1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_SELECT ){ 56 assert( pExpr->flags&EP_xIsSelect ); 57 assert( pExpr->x.pSelect!=0 ); 58 assert( pExpr->x.pSelect->pEList!=0 ); 59 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 60 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 61 } 62 if( op==TK_REGISTER ) op = pExpr->op2; 63 #ifndef SQLITE_OMIT_CAST 64 if( op==TK_CAST ){ 65 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 66 return sqlite3AffinityType(pExpr->u.zToken, 0); 67 } 68 #endif 69 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ 70 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 71 } 72 if( op==TK_SELECT_COLUMN ){ 73 assert( pExpr->pLeft->flags&EP_xIsSelect ); 74 return sqlite3ExprAffinity( 75 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 76 ); 77 } 78 if( op==TK_VECTOR ){ 79 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 80 } 81 return pExpr->affExpr; 82 } 83 84 /* 85 ** Set the collating sequence for expression pExpr to be the collating 86 ** sequence named by pToken. Return a pointer to a new Expr node that 87 ** implements the COLLATE operator. 88 ** 89 ** If a memory allocation error occurs, that fact is recorded in pParse->db 90 ** and the pExpr parameter is returned unchanged. 91 */ 92 Expr *sqlite3ExprAddCollateToken( 93 Parse *pParse, /* Parsing context */ 94 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 95 const Token *pCollName, /* Name of collating sequence */ 96 int dequote /* True to dequote pCollName */ 97 ){ 98 assert( pExpr!=0 || pParse->db->mallocFailed ); 99 if( pExpr==0 ) return 0; 100 if( pExpr->op==TK_VECTOR ){ 101 ExprList *pList = pExpr->x.pList; 102 if( ALWAYS(pList!=0) ){ 103 int i; 104 for(i=0; i<pList->nExpr; i++){ 105 pList->a[i].pExpr = sqlite3ExprAddCollateToken(pParse,pList->a[i].pExpr, 106 pCollName, dequote); 107 } 108 } 109 }else if( pCollName->n>0 ){ 110 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 111 if( pNew ){ 112 pNew->pLeft = pExpr; 113 pNew->flags |= EP_Collate|EP_Skip; 114 pExpr = pNew; 115 } 116 } 117 return pExpr; 118 } 119 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 120 Token s; 121 assert( zC!=0 ); 122 sqlite3TokenInit(&s, (char*)zC); 123 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 124 } 125 126 /* 127 ** Skip over any TK_COLLATE operators. 128 */ 129 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 130 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 131 assert( pExpr->op==TK_COLLATE ); 132 pExpr = pExpr->pLeft; 133 } 134 return pExpr; 135 } 136 137 /* 138 ** Skip over any TK_COLLATE operators and/or any unlikely() 139 ** or likelihood() or likely() functions at the root of an 140 ** expression. 141 */ 142 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 143 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 144 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 145 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 146 assert( pExpr->x.pList->nExpr>0 ); 147 assert( pExpr->op==TK_FUNCTION ); 148 pExpr = pExpr->x.pList->a[0].pExpr; 149 }else{ 150 assert( pExpr->op==TK_COLLATE ); 151 pExpr = pExpr->pLeft; 152 } 153 } 154 return pExpr; 155 } 156 157 /* 158 ** Return the collation sequence for the expression pExpr. If 159 ** there is no defined collating sequence, return NULL. 160 ** 161 ** See also: sqlite3ExprNNCollSeq() 162 ** 163 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 164 ** default collation if pExpr has no defined collation. 165 ** 166 ** The collating sequence might be determined by a COLLATE operator 167 ** or by the presence of a column with a defined collating sequence. 168 ** COLLATE operators take first precedence. Left operands take 169 ** precedence over right operands. 170 */ 171 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 172 sqlite3 *db = pParse->db; 173 CollSeq *pColl = 0; 174 const Expr *p = pExpr; 175 while( p ){ 176 int op = p->op; 177 if( op==TK_REGISTER ) op = p->op2; 178 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 179 && p->y.pTab!=0 180 ){ 181 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 182 ** a TK_COLUMN but was previously evaluated and cached in a register */ 183 int j = p->iColumn; 184 if( j>=0 ){ 185 const char *zColl = p->y.pTab->aCol[j].zColl; 186 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 187 } 188 break; 189 } 190 if( op==TK_CAST || op==TK_UPLUS ){ 191 p = p->pLeft; 192 continue; 193 } 194 if( op==TK_VECTOR ){ 195 p = p->x.pList->a[0].pExpr; 196 continue; 197 } 198 if( op==TK_COLLATE ){ 199 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 200 break; 201 } 202 if( p->flags & EP_Collate ){ 203 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 204 p = p->pLeft; 205 }else{ 206 Expr *pNext = p->pRight; 207 /* The Expr.x union is never used at the same time as Expr.pRight */ 208 assert( p->x.pList==0 || p->pRight==0 ); 209 if( p->x.pList!=0 210 && !db->mallocFailed 211 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 212 ){ 213 int i; 214 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 215 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 216 pNext = p->x.pList->a[i].pExpr; 217 break; 218 } 219 } 220 } 221 p = pNext; 222 } 223 }else{ 224 break; 225 } 226 } 227 if( sqlite3CheckCollSeq(pParse, pColl) ){ 228 pColl = 0; 229 } 230 return pColl; 231 } 232 233 /* 234 ** Return the collation sequence for the expression pExpr. If 235 ** there is no defined collating sequence, return a pointer to the 236 ** defautl collation sequence. 237 ** 238 ** See also: sqlite3ExprCollSeq() 239 ** 240 ** The sqlite3ExprCollSeq() routine works the same except that it 241 ** returns NULL if there is no defined collation. 242 */ 243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 244 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 245 if( p==0 ) p = pParse->db->pDfltColl; 246 assert( p!=0 ); 247 return p; 248 } 249 250 /* 251 ** Return TRUE if the two expressions have equivalent collating sequences. 252 */ 253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 254 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 255 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 256 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 257 } 258 259 /* 260 ** pExpr is an operand of a comparison operator. aff2 is the 261 ** type affinity of the other operand. This routine returns the 262 ** type affinity that should be used for the comparison operator. 263 */ 264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 265 char aff1 = sqlite3ExprAffinity(pExpr); 266 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 267 /* Both sides of the comparison are columns. If one has numeric 268 ** affinity, use that. Otherwise use no affinity. 269 */ 270 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 271 return SQLITE_AFF_NUMERIC; 272 }else{ 273 return SQLITE_AFF_BLOB; 274 } 275 }else{ 276 /* One side is a column, the other is not. Use the columns affinity. */ 277 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 278 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 279 } 280 } 281 282 /* 283 ** pExpr is a comparison operator. Return the type affinity that should 284 ** be applied to both operands prior to doing the comparison. 285 */ 286 static char comparisonAffinity(const Expr *pExpr){ 287 char aff; 288 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 289 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 290 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 291 assert( pExpr->pLeft ); 292 aff = sqlite3ExprAffinity(pExpr->pLeft); 293 if( pExpr->pRight ){ 294 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 295 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 296 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 297 }else if( aff==0 ){ 298 aff = SQLITE_AFF_BLOB; 299 } 300 return aff; 301 } 302 303 /* 304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 305 ** idx_affinity is the affinity of an indexed column. Return true 306 ** if the index with affinity idx_affinity may be used to implement 307 ** the comparison in pExpr. 308 */ 309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 310 char aff = comparisonAffinity(pExpr); 311 if( aff<SQLITE_AFF_TEXT ){ 312 return 1; 313 } 314 if( aff==SQLITE_AFF_TEXT ){ 315 return idx_affinity==SQLITE_AFF_TEXT; 316 } 317 return sqlite3IsNumericAffinity(idx_affinity); 318 } 319 320 /* 321 ** Return the P5 value that should be used for a binary comparison 322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 323 */ 324 static u8 binaryCompareP5( 325 const Expr *pExpr1, /* Left operand */ 326 const Expr *pExpr2, /* Right operand */ 327 int jumpIfNull /* Extra flags added to P5 */ 328 ){ 329 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 330 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 331 return aff; 332 } 333 334 /* 335 ** Return a pointer to the collation sequence that should be used by 336 ** a binary comparison operator comparing pLeft and pRight. 337 ** 338 ** If the left hand expression has a collating sequence type, then it is 339 ** used. Otherwise the collation sequence for the right hand expression 340 ** is used, or the default (BINARY) if neither expression has a collating 341 ** type. 342 ** 343 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 344 ** it is not considered. 345 */ 346 CollSeq *sqlite3BinaryCompareCollSeq( 347 Parse *pParse, 348 const Expr *pLeft, 349 const Expr *pRight 350 ){ 351 CollSeq *pColl; 352 assert( pLeft ); 353 if( pLeft->flags & EP_Collate ){ 354 pColl = sqlite3ExprCollSeq(pParse, pLeft); 355 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 356 pColl = sqlite3ExprCollSeq(pParse, pRight); 357 }else{ 358 pColl = sqlite3ExprCollSeq(pParse, pLeft); 359 if( !pColl ){ 360 pColl = sqlite3ExprCollSeq(pParse, pRight); 361 } 362 } 363 return pColl; 364 } 365 366 /* Expresssion p is a comparison operator. Return a collation sequence 367 ** appropriate for the comparison operator. 368 ** 369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 370 ** However, if the OP_Commuted flag is set, then the order of the operands 371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 372 ** correct collating sequence is found. 373 */ 374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 375 if( ExprHasProperty(p, EP_Commuted) ){ 376 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 377 }else{ 378 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 379 } 380 } 381 382 /* 383 ** Generate code for a comparison operator. 384 */ 385 static int codeCompare( 386 Parse *pParse, /* The parsing (and code generating) context */ 387 Expr *pLeft, /* The left operand */ 388 Expr *pRight, /* The right operand */ 389 int opcode, /* The comparison opcode */ 390 int in1, int in2, /* Register holding operands */ 391 int dest, /* Jump here if true. */ 392 int jumpIfNull, /* If true, jump if either operand is NULL */ 393 int isCommuted /* The comparison has been commuted */ 394 ){ 395 int p5; 396 int addr; 397 CollSeq *p4; 398 399 if( pParse->nErr ) return 0; 400 if( isCommuted ){ 401 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 402 }else{ 403 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 404 } 405 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 406 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 407 (void*)p4, P4_COLLSEQ); 408 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 409 return addr; 410 } 411 412 /* 413 ** Return true if expression pExpr is a vector, or false otherwise. 414 ** 415 ** A vector is defined as any expression that results in two or more 416 ** columns of result. Every TK_VECTOR node is an vector because the 417 ** parser will not generate a TK_VECTOR with fewer than two entries. 418 ** But a TK_SELECT might be either a vector or a scalar. It is only 419 ** considered a vector if it has two or more result columns. 420 */ 421 int sqlite3ExprIsVector(Expr *pExpr){ 422 return sqlite3ExprVectorSize(pExpr)>1; 423 } 424 425 /* 426 ** If the expression passed as the only argument is of type TK_VECTOR 427 ** return the number of expressions in the vector. Or, if the expression 428 ** is a sub-select, return the number of columns in the sub-select. For 429 ** any other type of expression, return 1. 430 */ 431 int sqlite3ExprVectorSize(Expr *pExpr){ 432 u8 op = pExpr->op; 433 if( op==TK_REGISTER ) op = pExpr->op2; 434 if( op==TK_VECTOR ){ 435 return pExpr->x.pList->nExpr; 436 }else if( op==TK_SELECT ){ 437 return pExpr->x.pSelect->pEList->nExpr; 438 }else{ 439 return 1; 440 } 441 } 442 443 /* 444 ** Return a pointer to a subexpression of pVector that is the i-th 445 ** column of the vector (numbered starting with 0). The caller must 446 ** ensure that i is within range. 