xref: /sqlite-3.40.0/src/expr.c (revision 8c53b4e7)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(Expr *pExpr){
46   int op;
47   pExpr = sqlite3ExprSkipCollate(pExpr);
48   if( pExpr->flags & EP_Generic ) return 0;
49   op = pExpr->op;
50   if( op==TK_SELECT ){
51     assert( pExpr->flags&EP_xIsSelect );
52     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
53   }
54   if( op==TK_REGISTER ) op = pExpr->op2;
55 #ifndef SQLITE_OMIT_CAST
56   if( op==TK_CAST ){
57     assert( !ExprHasProperty(pExpr, EP_IntValue) );
58     return sqlite3AffinityType(pExpr->u.zToken, 0);
59   }
60 #endif
61   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){
62     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
63   }
64   if( op==TK_SELECT_COLUMN ){
65     assert( pExpr->pLeft->flags&EP_xIsSelect );
66     return sqlite3ExprAffinity(
67         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
68     );
69   }
70   return pExpr->affinity;
71 }
72 
73 /*
74 ** Set the collating sequence for expression pExpr to be the collating
75 ** sequence named by pToken.   Return a pointer to a new Expr node that
76 ** implements the COLLATE operator.
77 **
78 ** If a memory allocation error occurs, that fact is recorded in pParse->db
79 ** and the pExpr parameter is returned unchanged.
80 */
81 Expr *sqlite3ExprAddCollateToken(
82   Parse *pParse,           /* Parsing context */
83   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
84   const Token *pCollName,  /* Name of collating sequence */
85   int dequote              /* True to dequote pCollName */
86 ){
87   if( pCollName->n>0 ){
88     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
89     if( pNew ){
90       pNew->pLeft = pExpr;
91       pNew->flags |= EP_Collate|EP_Skip;
92       pExpr = pNew;
93     }
94   }
95   return pExpr;
96 }
97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
98   Token s;
99   assert( zC!=0 );
100   sqlite3TokenInit(&s, (char*)zC);
101   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
102 }
103 
104 /*
105 ** Skip over any TK_COLLATE operators and any unlikely()
106 ** or likelihood() function at the root of an expression.
107 */
108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
109   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
110     if( ExprHasProperty(pExpr, EP_Unlikely) ){
111       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
112       assert( pExpr->x.pList->nExpr>0 );
113       assert( pExpr->op==TK_FUNCTION );
114       pExpr = pExpr->x.pList->a[0].pExpr;
115     }else{
116       assert( pExpr->op==TK_COLLATE );
117       pExpr = pExpr->pLeft;
118     }
119   }
120   return pExpr;
121 }
122 
123 /*
124 ** Return the collation sequence for the expression pExpr. If
125 ** there is no defined collating sequence, return NULL.
126 **
127 ** See also: sqlite3ExprNNCollSeq()
128 **
129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
130 ** default collation if pExpr has no defined collation.
131 **
132 ** The collating sequence might be determined by a COLLATE operator
133 ** or by the presence of a column with a defined collating sequence.
134 ** COLLATE operators take first precedence.  Left operands take
135 ** precedence over right operands.
136 */
137 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
138   sqlite3 *db = pParse->db;
139   CollSeq *pColl = 0;
140   Expr *p = pExpr;
141   while( p ){
142     int op = p->op;
143     if( p->flags & EP_Generic ) break;
144     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
145           || op==TK_REGISTER || op==TK_TRIGGER)
146      && p->y.pTab!=0
147     ){
148       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
149       ** a TK_COLUMN but was previously evaluated and cached in a register */
150       int j = p->iColumn;
151       if( j>=0 ){
152         const char *zColl = p->y.pTab->aCol[j].zColl;
153         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
154       }
155       break;
156     }
157     if( op==TK_CAST || op==TK_UPLUS ){
158       p = p->pLeft;
159       continue;
160     }
161     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
162       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
163       break;
164     }
165     if( p->flags & EP_Collate ){
166       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
167         p = p->pLeft;
168       }else{
169         Expr *pNext  = p->pRight;
170         /* The Expr.x union is never used at the same time as Expr.pRight */
171         assert( p->x.pList==0 || p->pRight==0 );
172         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
173         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
174         ** least one EP_Collate. Thus the following two ALWAYS. */
175         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
176           int i;
177           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
178             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
179               pNext = p->x.pList->a[i].pExpr;
180               break;
181             }
182           }
183         }
184         p = pNext;
185       }
186     }else{
187       break;
188     }
189   }
190   if( sqlite3CheckCollSeq(pParse, pColl) ){
191     pColl = 0;
192   }
193   return pColl;
194 }
195 
196 /*
197 ** Return the collation sequence for the expression pExpr. If
198 ** there is no defined collating sequence, return a pointer to the
199 ** defautl collation sequence.
200 **
201 ** See also: sqlite3ExprCollSeq()
202 **
203 ** The sqlite3ExprCollSeq() routine works the same except that it
204 ** returns NULL if there is no defined collation.
205 */
206 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){
207   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
208   if( p==0 ) p = pParse->db->pDfltColl;
209   assert( p!=0 );
210   return p;
211 }
212 
213 /*
214 ** Return TRUE if the two expressions have equivalent collating sequences.
215 */
216 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){
217   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
218   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
219   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
220 }
221 
222 /*
223 ** pExpr is an operand of a comparison operator.  aff2 is the
224 ** type affinity of the other operand.  This routine returns the
225 ** type affinity that should be used for the comparison operator.
226 */
227 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
228   char aff1 = sqlite3ExprAffinity(pExpr);
229   if( aff1 && aff2 ){
230     /* Both sides of the comparison are columns. If one has numeric
231     ** affinity, use that. Otherwise use no affinity.
232     */
233     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
234       return SQLITE_AFF_NUMERIC;
235     }else{
236       return SQLITE_AFF_BLOB;
237     }
238   }else if( !aff1 && !aff2 ){
239     /* Neither side of the comparison is a column.  Compare the
240     ** results directly.
241     */
242     return SQLITE_AFF_BLOB;
243   }else{
244     /* One side is a column, the other is not. Use the columns affinity. */
245     assert( aff1==0 || aff2==0 );
246     return (aff1 + aff2);
247   }
248 }
249 
250 /*
251 ** pExpr is a comparison operator.  Return the type affinity that should
252 ** be applied to both operands prior to doing the comparison.
253 */
254 static char comparisonAffinity(Expr *pExpr){
255   char aff;
256   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
257           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
258           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
259   assert( pExpr->pLeft );
260   aff = sqlite3ExprAffinity(pExpr->pLeft);
261   if( pExpr->pRight ){
262     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
263   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
264     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
265   }else if( aff==0 ){
266     aff = SQLITE_AFF_BLOB;
267   }
268   return aff;
269 }
270 
271 /*
272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
273 ** idx_affinity is the affinity of an indexed column. Return true
274 ** if the index with affinity idx_affinity may be used to implement
275 ** the comparison in pExpr.
276 */
277 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
278   char aff = comparisonAffinity(pExpr);
279   switch( aff ){
280     case SQLITE_AFF_BLOB:
281       return 1;
282     case SQLITE_AFF_TEXT:
283       return idx_affinity==SQLITE_AFF_TEXT;
284     default:
285       return sqlite3IsNumericAffinity(idx_affinity);
286   }
287 }
288 
289 /*
290 ** Return the P5 value that should be used for a binary comparison
291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
292 */
293 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
294   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
295   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
296   return aff;
297 }
298 
299 /*
300 ** Return a pointer to the collation sequence that should be used by
301 ** a binary comparison operator comparing pLeft and pRight.
302 **
303 ** If the left hand expression has a collating sequence type, then it is
304 ** used. Otherwise the collation sequence for the right hand expression
305 ** is used, or the default (BINARY) if neither expression has a collating
306 ** type.
307 **
308 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
309 ** it is not considered.
310 */
311 CollSeq *sqlite3BinaryCompareCollSeq(
312   Parse *pParse,
313   Expr *pLeft,
314   Expr *pRight
315 ){
316   CollSeq *pColl;
317   assert( pLeft );
318   if( pLeft->flags & EP_Collate ){
319     pColl = sqlite3ExprCollSeq(pParse, pLeft);
320   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
321     pColl = sqlite3ExprCollSeq(pParse, pRight);
322   }else{
323     pColl = sqlite3ExprCollSeq(pParse, pLeft);
324     if( !pColl ){
325       pColl = sqlite3ExprCollSeq(pParse, pRight);
326     }
327   }
328   return pColl;
329 }
330 
331 /*
332 ** Generate code for a comparison operator.
333 */
334 static int codeCompare(
335   Parse *pParse,    /* The parsing (and code generating) context */
336   Expr *pLeft,      /* The left operand */
337   Expr *pRight,     /* The right operand */
338   int opcode,       /* The comparison opcode */
339   int in1, int in2, /* Register holding operands */
340   int dest,         /* Jump here if true.  */
341   int jumpIfNull    /* If true, jump if either operand is NULL */
342 ){
343   int p5;
344   int addr;
345   CollSeq *p4;
346 
347   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
348   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
349   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
350                            (void*)p4, P4_COLLSEQ);
351   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
352   return addr;
353 }
354 
355 /*
356 ** Return true if expression pExpr is a vector, or false otherwise.
357 **
358 ** A vector is defined as any expression that results in two or more
359 ** columns of result.  Every TK_VECTOR node is an vector because the
360 ** parser will not generate a TK_VECTOR with fewer than two entries.
361 ** But a TK_SELECT might be either a vector or a scalar. It is only
362 ** considered a vector if it has two or more result columns.
363 */
364 int sqlite3ExprIsVector(Expr *pExpr){
365   return sqlite3ExprVectorSize(pExpr)>1;
366 }
367 
368 /*
369 ** If the expression passed as the only argument is of type TK_VECTOR
370 ** return the number of expressions in the vector. Or, if the expression
371 ** is a sub-select, return the number of columns in the sub-select. For
372 ** any other type of expression, return 1.
373 */
374 int sqlite3ExprVectorSize(Expr *pExpr){
375   u8 op = pExpr->op;
376   if( op==TK_REGISTER ) op = pExpr->op2;
377   if( op==TK_VECTOR ){
378     return pExpr->x.pList->nExpr;
379   }else if( op==TK_SELECT ){
380     return pExpr->x.pSelect->pEList->nExpr;
381   }else{
382     return 1;
383   }
384 }
385 
386 /*
387 ** Return a pointer to a subexpression of pVector that is the i-th
388 ** column of the vector (numbered starting with 0).  The caller must
389 ** ensure that i is within range.
390 **
391 ** If pVector is really a scalar (and "scalar" here includes subqueries
392 ** that return a single column!) then return pVector unmodified.
393 **
394 ** pVector retains ownership of the returned subexpression.
395 **
396 ** If the vector is a (SELECT ...) then the expression returned is
397 ** just the expression for the i-th term of the result set, and may
398 ** not be ready for evaluation because the table cursor has not yet
399 ** been positioned.
400 */
401 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
402   assert( i<sqlite3ExprVectorSize(pVector) );
403   if( sqlite3ExprIsVector(pVector) ){
404     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
405     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
406       return pVector->x.pSelect->pEList->a[i].pExpr;
407     }else{
408       return pVector->x.pList->a[i].pExpr;
409     }
410   }
411   return pVector;
412 }
413 
414 /*
415 ** Compute and return a new Expr object which when passed to
416 ** sqlite3ExprCode() will generate all necessary code to compute
417 ** the iField-th column of the vector expression pVector.
418 **
419 ** It is ok for pVector to be a scalar (as long as iField==0).
420 ** In that case, this routine works like sqlite3ExprDup().
421 **
422 ** The caller owns the returned Expr object and is responsible for
423 ** ensuring that the returned value eventually gets freed.
424 **
425 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
426 ** then the returned object will reference pVector and so pVector must remain
427 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
428 ** or a scalar expression, then it can be deleted as soon as this routine
429 ** returns.
430 **
431 ** A trick to cause a TK_SELECT pVector to be deleted together with
432 ** the returned Expr object is to attach the pVector to the pRight field
433 ** of the returned TK_SELECT_COLUMN Expr object.
434 */
435 Expr *sqlite3ExprForVectorField(
436   Parse *pParse,       /* Parsing context */
437   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
438   int iField           /* Which column of the vector to return */
439 ){
440   Expr *pRet;
441   if( pVector->op==TK_SELECT ){
442     assert( pVector->flags & EP_xIsSelect );
443     /* The TK_SELECT_COLUMN Expr node:
444     **
445     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
446     ** pRight:          not used.  But recursively deleted.
447     ** iColumn:         Index of a column in pVector
448     ** iTable:          0 or the number of columns on the LHS of an assignment
449     ** pLeft->iTable:   First in an array of register holding result, or 0
450     **                  if the result is not yet computed.
451     **
452     ** sqlite3ExprDelete() specifically skips the recursive delete of
453     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
454     ** can be attached to pRight to cause this node to take ownership of
455     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
456     ** with the same pLeft pointer to the pVector, but only one of them
457     ** will own the pVector.
458     */
459     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
460     if( pRet ){
461       pRet->iColumn = iField;
462       pRet->pLeft = pVector;
463     }
464     assert( pRet==0 || pRet->iTable==0 );
465   }else{
466     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
467     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
468   }
469   return pRet;
470 }
471 
472 /*
473 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
474 ** it. Return the register in which the result is stored (or, if the
475 ** sub-select returns more than one column, the first in an array
476 ** of registers in which the result is stored).
477 **
478 ** If pExpr is not a TK_SELECT expression, return 0.
479 */
480 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
481   int reg = 0;
482 #ifndef SQLITE_OMIT_SUBQUERY
483   if( pExpr->op==TK_SELECT ){
484     reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
485   }
486 #endif
487   return reg;
488 }
489 
490 /*
491 ** Argument pVector points to a vector expression - either a TK_VECTOR
492 ** or TK_SELECT that returns more than one column. This function returns
493 ** the register number of a register that contains the value of
494 ** element iField of the vector.
495 **
496 ** If pVector is a TK_SELECT expression, then code for it must have
497 ** already been generated using the exprCodeSubselect() routine. In this
498 ** case parameter regSelect should be the first in an array of registers
499 ** containing the results of the sub-select.
500 **
501 ** If pVector is of type TK_VECTOR, then code for the requested field
502 ** is generated. In this case (*pRegFree) may be set to the number of
503 ** a temporary register to be freed by the caller before returning.
504 **
505 ** Before returning, output parameter (*ppExpr) is set to point to the
506 ** Expr object corresponding to element iElem of the vector.
507 */
508 static int exprVectorRegister(
509   Parse *pParse,                  /* Parse context */
510   Expr *pVector,                  /* Vector to extract element from */
511   int iField,                     /* Field to extract from pVector */
512   int regSelect,                  /* First in array of registers */
513   Expr **ppExpr,                  /* OUT: Expression element */
514   int *pRegFree                   /* OUT: Temp register to free */
515 ){
516   u8 op = pVector->op;
517   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
518   if( op==TK_REGISTER ){
519     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
520     return pVector->iTable+iField;
521   }
522   if( op==TK_SELECT ){
523     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
524      return regSelect+iField;
525   }
526   *ppExpr = pVector->x.pList->a[iField].pExpr;
527   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
528 }
529 
530 /*
531 ** Expression pExpr is a comparison between two vector values. Compute
532 ** the result of the comparison (1, 0, or NULL) and write that
533 ** result into register dest.
534 **
535 ** The caller must satisfy the following preconditions:
536 **
537 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
538 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
539 **    otherwise:                op==pExpr->op and p5==0
540 */
541 static void codeVectorCompare(
542   Parse *pParse,        /* Code generator context */
543   Expr *pExpr,          /* The comparison operation */
544   int dest,             /* Write results into this register */
545   u8 op,                /* Comparison operator */
546   u8 p5                 /* SQLITE_NULLEQ or zero */
547 ){
548   Vdbe *v = pParse->pVdbe;
549   Expr *pLeft = pExpr->pLeft;
550   Expr *pRight = pExpr->pRight;
551   int nLeft = sqlite3ExprVectorSize(pLeft);
552   int i;
553   int regLeft = 0;
554   int regRight = 0;
555   u8 opx = op;
556   int addrDone = sqlite3VdbeMakeLabel(v);
557 
558   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
559     sqlite3ErrorMsg(pParse, "row value misused");
560     return;
561   }
562   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
563        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
564        || pExpr->op==TK_LT || pExpr->op==TK_GT
565        || pExpr->op==TK_LE || pExpr->op==TK_GE
566   );
567   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
568             || (pExpr->op==TK_ISNOT && op==TK_NE) );
569   assert( p5==0 || pExpr->op!=op );
570   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
571 
572   p5 |= SQLITE_STOREP2;
573   if( opx==TK_LE ) opx = TK_LT;
574   if( opx==TK_GE ) opx = TK_GT;
575 
576   regLeft = exprCodeSubselect(pParse, pLeft);
577   regRight = exprCodeSubselect(pParse, pRight);
578 
579   for(i=0; 1 /*Loop exits by "break"*/; i++){
580     int regFree1 = 0, regFree2 = 0;
581     Expr *pL, *pR;
582     int r1, r2;
583     assert( i>=0 && i<nLeft );
584     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
585     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
586     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5);
587     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
588     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
589     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
590     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
591     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
592     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
593     sqlite3ReleaseTempReg(pParse, regFree1);
594     sqlite3ReleaseTempReg(pParse, regFree2);
595     if( i==nLeft-1 ){
596       break;
597     }
598     if( opx==TK_EQ ){
599       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
600       p5 |= SQLITE_KEEPNULL;
601     }else if( opx==TK_NE ){
602       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
603       p5 |= SQLITE_KEEPNULL;
604     }else{
605       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
606       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
607       VdbeCoverageIf(v, op==TK_LT);
608       VdbeCoverageIf(v, op==TK_GT);
609       VdbeCoverageIf(v, op==TK_LE);
610       VdbeCoverageIf(v, op==TK_GE);
611       if( i==nLeft-2 ) opx = op;
612     }
613   }
614   sqlite3VdbeResolveLabel(v, addrDone);
615 }
616 
617 #if SQLITE_MAX_EXPR_DEPTH>0
618 /*
619 ** Check that argument nHeight is less than or equal to the maximum
620 ** expression depth allowed. If it is not, leave an error message in
621 ** pParse.
622 */
623 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
624   int rc = SQLITE_OK;
625   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
626   if( nHeight>mxHeight ){
627     sqlite3ErrorMsg(pParse,
628        "Expression tree is too large (maximum depth %d)", mxHeight
629     );
630     rc = SQLITE_ERROR;
631   }
632   return rc;
633 }
634 
635 /* The following three functions, heightOfExpr(), heightOfExprList()
636 ** and heightOfSelect(), are used to determine the maximum height
637 ** of any expression tree referenced by the structure passed as the
638 ** first argument.
639 **
640 ** If this maximum height is greater than the current value pointed
641 ** to by pnHeight, the second parameter, then set *pnHeight to that
642 ** value.
643 */
644 static void heightOfExpr(Expr *p, int *pnHeight){
645   if( p ){
646     if( p->nHeight>*pnHeight ){
647       *pnHeight = p->nHeight;
648     }
649   }
650 }
651 static void heightOfExprList(ExprList *p, int *pnHeight){
652   if( p ){
653     int i;
654     for(i=0; i<p->nExpr; i++){
655       heightOfExpr(p->a[i].pExpr, pnHeight);
656     }
657   }
658 }
659 static void heightOfSelect(Select *pSelect, int *pnHeight){
660   Select *p;
661   for(p=pSelect; p; p=p->pPrior){
662     heightOfExpr(p->pWhere, pnHeight);
663     heightOfExpr(p->pHaving, pnHeight);
664     heightOfExpr(p->pLimit, pnHeight);
665     heightOfExprList(p->pEList, pnHeight);
666     heightOfExprList(p->pGroupBy, pnHeight);
667     heightOfExprList(p->pOrderBy, pnHeight);
668   }
669 }
670 
671 /*
672 ** Set the Expr.nHeight variable in the structure passed as an
673 ** argument. An expression with no children, Expr.pList or
674 ** Expr.pSelect member has a height of 1. Any other expression
675 ** has a height equal to the maximum height of any other
676 ** referenced Expr plus one.
677 **
678 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
679 ** if appropriate.
680 */
681 static void exprSetHeight(Expr *p){
682   int nHeight = 0;
683   heightOfExpr(p->pLeft, &nHeight);
684   heightOfExpr(p->pRight, &nHeight);
685   if( ExprHasProperty(p, EP_xIsSelect) ){
686     heightOfSelect(p->x.pSelect, &nHeight);
687   }else if( p->x.pList ){
688     heightOfExprList(p->x.pList, &nHeight);
689     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
690   }
691   p->nHeight = nHeight + 1;
692 }
693 
694 /*
695 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
696 ** the height is greater than the maximum allowed expression depth,
697 ** leave an error in pParse.
698 **
699 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
700 ** Expr.flags.
701 */
702 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
703   if( pParse->nErr ) return;
704   exprSetHeight(p);
705   sqlite3ExprCheckHeight(pParse, p->nHeight);
706 }
707 
708 /*
709 ** Return the maximum height of any expression tree referenced
710 ** by the select statement passed as an argument.
