1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 pExpr = sqlite3ExprSkipCollate(pExpr); 48 if( pExpr->flags & EP_Generic ) return 0; 49 op = pExpr->op; 50 if( op==TK_SELECT ){ 51 assert( pExpr->flags&EP_xIsSelect ); 52 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 53 } 54 if( op==TK_REGISTER ) op = pExpr->op2; 55 #ifndef SQLITE_OMIT_CAST 56 if( op==TK_CAST ){ 57 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 58 return sqlite3AffinityType(pExpr->u.zToken, 0); 59 } 60 #endif 61 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ 62 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 63 } 64 if( op==TK_SELECT_COLUMN ){ 65 assert( pExpr->pLeft->flags&EP_xIsSelect ); 66 return sqlite3ExprAffinity( 67 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 68 ); 69 } 70 return pExpr->affinity; 71 } 72 73 /* 74 ** Set the collating sequence for expression pExpr to be the collating 75 ** sequence named by pToken. Return a pointer to a new Expr node that 76 ** implements the COLLATE operator. 77 ** 78 ** If a memory allocation error occurs, that fact is recorded in pParse->db 79 ** and the pExpr parameter is returned unchanged. 80 */ 81 Expr *sqlite3ExprAddCollateToken( 82 Parse *pParse, /* Parsing context */ 83 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 84 const Token *pCollName, /* Name of collating sequence */ 85 int dequote /* True to dequote pCollName */ 86 ){ 87 if( pCollName->n>0 ){ 88 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 89 if( pNew ){ 90 pNew->pLeft = pExpr; 91 pNew->flags |= EP_Collate|EP_Skip; 92 pExpr = pNew; 93 } 94 } 95 return pExpr; 96 } 97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 98 Token s; 99 assert( zC!=0 ); 100 sqlite3TokenInit(&s, (char*)zC); 101 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 102 } 103 104 /* 105 ** Skip over any TK_COLLATE operators and any unlikely() 106 ** or likelihood() function at the root of an expression. 107 */ 108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 109 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 110 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 111 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 112 assert( pExpr->x.pList->nExpr>0 ); 113 assert( pExpr->op==TK_FUNCTION ); 114 pExpr = pExpr->x.pList->a[0].pExpr; 115 }else{ 116 assert( pExpr->op==TK_COLLATE ); 117 pExpr = pExpr->pLeft; 118 } 119 } 120 return pExpr; 121 } 122 123 /* 124 ** Return the collation sequence for the expression pExpr. If 125 ** there is no defined collating sequence, return NULL. 126 ** 127 ** See also: sqlite3ExprNNCollSeq() 128 ** 129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 130 ** default collation if pExpr has no defined collation. 131 ** 132 ** The collating sequence might be determined by a COLLATE operator 133 ** or by the presence of a column with a defined collating sequence. 134 ** COLLATE operators take first precedence. Left operands take 135 ** precedence over right operands. 136 */ 137 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 138 sqlite3 *db = pParse->db; 139 CollSeq *pColl = 0; 140 Expr *p = pExpr; 141 while( p ){ 142 int op = p->op; 143 if( p->flags & EP_Generic ) break; 144 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 145 || op==TK_REGISTER || op==TK_TRIGGER) 146 && p->y.pTab!=0 147 ){ 148 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 149 ** a TK_COLUMN but was previously evaluated and cached in a register */ 150 int j = p->iColumn; 151 if( j>=0 ){ 152 const char *zColl = p->y.pTab->aCol[j].zColl; 153 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 154 } 155 break; 156 } 157 if( op==TK_CAST || op==TK_UPLUS ){ 158 p = p->pLeft; 159 continue; 160 } 161 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 162 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 163 break; 164 } 165 if( p->flags & EP_Collate ){ 166 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 167 p = p->pLeft; 168 }else{ 169 Expr *pNext = p->pRight; 170 /* The Expr.x union is never used at the same time as Expr.pRight */ 171 assert( p->x.pList==0 || p->pRight==0 ); 172 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 173 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 174 ** least one EP_Collate. Thus the following two ALWAYS. */ 175 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 176 int i; 177 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 178 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 179 pNext = p->x.pList->a[i].pExpr; 180 break; 181 } 182 } 183 } 184 p = pNext; 185 } 186 }else{ 187 break; 188 } 189 } 190 if( sqlite3CheckCollSeq(pParse, pColl) ){ 191 pColl = 0; 192 } 193 return pColl; 194 } 195 196 /* 197 ** Return the collation sequence for the expression pExpr. If 198 ** there is no defined collating sequence, return a pointer to the 199 ** defautl collation sequence. 200 ** 201 ** See also: sqlite3ExprCollSeq() 202 ** 203 ** The sqlite3ExprCollSeq() routine works the same except that it 204 ** returns NULL if there is no defined collation. 205 */ 206 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){ 207 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 208 if( p==0 ) p = pParse->db->pDfltColl; 209 assert( p!=0 ); 210 return p; 211 } 212 213 /* 214 ** Return TRUE if the two expressions have equivalent collating sequences. 215 */ 216 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){ 217 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 218 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 219 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 220 } 221 222 /* 223 ** pExpr is an operand of a comparison operator. aff2 is the 224 ** type affinity of the other operand. This routine returns the 225 ** type affinity that should be used for the comparison operator. 226 */ 227 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 228 char aff1 = sqlite3ExprAffinity(pExpr); 229 if( aff1 && aff2 ){ 230 /* Both sides of the comparison are columns. If one has numeric 231 ** affinity, use that. Otherwise use no affinity. 232 */ 233 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 234 return SQLITE_AFF_NUMERIC; 235 }else{ 236 return SQLITE_AFF_BLOB; 237 } 238 }else if( !aff1 && !aff2 ){ 239 /* Neither side of the comparison is a column. Compare the 240 ** results directly. 241 */ 242 return SQLITE_AFF_BLOB; 243 }else{ 244 /* One side is a column, the other is not. Use the columns affinity. */ 245 assert( aff1==0 || aff2==0 ); 246 return (aff1 + aff2); 247 } 248 } 249 250 /* 251 ** pExpr is a comparison operator. Return the type affinity that should 252 ** be applied to both operands prior to doing the comparison. 253 */ 254 static char comparisonAffinity(Expr *pExpr){ 255 char aff; 256 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 257 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 258 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 259 assert( pExpr->pLeft ); 260 aff = sqlite3ExprAffinity(pExpr->pLeft); 261 if( pExpr->pRight ){ 262 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 263 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 264 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 265 }else if( aff==0 ){ 266 aff = SQLITE_AFF_BLOB; 267 } 268 return aff; 269 } 270 271 /* 272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 273 ** idx_affinity is the affinity of an indexed column. Return true 274 ** if the index with affinity idx_affinity may be used to implement 275 ** the comparison in pExpr. 276 */ 277 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 278 char aff = comparisonAffinity(pExpr); 279 switch( aff ){ 280 case SQLITE_AFF_BLOB: 281 return 1; 282 case SQLITE_AFF_TEXT: 283 return idx_affinity==SQLITE_AFF_TEXT; 284 default: 285 return sqlite3IsNumericAffinity(idx_affinity); 286 } 287 } 288 289 /* 290 ** Return the P5 value that should be used for a binary comparison 291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 292 */ 293 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 294 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 295 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 296 return aff; 297 } 298 299 /* 300 ** Return a pointer to the collation sequence that should be used by 301 ** a binary comparison operator comparing pLeft and pRight. 302 ** 303 ** If the left hand expression has a collating sequence type, then it is 304 ** used. Otherwise the collation sequence for the right hand expression 305 ** is used, or the default (BINARY) if neither expression has a collating 306 ** type. 307 ** 308 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 309 ** it is not considered. 310 */ 311 CollSeq *sqlite3BinaryCompareCollSeq( 312 Parse *pParse, 313 Expr *pLeft, 314 Expr *pRight 315 ){ 316 CollSeq *pColl; 317 assert( pLeft ); 318 if( pLeft->flags & EP_Collate ){ 319 pColl = sqlite3ExprCollSeq(pParse, pLeft); 320 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 321 pColl = sqlite3ExprCollSeq(pParse, pRight); 322 }else{ 323 pColl = sqlite3ExprCollSeq(pParse, pLeft); 324 if( !pColl ){ 325 pColl = sqlite3ExprCollSeq(pParse, pRight); 326 } 327 } 328 return pColl; 329 } 330 331 /* 332 ** Generate code for a comparison operator. 333 */ 334 static int codeCompare( 335 Parse *pParse, /* The parsing (and code generating) context */ 336 Expr *pLeft, /* The left operand */ 337 Expr *pRight, /* The right operand */ 338 int opcode, /* The comparison opcode */ 339 int in1, int in2, /* Register holding operands */ 340 int dest, /* Jump here if true. */ 341 int jumpIfNull /* If true, jump if either operand is NULL */ 342 ){ 343 int p5; 344 int addr; 345 CollSeq *p4; 346 347 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 348 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 349 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 350 (void*)p4, P4_COLLSEQ); 351 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 352 return addr; 353 } 354 355 /* 356 ** Return true if expression pExpr is a vector, or false otherwise. 357 ** 358 ** A vector is defined as any expression that results in two or more 359 ** columns of result. Every TK_VECTOR node is an vector because the 360 ** parser will not generate a TK_VECTOR with fewer than two entries. 361 ** But a TK_SELECT might be either a vector or a scalar. It is only 362 ** considered a vector if it has two or more result columns. 363 */ 364 int sqlite3ExprIsVector(Expr *pExpr){ 365 return sqlite3ExprVectorSize(pExpr)>1; 366 } 367 368 /* 369 ** If the expression passed as the only argument is of type TK_VECTOR 370 ** return the number of expressions in the vector. Or, if the expression 371 ** is a sub-select, return the number of columns in the sub-select. For 372 ** any other type of expression, return 1. 373 */ 374 int sqlite3ExprVectorSize(Expr *pExpr){ 375 u8 op = pExpr->op; 376 if( op==TK_REGISTER ) op = pExpr->op2; 377 if( op==TK_VECTOR ){ 378 return pExpr->x.pList->nExpr; 379 }else if( op==TK_SELECT ){ 380 return pExpr->x.pSelect->pEList->nExpr; 381 }else{ 382 return 1; 383 } 384 } 385 386 /* 387 ** Return a pointer to a subexpression of pVector that is the i-th 388 ** column of the vector (numbered starting with 0). The caller must 389 ** ensure that i is within range. 390 ** 391 ** If pVector is really a scalar (and "scalar" here includes subqueries 392 ** that return a single column!) then return pVector unmodified. 393 ** 394 ** pVector retains ownership of the returned subexpression. 395 ** 396 ** If the vector is a (SELECT ...) then the expression returned is 397 ** just the expression for the i-th term of the result set, and may 398 ** not be ready for evaluation because the table cursor has not yet 399 ** been positioned. 400 */ 401 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 402 assert( i<sqlite3ExprVectorSize(pVector) ); 403 if( sqlite3ExprIsVector(pVector) ){ 404 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 405 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 406 return pVector->x.pSelect->pEList->a[i].pExpr; 407 }else{ 408 return pVector->x.pList->a[i].pExpr; 409 } 410 } 411 return pVector; 412 } 413 414 /* 415 ** Compute and return a new Expr object which when passed to 416 ** sqlite3ExprCode() will generate all necessary code to compute 417 ** the iField-th column of the vector expression pVector. 418 ** 419 ** It is ok for pVector to be a scalar (as long as iField==0). 420 ** In that case, this routine works like sqlite3ExprDup(). 421 ** 422 ** The caller owns the returned Expr object and is responsible for 423 ** ensuring that the returned value eventually gets freed. 424 ** 425 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 426 ** then the returned object will reference pVector and so pVector must remain 427 ** valid for the life of the returned object. If pVector is a TK_VECTOR 428 ** or a scalar expression, then it can be deleted as soon as this routine 429 ** returns. 430 ** 431 ** A trick to cause a TK_SELECT pVector to be deleted together with 432 ** the returned Expr object is to attach the pVector to the pRight field 433 ** of the returned TK_SELECT_COLUMN Expr object. 434 */ 435 Expr *sqlite3ExprForVectorField( 436 Parse *pParse, /* Parsing context */ 437 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 438 int iField /* Which column of the vector to return */ 439 ){ 440 Expr *pRet; 441 if( pVector->op==TK_SELECT ){ 442 assert( pVector->flags & EP_xIsSelect ); 443 /* The TK_SELECT_COLUMN Expr node: 444 ** 445 ** pLeft: pVector containing TK_SELECT. Not deleted. 446 ** pRight: not used. But recursively deleted. 447 ** iColumn: Index of a column in pVector 448 ** iTable: 0 or the number of columns on the LHS of an assignment 449 ** pLeft->iTable: First in an array of register holding result, or 0 450 ** if the result is not yet computed. 451 ** 452 ** sqlite3ExprDelete() specifically skips the recursive delete of 453 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 454 ** can be attached to pRight to cause this node to take ownership of 455 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 456 ** with the same pLeft pointer to the pVector, but only one of them 457 ** will own the pVector. 458 */ 459 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 460 if( pRet ){ 461 pRet->iColumn = iField; 462 pRet->pLeft = pVector; 463 } 464 assert( pRet==0 || pRet->iTable==0 ); 465 }else{ 466 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 467 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 468 } 469 return pRet; 470 } 471 472 /* 473 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 474 ** it. Return the register in which the result is stored (or, if the 475 ** sub-select returns more than one column, the first in an array 476 ** of registers in which the result is stored). 477 ** 478 ** If pExpr is not a TK_SELECT expression, return 0. 479 */ 480 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 481 int reg = 0; 482 #ifndef SQLITE_OMIT_SUBQUERY 483 if( pExpr->op==TK_SELECT ){ 484 reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 485 } 486 #endif 487 return reg; 488 } 489 490 /* 491 ** Argument pVector points to a vector expression - either a TK_VECTOR 492 ** or TK_SELECT that returns more than one column. This function returns 493 ** the register number of a register that contains the value of 494 ** element iField of the vector. 495 ** 496 ** If pVector is a TK_SELECT expression, then code for it must have 497 ** already been generated using the exprCodeSubselect() routine. In this 498 ** case parameter regSelect should be the first in an array of registers 499 ** containing the results of the sub-select. 500 ** 501 ** If pVector is of type TK_VECTOR, then code for the requested field 502 ** is generated. In this case (*pRegFree) may be set to the number of 503 ** a temporary register to be freed by the caller before returning. 504 ** 505 ** Before returning, output parameter (*ppExpr) is set to point to the 506 ** Expr object corresponding to element iElem of the vector. 507 */ 508 static int exprVectorRegister( 509 Parse *pParse, /* Parse context */ 510 Expr *pVector, /* Vector to extract element from */ 511 int iField, /* Field to extract from pVector */ 512 int regSelect, /* First in array of registers */ 513 Expr **ppExpr, /* OUT: Expression element */ 514 int *pRegFree /* OUT: Temp register to free */ 515 ){ 516 u8 op = pVector->op; 517 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 518 if( op==TK_REGISTER ){ 519 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 520 return pVector->iTable+iField; 521 } 522 if( op==TK_SELECT ){ 523 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 524 return regSelect+iField; 525 } 526 *ppExpr = pVector->x.pList->a[iField].pExpr; 527 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 528 } 529 530 /* 531 ** Expression pExpr is a comparison between two vector values. Compute 532 ** the result of the comparison (1, 0, or NULL) and write that 533 ** result into register dest. 534 ** 535 ** The caller must satisfy the following preconditions: 536 ** 537 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 538 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 539 ** otherwise: op==pExpr->op and p5==0 540 */ 541 static void codeVectorCompare( 542 Parse *pParse, /* Code generator context */ 543 Expr *pExpr, /* The comparison operation */ 544 int dest, /* Write results into this register */ 545 u8 op, /* Comparison operator */ 546 u8 p5 /* SQLITE_NULLEQ or zero */ 547 ){ 548 Vdbe *v = pParse->pVdbe; 549 Expr *pLeft = pExpr->pLeft; 550 Expr *pRight = pExpr->pRight; 551 int nLeft = sqlite3ExprVectorSize(pLeft); 552 int i; 553 int regLeft = 0; 554 int regRight = 0; 555 u8 opx = op; 556 int addrDone = sqlite3VdbeMakeLabel(v); 557 558 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 559 sqlite3ErrorMsg(pParse, "row value misused"); 560 return; 561 } 562 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 563 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 564 || pExpr->op==TK_LT || pExpr->op==TK_GT 565 || pExpr->op==TK_LE || pExpr->op==TK_GE 566 ); 567 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 568 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 569 assert( p5==0 || pExpr->op!=op ); 570 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 571 572 p5 |= SQLITE_STOREP2; 573 if( opx==TK_LE ) opx = TK_LT; 574 if( opx==TK_GE ) opx = TK_GT; 575 576 regLeft = exprCodeSubselect(pParse, pLeft); 577 regRight = exprCodeSubselect(pParse, pRight); 578 579 for(i=0; 1 /*Loop exits by "break"*/; i++){ 580 int regFree1 = 0, regFree2 = 0; 581 Expr *pL, *pR; 582 int r1, r2; 583 assert( i>=0 && i<nLeft ); 584 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 585 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 586 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); 587 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 588 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 589 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 590 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 591 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 592 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 593 sqlite3ReleaseTempReg(pParse, regFree1); 594 sqlite3ReleaseTempReg(pParse, regFree2); 595 if( i==nLeft-1 ){ 596 break; 597 } 598 if( opx==TK_EQ ){ 599 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 600 p5 |= SQLITE_KEEPNULL; 601 }else if( opx==TK_NE ){ 602 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 603 p5 |= SQLITE_KEEPNULL; 604 }else{ 605 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 606 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 607 VdbeCoverageIf(v, op==TK_LT); 608 VdbeCoverageIf(v, op==TK_GT); 609 VdbeCoverageIf(v, op==TK_LE); 610 VdbeCoverageIf(v, op==TK_GE); 611 if( i==nLeft-2 ) opx = op; 612 } 613 } 614 sqlite3VdbeResolveLabel(v, addrDone); 615 } 616 617 #if SQLITE_MAX_EXPR_DEPTH>0 618 /* 619 ** Check that argument nHeight is less than or equal to the maximum 620 ** expression depth allowed. If it is not, leave an error message in 621 ** pParse. 622 */ 623 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 624 int rc = SQLITE_OK; 625 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 626 if( nHeight>mxHeight ){ 627 sqlite3ErrorMsg(pParse, 628 "Expression tree is too large (maximum depth %d)", mxHeight 629 ); 630 rc = SQLITE_ERROR; 631 } 632 return rc; 633 } 634 635 /* The following three functions, heightOfExpr(), heightOfExprList() 636 ** and heightOfSelect(), are used to determine the maximum height 637 ** of any expression tree referenced by the structure passed as the 638 ** first argument. 639 ** 640 ** If this maximum height is greater than the current value pointed 641 ** to by pnHeight, the second parameter, then set *pnHeight to that 642 ** value. 643 */ 644 static void heightOfExpr(Expr *p, int *pnHeight){ 645 if( p ){ 646 if( p->nHeight>*pnHeight ){ 647 *pnHeight = p->nHeight; 648 } 649 } 650 } 651 static void heightOfExprList(ExprList *p, int *pnHeight){ 652 if( p ){ 653 int i; 654 for(i=0; i<p->nExpr; i++){ 655 heightOfExpr(p->a[i].pExpr, pnHeight); 656 } 657 } 658 } 659 static void heightOfSelect(Select *pSelect, int *pnHeight){ 660 Select *p; 661 for(p=pSelect; p; p=p->pPrior){ 662 heightOfExpr(p->pWhere, pnHeight); 663 heightOfExpr(p->pHaving, pnHeight); 664 heightOfExpr(p->pLimit, pnHeight); 665 heightOfExprList(p->pEList, pnHeight); 666 heightOfExprList(p->pGroupBy, pnHeight); 667 heightOfExprList(p->pOrderBy, pnHeight); 668 } 669 } 670 671 /* 672 ** Set the Expr.nHeight variable in the structure passed as an 673 ** argument. An expression with no children, Expr.pList or 674 ** Expr.pSelect member has a height of 1. Any other expression 675 ** has a height equal to the maximum height of any other 676 ** referenced Expr plus one. 677 ** 678 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 679 ** if appropriate. 680 */ 681 static void exprSetHeight(Expr *p){ 682 int nHeight = 0; 683 heightOfExpr(p->pLeft, &nHeight); 684 heightOfExpr(p->pRight, &nHeight); 685 if( ExprHasProperty(p, EP_xIsSelect) ){ 686 heightOfSelect(p->x.pSelect, &nHeight); 687 }else if( p->x.pList ){ 688 heightOfExprList(p->x.pList, &nHeight); 689 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 690 } 691 p->nHeight = nHeight + 1; 692 } 693 694 /* 695 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 696 ** the height is greater than the maximum allowed expression depth, 697 ** leave an error in pParse. 698 ** 699 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 700 ** Expr.flags. 701 */ 702 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 703 if( pParse->nErr ) return; 704 exprSetHeight(p); 705 sqlite3ExprCheckHeight(pParse, p->nHeight); 706 } 707 708 /* 709 ** Return the maximum height of any expression tree referenced 710 ** by the select statement passed as an argument. 711 */ 712 int sqlite3SelectExprHeight(Select *p){ 713 int nHeight = 0; 714 heightOfSelect(p, &nHeight); 715 return nHeight; 716 } 717 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 718 /* 719 ** Propagate all EP_Propagate flags from the Expr.x.pList into 720 ** Expr.flags. 721 */ 722 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 723 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 724 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 725 } 726 } 727 #define exprSetHeight(y) 728 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 729 730 /* 731 ** This routine is the core allocator for Expr nodes. 