447 ** 448 ** If pVector is really a scalar (and "scalar" here includes subqueries 449 ** that return a single column!) then return pVector unmodified. 450 ** 451 ** pVector retains ownership of the returned subexpression. 452 ** 453 ** If the vector is a (SELECT ...) then the expression returned is 454 ** just the expression for the i-th term of the result set, and may 455 ** not be ready for evaluation because the table cursor has not yet 456 ** been positioned. 457 */ 458 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 459 assert( i<sqlite3ExprVectorSize(pVector) ); 460 if( sqlite3ExprIsVector(pVector) ){ 461 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 462 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 463 return pVector->x.pSelect->pEList->a[i].pExpr; 464 }else{ 465 return pVector->x.pList->a[i].pExpr; 466 } 467 } 468 return pVector; 469 } 470 471 /* 472 ** Compute and return a new Expr object which when passed to 473 ** sqlite3ExprCode() will generate all necessary code to compute 474 ** the iField-th column of the vector expression pVector. 475 ** 476 ** It is ok for pVector to be a scalar (as long as iField==0). 477 ** In that case, this routine works like sqlite3ExprDup(). 478 ** 479 ** The caller owns the returned Expr object and is responsible for 480 ** ensuring that the returned value eventually gets freed. 481 ** 482 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 483 ** then the returned object will reference pVector and so pVector must remain 484 ** valid for the life of the returned object. If pVector is a TK_VECTOR 485 ** or a scalar expression, then it can be deleted as soon as this routine 486 ** returns. 487 ** 488 ** A trick to cause a TK_SELECT pVector to be deleted together with 489 ** the returned Expr object is to attach the pVector to the pRight field 490 ** of the returned TK_SELECT_COLUMN Expr object. 491 */ 492 Expr *sqlite3ExprForVectorField( 493 Parse *pParse, /* Parsing context */ 494 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 495 int iField /* Which column of the vector to return */ 496 ){ 497 Expr *pRet; 498 if( pVector->op==TK_SELECT ){ 499 assert( pVector->flags & EP_xIsSelect ); 500 /* The TK_SELECT_COLUMN Expr node: 501 ** 502 ** pLeft: pVector containing TK_SELECT. Not deleted. 503 ** pRight: not used. But recursively deleted. 504 ** iColumn: Index of a column in pVector 505 ** iTable: 0 or the number of columns on the LHS of an assignment 506 ** pLeft->iTable: First in an array of register holding result, or 0 507 ** if the result is not yet computed. 508 ** 509 ** sqlite3ExprDelete() specifically skips the recursive delete of 510 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 511 ** can be attached to pRight to cause this node to take ownership of 512 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 513 ** with the same pLeft pointer to the pVector, but only one of them 514 ** will own the pVector. 515 */ 516 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 517 if( pRet ){ 518 pRet->iColumn = iField; 519 pRet->pLeft = pVector; 520 } 521 assert( pRet==0 || pRet->iTable==0 ); 522 }else{ 523 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 524 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 525 sqlite3RenameTokenRemap(pParse, pRet, pVector); 526 } 527 return pRet; 528 } 529 530 /* 531 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 532 ** it. Return the register in which the result is stored (or, if the 533 ** sub-select returns more than one column, the first in an array 534 ** of registers in which the result is stored). 535 ** 536 ** If pExpr is not a TK_SELECT expression, return 0. 537 */ 538 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 539 int reg = 0; 540 #ifndef SQLITE_OMIT_SUBQUERY 541 if( pExpr->op==TK_SELECT ){ 542 reg = sqlite3CodeSubselect(pParse, pExpr); 543 } 544 #endif 545 return reg; 546 } 547 548 /* 549 ** Argument pVector points to a vector expression - either a TK_VECTOR 550 ** or TK_SELECT that returns more than one column. This function returns 551 ** the register number of a register that contains the value of 552 ** element iField of the vector. 553 ** 554 ** If pVector is a TK_SELECT expression, then code for it must have 555 ** already been generated using the exprCodeSubselect() routine. In this 556 ** case parameter regSelect should be the first in an array of registers 557 ** containing the results of the sub-select. 558 ** 559 ** If pVector is of type TK_VECTOR, then code for the requested field 560 ** is generated. In this case (*pRegFree) may be set to the number of 561 ** a temporary register to be freed by the caller before returning. 562 ** 563 ** Before returning, output parameter (*ppExpr) is set to point to the 564 ** Expr object corresponding to element iElem of the vector. 565 */ 566 static int exprVectorRegister( 567 Parse *pParse, /* Parse context */ 568 Expr *pVector, /* Vector to extract element from */ 569 int iField, /* Field to extract from pVector */ 570 int regSelect, /* First in array of registers */ 571 Expr **ppExpr, /* OUT: Expression element */ 572 int *pRegFree /* OUT: Temp register to free */ 573 ){ 574 u8 op = pVector->op; 575 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 576 if( op==TK_REGISTER ){ 577 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 578 return pVector->iTable+iField; 579 } 580 if( op==TK_SELECT ){ 581 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 582 return regSelect+iField; 583 } 584 *ppExpr = pVector->x.pList->a[iField].pExpr; 585 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 586 } 587 588 /* 589 ** Expression pExpr is a comparison between two vector values. Compute 590 ** the result of the comparison (1, 0, or NULL) and write that 591 ** result into register dest. 592 ** 593 ** The caller must satisfy the following preconditions: 594 ** 595 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 596 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 597 ** otherwise: op==pExpr->op and p5==0 598 */ 599 static void codeVectorCompare( 600 Parse *pParse, /* Code generator context */ 601 Expr *pExpr, /* The comparison operation */ 602 int dest, /* Write results into this register */ 603 u8 op, /* Comparison operator */ 604 u8 p5 /* SQLITE_NULLEQ or zero */ 605 ){ 606 Vdbe *v = pParse->pVdbe; 607 Expr *pLeft = pExpr->pLeft; 608 Expr *pRight = pExpr->pRight; 609 int nLeft = sqlite3ExprVectorSize(pLeft); 610 int i; 611 int regLeft = 0; 612 int regRight = 0; 613 u8 opx = op; 614 int addrDone = sqlite3VdbeMakeLabel(pParse); 615 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 616 617 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 618 if( pParse->nErr ) return; 619 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 620 sqlite3ErrorMsg(pParse, "row value misused"); 621 return; 622 } 623 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 624 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 625 || pExpr->op==TK_LT || pExpr->op==TK_GT 626 || pExpr->op==TK_LE || pExpr->op==TK_GE 627 ); 628 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 629 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 630 assert( p5==0 || pExpr->op!=op ); 631 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 632 633 p5 |= SQLITE_STOREP2; 634 if( opx==TK_LE ) opx = TK_LT; 635 if( opx==TK_GE ) opx = TK_GT; 636 637 regLeft = exprCodeSubselect(pParse, pLeft); 638 regRight = exprCodeSubselect(pParse, pRight); 639 640 for(i=0; 1 /*Loop exits by "break"*/; i++){ 641 int regFree1 = 0, regFree2 = 0; 642 Expr *pL, *pR; 643 int r1, r2; 644 assert( i>=0 && i<nLeft ); 645 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 646 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 647 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted); 648 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 649 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 650 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 651 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 652 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 653 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 654 sqlite3ReleaseTempReg(pParse, regFree1); 655 sqlite3ReleaseTempReg(pParse, regFree2); 656 if( i==nLeft-1 ){ 657 break; 658 } 659 if( opx==TK_EQ ){ 660 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 661 p5 |= SQLITE_KEEPNULL; 662 }else if( opx==TK_NE ){ 663 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 664 p5 |= SQLITE_KEEPNULL; 665 }else{ 666 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 667 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 668 VdbeCoverageIf(v, op==TK_LT); 669 VdbeCoverageIf(v, op==TK_GT); 670 VdbeCoverageIf(v, op==TK_LE); 671 VdbeCoverageIf(v, op==TK_GE); 672 if( i==nLeft-2 ) opx = op; 673 } 674 } 675 sqlite3VdbeResolveLabel(v, addrDone); 676 } 677 678 #if SQLITE_MAX_EXPR_DEPTH>0 679 /* 680 ** Check that argument nHeight is less than or equal to the maximum 681 ** expression depth allowed. If it is not, leave an error message in 682 ** pParse. 683 */ 684 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 685 int rc = SQLITE_OK; 686 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 687 if( nHeight>mxHeight ){ 688 sqlite3ErrorMsg(pParse, 689 "Expression tree is too large (maximum depth %d)", mxHeight 690 ); 691 rc = SQLITE_ERROR; 692 } 693 return rc; 694 } 695 696 /* The following three functions, heightOfExpr(), heightOfExprList() 697 ** and heightOfSelect(), are used to determine the maximum height 698 ** of any expression tree referenced by the structure passed as the 699 ** first argument. 700 ** 701 ** If this maximum height is greater than the current value pointed 702 ** to by pnHeight, the second parameter, then set *pnHeight to that 703 ** value. 704 */ 705 static void heightOfExpr(Expr *p, int *pnHeight){ 706 if( p ){ 707 if( p->nHeight>*pnHeight ){ 708 *pnHeight = p->nHeight; 709 } 710 } 711 } 712 static void heightOfExprList(ExprList *p, int *pnHeight){ 713 if( p ){ 714 int i; 715 for(i=0; i<p->nExpr; i++){ 716 heightOfExpr(p->a[i].pExpr, pnHeight); 717 } 718 } 719 } 720 static void heightOfSelect(Select *pSelect, int *pnHeight){ 721 Select *p; 722 for(p=pSelect; p; p=p->pPrior){ 723 heightOfExpr(p->pWhere, pnHeight); 724 heightOfExpr(p->pHaving, pnHeight); 725 heightOfExpr(p->pLimit, pnHeight); 726 heightOfExprList(p->pEList, pnHeight); 727 heightOfExprList(p->pGroupBy, pnHeight); 728 heightOfExprList(p->pOrderBy, pnHeight); 729 } 730 } 731 732 /* 733 ** Set the Expr.nHeight variable in the structure passed as an 734 ** argument. An expression with no children, Expr.pList or 735 ** Expr.pSelect member has a height of 1. Any other expression 736 ** has a height equal to the maximum height of any other 737 ** referenced Expr plus one. 738 ** 739 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 740 ** if appropriate. 741 */ 742 static void exprSetHeight(Expr *p){ 743 int nHeight = 0; 744 heightOfExpr(p->pLeft, &nHeight); 745 heightOfExpr(p->pRight, &nHeight); 746 if( ExprHasProperty(p, EP_xIsSelect) ){ 747 heightOfSelect(p->x.pSelect, &nHeight); 748 }else if( p->x.pList ){ 749 heightOfExprList(p->x.pList, &nHeight); 750 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 751 } 752 p->nHeight = nHeight + 1; 753 } 754 755 /* 756 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 757 ** the height is greater than the maximum allowed expression depth, 758 ** leave an error in pParse. 759 ** 760 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 761 ** Expr.flags. 762 */ 763 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 764 if( pParse->nErr ) return; 765 exprSetHeight(p); 766 sqlite3ExprCheckHeight(pParse, p->nHeight); 767 } 768 769 /* 770 ** Return the maximum height of any expression tree referenced 771 ** by the select statement passed as an argument. 772 */ 773 int sqlite3SelectExprHeight(Select *p){ 774 int nHeight = 0; 775 heightOfSelect(p, &nHeight); 776 return nHeight; 777 } 778 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 779 /* 780 ** Propagate all EP_Propagate flags from the Expr.x.pList into 781 ** Expr.flags. 