xref: /sqlite-3.40.0/src/expr.c (revision 8773b858)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expressions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op;
35   pExpr = sqlite3ExprSkipCollate(pExpr);
36   if( pExpr->flags & EP_Generic ) return 0;
37   op = pExpr->op;
38   if( op==TK_SELECT ){
39     assert( pExpr->flags&EP_xIsSelect );
40     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
41   }
42 #ifndef SQLITE_OMIT_CAST
43   if( op==TK_CAST ){
44     assert( !ExprHasProperty(pExpr, EP_IntValue) );
45     return sqlite3AffinityType(pExpr->u.zToken, 0);
46   }
47 #endif
48   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
49    && pExpr->pTab!=0
50   ){
51     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
52     ** a TK_COLUMN but was previously evaluated and cached in a register */
53     int j = pExpr->iColumn;
54     if( j<0 ) return SQLITE_AFF_INTEGER;
55     assert( pExpr->pTab && j<pExpr->pTab->nCol );
56     return pExpr->pTab->aCol[j].affinity;
57   }
58   return pExpr->affinity;
59 }
60 
61 /*
62 ** Set the collating sequence for expression pExpr to be the collating
63 ** sequence named by pToken.   Return a pointer to a new Expr node that
64 ** implements the COLLATE operator.
65 **
66 ** If a memory allocation error occurs, that fact is recorded in pParse->db
67 ** and the pExpr parameter is returned unchanged.
68 */
69 Expr *sqlite3ExprAddCollateToken(
70   Parse *pParse,           /* Parsing context */
71   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
72   const Token *pCollName,  /* Name of collating sequence */
73   int dequote              /* True to dequote pCollName */
74 ){
75   if( pCollName->n>0 ){
76     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
77     if( pNew ){
78       pNew->pLeft = pExpr;
79       pNew->flags |= EP_Collate|EP_Skip;
80       pExpr = pNew;
81     }
82   }
83   return pExpr;
84 }
85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
86   Token s;
87   assert( zC!=0 );
88   s.z = zC;
89   s.n = sqlite3Strlen30(s.z);
90   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
91 }
92 
93 /*
94 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely()
95 ** or likelihood() function at the root of an expression.
96 */
97 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
98   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
99     if( ExprHasProperty(pExpr, EP_Unlikely) ){
100       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
101       assert( pExpr->x.pList->nExpr>0 );
102       assert( pExpr->op==TK_FUNCTION );
103       pExpr = pExpr->x.pList->a[0].pExpr;
104     }else{
105       assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS );
106       pExpr = pExpr->pLeft;
107     }
108   }
109   return pExpr;
110 }
111 
112 /*
113 ** Return the collation sequence for the expression pExpr. If
114 ** there is no defined collating sequence, return NULL.
115 **
116 ** The collating sequence might be determined by a COLLATE operator
117 ** or by the presence of a column with a defined collating sequence.
118 ** COLLATE operators take first precedence.  Left operands take
119 ** precedence over right operands.
120 */
121 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
122   sqlite3 *db = pParse->db;
123   CollSeq *pColl = 0;
124   Expr *p = pExpr;
125   while( p ){
126     int op = p->op;
127     if( p->flags & EP_Generic ) break;
128     if( op==TK_CAST || op==TK_UPLUS ){
129       p = p->pLeft;
130       continue;
131     }
132     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
133       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
134       break;
135     }
136     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
137           || op==TK_REGISTER || op==TK_TRIGGER)
138      && p->pTab!=0
139     ){
140       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
141       ** a TK_COLUMN but was previously evaluated and cached in a register */
142       int j = p->iColumn;
143       if( j>=0 ){
144         const char *zColl = p->pTab->aCol[j].zColl;
145         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
146       }
147       break;
148     }
149     if( p->flags & EP_Collate ){
150       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
151         p = p->pLeft;
152       }else{
153         Expr *pNext  = p->pRight;
154         /* The Expr.x union is never used at the same time as Expr.pRight */
155         assert( p->x.pList==0 || p->pRight==0 );
156         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
157         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
158         ** least one EP_Collate. Thus the following two ALWAYS. */
159         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
160           int i;
161           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
162             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
163               pNext = p->x.pList->a[i].pExpr;
164               break;
165             }
166           }
167         }
168         p = pNext;
169       }
170     }else{
171       break;
172     }
173   }
174   if( sqlite3CheckCollSeq(pParse, pColl) ){
175     pColl = 0;
176   }
177   return pColl;
178 }
179 
180 /*
181 ** pExpr is an operand of a comparison operator.  aff2 is the
182 ** type affinity of the other operand.  This routine returns the
183 ** type affinity that should be used for the comparison operator.
184 */
185 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
186   char aff1 = sqlite3ExprAffinity(pExpr);
187   if( aff1 && aff2 ){
188     /* Both sides of the comparison are columns. If one has numeric
189     ** affinity, use that. Otherwise use no affinity.
190     */
191     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
192       return SQLITE_AFF_NUMERIC;
193     }else{
194       return SQLITE_AFF_NONE;
195     }
196   }else if( !aff1 && !aff2 ){
197     /* Neither side of the comparison is a column.  Compare the
198     ** results directly.
199     */
200     return SQLITE_AFF_NONE;
201   }else{
202     /* One side is a column, the other is not. Use the columns affinity. */
203     assert( aff1==0 || aff2==0 );
204     return (aff1 + aff2);
205   }
206 }
207 
208 /*
209 ** pExpr is a comparison operator.  Return the type affinity that should
210 ** be applied to both operands prior to doing the comparison.
211 */
212 static char comparisonAffinity(Expr *pExpr){
213   char aff;
214   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
215           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
216           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
217   assert( pExpr->pLeft );
218   aff = sqlite3ExprAffinity(pExpr->pLeft);
219   if( pExpr->pRight ){
220     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
221   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
222     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
223   }else if( !aff ){
224     aff = SQLITE_AFF_NONE;
225   }
226   return aff;
227 }
228 
229 /*
230 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
231 ** idx_affinity is the affinity of an indexed column. Return true
232 ** if the index with affinity idx_affinity may be used to implement
233 ** the comparison in pExpr.
234 */
235 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
236   char aff = comparisonAffinity(pExpr);
237   switch( aff ){
238     case SQLITE_AFF_NONE:
239       return 1;
240     case SQLITE_AFF_TEXT:
241       return idx_affinity==SQLITE_AFF_TEXT;
242     default:
243       return sqlite3IsNumericAffinity(idx_affinity);
244   }
245 }
246 
247 /*
248 ** Return the P5 value that should be used for a binary comparison
249 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
250 */
251 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
252   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
253   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
254   return aff;
255 }
256 
257 /*
258 ** Return a pointer to the collation sequence that should be used by
259 ** a binary comparison operator comparing pLeft and pRight.
260 **
261 ** If the left hand expression has a collating sequence type, then it is
262 ** used. Otherwise the collation sequence for the right hand expression
263 ** is used, or the default (BINARY) if neither expression has a collating
264 ** type.
265 **
266 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
267 ** it is not considered.
268 */
269 CollSeq *sqlite3BinaryCompareCollSeq(
270   Parse *pParse,
271   Expr *pLeft,
272   Expr *pRight
273 ){
274   CollSeq *pColl;
275   assert( pLeft );
276   if( pLeft->flags & EP_Collate ){
277     pColl = sqlite3ExprCollSeq(pParse, pLeft);
278   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
279     pColl = sqlite3ExprCollSeq(pParse, pRight);
280   }else{
281     pColl = sqlite3ExprCollSeq(pParse, pLeft);
282     if( !pColl ){
283       pColl = sqlite3ExprCollSeq(pParse, pRight);
284     }
285   }
286   return pColl;
287 }
288 
289 /*
290 ** Generate code for a comparison operator.
291 */
292 static int codeCompare(
293   Parse *pParse,    /* The parsing (and code generating) context */
294   Expr *pLeft,      /* The left operand */
295   Expr *pRight,     /* The right operand */
296   int opcode,       /* The comparison opcode */
297   int in1, int in2, /* Register holding operands */
298   int dest,         /* Jump here if true.  */
299   int jumpIfNull    /* If true, jump if either operand is NULL */
300 ){
301   int p5;
302   int addr;
303   CollSeq *p4;
304 
305   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
306   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
307   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
308                            (void*)p4, P4_COLLSEQ);
309   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
310   return addr;
311 }
312 
313 #if SQLITE_MAX_EXPR_DEPTH>0
314 /*
315 ** Check that argument nHeight is less than or equal to the maximum
316 ** expression depth allowed. If it is not, leave an error message in
317 ** pParse.
318 */
319 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
320   int rc = SQLITE_OK;
321   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
322   if( nHeight>mxHeight ){
323     sqlite3ErrorMsg(pParse,
324        "Expression tree is too large (maximum depth %d)", mxHeight
325     );
326     rc = SQLITE_ERROR;
327   }
328   return rc;
329 }
330 
331 /* The following three functions, heightOfExpr(), heightOfExprList()
332 ** and heightOfSelect(), are used to determine the maximum height
333 ** of any expression tree referenced by the structure passed as the
334 ** first argument.
335 **
336 ** If this maximum height is greater than the current value pointed
337 ** to by pnHeight, the second parameter, then set *pnHeight to that
338 ** value.
339 */
340 static void heightOfExpr(Expr *p, int *pnHeight){
341   if( p ){
342     if( p->nHeight>*pnHeight ){
343       *pnHeight = p->nHeight;
344     }
345   }
346 }
347 static void heightOfExprList(ExprList *p, int *pnHeight){
348   if( p ){
349     int i;
350     for(i=0; i<p->nExpr; i++){
351       heightOfExpr(p->a[i].pExpr, pnHeight);
352     }
353   }
354 }
355 static void heightOfSelect(Select *p, int *pnHeight){
356   if( p ){
357     heightOfExpr(p->pWhere, pnHeight);
358     heightOfExpr(p->pHaving, pnHeight);
359     heightOfExpr(p->pLimit, pnHeight);
360     heightOfExpr(p->pOffset, pnHeight);
361     heightOfExprList(p->pEList, pnHeight);
362     heightOfExprList(p->pGroupBy, pnHeight);
363     heightOfExprList(p->pOrderBy, pnHeight);
364     heightOfSelect(p->pPrior, pnHeight);
365   }
366 }
367 
368 /*
369 ** Set the Expr.nHeight variable in the structure passed as an
370 ** argument. An expression with no children, Expr.pList or
371 ** Expr.pSelect member has a height of 1. Any other expression
372 ** has a height equal to the maximum height of any other
373 ** referenced Expr plus one.
374 **
375 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
376 ** if appropriate.
377 */
378 static void exprSetHeight(Expr *p){
379   int nHeight = 0;
380   heightOfExpr(p->pLeft, &nHeight);
381   heightOfExpr(p->pRight, &nHeight);
382   if( ExprHasProperty(p, EP_xIsSelect) ){
383     heightOfSelect(p->x.pSelect, &nHeight);
384   }else if( p->x.pList ){
385     heightOfExprList(p->x.pList, &nHeight);
386     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
387   }
388   p->nHeight = nHeight + 1;
389 }
390 
391 /*
392 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
393 ** the height is greater than the maximum allowed expression depth,
394 ** leave an error in pParse.
395 **
396 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
397 ** Expr.flags.
398 */
399 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
400   if( pParse->nErr ) return;
401   exprSetHeight(p);
402   sqlite3ExprCheckHeight(pParse, p->nHeight);
403 }
404 
405 /*
406 ** Return the maximum height of any expression tree referenced
407 ** by the select statement passed as an argument.
408 */
409 int sqlite3SelectExprHeight(Select *p){
410   int nHeight = 0;
411   heightOfSelect(p, &nHeight);
412   return nHeight;
413 }
414 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
415 /*
416 ** Propagate all EP_Propagate flags from the Expr.x.pList into
417 ** Expr.flags.
418 */
419 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
420   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
421     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
422   }
423 }
424 #define exprSetHeight(y)
425 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
426 
427 /*
428 ** This routine is the core allocator for Expr nodes.
429 **
430 ** Construct a new expression node and return a pointer to it.  Memory
431 ** for this node and for the pToken argument is a single allocation
432 ** obtained from sqlite3DbMalloc().  The calling function
433 ** is responsible for making sure the node eventually gets freed.
434 **
435 ** If dequote is true, then the token (if it exists) is dequoted.
436 ** If dequote is false, no dequoting is performance.  The deQuote
437 ** parameter is ignored if pToken is NULL or if the token does not
438 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
439 ** then the EP_DblQuoted flag is set on the expression node.
440 **
441 ** Special case:  If op==TK_INTEGER and pToken points to a string that
442 ** can be translated into a 32-bit integer, then the token is not
443 ** stored in u.zToken.  Instead, the integer values is written
444 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
445 ** is allocated to hold the integer text and the dequote flag is ignored.
446 */
447 Expr *sqlite3ExprAlloc(
448   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
449   int op,                 /* Expression opcode */
450   const Token *pToken,    /* Token argument.  Might be NULL */
451   int dequote             /* True to dequote */
452 ){
453   Expr *pNew;
454   int nExtra = 0;
455   int iValue = 0;
456 
457   if( pToken ){
458     if( op!=TK_INTEGER || pToken->z==0
459           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
460       nExtra = pToken->n+1;
461       assert( iValue>=0 );
462     }
463   }
464   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
465   if( pNew ){
466     pNew->op = (u8)op;
467     pNew->iAgg = -1;
468     if( pToken ){
469       if( nExtra==0 ){
470         pNew->flags |= EP_IntValue;
471         pNew->u.iValue = iValue;
472       }else{
473         int c;
474         pNew->u.zToken = (char*)&pNew[1];
475         assert( pToken->z!=0 || pToken->n==0 );
476         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
477         pNew->u.zToken[pToken->n] = 0;
478         if( dequote && nExtra>=3
479              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
480           sqlite3Dequote(pNew->u.zToken);
481           if( c=='"' ) pNew->flags |= EP_DblQuoted;
482         }
483       }
484     }
485 #if SQLITE_MAX_EXPR_DEPTH>0
486     pNew->nHeight = 1;
487 #endif
488   }
489   return pNew;
490 }
491 
492 /*
493 ** Allocate a new expression node from a zero-terminated token that has
494 ** already been dequoted.
495 */
496 Expr *sqlite3Expr(
497   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
498   int op,                 /* Expression opcode */
499   const char *zToken      /* Token argument.  Might be NULL */
500 ){
501   Token x;
502   x.z = zToken;
503   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
504   return sqlite3ExprAlloc(db, op, &x, 0);
505 }
506 
507 /*
508 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
509 **
510 ** If pRoot==NULL that means that a memory allocation error has occurred.
511 ** In that case, delete the subtrees pLeft and pRight.
512 */
513 void sqlite3ExprAttachSubtrees(
514   sqlite3 *db,
515   Expr *pRoot,
516   Expr *pLeft,
517   Expr *pRight
518 ){
519   if( pRoot==0 ){
520     assert( db->mallocFailed );
521     sqlite3ExprDelete(db, pLeft);
522     sqlite3ExprDelete(db, pRight);
523   }else{
524     if( pRight ){
525       pRoot->pRight = pRight;
526       pRoot->flags |= EP_Propagate & pRight->flags;
527     }
528     if( pLeft ){
529       pRoot->pLeft = pLeft;
530       pRoot->flags |= EP_Propagate & pLeft->flags;
531     }
532     exprSetHeight(pRoot);
533   }
534 }
535 
536 /*
537 ** Allocate an Expr node which joins as many as two subtrees.
538 **
539 ** One or both of the subtrees can be NULL.  Return a pointer to the new
540 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
541 ** free the subtrees and return NULL.
542 */
543 Expr *sqlite3PExpr(
544   Parse *pParse,          /* Parsing context */
545   int op,                 /* Expression opcode */
546   Expr *pLeft,            /* Left operand */
547   Expr *pRight,           /* Right operand */
548   const Token *pToken     /* Argument token */
549 ){
550   Expr *p;
551   if( op==TK_AND && pLeft && pRight && pParse->nErr==0 ){
552     /* Take advantage of short-circuit false optimization for AND */
553     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
554   }else{
555     p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
556     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
557   }
558   if( p ) {
559     sqlite3ExprCheckHeight(pParse, p->nHeight);
560   }
561   return p;
562 }
563 
564 /*
565 ** If the expression is always either TRUE or FALSE (respectively),
566 ** then return 1.  If one cannot determine the truth value of the
567 ** expression at compile-time return 0.
568 **
569 ** This is an optimization.  If is OK to return 0 here even if
570 ** the expression really is always false or false (a false negative).
571 ** But it is a bug to return 1 if the expression might have different
572 ** boolean values in different circumstances (a false positive.)
573 **
574 ** Note that if the expression is part of conditional for a
575 ** LEFT JOIN, then we cannot determine at compile-time whether or not
576 ** is it true or false, so always return 0.
577 */
578 static int exprAlwaysTrue(Expr *p){
579   int v = 0;
580   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
581   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
582   return v!=0;
583 }
584 static int exprAlwaysFalse(Expr *p){
585   int v = 0;
586   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
587   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
588   return v==0;
589 }
590 
591 /*
592 ** Join two expressions using an AND operator.  If either expression is
593 ** NULL, then just return the other expression.
