1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 ** 15 ** $Id: expr.c,v 1.366 2008/04/11 15:36:03 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 #include <ctype.h> 19 20 /* 21 ** Return the 'affinity' of the expression pExpr if any. 22 ** 23 ** If pExpr is a column, a reference to a column via an 'AS' alias, 24 ** or a sub-select with a column as the return value, then the 25 ** affinity of that column is returned. Otherwise, 0x00 is returned, 26 ** indicating no affinity for the expression. 27 ** 28 ** i.e. the WHERE clause expresssions in the following statements all 29 ** have an affinity: 30 ** 31 ** CREATE TABLE t1(a); 32 ** SELECT * FROM t1 WHERE a; 33 ** SELECT a AS b FROM t1 WHERE b; 34 ** SELECT * FROM t1 WHERE (select a from t1); 35 */ 36 char sqlite3ExprAffinity(Expr *pExpr){ 37 int op = pExpr->op; 38 if( op==TK_SELECT ){ 39 return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); 40 } 41 #ifndef SQLITE_OMIT_CAST 42 if( op==TK_CAST ){ 43 return sqlite3AffinityType(&pExpr->token); 44 } 45 #endif 46 return pExpr->affinity; 47 } 48 49 /* 50 ** Set the collating sequence for expression pExpr to be the collating 51 ** sequence named by pToken. Return a pointer to the revised expression. 52 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 53 ** flag. An explicit collating sequence will override implicit 54 ** collating sequences. 55 */ 56 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){ 57 char *zColl = 0; /* Dequoted name of collation sequence */ 58 CollSeq *pColl; 59 zColl = sqlite3NameFromToken(pParse->db, pName); 60 if( pExpr && zColl ){ 61 pColl = sqlite3LocateCollSeq(pParse, zColl, -1); 62 if( pColl ){ 63 pExpr->pColl = pColl; 64 pExpr->flags |= EP_ExpCollate; 65 } 66 } 67 sqlite3_free(zColl); 68 return pExpr; 69 } 70 71 /* 72 ** Return the default collation sequence for the expression pExpr. If 73 ** there is no default collation type, return 0. 74 */ 75 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 76 CollSeq *pColl = 0; 77 if( pExpr ){ 78 int op; 79 pColl = pExpr->pColl; 80 op = pExpr->op; 81 if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){ 82 return sqlite3ExprCollSeq(pParse, pExpr->pLeft); 83 } 84 } 85 if( sqlite3CheckCollSeq(pParse, pColl) ){ 86 pColl = 0; 87 } 88 return pColl; 89 } 90 91 /* 92 ** pExpr is an operand of a comparison operator. aff2 is the 93 ** type affinity of the other operand. This routine returns the 94 ** type affinity that should be used for the comparison operator. 95 */ 96 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 97 char aff1 = sqlite3ExprAffinity(pExpr); 98 if( aff1 && aff2 ){ 99 /* Both sides of the comparison are columns. If one has numeric 100 ** affinity, use that. Otherwise use no affinity. 101 */ 102 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 103 return SQLITE_AFF_NUMERIC; 104 }else{ 105 return SQLITE_AFF_NONE; 106 } 107 }else if( !aff1 && !aff2 ){ 108 /* Neither side of the comparison is a column. Compare the 109 ** results directly. 110 */ 111 return SQLITE_AFF_NONE; 112 }else{ 113 /* One side is a column, the other is not. Use the columns affinity. */ 114 assert( aff1==0 || aff2==0 ); 115 return (aff1 + aff2); 116 } 117 } 118 119 /* 120 ** pExpr is a comparison operator. Return the type affinity that should 121 ** be applied to both operands prior to doing the comparison. 122 */ 123 static char comparisonAffinity(Expr *pExpr){ 124 char aff; 125 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 126 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 127 pExpr->op==TK_NE ); 128 assert( pExpr->pLeft ); 129 aff = sqlite3ExprAffinity(pExpr->pLeft); 130 if( pExpr->pRight ){ 131 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 132 } 133 else if( pExpr->pSelect ){ 134 aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); 135 } 136 else if( !aff ){ 137 aff = SQLITE_AFF_NONE; 138 } 139 return aff; 140 } 141 142 /* 143 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 144 ** idx_affinity is the affinity of an indexed column. Return true 145 ** if the index with affinity idx_affinity may be used to implement 146 ** the comparison in pExpr. 147 */ 148 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 149 char aff = comparisonAffinity(pExpr); 150 switch( aff ){ 151 case SQLITE_AFF_NONE: 152 return 1; 153 case SQLITE_AFF_TEXT: 154 return idx_affinity==SQLITE_AFF_TEXT; 155 default: 156 return sqlite3IsNumericAffinity(idx_affinity); 157 } 158 } 159 160 /* 161 ** Return the P5 value that should be used for a binary comparison 162 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 163 */ 164 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 165 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 166 aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull; 167 return aff; 168 } 169 170 /* 171 ** Return a pointer to the collation sequence that should be used by 172 ** a binary comparison operator comparing pLeft and pRight. 173 ** 174 ** If the left hand expression has a collating sequence type, then it is 175 ** used. Otherwise the collation sequence for the right hand expression 176 ** is used, or the default (BINARY) if neither expression has a collating 177 ** type. 178 ** 179 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 180 ** it is not considered. 181 */ 182 CollSeq *sqlite3BinaryCompareCollSeq( 183 Parse *pParse, 184 Expr *pLeft, 185 Expr *pRight 186 ){ 187 CollSeq *pColl; 188 assert( pLeft ); 189 if( pLeft->flags & EP_ExpCollate ){ 190 assert( pLeft->pColl ); 191 pColl = pLeft->pColl; 192 }else if( pRight && pRight->flags & EP_ExpCollate ){ 193 assert( pRight->pColl ); 194 pColl = pRight->pColl; 195 }else{ 196 pColl = sqlite3ExprCollSeq(pParse, pLeft); 197 if( !pColl ){ 198 pColl = sqlite3ExprCollSeq(pParse, pRight); 199 } 200 } 201 return pColl; 202 } 203 204 /* 205 ** Generate the operands for a comparison operation. Before 206 ** generating the code for each operand, set the EP_AnyAff 207 ** flag on the expression so that it will be able to used a 208 ** cached column value that has previously undergone an 209 ** affinity change. 210 */ 211 static void codeCompareOperands( 212 Parse *pParse, /* Parsing and code generating context */ 213 Expr *pLeft, /* The left operand */ 214 int *pRegLeft, /* Register where left operand is stored */ 215 int *pFreeLeft, /* Free this register when done */ 216 Expr *pRight, /* The right operand */ 217 int *pRegRight, /* Register where right operand is stored */ 218 int *pFreeRight /* Write temp register for right operand there */ 219 ){ 220 while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft; 221 pLeft->flags |= EP_AnyAff; 222 *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft); 223 while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft; 224 pRight->flags |= EP_AnyAff; 225 *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight); 226 } 227 228 /* 229 ** Generate code for a comparison operator. 230 */ 231 static int codeCompare( 232 Parse *pParse, /* The parsing (and code generating) context */ 233 Expr *pLeft, /* The left operand */ 234 Expr *pRight, /* The right operand */ 235 int opcode, /* The comparison opcode */ 236 int in1, int in2, /* Register holding operands */ 237 int dest, /* Jump here if true. */ 238 int jumpIfNull /* If true, jump if either operand is NULL */ 239 ){ 240 int p5; 241 int addr; 242 CollSeq *p4; 243 244 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 245 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 246 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 247 (void*)p4, P4_COLLSEQ); 248 sqlite3VdbeChangeP5(pParse->pVdbe, p5); 249 if( p5 & SQLITE_AFF_MASK ){ 250 sqlite3ExprCacheAffinityChange(pParse, in1, 1); 251 sqlite3ExprCacheAffinityChange(pParse, in2, 1); 252 } 253 return addr; 254 } 255 256 /* 257 ** Construct a new expression node and return a pointer to it. Memory 258 ** for this node is obtained from sqlite3_malloc(). The calling function 259 ** is responsible for making sure the node eventually gets freed. 260 */ 261 Expr *sqlite3Expr( 262 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 263 int op, /* Expression opcode */ 264 Expr *pLeft, /* Left operand */ 265 Expr *pRight, /* Right operand */ 266 const Token *pToken /* Argument token */ 267 ){ 268 Expr *pNew; 269 static const Expr zeroExpr; 270 pNew = sqlite3DbMallocRaw(db, sizeof(Expr)); 271 if( pNew==0 ){ 272 /* When malloc fails, delete pLeft and pRight. Expressions passed to 273 ** this function must always be allocated with sqlite3Expr() for this 274 ** reason. 275 */ 276 sqlite3ExprDelete(pLeft); 277 sqlite3ExprDelete(pRight); 278 return 0; 279 } 280 *pNew = zeroExpr; 281 pNew->op = op; 282 pNew->pLeft = pLeft; 283 pNew->pRight = pRight; 284 pNew->iAgg = -1; 285 if( pToken ){ 286 assert( pToken->dyn==0 ); 287 pNew->span = pNew->token = *pToken; 288 }else if( pLeft ){ 289 if( pRight ){ 290 sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); 291 if( pRight->flags & EP_ExpCollate ){ 292 pNew->flags |= EP_ExpCollate; 293 pNew->pColl = pRight->pColl; 294 } 295 } 296 if( pLeft->flags & EP_ExpCollate ){ 297 pNew->flags |= EP_ExpCollate; 298 pNew->pColl = pLeft->pColl; 299 } 300 } 301 302 sqlite3ExprSetHeight(pNew); 303 return pNew; 304 } 305 306 /* 307 ** Works like sqlite3Expr() except that it takes an extra Parse* 308 ** argument and notifies the associated connection object if malloc fails. 309 */ 310 Expr *sqlite3PExpr( 311 Parse *pParse, /* Parsing context */ 312 int op, /* Expression opcode */ 313 Expr *pLeft, /* Left operand */ 314 Expr *pRight, /* Right operand */ 315 const Token *pToken /* Argument token */ 316 ){ 317 return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken); 318 } 319 320 /* 321 ** When doing a nested parse, you can include terms in an expression 322 ** that look like this: #1 #2 ... These terms refer to registers 323 ** in the virtual machine. #N is the N-th register. 324 ** 325 ** This routine is called by the parser to deal with on of those terms. 326 ** It immediately generates code to store the value in a memory location. 327 ** The returns an expression that will code to extract the value from 328 ** that memory location as needed. 329 */ 330 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ 331 Vdbe *v = pParse->pVdbe; 332 Expr *p; 333 if( pParse->nested==0 ){ 334 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); 335 return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); 336 } 337 if( v==0 ) return 0; 338 p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken); 339 if( p==0 ){ 340 return 0; /* Malloc failed */ 341 } 342 p->iTable = atoi((char*)&pToken->z[1]); 343 return p; 344 } 345 346 /* 347 ** Join two expressions using an AND operator. If either expression is 348 ** NULL, then just return the other expression. 349 */ 350 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 351 if( pLeft==0 ){ 352 return pRight; 353 }else if( pRight==0 ){ 354 return pLeft; 355 }else{ 356 return sqlite3Expr(db, TK_AND, pLeft, pRight, 0); 357 } 358 } 359 360 /* 361 ** Set the Expr.span field of the given expression to span all 362 ** text between the two given tokens. 363 */ 364 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ 365 assert( pRight!=0 ); 366 assert( pLeft!=0 ); 367 if( pExpr && pRight->z && pLeft->z ){ 368 assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 ); 369 if( pLeft->dyn==0 && pRight->dyn==0 ){ 370 pExpr->span.z = pLeft->z; 371 pExpr->span.n = pRight->n + (pRight->z - pLeft->z); 372 }else{ 373 pExpr->span.z = 0; 374 } 375 } 376 } 377 378 /* 379 ** Construct a new expression node for a function with multiple 380 ** arguments. 381 */ 382 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 383 Expr *pNew; 384 assert( pToken ); 385 pNew = sqlite3DbMallocZero(pParse->db, sizeof(Expr) ); 386 if( pNew==0 ){ 387 sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */ 388 return 0; 389 } 390 pNew->op = TK_FUNCTION; 391 pNew->pList = pList; 392 assert( pToken->dyn==0 ); 393 pNew->token = *pToken; 394 pNew->span = pNew->token; 395 396 sqlite3ExprSetHeight(pNew); 397 return pNew; 398 } 399 400 /* 401 ** Assign a variable number to an expression that encodes a wildcard 402 ** in the original SQL statement. 403 ** 404 ** Wildcards consisting of a single "?" are assigned the next sequential 405 ** variable number. 406 ** 407 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 408 ** sure "nnn" is not too be to avoid a denial of service attack when 409 ** the SQL statement comes from an external source. 410 ** 411 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number 412 ** as the previous instance of the same wildcard. Or if this is the first 413 ** instance of the wildcard, the next sequenial variable number is 414 ** assigned. 415 */ 416 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 417 Token *pToken; 418 sqlite3 *db = pParse->db; 419 420 if( pExpr==0 ) return; 421 pToken = &pExpr->token; 422 assert( pToken->n>=1 ); 423 assert( pToken->z!=0 ); 424 assert( pToken->z[0]!=0 ); 425 if( pToken->n==1 ){ 426 /* Wildcard of the form "?". Assign the next variable number */ 427 pExpr->iTable = ++pParse->nVar; 428 }else if( pToken->z[0]=='?' ){ 429 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 430 ** use it as the variable number */ 431 int i; 432 pExpr->iTable = i = atoi((char*)&pToken->z[1]); 433 testcase( i==0 ); 434 testcase( i==1 ); 435 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 436 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 437 if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 438 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 439 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 440 } 441 if( i>pParse->nVar ){ 442 pParse->nVar = i; 443 } 444 }else{ 445 /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable 446 ** number as the prior appearance of the same name, or if the name 447 ** has never appeared before, reuse the same variable number 448 */ 449 int i, n; 450 n = pToken->n; 451 for(i=0; i<pParse->nVarExpr; i++){ 452 Expr *pE; 453 if( (pE = pParse->apVarExpr[i])!