732 ** 733 ** Construct a new expression node and return a pointer to it. Memory 734 ** for this node and for the pToken argument is a single allocation 735 ** obtained from sqlite3DbMalloc(). The calling function 736 ** is responsible for making sure the node eventually gets freed. 737 ** 738 ** If dequote is true, then the token (if it exists) is dequoted. 739 ** If dequote is false, no dequoting is performed. The deQuote 740 ** parameter is ignored if pToken is NULL or if the token does not 741 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 742 ** then the EP_DblQuoted flag is set on the expression node. 743 ** 744 ** Special case: If op==TK_INTEGER and pToken points to a string that 745 ** can be translated into a 32-bit integer, then the token is not 746 ** stored in u.zToken. Instead, the integer values is written 747 ** into u.iValue and the EP_IntValue flag is set. No extra storage 748 ** is allocated to hold the integer text and the dequote flag is ignored. 749 */ 750 Expr *sqlite3ExprAlloc( 751 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 752 int op, /* Expression opcode */ 753 const Token *pToken, /* Token argument. Might be NULL */ 754 int dequote /* True to dequote */ 755 ){ 756 Expr *pNew; 757 int nExtra = 0; 758 int iValue = 0; 759 760 assert( db!=0 ); 761 if( pToken ){ 762 if( op!=TK_INTEGER || pToken->z==0 763 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 764 nExtra = pToken->n+1; 765 assert( iValue>=0 ); 766 } 767 } 768 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 769 if( pNew ){ 770 memset(pNew, 0, sizeof(Expr)); 771 pNew->op = (u8)op; 772 pNew->iAgg = -1; 773 if( pToken ){ 774 if( nExtra==0 ){ 775 pNew->flags |= EP_IntValue|EP_Leaf; 776 pNew->u.iValue = iValue; 777 }else{ 778 pNew->u.zToken = (char*)&pNew[1]; 779 assert( pToken->z!=0 || pToken->n==0 ); 780 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 781 pNew->u.zToken[pToken->n] = 0; 782 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 783 if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted; 784 sqlite3Dequote(pNew->u.zToken); 785 } 786 } 787 } 788 #if SQLITE_MAX_EXPR_DEPTH>0 789 pNew->nHeight = 1; 790 #endif 791 } 792 return pNew; 793 } 794 795 /* 796 ** Allocate a new expression node from a zero-terminated token that has 797 ** already been dequoted. 798 */ 799 Expr *sqlite3Expr( 800 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 801 int op, /* Expression opcode */ 802 const char *zToken /* Token argument. Might be NULL */ 803 ){ 804 Token x; 805 x.z = zToken; 806 x.n = sqlite3Strlen30(zToken); 807 return sqlite3ExprAlloc(db, op, &x, 0); 808 } 809 810 /* 811 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 812 ** 813 ** If pRoot==NULL that means that a memory allocation error has occurred. 814 ** In that case, delete the subtrees pLeft and pRight. 815 */ 816 void sqlite3ExprAttachSubtrees( 817 sqlite3 *db, 818 Expr *pRoot, 819 Expr *pLeft, 820 Expr *pRight 821 ){ 822 if( pRoot==0 ){ 823 assert( db->mallocFailed ); 824 sqlite3ExprDelete(db, pLeft); 825 sqlite3ExprDelete(db, pRight); 826 }else{ 827 if( pRight ){ 828 pRoot->pRight = pRight; 829 pRoot->flags |= EP_Propagate & pRight->flags; 830 } 831 if( pLeft ){ 832 pRoot->pLeft = pLeft; 833 pRoot->flags |= EP_Propagate & pLeft->flags; 834 } 835 exprSetHeight(pRoot); 836 } 837 } 838 839 /* 840 ** Allocate an Expr node which joins as many as two subtrees. 841 ** 842 ** One or both of the subtrees can be NULL. Return a pointer to the new 843 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 844 ** free the subtrees and return NULL. 845 */ 846 Expr *sqlite3PExpr( 847 Parse *pParse, /* Parsing context */ 848 int op, /* Expression opcode */ 849 Expr *pLeft, /* Left operand */ 850 Expr *pRight /* Right operand */ 851 ){ 852 Expr *p; 853 if( op==TK_AND && pParse->nErr==0 ){ 854 /* Take advantage of short-circuit false optimization for AND */ 855 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 856 }else{ 857 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 858 if( p ){ 859 memset(p, 0, sizeof(Expr)); 860 p->op = op & TKFLG_MASK; 861 p->iAgg = -1; 862 } 863 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 864 } 865 if( p ) { 866 sqlite3ExprCheckHeight(pParse, p->nHeight); 867 } 868 return p; 869 } 870 871 /* 872 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 873 ** do a memory allocation failure) then delete the pSelect object. 874 */ 875 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 876 if( pExpr ){ 877 pExpr->x.pSelect = pSelect; 878 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 879 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 880 }else{ 881 assert( pParse->db->mallocFailed ); 882 sqlite3SelectDelete(pParse->db, pSelect); 883 } 884 } 885 886 887 /* 888 ** If the expression is always either TRUE or FALSE (respectively), 889 ** then return 1. If one cannot determine the truth value of the 890 ** expression at compile-time return 0. 891 ** 892 ** This is an optimization. If is OK to return 0 here even if 893 ** the expression really is always false or false (a false negative). 894 ** But it is a bug to return 1 if the expression might have different 895 ** boolean values in different circumstances (a false positive.) 896 ** 897 ** Note that if the expression is part of conditional for a 898 ** LEFT JOIN, then we cannot determine at compile-time whether or not 899 ** is it true or false, so always return 0. 900 */ 901 static int exprAlwaysTrue(Expr *p){ 902 int v = 0; 903 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 904 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 905 return v!=0; 906 } 907 static int exprAlwaysFalse(Expr *p){ 908 int v = 0; 909 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 910 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 911 return v==0; 912 } 913 914 /* 915 ** Join two expressions using an AND operator. If either expression is 916 ** NULL, then just return the other expression. 917 ** 918 ** If one side or the other of the AND is known to be false, then instead 919 ** of returning an AND expression, just return a constant expression with 920 ** a value of false. 921 */ 922 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 923 if( pLeft==0 ){ 924 return pRight; 925 }else if( pRight==0 ){ 926 return pLeft; 927 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 928 sqlite3ExprDelete(db, pLeft); 929 sqlite3ExprDelete(db, pRight); 930 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 931 }else{ 932 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 933 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 934 return pNew; 935 } 936 } 937 938 /* 939 ** Construct a new expression node for a function with multiple 940 ** arguments. 941 */ 942 Expr *sqlite3ExprFunction( 943 Parse *pParse, /* Parsing context */ 944 ExprList *pList, /* Argument list */ 945 Token *pToken, /* Name of the function */ 946 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 947 ){ 948 Expr *pNew; 949 sqlite3 *db = pParse->db; 950 assert( pToken ); 951 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 952 if( pNew==0 ){ 953 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 954 return 0; 955 } 956 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 957 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 958 } 959 pNew->x.pList = pList; 960 ExprSetProperty(pNew, EP_HasFunc); 961 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 962 sqlite3ExprSetHeightAndFlags(pParse, pNew); 963 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 964 return pNew; 965 } 966 967 /* 968 ** Assign a variable number to an expression that encodes a wildcard 969 ** in the original SQL statement. 970 ** 971 ** Wildcards consisting of a single "?" are assigned the next sequential 972 ** variable number. 973 ** 974 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 975 ** sure "nnn" is not too big to avoid a denial of service attack when 976 ** the SQL statement comes from an external source. 977 ** 978 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 979 ** as the previous instance of the same wildcard. Or if this is the first 980 ** instance of the wildcard, the next sequential variable number is 981 ** assigned. 982 */ 983 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 984 sqlite3 *db = pParse->db; 985 const char *z; 986 ynVar x; 987 988 if( pExpr==0 ) return; 989 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 990 z = pExpr->u.zToken; 991 assert( z!=0 ); 992 assert( z[0]!=0 ); 993 assert( n==(u32)sqlite3Strlen30(z) ); 994 if( z[1]==0 ){ 995 /* Wildcard of the form "?". Assign the next variable number */ 996 assert( z[0]=='?' ); 997 x = (ynVar)(++pParse->nVar); 998 }else{ 999 int doAdd = 0; 1000 if( z[0]=='?' ){ 1001 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1002 ** use it as the variable number */ 1003 i64 i; 1004 int bOk; 1005 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1006 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1007 bOk = 1; 1008 }else{ 1009 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1010 } 1011 testcase( i==0 ); 1012 testcase( i==1 ); 1013 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1014 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1015 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1016 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1017 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1018 return; 1019 } 1020 x = (ynVar)i; 1021 if( x>pParse->nVar ){ 1022 pParse->nVar = (int)x; 1023 doAdd = 1; 1024 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1025 doAdd = 1; 1026 } 1027 }else{ 1028 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1029 ** number as the prior appearance of the same name, or if the name 1030 ** has never appeared before, reuse the same variable number 1031 */ 1032 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1033 if( x==0 ){ 1034 x = (ynVar)(++pParse->nVar); 1035 doAdd = 1; 1036 } 1037 } 1038 if( doAdd ){ 1039 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1040 } 1041 } 1042 pExpr->iColumn = x; 1043 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1044 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1045 } 1046 } 1047 1048 /* 1049 ** Recursively delete an expression tree. 1050 */ 1051 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1052 assert( p!=0 ); 1053 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1054 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1055 1056 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1057 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1058 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1059 #ifdef SQLITE_DEBUG 1060 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1061 assert( p->pLeft==0 ); 1062 assert( p->pRight==0 ); 1063 assert( p->x.pSelect==0 ); 1064 } 1065 #endif 1066 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1067 /* The Expr.x union is never used at the same time as Expr.pRight */ 1068 assert( p->x.pList==0 || p->pRight==0 ); 1069 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1070 if( p->pRight ){ 1071 sqlite3ExprDeleteNN(db, p->pRight); 1072 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1073 sqlite3SelectDelete(db, p->x.pSelect); 1074 }else{ 1075 sqlite3ExprListDelete(db, p->x.pList); 1076 } 1077 if( ExprHasProperty(p, EP_WinFunc) ){ 1078 assert( p->op==TK_FUNCTION ); 1079 sqlite3WindowDelete(db, p->y.pWin); 1080 } 1081 } 1082 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1083 if( !ExprHasProperty(p, EP_Static) ){ 1084 sqlite3DbFreeNN(db, p); 1085 } 1086 } 1087 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1088 if( p ) sqlite3ExprDeleteNN(db, p); 1089 } 1090 1091 /* 1092 ** Return the number of bytes allocated for the expression structure 1093 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1094 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1095 */ 1096 static int exprStructSize(Expr *p){ 1097 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1098 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1099 return EXPR_FULLSIZE; 1100 } 1101 1102 /* 1103 ** The dupedExpr*Size() routines each return the number of bytes required 1104 ** to store a copy of an expression or expression tree. They differ in 1105 ** how much of the tree is measured. 1106 ** 1107 ** dupedExprStructSize() Size of only the Expr structure 1108 ** dupedExprNodeSize() Size of Expr + space for token 1109 ** dupedExprSize() Expr + token + subtree components 1110 ** 1111 *************************************************************************** 1112 ** 1113 ** The dupedExprStructSize() function returns two values OR-ed together: 1114 ** (1) the space required for a copy of the Expr structure only and 1115 ** (2) the EP_xxx flags that indicate what the structure size should be. 1116 ** The return values is always one of: 1117 ** 1118 ** EXPR_FULLSIZE 1119 ** EXPR_REDUCEDSIZE | EP_Reduced 1120 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1121 ** 1122 ** The size of the structure can be found by masking the return value 1123 ** of this routine with 0xfff. The flags can be found by masking the 1124 ** return value with EP_Reduced|EP_TokenOnly. 1125 ** 1126 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1127 ** (unreduced) Expr objects as they or originally constructed by the parser. 1128 ** During expression analysis, extra information is computed and moved into 1129 ** later parts of the Expr object and that extra information might get chopped 1130 ** off if the expression is reduced. Note also that it does not work to 1131 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1132 ** to reduce a pristine expression tree from the parser. The implementation 1133 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1134 ** to enforce this constraint. 1135 */ 1136 static int dupedExprStructSize(Expr *p, int flags){ 1137 int nSize; 1138 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1139 assert( EXPR_FULLSIZE<=0xfff ); 1140 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1141 if( 0==flags || p->op==TK_SELECT_COLUMN 1142 #ifndef SQLITE_OMIT_WINDOWFUNC 1143 || ExprHasProperty(p, EP_WinFunc) 1144 #endif 1145 ){ 1146 nSize = EXPR_FULLSIZE; 1147 }else{ 1148 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1149 assert( !ExprHasProperty(p, EP_FromJoin) ); 1150 assert( !ExprHasProperty(p, EP_MemToken) ); 1151 assert( !ExprHasProperty(p, EP_NoReduce) ); 1152 if( p->pLeft || p->x.pList ){ 1153 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1154 }else{ 1155 assert( p->pRight==0 ); 1156 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1157 } 1158 } 1159 return nSize; 1160 } 1161 1162 /* 1163 ** This function returns the space in bytes required to store the copy 1164 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1165 ** string is defined.) 1166 */ 1167 static int dupedExprNodeSize(Expr *p, int flags){ 1168 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1169 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1170 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1171 } 1172 return ROUND8(nByte); 1173 } 1174 1175 /* 1176 ** Return the number of bytes required to create a duplicate of the 1177 ** expression passed as the first argument. The second argument is a 1178 ** mask containing EXPRDUP_XXX flags. 1179 ** 1180 ** The value returned includes space to create a copy of the Expr struct 1181 ** itself and the buffer referred to by Expr.u.zToken, if any. 1182 ** 1183 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1184 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1185 ** and Expr.pRight variables (but not for any structures pointed to or 1186 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1187 */ 1188 static int dupedExprSize(Expr *p, int flags){ 1189 int nByte = 0; 1190 if( p ){ 1191 nByte = dupedExprNodeSize(p, flags); 1192 if( flags&EXPRDUP_REDUCE ){ 1193 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1194 } 1195 } 1196 return nByte; 1197 } 1198 1199 /* 1200 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1201 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1202 ** to store the copy of expression p, the copies of p->u.zToken 1203 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1204 ** if any. Before returning, *pzBuffer is set to the first byte past the 1205 ** portion of the buffer copied into by this function. 1206 */ 1207 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1208 Expr *pNew; /* Value to return */ 1209 u8 *zAlloc; /* Memory space from which to build Expr object */ 1210 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1211 1212 assert( db!=0 ); 1213 assert( p ); 1214 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1215 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1216 1217 /* Figure out where to write the new Expr structure. */ 1218 if( pzBuffer ){ 1219 zAlloc = *pzBuffer; 1220 staticFlag = EP_Static; 1221 }else{ 1222 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1223 staticFlag = 0; 1224 } 1225 pNew = (Expr *)zAlloc; 1226 1227 if( pNew ){ 1228 /* Set nNewSize to the size allocated for the structure pointed to 1229 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1230 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1231 ** by the copy of the p->u.zToken string (if any). 1232 */ 1233 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1234 const int nNewSize = nStructSize & 0xfff; 1235 int nToken; 1236 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1237 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1238 }else{ 1239 nToken = 0; 1240 } 1241 if( dupFlags ){ 1242 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1243 memcpy(zAlloc, p, nNewSize); 1244 }else{ 1245 u32 nSize = (u32)exprStructSize(p); 1246 memcpy(zAlloc, p, nSize); 1247 if( nSize<EXPR_FULLSIZE ){ 1248 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1249 } 1250 } 1251 1252 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1253 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1254 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1255 pNew->flags |= staticFlag; 1256 1257 /* Copy the p->u.zToken string, if any. */ 1258 if( nToken ){ 1259 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1260 memcpy(zToken, p->u.zToken, nToken); 1261 } 1262 1263 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1264 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1265 if( ExprHasProperty(p, EP_xIsSelect) ){ 1266 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1267 }else{ 1268 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1269 } 1270 } 1271 1272 /* Fill in pNew->pLeft and pNew->pRight. */ 1273 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1274 zAlloc += dupedExprNodeSize(p, dupFlags); 1275 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1276 pNew->pLeft = p->pLeft ? 1277 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1278 pNew->pRight = p->pRight ? 1279 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1280 } 1281 #ifndef SQLITE_OMIT_WINDOWFUNC 1282 if( ExprHasProperty(p, EP_WinFunc) ){ 1283 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1284 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1285 } 1286 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1287 if( pzBuffer ){ 1288 *pzBuffer = zAlloc; 1289 } 1290 }else{ 1291 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1292 if( pNew->op==TK_SELECT_COLUMN ){ 1293 pNew->pLeft = p->pLeft; 1294 assert( p->iColumn==0 || p->pRight==0 ); 1295 assert( p->pRight==0 || p->pRight==p->pLeft ); 1296 }else{ 1297 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1298 } 1299 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1300 } 1301 } 1302 } 1303 return pNew; 1304 } 1305 1306 /* 1307 ** Create and return a deep copy of the object passed as the second 1308 ** argument. If an OOM condition is encountered, NULL is returned 1309 ** and the db->mallocFailed flag set. 1310 */ 1311 #ifndef SQLITE_OMIT_CTE 1312 static With *withDup(sqlite3 *db, With *p){ 1313 With *pRet = 0; 1314 if( p ){ 1315 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1316 pRet = sqlite3DbMallocZero(db, nByte); 1317 if( pRet ){ 1318 int i; 1319 pRet->nCte = p->nCte; 1320 for(i=0; i<p->nCte; i++){ 1321 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1322 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1323 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1324 } 1325 } 1326 } 1327 return pRet; 1328 } 1329 #else 1330 # define withDup(x,y) 0 1331 #endif 1332 1333 /* 1334 ** The following group of routines make deep copies of expressions, 1335 ** expression lists, ID lists, and select statements. The copies can 1336 ** be deleted (by being passed to their respective ...Delete() routines) 1337 ** without effecting the originals. 1338 ** 1339 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1340 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1341 ** by subsequent calls to sqlite*ListAppend() routines. 1342 ** 1343 ** Any tables that the SrcList might point to are not duplicated. 1344 ** 1345 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1346 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1347 ** truncated version of the usual Expr structure that will be stored as 1348 ** part of the in-memory representation of the database schema. 1349 */ 1350 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1351 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1352 return p ? exprDup(db, p, flags, 0) : 0; 1353 } 1354 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1355 ExprList *pNew; 1356 struct ExprList_item *pItem, *pOldItem; 1357 int i; 1358 Expr *pPriorSelectCol = 0; 1359 assert( db!=0 ); 1360 if( p==0 ) return 0; 1361 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1362 if( pNew==0 ) return 0; 1363 pNew->nExpr = p->nExpr; 1364 pItem = pNew->a; 1365 pOldItem = p->a; 1366 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1367 Expr *pOldExpr = pOldItem->pExpr; 1368 Expr *pNewExpr; 1369 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1370 if( pOldExpr 1371 && pOldExpr->op==TK_SELECT_COLUMN 1372 && (pNewExpr = pItem->pExpr)!=0 1373 ){ 1374 assert( pNewExpr->iColumn==0 || i>0 ); 1375 if( pNewExpr->iColumn==0 ){ 1376 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1377 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1378 }else{ 1379 assert( i>0 ); 1380 assert( pItem[-1].pExpr!=0 ); 1381 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1382 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1383 pNewExpr->pLeft = pPriorSelectCol; 1384 } 1385 } 1386 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1387 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1388 pItem->sortOrder = pOldItem->sortOrder; 1389 pItem->done = 0; 1390 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1391 pItem->bSorterRef = pOldItem->bSorterRef; 1392 pItem->u = pOldItem->u; 1393 } 1394 return pNew; 1395 } 1396 1397 /* 1398 ** If cursors, triggers, views and subqueries are all omitted from 1399 ** the build, then none of the following routines, except for 1400 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1401 ** called with a NULL argument. 