1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expressions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op; 35 pExpr = sqlite3ExprSkipCollate(pExpr); 36 if( pExpr->flags & EP_Generic ) return 0; 37 op = pExpr->op; 38 if( op==TK_SELECT ){ 39 assert( pExpr->flags&EP_xIsSelect ); 40 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 41 } 42 #ifndef SQLITE_OMIT_CAST 43 if( op==TK_CAST ){ 44 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 45 return sqlite3AffinityType(pExpr->u.zToken, 0); 46 } 47 #endif 48 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 49 && pExpr->pTab!=0 50 ){ 51 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 52 ** a TK_COLUMN but was previously evaluated and cached in a register */ 53 int j = pExpr->iColumn; 54 if( j<0 ) return SQLITE_AFF_INTEGER; 55 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 56 return pExpr->pTab->aCol[j].affinity; 57 } 58 return pExpr->affinity; 59 } 60 61 /* 62 ** Set the collating sequence for expression pExpr to be the collating 63 ** sequence named by pToken. Return a pointer to a new Expr node that 64 ** implements the COLLATE operator. 65 ** 66 ** If a memory allocation error occurs, that fact is recorded in pParse->db 67 ** and the pExpr parameter is returned unchanged. 68 */ 69 Expr *sqlite3ExprAddCollateToken( 70 Parse *pParse, /* Parsing context */ 71 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 72 const Token *pCollName, /* Name of collating sequence */ 73 int dequote /* True to dequote pCollName */ 74 ){ 75 if( pCollName->n>0 ){ 76 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 77 if( pNew ){ 78 pNew->pLeft = pExpr; 79 pNew->flags |= EP_Collate|EP_Skip; 80 pExpr = pNew; 81 } 82 } 83 return pExpr; 84 } 85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 86 Token s; 87 assert( zC!=0 ); 88 s.z = zC; 89 s.n = sqlite3Strlen30(s.z); 90 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 91 } 92 93 /* 94 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely() 95 ** or likelihood() function at the root of an expression. 96 */ 97 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 98 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 99 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 100 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 101 assert( pExpr->x.pList->nExpr>0 ); 102 assert( pExpr->op==TK_FUNCTION ); 103 pExpr = pExpr->x.pList->a[0].pExpr; 104 }else{ 105 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS ); 106 pExpr = pExpr->pLeft; 107 } 108 } 109 return pExpr; 110 } 111 112 /* 113 ** Return the collation sequence for the expression pExpr. If 114 ** there is no defined collating sequence, return NULL. 115 ** 116 ** The collating sequence might be determined by a COLLATE operator 117 ** or by the presence of a column with a defined collating sequence. 118 ** COLLATE operators take first precedence. Left operands take 119 ** precedence over right operands. 120 */ 121 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 122 sqlite3 *db = pParse->db; 123 CollSeq *pColl = 0; 124 Expr *p = pExpr; 125 while( p ){ 126 int op = p->op; 127 if( p->flags & EP_Generic ) break; 128 if( op==TK_CAST || op==TK_UPLUS ){ 129 p = p->pLeft; 130 continue; 131 } 132 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 133 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 134 break; 135 } 136 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 137 || op==TK_REGISTER || op==TK_TRIGGER) 138 && p->pTab!=0 139 ){ 140 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 141 ** a TK_COLUMN but was previously evaluated and cached in a register */ 142 int j = p->iColumn; 143 if( j>=0 ){ 144 const char *zColl = p->pTab->aCol[j].zColl; 145 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 146 } 147 break; 148 } 149 if( p->flags & EP_Collate ){ 150 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 151 p = p->pLeft; 152 }else{ 153 Expr *pNext = p->pRight; 154 /* The Expr.x union is never used at the same time as Expr.pRight */ 155 assert( p->x.pList==0 || p->pRight==0 ); 156 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 157 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 158 ** least one EP_Collate. Thus the following two ALWAYS. */ 159 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 160 int i; 161 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 162 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 163 pNext = p->x.pList->a[i].pExpr; 164 break; 165 } 166 } 167 } 168 p = pNext; 169 } 170 }else{ 171 break; 172 } 173 } 174 if( sqlite3CheckCollSeq(pParse, pColl) ){ 175 pColl = 0; 176 } 177 return pColl; 178 } 179 180 /* 181 ** pExpr is an operand of a comparison operator. aff2 is the 182 ** type affinity of the other operand. This routine returns the 183 ** type affinity that should be used for the comparison operator. 184 */ 185 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 186 char aff1 = sqlite3ExprAffinity(pExpr); 187 if( aff1 && aff2 ){ 188 /* Both sides of the comparison are columns. If one has numeric 189 ** affinity, use that. Otherwise use no affinity. 190 */ 191 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 192 return SQLITE_AFF_NUMERIC; 193 }else{ 194 return SQLITE_AFF_NONE; 195 } 196 }else if( !aff1 && !aff2 ){ 197 /* Neither side of the comparison is a column. Compare the 198 ** results directly. 199 */ 200 return SQLITE_AFF_NONE; 201 }else{ 202 /* One side is a column, the other is not. Use the columns affinity. */ 203 assert( aff1==0 || aff2==0 ); 204 return (aff1 + aff2); 205 } 206 } 207 208 /* 209 ** pExpr is a comparison operator. Return the type affinity that should 210 ** be applied to both operands prior to doing the comparison. 211 */ 212 static char comparisonAffinity(Expr *pExpr){ 213 char aff; 214 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 215 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 216 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 217 assert( pExpr->pLeft ); 218 aff = sqlite3ExprAffinity(pExpr->pLeft); 219 if( pExpr->pRight ){ 220 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 221 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 222 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 223 }else if( !aff ){ 224 aff = SQLITE_AFF_NONE; 225 } 226 return aff; 227 } 228 229 /* 230 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 231 ** idx_affinity is the affinity of an indexed column. Return true 232 ** if the index with affinity idx_affinity may be used to implement 233 ** the comparison in pExpr. 234 */ 235 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 236 char aff = comparisonAffinity(pExpr); 237 switch( aff ){ 238 case SQLITE_AFF_NONE: 239 return 1; 240 case SQLITE_AFF_TEXT: 241 return idx_affinity==SQLITE_AFF_TEXT; 242 default: 243 return sqlite3IsNumericAffinity(idx_affinity); 244 } 245 } 246 247 /* 248 ** Return the P5 value that should be used for a binary comparison 249 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 250 */ 251 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 252 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 253 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 254 return aff; 255 } 256 257 /* 258 ** Return a pointer to the collation sequence that should be used by 259 ** a binary comparison operator comparing pLeft and pRight. 260 ** 261 ** If the left hand expression has a collating sequence type, then it is 262 ** used. Otherwise the collation sequence for the right hand expression 263 ** is used, or the default (BINARY) if neither expression has a collating 264 ** type. 265 ** 266 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 267 ** it is not considered. 268 */ 269 CollSeq *sqlite3BinaryCompareCollSeq( 270 Parse *pParse, 271 Expr *pLeft, 272 Expr *pRight 273 ){ 274 CollSeq *pColl; 275 assert( pLeft ); 276 if( pLeft->flags & EP_Collate ){ 277 pColl = sqlite3ExprCollSeq(pParse, pLeft); 278 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 279 pColl = sqlite3ExprCollSeq(pParse, pRight); 280 }else{ 281 pColl = sqlite3ExprCollSeq(pParse, pLeft); 282 if( !pColl ){ 283 pColl = sqlite3ExprCollSeq(pParse, pRight); 284 } 285 } 286 return pColl; 287 } 288 289 /* 290 ** Generate code for a comparison operator. 291 */ 292 static int codeCompare( 293 Parse *pParse, /* The parsing (and code generating) context */ 294 Expr *pLeft, /* The left operand */ 295 Expr *pRight, /* The right operand */ 296 int opcode, /* The comparison opcode */ 297 int in1, int in2, /* Register holding operands */ 298 int dest, /* Jump here if true. */ 299 int jumpIfNull /* If true, jump if either operand is NULL */ 300 ){ 301 int p5; 302 int addr; 303 CollSeq *p4; 304 305 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 306 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 307 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 308 (void*)p4, P4_COLLSEQ); 309 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 310 return addr; 311 } 312 313 #if SQLITE_MAX_EXPR_DEPTH>0 314 /* 315 ** Check that argument nHeight is less than or equal to the maximum 316 ** expression depth allowed. If it is not, leave an error message in 317 ** pParse. 318 */ 319 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 320 int rc = SQLITE_OK; 321 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 322 if( nHeight>mxHeight ){ 323 sqlite3ErrorMsg(pParse, 324 "Expression tree is too large (maximum depth %d)", mxHeight 325 ); 326 rc = SQLITE_ERROR; 327 } 328 return rc; 329 } 330 331 /* The following three functions, heightOfExpr(), heightOfExprList() 332 ** and heightOfSelect(), are used to determine the maximum height 333 ** of any expression tree referenced by the structure passed as the 334 ** first argument. 335 ** 336 ** If this maximum height is greater than the current value pointed 337 ** to by pnHeight, the second parameter, then set *pnHeight to that 338 ** value. 339 */ 340 static void heightOfExpr(Expr *p, int *pnHeight){ 341 if( p ){ 342 if( p->nHeight>*pnHeight ){ 343 *pnHeight = p->nHeight; 344 } 345 } 346 } 347 static void heightOfExprList(ExprList *p, int *pnHeight){ 348 if( p ){ 349 int i; 350 for(i=0; i<p->nExpr; i++){ 351 heightOfExpr(p->a[i].pExpr, pnHeight); 352 } 353 } 354 } 355 static void heightOfSelect(Select *p, int *pnHeight){ 356 if( p ){ 357 heightOfExpr(p->pWhere, pnHeight); 358 heightOfExpr(p->pHaving, pnHeight); 359 heightOfExpr(p->pLimit, pnHeight); 360 heightOfExpr(p->pOffset, pnHeight); 361 heightOfExprList(p->pEList, pnHeight); 362 heightOfExprList(p->pGroupBy, pnHeight); 363 heightOfExprList(p->pOrderBy, pnHeight); 364 heightOfSelect(p->pPrior, pnHeight); 365 } 366 } 367 368 /* 369 ** Set the Expr.nHeight variable in the structure passed as an 370 ** argument. An expression with no children, Expr.pList or 371 ** Expr.pSelect member has a height of 1. Any other expression 372 ** has a height equal to the maximum height of any other 373 ** referenced Expr plus one. 374 ** 375 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 376 ** if appropriate. 377 */ 378 static void exprSetHeight(Expr *p){ 379 int nHeight = 0; 380 heightOfExpr(p->pLeft, &nHeight); 381 heightOfExpr(p->pRight, &nHeight); 382 if( ExprHasProperty(p, EP_xIsSelect) ){ 383 heightOfSelect(p->x.pSelect, &nHeight); 384 }else if( p->x.pList ){ 385 heightOfExprList(p->x.pList, &nHeight); 386 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 387 } 388 p->nHeight = nHeight + 1; 389 } 390 391 /* 392 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 393 ** the height is greater than the maximum allowed expression depth, 394 ** leave an error in pParse. 395 ** 396 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 397 ** Expr.flags. 398 */ 399 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 400 if( pParse->nErr ) return; 401 exprSetHeight(p); 402 sqlite3ExprCheckHeight(pParse, p->nHeight); 403 } 404 405 /* 406 ** Return the maximum height of any expression tree referenced 407 ** by the select statement passed as an argument. 408 */ 409 int sqlite3SelectExprHeight(Select *p){ 410 int nHeight = 0; 411 heightOfSelect(p, &nHeight); 412 return nHeight; 413 } 414 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 415 /* 416 ** Propagate all EP_Propagate flags from the Expr.x.pList into 417 ** Expr.flags. 418 */ 419 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 420 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 421 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 422 } 423 } 424 #define exprSetHeight(y) 425 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 426 427 /* 428 ** This routine is the core allocator for Expr nodes. 429 ** 430 ** Construct a new expression node and return a pointer to it. Memory 431 ** for this node and for the pToken argument is a single allocation 432 ** obtained from sqlite3DbMalloc(). The calling function 433 ** is responsible for making sure the node eventually gets freed. 434 ** 435 ** If dequote is true, then the token (if it exists) is dequoted. 436 ** If dequote is false, no dequoting is performance. The deQuote 437 ** parameter is ignored if pToken is NULL or if the token does not 438 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 439 ** then the EP_DblQuoted flag is set on the expression node. 440 ** 441 ** Special case: If op==TK_INTEGER and pToken points to a string that 442 ** can be translated into a 32-bit integer, then the token is not 443 ** stored in u.zToken. Instead, the integer values is written 444 ** into u.iValue and the EP_IntValue flag is set. No extra storage 445 ** is allocated to hold the integer text and the dequote flag is ignored. 446 */ 447 Expr *sqlite3ExprAlloc( 448 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 449 int op, /* Expression opcode */ 450 const Token *pToken, /* Token argument. Might be NULL */ 451 int dequote /* True to dequote */ 452 ){ 453 Expr *pNew; 454 int nExtra = 0; 455 int iValue = 0; 456 457 if( pToken ){ 458 if( op!=TK_INTEGER || pToken->z==0 459 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 460 nExtra = pToken->n+1; 461 assert( iValue>=0 ); 462 } 463 } 464 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 465 if( pNew ){ 466 pNew->op = (u8)op; 467 pNew->iAgg = -1; 468 if( pToken ){ 469 if( nExtra==0 ){ 470 pNew->flags |= EP_IntValue; 471 pNew->u.iValue = iValue; 472 }else{ 473 int c; 474 pNew->u.zToken = (char*)&pNew[1]; 475 assert( pToken->z!=0 || pToken->n==0 ); 476 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 477 pNew->u.zToken[pToken->n] = 0; 478 if( dequote && nExtra>=3 479 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 480 sqlite3Dequote(pNew->u.zToken); 481 if( c=='"' ) pNew->flags |= EP_DblQuoted; 482 } 483 } 484 } 485 #if SQLITE_MAX_EXPR_DEPTH>0 486 pNew->nHeight = 1; 487 #endif 488 } 489 return pNew; 490 } 491 492 /* 493 ** Allocate a new expression node from a zero-terminated token that has 494 ** already been dequoted. 495 */ 496 Expr *sqlite3Expr( 497 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 498 int op, /* Expression opcode */ 499 const char *zToken /* Token argument. Might be NULL */ 500 ){ 501 Token x; 502 x.z = zToken; 503 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 504 return sqlite3ExprAlloc(db, op, &x, 0); 505 } 506 507 /* 508 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 509 ** 510 ** If pRoot==NULL that means that a memory allocation error has occurred. 511 ** In that case, delete the subtrees pLeft and pRight. 512 */ 513 void sqlite3ExprAttachSubtrees( 514 sqlite3 *db, 515 Expr *pRoot, 516 Expr *pLeft, 517 Expr *pRight 518 ){ 519 if( pRoot==0 ){ 520 assert( db->mallocFailed ); 521 sqlite3ExprDelete(db, pLeft); 522 sqlite3ExprDelete(db, pRight); 523 }else{ 524 if( pRight ){ 525 pRoot->pRight = pRight; 526 pRoot->flags |= EP_Propagate & pRight->flags; 527 } 528 if( pLeft ){ 529 pRoot->pLeft = pLeft; 530 pRoot->flags |= EP_Propagate & pLeft->flags; 531 } 532 exprSetHeight(pRoot); 533 } 534 } 535 536 /* 537 ** Allocate an Expr node which joins as many as two subtrees. 538 ** 539 ** One or both of the subtrees can be NULL. Return a pointer to the new 540 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 541 ** free the subtrees and return NULL. 542 */ 543 Expr *sqlite3PExpr( 544 Parse *pParse, /* Parsing context */ 545 int op, /* Expression opcode */ 546 Expr *pLeft, /* Left operand */ 547 Expr *pRight, /* Right operand */ 548 const Token *pToken /* Argument token */ 549 ){ 550 Expr *p; 551 if( op==TK_AND && pLeft && pRight && pParse->nErr==0 ){ 552 /* Take advantage of short-circuit false optimization for AND */ 553 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 554 }else{ 555 p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 556 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 557 } 558 if( p ) { 559 sqlite3ExprCheckHeight(pParse, p->nHeight); 560 } 561 return p; 562 } 563 564 /* 565 ** If the expression is always either TRUE or FALSE (respectively), 566 ** then return 1. If one cannot determine the truth value of the 567 ** expression at compile-time return 0. 568 ** 569 ** This is an optimization. If is OK to return 0 here even if 570 ** the expression really is always false or false (a false negative). 571 ** But it is a bug to return 1 if the expression might have different 572 ** boolean values in different circumstances (a false positive.) 573 ** 574 ** Note that if the expression is part of conditional for a 575 ** LEFT JOIN, then we cannot determine at compile-time whether or not 576 ** is it true or false, so always return 0. 577 */ 578 static int exprAlwaysTrue(Expr *p){ 579 int v = 0; 580 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 581 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 582 return v!=0; 583 } 584 static int exprAlwaysFalse(Expr *p){ 585 int v = 0; 586 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 587 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 588 return v==0; 589 } 590 591 /* 592 ** Join two expressions using an AND operator. If either expression is 593 ** NULL, then just return the other expression. 594 ** 595 ** If one side or the other of the AND is known to be false, then instead 596 ** of returning an AND expression, just return a constant expression with 597 ** a value of false. 598 */ 599 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 600 if( pLeft==0 ){ 601 return pRight; 602 }else if( pRight==0 ){ 603 return pLeft; 604 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 605 sqlite3ExprDelete(db, pLeft); 606 sqlite3ExprDelete(db, pRight); 607 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 608 }else{ 609 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 610 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 611 return pNew; 612 } 613 } 614 615 /* 616 ** Construct a new expression node for a function with multiple 617 ** arguments. 