594 **
595 ** If one side or the other of the AND is known to be false, then instead
596 ** of returning an AND expression, just return a constant expression with
597 ** a value of false.
598 */
599 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
600   if( pLeft==0 ){
601     return pRight;
602   }else if( pRight==0 ){
603     return pLeft;
604   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
605     sqlite3ExprDelete(db, pLeft);
606     sqlite3ExprDelete(db, pRight);
607     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
608   }else{
609     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
610     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
611     return pNew;
612   }
613 }
614 
615 /*
616 ** Construct a new expression node for a function with multiple
617 ** arguments.
618 */
619 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
620   Expr *pNew;
621   sqlite3 *db = pParse->db;
622   assert( pToken );
623   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
624   if( pNew==0 ){
625     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
626     return 0;
627   }
628   pNew->x.pList = pList;
629   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
630   sqlite3ExprSetHeightAndFlags(pParse, pNew);
631   return pNew;
632 }
633 
634 /*
635 ** Assign a variable number to an expression that encodes a wildcard
636 ** in the original SQL statement.
637 **
638 ** Wildcards consisting of a single "?" are assigned the next sequential
639 ** variable number.
640 **
641 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
642 ** sure "nnn" is not too be to avoid a denial of service attack when
643 ** the SQL statement comes from an external source.
644 **
645 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
646 ** as the previous instance of the same wildcard.  Or if this is the first
647 ** instance of the wildcard, the next sequential variable number is
648 ** assigned.
649 */
650 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
651   sqlite3 *db = pParse->db;
652   const char *z;
653 
654   if( pExpr==0 ) return;
655   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
656   z = pExpr->u.zToken;
657   assert( z!=0 );
658   assert( z[0]!=0 );
659   if( z[1]==0 ){
660     /* Wildcard of the form "?".  Assign the next variable number */
661     assert( z[0]=='?' );
662     pExpr->iColumn = (ynVar)(++pParse->nVar);
663   }else{
664     ynVar x = 0;
665     u32 n = sqlite3Strlen30(z);
666     if( z[0]=='?' ){
667       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
668       ** use it as the variable number */
669       i64 i;
670       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
671       pExpr->iColumn = x = (ynVar)i;
672       testcase( i==0 );
673       testcase( i==1 );
674       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
675       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
676       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
677         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
678             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
679         x = 0;
680       }
681       if( i>pParse->nVar ){
682         pParse->nVar = (int)i;
683       }
684     }else{
685       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
686       ** number as the prior appearance of the same name, or if the name
687       ** has never appeared before, reuse the same variable number
688       */
689       ynVar i;
690       for(i=0; i<pParse->nzVar; i++){
691         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
692           pExpr->iColumn = x = (ynVar)i+1;
693           break;
694         }
695       }
696       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
697     }
698     if( x>0 ){
699       if( x>pParse->nzVar ){
700         char **a;
701         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
702         if( a==0 ) return;  /* Error reported through db->mallocFailed */
703         pParse->azVar = a;
704         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
705         pParse->nzVar = x;
706       }
707       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
708         sqlite3DbFree(db, pParse->azVar[x-1]);
709         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
710       }
711     }
712   }
713   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
714     sqlite3ErrorMsg(pParse, "too many SQL variables");
715   }
716 }
717 
718 /*
719 ** Recursively delete an expression tree.
720 */
721 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
722   if( p==0 ) return;
723   /* Sanity check: Assert that the IntValue is non-negative if it exists */
724   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
725   if( !ExprHasProperty(p, EP_TokenOnly) ){
726     /* The Expr.x union is never used at the same time as Expr.pRight */
727     assert( p->x.pList==0 || p->pRight==0 );
728     sqlite3ExprDelete(db, p->pLeft);
729     sqlite3ExprDelete(db, p->pRight);
730     if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
731     if( ExprHasProperty(p, EP_xIsSelect) ){
732       sqlite3SelectDelete(db, p->x.pSelect);
733     }else{
734       sqlite3ExprListDelete(db, p->x.pList);
735     }
736   }
737   if( !ExprHasProperty(p, EP_Static) ){
738     sqlite3DbFree(db, p);
739   }
740 }
741 
742 /*
743 ** Return the number of bytes allocated for the expression structure
744 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
745 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
746 */
747 static int exprStructSize(Expr *p){
748   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
749   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
750   return EXPR_FULLSIZE;
751 }
752 
753 /*
754 ** The dupedExpr*Size() routines each return the number of bytes required
755 ** to store a copy of an expression or expression tree.  They differ in
756 ** how much of the tree is measured.
757 **
758 **     dupedExprStructSize()     Size of only the Expr structure
759 **     dupedExprNodeSize()       Size of Expr + space for token
760 **     dupedExprSize()           Expr + token + subtree components
761 **
762 ***************************************************************************
763 **
764 ** The dupedExprStructSize() function returns two values OR-ed together:
765 ** (1) the space required for a copy of the Expr structure only and
766 ** (2) the EP_xxx flags that indicate what the structure size should be.
767 ** The return values is always one of:
768 **
769 **      EXPR_FULLSIZE
770 **      EXPR_REDUCEDSIZE   | EP_Reduced
771 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
772 **
773 ** The size of the structure can be found by masking the return value
774 ** of this routine with 0xfff.  The flags can be found by masking the
775 ** return value with EP_Reduced|EP_TokenOnly.
776 **
777 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
778 ** (unreduced) Expr objects as they or originally constructed by the parser.
779 ** During expression analysis, extra information is computed and moved into
780 ** later parts of teh Expr object and that extra information might get chopped
781 ** off if the expression is reduced.  Note also that it does not work to
782 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
783 ** to reduce a pristine expression tree from the parser.  The implementation
784 ** of dupedExprStructSize() contain multiple assert() statements that attempt
785 ** to enforce this constraint.
786 */
787 static int dupedExprStructSize(Expr *p, int flags){
788   int nSize;
789   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
790   assert( EXPR_FULLSIZE<=0xfff );
791   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
792   if( 0==(flags&EXPRDUP_REDUCE) ){
793     nSize = EXPR_FULLSIZE;
794   }else{
795     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
796     assert( !ExprHasProperty(p, EP_FromJoin) );
797     assert( !ExprHasProperty(p, EP_MemToken) );
798     assert( !ExprHasProperty(p, EP_NoReduce) );
799     if( p->pLeft || p->x.pList ){
800       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
801     }else{
802       assert( p->pRight==0 );
803       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
804     }
805   }
806   return nSize;
807 }
808 
809 /*
810 ** This function returns the space in bytes required to store the copy
811 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
812 ** string is defined.)
813 */
814 static int dupedExprNodeSize(Expr *p, int flags){
815   int nByte = dupedExprStructSize(p, flags) & 0xfff;
816   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
817     nByte += sqlite3Strlen30(p->u.zToken)+1;
818   }
819   return ROUND8(nByte);
820 }
821 
822 /*
823 ** Return the number of bytes required to create a duplicate of the
824 ** expression passed as the first argument. The second argument is a
825 ** mask containing EXPRDUP_XXX flags.
826 **
827 ** The value returned includes space to create a copy of the Expr struct
828 ** itself and the buffer referred to by Expr.u.zToken, if any.
829 **
830 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
831 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
832 ** and Expr.pRight variables (but not for any structures pointed to or
833 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
834 */
835 static int dupedExprSize(Expr *p, int flags){
836   int nByte = 0;
837   if( p ){
838     nByte = dupedExprNodeSize(p, flags);
839     if( flags&EXPRDUP_REDUCE ){
840       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
841     }
842   }
843   return nByte;
844 }
845 
846 /*
847 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
848 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
849 ** to store the copy of expression p, the copies of p->u.zToken
850 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
851 ** if any. Before returning, *pzBuffer is set to the first byte past the
852 ** portion of the buffer copied into by this function.
853 */
854 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
855   Expr *pNew = 0;                      /* Value to return */
856   if( p ){
857     const int isReduced = (flags&EXPRDUP_REDUCE);
858     u8 *zAlloc;
859     u32 staticFlag = 0;
860 
861     assert( pzBuffer==0 || isReduced );
862 
863     /* Figure out where to write the new Expr structure. */
864     if( pzBuffer ){
865       zAlloc = *pzBuffer;
866       staticFlag = EP_Static;
867     }else{
868       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
869     }
870     pNew = (Expr *)zAlloc;
871 
872     if( pNew ){
873       /* Set nNewSize to the size allocated for the structure pointed to
874       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
875       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
876       ** by the copy of the p->u.zToken string (if any).
877       */
878       const unsigned nStructSize = dupedExprStructSize(p, flags);
879       const int nNewSize = nStructSize & 0xfff;
880       int nToken;
881       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
882         nToken = sqlite3Strlen30(p->u.zToken) + 1;
883       }else{
884         nToken = 0;
885       }
886       if( isReduced ){
887         assert( ExprHasProperty(p, EP_Reduced)==0 );
888         memcpy(zAlloc, p, nNewSize);
889       }else{
890         int nSize = exprStructSize(p);
891         memcpy(zAlloc, p, nSize);
892         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
893       }
894 
895       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
896       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
897       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
898       pNew->flags |= staticFlag;
899 
900       /* Copy the p->u.zToken string, if any. */
901       if( nToken ){
902         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
903         memcpy(zToken, p->u.zToken, nToken);
904       }
905 
906       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
907         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
908         if( ExprHasProperty(p, EP_xIsSelect) ){
909           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
910         }else{
911           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
912         }
913       }
914 
915       /* Fill in pNew->pLeft and pNew->pRight. */
916       if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
917         zAlloc += dupedExprNodeSize(p, flags);
918         if( ExprHasProperty(pNew, EP_Reduced) ){
919           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
920           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
921         }
922         if( pzBuffer ){
923           *pzBuffer = zAlloc;
924         }
925       }else{
926         if( !ExprHasProperty(p, EP_TokenOnly) ){
927           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
928           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
929         }
930       }
931 
932     }
933   }
934   return pNew;
935 }
936 
937 /*
938 ** Create and return a deep copy of the object passed as the second
939 ** argument. If an OOM condition is encountered, NULL is returned
940 ** and the db->mallocFailed flag set.
941 */
942 #ifndef SQLITE_OMIT_CTE
943 static With *withDup(sqlite3 *db, With *p){
944   With *pRet = 0;
945   if( p ){
946     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
947     pRet = sqlite3DbMallocZero(db, nByte);
948     if( pRet ){
949       int i;
950       pRet->nCte = p->nCte;
951       for(i=0; i<p->nCte; i++){
952         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
953         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
954         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
955       }
956     }
957   }
958   return pRet;
959 }
960 #else
961 # define withDup(x,y) 0
962 #endif
963 
964 /*
965 ** The following group of routines make deep copies of expressions,
966 ** expression lists, ID lists, and select statements.  The copies can
967 ** be deleted (by being passed to their respective ...Delete() routines)
968 ** without effecting the originals.
969 **
970 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
971 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
972 ** by subsequent calls to sqlite*ListAppend() routines.
973 **
974 ** Any tables that the SrcList might point to are not duplicated.
975 **
976 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
977 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
978 ** truncated version of the usual Expr structure that will be stored as
979 ** part of the in-memory representation of the database schema.
980 */
981 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
982   return exprDup(db, p, flags, 0);
983 }
984 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
985   ExprList *pNew;
986   struct ExprList_item *pItem, *pOldItem;
987   int i;
988   if( p==0 ) return 0;
989   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
990   if( pNew==0 ) return 0;
991   pNew->nExpr = i = p->nExpr;
992   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
993   pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
994   if( pItem==0 ){
995     sqlite3DbFree(db, pNew);
996     return 0;
997   }
998   pOldItem = p->a;
999   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1000     Expr *pOldExpr = pOldItem->pExpr;
1001     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1002     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1003     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1004     pItem->sortOrder = pOldItem->sortOrder;
1005     pItem->done = 0;
1006     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1007     pItem->u = pOldItem->u;
1008   }
1009   return pNew;
1010 }
1011 
1012 /*
1013 ** If cursors, triggers, views and subqueries are all omitted from
1014 ** the build, then none of the following routines, except for
1015 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1016 ** called with a NULL argument.
1017 */
1018 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1019  || !defined(SQLITE_OMIT_SUBQUERY)
1020 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1021   SrcList *pNew;
1022   int i;
1023   int nByte;
1024   if( p==0 ) return 0;
1025   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1026   pNew = sqlite3DbMallocRaw(db, nByte );
1027   if( pNew==0 ) return 0;
1028   pNew->nSrc = pNew->nAlloc = p->nSrc;
1029   for(i=0; i<p->nSrc; i++){
1030     struct SrcList_item *pNewItem = &pNew->a[i];
1031     struct SrcList_item *pOldItem = &p->a[i];
1032     Table *pTab;
1033     pNewItem->pSchema = pOldItem->pSchema;
1034     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1035     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1036     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1037     pNewItem->jointype = pOldItem->jointype;
1038     pNewItem->iCursor = pOldItem->iCursor;
1039     pNewItem->addrFillSub = pOldItem->addrFillSub;
1040     pNewItem->regReturn = pOldItem->regReturn;
1041     pNewItem->isCorrelated = pOldItem->isCorrelated;
1042     pNewItem->viaCoroutine = pOldItem->viaCoroutine;
1043     pNewItem->isRecursive = pOldItem->isRecursive;
1044     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
1045     pNewItem->notIndexed = pOldItem->notIndexed;
1046     pNewItem->pIndex = pOldItem->pIndex;
1047     pTab = pNewItem->pTab = pOldItem->pTab;
1048     if( pTab ){
1049       pTab->nRef++;
1050     }
1051     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1052     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1053     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1054     pNewItem->colUsed = pOldItem->colUsed;
1055   }
1056   return pNew;
1057 }
1058 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1059   IdList *pNew;
1060   int i;
1061   if( p==0 ) return 0;
1062   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
1063   if( pNew==0 ) return 0;
1064   pNew->nId = p->nId;
1065   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
1066   if( pNew->a==0 ){
1067     sqlite3DbFree(db, pNew);
1068     return 0;
1069   }
1070   /* Note that because the size of the allocation for p->a[] is not
1071   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1072   ** on the duplicate created by this function. */
1073   for(i=0; i<p->nId; i++){
1074     struct IdList_item *pNewItem = &pNew->a[i];
1075     struct IdList_item *pOldItem = &p->a[i];
1076     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1077     pNewItem->idx = pOldItem->idx;
1078   }
1079   return pNew;
1080 }
1081 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1082   Select *pNew, *pPrior;
1083   if( p==0 ) return 0;
1084   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
1085   if( pNew==0 ) return 0;
1086   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1087   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1088   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1089   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1090   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1091   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1092   pNew->op = p->op;
1093   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1094   if( pPrior ) pPrior->pNext = pNew;
1095   pNew->pNext = 0;
1096   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1097   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1098   pNew->iLimit = 0;
1099   pNew->iOffset = 0;
1100   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1101   pNew->addrOpenEphm[0] = -1;
1102   pNew->addrOpenEphm[1] = -1;
1103   pNew->nSelectRow = p->nSelectRow;
1104   pNew->pWith = withDup(db, p->pWith);
1105   sqlite3SelectSetName(pNew, p->zSelName);
1106   return pNew;
1107 }
1108 #else
1109 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1110   assert( p==0 );
1111   return 0;
1112 }
1113 #endif
1114 
1115 
1116 /*
1117 ** Add a new element to the end of an expression list.  If pList is
1118 ** initially NULL, then create a new expression list.
1119 **
1120 ** If a memory allocation error occurs, the entire list is freed and
1121 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1122 ** that the new entry was successfully appended.
1123 */
1124 ExprList *sqlite3ExprListAppend(
1125   Parse *pParse,          /* Parsing context */
1126   ExprList *pList,        /* List to which to append. Might be NULL */
1127   Expr *pExpr             /* Expression to be appended. Might be NULL */
1128 ){
1129   sqlite3 *db = pParse->db;
1130   if( pList==0 ){
1131     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1132     if( pList==0 ){
1133       goto no_mem;
1134     }
1135     pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1136     if( pList->a==0 ) goto no_mem;
1137   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1138     struct ExprList_item *a;
1139     assert( pList->nExpr>0 );
1140     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1141     if( a==0 ){
1142       goto no_mem;
1143     }
1144     pList->a = a;
1145   }
1146   assert( pList->a!=0 );
1147   if( 1 ){
1148     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1149     memset(pItem, 0, sizeof(*pItem));
1150     pItem->pExpr = pExpr;
1151   }
1152   return pList;
1153 
1154 no_mem:
1155   /* Avoid leaking memory if malloc has failed. */
1156   sqlite3ExprDelete(db, pExpr);
1157   sqlite3ExprListDelete(db, pList);
1158   return 0;
1159 }
1160 
1161 /*
1162 ** Set the ExprList.a[].zName element of the most recently added item
1163 ** on the expression list.
1164 **
1165 ** pList might be NULL following an OOM error.  But pName should never be
1166 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1167 ** is set.