711 */
712 int sqlite3SelectExprHeight(Select *p){
713   int nHeight = 0;
714   heightOfSelect(p, &nHeight);
715   return nHeight;
716 }
717 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
718 /*
719 ** Propagate all EP_Propagate flags from the Expr.x.pList into
720 ** Expr.flags.
721 */
722 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
723   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
724     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
725   }
726 }
727 #define exprSetHeight(y)
728 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
729 
730 /*
731 ** This routine is the core allocator for Expr nodes.
732 **
733 ** Construct a new expression node and return a pointer to it.  Memory
734 ** for this node and for the pToken argument is a single allocation
735 ** obtained from sqlite3DbMalloc().  The calling function
736 ** is responsible for making sure the node eventually gets freed.
737 **
738 ** If dequote is true, then the token (if it exists) is dequoted.
739 ** If dequote is false, no dequoting is performed.  The deQuote
740 ** parameter is ignored if pToken is NULL or if the token does not
741 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
742 ** then the EP_DblQuoted flag is set on the expression node.
743 **
744 ** Special case:  If op==TK_INTEGER and pToken points to a string that
745 ** can be translated into a 32-bit integer, then the token is not
746 ** stored in u.zToken.  Instead, the integer values is written
747 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
748 ** is allocated to hold the integer text and the dequote flag is ignored.
749 */
750 Expr *sqlite3ExprAlloc(
751   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
752   int op,                 /* Expression opcode */
753   const Token *pToken,    /* Token argument.  Might be NULL */
754   int dequote             /* True to dequote */
755 ){
756   Expr *pNew;
757   int nExtra = 0;
758   int iValue = 0;
759 
760   assert( db!=0 );
761   if( pToken ){
762     if( op!=TK_INTEGER || pToken->z==0
763           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
764       nExtra = pToken->n+1;
765       assert( iValue>=0 );
766     }
767   }
768   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
769   if( pNew ){
770     memset(pNew, 0, sizeof(Expr));
771     pNew->op = (u8)op;
772     pNew->iAgg = -1;
773     if( pToken ){
774       if( nExtra==0 ){
775         pNew->flags |= EP_IntValue|EP_Leaf;
776         pNew->u.iValue = iValue;
777       }else{
778         pNew->u.zToken = (char*)&pNew[1];
779         assert( pToken->z!=0 || pToken->n==0 );
780         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
781         pNew->u.zToken[pToken->n] = 0;
782         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
783           if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted;
784           sqlite3Dequote(pNew->u.zToken);
785         }
786       }
787     }
788 #if SQLITE_MAX_EXPR_DEPTH>0
789     pNew->nHeight = 1;
790 #endif
791   }
792   return pNew;
793 }
794 
795 /*
796 ** Allocate a new expression node from a zero-terminated token that has
797 ** already been dequoted.
798 */
799 Expr *sqlite3Expr(
800   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
801   int op,                 /* Expression opcode */
802   const char *zToken      /* Token argument.  Might be NULL */
803 ){
804   Token x;
805   x.z = zToken;
806   x.n = sqlite3Strlen30(zToken);
807   return sqlite3ExprAlloc(db, op, &x, 0);
808 }
809 
810 /*
811 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
812 **
813 ** If pRoot==NULL that means that a memory allocation error has occurred.
814 ** In that case, delete the subtrees pLeft and pRight.
815 */
816 void sqlite3ExprAttachSubtrees(
817   sqlite3 *db,
818   Expr *pRoot,
819   Expr *pLeft,
820   Expr *pRight
821 ){
822   if( pRoot==0 ){
823     assert( db->mallocFailed );
824     sqlite3ExprDelete(db, pLeft);
825     sqlite3ExprDelete(db, pRight);
826   }else{
827     if( pRight ){
828       pRoot->pRight = pRight;
829       pRoot->flags |= EP_Propagate & pRight->flags;
830     }
831     if( pLeft ){
832       pRoot->pLeft = pLeft;
833       pRoot->flags |= EP_Propagate & pLeft->flags;
834     }
835     exprSetHeight(pRoot);
836   }
837 }
838 
839 /*
840 ** Allocate an Expr node which joins as many as two subtrees.
841 **
842 ** One or both of the subtrees can be NULL.  Return a pointer to the new
843 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
844 ** free the subtrees and return NULL.
845 */
846 Expr *sqlite3PExpr(
847   Parse *pParse,          /* Parsing context */
848   int op,                 /* Expression opcode */
849   Expr *pLeft,            /* Left operand */
850   Expr *pRight            /* Right operand */
851 ){
852   Expr *p;
853   if( op==TK_AND && pParse->nErr==0 ){
854     /* Take advantage of short-circuit false optimization for AND */
855     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
856   }else{
857     p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
858     if( p ){
859       memset(p, 0, sizeof(Expr));
860       p->op = op & TKFLG_MASK;
861       p->iAgg = -1;
862     }
863     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
864   }
865   if( p ) {
866     sqlite3ExprCheckHeight(pParse, p->nHeight);
867   }
868   return p;
869 }
870 
871 /*
872 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
873 ** do a memory allocation failure) then delete the pSelect object.
874 */
875 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
876   if( pExpr ){
877     pExpr->x.pSelect = pSelect;
878     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
879     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
880   }else{
881     assert( pParse->db->mallocFailed );
882     sqlite3SelectDelete(pParse->db, pSelect);
883   }
884 }
885 
886 
887 /*
888 ** If the expression is always either TRUE or FALSE (respectively),
889 ** then return 1.  If one cannot determine the truth value of the
890 ** expression at compile-time return 0.
891 **
892 ** This is an optimization.  If is OK to return 0 here even if
893 ** the expression really is always false or false (a false negative).
894 ** But it is a bug to return 1 if the expression might have different
895 ** boolean values in different circumstances (a false positive.)
896 **
897 ** Note that if the expression is part of conditional for a
898 ** LEFT JOIN, then we cannot determine at compile-time whether or not
899 ** is it true or false, so always return 0.
900 */
901 static int exprAlwaysTrue(Expr *p){
902   int v = 0;
903   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
904   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
905   return v!=0;
906 }
907 static int exprAlwaysFalse(Expr *p){
908   int v = 0;
909   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
910   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
911   return v==0;
912 }
913 
914 /*
915 ** Join two expressions using an AND operator.  If either expression is
916 ** NULL, then just return the other expression.
917 **
918 ** If one side or the other of the AND is known to be false, then instead
919 ** of returning an AND expression, just return a constant expression with
920 ** a value of false.
921 */
922 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
923   if( pLeft==0 ){
924     return pRight;
925   }else if( pRight==0 ){
926     return pLeft;
927   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
928     sqlite3ExprDelete(db, pLeft);
929     sqlite3ExprDelete(db, pRight);
930     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
931   }else{
932     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
933     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
934     return pNew;
935   }
936 }
937 
938 /*
939 ** Construct a new expression node for a function with multiple
940 ** arguments.
941 */
942 Expr *sqlite3ExprFunction(
943   Parse *pParse,        /* Parsing context */
944   ExprList *pList,      /* Argument list */
945   Token *pToken,        /* Name of the function */
946   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
947 ){
948   Expr *pNew;
949   sqlite3 *db = pParse->db;
950   assert( pToken );
951   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
952   if( pNew==0 ){
953     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
954     return 0;
955   }
956   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
957     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
958   }
959   pNew->x.pList = pList;
960   ExprSetProperty(pNew, EP_HasFunc);
961   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
962   sqlite3ExprSetHeightAndFlags(pParse, pNew);
963   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
964   return pNew;
965 }
966 
967 /*
968 ** Assign a variable number to an expression that encodes a wildcard
969 ** in the original SQL statement.
970 **
971 ** Wildcards consisting of a single "?" are assigned the next sequential
972 ** variable number.
973 **
974 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
975 ** sure "nnn" is not too big to avoid a denial of service attack when
976 ** the SQL statement comes from an external source.
977 **
978 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
979 ** as the previous instance of the same wildcard.  Or if this is the first
980 ** instance of the wildcard, the next sequential variable number is
981 ** assigned.
982 */
983 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
984   sqlite3 *db = pParse->db;
985   const char *z;
986   ynVar x;
987 
988   if( pExpr==0 ) return;
989   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
990   z = pExpr->u.zToken;
991   assert( z!=0 );
992   assert( z[0]!=0 );
993   assert( n==(u32)sqlite3Strlen30(z) );
994   if( z[1]==0 ){
995     /* Wildcard of the form "?".  Assign the next variable number */
996     assert( z[0]=='?' );
997     x = (ynVar)(++pParse->nVar);
998   }else{
999     int doAdd = 0;
1000     if( z[0]=='?' ){
1001       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1002       ** use it as the variable number */
1003       i64 i;
1004       int bOk;
1005       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1006         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1007         bOk = 1;
1008       }else{
1009         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1010       }
1011       testcase( i==0 );
1012       testcase( i==1 );
1013       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1014       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1015       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1016         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1017             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1018         return;
1019       }
1020       x = (ynVar)i;
1021       if( x>pParse->nVar ){
1022         pParse->nVar = (int)x;
1023         doAdd = 1;
1024       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1025         doAdd = 1;
1026       }
1027     }else{
1028       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1029       ** number as the prior appearance of the same name, or if the name
1030       ** has never appeared before, reuse the same variable number
1031       */
1032       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1033       if( x==0 ){
1034         x = (ynVar)(++pParse->nVar);
1035         doAdd = 1;
1036       }
1037     }
1038     if( doAdd ){
1039       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1040     }
1041   }
1042   pExpr->iColumn = x;
1043   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1044     sqlite3ErrorMsg(pParse, "too many SQL variables");
1045   }
1046 }
1047 
1048 /*
1049 ** Recursively delete an expression tree.
1050 */
1051 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1052   assert( p!=0 );
1053   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1054   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1055 
1056   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1057   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1058           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1059 #ifdef SQLITE_DEBUG
1060   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1061     assert( p->pLeft==0 );
1062     assert( p->pRight==0 );
1063     assert( p->x.pSelect==0 );
1064   }
1065 #endif
1066   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1067     /* The Expr.x union is never used at the same time as Expr.pRight */
1068     assert( p->x.pList==0 || p->pRight==0 );
1069     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1070     if( p->pRight ){
1071       sqlite3ExprDeleteNN(db, p->pRight);
1072     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1073       sqlite3SelectDelete(db, p->x.pSelect);
1074     }else{
1075       sqlite3ExprListDelete(db, p->x.pList);
1076     }
1077     if( ExprHasProperty(p, EP_WinFunc) ){
1078       assert( p->op==TK_FUNCTION );
1079       sqlite3WindowDelete(db, p->y.pWin);
1080     }
1081   }
1082   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1083   if( !ExprHasProperty(p, EP_Static) ){
1084     sqlite3DbFreeNN(db, p);
1085   }
1086 }
1087 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1088   if( p ) sqlite3ExprDeleteNN(db, p);
1089 }
1090 
1091 /*
1092 ** Return the number of bytes allocated for the expression structure
1093 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1094 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1095 */
1096 static int exprStructSize(Expr *p){
1097   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1098   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1099   return EXPR_FULLSIZE;
1100 }
1101 
1102 /*
1103 ** The dupedExpr*Size() routines each return the number of bytes required
1104 ** to store a copy of an expression or expression tree.  They differ in
1105 ** how much of the tree is measured.
1106 **
1107 **     dupedExprStructSize()     Size of only the Expr structure
1108 **     dupedExprNodeSize()       Size of Expr + space for token
1109 **     dupedExprSize()           Expr + token + subtree components
1110 **
1111 ***************************************************************************
1112 **
1113 ** The dupedExprStructSize() function returns two values OR-ed together:
1114 ** (1) the space required for a copy of the Expr structure only and
1115 ** (2) the EP_xxx flags that indicate what the structure size should be.
1116 ** The return values is always one of:
1117 **
1118 **      EXPR_FULLSIZE
1119 **      EXPR_REDUCEDSIZE   | EP_Reduced
1120 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1121 **
1122 ** The size of the structure can be found by masking the return value
1123 ** of this routine with 0xfff.  The flags can be found by masking the
1124 ** return value with EP_Reduced|EP_TokenOnly.
1125 **
1126 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1127 ** (unreduced) Expr objects as they or originally constructed by the parser.
1128 ** During expression analysis, extra information is computed and moved into
1129 ** later parts of the Expr object and that extra information might get chopped
1130 ** off if the expression is reduced.  Note also that it does not work to
1131 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1132 ** to reduce a pristine expression tree from the parser.  The implementation
1133 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1134 ** to enforce this constraint.
1135 */
1136 static int dupedExprStructSize(Expr *p, int flags){
1137   int nSize;
1138   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1139   assert( EXPR_FULLSIZE<=0xfff );
1140   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1141   if( 0==flags || p->op==TK_SELECT_COLUMN
1142 #ifndef SQLITE_OMIT_WINDOWFUNC
1143    || ExprHasProperty(p, EP_WinFunc)
1144 #endif
1145   ){
1146     nSize = EXPR_FULLSIZE;
1147   }else{
1148     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1149     assert( !ExprHasProperty(p, EP_FromJoin) );
1150     assert( !ExprHasProperty(p, EP_MemToken) );
1151     assert( !ExprHasProperty(p, EP_NoReduce) );
1152     if( p->pLeft || p->x.pList ){
1153       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1154     }else{
1155       assert( p->pRight==0 );
1156       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1157     }
1158   }
1159   return nSize;
1160 }
1161 
1162 /*
1163 ** This function returns the space in bytes required to store the copy
1164 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1165 ** string is defined.)
1166 */
1167 static int dupedExprNodeSize(Expr *p, int flags){
1168   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1169   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1170     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1171   }
1172   return ROUND8(nByte);
1173 }
1174 
1175 /*
1176 ** Return the number of bytes required to create a duplicate of the
1177 ** expression passed as the first argument. The second argument is a
1178 ** mask containing EXPRDUP_XXX flags.
1179 **
1180 ** The value returned includes space to create a copy of the Expr struct
1181 ** itself and the buffer referred to by Expr.u.zToken, if any.
1182 **
1183 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1184 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1185 ** and Expr.pRight variables (but not for any structures pointed to or
1186 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1187 */
1188 static int dupedExprSize(Expr *p, int flags){
1189   int nByte = 0;
1190   if( p ){
1191     nByte = dupedExprNodeSize(p, flags);
1192     if( flags&EXPRDUP_REDUCE ){
1193       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1194     }
1195   }
1196   return nByte;
1197 }
1198 
1199 /*
1200 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1201 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1202 ** to store the copy of expression p, the copies of p->u.zToken
1203 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1204 ** if any. Before returning, *pzBuffer is set to the first byte past the
1205 ** portion of the buffer copied into by this function.
1206 */
1207 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1208   Expr *pNew;           /* Value to return */
1209   u8 *zAlloc;           /* Memory space from which to build Expr object */
1210   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1211 
1212   assert( db!=0 );
1213   assert( p );
1214   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1215   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1216 
1217   /* Figure out where to write the new Expr structure. */
1218   if( pzBuffer ){
1219     zAlloc = *pzBuffer;
1220     staticFlag = EP_Static;
1221   }else{
1222     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1223     staticFlag = 0;
1224   }
1225   pNew = (Expr *)zAlloc;
1226 
1227   if( pNew ){
1228     /* Set nNewSize to the size allocated for the structure pointed to
1229     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1230     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1231     ** by the copy of the p->u.zToken string (if any).
1232     */
1233     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1234     const int nNewSize = nStructSize & 0xfff;
1235     int nToken;
1236     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1237       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1238     }else{
1239       nToken = 0;
1240     }
1241     if( dupFlags ){
1242       assert( ExprHasProperty(p, EP_Reduced)==0 );
1243       memcpy(zAlloc, p, nNewSize);
1244     }else{
1245       u32 nSize = (u32)exprStructSize(p);
1246       memcpy(zAlloc, p, nSize);
1247       if( nSize<EXPR_FULLSIZE ){
1248         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1249       }
1250     }
1251 
1252     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1253     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1254     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1255     pNew->flags |= staticFlag;
1256 
1257     /* Copy the p->u.zToken string, if any. */
1258     if( nToken ){
1259       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1260       memcpy(zToken, p->u.zToken, nToken);
1261     }
1262 
1263     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1264       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1265       if( ExprHasProperty(p, EP_xIsSelect) ){
1266         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1267       }else{
1268         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1269       }
1270     }
1271 
1272     /* Fill in pNew->pLeft and pNew->pRight. */
1273     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1274       zAlloc += dupedExprNodeSize(p, dupFlags);
1275       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1276         pNew->pLeft = p->pLeft ?
1277                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1278         pNew->pRight = p->pRight ?
1279                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1280       }
1281 #ifndef SQLITE_OMIT_WINDOWFUNC
1282       if( ExprHasProperty(p, EP_WinFunc) ){
1283         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1284         assert( ExprHasProperty(pNew, EP_WinFunc) );
1285       }
1286 #endif /* SQLITE_OMIT_WINDOWFUNC */
1287       if( pzBuffer ){
1288         *pzBuffer = zAlloc;
1289       }
1290     }else{
1291       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1292         if( pNew->op==TK_SELECT_COLUMN ){
1293           pNew->pLeft = p->pLeft;
1294           assert( p->iColumn==0 || p->pRight==0 );
1295           assert( p->pRight==0  || p->pRight==p->pLeft );
1296         }else{
1297           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1298         }
1299         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1300       }
1301     }
1302   }
1303   return pNew;
1304 }
1305 
1306 /*
1307 ** Create and return a deep copy of the object passed as the second
1308 ** argument. If an OOM condition is encountered, NULL is returned
1309 ** and the db->mallocFailed flag set.
1310 */
1311 #ifndef SQLITE_OMIT_CTE
1312 static With *withDup(sqlite3 *db, With *p){
1313   With *pRet = 0;
1314   if( p ){
1315     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1316     pRet = sqlite3DbMallocZero(db, nByte);
1317     if( pRet ){
1318       int i;
1319       pRet->nCte = p->nCte;
1320       for(i=0; i<p->nCte; i++){
1321         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1322         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1323         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1324       }
1325     }
1326   }
1327   return pRet;
1328 }
1329 #else
1330 # define withDup(x,y) 0
1331 #endif
1332 
1333 /*
1334 ** The following group of routines make deep copies of expressions,
1335 ** expression lists, ID lists, and select statements.  The copies can
1336 ** be deleted (by being passed to their respective ...Delete() routines)
1337 ** without effecting the originals.
1338 **
1339 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1340 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1341 ** by subsequent calls to sqlite*ListAppend() routines.
1342 **
1343 ** Any tables that the SrcList might point to are not duplicated.
1344 **
1345 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1346 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1347 ** truncated version of the usual Expr structure that will be stored as
1348 ** part of the in-memory representation of the database schema.
1349 */
1350 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1351   assert( flags==0 || flags==EXPRDUP_REDUCE );
1352   return p ? exprDup(db, p, flags, 0) : 0;
1353 }
1354 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1355   ExprList *pNew;
1356   struct ExprList_item *pItem, *pOldItem;
1357   int i;
1358   Expr *pPriorSelectCol = 0;
1359   assert( db!=0 );
1360   if( p==0 ) return 0;
1361   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1362   if( pNew==0 ) return 0;
1363   pNew->nExpr = p->nExpr;
1364   pItem = pNew->a;
1365   pOldItem = p->a;
1366   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1367     Expr *pOldExpr = pOldItem->pExpr;
1368     Expr *pNewExpr;
1369     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1370     if( pOldExpr
1371      && pOldExpr->op==TK_SELECT_COLUMN
1372      && (pNewExpr = pItem->pExpr)!=0
1373     ){
1374       assert( pNewExpr->iColumn==0 || i>0 );
1375       if( pNewExpr->iColumn==0 ){
1376         assert( pOldExpr->pLeft==pOldExpr->pRight );
1377         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1378       }else{
1379         assert( i>0 );
1380         assert( pItem[-1].pExpr!=0 );
1381         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1382         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1383         pNewExpr->pLeft = pPriorSelectCol;
1384       }
1385     }
1386     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1387     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1388     pItem->sortOrder = pOldItem->sortOrder;
1389     pItem->done = 0;
1390     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1391     pItem->bSorterRef = pOldItem->bSorterRef;
1392     pItem->u = pOldItem->u;
1393   }
1394   return pNew;
1395 }
1396 
1397 /*
1398 ** If cursors, triggers, views and subqueries are all omitted from
1399 ** the build, then none of the following routines, except for
1400 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1401 ** called with a NULL argument.