618 */ 619 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 620 Expr *pNew; 621 sqlite3 *db = pParse->db; 622 assert( pToken ); 623 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 624 if( pNew==0 ){ 625 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 626 return 0; 627 } 628 pNew->x.pList = pList; 629 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 630 sqlite3ExprSetHeightAndFlags(pParse, pNew); 631 return pNew; 632 } 633 634 /* 635 ** Assign a variable number to an expression that encodes a wildcard 636 ** in the original SQL statement. 637 ** 638 ** Wildcards consisting of a single "?" are assigned the next sequential 639 ** variable number. 640 ** 641 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 642 ** sure "nnn" is not too be to avoid a denial of service attack when 643 ** the SQL statement comes from an external source. 644 ** 645 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 646 ** as the previous instance of the same wildcard. Or if this is the first 647 ** instance of the wildcard, the next sequential variable number is 648 ** assigned. 649 */ 650 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 651 sqlite3 *db = pParse->db; 652 const char *z; 653 654 if( pExpr==0 ) return; 655 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 656 z = pExpr->u.zToken; 657 assert( z!=0 ); 658 assert( z[0]!=0 ); 659 if( z[1]==0 ){ 660 /* Wildcard of the form "?". Assign the next variable number */ 661 assert( z[0]=='?' ); 662 pExpr->iColumn = (ynVar)(++pParse->nVar); 663 }else{ 664 ynVar x = 0; 665 u32 n = sqlite3Strlen30(z); 666 if( z[0]=='?' ){ 667 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 668 ** use it as the variable number */ 669 i64 i; 670 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 671 pExpr->iColumn = x = (ynVar)i; 672 testcase( i==0 ); 673 testcase( i==1 ); 674 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 675 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 676 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 677 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 678 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 679 x = 0; 680 } 681 if( i>pParse->nVar ){ 682 pParse->nVar = (int)i; 683 } 684 }else{ 685 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 686 ** number as the prior appearance of the same name, or if the name 687 ** has never appeared before, reuse the same variable number 688 */ 689 ynVar i; 690 for(i=0; i<pParse->nzVar; i++){ 691 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 692 pExpr->iColumn = x = (ynVar)i+1; 693 break; 694 } 695 } 696 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 697 } 698 if( x>0 ){ 699 if( x>pParse->nzVar ){ 700 char **a; 701 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 702 if( a==0 ) return; /* Error reported through db->mallocFailed */ 703 pParse->azVar = a; 704 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 705 pParse->nzVar = x; 706 } 707 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 708 sqlite3DbFree(db, pParse->azVar[x-1]); 709 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 710 } 711 } 712 } 713 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 714 sqlite3ErrorMsg(pParse, "too many SQL variables"); 715 } 716 } 717 718 /* 719 ** Recursively delete an expression tree. 720 */ 721 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 722 if( p==0 ) return; 723 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 724 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 725 if( !ExprHasProperty(p, EP_TokenOnly) ){ 726 /* The Expr.x union is never used at the same time as Expr.pRight */ 727 assert( p->x.pList==0 || p->pRight==0 ); 728 sqlite3ExprDelete(db, p->pLeft); 729 sqlite3ExprDelete(db, p->pRight); 730 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 731 if( ExprHasProperty(p, EP_xIsSelect) ){ 732 sqlite3SelectDelete(db, p->x.pSelect); 733 }else{ 734 sqlite3ExprListDelete(db, p->x.pList); 735 } 736 } 737 if( !ExprHasProperty(p, EP_Static) ){ 738 sqlite3DbFree(db, p); 739 } 740 } 741 742 /* 743 ** Return the number of bytes allocated for the expression structure 744 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 745 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 746 */ 747 static int exprStructSize(Expr *p){ 748 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 749 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 750 return EXPR_FULLSIZE; 751 } 752 753 /* 754 ** The dupedExpr*Size() routines each return the number of bytes required 755 ** to store a copy of an expression or expression tree. They differ in 756 ** how much of the tree is measured. 757 ** 758 ** dupedExprStructSize() Size of only the Expr structure 759 ** dupedExprNodeSize() Size of Expr + space for token 760 ** dupedExprSize() Expr + token + subtree components 761 ** 762 *************************************************************************** 763 ** 764 ** The dupedExprStructSize() function returns two values OR-ed together: 765 ** (1) the space required for a copy of the Expr structure only and 766 ** (2) the EP_xxx flags that indicate what the structure size should be. 767 ** The return values is always one of: 768 ** 769 ** EXPR_FULLSIZE 770 ** EXPR_REDUCEDSIZE | EP_Reduced 771 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 772 ** 773 ** The size of the structure can be found by masking the return value 774 ** of this routine with 0xfff. The flags can be found by masking the 775 ** return value with EP_Reduced|EP_TokenOnly. 776 ** 777 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 778 ** (unreduced) Expr objects as they or originally constructed by the parser. 779 ** During expression analysis, extra information is computed and moved into 780 ** later parts of teh Expr object and that extra information might get chopped 781 ** off if the expression is reduced. Note also that it does not work to 782 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 783 ** to reduce a pristine expression tree from the parser. The implementation 784 ** of dupedExprStructSize() contain multiple assert() statements that attempt 785 ** to enforce this constraint. 786 */ 787 static int dupedExprStructSize(Expr *p, int flags){ 788 int nSize; 789 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 790 assert( EXPR_FULLSIZE<=0xfff ); 791 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 792 if( 0==(flags&EXPRDUP_REDUCE) ){ 793 nSize = EXPR_FULLSIZE; 794 }else{ 795 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 796 assert( !ExprHasProperty(p, EP_FromJoin) ); 797 assert( !ExprHasProperty(p, EP_MemToken) ); 798 assert( !ExprHasProperty(p, EP_NoReduce) ); 799 if( p->pLeft || p->x.pList ){ 800 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 801 }else{ 802 assert( p->pRight==0 ); 803 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 804 } 805 } 806 return nSize; 807 } 808 809 /* 810 ** This function returns the space in bytes required to store the copy 811 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 812 ** string is defined.) 813 */ 814 static int dupedExprNodeSize(Expr *p, int flags){ 815 int nByte = dupedExprStructSize(p, flags) & 0xfff; 816 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 817 nByte += sqlite3Strlen30(p->u.zToken)+1; 818 } 819 return ROUND8(nByte); 820 } 821 822 /* 823 ** Return the number of bytes required to create a duplicate of the 824 ** expression passed as the first argument. The second argument is a 825 ** mask containing EXPRDUP_XXX flags. 826 ** 827 ** The value returned includes space to create a copy of the Expr struct 828 ** itself and the buffer referred to by Expr.u.zToken, if any. 829 ** 830 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 831 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 832 ** and Expr.pRight variables (but not for any structures pointed to or 833 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 834 */ 835 static int dupedExprSize(Expr *p, int flags){ 836 int nByte = 0; 837 if( p ){ 838 nByte = dupedExprNodeSize(p, flags); 839 if( flags&EXPRDUP_REDUCE ){ 840 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 841 } 842 } 843 return nByte; 844 } 845 846 /* 847 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 848 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 849 ** to store the copy of expression p, the copies of p->u.zToken 850 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 851 ** if any. Before returning, *pzBuffer is set to the first byte past the 852 ** portion of the buffer copied into by this function. 853 */ 854 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 855 Expr *pNew = 0; /* Value to return */ 856 if( p ){ 857 const int isReduced = (flags&EXPRDUP_REDUCE); 858 u8 *zAlloc; 859 u32 staticFlag = 0; 860 861 assert( pzBuffer==0 || isReduced ); 862 863 /* Figure out where to write the new Expr structure. */ 864 if( pzBuffer ){ 865 zAlloc = *pzBuffer; 866 staticFlag = EP_Static; 867 }else{ 868 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 869 } 870 pNew = (Expr *)zAlloc; 871 872 if( pNew ){ 873 /* Set nNewSize to the size allocated for the structure pointed to 874 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 875 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 876 ** by the copy of the p->u.zToken string (if any). 877 */ 878 const unsigned nStructSize = dupedExprStructSize(p, flags); 879 const int nNewSize = nStructSize & 0xfff; 880 int nToken; 881 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 882 nToken = sqlite3Strlen30(p->u.zToken) + 1; 883 }else{ 884 nToken = 0; 885 } 886 if( isReduced ){ 887 assert( ExprHasProperty(p, EP_Reduced)==0 ); 888 memcpy(zAlloc, p, nNewSize); 889 }else{ 890 int nSize = exprStructSize(p); 891 memcpy(zAlloc, p, nSize); 892 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 893 } 894 895 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 896 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 897 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 898 pNew->flags |= staticFlag; 899 900 /* Copy the p->u.zToken string, if any. */ 901 if( nToken ){ 902 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 903 memcpy(zToken, p->u.zToken, nToken); 904 } 905 906 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 907 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 908 if( ExprHasProperty(p, EP_xIsSelect) ){ 909 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 910 }else{ 911 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 912 } 913 } 914 915 /* Fill in pNew->pLeft and pNew->pRight. */ 916 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 917 zAlloc += dupedExprNodeSize(p, flags); 918 if( ExprHasProperty(pNew, EP_Reduced) ){ 919 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 920 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 921 } 922 if( pzBuffer ){ 923 *pzBuffer = zAlloc; 924 } 925 }else{ 926 if( !ExprHasProperty(p, EP_TokenOnly) ){ 927 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 928 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 929 } 930 } 931 932 } 933 } 934 return pNew; 935 } 936 937 /* 938 ** Create and return a deep copy of the object passed as the second 939 ** argument. If an OOM condition is encountered, NULL is returned 940 ** and the db->mallocFailed flag set. 941 */ 942 #ifndef SQLITE_OMIT_CTE 943 static With *withDup(sqlite3 *db, With *p){ 944 With *pRet = 0; 945 if( p ){ 946 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 947 pRet = sqlite3DbMallocZero(db, nByte); 948 if( pRet ){ 949 int i; 950 pRet->nCte = p->nCte; 951 for(i=0; i<p->nCte; i++){ 952 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 953 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 954 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 955 } 956 } 957 } 958 return pRet; 959 } 960 #else 961 # define withDup(x,y) 0 962 #endif 963 964 /* 965 ** The following group of routines make deep copies of expressions, 966 ** expression lists, ID lists, and select statements. The copies can 967 ** be deleted (by being passed to their respective ...Delete() routines) 968 ** without effecting the originals. 969 ** 970 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 971 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 972 ** by subsequent calls to sqlite*ListAppend() routines. 973 ** 974 ** Any tables that the SrcList might point to are not duplicated. 975 ** 976 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 977 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 978 ** truncated version of the usual Expr structure that will be stored as 979 ** part of the in-memory representation of the database schema. 980 */ 981 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 982 return exprDup(db, p, flags, 0); 983 } 984 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 985 ExprList *pNew; 986 struct ExprList_item *pItem, *pOldItem; 987 int i; 988 if( p==0 ) return 0; 989 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 990 if( pNew==0 ) return 0; 991 pNew->nExpr = i = p->nExpr; 992 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 993 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 994 if( pItem==0 ){ 995 sqlite3DbFree(db, pNew); 996 return 0; 997 } 998 pOldItem = p->a; 999 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1000 Expr *pOldExpr = pOldItem->pExpr; 1001 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1002 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1003 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1004 pItem->sortOrder = pOldItem->sortOrder; 1005 pItem->done = 0; 1006 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1007 pItem->u = pOldItem->u; 1008 } 1009 return pNew; 1010 } 1011 1012 /* 1013 ** If cursors, triggers, views and subqueries are all omitted from 1014 ** the build, then none of the following routines, except for 1015 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1016 ** called with a NULL argument. 1017 */ 1018 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1019 || !defined(SQLITE_OMIT_SUBQUERY) 1020 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1021 SrcList *pNew; 1022 int i; 1023 int nByte; 1024 if( p==0 ) return 0; 1025 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1026 pNew = sqlite3DbMallocRaw(db, nByte ); 1027 if( pNew==0 ) return 0; 1028 pNew->nSrc = pNew->nAlloc = p->nSrc; 1029 for(i=0; i<p->nSrc; i++){ 1030 struct SrcList_item *pNewItem = &pNew->a[i]; 1031 struct SrcList_item *pOldItem = &p->a[i]; 1032 Table *pTab; 1033 pNewItem->pSchema = pOldItem->pSchema; 1034 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1035 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1036 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1037 pNewItem->jointype = pOldItem->jointype; 1038 pNewItem->iCursor = pOldItem->iCursor; 1039 pNewItem->addrFillSub = pOldItem->addrFillSub; 1040 pNewItem->regReturn = pOldItem->regReturn; 1041 pNewItem->isCorrelated = pOldItem->isCorrelated; 1042 pNewItem->viaCoroutine = pOldItem->viaCoroutine; 1043 pNewItem->isRecursive = pOldItem->isRecursive; 1044 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 1045 pNewItem->notIndexed = pOldItem->notIndexed; 1046 pNewItem->pIndex = pOldItem->pIndex; 1047 pTab = pNewItem->pTab = pOldItem->pTab; 1048 if( pTab ){ 1049 pTab->nRef++; 1050 } 1051 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1052 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1053 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1054 pNewItem->colUsed = pOldItem->colUsed; 1055 } 1056 return pNew; 1057 } 1058 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1059 IdList *pNew; 1060 int i; 1061 if( p==0 ) return 0; 1062 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 1063 if( pNew==0 ) return 0; 1064 pNew->nId = p->nId; 1065 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 1066 if( pNew->a==0 ){ 1067 sqlite3DbFree(db, pNew); 1068 return 0; 1069 } 1070 /* Note that because the size of the allocation for p->a[] is not 1071 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1072 ** on the duplicate created by this function. */ 1073 for(i=0; i<p->nId; i++){ 1074 struct IdList_item *pNewItem = &pNew->a[i]; 1075 struct IdList_item *pOldItem = &p->a[i]; 1076 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1077 pNewItem->idx = pOldItem->idx; 1078 } 1079 return pNew; 1080 } 1081 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1082 Select *pNew, *pPrior; 1083 if( p==0 ) return 0; 1084 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 1085 if( pNew==0 ) return 0; 1086 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1087 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1088 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1089 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1090 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1091 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1092 pNew->op = p->op; 1093 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1094 if( pPrior ) pPrior->pNext = pNew; 1095 pNew->pNext = 0; 1096 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1097 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1098 pNew->iLimit = 0; 1099 pNew->iOffset = 0; 1100 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1101 pNew->addrOpenEphm[0] = -1; 1102 pNew->addrOpenEphm[1] = -1; 1103 pNew->nSelectRow = p->nSelectRow; 1104 pNew->pWith = withDup(db, p->pWith); 1105 sqlite3SelectSetName(pNew, p->zSelName); 1106 return pNew; 1107 } 1108 #else 1109 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1110 assert( p==0 ); 1111 return 0; 1112 } 1113 #endif 1114 1115 1116 /* 1117 ** Add a new element to the end of an expression list. If pList is 1118 ** initially NULL, then create a new expression list. 1119 ** 1120 ** If a memory allocation error occurs, the entire list is freed and 1121 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1122 ** that the new entry was successfully appended. 1123 */ 1124 ExprList *sqlite3ExprListAppend( 1125 Parse *pParse, /* Parsing context */ 1126 ExprList *pList, /* List to which to append. Might be NULL */ 1127 Expr *pExpr /* Expression to be appended. Might be NULL */ 1128 ){ 1129 sqlite3 *db = pParse->db; 1130 if( pList==0 ){ 1131 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1132 if( pList==0 ){ 1133 goto no_mem; 1134 } 1135 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1136 if( pList->a==0 ) goto no_mem; 1137 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1138 struct ExprList_item *a; 1139 assert( pList->nExpr>0 ); 1140 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1141 if( a==0 ){ 1142 goto no_mem; 1143 } 1144 pList->a = a; 1145 } 1146 assert( pList->a!