=0 454 && pE->token.n==n 455 && memcmp(pE->token.z, pToken->z, n)==0 ){ 456 pExpr->iTable = pE->iTable; 457 break; 458 } 459 } 460 if( i>=pParse->nVarExpr ){ 461 pExpr->iTable = ++pParse->nVar; 462 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ 463 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; 464 pParse->apVarExpr = 465 sqlite3DbReallocOrFree( 466 db, 467 pParse->apVarExpr, 468 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) 469 ); 470 } 471 if( !db->mallocFailed ){ 472 assert( pParse->apVarExpr!=0 ); 473 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; 474 } 475 } 476 } 477 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 478 sqlite3ErrorMsg(pParse, "too many SQL variables"); 479 } 480 } 481 482 /* 483 ** Recursively delete an expression tree. 484 */ 485 void sqlite3ExprDelete(Expr *p){ 486 if( p==0 ) return; 487 if( p->span.dyn ) sqlite3_free((char*)p->span.z); 488 if( p->token.dyn ) sqlite3_free((char*)p->token.z); 489 sqlite3ExprDelete(p->pLeft); 490 sqlite3ExprDelete(p->pRight); 491 sqlite3ExprListDelete(p->pList); 492 sqlite3SelectDelete(p->pSelect); 493 sqlite3_free(p); 494 } 495 496 /* 497 ** The Expr.token field might be a string literal that is quoted. 498 ** If so, remove the quotation marks. 499 */ 500 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){ 501 if( ExprHasAnyProperty(p, EP_Dequoted) ){ 502 return; 503 } 504 ExprSetProperty(p, EP_Dequoted); 505 if( p->token.dyn==0 ){ 506 sqlite3TokenCopy(db, &p->token, &p->token); 507 } 508 sqlite3Dequote((char*)p->token.z); 509 } 510 511 512 /* 513 ** The following group of routines make deep copies of expressions, 514 ** expression lists, ID lists, and select statements. The copies can 515 ** be deleted (by being passed to their respective ...Delete() routines) 516 ** without effecting the originals. 517 ** 518 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 519 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 520 ** by subsequent calls to sqlite*ListAppend() routines. 521 ** 522 ** Any tables that the SrcList might point to are not duplicated. 523 */ 524 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){ 525 Expr *pNew; 526 if( p==0 ) return 0; 527 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 528 if( pNew==0 ) return 0; 529 memcpy(pNew, p, sizeof(*pNew)); 530 if( p->token.z!=0 ){ 531 pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n); 532 pNew->token.dyn = 1; 533 }else{ 534 assert( pNew->token.z==0 ); 535 } 536 pNew->span.z = 0; 537 pNew->pLeft = sqlite3ExprDup(db, p->pLeft); 538 pNew->pRight = sqlite3ExprDup(db, p->pRight); 539 pNew->pList = sqlite3ExprListDup(db, p->pList); 540 pNew->pSelect = sqlite3SelectDup(db, p->pSelect); 541 return pNew; 542 } 543 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){ 544 if( pTo->dyn ) sqlite3_free((char*)pTo->z); 545 if( pFrom->z ){ 546 pTo->n = pFrom->n; 547 pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n); 548 pTo->dyn = 1; 549 }else{ 550 pTo->z = 0; 551 } 552 } 553 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){ 554 ExprList *pNew; 555 struct ExprList_item *pItem, *pOldItem; 556 int i; 557 if( p==0 ) return 0; 558 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 559 if( pNew==0 ) return 0; 560 pNew->iECursor = 0; 561 pNew->nExpr = pNew->nAlloc = p->nExpr; 562 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); 563 if( pItem==0 ){ 564 sqlite3_free(pNew); 565 return 0; 566 } 567 pOldItem = p->a; 568 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 569 Expr *pNewExpr, *pOldExpr; 570 pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr); 571 if( pOldExpr->span.z!=0 && pNewExpr ){ 572 /* Always make a copy of the span for top-level expressions in the 573 ** expression list. The logic in SELECT processing that determines 574 ** the names of columns in the result set needs this information */ 575 sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span); 576 } 577 assert( pNewExpr==0 || pNewExpr->span.z!=0 578 || pOldExpr->span.z==0 579 || db->mallocFailed ); 580 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 581 pItem->sortOrder = pOldItem->sortOrder; 582 pItem->isAgg = pOldItem->isAgg; 583 pItem->done = 0; 584 } 585 return pNew; 586 } 587 588 /* 589 ** If cursors, triggers, views and subqueries are all omitted from 590 ** the build, then none of the following routines, except for 591 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 592 ** called with a NULL argument. 593 */ 594 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 595 || !defined(SQLITE_OMIT_SUBQUERY) 596 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){ 597 SrcList *pNew; 598 int i; 599 int nByte; 600 if( p==0 ) return 0; 601 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 602 pNew = sqlite3DbMallocRaw(db, nByte ); 603 if( pNew==0 ) return 0; 604 pNew->nSrc = pNew->nAlloc = p->nSrc; 605 for(i=0; i<p->nSrc; i++){ 606 struct SrcList_item *pNewItem = &pNew->a[i]; 607 struct SrcList_item *pOldItem = &p->a[i]; 608 Table *pTab; 609 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 610 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 611 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 612 pNewItem->jointype = pOldItem->jointype; 613 pNewItem->iCursor = pOldItem->iCursor; 614 pNewItem->isPopulated = pOldItem->isPopulated; 615 pTab = pNewItem->pTab = pOldItem->pTab; 616 if( pTab ){ 617 pTab->nRef++; 618 } 619 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect); 620 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn); 621 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 622 pNewItem->colUsed = pOldItem->colUsed; 623 } 624 return pNew; 625 } 626 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 627 IdList *pNew; 628 int i; 629 if( p==0 ) return 0; 630 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 631 if( pNew==0 ) return 0; 632 pNew->nId = pNew->nAlloc = p->nId; 633 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 634 if( pNew->a==0 ){ 635 sqlite3_free(pNew); 636 return 0; 637 } 638 for(i=0; i<p->nId; i++){ 639 struct IdList_item *pNewItem = &pNew->a[i]; 640 struct IdList_item *pOldItem = &p->a[i]; 641 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 642 pNewItem->idx = pOldItem->idx; 643 } 644 return pNew; 645 } 646 Select *sqlite3SelectDup(sqlite3 *db, Select *p){ 647 Select *pNew; 648 if( p==0 ) return 0; 649 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 650 if( pNew==0 ) return 0; 651 pNew->isDistinct = p->isDistinct; 652 pNew->pEList = sqlite3ExprListDup(db, p->pEList); 653 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc); 654 pNew->pWhere = sqlite3ExprDup(db, p->pWhere); 655 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy); 656 pNew->pHaving = sqlite3ExprDup(db, p->pHaving); 657 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy); 658 pNew->op = p->op; 659 pNew->pPrior = sqlite3SelectDup(db, p->pPrior); 660 pNew->pLimit = sqlite3ExprDup(db, p->pLimit); 661 pNew->pOffset = sqlite3ExprDup(db, p->pOffset); 662 pNew->iLimit = -1; 663 pNew->iOffset = -1; 664 pNew->isResolved = p->isResolved; 665 pNew->isAgg = p->isAgg; 666 pNew->usesEphm = 0; 667 pNew->disallowOrderBy = 0; 668 pNew->pRightmost = 0; 669 pNew->addrOpenEphm[0] = -1; 670 pNew->addrOpenEphm[1] = -1; 671 pNew->addrOpenEphm[2] = -1; 672 return pNew; 673 } 674 #else 675 Select *sqlite3SelectDup(sqlite3 *db, Select *p){ 676 assert( p==0 ); 677 return 0; 678 } 679 #endif 680 681 682 /* 683 ** Add a new element to the end of an expression list. If pList is 684 ** initially NULL, then create a new expression list. 685 */ 686 ExprList *sqlite3ExprListAppend( 687 Parse *pParse, /* Parsing context */ 688 ExprList *pList, /* List to which to append. Might be NULL */ 689 Expr *pExpr, /* Expression to be appended */ 690 Token *pName /* AS keyword for the expression */ 691 ){ 692 sqlite3 *db = pParse->db; 693 if( pList==0 ){ 694 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 695 if( pList==0 ){ 696 goto no_mem; 697 } 698 assert( pList->nAlloc==0 ); 699 } 700 if( pList->nAlloc<=pList->nExpr ){ 701 struct ExprList_item *a; 702 int n = pList->nAlloc*2 + 4; 703 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); 704 if( a==0 ){ 705 goto no_mem; 706 } 707 pList->a = a; 708 pList->nAlloc = n; 709 } 710 assert( pList->a!=0 ); 711 if( pExpr || pName ){ 712 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 713 memset(pItem, 0, sizeof(*pItem)); 714 pItem->zName = sqlite3NameFromToken(db, pName); 715 pItem->pExpr = pExpr; 716 } 717 return pList; 718 719 no_mem: 720 /* Avoid leaking memory if malloc has failed. */ 721 sqlite3ExprDelete(pExpr); 722 sqlite3ExprListDelete(pList); 723 return 0; 724 } 725 726 /* 727 ** If the expression list pEList contains more than iLimit elements, 728 ** leave an error message in pParse. 729 */ 730 void sqlite3ExprListCheckLength( 731 Parse *pParse, 732 ExprList *pEList, 733 const char *zObject 734 ){ 735 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 736 testcase( pEList && pEList->nExpr==mx ); 737 testcase( pEList && pEList->nExpr==mx+1 ); 738 if( pEList && pEList->nExpr>mx ){ 739 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 740 } 741 } 742 743 744 /* The following three functions, heightOfExpr(), heightOfExprList() 745 ** and heightOfSelect(), are used to determine the maximum height 746 ** of any expression tree referenced by the structure passed as the 747 ** first argument. 748 ** 749 ** If this maximum height is greater than the current value pointed 750 ** to by pnHeight, the second parameter, then set *pnHeight to that 751 ** value. 752 */ 753 static void heightOfExpr(Expr *p, int *pnHeight){ 754 if( p ){ 755 if( p->nHeight>*pnHeight ){ 756 *pnHeight = p->nHeight; 757 } 758 } 759 } 760 static void heightOfExprList(ExprList *p, int *pnHeight){ 761 if( p ){ 762 int i; 763 for(i=0; i<p->nExpr; i++){ 764 heightOfExpr(p->a[i].pExpr, pnHeight); 765 } 766 } 767 } 768 static void heightOfSelect(Select *p, int *pnHeight){ 769 if( p ){ 770 heightOfExpr(p->pWhere, pnHeight); 771 heightOfExpr(p->pHaving, pnHeight); 772 heightOfExpr(p->pLimit, pnHeight); 773 heightOfExpr(p->pOffset, pnHeight); 774 heightOfExprList(p->pEList, pnHeight); 775 heightOfExprList(p->pGroupBy, pnHeight); 776 heightOfExprList(p->pOrderBy, pnHeight); 777 heightOfSelect(p->pPrior, pnHeight); 778 } 779 } 780 781 /* 782 ** Set the Expr.nHeight variable in the structure passed as an 783 ** argument. An expression with no children, Expr.pList or 784 ** Expr.pSelect member has a height of 1. Any other expression 785 ** has a height equal to the maximum height of any other 786 ** referenced Expr plus one. 787 */ 788 void sqlite3ExprSetHeight(Expr *p){ 789 int nHeight = 0; 790 heightOfExpr(p->pLeft, &nHeight); 791 heightOfExpr(p->pRight, &nHeight); 792 heightOfExprList(p->pList, &nHeight); 793 heightOfSelect(p->pSelect, &nHeight); 794 p->nHeight = nHeight + 1; 795 } 796 797 /* 798 ** Return the maximum height of any expression tree referenced 799 ** by the select statement passed as an argument. 800 */ 801 int sqlite3SelectExprHeight(Select *p){ 802 int nHeight = 0; 803 heightOfSelect(p, &nHeight); 804 return nHeight; 805 } 806 807 /* 808 ** Delete an entire expression list. 809 */ 810 void sqlite3ExprListDelete(ExprList *pList){ 811 int i; 812 struct ExprList_item *pItem; 813 if( pList==0 ) return; 814 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 815 assert( pList->nExpr<=pList->nAlloc ); 816 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 817 sqlite3ExprDelete(pItem->pExpr); 818 sqlite3_free(pItem->zName); 819 } 820 sqlite3_free(pList->a); 821 sqlite3_free(pList); 822 } 823 824 /* 825 ** Walk an expression tree. Call xFunc for each node visited. xFunc 826 ** is called on the node before xFunc is called on the nodes children. 827 ** 828 ** The return value from xFunc determines whether the tree walk continues. 829 ** 0 means continue walking the tree. 1 means do not walk children 830 ** of the current node but continue with siblings. 2 means abandon 831 ** the tree walk completely. 832 ** 833 ** The return value from this routine is 1 to abandon the tree walk 834 ** and 0 to continue. 835 ** 836 ** NOTICE: This routine does *not* descend into subqueries. 837 */ 838 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); 839 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ 840 int rc; 841 if( pExpr==0 ) return 0; 842 rc = (*xFunc)(pArg, pExpr); 843 if( rc==0 ){ 844 if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; 845 if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; 846 if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; 847 } 848 return rc>1; 849 } 850 851 /* 852 ** Call walkExprTree() for every expression in list p. 853 */ 854 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ 855 int i; 856 struct ExprList_item *pItem; 857 if( !p ) return 0; 858 for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ 859 if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; 860 } 861 return 0; 862 } 863 864 /* 865 ** Call walkExprTree() for every expression in Select p, not including 866 ** expressions that are part of sub-selects in any FROM clause or the LIMIT 867 ** or OFFSET expressions.. 868 */ 869 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ 870 walkExprList(p->pEList, xFunc, pArg); 871 walkExprTree(p->pWhere, xFunc, pArg); 872 walkExprList(p->pGroupBy, xFunc, pArg); 873 walkExprTree(p->pHaving, xFunc, pArg); 874 walkExprList(p->pOrderBy, xFunc, pArg); 875 if( p->pPrior ){ 876 walkSelectExpr(p->pPrior, xFunc, pArg); 877 } 878 return 0; 879 } 880 881 882 /* 883 ** This routine is designed as an xFunc for walkExprTree(). 