1168 */
1169 void sqlite3ExprListSetName(
1170   Parse *pParse,          /* Parsing context */
1171   ExprList *pList,        /* List to which to add the span. */
1172   Token *pName,           /* Name to be added */
1173   int dequote             /* True to cause the name to be dequoted */
1174 ){
1175   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1176   if( pList ){
1177     struct ExprList_item *pItem;
1178     assert( pList->nExpr>0 );
1179     pItem = &pList->a[pList->nExpr-1];
1180     assert( pItem->zName==0 );
1181     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1182     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1183   }
1184 }
1185 
1186 /*
1187 ** Set the ExprList.a[].zSpan element of the most recently added item
1188 ** on the expression list.
1189 **
1190 ** pList might be NULL following an OOM error.  But pSpan should never be
1191 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1192 ** is set.
1193 */
1194 void sqlite3ExprListSetSpan(
1195   Parse *pParse,          /* Parsing context */
1196   ExprList *pList,        /* List to which to add the span. */
1197   ExprSpan *pSpan         /* The span to be added */
1198 ){
1199   sqlite3 *db = pParse->db;
1200   assert( pList!=0 || db->mallocFailed!=0 );
1201   if( pList ){
1202     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1203     assert( pList->nExpr>0 );
1204     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1205     sqlite3DbFree(db, pItem->zSpan);
1206     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1207                                     (int)(pSpan->zEnd - pSpan->zStart));
1208   }
1209 }
1210 
1211 /*
1212 ** If the expression list pEList contains more than iLimit elements,
1213 ** leave an error message in pParse.
1214 */
1215 void sqlite3ExprListCheckLength(
1216   Parse *pParse,
1217   ExprList *pEList,
1218   const char *zObject
1219 ){
1220   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1221   testcase( pEList && pEList->nExpr==mx );
1222   testcase( pEList && pEList->nExpr==mx+1 );
1223   if( pEList && pEList->nExpr>mx ){
1224     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1225   }
1226 }
1227 
1228 /*
1229 ** Delete an entire expression list.
1230 */
1231 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1232   int i;
1233   struct ExprList_item *pItem;
1234   if( pList==0 ) return;
1235   assert( pList->a!=0 || pList->nExpr==0 );
1236   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1237     sqlite3ExprDelete(db, pItem->pExpr);
1238     sqlite3DbFree(db, pItem->zName);
1239     sqlite3DbFree(db, pItem->zSpan);
1240   }
1241   sqlite3DbFree(db, pList->a);
1242   sqlite3DbFree(db, pList);
1243 }
1244 
1245 /*
1246 ** Return the bitwise-OR of all Expr.flags fields in the given
1247 ** ExprList.
1248 */
1249 u32 sqlite3ExprListFlags(const ExprList *pList){
1250   int i;
1251   u32 m = 0;
1252   if( pList ){
1253     for(i=0; i<pList->nExpr; i++){
1254        m |= pList->a[i].pExpr->flags;
1255     }
1256   }
1257   return m;
1258 }
1259 
1260 /*
1261 ** These routines are Walker callbacks used to check expressions to
1262 ** see if they are "constant" for some definition of constant.  The
1263 ** Walker.eCode value determines the type of "constant" we are looking
1264 ** for.
1265 **
1266 ** These callback routines are used to implement the following:
1267 **
1268 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1269 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1270 **     sqlite3ExprRefOneTableOnly()             pWalker->eCode==3
1271 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1272 **
1273 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1274 ** is found to not be a constant.
1275 **
1276 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1277 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1278 ** an existing schema and 4 when processing a new statement.  A bound
1279 ** parameter raises an error for new statements, but is silently converted
1280 ** to NULL for existing schemas.  This allows sqlite_master tables that
1281 ** contain a bound parameter because they were generated by older versions
1282 ** of SQLite to be parsed by newer versions of SQLite without raising a
1283 ** malformed schema error.
1284 */
1285 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1286 
1287   /* If pWalker->eCode is 2 then any term of the expression that comes from
1288   ** the ON or USING clauses of a left join disqualifies the expression
1289   ** from being considered constant. */
1290   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1291     pWalker->eCode = 0;
1292     return WRC_Abort;
1293   }
1294 
1295   switch( pExpr->op ){
1296     /* Consider functions to be constant if all their arguments are constant
1297     ** and either pWalker->eCode==4 or 5 or the function has the
1298     ** SQLITE_FUNC_CONST flag. */
1299     case TK_FUNCTION:
1300       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1301         return WRC_Continue;
1302       }else{
1303         pWalker->eCode = 0;
1304         return WRC_Abort;
1305       }
1306     case TK_ID:
1307     case TK_COLUMN:
1308     case TK_AGG_FUNCTION:
1309     case TK_AGG_COLUMN:
1310       testcase( pExpr->op==TK_ID );
1311       testcase( pExpr->op==TK_COLUMN );
1312       testcase( pExpr->op==TK_AGG_FUNCTION );
1313       testcase( pExpr->op==TK_AGG_COLUMN );
1314       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1315         return WRC_Continue;
1316       }else{
1317         pWalker->eCode = 0;
1318         return WRC_Abort;
1319       }
1320     case TK_VARIABLE:
1321       if( pWalker->eCode==5 ){
1322         /* Silently convert bound parameters that appear inside of CREATE
1323         ** statements into a NULL when parsing the CREATE statement text out
1324         ** of the sqlite_master table */
1325         pExpr->op = TK_NULL;
1326       }else if( pWalker->eCode==4 ){
1327         /* A bound parameter in a CREATE statement that originates from
1328         ** sqlite3_prepare() causes an error */
1329         pWalker->eCode = 0;
1330         return WRC_Abort;
1331       }
1332       /* Fall through */
1333     default:
1334       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1335       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1336       return WRC_Continue;
1337   }
1338 }
1339 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1340   UNUSED_PARAMETER(NotUsed);
1341   pWalker->eCode = 0;
1342   return WRC_Abort;
1343 }
1344 static int exprIsConst(Expr *p, int initFlag, int iCur){
1345   Walker w;
1346   memset(&w, 0, sizeof(w));
1347   w.eCode = initFlag;
1348   w.xExprCallback = exprNodeIsConstant;
1349   w.xSelectCallback = selectNodeIsConstant;
1350   w.u.iCur = iCur;
1351   sqlite3WalkExpr(&w, p);
1352   return w.eCode;
1353 }
1354 
1355 /*
1356 ** Walk an expression tree.  Return non-zero if the expression is constant
1357 ** and 0 if it involves variables or function calls.
1358 **
1359 ** For the purposes of this function, a double-quoted string (ex: "abc")
1360 ** is considered a variable but a single-quoted string (ex: 'abc') is
1361 ** a constant.
1362 */
1363 int sqlite3ExprIsConstant(Expr *p){
1364   return exprIsConst(p, 1, 0);
1365 }
1366 
1367 /*
1368 ** Walk an expression tree.  Return non-zero if the expression is constant
1369 ** that does no originate from the ON or USING clauses of a join.
1370 ** Return 0 if it involves variables or function calls or terms from
1371 ** an ON or USING clause.
1372 */
1373 int sqlite3ExprIsConstantNotJoin(Expr *p){
1374   return exprIsConst(p, 2, 0);
1375 }
1376 
1377 /*
1378 ** Walk an expression tree.  Return non-zero if the expression constant
1379 ** for any single row of the table with cursor iCur.  In other words, the
1380 ** expression must not refer to any non-deterministic function nor any
1381 ** table other than iCur.
1382 */
1383 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1384   return exprIsConst(p, 3, iCur);
1385 }
1386 
1387 /*
1388 ** Walk an expression tree.  Return non-zero if the expression is constant
1389 ** or a function call with constant arguments.  Return and 0 if there
1390 ** are any variables.
1391 **
1392 ** For the purposes of this function, a double-quoted string (ex: "abc")
1393 ** is considered a variable but a single-quoted string (ex: 'abc') is
1394 ** a constant.
1395 */
1396 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1397   assert( isInit==0 || isInit==1 );
1398   return exprIsConst(p, 4+isInit, 0);
1399 }
1400 
1401 /*
1402 ** If the expression p codes a constant integer that is small enough
1403 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1404 ** in *pValue.  If the expression is not an integer or if it is too big
1405 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1406 */
1407 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1408   int rc = 0;
1409 
1410   /* If an expression is an integer literal that fits in a signed 32-bit
1411   ** integer, then the EP_IntValue flag will have already been set */
1412   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1413            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1414 
1415   if( p->flags & EP_IntValue ){
1416     *pValue = p->u.iValue;
1417     return 1;
1418   }
1419   switch( p->op ){
1420     case TK_UPLUS: {
1421       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1422       break;
1423     }
1424     case TK_UMINUS: {
1425       int v;
1426       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1427         assert( v!=(-2147483647-1) );
1428         *pValue = -v;
1429         rc = 1;
1430       }
1431       break;
1432     }
1433     default: break;
1434   }
1435   return rc;
1436 }
1437 
1438 /*
1439 ** Return FALSE if there is no chance that the expression can be NULL.
1440 **
1441 ** If the expression might be NULL or if the expression is too complex
1442 ** to tell return TRUE.
1443 **
1444 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1445 ** when we know that a value cannot be NULL.  Hence, a false positive
1446 ** (returning TRUE when in fact the expression can never be NULL) might
1447 ** be a small performance hit but is otherwise harmless.  On the other
1448 ** hand, a false negative (returning FALSE when the result could be NULL)
1449 ** will likely result in an incorrect answer.  So when in doubt, return
1450 ** TRUE.
1451 */
1452 int sqlite3ExprCanBeNull(const Expr *p){
1453   u8 op;
1454   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1455   op = p->op;
1456   if( op==TK_REGISTER ) op = p->op2;
1457   switch( op ){
1458     case TK_INTEGER:
1459     case TK_STRING:
1460     case TK_FLOAT:
1461     case TK_BLOB:
1462       return 0;
1463     case TK_COLUMN:
1464       assert( p->pTab!=0 );
1465       return ExprHasProperty(p, EP_CanBeNull) ||
1466              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
1467     default:
1468       return 1;
1469   }
1470 }
1471 
1472 /*
1473 ** Return TRUE if the given expression is a constant which would be
1474 ** unchanged by OP_Affinity with the affinity given in the second
1475 ** argument.
1476 **
1477 ** This routine is used to determine if the OP_Affinity operation
1478 ** can be omitted.  When in doubt return FALSE.  A false negative
1479 ** is harmless.  A false positive, however, can result in the wrong
1480 ** answer.
1481 */
1482 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1483   u8 op;
1484   if( aff==SQLITE_AFF_NONE ) return 1;
1485   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1486   op = p->op;
1487   if( op==TK_REGISTER ) op = p->op2;
1488   switch( op ){
1489     case TK_INTEGER: {
1490       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1491     }
1492     case TK_FLOAT: {
1493       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1494     }
1495     case TK_STRING: {
1496       return aff==SQLITE_AFF_TEXT;
1497     }
1498     case TK_BLOB: {
1499       return 1;
1500     }
1501     case TK_COLUMN: {
1502       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1503       return p->iColumn<0
1504           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1505     }
1506     default: {
1507       return 0;
1508     }
1509   }
1510 }
1511 
1512 /*
1513 ** Return TRUE if the given string is a row-id column name.
1514 */
1515 int sqlite3IsRowid(const char *z){
1516   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1517   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1518   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1519   return 0;
1520 }
1521 
1522 /*
1523 ** Return true if we are able to the IN operator optimization on a
1524 ** query of the form
1525 **
1526 **       x IN (SELECT ...)
1527 **
1528 ** Where the SELECT... clause is as specified by the parameter to this
1529 ** routine.
1530 **
1531 ** The Select object passed in has already been preprocessed and no
1532 ** errors have been found.
1533 */
1534 #ifndef SQLITE_OMIT_SUBQUERY
1535 static int isCandidateForInOpt(Select *p){
1536   SrcList *pSrc;
1537   ExprList *pEList;
1538   Table *pTab;
1539   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1540   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1541   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1542     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1543     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1544     return 0; /* No DISTINCT keyword and no aggregate functions */
1545   }
1546   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1547   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1548   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1549   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1550   pSrc = p->pSrc;
1551   assert( pSrc!=0 );
1552   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1553   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1554   pTab = pSrc->a[0].pTab;
1555   if( NEVER(pTab==0) ) return 0;
1556   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1557   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1558   pEList = p->pEList;
1559   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1560   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1561   return 1;
1562 }
1563 #endif /* SQLITE_OMIT_SUBQUERY */
1564 
1565 /*
1566 ** Code an OP_Once instruction and allocate space for its flag. Return the
1567 ** address of the new instruction.
1568 */
1569 int sqlite3CodeOnce(Parse *pParse){
1570   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1571   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1572 }
1573 
1574 /*
1575 ** Generate code that checks the left-most column of index table iCur to see if
1576 ** it contains any NULL entries.  Cause the register at regHasNull to be set
1577 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
1578 ** to be set to NULL if iCur contains one or more NULL values.
1579 */
1580 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
1581   int j1;
1582   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
1583   j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1584   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
1585   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1586   VdbeComment((v, "first_entry_in(%d)", iCur));
1587   sqlite3VdbeJumpHere(v, j1);
1588 }
1589 
1590 
1591 #ifndef SQLITE_OMIT_SUBQUERY
1592 /*
1593 ** The argument is an IN operator with a list (not a subquery) on the
1594 ** right-hand side.  Return TRUE if that list is constant.
1595 */
1596 static int sqlite3InRhsIsConstant(Expr *pIn){
1597   Expr *pLHS;
1598   int res;
1599   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
1600   pLHS = pIn->pLeft;
1601   pIn->pLeft = 0;
1602   res = sqlite3ExprIsConstant(pIn);
1603   pIn->pLeft = pLHS;
1604   return res;
1605 }
1606 #endif
1607 
1608 /*
1609 ** This function is used by the implementation of the IN (...) operator.
1610 ** The pX parameter is the expression on the RHS of the IN operator, which
1611 ** might be either a list of expressions or a subquery.
1612 **
1613 ** The job of this routine is to find or create a b-tree object that can
1614 ** be used either to test for membership in the RHS set or to iterate through
1615 ** all members of the RHS set, skipping duplicates.
1616 **
1617 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
1618 ** and pX->iTable is set to the index of that cursor.
1619 **
1620 ** The returned value of this function indicates the b-tree type, as follows:
1621 **
1622 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
1623 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
1624 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1625 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
1626 **                         populated epheremal table.
1627 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
1628 **                         implemented as a sequence of comparisons.
1629 **
1630 ** An existing b-tree might be used if the RHS expression pX is a simple
1631 ** subquery such as:
1632 **
1633 **     SELECT <column> FROM <table>
1634 **
1635 ** If the RHS of the IN operator is a list or a more complex subquery, then
1636 ** an ephemeral table might need to be generated from the RHS and then
1637 ** pX->iTable made to point to the ephemeral table instead of an
1638 ** existing table.
1639 **
1640 ** The inFlags parameter must contain exactly one of the bits
1641 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
1642 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
1643 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
1644 ** IN index will be used to loop over all values of the RHS of the
1645 ** IN operator.
1646 **
1647 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
1648 ** through the set members) then the b-tree must not contain duplicates.
1649 ** An epheremal table must be used unless the selected <column> is guaranteed
1650 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1651 ** has a UNIQUE constraint or UNIQUE index.
1652 **
1653 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
1654 ** for fast set membership tests) then an epheremal table must
1655 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1656 ** be found with <column> as its left-most column.
1657 **
1658 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
1659 ** if the RHS of the IN operator is a list (not a subquery) then this
1660 ** routine might decide that creating an ephemeral b-tree for membership
1661 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
1662 ** calling routine should implement the IN operator using a sequence
1663 ** of Eq or Ne comparison operations.
1664 **
1665 ** When the b-tree is being used for membership tests, the calling function
1666 ** might need to know whether or not the RHS side of the IN operator
1667 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
1668 ** if there is any chance that the (...) might contain a NULL value at
1669 ** runtime, then a register is allocated and the register number written
1670 ** to *prRhsHasNull. If there is no chance that the (...) contains a
1671 ** NULL value, then *prRhsHasNull is left unchanged.
1672 **
1673 ** If a register is allocated and its location stored in *prRhsHasNull, then
1674 ** the value in that register will be NULL if the b-tree contains one or more
1675 ** NULL values, and it will be some non-NULL value if the b-tree contains no
1676 ** NULL values.
1677 */
1678 #ifndef SQLITE_OMIT_SUBQUERY
1679 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
1680   Select *p;                            /* SELECT to the right of IN operator */
1681   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1682   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1683   int mustBeUnique;                     /* True if RHS must be unique */
1684   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1685 
1686   assert( pX->op==TK_IN );
1687   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
1688 
1689   /* Check to see if an existing table or index can be used to
1690   ** satisfy the query.  This is preferable to generating a new
1691   ** ephemeral table.
1692   */
1693   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1694   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1695     sqlite3 *db = pParse->db;              /* Database connection */
1696     Table *pTab;                           /* Table <table>. */
1697     Expr *pExpr;                           /* Expression <column> */
1698     i16 iCol;                              /* Index of column <column> */
1699     i16 iDb;                               /* Database idx for pTab */
1700 
1701     assert( p );                        /* Because of isCandidateForInOpt(p) */
1702     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1703     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1704     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1705     pTab = p->pSrc->a[0].pTab;
1706     pExpr = p->pEList->a[0].pExpr;
1707     iCol = (i16)pExpr->iColumn;
1708 
1709     /* Code an OP_Transaction and OP_TableLock for <table>. */
1710     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1711     sqlite3CodeVerifySchema(pParse, iDb);
1712     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1713 
1714     /* This function is only called from two places. In both cases the vdbe
1715     ** has already been allocated. So assume sqlite3GetVdbe() is always
1716     ** successful here.