782 */ 783 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 784 if( pParse->nErr ) return; 785 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 786 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 787 } 788 } 789 #define exprSetHeight(y) 790 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 791 792 /* 793 ** This routine is the core allocator for Expr nodes. 794 ** 795 ** Construct a new expression node and return a pointer to it. Memory 796 ** for this node and for the pToken argument is a single allocation 797 ** obtained from sqlite3DbMalloc(). The calling function 798 ** is responsible for making sure the node eventually gets freed. 799 ** 800 ** If dequote is true, then the token (if it exists) is dequoted. 801 ** If dequote is false, no dequoting is performed. The deQuote 802 ** parameter is ignored if pToken is NULL or if the token does not 803 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 804 ** then the EP_DblQuoted flag is set on the expression node. 805 ** 806 ** Special case: If op==TK_INTEGER and pToken points to a string that 807 ** can be translated into a 32-bit integer, then the token is not 808 ** stored in u.zToken. Instead, the integer values is written 809 ** into u.iValue and the EP_IntValue flag is set. No extra storage 810 ** is allocated to hold the integer text and the dequote flag is ignored. 811 */ 812 Expr *sqlite3ExprAlloc( 813 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 814 int op, /* Expression opcode */ 815 const Token *pToken, /* Token argument. Might be NULL */ 816 int dequote /* True to dequote */ 817 ){ 818 Expr *pNew; 819 int nExtra = 0; 820 int iValue = 0; 821 822 assert( db!=0 ); 823 if( pToken ){ 824 if( op!=TK_INTEGER || pToken->z==0 825 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 826 nExtra = pToken->n+1; 827 assert( iValue>=0 ); 828 } 829 } 830 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 831 if( pNew ){ 832 memset(pNew, 0, sizeof(Expr)); 833 pNew->op = (u8)op; 834 pNew->iAgg = -1; 835 if( pToken ){ 836 if( nExtra==0 ){ 837 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 838 pNew->u.iValue = iValue; 839 }else{ 840 pNew->u.zToken = (char*)&pNew[1]; 841 assert( pToken->z!=0 || pToken->n==0 ); 842 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 843 pNew->u.zToken[pToken->n] = 0; 844 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 845 sqlite3DequoteExpr(pNew); 846 } 847 } 848 } 849 #if SQLITE_MAX_EXPR_DEPTH>0 850 pNew->nHeight = 1; 851 #endif 852 } 853 return pNew; 854 } 855 856 /* 857 ** Allocate a new expression node from a zero-terminated token that has 858 ** already been dequoted. 859 */ 860 Expr *sqlite3Expr( 861 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 862 int op, /* Expression opcode */ 863 const char *zToken /* Token argument. Might be NULL */ 864 ){ 865 Token x; 866 x.z = zToken; 867 x.n = sqlite3Strlen30(zToken); 868 return sqlite3ExprAlloc(db, op, &x, 0); 869 } 870 871 /* 872 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 873 ** 874 ** If pRoot==NULL that means that a memory allocation error has occurred. 875 ** In that case, delete the subtrees pLeft and pRight. 876 */ 877 void sqlite3ExprAttachSubtrees( 878 sqlite3 *db, 879 Expr *pRoot, 880 Expr *pLeft, 881 Expr *pRight 882 ){ 883 if( pRoot==0 ){ 884 assert( db->mallocFailed ); 885 sqlite3ExprDelete(db, pLeft); 886 sqlite3ExprDelete(db, pRight); 887 }else{ 888 if( pRight ){ 889 pRoot->pRight = pRight; 890 pRoot->flags |= EP_Propagate & pRight->flags; 891 } 892 if( pLeft ){ 893 pRoot->pLeft = pLeft; 894 pRoot->flags |= EP_Propagate & pLeft->flags; 895 } 896 exprSetHeight(pRoot); 897 } 898 } 899 900 /* 901 ** Allocate an Expr node which joins as many as two subtrees. 902 ** 903 ** One or both of the subtrees can be NULL. Return a pointer to the new 904 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 905 ** free the subtrees and return NULL. 906 */ 907 Expr *sqlite3PExpr( 908 Parse *pParse, /* Parsing context */ 909 int op, /* Expression opcode */ 910 Expr *pLeft, /* Left operand */ 911 Expr *pRight /* Right operand */ 912 ){ 913 Expr *p; 914 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 915 if( p ){ 916 memset(p, 0, sizeof(Expr)); 917 p->op = op & 0xff; 918 p->iAgg = -1; 919 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 920 sqlite3ExprCheckHeight(pParse, p->nHeight); 921 }else{ 922 sqlite3ExprDelete(pParse->db, pLeft); 923 sqlite3ExprDelete(pParse->db, pRight); 924 } 925 return p; 926 } 927 928 /* 929 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 930 ** do a memory allocation failure) then delete the pSelect object. 931 */ 932 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 933 if( pExpr ){ 934 pExpr->x.pSelect = pSelect; 935 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 936 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 937 }else{ 938 assert( pParse->db->mallocFailed ); 939 sqlite3SelectDelete(pParse->db, pSelect); 940 } 941 } 942 943 944 /* 945 ** Join two expressions using an AND operator. If either expression is 946 ** NULL, then just return the other expression. 947 ** 948 ** If one side or the other of the AND is known to be false, then instead 949 ** of returning an AND expression, just return a constant expression with 950 ** a value of false. 951 */ 952 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 953 sqlite3 *db = pParse->db; 954 if( pLeft==0 ){ 955 return pRight; 956 }else if( pRight==0 ){ 957 return pLeft; 958 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 959 && !IN_RENAME_OBJECT 960 ){ 961 sqlite3ExprDelete(db, pLeft); 962 sqlite3ExprDelete(db, pRight); 963 return sqlite3Expr(db, TK_INTEGER, "0"); 964 }else{ 965 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 966 } 967 } 968 969 /* 970 ** Construct a new expression node for a function with multiple 971 ** arguments. 972 */ 973 Expr *sqlite3ExprFunction( 974 Parse *pParse, /* Parsing context */ 975 ExprList *pList, /* Argument list */ 976 Token *pToken, /* Name of the function */ 977 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 978 ){ 979 Expr *pNew; 980 sqlite3 *db = pParse->db; 981 assert( pToken ); 982 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 983 if( pNew==0 ){ 984 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 985 return 0; 986 } 987 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 988 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 989 } 990 pNew->x.pList = pList; 991 ExprSetProperty(pNew, EP_HasFunc); 992 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 993 sqlite3ExprSetHeightAndFlags(pParse, pNew); 994 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 995 return pNew; 996 } 997 998 /* 999 ** Check to see if a function is usable according to current access 1000 ** rules: 1001 ** 1002 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1003 ** 1004 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1005 ** top-level SQL 1006 ** 1007 ** If the function is not usable, create an error. 1008 */ 1009 void sqlite3ExprFunctionUsable( 1010 Parse *pParse, /* Parsing and code generating context */ 1011 Expr *pExpr, /* The function invocation */ 1012 FuncDef *pDef /* The function being invoked */ 1013 ){ 1014 assert( !IN_RENAME_OBJECT ); 1015 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1016 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1017 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1018 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1019 ){ 1020 /* Functions prohibited in triggers and views if: 1021 ** (1) tagged with SQLITE_DIRECTONLY 1022 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1023 ** is tagged with SQLITE_FUNC_UNSAFE) and 1024 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1025 ** that the schema is possibly tainted). 1026 */ 1027 sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName); 1028 } 1029 } 1030 } 1031 1032 /* 1033 ** Assign a variable number to an expression that encodes a wildcard 1034 ** in the original SQL statement. 1035 ** 1036 ** Wildcards consisting of a single "?" are assigned the next sequential 1037 ** variable number. 1038 ** 1039 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1040 ** sure "nnn" is not too big to avoid a denial of service attack when 1041 ** the SQL statement comes from an external source. 1042 ** 1043 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1044 ** as the previous instance of the same wildcard. Or if this is the first 1045 ** instance of the wildcard, the next sequential variable number is 1046 ** assigned. 1047 */ 1048 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1049 sqlite3 *db = pParse->db; 1050 const char *z; 1051 ynVar x; 1052 1053 if( pExpr==0 ) return; 1054 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1055 z = pExpr->u.zToken; 1056 assert( z!=0 ); 1057 assert( z[0]!=0 ); 1058 assert( n==(u32)sqlite3Strlen30(z) ); 1059 if( z[1]==0 ){ 1060 /* Wildcard of the form "?". Assign the next variable number */ 1061 assert( z[0]=='?' ); 1062 x = (ynVar)(++pParse->nVar); 1063 }else{ 1064 int doAdd = 0; 1065 if( z[0]=='?' ){ 1066 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1067 ** use it as the variable number */ 1068 i64 i; 1069 int bOk; 1070 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1071 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1072 bOk = 1; 1073 }else{ 1074 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1075 } 1076 testcase( i==0 ); 1077 testcase( i==1 ); 1078 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1079 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1080 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1081 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1082 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1083 return; 1084 } 1085 x = (ynVar)i; 1086 if( x>pParse->nVar ){ 1087 pParse->nVar = (int)x; 1088 doAdd = 1; 1089 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1090 doAdd = 1; 1091 } 1092 }else{ 1093 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1094 ** number as the prior appearance of the same name, or if the name 1095 ** has never appeared before, reuse the same variable number 1096 */ 1097 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1098 if( x==0 ){ 1099 x = (ynVar)(++pParse->nVar); 1100 doAdd = 1; 1101 } 1102 } 1103 if( doAdd ){ 1104 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1105 } 1106 } 1107 pExpr->iColumn = x; 1108 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1109 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1110 } 1111 } 1112 1113 /* 1114 ** Recursively delete an expression tree. 1115 */ 1116 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1117 assert( p!=0 ); 1118 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1119 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1120 1121 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1122 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1123 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1124 #ifdef SQLITE_DEBUG 1125 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1126 assert( p->pLeft==0 ); 1127 assert( p->pRight==0 ); 1128 assert( p->x.pSelect==0 ); 1129 } 1130 #endif 1131 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1132 /* The Expr.x union is never used at the same time as Expr.pRight */ 1133 assert( p->x.pList==0 || p->pRight==0 ); 1134 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1135 if( p->pRight ){ 1136 assert( !ExprHasProperty(p, EP_WinFunc) ); 1137 sqlite3ExprDeleteNN(db, p->pRight); 1138 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1139 assert( !ExprHasProperty(p, EP_WinFunc) ); 1140 sqlite3SelectDelete(db, p->x.pSelect); 1141 }else{ 1142 sqlite3ExprListDelete(db, p->x.pList); 1143 #ifndef SQLITE_OMIT_WINDOWFUNC 1144 if( ExprHasProperty(p, EP_WinFunc) ){ 1145 sqlite3WindowDelete(db, p->y.pWin); 1146 } 1147 #endif 1148 } 1149 } 1150 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1151 if( !ExprHasProperty(p, EP_Static) ){ 1152 sqlite3DbFreeNN(db, p); 1153 } 1154 } 1155 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1156 if( p ) sqlite3ExprDeleteNN(db, p); 1157 } 1158 1159 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1160 ** expression. 1161 */ 1162 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1163 if( p ){ 1164 if( IN_RENAME_OBJECT ){ 1165 sqlite3RenameExprUnmap(pParse, p); 1166 } 1167 sqlite3ExprDeleteNN(pParse->db, p); 1168 } 1169 } 1170 1171 /* 1172 ** Return the number of bytes allocated for the expression structure 1173 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1174 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1175 */ 1176 static int exprStructSize(Expr *p){ 1177 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1178 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1179 return EXPR_FULLSIZE; 1180 } 1181 1182 /* 1183 ** The dupedExpr*Size() routines each return the number of bytes required 1184 ** to store a copy of an expression or expression tree. They differ in 1185 ** how much of the tree is measured. 