884 ** 885 ** pArg is really a pointer to an integer. If we can tell by looking 886 ** at pExpr that the expression that contains pExpr is not a constant 887 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk. 888 ** If pExpr does does not disqualify the expression from being a constant 889 ** then do nothing. 890 ** 891 ** After walking the whole tree, if no nodes are found that disqualify 892 ** the expression as constant, then we assume the whole expression 893 ** is constant. See sqlite3ExprIsConstant() for additional information. 894 */ 895 static int exprNodeIsConstant(void *pArg, Expr *pExpr){ 896 int *pN = (int*)pArg; 897 898 /* If *pArg is 3 then any term of the expression that comes from 899 ** the ON or USING clauses of a join disqualifies the expression 900 ** from being considered constant. */ 901 if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 902 *pN = 0; 903 return 2; 904 } 905 906 switch( pExpr->op ){ 907 /* Consider functions to be constant if all their arguments are constant 908 ** and *pArg==2 */ 909 case TK_FUNCTION: 910 if( (*pN)==2 ) return 0; 911 /* Fall through */ 912 case TK_ID: 913 case TK_COLUMN: 914 case TK_DOT: 915 case TK_AGG_FUNCTION: 916 case TK_AGG_COLUMN: 917 #ifndef SQLITE_OMIT_SUBQUERY 918 case TK_SELECT: 919 case TK_EXISTS: 920 testcase( pExpr->op==TK_SELECT ); 921 testcase( pExpr->op==TK_EXISTS ); 922 #endif 923 testcase( pExpr->op==TK_ID ); 924 testcase( pExpr->op==TK_COLUMN ); 925 testcase( pExpr->op==TK_DOT ); 926 testcase( pExpr->op==TK_AGG_FUNCTION ); 927 testcase( pExpr->op==TK_AGG_COLUMN ); 928 *pN = 0; 929 return 2; 930 case TK_IN: 931 if( pExpr->pSelect ){ 932 *pN = 0; 933 return 2; 934 } 935 default: 936 return 0; 937 } 938 } 939 940 /* 941 ** Walk an expression tree. Return 1 if the expression is constant 942 ** and 0 if it involves variables or function calls. 943 ** 944 ** For the purposes of this function, a double-quoted string (ex: "abc") 945 ** is considered a variable but a single-quoted string (ex: 'abc') is 946 ** a constant. 947 */ 948 int sqlite3ExprIsConstant(Expr *p){ 949 int isConst = 1; 950 walkExprTree(p, exprNodeIsConstant, &isConst); 951 return isConst; 952 } 953 954 /* 955 ** Walk an expression tree. Return 1 if the expression is constant 956 ** that does no originate from the ON or USING clauses of a join. 957 ** Return 0 if it involves variables or function calls or terms from 958 ** an ON or USING clause. 959 */ 960 int sqlite3ExprIsConstantNotJoin(Expr *p){ 961 int isConst = 3; 962 walkExprTree(p, exprNodeIsConstant, &isConst); 963 return isConst!=0; 964 } 965 966 /* 967 ** Walk an expression tree. Return 1 if the expression is constant 968 ** or a function call with constant arguments. Return and 0 if there 969 ** are any variables. 970 ** 971 ** For the purposes of this function, a double-quoted string (ex: "abc") 972 ** is considered a variable but a single-quoted string (ex: 'abc') is 973 ** a constant. 974 */ 975 int sqlite3ExprIsConstantOrFunction(Expr *p){ 976 int isConst = 2; 977 walkExprTree(p, exprNodeIsConstant, &isConst); 978 return isConst!=0; 979 } 980 981 /* 982 ** If the expression p codes a constant integer that is small enough 983 ** to fit in a 32-bit integer, return 1 and put the value of the integer 984 ** in *pValue. If the expression is not an integer or if it is too big 985 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 986 */ 987 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 988 switch( p->op ){ 989 case TK_INTEGER: { 990 if( sqlite3GetInt32((char*)p->token.z, pValue) ){ 991 return 1; 992 } 993 break; 994 } 995 case TK_UPLUS: { 996 return sqlite3ExprIsInteger(p->pLeft, pValue); 997 } 998 case TK_UMINUS: { 999 int v; 1000 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1001 *pValue = -v; 1002 return 1; 1003 } 1004 break; 1005 } 1006 default: break; 1007 } 1008 return 0; 1009 } 1010 1011 /* 1012 ** Return TRUE if the given string is a row-id column name. 1013 */ 1014 int sqlite3IsRowid(const char *z){ 1015 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1016 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1017 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1018 return 0; 1019 } 1020 1021 /* 1022 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up 1023 ** that name in the set of source tables in pSrcList and make the pExpr 1024 ** expression node refer back to that source column. The following changes 1025 ** are made to pExpr: 1026 ** 1027 ** pExpr->iDb Set the index in db->aDb[] of the database holding 1028 ** the table. 1029 ** pExpr->iTable Set to the cursor number for the table obtained 1030 ** from pSrcList. 1031 ** pExpr->iColumn Set to the column number within the table. 1032 ** pExpr->op Set to TK_COLUMN. 1033 ** pExpr->pLeft Any expression this points to is deleted 1034 ** pExpr->pRight Any expression this points to is deleted. 1035 ** 1036 ** The pDbToken is the name of the database (the "X"). This value may be 1037 ** NULL meaning that name is of the form Y.Z or Z. Any available database 1038 ** can be used. The pTableToken is the name of the table (the "Y"). This 1039 ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it 1040 ** means that the form of the name is Z and that columns from any table 1041 ** can be used. 1042 ** 1043 ** If the name cannot be resolved unambiguously, leave an error message 1044 ** in pParse and return non-zero. Return zero on success. 1045 */ 1046 static int lookupName( 1047 Parse *pParse, /* The parsing context */ 1048 Token *pDbToken, /* Name of the database containing table, or NULL */ 1049 Token *pTableToken, /* Name of table containing column, or NULL */ 1050 Token *pColumnToken, /* Name of the column. */ 1051 NameContext *pNC, /* The name context used to resolve the name */ 1052 Expr *pExpr /* Make this EXPR node point to the selected column */ 1053 ){ 1054 char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ 1055 char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ 1056 char *zCol = 0; /* Name of the column. The "Z" */ 1057 int i, j; /* Loop counters */ 1058 int cnt = 0; /* Number of matching column names */ 1059 int cntTab = 0; /* Number of matching table names */ 1060 sqlite3 *db = pParse->db; /* The database */ 1061 struct SrcList_item *pItem; /* Use for looping over pSrcList items */ 1062 struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ 1063 NameContext *pTopNC = pNC; /* First namecontext in the list */ 1064 Schema *pSchema = 0; /* Schema of the expression */ 1065 1066 assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ 1067 zDb = sqlite3NameFromToken(db, pDbToken); 1068 zTab = sqlite3NameFromToken(db, pTableToken); 1069 zCol = sqlite3NameFromToken(db, pColumnToken); 1070 if( db->mallocFailed ){ 1071 goto lookupname_end; 1072 } 1073 1074 pExpr->iTable = -1; 1075 while( pNC && cnt==0 ){ 1076 ExprList *pEList; 1077 SrcList *pSrcList = pNC->pSrcList; 1078 1079 if( pSrcList ){ 1080 for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ 1081 Table *pTab; 1082 int iDb; 1083 Column *pCol; 1084 1085 pTab = pItem->pTab; 1086 assert( pTab!=0 ); 1087 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1088 assert( pTab->nCol>0 ); 1089 if( zTab ){ 1090 if( pItem->zAlias ){ 1091 char *zTabName = pItem->zAlias; 1092 if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 1093 }else{ 1094 char *zTabName = pTab->zName; 1095 if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 1096 if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){ 1097 continue; 1098 } 1099 } 1100 } 1101 if( 0==(cntTab++) ){ 1102 pExpr->iTable = pItem->iCursor; 1103 pSchema = pTab->pSchema; 1104 pMatch = pItem; 1105 } 1106 for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ 1107 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 1108 const char *zColl = pTab->aCol[j].zColl; 1109 IdList *pUsing; 1110 cnt++; 1111 pExpr->iTable = pItem->iCursor; 1112 pMatch = pItem; 1113 pSchema = pTab->pSchema; 1114 /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ 1115 pExpr->iColumn = j==pTab->iPKey ? -1 : j; 1116 pExpr->affinity = pTab->aCol[j].affinity; 1117 if( (pExpr->flags & EP_ExpCollate)==0 ){ 1118 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); 1119 } 1120 if( i<pSrcList->nSrc-1 ){ 1121 if( pItem[1].jointype & JT_NATURAL ){ 1122 /* If this match occurred in the left table of a natural join, 1123 ** then skip the right table to avoid a duplicate match */ 1124 pItem++; 1125 i++; 1126 }else if( (pUsing = pItem[1].pUsing)!=0 ){ 1127 /* If this match occurs on a column that is in the USING clause 1128 ** of a join, skip the search of the right table of the join 1129 ** to avoid a duplicate match there. */ 1130 int k; 1131 for(k=0; k<pUsing->nId; k++){ 1132 if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ 1133 pItem++; 1134 i++; 1135 break; 1136 } 1137 } 1138 } 1139 } 1140 break; 1141 } 1142 } 1143 } 1144 } 1145 1146 #ifndef SQLITE_OMIT_TRIGGER 1147 /* If we have not already resolved the name, then maybe 1148 ** it is a new.* or old.* trigger argument reference 1149 */ 1150 if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ 1151 TriggerStack *pTriggerStack = pParse->trigStack; 1152 Table *pTab = 0; 1153 u32 *piColMask; 1154 if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ 1155 pExpr->iTable = pTriggerStack->newIdx; 1156 assert( pTriggerStack->pTab ); 1157 pTab = pTriggerStack->pTab; 1158 piColMask = &(pTriggerStack->newColMask); 1159 }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ 1160 pExpr->iTable = pTriggerStack->oldIdx; 1161 assert( pTriggerStack->pTab ); 1162 pTab = pTriggerStack->pTab; 1163 piColMask = &(pTriggerStack->oldColMask); 1164 } 1165 1166 if( pTab ){ 1167 int iCol; 1168 Column *pCol = pTab->aCol; 1169 1170 pSchema = pTab->pSchema; 1171 cntTab++; 1172 for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) { 1173 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 1174 const char *zColl = pTab->aCol[iCol].zColl; 1175 cnt++; 1176 pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol; 1177 pExpr->affinity = pTab->aCol[iCol].affinity; 1178 if( (pExpr->flags & EP_ExpCollate)==0 ){ 1179 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); 1180 } 1181 pExpr->pTab = pTab; 1182 if( iCol>=0 ){ 1183 testcase( iCol==31 ); 1184 testcase( iCol==32 ); 1185 *piColMask |= ((u32)1<<iCol) | (iCol>=32?0xffffffff:0); 1186 } 1187 break; 1188 } 1189 } 1190 } 1191 } 1192 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ 1193 1194 /* 1195 ** Perhaps the name is a reference to the ROWID 1196 */ 1197 if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ 1198 cnt = 1; 1199 pExpr->iColumn = -1; 1200 pExpr->affinity = SQLITE_AFF_INTEGER; 1201 } 1202 1203 /* 1204 ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z 1205 ** might refer to an result-set alias. This happens, for example, when 1206 ** we are resolving names in the WHERE clause of the following command: 1207 ** 1208 ** SELECT a+b AS x FROM table WHERE x<10; 1209 ** 1210 ** In cases like this, replace pExpr with a copy of the expression that 1211 ** forms the result set entry ("a+b" in the example) and return immediately. 1212 ** Note that the expression in the result set should have already been 1213 ** resolved by the time the WHERE clause is resolved. 1214 */ 1215 if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ 1216 for(j=0; j<pEList->nExpr; j++){ 1217 char *zAs = pEList->a[j].zName; 1218 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ 1219 Expr *pDup, *pOrig; 1220 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 1221 assert( pExpr->pList==0 ); 1222 assert( pExpr->pSelect==0 ); 1223 pOrig = pEList->a[j].pExpr; 1224 if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){ 1225 sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); 1226 sqlite3_free(zCol); 1227 return 2; 1228 } 1229 pDup = sqlite3ExprDup(db, pOrig); 1230 if( pExpr->flags & EP_ExpCollate ){ 1231 pDup->pColl = pExpr->pColl; 1232 pDup->flags |= EP_ExpCollate; 1233 } 1234 if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z); 1235 if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z); 1236 memcpy(pExpr, pDup, sizeof(*pExpr)); 1237 sqlite3_free(pDup); 1238 cnt = 1; 1239 pMatch = 0; 1240 assert( zTab==0 && zDb==0 ); 1241 goto lookupname_end_2; 1242 } 1243 } 1244 } 1245 1246 /* Advance to the next name context. The loop will exit when either 1247 ** we have a match (cnt>0) or when we run out of name contexts. 1248 */ 1249 if( cnt==0 ){ 1250 pNC = pNC->pNext; 1251 } 1252 } 1253 1254 /* 1255 ** If X and Y are NULL (in other words if only the column name Z is 1256 ** supplied) and the value of Z is enclosed in double-quotes, then 1257 ** Z is a string literal if it doesn't match any column names. In that 1258 ** case, we need to return right away and not make any changes to 1259 ** pExpr. 1260 ** 1261 ** Because no reference was made to outer contexts, the pNC->nRef 1262 ** fields are not changed in any context. 1263 */ 1264 if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ 1265 sqlite3_free(zCol); 1266 return 0; 1267 } 1268 1269 /* 1270 ** cnt==0 means there was not match. cnt>1 means there were two or 1271 ** more matches. Either way, we have an error. 1272 */ 1273 if( cnt!=1 ){ 1274 const char *zErr; 1275 zErr = cnt==0 ? "no such column" : "ambiguous column name"; 1276 if( zDb ){ 1277 sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol); 1278 }else if( zTab ){ 1279 sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol); 1280 }else{ 1281 sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol); 1282 } 1283 pTopNC->nErr++; 1284 } 1285 1286 /* If a column from a table in pSrcList is referenced, then record 1287 ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes 1288 ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the 1289 ** column number is greater than the number of bits in the bitmask 1290 ** then set the high-order bit of the bitmask. 