1402 */
1403 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1404  || !defined(SQLITE_OMIT_SUBQUERY)
1405 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1406   SrcList *pNew;
1407   int i;
1408   int nByte;
1409   assert( db!=0 );
1410   if( p==0 ) return 0;
1411   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1412   pNew = sqlite3DbMallocRawNN(db, nByte );
1413   if( pNew==0 ) return 0;
1414   pNew->nSrc = pNew->nAlloc = p->nSrc;
1415   for(i=0; i<p->nSrc; i++){
1416     struct SrcList_item *pNewItem = &pNew->a[i];
1417     struct SrcList_item *pOldItem = &p->a[i];
1418     Table *pTab;
1419     pNewItem->pSchema = pOldItem->pSchema;
1420     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1421     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1422     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1423     pNewItem->fg = pOldItem->fg;
1424     pNewItem->iCursor = pOldItem->iCursor;
1425     pNewItem->addrFillSub = pOldItem->addrFillSub;
1426     pNewItem->regReturn = pOldItem->regReturn;
1427     if( pNewItem->fg.isIndexedBy ){
1428       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1429     }
1430     pNewItem->pIBIndex = pOldItem->pIBIndex;
1431     if( pNewItem->fg.isTabFunc ){
1432       pNewItem->u1.pFuncArg =
1433           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1434     }
1435     pTab = pNewItem->pTab = pOldItem->pTab;
1436     if( pTab ){
1437       pTab->nTabRef++;
1438     }
1439     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1440     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1441     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1442     pNewItem->colUsed = pOldItem->colUsed;
1443   }
1444   return pNew;
1445 }
1446 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1447   IdList *pNew;
1448   int i;
1449   assert( db!=0 );
1450   if( p==0 ) return 0;
1451   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1452   if( pNew==0 ) return 0;
1453   pNew->nId = p->nId;
1454   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1455   if( pNew->a==0 ){
1456     sqlite3DbFreeNN(db, pNew);
1457     return 0;
1458   }
1459   /* Note that because the size of the allocation for p->a[] is not
1460   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1461   ** on the duplicate created by this function. */
1462   for(i=0; i<p->nId; i++){
1463     struct IdList_item *pNewItem = &pNew->a[i];
1464     struct IdList_item *pOldItem = &p->a[i];
1465     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1466     pNewItem->idx = pOldItem->idx;
1467   }
1468   return pNew;
1469 }
1470 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1471   Select *pRet = 0;
1472   Select *pNext = 0;
1473   Select **pp = &pRet;
1474   Select *p;
1475 
1476   assert( db!=0 );
1477   for(p=pDup; p; p=p->pPrior){
1478     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1479     if( pNew==0 ) break;
1480     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1481     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1482     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1483     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1484     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1485     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1486     pNew->op = p->op;
1487     pNew->pNext = pNext;
1488     pNew->pPrior = 0;
1489     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1490     pNew->iLimit = 0;
1491     pNew->iOffset = 0;
1492     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1493     pNew->addrOpenEphm[0] = -1;
1494     pNew->addrOpenEphm[1] = -1;
1495     pNew->nSelectRow = p->nSelectRow;
1496     pNew->pWith = withDup(db, p->pWith);
1497 #ifndef SQLITE_OMIT_WINDOWFUNC
1498     pNew->pWin = 0;
1499     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1500 #endif
1501     pNew->selId = p->selId;
1502     *pp = pNew;
1503     pp = &pNew->pPrior;
1504     pNext = pNew;
1505   }
1506 
1507   return pRet;
1508 }
1509 #else
1510 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1511   assert( p==0 );
1512   return 0;
1513 }
1514 #endif
1515 
1516 
1517 /*
1518 ** Add a new element to the end of an expression list.  If pList is
1519 ** initially NULL, then create a new expression list.
1520 **
1521 ** The pList argument must be either NULL or a pointer to an ExprList
1522 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1523 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1524 ** Reason:  This routine assumes that the number of slots in pList->a[]
1525 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1526 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1527 **
1528 ** If a memory allocation error occurs, the entire list is freed and
1529 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1530 ** that the new entry was successfully appended.
1531 */
1532 ExprList *sqlite3ExprListAppend(
1533   Parse *pParse,          /* Parsing context */
1534   ExprList *pList,        /* List to which to append. Might be NULL */
1535   Expr *pExpr             /* Expression to be appended. Might be NULL */
1536 ){
1537   struct ExprList_item *pItem;
1538   sqlite3 *db = pParse->db;
1539   assert( db!=0 );
1540   if( pList==0 ){
1541     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1542     if( pList==0 ){
1543       goto no_mem;
1544     }
1545     pList->nExpr = 0;
1546   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1547     ExprList *pNew;
1548     pNew = sqlite3DbRealloc(db, pList,
1549              sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0]));
1550     if( pNew==0 ){
1551       goto no_mem;
1552     }
1553     pList = pNew;
1554   }
1555   pItem = &pList->a[pList->nExpr++];
1556   assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) );
1557   assert( offsetof(struct ExprList_item,pExpr)==0 );
1558   memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName));
1559   pItem->pExpr = pExpr;
1560   return pList;
1561 
1562 no_mem:
1563   /* Avoid leaking memory if malloc has failed. */
1564   sqlite3ExprDelete(db, pExpr);
1565   sqlite3ExprListDelete(db, pList);
1566   return 0;
1567 }
1568 
1569 /*
1570 ** pColumns and pExpr form a vector assignment which is part of the SET
1571 ** clause of an UPDATE statement.  Like this:
1572 **
1573 **        (a,b,c) = (expr1,expr2,expr3)
1574 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1575 **
1576 ** For each term of the vector assignment, append new entries to the
1577 ** expression list pList.  In the case of a subquery on the RHS, append
1578 ** TK_SELECT_COLUMN expressions.
1579 */
1580 ExprList *sqlite3ExprListAppendVector(
1581   Parse *pParse,         /* Parsing context */
1582   ExprList *pList,       /* List to which to append. Might be NULL */
1583   IdList *pColumns,      /* List of names of LHS of the assignment */
1584   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1585 ){
1586   sqlite3 *db = pParse->db;
1587   int n;
1588   int i;
1589   int iFirst = pList ? pList->nExpr : 0;
1590   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1591   ** exit prior to this routine being invoked */
1592   if( NEVER(pColumns==0) ) goto vector_append_error;
1593   if( pExpr==0 ) goto vector_append_error;
1594 
1595   /* If the RHS is a vector, then we can immediately check to see that
1596   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1597   ** wildcards ("*") in the result set of the SELECT must be expanded before
1598   ** we can do the size check, so defer the size check until code generation.
1599   */
1600   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1601     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1602                     pColumns->nId, n);
1603     goto vector_append_error;
1604   }
1605 
1606   for(i=0; i<pColumns->nId; i++){
1607     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1608     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1609     if( pList ){
1610       assert( pList->nExpr==iFirst+i+1 );
1611       pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1612       pColumns->a[i].zName = 0;
1613     }
1614   }
1615 
1616   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1617     Expr *pFirst = pList->a[iFirst].pExpr;
1618     assert( pFirst!=0 );
1619     assert( pFirst->op==TK_SELECT_COLUMN );
1620 
1621     /* Store the SELECT statement in pRight so it will be deleted when
1622     ** sqlite3ExprListDelete() is called */
1623     pFirst->pRight = pExpr;
1624     pExpr = 0;
1625 
1626     /* Remember the size of the LHS in iTable so that we can check that
1627     ** the RHS and LHS sizes match during code generation. */
1628     pFirst->iTable = pColumns->nId;
1629   }
1630 
1631 vector_append_error:
1632   sqlite3ExprDelete(db, pExpr);
1633   sqlite3IdListDelete(db, pColumns);
1634   return pList;
1635 }
1636 
1637 /*
1638 ** Set the sort order for the last element on the given ExprList.
1639 */
1640 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1641   if( p==0 ) return;
1642   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1643   assert( p->nExpr>0 );
1644   if( iSortOrder<0 ){
1645     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1646     return;
1647   }
1648   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1649 }
1650 
1651 /*
1652 ** Set the ExprList.a[].zName element of the most recently added item
1653 ** on the expression list.
1654 **
1655 ** pList might be NULL following an OOM error.  But pName should never be
1656 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1657 ** is set.
1658 */
1659 void sqlite3ExprListSetName(
1660   Parse *pParse,          /* Parsing context */
1661   ExprList *pList,        /* List to which to add the span. */
1662   Token *pName,           /* Name to be added */
1663   int dequote             /* True to cause the name to be dequoted */
1664 ){
1665   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1666   if( pList ){
1667     struct ExprList_item *pItem;
1668     assert( pList->nExpr>0 );
1669     pItem = &pList->a[pList->nExpr-1];
1670     assert( pItem->zName==0 );
1671     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1672     if( dequote ) sqlite3Dequote(pItem->zName);
1673     if( IN_RENAME_OBJECT ){
1674       sqlite3RenameTokenMap(pParse, (void*)pItem->zName, pName);
1675     }
1676   }
1677 }
1678 
1679 /*
1680 ** Set the ExprList.a[].zSpan element of the most recently added item
1681 ** on the expression list.
1682 **
1683 ** pList might be NULL following an OOM error.  But pSpan should never be
1684 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1685 ** is set.
1686 */
1687 void sqlite3ExprListSetSpan(
1688   Parse *pParse,          /* Parsing context */
1689   ExprList *pList,        /* List to which to add the span. */
1690   const char *zStart,     /* Start of the span */
1691   const char *zEnd        /* End of the span */
1692 ){
1693   sqlite3 *db = pParse->db;
1694   assert( pList!=0 || db->mallocFailed!=0 );
1695   if( pList ){
1696     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1697     assert( pList->nExpr>0 );
1698     sqlite3DbFree(db, pItem->zSpan);
1699     pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd);
1700   }
1701 }
1702 
1703 /*
1704 ** If the expression list pEList contains more than iLimit elements,
1705 ** leave an error message in pParse.
1706 */
1707 void sqlite3ExprListCheckLength(
1708   Parse *pParse,
1709   ExprList *pEList,
1710   const char *zObject
1711 ){
1712   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1713   testcase( pEList && pEList->nExpr==mx );
1714   testcase( pEList && pEList->nExpr==mx+1 );
1715   if( pEList && pEList->nExpr>mx ){
1716     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1717   }
1718 }
1719 
1720 /*
1721 ** Delete an entire expression list.
1722 */
1723 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1724   int i = pList->nExpr;
1725   struct ExprList_item *pItem =  pList->a;
1726   assert( pList->nExpr>0 );
1727   do{
1728     sqlite3ExprDelete(db, pItem->pExpr);
1729     sqlite3DbFree(db, pItem->zName);
1730     sqlite3DbFree(db, pItem->zSpan);
1731     pItem++;
1732   }while( --i>0 );
1733   sqlite3DbFreeNN(db, pList);
1734 }
1735 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1736   if( pList ) exprListDeleteNN(db, pList);
1737 }
1738 
1739 /*
1740 ** Return the bitwise-OR of all Expr.flags fields in the given
1741 ** ExprList.
1742 */
1743 u32 sqlite3ExprListFlags(const ExprList *pList){
1744   int i;
1745   u32 m = 0;
1746   assert( pList!=0 );
1747   for(i=0; i<pList->nExpr; i++){
1748      Expr *pExpr = pList->a[i].pExpr;
1749      assert( pExpr!=0 );
1750      m |= pExpr->flags;
1751   }
1752   return m;
1753 }
1754 
1755 /*
1756 ** This is a SELECT-node callback for the expression walker that
1757 ** always "fails".  By "fail" in this case, we mean set
1758 ** pWalker->eCode to zero and abort.
1759 **
1760 ** This callback is used by multiple expression walkers.
1761 */
1762 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1763   UNUSED_PARAMETER(NotUsed);
1764   pWalker->eCode = 0;
1765   return WRC_Abort;
1766 }
1767 
1768 /*
1769 ** If the input expression is an ID with the name "true" or "false"
1770 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1771 ** the conversion happened, and zero if the expression is unaltered.
1772 */
1773 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1774   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1775   if( sqlite3StrICmp(pExpr->u.zToken, "true")==0
1776    || sqlite3StrICmp(pExpr->u.zToken, "false")==0
1777   ){
1778     pExpr->op = TK_TRUEFALSE;
1779     return 1;
1780   }
1781   return 0;
1782 }
1783 
1784 /*
1785 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
1786 ** and 0 if it is FALSE.
1787 */
1788 int sqlite3ExprTruthValue(const Expr *pExpr){
1789   assert( pExpr->op==TK_TRUEFALSE );
1790   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1791        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1792   return pExpr->u.zToken[4]==0;
1793 }
1794 
1795 
1796 /*
1797 ** These routines are Walker callbacks used to check expressions to
1798 ** see if they are "constant" for some definition of constant.  The
1799 ** Walker.eCode value determines the type of "constant" we are looking
1800 ** for.
1801 **
1802 ** These callback routines are used to implement the following:
1803 **
1804 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1805 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1806 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1807 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1808 **
1809 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1810 ** is found to not be a constant.
1811 **
1812 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1813 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1814 ** an existing schema and 4 when processing a new statement.  A bound
1815 ** parameter raises an error for new statements, but is silently converted
1816 ** to NULL for existing schemas.  This allows sqlite_master tables that
1817 ** contain a bound parameter because they were generated by older versions
1818 ** of SQLite to be parsed by newer versions of SQLite without raising a
1819 ** malformed schema error.
1820 */
1821 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1822 
1823   /* If pWalker->eCode is 2 then any term of the expression that comes from
1824   ** the ON or USING clauses of a left join disqualifies the expression
1825   ** from being considered constant. */
1826   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1827     pWalker->eCode = 0;
1828     return WRC_Abort;
1829   }
1830 
1831   switch( pExpr->op ){
1832     /* Consider functions to be constant if all their arguments are constant
1833     ** and either pWalker->eCode==4 or 5 or the function has the
1834     ** SQLITE_FUNC_CONST flag. */
1835     case TK_FUNCTION:
1836       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1837         return WRC_Continue;
1838       }else{
1839         pWalker->eCode = 0;
1840         return WRC_Abort;
1841       }
1842     case TK_ID:
1843       /* Convert "true" or "false" in a DEFAULT clause into the
1844       ** appropriate TK_TRUEFALSE operator */
1845       if( sqlite3ExprIdToTrueFalse(pExpr) ){
1846         return WRC_Prune;
1847       }
1848       /* Fall thru */
1849     case TK_COLUMN:
1850     case TK_AGG_FUNCTION:
1851     case TK_AGG_COLUMN:
1852       testcase( pExpr->op==TK_ID );
1853       testcase( pExpr->op==TK_COLUMN );
1854       testcase( pExpr->op==TK_AGG_FUNCTION );
1855       testcase( pExpr->op==TK_AGG_COLUMN );
1856       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
1857         return WRC_Continue;
1858       }
1859       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1860         return WRC_Continue;
1861       }
1862       /* Fall through */
1863     case TK_IF_NULL_ROW:
1864     case TK_REGISTER:
1865       testcase( pExpr->op==TK_REGISTER );
1866       testcase( pExpr->op==TK_IF_NULL_ROW );
1867       pWalker->eCode = 0;
1868       return WRC_Abort;
1869     case TK_VARIABLE:
1870       if( pWalker->eCode==5 ){
1871         /* Silently convert bound parameters that appear inside of CREATE
1872         ** statements into a NULL when parsing the CREATE statement text out
1873         ** of the sqlite_master table */
1874         pExpr->op = TK_NULL;
1875       }else if( pWalker->eCode==4 ){
1876         /* A bound parameter in a CREATE statement that originates from
1877         ** sqlite3_prepare() causes an error */
1878         pWalker->eCode = 0;
1879         return WRC_Abort;
1880       }
1881       /* Fall through */
1882     default:
1883       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
1884       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
1885       return WRC_Continue;
1886   }
1887 }
1888 static int exprIsConst(Expr *p, int initFlag, int iCur){
1889   Walker w;
1890   w.eCode = initFlag;
1891   w.xExprCallback = exprNodeIsConstant;
1892   w.xSelectCallback = sqlite3SelectWalkFail;
1893 #ifdef SQLITE_DEBUG
1894   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1895 #endif
1896   w.u.iCur = iCur;
1897   sqlite3WalkExpr(&w, p);
1898   return w.eCode;
1899 }
1900 
1901 /*
1902 ** Walk an expression tree.  Return non-zero if the expression is constant
1903 ** and 0 if it involves variables or function calls.
1904 **
1905 ** For the purposes of this function, a double-quoted string (ex: "abc")
1906 ** is considered a variable but a single-quoted string (ex: 'abc') is
1907 ** a constant.
1908 */
1909 int sqlite3ExprIsConstant(Expr *p){
1910   return exprIsConst(p, 1, 0);
1911 }
1912 
1913 /*
1914 ** Walk an expression tree.  Return non-zero if
1915 **
1916 **   (1) the expression is constant, and
1917 **   (2) the expression does originate in the ON or USING clause
1918 **       of a LEFT JOIN, and
1919 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
1920 **       operands created by the constant propagation optimization.
1921 **
1922 ** When this routine returns true, it indicates that the expression
1923 ** can be added to the pParse->pConstExpr list and evaluated once when
1924 ** the prepared statement starts up.  See sqlite3ExprCodeAtInit().
1925 */
1926 int sqlite3ExprIsConstantNotJoin(Expr *p){
1927   return exprIsConst(p, 2, 0);
1928 }
1929 
1930 /*
1931 ** Walk an expression tree.  Return non-zero if the expression is constant
1932 ** for any single row of the table with cursor iCur.  In other words, the
1933 ** expression must not refer to any non-deterministic function nor any
1934 ** table other than iCur.
1935 */
1936 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1937   return exprIsConst(p, 3, iCur);
1938 }
1939 
1940 
1941 /*
1942 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
1943 */
1944 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
1945   ExprList *pGroupBy = pWalker->u.pGroupBy;
1946   int i;
1947 
1948   /* Check if pExpr is identical to any GROUP BY term. If so, consider
1949   ** it constant.  */
1950   for(i=0; i<pGroupBy->nExpr; i++){
1951     Expr *p = pGroupBy->a[i].pExpr;
1952     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
1953       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
1954       if( sqlite3IsBinary(pColl) ){
1955         return WRC_Prune;
1956       }
1957     }
1958   }
1959 
1960   /* Check if pExpr is a sub-select. If so, consider it variable. */
1961   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1962     pWalker->eCode = 0;
1963     return WRC_Abort;
1964   }
1965 
1966   return exprNodeIsConstant(pWalker, pExpr);
1967 }
1968 
1969 /*
1970 ** Walk the expression tree passed as the first argument. Return non-zero
1971 ** if the expression consists entirely of constants or copies of terms
1972 ** in pGroupBy that sort with the BINARY collation sequence.
1973 **
1974 ** This routine is used to determine if a term of the HAVING clause can
1975 ** be promoted into the WHERE clause.  In order for such a promotion to work,
1976 ** the value of the HAVING clause term must be the same for all members of
1977 ** a "group".  The requirement that the GROUP BY term must be BINARY
1978 ** assumes that no other collating sequence will have a finer-grained
1979 ** grouping than binary.  In other words (A=B COLLATE binary) implies
1980 ** A=B in every other collating sequence.  The requirement that the
1981 ** GROUP BY be BINARY is stricter than necessary.  It would also work
1982 ** to promote HAVING clauses that use the same alternative collating
1983 ** sequence as the GROUP BY term, but that is much harder to check,
1984 ** alternative collating sequences are uncommon, and this is only an
1985 ** optimization, so we take the easy way out and simply require the
1986 ** GROUP BY to use the BINARY collating sequence.
1987 */
1988 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
1989   Walker w;
1990   w.eCode = 1;
1991   w.xExprCallback = exprNodeIsConstantOrGroupBy;
1992   w.xSelectCallback = 0;
1993   w.u.pGroupBy = pGroupBy;
1994   w.pParse = pParse;
1995   sqlite3WalkExpr(&w, p);
1996   return w.eCode;
1997 }
1998 
1999 /*
2000 ** Walk an expression tree.  Return non-zero if the expression is constant
2001 ** or a function call with constant arguments.  Return and 0 if there
2002 ** are any variables.
2003 **
2004 ** For the purposes of this function, a double-quoted string (ex: "abc")
2005 ** is considered a variable but a single-quoted string (ex: 'abc') is
2006 ** a constant.
2007 */
2008 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2009   assert( isInit==0 || isInit==1 );
2010   return exprIsConst(p, 4+isInit, 0);
2011 }
2012 
2013 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2014 /*
2015 ** Walk an expression tree.  Return 1 if the expression contains a
2016 ** subquery of some kind.  Return 0 if there are no subqueries.
2017 */
2018 int sqlite3ExprContainsSubquery(Expr *p){
2019   Walker w;
2020   w.eCode = 1;
2021   w.xExprCallback = sqlite3ExprWalkNoop;
2022   w.xSelectCallback = sqlite3SelectWalkFail;
2023 #ifdef SQLITE_DEBUG
2024   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2025 #endif
2026   sqlite3WalkExpr(&w, p);
2027   return w.eCode==0;
2028 }
2029 #endif
2030 
2031 /*
2032 ** If the expression p codes a constant integer that is small enough
2033 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2034 ** in *pValue.  If the expression is not an integer or if it is too big
2035 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2036 */
2037 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2038   int rc = 0;
2039   if( p==0 ) return 0;  /* Can only happen following on OOM */
2040 
2041   /* If an expression is an integer literal that fits in a signed 32-bit
2042   ** integer, then the EP_IntValue flag will have already been set */
2043   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2044            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2045 
2046   if( p->flags & EP_IntValue ){
2047     *pValue = p->u.iValue;
2048     return 1;
2049   }
2050   switch( p->op ){
2051     case TK_UPLUS: {
2052       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2053       break;
2054     }
2055     case TK_UMINUS: {
2056       int v;
2057       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2058         assert( v!=(-2147483647-1) );
2059         *pValue = -v;
2060         rc = 1;
2061       }
2062       break;
2063     }
2064     default: break;
2065   }
2066   return rc;
2067 }
2068 
2069 /*
2070 ** Return FALSE if there is no chance that the expression can be NULL.