=0 ); 1147 if( 1 ){ 1148 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1149 memset(pItem, 0, sizeof(*pItem)); 1150 pItem->pExpr = pExpr; 1151 } 1152 return pList; 1153 1154 no_mem: 1155 /* Avoid leaking memory if malloc has failed. */ 1156 sqlite3ExprDelete(db, pExpr); 1157 sqlite3ExprListDelete(db, pList); 1158 return 0; 1159 } 1160 1161 /* 1162 ** Set the ExprList.a[].zName element of the most recently added item 1163 ** on the expression list. 1164 ** 1165 ** pList might be NULL following an OOM error. But pName should never be 1166 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1167 ** is set. 1168 */ 1169 void sqlite3ExprListSetName( 1170 Parse *pParse, /* Parsing context */ 1171 ExprList *pList, /* List to which to add the span. */ 1172 Token *pName, /* Name to be added */ 1173 int dequote /* True to cause the name to be dequoted */ 1174 ){ 1175 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1176 if( pList ){ 1177 struct ExprList_item *pItem; 1178 assert( pList->nExpr>0 ); 1179 pItem = &pList->a[pList->nExpr-1]; 1180 assert( pItem->zName==0 ); 1181 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1182 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1183 } 1184 } 1185 1186 /* 1187 ** Set the ExprList.a[].zSpan element of the most recently added item 1188 ** on the expression list. 1189 ** 1190 ** pList might be NULL following an OOM error. But pSpan should never be 1191 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1192 ** is set. 1193 */ 1194 void sqlite3ExprListSetSpan( 1195 Parse *pParse, /* Parsing context */ 1196 ExprList *pList, /* List to which to add the span. */ 1197 ExprSpan *pSpan /* The span to be added */ 1198 ){ 1199 sqlite3 *db = pParse->db; 1200 assert( pList!=0 || db->mallocFailed!=0 ); 1201 if( pList ){ 1202 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1203 assert( pList->nExpr>0 ); 1204 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1205 sqlite3DbFree(db, pItem->zSpan); 1206 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1207 (int)(pSpan->zEnd - pSpan->zStart)); 1208 } 1209 } 1210 1211 /* 1212 ** If the expression list pEList contains more than iLimit elements, 1213 ** leave an error message in pParse. 1214 */ 1215 void sqlite3ExprListCheckLength( 1216 Parse *pParse, 1217 ExprList *pEList, 1218 const char *zObject 1219 ){ 1220 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1221 testcase( pEList && pEList->nExpr==mx ); 1222 testcase( pEList && pEList->nExpr==mx+1 ); 1223 if( pEList && pEList->nExpr>mx ){ 1224 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1225 } 1226 } 1227 1228 /* 1229 ** Delete an entire expression list. 1230 */ 1231 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1232 int i; 1233 struct ExprList_item *pItem; 1234 if( pList==0 ) return; 1235 assert( pList->a!=0 || pList->nExpr==0 ); 1236 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1237 sqlite3ExprDelete(db, pItem->pExpr); 1238 sqlite3DbFree(db, pItem->zName); 1239 sqlite3DbFree(db, pItem->zSpan); 1240 } 1241 sqlite3DbFree(db, pList->a); 1242 sqlite3DbFree(db, pList); 1243 } 1244 1245 /* 1246 ** Return the bitwise-OR of all Expr.flags fields in the given 1247 ** ExprList. 1248 */ 1249 u32 sqlite3ExprListFlags(const ExprList *pList){ 1250 int i; 1251 u32 m = 0; 1252 if( pList ){ 1253 for(i=0; i<pList->nExpr; i++){ 1254 m |= pList->a[i].pExpr->flags; 1255 } 1256 } 1257 return m; 1258 } 1259 1260 /* 1261 ** These routines are Walker callbacks used to check expressions to 1262 ** see if they are "constant" for some definition of constant. The 1263 ** Walker.eCode value determines the type of "constant" we are looking 1264 ** for. 1265 ** 1266 ** These callback routines are used to implement the following: 1267 ** 1268 ** sqlite3ExprIsConstant() pWalker->eCode==1 1269 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1270 ** sqlite3ExprRefOneTableOnly() pWalker->eCode==3 1271 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1272 ** 1273 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1274 ** is found to not be a constant. 1275 ** 1276 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1277 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1278 ** an existing schema and 4 when processing a new statement. A bound 1279 ** parameter raises an error for new statements, but is silently converted 1280 ** to NULL for existing schemas. This allows sqlite_master tables that 1281 ** contain a bound parameter because they were generated by older versions 1282 ** of SQLite to be parsed by newer versions of SQLite without raising a 1283 ** malformed schema error. 1284 */ 1285 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1286 1287 /* If pWalker->eCode is 2 then any term of the expression that comes from 1288 ** the ON or USING clauses of a left join disqualifies the expression 1289 ** from being considered constant. */ 1290 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1291 pWalker->eCode = 0; 1292 return WRC_Abort; 1293 } 1294 1295 switch( pExpr->op ){ 1296 /* Consider functions to be constant if all their arguments are constant 1297 ** and either pWalker->eCode==4 or 5 or the function has the 1298 ** SQLITE_FUNC_CONST flag. */ 1299 case TK_FUNCTION: 1300 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1301 return WRC_Continue; 1302 }else{ 1303 pWalker->eCode = 0; 1304 return WRC_Abort; 1305 } 1306 case TK_ID: 1307 case TK_COLUMN: 1308 case TK_AGG_FUNCTION: 1309 case TK_AGG_COLUMN: 1310 testcase( pExpr->op==TK_ID ); 1311 testcase( pExpr->op==TK_COLUMN ); 1312 testcase( pExpr->op==TK_AGG_FUNCTION ); 1313 testcase( pExpr->op==TK_AGG_COLUMN ); 1314 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1315 return WRC_Continue; 1316 }else{ 1317 pWalker->eCode = 0; 1318 return WRC_Abort; 1319 } 1320 case TK_VARIABLE: 1321 if( pWalker->eCode==5 ){ 1322 /* Silently convert bound parameters that appear inside of CREATE 1323 ** statements into a NULL when parsing the CREATE statement text out 1324 ** of the sqlite_master table */ 1325 pExpr->op = TK_NULL; 1326 }else if( pWalker->eCode==4 ){ 1327 /* A bound parameter in a CREATE statement that originates from 1328 ** sqlite3_prepare() causes an error */ 1329 pWalker->eCode = 0; 1330 return WRC_Abort; 1331 } 1332 /* Fall through */ 1333 default: 1334 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1335 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1336 return WRC_Continue; 1337 } 1338 } 1339 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1340 UNUSED_PARAMETER(NotUsed); 1341 pWalker->eCode = 0; 1342 return WRC_Abort; 1343 } 1344 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1345 Walker w; 1346 memset(&w, 0, sizeof(w)); 1347 w.eCode = initFlag; 1348 w.xExprCallback = exprNodeIsConstant; 1349 w.xSelectCallback = selectNodeIsConstant; 1350 w.u.iCur = iCur; 1351 sqlite3WalkExpr(&w, p); 1352 return w.eCode; 1353 } 1354 1355 /* 1356 ** Walk an expression tree. Return non-zero if the expression is constant 1357 ** and 0 if it involves variables or function calls. 1358 ** 1359 ** For the purposes of this function, a double-quoted string (ex: "abc") 1360 ** is considered a variable but a single-quoted string (ex: 'abc') is 1361 ** a constant. 1362 */ 1363 int sqlite3ExprIsConstant(Expr *p){ 1364 return exprIsConst(p, 1, 0); 1365 } 1366 1367 /* 1368 ** Walk an expression tree. Return non-zero if the expression is constant 1369 ** that does no originate from the ON or USING clauses of a join. 1370 ** Return 0 if it involves variables or function calls or terms from 1371 ** an ON or USING clause. 1372 */ 1373 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1374 return exprIsConst(p, 2, 0); 1375 } 1376 1377 /* 1378 ** Walk an expression tree. Return non-zero if the expression constant 1379 ** for any single row of the table with cursor iCur. In other words, the 1380 ** expression must not refer to any non-deterministic function nor any 1381 ** table other than iCur. 1382 */ 1383 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1384 return exprIsConst(p, 3, iCur); 1385 } 1386 1387 /* 1388 ** Walk an expression tree. Return non-zero if the expression is constant 1389 ** or a function call with constant arguments. Return and 0 if there 1390 ** are any variables. 1391 ** 1392 ** For the purposes of this function, a double-quoted string (ex: "abc") 1393 ** is considered a variable but a single-quoted string (ex: 'abc') is 1394 ** a constant. 1395 */ 1396 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1397 assert( isInit==0 || isInit==1 ); 1398 return exprIsConst(p, 4+isInit, 0); 1399 } 1400 1401 /* 1402 ** If the expression p codes a constant integer that is small enough 1403 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1404 ** in *pValue. If the expression is not an integer or if it is too big 1405 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1406 */ 1407 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1408 int rc = 0; 1409 1410 /* If an expression is an integer literal that fits in a signed 32-bit 1411 ** integer, then the EP_IntValue flag will have already been set */ 1412 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1413 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1414 1415 if( p->flags & EP_IntValue ){ 1416 *pValue = p->u.iValue; 1417 return 1; 1418 } 1419 switch( p->op ){ 1420 case TK_UPLUS: { 1421 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1422 break; 1423 } 1424 case TK_UMINUS: { 1425 int v; 1426 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1427 assert( v!=(-2147483647-1) ); 1428 *pValue = -v; 1429 rc = 1; 1430 } 1431 break; 1432 } 1433 default: break; 1434 } 1435 return rc; 1436 } 1437 1438 /* 1439 ** Return FALSE if there is no chance that the expression can be NULL. 1440 ** 1441 ** If the expression might be NULL or if the expression is too complex 1442 ** to tell return TRUE. 1443 ** 1444 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1445 ** when we know that a value cannot be NULL. Hence, a false positive 1446 ** (returning TRUE when in fact the expression can never be NULL) might 1447 ** be a small performance hit but is otherwise harmless. On the other 1448 ** hand, a false negative (returning FALSE when the result could be NULL) 1449 ** will likely result in an incorrect answer. So when in doubt, return 1450 ** TRUE. 1451 */ 1452 int sqlite3ExprCanBeNull(const Expr *p){ 1453 u8 op; 1454 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1455 op = p->op; 1456 if( op==TK_REGISTER ) op = p->op2; 1457 switch( op ){ 1458 case TK_INTEGER: 1459 case TK_STRING: 1460 case TK_FLOAT: 1461 case TK_BLOB: 1462 return 0; 1463 case TK_COLUMN: 1464 assert( p->pTab!=0 ); 1465 return ExprHasProperty(p, EP_CanBeNull) || 1466 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 1467 default: 1468 return 1; 1469 } 1470 } 1471 1472 /* 1473 ** Return TRUE if the given expression is a constant which would be 1474 ** unchanged by OP_Affinity with the affinity given in the second 1475 ** argument. 1476 ** 1477 ** This routine is used to determine if the OP_Affinity operation 1478 ** can be omitted. When in doubt return FALSE. A false negative 1479 ** is harmless. A false positive, however, can result in the wrong 1480 ** answer. 1481 */ 1482 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1483 u8 op; 1484 if( aff==SQLITE_AFF_NONE ) return 1; 1485 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1486 op = p->op; 1487 if( op==TK_REGISTER ) op = p->op2; 1488 switch( op ){ 1489 case TK_INTEGER: { 1490 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1491 } 1492 case TK_FLOAT: { 1493 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1494 } 1495 case TK_STRING: { 1496 return aff==SQLITE_AFF_TEXT; 1497 } 1498 case TK_BLOB: { 1499 return 1; 1500 } 1501 case TK_COLUMN: { 1502 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1503 return p->iColumn<0 1504 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1505 } 1506 default: { 1507 return 0; 1508 } 1509 } 1510 } 1511 1512 /* 1513 ** Return TRUE if the given string is a row-id column name. 1514 */ 1515 int sqlite3IsRowid(const char *z){ 1516 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1517 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1518 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1519 return 0; 1520 } 1521 1522 /* 1523 ** Return true if we are able to the IN operator optimization on a 1524 ** query of the form 1525 ** 1526 ** x IN (SELECT ...) 1527 ** 1528 ** Where the SELECT... clause is as specified by the parameter to this 1529 ** routine. 1530 ** 1531 ** The Select object passed in has already been preprocessed and no 1532 ** errors have been found. 1533 */ 1534 #ifndef SQLITE_OMIT_SUBQUERY 1535 static int isCandidateForInOpt(Select *p){ 1536 SrcList *pSrc; 1537 ExprList *pEList; 1538 Table *pTab; 1539 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1540 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1541 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1542 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1543 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1544 return 0; /* No DISTINCT keyword and no aggregate functions */ 1545 } 1546 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1547 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1548 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1549 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1550 pSrc = p->pSrc; 1551 assert( pSrc!=0 ); 1552 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1553 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1554 pTab = pSrc->a[0].pTab; 1555 if( NEVER(pTab==0) ) return 0; 1556 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1557 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1558 pEList = p->pEList; 1559 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1560 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1561 return 1; 1562 } 1563 #endif /* SQLITE_OMIT_SUBQUERY */ 1564 1565 /* 1566 ** Code an OP_Once instruction and allocate space for its flag. Return the 1567 ** address of the new instruction. 1568 */ 1569 int sqlite3CodeOnce(Parse *pParse){ 1570 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1571 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1572 } 1573 1574 /* 1575 ** Generate code that checks the left-most column of index table iCur to see if 1576 ** it contains any NULL entries. Cause the register at regHasNull to be set 1577 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 1578 ** to be set to NULL if iCur contains one or more NULL values. 1579 */ 1580 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 1581 int j1; 1582 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 1583 j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1584 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 1585 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1586 VdbeComment((v, "first_entry_in(%d)", iCur)); 1587 sqlite3VdbeJumpHere(v, j1); 1588 } 1589 1590 1591 #ifndef SQLITE_OMIT_SUBQUERY 1592 /* 1593 ** The argument is an IN operator with a list (not a subquery) on the 1594 ** right-hand side. Return TRUE if that list is constant. 1595 */ 1596 static int sqlite3InRhsIsConstant(Expr *pIn){ 1597 Expr *pLHS; 1598 int res; 1599 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 1600 pLHS = pIn->pLeft; 1601 pIn->pLeft = 0; 1602 res = sqlite3ExprIsConstant(pIn); 1603 pIn->pLeft = pLHS; 1604 return res; 1605 } 1606 #endif 1607 1608 /* 1609 ** This function is used by the implementation of the IN (...) operator. 1610 ** The pX parameter is the expression on the RHS of the IN operator, which 1611 ** might be either a list of expressions or a subquery. 1612 ** 1613 ** The job of this routine is to find or create a b-tree object that can 1614 ** be used either to test for membership in the RHS set or to iterate through 1615 ** all members of the RHS set, skipping duplicates. 1616 ** 1617 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 1618 ** and pX->iTable is set to the index of that cursor. 1619 ** 1620 ** The returned value of this function indicates the b-tree type, as follows: 1621 ** 1622 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1623 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 1624 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 1625 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1626 ** populated epheremal table. 1627 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 1628 ** implemented as a sequence of comparisons. 1629 ** 1630 ** An existing b-tree might be used if the RHS expression pX is a simple 1631 ** subquery such as: 1632 ** 1633 ** SELECT <column> FROM <table> 1634 ** 1635 ** If the RHS of the IN operator is a list or a more complex subquery, then 1636 ** an ephemeral table might need to be generated from the RHS and then 1637 ** pX->iTable made to point to the ephemeral table instead of an 1638 ** existing table. 1639 ** 1640 ** The inFlags parameter must contain exactly one of the bits 1641 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 1642 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 1643 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 1644 ** IN index will be used to loop over all values of the RHS of the 1645 ** IN operator. 1646 ** 1647 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 1648 ** through the set members) then the b-tree must not contain duplicates. 1649 ** An epheremal table must be used unless the selected <column> is guaranteed 1650 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1651 ** has a UNIQUE constraint or UNIQUE index. 1652 ** 1653 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 1654 ** for fast set membership tests) then an epheremal table must 1655 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1656 ** be found with <column> as its left-most column. 1657 ** 1658 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 1659 ** if the RHS of the IN operator is a list (not a subquery) then this 1660 ** routine might decide that creating an ephemeral b-tree for membership 1661 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 1662 ** calling routine should implement the IN operator using a sequence 1663 ** of Eq or Ne comparison operations. 1664 ** 1665 ** When the b-tree is being used for membership tests, the calling function 1666 ** might need to know whether or not the RHS side of the IN operator 1667 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 1668 ** if there is any chance that the (...) might contain a NULL value at 1669 ** runtime, then a register is allocated and the register number written 1670 ** to *prRhsHasNull. If there is no chance that the (...) contains a 1671 ** NULL value, then *prRhsHasNull is left unchanged. 