1291 */ 1292 if( pExpr->iColumn>=0 && pMatch!=0 ){ 1293 int n = pExpr->iColumn; 1294 testcase( n==sizeof(Bitmask)*8-1 ); 1295 if( n>=sizeof(Bitmask)*8 ){ 1296 n = sizeof(Bitmask)*8-1; 1297 } 1298 assert( pMatch->iCursor==pExpr->iTable ); 1299 pMatch->colUsed |= ((Bitmask)1)<<n; 1300 } 1301 1302 lookupname_end: 1303 /* Clean up and return 1304 */ 1305 sqlite3_free(zDb); 1306 sqlite3_free(zTab); 1307 sqlite3ExprDelete(pExpr->pLeft); 1308 pExpr->pLeft = 0; 1309 sqlite3ExprDelete(pExpr->pRight); 1310 pExpr->pRight = 0; 1311 pExpr->op = TK_COLUMN; 1312 lookupname_end_2: 1313 sqlite3_free(zCol); 1314 if( cnt==1 ){ 1315 assert( pNC!=0 ); 1316 sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList); 1317 if( pMatch && !pMatch->pSelect ){ 1318 pExpr->pTab = pMatch->pTab; 1319 } 1320 /* Increment the nRef value on all name contexts from TopNC up to 1321 ** the point where the name matched. */ 1322 for(;;){ 1323 assert( pTopNC!=0 ); 1324 pTopNC->nRef++; 1325 if( pTopNC==pNC ) break; 1326 pTopNC = pTopNC->pNext; 1327 } 1328 return 0; 1329 } else { 1330 return 1; 1331 } 1332 } 1333 1334 /* 1335 ** This routine is designed as an xFunc for walkExprTree(). 1336 ** 1337 ** Resolve symbolic names into TK_COLUMN operators for the current 1338 ** node in the expression tree. Return 0 to continue the search down 1339 ** the tree or 2 to abort the tree walk. 1340 ** 1341 ** This routine also does error checking and name resolution for 1342 ** function names. The operator for aggregate functions is changed 1343 ** to TK_AGG_FUNCTION. 1344 */ 1345 static int nameResolverStep(void *pArg, Expr *pExpr){ 1346 NameContext *pNC = (NameContext*)pArg; 1347 Parse *pParse; 1348 1349 if( pExpr==0 ) return 1; 1350 assert( pNC!=0 ); 1351 pParse = pNC->pParse; 1352 1353 if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; 1354 ExprSetProperty(pExpr, EP_Resolved); 1355 #ifndef NDEBUG 1356 if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ 1357 SrcList *pSrcList = pNC->pSrcList; 1358 int i; 1359 for(i=0; i<pNC->pSrcList->nSrc; i++){ 1360 assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); 1361 } 1362 } 1363 #endif 1364 switch( pExpr->op ){ 1365 /* Double-quoted strings (ex: "abc") are used as identifiers if 1366 ** possible. Otherwise they remain as strings. Single-quoted 1367 ** strings (ex: 'abc') are always string literals. 1368 */ 1369 case TK_STRING: { 1370 if( pExpr->token.z[0]=='\'' ) break; 1371 /* Fall thru into the TK_ID case if this is a double-quoted string */ 1372 } 1373 /* A lone identifier is the name of a column. 1374 */ 1375 case TK_ID: { 1376 lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); 1377 return 1; 1378 } 1379 1380 /* A table name and column name: ID.ID 1381 ** Or a database, table and column: ID.ID.ID 1382 */ 1383 case TK_DOT: { 1384 Token *pColumn; 1385 Token *pTable; 1386 Token *pDb; 1387 Expr *pRight; 1388 1389 /* if( pSrcList==0 ) break; */ 1390 pRight = pExpr->pRight; 1391 if( pRight->op==TK_ID ){ 1392 pDb = 0; 1393 pTable = &pExpr->pLeft->token; 1394 pColumn = &pRight->token; 1395 }else{ 1396 assert( pRight->op==TK_DOT ); 1397 pDb = &pExpr->pLeft->token; 1398 pTable = &pRight->pLeft->token; 1399 pColumn = &pRight->pRight->token; 1400 } 1401 lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); 1402 return 1; 1403 } 1404 1405 /* Resolve function names 1406 */ 1407 case TK_CONST_FUNC: 1408 case TK_FUNCTION: { 1409 ExprList *pList = pExpr->pList; /* The argument list */ 1410 int n = pList ? pList->nExpr : 0; /* Number of arguments */ 1411 int no_such_func = 0; /* True if no such function exists */ 1412 int wrong_num_args = 0; /* True if wrong number of arguments */ 1413 int is_agg = 0; /* True if is an aggregate function */ 1414 int i; 1415 int auth; /* Authorization to use the function */ 1416 int nId; /* Number of characters in function name */ 1417 const char *zId; /* The function name. */ 1418 FuncDef *pDef; /* Information about the function */ 1419 int enc = ENC(pParse->db); /* The database encoding */ 1420 1421 zId = (char*)pExpr->token.z; 1422 nId = pExpr->token.n; 1423 pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); 1424 if( pDef==0 ){ 1425 pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); 1426 if( pDef==0 ){ 1427 no_such_func = 1; 1428 }else{ 1429 wrong_num_args = 1; 1430 } 1431 }else{ 1432 is_agg = pDef->xFunc==0; 1433 } 1434 #ifndef SQLITE_OMIT_AUTHORIZATION 1435 if( pDef ){ 1436 auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); 1437 if( auth!=SQLITE_OK ){ 1438 if( auth==SQLITE_DENY ){ 1439 sqlite3ErrorMsg(pParse, "not authorized to use function: %s", 1440 pDef->zName); 1441 pNC->nErr++; 1442 } 1443 pExpr->op = TK_NULL; 1444 return 1; 1445 } 1446 } 1447 #endif 1448 if( is_agg && !pNC->allowAgg ){ 1449 sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); 1450 pNC->nErr++; 1451 is_agg = 0; 1452 }else if( no_such_func ){ 1453 sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); 1454 pNC->nErr++; 1455 }else if( wrong_num_args ){ 1456 sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", 1457 nId, zId); 1458 pNC->nErr++; 1459 } 1460 if( is_agg ){ 1461 pExpr->op = TK_AGG_FUNCTION; 1462 pNC->hasAgg = 1; 1463 } 1464 if( is_agg ) pNC->allowAgg = 0; 1465 for(i=0; pNC->nErr==0 && i<n; i++){ 1466 walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC); 1467 } 1468 if( is_agg ) pNC->allowAgg = 1; 1469 /* FIX ME: Compute pExpr->affinity based on the expected return 1470 ** type of the function 1471 */ 1472 return is_agg; 1473 } 1474 #ifndef SQLITE_OMIT_SUBQUERY 1475 case TK_SELECT: 1476 case TK_EXISTS: 1477 #endif 1478 case TK_IN: { 1479 if( pExpr->pSelect ){ 1480 int nRef = pNC->nRef; 1481 #ifndef SQLITE_OMIT_CHECK 1482 if( pNC->isCheck ){ 1483 sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); 1484 } 1485 #endif 1486 sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); 1487 assert( pNC->nRef>=nRef ); 1488 if( nRef!=pNC->nRef ){ 1489 ExprSetProperty(pExpr, EP_VarSelect); 1490 } 1491 } 1492 break; 1493 } 1494 #ifndef SQLITE_OMIT_CHECK 1495 case TK_VARIABLE: { 1496 if( pNC->isCheck ){ 1497 sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); 1498 } 1499 break; 1500 } 1501 #endif 1502 } 1503 return 0; 1504 } 1505 1506 /* 1507 ** This routine walks an expression tree and resolves references to 1508 ** table columns. Nodes of the form ID.ID or ID resolve into an 1509 ** index to the table in the table list and a column offset. The 1510 ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable 1511 ** value is changed to the index of the referenced table in pTabList 1512 ** plus the "base" value. The base value will ultimately become the 1513 ** VDBE cursor number for a cursor that is pointing into the referenced 1514 ** table. The Expr.iColumn value is changed to the index of the column 1515 ** of the referenced table. The Expr.iColumn value for the special 1516 ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an 1517 ** alias for ROWID. 1518 ** 1519 ** Also resolve function names and check the functions for proper 1520 ** usage. Make sure all function names are recognized and all functions 1521 ** have the correct number of arguments. Leave an error message 1522 ** in pParse->zErrMsg if anything is amiss. Return the number of errors. 1523 ** 1524 ** If the expression contains aggregate functions then set the EP_Agg 1525 ** property on the expression. 1526 */ 1527 int sqlite3ExprResolveNames( 1528 NameContext *pNC, /* Namespace to resolve expressions in. */ 1529 Expr *pExpr /* The expression to be analyzed. */ 1530 ){ 1531 int savedHasAgg; 1532 1533 if( pExpr==0 ) return 0; 1534 #if SQLITE_MAX_EXPR_DEPTH>0 1535 { 1536 int mxDepth = pNC->pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 1537 if( (pExpr->nHeight+pNC->pParse->nHeight)>mxDepth ){ 1538 sqlite3ErrorMsg(pNC->pParse, 1539 "Expression tree is too large (maximum depth %d)", mxDepth 1540 ); 1541 return 1; 1542 } 1543 pNC->pParse->nHeight += pExpr->nHeight; 1544 } 1545 #endif 1546 savedHasAgg = pNC->hasAgg; 1547 pNC->hasAgg = 0; 1548 walkExprTree(pExpr, nameResolverStep, pNC); 1549 #if SQLITE_MAX_EXPR_DEPTH>0 1550 pNC->pParse->nHeight -= pExpr->nHeight; 1551 #endif 1552 if( pNC->nErr>0 ){ 1553 ExprSetProperty(pExpr, EP_Error); 1554 } 1555 if( pNC->hasAgg ){ 1556 ExprSetProperty(pExpr, EP_Agg); 1557 }else if( savedHasAgg ){ 1558 pNC->hasAgg = 1; 1559 } 1560 return ExprHasProperty(pExpr, EP_Error); 1561 } 1562 1563 /* 1564 ** A pointer instance of this structure is used to pass information 1565 ** through walkExprTree into codeSubqueryStep(). 1566 */ 1567 typedef struct QueryCoder QueryCoder; 1568 struct QueryCoder { 1569 Parse *pParse; /* The parsing context */ 1570 NameContext *pNC; /* Namespace of first enclosing query */ 1571 }; 1572 1573 #ifdef SQLITE_TEST 1574 int sqlite3_enable_in_opt = 1; 1575 #else 1576 #define sqlite3_enable_in_opt 1 1577 #endif 1578 1579 /* 1580 ** This function is used by the implementation of the IN (...) operator. 1581 ** It's job is to find or create a b-tree structure that may be used 1582 ** either to test for membership of the (...) set or to iterate through 1583 ** its members, skipping duplicates. 1584 ** 1585 ** The cursor opened on the structure (database table, database index 1586 ** or ephermal table) is stored in pX->iTable before this function returns. 1587 ** The returned value indicates the structure type, as follows: 1588 ** 1589 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1590 ** IN_INDEX_INDEX - The cursor was opened on a database index. 1591 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1592 ** populated epheremal table. 1593 ** 1594 ** An existing structure may only be used if the SELECT is of the simple 1595 ** form: 1596 ** 1597 ** SELECT <column> FROM <table> 1598 ** 1599 ** If the mustBeUnique parameter is false, the structure will be used 1600 ** for fast set membership tests. In this case an epheremal table must 1601 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1602 ** be found with <column> as its left-most column. 1603 ** 1604 ** If mustBeUnique is true, then the structure will be used to iterate 1605 ** through the set members, skipping any duplicates. In this case an 1606 ** epheremal table must be used unless the selected <column> is guaranteed 1607 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1608 ** is unique by virtue of a constraint or implicit index. 1609 */ 1610 #ifndef SQLITE_OMIT_SUBQUERY 1611 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int mustBeUnique){ 1612 Select *p; 1613 int eType = 0; 1614 int iTab = pParse->nTab++; 1615 1616 /* The follwing if(...) expression is true if the SELECT is of the 1617 ** simple form: 1618 ** 1619 ** SELECT <column> FROM <table> 1620 ** 1621 ** If this is the case, it may be possible to use an existing table 1622 ** or index instead of generating an epheremal table. 1623 */ 1624 if( sqlite3_enable_in_opt 1625 && (p=pX->pSelect)!=0 && !p->pPrior 1626 && !p->isDistinct && !p->isAgg && !p->pGroupBy 1627 && p->pSrc && p->pSrc->nSrc==1 && !p->pSrc->a[0].pSelect 1628 && p->pSrc->a[0].pTab && !p->pSrc->a[0].pTab->pSelect 1629 && p->pEList->nExpr==1 && p->pEList->a[0].pExpr->op==TK_COLUMN 1630 && !p->pLimit && !p->pOffset && !p->pWhere 1631 ){ 1632 sqlite3 *db = pParse->db; 1633 Index *pIdx; 1634 Expr *pExpr = p->pEList->a[0].pExpr; 1635 int iCol = pExpr->iColumn; 1636 Vdbe *v = sqlite3GetVdbe(pParse); 1637 1638 /* This function is only called from two places. In both cases the vdbe 1639 ** has already been allocated. So assume sqlite3GetVdbe() is always 1640 ** successful here. 1641 */ 1642 assert(v); 1643 if( iCol<0 ){ 1644 int iMem = ++pParse->nMem; 1645 int iAddr; 1646 Table *pTab = p->pSrc->a[0].pTab; 1647 int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1648 sqlite3VdbeUsesBtree(v, iDb); 1649 1650 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1651 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1652 1653 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1654 eType = IN_INDEX_ROWID; 1655 1656 sqlite3VdbeJumpHere(v, iAddr); 1657 }else{ 1658 /* The collation sequence used by the comparison. If an index is to 1659 ** be used in place of a temp-table, it must be ordered according 1660 ** to this collation sequence. 1661 */ 1662 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1663 1664 /* Check that the affinity that will be used to perform the 1665 ** comparison is the same as the affinity of the column. If 1666 ** it is not, it is not possible to use any index. 1667 */ 1668 Table *pTab = p->pSrc->a[0].pTab; 1669 char aff = comparisonAffinity(pX); 1670 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); 1671 1672 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1673 if( (pIdx->aiColumn[0]==iCol) 1674 && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0)) 1675 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1676 ){ 1677 int iDb; 1678 int iMem = ++pParse->nMem; 1679 int iAddr; 1680 char *pKey; 1681 1682 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); 1683 iDb = sqlite3SchemaToIndex(db, pIdx->pSchema); 1684 sqlite3VdbeUsesBtree(v, iDb); 1685 1686 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1687 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1688 1689 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn); 1690 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, 1691 pKey,P4_KEYINFO_HANDOFF); 1692 VdbeComment((v, "%s", pIdx->zName)); 1693 eType = IN_INDEX_INDEX; 1694 1695 sqlite3VdbeJumpHere(v, iAddr); 1696 } 1697 } 1698 } 1699 } 1700 1701 if( eType==0 ){ 1702 sqlite3CodeSubselect(pParse, pX); 1703 eType = IN_INDEX_EPH; 1704 }else{ 1705 pX->iTable = iTab; 1706 } 1707 return eType; 1708 } 1709 #endif 1710 1711 /* 1712 ** Generate code for scalar subqueries used as an expression 1713 ** and IN operators. Examples: 1714 ** 1715 ** (SELECT a FROM b) -- subquery 1716 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1717 ** x IN (4,5,11) -- IN operator with list on right-hand side 1718 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1719 ** 1720 ** The pExpr parameter describes the expression that contains the IN 1721 ** operator or subquery. 