2071 **
2072 ** If the expression might be NULL or if the expression is too complex
2073 ** to tell return TRUE.
2074 **
2075 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2076 ** when we know that a value cannot be NULL.  Hence, a false positive
2077 ** (returning TRUE when in fact the expression can never be NULL) might
2078 ** be a small performance hit but is otherwise harmless.  On the other
2079 ** hand, a false negative (returning FALSE when the result could be NULL)
2080 ** will likely result in an incorrect answer.  So when in doubt, return
2081 ** TRUE.
2082 */
2083 int sqlite3ExprCanBeNull(const Expr *p){
2084   u8 op;
2085   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2086   op = p->op;
2087   if( op==TK_REGISTER ) op = p->op2;
2088   switch( op ){
2089     case TK_INTEGER:
2090     case TK_STRING:
2091     case TK_FLOAT:
2092     case TK_BLOB:
2093       return 0;
2094     case TK_COLUMN:
2095       return ExprHasProperty(p, EP_CanBeNull) ||
2096              p->y.pTab==0 ||  /* Reference to column of index on expression */
2097              (p->iColumn>=0 && p->y.pTab->aCol[p->iColumn].notNull==0);
2098     default:
2099       return 1;
2100   }
2101 }
2102 
2103 /*
2104 ** Return TRUE if the given expression is a constant which would be
2105 ** unchanged by OP_Affinity with the affinity given in the second
2106 ** argument.
2107 **
2108 ** This routine is used to determine if the OP_Affinity operation
2109 ** can be omitted.  When in doubt return FALSE.  A false negative
2110 ** is harmless.  A false positive, however, can result in the wrong
2111 ** answer.
2112 */
2113 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2114   u8 op;
2115   if( aff==SQLITE_AFF_BLOB ) return 1;
2116   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2117   op = p->op;
2118   if( op==TK_REGISTER ) op = p->op2;
2119   switch( op ){
2120     case TK_INTEGER: {
2121       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
2122     }
2123     case TK_FLOAT: {
2124       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
2125     }
2126     case TK_STRING: {
2127       return aff==SQLITE_AFF_TEXT;
2128     }
2129     case TK_BLOB: {
2130       return 1;
2131     }
2132     case TK_COLUMN: {
2133       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2134       return p->iColumn<0
2135           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
2136     }
2137     default: {
2138       return 0;
2139     }
2140   }
2141 }
2142 
2143 /*
2144 ** Return TRUE if the given string is a row-id column name.
2145 */
2146 int sqlite3IsRowid(const char *z){
2147   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2148   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2149   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2150   return 0;
2151 }
2152 #ifdef SQLITE_ENABLE_NORMALIZE
2153 int sqlite3IsRowidN(const char *z, int n){
2154   if( sqlite3StrNICmp(z, "_ROWID_", n)==0 ) return 1;
2155   if( sqlite3StrNICmp(z, "ROWID", n)==0 ) return 1;
2156   if( sqlite3StrNICmp(z, "OID", n)==0 ) return 1;
2157   return 0;
2158 }
2159 #endif
2160 
2161 /*
2162 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2163 ** that can be simplified to a direct table access, then return
2164 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2165 ** or if the SELECT statement needs to be manifested into a transient
2166 ** table, then return NULL.
2167 */
2168 #ifndef SQLITE_OMIT_SUBQUERY
2169 static Select *isCandidateForInOpt(Expr *pX){
2170   Select *p;
2171   SrcList *pSrc;
2172   ExprList *pEList;
2173   Table *pTab;
2174   int i;
2175   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2176   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2177   p = pX->x.pSelect;
2178   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2179   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2180     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2181     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2182     return 0; /* No DISTINCT keyword and no aggregate functions */
2183   }
2184   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2185   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2186   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2187   pSrc = p->pSrc;
2188   assert( pSrc!=0 );
2189   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2190   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2191   pTab = pSrc->a[0].pTab;
2192   assert( pTab!=0 );
2193   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2194   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2195   pEList = p->pEList;
2196   assert( pEList!=0 );
2197   /* All SELECT results must be columns. */
2198   for(i=0; i<pEList->nExpr; i++){
2199     Expr *pRes = pEList->a[i].pExpr;
2200     if( pRes->op!=TK_COLUMN ) return 0;
2201     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2202   }
2203   return p;
2204 }
2205 #endif /* SQLITE_OMIT_SUBQUERY */
2206 
2207 #ifndef SQLITE_OMIT_SUBQUERY
2208 /*
2209 ** Generate code that checks the left-most column of index table iCur to see if
2210 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2211 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2212 ** to be set to NULL if iCur contains one or more NULL values.
2213 */
2214 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2215   int addr1;
2216   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2217   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2218   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2219   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2220   VdbeComment((v, "first_entry_in(%d)", iCur));
2221   sqlite3VdbeJumpHere(v, addr1);
2222 }
2223 #endif
2224 
2225 
2226 #ifndef SQLITE_OMIT_SUBQUERY
2227 /*
2228 ** The argument is an IN operator with a list (not a subquery) on the
2229 ** right-hand side.  Return TRUE if that list is constant.
2230 */
2231 static int sqlite3InRhsIsConstant(Expr *pIn){
2232   Expr *pLHS;
2233   int res;
2234   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2235   pLHS = pIn->pLeft;
2236   pIn->pLeft = 0;
2237   res = sqlite3ExprIsConstant(pIn);
2238   pIn->pLeft = pLHS;
2239   return res;
2240 }
2241 #endif
2242 
2243 /*
2244 ** This function is used by the implementation of the IN (...) operator.
2245 ** The pX parameter is the expression on the RHS of the IN operator, which
2246 ** might be either a list of expressions or a subquery.
2247 **
2248 ** The job of this routine is to find or create a b-tree object that can
2249 ** be used either to test for membership in the RHS set or to iterate through
2250 ** all members of the RHS set, skipping duplicates.
2251 **
2252 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2253 ** and pX->iTable is set to the index of that cursor.
2254 **
2255 ** The returned value of this function indicates the b-tree type, as follows:
2256 **
2257 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2258 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2259 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2260 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2261 **                         populated epheremal table.
2262 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2263 **                         implemented as a sequence of comparisons.
2264 **
2265 ** An existing b-tree might be used if the RHS expression pX is a simple
2266 ** subquery such as:
2267 **
2268 **     SELECT <column1>, <column2>... FROM <table>
2269 **
2270 ** If the RHS of the IN operator is a list or a more complex subquery, then
2271 ** an ephemeral table might need to be generated from the RHS and then
2272 ** pX->iTable made to point to the ephemeral table instead of an
2273 ** existing table.
2274 **
2275 ** The inFlags parameter must contain, at a minimum, one of the bits
2276 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2277 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2278 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2279 ** be used to loop over all values of the RHS of the IN operator.
2280 **
2281 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2282 ** through the set members) then the b-tree must not contain duplicates.
2283 ** An epheremal table will be created unless the selected columns are guaranteed
2284 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2285 ** a UNIQUE constraint or index.
2286 **
2287 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2288 ** for fast set membership tests) then an epheremal table must
2289 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2290 ** index can be found with the specified <columns> as its left-most.
2291 **
2292 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2293 ** if the RHS of the IN operator is a list (not a subquery) then this
2294 ** routine might decide that creating an ephemeral b-tree for membership
2295 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2296 ** calling routine should implement the IN operator using a sequence
2297 ** of Eq or Ne comparison operations.
2298 **
2299 ** When the b-tree is being used for membership tests, the calling function
2300 ** might need to know whether or not the RHS side of the IN operator
2301 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2302 ** if there is any chance that the (...) might contain a NULL value at
2303 ** runtime, then a register is allocated and the register number written
2304 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2305 ** NULL value, then *prRhsHasNull is left unchanged.
2306 **
2307 ** If a register is allocated and its location stored in *prRhsHasNull, then
2308 ** the value in that register will be NULL if the b-tree contains one or more
2309 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2310 ** NULL values.
2311 **
2312 ** If the aiMap parameter is not NULL, it must point to an array containing
2313 ** one element for each column returned by the SELECT statement on the RHS
2314 ** of the IN(...) operator. The i'th entry of the array is populated with the
2315 ** offset of the index column that matches the i'th column returned by the
2316 ** SELECT. For example, if the expression and selected index are:
2317 **
2318 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2319 **   CREATE INDEX i1 ON t1(b, c, a);
2320 **
2321 ** then aiMap[] is populated with {2, 0, 1}.
2322 */
2323 #ifndef SQLITE_OMIT_SUBQUERY
2324 int sqlite3FindInIndex(
2325   Parse *pParse,             /* Parsing context */
2326   Expr *pX,                  /* The right-hand side (RHS) of the IN operator */
2327   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2328   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2329   int *aiMap                 /* Mapping from Index fields to RHS fields */
2330 ){
2331   Select *p;                            /* SELECT to the right of IN operator */
2332   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2333   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2334   int mustBeUnique;                     /* True if RHS must be unique */
2335   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2336 
2337   assert( pX->op==TK_IN );
2338   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2339 
2340   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2341   ** whether or not the SELECT result contains NULL values, check whether
2342   ** or not NULL is actually possible (it may not be, for example, due
2343   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2344   ** set prRhsHasNull to 0 before continuing.  */
2345   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2346     int i;
2347     ExprList *pEList = pX->x.pSelect->pEList;
2348     for(i=0; i<pEList->nExpr; i++){
2349       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2350     }
2351     if( i==pEList->nExpr ){
2352       prRhsHasNull = 0;
2353     }
2354   }
2355 
2356   /* Check to see if an existing table or index can be used to
2357   ** satisfy the query.  This is preferable to generating a new
2358   ** ephemeral table.  */
2359   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2360     sqlite3 *db = pParse->db;              /* Database connection */
2361     Table *pTab;                           /* Table <table>. */
2362     i16 iDb;                               /* Database idx for pTab */
2363     ExprList *pEList = p->pEList;
2364     int nExpr = pEList->nExpr;
2365 
2366     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2367     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2368     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2369     pTab = p->pSrc->a[0].pTab;
2370 
2371     /* Code an OP_Transaction and OP_TableLock for <table>. */
2372     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2373     sqlite3CodeVerifySchema(pParse, iDb);
2374     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2375 
2376     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2377     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2378       /* The "x IN (SELECT rowid FROM table)" case */
2379       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2380       VdbeCoverage(v);
2381 
2382       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2383       eType = IN_INDEX_ROWID;
2384       ExplainQueryPlan((pParse, 0,
2385             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2386       sqlite3VdbeJumpHere(v, iAddr);
2387     }else{
2388       Index *pIdx;                         /* Iterator variable */
2389       int affinity_ok = 1;
2390       int i;
2391 
2392       /* Check that the affinity that will be used to perform each
2393       ** comparison is the same as the affinity of each column in table
2394       ** on the RHS of the IN operator.  If it not, it is not possible to
2395       ** use any index of the RHS table.  */
2396       for(i=0; i<nExpr && affinity_ok; i++){
2397         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2398         int iCol = pEList->a[i].pExpr->iColumn;
2399         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2400         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2401         testcase( cmpaff==SQLITE_AFF_BLOB );
2402         testcase( cmpaff==SQLITE_AFF_TEXT );
2403         switch( cmpaff ){
2404           case SQLITE_AFF_BLOB:
2405             break;
2406           case SQLITE_AFF_TEXT:
2407             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2408             ** other has no affinity and the other side is TEXT.  Hence,
2409             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2410             ** and for the term on the LHS of the IN to have no affinity. */
2411             assert( idxaff==SQLITE_AFF_TEXT );
2412             break;
2413           default:
2414             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2415         }
2416       }
2417 
2418       if( affinity_ok ){
2419         /* Search for an existing index that will work for this IN operator */
2420         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2421           Bitmask colUsed;      /* Columns of the index used */
2422           Bitmask mCol;         /* Mask for the current column */
2423           if( pIdx->nColumn<nExpr ) continue;
2424           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2425           ** BITMASK(nExpr) without overflowing */
2426           testcase( pIdx->nColumn==BMS-2 );
2427           testcase( pIdx->nColumn==BMS-1 );
2428           if( pIdx->nColumn>=BMS-1 ) continue;
2429           if( mustBeUnique ){
2430             if( pIdx->nKeyCol>nExpr
2431              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2432             ){
2433               continue;  /* This index is not unique over the IN RHS columns */
2434             }
2435           }
2436 
2437           colUsed = 0;   /* Columns of index used so far */
2438           for(i=0; i<nExpr; i++){
2439             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2440             Expr *pRhs = pEList->a[i].pExpr;
2441             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2442             int j;
2443 
2444             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2445             for(j=0; j<nExpr; j++){
2446               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2447               assert( pIdx->azColl[j] );
2448               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2449                 continue;
2450               }
2451               break;
2452             }
2453             if( j==nExpr ) break;
2454             mCol = MASKBIT(j);
2455             if( mCol & colUsed ) break; /* Each column used only once */
2456             colUsed |= mCol;
2457             if( aiMap ) aiMap[i] = j;
2458           }
2459 
2460           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2461           if( colUsed==(MASKBIT(nExpr)-1) ){
2462             /* If we reach this point, that means the index pIdx is usable */
2463             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2464             ExplainQueryPlan((pParse, 0,
2465                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2466             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2467             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2468             VdbeComment((v, "%s", pIdx->zName));
2469             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2470             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2471 
2472             if( prRhsHasNull ){
2473 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2474               i64 mask = (1<<nExpr)-1;
2475               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2476                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2477 #endif
2478               *prRhsHasNull = ++pParse->nMem;
2479               if( nExpr==1 ){
2480                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2481               }
2482             }
2483             sqlite3VdbeJumpHere(v, iAddr);
2484           }
2485         } /* End loop over indexes */
2486       } /* End if( affinity_ok ) */
2487     } /* End if not an rowid index */
2488   } /* End attempt to optimize using an index */
2489 
2490   /* If no preexisting index is available for the IN clause
2491   ** and IN_INDEX_NOOP is an allowed reply
2492   ** and the RHS of the IN operator is a list, not a subquery
2493   ** and the RHS is not constant or has two or fewer terms,
2494   ** then it is not worth creating an ephemeral table to evaluate
2495   ** the IN operator so return IN_INDEX_NOOP.
2496   */
2497   if( eType==0
2498    && (inFlags & IN_INDEX_NOOP_OK)
2499    && !ExprHasProperty(pX, EP_xIsSelect)
2500    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2501   ){
2502     eType = IN_INDEX_NOOP;
2503   }
2504 
2505   if( eType==0 ){
2506     /* Could not find an existing table or index to use as the RHS b-tree.
2507     ** We will have to generate an ephemeral table to do the job.
2508     */
2509     u32 savedNQueryLoop = pParse->nQueryLoop;
2510     int rMayHaveNull = 0;
2511     eType = IN_INDEX_EPH;
2512     if( inFlags & IN_INDEX_LOOP ){
2513       pParse->nQueryLoop = 0;
2514       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
2515         eType = IN_INDEX_ROWID;
2516       }
2517     }else if( prRhsHasNull ){
2518       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2519     }
2520     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
2521     pParse->nQueryLoop = savedNQueryLoop;
2522   }else{
2523     pX->iTable = iTab;
2524   }
2525 
2526   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2527     int i, n;
2528     n = sqlite3ExprVectorSize(pX->pLeft);
2529     for(i=0; i<n; i++) aiMap[i] = i;
2530   }
2531   return eType;
2532 }
2533 #endif
2534 
2535 #ifndef SQLITE_OMIT_SUBQUERY
2536 /*
2537 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2538 ** function allocates and returns a nul-terminated string containing
2539 ** the affinities to be used for each column of the comparison.
2540 **
2541 ** It is the responsibility of the caller to ensure that the returned
2542 ** string is eventually freed using sqlite3DbFree().
2543 */
2544 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2545   Expr *pLeft = pExpr->pLeft;
2546   int nVal = sqlite3ExprVectorSize(pLeft);
2547   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2548   char *zRet;
2549 
2550   assert( pExpr->op==TK_IN );
2551   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2552   if( zRet ){
2553     int i;
2554     for(i=0; i<nVal; i++){
2555       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2556       char a = sqlite3ExprAffinity(pA);
2557       if( pSelect ){
2558         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2559       }else{
2560         zRet[i] = a;
2561       }
2562     }
2563     zRet[nVal] = '\0';
2564   }
2565   return zRet;
2566 }
2567 #endif
2568 
2569 #ifndef SQLITE_OMIT_SUBQUERY
2570 /*
2571 ** Load the Parse object passed as the first argument with an error
2572 ** message of the form:
2573 **
2574 **   "sub-select returns N columns - expected M"
2575 */
2576 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2577   const char *zFmt = "sub-select returns %d columns - expected %d";
2578   sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2579 }
2580 #endif
2581 
2582 /*
2583 ** Expression pExpr is a vector that has been used in a context where
2584 ** it is not permitted. If pExpr is a sub-select vector, this routine
2585 ** loads the Parse object with a message of the form:
2586 **
2587 **   "sub-select returns N columns - expected 1"
2588 **
2589 ** Or, if it is a regular scalar vector:
2590 **
2591 **   "row value misused"
2592 */
2593 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2594 #ifndef SQLITE_OMIT_SUBQUERY
2595   if( pExpr->flags & EP_xIsSelect ){
2596     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2597   }else
2598 #endif
2599   {
2600     sqlite3ErrorMsg(pParse, "row value misused");
2601   }
2602 }
2603 
2604 /*
2605 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
2606 ** or IN operators.  Examples:
2607 **
2608 **     (SELECT a FROM b)          -- subquery
2609 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
2610 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2611 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2612 **
2613 ** The pExpr parameter describes the expression that contains the IN
2614 ** operator or subquery.
2615 **
2616 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
2617 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
2618 ** to some integer key column of a table B-Tree. In this case, use an
2619 ** intkey B-Tree to store the set of IN(...) values instead of the usual
2620 ** (slower) variable length keys B-Tree.
2621 **
2622 ** If rMayHaveNull is non-zero, that means that the operation is an IN
2623 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
2624 ** All this routine does is initialize the register given by rMayHaveNull
2625 ** to NULL.  Calling routines will take care of changing this register
2626 ** value to non-NULL if the RHS is NULL-free.
2627 **
2628 ** For a SELECT or EXISTS operator, return the register that holds the
2629 ** result.  For a multi-column SELECT, the result is stored in a contiguous
2630 ** array of registers and the return value is the register of the left-most
2631 ** result column.  Return 0 for IN operators or if an error occurs.
2632 */
2633 #ifndef SQLITE_OMIT_SUBQUERY
2634 int sqlite3CodeSubselect(
2635   Parse *pParse,          /* Parsing context */
2636   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
2637   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
2638   int isRowid             /* If true, LHS of IN operator is a rowid */
2639 ){
2640   int jmpIfDynamic = -1;                      /* One-time test address */
2641   int rReg = 0;                           /* Register storing resulting */
2642   Vdbe *v = sqlite3GetVdbe(pParse);
2643   if( NEVER(v==0) ) return 0;
2644 
2645   /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it
2646   ** is encountered if any of the following is true:
2647   **
2648   **    *  The right-hand side is a correlated subquery
2649   **    *  The right-hand side is an expression list containing variables
2650   **    *  We are inside a trigger
2651   **
2652   ** If all of the above are false, then we can run this code just once
2653   ** save the results, and reuse the same result on subsequent invocations.
2654   */
2655   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2656     jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2657   }
2658 
2659   switch( pExpr->op ){
2660     case TK_IN: {
2661       int addr;                   /* Address of OP_OpenEphemeral instruction */
2662       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
2663       KeyInfo *pKeyInfo = 0;      /* Key information */
2664       int nVal;                   /* Size of vector pLeft */
2665 
2666       nVal = sqlite3ExprVectorSize(pLeft);
2667       assert( !isRowid || nVal==1 );
2668 
2669       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
2670       ** expression it is handled the same way.  An ephemeral table is
2671       ** filled with index keys representing the results from the
2672       ** SELECT or the <exprlist>.
2673       **
2674       ** If the 'x' expression is a column value, or the SELECT...
2675       ** statement returns a column value, then the affinity of that
2676       ** column is used to build the index keys. If both 'x' and the
2677       ** SELECT... statement are columns, then numeric affinity is used
2678       ** if either column has NUMERIC or INTEGER affinity. If neither
2679       ** 'x' nor the SELECT... statement are columns, then numeric affinity
2680       ** is used.
2681       */
2682       pExpr->iTable = pParse->nTab++;
2683       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral,
2684           pExpr->iTable, (isRowid?0:nVal));
2685       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2686 
2687       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2688         /* Case 1:     expr IN (SELECT ...)
2689         **
2690         ** Generate code to write the results of the select into the temporary
2691         ** table allocated and opened above.