1186 ** 1187 ** dupedExprStructSize() Size of only the Expr structure 1188 ** dupedExprNodeSize() Size of Expr + space for token 1189 ** dupedExprSize() Expr + token + subtree components 1190 ** 1191 *************************************************************************** 1192 ** 1193 ** The dupedExprStructSize() function returns two values OR-ed together: 1194 ** (1) the space required for a copy of the Expr structure only and 1195 ** (2) the EP_xxx flags that indicate what the structure size should be. 1196 ** The return values is always one of: 1197 ** 1198 ** EXPR_FULLSIZE 1199 ** EXPR_REDUCEDSIZE | EP_Reduced 1200 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1201 ** 1202 ** The size of the structure can be found by masking the return value 1203 ** of this routine with 0xfff. The flags can be found by masking the 1204 ** return value with EP_Reduced|EP_TokenOnly. 1205 ** 1206 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1207 ** (unreduced) Expr objects as they or originally constructed by the parser. 1208 ** During expression analysis, extra information is computed and moved into 1209 ** later parts of the Expr object and that extra information might get chopped 1210 ** off if the expression is reduced. Note also that it does not work to 1211 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1212 ** to reduce a pristine expression tree from the parser. The implementation 1213 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1214 ** to enforce this constraint. 1215 */ 1216 static int dupedExprStructSize(Expr *p, int flags){ 1217 int nSize; 1218 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1219 assert( EXPR_FULLSIZE<=0xfff ); 1220 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1221 if( 0==flags || p->op==TK_SELECT_COLUMN 1222 #ifndef SQLITE_OMIT_WINDOWFUNC 1223 || ExprHasProperty(p, EP_WinFunc) 1224 #endif 1225 ){ 1226 nSize = EXPR_FULLSIZE; 1227 }else{ 1228 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1229 assert( !ExprHasProperty(p, EP_FromJoin) ); 1230 assert( !ExprHasProperty(p, EP_MemToken) ); 1231 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1232 if( p->pLeft || p->x.pList ){ 1233 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1234 }else{ 1235 assert( p->pRight==0 ); 1236 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1237 } 1238 } 1239 return nSize; 1240 } 1241 1242 /* 1243 ** This function returns the space in bytes required to store the copy 1244 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1245 ** string is defined.) 1246 */ 1247 static int dupedExprNodeSize(Expr *p, int flags){ 1248 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1249 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1250 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1251 } 1252 return ROUND8(nByte); 1253 } 1254 1255 /* 1256 ** Return the number of bytes required to create a duplicate of the 1257 ** expression passed as the first argument. The second argument is a 1258 ** mask containing EXPRDUP_XXX flags. 1259 ** 1260 ** The value returned includes space to create a copy of the Expr struct 1261 ** itself and the buffer referred to by Expr.u.zToken, if any. 1262 ** 1263 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1264 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1265 ** and Expr.pRight variables (but not for any structures pointed to or 1266 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1267 */ 1268 static int dupedExprSize(Expr *p, int flags){ 1269 int nByte = 0; 1270 if( p ){ 1271 nByte = dupedExprNodeSize(p, flags); 1272 if( flags&EXPRDUP_REDUCE ){ 1273 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1274 } 1275 } 1276 return nByte; 1277 } 1278 1279 /* 1280 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1281 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1282 ** to store the copy of expression p, the copies of p->u.zToken 1283 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1284 ** if any. Before returning, *pzBuffer is set to the first byte past the 1285 ** portion of the buffer copied into by this function. 1286 */ 1287 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1288 Expr *pNew; /* Value to return */ 1289 u8 *zAlloc; /* Memory space from which to build Expr object */ 1290 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1291 1292 assert( db!=0 ); 1293 assert( p ); 1294 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1295 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1296 1297 /* Figure out where to write the new Expr structure. */ 1298 if( pzBuffer ){ 1299 zAlloc = *pzBuffer; 1300 staticFlag = EP_Static; 1301 }else{ 1302 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1303 staticFlag = 0; 1304 } 1305 pNew = (Expr *)zAlloc; 1306 1307 if( pNew ){ 1308 /* Set nNewSize to the size allocated for the structure pointed to 1309 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1310 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1311 ** by the copy of the p->u.zToken string (if any). 1312 */ 1313 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1314 const int nNewSize = nStructSize & 0xfff; 1315 int nToken; 1316 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1317 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1318 }else{ 1319 nToken = 0; 1320 } 1321 if( dupFlags ){ 1322 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1323 memcpy(zAlloc, p, nNewSize); 1324 }else{ 1325 u32 nSize = (u32)exprStructSize(p); 1326 memcpy(zAlloc, p, nSize); 1327 if( nSize<EXPR_FULLSIZE ){ 1328 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1329 } 1330 } 1331 1332 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1333 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1334 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1335 pNew->flags |= staticFlag; 1336 ExprClearVVAProperties(pNew); 1337 if( dupFlags ){ 1338 ExprSetVVAProperty(pNew, EP_Immutable); 1339 } 1340 1341 /* Copy the p->u.zToken string, if any. */ 1342 if( nToken ){ 1343 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1344 memcpy(zToken, p->u.zToken, nToken); 1345 } 1346 1347 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1348 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1349 if( ExprHasProperty(p, EP_xIsSelect) ){ 1350 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1351 }else{ 1352 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1353 } 1354 } 1355 1356 /* Fill in pNew->pLeft and pNew->pRight. */ 1357 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1358 zAlloc += dupedExprNodeSize(p, dupFlags); 1359 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1360 pNew->pLeft = p->pLeft ? 1361 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1362 pNew->pRight = p->pRight ? 1363 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1364 } 1365 #ifndef SQLITE_OMIT_WINDOWFUNC 1366 if( ExprHasProperty(p, EP_WinFunc) ){ 1367 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1368 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1369 } 1370 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1371 if( pzBuffer ){ 1372 *pzBuffer = zAlloc; 1373 } 1374 }else{ 1375 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1376 if( pNew->op==TK_SELECT_COLUMN ){ 1377 pNew->pLeft = p->pLeft; 1378 assert( p->iColumn==0 || p->pRight==0 ); 1379 assert( p->pRight==0 || p->pRight==p->pLeft ); 1380 }else{ 1381 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1382 } 1383 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1384 } 1385 } 1386 } 1387 return pNew; 1388 } 1389 1390 /* 1391 ** Create and return a deep copy of the object passed as the second 1392 ** argument. If an OOM condition is encountered, NULL is returned 1393 ** and the db->mallocFailed flag set. 1394 */ 1395 #ifndef SQLITE_OMIT_CTE 1396 static With *withDup(sqlite3 *db, With *p){ 1397 With *pRet = 0; 1398 if( p ){ 1399 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1400 pRet = sqlite3DbMallocZero(db, nByte); 1401 if( pRet ){ 1402 int i; 1403 pRet->nCte = p->nCte; 1404 for(i=0; i<p->nCte; i++){ 1405 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1406 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1407 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1408 } 1409 } 1410 } 1411 return pRet; 1412 } 1413 #else 1414 # define withDup(x,y) 0 1415 #endif 1416 1417 #ifndef SQLITE_OMIT_WINDOWFUNC 1418 /* 1419 ** The gatherSelectWindows() procedure and its helper routine 1420 ** gatherSelectWindowsCallback() are used to scan all the expressions 1421 ** an a newly duplicated SELECT statement and gather all of the Window 1422 ** objects found there, assembling them onto the linked list at Select->pWin. 1423 */ 1424 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1425 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1426 Select *pSelect = pWalker->u.pSelect; 1427 Window *pWin = pExpr->y.pWin; 1428 assert( pWin ); 1429 assert( IsWindowFunc(pExpr) ); 1430 assert( pWin->ppThis==0 ); 1431 sqlite3WindowLink(pSelect, pWin); 1432 } 1433 return WRC_Continue; 1434 } 1435 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1436 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1437 } 1438 static void gatherSelectWindows(Select *p){ 1439 Walker w; 1440 w.xExprCallback = gatherSelectWindowsCallback; 1441 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1442 w.xSelectCallback2 = 0; 1443 w.pParse = 0; 1444 w.u.pSelect = p; 1445 sqlite3WalkSelect(&w, p); 1446 } 1447 #endif 1448 1449 1450 /* 1451 ** The following group of routines make deep copies of expressions, 1452 ** expression lists, ID lists, and select statements. The copies can 1453 ** be deleted (by being passed to their respective ...Delete() routines) 1454 ** without effecting the originals. 1455 ** 1456 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1457 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1458 ** by subsequent calls to sqlite*ListAppend() routines. 1459 ** 1460 ** Any tables that the SrcList might point to are not duplicated. 1461 ** 1462 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1463 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1464 ** truncated version of the usual Expr structure that will be stored as 1465 ** part of the in-memory representation of the database schema. 1466 */ 1467 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1468 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1469 return p ? exprDup(db, p, flags, 0) : 0; 1470 } 1471 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1472 ExprList *pNew; 1473 struct ExprList_item *pItem, *pOldItem; 1474 int i; 1475 Expr *pPriorSelectCol = 0; 1476 assert( db!=0 ); 1477 if( p==0 ) return 0; 1478 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1479 if( pNew==0 ) return 0; 1480 pNew->nExpr = p->nExpr; 1481 pItem = pNew->a; 1482 pOldItem = p->a; 1483 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1484 Expr *pOldExpr = pOldItem->pExpr; 1485 Expr *pNewExpr; 1486 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1487 if( pOldExpr 1488 && pOldExpr->op==TK_SELECT_COLUMN 1489 && (pNewExpr = pItem->pExpr)!=0 1490 ){ 1491 assert( pNewExpr->iColumn==0 || i>0 ); 1492 if( pNewExpr->iColumn==0 ){ 1493 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1494 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1495 }else{ 1496 assert( i>0 ); 1497 assert( pItem[-1].pExpr!=0 ); 1498 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1499 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1500 pNewExpr->pLeft = pPriorSelectCol; 1501 } 1502 } 1503 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1504 pItem->sortFlags = pOldItem->sortFlags; 1505 pItem->eEName = pOldItem->eEName; 1506 pItem->done = 0; 1507 pItem->bNulls = pOldItem->bNulls; 1508 pItem->bSorterRef = pOldItem->bSorterRef; 1509 pItem->u = pOldItem->u; 1510 } 1511 return pNew; 1512 } 1513 1514 /* 1515 ** If cursors, triggers, views and subqueries are all omitted from 1516 ** the build, then none of the following routines, except for 1517 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1518 ** called with a NULL argument. 