1722 */ 1723 #ifndef SQLITE_OMIT_SUBQUERY 1724 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 1725 int testAddr = 0; /* One-time test address */ 1726 Vdbe *v = sqlite3GetVdbe(pParse); 1727 if( v==0 ) return; 1728 1729 1730 /* This code must be run in its entirety every time it is encountered 1731 ** if any of the following is true: 1732 ** 1733 ** * The right-hand side is a correlated subquery 1734 ** * The right-hand side is an expression list containing variables 1735 ** * We are inside a trigger 1736 ** 1737 ** If all of the above are false, then we can run this code just once 1738 ** save the results, and reuse the same result on subsequent invocations. 1739 */ 1740 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ 1741 int mem = ++pParse->nMem; 1742 sqlite3VdbeAddOp1(v, OP_If, mem); 1743 testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem); 1744 assert( testAddr>0 || pParse->db->mallocFailed ); 1745 } 1746 1747 switch( pExpr->op ){ 1748 case TK_IN: { 1749 char affinity; 1750 KeyInfo keyInfo; 1751 int addr; /* Address of OP_OpenEphemeral instruction */ 1752 1753 affinity = sqlite3ExprAffinity(pExpr->pLeft); 1754 1755 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1756 ** expression it is handled the same way. A virtual table is 1757 ** filled with single-field index keys representing the results 1758 ** from the SELECT or the <exprlist>. 1759 ** 1760 ** If the 'x' expression is a column value, or the SELECT... 1761 ** statement returns a column value, then the affinity of that 1762 ** column is used to build the index keys. If both 'x' and the 1763 ** SELECT... statement are columns, then numeric affinity is used 1764 ** if either column has NUMERIC or INTEGER affinity. If neither 1765 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1766 ** is used. 1767 */ 1768 pExpr->iTable = pParse->nTab++; 1769 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, 1); 1770 memset(&keyInfo, 0, sizeof(keyInfo)); 1771 keyInfo.nField = 1; 1772 1773 if( pExpr->pSelect ){ 1774 /* Case 1: expr IN (SELECT ...) 1775 ** 1776 ** Generate code to write the results of the select into the temporary 1777 ** table allocated and opened above. 1778 */ 1779 SelectDest dest; 1780 ExprList *pEList; 1781 1782 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1783 dest.affinity = (int)affinity; 1784 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1785 if( sqlite3Select(pParse, pExpr->pSelect, &dest, 0, 0, 0, 0) ){ 1786 return; 1787 } 1788 pEList = pExpr->pSelect->pEList; 1789 if( pEList && pEList->nExpr>0 ){ 1790 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1791 pEList->a[0].pExpr); 1792 } 1793 }else if( pExpr->pList ){ 1794 /* Case 2: expr IN (exprlist) 1795 ** 1796 ** For each expression, build an index key from the evaluation and 1797 ** store it in the temporary table. If <expr> is a column, then use 1798 ** that columns affinity when building index keys. If <expr> is not 1799 ** a column, use numeric affinity. 1800 */ 1801 int i; 1802 ExprList *pList = pExpr->pList; 1803 struct ExprList_item *pItem; 1804 int r1, r2; 1805 1806 if( !affinity ){ 1807 affinity = SQLITE_AFF_NONE; 1808 } 1809 keyInfo.aColl[0] = pExpr->pLeft->pColl; 1810 1811 /* Loop through each expression in <exprlist>. */ 1812 r1 = sqlite3GetTempReg(pParse); 1813 r2 = sqlite3GetTempReg(pParse); 1814 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1815 Expr *pE2 = pItem->pExpr; 1816 1817 /* If the expression is not constant then we will need to 1818 ** disable the test that was generated above that makes sure 1819 ** this code only executes once. Because for a non-constant 1820 ** expression we need to rerun this code each time. 1821 */ 1822 if( testAddr && !sqlite3ExprIsConstant(pE2) ){ 1823 sqlite3VdbeChangeToNoop(v, testAddr-1, 2); 1824 testAddr = 0; 1825 } 1826 1827 /* Evaluate the expression and insert it into the temp table */ 1828 pParse->disableColCache++; 1829 sqlite3ExprCode(pParse, pE2, r1); 1830 assert( pParse->disableColCache>0 ); 1831 pParse->disableColCache--; 1832 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 1833 sqlite3ExprCacheAffinityChange(pParse, r1, 1); 1834 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1835 } 1836 sqlite3ReleaseTempReg(pParse, r1); 1837 sqlite3ReleaseTempReg(pParse, r2); 1838 } 1839 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); 1840 break; 1841 } 1842 1843 case TK_EXISTS: 1844 case TK_SELECT: { 1845 /* This has to be a scalar SELECT. Generate code to put the 1846 ** value of this select in a memory cell and record the number 1847 ** of the memory cell in iColumn. 1848 */ 1849 static const Token one = { (u8*)"1", 0, 1 }; 1850 Select *pSel; 1851 SelectDest dest; 1852 1853 pSel = pExpr->pSelect; 1854 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1855 if( pExpr->op==TK_SELECT ){ 1856 dest.eDest = SRT_Mem; 1857 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm); 1858 VdbeComment((v, "Init subquery result")); 1859 }else{ 1860 dest.eDest = SRT_Exists; 1861 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm); 1862 VdbeComment((v, "Init EXISTS result")); 1863 } 1864 sqlite3ExprDelete(pSel->pLimit); 1865 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); 1866 if( sqlite3Select(pParse, pSel, &dest, 0, 0, 0, 0) ){ 1867 return; 1868 } 1869 pExpr->iColumn = dest.iParm; 1870 break; 1871 } 1872 } 1873 1874 if( testAddr ){ 1875 sqlite3VdbeJumpHere(v, testAddr-1); 1876 } 1877 1878 return; 1879 } 1880 #endif /* SQLITE_OMIT_SUBQUERY */ 1881 1882 /* 1883 ** Duplicate an 8-byte value 1884 */ 1885 static char *dup8bytes(Vdbe *v, const char *in){ 1886 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 1887 if( out ){ 1888 memcpy(out, in, 8); 1889 } 1890 return out; 1891 } 1892 1893 /* 1894 ** Generate an instruction that will put the floating point 1895 ** value described by z[0..n-1] into register iMem. 1896 ** 1897 ** The z[] string will probably not be zero-terminated. But the 1898 ** z[n] character is guaranteed to be something that does not look 1899 ** like the continuation of the number. 1900 */ 1901 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){ 1902 assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); 1903 if( z ){ 1904 double value; 1905 char *zV; 1906 assert( !isdigit(z[n]) ); 1907 sqlite3AtoF(z, &value); 1908 if( negateFlag ) value = -value; 1909 zV = dup8bytes(v, (char*)&value); 1910 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 1911 } 1912 } 1913 1914 1915 /* 1916 ** Generate an instruction that will put the integer describe by 1917 ** text z[0..n-1] into register iMem. 1918 ** 1919 ** The z[] string will probably not be zero-terminated. But the 1920 ** z[n] character is guaranteed to be something that does not look 1921 ** like the continuation of the number. 1922 */ 1923 static void codeInteger(Vdbe *v, const char *z, int n, int negFlag, int iMem){ 1924 assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); 1925 if( z ){ 1926 int i; 1927 assert( !isdigit(z[n]) ); 1928 if( sqlite3GetInt32(z, &i) ){ 1929 if( negFlag ) i = -i; 1930 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 1931 }else if( sqlite3FitsIn64Bits(z, negFlag) ){ 1932 i64 value; 1933 char *zV; 1934 sqlite3Atoi64(z, &value); 1935 if( negFlag ) value = -value; 1936 zV = dup8bytes(v, (char*)&value); 1937 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 1938 }else{ 1939 codeReal(v, z, n, negFlag, iMem); 1940 } 1941 } 1942 } 1943 1944 1945 /* 1946 ** Generate code that will extract the iColumn-th column from 1947 ** table pTab and store the column value in a register. An effort 1948 ** is made to store the column value in register iReg, but this is 1949 ** not guaranteed. The location of the column value is returned. 1950 ** 1951 ** There must be an open cursor to pTab in iTable when this routine 1952 ** is called. If iColumn<0 then code is generated that extracts the rowid. 1953 ** 1954 ** This routine might attempt to reuse the value of the column that 1955 ** has already been loaded into a register. The value will always 1956 ** be used if it has not undergone any affinity changes. But if 1957 ** an affinity change has occurred, then the cached value will only be 1958 ** used if allowAffChng is true. 1959 */ 1960 int sqlite3ExprCodeGetColumn( 1961 Parse *pParse, /* Parsing and code generating context */ 1962 Table *pTab, /* Description of the table we are reading from */ 1963 int iColumn, /* Index of the table column */ 1964 int iTable, /* The cursor pointing to the table */ 1965 int iReg, /* Store results here */ 1966 int allowAffChng /* True if prior affinity changes are OK */ 1967 ){ 1968 Vdbe *v = pParse->pVdbe; 1969 int i; 1970 struct yColCache *p; 1971 1972 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 1973 if( p->iTable==iTable && p->iColumn==iColumn 1974 && (!p->affChange || allowAffChng) ){ 1975 #if 0 1976 sqlite3VdbeAddOp0(v, OP_Noop); 1977 VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg)); 1978 #endif 1979 return p->iReg; 1980 } 1981 } 1982 assert( v!=0 ); 1983 if( iColumn<0 ){ 1984 int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid; 1985 sqlite3VdbeAddOp2(v, op, iTable, iReg); 1986 }else if( pTab==0 ){ 1987 sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg); 1988 }else{ 1989 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 1990 sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg); 1991 sqlite3ColumnDefault(v, pTab, iColumn); 1992 #ifndef SQLITE_OMIT_FLOATING_POINT 1993 if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){ 1994 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 1995 } 1996 #endif 1997 } 1998 if( pParse->disableColCache==0 ){ 1999 i = pParse->iColCache; 2000 p = &pParse->aColCache[i]; 2001 p->iTable = iTable; 2002 p->iColumn = iColumn; 2003 p->iReg = iReg; 2004 p->affChange = 0; 2005 i++; 2006 if( i>=ArraySize(pParse->aColCache) ) i = 0; 2007 if( i>pParse->nColCache ) pParse->nColCache = i; 2008 pParse->iColCache = i; 2009 } 2010 return iReg; 2011 } 2012 2013 /* 2014 ** Clear all column cache entries associated with the vdbe 2015 ** cursor with cursor number iTable. 2016 */ 2017 void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){ 2018 if( iTable<0 ){ 2019 pParse->nColCache = 0; 2020 pParse->iColCache = 0; 2021 }else{ 2022 int i; 2023 for(i=0; i<pParse->nColCache; i++){ 2024 if( pParse->aColCache[i].iTable==iTable ){ 2025 testcase( i==pParse->nColCache-1 ); 2026 pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache]; 2027 pParse->iColCache = pParse->nColCache; 2028 } 2029 } 2030 } 2031 } 2032 2033 /* 2034 ** Record the fact that an affinity change has occurred on iCount 2035 ** registers starting with iStart. 2036 */ 2037 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2038 int iEnd = iStart + iCount - 1; 2039 int i; 2040 for(i=0; i<pParse->nColCache; i++){ 2041 int r = pParse->aColCache[i].iReg; 2042 if( r>=iStart && r<=iEnd ){ 2043 pParse->aColCache[i].affChange = 1; 2044 } 2045 } 2046 } 2047 2048 /* 2049 ** Generate code to moves content from one register to another. 2050 ** Keep the column cache up-to-date. 2051 */ 2052 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo){ 2053 int i; 2054 if( iFrom==iTo ) return; 2055 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Move, iFrom, iTo); 2056 for(i=0; i<pParse->nColCache; i++){ 2057 if( pParse->aColCache[i].iReg==iFrom ){ 2058 pParse->aColCache[i].iReg = iTo; 2059 } 2060 } 2061 } 2062 2063 /* 2064 ** Return true if any register in the range iFrom..iTo (inclusive) 2065 ** is used as part of the column cache. 2066 */ 2067 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2068 int i; 2069 for(i=0; i<pParse->nColCache; i++){ 2070 int r = pParse->aColCache[i].iReg; 2071 if( r>=iFrom && r<=iTo ) return 1; 2072 } 2073 return 0; 2074 } 2075 2076 /* 2077 ** Theres is a value in register iCurrent. We ultimately want 2078 ** the value to be in register iTarget. It might be that 2079 ** iCurrent and iTarget are the same register. 2080 ** 2081 ** We are going to modify the value, so we need to make sure it 2082 ** is not a cached register. If iCurrent is a cached register, 2083 ** then try to move the value over to iTarget. If iTarget is a 2084 ** cached register, then clear the corresponding cache line. 2085 ** 2086 ** Return the register that the value ends up in. 2087 */ 2088 int sqlite3ExprWritableRegister(Parse *pParse, int iCurrent, int iTarget){ 2089 int i; 2090 assert( pParse->pVdbe!=0 ); 2091 if( !usedAsColumnCache(pParse, iCurrent, iCurrent) ){ 2092 return iCurrent; 2093 } 2094 if( iCurrent!=iTarget ){ 2095 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget); 2096 } 2097 for(i=0; i<pParse->nColCache; i++){ 2098 if( pParse->aColCache[i].iReg==iTarget ){ 2099 pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache]; 2100 pParse->iColCache = pParse->nColCache; 2101 } 2102 } 2103 return iTarget; 2104 } 2105 2106 /* 2107 ** Generate code into the current Vdbe to evaluate the given 2108 ** expression. Attempt to store the results in register "target". 2109 ** Return the register where results are stored. 