1717     */
1718     assert(v);
1719     if( iCol<0 ){
1720       int iAddr = sqlite3CodeOnce(pParse);
1721       VdbeCoverage(v);
1722 
1723       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1724       eType = IN_INDEX_ROWID;
1725 
1726       sqlite3VdbeJumpHere(v, iAddr);
1727     }else{
1728       Index *pIdx;                         /* Iterator variable */
1729 
1730       /* The collation sequence used by the comparison. If an index is to
1731       ** be used in place of a temp-table, it must be ordered according
1732       ** to this collation sequence.  */
1733       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1734 
1735       /* Check that the affinity that will be used to perform the
1736       ** comparison is the same as the affinity of the column. If
1737       ** it is not, it is not possible to use any index.
1738       */
1739       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1740 
1741       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1742         if( (pIdx->aiColumn[0]==iCol)
1743          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1744          && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
1745         ){
1746           int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1747           sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1748           sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1749           VdbeComment((v, "%s", pIdx->zName));
1750           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1751           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1752 
1753           if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
1754             *prRhsHasNull = ++pParse->nMem;
1755             sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
1756           }
1757           sqlite3VdbeJumpHere(v, iAddr);
1758         }
1759       }
1760     }
1761   }
1762 
1763   /* If no preexisting index is available for the IN clause
1764   ** and IN_INDEX_NOOP is an allowed reply
1765   ** and the RHS of the IN operator is a list, not a subquery
1766   ** and the RHS is not contant or has two or fewer terms,
1767   ** then it is not worth creating an ephemeral table to evaluate
1768   ** the IN operator so return IN_INDEX_NOOP.
1769   */
1770   if( eType==0
1771    && (inFlags & IN_INDEX_NOOP_OK)
1772    && !ExprHasProperty(pX, EP_xIsSelect)
1773    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
1774   ){
1775     eType = IN_INDEX_NOOP;
1776   }
1777 
1778 
1779   if( eType==0 ){
1780     /* Could not find an existing table or index to use as the RHS b-tree.
1781     ** We will have to generate an ephemeral table to do the job.
1782     */
1783     u32 savedNQueryLoop = pParse->nQueryLoop;
1784     int rMayHaveNull = 0;
1785     eType = IN_INDEX_EPH;
1786     if( inFlags & IN_INDEX_LOOP ){
1787       pParse->nQueryLoop = 0;
1788       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1789         eType = IN_INDEX_ROWID;
1790       }
1791     }else if( prRhsHasNull ){
1792       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
1793     }
1794     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1795     pParse->nQueryLoop = savedNQueryLoop;
1796   }else{
1797     pX->iTable = iTab;
1798   }
1799   return eType;
1800 }
1801 #endif
1802 
1803 /*
1804 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1805 ** or IN operators.  Examples:
1806 **
1807 **     (SELECT a FROM b)          -- subquery
1808 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1809 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1810 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1811 **
1812 ** The pExpr parameter describes the expression that contains the IN
1813 ** operator or subquery.
1814 **
1815 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1816 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1817 ** to some integer key column of a table B-Tree. In this case, use an
1818 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1819 ** (slower) variable length keys B-Tree.
1820 **
1821 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1822 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1823 ** All this routine does is initialize the register given by rMayHaveNull
1824 ** to NULL.  Calling routines will take care of changing this register
1825 ** value to non-NULL if the RHS is NULL-free.
1826 **
1827 ** For a SELECT or EXISTS operator, return the register that holds the
1828 ** result.  For IN operators or if an error occurs, the return value is 0.
1829 */
1830 #ifndef SQLITE_OMIT_SUBQUERY
1831 int sqlite3CodeSubselect(
1832   Parse *pParse,          /* Parsing context */
1833   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1834   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
1835   int isRowid             /* If true, LHS of IN operator is a rowid */
1836 ){
1837   int jmpIfDynamic = -1;                      /* One-time test address */
1838   int rReg = 0;                           /* Register storing resulting */
1839   Vdbe *v = sqlite3GetVdbe(pParse);
1840   if( NEVER(v==0) ) return 0;
1841   sqlite3ExprCachePush(pParse);
1842 
1843   /* This code must be run in its entirety every time it is encountered
1844   ** if any of the following is true:
1845   **
1846   **    *  The right-hand side is a correlated subquery
1847   **    *  The right-hand side is an expression list containing variables
1848   **    *  We are inside a trigger
1849   **
1850   ** If all of the above are false, then we can run this code just once
1851   ** save the results, and reuse the same result on subsequent invocations.
1852   */
1853   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1854     jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1855   }
1856 
1857 #ifndef SQLITE_OMIT_EXPLAIN
1858   if( pParse->explain==2 ){
1859     char *zMsg = sqlite3MPrintf(
1860         pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ",
1861         pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1862     );
1863     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1864   }
1865 #endif
1866 
1867   switch( pExpr->op ){
1868     case TK_IN: {
1869       char affinity;              /* Affinity of the LHS of the IN */
1870       int addr;                   /* Address of OP_OpenEphemeral instruction */
1871       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1872       KeyInfo *pKeyInfo = 0;      /* Key information */
1873 
1874       affinity = sqlite3ExprAffinity(pLeft);
1875 
1876       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1877       ** expression it is handled the same way.  An ephemeral table is
1878       ** filled with single-field index keys representing the results
1879       ** from the SELECT or the <exprlist>.
1880       **
1881       ** If the 'x' expression is a column value, or the SELECT...
1882       ** statement returns a column value, then the affinity of that
1883       ** column is used to build the index keys. If both 'x' and the
1884       ** SELECT... statement are columns, then numeric affinity is used
1885       ** if either column has NUMERIC or INTEGER affinity. If neither
1886       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1887       ** is used.
1888       */
1889       pExpr->iTable = pParse->nTab++;
1890       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1891       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1892 
1893       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1894         /* Case 1:     expr IN (SELECT ...)
1895         **
1896         ** Generate code to write the results of the select into the temporary
1897         ** table allocated and opened above.
1898         */
1899         Select *pSelect = pExpr->x.pSelect;
1900         SelectDest dest;
1901         ExprList *pEList;
1902 
1903         assert( !isRowid );
1904         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1905         dest.affSdst = (u8)affinity;
1906         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1907         pSelect->iLimit = 0;
1908         testcase( pSelect->selFlags & SF_Distinct );
1909         testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1910         if( sqlite3Select(pParse, pSelect, &dest) ){
1911           sqlite3KeyInfoUnref(pKeyInfo);
1912           return 0;
1913         }
1914         pEList = pSelect->pEList;
1915         assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1916         assert( pEList!=0 );
1917         assert( pEList->nExpr>0 );
1918         assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1919         pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1920                                                          pEList->a[0].pExpr);
1921       }else if( ALWAYS(pExpr->x.pList!=0) ){
1922         /* Case 2:     expr IN (exprlist)
1923         **
1924         ** For each expression, build an index key from the evaluation and
1925         ** store it in the temporary table. If <expr> is a column, then use
1926         ** that columns affinity when building index keys. If <expr> is not
1927         ** a column, use numeric affinity.
1928         */
1929         int i;
1930         ExprList *pList = pExpr->x.pList;
1931         struct ExprList_item *pItem;
1932         int r1, r2, r3;
1933 
1934         if( !affinity ){
1935           affinity = SQLITE_AFF_NONE;
1936         }
1937         if( pKeyInfo ){
1938           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1939           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1940         }
1941 
1942         /* Loop through each expression in <exprlist>. */
1943         r1 = sqlite3GetTempReg(pParse);
1944         r2 = sqlite3GetTempReg(pParse);
1945         if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1946         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1947           Expr *pE2 = pItem->pExpr;
1948           int iValToIns;
1949 
1950           /* If the expression is not constant then we will need to
1951           ** disable the test that was generated above that makes sure
1952           ** this code only executes once.  Because for a non-constant
1953           ** expression we need to rerun this code each time.
1954           */
1955           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
1956             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
1957             jmpIfDynamic = -1;
1958           }
1959 
1960           /* Evaluate the expression and insert it into the temp table */
1961           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1962             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1963           }else{
1964             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1965             if( isRowid ){
1966               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1967                                 sqlite3VdbeCurrentAddr(v)+2);
1968               VdbeCoverage(v);
1969               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1970             }else{
1971               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1972               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1973               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1974             }
1975           }
1976         }
1977         sqlite3ReleaseTempReg(pParse, r1);
1978         sqlite3ReleaseTempReg(pParse, r2);
1979       }
1980       if( pKeyInfo ){
1981         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
1982       }
1983       break;
1984     }
1985 
1986     case TK_EXISTS:
1987     case TK_SELECT:
1988     default: {
1989       /* If this has to be a scalar SELECT.  Generate code to put the
1990       ** value of this select in a memory cell and record the number
1991       ** of the memory cell in iColumn.  If this is an EXISTS, write
1992       ** an integer 0 (not exists) or 1 (exists) into a memory cell
1993       ** and record that memory cell in iColumn.
1994       */
1995       Select *pSel;                         /* SELECT statement to encode */
1996       SelectDest dest;                      /* How to deal with SELECt result */
1997 
1998       testcase( pExpr->op==TK_EXISTS );
1999       testcase( pExpr->op==TK_SELECT );
2000       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2001 
2002       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2003       pSel = pExpr->x.pSelect;
2004       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
2005       if( pExpr->op==TK_SELECT ){
2006         dest.eDest = SRT_Mem;
2007         dest.iSdst = dest.iSDParm;
2008         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
2009         VdbeComment((v, "Init subquery result"));
2010       }else{
2011         dest.eDest = SRT_Exists;
2012         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2013         VdbeComment((v, "Init EXISTS result"));
2014       }
2015       sqlite3ExprDelete(pParse->db, pSel->pLimit);
2016       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
2017                                   &sqlite3IntTokens[1]);
2018       pSel->iLimit = 0;
2019       if( sqlite3Select(pParse, pSel, &dest) ){
2020         return 0;
2021       }
2022       rReg = dest.iSDParm;
2023       ExprSetVVAProperty(pExpr, EP_NoReduce);
2024       break;
2025     }
2026   }
2027 
2028   if( rHasNullFlag ){
2029     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2030   }
2031 
2032   if( jmpIfDynamic>=0 ){
2033     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2034   }
2035   sqlite3ExprCachePop(pParse);
2036 
2037   return rReg;
2038 }
2039 #endif /* SQLITE_OMIT_SUBQUERY */
2040 
2041 #ifndef SQLITE_OMIT_SUBQUERY
2042 /*
2043 ** Generate code for an IN expression.
2044 **
2045 **      x IN (SELECT ...)
2046 **      x IN (value, value, ...)
2047 **
2048 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
2049 ** is an array of zero or more values.  The expression is true if the LHS is
2050 ** contained within the RHS.  The value of the expression is unknown (NULL)
2051 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
2052 ** RHS contains one or more NULL values.
2053 **
2054 ** This routine generates code that jumps to destIfFalse if the LHS is not
2055 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2056 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2057 ** within the RHS then fall through.
2058 */
2059 static void sqlite3ExprCodeIN(
2060   Parse *pParse,        /* Parsing and code generating context */
2061   Expr *pExpr,          /* The IN expression */
2062   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2063   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2064 ){
2065   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2066   char affinity;        /* Comparison affinity to use */
2067   int eType;            /* Type of the RHS */
2068   int r1;               /* Temporary use register */
2069   Vdbe *v;              /* Statement under construction */
2070 
2071   /* Compute the RHS.   After this step, the table with cursor
2072   ** pExpr->iTable will contains the values that make up the RHS.
2073   */
2074   v = pParse->pVdbe;
2075   assert( v!=0 );       /* OOM detected prior to this routine */
2076   VdbeNoopComment((v, "begin IN expr"));
2077   eType = sqlite3FindInIndex(pParse, pExpr,
2078                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2079                              destIfFalse==destIfNull ? 0 : &rRhsHasNull);
2080 
2081   /* Figure out the affinity to use to create a key from the results
2082   ** of the expression. affinityStr stores a static string suitable for
2083   ** P4 of OP_MakeRecord.
2084   */
2085   affinity = comparisonAffinity(pExpr);
2086 
2087   /* Code the LHS, the <expr> from "<expr> IN (...)".
2088   */
2089   sqlite3ExprCachePush(pParse);
2090   r1 = sqlite3GetTempReg(pParse);
2091   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
2092 
2093   /* If sqlite3FindInIndex() did not find or create an index that is
2094   ** suitable for evaluating the IN operator, then evaluate using a
2095   ** sequence of comparisons.
2096   */
2097   if( eType==IN_INDEX_NOOP ){
2098     ExprList *pList = pExpr->x.pList;
2099     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2100     int labelOk = sqlite3VdbeMakeLabel(v);
2101     int r2, regToFree;
2102     int regCkNull = 0;
2103     int ii;
2104     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2105     if( destIfNull!=destIfFalse ){
2106       regCkNull = sqlite3GetTempReg(pParse);
2107       sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
2108     }
2109     for(ii=0; ii<pList->nExpr; ii++){
2110       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2111       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2112         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2113       }
2114       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2115         sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
2116                           (void*)pColl, P4_COLLSEQ);
2117         VdbeCoverageIf(v, ii<pList->nExpr-1);
2118         VdbeCoverageIf(v, ii==pList->nExpr-1);
2119         sqlite3VdbeChangeP5(v, affinity);
2120       }else{
2121         assert( destIfNull==destIfFalse );
2122         sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
2123                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2124         sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
2125       }
2126       sqlite3ReleaseTempReg(pParse, regToFree);
2127     }
2128     if( regCkNull ){
2129       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2130       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2131     }
2132     sqlite3VdbeResolveLabel(v, labelOk);
2133     sqlite3ReleaseTempReg(pParse, regCkNull);
2134   }else{
2135 
2136     /* If the LHS is NULL, then the result is either false or NULL depending
2137     ** on whether the RHS is empty or not, respectively.
2138     */
2139     if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
2140       if( destIfNull==destIfFalse ){
2141         /* Shortcut for the common case where the false and NULL outcomes are
2142         ** the same. */
2143         sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
2144       }else{
2145         int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
2146         sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2147         VdbeCoverage(v);
2148         sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
2149         sqlite3VdbeJumpHere(v, addr1);
2150       }
2151     }
2152 
2153     if( eType==IN_INDEX_ROWID ){
2154       /* In this case, the RHS is the ROWID of table b-tree
2155       */
2156       sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
2157       sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
2158       VdbeCoverage(v);
2159     }else{
2160       /* In this case, the RHS is an index b-tree.
2161       */
2162       sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
2163 
2164       /* If the set membership test fails, then the result of the
2165       ** "x IN (...)" expression must be either 0 or NULL. If the set
2166       ** contains no NULL values, then the result is 0. If the set
2167       ** contains one or more NULL values, then the result of the
2168       ** expression is also NULL.
2169       */
2170       assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
2171       if( rRhsHasNull==0 ){
2172         /* This branch runs if it is known at compile time that the RHS
2173         ** cannot contain NULL values. This happens as the result
2174         ** of a "NOT NULL" constraint in the database schema.
2175         **
2176         ** Also run this branch if NULL is equivalent to FALSE
2177         ** for this particular IN operator.
2178         */
2179         sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
2180         VdbeCoverage(v);
2181       }else{
2182         /* In this branch, the RHS of the IN might contain a NULL and
2183         ** the presence of a NULL on the RHS makes a difference in the
2184         ** outcome.
2185         */
2186         int j1;
2187 
2188         /* First check to see if the LHS is contained in the RHS.  If so,
2189         ** then the answer is TRUE the presence of NULLs in the RHS does
2190         ** not matter.  If the LHS is not contained in the RHS, then the
2191         ** answer is NULL if the RHS contains NULLs and the answer is
2192         ** FALSE if the RHS is NULL-free.
2193         */
2194         j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
2195         VdbeCoverage(v);
2196         sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
2197         VdbeCoverage(v);
2198         sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2199         sqlite3VdbeJumpHere(v, j1);
2200       }
2201     }
2202   }
2203   sqlite3ReleaseTempReg(pParse, r1);
2204   sqlite3ExprCachePop(pParse);
2205   VdbeComment((v, "end IN expr"));
2206 }
2207 #endif /* SQLITE_OMIT_SUBQUERY */
2208 
2209 /*
2210 ** Duplicate an 8-byte value
2211 */
2212 static char *dup8bytes(Vdbe *v, const char *in){
2213   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
2214   if( out ){
2215     memcpy(out, in, 8);
2216   }
2217   return out;
2218 }
2219 
2220 #ifndef SQLITE_OMIT_FLOATING_POINT
2221 /*
2222 ** Generate an instruction that will put the floating point
2223 ** value described by z[0..n-1] into register iMem.
2224 **
2225 ** The z[] string will probably not be zero-terminated.  But the
2226 ** z[n] character is guaranteed to be something that does not look
2227 ** like the continuation of the number.