1519 */ 1520 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1521 || !defined(SQLITE_OMIT_SUBQUERY) 1522 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1523 SrcList *pNew; 1524 int i; 1525 int nByte; 1526 assert( db!=0 ); 1527 if( p==0 ) return 0; 1528 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1529 pNew = sqlite3DbMallocRawNN(db, nByte ); 1530 if( pNew==0 ) return 0; 1531 pNew->nSrc = pNew->nAlloc = p->nSrc; 1532 for(i=0; i<p->nSrc; i++){ 1533 struct SrcList_item *pNewItem = &pNew->a[i]; 1534 struct SrcList_item *pOldItem = &p->a[i]; 1535 Table *pTab; 1536 pNewItem->pSchema = pOldItem->pSchema; 1537 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1538 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1539 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1540 pNewItem->fg = pOldItem->fg; 1541 pNewItem->iCursor = pOldItem->iCursor; 1542 pNewItem->addrFillSub = pOldItem->addrFillSub; 1543 pNewItem->regReturn = pOldItem->regReturn; 1544 if( pNewItem->fg.isIndexedBy ){ 1545 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1546 } 1547 pNewItem->pIBIndex = pOldItem->pIBIndex; 1548 if( pNewItem->fg.isTabFunc ){ 1549 pNewItem->u1.pFuncArg = 1550 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1551 } 1552 pTab = pNewItem->pTab = pOldItem->pTab; 1553 if( pTab ){ 1554 pTab->nTabRef++; 1555 } 1556 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1557 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1558 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1559 pNewItem->colUsed = pOldItem->colUsed; 1560 } 1561 return pNew; 1562 } 1563 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1564 IdList *pNew; 1565 int i; 1566 assert( db!=0 ); 1567 if( p==0 ) return 0; 1568 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1569 if( pNew==0 ) return 0; 1570 pNew->nId = p->nId; 1571 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1572 if( pNew->a==0 ){ 1573 sqlite3DbFreeNN(db, pNew); 1574 return 0; 1575 } 1576 /* Note that because the size of the allocation for p->a[] is not 1577 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1578 ** on the duplicate created by this function. */ 1579 for(i=0; i<p->nId; i++){ 1580 struct IdList_item *pNewItem = &pNew->a[i]; 1581 struct IdList_item *pOldItem = &p->a[i]; 1582 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1583 pNewItem->idx = pOldItem->idx; 1584 } 1585 return pNew; 1586 } 1587 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1588 Select *pRet = 0; 1589 Select *pNext = 0; 1590 Select **pp = &pRet; 1591 Select *p; 1592 1593 assert( db!=0 ); 1594 for(p=pDup; p; p=p->pPrior){ 1595 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1596 if( pNew==0 ) break; 1597 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1598 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1599 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1600 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1601 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1602 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1603 pNew->op = p->op; 1604 pNew->pNext = pNext; 1605 pNew->pPrior = 0; 1606 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1607 pNew->iLimit = 0; 1608 pNew->iOffset = 0; 1609 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1610 pNew->addrOpenEphm[0] = -1; 1611 pNew->addrOpenEphm[1] = -1; 1612 pNew->nSelectRow = p->nSelectRow; 1613 pNew->pWith = withDup(db, p->pWith); 1614 #ifndef SQLITE_OMIT_WINDOWFUNC 1615 pNew->pWin = 0; 1616 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1617 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1618 #endif 1619 pNew->selId = p->selId; 1620 *pp = pNew; 1621 pp = &pNew->pPrior; 1622 pNext = pNew; 1623 } 1624 1625 return pRet; 1626 } 1627 #else 1628 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1629 assert( p==0 ); 1630 return 0; 1631 } 1632 #endif 1633 1634 1635 /* 1636 ** Add a new element to the end of an expression list. If pList is 1637 ** initially NULL, then create a new expression list. 1638 ** 1639 ** The pList argument must be either NULL or a pointer to an ExprList 1640 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1641 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1642 ** Reason: This routine assumes that the number of slots in pList->a[] 1643 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1644 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1645 ** 1646 ** If a memory allocation error occurs, the entire list is freed and 1647 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1648 ** that the new entry was successfully appended. 1649 */ 1650 ExprList *sqlite3ExprListAppend( 1651 Parse *pParse, /* Parsing context */ 1652 ExprList *pList, /* List to which to append. Might be NULL */ 1653 Expr *pExpr /* Expression to be appended. Might be NULL */ 1654 ){ 1655 struct ExprList_item *pItem; 1656 sqlite3 *db = pParse->db; 1657 assert( db!=0 ); 1658 if( pList==0 ){ 1659 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1660 if( pList==0 ){ 1661 goto no_mem; 1662 } 1663 pList->nExpr = 0; 1664 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1665 ExprList *pNew; 1666 pNew = sqlite3DbRealloc(db, pList, 1667 sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0])); 1668 if( pNew==0 ){ 1669 goto no_mem; 1670 } 1671 pList = pNew; 1672 } 1673 pItem = &pList->a[pList->nExpr++]; 1674 assert( offsetof(struct ExprList_item,zEName)==sizeof(pItem->pExpr) ); 1675 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1676 memset(&pItem->zEName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zEName)); 1677 pItem->pExpr = pExpr; 1678 return pList; 1679 1680 no_mem: 1681 /* Avoid leaking memory if malloc has failed. */ 1682 sqlite3ExprDelete(db, pExpr); 1683 sqlite3ExprListDelete(db, pList); 1684 return 0; 1685 } 1686 1687 /* 1688 ** pColumns and pExpr form a vector assignment which is part of the SET 1689 ** clause of an UPDATE statement. Like this: 1690 ** 1691 ** (a,b,c) = (expr1,expr2,expr3) 1692 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1693 ** 1694 ** For each term of the vector assignment, append new entries to the 1695 ** expression list pList. In the case of a subquery on the RHS, append 1696 ** TK_SELECT_COLUMN expressions. 1697 */ 1698 ExprList *sqlite3ExprListAppendVector( 1699 Parse *pParse, /* Parsing context */ 1700 ExprList *pList, /* List to which to append. Might be NULL */ 1701 IdList *pColumns, /* List of names of LHS of the assignment */ 1702 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1703 ){ 1704 sqlite3 *db = pParse->db; 1705 int n; 1706 int i; 1707 int iFirst = pList ? pList->nExpr : 0; 1708 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1709 ** exit prior to this routine being invoked */ 1710 if( NEVER(pColumns==0) ) goto vector_append_error; 1711 if( pExpr==0 ) goto vector_append_error; 1712 1713 /* If the RHS is a vector, then we can immediately check to see that 1714 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1715 ** wildcards ("*") in the result set of the SELECT must be expanded before 1716 ** we can do the size check, so defer the size check until code generation. 1717 */ 1718 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1719 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1720 pColumns->nId, n); 1721 goto vector_append_error; 1722 } 1723 1724 for(i=0; i<pColumns->nId; i++){ 1725 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1726 assert( pSubExpr!=0 || db->mallocFailed ); 1727 assert( pSubExpr==0 || pSubExpr->iTable==0 ); 1728 if( pSubExpr==0 ) continue; 1729 pSubExpr->iTable = pColumns->nId; 1730 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1731 if( pList ){ 1732 assert( pList->nExpr==iFirst+i+1 ); 1733 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1734 pColumns->a[i].zName = 0; 1735 } 1736 } 1737 1738 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1739 Expr *pFirst = pList->a[iFirst].pExpr; 1740 assert( pFirst!=0 ); 1741 assert( pFirst->op==TK_SELECT_COLUMN ); 1742 1743 /* Store the SELECT statement in pRight so it will be deleted when 1744 ** sqlite3ExprListDelete() is called */ 1745 pFirst->pRight = pExpr; 1746 pExpr = 0; 1747 1748 /* Remember the size of the LHS in iTable so that we can check that 1749 ** the RHS and LHS sizes match during code generation. */ 1750 pFirst->iTable = pColumns->nId; 1751 } 1752 1753 vector_append_error: 1754 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1755 sqlite3IdListDelete(db, pColumns); 1756 return pList; 1757 } 1758 1759 /* 1760 ** Set the sort order for the last element on the given ExprList. 1761 */ 1762 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1763 struct ExprList_item *pItem; 1764 if( p==0 ) return; 1765 assert( p->nExpr>0 ); 1766 1767 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1768 assert( iSortOrder==SQLITE_SO_UNDEFINED 1769 || iSortOrder==SQLITE_SO_ASC 1770 || iSortOrder==SQLITE_SO_DESC 1771 ); 1772 assert( eNulls==SQLITE_SO_UNDEFINED 1773 || eNulls==SQLITE_SO_ASC 1774 || eNulls==SQLITE_SO_DESC 1775 ); 1776 1777 pItem = &p->a[p->nExpr-1]; 1778 assert( pItem->bNulls==0 ); 1779 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1780 iSortOrder = SQLITE_SO_ASC; 1781 } 1782 pItem->sortFlags = (u8)iSortOrder; 1783 1784 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1785 pItem->bNulls = 1; 1786 if( iSortOrder!=eNulls ){ 1787 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1788 } 1789 } 1790 } 1791 1792 /* 1793 ** Set the ExprList.a[].zEName element of the most recently added item 1794 ** on the expression list. 1795 ** 1796 ** pList might be NULL following an OOM error. But pName should never be 1797 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1798 ** is set. 1799 */ 1800 void sqlite3ExprListSetName( 1801 Parse *pParse, /* Parsing context */ 1802 ExprList *pList, /* List to which to add the span. */ 1803 Token *pName, /* Name to be added */ 1804 int dequote /* True to cause the name to be dequoted */ 1805 ){ 1806 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1807 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1808 if( pList ){ 1809 struct ExprList_item *pItem; 1810 assert( pList->nExpr>0 ); 1811 pItem = &pList->a[pList->nExpr-1]; 1812 assert( pItem->zEName==0 ); 1813 assert( pItem->eEName==ENAME_NAME ); 1814 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1815 if( dequote ){ 1816 /* If dequote==0, then pName->z does not point to part of a DDL 1817 ** statement handled by the parser. And so no token need be added 1818 ** to the token-map. */ 1819 sqlite3Dequote(pItem->zEName); 1820 if( IN_RENAME_OBJECT ){ 1821 sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName); 1822 } 1823 } 1824 } 1825 } 1826 1827 /* 1828 ** Set the ExprList.a[].zSpan element of the most recently added item 1829 ** on the expression list. 1830 ** 1831 ** pList might be NULL following an OOM error. But pSpan should never be 1832 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1833 ** is set. 1834 */ 1835 void sqlite3ExprListSetSpan( 1836 Parse *pParse, /* Parsing context */ 1837 ExprList *pList, /* List to which to add the span. */ 1838 const char *zStart, /* Start of the span */ 1839 const char *zEnd /* End of the span */ 1840 ){ 1841 sqlite3 *db = pParse->db; 1842 assert( pList!=0 || db->mallocFailed!=0 ); 1843 if( pList ){ 1844 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1845 assert( pList->nExpr>0 ); 1846 if( pItem->zEName==0 ){ 1847 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1848 pItem->eEName = ENAME_SPAN; 1849 } 1850 } 1851 } 1852 1853 /* 1854 ** If the expression list pEList contains more than iLimit elements, 1855 ** leave an error message in pParse. 1856 */ 1857 void sqlite3ExprListCheckLength( 1858 Parse *pParse, 1859 ExprList *pEList, 1860 const char *zObject 1861 ){ 1862 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1863 testcase( pEList && pEList->nExpr==mx ); 1864 testcase( pEList && pEList->nExpr==mx+1 ); 1865 if( pEList && pEList->nExpr>mx ){ 1866 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1867 } 1868 } 1869 1870 /* 1871 ** Delete an entire expression list. 1872 */ 1873 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1874 int i = pList->nExpr; 1875 struct ExprList_item *pItem = pList->a; 1876 assert( pList->nExpr>0 ); 1877 do{ 1878 sqlite3ExprDelete(db, pItem->pExpr); 1879 sqlite3DbFree(db, pItem->zEName); 1880 pItem++; 1881 }while( --i>0 ); 1882 sqlite3DbFreeNN(db, pList); 1883 } 1884 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1885 if( pList ) exprListDeleteNN(db, pList); 1886 } 1887 1888 /* 1889 ** Return the bitwise-OR of all Expr.flags fields in the given 1890 ** ExprList. 