2692         */
2693         Select *pSelect = pExpr->x.pSelect;
2694         ExprList *pEList = pSelect->pEList;
2695 
2696         ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY",
2697             jmpIfDynamic>=0?"":"CORRELATED "
2698         ));
2699         assert( !isRowid );
2700         /* If the LHS and RHS of the IN operator do not match, that
2701         ** error will have been caught long before we reach this point. */
2702         if( ALWAYS(pEList->nExpr==nVal) ){
2703           SelectDest dest;
2704           int i;
2705           sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
2706           dest.zAffSdst = exprINAffinity(pParse, pExpr);
2707           pSelect->iLimit = 0;
2708           testcase( pSelect->selFlags & SF_Distinct );
2709           testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2710           if( sqlite3Select(pParse, pSelect, &dest) ){
2711             sqlite3DbFree(pParse->db, dest.zAffSdst);
2712             sqlite3KeyInfoUnref(pKeyInfo);
2713             return 0;
2714           }
2715           sqlite3DbFree(pParse->db, dest.zAffSdst);
2716           assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2717           assert( pEList!=0 );
2718           assert( pEList->nExpr>0 );
2719           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2720           for(i=0; i<nVal; i++){
2721             Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2722             pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2723                 pParse, p, pEList->a[i].pExpr
2724             );
2725           }
2726         }
2727       }else if( ALWAYS(pExpr->x.pList!=0) ){
2728         /* Case 2:     expr IN (exprlist)
2729         **
2730         ** For each expression, build an index key from the evaluation and
2731         ** store it in the temporary table. If <expr> is a column, then use
2732         ** that columns affinity when building index keys. If <expr> is not
2733         ** a column, use numeric affinity.
2734         */
2735         char affinity;            /* Affinity of the LHS of the IN */
2736         int i;
2737         ExprList *pList = pExpr->x.pList;
2738         struct ExprList_item *pItem;
2739         int r1, r2, r3;
2740         affinity = sqlite3ExprAffinity(pLeft);
2741         if( !affinity ){
2742           affinity = SQLITE_AFF_BLOB;
2743         }
2744         if( pKeyInfo ){
2745           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2746           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2747         }
2748 
2749         /* Loop through each expression in <exprlist>. */
2750         r1 = sqlite3GetTempReg(pParse);
2751         r2 = sqlite3GetTempReg(pParse);
2752         if( isRowid ) sqlite3VdbeAddOp4(v, OP_Blob, 0, r2, 0, "", P4_STATIC);
2753         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2754           Expr *pE2 = pItem->pExpr;
2755           int iValToIns;
2756 
2757           /* If the expression is not constant then we will need to
2758           ** disable the test that was generated above that makes sure
2759           ** this code only executes once.  Because for a non-constant
2760           ** expression we need to rerun this code each time.
2761           */
2762           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
2763             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
2764             jmpIfDynamic = -1;
2765           }
2766 
2767           /* Evaluate the expression and insert it into the temp table */
2768           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2769             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2770           }else{
2771             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2772             if( isRowid ){
2773               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2774                                 sqlite3VdbeCurrentAddr(v)+2);
2775               VdbeCoverage(v);
2776               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2777             }else{
2778               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2779               sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1);
2780             }
2781           }
2782         }
2783         sqlite3ReleaseTempReg(pParse, r1);
2784         sqlite3ReleaseTempReg(pParse, r2);
2785       }
2786       if( pKeyInfo ){
2787         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2788       }
2789       break;
2790     }
2791 
2792     case TK_EXISTS:
2793     case TK_SELECT:
2794     default: {
2795       /* Case 3:    (SELECT ... FROM ...)
2796       **     or:    EXISTS(SELECT ... FROM ...)
2797       **
2798       ** For a SELECT, generate code to put the values for all columns of
2799       ** the first row into an array of registers and return the index of
2800       ** the first register.
2801       **
2802       ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2803       ** into a register and return that register number.
2804       **
2805       ** In both cases, the query is augmented with "LIMIT 1".  Any
2806       ** preexisting limit is discarded in place of the new LIMIT 1.
2807       */
2808       Select *pSel;                         /* SELECT statement to encode */
2809       SelectDest dest;                      /* How to deal with SELECT result */
2810       int nReg;                             /* Registers to allocate */
2811       Expr *pLimit;                         /* New limit expression */
2812 
2813       testcase( pExpr->op==TK_EXISTS );
2814       testcase( pExpr->op==TK_SELECT );
2815       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2816       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2817 
2818       pSel = pExpr->x.pSelect;
2819       ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY",
2820             jmpIfDynamic>=0?"":"CORRELATED "));
2821       nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2822       sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2823       pParse->nMem += nReg;
2824       if( pExpr->op==TK_SELECT ){
2825         dest.eDest = SRT_Mem;
2826         dest.iSdst = dest.iSDParm;
2827         dest.nSdst = nReg;
2828         sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2829         VdbeComment((v, "Init subquery result"));
2830       }else{
2831         dest.eDest = SRT_Exists;
2832         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2833         VdbeComment((v, "Init EXISTS result"));
2834       }
2835       pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0);
2836       if( pSel->pLimit ){
2837         sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft);
2838         pSel->pLimit->pLeft = pLimit;
2839       }else{
2840         pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
2841       }
2842       pSel->iLimit = 0;
2843       if( sqlite3Select(pParse, pSel, &dest) ){
2844         return 0;
2845       }
2846       rReg = dest.iSDParm;
2847       ExprSetVVAProperty(pExpr, EP_NoReduce);
2848       break;
2849     }
2850   }
2851 
2852   if( rHasNullFlag ){
2853     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2854   }
2855 
2856   if( jmpIfDynamic>=0 ){
2857     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2858   }
2859 
2860   return rReg;
2861 }
2862 #endif /* SQLITE_OMIT_SUBQUERY */
2863 
2864 #ifndef SQLITE_OMIT_SUBQUERY
2865 /*
2866 ** Expr pIn is an IN(...) expression. This function checks that the
2867 ** sub-select on the RHS of the IN() operator has the same number of
2868 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
2869 ** a sub-query, that the LHS is a vector of size 1.
2870 */
2871 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
2872   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
2873   if( (pIn->flags & EP_xIsSelect) ){
2874     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
2875       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
2876       return 1;
2877     }
2878   }else if( nVector!=1 ){
2879     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
2880     return 1;
2881   }
2882   return 0;
2883 }
2884 #endif
2885 
2886 #ifndef SQLITE_OMIT_SUBQUERY
2887 /*
2888 ** Generate code for an IN expression.
2889 **
2890 **      x IN (SELECT ...)
2891 **      x IN (value, value, ...)
2892 **
2893 ** The left-hand side (LHS) is a scalar or vector expression.  The
2894 ** right-hand side (RHS) is an array of zero or more scalar values, or a
2895 ** subquery.  If the RHS is a subquery, the number of result columns must
2896 ** match the number of columns in the vector on the LHS.  If the RHS is
2897 ** a list of values, the LHS must be a scalar.
2898 **
2899 ** The IN operator is true if the LHS value is contained within the RHS.
2900 ** The result is false if the LHS is definitely not in the RHS.  The
2901 ** result is NULL if the presence of the LHS in the RHS cannot be
2902 ** determined due to NULLs.
2903 **
2904 ** This routine generates code that jumps to destIfFalse if the LHS is not
2905 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2906 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2907 ** within the RHS then fall through.
2908 **
2909 ** See the separate in-operator.md documentation file in the canonical
2910 ** SQLite source tree for additional information.
2911 */
2912 static void sqlite3ExprCodeIN(
2913   Parse *pParse,        /* Parsing and code generating context */
2914   Expr *pExpr,          /* The IN expression */
2915   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2916   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2917 ){
2918   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2919   int eType;            /* Type of the RHS */
2920   int rLhs;             /* Register(s) holding the LHS values */
2921   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
2922   Vdbe *v;              /* Statement under construction */
2923   int *aiMap = 0;       /* Map from vector field to index column */
2924   char *zAff = 0;       /* Affinity string for comparisons */
2925   int nVector;          /* Size of vectors for this IN operator */
2926   int iDummy;           /* Dummy parameter to exprCodeVector() */
2927   Expr *pLeft;          /* The LHS of the IN operator */
2928   int i;                /* loop counter */
2929   int destStep2;        /* Where to jump when NULLs seen in step 2 */
2930   int destStep6 = 0;    /* Start of code for Step 6 */
2931   int addrTruthOp;      /* Address of opcode that determines the IN is true */
2932   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
2933   int addrTop;          /* Top of the step-6 loop */
2934 
2935   pLeft = pExpr->pLeft;
2936   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
2937   zAff = exprINAffinity(pParse, pExpr);
2938   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
2939   aiMap = (int*)sqlite3DbMallocZero(
2940       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
2941   );
2942   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
2943 
2944   /* Attempt to compute the RHS. After this step, if anything other than
2945   ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable
2946   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
2947   ** the RHS has not yet been coded.  */
2948   v = pParse->pVdbe;
2949   assert( v!=0 );       /* OOM detected prior to this routine */
2950   VdbeNoopComment((v, "begin IN expr"));
2951   eType = sqlite3FindInIndex(pParse, pExpr,
2952                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2953                              destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap);
2954 
2955   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
2956        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
2957   );
2958 #ifdef SQLITE_DEBUG
2959   /* Confirm that aiMap[] contains nVector integer values between 0 and
2960   ** nVector-1. */
2961   for(i=0; i<nVector; i++){
2962     int j, cnt;
2963     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
2964     assert( cnt==1 );
2965   }
2966 #endif
2967 
2968   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
2969   ** vector, then it is stored in an array of nVector registers starting
2970   ** at r1.
2971   **
2972   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
2973   ** so that the fields are in the same order as an existing index.   The
2974   ** aiMap[] array contains a mapping from the original LHS field order to
2975   ** the field order that matches the RHS index.
2976   */
2977   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
2978   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
2979   if( i==nVector ){
2980     /* LHS fields are not reordered */
2981     rLhs = rLhsOrig;
2982   }else{
2983     /* Need to reorder the LHS fields according to aiMap */
2984     rLhs = sqlite3GetTempRange(pParse, nVector);
2985     for(i=0; i<nVector; i++){
2986       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
2987     }
2988   }
2989 
2990   /* If sqlite3FindInIndex() did not find or create an index that is
2991   ** suitable for evaluating the IN operator, then evaluate using a
2992   ** sequence of comparisons.
2993   **
2994   ** This is step (1) in the in-operator.md optimized algorithm.
2995   */
2996   if( eType==IN_INDEX_NOOP ){
2997     ExprList *pList = pExpr->x.pList;
2998     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2999     int labelOk = sqlite3VdbeMakeLabel(v);
3000     int r2, regToFree;
3001     int regCkNull = 0;
3002     int ii;
3003     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3004     if( destIfNull!=destIfFalse ){
3005       regCkNull = sqlite3GetTempReg(pParse);
3006       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3007     }
3008     for(ii=0; ii<pList->nExpr; ii++){
3009       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3010       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3011         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3012       }
3013       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3014         sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
3015                           (void*)pColl, P4_COLLSEQ);
3016         VdbeCoverageIf(v, ii<pList->nExpr-1);
3017         VdbeCoverageIf(v, ii==pList->nExpr-1);
3018         sqlite3VdbeChangeP5(v, zAff[0]);
3019       }else{
3020         assert( destIfNull==destIfFalse );
3021         sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
3022                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
3023         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3024       }
3025       sqlite3ReleaseTempReg(pParse, regToFree);
3026     }
3027     if( regCkNull ){
3028       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3029       sqlite3VdbeGoto(v, destIfFalse);
3030     }
3031     sqlite3VdbeResolveLabel(v, labelOk);
3032     sqlite3ReleaseTempReg(pParse, regCkNull);
3033     goto sqlite3ExprCodeIN_finished;
3034   }
3035 
3036   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3037   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3038   ** We will then skip the binary search of the RHS.
3039   */
3040   if( destIfNull==destIfFalse ){
3041     destStep2 = destIfFalse;
3042   }else{
3043     destStep2 = destStep6 = sqlite3VdbeMakeLabel(v);
3044   }
3045   for(i=0; i<nVector; i++){
3046     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3047     if( sqlite3ExprCanBeNull(p) ){
3048       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3049       VdbeCoverage(v);
3050     }
3051   }
3052 
3053   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3054   ** of the RHS using the LHS as a probe.  If found, the result is
3055   ** true.
3056   */
3057   if( eType==IN_INDEX_ROWID ){
3058     /* In this case, the RHS is the ROWID of table b-tree and so we also
3059     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3060     ** into a single opcode. */
3061     sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs);
3062     VdbeCoverage(v);
3063     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3064   }else{
3065     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3066     if( destIfFalse==destIfNull ){
3067       /* Combine Step 3 and Step 5 into a single opcode */
3068       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse,
3069                            rLhs, nVector); VdbeCoverage(v);
3070       goto sqlite3ExprCodeIN_finished;
3071     }
3072     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3073     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0,
3074                                       rLhs, nVector); VdbeCoverage(v);
3075   }
3076 
3077   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3078   ** an match on the search above, then the result must be FALSE.
3079   */
3080   if( rRhsHasNull && nVector==1 ){
3081     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3082     VdbeCoverage(v);
3083   }
3084 
3085   /* Step 5.  If we do not care about the difference between NULL and
3086   ** FALSE, then just return false.
3087   */
3088   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3089 
3090   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3091   ** If any comparison is NULL, then the result is NULL.  If all
3092   ** comparisons are FALSE then the final result is FALSE.
3093   **
3094   ** For a scalar LHS, it is sufficient to check just the first row
3095   ** of the RHS.
3096   */
3097   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3098   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
3099   VdbeCoverage(v);
3100   if( nVector>1 ){
3101     destNotNull = sqlite3VdbeMakeLabel(v);
3102   }else{
3103     /* For nVector==1, combine steps 6 and 7 by immediately returning
3104     ** FALSE if the first comparison is not NULL */
3105     destNotNull = destIfFalse;
3106   }
3107   for(i=0; i<nVector; i++){
3108     Expr *p;
3109     CollSeq *pColl;
3110     int r3 = sqlite3GetTempReg(pParse);
3111     p = sqlite3VectorFieldSubexpr(pLeft, i);
3112     pColl = sqlite3ExprCollSeq(pParse, p);
3113     sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3);
3114     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3115                       (void*)pColl, P4_COLLSEQ);
3116     VdbeCoverage(v);
3117     sqlite3ReleaseTempReg(pParse, r3);
3118   }
3119   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3120   if( nVector>1 ){
3121     sqlite3VdbeResolveLabel(v, destNotNull);
3122     sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1);
3123     VdbeCoverage(v);
3124 
3125     /* Step 7:  If we reach this point, we know that the result must
3126     ** be false. */
3127     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3128   }
3129 
3130   /* Jumps here in order to return true. */
3131   sqlite3VdbeJumpHere(v, addrTruthOp);
3132 
3133 sqlite3ExprCodeIN_finished:
3134   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3135   VdbeComment((v, "end IN expr"));
3136 sqlite3ExprCodeIN_oom_error:
3137   sqlite3DbFree(pParse->db, aiMap);
3138   sqlite3DbFree(pParse->db, zAff);
3139 }
3140 #endif /* SQLITE_OMIT_SUBQUERY */
3141 
3142 #ifndef SQLITE_OMIT_FLOATING_POINT
3143 /*
3144 ** Generate an instruction that will put the floating point
3145 ** value described by z[0..n-1] into register iMem.
3146 **
3147 ** The z[] string will probably not be zero-terminated.  But the
3148 ** z[n] character is guaranteed to be something that does not look
3149 ** like the continuation of the number.
3150 */
3151 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3152   if( ALWAYS(z!=0) ){
3153     double value;
3154     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3155     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3156     if( negateFlag ) value = -value;
3157     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3158   }
3159 }
3160 #endif
3161 
3162 
3163 /*
3164 ** Generate an instruction that will put the integer describe by
3165 ** text z[0..n-1] into register iMem.
3166 **
3167 ** Expr.u.zToken is always UTF8 and zero-terminated.
3168 */
3169 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3170   Vdbe *v = pParse->pVdbe;
3171   if( pExpr->flags & EP_IntValue ){
3172     int i = pExpr->u.iValue;
3173     assert( i>=0 );
3174     if( negFlag ) i = -i;
3175     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3176   }else{
3177     int c;
3178     i64 value;
3179     const char *z = pExpr->u.zToken;
3180     assert( z!=0 );
3181     c = sqlite3DecOrHexToI64(z, &value);
3182     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3183 #ifdef SQLITE_OMIT_FLOATING_POINT
3184       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3185 #else
3186 #ifndef SQLITE_OMIT_HEX_INTEGER
3187       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3188         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3189       }else
3190 #endif
3191       {
3192         codeReal(v, z, negFlag, iMem);
3193       }
3194 #endif
3195     }else{
3196       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3197       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3198     }
3199   }
3200 }
3201 
3202 
3203 /* Generate code that will load into register regOut a value that is
3204 ** appropriate for the iIdxCol-th column of index pIdx.
3205 */
3206 void sqlite3ExprCodeLoadIndexColumn(
3207   Parse *pParse,  /* The parsing context */
3208   Index *pIdx,    /* The index whose column is to be loaded */
3209   int iTabCur,    /* Cursor pointing to a table row */
3210   int iIdxCol,    /* The column of the index to be loaded */
3211   int regOut      /* Store the index column value in this register */
3212 ){
3213   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3214   if( iTabCol==XN_EXPR ){
3215     assert( pIdx->aColExpr );
3216     assert( pIdx->aColExpr->nExpr>iIdxCol );
3217     pParse->iSelfTab = iTabCur + 1;
3218     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3219     pParse->iSelfTab = 0;
3220   }else{
3221     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3222                                     iTabCol, regOut);
3223   }
3224 }
3225 
3226 /*
3227 ** Generate code to extract the value of the iCol-th column of a table.
3228 */
3229 void sqlite3ExprCodeGetColumnOfTable(
3230   Vdbe *v,        /* The VDBE under construction */
3231   Table *pTab,    /* The table containing the value */
3232   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3233   int iCol,       /* Index of the column to extract */
3234   int regOut      /* Extract the value into this register */
3235 ){
3236   if( pTab==0 ){
3237     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3238     return;
3239   }
3240   if( iCol<0 || iCol==pTab->iPKey ){
3241     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3242   }else{
3243     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
3244     int x = iCol;
3245     if( !HasRowid(pTab) && !IsVirtual(pTab) ){
3246       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3247     }
3248     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3249   }
3250   if( iCol>=0 ){
3251     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3252   }
3253 }
3254 
3255 /*
3256 ** Generate code that will extract the iColumn-th column from
3257 ** table pTab and store the column value in register iReg.
3258 **
3259 ** There must be an open cursor to pTab in iTable when this routine
3260 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3261 */
3262 int sqlite3ExprCodeGetColumn(
3263   Parse *pParse,   /* Parsing and code generating context */
3264   Table *pTab,     /* Description of the table we are reading from */
3265   int iColumn,     /* Index of the table column */
3266   int iTable,      /* The cursor pointing to the table */
3267   int iReg,        /* Store results here */
3268   u8 p5            /* P5 value for OP_Column + FLAGS */
3269 ){
3270   Vdbe *v = pParse->pVdbe;
3271   assert( v!=0 );
3272   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
3273   if( p5 ){
3274     sqlite3VdbeChangeP5(v, p5);
3275   }
3276   return iReg;
3277 }
3278 
3279 /*
3280 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3281 ** over to iTo..iTo+nReg-1.
3282 */
3283 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3284   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
3285   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3286 }
3287 
3288 /*
3289 ** Convert a scalar expression node to a TK_REGISTER referencing
3290 ** register iReg.  The caller must ensure that iReg already contains
3291 ** the correct value for the expression.
3292 */
3293 static void exprToRegister(Expr *p, int iReg){
3294   p->op2 = p->op;
3295   p->op = TK_REGISTER;
3296   p->iTable = iReg;
3297   ExprClearProperty(p, EP_Skip);
3298 }
3299 
3300 /*
3301 ** Evaluate an expression (either a vector or a scalar expression) and store
3302 ** the result in continguous temporary registers.  Return the index of
3303 ** the first register used to store the result.
3304 **
3305 ** If the returned result register is a temporary scalar, then also write
3306 ** that register number into *piFreeable.  If the returned result register
3307 ** is not a temporary or if the expression is a vector set *piFreeable
3308 ** to 0.
3309 */
3310 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3311   int iResult;
3312   int nResult = sqlite3ExprVectorSize(p);
3313   if( nResult==1 ){
3314     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3315   }else{
3316     *piFreeable = 0;
3317     if( p->op==TK_SELECT ){
3318 #if SQLITE_OMIT_SUBQUERY
3319       iResult = 0;
3320 #else
3321       iResult = sqlite3CodeSubselect(pParse, p, 0, 0);
3322 #endif
3323     }else{
3324       int i;
3325       iResult = pParse->nMem+1;
3326       pParse->nMem += nResult;
3327       for(i=0; i<nResult; i++){
3328         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3329       }
3330     }
3331   }
3332   return iResult;
3333 }
3334 
3335 
3336 /*
3337 ** Generate code into the current Vdbe to evaluate the given
3338 ** expression.  Attempt to store the results in register "target".
3339 ** Return the register where results are stored.
3340 **
3341 ** With this routine, there is no guarantee that results will
3342 ** be stored in target.  The result might be stored in some other
3343 ** register if it is convenient to do so.  The calling function
3344 ** must check the return code and move the results to the desired
3345 ** register.