1672 ** 1673 ** If a register is allocated and its location stored in *prRhsHasNull, then 1674 ** the value in that register will be NULL if the b-tree contains one or more 1675 ** NULL values, and it will be some non-NULL value if the b-tree contains no 1676 ** NULL values. 1677 */ 1678 #ifndef SQLITE_OMIT_SUBQUERY 1679 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){ 1680 Select *p; /* SELECT to the right of IN operator */ 1681 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1682 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1683 int mustBeUnique; /* True if RHS must be unique */ 1684 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1685 1686 assert( pX->op==TK_IN ); 1687 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 1688 1689 /* Check to see if an existing table or index can be used to 1690 ** satisfy the query. This is preferable to generating a new 1691 ** ephemeral table. 1692 */ 1693 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1694 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1695 sqlite3 *db = pParse->db; /* Database connection */ 1696 Table *pTab; /* Table <table>. */ 1697 Expr *pExpr; /* Expression <column> */ 1698 i16 iCol; /* Index of column <column> */ 1699 i16 iDb; /* Database idx for pTab */ 1700 1701 assert( p ); /* Because of isCandidateForInOpt(p) */ 1702 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1703 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1704 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1705 pTab = p->pSrc->a[0].pTab; 1706 pExpr = p->pEList->a[0].pExpr; 1707 iCol = (i16)pExpr->iColumn; 1708 1709 /* Code an OP_Transaction and OP_TableLock for <table>. */ 1710 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1711 sqlite3CodeVerifySchema(pParse, iDb); 1712 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1713 1714 /* This function is only called from two places. In both cases the vdbe 1715 ** has already been allocated. So assume sqlite3GetVdbe() is always 1716 ** successful here. 1717 */ 1718 assert(v); 1719 if( iCol<0 ){ 1720 int iAddr = sqlite3CodeOnce(pParse); 1721 VdbeCoverage(v); 1722 1723 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1724 eType = IN_INDEX_ROWID; 1725 1726 sqlite3VdbeJumpHere(v, iAddr); 1727 }else{ 1728 Index *pIdx; /* Iterator variable */ 1729 1730 /* The collation sequence used by the comparison. If an index is to 1731 ** be used in place of a temp-table, it must be ordered according 1732 ** to this collation sequence. */ 1733 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1734 1735 /* Check that the affinity that will be used to perform the 1736 ** comparison is the same as the affinity of the column. If 1737 ** it is not, it is not possible to use any index. 1738 */ 1739 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1740 1741 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1742 if( (pIdx->aiColumn[0]==iCol) 1743 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1744 && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx))) 1745 ){ 1746 int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1747 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 1748 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1749 VdbeComment((v, "%s", pIdx->zName)); 1750 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 1751 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 1752 1753 if( prRhsHasNull && !pTab->aCol[iCol].notNull ){ 1754 *prRhsHasNull = ++pParse->nMem; 1755 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 1756 } 1757 sqlite3VdbeJumpHere(v, iAddr); 1758 } 1759 } 1760 } 1761 } 1762 1763 /* If no preexisting index is available for the IN clause 1764 ** and IN_INDEX_NOOP is an allowed reply 1765 ** and the RHS of the IN operator is a list, not a subquery 1766 ** and the RHS is not contant or has two or fewer terms, 1767 ** then it is not worth creating an ephemeral table to evaluate 1768 ** the IN operator so return IN_INDEX_NOOP. 1769 */ 1770 if( eType==0 1771 && (inFlags & IN_INDEX_NOOP_OK) 1772 && !ExprHasProperty(pX, EP_xIsSelect) 1773 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 1774 ){ 1775 eType = IN_INDEX_NOOP; 1776 } 1777 1778 1779 if( eType==0 ){ 1780 /* Could not find an existing table or index to use as the RHS b-tree. 1781 ** We will have to generate an ephemeral table to do the job. 1782 */ 1783 u32 savedNQueryLoop = pParse->nQueryLoop; 1784 int rMayHaveNull = 0; 1785 eType = IN_INDEX_EPH; 1786 if( inFlags & IN_INDEX_LOOP ){ 1787 pParse->nQueryLoop = 0; 1788 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 1789 eType = IN_INDEX_ROWID; 1790 } 1791 }else if( prRhsHasNull ){ 1792 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 1793 } 1794 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1795 pParse->nQueryLoop = savedNQueryLoop; 1796 }else{ 1797 pX->iTable = iTab; 1798 } 1799 return eType; 1800 } 1801 #endif 1802 1803 /* 1804 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1805 ** or IN operators. Examples: 1806 ** 1807 ** (SELECT a FROM b) -- subquery 1808 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1809 ** x IN (4,5,11) -- IN operator with list on right-hand side 1810 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1811 ** 1812 ** The pExpr parameter describes the expression that contains the IN 1813 ** operator or subquery. 1814 ** 1815 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1816 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1817 ** to some integer key column of a table B-Tree. In this case, use an 1818 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1819 ** (slower) variable length keys B-Tree. 1820 ** 1821 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1822 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1823 ** All this routine does is initialize the register given by rMayHaveNull 1824 ** to NULL. Calling routines will take care of changing this register 1825 ** value to non-NULL if the RHS is NULL-free. 1826 ** 1827 ** For a SELECT or EXISTS operator, return the register that holds the 1828 ** result. For IN operators or if an error occurs, the return value is 0. 1829 */ 1830 #ifndef SQLITE_OMIT_SUBQUERY 1831 int sqlite3CodeSubselect( 1832 Parse *pParse, /* Parsing context */ 1833 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1834 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 1835 int isRowid /* If true, LHS of IN operator is a rowid */ 1836 ){ 1837 int jmpIfDynamic = -1; /* One-time test address */ 1838 int rReg = 0; /* Register storing resulting */ 1839 Vdbe *v = sqlite3GetVdbe(pParse); 1840 if( NEVER(v==0) ) return 0; 1841 sqlite3ExprCachePush(pParse); 1842 1843 /* This code must be run in its entirety every time it is encountered 1844 ** if any of the following is true: 1845 ** 1846 ** * The right-hand side is a correlated subquery 1847 ** * The right-hand side is an expression list containing variables 1848 ** * We are inside a trigger 1849 ** 1850 ** If all of the above are false, then we can run this code just once 1851 ** save the results, and reuse the same result on subsequent invocations. 1852 */ 1853 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 1854 jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1855 } 1856 1857 #ifndef SQLITE_OMIT_EXPLAIN 1858 if( pParse->explain==2 ){ 1859 char *zMsg = sqlite3MPrintf( 1860 pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ", 1861 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId 1862 ); 1863 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1864 } 1865 #endif 1866 1867 switch( pExpr->op ){ 1868 case TK_IN: { 1869 char affinity; /* Affinity of the LHS of the IN */ 1870 int addr; /* Address of OP_OpenEphemeral instruction */ 1871 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1872 KeyInfo *pKeyInfo = 0; /* Key information */ 1873 1874 affinity = sqlite3ExprAffinity(pLeft); 1875 1876 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1877 ** expression it is handled the same way. An ephemeral table is 1878 ** filled with single-field index keys representing the results 1879 ** from the SELECT or the <exprlist>. 1880 ** 1881 ** If the 'x' expression is a column value, or the SELECT... 1882 ** statement returns a column value, then the affinity of that 1883 ** column is used to build the index keys. If both 'x' and the 1884 ** SELECT... statement are columns, then numeric affinity is used 1885 ** if either column has NUMERIC or INTEGER affinity. If neither 1886 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1887 ** is used. 1888 */ 1889 pExpr->iTable = pParse->nTab++; 1890 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1891 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); 1892 1893 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1894 /* Case 1: expr IN (SELECT ...) 1895 ** 1896 ** Generate code to write the results of the select into the temporary 1897 ** table allocated and opened above. 1898 */ 1899 Select *pSelect = pExpr->x.pSelect; 1900 SelectDest dest; 1901 ExprList *pEList; 1902 1903 assert( !isRowid ); 1904 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1905 dest.affSdst = (u8)affinity; 1906 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1907 pSelect->iLimit = 0; 1908 testcase( pSelect->selFlags & SF_Distinct ); 1909 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 1910 if( sqlite3Select(pParse, pSelect, &dest) ){ 1911 sqlite3KeyInfoUnref(pKeyInfo); 1912 return 0; 1913 } 1914 pEList = pSelect->pEList; 1915 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 1916 assert( pEList!=0 ); 1917 assert( pEList->nExpr>0 ); 1918 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1919 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1920 pEList->a[0].pExpr); 1921 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1922 /* Case 2: expr IN (exprlist) 1923 ** 1924 ** For each expression, build an index key from the evaluation and 1925 ** store it in the temporary table. If <expr> is a column, then use 1926 ** that columns affinity when building index keys. If <expr> is not 1927 ** a column, use numeric affinity. 1928 */ 1929 int i; 1930 ExprList *pList = pExpr->x.pList; 1931 struct ExprList_item *pItem; 1932 int r1, r2, r3; 1933 1934 if( !affinity ){ 1935 affinity = SQLITE_AFF_NONE; 1936 } 1937 if( pKeyInfo ){ 1938 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1939 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1940 } 1941 1942 /* Loop through each expression in <exprlist>. */ 1943 r1 = sqlite3GetTempReg(pParse); 1944 r2 = sqlite3GetTempReg(pParse); 1945 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1946 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1947 Expr *pE2 = pItem->pExpr; 1948 int iValToIns; 1949 1950 /* If the expression is not constant then we will need to 1951 ** disable the test that was generated above that makes sure 1952 ** this code only executes once. Because for a non-constant 1953 ** expression we need to rerun this code each time. 1954 */ 1955 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 1956 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 1957 jmpIfDynamic = -1; 1958 } 1959 1960 /* Evaluate the expression and insert it into the temp table */ 1961 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1962 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1963 }else{ 1964 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1965 if( isRowid ){ 1966 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1967 sqlite3VdbeCurrentAddr(v)+2); 1968 VdbeCoverage(v); 1969 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1970 }else{ 1971 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1972 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1973 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1974 } 1975 } 1976 } 1977 sqlite3ReleaseTempReg(pParse, r1); 1978 sqlite3ReleaseTempReg(pParse, r2); 1979 } 1980 if( pKeyInfo ){ 1981 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 1982 } 1983 break; 1984 } 1985 1986 case TK_EXISTS: 1987 case TK_SELECT: 1988 default: { 1989 /* If this has to be a scalar SELECT. Generate code to put the 1990 ** value of this select in a memory cell and record the number 1991 ** of the memory cell in iColumn. If this is an EXISTS, write 1992 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1993 ** and record that memory cell in iColumn. 1994 */ 1995 Select *pSel; /* SELECT statement to encode */ 1996 SelectDest dest; /* How to deal with SELECt result */ 1997 1998 testcase( pExpr->op==TK_EXISTS ); 1999 testcase( pExpr->op==TK_SELECT ); 2000 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2001 2002 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2003 pSel = pExpr->x.pSelect; 2004 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 2005 if( pExpr->op==TK_SELECT ){ 2006 dest.eDest = SRT_Mem; 2007 dest.iSdst = dest.iSDParm; 2008 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 2009 VdbeComment((v, "Init subquery result")); 2010 }else{ 2011 dest.eDest = SRT_Exists; 2012 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2013 VdbeComment((v, "Init EXISTS result")); 2014 } 2015 sqlite3ExprDelete(pParse->db, pSel->pLimit); 2016 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 2017 &sqlite3IntTokens[1]); 2018 pSel->iLimit = 0; 2019 if( sqlite3Select(pParse, pSel, &dest) ){ 2020 return 0; 2021 } 2022 rReg = dest.iSDParm; 2023 ExprSetVVAProperty(pExpr, EP_NoReduce); 2024 break; 2025 } 2026 } 2027 2028 if( rHasNullFlag ){ 2029 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2030 } 2031 2032 if( jmpIfDynamic>=0 ){ 2033 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2034 } 2035 sqlite3ExprCachePop(pParse); 2036 2037 return rReg; 2038 } 2039 #endif /* SQLITE_OMIT_SUBQUERY */ 2040 2041 #ifndef SQLITE_OMIT_SUBQUERY 2042 /* 2043 ** Generate code for an IN expression. 2044 ** 2045 ** x IN (SELECT ...) 2046 ** x IN (value, value, ...) 2047 ** 2048 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 2049 ** is an array of zero or more values. The expression is true if the LHS is 2050 ** contained within the RHS. The value of the expression is unknown (NULL) 2051 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 2052 ** RHS contains one or more NULL values. 2053 ** 2054 ** This routine generates code that jumps to destIfFalse if the LHS is not 2055 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2056 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2057 ** within the RHS then fall through. 2058 */ 2059 static void sqlite3ExprCodeIN( 2060 Parse *pParse, /* Parsing and code generating context */ 2061 Expr *pExpr, /* The IN expression */ 2062 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2063 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2064 ){ 2065 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2066 char affinity; /* Comparison affinity to use */ 2067 int eType; /* Type of the RHS */ 2068 int r1; /* Temporary use register */ 2069 Vdbe *v; /* Statement under construction */ 2070 2071 /* Compute the RHS. After this step, the table with cursor 2072 ** pExpr->iTable will contains the values that make up the RHS. 2073 */ 2074 v = pParse->pVdbe; 2075 assert( v!=0 ); /* OOM detected prior to this routine */ 2076 VdbeNoopComment((v, "begin IN expr")); 2077 eType = sqlite3FindInIndex(pParse, pExpr, 2078 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2079 destIfFalse==destIfNull ? 0 : &rRhsHasNull); 2080 2081 /* Figure out the affinity to use to create a key from the results 2082 ** of the expression. affinityStr stores a static string suitable for 2083 ** P4 of OP_MakeRecord. 2084 */ 2085 affinity = comparisonAffinity(pExpr); 2086 2087 /* Code the LHS, the <expr> from "<expr> IN (...)". 2088 */ 2089 sqlite3ExprCachePush(pParse); 2090 r1 = sqlite3GetTempReg(pParse); 2091 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 2092 2093 /* If sqlite3FindInIndex() did not find or create an index that is 2094 ** suitable for evaluating the IN operator, then evaluate using a 2095 ** sequence of comparisons. 2096 */ 2097 if( eType==IN_INDEX_NOOP ){ 2098 ExprList *pList = pExpr->x.pList; 2099 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2100 int labelOk = sqlite3VdbeMakeLabel(v); 2101 int r2, regToFree; 2102 int regCkNull = 0; 2103 int ii; 2104 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2105 if( destIfNull!=destIfFalse ){ 2106 regCkNull = sqlite3GetTempReg(pParse); 2107 sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull); 2108 } 2109 for(ii=0; ii<pList->nExpr; ii++){ 2110 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2111 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2112 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2113 } 2114 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2115 sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2, 2116 (void*)pColl, P4_COLLSEQ); 2117 VdbeCoverageIf(v, ii<pList->nExpr-1); 2118 VdbeCoverageIf(v, ii==pList->nExpr-1); 2119 sqlite3VdbeChangeP5(v, affinity); 2120 }else{ 2121 assert( destIfNull==destIfFalse ); 2122 sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2, 2123 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2124 sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL); 2125 } 2126 sqlite3ReleaseTempReg(pParse, regToFree); 2127 } 2128 if( regCkNull ){ 2129 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2130 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 2131 } 2132 sqlite3VdbeResolveLabel(v, labelOk); 2133 sqlite3ReleaseTempReg(pParse, regCkNull); 2134 }else{ 2135 2136 /* If the LHS is NULL, then the result is either false or NULL depending 2137 ** on whether the RHS is empty or not, respectively. 2138 */ 2139 if( sqlite3ExprCanBeNull(pExpr->pLeft) ){ 2140 if( destIfNull==destIfFalse ){ 2141 /* Shortcut for the common case where the false and NULL outcomes are 2142 ** the same. */ 2143 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); 2144 }else{ 2145 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); 2146 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2147 VdbeCoverage(v); 2148 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 2149 sqlite3VdbeJumpHere(v, addr1); 2150 } 2151 } 2152 2153 if( eType==IN_INDEX_ROWID ){ 2154 /* In this case, the RHS is the ROWID of table b-tree 2155 */ 2156 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); 2157 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 2158 VdbeCoverage(v); 2159 }else{ 2160 /* In this case, the RHS is an index b-tree. 2161 */ 2162 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 2163 2164 /* If the set membership test fails, then the result of the 2165 ** "x IN (...)" expression must be either 0 or NULL. If the set 2166 ** contains no NULL values, then the result is 0. If the set 2167 ** contains one or more NULL values, then the result of the 2168 ** expression is also NULL. 2169 */ 2170 assert( destIfFalse!