2228 */
2229 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2230   if( ALWAYS(z!=0) ){
2231     double value;
2232     char *zV;
2233     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2234     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2235     if( negateFlag ) value = -value;
2236     zV = dup8bytes(v, (char*)&value);
2237     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
2238   }
2239 }
2240 #endif
2241 
2242 
2243 /*
2244 ** Generate an instruction that will put the integer describe by
2245 ** text z[0..n-1] into register iMem.
2246 **
2247 ** Expr.u.zToken is always UTF8 and zero-terminated.
2248 */
2249 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2250   Vdbe *v = pParse->pVdbe;
2251   if( pExpr->flags & EP_IntValue ){
2252     int i = pExpr->u.iValue;
2253     assert( i>=0 );
2254     if( negFlag ) i = -i;
2255     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2256   }else{
2257     int c;
2258     i64 value;
2259     const char *z = pExpr->u.zToken;
2260     assert( z!=0 );
2261     c = sqlite3DecOrHexToI64(z, &value);
2262     if( c==0 || (c==2 && negFlag) ){
2263       char *zV;
2264       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2265       zV = dup8bytes(v, (char*)&value);
2266       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
2267     }else{
2268 #ifdef SQLITE_OMIT_FLOATING_POINT
2269       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2270 #else
2271 #ifndef SQLITE_OMIT_HEX_INTEGER
2272       if( sqlite3_strnicmp(z,"0x",2)==0 ){
2273         sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
2274       }else
2275 #endif
2276       {
2277         codeReal(v, z, negFlag, iMem);
2278       }
2279 #endif
2280     }
2281   }
2282 }
2283 
2284 /*
2285 ** Clear a cache entry.
2286 */
2287 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2288   if( p->tempReg ){
2289     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2290       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2291     }
2292     p->tempReg = 0;
2293   }
2294 }
2295 
2296 
2297 /*
2298 ** Record in the column cache that a particular column from a
2299 ** particular table is stored in a particular register.
2300 */
2301 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2302   int i;
2303   int minLru;
2304   int idxLru;
2305   struct yColCache *p;
2306 
2307   /* Unless an error has occurred, register numbers are always positive. */
2308   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
2309   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2310 
2311   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2312   ** for testing only - to verify that SQLite always gets the same answer
2313   ** with and without the column cache.
2314   */
2315   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2316 
2317   /* First replace any existing entry.
2318   **
2319   ** Actually, the way the column cache is currently used, we are guaranteed
2320   ** that the object will never already be in cache.  Verify this guarantee.
2321   */
2322 #ifndef NDEBUG
2323   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2324     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2325   }
2326 #endif
2327 
2328   /* Find an empty slot and replace it */
2329   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2330     if( p->iReg==0 ){
2331       p->iLevel = pParse->iCacheLevel;
2332       p->iTable = iTab;
2333       p->iColumn = iCol;
2334       p->iReg = iReg;
2335       p->tempReg = 0;
2336       p->lru = pParse->iCacheCnt++;
2337       return;
2338     }
2339   }
2340 
2341   /* Replace the last recently used */
2342   minLru = 0x7fffffff;
2343   idxLru = -1;
2344   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2345     if( p->lru<minLru ){
2346       idxLru = i;
2347       minLru = p->lru;
2348     }
2349   }
2350   if( ALWAYS(idxLru>=0) ){
2351     p = &pParse->aColCache[idxLru];
2352     p->iLevel = pParse->iCacheLevel;
2353     p->iTable = iTab;
2354     p->iColumn = iCol;
2355     p->iReg = iReg;
2356     p->tempReg = 0;
2357     p->lru = pParse->iCacheCnt++;
2358     return;
2359   }
2360 }
2361 
2362 /*
2363 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2364 ** Purge the range of registers from the column cache.
2365 */
2366 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2367   int i;
2368   int iLast = iReg + nReg - 1;
2369   struct yColCache *p;
2370   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2371     int r = p->iReg;
2372     if( r>=iReg && r<=iLast ){
2373       cacheEntryClear(pParse, p);
2374       p->iReg = 0;
2375     }
2376   }
2377 }
2378 
2379 /*
2380 ** Remember the current column cache context.  Any new entries added
2381 ** added to the column cache after this call are removed when the
2382 ** corresponding pop occurs.
2383 */
2384 void sqlite3ExprCachePush(Parse *pParse){
2385   pParse->iCacheLevel++;
2386 #ifdef SQLITE_DEBUG
2387   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2388     printf("PUSH to %d\n", pParse->iCacheLevel);
2389   }
2390 #endif
2391 }
2392 
2393 /*
2394 ** Remove from the column cache any entries that were added since the
2395 ** the previous sqlite3ExprCachePush operation.  In other words, restore
2396 ** the cache to the state it was in prior the most recent Push.
2397 */
2398 void sqlite3ExprCachePop(Parse *pParse){
2399   int i;
2400   struct yColCache *p;
2401   assert( pParse->iCacheLevel>=1 );
2402   pParse->iCacheLevel--;
2403 #ifdef SQLITE_DEBUG
2404   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2405     printf("POP  to %d\n", pParse->iCacheLevel);
2406   }
2407 #endif
2408   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2409     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2410       cacheEntryClear(pParse, p);
2411       p->iReg = 0;
2412     }
2413   }
2414 }
2415 
2416 /*
2417 ** When a cached column is reused, make sure that its register is
2418 ** no longer available as a temp register.  ticket #3879:  that same
2419 ** register might be in the cache in multiple places, so be sure to
2420 ** get them all.
2421 */
2422 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2423   int i;
2424   struct yColCache *p;
2425   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2426     if( p->iReg==iReg ){
2427       p->tempReg = 0;
2428     }
2429   }
2430 }
2431 
2432 /*
2433 ** Generate code to extract the value of the iCol-th column of a table.
2434 */
2435 void sqlite3ExprCodeGetColumnOfTable(
2436   Vdbe *v,        /* The VDBE under construction */
2437   Table *pTab,    /* The table containing the value */
2438   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
2439   int iCol,       /* Index of the column to extract */
2440   int regOut      /* Extract the value into this register */
2441 ){
2442   if( iCol<0 || iCol==pTab->iPKey ){
2443     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2444   }else{
2445     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2446     int x = iCol;
2447     if( !HasRowid(pTab) ){
2448       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2449     }
2450     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2451   }
2452   if( iCol>=0 ){
2453     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2454   }
2455 }
2456 
2457 /*
2458 ** Generate code that will extract the iColumn-th column from
2459 ** table pTab and store the column value in a register.  An effort
2460 ** is made to store the column value in register iReg, but this is
2461 ** not guaranteed.  The location of the column value is returned.
2462 **
2463 ** There must be an open cursor to pTab in iTable when this routine
2464 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2465 */
2466 int sqlite3ExprCodeGetColumn(
2467   Parse *pParse,   /* Parsing and code generating context */
2468   Table *pTab,     /* Description of the table we are reading from */
2469   int iColumn,     /* Index of the table column */
2470   int iTable,      /* The cursor pointing to the table */
2471   int iReg,        /* Store results here */
2472   u8 p5            /* P5 value for OP_Column */
2473 ){
2474   Vdbe *v = pParse->pVdbe;
2475   int i;
2476   struct yColCache *p;
2477 
2478   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2479     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2480       p->lru = pParse->iCacheCnt++;
2481       sqlite3ExprCachePinRegister(pParse, p->iReg);
2482       return p->iReg;
2483     }
2484   }
2485   assert( v!=0 );
2486   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2487   if( p5 ){
2488     sqlite3VdbeChangeP5(v, p5);
2489   }else{
2490     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2491   }
2492   return iReg;
2493 }
2494 
2495 /*
2496 ** Clear all column cache entries.
2497 */
2498 void sqlite3ExprCacheClear(Parse *pParse){
2499   int i;
2500   struct yColCache *p;
2501 
2502 #if SQLITE_DEBUG
2503   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2504     printf("CLEAR\n");
2505   }
2506 #endif
2507   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2508     if( p->iReg ){
2509       cacheEntryClear(pParse, p);
2510       p->iReg = 0;
2511     }
2512   }
2513 }
2514 
2515 /*
2516 ** Record the fact that an affinity change has occurred on iCount
2517 ** registers starting with iStart.
2518 */
2519 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2520   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2521 }
2522 
2523 /*
2524 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2525 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2526 */
2527 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2528   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2529   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2530   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
2531 }
2532 
2533 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2534 /*
2535 ** Return true if any register in the range iFrom..iTo (inclusive)
2536 ** is used as part of the column cache.
2537 **
2538 ** This routine is used within assert() and testcase() macros only
2539 ** and does not appear in a normal build.
2540 */
2541 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2542   int i;
2543   struct yColCache *p;
2544   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2545     int r = p->iReg;
2546     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2547   }
2548   return 0;
2549 }
2550 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2551 
2552 /*
2553 ** Convert an expression node to a TK_REGISTER
2554 */
2555 static void exprToRegister(Expr *p, int iReg){
2556   p->op2 = p->op;
2557   p->op = TK_REGISTER;
2558   p->iTable = iReg;
2559   ExprClearProperty(p, EP_Skip);
2560 }
2561 
2562 /*
2563 ** Generate code into the current Vdbe to evaluate the given
2564 ** expression.  Attempt to store the results in register "target".
2565 ** Return the register where results are stored.
2566 **
2567 ** With this routine, there is no guarantee that results will
2568 ** be stored in target.  The result might be stored in some other
2569 ** register if it is convenient to do so.  The calling function
2570 ** must check the return code and move the results to the desired
2571 ** register.
2572 */
2573 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2574   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2575   int op;                   /* The opcode being coded */
2576   int inReg = target;       /* Results stored in register inReg */
2577   int regFree1 = 0;         /* If non-zero free this temporary register */
2578   int regFree2 = 0;         /* If non-zero free this temporary register */
2579   int r1, r2, r3, r4;       /* Various register numbers */
2580   sqlite3 *db = pParse->db; /* The database connection */
2581   Expr tempX;               /* Temporary expression node */
2582 
2583   assert( target>0 && target<=pParse->nMem );
2584   if( v==0 ){
2585     assert( pParse->db->mallocFailed );
2586     return 0;
2587   }
2588 
2589   if( pExpr==0 ){
2590     op = TK_NULL;
2591   }else{
2592     op = pExpr->op;
2593   }
2594   switch( op ){
2595     case TK_AGG_COLUMN: {
2596       AggInfo *pAggInfo = pExpr->pAggInfo;
2597       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2598       if( !pAggInfo->directMode ){
2599         assert( pCol->iMem>0 );
2600         inReg = pCol->iMem;
2601         break;
2602       }else if( pAggInfo->useSortingIdx ){
2603         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2604                               pCol->iSorterColumn, target);
2605         break;
2606       }
2607       /* Otherwise, fall thru into the TK_COLUMN case */
2608     }
2609     case TK_COLUMN: {
2610       int iTab = pExpr->iTable;
2611       if( iTab<0 ){
2612         if( pParse->ckBase>0 ){
2613           /* Generating CHECK constraints or inserting into partial index */
2614           inReg = pExpr->iColumn + pParse->ckBase;
2615           break;
2616         }else{
2617           /* Deleting from a partial index */
2618           iTab = pParse->iPartIdxTab;
2619         }
2620       }
2621       inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2622                                pExpr->iColumn, iTab, target,
2623                                pExpr->op2);
2624       break;
2625     }
2626     case TK_INTEGER: {
2627       codeInteger(pParse, pExpr, 0, target);
2628       break;
2629     }
2630 #ifndef SQLITE_OMIT_FLOATING_POINT
2631     case TK_FLOAT: {
2632       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2633       codeReal(v, pExpr->u.zToken, 0, target);
2634       break;
2635     }
2636 #endif
2637     case TK_STRING: {
2638       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2639       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2640       break;
2641     }
2642     case TK_NULL: {
2643       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2644       break;
2645     }
2646 #ifndef SQLITE_OMIT_BLOB_LITERAL
2647     case TK_BLOB: {
2648       int n;
2649       const char *z;
2650       char *zBlob;
2651       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2652       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2653       assert( pExpr->u.zToken[1]=='\'' );
2654       z = &pExpr->u.zToken[2];
2655       n = sqlite3Strlen30(z) - 1;
2656       assert( z[n]=='\'' );
2657       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2658       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2659       break;
2660     }
2661 #endif
2662     case TK_VARIABLE: {
2663       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2664       assert( pExpr->u.zToken!=0 );
2665       assert( pExpr->u.zToken[0]!=0 );
2666       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2667       if( pExpr->u.zToken[1]!=0 ){
2668         assert( pExpr->u.zToken[0]=='?'
2669              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2670         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2671       }
2672       break;
2673     }
2674     case TK_REGISTER: {
2675       inReg = pExpr->iTable;
2676       break;
2677     }
2678     case TK_AS: {
2679       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2680       break;
2681     }
2682 #ifndef SQLITE_OMIT_CAST
2683     case TK_CAST: {
2684       /* Expressions of the form:   CAST(pLeft AS token) */
2685       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2686       if( inReg!=target ){
2687         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2688         inReg = target;
2689       }
2690       sqlite3VdbeAddOp2(v, OP_Cast, target,
2691                         sqlite3AffinityType(pExpr->u.zToken, 0));
2692       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2693       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2694       break;
2695     }
2696 #endif /* SQLITE_OMIT_CAST */
2697     case TK_LT:
2698     case TK_LE:
2699     case TK_GT:
2700     case TK_GE:
2701     case TK_NE:
2702     case TK_EQ: {
2703       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2704       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2705       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2706                   r1, r2, inReg, SQLITE_STOREP2);
2707       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
2708       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
2709       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
2710       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
2711       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
2712       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
2713       testcase( regFree1==0 );
2714       testcase( regFree2==0 );
2715       break;
2716     }
2717     case TK_IS:
2718     case TK_ISNOT: {
2719       testcase( op==TK_IS );
2720       testcase( op==TK_ISNOT );
2721       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2722       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2723       op = (op==TK_IS) ? TK_EQ : TK_NE;
2724       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2725                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2726       VdbeCoverageIf(v, op==TK_EQ);
2727       VdbeCoverageIf(v, op==TK_NE);
2728       testcase( regFree1==0 );
2729       testcase( regFree2==0 );
2730       break;
2731     }
2732     case TK_AND:
2733     case TK_OR:
2734     case TK_PLUS:
2735     case TK_STAR:
2736     case TK_MINUS:
2737     case TK_REM:
2738     case TK_BITAND:
2739     case TK_BITOR:
2740     case TK_SLASH:
2741     case TK_LSHIFT:
2742     case TK_RSHIFT:
2743     case TK_CONCAT: {
2744       assert( TK_AND==OP_And );            testcase( op==TK_AND );
2745       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
2746       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
2747       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
2748       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
2749       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
2750       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
2751       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
2752       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
2753       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
2754       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
2755       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2756       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2757       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2758       testcase( regFree1==0 );
2759       testcase( regFree2==0 );
2760       break;
2761     }
2762     case TK_UMINUS: {
2763       Expr *pLeft = pExpr->pLeft;
2764       assert( pLeft );
2765       if( pLeft->op==TK_INTEGER ){
2766         codeInteger(pParse, pLeft, 1, target);
2767 #ifndef SQLITE_OMIT_FLOATING_POINT
2768       }else if( pLeft->op==TK_FLOAT ){
2769         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2770         codeReal(v, pLeft->u.zToken, 1, target);
2771 #endif
2772       }else{
2773         tempX.op = TK_INTEGER;
2774         tempX.flags = EP_IntValue|EP_TokenOnly;
2775         tempX.u.iValue = 0;
2776         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2777         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2778         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2779         testcase( regFree2==0 );
2780       }
2781       inReg = target;
2782       break;
2783     }
2784     case TK_BITNOT:
2785     case TK_NOT: {
2786       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
2787       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
2788       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2789       testcase( regFree1==0 );
2790       inReg = target;
2791       sqlite3VdbeAddOp2(v, op, r1, inReg);
2792       break;
2793     }
2794     case TK_ISNULL:
2795     case TK_NOTNULL: {
2796       int addr;
2797       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
2798       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
2799       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2800       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2801       testcase( regFree1==0 );
2802       addr = sqlite3VdbeAddOp1(v, op, r1);
2803       VdbeCoverageIf(v, op==TK_ISNULL);
2804       VdbeCoverageIf(v, op==TK_NOTNULL);
2805       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2806       sqlite3VdbeJumpHere(v, addr);
2807       break;
2808     }
2809     case TK_AGG_FUNCTION: {
2810       AggInfo *pInfo = pExpr->pAggInfo;
2811       if( pInfo==0 ){
2812         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2813         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2814       }else{
2815         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2816       }
2817       break;
2818     }
2819     case TK_FUNCTION: {
2820       ExprList *pFarg;       /* List of function arguments */
2821       int nFarg;             /* Number of function arguments */
2822       FuncDef *pDef;         /* The function definition object */
2823       int nId;               /* Length of the function name in bytes */
2824       const char *zId;       /* The function name */
2825       u32 constMask = 0;     /* Mask of function arguments that are constant */
2826       int i;                 /* Loop counter */
2827       u8 enc = ENC(db);      /* The text encoding used by this database */
2828       CollSeq *pColl = 0;    /* A collating sequence */
2829 
2830       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2831       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2832         pFarg = 0;
2833       }else{
2834         pFarg = pExpr->x.pList;
2835       }
2836       nFarg = pFarg ? pFarg->nExpr : 0;
2837       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2838       zId = pExpr->u.zToken;
2839       nId = sqlite3Strlen30(zId);
2840       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2841       if( pDef==0 || pDef->xFunc==0 ){
2842         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2843         break;
2844       }
2845 
2846       /* Attempt a direct implementation of the built-in COALESCE() and
2847       ** IFNULL() functions.  This avoids unnecessary evaluation of
2848       ** arguments past the first non-NULL argument.