3346 */
3347 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3348   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3349   int op;                   /* The opcode being coded */
3350   int inReg = target;       /* Results stored in register inReg */
3351   int regFree1 = 0;         /* If non-zero free this temporary register */
3352   int regFree2 = 0;         /* If non-zero free this temporary register */
3353   int r1, r2;               /* Various register numbers */
3354   Expr tempX;               /* Temporary expression node */
3355   int p5 = 0;
3356 
3357   assert( target>0 && target<=pParse->nMem );
3358   if( v==0 ){
3359     assert( pParse->db->mallocFailed );
3360     return 0;
3361   }
3362 
3363 expr_code_doover:
3364   if( pExpr==0 ){
3365     op = TK_NULL;
3366   }else{
3367     op = pExpr->op;
3368   }
3369   switch( op ){
3370     case TK_AGG_COLUMN: {
3371       AggInfo *pAggInfo = pExpr->pAggInfo;
3372       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3373       if( !pAggInfo->directMode ){
3374         assert( pCol->iMem>0 );
3375         return pCol->iMem;
3376       }else if( pAggInfo->useSortingIdx ){
3377         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3378                               pCol->iSorterColumn, target);
3379         return target;
3380       }
3381       /* Otherwise, fall thru into the TK_COLUMN case */
3382     }
3383     case TK_COLUMN: {
3384       int iTab = pExpr->iTable;
3385       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3386         /* This COLUMN expression is really a constant due to WHERE clause
3387         ** constraints, and that constant is coded by the pExpr->pLeft
3388         ** expresssion.  However, make sure the constant has the correct
3389         ** datatype by applying the Affinity of the table column to the
3390         ** constant.
3391         */
3392         int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3393         int aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3394         if( aff!=SQLITE_AFF_BLOB ){
3395           static const char zAff[] = "B\000C\000D\000E";
3396           assert( SQLITE_AFF_BLOB=='A' );
3397           assert( SQLITE_AFF_TEXT=='B' );
3398           if( iReg!=target ){
3399             sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target);
3400             iReg = target;
3401           }
3402           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3403                             &zAff[(aff-'B')*2], P4_STATIC);
3404         }
3405         return iReg;
3406       }
3407       if( iTab<0 ){
3408         if( pParse->iSelfTab<0 ){
3409           /* Generating CHECK constraints or inserting into partial index */
3410           return pExpr->iColumn - pParse->iSelfTab;
3411         }else{
3412           /* Coding an expression that is part of an index where column names
3413           ** in the index refer to the table to which the index belongs */
3414           iTab = pParse->iSelfTab - 1;
3415         }
3416       }
3417       return sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
3418                                pExpr->iColumn, iTab, target,
3419                                pExpr->op2);
3420     }
3421     case TK_INTEGER: {
3422       codeInteger(pParse, pExpr, 0, target);
3423       return target;
3424     }
3425     case TK_TRUEFALSE: {
3426       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3427       return target;
3428     }
3429 #ifndef SQLITE_OMIT_FLOATING_POINT
3430     case TK_FLOAT: {
3431       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3432       codeReal(v, pExpr->u.zToken, 0, target);
3433       return target;
3434     }
3435 #endif
3436     case TK_STRING: {
3437       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3438       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3439       return target;
3440     }
3441     case TK_NULL: {
3442       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3443       return target;
3444     }
3445 #ifndef SQLITE_OMIT_BLOB_LITERAL
3446     case TK_BLOB: {
3447       int n;
3448       const char *z;
3449       char *zBlob;
3450       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3451       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3452       assert( pExpr->u.zToken[1]=='\'' );
3453       z = &pExpr->u.zToken[2];
3454       n = sqlite3Strlen30(z) - 1;
3455       assert( z[n]=='\'' );
3456       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3457       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3458       return target;
3459     }
3460 #endif
3461     case TK_VARIABLE: {
3462       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3463       assert( pExpr->u.zToken!=0 );
3464       assert( pExpr->u.zToken[0]!=0 );
3465       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3466       if( pExpr->u.zToken[1]!=0 ){
3467         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3468         assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 );
3469         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3470         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3471       }
3472       return target;
3473     }
3474     case TK_REGISTER: {
3475       return pExpr->iTable;
3476     }
3477 #ifndef SQLITE_OMIT_CAST
3478     case TK_CAST: {
3479       /* Expressions of the form:   CAST(pLeft AS token) */
3480       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3481       if( inReg!=target ){
3482         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3483         inReg = target;
3484       }
3485       sqlite3VdbeAddOp2(v, OP_Cast, target,
3486                         sqlite3AffinityType(pExpr->u.zToken, 0));
3487       return inReg;
3488     }
3489 #endif /* SQLITE_OMIT_CAST */
3490     case TK_IS:
3491     case TK_ISNOT:
3492       op = (op==TK_IS) ? TK_EQ : TK_NE;
3493       p5 = SQLITE_NULLEQ;
3494       /* fall-through */
3495     case TK_LT:
3496     case TK_LE:
3497     case TK_GT:
3498     case TK_GE:
3499     case TK_NE:
3500     case TK_EQ: {
3501       Expr *pLeft = pExpr->pLeft;
3502       if( sqlite3ExprIsVector(pLeft) ){
3503         codeVectorCompare(pParse, pExpr, target, op, p5);
3504       }else{
3505         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3506         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3507         codeCompare(pParse, pLeft, pExpr->pRight, op,
3508             r1, r2, inReg, SQLITE_STOREP2 | p5);
3509         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3510         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3511         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3512         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3513         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3514         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3515         testcase( regFree1==0 );
3516         testcase( regFree2==0 );
3517       }
3518       break;
3519     }
3520     case TK_AND:
3521     case TK_OR:
3522     case TK_PLUS:
3523     case TK_STAR:
3524     case TK_MINUS:
3525     case TK_REM:
3526     case TK_BITAND:
3527     case TK_BITOR:
3528     case TK_SLASH:
3529     case TK_LSHIFT:
3530     case TK_RSHIFT:
3531     case TK_CONCAT: {
3532       assert( TK_AND==OP_And );            testcase( op==TK_AND );
3533       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
3534       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
3535       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
3536       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
3537       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
3538       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
3539       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
3540       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
3541       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
3542       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
3543       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3544       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3545       sqlite3VdbeAddOp3(v, op, r2, r1, target);
3546       testcase( regFree1==0 );
3547       testcase( regFree2==0 );
3548       break;
3549     }
3550     case TK_UMINUS: {
3551       Expr *pLeft = pExpr->pLeft;
3552       assert( pLeft );
3553       if( pLeft->op==TK_INTEGER ){
3554         codeInteger(pParse, pLeft, 1, target);
3555         return target;
3556 #ifndef SQLITE_OMIT_FLOATING_POINT
3557       }else if( pLeft->op==TK_FLOAT ){
3558         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3559         codeReal(v, pLeft->u.zToken, 1, target);
3560         return target;
3561 #endif
3562       }else{
3563         tempX.op = TK_INTEGER;
3564         tempX.flags = EP_IntValue|EP_TokenOnly;
3565         tempX.u.iValue = 0;
3566         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3567         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3568         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3569         testcase( regFree2==0 );
3570       }
3571       break;
3572     }
3573     case TK_BITNOT:
3574     case TK_NOT: {
3575       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
3576       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
3577       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3578       testcase( regFree1==0 );
3579       sqlite3VdbeAddOp2(v, op, r1, inReg);
3580       break;
3581     }
3582     case TK_TRUTH: {
3583       int isTrue;    /* IS TRUE or IS NOT TRUE */
3584       int bNormal;   /* IS TRUE or IS FALSE */
3585       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3586       testcase( regFree1==0 );
3587       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
3588       bNormal = pExpr->op2==TK_IS;
3589       testcase( isTrue && bNormal);
3590       testcase( !isTrue && bNormal);
3591       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
3592       break;
3593     }
3594     case TK_ISNULL:
3595     case TK_NOTNULL: {
3596       int addr;
3597       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3598       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3599       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3600       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3601       testcase( regFree1==0 );
3602       addr = sqlite3VdbeAddOp1(v, op, r1);
3603       VdbeCoverageIf(v, op==TK_ISNULL);
3604       VdbeCoverageIf(v, op==TK_NOTNULL);
3605       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3606       sqlite3VdbeJumpHere(v, addr);
3607       break;
3608     }
3609     case TK_AGG_FUNCTION: {
3610       AggInfo *pInfo = pExpr->pAggInfo;
3611       if( pInfo==0 ){
3612         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3613         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3614       }else{
3615         return pInfo->aFunc[pExpr->iAgg].iMem;
3616       }
3617       break;
3618     }
3619     case TK_FUNCTION: {
3620       ExprList *pFarg;       /* List of function arguments */
3621       int nFarg;             /* Number of function arguments */
3622       FuncDef *pDef;         /* The function definition object */
3623       const char *zId;       /* The function name */
3624       u32 constMask = 0;     /* Mask of function arguments that are constant */
3625       int i;                 /* Loop counter */
3626       sqlite3 *db = pParse->db;  /* The database connection */
3627       u8 enc = ENC(db);      /* The text encoding used by this database */
3628       CollSeq *pColl = 0;    /* A collating sequence */
3629 
3630 #ifndef SQLITE_OMIT_WINDOWFUNC
3631       if( ExprHasProperty(pExpr, EP_WinFunc) ){
3632         return pExpr->y.pWin->regResult;
3633       }
3634 #endif
3635 
3636       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
3637         /* SQL functions can be expensive. So try to move constant functions
3638         ** out of the inner loop, even if that means an extra OP_Copy. */
3639         return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
3640       }
3641       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3642       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3643         pFarg = 0;
3644       }else{
3645         pFarg = pExpr->x.pList;
3646       }
3647       nFarg = pFarg ? pFarg->nExpr : 0;
3648       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3649       zId = pExpr->u.zToken;
3650       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3651 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3652       if( pDef==0 && pParse->explain ){
3653         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3654       }
3655 #endif
3656       if( pDef==0 || pDef->xFinalize!=0 ){
3657         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3658         break;
3659       }
3660 
3661       /* Attempt a direct implementation of the built-in COALESCE() and
3662       ** IFNULL() functions.  This avoids unnecessary evaluation of
3663       ** arguments past the first non-NULL argument.
3664       */
3665       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3666         int endCoalesce = sqlite3VdbeMakeLabel(v);
3667         assert( nFarg>=2 );
3668         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3669         for(i=1; i<nFarg; i++){
3670           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3671           VdbeCoverage(v);
3672           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3673         }
3674         sqlite3VdbeResolveLabel(v, endCoalesce);
3675         break;
3676       }
3677 
3678       /* The UNLIKELY() function is a no-op.  The result is the value
3679       ** of the first argument.
3680       */
3681       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3682         assert( nFarg>=1 );
3683         return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3684       }
3685 
3686 #ifdef SQLITE_DEBUG
3687       /* The AFFINITY() function evaluates to a string that describes
3688       ** the type affinity of the argument.  This is used for testing of
3689       ** the SQLite type logic.
3690       */
3691       if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
3692         const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3693         char aff;
3694         assert( nFarg==1 );
3695         aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3696         sqlite3VdbeLoadString(v, target,
3697                               aff ? azAff[aff-SQLITE_AFF_BLOB] : "none");
3698         return target;
3699       }
3700 #endif
3701 
3702       for(i=0; i<nFarg; i++){
3703         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3704           testcase( i==31 );
3705           constMask |= MASKBIT32(i);
3706         }
3707         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
3708           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
3709         }
3710       }
3711       if( pFarg ){
3712         if( constMask ){
3713           r1 = pParse->nMem+1;
3714           pParse->nMem += nFarg;
3715         }else{
3716           r1 = sqlite3GetTempRange(pParse, nFarg);
3717         }
3718 
3719         /* For length() and typeof() functions with a column argument,
3720         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3721         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3722         ** loading.
3723         */
3724         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3725           u8 exprOp;
3726           assert( nFarg==1 );
3727           assert( pFarg->a[0].pExpr!=0 );
3728           exprOp = pFarg->a[0].pExpr->op;
3729           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3730             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3731             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3732             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3733             pFarg->a[0].pExpr->op2 =
3734                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3735           }
3736         }
3737 
3738         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3739                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3740       }else{
3741         r1 = 0;
3742       }
3743 #ifndef SQLITE_OMIT_VIRTUALTABLE
3744       /* Possibly overload the function if the first argument is
3745       ** a virtual table column.
3746       **
3747       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3748       ** second argument, not the first, as the argument to test to
3749       ** see if it is a column in a virtual table.  This is done because
3750       ** the left operand of infix functions (the operand we want to
3751       ** control overloading) ends up as the second argument to the
3752       ** function.  The expression "A glob B" is equivalent to
3753       ** "glob(B,A).  We want to use the A in "A glob B" to test
3754       ** for function overloading.  But we use the B term in "glob(B,A)".
3755       */
3756       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
3757         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3758       }else if( nFarg>0 ){
3759         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3760       }
3761 #endif
3762       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3763         if( !pColl ) pColl = db->pDfltColl;
3764         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3765       }
3766 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
3767       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
3768         Expr *pArg = pFarg->a[0].pExpr;
3769         if( pArg->op==TK_COLUMN ){
3770           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
3771         }else{
3772           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3773         }
3774       }else
3775 #endif
3776       {
3777         sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0,
3778                           constMask, r1, target, (char*)pDef, P4_FUNCDEF);
3779         sqlite3VdbeChangeP5(v, (u8)nFarg);
3780       }
3781       if( nFarg && constMask==0 ){
3782         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3783       }
3784       return target;
3785     }
3786 #ifndef SQLITE_OMIT_SUBQUERY
3787     case TK_EXISTS:
3788     case TK_SELECT: {
3789       int nCol;
3790       testcase( op==TK_EXISTS );
3791       testcase( op==TK_SELECT );
3792       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
3793         sqlite3SubselectError(pParse, nCol, 1);
3794       }else{
3795         return sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3796       }
3797       break;
3798     }
3799     case TK_SELECT_COLUMN: {
3800       int n;
3801       if( pExpr->pLeft->iTable==0 ){
3802         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0);
3803       }
3804       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
3805       if( pExpr->iTable
3806        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
3807       ){
3808         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
3809                                 pExpr->iTable, n);
3810       }
3811       return pExpr->pLeft->iTable + pExpr->iColumn;
3812     }
3813     case TK_IN: {
3814       int destIfFalse = sqlite3VdbeMakeLabel(v);
3815       int destIfNull = sqlite3VdbeMakeLabel(v);
3816       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3817       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3818       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3819       sqlite3VdbeResolveLabel(v, destIfFalse);
3820       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3821       sqlite3VdbeResolveLabel(v, destIfNull);
3822       return target;
3823     }
3824 #endif /* SQLITE_OMIT_SUBQUERY */
3825 
3826 
3827     /*
3828     **    x BETWEEN y AND z
3829     **
3830     ** This is equivalent to
3831     **
3832     **    x>=y AND x<=z
3833     **
3834     ** X is stored in pExpr->pLeft.
3835     ** Y is stored in pExpr->pList->a[0].pExpr.
3836     ** Z is stored in pExpr->pList->a[1].pExpr.
3837     */
3838     case TK_BETWEEN: {
3839       exprCodeBetween(pParse, pExpr, target, 0, 0);
3840       return target;
3841     }
3842     case TK_SPAN:
3843     case TK_COLLATE:
3844     case TK_UPLUS: {
3845       pExpr = pExpr->pLeft;
3846       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
3847     }
3848 
3849     case TK_TRIGGER: {
3850       /* If the opcode is TK_TRIGGER, then the expression is a reference
3851       ** to a column in the new.* or old.* pseudo-tables available to
3852       ** trigger programs. In this case Expr.iTable is set to 1 for the
3853       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3854       ** is set to the column of the pseudo-table to read, or to -1 to
3855       ** read the rowid field.
3856       **
3857       ** The expression is implemented using an OP_Param opcode. The p1
3858       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3859       ** to reference another column of the old.* pseudo-table, where
3860       ** i is the index of the column. For a new.rowid reference, p1 is
3861       ** set to (n+1), where n is the number of columns in each pseudo-table.
3862       ** For a reference to any other column in the new.* pseudo-table, p1
3863       ** is set to (n+2+i), where n and i are as defined previously. For
3864       ** example, if the table on which triggers are being fired is
3865       ** declared as:
3866       **
3867       **   CREATE TABLE t1(a, b);
3868       **
3869       ** Then p1 is interpreted as follows:
3870       **
3871       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3872       **   p1==1   ->    old.a         p1==4   ->    new.a
3873       **   p1==2   ->    old.b         p1==5   ->    new.b
3874       */
3875       Table *pTab = pExpr->y.pTab;
3876       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3877 
3878       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3879       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3880       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3881       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3882 
3883       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3884       VdbeComment((v, "r[%d]=%s.%s", target,
3885         (pExpr->iTable ? "new" : "old"),
3886         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[pExpr->iColumn].zName)
3887       ));
3888 
3889 #ifndef SQLITE_OMIT_FLOATING_POINT
3890       /* If the column has REAL affinity, it may currently be stored as an
3891       ** integer. Use OP_RealAffinity to make sure it is really real.
3892       **
3893       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3894       ** floating point when extracting it from the record.  */
3895       if( pExpr->iColumn>=0
3896        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3897       ){
3898         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3899       }
3900 #endif
3901       break;
3902     }
3903 
3904     case TK_VECTOR: {
3905       sqlite3ErrorMsg(pParse, "row value misused");
3906       break;
3907     }
3908 
3909     case TK_IF_NULL_ROW: {
3910       int addrINR;
3911       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
3912       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3913       sqlite3VdbeJumpHere(v, addrINR);
3914       sqlite3VdbeChangeP3(v, addrINR, inReg);
3915       break;
3916     }
3917 
3918     /*
3919     ** Form A:
3920     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3921     **
3922     ** Form B:
3923     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3924     **
3925     ** Form A is can be transformed into the equivalent form B as follows:
3926     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3927     **        WHEN x=eN THEN rN ELSE y END
3928     **
3929     ** X (if it exists) is in pExpr->pLeft.
3930     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3931     ** odd.  The Y is also optional.  If the number of elements in x.pList
3932     ** is even, then Y is omitted and the "otherwise" result is NULL.
3933     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3934     **
3935     ** The result of the expression is the Ri for the first matching Ei,
3936     ** or if there is no matching Ei, the ELSE term Y, or if there is
3937     ** no ELSE term, NULL.
3938     */
3939     default: assert( op==TK_CASE ); {
3940       int endLabel;                     /* GOTO label for end of CASE stmt */
3941       int nextCase;                     /* GOTO label for next WHEN clause */
3942       int nExpr;                        /* 2x number of WHEN terms */
3943       int i;                            /* Loop counter */
3944       ExprList *pEList;                 /* List of WHEN terms */
3945       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3946       Expr opCompare;                   /* The X==Ei expression */
3947       Expr *pX;                         /* The X expression */
3948       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3949 
3950       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3951       assert(pExpr->x.pList->nExpr > 0);
3952       pEList = pExpr->x.pList;
3953       aListelem = pEList->a;
3954       nExpr = pEList->nExpr;
3955       endLabel = sqlite3VdbeMakeLabel(v);
3956       if( (pX = pExpr->pLeft)!=0 ){
3957         tempX = *pX;
3958         testcase( pX->op==TK_COLUMN );
3959         exprToRegister(&tempX, exprCodeVector(pParse, &tempX, &regFree1));
3960         testcase( regFree1==0 );
3961         memset(&opCompare, 0, sizeof(opCompare));
3962         opCompare.op = TK_EQ;
3963         opCompare.pLeft = &tempX;
3964         pTest = &opCompare;
3965         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3966         ** The value in regFree1 might get SCopy-ed into the file result.
3967         ** So make sure that the regFree1 register is not reused for other
3968         ** purposes and possibly overwritten.  */
3969         regFree1 = 0;
3970       }
3971       for(i=0; i<nExpr-1; i=i+2){
3972         if( pX ){
3973           assert( pTest!=0 );
3974           opCompare.pRight = aListelem[i].pExpr;
3975         }else{
3976           pTest = aListelem[i].pExpr;
3977         }
3978         nextCase = sqlite3VdbeMakeLabel(v);
3979         testcase( pTest->op==TK_COLUMN );
3980         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3981         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3982         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3983         sqlite3VdbeGoto(v, endLabel);
3984         sqlite3VdbeResolveLabel(v, nextCase);
3985       }
3986       if( (nExpr&1)!=0 ){
3987         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3988       }else{
3989         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3990       }
3991       sqlite3VdbeResolveLabel(v, endLabel);
3992       break;
3993     }
3994 #ifndef SQLITE_OMIT_TRIGGER
3995     case TK_RAISE: {
3996       assert( pExpr->affinity==OE_Rollback
3997            || pExpr->affinity==OE_Abort
3998            || pExpr->affinity==OE_Fail
3999            || pExpr->affinity==OE_Ignore
4000       );
4001       if( !pParse->pTriggerTab ){
4002         sqlite3ErrorMsg(pParse,
4003                        "RAISE() may only be used within a trigger-program");
4004         return 0;
4005       }
4006       if( pExpr->affinity==OE_Abort ){
4007         sqlite3MayAbort(pParse);
4008       }
4009       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4010       if( pExpr->affinity==OE_Ignore ){
4011         sqlite3VdbeAddOp4(
4012             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4013         VdbeCoverage(v);
4014       }else{
4015         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4016                               pExpr->affinity, pExpr->u.zToken, 0, 0);
4017       }
4018 
4019       break;
4020     }
4021 #endif
4022   }
4023   sqlite3ReleaseTempReg(pParse, regFree1);
4024   sqlite3ReleaseTempReg(pParse, regFree2);
4025   return inReg;
4026 }
4027 
4028 /*
4029 ** Factor out the code of the given expression to initialization time.