1891 */ 1892 u32 sqlite3ExprListFlags(const ExprList *pList){ 1893 int i; 1894 u32 m = 0; 1895 assert( pList!=0 ); 1896 for(i=0; i<pList->nExpr; i++){ 1897 Expr *pExpr = pList->a[i].pExpr; 1898 assert( pExpr!=0 ); 1899 m |= pExpr->flags; 1900 } 1901 return m; 1902 } 1903 1904 /* 1905 ** This is a SELECT-node callback for the expression walker that 1906 ** always "fails". By "fail" in this case, we mean set 1907 ** pWalker->eCode to zero and abort. 1908 ** 1909 ** This callback is used by multiple expression walkers. 1910 */ 1911 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1912 UNUSED_PARAMETER(NotUsed); 1913 pWalker->eCode = 0; 1914 return WRC_Abort; 1915 } 1916 1917 /* 1918 ** Check the input string to see if it is "true" or "false" (in any case). 1919 ** 1920 ** If the string is.... Return 1921 ** "true" EP_IsTrue 1922 ** "false" EP_IsFalse 1923 ** anything else 0 1924 */ 1925 u32 sqlite3IsTrueOrFalse(const char *zIn){ 1926 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 1927 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 1928 return 0; 1929 } 1930 1931 1932 /* 1933 ** If the input expression is an ID with the name "true" or "false" 1934 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1935 ** the conversion happened, and zero if the expression is unaltered. 1936 */ 1937 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1938 u32 v; 1939 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1940 if( !ExprHasProperty(pExpr, EP_Quoted) 1941 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 1942 ){ 1943 pExpr->op = TK_TRUEFALSE; 1944 ExprSetProperty(pExpr, v); 1945 return 1; 1946 } 1947 return 0; 1948 } 1949 1950 /* 1951 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1952 ** and 0 if it is FALSE. 1953 */ 1954 int sqlite3ExprTruthValue(const Expr *pExpr){ 1955 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 1956 assert( pExpr->op==TK_TRUEFALSE ); 1957 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1958 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1959 return pExpr->u.zToken[4]==0; 1960 } 1961 1962 /* 1963 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 1964 ** terms that are always true or false. Return the simplified expression. 1965 ** Or return the original expression if no simplification is possible. 1966 ** 1967 ** Examples: 1968 ** 1969 ** (x<10) AND true => (x<10) 1970 ** (x<10) AND false => false 1971 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 1972 ** (x<10) AND (y=22 OR true) => (x<10) 1973 ** (y=22) OR true => true 1974 */ 1975 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 1976 assert( pExpr!=0 ); 1977 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 1978 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 1979 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 1980 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 1981 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 1982 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 1983 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 1984 } 1985 } 1986 return pExpr; 1987 } 1988 1989 1990 /* 1991 ** These routines are Walker callbacks used to check expressions to 1992 ** see if they are "constant" for some definition of constant. The 1993 ** Walker.eCode value determines the type of "constant" we are looking 1994 ** for. 1995 ** 1996 ** These callback routines are used to implement the following: 1997 ** 1998 ** sqlite3ExprIsConstant() pWalker->eCode==1 1999 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2000 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2001 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2002 ** 2003 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2004 ** is found to not be a constant. 2005 ** 2006 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2007 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2008 ** when parsing an existing schema out of the sqlite_schema table and 4 2009 ** when processing a new CREATE TABLE statement. A bound parameter raises 2010 ** an error for new statements, but is silently converted 2011 ** to NULL for existing schemas. This allows sqlite_schema tables that 2012 ** contain a bound parameter because they were generated by older versions 2013 ** of SQLite to be parsed by newer versions of SQLite without raising a 2014 ** malformed schema error. 2015 */ 2016 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2017 2018 /* If pWalker->eCode is 2 then any term of the expression that comes from 2019 ** the ON or USING clauses of a left join disqualifies the expression 2020 ** from being considered constant. */ 2021 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2022 pWalker->eCode = 0; 2023 return WRC_Abort; 2024 } 2025 2026 switch( pExpr->op ){ 2027 /* Consider functions to be constant if all their arguments are constant 2028 ** and either pWalker->eCode==4 or 5 or the function has the 2029 ** SQLITE_FUNC_CONST flag. */ 2030 case TK_FUNCTION: 2031 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2032 && !ExprHasProperty(pExpr, EP_WinFunc) 2033 ){ 2034 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2035 return WRC_Continue; 2036 }else{ 2037 pWalker->eCode = 0; 2038 return WRC_Abort; 2039 } 2040 case TK_ID: 2041 /* Convert "true" or "false" in a DEFAULT clause into the 2042 ** appropriate TK_TRUEFALSE operator */ 2043 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2044 return WRC_Prune; 2045 } 2046 /* no break */ deliberate_fall_through 2047 case TK_COLUMN: 2048 case TK_AGG_FUNCTION: 2049 case TK_AGG_COLUMN: 2050 testcase( pExpr->op==TK_ID ); 2051 testcase( pExpr->op==TK_COLUMN ); 2052 testcase( pExpr->op==TK_AGG_FUNCTION ); 2053 testcase( pExpr->op==TK_AGG_COLUMN ); 2054 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2055 return WRC_Continue; 2056 } 2057 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2058 return WRC_Continue; 2059 } 2060 /* no break */ deliberate_fall_through 2061 case TK_IF_NULL_ROW: 2062 case TK_REGISTER: 2063 case TK_DOT: 2064 testcase( pExpr->op==TK_REGISTER ); 2065 testcase( pExpr->op==TK_IF_NULL_ROW ); 2066 testcase( pExpr->op==TK_DOT ); 2067 pWalker->eCode = 0; 2068 return WRC_Abort; 2069 case TK_VARIABLE: 2070 if( pWalker->eCode==5 ){ 2071 /* Silently convert bound parameters that appear inside of CREATE 2072 ** statements into a NULL when parsing the CREATE statement text out 2073 ** of the sqlite_schema table */ 2074 pExpr->op = TK_NULL; 2075 }else if( pWalker->eCode==4 ){ 2076 /* A bound parameter in a CREATE statement that originates from 2077 ** sqlite3_prepare() causes an error */ 2078 pWalker->eCode = 0; 2079 return WRC_Abort; 2080 } 2081 /* no break */ deliberate_fall_through 2082 default: 2083 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2084 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2085 return WRC_Continue; 2086 } 2087 } 2088 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2089 Walker w; 2090 w.eCode = initFlag; 2091 w.xExprCallback = exprNodeIsConstant; 2092 w.xSelectCallback = sqlite3SelectWalkFail; 2093 #ifdef SQLITE_DEBUG 2094 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2095 #endif 2096 w.u.iCur = iCur; 2097 sqlite3WalkExpr(&w, p); 2098 return w.eCode; 2099 } 2100 2101 /* 2102 ** Walk an expression tree. Return non-zero if the expression is constant 2103 ** and 0 if it involves variables or function calls. 2104 ** 2105 ** For the purposes of this function, a double-quoted string (ex: "abc") 2106 ** is considered a variable but a single-quoted string (ex: 'abc') is 2107 ** a constant. 2108 */ 2109 int sqlite3ExprIsConstant(Expr *p){ 2110 return exprIsConst(p, 1, 0); 2111 } 2112 2113 /* 2114 ** Walk an expression tree. Return non-zero if 2115 ** 2116 ** (1) the expression is constant, and 2117 ** (2) the expression does originate in the ON or USING clause 2118 ** of a LEFT JOIN, and 2119 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2120 ** operands created by the constant propagation optimization. 2121 ** 2122 ** When this routine returns true, it indicates that the expression 2123 ** can be added to the pParse->pConstExpr list and evaluated once when 2124 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2125 */ 2126 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2127 return exprIsConst(p, 2, 0); 2128 } 2129 2130 /* 2131 ** Walk an expression tree. Return non-zero if the expression is constant 2132 ** for any single row of the table with cursor iCur. In other words, the 2133 ** expression must not refer to any non-deterministic function nor any 2134 ** table other than iCur. 2135 */ 2136 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2137 return exprIsConst(p, 3, iCur); 2138 } 2139 2140 2141 /* 2142 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2143 */ 2144 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2145 ExprList *pGroupBy = pWalker->u.pGroupBy; 2146 int i; 2147 2148 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2149 ** it constant. */ 2150 for(i=0; i<pGroupBy->nExpr; i++){ 2151 Expr *p = pGroupBy->a[i].pExpr; 2152 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2153 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2154 if( sqlite3IsBinary(pColl) ){ 2155 return WRC_Prune; 2156 } 2157 } 2158 } 2159 2160 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2161 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2162 pWalker->eCode = 0; 2163 return WRC_Abort; 2164 } 2165 2166 return exprNodeIsConstant(pWalker, pExpr); 2167 } 2168 2169 /* 2170 ** Walk the expression tree passed as the first argument. Return non-zero 2171 ** if the expression consists entirely of constants or copies of terms 2172 ** in pGroupBy that sort with the BINARY collation sequence. 2173 ** 2174 ** This routine is used to determine if a term of the HAVING clause can 2175 ** be promoted into the WHERE clause. In order for such a promotion to work, 2176 ** the value of the HAVING clause term must be the same for all members of 2177 ** a "group". The requirement that the GROUP BY term must be BINARY 2178 ** assumes that no other collating sequence will have a finer-grained 2179 ** grouping than binary. In other words (A=B COLLATE binary) implies 2180 ** A=B in every other collating sequence. The requirement that the 2181 ** GROUP BY be BINARY is stricter than necessary. It would also work 2182 ** to promote HAVING clauses that use the same alternative collating 2183 ** sequence as the GROUP BY term, but that is much harder to check, 2184 ** alternative collating sequences are uncommon, and this is only an 2185 ** optimization, so we take the easy way out and simply require the 2186 ** GROUP BY to use the BINARY collating sequence. 2187 */ 2188 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2189 Walker w; 2190 w.eCode = 1; 2191 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2192 w.xSelectCallback = 0; 2193 w.u.pGroupBy = pGroupBy; 2194 w.pParse = pParse; 2195 sqlite3WalkExpr(&w, p); 2196 return w.eCode; 2197 } 2198 2199 /* 2200 ** Walk an expression tree for the DEFAULT field of a column definition 2201 ** in a CREATE TABLE statement. Return non-zero if the expression is 2202 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2203 ** the expression is constant or a function call with constant arguments. 2204 ** Return and 0 if there are any variables. 2205 ** 2206 ** isInit is true when parsing from sqlite_schema. isInit is false when 2207 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2208 ** (such as ? or $abc) in the expression are converted into NULL. When 2209 ** isInit is false, parameters raise an error. Parameters should not be 2210 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2211 ** allowed it, so we need to support it when reading sqlite_schema for 2212 ** backwards compatibility. 2213 ** 2214 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2215 ** 2216 ** For the purposes of this function, a double-quoted string (ex: "abc") 2217 ** is considered a variable but a single-quoted string (ex: 'abc') is 2218 ** a constant. 2219 */ 2220 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2221 assert( isInit==0 || isInit==1 ); 2222 return exprIsConst(p, 4+isInit, 0); 2223 } 2224 2225 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2226 /* 2227 ** Walk an expression tree. Return 1 if the expression contains a 2228 ** subquery of some kind. Return 0 if there are no subqueries. 