=destIfNull || rRhsHasNull==0 ); 2171 if( rRhsHasNull==0 ){ 2172 /* This branch runs if it is known at compile time that the RHS 2173 ** cannot contain NULL values. This happens as the result 2174 ** of a "NOT NULL" constraint in the database schema. 2175 ** 2176 ** Also run this branch if NULL is equivalent to FALSE 2177 ** for this particular IN operator. 2178 */ 2179 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 2180 VdbeCoverage(v); 2181 }else{ 2182 /* In this branch, the RHS of the IN might contain a NULL and 2183 ** the presence of a NULL on the RHS makes a difference in the 2184 ** outcome. 2185 */ 2186 int j1; 2187 2188 /* First check to see if the LHS is contained in the RHS. If so, 2189 ** then the answer is TRUE the presence of NULLs in the RHS does 2190 ** not matter. If the LHS is not contained in the RHS, then the 2191 ** answer is NULL if the RHS contains NULLs and the answer is 2192 ** FALSE if the RHS is NULL-free. 2193 */ 2194 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 2195 VdbeCoverage(v); 2196 sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull); 2197 VdbeCoverage(v); 2198 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 2199 sqlite3VdbeJumpHere(v, j1); 2200 } 2201 } 2202 } 2203 sqlite3ReleaseTempReg(pParse, r1); 2204 sqlite3ExprCachePop(pParse); 2205 VdbeComment((v, "end IN expr")); 2206 } 2207 #endif /* SQLITE_OMIT_SUBQUERY */ 2208 2209 /* 2210 ** Duplicate an 8-byte value 2211 */ 2212 static char *dup8bytes(Vdbe *v, const char *in){ 2213 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 2214 if( out ){ 2215 memcpy(out, in, 8); 2216 } 2217 return out; 2218 } 2219 2220 #ifndef SQLITE_OMIT_FLOATING_POINT 2221 /* 2222 ** Generate an instruction that will put the floating point 2223 ** value described by z[0..n-1] into register iMem. 2224 ** 2225 ** The z[] string will probably not be zero-terminated. But the 2226 ** z[n] character is guaranteed to be something that does not look 2227 ** like the continuation of the number. 2228 */ 2229 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2230 if( ALWAYS(z!=0) ){ 2231 double value; 2232 char *zV; 2233 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2234 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2235 if( negateFlag ) value = -value; 2236 zV = dup8bytes(v, (char*)&value); 2237 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 2238 } 2239 } 2240 #endif 2241 2242 2243 /* 2244 ** Generate an instruction that will put the integer describe by 2245 ** text z[0..n-1] into register iMem. 2246 ** 2247 ** Expr.u.zToken is always UTF8 and zero-terminated. 2248 */ 2249 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2250 Vdbe *v = pParse->pVdbe; 2251 if( pExpr->flags & EP_IntValue ){ 2252 int i = pExpr->u.iValue; 2253 assert( i>=0 ); 2254 if( negFlag ) i = -i; 2255 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2256 }else{ 2257 int c; 2258 i64 value; 2259 const char *z = pExpr->u.zToken; 2260 assert( z!=0 ); 2261 c = sqlite3DecOrHexToI64(z, &value); 2262 if( c==0 || (c==2 && negFlag) ){ 2263 char *zV; 2264 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2265 zV = dup8bytes(v, (char*)&value); 2266 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 2267 }else{ 2268 #ifdef SQLITE_OMIT_FLOATING_POINT 2269 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2270 #else 2271 #ifndef SQLITE_OMIT_HEX_INTEGER 2272 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 2273 sqlite3ErrorMsg(pParse, "hex literal too big: %s", z); 2274 }else 2275 #endif 2276 { 2277 codeReal(v, z, negFlag, iMem); 2278 } 2279 #endif 2280 } 2281 } 2282 } 2283 2284 /* 2285 ** Clear a cache entry. 2286 */ 2287 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2288 if( p->tempReg ){ 2289 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2290 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2291 } 2292 p->tempReg = 0; 2293 } 2294 } 2295 2296 2297 /* 2298 ** Record in the column cache that a particular column from a 2299 ** particular table is stored in a particular register. 2300 */ 2301 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2302 int i; 2303 int minLru; 2304 int idxLru; 2305 struct yColCache *p; 2306 2307 /* Unless an error has occurred, register numbers are always positive. */ 2308 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 2309 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2310 2311 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2312 ** for testing only - to verify that SQLite always gets the same answer 2313 ** with and without the column cache. 2314 */ 2315 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2316 2317 /* First replace any existing entry. 2318 ** 2319 ** Actually, the way the column cache is currently used, we are guaranteed 2320 ** that the object will never already be in cache. Verify this guarantee. 2321 */ 2322 #ifndef NDEBUG 2323 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2324 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2325 } 2326 #endif 2327 2328 /* Find an empty slot and replace it */ 2329 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2330 if( p->iReg==0 ){ 2331 p->iLevel = pParse->iCacheLevel; 2332 p->iTable = iTab; 2333 p->iColumn = iCol; 2334 p->iReg = iReg; 2335 p->tempReg = 0; 2336 p->lru = pParse->iCacheCnt++; 2337 return; 2338 } 2339 } 2340 2341 /* Replace the last recently used */ 2342 minLru = 0x7fffffff; 2343 idxLru = -1; 2344 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2345 if( p->lru<minLru ){ 2346 idxLru = i; 2347 minLru = p->lru; 2348 } 2349 } 2350 if( ALWAYS(idxLru>=0) ){ 2351 p = &pParse->aColCache[idxLru]; 2352 p->iLevel = pParse->iCacheLevel; 2353 p->iTable = iTab; 2354 p->iColumn = iCol; 2355 p->iReg = iReg; 2356 p->tempReg = 0; 2357 p->lru = pParse->iCacheCnt++; 2358 return; 2359 } 2360 } 2361 2362 /* 2363 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2364 ** Purge the range of registers from the column cache. 2365 */ 2366 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2367 int i; 2368 int iLast = iReg + nReg - 1; 2369 struct yColCache *p; 2370 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2371 int r = p->iReg; 2372 if( r>=iReg && r<=iLast ){ 2373 cacheEntryClear(pParse, p); 2374 p->iReg = 0; 2375 } 2376 } 2377 } 2378 2379 /* 2380 ** Remember the current column cache context. Any new entries added 2381 ** added to the column cache after this call are removed when the 2382 ** corresponding pop occurs. 2383 */ 2384 void sqlite3ExprCachePush(Parse *pParse){ 2385 pParse->iCacheLevel++; 2386 #ifdef SQLITE_DEBUG 2387 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2388 printf("PUSH to %d\n", pParse->iCacheLevel); 2389 } 2390 #endif 2391 } 2392 2393 /* 2394 ** Remove from the column cache any entries that were added since the 2395 ** the previous sqlite3ExprCachePush operation. In other words, restore 2396 ** the cache to the state it was in prior the most recent Push. 2397 */ 2398 void sqlite3ExprCachePop(Parse *pParse){ 2399 int i; 2400 struct yColCache *p; 2401 assert( pParse->iCacheLevel>=1 ); 2402 pParse->iCacheLevel--; 2403 #ifdef SQLITE_DEBUG 2404 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2405 printf("POP to %d\n", pParse->iCacheLevel); 2406 } 2407 #endif 2408 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2409 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2410 cacheEntryClear(pParse, p); 2411 p->iReg = 0; 2412 } 2413 } 2414 } 2415 2416 /* 2417 ** When a cached column is reused, make sure that its register is 2418 ** no longer available as a temp register. ticket #3879: that same 2419 ** register might be in the cache in multiple places, so be sure to 2420 ** get them all. 2421 */ 2422 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2423 int i; 2424 struct yColCache *p; 2425 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2426 if( p->iReg==iReg ){ 2427 p->tempReg = 0; 2428 } 2429 } 2430 } 2431 2432 /* 2433 ** Generate code to extract the value of the iCol-th column of a table. 2434 */ 2435 void sqlite3ExprCodeGetColumnOfTable( 2436 Vdbe *v, /* The VDBE under construction */ 2437 Table *pTab, /* The table containing the value */ 2438 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 2439 int iCol, /* Index of the column to extract */ 2440 int regOut /* Extract the value into this register */ 2441 ){ 2442 if( iCol<0 || iCol==pTab->iPKey ){ 2443 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2444 }else{ 2445 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2446 int x = iCol; 2447 if( !HasRowid(pTab) ){ 2448 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 2449 } 2450 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 2451 } 2452 if( iCol>=0 ){ 2453 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2454 } 2455 } 2456 2457 /* 2458 ** Generate code that will extract the iColumn-th column from 2459 ** table pTab and store the column value in a register. An effort 2460 ** is made to store the column value in register iReg, but this is 2461 ** not guaranteed. The location of the column value is returned. 2462 ** 2463 ** There must be an open cursor to pTab in iTable when this routine 2464 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2465 */ 2466 int sqlite3ExprCodeGetColumn( 2467 Parse *pParse, /* Parsing and code generating context */ 2468 Table *pTab, /* Description of the table we are reading from */ 2469 int iColumn, /* Index of the table column */ 2470 int iTable, /* The cursor pointing to the table */ 2471 int iReg, /* Store results here */ 2472 u8 p5 /* P5 value for OP_Column */ 2473 ){ 2474 Vdbe *v = pParse->pVdbe; 2475 int i; 2476 struct yColCache *p; 2477 2478 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2479 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2480 p->lru = pParse->iCacheCnt++; 2481 sqlite3ExprCachePinRegister(pParse, p->iReg); 2482 return p->iReg; 2483 } 2484 } 2485 assert( v!=0 ); 2486 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2487 if( p5 ){ 2488 sqlite3VdbeChangeP5(v, p5); 2489 }else{ 2490 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2491 } 2492 return iReg; 2493 } 2494 2495 /* 2496 ** Clear all column cache entries. 2497 */ 2498 void sqlite3ExprCacheClear(Parse *pParse){ 2499 int i; 2500 struct yColCache *p; 2501 2502 #if SQLITE_DEBUG 2503 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2504 printf("CLEAR\n"); 2505 } 2506 #endif 2507 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2508 if( p->iReg ){ 2509 cacheEntryClear(pParse, p); 2510 p->iReg = 0; 2511 } 2512 } 2513 } 2514 2515 /* 2516 ** Record the fact that an affinity change has occurred on iCount 2517 ** registers starting with iStart. 2518 */ 2519 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2520 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2521 } 2522 2523 /* 2524 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2525 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2526 */ 2527 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2528 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2529 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2530 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 2531 } 2532 2533 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2534 /* 2535 ** Return true if any register in the range iFrom..iTo (inclusive) 2536 ** is used as part of the column cache. 2537 ** 2538 ** This routine is used within assert() and testcase() macros only 2539 ** and does not appear in a normal build. 2540 */ 2541 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2542 int i; 2543 struct yColCache *p; 2544 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2545 int r = p->iReg; 2546 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2547 } 2548 return 0; 2549 } 2550 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2551 2552 /* 2553 ** Convert an expression node to a TK_REGISTER 2554 */ 2555 static void exprToRegister(Expr *p, int iReg){ 2556 p->op2 = p->op; 2557 p->op = TK_REGISTER; 2558 p->iTable = iReg; 2559 ExprClearProperty(p, EP_Skip); 2560 } 2561 2562 /* 2563 ** Generate code into the current Vdbe to evaluate the given 2564 ** expression. Attempt to store the results in register "target". 2565 ** Return the register where results are stored. 2566 ** 2567 ** With this routine, there is no guarantee that results will 2568 ** be stored in target. The result might be stored in some other 2569 ** register if it is convenient to do so. The calling function 2570 ** must check the return code and move the results to the desired 2571 ** register. 2572 */ 2573 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2574 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2575 int op; /* The opcode being coded */ 2576 int inReg = target; /* Results stored in register inReg */ 2577 int regFree1 = 0; /* If non-zero free this temporary register */ 2578 int regFree2 = 0; /* If non-zero free this temporary register */ 2579 int r1, r2, r3, r4; /* Various register numbers */ 2580 sqlite3 *db = pParse->db; /* The database connection */ 2581 Expr tempX; /* Temporary expression node */ 2582 2583 assert( target>0 && target<=pParse->nMem ); 2584 if( v==0 ){ 2585 assert( pParse->db->mallocFailed ); 2586 return 0; 2587 } 2588 2589 if( pExpr==0 ){ 2590 op = TK_NULL; 2591 }else{ 2592 op = pExpr->op; 2593 } 2594 switch( op ){ 2595 case TK_AGG_COLUMN: { 2596 AggInfo *pAggInfo = pExpr->pAggInfo; 2597 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2598 if( !pAggInfo->directMode ){ 2599 assert( pCol->iMem>0 ); 2600 inReg = pCol->iMem; 2601 break; 2602 }else if( pAggInfo->useSortingIdx ){ 2603 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2604 pCol->iSorterColumn, target); 2605 break; 2606 } 2607 /* Otherwise, fall thru into the TK_COLUMN case */ 2608 } 2609 case TK_COLUMN: { 2610 int iTab = pExpr->iTable; 2611 if( iTab<0 ){ 2612 if( pParse->ckBase>0 ){ 2613 /* Generating CHECK constraints or inserting into partial index */ 2614 inReg = pExpr->iColumn + pParse->ckBase; 2615 break; 2616 }else{ 2617 /* Deleting from a partial index */ 2618 iTab = pParse->iPartIdxTab; 2619 } 2620 } 2621 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2622 pExpr->iColumn, iTab, target, 2623 pExpr->op2); 2624 break; 2625 } 2626 case TK_INTEGER: { 2627 codeInteger(pParse, pExpr, 0, target); 2628 break; 2629 } 2630 #ifndef SQLITE_OMIT_FLOATING_POINT 2631 case TK_FLOAT: { 2632 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2633 codeReal(v, pExpr->u.zToken, 0, target); 2634 break; 2635 } 2636 #endif 2637 case TK_STRING: { 2638 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2639 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2640 break; 2641 } 2642 case TK_NULL: { 2643 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2644 break; 2645 } 2646 #ifndef SQLITE_OMIT_BLOB_LITERAL 2647 case TK_BLOB: { 2648 int n; 2649 const char *z; 2650 char *zBlob; 2651 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2652 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2653 assert( pExpr->u.zToken[1]=='\'' ); 2654 z = &pExpr->u.zToken[2]; 2655 n = sqlite3Strlen30(z) - 1; 2656 assert( z[n]=='\'' ); 2657 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2658 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2659 break; 2660 } 2661 #endif 2662 case TK_VARIABLE: { 2663 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2664 assert( pExpr->u.zToken!=0 ); 2665 assert( pExpr->u.zToken[0]!=0 ); 2666 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2667 if( pExpr->u.zToken[1]!=0 ){ 2668 assert( pExpr->u.zToken[0]=='?' 2669 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2670 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2671 } 2672 break; 2673 } 2674 case TK_REGISTER: { 2675 inReg = pExpr->iTable; 2676 break; 2677 } 2678 case TK_AS: { 2679 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2680 break; 2681 } 2682 #ifndef SQLITE_OMIT_CAST 2683 case TK_CAST: { 2684 /* Expressions of the form: CAST(pLeft AS token) */ 2685 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2686 if( inReg!