2110 ** 2111 ** With this routine, there is no guaranteed that results will 2112 ** be stored in target. The result might be stored in some other 2113 ** register if it is convenient to do so. The calling function 2114 ** must check the return code and move the results to the desired 2115 ** register. 2116 */ 2117 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2118 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2119 int op; /* The opcode being coded */ 2120 int inReg = target; /* Results stored in register inReg */ 2121 int regFree1 = 0; /* If non-zero free this temporary register */ 2122 int regFree2 = 0; /* If non-zero free this temporary register */ 2123 int r1, r2, r3, r4; /* Various register numbers */ 2124 2125 assert( v!=0 || pParse->db->mallocFailed ); 2126 assert( target>0 && target<=pParse->nMem ); 2127 if( v==0 ) return 0; 2128 2129 if( pExpr==0 ){ 2130 op = TK_NULL; 2131 }else{ 2132 op = pExpr->op; 2133 } 2134 switch( op ){ 2135 case TK_AGG_COLUMN: { 2136 AggInfo *pAggInfo = pExpr->pAggInfo; 2137 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2138 if( !pAggInfo->directMode ){ 2139 assert( pCol->iMem>0 ); 2140 inReg = pCol->iMem; 2141 break; 2142 }else if( pAggInfo->useSortingIdx ){ 2143 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx, 2144 pCol->iSorterColumn, target); 2145 break; 2146 } 2147 /* Otherwise, fall thru into the TK_COLUMN case */ 2148 } 2149 case TK_COLUMN: { 2150 if( pExpr->iTable<0 ){ 2151 /* This only happens when coding check constraints */ 2152 assert( pParse->ckBase>0 ); 2153 inReg = pExpr->iColumn + pParse->ckBase; 2154 }else{ 2155 testcase( (pExpr->flags & EP_AnyAff)!=0 ); 2156 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2157 pExpr->iColumn, pExpr->iTable, target, 2158 pExpr->flags & EP_AnyAff); 2159 } 2160 break; 2161 } 2162 case TK_INTEGER: { 2163 codeInteger(v, (char*)pExpr->token.z, pExpr->token.n, 0, target); 2164 break; 2165 } 2166 case TK_FLOAT: { 2167 codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target); 2168 break; 2169 } 2170 case TK_STRING: { 2171 sqlite3DequoteExpr(pParse->db, pExpr); 2172 sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0, 2173 (char*)pExpr->token.z, pExpr->token.n); 2174 break; 2175 } 2176 case TK_NULL: { 2177 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2178 break; 2179 } 2180 #ifndef SQLITE_OMIT_BLOB_LITERAL 2181 case TK_BLOB: { 2182 int n; 2183 const char *z; 2184 char *zBlob; 2185 assert( pExpr->token.n>=3 ); 2186 assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' ); 2187 assert( pExpr->token.z[1]=='\'' ); 2188 assert( pExpr->token.z[pExpr->token.n-1]=='\'' ); 2189 n = pExpr->token.n - 3; 2190 z = (char*)pExpr->token.z + 2; 2191 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2192 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2193 break; 2194 } 2195 #endif 2196 case TK_VARIABLE: { 2197 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target); 2198 if( pExpr->token.n>1 ){ 2199 sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n); 2200 } 2201 break; 2202 } 2203 case TK_REGISTER: { 2204 inReg = pExpr->iTable; 2205 break; 2206 } 2207 #ifndef SQLITE_OMIT_CAST 2208 case TK_CAST: { 2209 /* Expressions of the form: CAST(pLeft AS token) */ 2210 int aff, to_op; 2211 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2212 aff = sqlite3AffinityType(&pExpr->token); 2213 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2214 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2215 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2216 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2217 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2218 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2219 testcase( to_op==OP_ToText ); 2220 testcase( to_op==OP_ToBlob ); 2221 testcase( to_op==OP_ToNumeric ); 2222 testcase( to_op==OP_ToInt ); 2223 testcase( to_op==OP_ToReal ); 2224 sqlite3VdbeAddOp1(v, to_op, inReg); 2225 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2226 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2227 break; 2228 } 2229 #endif /* SQLITE_OMIT_CAST */ 2230 case TK_LT: 2231 case TK_LE: 2232 case TK_GT: 2233 case TK_GE: 2234 case TK_NE: 2235 case TK_EQ: { 2236 assert( TK_LT==OP_Lt ); 2237 assert( TK_LE==OP_Le ); 2238 assert( TK_GT==OP_Gt ); 2239 assert( TK_GE==OP_Ge ); 2240 assert( TK_EQ==OP_Eq ); 2241 assert( TK_NE==OP_Ne ); 2242 testcase( op==TK_LT ); 2243 testcase( op==TK_LE ); 2244 testcase( op==TK_GT ); 2245 testcase( op==TK_GE ); 2246 testcase( op==TK_EQ ); 2247 testcase( op==TK_NE ); 2248 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 2249 pExpr->pRight, &r2, ®Free2); 2250 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2251 r1, r2, inReg, SQLITE_STOREP2); 2252 testcase( regFree1==0 ); 2253 testcase( regFree2==0 ); 2254 break; 2255 } 2256 case TK_AND: 2257 case TK_OR: 2258 case TK_PLUS: 2259 case TK_STAR: 2260 case TK_MINUS: 2261 case TK_REM: 2262 case TK_BITAND: 2263 case TK_BITOR: 2264 case TK_SLASH: 2265 case TK_LSHIFT: 2266 case TK_RSHIFT: 2267 case TK_CONCAT: { 2268 assert( TK_AND==OP_And ); 2269 assert( TK_OR==OP_Or ); 2270 assert( TK_PLUS==OP_Add ); 2271 assert( TK_MINUS==OP_Subtract ); 2272 assert( TK_REM==OP_Remainder ); 2273 assert( TK_BITAND==OP_BitAnd ); 2274 assert( TK_BITOR==OP_BitOr ); 2275 assert( TK_SLASH==OP_Divide ); 2276 assert( TK_LSHIFT==OP_ShiftLeft ); 2277 assert( TK_RSHIFT==OP_ShiftRight ); 2278 assert( TK_CONCAT==OP_Concat ); 2279 testcase( op==TK_AND ); 2280 testcase( op==TK_OR ); 2281 testcase( op==TK_PLUS ); 2282 testcase( op==TK_MINUS ); 2283 testcase( op==TK_REM ); 2284 testcase( op==TK_BITAND ); 2285 testcase( op==TK_BITOR ); 2286 testcase( op==TK_SLASH ); 2287 testcase( op==TK_LSHIFT ); 2288 testcase( op==TK_RSHIFT ); 2289 testcase( op==TK_CONCAT ); 2290 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2291 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2292 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2293 testcase( regFree1==0 ); 2294 testcase( regFree2==0 ); 2295 break; 2296 } 2297 case TK_UMINUS: { 2298 Expr *pLeft = pExpr->pLeft; 2299 assert( pLeft ); 2300 if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ 2301 Token *p = &pLeft->token; 2302 if( pLeft->op==TK_FLOAT ){ 2303 codeReal(v, (char*)p->z, p->n, 1, target); 2304 }else{ 2305 codeInteger(v, (char*)p->z, p->n, 1, target); 2306 } 2307 }else{ 2308 regFree1 = r1 = sqlite3GetTempReg(pParse); 2309 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); 2310 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2311 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2312 testcase( regFree2==0 ); 2313 } 2314 inReg = target; 2315 break; 2316 } 2317 case TK_BITNOT: 2318 case TK_NOT: { 2319 assert( TK_BITNOT==OP_BitNot ); 2320 assert( TK_NOT==OP_Not ); 2321 testcase( op==TK_BITNOT ); 2322 testcase( op==TK_NOT ); 2323 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2324 testcase( inReg==target ); 2325 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2326 inReg = sqlite3ExprWritableRegister(pParse, inReg, target); 2327 sqlite3VdbeAddOp1(v, op, inReg); 2328 break; 2329 } 2330 case TK_ISNULL: 2331 case TK_NOTNULL: { 2332 int addr; 2333 assert( TK_ISNULL==OP_IsNull ); 2334 assert( TK_NOTNULL==OP_NotNull ); 2335 testcase( op==TK_ISNULL ); 2336 testcase( op==TK_NOTNULL ); 2337 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2338 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2339 testcase( regFree1==0 ); 2340 addr = sqlite3VdbeAddOp1(v, op, r1); 2341 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2342 sqlite3VdbeJumpHere(v, addr); 2343 break; 2344 } 2345 case TK_AGG_FUNCTION: { 2346 AggInfo *pInfo = pExpr->pAggInfo; 2347 if( pInfo==0 ){ 2348 sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", 2349 &pExpr->span); 2350 }else{ 2351 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2352 } 2353 break; 2354 } 2355 case TK_CONST_FUNC: 2356 case TK_FUNCTION: { 2357 ExprList *pList = pExpr->pList; 2358 int nExpr = pList ? pList->nExpr : 0; 2359 FuncDef *pDef; 2360 int nId; 2361 const char *zId; 2362 int constMask = 0; 2363 int i; 2364 sqlite3 *db = pParse->db; 2365 u8 enc = ENC(db); 2366 CollSeq *pColl = 0; 2367 2368 testcase( op==TK_CONST_FUNC ); 2369 testcase( op==TK_FUNCTION ); 2370 zId = (char*)pExpr->token.z; 2371 nId = pExpr->token.n; 2372 pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); 2373 assert( pDef!=0 ); 2374 if( pList ){ 2375 nExpr = pList->nExpr; 2376 r1 = sqlite3GetTempRange(pParse, nExpr); 2377 sqlite3ExprCodeExprList(pParse, pList, r1); 2378 }else{ 2379 nExpr = r1 = 0; 2380 } 2381 #ifndef SQLITE_OMIT_VIRTUALTABLE 2382 /* Possibly overload the function if the first argument is 2383 ** a virtual table column. 2384 ** 2385 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2386 ** second argument, not the first, as the argument to test to 2387 ** see if it is a column in a virtual table. This is done because 2388 ** the left operand of infix functions (the operand we want to 2389 ** control overloading) ends up as the second argument to the 2390 ** function. The expression "A glob B" is equivalent to 2391 ** "glob(B,A). We want to use the A in "A glob B" to test 2392 ** for function overloading. But we use the B term in "glob(B,A)". 2393 */ 2394 if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){ 2395 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr); 2396 }else if( nExpr>0 ){ 2397 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr); 2398 } 2399 #endif 2400 for(i=0; i<nExpr && i<32; i++){ 2401 if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ 2402 constMask |= (1<<i); 2403 } 2404 if( pDef->needCollSeq && !pColl ){ 2405 pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); 2406 } 2407 } 2408 if( pDef->needCollSeq ){ 2409 if( !pColl ) pColl = pParse->db->pDfltColl; 2410 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2411 } 2412 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2413 (char*)pDef, P4_FUNCDEF); 2414 sqlite3VdbeChangeP5(v, nExpr); 2415 if( nExpr ){ 2416 sqlite3ReleaseTempRange(pParse, r1, nExpr); 2417 } 2418 sqlite3ExprCacheAffinityChange(pParse, r1, nExpr); 2419 break; 2420 } 2421 #ifndef SQLITE_OMIT_SUBQUERY 2422 case TK_EXISTS: 2423 case TK_SELECT: { 2424 testcase( op==TK_EXISTS ); 2425 testcase( op==TK_SELECT ); 2426 if( pExpr->iColumn==0 ){ 2427 sqlite3CodeSubselect(pParse, pExpr); 2428 } 2429 inReg = pExpr->iColumn; 2430 break; 2431 } 2432 case TK_IN: { 2433 int j1, j2, j3, j4, j5; 2434 char affinity; 2435 int eType; 2436 2437 eType = sqlite3FindInIndex(pParse, pExpr, 0); 2438 2439 /* Figure out the affinity to use to create a key from the results 2440 ** of the expression. affinityStr stores a static string suitable for 2441 ** P4 of OP_MakeRecord. 2442 */ 2443 affinity = comparisonAffinity(pExpr); 2444 2445 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2446 2447 /* Code the <expr> from "<expr> IN (...)". The temporary table 2448 ** pExpr->iTable contains the values that make up the (...) set. 2449 */ 2450 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2451 testcase( regFree1==0 ); 2452 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); 2453 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2454 j2 = sqlite3VdbeAddOp0(v, OP_Goto); 2455 sqlite3VdbeJumpHere(v, j1); 2456 if( eType==IN_INDEX_ROWID ){ 2457 j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, r1); 2458 j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, r1); 2459 j5 = sqlite3VdbeAddOp0(v, OP_Goto); 2460 sqlite3VdbeJumpHere(v, j3); 2461 sqlite3VdbeJumpHere(v, j4); 2462 }else{ 2463 r2 = regFree2 = sqlite3GetTempReg(pParse); 2464 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 2465 sqlite3ExprCacheAffinityChange(pParse, r1, 1); 2466 j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2); 2467 } 2468 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2469 sqlite3VdbeJumpHere(v, j2); 2470 sqlite3VdbeJumpHere(v, j5); 2471 break; 2472 } 2473 #endif 2474 /* 2475 ** x BETWEEN y AND z 2476 ** 2477 ** This is equivalent to 2478 ** 2479 ** x>=y AND x<=z 2480 ** 2481 ** X is stored in pExpr->pLeft. 2482 ** Y is stored in pExpr->pList->a[0].pExpr. 2483 ** Z is stored in pExpr->pList->a[1].pExpr. 2484 */ 2485 case TK_BETWEEN: { 2486 Expr *pLeft = pExpr->pLeft; 2487 struct ExprList_item *pLItem = pExpr->pList->a; 2488 Expr *pRight = pLItem->pExpr; 2489 2490 codeCompareOperands(pParse, pLeft, &r1, ®Free1, 2491 pRight, &r2, ®Free2); 2492 testcase( regFree1==0 ); 2493 testcase( regFree2==0 ); 2494 r3 = sqlite3GetTempReg(pParse); 2495 r4 = sqlite3GetTempReg(pParse); 2496 codeCompare(pParse, pLeft, pRight, OP_Ge, 2497 r1, r2, r3, SQLITE_STOREP2); 2498 pLItem++; 2499 pRight = pLItem->pExpr; 2500 sqlite3ReleaseTempReg(pParse, regFree2); 2501 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2502 testcase( regFree2==0 ); 2503 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2504 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2505 sqlite3ReleaseTempReg(pParse, r3); 2506 sqlite3ReleaseTempReg(pParse, r4); 2507 break; 2508 } 2509 case TK_UPLUS: { 2510 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2511 break; 2512 } 2513 2514 /* 2515 ** Form A: 2516 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2517 ** 2518 ** Form B: 2519 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2520 ** 2521 ** Form A is can be transformed into the equivalent form B as follows: 2522 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2523 ** WHEN x=eN THEN rN ELSE y END 2524 ** 2525 ** X (if it exists) is in pExpr->pLeft. 