2849       */
2850       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2851         int endCoalesce = sqlite3VdbeMakeLabel(v);
2852         assert( nFarg>=2 );
2853         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2854         for(i=1; i<nFarg; i++){
2855           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2856           VdbeCoverage(v);
2857           sqlite3ExprCacheRemove(pParse, target, 1);
2858           sqlite3ExprCachePush(pParse);
2859           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2860           sqlite3ExprCachePop(pParse);
2861         }
2862         sqlite3VdbeResolveLabel(v, endCoalesce);
2863         break;
2864       }
2865 
2866       /* The UNLIKELY() function is a no-op.  The result is the value
2867       ** of the first argument.
2868       */
2869       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2870         assert( nFarg>=1 );
2871         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2872         break;
2873       }
2874 
2875       for(i=0; i<nFarg; i++){
2876         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2877           testcase( i==31 );
2878           constMask |= MASKBIT32(i);
2879         }
2880         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2881           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2882         }
2883       }
2884       if( pFarg ){
2885         if( constMask ){
2886           r1 = pParse->nMem+1;
2887           pParse->nMem += nFarg;
2888         }else{
2889           r1 = sqlite3GetTempRange(pParse, nFarg);
2890         }
2891 
2892         /* For length() and typeof() functions with a column argument,
2893         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2894         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2895         ** loading.
2896         */
2897         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2898           u8 exprOp;
2899           assert( nFarg==1 );
2900           assert( pFarg->a[0].pExpr!=0 );
2901           exprOp = pFarg->a[0].pExpr->op;
2902           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2903             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2904             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2905             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
2906             pFarg->a[0].pExpr->op2 =
2907                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
2908           }
2909         }
2910 
2911         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2912         sqlite3ExprCodeExprList(pParse, pFarg, r1,
2913                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
2914         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
2915       }else{
2916         r1 = 0;
2917       }
2918 #ifndef SQLITE_OMIT_VIRTUALTABLE
2919       /* Possibly overload the function if the first argument is
2920       ** a virtual table column.
2921       **
2922       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2923       ** second argument, not the first, as the argument to test to
2924       ** see if it is a column in a virtual table.  This is done because
2925       ** the left operand of infix functions (the operand we want to
2926       ** control overloading) ends up as the second argument to the
2927       ** function.  The expression "A glob B" is equivalent to
2928       ** "glob(B,A).  We want to use the A in "A glob B" to test
2929       ** for function overloading.  But we use the B term in "glob(B,A)".
2930       */
2931       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2932         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2933       }else if( nFarg>0 ){
2934         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2935       }
2936 #endif
2937       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
2938         if( !pColl ) pColl = db->pDfltColl;
2939         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2940       }
2941       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2942                         (char*)pDef, P4_FUNCDEF);
2943       sqlite3VdbeChangeP5(v, (u8)nFarg);
2944       if( nFarg && constMask==0 ){
2945         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2946       }
2947       break;
2948     }
2949 #ifndef SQLITE_OMIT_SUBQUERY
2950     case TK_EXISTS:
2951     case TK_SELECT: {
2952       testcase( op==TK_EXISTS );
2953       testcase( op==TK_SELECT );
2954       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2955       break;
2956     }
2957     case TK_IN: {
2958       int destIfFalse = sqlite3VdbeMakeLabel(v);
2959       int destIfNull = sqlite3VdbeMakeLabel(v);
2960       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2961       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2962       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2963       sqlite3VdbeResolveLabel(v, destIfFalse);
2964       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2965       sqlite3VdbeResolveLabel(v, destIfNull);
2966       break;
2967     }
2968 #endif /* SQLITE_OMIT_SUBQUERY */
2969 
2970 
2971     /*
2972     **    x BETWEEN y AND z
2973     **
2974     ** This is equivalent to
2975     **
2976     **    x>=y AND x<=z
2977     **
2978     ** X is stored in pExpr->pLeft.
2979     ** Y is stored in pExpr->pList->a[0].pExpr.
2980     ** Z is stored in pExpr->pList->a[1].pExpr.
2981     */
2982     case TK_BETWEEN: {
2983       Expr *pLeft = pExpr->pLeft;
2984       struct ExprList_item *pLItem = pExpr->x.pList->a;
2985       Expr *pRight = pLItem->pExpr;
2986 
2987       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2988       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2989       testcase( regFree1==0 );
2990       testcase( regFree2==0 );
2991       r3 = sqlite3GetTempReg(pParse);
2992       r4 = sqlite3GetTempReg(pParse);
2993       codeCompare(pParse, pLeft, pRight, OP_Ge,
2994                   r1, r2, r3, SQLITE_STOREP2);  VdbeCoverage(v);
2995       pLItem++;
2996       pRight = pLItem->pExpr;
2997       sqlite3ReleaseTempReg(pParse, regFree2);
2998       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2999       testcase( regFree2==0 );
3000       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
3001       VdbeCoverage(v);
3002       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
3003       sqlite3ReleaseTempReg(pParse, r3);
3004       sqlite3ReleaseTempReg(pParse, r4);
3005       break;
3006     }
3007     case TK_COLLATE:
3008     case TK_UPLUS: {
3009       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3010       break;
3011     }
3012 
3013     case TK_TRIGGER: {
3014       /* If the opcode is TK_TRIGGER, then the expression is a reference
3015       ** to a column in the new.* or old.* pseudo-tables available to
3016       ** trigger programs. In this case Expr.iTable is set to 1 for the
3017       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3018       ** is set to the column of the pseudo-table to read, or to -1 to
3019       ** read the rowid field.
3020       **
3021       ** The expression is implemented using an OP_Param opcode. The p1
3022       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3023       ** to reference another column of the old.* pseudo-table, where
3024       ** i is the index of the column. For a new.rowid reference, p1 is
3025       ** set to (n+1), where n is the number of columns in each pseudo-table.
3026       ** For a reference to any other column in the new.* pseudo-table, p1
3027       ** is set to (n+2+i), where n and i are as defined previously. For
3028       ** example, if the table on which triggers are being fired is
3029       ** declared as:
3030       **
3031       **   CREATE TABLE t1(a, b);
3032       **
3033       ** Then p1 is interpreted as follows:
3034       **
3035       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3036       **   p1==1   ->    old.a         p1==4   ->    new.a
3037       **   p1==2   ->    old.b         p1==5   ->    new.b
3038       */
3039       Table *pTab = pExpr->pTab;
3040       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3041 
3042       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3043       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3044       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3045       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3046 
3047       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3048       VdbeComment((v, "%s.%s -> $%d",
3049         (pExpr->iTable ? "new" : "old"),
3050         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3051         target
3052       ));
3053 
3054 #ifndef SQLITE_OMIT_FLOATING_POINT
3055       /* If the column has REAL affinity, it may currently be stored as an
3056       ** integer. Use OP_RealAffinity to make sure it is really real.
3057       **
3058       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3059       ** floating point when extracting it from the record.  */
3060       if( pExpr->iColumn>=0
3061        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3062       ){
3063         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3064       }
3065 #endif
3066       break;
3067     }
3068 
3069 
3070     /*
3071     ** Form A:
3072     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3073     **
3074     ** Form B:
3075     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3076     **
3077     ** Form A is can be transformed into the equivalent form B as follows:
3078     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3079     **        WHEN x=eN THEN rN ELSE y END
3080     **
3081     ** X (if it exists) is in pExpr->pLeft.
3082     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3083     ** odd.  The Y is also optional.  If the number of elements in x.pList
3084     ** is even, then Y is omitted and the "otherwise" result is NULL.
3085     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3086     **
3087     ** The result of the expression is the Ri for the first matching Ei,
3088     ** or if there is no matching Ei, the ELSE term Y, or if there is
3089     ** no ELSE term, NULL.
3090     */
3091     default: assert( op==TK_CASE ); {
3092       int endLabel;                     /* GOTO label for end of CASE stmt */
3093       int nextCase;                     /* GOTO label for next WHEN clause */
3094       int nExpr;                        /* 2x number of WHEN terms */
3095       int i;                            /* Loop counter */
3096       ExprList *pEList;                 /* List of WHEN terms */
3097       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3098       Expr opCompare;                   /* The X==Ei expression */
3099       Expr *pX;                         /* The X expression */
3100       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3101       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
3102 
3103       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3104       assert(pExpr->x.pList->nExpr > 0);
3105       pEList = pExpr->x.pList;
3106       aListelem = pEList->a;
3107       nExpr = pEList->nExpr;
3108       endLabel = sqlite3VdbeMakeLabel(v);
3109       if( (pX = pExpr->pLeft)!=0 ){
3110         tempX = *pX;
3111         testcase( pX->op==TK_COLUMN );
3112         exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
3113         testcase( regFree1==0 );
3114         opCompare.op = TK_EQ;
3115         opCompare.pLeft = &tempX;
3116         pTest = &opCompare;
3117         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3118         ** The value in regFree1 might get SCopy-ed into the file result.
3119         ** So make sure that the regFree1 register is not reused for other
3120         ** purposes and possibly overwritten.  */
3121         regFree1 = 0;
3122       }
3123       for(i=0; i<nExpr-1; i=i+2){
3124         sqlite3ExprCachePush(pParse);
3125         if( pX ){
3126           assert( pTest!=0 );
3127           opCompare.pRight = aListelem[i].pExpr;
3128         }else{
3129           pTest = aListelem[i].pExpr;
3130         }
3131         nextCase = sqlite3VdbeMakeLabel(v);
3132         testcase( pTest->op==TK_COLUMN );
3133         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3134         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3135         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3136         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
3137         sqlite3ExprCachePop(pParse);
3138         sqlite3VdbeResolveLabel(v, nextCase);
3139       }
3140       if( (nExpr&1)!=0 ){
3141         sqlite3ExprCachePush(pParse);
3142         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3143         sqlite3ExprCachePop(pParse);
3144       }else{
3145         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3146       }
3147       assert( db->mallocFailed || pParse->nErr>0
3148            || pParse->iCacheLevel==iCacheLevel );
3149       sqlite3VdbeResolveLabel(v, endLabel);
3150       break;
3151     }
3152 #ifndef SQLITE_OMIT_TRIGGER
3153     case TK_RAISE: {
3154       assert( pExpr->affinity==OE_Rollback
3155            || pExpr->affinity==OE_Abort
3156            || pExpr->affinity==OE_Fail
3157            || pExpr->affinity==OE_Ignore
3158       );
3159       if( !pParse->pTriggerTab ){
3160         sqlite3ErrorMsg(pParse,
3161                        "RAISE() may only be used within a trigger-program");
3162         return 0;
3163       }
3164       if( pExpr->affinity==OE_Abort ){
3165         sqlite3MayAbort(pParse);
3166       }
3167       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3168       if( pExpr->affinity==OE_Ignore ){
3169         sqlite3VdbeAddOp4(
3170             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3171         VdbeCoverage(v);
3172       }else{
3173         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3174                               pExpr->affinity, pExpr->u.zToken, 0, 0);
3175       }
3176 
3177       break;
3178     }
3179 #endif
3180   }
3181   sqlite3ReleaseTempReg(pParse, regFree1);
3182   sqlite3ReleaseTempReg(pParse, regFree2);
3183   return inReg;
3184 }
3185 
3186 /*
3187 ** Factor out the code of the given expression to initialization time.
3188 */
3189 void sqlite3ExprCodeAtInit(
3190   Parse *pParse,    /* Parsing context */
3191   Expr *pExpr,      /* The expression to code when the VDBE initializes */
3192   int regDest,      /* Store the value in this register */
3193   u8 reusable       /* True if this expression is reusable */
3194 ){
3195   ExprList *p;
3196   assert( ConstFactorOk(pParse) );
3197   p = pParse->pConstExpr;
3198   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3199   p = sqlite3ExprListAppend(pParse, p, pExpr);
3200   if( p ){
3201      struct ExprList_item *pItem = &p->a[p->nExpr-1];
3202      pItem->u.iConstExprReg = regDest;
3203      pItem->reusable = reusable;
3204   }
3205   pParse->pConstExpr = p;
3206 }
3207 
3208 /*
3209 ** Generate code to evaluate an expression and store the results
3210 ** into a register.  Return the register number where the results
3211 ** are stored.
3212 **
3213 ** If the register is a temporary register that can be deallocated,
3214 ** then write its number into *pReg.  If the result register is not
3215 ** a temporary, then set *pReg to zero.
3216 **
3217 ** If pExpr is a constant, then this routine might generate this
3218 ** code to fill the register in the initialization section of the
3219 ** VDBE program, in order to factor it out of the evaluation loop.
3220 */
3221 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3222   int r2;
3223   pExpr = sqlite3ExprSkipCollate(pExpr);
3224   if( ConstFactorOk(pParse)
3225    && pExpr->op!=TK_REGISTER
3226    && sqlite3ExprIsConstantNotJoin(pExpr)
3227   ){
3228     ExprList *p = pParse->pConstExpr;
3229     int i;
3230     *pReg  = 0;
3231     if( p ){
3232       struct ExprList_item *pItem;
3233       for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3234         if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3235           return pItem->u.iConstExprReg;
3236         }
3237       }
3238     }
3239     r2 = ++pParse->nMem;
3240     sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3241   }else{
3242     int r1 = sqlite3GetTempReg(pParse);
3243     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3244     if( r2==r1 ){
3245       *pReg = r1;
3246     }else{
3247       sqlite3ReleaseTempReg(pParse, r1);
3248       *pReg = 0;
3249     }
3250   }
3251   return r2;
3252 }
3253 
3254 /*
3255 ** Generate code that will evaluate expression pExpr and store the
3256 ** results in register target.  The results are guaranteed to appear
3257 ** in register target.
3258 */
3259 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3260   int inReg;
3261 
3262   assert( target>0 && target<=pParse->nMem );
3263   if( pExpr && pExpr->op==TK_REGISTER ){
3264     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3265   }else{
3266     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3267     assert( pParse->pVdbe || pParse->db->mallocFailed );
3268     if( inReg!=target && pParse->pVdbe ){
3269       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
3270     }
3271   }
3272 }
3273 
3274 /*
3275 ** Generate code that will evaluate expression pExpr and store the
3276 ** results in register target.  The results are guaranteed to appear
3277 ** in register target.  If the expression is constant, then this routine
3278 ** might choose to code the expression at initialization time.
3279 */
3280 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
3281   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
3282     sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
3283   }else{
3284     sqlite3ExprCode(pParse, pExpr, target);
3285   }
3286 }
3287 
3288 /*
3289 ** Generate code that evaluates the given expression and puts the result
3290 ** in register target.
3291 **
3292 ** Also make a copy of the expression results into another "cache" register
3293 ** and modify the expression so that the next time it is evaluated,
3294 ** the result is a copy of the cache register.
3295 **
3296 ** This routine is used for expressions that are used multiple
3297 ** times.  They are evaluated once and the results of the expression
3298 ** are reused.
3299 */
3300 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3301   Vdbe *v = pParse->pVdbe;
3302   int iMem;
3303 
3304   assert( target>0 );
3305   assert( pExpr->op!=TK_REGISTER );
3306   sqlite3ExprCode(pParse, pExpr, target);
3307   iMem = ++pParse->nMem;
3308   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
3309   exprToRegister(pExpr, iMem);
3310 }
3311 
3312 #ifdef SQLITE_DEBUG
3313 /*
3314 ** Generate a human-readable explanation of an expression tree.