=target ){ 2687 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2688 inReg = target; 2689 } 2690 sqlite3VdbeAddOp2(v, OP_Cast, target, 2691 sqlite3AffinityType(pExpr->u.zToken, 0)); 2692 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2693 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2694 break; 2695 } 2696 #endif /* SQLITE_OMIT_CAST */ 2697 case TK_LT: 2698 case TK_LE: 2699 case TK_GT: 2700 case TK_GE: 2701 case TK_NE: 2702 case TK_EQ: { 2703 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2704 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2705 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2706 r1, r2, inReg, SQLITE_STOREP2); 2707 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 2708 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 2709 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 2710 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 2711 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 2712 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 2713 testcase( regFree1==0 ); 2714 testcase( regFree2==0 ); 2715 break; 2716 } 2717 case TK_IS: 2718 case TK_ISNOT: { 2719 testcase( op==TK_IS ); 2720 testcase( op==TK_ISNOT ); 2721 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2722 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2723 op = (op==TK_IS) ? TK_EQ : TK_NE; 2724 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2725 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2726 VdbeCoverageIf(v, op==TK_EQ); 2727 VdbeCoverageIf(v, op==TK_NE); 2728 testcase( regFree1==0 ); 2729 testcase( regFree2==0 ); 2730 break; 2731 } 2732 case TK_AND: 2733 case TK_OR: 2734 case TK_PLUS: 2735 case TK_STAR: 2736 case TK_MINUS: 2737 case TK_REM: 2738 case TK_BITAND: 2739 case TK_BITOR: 2740 case TK_SLASH: 2741 case TK_LSHIFT: 2742 case TK_RSHIFT: 2743 case TK_CONCAT: { 2744 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 2745 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 2746 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 2747 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 2748 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 2749 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 2750 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 2751 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 2752 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 2753 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 2754 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 2755 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2756 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2757 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2758 testcase( regFree1==0 ); 2759 testcase( regFree2==0 ); 2760 break; 2761 } 2762 case TK_UMINUS: { 2763 Expr *pLeft = pExpr->pLeft; 2764 assert( pLeft ); 2765 if( pLeft->op==TK_INTEGER ){ 2766 codeInteger(pParse, pLeft, 1, target); 2767 #ifndef SQLITE_OMIT_FLOATING_POINT 2768 }else if( pLeft->op==TK_FLOAT ){ 2769 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2770 codeReal(v, pLeft->u.zToken, 1, target); 2771 #endif 2772 }else{ 2773 tempX.op = TK_INTEGER; 2774 tempX.flags = EP_IntValue|EP_TokenOnly; 2775 tempX.u.iValue = 0; 2776 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 2777 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2778 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2779 testcase( regFree2==0 ); 2780 } 2781 inReg = target; 2782 break; 2783 } 2784 case TK_BITNOT: 2785 case TK_NOT: { 2786 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 2787 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 2788 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2789 testcase( regFree1==0 ); 2790 inReg = target; 2791 sqlite3VdbeAddOp2(v, op, r1, inReg); 2792 break; 2793 } 2794 case TK_ISNULL: 2795 case TK_NOTNULL: { 2796 int addr; 2797 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 2798 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 2799 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2800 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2801 testcase( regFree1==0 ); 2802 addr = sqlite3VdbeAddOp1(v, op, r1); 2803 VdbeCoverageIf(v, op==TK_ISNULL); 2804 VdbeCoverageIf(v, op==TK_NOTNULL); 2805 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2806 sqlite3VdbeJumpHere(v, addr); 2807 break; 2808 } 2809 case TK_AGG_FUNCTION: { 2810 AggInfo *pInfo = pExpr->pAggInfo; 2811 if( pInfo==0 ){ 2812 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2813 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2814 }else{ 2815 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2816 } 2817 break; 2818 } 2819 case TK_FUNCTION: { 2820 ExprList *pFarg; /* List of function arguments */ 2821 int nFarg; /* Number of function arguments */ 2822 FuncDef *pDef; /* The function definition object */ 2823 int nId; /* Length of the function name in bytes */ 2824 const char *zId; /* The function name */ 2825 u32 constMask = 0; /* Mask of function arguments that are constant */ 2826 int i; /* Loop counter */ 2827 u8 enc = ENC(db); /* The text encoding used by this database */ 2828 CollSeq *pColl = 0; /* A collating sequence */ 2829 2830 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2831 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 2832 pFarg = 0; 2833 }else{ 2834 pFarg = pExpr->x.pList; 2835 } 2836 nFarg = pFarg ? pFarg->nExpr : 0; 2837 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2838 zId = pExpr->u.zToken; 2839 nId = sqlite3Strlen30(zId); 2840 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2841 if( pDef==0 || pDef->xFunc==0 ){ 2842 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2843 break; 2844 } 2845 2846 /* Attempt a direct implementation of the built-in COALESCE() and 2847 ** IFNULL() functions. This avoids unnecessary evaluation of 2848 ** arguments past the first non-NULL argument. 2849 */ 2850 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 2851 int endCoalesce = sqlite3VdbeMakeLabel(v); 2852 assert( nFarg>=2 ); 2853 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2854 for(i=1; i<nFarg; i++){ 2855 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2856 VdbeCoverage(v); 2857 sqlite3ExprCacheRemove(pParse, target, 1); 2858 sqlite3ExprCachePush(pParse); 2859 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2860 sqlite3ExprCachePop(pParse); 2861 } 2862 sqlite3VdbeResolveLabel(v, endCoalesce); 2863 break; 2864 } 2865 2866 /* The UNLIKELY() function is a no-op. The result is the value 2867 ** of the first argument. 2868 */ 2869 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 2870 assert( nFarg>=1 ); 2871 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2872 break; 2873 } 2874 2875 for(i=0; i<nFarg; i++){ 2876 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2877 testcase( i==31 ); 2878 constMask |= MASKBIT32(i); 2879 } 2880 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2881 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2882 } 2883 } 2884 if( pFarg ){ 2885 if( constMask ){ 2886 r1 = pParse->nMem+1; 2887 pParse->nMem += nFarg; 2888 }else{ 2889 r1 = sqlite3GetTempRange(pParse, nFarg); 2890 } 2891 2892 /* For length() and typeof() functions with a column argument, 2893 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2894 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2895 ** loading. 2896 */ 2897 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2898 u8 exprOp; 2899 assert( nFarg==1 ); 2900 assert( pFarg->a[0].pExpr!=0 ); 2901 exprOp = pFarg->a[0].pExpr->op; 2902 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2903 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2904 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2905 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 2906 pFarg->a[0].pExpr->op2 = 2907 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 2908 } 2909 } 2910 2911 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2912 sqlite3ExprCodeExprList(pParse, pFarg, r1, 2913 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 2914 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 2915 }else{ 2916 r1 = 0; 2917 } 2918 #ifndef SQLITE_OMIT_VIRTUALTABLE 2919 /* Possibly overload the function if the first argument is 2920 ** a virtual table column. 2921 ** 2922 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2923 ** second argument, not the first, as the argument to test to 2924 ** see if it is a column in a virtual table. This is done because 2925 ** the left operand of infix functions (the operand we want to 2926 ** control overloading) ends up as the second argument to the 2927 ** function. The expression "A glob B" is equivalent to 2928 ** "glob(B,A). We want to use the A in "A glob B" to test 2929 ** for function overloading. But we use the B term in "glob(B,A)". 2930 */ 2931 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2932 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2933 }else if( nFarg>0 ){ 2934 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2935 } 2936 #endif 2937 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 2938 if( !pColl ) pColl = db->pDfltColl; 2939 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2940 } 2941 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2942 (char*)pDef, P4_FUNCDEF); 2943 sqlite3VdbeChangeP5(v, (u8)nFarg); 2944 if( nFarg && constMask==0 ){ 2945 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2946 } 2947 break; 2948 } 2949 #ifndef SQLITE_OMIT_SUBQUERY 2950 case TK_EXISTS: 2951 case TK_SELECT: { 2952 testcase( op==TK_EXISTS ); 2953 testcase( op==TK_SELECT ); 2954 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2955 break; 2956 } 2957 case TK_IN: { 2958 int destIfFalse = sqlite3VdbeMakeLabel(v); 2959 int destIfNull = sqlite3VdbeMakeLabel(v); 2960 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2961 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2962 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2963 sqlite3VdbeResolveLabel(v, destIfFalse); 2964 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2965 sqlite3VdbeResolveLabel(v, destIfNull); 2966 break; 2967 } 2968 #endif /* SQLITE_OMIT_SUBQUERY */ 2969 2970 2971 /* 2972 ** x BETWEEN y AND z 2973 ** 2974 ** This is equivalent to 2975 ** 2976 ** x>=y AND x<=z 2977 ** 2978 ** X is stored in pExpr->pLeft. 2979 ** Y is stored in pExpr->pList->a[0].pExpr. 2980 ** Z is stored in pExpr->pList->a[1].pExpr. 2981 */ 2982 case TK_BETWEEN: { 2983 Expr *pLeft = pExpr->pLeft; 2984 struct ExprList_item *pLItem = pExpr->x.pList->a; 2985 Expr *pRight = pLItem->pExpr; 2986 2987 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 2988 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2989 testcase( regFree1==0 ); 2990 testcase( regFree2==0 ); 2991 r3 = sqlite3GetTempReg(pParse); 2992 r4 = sqlite3GetTempReg(pParse); 2993 codeCompare(pParse, pLeft, pRight, OP_Ge, 2994 r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); 2995 pLItem++; 2996 pRight = pLItem->pExpr; 2997 sqlite3ReleaseTempReg(pParse, regFree2); 2998 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2999 testcase( regFree2==0 ); 3000 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 3001 VdbeCoverage(v); 3002 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 3003 sqlite3ReleaseTempReg(pParse, r3); 3004 sqlite3ReleaseTempReg(pParse, r4); 3005 break; 3006 } 3007 case TK_COLLATE: 3008 case TK_UPLUS: { 3009 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3010 break; 3011 } 3012 3013 case TK_TRIGGER: { 3014 /* If the opcode is TK_TRIGGER, then the expression is a reference 3015 ** to a column in the new.* or old.* pseudo-tables available to 3016 ** trigger programs. In this case Expr.iTable is set to 1 for the 3017 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3018 ** is set to the column of the pseudo-table to read, or to -1 to 3019 ** read the rowid field. 3020 ** 3021 ** The expression is implemented using an OP_Param opcode. The p1 3022 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3023 ** to reference another column of the old.* pseudo-table, where 3024 ** i is the index of the column. For a new.rowid reference, p1 is 3025 ** set to (n+1), where n is the number of columns in each pseudo-table. 3026 ** For a reference to any other column in the new.* pseudo-table, p1 3027 ** is set to (n+2+i), where n and i are as defined previously. For 3028 ** example, if the table on which triggers are being fired is 3029 ** declared as: 3030 ** 3031 ** CREATE TABLE t1(a, b); 3032 ** 3033 ** Then p1 is interpreted as follows: 3034 ** 3035 ** p1==0 -> old.rowid p1==3 -> new.rowid 3036 ** p1==1 -> old.a p1==4 -> new.a 3037 ** p1==2 -> old.b p1==5 -> new.b 3038 */ 3039 Table *pTab = pExpr->pTab; 3040 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3041 3042 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3043 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3044 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3045 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3046 3047 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3048 VdbeComment((v, "%s.%s -> $%d", 3049 (pExpr->iTable ? "new" : "old"), 3050 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3051 target 3052 )); 3053 3054 #ifndef SQLITE_OMIT_FLOATING_POINT 3055 /* If the column has REAL affinity, it may currently be stored as an 3056 ** integer. Use OP_RealAffinity to make sure it is really real. 3057 ** 3058 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3059 ** floating point when extracting it from the record. */ 3060 if( pExpr->iColumn>=0 3061 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3062 ){ 3063 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3064 } 3065 #endif 3066 break; 3067 } 3068 3069 3070 /* 3071 ** Form A: 3072 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3073 ** 3074 ** Form B: 3075 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3076 ** 3077 ** Form A is can be transformed into the equivalent form B as follows: 3078 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3079 ** WHEN x=eN THEN rN ELSE y END 3080 ** 3081 ** X (if it exists) is in pExpr->pLeft. 3082 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3083 ** odd. The Y is also optional. If the number of elements in x.pList 3084 ** is even, then Y is omitted and the "otherwise" result is NULL. 3085 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3086 ** 3087 ** The result of the expression is the Ri for the first matching Ei, 3088 ** or if there is no matching Ei, the ELSE term Y, or if there is 3089 ** no ELSE term, NULL. 3090 */ 3091 default: assert( op==TK_CASE ); { 3092 int endLabel; /* GOTO label for end of CASE stmt */ 3093 int nextCase; /* GOTO label for next WHEN clause */ 3094 int nExpr; /* 2x number of WHEN terms */ 3095 int i; /* Loop counter */ 3096 ExprList *pEList; /* List of WHEN terms */ 3097 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3098 Expr opCompare; /* The X==Ei expression */ 3099 Expr *pX; /* The X expression */ 3100 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 3101 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 3102 3103 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 3104 assert(pExpr->x.pList->nExpr > 0); 3105 pEList = pExpr->x.pList; 3106 aListelem = pEList->a; 3107 nExpr = pEList->nExpr; 3108 endLabel = sqlite3VdbeMakeLabel(v); 3109 if( (pX = pExpr->pLeft)!=0 ){ 3110 tempX = *pX; 3111 testcase( pX->op==TK_COLUMN ); 3112 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); 3113 testcase( regFree1==0 ); 3114 opCompare.op = TK_EQ; 3115 opCompare.pLeft = &tempX; 3116 pTest = &opCompare; 3117 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 3118 ** The value in regFree1 might get SCopy-ed into the file result. 3119 ** So make sure that the regFree1 register is not reused for other 3120 ** purposes and possibly overwritten. */ 3121 regFree1 = 0; 3122 } 3123 for(i=0; i<nExpr-1; i=i+2){ 3124 sqlite3ExprCachePush(pParse); 3125 if( pX ){ 3126 assert( pTest!=0 ); 3127 opCompare.pRight = aListelem[i].pExpr; 3128 }else{ 3129 pTest = aListelem[i].pExpr; 3130 } 3131 nextCase = sqlite3VdbeMakeLabel(v); 3132 testcase( pTest->op==TK_COLUMN ); 3133 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 3134 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 3135 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 3136 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 3137 sqlite3ExprCachePop(pParse); 3138 sqlite3VdbeResolveLabel(v, nextCase); 3139 } 3140 if( (nExpr&1)!=0 ){ 3141 sqlite3ExprCachePush(pParse); 3142 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3143 sqlite3ExprCachePop(pParse); 3144 }else{ 3145 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3146 } 3147 assert( db->mallocFailed || pParse->nErr>0 3148 || pParse->iCacheLevel==iCacheLevel ); 3149 sqlite3VdbeResolveLabel(v, endLabel); 3150 break; 3151 } 3152 #ifndef SQLITE_OMIT_TRIGGER 3153 case TK_RAISE: { 3154 assert( pExpr->affinity==OE_Rollback 3155 || pExpr->affinity==OE_Abort 3156 || pExpr->affinity==OE_Fail 3157 || pExpr->affinity==OE_Ignore 3158 ); 3159 if( !pParse->pTriggerTab ){ 3160 sqlite3ErrorMsg(pParse, 3161 "RAISE() may only be used within a trigger-program"); 3162 return 0; 3163 } 3164 if( pExpr->affinity==OE_Abort ){ 3165 sqlite3MayAbort(pParse); 3166 } 3167 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3168 if( pExpr->affinity==OE_Ignore ){ 3169 sqlite3VdbeAddOp4( 3170 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 3171 VdbeCoverage(v); 3172 }else{ 3173 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 3174 pExpr->affinity, pExpr->u.zToken, 0, 0); 3175 } 3176 3177 break; 3178 } 3179 #endif 3180 } 3181 sqlite3ReleaseTempReg(pParse, regFree1); 3182 sqlite3ReleaseTempReg(pParse, regFree2); 3183 return inReg; 3184 } 3185 3186 /* 3187 ** Factor out the code of the given expression to initialization time. 3188 */ 3189 void sqlite3ExprCodeAtInit( 3190 Parse *pParse, /* Parsing context */ 3191 Expr *pExpr, /* The expression to code when the VDBE initializes */ 3192 int regDest, /* Store the value in this register */ 3193 u8 reusable /* True if this expression is reusable */ 3194 ){ 3195 ExprList *p; 3196 assert( ConstFactorOk(pParse) ); 3197 p = pParse->pConstExpr; 3198 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 3199 p = sqlite3ExprListAppend(pParse, p, pExpr); 3200 if( p ){ 3201 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 3202 pItem->u.iConstExprReg = regDest; 3203 pItem->reusable = reusable; 3204 } 3205 pParse->pConstExpr = p; 3206 } 3207 3208 /* 3209 ** Generate code to evaluate an expression and store the results 3210 ** into a register. Return the register number where the results 3211 ** are stored. 3212 ** 3213 ** If the register is a temporary register that can be deallocated, 3214 ** then write its number into *pReg. If the result register is not 3215 ** a temporary, then set *pReg to zero. 3216 ** 3217 ** If pExpr is a constant, then this routine might generate this 3218 ** code to fill the register in the initialization section of the 3219 ** VDBE program, in order to factor it out of the evaluation loop. 3220 */ 3221 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 3222 int r2; 3223 pExpr = sqlite3ExprSkipCollate(pExpr); 3224 if( ConstFactorOk(pParse) 3225 && pExpr->op!=TK_REGISTER 3226 && sqlite3ExprIsConstantNotJoin(pExpr) 3227 ){ 3228 ExprList *p = pParse->pConstExpr; 3229 int i; 3230 *pReg = 0; 3231 if( p ){ 3232 struct ExprList_item *pItem; 3233 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 3234 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 3235 return pItem->u.iConstExprReg; 3236 } 3237 } 3238 } 3239 r2 = ++pParse->nMem; 3240 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); 3241 }else{ 3242 int r1 = sqlite3GetTempReg(pParse); 3243 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3244 if( r2==r1 ){ 3245 *pReg = r1; 3246 }else{ 3247 sqlite3ReleaseTempReg(pParse, r1); 3248 *pReg = 0; 3249 } 3250 } 3251 return r2; 3252 } 3253 3254 /* 3255 ** Generate code that will evaluate expression pExpr and store the 3256 ** results in register target. The results are guaranteed to appear 3257 ** in register target. 3258 */ 3259 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 3260 int inReg; 3261 3262 assert( target>0 && target<=pParse->nMem ); 3263 if( pExpr && pExpr->op==TK_REGISTER ){ 3264 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 3265 }else{ 3266 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 3267 assert( pParse->pVdbe || pParse->db->mallocFailed ); 3268 if( inReg!=target && pParse->pVdbe ){ 3269 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 3270 } 3271 } 3272 } 3273 3274 /* 3275 ** Generate code that will evaluate expression pExpr and store the 3276 ** results in register target. The results are guaranteed to appear 3277 ** in register target. If the expression is constant, then this routine 3278 ** might choose to code the expression at initialization time. 3279 */ 3280 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 3281 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 3282 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); 3283 }else{ 3284 sqlite3ExprCode(pParse, pExpr, target); 3285 } 3286 } 3287 3288 /* 3289 ** Generate code that evaluates the given expression and puts the result 3290 ** in register target. 