2526 ** Y is in pExpr->pRight. The Y is also optional. If there is no 2527 ** ELSE clause and no other term matches, then the result of the 2528 ** exprssion is NULL. 2529 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2530 ** 2531 ** The result of the expression is the Ri for the first matching Ei, 2532 ** or if there is no matching Ei, the ELSE term Y, or if there is 2533 ** no ELSE term, NULL. 2534 */ 2535 case TK_CASE: { 2536 int endLabel; /* GOTO label for end of CASE stmt */ 2537 int nextCase; /* GOTO label for next WHEN clause */ 2538 int nExpr; /* 2x number of WHEN terms */ 2539 int i; /* Loop counter */ 2540 ExprList *pEList; /* List of WHEN terms */ 2541 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2542 Expr opCompare; /* The X==Ei expression */ 2543 Expr cacheX; /* Cached expression X */ 2544 Expr *pX; /* The X expression */ 2545 Expr *pTest; /* X==Ei (form A) or just Ei (form B) */ 2546 2547 assert(pExpr->pList); 2548 assert((pExpr->pList->nExpr % 2) == 0); 2549 assert(pExpr->pList->nExpr > 0); 2550 pEList = pExpr->pList; 2551 aListelem = pEList->a; 2552 nExpr = pEList->nExpr; 2553 endLabel = sqlite3VdbeMakeLabel(v); 2554 if( (pX = pExpr->pLeft)!=0 ){ 2555 cacheX = *pX; 2556 testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER ); 2557 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); 2558 testcase( regFree1==0 ); 2559 cacheX.op = TK_REGISTER; 2560 cacheX.iColumn = 0; 2561 opCompare.op = TK_EQ; 2562 opCompare.pLeft = &cacheX; 2563 pTest = &opCompare; 2564 } 2565 pParse->disableColCache++; 2566 for(i=0; i<nExpr; i=i+2){ 2567 if( pX ){ 2568 opCompare.pRight = aListelem[i].pExpr; 2569 }else{ 2570 pTest = aListelem[i].pExpr; 2571 } 2572 nextCase = sqlite3VdbeMakeLabel(v); 2573 testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER ); 2574 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2575 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2576 testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); 2577 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2578 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2579 sqlite3VdbeResolveLabel(v, nextCase); 2580 } 2581 if( pExpr->pRight ){ 2582 sqlite3ExprCode(pParse, pExpr->pRight, target); 2583 }else{ 2584 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2585 } 2586 sqlite3VdbeResolveLabel(v, endLabel); 2587 assert( pParse->disableColCache>0 ); 2588 pParse->disableColCache--; 2589 break; 2590 } 2591 #ifndef SQLITE_OMIT_TRIGGER 2592 case TK_RAISE: { 2593 if( !pParse->trigStack ){ 2594 sqlite3ErrorMsg(pParse, 2595 "RAISE() may only be used within a trigger-program"); 2596 return 0; 2597 } 2598 if( pExpr->iColumn!=OE_Ignore ){ 2599 assert( pExpr->iColumn==OE_Rollback || 2600 pExpr->iColumn == OE_Abort || 2601 pExpr->iColumn == OE_Fail ); 2602 sqlite3DequoteExpr(pParse->db, pExpr); 2603 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0, 2604 (char*)pExpr->token.z, pExpr->token.n); 2605 } else { 2606 assert( pExpr->iColumn == OE_Ignore ); 2607 sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0); 2608 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump); 2609 VdbeComment((v, "raise(IGNORE)")); 2610 } 2611 break; 2612 } 2613 #endif 2614 } 2615 sqlite3ReleaseTempReg(pParse, regFree1); 2616 sqlite3ReleaseTempReg(pParse, regFree2); 2617 return inReg; 2618 } 2619 2620 /* 2621 ** Generate code to evaluate an expression and store the results 2622 ** into a register. Return the register number where the results 2623 ** are stored. 2624 ** 2625 ** If the register is a temporary register that can be deallocated, 2626 ** then write its number into *pReg. If the result register is not 2627 ** a temporary, then set *pReg to zero. 2628 */ 2629 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 2630 int r1 = sqlite3GetTempReg(pParse); 2631 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2632 if( r2==r1 ){ 2633 *pReg = r1; 2634 }else{ 2635 sqlite3ReleaseTempReg(pParse, r1); 2636 *pReg = 0; 2637 } 2638 return r2; 2639 } 2640 2641 /* 2642 ** Generate code that will evaluate expression pExpr and store the 2643 ** results in register target. The results are guaranteed to appear 2644 ** in register target. 2645 */ 2646 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 2647 int inReg; 2648 2649 assert( target>0 && target<=pParse->nMem ); 2650 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2651 assert( pParse->pVdbe || pParse->db->mallocFailed ); 2652 if( inReg!=target && pParse->pVdbe ){ 2653 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 2654 } 2655 return target; 2656 } 2657 2658 /* 2659 ** Generate code that evalutes the given expression and puts the result 2660 ** in register target. 2661 ** 2662 ** Also make a copy of the expression results into another "cache" register 2663 ** and modify the expression so that the next time it is evaluated, 2664 ** the result is a copy of the cache register. 2665 ** 2666 ** This routine is used for expressions that are used multiple 2667 ** times. They are evaluated once and the results of the expression 2668 ** are reused. 2669 */ 2670 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 2671 Vdbe *v = pParse->pVdbe; 2672 int inReg; 2673 inReg = sqlite3ExprCode(pParse, pExpr, target); 2674 assert( target>0 ); 2675 if( pExpr->op!=TK_REGISTER ){ 2676 int iMem; 2677 iMem = ++pParse->nMem; 2678 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 2679 pExpr->iTable = iMem; 2680 pExpr->iColumn = pExpr->op; 2681 pExpr->op = TK_REGISTER; 2682 } 2683 return inReg; 2684 } 2685 2686 /* 2687 ** Return TRUE if pExpr is an constant expression that is appropriate 2688 ** for factoring out of a loop. Appropriate expressions are: 2689 ** 2690 ** * Any expression that evaluates to two or more opcodes. 2691 ** 2692 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 2693 ** or OP_Variable that does not need to be placed in a 2694 ** specific register. 2695 ** 2696 ** There is no point in factoring out single-instruction constant 2697 ** expressions that need to be placed in a particular register. 2698 ** We could factor them out, but then we would end up adding an 2699 ** OP_SCopy instruction to move the value into the correct register 2700 ** later. We might as well just use the original instruction and 2701 ** avoid the OP_SCopy. 2702 */ 2703 static int isAppropriateForFactoring(Expr *p){ 2704 if( !sqlite3ExprIsConstantNotJoin(p) ){ 2705 return 0; /* Only constant expressions are appropriate for factoring */ 2706 } 2707 if( (p->flags & EP_FixedDest)==0 ){ 2708 return 1; /* Any constant without a fixed destination is appropriate */ 2709 } 2710 while( p->op==TK_UPLUS ) p = p->pLeft; 2711 switch( p->op ){ 2712 #ifndef SQLITE_OMIT_BLOB_LITERAL 2713 case TK_BLOB: 2714 #endif 2715 case TK_VARIABLE: 2716 case TK_INTEGER: 2717 case TK_FLOAT: 2718 case TK_NULL: 2719 case TK_STRING: { 2720 testcase( p->op==TK_BLOB ); 2721 testcase( p->op==TK_VARIABLE ); 2722 testcase( p->op==TK_INTEGER ); 2723 testcase( p->op==TK_FLOAT ); 2724 testcase( p->op==TK_NULL ); 2725 testcase( p->op==TK_STRING ); 2726 /* Single-instruction constants with a fixed destination are 2727 ** better done in-line. If we factor them, they will just end 2728 ** up generating an OP_SCopy to move the value to the destination 2729 ** register. */ 2730 return 0; 2731 } 2732 case TK_UMINUS: { 2733 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ 2734 return 0; 2735 } 2736 break; 2737 } 2738 default: { 2739 break; 2740 } 2741 } 2742 return 1; 2743 } 2744 2745 /* 2746 ** If pExpr is a constant expression that is appropriate for 2747 ** factoring out of a loop, then evaluate the expression 2748 ** into a register and convert the expression into a TK_REGISTER 2749 ** expression. 2750 */ 2751 static int evalConstExpr(void *pArg, Expr *pExpr){ 2752 Parse *pParse = (Parse*)pArg; 2753 switch( pExpr->op ){ 2754 case TK_REGISTER: { 2755 return 1; 2756 } 2757 case TK_FUNCTION: 2758 case TK_AGG_FUNCTION: 2759 case TK_CONST_FUNC: { 2760 /* The arguments to a function have a fixed destination. 2761 ** Mark them this way to avoid generated unneeded OP_SCopy 2762 ** instructions. 2763 */ 2764 ExprList *pList = pExpr->pList; 2765 if( pList ){ 2766 int i = pList->nExpr; 2767 struct ExprList_item *pItem = pList->a; 2768 for(; i>0; i--, pItem++){ 2769 if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest; 2770 } 2771 } 2772 break; 2773 } 2774 } 2775 if( isAppropriateForFactoring(pExpr) ){ 2776 int r1 = ++pParse->nMem; 2777 int r2; 2778 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2779 if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1); 2780 pExpr->iColumn = pExpr->op; 2781 pExpr->op = TK_REGISTER; 2782 pExpr->iTable = r2; 2783 return 1; 2784 } 2785 return 0; 2786 } 2787 2788 /* 2789 ** Preevaluate constant subexpressions within pExpr and store the 2790 ** results in registers. Modify pExpr so that the constant subexpresions 2791 ** are TK_REGISTER opcodes that refer to the precomputed values. 2792 */ 2793 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ 2794 walkExprTree(pExpr, evalConstExpr, pParse); 2795 } 2796 2797 2798 /* 2799 ** Generate code that pushes the value of every element of the given 2800 ** expression list into a sequence of registers beginning at target. 2801 ** 2802 ** Return the number of elements evaluated. 2803 */ 2804 int sqlite3ExprCodeExprList( 2805 Parse *pParse, /* Parsing context */ 2806 ExprList *pList, /* The expression list to be coded */ 2807 int target /* Where to write results */ 2808 ){ 2809 struct ExprList_item *pItem; 2810 int i, n; 2811 assert( pList!=0 || pParse->db->mallocFailed ); 2812 if( pList==0 ){ 2813 return 0; 2814 } 2815 assert( target>0 ); 2816 n = pList->nExpr; 2817 for(pItem=pList->a, i=n; i>0; i--, pItem++){ 2818 sqlite3ExprCode(pParse, pItem->pExpr, target); 2819 target++; 2820 } 2821 return n; 2822 } 2823 2824 /* 2825 ** Generate code for a boolean expression such that a jump is made 2826 ** to the label "dest" if the expression is true but execution 2827 ** continues straight thru if the expression is false. 2828 ** 2829 ** If the expression evaluates to NULL (neither true nor false), then 2830 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 2831 ** 2832 ** This code depends on the fact that certain token values (ex: TK_EQ) 2833 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 2834 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 2835 ** the make process cause these values to align. Assert()s in the code 2836 ** below verify that the numbers are aligned correctly. 2837 */ 2838 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2839 Vdbe *v = pParse->pVdbe; 2840 int op = 0; 2841 int regFree1 = 0; 2842 int regFree2 = 0; 2843 int r1, r2; 2844 2845 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 2846 if( v==0 || pExpr==0 ) return; 2847 op = pExpr->op; 2848 switch( op ){ 2849 case TK_AND: { 2850 int d2 = sqlite3VdbeMakeLabel(v); 2851 testcase( jumpIfNull==0 ); 2852 testcase( pParse->disableColCache==0 ); 2853 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 2854 pParse->disableColCache++; 2855 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2856 assert( pParse->disableColCache>0 ); 2857 pParse->disableColCache--; 2858 sqlite3VdbeResolveLabel(v, d2); 2859 break; 2860 } 2861 case TK_OR: { 2862 testcase( jumpIfNull==0 ); 2863 testcase( pParse->disableColCache==0 ); 2864 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 2865 pParse->disableColCache++; 2866 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2867 assert( pParse->disableColCache>0 ); 2868 pParse->disableColCache--; 2869 break; 2870 } 2871 case TK_NOT: { 2872 testcase( jumpIfNull==0 ); 2873 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 2874 break; 2875 } 2876 case TK_LT: 2877 case TK_LE: 2878 case TK_GT: 2879 case TK_GE: 2880 case TK_NE: 2881 case TK_EQ: { 2882 assert( TK_LT==OP_Lt ); 2883 assert( TK_LE==OP_Le ); 2884 assert( TK_GT==OP_Gt ); 2885 assert( TK_GE==OP_Ge ); 2886 assert( TK_EQ==OP_Eq ); 2887 assert( TK_NE==OP_Ne ); 2888 testcase( op==TK_LT ); 2889 testcase( op==TK_LE ); 2890 testcase( op==TK_GT ); 2891 testcase( op==TK_GE ); 2892 testcase( op==TK_EQ ); 2893 testcase( op==TK_NE ); 2894 testcase( jumpIfNull==0 ); 2895 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 2896 pExpr->pRight, &r2, ®Free2); 2897 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2898 r1, r2, dest, jumpIfNull); 2899 testcase( regFree1==0 ); 2900 testcase( regFree2==0 ); 2901 break; 2902 } 2903 case TK_ISNULL: 2904 case TK_NOTNULL: { 2905 assert( TK_ISNULL==OP_IsNull ); 2906 assert( TK_NOTNULL==OP_NotNull ); 2907 testcase( op==TK_ISNULL ); 2908 testcase( op==TK_NOTNULL ); 2909 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2910 sqlite3VdbeAddOp2(v, op, r1, dest); 2911 testcase( regFree1==0 ); 2912 break; 2913 } 2914 case TK_BETWEEN: { 2915 /* x BETWEEN y AND z 2916 ** 2917 ** Is equivalent to 2918 ** 2919 ** x>=y AND x<=z 2920 ** 2921 ** Code it as such, taking care to do the common subexpression 2922 ** elementation of x. 2923 */ 2924 Expr exprAnd; 2925 Expr compLeft; 2926 Expr compRight; 2927 Expr exprX; 2928 2929 exprX = *pExpr->pLeft; 2930 exprAnd.op = TK_AND; 2931 exprAnd.pLeft = &compLeft; 2932 exprAnd.pRight = &compRight; 2933 compLeft.op = TK_GE; 2934 compLeft.pLeft = &exprX; 2935 compLeft.pRight = pExpr->pList->a[0].pExpr; 2936 compRight.op = TK_LE; 2937 compRight.pLeft = &exprX; 2938 compRight.pRight = pExpr->pList->a[1].pExpr; 2939 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 2940 testcase( regFree1==0 ); 2941 exprX.op = TK_REGISTER; 2942 testcase( jumpIfNull==0 ); 2943 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 2944 break; 2945 } 2946 default: { 2947 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 2948 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 2949 testcase( regFree1==0 ); 2950 testcase( jumpIfNull==0 ); 2951 break; 2952 } 2953 } 2954 sqlite3ReleaseTempReg(pParse, regFree1); 2955 sqlite3ReleaseTempReg(pParse, regFree2); 2956 } 2957 2958 /* 2959 ** Generate code for a boolean expression such that a jump is made 2960 ** to the label "dest" if the expression is false but execution 2961 ** continues straight thru if the expression is true. 2962 ** 2963 ** If the expression evaluates to NULL (neither true nor false) then 2964 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 2965 ** is 0. 