2229 */ 2230 int sqlite3ExprContainsSubquery(Expr *p){ 2231 Walker w; 2232 w.eCode = 1; 2233 w.xExprCallback = sqlite3ExprWalkNoop; 2234 w.xSelectCallback = sqlite3SelectWalkFail; 2235 #ifdef SQLITE_DEBUG 2236 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2237 #endif 2238 sqlite3WalkExpr(&w, p); 2239 return w.eCode==0; 2240 } 2241 #endif 2242 2243 /* 2244 ** If the expression p codes a constant integer that is small enough 2245 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2246 ** in *pValue. If the expression is not an integer or if it is too big 2247 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2248 */ 2249 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2250 int rc = 0; 2251 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2252 2253 /* If an expression is an integer literal that fits in a signed 32-bit 2254 ** integer, then the EP_IntValue flag will have already been set */ 2255 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2256 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2257 2258 if( p->flags & EP_IntValue ){ 2259 *pValue = p->u.iValue; 2260 return 1; 2261 } 2262 switch( p->op ){ 2263 case TK_UPLUS: { 2264 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2265 break; 2266 } 2267 case TK_UMINUS: { 2268 int v; 2269 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2270 assert( v!=(-2147483647-1) ); 2271 *pValue = -v; 2272 rc = 1; 2273 } 2274 break; 2275 } 2276 default: break; 2277 } 2278 return rc; 2279 } 2280 2281 /* 2282 ** Return FALSE if there is no chance that the expression can be NULL. 2283 ** 2284 ** If the expression might be NULL or if the expression is too complex 2285 ** to tell return TRUE. 2286 ** 2287 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2288 ** when we know that a value cannot be NULL. Hence, a false positive 2289 ** (returning TRUE when in fact the expression can never be NULL) might 2290 ** be a small performance hit but is otherwise harmless. On the other 2291 ** hand, a false negative (returning FALSE when the result could be NULL) 2292 ** will likely result in an incorrect answer. So when in doubt, return 2293 ** TRUE. 2294 */ 2295 int sqlite3ExprCanBeNull(const Expr *p){ 2296 u8 op; 2297 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2298 p = p->pLeft; 2299 } 2300 op = p->op; 2301 if( op==TK_REGISTER ) op = p->op2; 2302 switch( op ){ 2303 case TK_INTEGER: 2304 case TK_STRING: 2305 case TK_FLOAT: 2306 case TK_BLOB: 2307 return 0; 2308 case TK_COLUMN: 2309 return ExprHasProperty(p, EP_CanBeNull) || 2310 p->y.pTab==0 || /* Reference to column of index on expression */ 2311 (p->iColumn>=0 2312 && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ 2313 && p->y.pTab->aCol[p->iColumn].notNull==0); 2314 default: 2315 return 1; 2316 } 2317 } 2318 2319 /* 2320 ** Return TRUE if the given expression is a constant which would be 2321 ** unchanged by OP_Affinity with the affinity given in the second 2322 ** argument. 2323 ** 2324 ** This routine is used to determine if the OP_Affinity operation 2325 ** can be omitted. When in doubt return FALSE. A false negative 2326 ** is harmless. A false positive, however, can result in the wrong 2327 ** answer. 2328 */ 2329 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2330 u8 op; 2331 int unaryMinus = 0; 2332 if( aff==SQLITE_AFF_BLOB ) return 1; 2333 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2334 if( p->op==TK_UMINUS ) unaryMinus = 1; 2335 p = p->pLeft; 2336 } 2337 op = p->op; 2338 if( op==TK_REGISTER ) op = p->op2; 2339 switch( op ){ 2340 case TK_INTEGER: { 2341 return aff>=SQLITE_AFF_NUMERIC; 2342 } 2343 case TK_FLOAT: { 2344 return aff>=SQLITE_AFF_NUMERIC; 2345 } 2346 case TK_STRING: { 2347 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2348 } 2349 case TK_BLOB: { 2350 return !unaryMinus; 2351 } 2352 case TK_COLUMN: { 2353 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2354 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2355 } 2356 default: { 2357 return 0; 2358 } 2359 } 2360 } 2361 2362 /* 2363 ** Return TRUE if the given string is a row-id column name. 2364 */ 2365 int sqlite3IsRowid(const char *z){ 2366 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2367 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2368 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2369 return 0; 2370 } 2371 2372 /* 2373 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2374 ** that can be simplified to a direct table access, then return 2375 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2376 ** or if the SELECT statement needs to be manifested into a transient 2377 ** table, then return NULL. 2378 */ 2379 #ifndef SQLITE_OMIT_SUBQUERY 2380 static Select *isCandidateForInOpt(Expr *pX){ 2381 Select *p; 2382 SrcList *pSrc; 2383 ExprList *pEList; 2384 Table *pTab; 2385 int i; 2386 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2387 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2388 p = pX->x.pSelect; 2389 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2390 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2391 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2392 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2393 return 0; /* No DISTINCT keyword and no aggregate functions */ 2394 } 2395 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2396 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2397 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2398 pSrc = p->pSrc; 2399 assert( pSrc!=0 ); 2400 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2401 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2402 pTab = pSrc->a[0].pTab; 2403 assert( pTab!=0 ); 2404 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2405 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2406 pEList = p->pEList; 2407 assert( pEList!=0 ); 2408 /* All SELECT results must be columns. */ 2409 for(i=0; i<pEList->nExpr; i++){ 2410 Expr *pRes = pEList->a[i].pExpr; 2411 if( pRes->op!=TK_COLUMN ) return 0; 2412 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2413 } 2414 return p; 2415 } 2416 #endif /* SQLITE_OMIT_SUBQUERY */ 2417 2418 #ifndef SQLITE_OMIT_SUBQUERY 2419 /* 2420 ** Generate code that checks the left-most column of index table iCur to see if 2421 ** it contains any NULL entries. Cause the register at regHasNull to be set 2422 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2423 ** to be set to NULL if iCur contains one or more NULL values. 2424 */ 2425 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2426 int addr1; 2427 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2428 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2429 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2430 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2431 VdbeComment((v, "first_entry_in(%d)", iCur)); 2432 sqlite3VdbeJumpHere(v, addr1); 2433 } 2434 #endif 2435 2436 2437 #ifndef SQLITE_OMIT_SUBQUERY 2438 /* 2439 ** The argument is an IN operator with a list (not a subquery) on the 2440 ** right-hand side. Return TRUE if that list is constant. 2441 */ 2442 static int sqlite3InRhsIsConstant(Expr *pIn){ 2443 Expr *pLHS; 2444 int res; 2445 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2446 pLHS = pIn->pLeft; 2447 pIn->pLeft = 0; 2448 res = sqlite3ExprIsConstant(pIn); 2449 pIn->pLeft = pLHS; 2450 return res; 2451 } 2452 #endif 2453 2454 /* 2455 ** This function is used by the implementation of the IN (...) operator. 2456 ** The pX parameter is the expression on the RHS of the IN operator, which 2457 ** might be either a list of expressions or a subquery. 2458 ** 2459 ** The job of this routine is to find or create a b-tree object that can 2460 ** be used either to test for membership in the RHS set or to iterate through 2461 ** all members of the RHS set, skipping duplicates. 2462 ** 2463 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2464 ** and pX->iTable is set to the index of that cursor. 2465 ** 2466 ** The returned value of this function indicates the b-tree type, as follows: 2467 ** 2468 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2469 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2470 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2471 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2472 ** populated epheremal table. 2473 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2474 ** implemented as a sequence of comparisons. 2475 ** 2476 ** An existing b-tree might be used if the RHS expression pX is a simple 2477 ** subquery such as: 2478 ** 2479 ** SELECT <column1>, <column2>... FROM <table> 2480 ** 2481 ** If the RHS of the IN operator is a list or a more complex subquery, then 2482 ** an ephemeral table might need to be generated from the RHS and then 2483 ** pX->iTable made to point to the ephemeral table instead of an 2484 ** existing table. 2485 ** 2486 ** The inFlags parameter must contain, at a minimum, one of the bits 2487 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2488 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2489 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2490 ** be used to loop over all values of the RHS of the IN operator. 2491 ** 2492 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2493 ** through the set members) then the b-tree must not contain duplicates. 2494 ** An epheremal table will be created unless the selected columns are guaranteed 2495 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2496 ** a UNIQUE constraint or index. 2497 ** 2498 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2499 ** for fast set membership tests) then an epheremal table must 2500 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2501 ** index can be found with the specified <columns> as its left-most. 2502 ** 2503 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2504 ** if the RHS of the IN operator is a list (not a subquery) then this 2505 ** routine might decide that creating an ephemeral b-tree for membership 2506 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2507 ** calling routine should implement the IN operator using a sequence 2508 ** of Eq or Ne comparison operations. 2509 ** 2510 ** When the b-tree is being used for membership tests, the calling function 2511 ** might need to know whether or not the RHS side of the IN operator 2512 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2513 ** if there is any chance that the (...) might contain a NULL value at 2514 ** runtime, then a register is allocated and the register number written 2515 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2516 ** NULL value, then *prRhsHasNull is left unchanged. 2517 ** 2518 ** If a register is allocated and its location stored in *prRhsHasNull, then 2519 ** the value in that register will be NULL if the b-tree contains one or more 2520 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2521 ** NULL values. 2522 ** 2523 ** If the aiMap parameter is not NULL, it must point to an array containing 2524 ** one element for each column returned by the SELECT statement on the RHS 2525 ** of the IN(...) operator. The i'th entry of the array is populated with the 2526 ** offset of the index column that matches the i'th column returned by the 2527 ** SELECT. For example, if the expression and selected index are: 2528 ** 2529 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2530 ** CREATE INDEX i1 ON t1(b, c, a); 2531 ** 2532 ** then aiMap[] is populated with {2, 0, 1}. 