3291 ** 3292 ** Also make a copy of the expression results into another "cache" register 3293 ** and modify the expression so that the next time it is evaluated, 3294 ** the result is a copy of the cache register. 3295 ** 3296 ** This routine is used for expressions that are used multiple 3297 ** times. They are evaluated once and the results of the expression 3298 ** are reused. 3299 */ 3300 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3301 Vdbe *v = pParse->pVdbe; 3302 int iMem; 3303 3304 assert( target>0 ); 3305 assert( pExpr->op!=TK_REGISTER ); 3306 sqlite3ExprCode(pParse, pExpr, target); 3307 iMem = ++pParse->nMem; 3308 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 3309 exprToRegister(pExpr, iMem); 3310 } 3311 3312 #ifdef SQLITE_DEBUG 3313 /* 3314 ** Generate a human-readable explanation of an expression tree. 3315 */ 3316 void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){ 3317 const char *zBinOp = 0; /* Binary operator */ 3318 const char *zUniOp = 0; /* Unary operator */ 3319 pView = sqlite3TreeViewPush(pView, moreToFollow); 3320 if( pExpr==0 ){ 3321 sqlite3TreeViewLine(pView, "nil"); 3322 sqlite3TreeViewPop(pView); 3323 return; 3324 } 3325 switch( pExpr->op ){ 3326 case TK_AGG_COLUMN: { 3327 sqlite3TreeViewLine(pView, "AGG{%d:%d}", 3328 pExpr->iTable, pExpr->iColumn); 3329 break; 3330 } 3331 case TK_COLUMN: { 3332 if( pExpr->iTable<0 ){ 3333 /* This only happens when coding check constraints */ 3334 sqlite3TreeViewLine(pView, "COLUMN(%d)", pExpr->iColumn); 3335 }else{ 3336 sqlite3TreeViewLine(pView, "{%d:%d}", 3337 pExpr->iTable, pExpr->iColumn); 3338 } 3339 break; 3340 } 3341 case TK_INTEGER: { 3342 if( pExpr->flags & EP_IntValue ){ 3343 sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue); 3344 }else{ 3345 sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken); 3346 } 3347 break; 3348 } 3349 #ifndef SQLITE_OMIT_FLOATING_POINT 3350 case TK_FLOAT: { 3351 sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken); 3352 break; 3353 } 3354 #endif 3355 case TK_STRING: { 3356 sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken); 3357 break; 3358 } 3359 case TK_NULL: { 3360 sqlite3TreeViewLine(pView,"NULL"); 3361 break; 3362 } 3363 #ifndef SQLITE_OMIT_BLOB_LITERAL 3364 case TK_BLOB: { 3365 sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken); 3366 break; 3367 } 3368 #endif 3369 case TK_VARIABLE: { 3370 sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)", 3371 pExpr->u.zToken, pExpr->iColumn); 3372 break; 3373 } 3374 case TK_REGISTER: { 3375 sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable); 3376 break; 3377 } 3378 case TK_AS: { 3379 sqlite3TreeViewLine(pView,"AS %Q", pExpr->u.zToken); 3380 sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); 3381 break; 3382 } 3383 case TK_ID: { 3384 sqlite3TreeViewLine(pView,"ID %Q", pExpr->u.zToken); 3385 break; 3386 } 3387 #ifndef SQLITE_OMIT_CAST 3388 case TK_CAST: { 3389 /* Expressions of the form: CAST(pLeft AS token) */ 3390 sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken); 3391 sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); 3392 break; 3393 } 3394 #endif /* SQLITE_OMIT_CAST */ 3395 case TK_LT: zBinOp = "LT"; break; 3396 case TK_LE: zBinOp = "LE"; break; 3397 case TK_GT: zBinOp = "GT"; break; 3398 case TK_GE: zBinOp = "GE"; break; 3399 case TK_NE: zBinOp = "NE"; break; 3400 case TK_EQ: zBinOp = "EQ"; break; 3401 case TK_IS: zBinOp = "IS"; break; 3402 case TK_ISNOT: zBinOp = "ISNOT"; break; 3403 case TK_AND: zBinOp = "AND"; break; 3404 case TK_OR: zBinOp = "OR"; break; 3405 case TK_PLUS: zBinOp = "ADD"; break; 3406 case TK_STAR: zBinOp = "MUL"; break; 3407 case TK_MINUS: zBinOp = "SUB"; break; 3408 case TK_REM: zBinOp = "REM"; break; 3409 case TK_BITAND: zBinOp = "BITAND"; break; 3410 case TK_BITOR: zBinOp = "BITOR"; break; 3411 case TK_SLASH: zBinOp = "DIV"; break; 3412 case TK_LSHIFT: zBinOp = "LSHIFT"; break; 3413 case TK_RSHIFT: zBinOp = "RSHIFT"; break; 3414 case TK_CONCAT: zBinOp = "CONCAT"; break; 3415 case TK_DOT: zBinOp = "DOT"; break; 3416 3417 case TK_UMINUS: zUniOp = "UMINUS"; break; 3418 case TK_UPLUS: zUniOp = "UPLUS"; break; 3419 case TK_BITNOT: zUniOp = "BITNOT"; break; 3420 case TK_NOT: zUniOp = "NOT"; break; 3421 case TK_ISNULL: zUniOp = "ISNULL"; break; 3422 case TK_NOTNULL: zUniOp = "NOTNULL"; break; 3423 3424 case TK_COLLATE: { 3425 sqlite3TreeViewLine(pView, "COLLATE %Q", pExpr->u.zToken); 3426 sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); 3427 break; 3428 } 3429 3430 case TK_AGG_FUNCTION: 3431 case TK_FUNCTION: { 3432 ExprList *pFarg; /* List of function arguments */ 3433 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3434 pFarg = 0; 3435 }else{ 3436 pFarg = pExpr->x.pList; 3437 } 3438 if( pExpr->op==TK_AGG_FUNCTION ){ 3439 sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q", 3440 pExpr->op2, pExpr->u.zToken); 3441 }else{ 3442 sqlite3TreeViewLine(pView, "FUNCTION %Q", pExpr->u.zToken); 3443 } 3444 if( pFarg ){ 3445 sqlite3TreeViewExprList(pView, pFarg, 0, 0); 3446 } 3447 break; 3448 } 3449 #ifndef SQLITE_OMIT_SUBQUERY 3450 case TK_EXISTS: { 3451 sqlite3TreeViewLine(pView, "EXISTS-expr"); 3452 sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); 3453 break; 3454 } 3455 case TK_SELECT: { 3456 sqlite3TreeViewLine(pView, "SELECT-expr"); 3457 sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); 3458 break; 3459 } 3460 case TK_IN: { 3461 sqlite3TreeViewLine(pView, "IN"); 3462 sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); 3463 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3464 sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); 3465 }else{ 3466 sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0); 3467 } 3468 break; 3469 } 3470 #endif /* SQLITE_OMIT_SUBQUERY */ 3471 3472 /* 3473 ** x BETWEEN y AND z 3474 ** 3475 ** This is equivalent to 3476 ** 3477 ** x>=y AND x<=z 3478 ** 3479 ** X is stored in pExpr->pLeft. 3480 ** Y is stored in pExpr->pList->a[0].pExpr. 3481 ** Z is stored in pExpr->pList->a[1].pExpr. 3482 */ 3483 case TK_BETWEEN: { 3484 Expr *pX = pExpr->pLeft; 3485 Expr *pY = pExpr->x.pList->a[0].pExpr; 3486 Expr *pZ = pExpr->x.pList->a[1].pExpr; 3487 sqlite3TreeViewLine(pView, "BETWEEN"); 3488 sqlite3TreeViewExpr(pView, pX, 1); 3489 sqlite3TreeViewExpr(pView, pY, 1); 3490 sqlite3TreeViewExpr(pView, pZ, 0); 3491 break; 3492 } 3493 case TK_TRIGGER: { 3494 /* If the opcode is TK_TRIGGER, then the expression is a reference 3495 ** to a column in the new.* or old.* pseudo-tables available to 3496 ** trigger programs. In this case Expr.iTable is set to 1 for the 3497 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3498 ** is set to the column of the pseudo-table to read, or to -1 to 3499 ** read the rowid field. 3500 */ 3501 sqlite3TreeViewLine(pView, "%s(%d)", 3502 pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); 3503 break; 3504 } 3505 case TK_CASE: { 3506 sqlite3TreeViewLine(pView, "CASE"); 3507 sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); 3508 sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0); 3509 break; 3510 } 3511 #ifndef SQLITE_OMIT_TRIGGER 3512 case TK_RAISE: { 3513 const char *zType = "unk"; 3514 switch( pExpr->affinity ){ 3515 case OE_Rollback: zType = "rollback"; break; 3516 case OE_Abort: zType = "abort"; break; 3517 case OE_Fail: zType = "fail"; break; 3518 case OE_Ignore: zType = "ignore"; break; 3519 } 3520 sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken); 3521 break; 3522 } 3523 #endif 3524 default: { 3525 sqlite3TreeViewLine(pView, "op=%d", pExpr->op); 3526 break; 3527 } 3528 } 3529 if( zBinOp ){ 3530 sqlite3TreeViewLine(pView, "%s", zBinOp); 3531 sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); 3532 sqlite3TreeViewExpr(pView, pExpr->pRight, 0); 3533 }else if( zUniOp ){ 3534 sqlite3TreeViewLine(pView, "%s", zUniOp); 3535 sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); 3536 } 3537 sqlite3TreeViewPop(pView); 3538 } 3539 #endif /* SQLITE_DEBUG */ 3540 3541 #ifdef SQLITE_DEBUG 3542 /* 3543 ** Generate a human-readable explanation of an expression list. 3544 */ 3545 void sqlite3TreeViewExprList( 3546 TreeView *pView, 3547 const ExprList *pList, 3548 u8 moreToFollow, 3549 const char *zLabel 3550 ){ 3551 int i; 3552 pView = sqlite3TreeViewPush(pView, moreToFollow); 3553 if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST"; 3554 if( pList==0 ){ 3555 sqlite3TreeViewLine(pView, "%s (empty)", zLabel); 3556 }else{ 3557 sqlite3TreeViewLine(pView, "%s", zLabel); 3558 for(i=0; i<pList->nExpr; i++){ 3559 sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1); 3560 #if 0 3561 if( pList->a[i].zName ){ 3562 sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName); 3563 } 3564 if( pList->a[i].bSpanIsTab ){ 3565 sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan); 3566 } 3567 #endif 3568 } 3569 } 3570 sqlite3TreeViewPop(pView); 3571 } 3572 #endif /* SQLITE_DEBUG */ 3573 3574 /* 3575 ** Generate code that pushes the value of every element of the given 3576 ** expression list into a sequence of registers beginning at target. 3577 ** 3578 ** Return the number of elements evaluated. 3579 ** 3580 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 3581 ** filled using OP_SCopy. OP_Copy must be used instead. 3582 ** 3583 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 3584 ** factored out into initialization code. 3585 */ 3586 int sqlite3ExprCodeExprList( 3587 Parse *pParse, /* Parsing context */ 3588 ExprList *pList, /* The expression list to be coded */ 3589 int target, /* Where to write results */ 3590 u8 flags /* SQLITE_ECEL_* flags */ 3591 ){ 3592 struct ExprList_item *pItem; 3593 int i, n; 3594 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 3595 assert( pList!=0 ); 3596 assert( target>0 ); 3597 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3598 n = pList->nExpr; 3599 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 3600 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3601 Expr *pExpr = pItem->pExpr; 3602 if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 3603 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); 3604 }else{ 3605 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3606 if( inReg!=target+i ){ 3607 VdbeOp *pOp; 3608 Vdbe *v = pParse->pVdbe; 3609 if( copyOp==OP_Copy 3610 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 3611 && pOp->p1+pOp->p3+1==inReg 3612 && pOp->p2+pOp->p3+1==target+i 3613 ){ 3614 pOp->p3++; 3615 }else{ 3616 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 3617 } 3618 } 3619 } 3620 } 3621 return n; 3622 } 3623 3624 /* 3625 ** Generate code for a BETWEEN operator. 3626 ** 3627 ** x BETWEEN y AND z 3628 ** 3629 ** The above is equivalent to 3630 ** 3631 ** x>=y AND x<=z 3632 ** 3633 ** Code it as such, taking care to do the common subexpression 3634 ** elimination of x. 3635 */ 3636 static void exprCodeBetween( 3637 Parse *pParse, /* Parsing and code generating context */ 3638 Expr *pExpr, /* The BETWEEN expression */ 3639 int dest, /* Jump here if the jump is taken */ 3640 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3641 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3642 ){ 3643 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3644 Expr compLeft; /* The x>=y term */ 3645 Expr compRight; /* The x<=z term */ 3646 Expr exprX; /* The x subexpression */ 3647 int regFree1 = 0; /* Temporary use register */ 3648 3649 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3650 exprX = *pExpr->pLeft; 3651 exprAnd.op = TK_AND; 3652 exprAnd.pLeft = &compLeft; 3653 exprAnd.pRight = &compRight; 3654 compLeft.op = TK_GE; 3655 compLeft.pLeft = &exprX; 3656 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3657 compRight.op = TK_LE; 3658 compRight.pLeft = &exprX; 3659 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3660 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); 3661 if( jumpIfTrue ){ 3662 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3663 }else{ 3664 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3665 } 3666 sqlite3ReleaseTempReg(pParse, regFree1); 3667 3668 /* Ensure adequate test coverage */ 3669 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3670 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3671 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3672 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3673 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3674 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3675 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3676 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3677 } 3678 3679 /* 3680 ** Generate code for a boolean expression such that a jump is made 3681 ** to the label "dest" if the expression is true but execution 3682 ** continues straight thru if the expression is false. 3683 ** 3684 ** If the expression evaluates to NULL (neither true nor false), then 3685 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3686 ** 3687 ** This code depends on the fact that certain token values (ex: TK_EQ) 3688 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3689 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3690 ** the make process cause these values to align. Assert()s in the code 3691 ** below verify that the numbers are aligned correctly. 3692 */ 3693 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3694 Vdbe *v = pParse->pVdbe; 3695 int op = 0; 3696 int regFree1 = 0; 3697 int regFree2 = 0; 3698 int r1, r2; 3699 3700 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3701 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3702 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3703 op = pExpr->op; 3704 switch( op ){ 3705 case TK_AND: { 3706 int d2 = sqlite3VdbeMakeLabel(v); 3707 testcase( jumpIfNull==0 ); 3708 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3709 sqlite3ExprCachePush(pParse); 3710 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3711 sqlite3VdbeResolveLabel(v, d2); 3712 sqlite3ExprCachePop(pParse); 3713 break; 3714 } 3715 case TK_OR: { 3716 testcase( jumpIfNull==0 ); 3717 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3718 sqlite3ExprCachePush(pParse); 3719 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3720 sqlite3ExprCachePop(pParse); 3721 break; 3722 } 3723 case TK_NOT: { 3724 testcase( jumpIfNull==0 ); 3725 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3726 break; 3727 } 3728 case TK_LT: 3729 case TK_LE: 3730 case TK_GT: 3731 case TK_GE: 3732 case TK_NE: 3733 case TK_EQ: { 3734 testcase( jumpIfNull==0 ); 3735 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3736 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3737 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3738 r1, r2, dest, jumpIfNull); 3739 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3740 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3741 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3742 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3743 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3744 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3745 testcase( regFree1==0 ); 3746 testcase( regFree2==0 ); 3747 break; 3748 } 3749 case TK_IS: 3750 case TK_ISNOT: { 3751 testcase( op==TK_IS ); 3752 testcase( op==TK_ISNOT ); 3753 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3754 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3755 op = (op==TK_IS) ? TK_EQ : TK_NE; 3756 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3757 r1, r2, dest, SQLITE_NULLEQ); 3758 VdbeCoverageIf(v, op==TK_EQ); 3759 VdbeCoverageIf(v, op==TK_NE); 3760 testcase( regFree1==0 ); 3761 testcase( regFree2==0 ); 3762 break; 3763 } 3764 case TK_ISNULL: 3765 case TK_NOTNULL: { 3766 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3767 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3768 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3769 sqlite3VdbeAddOp2(v, op, r1, dest); 3770 VdbeCoverageIf(v, op==TK_ISNULL); 3771 VdbeCoverageIf(v, op==TK_NOTNULL); 3772 testcase( regFree1==0 ); 3773 break; 3774 } 3775 case TK_BETWEEN: { 3776 testcase( jumpIfNull==0 ); 3777 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3778 break; 3779 } 3780 #ifndef SQLITE_OMIT_SUBQUERY 3781 case TK_IN: { 3782 int destIfFalse = sqlite3VdbeMakeLabel(v); 3783 int destIfNull = jumpIfNull ? dest : destIfFalse; 3784 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3785 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3786 sqlite3VdbeResolveLabel(v, destIfFalse); 3787 break; 3788 } 3789 #endif 3790 default: { 3791 if( exprAlwaysTrue(pExpr) ){ 3792 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3793 }else if( exprAlwaysFalse(pExpr) ){ 3794 /* No-op */ 3795 }else{ 3796 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3797 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3798 VdbeCoverage(v); 3799 testcase( regFree1==0 ); 3800 testcase( jumpIfNull==0 ); 3801 } 3802 break; 3803 } 3804 } 3805 sqlite3ReleaseTempReg(pParse, regFree1); 3806 sqlite3ReleaseTempReg(pParse, regFree2); 3807 } 3808 3809 /* 3810 ** Generate code for a boolean expression such that a jump is made 3811 ** to the label "dest" if the expression is false but execution 3812 ** continues straight thru if the expression is true. 3813 ** 3814 ** If the expression evaluates to NULL (neither true nor false) then 3815 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3816 ** is 0. 3817 */ 3818 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3819 Vdbe *v = pParse->pVdbe; 3820 int op = 0; 3821 int regFree1 = 0; 3822 int regFree2 = 0; 3823 int r1, r2; 3824 3825 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3826 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3827 if( pExpr==0 ) return; 3828 3829 /* The value of pExpr->op and op are related as follows: 3830 ** 3831 ** pExpr->op op 3832 ** --------- ---------- 3833 ** TK_ISNULL OP_NotNull 3834 ** TK_NOTNULL OP_IsNull 3835 ** TK_NE OP_Eq 3836 ** TK_EQ OP_Ne 3837 ** TK_GT OP_Le 3838 ** TK_LE OP_Gt 3839 ** TK_GE OP_Lt 3840 ** TK_LT OP_Ge 3841 ** 3842 ** For other values of pExpr->op, op is undefined and unused. 3843 ** The value of TK_ and OP_ constants are arranged such that we 3844 ** can compute the mapping above using the following expression. 3845 ** Assert()s verify that the computation is correct. 3846 */ 3847 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3848 3849 /* Verify correct alignment of TK_ and OP_ constants 3850 */ 3851 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3852 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3853 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3854 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3855 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3856 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3857 assert( pExpr->op!