2966 */ 2967 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2968 Vdbe *v = pParse->pVdbe; 2969 int op = 0; 2970 int regFree1 = 0; 2971 int regFree2 = 0; 2972 int r1, r2; 2973 2974 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 2975 if( v==0 || pExpr==0 ) return; 2976 2977 /* The value of pExpr->op and op are related as follows: 2978 ** 2979 ** pExpr->op op 2980 ** --------- ---------- 2981 ** TK_ISNULL OP_NotNull 2982 ** TK_NOTNULL OP_IsNull 2983 ** TK_NE OP_Eq 2984 ** TK_EQ OP_Ne 2985 ** TK_GT OP_Le 2986 ** TK_LE OP_Gt 2987 ** TK_GE OP_Lt 2988 ** TK_LT OP_Ge 2989 ** 2990 ** For other values of pExpr->op, op is undefined and unused. 2991 ** The value of TK_ and OP_ constants are arranged such that we 2992 ** can compute the mapping above using the following expression. 2993 ** Assert()s verify that the computation is correct. 2994 */ 2995 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 2996 2997 /* Verify correct alignment of TK_ and OP_ constants 2998 */ 2999 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3000 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3001 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3002 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3003 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3004 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3005 assert( pExpr->op!=TK_GT || op==OP_Le ); 3006 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3007 3008 switch( pExpr->op ){ 3009 case TK_AND: { 3010 testcase( jumpIfNull==0 ); 3011 testcase( pParse->disableColCache==0 ); 3012 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3013 pParse->disableColCache++; 3014 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3015 assert( pParse->disableColCache>0 ); 3016 pParse->disableColCache--; 3017 break; 3018 } 3019 case TK_OR: { 3020 int d2 = sqlite3VdbeMakeLabel(v); 3021 testcase( jumpIfNull==0 ); 3022 testcase( pParse->disableColCache==0 ); 3023 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3024 pParse->disableColCache++; 3025 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3026 assert( pParse->disableColCache>0 ); 3027 pParse->disableColCache--; 3028 sqlite3VdbeResolveLabel(v, d2); 3029 break; 3030 } 3031 case TK_NOT: { 3032 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3033 break; 3034 } 3035 case TK_LT: 3036 case TK_LE: 3037 case TK_GT: 3038 case TK_GE: 3039 case TK_NE: 3040 case TK_EQ: { 3041 testcase( op==TK_LT ); 3042 testcase( op==TK_LE ); 3043 testcase( op==TK_GT ); 3044 testcase( op==TK_GE ); 3045 testcase( op==TK_EQ ); 3046 testcase( op==TK_NE ); 3047 testcase( jumpIfNull==0 ); 3048 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 3049 pExpr->pRight, &r2, ®Free2); 3050 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3051 r1, r2, dest, jumpIfNull); 3052 testcase( regFree1==0 ); 3053 testcase( regFree2==0 ); 3054 break; 3055 } 3056 case TK_ISNULL: 3057 case TK_NOTNULL: { 3058 testcase( op==TK_ISNULL ); 3059 testcase( op==TK_NOTNULL ); 3060 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3061 sqlite3VdbeAddOp2(v, op, r1, dest); 3062 testcase( regFree1==0 ); 3063 break; 3064 } 3065 case TK_BETWEEN: { 3066 /* x BETWEEN y AND z 3067 ** 3068 ** Is equivalent to 3069 ** 3070 ** x>=y AND x<=z 3071 ** 3072 ** Code it as such, taking care to do the common subexpression 3073 ** elementation of x. 3074 */ 3075 Expr exprAnd; 3076 Expr compLeft; 3077 Expr compRight; 3078 Expr exprX; 3079 3080 exprX = *pExpr->pLeft; 3081 exprAnd.op = TK_AND; 3082 exprAnd.pLeft = &compLeft; 3083 exprAnd.pRight = &compRight; 3084 compLeft.op = TK_GE; 3085 compLeft.pLeft = &exprX; 3086 compLeft.pRight = pExpr->pList->a[0].pExpr; 3087 compRight.op = TK_LE; 3088 compRight.pLeft = &exprX; 3089 compRight.pRight = pExpr->pList->a[1].pExpr; 3090 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3091 testcase( regFree1==0 ); 3092 exprX.op = TK_REGISTER; 3093 testcase( jumpIfNull==0 ); 3094 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3095 break; 3096 } 3097 default: { 3098 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3099 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3100 testcase( regFree1==0 ); 3101 testcase( jumpIfNull==0 ); 3102 break; 3103 } 3104 } 3105 sqlite3ReleaseTempReg(pParse, regFree1); 3106 sqlite3ReleaseTempReg(pParse, regFree2); 3107 } 3108 3109 /* 3110 ** Do a deep comparison of two expression trees. Return TRUE (non-zero) 3111 ** if they are identical and return FALSE if they differ in any way. 3112 ** 3113 ** Sometimes this routine will return FALSE even if the two expressions 3114 ** really are equivalent. If we cannot prove that the expressions are 3115 ** identical, we return FALSE just to be safe. So if this routine 3116 ** returns false, then you do not really know for certain if the two 3117 ** expressions are the same. But if you get a TRUE return, then you 3118 ** can be sure the expressions are the same. In the places where 3119 ** this routine is used, it does not hurt to get an extra FALSE - that 3120 ** just might result in some slightly slower code. But returning 3121 ** an incorrect TRUE could lead to a malfunction. 3122 */ 3123 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 3124 int i; 3125 if( pA==0||pB==0 ){ 3126 return pB==pA; 3127 } 3128 if( pA->op!=pB->op ) return 0; 3129 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; 3130 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; 3131 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; 3132 if( pA->pList ){ 3133 if( pB->pList==0 ) return 0; 3134 if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; 3135 for(i=0; i<pA->pList->nExpr; i++){ 3136 if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ 3137 return 0; 3138 } 3139 } 3140 }else if( pB->pList ){ 3141 return 0; 3142 } 3143 if( pA->pSelect || pB->pSelect ) return 0; 3144 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; 3145 if( pA->op!=TK_COLUMN && pA->token.z ){ 3146 if( pB->token.z==0 ) return 0; 3147 if( pB->token.n!=pA->token.n ) return 0; 3148 if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ 3149 return 0; 3150 } 3151 } 3152 return 1; 3153 } 3154 3155 3156 /* 3157 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3158 ** the new element. Return a negative number if malloc fails. 3159 */ 3160 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3161 int i; 3162 pInfo->aCol = sqlite3ArrayAllocate( 3163 db, 3164 pInfo->aCol, 3165 sizeof(pInfo->aCol[0]), 3166 3, 3167 &pInfo->nColumn, 3168 &pInfo->nColumnAlloc, 3169 &i 3170 ); 3171 return i; 3172 } 3173 3174 /* 3175 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3176 ** the new element. Return a negative number if malloc fails. 3177 */ 3178 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3179 int i; 3180 pInfo->aFunc = sqlite3ArrayAllocate( 3181 db, 3182 pInfo->aFunc, 3183 sizeof(pInfo->aFunc[0]), 3184 3, 3185 &pInfo->nFunc, 3186 &pInfo->nFuncAlloc, 3187 &i 3188 ); 3189 return i; 3190 } 3191 3192 /* 3193 ** This is an xFunc for walkExprTree() used to implement 3194 ** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3195 ** for additional information. 3196 ** 3197 ** This routine analyzes the aggregate function at pExpr. 3198 */ 3199 static int analyzeAggregate(void *pArg, Expr *pExpr){ 3200 int i; 3201 NameContext *pNC = (NameContext *)pArg; 3202 Parse *pParse = pNC->pParse; 3203 SrcList *pSrcList = pNC->pSrcList; 3204 AggInfo *pAggInfo = pNC->pAggInfo; 3205 3206 switch( pExpr->op ){ 3207 case TK_AGG_COLUMN: 3208 case TK_COLUMN: { 3209 /* Check to see if the column is in one of the tables in the FROM 3210 ** clause of the aggregate query */ 3211 if( pSrcList ){ 3212 struct SrcList_item *pItem = pSrcList->a; 3213 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3214 struct AggInfo_col *pCol; 3215 if( pExpr->iTable==pItem->iCursor ){ 3216 /* If we reach this point, it means that pExpr refers to a table 3217 ** that is in the FROM clause of the aggregate query. 3218 ** 3219 ** Make an entry for the column in pAggInfo->aCol[] if there 3220 ** is not an entry there already. 3221 */ 3222 int k; 3223 pCol = pAggInfo->aCol; 3224 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 3225 if( pCol->iTable==pExpr->iTable && 3226 pCol->iColumn==pExpr->iColumn ){ 3227 break; 3228 } 3229 } 3230 if( (k>=pAggInfo->nColumn) 3231 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 3232 ){ 3233 pCol = &pAggInfo->aCol[k]; 3234 pCol->pTab = pExpr->pTab; 3235 pCol->iTable = pExpr->iTable; 3236 pCol->iColumn = pExpr->iColumn; 3237 pCol->iMem = ++pParse->nMem; 3238 pCol->iSorterColumn = -1; 3239 pCol->pExpr = pExpr; 3240 if( pAggInfo->pGroupBy ){ 3241 int j, n; 3242 ExprList *pGB = pAggInfo->pGroupBy; 3243 struct ExprList_item *pTerm = pGB->a; 3244 n = pGB->nExpr; 3245 for(j=0; j<n; j++, pTerm++){ 3246 Expr *pE = pTerm->pExpr; 3247 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 3248 pE->iColumn==pExpr->iColumn ){ 3249 pCol->iSorterColumn = j; 3250 break; 3251 } 3252 } 3253 } 3254 if( pCol->iSorterColumn<0 ){ 3255 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 3256 } 3257 } 3258 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 3259 ** because it was there before or because we just created it). 3260 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 3261 ** pAggInfo->aCol[] entry. 3262 */ 3263 pExpr->pAggInfo = pAggInfo; 3264 pExpr->op = TK_AGG_COLUMN; 3265 pExpr->iAgg = k; 3266 break; 3267 } /* endif pExpr->iTable==pItem->iCursor */ 3268 } /* end loop over pSrcList */ 3269 } 3270 return 1; 3271 } 3272 case TK_AGG_FUNCTION: { 3273 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 3274 ** to be ignored */ 3275 if( pNC->nDepth==0 ){ 3276 /* Check to see if pExpr is a duplicate of another aggregate 3277 ** function that is already in the pAggInfo structure 3278 */ 3279 struct AggInfo_func *pItem = pAggInfo->aFunc; 3280 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 3281 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ 3282 break; 3283 } 3284 } 3285 if( i>=pAggInfo->nFunc ){ 3286 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 3287 */ 3288 u8 enc = ENC(pParse->db); 3289 i = addAggInfoFunc(pParse->db, pAggInfo); 3290 if( i>=0 ){ 3291 pItem = &pAggInfo->aFunc[i]; 3292 pItem->pExpr = pExpr; 3293 pItem->iMem = ++pParse->nMem; 3294 pItem->pFunc = sqlite3FindFunction(pParse->db, 3295 (char*)pExpr->token.z, pExpr->token.n, 3296 pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); 3297 if( pExpr->flags & EP_Distinct ){ 3298 pItem->iDistinct = pParse->nTab++; 3299 }else{ 3300 pItem->iDistinct = -1; 3301 } 3302 } 3303 } 3304 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 3305 */ 3306 pExpr->iAgg = i; 3307 pExpr->pAggInfo = pAggInfo; 3308 return 1; 3309 } 3310 } 3311 } 3312 3313 /* Recursively walk subqueries looking for TK_COLUMN nodes that need 3314 ** to be changed to TK_AGG_COLUMN. But increment nDepth so that 3315 ** TK_AGG_FUNCTION nodes in subqueries will be unchanged. 3316 */ 3317 if( pExpr->pSelect ){ 3318 pNC->nDepth++; 3319 walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); 3320 pNC->nDepth--; 3321 } 3322 return 0; 3323 } 3324 3325 /* 3326 ** Analyze the given expression looking for aggregate functions and 3327 ** for variables that need to be added to the pParse->aAgg[] array. 3328 ** Make additional entries to the pParse->aAgg[] array as necessary. 3329 ** 3330 ** This routine should only be called after the expression has been 3331 ** analyzed by sqlite3ExprResolveNames(). 3332 */ 3333 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 3334 walkExprTree(pExpr, analyzeAggregate, pNC); 3335 } 3336 3337 /* 3338 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 3339 ** expression list. Return the number of errors. 3340 ** 3341 ** If an error is found, the analysis is cut short. 3342 */ 3343 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 3344 struct ExprList_item *pItem; 3345 int i; 3346 if( pList ){ 3347 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 3348 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 3349 } 3350 } 3351 } 3352 3353 /* 3354 ** Allocate or deallocate temporary use registers during code generation. 3355 */ 3356 int sqlite3GetTempReg(Parse *pParse){ 3357 int i, r; 3358 if( pParse->nTempReg==0 ){ 3359 return ++pParse->nMem; 3360 } 3361 for(i=0; i<pParse->nTempReg; i++){ 3362 r = pParse->aTempReg[i]; 3363 if( usedAsColumnCache(pParse, r, r) ) continue; 3364 } 3365 if( i>=pParse->nTempReg ){ 3366 return ++pParse->nMem; 3367 } 3368 while( i<pParse->nTempReg-1 ){ 3369 pParse->aTempReg[i] = pParse->aTempReg[i+1]; 3370 } 3371 pParse->nTempReg--; 3372 return r; 3373 } 3374 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 3375 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3376 pParse->aTempReg[pParse->nTempReg++] = iReg; 3377 } 3378 } 3379 3380 /* 3381 ** Allocate or deallocate a block of nReg consecutive registers 3382 */ 3383 int sqlite3GetTempRange(Parse *pParse, int nReg){ 3384 int i, n; 3385 i = pParse->iRangeReg; 3386 n = pParse->nRangeReg; 3387 if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){ 3388 pParse->iRangeReg += nReg; 3389 pParse->nRangeReg -= nReg; 3390 }else{ 3391 i = pParse->nMem+1; 3392 pParse->nMem += nReg; 3393 } 3394 return i; 3395 } 3396 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 3397 if( nReg>pParse->nRangeReg ){ 3398 pParse->nRangeReg = nReg; 3399 pParse->iRangeReg = iReg; 3400 } 3401 } 3402