1402 */ 1403 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1404 || !defined(SQLITE_OMIT_SUBQUERY) 1405 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1406 SrcList *pNew; 1407 int i; 1408 int nByte; 1409 assert( db!=0 ); 1410 if( p==0 ) return 0; 1411 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1412 pNew = sqlite3DbMallocRawNN(db, nByte ); 1413 if( pNew==0 ) return 0; 1414 pNew->nSrc = pNew->nAlloc = p->nSrc; 1415 for(i=0; i<p->nSrc; i++){ 1416 struct SrcList_item *pNewItem = &pNew->a[i]; 1417 struct SrcList_item *pOldItem = &p->a[i]; 1418 Table *pTab; 1419 pNewItem->pSchema = pOldItem->pSchema; 1420 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1421 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1422 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1423 pNewItem->fg = pOldItem->fg; 1424 pNewItem->iCursor = pOldItem->iCursor; 1425 pNewItem->addrFillSub = pOldItem->addrFillSub; 1426 pNewItem->regReturn = pOldItem->regReturn; 1427 if( pNewItem->fg.isIndexedBy ){ 1428 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1429 } 1430 pNewItem->pIBIndex = pOldItem->pIBIndex; 1431 if( pNewItem->fg.isTabFunc ){ 1432 pNewItem->u1.pFuncArg = 1433 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1434 } 1435 pTab = pNewItem->pTab = pOldItem->pTab; 1436 if( pTab ){ 1437 pTab->nTabRef++; 1438 } 1439 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1440 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1441 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1442 pNewItem->colUsed = pOldItem->colUsed; 1443 } 1444 return pNew; 1445 } 1446 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1447 IdList *pNew; 1448 int i; 1449 assert( db!=0 ); 1450 if( p==0 ) return 0; 1451 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1452 if( pNew==0 ) return 0; 1453 pNew->nId = p->nId; 1454 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1455 if( pNew->a==0 ){ 1456 sqlite3DbFreeNN(db, pNew); 1457 return 0; 1458 } 1459 /* Note that because the size of the allocation for p->a[] is not 1460 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1461 ** on the duplicate created by this function. */ 1462 for(i=0; i<p->nId; i++){ 1463 struct IdList_item *pNewItem = &pNew->a[i]; 1464 struct IdList_item *pOldItem = &p->a[i]; 1465 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1466 pNewItem->idx = pOldItem->idx; 1467 } 1468 return pNew; 1469 } 1470 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1471 Select *pRet = 0; 1472 Select *pNext = 0; 1473 Select **pp = &pRet; 1474 Select *p; 1475 1476 assert( db!=0 ); 1477 for(p=pDup; p; p=p->pPrior){ 1478 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1479 if( pNew==0 ) break; 1480 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1481 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1482 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1483 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1484 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1485 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1486 pNew->op = p->op; 1487 pNew->pNext = pNext; 1488 pNew->pPrior = 0; 1489 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1490 pNew->iLimit = 0; 1491 pNew->iOffset = 0; 1492 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1493 pNew->addrOpenEphm[0] = -1; 1494 pNew->addrOpenEphm[1] = -1; 1495 pNew->nSelectRow = p->nSelectRow; 1496 pNew->pWith = withDup(db, p->pWith); 1497 #ifndef SQLITE_OMIT_WINDOWFUNC 1498 pNew->pWin = 0; 1499 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1500 #endif 1501 pNew->selId = p->selId; 1502 *pp = pNew; 1503 pp = &pNew->pPrior; 1504 pNext = pNew; 1505 } 1506 1507 return pRet; 1508 } 1509 #else 1510 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1511 assert( p==0 ); 1512 return 0; 1513 } 1514 #endif 1515 1516 1517 /* 1518 ** Add a new element to the end of an expression list. If pList is 1519 ** initially NULL, then create a new expression list. 1520 ** 1521 ** The pList argument must be either NULL or a pointer to an ExprList 1522 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1523 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1524 ** Reason: This routine assumes that the number of slots in pList->a[] 1525 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1526 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1527 ** 1528 ** If a memory allocation error occurs, the entire list is freed and 1529 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1530 ** that the new entry was successfully appended. 1531 */ 1532 ExprList *sqlite3ExprListAppend( 1533 Parse *pParse, /* Parsing context */ 1534 ExprList *pList, /* List to which to append. Might be NULL */ 1535 Expr *pExpr /* Expression to be appended. Might be NULL */ 1536 ){ 1537 struct ExprList_item *pItem; 1538 sqlite3 *db = pParse->db; 1539 assert( db!=0 ); 1540 if( pList==0 ){ 1541 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1542 if( pList==0 ){ 1543 goto no_mem; 1544 } 1545 pList->nExpr = 0; 1546 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1547 ExprList *pNew; 1548 pNew = sqlite3DbRealloc(db, pList, 1549 sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0])); 1550 if( pNew==0 ){ 1551 goto no_mem; 1552 } 1553 pList = pNew; 1554 } 1555 pItem = &pList->a[pList->nExpr++]; 1556 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) ); 1557 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1558 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName)); 1559 pItem->pExpr = pExpr; 1560 return pList; 1561 1562 no_mem: 1563 /* Avoid leaking memory if malloc has failed. */ 1564 sqlite3ExprDelete(db, pExpr); 1565 sqlite3ExprListDelete(db, pList); 1566 return 0; 1567 } 1568 1569 /* 1570 ** pColumns and pExpr form a vector assignment which is part of the SET 1571 ** clause of an UPDATE statement. Like this: 1572 ** 1573 ** (a,b,c) = (expr1,expr2,expr3) 1574 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1575 ** 1576 ** For each term of the vector assignment, append new entries to the 1577 ** expression list pList. In the case of a subquery on the RHS, append 1578 ** TK_SELECT_COLUMN expressions. 1579 */ 1580 ExprList *sqlite3ExprListAppendVector( 1581 Parse *pParse, /* Parsing context */ 1582 ExprList *pList, /* List to which to append. Might be NULL */ 1583 IdList *pColumns, /* List of names of LHS of the assignment */ 1584 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1585 ){ 1586 sqlite3 *db = pParse->db; 1587 int n; 1588 int i; 1589 int iFirst = pList ? pList->nExpr : 0; 1590 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1591 ** exit prior to this routine being invoked */ 1592 if( NEVER(pColumns==0) ) goto vector_append_error; 1593 if( pExpr==0 ) goto vector_append_error; 1594 1595 /* If the RHS is a vector, then we can immediately check to see that 1596 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1597 ** wildcards ("*") in the result set of the SELECT must be expanded before 1598 ** we can do the size check, so defer the size check until code generation. 1599 */ 1600 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1601 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1602 pColumns->nId, n); 1603 goto vector_append_error; 1604 } 1605 1606 for(i=0; i<pColumns->nId; i++){ 1607 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1608 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1609 if( pList ){ 1610 assert( pList->nExpr==iFirst+i+1 ); 1611 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1612 pColumns->a[i].zName = 0; 1613 } 1614 } 1615 1616 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1617 Expr *pFirst = pList->a[iFirst].pExpr; 1618 assert( pFirst!=0 ); 1619 assert( pFirst->op==TK_SELECT_COLUMN ); 1620 1621 /* Store the SELECT statement in pRight so it will be deleted when 1622 ** sqlite3ExprListDelete() is called */ 1623 pFirst->pRight = pExpr; 1624 pExpr = 0; 1625 1626 /* Remember the size of the LHS in iTable so that we can check that 1627 ** the RHS and LHS sizes match during code generation. */ 1628 pFirst->iTable = pColumns->nId; 1629 } 1630 1631 vector_append_error: 1632 sqlite3ExprDelete(db, pExpr); 1633 sqlite3IdListDelete(db, pColumns); 1634 return pList; 1635 } 1636 1637 /* 1638 ** Set the sort order for the last element on the given ExprList. 1639 */ 1640 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1641 if( p==0 ) return; 1642 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1643 assert( p->nExpr>0 ); 1644 if( iSortOrder<0 ){ 1645 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1646 return; 1647 } 1648 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1649 } 1650 1651 /* 1652 ** Set the ExprList.a[].zName element of the most recently added item 1653 ** on the expression list. 1654 ** 1655 ** pList might be NULL following an OOM error. But pName should never be 1656 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1657 ** is set. 1658 */ 1659 void sqlite3ExprListSetName( 1660 Parse *pParse, /* Parsing context */ 1661 ExprList *pList, /* List to which to add the span. */ 1662 Token *pName, /* Name to be added */ 1663 int dequote /* True to cause the name to be dequoted */ 1664 ){ 1665 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1666 if( pList ){ 1667 struct ExprList_item *pItem; 1668 assert( pList->nExpr>0 ); 1669 pItem = &pList->a[pList->nExpr-1]; 1670 assert( pItem->zName==0 ); 1671 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1672 if( dequote ) sqlite3Dequote(pItem->zName); 1673 if( IN_RENAME_OBJECT ){ 1674 sqlite3RenameTokenMap(pParse, (void*)pItem->zName, pName); 1675 } 1676 } 1677 } 1678 1679 /* 1680 ** Set the ExprList.a[].zSpan element of the most recently added item 1681 ** on the expression list. 1682 ** 1683 ** pList might be NULL following an OOM error. But pSpan should never be 1684 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1685 ** is set. 1686 */ 1687 void sqlite3ExprListSetSpan( 1688 Parse *pParse, /* Parsing context */ 1689 ExprList *pList, /* List to which to add the span. */ 1690 const char *zStart, /* Start of the span */ 1691 const char *zEnd /* End of the span */ 1692 ){ 1693 sqlite3 *db = pParse->db; 1694 assert( pList!=0 || db->mallocFailed!=0 ); 1695 if( pList ){ 1696 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1697 assert( pList->nExpr>0 ); 1698 sqlite3DbFree(db, pItem->zSpan); 1699 pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd); 1700 } 1701 } 1702 1703 /* 1704 ** If the expression list pEList contains more than iLimit elements, 1705 ** leave an error message in pParse. 1706 */ 1707 void sqlite3ExprListCheckLength( 1708 Parse *pParse, 1709 ExprList *pEList, 1710 const char *zObject 1711 ){ 1712 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1713 testcase( pEList && pEList->nExpr==mx ); 1714 testcase( pEList && pEList->nExpr==mx+1 ); 1715 if( pEList && pEList->nExpr>mx ){ 1716 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1717 } 1718 } 1719 1720 /* 1721 ** Delete an entire expression list. 1722 */ 1723 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1724 int i = pList->nExpr; 1725 struct ExprList_item *pItem = pList->a; 1726 assert( pList->nExpr>0 ); 1727 do{ 1728 sqlite3ExprDelete(db, pItem->pExpr); 1729 sqlite3DbFree(db, pItem->zName); 1730 sqlite3DbFree(db, pItem->zSpan); 1731 pItem++; 1732 }while( --i>0 ); 1733 sqlite3DbFreeNN(db, pList); 1734 } 1735 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1736 if( pList ) exprListDeleteNN(db, pList); 1737 } 1738 1739 /* 1740 ** Return the bitwise-OR of all Expr.flags fields in the given 1741 ** ExprList. 1742 */ 1743 u32 sqlite3ExprListFlags(const ExprList *pList){ 1744 int i; 1745 u32 m = 0; 1746 assert( pList!=0 ); 1747 for(i=0; i<pList->nExpr; i++){ 1748 Expr *pExpr = pList->a[i].pExpr; 1749 assert( pExpr!=0 ); 1750 m |= pExpr->flags; 1751 } 1752 return m; 1753 } 1754 1755 /* 1756 ** This is a SELECT-node callback for the expression walker that 1757 ** always "fails". By "fail" in this case, we mean set 1758 ** pWalker->eCode to zero and abort. 1759 ** 1760 ** This callback is used by multiple expression walkers. 1761 */ 1762 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1763 UNUSED_PARAMETER(NotUsed); 1764 pWalker->eCode = 0; 1765 return WRC_Abort; 1766 } 1767 1768 /* 1769 ** If the input expression is an ID with the name "true" or "false" 1770 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1771 ** the conversion happened, and zero if the expression is unaltered. 1772 */ 1773 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1774 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1775 if( sqlite3StrICmp(pExpr->u.zToken, "true")==0 1776 || sqlite3StrICmp(pExpr->u.zToken, "false")==0 1777 ){ 1778 pExpr->op = TK_TRUEFALSE; 1779 return 1; 1780 } 1781 return 0; 1782 } 1783 1784 /* 1785 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1786 ** and 0 if it is FALSE. 1787 */ 1788 int sqlite3ExprTruthValue(const Expr *pExpr){ 1789 assert( pExpr->op==TK_TRUEFALSE ); 1790 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1791 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1792 return pExpr->u.zToken[4]==0; 1793 } 1794 1795 1796 /* 1797 ** These routines are Walker callbacks used to check expressions to 1798 ** see if they are "constant" for some definition of constant. The 1799 ** Walker.eCode value determines the type of "constant" we are looking 1800 ** for. 1801 ** 1802 ** These callback routines are used to implement the following: 1803 ** 1804 ** sqlite3ExprIsConstant() pWalker->eCode==1 1805 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1806 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1807 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1808 ** 1809 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1810 ** is found to not be a constant. 1811 ** 1812 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1813 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1814 ** an existing schema and 4 when processing a new statement. A bound 1815 ** parameter raises an error for new statements, but is silently converted 1816 ** to NULL for existing schemas. This allows sqlite_master tables that 1817 ** contain a bound parameter because they were generated by older versions 1818 ** of SQLite to be parsed by newer versions of SQLite without raising a 1819 ** malformed schema error. 1820 */ 1821 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1822 1823 /* If pWalker->eCode is 2 then any term of the expression that comes from 1824 ** the ON or USING clauses of a left join disqualifies the expression 1825 ** from being considered constant. */ 1826 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1827 pWalker->eCode = 0; 1828 return WRC_Abort; 1829 } 1830 1831 switch( pExpr->op ){ 1832 /* Consider functions to be constant if all their arguments are constant 1833 ** and either pWalker->eCode==4 or 5 or the function has the 1834 ** SQLITE_FUNC_CONST flag. */ 1835 case TK_FUNCTION: 1836 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1837 return WRC_Continue; 1838 }else{ 1839 pWalker->eCode = 0; 1840 return WRC_Abort; 1841 } 1842 case TK_ID: 1843 /* Convert "true" or "false" in a DEFAULT clause into the 1844 ** appropriate TK_TRUEFALSE operator */ 1845 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 1846 return WRC_Prune; 1847 } 1848 /* Fall thru */ 1849 case TK_COLUMN: 1850 case TK_AGG_FUNCTION: 1851 case TK_AGG_COLUMN: 1852 testcase( pExpr->op==TK_ID ); 1853 testcase( pExpr->op==TK_COLUMN ); 1854 testcase( pExpr->op==TK_AGG_FUNCTION ); 1855 testcase( pExpr->op==TK_AGG_COLUMN ); 1856 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 1857 return WRC_Continue; 1858 } 1859 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1860 return WRC_Continue; 1861 } 1862 /* Fall through */ 1863 case TK_IF_NULL_ROW: 1864 case TK_REGISTER: 1865 testcase( pExpr->op==TK_REGISTER ); 1866 testcase( pExpr->op==TK_IF_NULL_ROW ); 1867 pWalker->eCode = 0; 1868 return WRC_Abort; 1869 case TK_VARIABLE: 1870 if( pWalker->eCode==5 ){ 1871 /* Silently convert bound parameters that appear inside of CREATE 1872 ** statements into a NULL when parsing the CREATE statement text out 1873 ** of the sqlite_master table */ 1874 pExpr->op = TK_NULL; 1875 }else if( pWalker->eCode==4 ){ 1876 /* A bound parameter in a CREATE statement that originates from 1877 ** sqlite3_prepare() causes an error */ 1878 pWalker->eCode = 0; 1879 return WRC_Abort; 1880 } 1881 /* Fall through */ 1882 default: 1883 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 1884 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 1885 return WRC_Continue; 1886 } 1887 } 1888 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1889 Walker w; 1890 w.eCode = initFlag; 1891 w.xExprCallback = exprNodeIsConstant; 1892 w.xSelectCallback = sqlite3SelectWalkFail; 1893 #ifdef SQLITE_DEBUG 1894 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1895 #endif 1896 w.u.iCur = iCur; 1897 sqlite3WalkExpr(&w, p); 1898 return w.eCode; 1899 } 1900 1901 /* 1902 ** Walk an expression tree. Return non-zero if the expression is constant 1903 ** and 0 if it involves variables or function calls. 1904 ** 1905 ** For the purposes of this function, a double-quoted string (ex: "abc") 1906 ** is considered a variable but a single-quoted string (ex: 'abc') is 1907 ** a constant. 1908 */ 1909 int sqlite3ExprIsConstant(Expr *p){ 1910 return exprIsConst(p, 1, 0); 1911 } 1912 1913 /* 1914 ** Walk an expression tree. Return non-zero if 1915 ** 1916 ** (1) the expression is constant, and 1917 ** (2) the expression does originate in the ON or USING clause 1918 ** of a LEFT JOIN, and 1919 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 1920 ** operands created by the constant propagation optimization. 1921 ** 1922 ** When this routine returns true, it indicates that the expression 1923 ** can be added to the pParse->pConstExpr list and evaluated once when 1924 ** the prepared statement starts up. See sqlite3ExprCodeAtInit(). 1925 */ 1926 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1927 return exprIsConst(p, 2, 0); 1928 } 1929 1930 /* 1931 ** Walk an expression tree. Return non-zero if the expression is constant 1932 ** for any single row of the table with cursor iCur. In other words, the 1933 ** expression must not refer to any non-deterministic function nor any 1934 ** table other than iCur. 1935 */ 1936 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1937 return exprIsConst(p, 3, iCur); 1938 } 1939 1940 1941 /* 1942 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 1943 */ 1944 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 1945 ExprList *pGroupBy = pWalker->u.pGroupBy; 1946 int i; 1947 1948 /* Check if pExpr is identical to any GROUP BY term. If so, consider 1949 ** it constant. */ 1950 for(i=0; i<pGroupBy->nExpr; i++){ 1951 Expr *p = pGroupBy->a[i].pExpr; 1952 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 1953 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 1954 if( sqlite3IsBinary(pColl) ){ 1955 return WRC_Prune; 1956 } 1957 } 1958 } 1959 1960 /* Check if pExpr is a sub-select. If so, consider it variable. */ 1961 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1962 pWalker->eCode = 0; 1963 return WRC_Abort; 1964 } 1965 1966 return exprNodeIsConstant(pWalker, pExpr); 1967 } 1968 1969 /* 1970 ** Walk the expression tree passed as the first argument. Return non-zero 1971 ** if the expression consists entirely of constants or copies of terms 1972 ** in pGroupBy that sort with the BINARY collation sequence. 1973 ** 1974 ** This routine is used to determine if a term of the HAVING clause can 1975 ** be promoted into the WHERE clause. In order for such a promotion to work, 1976 ** the value of the HAVING clause term must be the same for all members of 1977 ** a "group". The requirement that the GROUP BY term must be BINARY 1978 ** assumes that no other collating sequence will have a finer-grained 1979 ** grouping than binary. In other words (A=B COLLATE binary) implies 1980 ** A=B in every other collating sequence. The requirement that the 1981 ** GROUP BY be BINARY is stricter than necessary. It would also work 1982 ** to promote HAVING clauses that use the same alternative collating 1983 ** sequence as the GROUP BY term, but that is much harder to check, 1984 ** alternative collating sequences are uncommon, and this is only an 1985 ** optimization, so we take the easy way out and simply require the 1986 ** GROUP BY to use the BINARY collating sequence. 1987 */ 1988 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 1989 Walker w; 1990 w.eCode = 1; 1991 w.xExprCallback = exprNodeIsConstantOrGroupBy; 1992 w.xSelectCallback = 0; 1993 w.u.pGroupBy = pGroupBy; 1994 w.pParse = pParse; 1995 sqlite3WalkExpr(&w, p); 1996 return w.eCode; 1997 } 1998 1999 /* 2000 ** Walk an expression tree. Return non-zero if the expression is constant 2001 ** or a function call with constant arguments. Return and 0 if there 2002 ** are any variables. 2003 ** 2004 ** For the purposes of this function, a double-quoted string (ex: "abc") 2005 ** is considered a variable but a single-quoted string (ex: 'abc') is 2006 ** a constant. 2007 */ 2008 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2009 assert( isInit==0 || isInit==1 ); 2010 return exprIsConst(p, 4+isInit, 0); 2011 } 2012 2013 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2014 /* 2015 ** Walk an expression tree. Return 1 if the expression contains a 2016 ** subquery of some kind. Return 0 if there are no subqueries. 2017 */ 2018 int sqlite3ExprContainsSubquery(Expr *p){ 2019 Walker w; 2020 w.eCode = 1; 2021 w.xExprCallback = sqlite3ExprWalkNoop; 2022 w.xSelectCallback = sqlite3SelectWalkFail; 2023 #ifdef SQLITE_DEBUG 2024 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2025 #endif 2026 sqlite3WalkExpr(&w, p); 2027 return w.eCode==0; 2028 } 2029 #endif 2030 2031 /* 2032 ** If the expression p codes a constant integer that is small enough 2033 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2034 ** in *pValue. If the expression is not an integer or if it is too big 2035 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2036 */ 2037 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2038 int rc = 0; 2039 if( p==0 ) return 0; /* Can only happen following on OOM */ 2040 2041 /* If an expression is an integer literal that fits in a signed 32-bit 2042 ** integer, then the EP_IntValue flag will have already been set */ 2043 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2044 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2045 2046 if( p->flags & EP_IntValue ){ 2047 *pValue = p->u.iValue; 2048 return 1; 2049 } 2050 switch( p->op ){ 2051 case TK_UPLUS: { 2052 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2053 break; 2054 } 2055 case TK_UMINUS: { 2056 int v; 2057 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2058 assert( v!