4030 **
4031 ** If regDest>=0 then the result is always stored in that register and the
4032 ** result is not reusable.  If regDest<0 then this routine is free to
4033 ** store the value whereever it wants.  The register where the expression
4034 ** is stored is returned.  When regDest<0, two identical expressions will
4035 ** code to the same register.
4036 */
4037 int sqlite3ExprCodeAtInit(
4038   Parse *pParse,    /* Parsing context */
4039   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4040   int regDest       /* Store the value in this register */
4041 ){
4042   ExprList *p;
4043   assert( ConstFactorOk(pParse) );
4044   p = pParse->pConstExpr;
4045   if( regDest<0 && p ){
4046     struct ExprList_item *pItem;
4047     int i;
4048     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4049       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4050         return pItem->u.iConstExprReg;
4051       }
4052     }
4053   }
4054   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4055   p = sqlite3ExprListAppend(pParse, p, pExpr);
4056   if( p ){
4057      struct ExprList_item *pItem = &p->a[p->nExpr-1];
4058      pItem->reusable = regDest<0;
4059      if( regDest<0 ) regDest = ++pParse->nMem;
4060      pItem->u.iConstExprReg = regDest;
4061   }
4062   pParse->pConstExpr = p;
4063   return regDest;
4064 }
4065 
4066 /*
4067 ** Generate code to evaluate an expression and store the results
4068 ** into a register.  Return the register number where the results
4069 ** are stored.
4070 **
4071 ** If the register is a temporary register that can be deallocated,
4072 ** then write its number into *pReg.  If the result register is not
4073 ** a temporary, then set *pReg to zero.
4074 **
4075 ** If pExpr is a constant, then this routine might generate this
4076 ** code to fill the register in the initialization section of the
4077 ** VDBE program, in order to factor it out of the evaluation loop.
4078 */
4079 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4080   int r2;
4081   pExpr = sqlite3ExprSkipCollate(pExpr);
4082   if( ConstFactorOk(pParse)
4083    && pExpr->op!=TK_REGISTER
4084    && sqlite3ExprIsConstantNotJoin(pExpr)
4085   ){
4086     *pReg  = 0;
4087     r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4088   }else{
4089     int r1 = sqlite3GetTempReg(pParse);
4090     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4091     if( r2==r1 ){
4092       *pReg = r1;
4093     }else{
4094       sqlite3ReleaseTempReg(pParse, r1);
4095       *pReg = 0;
4096     }
4097   }
4098   return r2;
4099 }
4100 
4101 /*
4102 ** Generate code that will evaluate expression pExpr and store the
4103 ** results in register target.  The results are guaranteed to appear
4104 ** in register target.
4105 */
4106 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4107   int inReg;
4108 
4109   assert( target>0 && target<=pParse->nMem );
4110   if( pExpr && pExpr->op==TK_REGISTER ){
4111     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
4112   }else{
4113     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4114     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4115     if( inReg!=target && pParse->pVdbe ){
4116       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4117     }
4118   }
4119 }
4120 
4121 /*
4122 ** Make a transient copy of expression pExpr and then code it using
4123 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4124 ** except that the input expression is guaranteed to be unchanged.
4125 */
4126 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4127   sqlite3 *db = pParse->db;
4128   pExpr = sqlite3ExprDup(db, pExpr, 0);
4129   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4130   sqlite3ExprDelete(db, pExpr);
4131 }
4132 
4133 /*
4134 ** Generate code that will evaluate expression pExpr and store the
4135 ** results in register target.  The results are guaranteed to appear
4136 ** in register target.  If the expression is constant, then this routine
4137 ** might choose to code the expression at initialization time.
4138 */
4139 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4140   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4141     sqlite3ExprCodeAtInit(pParse, pExpr, target);
4142   }else{
4143     sqlite3ExprCode(pParse, pExpr, target);
4144   }
4145 }
4146 
4147 /*
4148 ** Generate code that evaluates the given expression and puts the result
4149 ** in register target.
4150 **
4151 ** Also make a copy of the expression results into another "cache" register
4152 ** and modify the expression so that the next time it is evaluated,
4153 ** the result is a copy of the cache register.
4154 **
4155 ** This routine is used for expressions that are used multiple
4156 ** times.  They are evaluated once and the results of the expression
4157 ** are reused.
4158 */
4159 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
4160   Vdbe *v = pParse->pVdbe;
4161   int iMem;
4162 
4163   assert( target>0 );
4164   assert( pExpr->op!=TK_REGISTER );
4165   sqlite3ExprCode(pParse, pExpr, target);
4166   iMem = ++pParse->nMem;
4167   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
4168   exprToRegister(pExpr, iMem);
4169 }
4170 
4171 /*
4172 ** Generate code that pushes the value of every element of the given
4173 ** expression list into a sequence of registers beginning at target.
4174 **
4175 ** Return the number of elements evaluated.  The number returned will
4176 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4177 ** is defined.
4178 **
4179 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4180 ** filled using OP_SCopy.  OP_Copy must be used instead.
4181 **
4182 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4183 ** factored out into initialization code.
4184 **
4185 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4186 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4187 ** in registers at srcReg, and so the value can be copied from there.
4188 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4189 ** are simply omitted rather than being copied from srcReg.
4190 */
4191 int sqlite3ExprCodeExprList(
4192   Parse *pParse,     /* Parsing context */
4193   ExprList *pList,   /* The expression list to be coded */
4194   int target,        /* Where to write results */
4195   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4196   u8 flags           /* SQLITE_ECEL_* flags */
4197 ){
4198   struct ExprList_item *pItem;
4199   int i, j, n;
4200   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4201   Vdbe *v = pParse->pVdbe;
4202   assert( pList!=0 );
4203   assert( target>0 );
4204   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4205   n = pList->nExpr;
4206   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4207   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4208     Expr *pExpr = pItem->pExpr;
4209 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4210     if( pItem->bSorterRef ){
4211       i--;
4212       n--;
4213     }else
4214 #endif
4215     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4216       if( flags & SQLITE_ECEL_OMITREF ){
4217         i--;
4218         n--;
4219       }else{
4220         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4221       }
4222     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4223            && sqlite3ExprIsConstantNotJoin(pExpr)
4224     ){
4225       sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4226     }else{
4227       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4228       if( inReg!=target+i ){
4229         VdbeOp *pOp;
4230         if( copyOp==OP_Copy
4231          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4232          && pOp->p1+pOp->p3+1==inReg
4233          && pOp->p2+pOp->p3+1==target+i
4234         ){
4235           pOp->p3++;
4236         }else{
4237           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4238         }
4239       }
4240     }
4241   }
4242   return n;
4243 }
4244 
4245 /*
4246 ** Generate code for a BETWEEN operator.
4247 **
4248 **    x BETWEEN y AND z
4249 **
4250 ** The above is equivalent to
4251 **
4252 **    x>=y AND x<=z
4253 **
4254 ** Code it as such, taking care to do the common subexpression
4255 ** elimination of x.
4256 **
4257 ** The xJumpIf parameter determines details:
4258 **
4259 **    NULL:                   Store the boolean result in reg[dest]
4260 **    sqlite3ExprIfTrue:      Jump to dest if true
4261 **    sqlite3ExprIfFalse:     Jump to dest if false
4262 **
4263 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4264 */
4265 static void exprCodeBetween(
4266   Parse *pParse,    /* Parsing and code generating context */
4267   Expr *pExpr,      /* The BETWEEN expression */
4268   int dest,         /* Jump destination or storage location */
4269   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4270   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4271 ){
4272  Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4273   Expr compLeft;    /* The  x>=y  term */
4274   Expr compRight;   /* The  x<=z  term */
4275   Expr exprX;       /* The  x  subexpression */
4276   int regFree1 = 0; /* Temporary use register */
4277 
4278 
4279   memset(&compLeft, 0, sizeof(Expr));
4280   memset(&compRight, 0, sizeof(Expr));
4281   memset(&exprAnd, 0, sizeof(Expr));
4282 
4283   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4284   exprX = *pExpr->pLeft;
4285   exprAnd.op = TK_AND;
4286   exprAnd.pLeft = &compLeft;
4287   exprAnd.pRight = &compRight;
4288   compLeft.op = TK_GE;
4289   compLeft.pLeft = &exprX;
4290   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4291   compRight.op = TK_LE;
4292   compRight.pLeft = &exprX;
4293   compRight.pRight = pExpr->x.pList->a[1].pExpr;
4294   exprToRegister(&exprX, exprCodeVector(pParse, &exprX, &regFree1));
4295   if( xJump ){
4296     xJump(pParse, &exprAnd, dest, jumpIfNull);
4297   }else{
4298     /* Mark the expression is being from the ON or USING clause of a join
4299     ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4300     ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4301     ** for clarity, but we are out of bits in the Expr.flags field so we
4302     ** have to reuse the EP_FromJoin bit.  Bummer. */
4303     exprX.flags |= EP_FromJoin;
4304     sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4305   }
4306   sqlite3ReleaseTempReg(pParse, regFree1);
4307 
4308   /* Ensure adequate test coverage */
4309   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4310   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4311   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4312   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4313   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4314   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4315   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4316   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4317   testcase( xJump==0 );
4318 }
4319 
4320 /*
4321 ** Generate code for a boolean expression such that a jump is made
4322 ** to the label "dest" if the expression is true but execution
4323 ** continues straight thru if the expression is false.
4324 **
4325 ** If the expression evaluates to NULL (neither true nor false), then
4326 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4327 **
4328 ** This code depends on the fact that certain token values (ex: TK_EQ)
4329 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4330 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4331 ** the make process cause these values to align.  Assert()s in the code
4332 ** below verify that the numbers are aligned correctly.
4333 */
4334 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4335   Vdbe *v = pParse->pVdbe;
4336   int op = 0;
4337   int regFree1 = 0;
4338   int regFree2 = 0;
4339   int r1, r2;
4340 
4341   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4342   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4343   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4344   op = pExpr->op;
4345   switch( op ){
4346     case TK_AND: {
4347       int d2 = sqlite3VdbeMakeLabel(v);
4348       testcase( jumpIfNull==0 );
4349       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
4350       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4351       sqlite3VdbeResolveLabel(v, d2);
4352       break;
4353     }
4354     case TK_OR: {
4355       testcase( jumpIfNull==0 );
4356       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4357       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4358       break;
4359     }
4360     case TK_NOT: {
4361       testcase( jumpIfNull==0 );
4362       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4363       break;
4364     }
4365     case TK_TRUTH: {
4366       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4367       int isTrue;     /* IS TRUE or IS NOT TRUE */
4368       testcase( jumpIfNull==0 );
4369       isNot = pExpr->op2==TK_ISNOT;
4370       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4371       testcase( isTrue && isNot );
4372       testcase( !isTrue && isNot );
4373       if( isTrue ^ isNot ){
4374         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4375                           isNot ? SQLITE_JUMPIFNULL : 0);
4376       }else{
4377         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4378                            isNot ? SQLITE_JUMPIFNULL : 0);
4379       }
4380       break;
4381     }
4382     case TK_IS:
4383     case TK_ISNOT:
4384       testcase( op==TK_IS );
4385       testcase( op==TK_ISNOT );
4386       op = (op==TK_IS) ? TK_EQ : TK_NE;
4387       jumpIfNull = SQLITE_NULLEQ;
4388       /* Fall thru */
4389     case TK_LT:
4390     case TK_LE:
4391     case TK_GT:
4392     case TK_GE:
4393     case TK_NE:
4394     case TK_EQ: {
4395       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4396       testcase( jumpIfNull==0 );
4397       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4398       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4399       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4400                   r1, r2, dest, jumpIfNull);
4401       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4402       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4403       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4404       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4405       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4406       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4407       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4408       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4409       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4410       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4411       testcase( regFree1==0 );
4412       testcase( regFree2==0 );
4413       break;
4414     }
4415     case TK_ISNULL:
4416     case TK_NOTNULL: {
4417       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4418       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4419       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4420       sqlite3VdbeAddOp2(v, op, r1, dest);
4421       VdbeCoverageIf(v, op==TK_ISNULL);
4422       VdbeCoverageIf(v, op==TK_NOTNULL);
4423       testcase( regFree1==0 );
4424       break;
4425     }
4426     case TK_BETWEEN: {
4427       testcase( jumpIfNull==0 );
4428       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4429       break;
4430     }
4431 #ifndef SQLITE_OMIT_SUBQUERY
4432     case TK_IN: {
4433       int destIfFalse = sqlite3VdbeMakeLabel(v);
4434       int destIfNull = jumpIfNull ? dest : destIfFalse;
4435       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4436       sqlite3VdbeGoto(v, dest);
4437       sqlite3VdbeResolveLabel(v, destIfFalse);
4438       break;
4439     }
4440 #endif
4441     default: {
4442     default_expr:
4443       if( exprAlwaysTrue(pExpr) ){
4444         sqlite3VdbeGoto(v, dest);
4445       }else if( exprAlwaysFalse(pExpr) ){
4446         /* No-op */
4447       }else{
4448         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4449         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4450         VdbeCoverage(v);
4451         testcase( regFree1==0 );
4452         testcase( jumpIfNull==0 );
4453       }
4454       break;
4455     }
4456   }
4457   sqlite3ReleaseTempReg(pParse, regFree1);
4458   sqlite3ReleaseTempReg(pParse, regFree2);
4459 }
4460 
4461 /*
4462 ** Generate code for a boolean expression such that a jump is made
4463 ** to the label "dest" if the expression is false but execution
4464 ** continues straight thru if the expression is true.
4465 **
4466 ** If the expression evaluates to NULL (neither true nor false) then
4467 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4468 ** is 0.
4469 */
4470 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4471   Vdbe *v = pParse->pVdbe;
4472   int op = 0;
4473   int regFree1 = 0;
4474   int regFree2 = 0;
4475   int r1, r2;
4476 
4477   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4478   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4479   if( pExpr==0 )    return;
4480 
4481   /* The value of pExpr->op and op are related as follows:
4482   **
4483   **       pExpr->op            op
4484   **       ---------          ----------
4485   **       TK_ISNULL          OP_NotNull
4486   **       TK_NOTNULL         OP_IsNull
4487   **       TK_NE              OP_Eq
4488   **       TK_EQ              OP_Ne
4489   **       TK_GT              OP_Le
4490   **       TK_LE              OP_Gt
4491   **       TK_GE              OP_Lt
4492   **       TK_LT              OP_Ge
4493   **
4494   ** For other values of pExpr->op, op is undefined and unused.
4495   ** The value of TK_ and OP_ constants are arranged such that we
4496   ** can compute the mapping above using the following expression.
4497   ** Assert()s verify that the computation is correct.
4498   */
4499   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4500 
4501   /* Verify correct alignment of TK_ and OP_ constants
4502   */
4503   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4504   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4505   assert( pExpr->op!=TK_NE || op==OP_Eq );
4506   assert( pExpr->op!=TK_EQ || op==OP_Ne );
4507   assert( pExpr->op!=TK_LT || op==OP_Ge );
4508   assert( pExpr->op!=TK_LE || op==OP_Gt );
4509   assert( pExpr->op!=TK_GT || op==OP_Le );
4510   assert( pExpr->op!=TK_GE || op==OP_Lt );
4511 
4512   switch( pExpr->op ){
4513     case TK_AND: {
4514       testcase( jumpIfNull==0 );
4515       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4516       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4517       break;
4518     }
4519     case TK_OR: {
4520       int d2 = sqlite3VdbeMakeLabel(v);
4521       testcase( jumpIfNull==0 );
4522       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
4523       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4524       sqlite3VdbeResolveLabel(v, d2);
4525       break;
4526     }
4527     case TK_NOT: {
4528       testcase( jumpIfNull==0 );
4529       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4530       break;
4531     }
4532     case TK_TRUTH: {
4533       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
4534       int isTrue;  /* IS TRUE or IS NOT TRUE */
4535       testcase( jumpIfNull==0 );
4536       isNot = pExpr->op2==TK_ISNOT;
4537       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4538       testcase( isTrue && isNot );
4539       testcase( !isTrue && isNot );
4540       if( isTrue ^ isNot ){
4541         /* IS TRUE and IS NOT FALSE */
4542         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4543                            isNot ? 0 : SQLITE_JUMPIFNULL);
4544 
4545       }else{
4546         /* IS FALSE and IS NOT TRUE */
4547         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4548                           isNot ? 0 : SQLITE_JUMPIFNULL);
4549       }
4550       break;
4551     }
4552     case TK_IS:
4553     case TK_ISNOT:
4554       testcase( pExpr->op==TK_IS );
4555       testcase( pExpr->op==TK_ISNOT );
4556       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4557       jumpIfNull = SQLITE_NULLEQ;
4558       /* Fall thru */
4559     case TK_LT:
4560     case TK_LE:
4561     case TK_GT:
4562     case TK_GE:
4563     case TK_NE:
4564     case TK_EQ: {
4565       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4566       testcase( jumpIfNull==0 );
4567       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4568       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4569       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4570                   r1, r2, dest, jumpIfNull);
4571       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4572       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4573       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4574       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4575       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4576       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4577       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4578       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4579       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4580       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4581       testcase( regFree1==0 );
4582       testcase( regFree2==0 );
4583       break;
4584     }
4585     case TK_ISNULL:
4586     case TK_NOTNULL: {
4587       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4588       sqlite3VdbeAddOp2(v, op, r1, dest);
4589       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
4590       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
4591       testcase( regFree1==0 );
4592       break;
4593     }
4594     case TK_BETWEEN: {
4595       testcase( jumpIfNull==0 );
4596       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4597       break;
4598     }
4599 #ifndef SQLITE_OMIT_SUBQUERY
4600     case TK_IN: {
4601       if( jumpIfNull ){
4602         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4603       }else{
4604         int destIfNull = sqlite3VdbeMakeLabel(v);
4605         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4606         sqlite3VdbeResolveLabel(v, destIfNull);
4607       }
4608       break;
4609     }
4610 #endif
4611     default: {
4612     default_expr:
4613       if( exprAlwaysFalse(pExpr) ){
4614         sqlite3VdbeGoto(v, dest);
4615       }else if( exprAlwaysTrue(pExpr) ){
4616         /* no-op */
4617       }else{
4618         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4619         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4620         VdbeCoverage(v);
4621         testcase( regFree1==0 );
4622         testcase( jumpIfNull==0 );
4623       }
4624       break;
4625     }
4626   }
4627   sqlite3ReleaseTempReg(pParse, regFree1);
4628   sqlite3ReleaseTempReg(pParse, regFree2);
4629 }
4630 
4631 /*
4632 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4633 ** code generation, and that copy is deleted after code generation. This
4634 ** ensures that the original pExpr is unchanged.
4635 */
4636 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4637   sqlite3 *db = pParse->db;
4638   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4639   if( db->mallocFailed==0 ){
4640     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4641   }
4642   sqlite3ExprDelete(db, pCopy);
4643 }
4644 
4645 /*
4646 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
4647 ** type of expression.
4648 **
4649 ** If pExpr is a simple SQL value - an integer, real, string, blob
4650 ** or NULL value - then the VDBE currently being prepared is configured
4651 ** to re-prepare each time a new value is bound to variable pVar.
4652 **
4653 ** Additionally, if pExpr is a simple SQL value and the value is the
4654 ** same as that currently bound to variable pVar, non-zero is returned.
4655 ** Otherwise, if the values are not the same or if pExpr is not a simple
4656 ** SQL value, zero is returned.
4657 */
4658 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
4659   int res = 0;
4660   int iVar;
4661   sqlite3_value *pL, *pR = 0;
4662 
4663   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
4664   if( pR ){
4665     iVar = pVar->iColumn;
4666     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
4667     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
4668     if( pL ){
4669       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
4670         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
4671       }
4672       res =  0==sqlite3MemCompare(pL, pR, 0);
4673     }
4674     sqlite3ValueFree(pR);
4675     sqlite3ValueFree(pL);
4676   }
4677 
4678   return res;
4679 }
4680 
4681 /*
4682 ** Do a deep comparison of two expression trees.  Return 0 if the two
4683 ** expressions are completely identical.  Return 1 if they differ only
4684 ** by a COLLATE operator at the top level.  Return 2 if there are differences
4685 ** other than the top-level COLLATE operator.
4686 **
4687 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4688 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4689 **
4690 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
4691 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4692 **
4693 ** Sometimes this routine will return 2 even if the two expressions
4694 ** really are equivalent.  If we cannot prove that the expressions are
4695 ** identical, we return 2 just to be safe.  So if this routine
4696 ** returns 2, then you do not really know for certain if the two
4697 ** expressions are the same.  But if you get a 0 or 1 return, then you
4698 ** can be sure the expressions are the same.  In the places where
4699 ** this routine is used, it does not hurt to get an extra 2 - that
4700 ** just might result in some slightly slower code.  But returning
4701 ** an incorrect 0 or 1 could lead to a malfunction.