3315 */
3316 void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){
3317   const char *zBinOp = 0;   /* Binary operator */
3318   const char *zUniOp = 0;   /* Unary operator */
3319   pView = sqlite3TreeViewPush(pView, moreToFollow);
3320   if( pExpr==0 ){
3321     sqlite3TreeViewLine(pView, "nil");
3322     sqlite3TreeViewPop(pView);
3323     return;
3324   }
3325   switch( pExpr->op ){
3326     case TK_AGG_COLUMN: {
3327       sqlite3TreeViewLine(pView, "AGG{%d:%d}",
3328             pExpr->iTable, pExpr->iColumn);
3329       break;
3330     }
3331     case TK_COLUMN: {
3332       if( pExpr->iTable<0 ){
3333         /* This only happens when coding check constraints */
3334         sqlite3TreeViewLine(pView, "COLUMN(%d)", pExpr->iColumn);
3335       }else{
3336         sqlite3TreeViewLine(pView, "{%d:%d}",
3337                              pExpr->iTable, pExpr->iColumn);
3338       }
3339       break;
3340     }
3341     case TK_INTEGER: {
3342       if( pExpr->flags & EP_IntValue ){
3343         sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue);
3344       }else{
3345         sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken);
3346       }
3347       break;
3348     }
3349 #ifndef SQLITE_OMIT_FLOATING_POINT
3350     case TK_FLOAT: {
3351       sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
3352       break;
3353     }
3354 #endif
3355     case TK_STRING: {
3356       sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken);
3357       break;
3358     }
3359     case TK_NULL: {
3360       sqlite3TreeViewLine(pView,"NULL");
3361       break;
3362     }
3363 #ifndef SQLITE_OMIT_BLOB_LITERAL
3364     case TK_BLOB: {
3365       sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
3366       break;
3367     }
3368 #endif
3369     case TK_VARIABLE: {
3370       sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)",
3371                           pExpr->u.zToken, pExpr->iColumn);
3372       break;
3373     }
3374     case TK_REGISTER: {
3375       sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable);
3376       break;
3377     }
3378     case TK_AS: {
3379       sqlite3TreeViewLine(pView,"AS %Q", pExpr->u.zToken);
3380       sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3381       break;
3382     }
3383     case TK_ID: {
3384       sqlite3TreeViewLine(pView,"ID %Q", pExpr->u.zToken);
3385       break;
3386     }
3387 #ifndef SQLITE_OMIT_CAST
3388     case TK_CAST: {
3389       /* Expressions of the form:   CAST(pLeft AS token) */
3390       sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken);
3391       sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3392       break;
3393     }
3394 #endif /* SQLITE_OMIT_CAST */
3395     case TK_LT:      zBinOp = "LT";     break;
3396     case TK_LE:      zBinOp = "LE";     break;
3397     case TK_GT:      zBinOp = "GT";     break;
3398     case TK_GE:      zBinOp = "GE";     break;
3399     case TK_NE:      zBinOp = "NE";     break;
3400     case TK_EQ:      zBinOp = "EQ";     break;
3401     case TK_IS:      zBinOp = "IS";     break;
3402     case TK_ISNOT:   zBinOp = "ISNOT";  break;
3403     case TK_AND:     zBinOp = "AND";    break;
3404     case TK_OR:      zBinOp = "OR";     break;
3405     case TK_PLUS:    zBinOp = "ADD";    break;
3406     case TK_STAR:    zBinOp = "MUL";    break;
3407     case TK_MINUS:   zBinOp = "SUB";    break;
3408     case TK_REM:     zBinOp = "REM";    break;
3409     case TK_BITAND:  zBinOp = "BITAND"; break;
3410     case TK_BITOR:   zBinOp = "BITOR";  break;
3411     case TK_SLASH:   zBinOp = "DIV";    break;
3412     case TK_LSHIFT:  zBinOp = "LSHIFT"; break;
3413     case TK_RSHIFT:  zBinOp = "RSHIFT"; break;
3414     case TK_CONCAT:  zBinOp = "CONCAT"; break;
3415     case TK_DOT:     zBinOp = "DOT";    break;
3416 
3417     case TK_UMINUS:  zUniOp = "UMINUS"; break;
3418     case TK_UPLUS:   zUniOp = "UPLUS";  break;
3419     case TK_BITNOT:  zUniOp = "BITNOT"; break;
3420     case TK_NOT:     zUniOp = "NOT";    break;
3421     case TK_ISNULL:  zUniOp = "ISNULL"; break;
3422     case TK_NOTNULL: zUniOp = "NOTNULL"; break;
3423 
3424     case TK_COLLATE: {
3425       sqlite3TreeViewLine(pView, "COLLATE %Q", pExpr->u.zToken);
3426       sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3427       break;
3428     }
3429 
3430     case TK_AGG_FUNCTION:
3431     case TK_FUNCTION: {
3432       ExprList *pFarg;       /* List of function arguments */
3433       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3434         pFarg = 0;
3435       }else{
3436         pFarg = pExpr->x.pList;
3437       }
3438       if( pExpr->op==TK_AGG_FUNCTION ){
3439         sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q",
3440                              pExpr->op2, pExpr->u.zToken);
3441       }else{
3442         sqlite3TreeViewLine(pView, "FUNCTION %Q", pExpr->u.zToken);
3443       }
3444       if( pFarg ){
3445         sqlite3TreeViewExprList(pView, pFarg, 0, 0);
3446       }
3447       break;
3448     }
3449 #ifndef SQLITE_OMIT_SUBQUERY
3450     case TK_EXISTS: {
3451       sqlite3TreeViewLine(pView, "EXISTS-expr");
3452       sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3453       break;
3454     }
3455     case TK_SELECT: {
3456       sqlite3TreeViewLine(pView, "SELECT-expr");
3457       sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3458       break;
3459     }
3460     case TK_IN: {
3461       sqlite3TreeViewLine(pView, "IN");
3462       sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3463       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3464         sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3465       }else{
3466         sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
3467       }
3468       break;
3469     }
3470 #endif /* SQLITE_OMIT_SUBQUERY */
3471 
3472     /*
3473     **    x BETWEEN y AND z
3474     **
3475     ** This is equivalent to
3476     **
3477     **    x>=y AND x<=z
3478     **
3479     ** X is stored in pExpr->pLeft.
3480     ** Y is stored in pExpr->pList->a[0].pExpr.
3481     ** Z is stored in pExpr->pList->a[1].pExpr.
3482     */
3483     case TK_BETWEEN: {
3484       Expr *pX = pExpr->pLeft;
3485       Expr *pY = pExpr->x.pList->a[0].pExpr;
3486       Expr *pZ = pExpr->x.pList->a[1].pExpr;
3487       sqlite3TreeViewLine(pView, "BETWEEN");
3488       sqlite3TreeViewExpr(pView, pX, 1);
3489       sqlite3TreeViewExpr(pView, pY, 1);
3490       sqlite3TreeViewExpr(pView, pZ, 0);
3491       break;
3492     }
3493     case TK_TRIGGER: {
3494       /* If the opcode is TK_TRIGGER, then the expression is a reference
3495       ** to a column in the new.* or old.* pseudo-tables available to
3496       ** trigger programs. In this case Expr.iTable is set to 1 for the
3497       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3498       ** is set to the column of the pseudo-table to read, or to -1 to
3499       ** read the rowid field.
3500       */
3501       sqlite3TreeViewLine(pView, "%s(%d)",
3502           pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
3503       break;
3504     }
3505     case TK_CASE: {
3506       sqlite3TreeViewLine(pView, "CASE");
3507       sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3508       sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
3509       break;
3510     }
3511 #ifndef SQLITE_OMIT_TRIGGER
3512     case TK_RAISE: {
3513       const char *zType = "unk";
3514       switch( pExpr->affinity ){
3515         case OE_Rollback:   zType = "rollback";  break;
3516         case OE_Abort:      zType = "abort";     break;
3517         case OE_Fail:       zType = "fail";      break;
3518         case OE_Ignore:     zType = "ignore";    break;
3519       }
3520       sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken);
3521       break;
3522     }
3523 #endif
3524     default: {
3525       sqlite3TreeViewLine(pView, "op=%d", pExpr->op);
3526       break;
3527     }
3528   }
3529   if( zBinOp ){
3530     sqlite3TreeViewLine(pView, "%s", zBinOp);
3531     sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3532     sqlite3TreeViewExpr(pView, pExpr->pRight, 0);
3533   }else if( zUniOp ){
3534     sqlite3TreeViewLine(pView, "%s", zUniOp);
3535     sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3536   }
3537   sqlite3TreeViewPop(pView);
3538 }
3539 #endif /* SQLITE_DEBUG */
3540 
3541 #ifdef SQLITE_DEBUG
3542 /*
3543 ** Generate a human-readable explanation of an expression list.
3544 */
3545 void sqlite3TreeViewExprList(
3546   TreeView *pView,
3547   const ExprList *pList,
3548   u8 moreToFollow,
3549   const char *zLabel
3550 ){
3551   int i;
3552   pView = sqlite3TreeViewPush(pView, moreToFollow);
3553   if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST";
3554   if( pList==0 ){
3555     sqlite3TreeViewLine(pView, "%s (empty)", zLabel);
3556   }else{
3557     sqlite3TreeViewLine(pView, "%s", zLabel);
3558     for(i=0; i<pList->nExpr; i++){
3559       sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1);
3560 #if 0
3561      if( pList->a[i].zName ){
3562         sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
3563       }
3564       if( pList->a[i].bSpanIsTab ){
3565         sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
3566       }
3567 #endif
3568     }
3569   }
3570   sqlite3TreeViewPop(pView);
3571 }
3572 #endif /* SQLITE_DEBUG */
3573 
3574 /*
3575 ** Generate code that pushes the value of every element of the given
3576 ** expression list into a sequence of registers beginning at target.
3577 **
3578 ** Return the number of elements evaluated.
3579 **
3580 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3581 ** filled using OP_SCopy.  OP_Copy must be used instead.
3582 **
3583 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3584 ** factored out into initialization code.
3585 */
3586 int sqlite3ExprCodeExprList(
3587   Parse *pParse,     /* Parsing context */
3588   ExprList *pList,   /* The expression list to be coded */
3589   int target,        /* Where to write results */
3590   u8 flags           /* SQLITE_ECEL_* flags */
3591 ){
3592   struct ExprList_item *pItem;
3593   int i, n;
3594   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3595   assert( pList!=0 );
3596   assert( target>0 );
3597   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3598   n = pList->nExpr;
3599   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3600   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3601     Expr *pExpr = pItem->pExpr;
3602     if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3603       sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3604     }else{
3605       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3606       if( inReg!=target+i ){
3607         VdbeOp *pOp;
3608         Vdbe *v = pParse->pVdbe;
3609         if( copyOp==OP_Copy
3610          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3611          && pOp->p1+pOp->p3+1==inReg
3612          && pOp->p2+pOp->p3+1==target+i
3613         ){
3614           pOp->p3++;
3615         }else{
3616           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3617         }
3618       }
3619     }
3620   }
3621   return n;
3622 }
3623 
3624 /*
3625 ** Generate code for a BETWEEN operator.
3626 **
3627 **    x BETWEEN y AND z
3628 **
3629 ** The above is equivalent to
3630 **
3631 **    x>=y AND x<=z
3632 **
3633 ** Code it as such, taking care to do the common subexpression
3634 ** elimination of x.
3635 */
3636 static void exprCodeBetween(
3637   Parse *pParse,    /* Parsing and code generating context */
3638   Expr *pExpr,      /* The BETWEEN expression */
3639   int dest,         /* Jump here if the jump is taken */
3640   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3641   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3642 ){
3643   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3644   Expr compLeft;    /* The  x>=y  term */
3645   Expr compRight;   /* The  x<=z  term */
3646   Expr exprX;       /* The  x  subexpression */
3647   int regFree1 = 0; /* Temporary use register */
3648 
3649   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3650   exprX = *pExpr->pLeft;
3651   exprAnd.op = TK_AND;
3652   exprAnd.pLeft = &compLeft;
3653   exprAnd.pRight = &compRight;
3654   compLeft.op = TK_GE;
3655   compLeft.pLeft = &exprX;
3656   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3657   compRight.op = TK_LE;
3658   compRight.pLeft = &exprX;
3659   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3660   exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3661   if( jumpIfTrue ){
3662     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3663   }else{
3664     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3665   }
3666   sqlite3ReleaseTempReg(pParse, regFree1);
3667 
3668   /* Ensure adequate test coverage */
3669   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3670   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3671   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3672   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3673   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3674   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3675   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3676   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3677 }
3678 
3679 /*
3680 ** Generate code for a boolean expression such that a jump is made
3681 ** to the label "dest" if the expression is true but execution
3682 ** continues straight thru if the expression is false.
3683 **
3684 ** If the expression evaluates to NULL (neither true nor false), then
3685 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3686 **
3687 ** This code depends on the fact that certain token values (ex: TK_EQ)
3688 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3689 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3690 ** the make process cause these values to align.  Assert()s in the code
3691 ** below verify that the numbers are aligned correctly.
3692 */
3693 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3694   Vdbe *v = pParse->pVdbe;
3695   int op = 0;
3696   int regFree1 = 0;
3697   int regFree2 = 0;
3698   int r1, r2;
3699 
3700   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3701   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
3702   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3703   op = pExpr->op;
3704   switch( op ){
3705     case TK_AND: {
3706       int d2 = sqlite3VdbeMakeLabel(v);
3707       testcase( jumpIfNull==0 );
3708       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3709       sqlite3ExprCachePush(pParse);
3710       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3711       sqlite3VdbeResolveLabel(v, d2);
3712       sqlite3ExprCachePop(pParse);
3713       break;
3714     }
3715     case TK_OR: {
3716       testcase( jumpIfNull==0 );
3717       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3718       sqlite3ExprCachePush(pParse);
3719       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3720       sqlite3ExprCachePop(pParse);
3721       break;
3722     }
3723     case TK_NOT: {
3724       testcase( jumpIfNull==0 );
3725       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3726       break;
3727     }
3728     case TK_LT:
3729     case TK_LE:
3730     case TK_GT:
3731     case TK_GE:
3732     case TK_NE:
3733     case TK_EQ: {
3734       testcase( jumpIfNull==0 );
3735       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3736       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3737       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3738                   r1, r2, dest, jumpIfNull);
3739       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3740       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3741       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3742       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3743       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3744       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3745       testcase( regFree1==0 );
3746       testcase( regFree2==0 );
3747       break;
3748     }
3749     case TK_IS:
3750     case TK_ISNOT: {
3751       testcase( op==TK_IS );
3752       testcase( op==TK_ISNOT );
3753       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3754       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3755       op = (op==TK_IS) ? TK_EQ : TK_NE;
3756       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3757                   r1, r2, dest, SQLITE_NULLEQ);
3758       VdbeCoverageIf(v, op==TK_EQ);
3759       VdbeCoverageIf(v, op==TK_NE);
3760       testcase( regFree1==0 );
3761       testcase( regFree2==0 );
3762       break;
3763     }
3764     case TK_ISNULL:
3765     case TK_NOTNULL: {
3766       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3767       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3768       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3769       sqlite3VdbeAddOp2(v, op, r1, dest);
3770       VdbeCoverageIf(v, op==TK_ISNULL);
3771       VdbeCoverageIf(v, op==TK_NOTNULL);
3772       testcase( regFree1==0 );
3773       break;
3774     }
3775     case TK_BETWEEN: {
3776       testcase( jumpIfNull==0 );
3777       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3778       break;
3779     }
3780 #ifndef SQLITE_OMIT_SUBQUERY
3781     case TK_IN: {
3782       int destIfFalse = sqlite3VdbeMakeLabel(v);
3783       int destIfNull = jumpIfNull ? dest : destIfFalse;
3784       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3785       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3786       sqlite3VdbeResolveLabel(v, destIfFalse);
3787       break;
3788     }
3789 #endif
3790     default: {
3791       if( exprAlwaysTrue(pExpr) ){
3792         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3793       }else if( exprAlwaysFalse(pExpr) ){
3794         /* No-op */
3795       }else{
3796         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3797         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3798         VdbeCoverage(v);
3799         testcase( regFree1==0 );
3800         testcase( jumpIfNull==0 );
3801       }
3802       break;
3803     }
3804   }
3805   sqlite3ReleaseTempReg(pParse, regFree1);
3806   sqlite3ReleaseTempReg(pParse, regFree2);
3807 }
3808 
3809 /*
3810 ** Generate code for a boolean expression such that a jump is made
3811 ** to the label "dest" if the expression is false but execution
3812 ** continues straight thru if the expression is true.
3813 **
3814 ** If the expression evaluates to NULL (neither true nor false) then
3815 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3816 ** is 0.
3817 */
3818 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3819   Vdbe *v = pParse->pVdbe;
3820   int op = 0;
3821   int regFree1 = 0;
3822   int regFree2 = 0;
3823   int r1, r2;
3824 
3825   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3826   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3827   if( pExpr==0 )    return;
3828 
3829   /* The value of pExpr->op and op are related as follows:
3830   **
3831   **       pExpr->op            op
3832   **       ---------          ----------
3833   **       TK_ISNULL          OP_NotNull
3834   **       TK_NOTNULL         OP_IsNull
3835   **       TK_NE              OP_Eq
3836   **       TK_EQ              OP_Ne
3837   **       TK_GT              OP_Le
3838   **       TK_LE              OP_Gt
3839   **       TK_GE              OP_Lt
3840   **       TK_LT              OP_Ge
3841   **
3842   ** For other values of pExpr->op, op is undefined and unused.
3843   ** The value of TK_ and OP_ constants are arranged such that we
3844   ** can compute the mapping above using the following expression.
3845   ** Assert()s verify that the computation is correct.