=(-2147483647-1) ); 2059 *pValue = -v; 2060 rc = 1; 2061 } 2062 break; 2063 } 2064 default: break; 2065 } 2066 return rc; 2067 } 2068 2069 /* 2070 ** Return FALSE if there is no chance that the expression can be NULL. 2071 ** 2072 ** If the expression might be NULL or if the expression is too complex 2073 ** to tell return TRUE. 2074 ** 2075 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2076 ** when we know that a value cannot be NULL. Hence, a false positive 2077 ** (returning TRUE when in fact the expression can never be NULL) might 2078 ** be a small performance hit but is otherwise harmless. On the other 2079 ** hand, a false negative (returning FALSE when the result could be NULL) 2080 ** will likely result in an incorrect answer. So when in doubt, return 2081 ** TRUE. 2082 */ 2083 int sqlite3ExprCanBeNull(const Expr *p){ 2084 u8 op; 2085 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 2086 op = p->op; 2087 if( op==TK_REGISTER ) op = p->op2; 2088 switch( op ){ 2089 case TK_INTEGER: 2090 case TK_STRING: 2091 case TK_FLOAT: 2092 case TK_BLOB: 2093 return 0; 2094 case TK_COLUMN: 2095 return ExprHasProperty(p, EP_CanBeNull) || 2096 p->y.pTab==0 || /* Reference to column of index on expression */ 2097 (p->iColumn>=0 && p->y.pTab->aCol[p->iColumn].notNull==0); 2098 default: 2099 return 1; 2100 } 2101 } 2102 2103 /* 2104 ** Return TRUE if the given expression is a constant which would be 2105 ** unchanged by OP_Affinity with the affinity given in the second 2106 ** argument. 2107 ** 2108 ** This routine is used to determine if the OP_Affinity operation 2109 ** can be omitted. When in doubt return FALSE. A false negative 2110 ** is harmless. A false positive, however, can result in the wrong 2111 ** answer. 2112 */ 2113 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2114 u8 op; 2115 if( aff==SQLITE_AFF_BLOB ) return 1; 2116 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 2117 op = p->op; 2118 if( op==TK_REGISTER ) op = p->op2; 2119 switch( op ){ 2120 case TK_INTEGER: { 2121 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 2122 } 2123 case TK_FLOAT: { 2124 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 2125 } 2126 case TK_STRING: { 2127 return aff==SQLITE_AFF_TEXT; 2128 } 2129 case TK_BLOB: { 2130 return 1; 2131 } 2132 case TK_COLUMN: { 2133 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2134 return p->iColumn<0 2135 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 2136 } 2137 default: { 2138 return 0; 2139 } 2140 } 2141 } 2142 2143 /* 2144 ** Return TRUE if the given string is a row-id column name. 2145 */ 2146 int sqlite3IsRowid(const char *z){ 2147 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2148 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2149 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2150 return 0; 2151 } 2152 #ifdef SQLITE_ENABLE_NORMALIZE 2153 int sqlite3IsRowidN(const char *z, int n){ 2154 if( sqlite3StrNICmp(z, "_ROWID_", n)==0 ) return 1; 2155 if( sqlite3StrNICmp(z, "ROWID", n)==0 ) return 1; 2156 if( sqlite3StrNICmp(z, "OID", n)==0 ) return 1; 2157 return 0; 2158 } 2159 #endif 2160 2161 /* 2162 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2163 ** that can be simplified to a direct table access, then return 2164 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2165 ** or if the SELECT statement needs to be manifested into a transient 2166 ** table, then return NULL. 2167 */ 2168 #ifndef SQLITE_OMIT_SUBQUERY 2169 static Select *isCandidateForInOpt(Expr *pX){ 2170 Select *p; 2171 SrcList *pSrc; 2172 ExprList *pEList; 2173 Table *pTab; 2174 int i; 2175 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2176 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2177 p = pX->x.pSelect; 2178 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2179 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2180 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2181 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2182 return 0; /* No DISTINCT keyword and no aggregate functions */ 2183 } 2184 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2185 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2186 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2187 pSrc = p->pSrc; 2188 assert( pSrc!=0 ); 2189 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2190 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2191 pTab = pSrc->a[0].pTab; 2192 assert( pTab!=0 ); 2193 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2194 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2195 pEList = p->pEList; 2196 assert( pEList!=0 ); 2197 /* All SELECT results must be columns. */ 2198 for(i=0; i<pEList->nExpr; i++){ 2199 Expr *pRes = pEList->a[i].pExpr; 2200 if( pRes->op!=TK_COLUMN ) return 0; 2201 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2202 } 2203 return p; 2204 } 2205 #endif /* SQLITE_OMIT_SUBQUERY */ 2206 2207 #ifndef SQLITE_OMIT_SUBQUERY 2208 /* 2209 ** Generate code that checks the left-most column of index table iCur to see if 2210 ** it contains any NULL entries. Cause the register at regHasNull to be set 2211 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2212 ** to be set to NULL if iCur contains one or more NULL values. 2213 */ 2214 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2215 int addr1; 2216 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2217 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2218 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2219 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2220 VdbeComment((v, "first_entry_in(%d)", iCur)); 2221 sqlite3VdbeJumpHere(v, addr1); 2222 } 2223 #endif 2224 2225 2226 #ifndef SQLITE_OMIT_SUBQUERY 2227 /* 2228 ** The argument is an IN operator with a list (not a subquery) on the 2229 ** right-hand side. Return TRUE if that list is constant. 2230 */ 2231 static int sqlite3InRhsIsConstant(Expr *pIn){ 2232 Expr *pLHS; 2233 int res; 2234 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2235 pLHS = pIn->pLeft; 2236 pIn->pLeft = 0; 2237 res = sqlite3ExprIsConstant(pIn); 2238 pIn->pLeft = pLHS; 2239 return res; 2240 } 2241 #endif 2242 2243 /* 2244 ** This function is used by the implementation of the IN (...) operator. 2245 ** The pX parameter is the expression on the RHS of the IN operator, which 2246 ** might be either a list of expressions or a subquery. 2247 ** 2248 ** The job of this routine is to find or create a b-tree object that can 2249 ** be used either to test for membership in the RHS set or to iterate through 2250 ** all members of the RHS set, skipping duplicates. 2251 ** 2252 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2253 ** and pX->iTable is set to the index of that cursor. 2254 ** 2255 ** The returned value of this function indicates the b-tree type, as follows: 2256 ** 2257 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2258 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2259 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2260 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2261 ** populated epheremal table. 2262 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2263 ** implemented as a sequence of comparisons. 2264 ** 2265 ** An existing b-tree might be used if the RHS expression pX is a simple 2266 ** subquery such as: 2267 ** 2268 ** SELECT <column1>, <column2>... FROM <table> 2269 ** 2270 ** If the RHS of the IN operator is a list or a more complex subquery, then 2271 ** an ephemeral table might need to be generated from the RHS and then 2272 ** pX->iTable made to point to the ephemeral table instead of an 2273 ** existing table. 2274 ** 2275 ** The inFlags parameter must contain, at a minimum, one of the bits 2276 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2277 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2278 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2279 ** be used to loop over all values of the RHS of the IN operator. 2280 ** 2281 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2282 ** through the set members) then the b-tree must not contain duplicates. 2283 ** An epheremal table will be created unless the selected columns are guaranteed 2284 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2285 ** a UNIQUE constraint or index. 2286 ** 2287 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2288 ** for fast set membership tests) then an epheremal table must 2289 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2290 ** index can be found with the specified <columns> as its left-most. 2291 ** 2292 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2293 ** if the RHS of the IN operator is a list (not a subquery) then this 2294 ** routine might decide that creating an ephemeral b-tree for membership 2295 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2296 ** calling routine should implement the IN operator using a sequence 2297 ** of Eq or Ne comparison operations. 2298 ** 2299 ** When the b-tree is being used for membership tests, the calling function 2300 ** might need to know whether or not the RHS side of the IN operator 2301 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2302 ** if there is any chance that the (...) might contain a NULL value at 2303 ** runtime, then a register is allocated and the register number written 2304 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2305 ** NULL value, then *prRhsHasNull is left unchanged. 2306 ** 2307 ** If a register is allocated and its location stored in *prRhsHasNull, then 2308 ** the value in that register will be NULL if the b-tree contains one or more 2309 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2310 ** NULL values. 2311 ** 2312 ** If the aiMap parameter is not NULL, it must point to an array containing 2313 ** one element for each column returned by the SELECT statement on the RHS 2314 ** of the IN(...) operator. The i'th entry of the array is populated with the 2315 ** offset of the index column that matches the i'th column returned by the 2316 ** SELECT. For example, if the expression and selected index are: 2317 ** 2318 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2319 ** CREATE INDEX i1 ON t1(b, c, a); 2320 ** 2321 ** then aiMap[] is populated with {2, 0, 1}. 2322 */ 2323 #ifndef SQLITE_OMIT_SUBQUERY 2324 int sqlite3FindInIndex( 2325 Parse *pParse, /* Parsing context */ 2326 Expr *pX, /* The right-hand side (RHS) of the IN operator */ 2327 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2328 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2329 int *aiMap /* Mapping from Index fields to RHS fields */ 2330 ){ 2331 Select *p; /* SELECT to the right of IN operator */ 2332 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2333 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2334 int mustBeUnique; /* True if RHS must be unique */ 2335 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2336 2337 assert( pX->op==TK_IN ); 2338 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2339 2340 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2341 ** whether or not the SELECT result contains NULL values, check whether 2342 ** or not NULL is actually possible (it may not be, for example, due 2343 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2344 ** set prRhsHasNull to 0 before continuing. */ 2345 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2346 int i; 2347 ExprList *pEList = pX->x.pSelect->pEList; 2348 for(i=0; i<pEList->nExpr; i++){ 2349 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2350 } 2351 if( i==pEList->nExpr ){ 2352 prRhsHasNull = 0; 2353 } 2354 } 2355 2356 /* Check to see if an existing table or index can be used to 2357 ** satisfy the query. This is preferable to generating a new 2358 ** ephemeral table. */ 2359 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2360 sqlite3 *db = pParse->db; /* Database connection */ 2361 Table *pTab; /* Table <table>. */ 2362 i16 iDb; /* Database idx for pTab */ 2363 ExprList *pEList = p->pEList; 2364 int nExpr = pEList->nExpr; 2365 2366 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2367 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2368 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2369 pTab = p->pSrc->a[0].pTab; 2370 2371 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2372 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2373 sqlite3CodeVerifySchema(pParse, iDb); 2374 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2375 2376 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2377 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2378 /* The "x IN (SELECT rowid FROM table)" case */ 2379 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2380 VdbeCoverage(v); 2381 2382 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2383 eType = IN_INDEX_ROWID; 2384 ExplainQueryPlan((pParse, 0, 2385 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2386 sqlite3VdbeJumpHere(v, iAddr); 2387 }else{ 2388 Index *pIdx; /* Iterator variable */ 2389 int affinity_ok = 1; 2390 int i; 2391 2392 /* Check that the affinity that will be used to perform each 2393 ** comparison is the same as the affinity of each column in table 2394 ** on the RHS of the IN operator. If it not, it is not possible to 2395 ** use any index of the RHS table. */ 2396 for(i=0; i<nExpr && affinity_ok; i++){ 2397 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2398 int iCol = pEList->a[i].pExpr->iColumn; 2399 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2400 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2401 testcase( cmpaff==SQLITE_AFF_BLOB ); 2402 testcase( cmpaff==SQLITE_AFF_TEXT ); 2403 switch( cmpaff ){ 2404 case SQLITE_AFF_BLOB: 2405 break; 2406 case SQLITE_AFF_TEXT: 2407 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2408 ** other has no affinity and the other side is TEXT. Hence, 2409 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2410 ** and for the term on the LHS of the IN to have no affinity. */ 2411 assert( idxaff==SQLITE_AFF_TEXT ); 2412 break; 2413 default: 2414 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2415 } 2416 } 2417 2418 if( affinity_ok ){ 2419 /* Search for an existing index that will work for this IN operator */ 2420 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2421 Bitmask colUsed; /* Columns of the index used */ 2422 Bitmask mCol; /* Mask for the current column */ 2423 if( pIdx->nColumn<nExpr ) continue; 2424 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2425 ** BITMASK(nExpr) without overflowing */ 2426 testcase( pIdx->nColumn==BMS-2 ); 2427 testcase( pIdx->nColumn==BMS-1 ); 2428 if( pIdx->nColumn>=BMS-1 ) continue; 2429 if( mustBeUnique ){ 2430 if( pIdx->nKeyCol>nExpr 2431 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2432 ){ 2433 continue; /* This index is not unique over the IN RHS columns */ 2434 } 2435 } 2436 2437 colUsed = 0; /* Columns of index used so far */ 2438 for(i=0; i<nExpr; i++){ 2439 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2440 Expr *pRhs = pEList->a[i].pExpr; 2441 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2442 int j; 2443 2444 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2445 for(j=0; j<nExpr; j++){ 2446 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2447 assert( pIdx->azColl[j] ); 2448 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2449 continue; 2450 } 2451 break; 2452 } 2453 if( j==nExpr ) break; 2454 mCol = MASKBIT(j); 2455 if( mCol & colUsed ) break; /* Each column used only once */ 2456 colUsed |= mCol; 2457 if( aiMap ) aiMap[i] = j; 2458 } 2459 2460 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2461 if( colUsed==(MASKBIT(nExpr)-1) ){ 2462 /* If we reach this point, that means the index pIdx is usable */ 2463 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2464 ExplainQueryPlan((pParse, 0, 2465 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2466 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2467 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2468 VdbeComment((v, "%s", pIdx->zName)); 2469 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2470 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2471 2472 if( prRhsHasNull ){ 2473 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2474 i64 mask = (1<<nExpr)-1; 2475 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2476 iTab, 0, 0, (u8*)&mask, P4_INT64); 2477 #endif 2478 *prRhsHasNull = ++pParse->nMem; 2479 if( nExpr==1 ){ 2480 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2481 } 2482 } 2483 sqlite3VdbeJumpHere(v, iAddr); 2484 } 2485 } /* End loop over indexes */ 2486 } /* End if( affinity_ok ) */ 2487 } /* End if not an rowid index */ 2488 } /* End attempt to optimize using an index */ 2489 2490 /* If no preexisting index is available for the IN clause 2491 ** and IN_INDEX_NOOP is an allowed reply 2492 ** and the RHS of the IN operator is a list, not a subquery 2493 ** and the RHS is not constant or has two or fewer terms, 2494 ** then it is not worth creating an ephemeral table to evaluate 2495 ** the IN operator so return IN_INDEX_NOOP. 2496 */ 2497 if( eType==0 2498 && (inFlags & IN_INDEX_NOOP_OK) 2499 && !ExprHasProperty(pX, EP_xIsSelect) 2500 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2501 ){ 2502 eType = IN_INDEX_NOOP; 2503 } 2504 2505 if( eType==0 ){ 2506 /* Could not find an existing table or index to use as the RHS b-tree. 2507 ** We will have to generate an ephemeral table to do the job. 2508 */ 2509 u32 savedNQueryLoop = pParse->nQueryLoop; 2510 int rMayHaveNull = 0; 2511 eType = IN_INDEX_EPH; 2512 if( inFlags & IN_INDEX_LOOP ){ 2513 pParse->nQueryLoop = 0; 2514 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 2515 eType = IN_INDEX_ROWID; 2516 } 2517 }else if( prRhsHasNull ){ 2518 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2519 } 2520 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 2521 pParse->nQueryLoop = savedNQueryLoop; 2522 }else{ 2523 pX->iTable = iTab; 2524 } 2525 2526 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2527 int i, n; 2528 n = sqlite3ExprVectorSize(pX->pLeft); 2529 for(i=0; i<n; i++) aiMap[i] = i; 2530 } 2531 return eType; 2532 } 2533 #endif 2534 2535 #ifndef SQLITE_OMIT_SUBQUERY 2536 /* 2537 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2538 ** function allocates and returns a nul-terminated string containing 2539 ** the affinities to be used for each column of the comparison. 2540 ** 2541 ** It is the responsibility of the caller to ensure that the returned 2542 ** string is eventually freed using sqlite3DbFree(). 2543 */ 2544 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2545 Expr *pLeft = pExpr->pLeft; 2546 int nVal = sqlite3ExprVectorSize(pLeft); 2547 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2548 char *zRet; 2549 2550 assert( pExpr->op==TK_IN ); 2551 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2552 if( zRet ){ 2553 int i; 2554 for(i=0; i<nVal; i++){ 2555 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2556 char a = sqlite3ExprAffinity(pA); 2557 if( pSelect ){ 2558 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2559 }else{ 2560 zRet[i] = a; 2561 } 2562 } 2563 zRet[nVal] = '\0'; 2564 } 2565 return zRet; 2566 } 2567 #endif 2568 2569 #ifndef SQLITE_OMIT_SUBQUERY 2570 /* 2571 ** Load the Parse object passed as the first argument with an error 2572 ** message of the form: 2573 ** 2574 ** "sub-select returns N columns - expected M" 2575 */ 2576 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2577 const char *zFmt = "sub-select returns %d columns - expected %d"; 2578 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2579 } 2580 #endif 2581 2582 /* 2583 ** Expression pExpr is a vector that has been used in a context where 2584 ** it is not permitted. If pExpr is a sub-select vector, this routine 2585 ** loads the Parse object with a message of the form: 2586 ** 2587 ** "sub-select returns N columns - expected 1" 2588 ** 2589 ** Or, if it is a regular scalar vector: 2590 ** 2591 ** "row value misused" 2592 */ 2593 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2594 #ifndef SQLITE_OMIT_SUBQUERY 2595 if( pExpr->flags & EP_xIsSelect ){ 2596 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2597 }else 2598 #endif 2599 { 2600 sqlite3ErrorMsg(pParse, "row value misused"); 2601 } 2602 } 2603 2604 /* 2605 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 2606 ** or IN operators. Examples: 2607 ** 2608 ** (SELECT a FROM b) -- subquery 2609 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2610 ** x IN (4,5,11) -- IN operator with list on right-hand side 2611 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2612 ** 2613 ** The pExpr parameter describes the expression that contains the IN 2614 ** operator or subquery. 2615 ** 2616 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 2617 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 2618 ** to some integer key column of a table B-Tree. In this case, use an 2619 ** intkey B-Tree to store the set of IN(...) values instead of the usual 2620 ** (slower) variable length keys B-Tree. 2621 ** 2622 ** If rMayHaveNull is non-zero, that means that the operation is an IN 2623 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 2624 ** All this routine does is initialize the register given by rMayHaveNull 2625 ** to NULL. Calling routines will take care of changing this register 2626 ** value to non-NULL if the RHS is NULL-free. 2627 ** 2628 ** For a SELECT or EXISTS operator, return the register that holds the 2629 ** result. For a multi-column SELECT, the result is stored in a contiguous 2630 ** array of registers and the return value is the register of the left-most 2631 ** result column. Return 0 for IN operators or if an error occurs. 2632 */ 2633 #ifndef SQLITE_OMIT_SUBQUERY 2634 int sqlite3CodeSubselect( 2635 Parse *pParse, /* Parsing context */ 2636 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 2637 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 2638 int isRowid /* If true, LHS of IN operator is a rowid */ 2639 ){ 2640 int jmpIfDynamic = -1; /* One-time test address */ 2641 int rReg = 0; /* Register storing resulting */ 2642 Vdbe *v = sqlite3GetVdbe(pParse); 2643 if( NEVER(v==0) ) return 0; 2644 2645 /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it 2646 ** is encountered if any of the following is true: 2647 ** 2648 ** * The right-hand side is a correlated subquery 2649 ** * The right-hand side is an expression list containing variables 2650 ** * We are inside a trigger 2651 ** 2652 ** If all of the above are false, then we can run this code just once 2653 ** save the results, and reuse the same result on subsequent invocations. 2654 */ 2655 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2656 jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2657 } 2658 2659 switch( pExpr->op ){ 2660 case TK_IN: { 2661 int addr; /* Address of OP_OpenEphemeral instruction */ 2662 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 2663 KeyInfo *pKeyInfo = 0; /* Key information */ 2664 int nVal; /* Size of vector pLeft */ 2665 2666 nVal = sqlite3ExprVectorSize(pLeft); 2667 assert( !isRowid || nVal==1 ); 2668 2669 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 2670 ** expression it is handled the same way. An ephemeral table is 2671 ** filled with index keys representing the results from the 2672 ** SELECT or the <exprlist>. 2673 ** 2674 ** If the 'x' expression is a column value, or the SELECT... 