThis>0 || cnt.nOther==0;
3971 }
3972 
3973 /*
3974 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
3975 ** the new element.  Return a negative number if malloc fails.
3976 */
3977 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3978   int i;
3979   pInfo->aCol = sqlite3ArrayAllocate(
3980        db,
3981        pInfo->aCol,
3982        sizeof(pInfo->aCol[0]),
3983        &pInfo->nColumn,
3984        &i
3985   );
3986   return i;
3987 }
3988 
3989 /*
3990 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
3991 ** the new element.  Return a negative number if malloc fails.
3992 */
3993 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3994   int i;
3995   pInfo->aFunc = sqlite3ArrayAllocate(
3996        db,
3997        pInfo->aFunc,
3998        sizeof(pInfo->aFunc[0]),
3999        &pInfo->nFunc,
4000        &i
4001   );
4002   return i;
4003 }
4004 
4005 /*
4006 ** This is the xExprCallback for a tree walker.  It is used to
4007 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
4008 ** for additional information.
4009 */
4010 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4011   int i;
4012   NameContext *pNC = pWalker->u.pNC;
4013   Parse *pParse = pNC->pParse;
4014   SrcList *pSrcList = pNC->pSrcList;
4015   AggInfo *pAggInfo = pNC->pAggInfo;
4016 
4017   switch( pExpr->op ){
4018     case TK_AGG_COLUMN:
4019     case TK_COLUMN: {
4020       testcase( pExpr->op==TK_AGG_COLUMN );
4021       testcase( pExpr->op==TK_COLUMN );
4022       /* Check to see if the column is in one of the tables in the FROM
4023       ** clause of the aggregate query */
4024       if( ALWAYS(pSrcList!=0) ){
4025         struct SrcList_item *pItem = pSrcList->a;
4026         for(i=0; i<pSrcList->nSrc; i++, pItem++){
4027           struct AggInfo_col *pCol;
4028           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4029           if( pExpr->iTable==pItem->iCursor ){
4030             /* If we reach this point, it means that pExpr refers to a table
4031             ** that is in the FROM clause of the aggregate query.
4032             **
4033             ** Make an entry for the column in pAggInfo->aCol[] if there
4034             ** is not an entry there already.
4035             */
4036             int k;
4037             pCol = pAggInfo->aCol;
4038             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4039               if( pCol->iTable==pExpr->iTable &&
4040                   pCol->iColumn==pExpr->iColumn ){
4041                 break;
4042               }
4043             }
4044             if( (k>=pAggInfo->nColumn)
4045              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4046             ){
4047               pCol = &pAggInfo->aCol[k];
4048               pCol->pTab = pExpr->pTab;
4049               pCol->iTable = pExpr->iTable;
4050               pCol->iColumn = pExpr->iColumn;
4051               pCol->iMem = ++pParse->nMem;
4052               pCol->iSorterColumn = -1;
4053               pCol->pExpr = pExpr;
4054               if( pAggInfo->pGroupBy ){
4055                 int j, n;
4056                 ExprList *pGB = pAggInfo->pGroupBy;
4057                 struct ExprList_item *pTerm = pGB->a;
4058                 n = pGB->nExpr;
4059                 for(j=0; j<n; j++, pTerm++){
4060                   Expr *pE = pTerm->pExpr;
4061                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4062                       pE->iColumn==pExpr->iColumn ){
4063                     pCol->iSorterColumn = j;
4064                     break;
4065                   }
4066                 }
4067               }
4068               if( pCol->iSorterColumn<0 ){
4069                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4070               }
4071             }
4072             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4073             ** because it was there before or because we just created it).
4074             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4075             ** pAggInfo->aCol[] entry.