4702 **
4703 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
4704 ** pParse->pReprepare can be matched against literals in pB.  The
4705 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
4706 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
4707 ** Argument pParse should normally be NULL. If it is not NULL and pA or
4708 ** pB causes a return value of 2.
4709 */
4710 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
4711   u32 combinedFlags;
4712   if( pA==0 || pB==0 ){
4713     return pB==pA ? 0 : 2;
4714   }
4715   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
4716     return 0;
4717   }
4718   combinedFlags = pA->flags | pB->flags;
4719   if( combinedFlags & EP_IntValue ){
4720     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
4721       return 0;
4722     }
4723     return 2;
4724   }
4725   if( pA->op!=pB->op ){
4726     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
4727       return 1;
4728     }
4729     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
4730       return 1;
4731     }
4732     return 2;
4733   }
4734   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
4735     if( pA->op==TK_FUNCTION ){
4736       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4737 #ifndef SQLITE_OMIT_WINDOWFUNC
4738       /* Justification for the assert():
4739       ** window functions have p->op==TK_FUNCTION but aggregate functions
4740       ** have p->op==TK_AGG_FUNCTION.  So any comparison between an aggregate
4741       ** function and a window function should have failed before reaching
4742       ** this point.  And, it is not possible to have a window function and
4743       ** a scalar function with the same name and number of arguments.  So
4744       ** if we reach this point, either A and B both window functions or
4745       ** neither are a window functions. */
4746       assert( ExprHasProperty(pA,EP_WinFunc)==ExprHasProperty(pB,EP_WinFunc) );
4747       if( ExprHasProperty(pA,EP_WinFunc) ){
4748         if( sqlite3WindowCompare(pParse,pA->y.pWin,pB->y.pWin)!=0 ) return 2;
4749       }
4750 #endif
4751     }else if( pA->op==TK_COLLATE ){
4752       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4753     }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4754       return 2;
4755     }
4756   }
4757   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4758   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
4759     if( combinedFlags & EP_xIsSelect ) return 2;
4760     if( (combinedFlags & EP_FixedCol)==0
4761      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
4762     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
4763     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4764     assert( (combinedFlags & EP_Reduced)==0 );
4765     if( pA->op!=TK_STRING && pA->op!=TK_TRUEFALSE ){
4766       if( pA->iColumn!=pB->iColumn ) return 2;
4767       if( pA->iTable!=pB->iTable
4768        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4769     }
4770   }
4771   return 0;
4772 }
4773 
4774 /*
4775 ** Compare two ExprList objects.  Return 0 if they are identical and
4776 ** non-zero if they differ in any way.
4777 **
4778 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4779 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4780 **
4781 ** This routine might return non-zero for equivalent ExprLists.  The
4782 ** only consequence will be disabled optimizations.  But this routine
4783 ** must never return 0 if the two ExprList objects are different, or
4784 ** a malfunction will result.
4785 **
4786 ** Two NULL pointers are considered to be the same.  But a NULL pointer
4787 ** always differs from a non-NULL pointer.
4788 */
4789 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4790   int i;
4791   if( pA==0 && pB==0 ) return 0;
4792   if( pA==0 || pB==0 ) return 1;
4793   if( pA->nExpr!=pB->nExpr ) return 1;
4794   for(i=0; i<pA->nExpr; i++){
4795     Expr *pExprA = pA->a[i].pExpr;
4796     Expr *pExprB = pB->a[i].pExpr;
4797     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4798     if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1;
4799   }
4800   return 0;
4801 }
4802 
4803 /*
4804 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
4805 ** are ignored.
4806 */
4807 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
4808   return sqlite3ExprCompare(0,
4809              sqlite3ExprSkipCollate(pA),
4810              sqlite3ExprSkipCollate(pB),
4811              iTab);
4812 }
4813 
4814 /*
4815 ** Return true if we can prove the pE2 will always be true if pE1 is
4816 ** true.  Return false if we cannot complete the proof or if pE2 might
4817 ** be false.  Examples:
4818 **
4819 **     pE1: x==5       pE2: x==5             Result: true
4820 **     pE1: x>0        pE2: x==5             Result: false
4821 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
4822 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
4823 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
4824 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
4825 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
4826 **
4827 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
4828 ** Expr.iTable<0 then assume a table number given by iTab.
4829 **
4830 ** If pParse is not NULL, then the values of bound variables in pE1 are
4831 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
4832 ** modified to record which bound variables are referenced.  If pParse
4833 ** is NULL, then false will be returned if pE1 contains any bound variables.
4834 **
4835 ** When in doubt, return false.  Returning true might give a performance
4836 ** improvement.  Returning false might cause a performance reduction, but
4837 ** it will always give the correct answer and is hence always safe.
4838 */
4839 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
4840   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
4841     return 1;
4842   }
4843   if( pE2->op==TK_OR
4844    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
4845              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
4846   ){
4847     return 1;
4848   }
4849   if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){
4850     Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft);
4851     testcase( pX!=pE1->pLeft );
4852     if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1;
4853   }
4854   return 0;
4855 }
4856 
4857 /*
4858 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow().
4859 ** If the expression node requires that the table at pWalker->iCur
4860 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
4861 **
4862 ** This routine controls an optimization.  False positives (setting
4863 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
4864 ** (never setting pWalker->eCode) is a harmless missed optimization.
4865 */
4866 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
4867   testcase( pExpr->op==TK_AGG_COLUMN );
4868   testcase( pExpr->op==TK_AGG_FUNCTION );
4869   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
4870   switch( pExpr->op ){
4871     case TK_ISNOT:
4872     case TK_NOT:
4873     case TK_ISNULL:
4874     case TK_IS:
4875     case TK_OR:
4876     case TK_CASE:
4877     case TK_IN:
4878     case TK_FUNCTION:
4879       testcase( pExpr->op==TK_ISNOT );
4880       testcase( pExpr->op==TK_NOT );
4881       testcase( pExpr->op==TK_ISNULL );
4882       testcase( pExpr->op==TK_IS );
4883       testcase( pExpr->op==TK_OR );
4884       testcase( pExpr->op==TK_CASE );
4885       testcase( pExpr->op==TK_IN );
4886       testcase( pExpr->op==TK_FUNCTION );
4887       return WRC_Prune;
4888     case TK_COLUMN:
4889       if( pWalker->u.iCur==pExpr->iTable ){
4890         pWalker->eCode = 1;
4891         return WRC_Abort;
4892       }
4893       return WRC_Prune;
4894 
4895     /* Virtual tables are allowed to use constraints like x=NULL.  So
4896     ** a term of the form x=y does not prove that y is not null if x
4897     ** is the column of a virtual table */
4898     case TK_EQ:
4899     case TK_NE:
4900     case TK_LT:
4901     case TK_LE:
4902     case TK_GT:
4903     case TK_GE:
4904       testcase( pExpr->op==TK_EQ );
4905       testcase( pExpr->op==TK_NE );
4906       testcase( pExpr->op==TK_LT );
4907       testcase( pExpr->op==TK_LE );
4908       testcase( pExpr->op==TK_GT );
4909       testcase( pExpr->op==TK_GE );
4910       if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab))
4911        || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab))
4912       ){
4913        return WRC_Prune;
4914       }
4915     default:
4916       return WRC_Continue;
4917   }
4918 }
4919 
4920 /*
4921 ** Return true (non-zero) if expression p can only be true if at least
4922 ** one column of table iTab is non-null.  In other words, return true
4923 ** if expression p will always be NULL or false if every column of iTab
4924 ** is NULL.
4925 **
4926 ** False negatives are acceptable.  In other words, it is ok to return
4927 ** zero even if expression p will never be true of every column of iTab
4928 ** is NULL.  A false negative is merely a missed optimization opportunity.
4929 **
4930 ** False positives are not allowed, however.  A false positive may result
4931 ** in an incorrect answer.
4932 **
4933 ** Terms of p that are marked with EP_FromJoin (and hence that come from
4934 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
4935 **
4936 ** This routine is used to check if a LEFT JOIN can be converted into
4937 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
4938 ** clause requires that some column of the right table of the LEFT JOIN
4939 ** be non-NULL, then the LEFT JOIN can be safely converted into an
4940 ** ordinary join.
4941 */
4942 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
4943   Walker w;
4944   w.xExprCallback = impliesNotNullRow;
4945   w.xSelectCallback = 0;
4946   w.xSelectCallback2 = 0;
4947   w.eCode = 0;
4948   w.u.iCur = iTab;
4949   sqlite3WalkExpr(&w, p);
4950   return w.eCode;
4951 }
4952 
4953 /*
4954 ** An instance of the following structure is used by the tree walker
4955 ** to determine if an expression can be evaluated by reference to the
4956 ** index only, without having to do a search for the corresponding
4957 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
4958 ** is the cursor for the table.
4959 */
4960 struct IdxCover {
4961   Index *pIdx;     /* The index to be tested for coverage */
4962   int iCur;        /* Cursor number for the table corresponding to the index */
4963 };
4964 
4965 /*
4966 ** Check to see if there are references to columns in table
4967 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
4968 ** pWalker->u.pIdxCover->pIdx.
4969 */
4970 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
4971   if( pExpr->op==TK_COLUMN
4972    && pExpr->iTable==pWalker->u.pIdxCover->iCur
4973    && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
4974   ){
4975     pWalker->eCode = 1;
4976     return WRC_Abort;
4977   }
4978   return WRC_Continue;
4979 }
4980 
4981 /*
4982 ** Determine if an index pIdx on table with cursor iCur contains will
4983 ** the expression pExpr.  Return true if the index does cover the
4984 ** expression and false if the pExpr expression references table columns
4985 ** that are not found in the index pIdx.
4986 **
4987 ** An index covering an expression means that the expression can be
4988 ** evaluated using only the index and without having to lookup the
4989 ** corresponding table entry.
4990 */
4991 int sqlite3ExprCoveredByIndex(
4992   Expr *pExpr,        /* The index to be tested */
4993   int iCur,           /* The cursor number for the corresponding table */
4994   Index *pIdx         /* The index that might be used for coverage */
4995 ){
4996   Walker w;
4997   struct IdxCover xcov;
4998   memset(&w, 0, sizeof(w));
4999   xcov.iCur = iCur;
5000   xcov.pIdx = pIdx;
5001   w.xExprCallback = exprIdxCover;
5002   w.u.pIdxCover = &xcov;
5003   sqlite3WalkExpr(&w, pExpr);
5004   return !w.eCode;
5005 }
5006 
5007 
5008 /*
5009 ** An instance of the following structure is used by the tree walker
5010 ** to count references to table columns in the arguments of an
5011 ** aggregate function, in order to implement the
5012 ** sqlite3FunctionThisSrc() routine.
5013 */
5014 struct SrcCount {
5015   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5016   int nThis;       /* Number of references to columns in pSrcList */
5017   int nOther;      /* Number of references to columns in other FROM clauses */
5018 };
5019 
5020 /*
5021 ** Count the number of references to columns.
5022 */
5023 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5024   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
5025   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
5026   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
5027   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
5028   ** NEVER() will need to be removed. */
5029   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
5030     int i;
5031     struct SrcCount *p = pWalker->u.pSrcCount;
5032     SrcList *pSrc = p->pSrc;
5033     int nSrc = pSrc ? pSrc->nSrc : 0;
5034     for(i=0; i<nSrc; i++){
5035       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5036     }
5037     if( i<nSrc ){
5038       p->nThis++;
5039     }else{
5040       p->nOther++;
5041     }
5042   }
5043   return WRC_Continue;
5044 }
5045 
5046 /*
5047 ** Determine if any of the arguments to the pExpr Function reference
5048 ** pSrcList.  Return true if they do.  Also return true if the function
5049 ** has no arguments or has only constant arguments.  Return false if pExpr
5050 ** references columns but not columns of tables found in pSrcList.
5051 */
5052 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5053   Walker w;
5054   struct SrcCount cnt;
5055   assert( pExpr->op==TK_AGG_FUNCTION );
5056   w.xExprCallback = exprSrcCount;
5057   w.xSelectCallback = 0;
5058   w.u.pSrcCount = &cnt;
5059   cnt.pSrc = pSrcList;
5060   cnt.nThis = 0;
5061   cnt.nOther = 0;
5062   sqlite3WalkExprList(&w, pExpr->x.pList);
5063   return cnt.nThis>0 || cnt.nOther==0;
5064 }
5065 
5066 /*
5067 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5068 ** the new element.  Return a negative number if malloc fails.
5069 */
5070 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5071   int i;
5072   pInfo->aCol = sqlite3ArrayAllocate(
5073        db,
5074        pInfo->aCol,
5075        sizeof(pInfo->aCol[0]),
5076        &pInfo->nColumn,
5077        &i
5078   );
5079   return i;
5080 }
5081 
5082 /*
5083 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5084 ** the new element.  Return a negative number if malloc fails.
5085 */
5086 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5087   int i;
5088   pInfo->aFunc = sqlite3ArrayAllocate(
5089        db,
5090        pInfo->aFunc,
5091        sizeof(pInfo->aFunc[0]),
5092        &pInfo->nFunc,
5093        &i
5094   );
5095   return i;
5096 }
5097 
5098 /*
5099 ** This is the xExprCallback for a tree walker.  It is used to
5100 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5101 ** for additional information.
5102 */
5103 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5104   int i;
5105   NameContext *pNC = pWalker->u.pNC;
5106   Parse *pParse = pNC->pParse;
5107   SrcList *pSrcList = pNC->pSrcList;
5108   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5109 
5110   assert( pNC->ncFlags & NC_UAggInfo );
5111   switch( pExpr->op ){
5112     case TK_AGG_COLUMN:
5113     case TK_COLUMN: {
5114       testcase( pExpr->op==TK_AGG_COLUMN );
5115       testcase( pExpr->op==TK_COLUMN );
5116       /* Check to see if the column is in one of the tables in the FROM
5117       ** clause of the aggregate query */
5118       if( ALWAYS(pSrcList!=0) ){
5119         struct SrcList_item *pItem = pSrcList->a;
5120         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5121           struct AggInfo_col *pCol;
5122           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5123           if( pExpr->iTable==pItem->iCursor ){
5124             /* If we reach this point, it means that pExpr refers to a table
5125             ** that is in the FROM clause of the aggregate query.
5126             **
5127             ** Make an entry for the column in pAggInfo->aCol[] if there
5128             ** is not an entry there already.
5129             */
5130             int k;
5131             pCol = pAggInfo->aCol;
5132             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5133               if( pCol->iTable==pExpr->iTable &&
5134                   pCol->iColumn==pExpr->iColumn ){
5135                 break;
5136               }
5137             }
5138             if( (k>=pAggInfo->nColumn)
5139              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5140             ){
5141               pCol = &pAggInfo->aCol[k];
5142               pCol->pTab = pExpr->y.pTab;
5143               pCol->iTable = pExpr->iTable;
5144               pCol->iColumn = pExpr->iColumn;
5145               pCol->iMem = ++pParse->nMem;
5146               pCol->iSorterColumn = -1;
5147               pCol->pExpr = pExpr;
5148               if( pAggInfo->pGroupBy ){
5149                 int j, n;
5150                 ExprList *pGB = pAggInfo->pGroupBy;
5151                 struct ExprList_item *pTerm = pGB->a;
5152                 n = pGB->nExpr;
5153                 for(j=0; j<n; j++, pTerm++){
5154                   Expr *pE = pTerm->pExpr;
5155                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5156                       pE->iColumn==pExpr->iColumn ){
5157                     pCol->iSorterColumn = j;
5158                     break;
5159                   }
5160                 }
5161               }
5162               if( pCol->iSorterColumn<0 ){
5163                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5164               }
5165             }
5166             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5167             ** because it was there before or because we just created it).
5168             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5169             ** pAggInfo->aCol[] entry.
5170             */
5171             ExprSetVVAProperty(pExpr, EP_NoReduce);
5172             pExpr->pAggInfo = pAggInfo;
5173             pExpr->op = TK_AGG_COLUMN;
5174             pExpr->iAgg = (i16)k;
5175             break;
5176           } /* endif pExpr->iTable==pItem->iCursor */
5177         } /* end loop over pSrcList */
5178       }
5179       return WRC_Prune;
5180     }
5181     case TK_AGG_FUNCTION: {
5182       if( (pNC->ncFlags & NC_InAggFunc)==0
5183        && pWalker->walkerDepth==pExpr->op2
5184       ){
5185         /* Check to see if pExpr is a duplicate of another aggregate
5186         ** function that is already in the pAggInfo structure
5187         */
5188         struct AggInfo_func *pItem = pAggInfo->aFunc;
5189         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5190           if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5191             break;
5192           }
5193         }
5194         if( i>=pAggInfo->nFunc ){
5195           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5196           */
5197           u8 enc = ENC(pParse->db);
5198           i = addAggInfoFunc(pParse->db, pAggInfo);
5199           if( i>=0 ){
5200             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5201             pItem = &pAggInfo->aFunc[i];
5202             pItem->pExpr = pExpr;
5203             pItem->iMem = ++pParse->nMem;
5204             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5205             pItem->pFunc = sqlite3FindFunction(pParse->db,
5206                    pExpr->u.zToken,
5207                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5208             if( pExpr->flags & EP_Distinct ){
5209               pItem->iDistinct = pParse->nTab++;
5210             }else{
5211               pItem->iDistinct = -1;
5212             }
5213           }
5214         }
5215         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5216         */
5217         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5218         ExprSetVVAProperty(pExpr, EP_NoReduce);
5219         pExpr->iAgg = (i16)i;
5220         pExpr->pAggInfo = pAggInfo;
5221         return WRC_Prune;
5222       }else{
5223         return WRC_Continue;
5224       }
5225     }
5226   }
5227   return WRC_Continue;
5228 }
5229 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5230   UNUSED_PARAMETER(pSelect);
5231   pWalker->walkerDepth++;
5232   return WRC_Continue;
5233 }
5234 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5235   UNUSED_PARAMETER(pSelect);
5236   pWalker->walkerDepth--;
5237 }
5238 
5239 /*
5240 ** Analyze the pExpr expression looking for aggregate functions and
5241 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5242 ** points to.  Additional entries are made on the AggInfo object as
5243 ** necessary.
5244 **
5245 ** This routine should only be called after the expression has been
5246 ** analyzed by sqlite3ResolveExprNames().
5247 */
5248 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5249   Walker w;
5250   w.xExprCallback = analyzeAggregate;
5251   w.xSelectCallback = analyzeAggregatesInSelect;
5252   w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5253   w.walkerDepth = 0;
5254   w.u.pNC = pNC;
5255   assert( pNC->pSrcList!=0 );
5256   sqlite3WalkExpr(&w, pExpr);
5257 }
5258 
5259 /*
5260 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5261 ** expression list.  Return the number of errors.
5262 **
5263 ** If an error is found, the analysis is cut short.
5264 */
5265 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5266   struct ExprList_item *pItem;
5267   int i;
5268   if( pList ){
5269     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5270       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5271     }
5272   }
5273 }
5274 
5275 /*
5276 ** Allocate a single new register for use to hold some intermediate result.
5277 */
5278 int sqlite3GetTempReg(Parse *pParse){
5279   if( pParse->nTempReg==0 ){
5280     return ++pParse->nMem;
5281   }
5282   return pParse->aTempReg[--pParse->nTempReg];
5283 }
5284 
5285 /*
5286 ** Deallocate a register, making available for reuse for some other
5287 ** purpose.
5288 */
5289 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5290   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5291     pParse->aTempReg[pParse->nTempReg++] = iReg;
5292   }
5293 }
5294 
5295 /*
5296 ** Allocate or deallocate a block of nReg consecutive registers.
5297 */
5298 int sqlite3GetTempRange(Parse *pParse, int nReg){
5299   int i, n;
5300   if( nReg==1 ) return sqlite3GetTempReg(pParse);
5301   i = pParse->iRangeReg;
5302   n = pParse->nRangeReg;
5303   if( nReg<=n ){
5304     pParse->iRangeReg += nReg;
5305     pParse->nRangeReg -= nReg;
5306   }else{
5307     i = pParse->nMem+1;
5308     pParse->nMem += nReg;
5309   }
5310   return i;
5311 }
5312 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5313   if( nReg==1 ){
5314     sqlite3ReleaseTempReg(pParse, iReg);
5315     return;
5316   }
5317   if( nReg>pParse->nRangeReg ){
5318     pParse->nRangeReg = nReg;
5319     pParse->iRangeReg = iReg;
5320   }
5321 }
5322 
5323 /*
5324 ** Mark all temporary registers as being unavailable for reuse.
5325 */
5326 void sqlite3ClearTempRegCache(Parse *pParse){
5327   pParse->nTempReg = 0;
5328   pParse->nRangeReg = 0;
5329 }
5330 
5331 /*
5332 ** Validate that no temporary register falls within the range of
5333 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5334 ** statements.
5335 */
5336 #ifdef SQLITE_DEBUG
5337 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5338   int i;
5339   if( pParse->nRangeReg>0
5340    && pParse->iRangeReg+pParse->nRangeReg > iFirst
5341    && pParse->iRangeReg <= iLast
5342   ){
5343      return 0;
5344   }
5345   for(i=0; i<pParse->nTempReg; i++){
5346     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5347       return 0;
5348     }
5349   }
5350   return 1;
5351 }
5352 #endif /* SQLITE_DEBUG */
5353