2675 ** statement returns a column value, then the affinity of that 2676 ** column is used to build the index keys. If both 'x' and the 2677 ** SELECT... statement are columns, then numeric affinity is used 2678 ** if either column has NUMERIC or INTEGER affinity. If neither 2679 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2680 ** is used. 2681 */ 2682 pExpr->iTable = pParse->nTab++; 2683 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, 2684 pExpr->iTable, (isRowid?0:nVal)); 2685 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2686 2687 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2688 /* Case 1: expr IN (SELECT ...) 2689 ** 2690 ** Generate code to write the results of the select into the temporary 2691 ** table allocated and opened above. 2692 */ 2693 Select *pSelect = pExpr->x.pSelect; 2694 ExprList *pEList = pSelect->pEList; 2695 2696 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY", 2697 jmpIfDynamic>=0?"":"CORRELATED " 2698 )); 2699 assert( !isRowid ); 2700 /* If the LHS and RHS of the IN operator do not match, that 2701 ** error will have been caught long before we reach this point. */ 2702 if( ALWAYS(pEList->nExpr==nVal) ){ 2703 SelectDest dest; 2704 int i; 2705 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 2706 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2707 pSelect->iLimit = 0; 2708 testcase( pSelect->selFlags & SF_Distinct ); 2709 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2710 if( sqlite3Select(pParse, pSelect, &dest) ){ 2711 sqlite3DbFree(pParse->db, dest.zAffSdst); 2712 sqlite3KeyInfoUnref(pKeyInfo); 2713 return 0; 2714 } 2715 sqlite3DbFree(pParse->db, dest.zAffSdst); 2716 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2717 assert( pEList!=0 ); 2718 assert( pEList->nExpr>0 ); 2719 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2720 for(i=0; i<nVal; i++){ 2721 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2722 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2723 pParse, p, pEList->a[i].pExpr 2724 ); 2725 } 2726 } 2727 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2728 /* Case 2: expr IN (exprlist) 2729 ** 2730 ** For each expression, build an index key from the evaluation and 2731 ** store it in the temporary table. If <expr> is a column, then use 2732 ** that columns affinity when building index keys. If <expr> is not 2733 ** a column, use numeric affinity. 2734 */ 2735 char affinity; /* Affinity of the LHS of the IN */ 2736 int i; 2737 ExprList *pList = pExpr->x.pList; 2738 struct ExprList_item *pItem; 2739 int r1, r2, r3; 2740 affinity = sqlite3ExprAffinity(pLeft); 2741 if( !affinity ){ 2742 affinity = SQLITE_AFF_BLOB; 2743 } 2744 if( pKeyInfo ){ 2745 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2746 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2747 } 2748 2749 /* Loop through each expression in <exprlist>. */ 2750 r1 = sqlite3GetTempReg(pParse); 2751 r2 = sqlite3GetTempReg(pParse); 2752 if( isRowid ) sqlite3VdbeAddOp4(v, OP_Blob, 0, r2, 0, "", P4_STATIC); 2753 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2754 Expr *pE2 = pItem->pExpr; 2755 int iValToIns; 2756 2757 /* If the expression is not constant then we will need to 2758 ** disable the test that was generated above that makes sure 2759 ** this code only executes once. Because for a non-constant 2760 ** expression we need to rerun this code each time. 2761 */ 2762 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 2763 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 2764 jmpIfDynamic = -1; 2765 } 2766 2767 /* Evaluate the expression and insert it into the temp table */ 2768 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 2769 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 2770 }else{ 2771 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2772 if( isRowid ){ 2773 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2774 sqlite3VdbeCurrentAddr(v)+2); 2775 VdbeCoverage(v); 2776 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 2777 }else{ 2778 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2779 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1); 2780 } 2781 } 2782 } 2783 sqlite3ReleaseTempReg(pParse, r1); 2784 sqlite3ReleaseTempReg(pParse, r2); 2785 } 2786 if( pKeyInfo ){ 2787 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2788 } 2789 break; 2790 } 2791 2792 case TK_EXISTS: 2793 case TK_SELECT: 2794 default: { 2795 /* Case 3: (SELECT ... FROM ...) 2796 ** or: EXISTS(SELECT ... FROM ...) 2797 ** 2798 ** For a SELECT, generate code to put the values for all columns of 2799 ** the first row into an array of registers and return the index of 2800 ** the first register. 2801 ** 2802 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2803 ** into a register and return that register number. 2804 ** 2805 ** In both cases, the query is augmented with "LIMIT 1". Any 2806 ** preexisting limit is discarded in place of the new LIMIT 1. 2807 */ 2808 Select *pSel; /* SELECT statement to encode */ 2809 SelectDest dest; /* How to deal with SELECT result */ 2810 int nReg; /* Registers to allocate */ 2811 Expr *pLimit; /* New limit expression */ 2812 2813 testcase( pExpr->op==TK_EXISTS ); 2814 testcase( pExpr->op==TK_SELECT ); 2815 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2816 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2817 2818 pSel = pExpr->x.pSelect; 2819 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY", 2820 jmpIfDynamic>=0?"":"CORRELATED ")); 2821 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2822 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2823 pParse->nMem += nReg; 2824 if( pExpr->op==TK_SELECT ){ 2825 dest.eDest = SRT_Mem; 2826 dest.iSdst = dest.iSDParm; 2827 dest.nSdst = nReg; 2828 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2829 VdbeComment((v, "Init subquery result")); 2830 }else{ 2831 dest.eDest = SRT_Exists; 2832 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2833 VdbeComment((v, "Init EXISTS result")); 2834 } 2835 pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0); 2836 if( pSel->pLimit ){ 2837 sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft); 2838 pSel->pLimit->pLeft = pLimit; 2839 }else{ 2840 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 2841 } 2842 pSel->iLimit = 0; 2843 if( sqlite3Select(pParse, pSel, &dest) ){ 2844 return 0; 2845 } 2846 rReg = dest.iSDParm; 2847 ExprSetVVAProperty(pExpr, EP_NoReduce); 2848 break; 2849 } 2850 } 2851 2852 if( rHasNullFlag ){ 2853 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2854 } 2855 2856 if( jmpIfDynamic>=0 ){ 2857 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2858 } 2859 2860 return rReg; 2861 } 2862 #endif /* SQLITE_OMIT_SUBQUERY */ 2863 2864 #ifndef SQLITE_OMIT_SUBQUERY 2865 /* 2866 ** Expr pIn is an IN(...) expression. This function checks that the 2867 ** sub-select on the RHS of the IN() operator has the same number of 2868 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 2869 ** a sub-query, that the LHS is a vector of size 1. 2870 */ 2871 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 2872 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 2873 if( (pIn->flags & EP_xIsSelect) ){ 2874 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 2875 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 2876 return 1; 2877 } 2878 }else if( nVector!=1 ){ 2879 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 2880 return 1; 2881 } 2882 return 0; 2883 } 2884 #endif 2885 2886 #ifndef SQLITE_OMIT_SUBQUERY 2887 /* 2888 ** Generate code for an IN expression. 2889 ** 2890 ** x IN (SELECT ...) 2891 ** x IN (value, value, ...) 2892 ** 2893 ** The left-hand side (LHS) is a scalar or vector expression. The 2894 ** right-hand side (RHS) is an array of zero or more scalar values, or a 2895 ** subquery. If the RHS is a subquery, the number of result columns must 2896 ** match the number of columns in the vector on the LHS. If the RHS is 2897 ** a list of values, the LHS must be a scalar. 2898 ** 2899 ** The IN operator is true if the LHS value is contained within the RHS. 2900 ** The result is false if the LHS is definitely not in the RHS. The 2901 ** result is NULL if the presence of the LHS in the RHS cannot be 2902 ** determined due to NULLs. 2903 ** 2904 ** This routine generates code that jumps to destIfFalse if the LHS is not 2905 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2906 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2907 ** within the RHS then fall through. 2908 ** 2909 ** See the separate in-operator.md documentation file in the canonical 2910 ** SQLite source tree for additional information. 2911 */ 2912 static void sqlite3ExprCodeIN( 2913 Parse *pParse, /* Parsing and code generating context */ 2914 Expr *pExpr, /* The IN expression */ 2915 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2916 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2917 ){ 2918 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2919 int eType; /* Type of the RHS */ 2920 int rLhs; /* Register(s) holding the LHS values */ 2921 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 2922 Vdbe *v; /* Statement under construction */ 2923 int *aiMap = 0; /* Map from vector field to index column */ 2924 char *zAff = 0; /* Affinity string for comparisons */ 2925 int nVector; /* Size of vectors for this IN operator */ 2926 int iDummy; /* Dummy parameter to exprCodeVector() */ 2927 Expr *pLeft; /* The LHS of the IN operator */ 2928 int i; /* loop counter */ 2929 int destStep2; /* Where to jump when NULLs seen in step 2 */ 2930 int destStep6 = 0; /* Start of code for Step 6 */ 2931 int addrTruthOp; /* Address of opcode that determines the IN is true */ 2932 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 2933 int addrTop; /* Top of the step-6 loop */ 2934 2935 pLeft = pExpr->pLeft; 2936 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 2937 zAff = exprINAffinity(pParse, pExpr); 2938 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 2939 aiMap = (int*)sqlite3DbMallocZero( 2940 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 2941 ); 2942 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 2943 2944 /* Attempt to compute the RHS. After this step, if anything other than 2945 ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable 2946 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 2947 ** the RHS has not yet been coded. */ 2948 v = pParse->pVdbe; 2949 assert( v!=0 ); /* OOM detected prior to this routine */ 2950 VdbeNoopComment((v, "begin IN expr")); 2951 eType = sqlite3FindInIndex(pParse, pExpr, 2952 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2953 destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap); 2954 2955 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 2956 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 2957 ); 2958 #ifdef SQLITE_DEBUG 2959 /* Confirm that aiMap[] contains nVector integer values between 0 and 2960 ** nVector-1. */ 2961 for(i=0; i<nVector; i++){ 2962 int j, cnt; 2963 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 2964 assert( cnt==1 ); 2965 } 2966 #endif 2967 2968 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 2969 ** vector, then it is stored in an array of nVector registers starting 2970 ** at r1. 2971 ** 2972 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 2973 ** so that the fields are in the same order as an existing index. The 2974 ** aiMap[] array contains a mapping from the original LHS field order to 2975 ** the field order that matches the RHS index. 2976 */ 2977 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 2978 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 2979 if( i==nVector ){ 2980 /* LHS fields are not reordered */ 2981 rLhs = rLhsOrig; 2982 }else{ 2983 /* Need to reorder the LHS fields according to aiMap */ 2984 rLhs = sqlite3GetTempRange(pParse, nVector); 2985 for(i=0; i<nVector; i++){ 2986 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 2987 } 2988 } 2989 2990 /* If sqlite3FindInIndex() did not find or create an index that is 2991 ** suitable for evaluating the IN operator, then evaluate using a 2992 ** sequence of comparisons. 2993 ** 2994 ** This is step (1) in the in-operator.md optimized algorithm. 2995 */ 2996 if( eType==IN_INDEX_NOOP ){ 2997 ExprList *pList = pExpr->x.pList; 2998 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2999 int labelOk = sqlite3VdbeMakeLabel(v); 3000 int r2, regToFree; 3001 int regCkNull = 0; 3002 int ii; 3003 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3004 if( destIfNull!=destIfFalse ){ 3005 regCkNull = sqlite3GetTempReg(pParse); 3006 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3007 } 3008 for(ii=0; ii<pList->nExpr; ii++){ 3009 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3010 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3011 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3012 } 3013 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3014 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 3015 (void*)pColl, P4_COLLSEQ); 3016 VdbeCoverageIf(v, ii<pList->nExpr-1); 3017 VdbeCoverageIf(v, ii==pList->nExpr-1); 3018 sqlite3VdbeChangeP5(v, zAff[0]); 3019 }else{ 3020 assert( destIfNull==destIfFalse ); 3021 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 3022 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 3023 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3024 } 3025 sqlite3ReleaseTempReg(pParse, regToFree); 3026 } 3027 if( regCkNull ){ 3028 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3029 sqlite3VdbeGoto(v, destIfFalse); 3030 } 3031 sqlite3VdbeResolveLabel(v, labelOk); 3032 sqlite3ReleaseTempReg(pParse, regCkNull); 3033 goto sqlite3ExprCodeIN_finished; 3034 } 3035 3036 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3037 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3038 ** We will then skip the binary search of the RHS. 3039 */ 3040 if( destIfNull==destIfFalse ){ 3041 destStep2 = destIfFalse; 3042 }else{ 3043 destStep2 = destStep6 = sqlite3VdbeMakeLabel(v); 3044 } 3045 for(i=0; i<nVector; i++){ 3046 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3047 if( sqlite3ExprCanBeNull(p) ){ 3048 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3049 VdbeCoverage(v); 3050 } 3051 } 3052 3053 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3054 ** of the RHS using the LHS as a probe. If found, the result is 3055 ** true. 3056 */ 3057 if( eType==IN_INDEX_ROWID ){ 3058 /* In this case, the RHS is the ROWID of table b-tree and so we also 3059 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3060 ** into a single opcode. */ 3061 sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs); 3062 VdbeCoverage(v); 3063 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3064 }else{ 3065 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3066 if( destIfFalse==destIfNull ){ 3067 /* Combine Step 3 and Step 5 into a single opcode */ 3068 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, 3069 rLhs, nVector); VdbeCoverage(v); 3070 goto sqlite3ExprCodeIN_finished; 3071 } 3072 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3073 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, 3074 rLhs, nVector); VdbeCoverage(v); 3075 } 3076 3077 /* Step 4. If the RHS is known to be non-NULL and we did not find 3078 ** an match on the search above, then the result must be FALSE. 3079 */ 3080 if( rRhsHasNull && nVector==1 ){ 3081 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3082 VdbeCoverage(v); 3083 } 3084 3085 /* Step 5. If we do not care about the difference between NULL and 3086 ** FALSE, then just return false. 3087 */ 3088 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3089 3090 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3091 ** If any comparison is NULL, then the result is NULL. If all 3092 ** comparisons are FALSE then the final result is FALSE. 3093 ** 3094 ** For a scalar LHS, it is sufficient to check just the first row 3095 ** of the RHS. 3096 */ 3097 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3098 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 3099 VdbeCoverage(v); 3100 if( nVector>1 ){ 3101 destNotNull = sqlite3VdbeMakeLabel(v); 3102 }else{ 3103 /* For nVector==1, combine steps 6 and 7 by immediately returning 3104 ** FALSE if the first comparison is not NULL */ 3105 destNotNull = destIfFalse; 3106 } 3107 for(i=0; i<nVector; i++){ 3108 Expr *p; 3109 CollSeq *pColl; 3110 int r3 = sqlite3GetTempReg(pParse); 3111 p = sqlite3VectorFieldSubexpr(pLeft, i); 3112 pColl = sqlite3ExprCollSeq(pParse, p); 3113 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3); 3114 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3115 (void*)pColl, P4_COLLSEQ); 3116 VdbeCoverage(v); 3117 sqlite3ReleaseTempReg(pParse, r3); 3118 } 3119 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3120 if( nVector>1 ){ 3121 sqlite3VdbeResolveLabel(v, destNotNull); 3122 sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1); 3123 VdbeCoverage(v); 3124 3125 /* Step 7: If we reach this point, we know that the result must 3126 ** be false. */ 3127 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3128 } 3129 3130 /* Jumps here in order to return true. */ 3131 sqlite3VdbeJumpHere(v, addrTruthOp); 3132 3133 sqlite3ExprCodeIN_finished: 3134 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3135 VdbeComment((v, "end IN expr")); 3136 sqlite3ExprCodeIN_oom_error: 3137 sqlite3DbFree(pParse->db, aiMap); 3138 sqlite3DbFree(pParse->db, zAff); 3139 } 3140 #endif /* SQLITE_OMIT_SUBQUERY */ 3141 3142 #ifndef SQLITE_OMIT_FLOATING_POINT 3143 /* 3144 ** Generate an instruction that will put the floating point 3145 ** value described by z[0..n-1] into register iMem. 3146 ** 3147 ** The z[] string will probably not be zero-terminated. But the 3148 ** z[n] character is guaranteed to be something that does not look 3149 ** like the continuation of the number. 3150 */ 3151 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3152 if( ALWAYS(z!=0) ){ 3153 double value; 3154 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3155 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3156 if( negateFlag ) value = -value; 3157 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3158 } 3159 } 3160 #endif 3161 3162 3163 /* 3164 ** Generate an instruction that will put the integer describe by 3165 ** text z[0..n-1] into register iMem. 3166 ** 3167 ** Expr.u.zToken is always UTF8 and zero-terminated. 3168 */ 3169 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3170 Vdbe *v = pParse->pVdbe; 3171 if( pExpr->flags & EP_IntValue ){ 3172 int i = pExpr->u.iValue; 3173 assert( i>=0 ); 3174 if( negFlag ) i = -i; 3175 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3176 }else{ 3177 int c; 3178 i64 value; 3179 const char *z = pExpr->u.zToken; 3180 assert( z!=0 ); 3181 c = sqlite3DecOrHexToI64(z, &value); 3182 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3183 #ifdef SQLITE_OMIT_FLOATING_POINT 3184 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3185 #else 3186 #ifndef SQLITE_OMIT_HEX_INTEGER 3187 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3188 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3189 }else 3190 #endif 3191 { 3192 codeReal(v, z, negFlag, iMem); 3193 } 3194 #endif 3195 }else{ 3196 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3197 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3198 } 3199 } 3200 } 3201 3202 3203 /* Generate code that will load into register regOut a value that is 3204 ** appropriate for the iIdxCol-th column of index pIdx. 3205 */ 3206 void sqlite3ExprCodeLoadIndexColumn( 3207 Parse *pParse, /* The parsing context */ 3208 Index *pIdx, /* The index whose column is to be loaded */ 3209 int iTabCur, /* Cursor pointing to a table row */ 3210 int iIdxCol, /* The column of the index to be loaded */ 3211 int regOut /* Store the index column value in this register */ 3212 ){ 3213 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3214 if( iTabCol==XN_EXPR ){ 3215 assert( pIdx->aColExpr ); 3216 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3217 pParse->iSelfTab = iTabCur + 1; 3218 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3219 pParse->iSelfTab = 0; 3220 }else{ 3221 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3222 iTabCol, regOut); 3223 } 3224 } 3225 3226 /* 3227 ** Generate code to extract the value of the iCol-th column of a table. 3228 */ 3229 void sqlite3ExprCodeGetColumnOfTable( 3230 Vdbe *v, /* The VDBE under construction */ 3231 Table *pTab, /* The table containing the value */ 3232 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3233 int iCol, /* Index of the column to extract */ 3234 int regOut /* Extract the value into this register */ 3235 ){ 3236 if( pTab==0 ){ 3237 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3238 return; 3239 } 3240 if( iCol<0 || iCol==pTab->iPKey ){ 3241 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3242 }else{ 3243 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 3244 int x = iCol; 3245 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ 3246 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3247 } 3248 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3249 } 3250 if( iCol>=0 ){ 3251 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3252 } 3253 } 3254 3255 /* 3256 ** Generate code that will extract the iColumn-th column from 3257 ** table pTab and store the column value in register iReg. 3258 ** 3259 ** There must be an open cursor to pTab in iTable when this routine 3260 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3261 */ 3262 int sqlite3ExprCodeGetColumn( 3263 Parse *pParse, /* Parsing and code generating context */ 3264 Table *pTab, /* Description of the table we are reading from */ 3265 int iColumn, /* Index of the table column */ 3266 int iTable, /* The cursor pointing to the table */ 3267 int iReg, /* Store results here */ 3268 u8 p5 /* P5 value for OP_Column + FLAGS */ 3269 ){ 3270 Vdbe *v = pParse->pVdbe; 3271 assert( v!=0 ); 3272 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 3273 if( p5 ){ 3274 sqlite3VdbeChangeP5(v, p5); 3275 } 3276 return iReg; 3277 } 3278 3279 /* 3280 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3281 ** over to iTo..iTo+nReg-1. 3282 */ 3283 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3284 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 3285 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3286 } 3287 3288 /* 3289 ** Convert a scalar expression node to a TK_REGISTER referencing 3290 ** register iReg. The caller must ensure that iReg already contains 3291 ** the correct value for the expression. 3292 */ 3293 static void exprToRegister(Expr *p, int iReg){ 3294 p->op2 = p->op; 3295 p->op = TK_REGISTER; 3296 p->iTable = iReg; 3297 ExprClearProperty(p, EP_Skip); 3298 } 3299 3300 /* 3301 ** Evaluate an expression (either a vector or a scalar expression) and store 3302 ** the result in continguous temporary registers. Return the index of 3303 ** the first register used to store the result. 3304 ** 3305 ** If the returned result register is a temporary scalar, then also write 3306 ** that register number into *piFreeable. If the returned result register 3307 ** is not a temporary or if the expression is a vector set *piFreeable 3308 ** to 0. 