4076             */
4077             ExprSetVVAProperty(pExpr, EP_NoReduce);
4078             pExpr->pAggInfo = pAggInfo;
4079             pExpr->op = TK_AGG_COLUMN;
4080             pExpr->iAgg = (i16)k;
4081             break;
4082           } /* endif pExpr->iTable==pItem->iCursor */
4083         } /* end loop over pSrcList */
4084       }
4085       return WRC_Prune;
4086     }
4087     case TK_AGG_FUNCTION: {
4088       if( (pNC->ncFlags & NC_InAggFunc)==0
4089        && pWalker->walkerDepth==pExpr->op2
4090       ){
4091         /* Check to see if pExpr is a duplicate of another aggregate
4092         ** function that is already in the pAggInfo structure
4093         */
4094         struct AggInfo_func *pItem = pAggInfo->aFunc;
4095         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4096           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4097             break;
4098           }
4099         }
4100         if( i>=pAggInfo->nFunc ){
4101           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4102           */
4103           u8 enc = ENC(pParse->db);
4104           i = addAggInfoFunc(pParse->db, pAggInfo);
4105           if( i>=0 ){
4106             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4107             pItem = &pAggInfo->aFunc[i];
4108             pItem->pExpr = pExpr;
4109             pItem->iMem = ++pParse->nMem;
4110             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4111             pItem->pFunc = sqlite3FindFunction(pParse->db,
4112                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4113                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4114             if( pExpr->flags & EP_Distinct ){
4115               pItem->iDistinct = pParse->nTab++;
4116             }else{
4117               pItem->iDistinct = -1;
4118             }
4119           }
4120         }
4121         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4122         */
4123         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4124         ExprSetVVAProperty(pExpr, EP_NoReduce);
4125         pExpr->iAgg = (i16)i;
4126         pExpr->pAggInfo = pAggInfo;
4127         return WRC_Prune;
4128       }else{
4129         return WRC_Continue;
4130       }
4131     }
4132   }
4133   return WRC_Continue;
4134 }
4135 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4136   UNUSED_PARAMETER(pWalker);
4137   UNUSED_PARAMETER(pSelect);
4138   return WRC_Continue;
4139 }
4140 
4141 /*
4142 ** Analyze the pExpr expression looking for aggregate functions and
4143 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4144 ** points to.  Additional entries are made on the AggInfo object as
4145 ** necessary.
4146 **
4147 ** This routine should only be called after the expression has been
4148 ** analyzed by sqlite3ResolveExprNames().
4149 */
4150 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4151   Walker w;
4152   memset(&w, 0, sizeof(w));
4153   w.xExprCallback = analyzeAggregate;
4154   w.xSelectCallback = analyzeAggregatesInSelect;
4155   w.u.pNC = pNC;
4156   assert( pNC->pSrcList!=0 );
4157   sqlite3WalkExpr(&w, pExpr);
4158 }
4159 
4160 /*
4161 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4162 ** expression list.  Return the number of errors.
4163 **
4164 ** If an error is found, the analysis is cut short.
4165 */
4166 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4167   struct ExprList_item *pItem;
4168   int i;
4169   if( pList ){
4170     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4171       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4172     }
4173   }
4174 }
4175 
4176 /*
4177 ** Allocate a single new register for use to hold some intermediate result.
4178 */
4179 int sqlite3GetTempReg(Parse *pParse){
4180   if( pParse->nTempReg==0 ){
4181     return ++pParse->nMem;
4182   }
4183   return pParse->aTempReg[--pParse->nTempReg];
4184 }
4185 
4186 /*
4187 ** Deallocate a register, making available for reuse for some other
4188 ** purpose.
4189 **
4190 ** If a register is currently being used by the column cache, then
4191 ** the deallocation is deferred until the column cache line that uses
4192 ** the register becomes stale.
4193 */
4194 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4195   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4196     int i;
4197     struct yColCache *p;
4198     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4199       if( p->iReg==iReg ){
4200         p->tempReg = 1;
4201         return;
4202       }
4203     }
4204     pParse->aTempReg[pParse->nTempReg++] = iReg;
4205   }
4206 }
4207 
4208 /*
4209 ** Allocate or deallocate a block of nReg consecutive registers
4210 */
4211 int sqlite3GetTempRange(Parse *pParse, int nReg){
4212   int i, n;
4213   i = pParse->iRangeReg;
4214   n = pParse->nRangeReg;
4215   if( nReg<=n ){
4216     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4217     pParse->iRangeReg += nReg;
4218     pParse->nRangeReg -= nReg;
4219   }else{
4220     i = pParse->nMem+1;
4221     pParse->nMem += nReg;
4222   }
4223   return i;
4224 }
4225 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4226   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4227   if( nReg>pParse->nRangeReg ){
4228     pParse->nRangeReg = nReg;
4229     pParse->iRangeReg = iReg;
4230   }
4231 }
4232 
4233 /*
4234 ** Mark all temporary registers as being unavailable for reuse.
4235 */
4236 void sqlite3ClearTempRegCache(Parse *pParse){
4237   pParse->nTempReg = 0;
4238   pParse->nRangeReg = 0;
4239 }
4240