=TK_GT || op==OP_Le ); 3858 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3859 3860 switch( pExpr->op ){ 3861 case TK_AND: { 3862 testcase( jumpIfNull==0 ); 3863 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3864 sqlite3ExprCachePush(pParse); 3865 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3866 sqlite3ExprCachePop(pParse); 3867 break; 3868 } 3869 case TK_OR: { 3870 int d2 = sqlite3VdbeMakeLabel(v); 3871 testcase( jumpIfNull==0 ); 3872 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3873 sqlite3ExprCachePush(pParse); 3874 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3875 sqlite3VdbeResolveLabel(v, d2); 3876 sqlite3ExprCachePop(pParse); 3877 break; 3878 } 3879 case TK_NOT: { 3880 testcase( jumpIfNull==0 ); 3881 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3882 break; 3883 } 3884 case TK_LT: 3885 case TK_LE: 3886 case TK_GT: 3887 case TK_GE: 3888 case TK_NE: 3889 case TK_EQ: { 3890 testcase( jumpIfNull==0 ); 3891 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3892 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3893 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3894 r1, r2, dest, jumpIfNull); 3895 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3896 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3897 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3898 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3899 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3900 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3901 testcase( regFree1==0 ); 3902 testcase( regFree2==0 ); 3903 break; 3904 } 3905 case TK_IS: 3906 case TK_ISNOT: { 3907 testcase( pExpr->op==TK_IS ); 3908 testcase( pExpr->op==TK_ISNOT ); 3909 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3910 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3911 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3912 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3913 r1, r2, dest, SQLITE_NULLEQ); 3914 VdbeCoverageIf(v, op==TK_EQ); 3915 VdbeCoverageIf(v, op==TK_NE); 3916 testcase( regFree1==0 ); 3917 testcase( regFree2==0 ); 3918 break; 3919 } 3920 case TK_ISNULL: 3921 case TK_NOTNULL: { 3922 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3923 sqlite3VdbeAddOp2(v, op, r1, dest); 3924 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 3925 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 3926 testcase( regFree1==0 ); 3927 break; 3928 } 3929 case TK_BETWEEN: { 3930 testcase( jumpIfNull==0 ); 3931 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3932 break; 3933 } 3934 #ifndef SQLITE_OMIT_SUBQUERY 3935 case TK_IN: { 3936 if( jumpIfNull ){ 3937 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3938 }else{ 3939 int destIfNull = sqlite3VdbeMakeLabel(v); 3940 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3941 sqlite3VdbeResolveLabel(v, destIfNull); 3942 } 3943 break; 3944 } 3945 #endif 3946 default: { 3947 if( exprAlwaysFalse(pExpr) ){ 3948 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3949 }else if( exprAlwaysTrue(pExpr) ){ 3950 /* no-op */ 3951 }else{ 3952 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3953 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3954 VdbeCoverage(v); 3955 testcase( regFree1==0 ); 3956 testcase( jumpIfNull==0 ); 3957 } 3958 break; 3959 } 3960 } 3961 sqlite3ReleaseTempReg(pParse, regFree1); 3962 sqlite3ReleaseTempReg(pParse, regFree2); 3963 } 3964 3965 /* 3966 ** Do a deep comparison of two expression trees. Return 0 if the two 3967 ** expressions are completely identical. Return 1 if they differ only 3968 ** by a COLLATE operator at the top level. Return 2 if there are differences 3969 ** other than the top-level COLLATE operator. 3970 ** 3971 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3972 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3973 ** 3974 ** The pA side might be using TK_REGISTER. If that is the case and pB is 3975 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 3976 ** 3977 ** Sometimes this routine will return 2 even if the two expressions 3978 ** really are equivalent. If we cannot prove that the expressions are 3979 ** identical, we return 2 just to be safe. So if this routine 3980 ** returns 2, then you do not really know for certain if the two 3981 ** expressions are the same. But if you get a 0 or 1 return, then you 3982 ** can be sure the expressions are the same. In the places where 3983 ** this routine is used, it does not hurt to get an extra 2 - that 3984 ** just might result in some slightly slower code. But returning 3985 ** an incorrect 0 or 1 could lead to a malfunction. 3986 */ 3987 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 3988 u32 combinedFlags; 3989 if( pA==0 || pB==0 ){ 3990 return pB==pA ? 0 : 2; 3991 } 3992 combinedFlags = pA->flags | pB->flags; 3993 if( combinedFlags & EP_IntValue ){ 3994 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 3995 return 0; 3996 } 3997 return 2; 3998 } 3999 if( pA->op!=pB->op ){ 4000 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 4001 return 1; 4002 } 4003 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 4004 return 1; 4005 } 4006 return 2; 4007 } 4008 if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){ 4009 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4010 return pA->op==TK_COLLATE ? 1 : 2; 4011 } 4012 } 4013 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4014 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 4015 if( combinedFlags & EP_xIsSelect ) return 2; 4016 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 4017 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 4018 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4019 if( ALWAYS((combinedFlags & EP_Reduced)==0) ){ 4020 if( pA->iColumn!=pB->iColumn ) return 2; 4021 if( pA->iTable!=pB->iTable 4022 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4023 } 4024 } 4025 return 0; 4026 } 4027 4028 /* 4029 ** Compare two ExprList objects. Return 0 if they are identical and 4030 ** non-zero if they differ in any way. 4031 ** 4032 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4033 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4034 ** 4035 ** This routine might return non-zero for equivalent ExprLists. The 4036 ** only consequence will be disabled optimizations. But this routine 4037 ** must never return 0 if the two ExprList objects are different, or 4038 ** a malfunction will result. 4039 ** 4040 ** Two NULL pointers are considered to be the same. But a NULL pointer 4041 ** always differs from a non-NULL pointer. 4042 */ 4043 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4044 int i; 4045 if( pA==0 && pB==0 ) return 0; 4046 if( pA==0 || pB==0 ) return 1; 4047 if( pA->nExpr!=pB->nExpr ) return 1; 4048 for(i=0; i<pA->nExpr; i++){ 4049 Expr *pExprA = pA->a[i].pExpr; 4050 Expr *pExprB = pB->a[i].pExpr; 4051 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 4052 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 4053 } 4054 return 0; 4055 } 4056 4057 /* 4058 ** Return true if we can prove the pE2 will always be true if pE1 is 4059 ** true. Return false if we cannot complete the proof or if pE2 might 4060 ** be false. Examples: 4061 ** 4062 ** pE1: x==5 pE2: x==5 Result: true 4063 ** pE1: x>0 pE2: x==5 Result: false 4064 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 4065 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 4066 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 4067 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 4068 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 4069 ** 4070 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 4071 ** Expr.iTable<0 then assume a table number given by iTab. 4072 ** 4073 ** When in doubt, return false. Returning true might give a performance 4074 ** improvement. Returning false might cause a performance reduction, but 4075 ** it will always give the correct answer and is hence always safe. 4076 */ 4077 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 4078 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 4079 return 1; 4080 } 4081 if( pE2->op==TK_OR 4082 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 4083 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 4084 ){ 4085 return 1; 4086 } 4087 if( pE2->op==TK_NOTNULL 4088 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 4089 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) 4090 ){ 4091 return 1; 4092 } 4093 return 0; 4094 } 4095 4096 /* 4097 ** An instance of the following structure is used by the tree walker 4098 ** to count references to table columns in the arguments of an 4099 ** aggregate function, in order to implement the 4100 ** sqlite3FunctionThisSrc() routine. 4101 */ 4102 struct SrcCount { 4103 SrcList *pSrc; /* One particular FROM clause in a nested query */ 4104 int nThis; /* Number of references to columns in pSrcList */ 4105 int nOther; /* Number of references to columns in other FROM clauses */ 4106 }; 4107 4108 /* 4109 ** Count the number of references to columns. 4110 */ 4111 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 4112 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 4113 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 4114 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 4115 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 4116 ** NEVER() will need to be removed. */ 4117 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 4118 int i; 4119 struct SrcCount *p = pWalker->u.pSrcCount; 4120 SrcList *pSrc = p->pSrc; 4121 int nSrc = pSrc ? pSrc->nSrc : 0; 4122 for(i=0; i<nSrc; i++){ 4123 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 4124 } 4125 if( i<nSrc ){ 4126 p->nThis++; 4127 }else{ 4128 p->nOther++; 4129 } 4130 } 4131 return WRC_Continue; 4132 } 4133 4134 /* 4135 ** Determine if any of the arguments to the pExpr Function reference 4136 ** pSrcList. Return true if they do. Also return true if the function 4137 ** has no arguments or has only constant arguments. Return false if pExpr 4138 ** references columns but not columns of tables found in pSrcList. 4139 */ 4140 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 4141 Walker w; 4142 struct SrcCount cnt; 4143 assert( pExpr->op==TK_AGG_FUNCTION ); 4144 memset(&w, 0, sizeof(w)); 4145 w.xExprCallback = exprSrcCount; 4146 w.u.pSrcCount = &cnt; 4147 cnt.pSrc = pSrcList; 4148 cnt.nThis = 0; 4149 cnt.nOther = 0; 4150 sqlite3WalkExprList(&w, pExpr->x.pList); 4151 return cnt.nThis>0 || cnt.nOther==0; 4152 } 4153 4154 /* 4155 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 4156 ** the new element. Return a negative number if malloc fails. 4157 */ 4158 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 4159 int i; 4160 pInfo->aCol = sqlite3ArrayAllocate( 4161 db, 4162 pInfo->aCol, 4163 sizeof(pInfo->aCol[0]), 4164 &pInfo->nColumn, 4165 &i 4166 ); 4167 return i; 4168 } 4169 4170 /* 4171 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 4172 ** the new element. Return a negative number if malloc fails. 4173 */ 4174 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 4175 int i; 4176 pInfo->aFunc = sqlite3ArrayAllocate( 4177 db, 4178 pInfo->aFunc, 4179 sizeof(pInfo->aFunc[0]), 4180 &pInfo->nFunc, 4181 &i 4182 ); 4183 return i; 4184 } 4185 4186 /* 4187 ** This is the xExprCallback for a tree walker. It is used to 4188 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 4189 ** for additional information. 4190 */ 4191 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 4192 int i; 4193 NameContext *pNC = pWalker->u.pNC; 4194 Parse *pParse = pNC->pParse; 4195 SrcList *pSrcList = pNC->pSrcList; 4196 AggInfo *pAggInfo = pNC->pAggInfo; 4197 4198 switch( pExpr->op ){ 4199 case TK_AGG_COLUMN: 4200 case TK_COLUMN: { 4201 testcase( pExpr->op==TK_AGG_COLUMN ); 4202 testcase( pExpr->op==TK_COLUMN ); 4203 /* Check to see if the column is in one of the tables in the FROM 4204 ** clause of the aggregate query */ 4205 if( ALWAYS(pSrcList!=0) ){ 4206 struct SrcList_item *pItem = pSrcList->a; 4207 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 4208 struct AggInfo_col *pCol; 4209 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4210 if( pExpr->iTable==pItem->iCursor ){ 4211 /* If we reach this point, it means that pExpr refers to a table 4212 ** that is in the FROM clause of the aggregate query. 4213 ** 4214 ** Make an entry for the column in pAggInfo->aCol[] if there 4215 ** is not an entry there already. 4216 */ 4217 int k; 4218 pCol = pAggInfo->aCol; 4219 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4220 if( pCol->iTable==pExpr->iTable && 4221 pCol->iColumn==pExpr->iColumn ){ 4222 break; 4223 } 4224 } 4225 if( (k>=pAggInfo->nColumn) 4226 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4227 ){ 4228 pCol = &pAggInfo->aCol[k]; 4229 pCol->pTab = pExpr->pTab; 4230 pCol->iTable = pExpr->iTable; 4231 pCol->iColumn = pExpr->iColumn; 4232 pCol->iMem = ++pParse->nMem; 4233 pCol->iSorterColumn = -1; 4234 pCol->pExpr = pExpr; 4235 if( pAggInfo->pGroupBy ){ 4236 int j, n; 4237 ExprList *pGB = pAggInfo->pGroupBy; 4238 struct ExprList_item *pTerm = pGB->a; 4239 n = pGB->nExpr; 4240 for(j=0; j<n; j++, pTerm++){ 4241 Expr *pE = pTerm->pExpr; 4242 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4243 pE->iColumn==pExpr->iColumn ){ 4244 pCol->iSorterColumn = j; 4245 break; 4246 } 4247 } 4248 } 4249 if( pCol->iSorterColumn<0 ){ 4250 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4251 } 4252 } 4253 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4254 ** because it was there before or because we just created it). 4255 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4256 ** pAggInfo->aCol[] entry. 4257 */ 4258 ExprSetVVAProperty(pExpr, EP_NoReduce); 4259 pExpr->pAggInfo = pAggInfo; 4260 pExpr->op = TK_AGG_COLUMN; 4261 pExpr->iAgg = (i16)k; 4262 break; 4263 } /* endif pExpr->iTable==pItem->iCursor */ 4264 } /* end loop over pSrcList */ 4265 } 4266 return WRC_Prune; 4267 } 4268 case TK_AGG_FUNCTION: { 4269 if( (pNC->ncFlags & NC_InAggFunc)==0 4270 && pWalker->walkerDepth==pExpr->op2 4271 ){ 4272 /* Check to see if pExpr is a duplicate of another aggregate 4273 ** function that is already in the pAggInfo structure 4274 */ 4275 struct AggInfo_func *pItem = pAggInfo->aFunc; 4276 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4277 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 4278 break; 4279 } 4280 } 4281 if( i>=pAggInfo->nFunc ){ 4282 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4283 */ 4284 u8 enc = ENC(pParse->db); 4285 i = addAggInfoFunc(pParse->db, pAggInfo); 4286 if( i>=0 ){ 4287 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4288 pItem = &pAggInfo->aFunc[i]; 4289 pItem->pExpr = pExpr; 4290 pItem->iMem = ++pParse->nMem; 4291 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4292 pItem->pFunc = sqlite3FindFunction(pParse->db, 4293 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 4294 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4295 if( pExpr->flags & EP_Distinct ){ 4296 pItem->iDistinct = pParse->nTab++; 4297 }else{ 4298 pItem->iDistinct = -1; 4299 } 4300 } 4301 } 4302 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4303 */ 4304 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4305 ExprSetVVAProperty(pExpr, EP_NoReduce); 4306 pExpr->iAgg = (i16)i; 4307 pExpr->pAggInfo = pAggInfo; 4308 return WRC_Prune; 4309 }else{ 4310 return WRC_Continue; 4311 } 4312 } 4313 } 4314 return WRC_Continue; 4315 } 4316 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4317 UNUSED_PARAMETER(pWalker); 4318 UNUSED_PARAMETER(pSelect); 4319 return WRC_Continue; 4320 } 4321 4322 /* 4323 ** Analyze the pExpr expression looking for aggregate functions and 4324 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4325 ** points to. Additional entries are made on the AggInfo object as 4326 ** necessary. 4327 ** 4328 ** This routine should only be called after the expression has been 4329 ** analyzed by sqlite3ResolveExprNames(). 4330 */ 4331 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4332 Walker w; 4333 memset(&w, 0, sizeof(w)); 4334 w.xExprCallback = analyzeAggregate; 4335 w.xSelectCallback = analyzeAggregatesInSelect; 4336 w.u.pNC = pNC; 4337 assert( pNC->pSrcList!=0 ); 4338 sqlite3WalkExpr(&w, pExpr); 4339 } 4340 4341 /* 4342 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4343 ** expression list. Return the number of errors. 4344 ** 4345 ** If an error is found, the analysis is cut short. 4346 */ 4347 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4348 struct ExprList_item *pItem; 4349 int i; 4350 if( pList ){ 4351 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4352 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4353 } 4354 } 4355 } 4356 4357 /* 4358 ** Allocate a single new register for use to hold some intermediate result. 4359 */ 4360 int sqlite3GetTempReg(Parse *pParse){ 4361 if( pParse->nTempReg==0 ){ 4362 return ++pParse->nMem; 4363 } 4364 return pParse->aTempReg[--pParse->nTempReg]; 4365 } 4366 4367 /* 4368 ** Deallocate a register, making available for reuse for some other 4369 ** purpose. 4370 ** 4371 ** If a register is currently being used by the column cache, then 4372 ** the deallocation is deferred until the column cache line that uses 4373 ** the register becomes stale. 4374 */ 4375 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4376 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4377 int i; 4378 struct yColCache *p; 4379 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4380 if( p->iReg==iReg ){ 4381 p->tempReg = 1; 4382 return; 4383 } 4384 } 4385 pParse->aTempReg[pParse->nTempReg++] = iReg; 4386 } 4387 } 4388 4389 /* 4390 ** Allocate or deallocate a block of nReg consecutive registers 4391 */ 4392 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4393 int i, n; 4394 i = pParse->iRangeReg; 4395 n = pParse->nRangeReg; 4396 if( nReg<=n ){ 4397 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4398 pParse->iRangeReg += nReg; 4399 pParse->nRangeReg -= nReg; 4400 }else{ 4401 i = pParse->nMem+1; 4402 pParse->nMem += nReg; 4403 } 4404 return i; 4405 } 4406 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4407 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4408 if( nReg>pParse->nRangeReg ){ 4409 pParse->nRangeReg = nReg; 4410 pParse->iRangeReg = iReg; 4411 } 4412 } 4413 4414 /* 4415 ** Mark all temporary registers as being unavailable for reuse. 4416 */ 4417 void sqlite3ClearTempRegCache(Parse *pParse){ 4418 pParse->nTempReg = 0; 4419 pParse->nRangeReg = 0; 4420 } 4421