3309 */ 3310 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3311 int iResult; 3312 int nResult = sqlite3ExprVectorSize(p); 3313 if( nResult==1 ){ 3314 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3315 }else{ 3316 *piFreeable = 0; 3317 if( p->op==TK_SELECT ){ 3318 #if SQLITE_OMIT_SUBQUERY 3319 iResult = 0; 3320 #else 3321 iResult = sqlite3CodeSubselect(pParse, p, 0, 0); 3322 #endif 3323 }else{ 3324 int i; 3325 iResult = pParse->nMem+1; 3326 pParse->nMem += nResult; 3327 for(i=0; i<nResult; i++){ 3328 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3329 } 3330 } 3331 } 3332 return iResult; 3333 } 3334 3335 3336 /* 3337 ** Generate code into the current Vdbe to evaluate the given 3338 ** expression. Attempt to store the results in register "target". 3339 ** Return the register where results are stored. 3340 ** 3341 ** With this routine, there is no guarantee that results will 3342 ** be stored in target. The result might be stored in some other 3343 ** register if it is convenient to do so. The calling function 3344 ** must check the return code and move the results to the desired 3345 ** register. 3346 */ 3347 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3348 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3349 int op; /* The opcode being coded */ 3350 int inReg = target; /* Results stored in register inReg */ 3351 int regFree1 = 0; /* If non-zero free this temporary register */ 3352 int regFree2 = 0; /* If non-zero free this temporary register */ 3353 int r1, r2; /* Various register numbers */ 3354 Expr tempX; /* Temporary expression node */ 3355 int p5 = 0; 3356 3357 assert( target>0 && target<=pParse->nMem ); 3358 if( v==0 ){ 3359 assert( pParse->db->mallocFailed ); 3360 return 0; 3361 } 3362 3363 expr_code_doover: 3364 if( pExpr==0 ){ 3365 op = TK_NULL; 3366 }else{ 3367 op = pExpr->op; 3368 } 3369 switch( op ){ 3370 case TK_AGG_COLUMN: { 3371 AggInfo *pAggInfo = pExpr->pAggInfo; 3372 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3373 if( !pAggInfo->directMode ){ 3374 assert( pCol->iMem>0 ); 3375 return pCol->iMem; 3376 }else if( pAggInfo->useSortingIdx ){ 3377 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3378 pCol->iSorterColumn, target); 3379 return target; 3380 } 3381 /* Otherwise, fall thru into the TK_COLUMN case */ 3382 } 3383 case TK_COLUMN: { 3384 int iTab = pExpr->iTable; 3385 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3386 /* This COLUMN expression is really a constant due to WHERE clause 3387 ** constraints, and that constant is coded by the pExpr->pLeft 3388 ** expresssion. However, make sure the constant has the correct 3389 ** datatype by applying the Affinity of the table column to the 3390 ** constant. 3391 */ 3392 int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3393 int aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3394 if( aff!=SQLITE_AFF_BLOB ){ 3395 static const char zAff[] = "B\000C\000D\000E"; 3396 assert( SQLITE_AFF_BLOB=='A' ); 3397 assert( SQLITE_AFF_TEXT=='B' ); 3398 if( iReg!=target ){ 3399 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target); 3400 iReg = target; 3401 } 3402 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3403 &zAff[(aff-'B')*2], P4_STATIC); 3404 } 3405 return iReg; 3406 } 3407 if( iTab<0 ){ 3408 if( pParse->iSelfTab<0 ){ 3409 /* Generating CHECK constraints or inserting into partial index */ 3410 return pExpr->iColumn - pParse->iSelfTab; 3411 }else{ 3412 /* Coding an expression that is part of an index where column names 3413 ** in the index refer to the table to which the index belongs */ 3414 iTab = pParse->iSelfTab - 1; 3415 } 3416 } 3417 return sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3418 pExpr->iColumn, iTab, target, 3419 pExpr->op2); 3420 } 3421 case TK_INTEGER: { 3422 codeInteger(pParse, pExpr, 0, target); 3423 return target; 3424 } 3425 case TK_TRUEFALSE: { 3426 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3427 return target; 3428 } 3429 #ifndef SQLITE_OMIT_FLOATING_POINT 3430 case TK_FLOAT: { 3431 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3432 codeReal(v, pExpr->u.zToken, 0, target); 3433 return target; 3434 } 3435 #endif 3436 case TK_STRING: { 3437 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3438 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3439 return target; 3440 } 3441 case TK_NULL: { 3442 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3443 return target; 3444 } 3445 #ifndef SQLITE_OMIT_BLOB_LITERAL 3446 case TK_BLOB: { 3447 int n; 3448 const char *z; 3449 char *zBlob; 3450 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3451 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3452 assert( pExpr->u.zToken[1]=='\'' ); 3453 z = &pExpr->u.zToken[2]; 3454 n = sqlite3Strlen30(z) - 1; 3455 assert( z[n]=='\'' ); 3456 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3457 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3458 return target; 3459 } 3460 #endif 3461 case TK_VARIABLE: { 3462 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3463 assert( pExpr->u.zToken!=0 ); 3464 assert( pExpr->u.zToken[0]!=0 ); 3465 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3466 if( pExpr->u.zToken[1]!=0 ){ 3467 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3468 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); 3469 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3470 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3471 } 3472 return target; 3473 } 3474 case TK_REGISTER: { 3475 return pExpr->iTable; 3476 } 3477 #ifndef SQLITE_OMIT_CAST 3478 case TK_CAST: { 3479 /* Expressions of the form: CAST(pLeft AS token) */ 3480 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3481 if( inReg!=target ){ 3482 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3483 inReg = target; 3484 } 3485 sqlite3VdbeAddOp2(v, OP_Cast, target, 3486 sqlite3AffinityType(pExpr->u.zToken, 0)); 3487 return inReg; 3488 } 3489 #endif /* SQLITE_OMIT_CAST */ 3490 case TK_IS: 3491 case TK_ISNOT: 3492 op = (op==TK_IS) ? TK_EQ : TK_NE; 3493 p5 = SQLITE_NULLEQ; 3494 /* fall-through */ 3495 case TK_LT: 3496 case TK_LE: 3497 case TK_GT: 3498 case TK_GE: 3499 case TK_NE: 3500 case TK_EQ: { 3501 Expr *pLeft = pExpr->pLeft; 3502 if( sqlite3ExprIsVector(pLeft) ){ 3503 codeVectorCompare(pParse, pExpr, target, op, p5); 3504 }else{ 3505 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3506 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3507 codeCompare(pParse, pLeft, pExpr->pRight, op, 3508 r1, r2, inReg, SQLITE_STOREP2 | p5); 3509 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3510 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3511 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3512 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3513 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3514 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3515 testcase( regFree1==0 ); 3516 testcase( regFree2==0 ); 3517 } 3518 break; 3519 } 3520 case TK_AND: 3521 case TK_OR: 3522 case TK_PLUS: 3523 case TK_STAR: 3524 case TK_MINUS: 3525 case TK_REM: 3526 case TK_BITAND: 3527 case TK_BITOR: 3528 case TK_SLASH: 3529 case TK_LSHIFT: 3530 case TK_RSHIFT: 3531 case TK_CONCAT: { 3532 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3533 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3534 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3535 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3536 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3537 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3538 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3539 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3540 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3541 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3542 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3543 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3544 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3545 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3546 testcase( regFree1==0 ); 3547 testcase( regFree2==0 ); 3548 break; 3549 } 3550 case TK_UMINUS: { 3551 Expr *pLeft = pExpr->pLeft; 3552 assert( pLeft ); 3553 if( pLeft->op==TK_INTEGER ){ 3554 codeInteger(pParse, pLeft, 1, target); 3555 return target; 3556 #ifndef SQLITE_OMIT_FLOATING_POINT 3557 }else if( pLeft->op==TK_FLOAT ){ 3558 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3559 codeReal(v, pLeft->u.zToken, 1, target); 3560 return target; 3561 #endif 3562 }else{ 3563 tempX.op = TK_INTEGER; 3564 tempX.flags = EP_IntValue|EP_TokenOnly; 3565 tempX.u.iValue = 0; 3566 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3567 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3568 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3569 testcase( regFree2==0 ); 3570 } 3571 break; 3572 } 3573 case TK_BITNOT: 3574 case TK_NOT: { 3575 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3576 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3577 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3578 testcase( regFree1==0 ); 3579 sqlite3VdbeAddOp2(v, op, r1, inReg); 3580 break; 3581 } 3582 case TK_TRUTH: { 3583 int isTrue; /* IS TRUE or IS NOT TRUE */ 3584 int bNormal; /* IS TRUE or IS FALSE */ 3585 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3586 testcase( regFree1==0 ); 3587 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 3588 bNormal = pExpr->op2==TK_IS; 3589 testcase( isTrue && bNormal); 3590 testcase( !isTrue && bNormal); 3591 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 3592 break; 3593 } 3594 case TK_ISNULL: 3595 case TK_NOTNULL: { 3596 int addr; 3597 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3598 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3599 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3600 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3601 testcase( regFree1==0 ); 3602 addr = sqlite3VdbeAddOp1(v, op, r1); 3603 VdbeCoverageIf(v, op==TK_ISNULL); 3604 VdbeCoverageIf(v, op==TK_NOTNULL); 3605 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3606 sqlite3VdbeJumpHere(v, addr); 3607 break; 3608 } 3609 case TK_AGG_FUNCTION: { 3610 AggInfo *pInfo = pExpr->pAggInfo; 3611 if( pInfo==0 ){ 3612 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3613 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3614 }else{ 3615 return pInfo->aFunc[pExpr->iAgg].iMem; 3616 } 3617 break; 3618 } 3619 case TK_FUNCTION: { 3620 ExprList *pFarg; /* List of function arguments */ 3621 int nFarg; /* Number of function arguments */ 3622 FuncDef *pDef; /* The function definition object */ 3623 const char *zId; /* The function name */ 3624 u32 constMask = 0; /* Mask of function arguments that are constant */ 3625 int i; /* Loop counter */ 3626 sqlite3 *db = pParse->db; /* The database connection */ 3627 u8 enc = ENC(db); /* The text encoding used by this database */ 3628 CollSeq *pColl = 0; /* A collating sequence */ 3629 3630 #ifndef SQLITE_OMIT_WINDOWFUNC 3631 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3632 return pExpr->y.pWin->regResult; 3633 } 3634 #endif 3635 3636 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3637 /* SQL functions can be expensive. So try to move constant functions 3638 ** out of the inner loop, even if that means an extra OP_Copy. */ 3639 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3640 } 3641 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3642 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3643 pFarg = 0; 3644 }else{ 3645 pFarg = pExpr->x.pList; 3646 } 3647 nFarg = pFarg ? pFarg->nExpr : 0; 3648 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3649 zId = pExpr->u.zToken; 3650 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3651 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3652 if( pDef==0 && pParse->explain ){ 3653 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3654 } 3655 #endif 3656 if( pDef==0 || pDef->xFinalize!=0 ){ 3657 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3658 break; 3659 } 3660 3661 /* Attempt a direct implementation of the built-in COALESCE() and 3662 ** IFNULL() functions. This avoids unnecessary evaluation of 3663 ** arguments past the first non-NULL argument. 3664 */ 3665 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3666 int endCoalesce = sqlite3VdbeMakeLabel(v); 3667 assert( nFarg>=2 ); 3668 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3669 for(i=1; i<nFarg; i++){ 3670 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3671 VdbeCoverage(v); 3672 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3673 } 3674 sqlite3VdbeResolveLabel(v, endCoalesce); 3675 break; 3676 } 3677 3678 /* The UNLIKELY() function is a no-op. The result is the value 3679 ** of the first argument. 3680 */ 3681 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3682 assert( nFarg>=1 ); 3683 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3684 } 3685 3686 #ifdef SQLITE_DEBUG 3687 /* The AFFINITY() function evaluates to a string that describes 3688 ** the type affinity of the argument. This is used for testing of 3689 ** the SQLite type logic. 3690 */ 3691 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3692 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3693 char aff; 3694 assert( nFarg==1 ); 3695 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3696 sqlite3VdbeLoadString(v, target, 3697 aff ? azAff[aff-SQLITE_AFF_BLOB] : "none"); 3698 return target; 3699 } 3700 #endif 3701 3702 for(i=0; i<nFarg; i++){ 3703 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3704 testcase( i==31 ); 3705 constMask |= MASKBIT32(i); 3706 } 3707 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3708 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3709 } 3710 } 3711 if( pFarg ){ 3712 if( constMask ){ 3713 r1 = pParse->nMem+1; 3714 pParse->nMem += nFarg; 3715 }else{ 3716 r1 = sqlite3GetTempRange(pParse, nFarg); 3717 } 3718 3719 /* For length() and typeof() functions with a column argument, 3720 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3721 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3722 ** loading. 3723 */ 3724 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3725 u8 exprOp; 3726 assert( nFarg==1 ); 3727 assert( pFarg->a[0].pExpr!=0 ); 3728 exprOp = pFarg->a[0].pExpr->op; 3729 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3730 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3731 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3732 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3733 pFarg->a[0].pExpr->op2 = 3734 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3735 } 3736 } 3737 3738 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3739 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3740 }else{ 3741 r1 = 0; 3742 } 3743 #ifndef SQLITE_OMIT_VIRTUALTABLE 3744 /* Possibly overload the function if the first argument is 3745 ** a virtual table column. 3746 ** 3747 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3748 ** second argument, not the first, as the argument to test to 3749 ** see if it is a column in a virtual table. This is done because 3750 ** the left operand of infix functions (the operand we want to 3751 ** control overloading) ends up as the second argument to the 3752 ** function. The expression "A glob B" is equivalent to 3753 ** "glob(B,A). We want to use the A in "A glob B" to test 3754 ** for function overloading. But we use the B term in "glob(B,A)". 3755 */ 3756 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 3757 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3758 }else if( nFarg>0 ){ 3759 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3760 } 3761 #endif 3762 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3763 if( !pColl ) pColl = db->pDfltColl; 3764 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3765 } 3766 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 3767 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 3768 Expr *pArg = pFarg->a[0].pExpr; 3769 if( pArg->op==TK_COLUMN ){ 3770 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 3771 }else{ 3772 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3773 } 3774 }else 3775 #endif 3776 { 3777 sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0, 3778 constMask, r1, target, (char*)pDef, P4_FUNCDEF); 3779 sqlite3VdbeChangeP5(v, (u8)nFarg); 3780 } 3781 if( nFarg && constMask==0 ){ 3782 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3783 } 3784 return target; 3785 } 3786 #ifndef SQLITE_OMIT_SUBQUERY 3787 case TK_EXISTS: 3788 case TK_SELECT: { 3789 int nCol; 3790 testcase( op==TK_EXISTS ); 3791 testcase( op==TK_SELECT ); 3792 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 3793 sqlite3SubselectError(pParse, nCol, 1); 3794 }else{ 3795 return sqlite3CodeSubselect(pParse, pExpr, 0, 0); 3796 } 3797 break; 3798 } 3799 case TK_SELECT_COLUMN: { 3800 int n; 3801 if( pExpr->pLeft->iTable==0 ){ 3802 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0); 3803 } 3804 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 3805 if( pExpr->iTable 3806 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 3807 ){ 3808 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 3809 pExpr->iTable, n); 3810 } 3811 return pExpr->pLeft->iTable + pExpr->iColumn; 3812 } 3813 case TK_IN: { 3814 int destIfFalse = sqlite3VdbeMakeLabel(v); 3815 int destIfNull = sqlite3VdbeMakeLabel(v); 3816 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3817 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3818 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3819 sqlite3VdbeResolveLabel(v, destIfFalse); 3820 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3821 sqlite3VdbeResolveLabel(v, destIfNull); 3822 return target; 3823 } 3824 #endif /* SQLITE_OMIT_SUBQUERY */ 3825 3826 3827 /* 3828 ** x BETWEEN y AND z 3829 ** 3830 ** This is equivalent to 3831 ** 3832 ** x>=y AND x<=z 3833 ** 3834 ** X is stored in pExpr->pLeft. 3835 ** Y is stored in pExpr->pList->a[0].pExpr. 3836 ** Z is stored in pExpr->pList->a[1].pExpr. 3837 */ 3838 case TK_BETWEEN: { 3839 exprCodeBetween(pParse, pExpr, target, 0, 0); 3840 return target; 3841 } 3842 case TK_SPAN: 3843 case TK_COLLATE: 3844 case TK_UPLUS: { 3845 pExpr = pExpr->pLeft; 3846 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 3847 } 3848 3849 case TK_TRIGGER: { 3850 /* If the opcode is TK_TRIGGER, then the expression is a reference 3851 ** to a column in the new.* or old.* pseudo-tables available to 3852 ** trigger programs. In this case Expr.iTable is set to 1 for the 3853 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3854 ** is set to the column of the pseudo-table to read, or to -1 to 3855 ** read the rowid field. 3856 ** 3857 ** The expression is implemented using an OP_Param opcode. The p1 3858 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3859 ** to reference another column of the old.* pseudo-table, where 3860 ** i is the index of the column. For a new.rowid reference, p1 is 3861 ** set to (n+1), where n is the number of columns in each pseudo-table. 3862 ** For a reference to any other column in the new.* pseudo-table, p1 3863 ** is set to (n+2+i), where n and i are as defined previously. For 3864 ** example, if the table on which triggers are being fired is 3865 ** declared as: 3866 ** 3867 ** CREATE TABLE t1(a, b); 3868 ** 3869 ** Then p1 is interpreted as follows: 3870 ** 3871 ** p1==0 -> old.rowid p1==3 -> new.rowid 3872 ** p1==1 -> old.a p1==4 -> new.a 3873 ** p1==2 -> old.b p1==5 -> new.b 3874 */ 3875 Table *pTab = pExpr->y.pTab; 3876 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3877 3878 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3879 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3880 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3881 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3882 3883 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3884 VdbeComment((v, "r[%d]=%s.%s", target, 3885 (pExpr->iTable ? "new" : "old"), 3886 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[pExpr->iColumn].zName) 3887 )); 3888 3889 #ifndef SQLITE_OMIT_FLOATING_POINT 3890 /* If the column has REAL affinity, it may currently be stored as an 3891 ** integer. Use OP_RealAffinity to make sure it is really real. 3892 ** 3893 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3894 ** floating point when extracting it from the record. */ 3895 if( pExpr->iColumn>=0 3896 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3897 ){ 3898 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3899 } 3900 #endif 3901 break; 3902 } 3903 3904 case TK_VECTOR: { 3905 sqlite3ErrorMsg(pParse, "row value misused"); 3906 break; 3907 } 3908 3909 case TK_IF_NULL_ROW: { 3910 int addrINR; 3911 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 3912 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3913 sqlite3VdbeJumpHere(v, addrINR); 3914 sqlite3VdbeChangeP3(v, addrINR, inReg); 3915 break; 3916 } 3917 3918 /* 3919 ** Form A: 3920 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3921 ** 3922 ** Form B: 3923 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3924 ** 3925 ** Form A is can be transformed into the equivalent form B as follows: 3926 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3927 ** WHEN x=eN THEN rN ELSE y END 3928 ** 3929 ** X (if it exists) is in pExpr->pLeft. 3930 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3931 ** odd. The Y is also optional. If the number of elements in x.pList 3932 ** is even, then Y is omitted and the "otherwise" result is NULL. 3933 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3934 ** 3935 ** The result of the expression is the Ri for the first matching Ei, 3936 ** or if there is no matching Ei, the ELSE term Y, or if there is 3937 ** no ELSE term, NULL. 3938 */ 3939 default: assert( op==TK_CASE ); { 3940 int endLabel; /* GOTO label for end of CASE stmt */ 3941 int nextCase; /* GOTO label for next WHEN clause */ 3942 int nExpr; /* 2x number of WHEN terms */ 3943 int i; /* Loop counter */ 3944 ExprList *pEList; /* List of WHEN terms */ 3945 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3946 Expr opCompare; /* The X==Ei expression */ 3947 Expr *pX; /* The X expression */ 3948 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 3949 3950 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 3951 assert(pExpr->x.pList->nExpr > 0); 3952 pEList = pExpr->x.pList; 3953 aListelem = pEList->a; 3954 nExpr = pEList->nExpr; 3955 endLabel = sqlite3VdbeMakeLabel(v); 3956 if( (pX = pExpr->pLeft)!=0 ){ 3957 tempX = *pX; 3958 testcase( pX->op==TK_COLUMN ); 3959 exprToRegister(&tempX, exprCodeVector(pParse, &tempX, ®Free1)); 3960 testcase( regFree1==0 ); 3961 memset(&opCompare, 0, sizeof(opCompare)); 3962 opCompare.op = TK_EQ; 3963 opCompare.pLeft = &tempX; 3964 pTest = &opCompare; 3965 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 3966 ** The value in regFree1 might get SCopy-ed into the file result. 3967 ** So make sure that the regFree1 register is not reused for other 3968 ** purposes and possibly overwritten. */ 3969 regFree1 = 0; 3970 } 3971 for(i=0; i<nExpr-1; i=i+2){ 3972 if( pX ){ 3973 assert( pTest!=0 ); 3974 opCompare.pRight = aListelem[i].pExpr; 3975 }else{ 3976 pTest = aListelem[i].pExpr; 3977 } 3978 nextCase = sqlite3VdbeMakeLabel(v); 3979 testcase( pTest->op==TK_COLUMN ); 3980 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 3981 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 3982 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 3983 sqlite3VdbeGoto(v, endLabel); 3984 sqlite3VdbeResolveLabel(v, nextCase); 3985 } 3986 if( (nExpr&1)!