3846   */
3847   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3848 
3849   /* Verify correct alignment of TK_ and OP_ constants
3850   */
3851   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3852   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3853   assert( pExpr->op!=TK_NE || op==OP_Eq );
3854   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3855   assert( pExpr->op!=TK_LT || op==OP_Ge );
3856   assert( pExpr->op!=TK_LE || op==OP_Gt );
3857   assert( pExpr->op!=TK_GT || op==OP_Le );
3858   assert( pExpr->op!=TK_GE || op==OP_Lt );
3859 
3860   switch( pExpr->op ){
3861     case TK_AND: {
3862       testcase( jumpIfNull==0 );
3863       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3864       sqlite3ExprCachePush(pParse);
3865       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3866       sqlite3ExprCachePop(pParse);
3867       break;
3868     }
3869     case TK_OR: {
3870       int d2 = sqlite3VdbeMakeLabel(v);
3871       testcase( jumpIfNull==0 );
3872       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3873       sqlite3ExprCachePush(pParse);
3874       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3875       sqlite3VdbeResolveLabel(v, d2);
3876       sqlite3ExprCachePop(pParse);
3877       break;
3878     }
3879     case TK_NOT: {
3880       testcase( jumpIfNull==0 );
3881       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3882       break;
3883     }
3884     case TK_LT:
3885     case TK_LE:
3886     case TK_GT:
3887     case TK_GE:
3888     case TK_NE:
3889     case TK_EQ: {
3890       testcase( jumpIfNull==0 );
3891       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3892       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3893       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3894                   r1, r2, dest, jumpIfNull);
3895       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3896       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3897       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3898       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3899       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3900       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3901       testcase( regFree1==0 );
3902       testcase( regFree2==0 );
3903       break;
3904     }
3905     case TK_IS:
3906     case TK_ISNOT: {
3907       testcase( pExpr->op==TK_IS );
3908       testcase( pExpr->op==TK_ISNOT );
3909       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3910       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3911       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3912       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3913                   r1, r2, dest, SQLITE_NULLEQ);
3914       VdbeCoverageIf(v, op==TK_EQ);
3915       VdbeCoverageIf(v, op==TK_NE);
3916       testcase( regFree1==0 );
3917       testcase( regFree2==0 );
3918       break;
3919     }
3920     case TK_ISNULL:
3921     case TK_NOTNULL: {
3922       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3923       sqlite3VdbeAddOp2(v, op, r1, dest);
3924       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
3925       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
3926       testcase( regFree1==0 );
3927       break;
3928     }
3929     case TK_BETWEEN: {
3930       testcase( jumpIfNull==0 );
3931       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3932       break;
3933     }
3934 #ifndef SQLITE_OMIT_SUBQUERY
3935     case TK_IN: {
3936       if( jumpIfNull ){
3937         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3938       }else{
3939         int destIfNull = sqlite3VdbeMakeLabel(v);
3940         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3941         sqlite3VdbeResolveLabel(v, destIfNull);
3942       }
3943       break;
3944     }
3945 #endif
3946     default: {
3947       if( exprAlwaysFalse(pExpr) ){
3948         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3949       }else if( exprAlwaysTrue(pExpr) ){
3950         /* no-op */
3951       }else{
3952         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3953         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3954         VdbeCoverage(v);
3955         testcase( regFree1==0 );
3956         testcase( jumpIfNull==0 );
3957       }
3958       break;
3959     }
3960   }
3961   sqlite3ReleaseTempReg(pParse, regFree1);
3962   sqlite3ReleaseTempReg(pParse, regFree2);
3963 }
3964 
3965 /*
3966 ** Do a deep comparison of two expression trees.  Return 0 if the two
3967 ** expressions are completely identical.  Return 1 if they differ only
3968 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3969 ** other than the top-level COLLATE operator.
3970 **
3971 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3972 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3973 **
3974 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
3975 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3976 **
3977 ** Sometimes this routine will return 2 even if the two expressions
3978 ** really are equivalent.  If we cannot prove that the expressions are
3979 ** identical, we return 2 just to be safe.  So if this routine
3980 ** returns 2, then you do not really know for certain if the two
3981 ** expressions are the same.  But if you get a 0 or 1 return, then you
3982 ** can be sure the expressions are the same.  In the places where
3983 ** this routine is used, it does not hurt to get an extra 2 - that
3984 ** just might result in some slightly slower code.  But returning
3985 ** an incorrect 0 or 1 could lead to a malfunction.
3986 */
3987 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3988   u32 combinedFlags;
3989   if( pA==0 || pB==0 ){
3990     return pB==pA ? 0 : 2;
3991   }
3992   combinedFlags = pA->flags | pB->flags;
3993   if( combinedFlags & EP_IntValue ){
3994     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3995       return 0;
3996     }
3997     return 2;
3998   }
3999   if( pA->op!=pB->op ){
4000     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
4001       return 1;
4002     }
4003     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
4004       return 1;
4005     }
4006     return 2;
4007   }
4008   if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){
4009     if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4010       return pA->op==TK_COLLATE ? 1 : 2;
4011     }
4012   }
4013   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4014   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
4015     if( combinedFlags & EP_xIsSelect ) return 2;
4016     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
4017     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
4018     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4019     if( ALWAYS((combinedFlags & EP_Reduced)==0) ){
4020       if( pA->iColumn!=pB->iColumn ) return 2;
4021       if( pA->iTable!=pB->iTable
4022        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4023     }
4024   }
4025   return 0;
4026 }
4027 
4028 /*
4029 ** Compare two ExprList objects.  Return 0 if they are identical and
4030 ** non-zero if they differ in any way.
4031 **
4032 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4033 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4034 **
4035 ** This routine might return non-zero for equivalent ExprLists.  The
4036 ** only consequence will be disabled optimizations.  But this routine
4037 ** must never return 0 if the two ExprList objects are different, or
4038 ** a malfunction will result.
4039 **
4040 ** Two NULL pointers are considered to be the same.  But a NULL pointer
4041 ** always differs from a non-NULL pointer.
4042 */
4043 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4044   int i;
4045   if( pA==0 && pB==0 ) return 0;
4046   if( pA==0 || pB==0 ) return 1;
4047   if( pA->nExpr!=pB->nExpr ) return 1;
4048   for(i=0; i<pA->nExpr; i++){
4049     Expr *pExprA = pA->a[i].pExpr;
4050     Expr *pExprB = pB->a[i].pExpr;
4051     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4052     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
4053   }
4054   return 0;
4055 }
4056 
4057 /*
4058 ** Return true if we can prove the pE2 will always be true if pE1 is
4059 ** true.  Return false if we cannot complete the proof or if pE2 might
4060 ** be false.  Examples:
4061 **
4062 **     pE1: x==5       pE2: x==5             Result: true
4063 **     pE1: x>0        pE2: x==5             Result: false
4064 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
4065 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
4066 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
4067 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
4068 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
4069 **
4070 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
4071 ** Expr.iTable<0 then assume a table number given by iTab.
4072 **
4073 ** When in doubt, return false.  Returning true might give a performance
4074 ** improvement.  Returning false might cause a performance reduction, but
4075 ** it will always give the correct answer and is hence always safe.
4076 */
4077 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
4078   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
4079     return 1;
4080   }
4081   if( pE2->op==TK_OR
4082    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
4083              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
4084   ){
4085     return 1;
4086   }
4087   if( pE2->op==TK_NOTNULL
4088    && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
4089    && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
4090   ){
4091     return 1;
4092   }
4093   return 0;
4094 }
4095 
4096 /*
4097 ** An instance of the following structure is used by the tree walker
4098 ** to count references to table columns in the arguments of an
4099 ** aggregate function, in order to implement the
4100 ** sqlite3FunctionThisSrc() routine.
4101 */
4102 struct SrcCount {
4103   SrcList *pSrc;   /* One particular FROM clause in a nested query */
4104   int nThis;       /* Number of references to columns in pSrcList */
4105   int nOther;      /* Number of references to columns in other FROM clauses */
4106 };
4107 
4108 /*
4109 ** Count the number of references to columns.
4110 */
4111 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
4112   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
4113   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
4114   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
4115   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
4116   ** NEVER() will need to be removed. */
4117   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
4118     int i;
4119     struct SrcCount *p = pWalker->u.pSrcCount;
4120     SrcList *pSrc = p->pSrc;
4121     int nSrc = pSrc ? pSrc->nSrc : 0;
4122     for(i=0; i<nSrc; i++){
4123       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
4124     }
4125     if( i<nSrc ){
4126       p->nThis++;
4127     }else{
4128       p->nOther++;
4129     }
4130   }
4131   return WRC_Continue;
4132 }
4133 
4134 /*
4135 ** Determine if any of the arguments to the pExpr Function reference
4136 ** pSrcList.  Return true if they do.  Also return true if the function
4137 ** has no arguments or has only constant arguments.  Return false if pExpr
4138 ** references columns but not columns of tables found in pSrcList.
4139 */
4140 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
4141   Walker w;
4142   struct SrcCount cnt;
4143   assert( pExpr->op==TK_AGG_FUNCTION );
4144   memset(&w, 0, sizeof(w));
4145   w.xExprCallback = exprSrcCount;
4146   w.u.pSrcCount = &cnt;
4147   cnt.pSrc = pSrcList;
4148   cnt.nThis = 0;
4149   cnt.nOther = 0;
4150   sqlite3WalkExprList(&w, pExpr->x.pList);
4151   return cnt.nThis>0 || cnt.nOther==0;
4152 }
4153 
4154 /*
4155 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
4156 ** the new element.  Return a negative number if malloc fails.
4157 */
4158 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
4159   int i;
4160   pInfo->aCol = sqlite3ArrayAllocate(
4161        db,
4162        pInfo->aCol,
4163        sizeof(pInfo->aCol[0]),
4164        &pInfo->nColumn,
4165        &i
4166   );
4167   return i;
4168 }
4169 
4170 /*
4171 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
4172 ** the new element.  Return a negative number if malloc fails.
4173 */
4174 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
4175   int i;
4176   pInfo->aFunc = sqlite3ArrayAllocate(
4177        db,
4178        pInfo->aFunc,
4179        sizeof(pInfo->aFunc[0]),
4180        &pInfo->nFunc,
4181        &i
4182   );
4183   return i;
4184 }
4185 
4186 /*
4187 ** This is the xExprCallback for a tree walker.  It is used to
4188 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
4189 ** for additional information.
4190 */
4191 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4192   int i;
4193   NameContext *pNC = pWalker->u.pNC;
4194   Parse *pParse = pNC->pParse;
4195   SrcList *pSrcList = pNC->pSrcList;
4196   AggInfo *pAggInfo = pNC->pAggInfo;
4197 
4198   switch( pExpr->op ){
4199     case TK_AGG_COLUMN:
4200     case TK_COLUMN: {
4201       testcase( pExpr->op==TK_AGG_COLUMN );
4202       testcase( pExpr->op==TK_COLUMN );
4203       /* Check to see if the column is in one of the tables in the FROM
4204       ** clause of the aggregate query */
4205       if( ALWAYS(pSrcList!=0) ){
4206         struct SrcList_item *pItem = pSrcList->a;
4207         for(i=0; i<pSrcList->nSrc; i++, pItem++){
4208           struct AggInfo_col *pCol;
4209           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4210           if( pExpr->iTable==pItem->iCursor ){
4211             /* If we reach this point, it means that pExpr refers to a table
4212             ** that is in the FROM clause of the aggregate query.
4213             **
4214             ** Make an entry for the column in pAggInfo->aCol[] if there
4215             ** is not an entry there already.
4216             */
4217             int k;
4218             pCol = pAggInfo->aCol;
4219             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4220               if( pCol->iTable==pExpr->iTable &&
4221                   pCol->iColumn==pExpr->iColumn ){
4222                 break;
4223               }
4224             }
4225             if( (k>=pAggInfo->nColumn)
4226              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4227             ){
4228               pCol = &pAggInfo->aCol[k];
4229               pCol->pTab = pExpr->pTab;
4230               pCol->iTable = pExpr->iTable;
4231               pCol->iColumn = pExpr->iColumn;
4232               pCol->iMem = ++pParse->nMem;
4233               pCol->iSorterColumn = -1;
4234               pCol->pExpr = pExpr;
4235               if( pAggInfo->pGroupBy ){
4236                 int j, n;
4237                 ExprList *pGB = pAggInfo->pGroupBy;
4238                 struct ExprList_item *pTerm = pGB->a;
4239                 n = pGB->nExpr;
4240                 for(j=0; j<n; j++, pTerm++){
4241                   Expr *pE = pTerm->pExpr;
4242                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4243                       pE->iColumn==pExpr->iColumn ){
4244                     pCol->iSorterColumn = j;
4245                     break;
4246                   }
4247                 }
4248               }
4249               if( pCol->iSorterColumn<0 ){
4250                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4251               }
4252             }
4253             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4254             ** because it was there before or because we just created it).
4255             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4256             ** pAggInfo->aCol[] entry.
4257             */
4258             ExprSetVVAProperty(pExpr, EP_NoReduce);
4259             pExpr->pAggInfo = pAggInfo;
4260             pExpr->op = TK_AGG_COLUMN;
4261             pExpr->iAgg = (i16)k;
4262             break;
4263           } /* endif pExpr->iTable==pItem->iCursor */
4264         } /* end loop over pSrcList */
4265       }
4266       return WRC_Prune;
4267     }
4268     case TK_AGG_FUNCTION: {
4269       if( (pNC->ncFlags & NC_InAggFunc)==0
4270        && pWalker->walkerDepth==pExpr->op2
4271       ){
4272         /* Check to see if pExpr is a duplicate of another aggregate
4273         ** function that is already in the pAggInfo structure
4274         */
4275         struct AggInfo_func *pItem = pAggInfo->aFunc;
4276         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4277           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4278             break;
4279           }
4280         }
4281         if( i>=pAggInfo->nFunc ){
4282           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4283           */
4284           u8 enc = ENC(pParse->db);
4285           i = addAggInfoFunc(pParse->db, pAggInfo);
4286           if( i>=0 ){
4287             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4288             pItem = &pAggInfo->aFunc[i];
4289             pItem->pExpr = pExpr;
4290             pItem->iMem = ++pParse->nMem;
4291             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4292             pItem->pFunc = sqlite3FindFunction(pParse->db,
4293                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4294                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4295             if( pExpr->flags & EP_Distinct ){
4296               pItem->iDistinct = pParse->nTab++;
4297             }else{
4298               pItem->iDistinct = -1;
4299             }
4300           }
4301         }
4302         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4303         */
4304         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4305         ExprSetVVAProperty(pExpr, EP_NoReduce);
4306         pExpr->iAgg = (i16)i;
4307         pExpr->pAggInfo = pAggInfo;
4308         return WRC_Prune;
4309       }else{
4310         return WRC_Continue;
4311       }
4312     }
4313   }
4314   return WRC_Continue;
4315 }
4316 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4317   UNUSED_PARAMETER(pWalker);
4318   UNUSED_PARAMETER(pSelect);
4319   return WRC_Continue;
4320 }
4321 
4322 /*
4323 ** Analyze the pExpr expression looking for aggregate functions and
4324 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4325 ** points to.  Additional entries are made on the AggInfo object as
4326 ** necessary.
4327 **
4328 ** This routine should only be called after the expression has been
4329 ** analyzed by sqlite3ResolveExprNames().
4330 */
4331 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4332   Walker w;
4333   memset(&w, 0, sizeof(w));
4334   w.xExprCallback = analyzeAggregate;
4335   w.xSelectCallback = analyzeAggregatesInSelect;
4336   w.u.pNC = pNC;
4337   assert( pNC->pSrcList!=0 );
4338   sqlite3WalkExpr(&w, pExpr);
4339 }
4340 
4341 /*
4342 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4343 ** expression list.  Return the number of errors.
4344 **
4345 ** If an error is found, the analysis is cut short.
4346 */
4347 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4348   struct ExprList_item *pItem;
4349   int i;
4350   if( pList ){
4351     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4352       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4353     }
4354   }
4355 }
4356 
4357 /*
4358 ** Allocate a single new register for use to hold some intermediate result.
4359 */
4360 int sqlite3GetTempReg(Parse *pParse){
4361   if( pParse->nTempReg==0 ){
4362     return ++pParse->nMem;
4363   }
4364   return pParse->aTempReg[--pParse->nTempReg];
4365 }
4366 
4367 /*
4368 ** Deallocate a register, making available for reuse for some other
4369 ** purpose.
4370 **
4371 ** If a register is currently being used by the column cache, then
4372 ** the deallocation is deferred until the column cache line that uses
4373 ** the register becomes stale.
4374 */
4375 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4376   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4377     int i;
4378     struct yColCache *p;
4379     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4380       if( p->iReg==iReg ){
4381         p->tempReg = 1;
4382         return;
4383       }
4384     }
4385     pParse->aTempReg[pParse->nTempReg++] = iReg;
4386   }
4387 }
4388 
4389 /*
4390 ** Allocate or deallocate a block of nReg consecutive registers
4391 */
4392 int sqlite3GetTempRange(Parse *pParse, int nReg){
4393   int i, n;
4394   i = pParse->iRangeReg;
4395   n = pParse->nRangeReg;
4396   if( nReg<=n ){
4397     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4398     pParse->iRangeReg += nReg;
4399     pParse->nRangeReg -= nReg;
4400   }else{
4401     i = pParse->nMem+1;
4402     pParse->nMem += nReg;
4403   }
4404   return i;
4405 }
4406 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4407   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4408   if( nReg>pParse->nRangeReg ){
4409     pParse->nRangeReg = nReg;
4410     pParse->iRangeReg = iReg;
4411   }
4412 }
4413 
4414 /*
4415 ** Mark all temporary registers as being unavailable for reuse.
4416 */
4417 void sqlite3ClearTempRegCache(Parse *pParse){
4418   pParse->nTempReg = 0;
4419   pParse->nRangeReg = 0;
4420 }
4421