=0 ){ 3987 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3988 }else{ 3989 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3990 } 3991 sqlite3VdbeResolveLabel(v, endLabel); 3992 break; 3993 } 3994 #ifndef SQLITE_OMIT_TRIGGER 3995 case TK_RAISE: { 3996 assert( pExpr->affinity==OE_Rollback 3997 || pExpr->affinity==OE_Abort 3998 || pExpr->affinity==OE_Fail 3999 || pExpr->affinity==OE_Ignore 4000 ); 4001 if( !pParse->pTriggerTab ){ 4002 sqlite3ErrorMsg(pParse, 4003 "RAISE() may only be used within a trigger-program"); 4004 return 0; 4005 } 4006 if( pExpr->affinity==OE_Abort ){ 4007 sqlite3MayAbort(pParse); 4008 } 4009 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4010 if( pExpr->affinity==OE_Ignore ){ 4011 sqlite3VdbeAddOp4( 4012 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4013 VdbeCoverage(v); 4014 }else{ 4015 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4016 pExpr->affinity, pExpr->u.zToken, 0, 0); 4017 } 4018 4019 break; 4020 } 4021 #endif 4022 } 4023 sqlite3ReleaseTempReg(pParse, regFree1); 4024 sqlite3ReleaseTempReg(pParse, regFree2); 4025 return inReg; 4026 } 4027 4028 /* 4029 ** Factor out the code of the given expression to initialization time. 4030 ** 4031 ** If regDest>=0 then the result is always stored in that register and the 4032 ** result is not reusable. If regDest<0 then this routine is free to 4033 ** store the value whereever it wants. The register where the expression 4034 ** is stored is returned. When regDest<0, two identical expressions will 4035 ** code to the same register. 4036 */ 4037 int sqlite3ExprCodeAtInit( 4038 Parse *pParse, /* Parsing context */ 4039 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4040 int regDest /* Store the value in this register */ 4041 ){ 4042 ExprList *p; 4043 assert( ConstFactorOk(pParse) ); 4044 p = pParse->pConstExpr; 4045 if( regDest<0 && p ){ 4046 struct ExprList_item *pItem; 4047 int i; 4048 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4049 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4050 return pItem->u.iConstExprReg; 4051 } 4052 } 4053 } 4054 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4055 p = sqlite3ExprListAppend(pParse, p, pExpr); 4056 if( p ){ 4057 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4058 pItem->reusable = regDest<0; 4059 if( regDest<0 ) regDest = ++pParse->nMem; 4060 pItem->u.iConstExprReg = regDest; 4061 } 4062 pParse->pConstExpr = p; 4063 return regDest; 4064 } 4065 4066 /* 4067 ** Generate code to evaluate an expression and store the results 4068 ** into a register. Return the register number where the results 4069 ** are stored. 4070 ** 4071 ** If the register is a temporary register that can be deallocated, 4072 ** then write its number into *pReg. If the result register is not 4073 ** a temporary, then set *pReg to zero. 4074 ** 4075 ** If pExpr is a constant, then this routine might generate this 4076 ** code to fill the register in the initialization section of the 4077 ** VDBE program, in order to factor it out of the evaluation loop. 4078 */ 4079 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4080 int r2; 4081 pExpr = sqlite3ExprSkipCollate(pExpr); 4082 if( ConstFactorOk(pParse) 4083 && pExpr->op!=TK_REGISTER 4084 && sqlite3ExprIsConstantNotJoin(pExpr) 4085 ){ 4086 *pReg = 0; 4087 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4088 }else{ 4089 int r1 = sqlite3GetTempReg(pParse); 4090 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4091 if( r2==r1 ){ 4092 *pReg = r1; 4093 }else{ 4094 sqlite3ReleaseTempReg(pParse, r1); 4095 *pReg = 0; 4096 } 4097 } 4098 return r2; 4099 } 4100 4101 /* 4102 ** Generate code that will evaluate expression pExpr and store the 4103 ** results in register target. The results are guaranteed to appear 4104 ** in register target. 4105 */ 4106 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4107 int inReg; 4108 4109 assert( target>0 && target<=pParse->nMem ); 4110 if( pExpr && pExpr->op==TK_REGISTER ){ 4111 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 4112 }else{ 4113 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4114 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4115 if( inReg!=target && pParse->pVdbe ){ 4116 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4117 } 4118 } 4119 } 4120 4121 /* 4122 ** Make a transient copy of expression pExpr and then code it using 4123 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4124 ** except that the input expression is guaranteed to be unchanged. 4125 */ 4126 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4127 sqlite3 *db = pParse->db; 4128 pExpr = sqlite3ExprDup(db, pExpr, 0); 4129 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4130 sqlite3ExprDelete(db, pExpr); 4131 } 4132 4133 /* 4134 ** Generate code that will evaluate expression pExpr and store the 4135 ** results in register target. The results are guaranteed to appear 4136 ** in register target. If the expression is constant, then this routine 4137 ** might choose to code the expression at initialization time. 4138 */ 4139 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4140 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4141 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4142 }else{ 4143 sqlite3ExprCode(pParse, pExpr, target); 4144 } 4145 } 4146 4147 /* 4148 ** Generate code that evaluates the given expression and puts the result 4149 ** in register target. 4150 ** 4151 ** Also make a copy of the expression results into another "cache" register 4152 ** and modify the expression so that the next time it is evaluated, 4153 ** the result is a copy of the cache register. 4154 ** 4155 ** This routine is used for expressions that are used multiple 4156 ** times. They are evaluated once and the results of the expression 4157 ** are reused. 4158 */ 4159 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 4160 Vdbe *v = pParse->pVdbe; 4161 int iMem; 4162 4163 assert( target>0 ); 4164 assert( pExpr->op!=TK_REGISTER ); 4165 sqlite3ExprCode(pParse, pExpr, target); 4166 iMem = ++pParse->nMem; 4167 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 4168 exprToRegister(pExpr, iMem); 4169 } 4170 4171 /* 4172 ** Generate code that pushes the value of every element of the given 4173 ** expression list into a sequence of registers beginning at target. 4174 ** 4175 ** Return the number of elements evaluated. The number returned will 4176 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4177 ** is defined. 4178 ** 4179 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4180 ** filled using OP_SCopy. OP_Copy must be used instead. 4181 ** 4182 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4183 ** factored out into initialization code. 4184 ** 4185 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4186 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4187 ** in registers at srcReg, and so the value can be copied from there. 4188 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4189 ** are simply omitted rather than being copied from srcReg. 4190 */ 4191 int sqlite3ExprCodeExprList( 4192 Parse *pParse, /* Parsing context */ 4193 ExprList *pList, /* The expression list to be coded */ 4194 int target, /* Where to write results */ 4195 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4196 u8 flags /* SQLITE_ECEL_* flags */ 4197 ){ 4198 struct ExprList_item *pItem; 4199 int i, j, n; 4200 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4201 Vdbe *v = pParse->pVdbe; 4202 assert( pList!=0 ); 4203 assert( target>0 ); 4204 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4205 n = pList->nExpr; 4206 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4207 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4208 Expr *pExpr = pItem->pExpr; 4209 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4210 if( pItem->bSorterRef ){ 4211 i--; 4212 n--; 4213 }else 4214 #endif 4215 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4216 if( flags & SQLITE_ECEL_OMITREF ){ 4217 i--; 4218 n--; 4219 }else{ 4220 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4221 } 4222 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4223 && sqlite3ExprIsConstantNotJoin(pExpr) 4224 ){ 4225 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4226 }else{ 4227 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4228 if( inReg!=target+i ){ 4229 VdbeOp *pOp; 4230 if( copyOp==OP_Copy 4231 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4232 && pOp->p1+pOp->p3+1==inReg 4233 && pOp->p2+pOp->p3+1==target+i 4234 ){ 4235 pOp->p3++; 4236 }else{ 4237 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4238 } 4239 } 4240 } 4241 } 4242 return n; 4243 } 4244 4245 /* 4246 ** Generate code for a BETWEEN operator. 4247 ** 4248 ** x BETWEEN y AND z 4249 ** 4250 ** The above is equivalent to 4251 ** 4252 ** x>=y AND x<=z 4253 ** 4254 ** Code it as such, taking care to do the common subexpression 4255 ** elimination of x. 4256 ** 4257 ** The xJumpIf parameter determines details: 4258 ** 4259 ** NULL: Store the boolean result in reg[dest] 4260 ** sqlite3ExprIfTrue: Jump to dest if true 4261 ** sqlite3ExprIfFalse: Jump to dest if false 4262 ** 4263 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4264 */ 4265 static void exprCodeBetween( 4266 Parse *pParse, /* Parsing and code generating context */ 4267 Expr *pExpr, /* The BETWEEN expression */ 4268 int dest, /* Jump destination or storage location */ 4269 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4270 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4271 ){ 4272 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4273 Expr compLeft; /* The x>=y term */ 4274 Expr compRight; /* The x<=z term */ 4275 Expr exprX; /* The x subexpression */ 4276 int regFree1 = 0; /* Temporary use register */ 4277 4278 4279 memset(&compLeft, 0, sizeof(Expr)); 4280 memset(&compRight, 0, sizeof(Expr)); 4281 memset(&exprAnd, 0, sizeof(Expr)); 4282 4283 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4284 exprX = *pExpr->pLeft; 4285 exprAnd.op = TK_AND; 4286 exprAnd.pLeft = &compLeft; 4287 exprAnd.pRight = &compRight; 4288 compLeft.op = TK_GE; 4289 compLeft.pLeft = &exprX; 4290 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4291 compRight.op = TK_LE; 4292 compRight.pLeft = &exprX; 4293 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4294 exprToRegister(&exprX, exprCodeVector(pParse, &exprX, ®Free1)); 4295 if( xJump ){ 4296 xJump(pParse, &exprAnd, dest, jumpIfNull); 4297 }else{ 4298 /* Mark the expression is being from the ON or USING clause of a join 4299 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4300 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4301 ** for clarity, but we are out of bits in the Expr.flags field so we 4302 ** have to reuse the EP_FromJoin bit. Bummer. */ 4303 exprX.flags |= EP_FromJoin; 4304 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4305 } 4306 sqlite3ReleaseTempReg(pParse, regFree1); 4307 4308 /* Ensure adequate test coverage */ 4309 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4310 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4311 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4312 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4313 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4314 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4315 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4316 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4317 testcase( xJump==0 ); 4318 } 4319 4320 /* 4321 ** Generate code for a boolean expression such that a jump is made 4322 ** to the label "dest" if the expression is true but execution 4323 ** continues straight thru if the expression is false. 4324 ** 4325 ** If the expression evaluates to NULL (neither true nor false), then 4326 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4327 ** 4328 ** This code depends on the fact that certain token values (ex: TK_EQ) 4329 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4330 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4331 ** the make process cause these values to align. Assert()s in the code 4332 ** below verify that the numbers are aligned correctly. 4333 */ 4334 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4335 Vdbe *v = pParse->pVdbe; 4336 int op = 0; 4337 int regFree1 = 0; 4338 int regFree2 = 0; 4339 int r1, r2; 4340 4341 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4342 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4343 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4344 op = pExpr->op; 4345 switch( op ){ 4346 case TK_AND: { 4347 int d2 = sqlite3VdbeMakeLabel(v); 4348 testcase( jumpIfNull==0 ); 4349 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 4350 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4351 sqlite3VdbeResolveLabel(v, d2); 4352 break; 4353 } 4354 case TK_OR: { 4355 testcase( jumpIfNull==0 ); 4356 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4357 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4358 break; 4359 } 4360 case TK_NOT: { 4361 testcase( jumpIfNull==0 ); 4362 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4363 break; 4364 } 4365 case TK_TRUTH: { 4366 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4367 int isTrue; /* IS TRUE or IS NOT TRUE */ 4368 testcase( jumpIfNull==0 ); 4369 isNot = pExpr->op2==TK_ISNOT; 4370 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4371 testcase( isTrue && isNot ); 4372 testcase( !isTrue && isNot ); 4373 if( isTrue ^ isNot ){ 4374 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4375 isNot ? SQLITE_JUMPIFNULL : 0); 4376 }else{ 4377 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4378 isNot ? SQLITE_JUMPIFNULL : 0); 4379 } 4380 break; 4381 } 4382 case TK_IS: 4383 case TK_ISNOT: 4384 testcase( op==TK_IS ); 4385 testcase( op==TK_ISNOT ); 4386 op = (op==TK_IS) ? TK_EQ : TK_NE; 4387 jumpIfNull = SQLITE_NULLEQ; 4388 /* Fall thru */ 4389 case TK_LT: 4390 case TK_LE: 4391 case TK_GT: 4392 case TK_GE: 4393 case TK_NE: 4394 case TK_EQ: { 4395 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4396 testcase( jumpIfNull==0 ); 4397 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4398 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4399 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4400 r1, r2, dest, jumpIfNull); 4401 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4402 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4403 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4404 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4405 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4406 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4407 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4408 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4409 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4410 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4411 testcase( regFree1==0 ); 4412 testcase( regFree2==0 ); 4413 break; 4414 } 4415 case TK_ISNULL: 4416 case TK_NOTNULL: { 4417 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4418 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4419 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4420 sqlite3VdbeAddOp2(v, op, r1, dest); 4421 VdbeCoverageIf(v, op==TK_ISNULL); 4422 VdbeCoverageIf(v, op==TK_NOTNULL); 4423 testcase( regFree1==0 ); 4424 break; 4425 } 4426 case TK_BETWEEN: { 4427 testcase( jumpIfNull==0 ); 4428 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4429 break; 4430 } 4431 #ifndef SQLITE_OMIT_SUBQUERY 4432 case TK_IN: { 4433 int destIfFalse = sqlite3VdbeMakeLabel(v); 4434 int destIfNull = jumpIfNull ? dest : destIfFalse; 4435 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4436 sqlite3VdbeGoto(v, dest); 4437 sqlite3VdbeResolveLabel(v, destIfFalse); 4438 break; 4439 } 4440 #endif 4441 default: { 4442 default_expr: 4443 if( exprAlwaysTrue(pExpr) ){ 4444 sqlite3VdbeGoto(v, dest); 4445 }else if( exprAlwaysFalse(pExpr) ){ 4446 /* No-op */ 4447 }else{ 4448 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4449 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4450 VdbeCoverage(v); 4451 testcase( regFree1==0 ); 4452 testcase( jumpIfNull==0 ); 4453 } 4454 break; 4455 } 4456 } 4457 sqlite3ReleaseTempReg(pParse, regFree1); 4458 sqlite3ReleaseTempReg(pParse, regFree2); 4459 } 4460 4461 /* 4462 ** Generate code for a boolean expression such that a jump is made 4463 ** to the label "dest" if the expression is false but execution 4464 ** continues straight thru if the expression is true. 4465 ** 4466 ** If the expression evaluates to NULL (neither true nor false) then 4467 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4468 ** is 0. 4469 */ 4470 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4471 Vdbe *v = pParse->pVdbe; 4472 int op = 0; 4473 int regFree1 = 0; 4474 int regFree2 = 0; 4475 int r1, r2; 4476 4477 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4478 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4479 if( pExpr==0 ) return; 4480 4481 /* The value of pExpr->op and op are related as follows: 4482 ** 4483 ** pExpr->op op 4484 ** --------- ---------- 4485 ** TK_ISNULL OP_NotNull 4486 ** TK_NOTNULL OP_IsNull 4487 ** TK_NE OP_Eq 4488 ** TK_EQ OP_Ne 4489 ** TK_GT OP_Le 4490 ** TK_LE OP_Gt 4491 ** TK_GE OP_Lt 4492 ** TK_LT OP_Ge 4493 ** 4494 ** For other values of pExpr->op, op is undefined and unused. 4495 ** The value of TK_ and OP_ constants are arranged such that we 4496 ** can compute the mapping above using the following expression. 4497 ** Assert()s verify that the computation is correct. 4498 */ 4499 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4500 4501 /* Verify correct alignment of TK_ and OP_ constants 4502 */ 4503 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4504 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4505 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4506 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4507 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4508 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4509 assert( pExpr->op!=TK_GT || op==OP_Le ); 4510 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4511 4512 switch( pExpr->op ){ 4513 case TK_AND: { 4514 testcase( jumpIfNull==0 ); 4515 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4516 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4517 break; 4518 } 4519 case TK_OR: { 4520 int d2 = sqlite3VdbeMakeLabel(v); 4521 testcase( jumpIfNull==0 ); 4522 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 4523 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4524 sqlite3VdbeResolveLabel(v, d2); 4525 break; 4526 } 4527 case TK_NOT: { 4528 testcase( jumpIfNull==0 ); 4529 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4530 break; 4531 } 4532 case TK_TRUTH: { 4533 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4534 int isTrue; /* IS TRUE or IS NOT TRUE */ 4535 testcase( jumpIfNull==0 ); 4536 isNot = pExpr->op2==TK_ISNOT; 4537 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4538 testcase( isTrue && isNot ); 4539 testcase( !isTrue && isNot ); 4540 if( isTrue ^ isNot ){ 4541 /* IS TRUE and IS NOT FALSE */ 4542 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4543 isNot ? 0 : SQLITE_JUMPIFNULL); 4544 4545 }else{ 4546 /* IS FALSE and IS NOT TRUE */ 4547 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4548 isNot ? 0 : SQLITE_JUMPIFNULL); 4549 } 4550 break; 4551 } 4552 case TK_IS: 4553 case TK_ISNOT: 4554 testcase( pExpr->op==TK_IS ); 4555 testcase( pExpr->op==TK_ISNOT ); 4556 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4557 jumpIfNull = SQLITE_NULLEQ; 4558 /* Fall thru */ 4559 case TK_LT: 4560 case TK_LE: 4561 case TK_GT: 4562 case TK_GE: 4563 case TK_NE: 4564 case TK_EQ: { 4565 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4566 testcase( jumpIfNull==0 ); 4567 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4568 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4569 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4570 r1, r2, dest, jumpIfNull); 4571 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4572 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4573 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4574 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4575 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4576 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4577 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4578 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4579 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4580 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4581 testcase( regFree1==0 ); 4582 testcase( regFree2==0 ); 4583 break; 4584 } 4585 case TK_ISNULL: 4586 case TK_NOTNULL: { 4587 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4588 sqlite3VdbeAddOp2(v, op, r1, dest); 4589 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4590 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4591 testcase( regFree1==0 ); 4592 break; 4593 } 4594 case TK_BETWEEN: { 4595 testcase( jumpIfNull==0 ); 4596 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4597 break; 4598 } 4599 #ifndef SQLITE_OMIT_SUBQUERY 4600 case TK_IN: { 4601 if( jumpIfNull ){ 4602 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4603 }else{ 4604 int destIfNull = sqlite3VdbeMakeLabel(v); 4605 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4606 sqlite3VdbeResolveLabel(v, destIfNull); 4607 } 4608 break; 4609 } 4610 #endif 4611 default: { 4612 default_expr: 4613 if( exprAlwaysFalse(pExpr) ){ 4614 sqlite3VdbeGoto(v, dest); 4615 }else if( exprAlwaysTrue(pExpr) ){ 4616 /* no-op */ 4617 }else{ 4618 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4619 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4620 VdbeCoverage(v); 4621 testcase( regFree1==0 ); 4622 testcase( jumpIfNull==0 ); 4623 } 4624 break; 4625 } 4626 } 4627 sqlite3ReleaseTempReg(pParse, regFree1); 4628 sqlite3ReleaseTempReg(pParse, regFree2); 4629 } 4630 4631 /* 4632 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4633 ** code generation, and that copy is deleted after code generation. This 4634 ** ensures that the original pExpr is unchanged. 4635 */ 4636 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4637 sqlite3 *db = pParse->db; 4638 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4639 if( db->mallocFailed==0 ){ 4640 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4641 } 4642 sqlite3ExprDelete(db, pCopy); 4643 } 4644 4645 /* 4646 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 4647 ** type of expression. 4648 ** 4649 ** If pExpr is a simple SQL value - an integer, real, string, blob 4650 ** or NULL value - then the VDBE currently being prepared is configured 4651 ** to re-prepare each time a new value is bound to variable pVar. 4652 ** 4653 ** Additionally, if pExpr is a simple SQL value and the value is the 4654 ** same as that currently bound to variable pVar, non-zero is returned. 4655 ** Otherwise, if the values are not the same or if pExpr is not a simple 4656 ** SQL value, zero is returned. 4657 */ 4658 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 4659 int res = 0; 4660 int iVar; 4661 sqlite3_value *pL, *pR = 0; 4662 4663 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 4664 if( pR ){ 4665 iVar = pVar->iColumn; 4666 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 4667 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 4668 if( pL ){ 4669 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 4670 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 4671 } 4672 res = 0==sqlite3MemCompare(pL, pR, 0); 4673 } 4674 sqlite3ValueFree(pR); 4675 sqlite3ValueFree(pL); 4676 } 4677 4678 return res; 4679 } 4680 4681 /* 4682 ** Do a deep comparison of two expression trees. Return 0 if the two 4683 ** expressions are completely identical. Return 1 if they differ only 4684 ** by a COLLATE operator at the top level. Return 2 if there are differences 4685 ** other than the top-level COLLATE operator. 4686 ** 4687 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4688 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4689 ** 4690 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4691 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4692 ** 4693 ** Sometimes this routine will return 2 even if the two expressions 4694 ** really are equivalent. If we cannot prove that the expressions are 4695 ** identical, we return 2 just to be safe. So if this routine 4696 ** returns 2, then you do not really know for certain if the two 4697 ** expressions are the same. But if you get a 0 or 1 return, then you 4698 ** can be sure the expressions are the same. In the places where 4699 ** this routine is used, it does not hurt to get an extra 2 - that 4700 ** just might result in some slightly slower code. But returning 4701 ** an incorrect 0 or 1 could lead to a malfunction. 4702 ** 4703 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 4704 ** pParse->pReprepare can be matched against literals in pB. The 4705 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 4706 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 4707 ** Argument pParse should normally be NULL. If it is not NULL and pA or 4708 ** pB causes a return value of 2. 4709 */ 4710 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 4711 u32 combinedFlags; 4712 if( pA==0 || pB==0 ){ 4713 return pB==pA ? 0 : 2; 4714 } 4715 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 4716 return 0; 4717 } 4718 combinedFlags = pA->flags | pB->flags; 4719 if( combinedFlags & EP_IntValue ){ 4720 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 4721 return 0; 4722 } 4723 return 2; 4724 } 4725 if( pA->op!=pB->op ){ 4726 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 4727 return 1; 4728 } 4729 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 4730 return 1; 4731 } 4732 return 2; 4733 } 4734 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 4735 if( pA->op==TK_FUNCTION ){ 4736 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4737 #ifndef SQLITE_OMIT_WINDOWFUNC 4738 /* Justification for the assert(): 4739 ** window functions have p->op==TK_FUNCTION but aggregate functions 4740 ** have p->op==TK_AGG_FUNCTION. So any comparison between an aggregate 4741 ** function and a window function should have failed before reaching 4742 ** this point. And, it is not possible to have a window function and 4743 ** a scalar function with the same name and number of arguments. So 4744 ** if we reach this point, either A and B both window functions or 4745 ** neither are a window functions. */ 4746 assert( ExprHasProperty(pA,EP_WinFunc)==ExprHasProperty(pB,EP_WinFunc) ); 4747 if( ExprHasProperty(pA,EP_WinFunc) ){ 4748 if( sqlite3WindowCompare(pParse,pA->y.pWin,pB->y.pWin)!=0 ) return 2; 4749 } 4750 #endif 4751 }else if( pA->op==TK_COLLATE ){ 4752 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4753 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4754 return 2; 4755 } 4756 } 4757 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4758 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 4759 if( combinedFlags & EP_xIsSelect ) return 2; 4760 if( (combinedFlags & EP_FixedCol)==0 4761 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 4762 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 4763 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4764 assert( (combinedFlags & EP_Reduced)==0 ); 4765 if( pA->op!=TK_STRING && pA->op!=TK_TRUEFALSE ){ 4766 if( pA->iColumn!=pB->iColumn ) return 2; 4767 if( pA->iTable!=pB->iTable 4768 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4769 } 4770 } 4771 return 0; 4772 } 4773 4774 /* 4775 ** Compare two ExprList objects. Return 0 if they are identical and 4776 ** non-zero if they differ in any way. 4777 ** 4778 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4779 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4780 ** 4781 ** This routine might return non-zero for equivalent ExprLists. The 4782 ** only consequence will be disabled optimizations. But this routine 4783 ** must never return 0 if the two ExprList objects are different, or 4784 ** a malfunction will result. 4785 ** 4786 ** Two NULL pointers are considered to be the same. But a NULL pointer 4787 ** always differs from a non-NULL pointer. 4788 */ 4789 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4790 int i; 4791 if( pA==0 && pB==0 ) return 0; 4792 if( pA==0 || pB==0 ) return 1; 4793 if( pA->nExpr!=pB->nExpr ) return 1; 4794 for(i=0; i<pA->nExpr; i++){ 4795 Expr *pExprA = pA->a[i].pExpr; 4796 Expr *pExprB = pB->a[i].pExpr; 4797 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 4798 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1; 4799 } 4800 return 0; 4801 } 4802 4803 /* 4804 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 4805 ** are ignored. 4806 */ 4807 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 4808 return sqlite3ExprCompare(0, 4809 sqlite3ExprSkipCollate(pA), 4810 sqlite3ExprSkipCollate(pB), 4811 iTab); 4812 } 4813 4814 /* 4815 ** Return true if we can prove the pE2 will always be true if pE1 is 4816 ** true. Return false if we cannot complete the proof or if pE2 might 4817 ** be false. Examples: 4818 ** 4819 ** pE1: x==5 pE2: x==5 Result: true 4820 ** pE1: x>0 pE2: x==5 Result: false 4821 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 4822 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 4823 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 4824 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 4825 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 4826 ** 4827 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 4828 ** Expr.iTable<0 then assume a table number given by iTab. 4829 ** 4830 ** If pParse is not NULL, then the values of bound variables in pE1 are 4831 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 4832 ** modified to record which bound variables are referenced. If pParse 4833 ** is NULL, then false will be returned if pE1 contains any bound variables. 4834 ** 4835 ** When in doubt, return false. Returning true might give a performance 4836 ** improvement. Returning false might cause a performance reduction, but 4837 ** it will always give the correct answer and is hence always safe. 4838 */ 4839 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 4840 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 4841 return 1; 4842 } 4843 if( pE2->op==TK_OR 4844 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 4845 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 4846 ){ 4847 return 1; 4848 } 4849 if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){ 4850 Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft); 4851 testcase( pX!=pE1->pLeft ); 4852 if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1; 4853 } 4854 return 0; 4855 } 4856 4857 /* 4858 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow(). 4859 ** If the expression node requires that the table at pWalker->iCur 4860 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 4861 ** 4862 ** This routine controls an optimization. False positives (setting 4863 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 4864 ** (never setting pWalker->eCode) is a harmless missed optimization. 4865 */ 4866 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 4867 testcase( pExpr->op==TK_AGG_COLUMN ); 4868 testcase( pExpr->op==TK_AGG_FUNCTION ); 4869 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 4870 switch( pExpr->op ){ 4871 case TK_ISNOT: 4872 case TK_NOT: 4873 case TK_ISNULL: 4874 case TK_IS: 4875 case TK_OR: 4876 case TK_CASE: 4877 case TK_IN: 4878 case TK_FUNCTION: 4879 testcase( pExpr->op==TK_ISNOT ); 4880 testcase( pExpr->op==TK_NOT ); 4881 testcase( pExpr->op==TK_ISNULL ); 4882 testcase( pExpr->op==TK_IS ); 4883 testcase( pExpr->op==TK_OR ); 4884 testcase( pExpr->op==TK_CASE ); 4885 testcase( pExpr->op==TK_IN ); 4886 testcase( pExpr->op==TK_FUNCTION ); 4887 return WRC_Prune; 4888 case TK_COLUMN: 4889 if( pWalker->u.iCur==pExpr->iTable ){ 4890 pWalker->eCode = 1; 4891 return WRC_Abort; 4892 } 4893 return WRC_Prune; 4894 4895 /* Virtual tables are allowed to use constraints like x=NULL. So 4896 ** a term of the form x=y does not prove that y is not null if x 4897 ** is the column of a virtual table */ 4898 case TK_EQ: 4899 case TK_NE: 4900 case TK_LT: 4901 case TK_LE: 4902 case TK_GT: 4903 case TK_GE: 4904 testcase( pExpr->op==TK_EQ ); 4905 testcase( pExpr->op==TK_NE ); 4906 testcase( pExpr->op==TK_LT ); 4907 testcase( pExpr->op==TK_LE ); 4908 testcase( pExpr->op==TK_GT ); 4909 testcase( pExpr->op==TK_GE ); 4910 if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab)) 4911 || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab)) 4912 ){ 4913 return WRC_Prune; 4914 } 4915 default: 4916 return WRC_Continue; 4917 } 4918 } 4919 4920 /* 4921 ** Return true (non-zero) if expression p can only be true if at least 4922 ** one column of table iTab is non-null. In other words, return true 4923 ** if expression p will always be NULL or false if every column of iTab 4924 ** is NULL. 4925 ** 4926 ** False negatives are acceptable. In other words, it is ok to return 4927 ** zero even if expression p will never be true of every column of iTab 4928 ** is NULL. A false negative is merely a missed optimization opportunity. 4929 ** 4930 ** False positives are not allowed, however. A false positive may result 4931 ** in an incorrect answer. 4932 ** 4933 ** Terms of p that are marked with EP_FromJoin (and hence that come from 4934 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 4935 ** 4936 ** This routine is used to check if a LEFT JOIN can be converted into 4937 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 4938 ** clause requires that some column of the right table of the LEFT JOIN 4939 ** be non-NULL, then the LEFT JOIN can be safely converted into an 4940 ** ordinary join. 4941 */ 4942 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 4943 Walker w; 4944 w.xExprCallback = impliesNotNullRow; 4945 w.xSelectCallback = 0; 4946 w.xSelectCallback2 = 0; 4947 w.eCode = 0; 4948 w.u.iCur = iTab; 4949 sqlite3WalkExpr(&w, p); 4950 return w.eCode; 4951 } 4952 4953 /* 4954 ** An instance of the following structure is used by the tree walker 4955 ** to determine if an expression can be evaluated by reference to the 4956 ** index only, without having to do a search for the corresponding 4957 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 4958 ** is the cursor for the table. 4959 */ 4960 struct IdxCover { 4961 Index *pIdx; /* The index to be tested for coverage */ 4962 int iCur; /* Cursor number for the table corresponding to the index */ 4963 }; 4964 4965 /* 4966 ** Check to see if there are references to columns in table 4967 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 4968 ** pWalker->u.pIdxCover->pIdx. 4969 */ 4970 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 4971 if( pExpr->op==TK_COLUMN 4972 && pExpr->iTable==pWalker->u.pIdxCover->iCur 4973 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 4974 ){ 4975 pWalker->eCode = 1; 4976 return WRC_Abort; 4977 } 4978 return WRC_Continue; 4979 } 4980 4981 /* 4982 ** Determine if an index pIdx on table with cursor iCur contains will 4983 ** the expression pExpr. Return true if the index does cover the 4984 ** expression and false if the pExpr expression references table columns 4985 ** that are not found in the index pIdx. 4986 ** 4987 ** An index covering an expression means that the expression can be 4988 ** evaluated using only the index and without having to lookup the 4989 ** corresponding table entry. 4990 */ 4991 int sqlite3ExprCoveredByIndex( 4992 Expr *pExpr, /* The index to be tested */ 4993 int iCur, /* The cursor number for the corresponding table */ 4994 Index *pIdx /* The index that might be used for coverage */ 4995 ){ 4996 Walker w; 4997 struct IdxCover xcov; 4998 memset(&w, 0, sizeof(w)); 4999 xcov.iCur = iCur; 5000 xcov.pIdx = pIdx; 5001 w.xExprCallback = exprIdxCover; 5002 w.u.pIdxCover = &xcov; 5003 sqlite3WalkExpr(&w, pExpr); 5004 return !w.eCode; 5005 } 5006 5007 5008 /* 5009 ** An instance of the following structure is used by the tree walker 5010 ** to count references to table columns in the arguments of an 5011 ** aggregate function, in order to implement the 5012 ** sqlite3FunctionThisSrc() routine. 5013 */ 5014 struct SrcCount { 5015 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5016 int nThis; /* Number of references to columns in pSrcList */ 5017 int nOther; /* Number of references to columns in other FROM clauses */ 5018 }; 5019 5020 /* 5021 ** Count the number of references to columns. 5022 */ 5023 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5024 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 5025 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 5026 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 5027 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 5028 ** NEVER() will need to be removed. */ 5029 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 5030 int i; 5031 struct SrcCount *p = pWalker->u.pSrcCount; 5032 SrcList *pSrc = p->pSrc; 5033 int nSrc = pSrc ? pSrc->nSrc : 0; 5034 for(i=0; i<nSrc; i++){ 5035 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5036 } 5037 if( i<nSrc ){ 5038 p->nThis++; 5039 }else{ 5040 p->nOther++; 5041 } 5042 } 5043 return WRC_Continue; 5044 } 5045 5046 /* 5047 ** Determine if any of the arguments to the pExpr Function reference 5048 ** pSrcList. Return true if they do. Also return true if the function 5049 ** has no arguments or has only constant arguments. Return false if pExpr 5050 ** references columns but not columns of tables found in pSrcList. 5051 */ 5052 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5053 Walker w; 5054 struct SrcCount cnt; 5055 assert( pExpr->op==TK_AGG_FUNCTION ); 5056 w.xExprCallback = exprSrcCount; 5057 w.xSelectCallback = 0; 5058 w.u.pSrcCount = &cnt; 5059 cnt.pSrc = pSrcList; 5060 cnt.nThis = 0; 5061 cnt.nOther = 0; 5062 sqlite3WalkExprList(&w, pExpr->x.pList); 5063 return cnt.nThis>0 || cnt.nOther==0; 5064 } 5065 5066 /* 5067 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5068 ** the new element. Return a negative number if malloc fails. 5069 */ 5070 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5071 int i; 5072 pInfo->aCol = sqlite3ArrayAllocate( 5073 db, 5074 pInfo->aCol, 5075 sizeof(pInfo->aCol[0]), 5076 &pInfo->nColumn, 5077 &i 5078 ); 5079 return i; 5080 } 5081 5082 /* 5083 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5084 ** the new element. Return a negative number if malloc fails. 5085 */ 5086 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5087 int i; 5088 pInfo->aFunc = sqlite3ArrayAllocate( 5089 db, 5090 pInfo->aFunc, 5091 sizeof(pInfo->aFunc[0]), 5092 &pInfo->nFunc, 5093 &i 5094 ); 5095 return i; 5096 } 5097 5098 /* 5099 ** This is the xExprCallback for a tree walker. It is used to 5100 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5101 ** for additional information. 5102 */ 5103 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5104 int i; 5105 NameContext *pNC = pWalker->u.pNC; 5106 Parse *pParse = pNC->pParse; 5107 SrcList *pSrcList = pNC->pSrcList; 5108 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5109 5110 assert( pNC->ncFlags & NC_UAggInfo ); 5111 switch( pExpr->op ){ 5112 case TK_AGG_COLUMN: 5113 case TK_COLUMN: { 5114 testcase( pExpr->op==TK_AGG_COLUMN ); 5115 testcase( pExpr->op==TK_COLUMN ); 5116 /* Check to see if the column is in one of the tables in the FROM 5117 ** clause of the aggregate query */ 5118 if( ALWAYS(pSrcList!=0) ){ 5119 struct SrcList_item *pItem = pSrcList->a; 5120 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5121 struct AggInfo_col *pCol; 5122 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5123 if( pExpr->iTable==pItem->iCursor ){ 5124 /* If we reach this point, it means that pExpr refers to a table 5125 ** that is in the FROM clause of the aggregate query. 5126 ** 5127 ** Make an entry for the column in pAggInfo->aCol[] if there 5128 ** is not an entry there already. 5129 */ 5130 int k; 5131 pCol = pAggInfo->aCol; 5132 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5133 if( pCol->iTable==pExpr->iTable && 5134 pCol->iColumn==pExpr->iColumn ){ 5135 break; 5136 } 5137 } 5138 if( (k>=pAggInfo->nColumn) 5139 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5140 ){ 5141 pCol = &pAggInfo->aCol[k]; 5142 pCol->pTab = pExpr->y.pTab; 5143 pCol->iTable = pExpr->iTable; 5144 pCol->iColumn = pExpr->iColumn; 5145 pCol->iMem = ++pParse->nMem; 5146 pCol->iSorterColumn = -1; 5147 pCol->pExpr = pExpr; 5148 if( pAggInfo->pGroupBy ){ 5149 int j, n; 5150 ExprList *pGB = pAggInfo->pGroupBy; 5151 struct ExprList_item *pTerm = pGB->a; 5152 n = pGB->nExpr; 5153 for(j=0; j<n; j++, pTerm++){ 5154 Expr *pE = pTerm->pExpr; 5155 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5156 pE->iColumn==pExpr->iColumn ){ 5157 pCol->iSorterColumn = j; 5158 break; 5159 } 5160 } 5161 } 5162 if( pCol->iSorterColumn<0 ){ 5163 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5164 } 5165 } 5166 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5167 ** because it was there before or because we just created it). 5168 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5169 ** pAggInfo->aCol[] entry. 5170 */ 5171 ExprSetVVAProperty(pExpr, EP_NoReduce); 5172 pExpr->pAggInfo = pAggInfo; 5173 pExpr->op = TK_AGG_COLUMN; 5174 pExpr->iAgg = (i16)k; 5175 break; 5176 } /* endif pExpr->iTable==pItem->iCursor */ 5177 } /* end loop over pSrcList */ 5178 } 5179 return WRC_Prune; 5180 } 5181 case TK_AGG_FUNCTION: { 5182 if( (pNC->ncFlags & NC_InAggFunc)==0 5183 && pWalker->walkerDepth==pExpr->op2 5184 ){ 5185 /* Check to see if pExpr is a duplicate of another aggregate 5186 ** function that is already in the pAggInfo structure 5187 */ 5188 struct AggInfo_func *pItem = pAggInfo->aFunc; 5189 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5190 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5191 break; 5192 } 5193 } 5194 if( i>=pAggInfo->nFunc ){ 5195 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5196 */ 5197 u8 enc = ENC(pParse->db); 5198 i = addAggInfoFunc(pParse->db, pAggInfo); 5199 if( i>=0 ){ 5200 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5201 pItem = &pAggInfo->aFunc[i]; 5202 pItem->pExpr = pExpr; 5203 pItem->iMem = ++pParse->nMem; 5204 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5205 pItem->pFunc = sqlite3FindFunction(pParse->db, 5206 pExpr->u.zToken, 5207 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5208 if( pExpr->flags & EP_Distinct ){ 5209 pItem->iDistinct = pParse->nTab++; 5210 }else{ 5211 pItem->iDistinct = -1; 5212 } 5213 } 5214 } 5215 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5216 */ 5217 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5218 ExprSetVVAProperty(pExpr, EP_NoReduce); 5219 pExpr->iAgg = (i16)i; 5220 pExpr->pAggInfo = pAggInfo; 5221 return WRC_Prune; 5222 }else{ 5223 return WRC_Continue; 5224 } 5225 } 5226 } 5227 return WRC_Continue; 5228 } 5229 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5230 UNUSED_PARAMETER(pSelect); 5231 pWalker->walkerDepth++; 5232 return WRC_Continue; 5233 } 5234 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5235 UNUSED_PARAMETER(pSelect); 5236 pWalker->walkerDepth--; 5237 } 5238 5239 /* 5240 ** Analyze the pExpr expression looking for aggregate functions and 5241 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5242 ** points to. Additional entries are made on the AggInfo object as 5243 ** necessary. 5244 ** 5245 ** This routine should only be called after the expression has been 5246 ** analyzed by sqlite3ResolveExprNames(). 5247 */ 5248 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5249 Walker w; 5250 w.xExprCallback = analyzeAggregate; 5251 w.xSelectCallback = analyzeAggregatesInSelect; 5252 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5253 w.walkerDepth = 0; 5254 w.u.pNC = pNC; 5255 assert( pNC->pSrcList!=0 ); 5256 sqlite3WalkExpr(&w, pExpr); 5257 } 5258 5259 /* 5260 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5261 ** expression list. Return the number of errors. 5262 ** 5263 ** If an error is found, the analysis is cut short. 5264 */ 5265 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5266 struct ExprList_item *pItem; 5267 int i; 5268 if( pList ){ 5269 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5270 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5271 } 5272 } 5273 } 5274 5275 /* 5276 ** Allocate a single new register for use to hold some intermediate result. 5277 */ 5278 int sqlite3GetTempReg(Parse *pParse){ 5279 if( pParse->nTempReg==0 ){ 5280 return ++pParse->nMem; 5281 } 5282 return pParse->aTempReg[--pParse->nTempReg]; 5283 } 5284 5285 /* 5286 ** Deallocate a register, making available for reuse for some other 5287 ** purpose. 5288 */ 5289 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5290 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5291 pParse->aTempReg[pParse->nTempReg++] = iReg; 5292 } 5293 } 5294 5295 /* 5296 ** Allocate or deallocate a block of nReg consecutive registers. 5297 */ 5298 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5299 int i, n; 5300 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5301 i = pParse->iRangeReg; 5302 n = pParse->nRangeReg; 5303 if( nReg<=n ){ 5304 pParse->iRangeReg += nReg; 5305 pParse->nRangeReg -= nReg; 5306 }else{ 5307 i = pParse->nMem+1; 5308 pParse->nMem += nReg; 5309 } 5310 return i; 5311 } 5312 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5313 if( nReg==1 ){ 5314 sqlite3ReleaseTempReg(pParse, iReg); 5315 return; 5316 } 5317 if( nReg>pParse->nRangeReg ){ 5318 pParse->nRangeReg = nReg; 5319 pParse->iRangeReg = iReg; 5320 } 5321 } 5322 5323 /* 5324 ** Mark all temporary registers as being unavailable for reuse. 5325 */ 5326 void sqlite3ClearTempRegCache(Parse *pParse){ 5327 pParse->nTempReg = 0; 5328 pParse->nRangeReg = 0; 5329 } 5330 5331 /* 5332 ** Validate that no temporary register falls within the range of 5333 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5334 ** statements. 5335 */ 5336 #ifdef SQLITE_DEBUG 5337 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5338 int i; 5339 if( pParse->nRangeReg>0 5340 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5341 && pParse->iRangeReg <= iLast 5342 ){ 5343 return 0; 5344 } 5345 for(i=0; i<pParse->nTempReg; i++){ 5346 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5347 return 0; 5348 } 5349 } 5350 return 1; 5351 } 5352 #endif /* SQLITE_DEBUG */ 5353