2533 */ 2534 #ifndef SQLITE_OMIT_SUBQUERY 2535 int sqlite3FindInIndex( 2536 Parse *pParse, /* Parsing context */ 2537 Expr *pX, /* The IN expression */ 2538 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2539 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2540 int *aiMap, /* Mapping from Index fields to RHS fields */ 2541 int *piTab /* OUT: index to use */ 2542 ){ 2543 Select *p; /* SELECT to the right of IN operator */ 2544 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2545 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2546 int mustBeUnique; /* True if RHS must be unique */ 2547 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2548 2549 assert( pX->op==TK_IN ); 2550 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2551 2552 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2553 ** whether or not the SELECT result contains NULL values, check whether 2554 ** or not NULL is actually possible (it may not be, for example, due 2555 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2556 ** set prRhsHasNull to 0 before continuing. */ 2557 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2558 int i; 2559 ExprList *pEList = pX->x.pSelect->pEList; 2560 for(i=0; i<pEList->nExpr; i++){ 2561 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2562 } 2563 if( i==pEList->nExpr ){ 2564 prRhsHasNull = 0; 2565 } 2566 } 2567 2568 /* Check to see if an existing table or index can be used to 2569 ** satisfy the query. This is preferable to generating a new 2570 ** ephemeral table. */ 2571 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2572 sqlite3 *db = pParse->db; /* Database connection */ 2573 Table *pTab; /* Table <table>. */ 2574 int iDb; /* Database idx for pTab */ 2575 ExprList *pEList = p->pEList; 2576 int nExpr = pEList->nExpr; 2577 2578 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2579 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2580 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2581 pTab = p->pSrc->a[0].pTab; 2582 2583 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2584 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2585 assert( iDb>=0 && iDb<SQLITE_MAX_ATTACHED ); 2586 sqlite3CodeVerifySchema(pParse, iDb); 2587 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2588 2589 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2590 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2591 /* The "x IN (SELECT rowid FROM table)" case */ 2592 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2593 VdbeCoverage(v); 2594 2595 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2596 eType = IN_INDEX_ROWID; 2597 ExplainQueryPlan((pParse, 0, 2598 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2599 sqlite3VdbeJumpHere(v, iAddr); 2600 }else{ 2601 Index *pIdx; /* Iterator variable */ 2602 int affinity_ok = 1; 2603 int i; 2604 2605 /* Check that the affinity that will be used to perform each 2606 ** comparison is the same as the affinity of each column in table 2607 ** on the RHS of the IN operator. If it not, it is not possible to 2608 ** use any index of the RHS table. */ 2609 for(i=0; i<nExpr && affinity_ok; i++){ 2610 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2611 int iCol = pEList->a[i].pExpr->iColumn; 2612 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2613 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2614 testcase( cmpaff==SQLITE_AFF_BLOB ); 2615 testcase( cmpaff==SQLITE_AFF_TEXT ); 2616 switch( cmpaff ){ 2617 case SQLITE_AFF_BLOB: 2618 break; 2619 case SQLITE_AFF_TEXT: 2620 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2621 ** other has no affinity and the other side is TEXT. Hence, 2622 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2623 ** and for the term on the LHS of the IN to have no affinity. */ 2624 assert( idxaff==SQLITE_AFF_TEXT ); 2625 break; 2626 default: 2627 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2628 } 2629 } 2630 2631 if( affinity_ok ){ 2632 /* Search for an existing index that will work for this IN operator */ 2633 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2634 Bitmask colUsed; /* Columns of the index used */ 2635 Bitmask mCol; /* Mask for the current column */ 2636 if( pIdx->nColumn<nExpr ) continue; 2637 if( pIdx->pPartIdxWhere!=0 ) continue; 2638 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2639 ** BITMASK(nExpr) without overflowing */ 2640 testcase( pIdx->nColumn==BMS-2 ); 2641 testcase( pIdx->nColumn==BMS-1 ); 2642 if( pIdx->nColumn>=BMS-1 ) continue; 2643 if( mustBeUnique ){ 2644 if( pIdx->nKeyCol>nExpr 2645 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2646 ){ 2647 continue; /* This index is not unique over the IN RHS columns */ 2648 } 2649 } 2650 2651 colUsed = 0; /* Columns of index used so far */ 2652 for(i=0; i<nExpr; i++){ 2653 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2654 Expr *pRhs = pEList->a[i].pExpr; 2655 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2656 int j; 2657 2658 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2659 for(j=0; j<nExpr; j++){ 2660 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2661 assert( pIdx->azColl[j] ); 2662 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2663 continue; 2664 } 2665 break; 2666 } 2667 if( j==nExpr ) break; 2668 mCol = MASKBIT(j); 2669 if( mCol & colUsed ) break; /* Each column used only once */ 2670 colUsed |= mCol; 2671 if( aiMap ) aiMap[i] = j; 2672 } 2673 2674 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2675 if( colUsed==(MASKBIT(nExpr)-1) ){ 2676 /* If we reach this point, that means the index pIdx is usable */ 2677 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2678 ExplainQueryPlan((pParse, 0, 2679 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2680 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2681 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2682 VdbeComment((v, "%s", pIdx->zName)); 2683 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2684 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2685 2686 if( prRhsHasNull ){ 2687 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2688 i64 mask = (1<<nExpr)-1; 2689 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2690 iTab, 0, 0, (u8*)&mask, P4_INT64); 2691 #endif 2692 *prRhsHasNull = ++pParse->nMem; 2693 if( nExpr==1 ){ 2694 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2695 } 2696 } 2697 sqlite3VdbeJumpHere(v, iAddr); 2698 } 2699 } /* End loop over indexes */ 2700 } /* End if( affinity_ok ) */ 2701 } /* End if not an rowid index */ 2702 } /* End attempt to optimize using an index */ 2703 2704 /* If no preexisting index is available for the IN clause 2705 ** and IN_INDEX_NOOP is an allowed reply 2706 ** and the RHS of the IN operator is a list, not a subquery 2707 ** and the RHS is not constant or has two or fewer terms, 2708 ** then it is not worth creating an ephemeral table to evaluate 2709 ** the IN operator so return IN_INDEX_NOOP. 2710 */ 2711 if( eType==0 2712 && (inFlags & IN_INDEX_NOOP_OK) 2713 && !ExprHasProperty(pX, EP_xIsSelect) 2714 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2715 ){ 2716 eType = IN_INDEX_NOOP; 2717 } 2718 2719 if( eType==0 ){ 2720 /* Could not find an existing table or index to use as the RHS b-tree. 2721 ** We will have to generate an ephemeral table to do the job. 2722 */ 2723 u32 savedNQueryLoop = pParse->nQueryLoop; 2724 int rMayHaveNull = 0; 2725 eType = IN_INDEX_EPH; 2726 if( inFlags & IN_INDEX_LOOP ){ 2727 pParse->nQueryLoop = 0; 2728 }else if( prRhsHasNull ){ 2729 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2730 } 2731 assert( pX->op==TK_IN ); 2732 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2733 if( rMayHaveNull ){ 2734 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2735 } 2736 pParse->nQueryLoop = savedNQueryLoop; 2737 } 2738 2739 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2740 int i, n; 2741 n = sqlite3ExprVectorSize(pX->pLeft); 2742 for(i=0; i<n; i++) aiMap[i] = i; 2743 } 2744 *piTab = iTab; 2745 return eType; 2746 } 2747 #endif 2748 2749 #ifndef SQLITE_OMIT_SUBQUERY 2750 /* 2751 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2752 ** function allocates and returns a nul-terminated string containing 2753 ** the affinities to be used for each column of the comparison. 2754 ** 2755 ** It is the responsibility of the caller to ensure that the returned 2756 ** string is eventually freed using sqlite3DbFree(). 2757 */ 2758 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2759 Expr *pLeft = pExpr->pLeft; 2760 int nVal = sqlite3ExprVectorSize(pLeft); 2761 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2762 char *zRet; 2763 2764 assert( pExpr->op==TK_IN ); 2765 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2766 if( zRet ){ 2767 int i; 2768 for(i=0; i<nVal; i++){ 2769 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2770 char a = sqlite3ExprAffinity(pA); 2771 if( pSelect ){ 2772 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2773 }else{ 2774 zRet[i] = a; 2775 } 2776 } 2777 zRet[nVal] = '\0'; 2778 } 2779 return zRet; 2780 } 2781 #endif 2782 2783 #ifndef SQLITE_OMIT_SUBQUERY 2784 /* 2785 ** Load the Parse object passed as the first argument with an error 2786 ** message of the form: 2787 ** 2788 ** "sub-select returns N columns - expected M" 2789 */ 2790 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2791 if( pParse->nErr==0 ){ 2792 const char *zFmt = "sub-select returns %d columns - expected %d"; 2793 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2794 } 2795 } 2796 #endif 2797 2798 /* 2799 ** Expression pExpr is a vector that has been used in a context where 2800 ** it is not permitted. If pExpr is a sub-select vector, this routine 2801 ** loads the Parse object with a message of the form: 2802 ** 2803 ** "sub-select returns N columns - expected 1" 2804 ** 2805 ** Or, if it is a regular scalar vector: 2806 ** 2807 ** "row value misused" 2808 */ 2809 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2810 #ifndef SQLITE_OMIT_SUBQUERY 2811 if( pExpr->flags & EP_xIsSelect ){ 2812 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2813 }else 2814 #endif 2815 { 2816 sqlite3ErrorMsg(pParse, "row value misused"); 2817 } 2818 } 2819 2820 #ifndef SQLITE_OMIT_SUBQUERY 2821 /* 2822 ** Generate code that will construct an ephemeral table containing all terms 2823 ** in the RHS of an IN operator. The IN operator can be in either of two 2824 ** forms: 2825 ** 2826 ** x IN (4,5,11) -- IN operator with list on right-hand side 2827 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2828 ** 2829 ** The pExpr parameter is the IN operator. The cursor number for the 2830 ** constructed ephermeral table is returned. The first time the ephemeral 2831 ** table is computed, the cursor number is also stored in pExpr->iTable, 2832 ** however the cursor number returned might not be the same, as it might 2833 ** have been duplicated using OP_OpenDup. 2834 ** 2835 ** If the LHS expression ("x" in the examples) is a column value, or 2836 ** the SELECT statement returns a column value, then the affinity of that 2837 ** column is used to build the index keys. If both 'x' and the 2838 ** SELECT... statement are columns, then numeric affinity is used 2839 ** if either column has NUMERIC or INTEGER affinity. If neither 2840 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2841 ** is used. 2842 */ 2843 void sqlite3CodeRhsOfIN( 2844 Parse *pParse, /* Parsing context */ 2845 Expr *pExpr, /* The IN operator */ 2846 int iTab /* Use this cursor number */ 2847 ){ 2848 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2849 int addr; /* Address of OP_OpenEphemeral instruction */ 2850 Expr *pLeft; /* the LHS of the IN operator */ 2851 KeyInfo *pKeyInfo = 0; /* Key information */ 2852 int nVal; /* Size of vector pLeft */ 2853 Vdbe *v; /* The prepared statement under construction */ 2854 2855 v = pParse->pVdbe; 2856 assert( v!=0 ); 2857 2858 /* The evaluation of the IN must be repeated every time it 2859 ** is encountered if any of the following is true: 2860 ** 2861 ** * The right-hand side is a correlated subquery 2862 ** * The right-hand side is an expression list containing variables 2863 ** * We are inside a trigger 2864 ** 2865 ** If all of the above are false, then we can compute the RHS just once 2866 ** and reuse it many names. 2867 */ 2868 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2869 /* Reuse of the RHS is allowed */ 2870 /* If this routine has already been coded, but the previous code 2871 ** might not have been invoked yet, so invoke it now as a subroutine. 2872 */ 2873 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2874 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2875 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2876 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2877 pExpr->x.pSelect->selId)); 2878 } 2879 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2880 pExpr->y.sub.iAddr); 2881 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2882 sqlite3VdbeJumpHere(v, addrOnce); 2883 return; 2884 } 2885 2886 /* Begin coding the subroutine */ 2887 ExprSetProperty(pExpr, EP_Subrtn); 2888 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 2889 pExpr->y.sub.regReturn = ++pParse->nMem; 2890 pExpr->y.sub.iAddr = 2891 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2892 VdbeComment((v, "return address")); 2893 2894 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2895 } 2896 2897 /* Check to see if this is a vector IN operator */ 2898 pLeft = pExpr->pLeft; 2899 nVal = sqlite3ExprVectorSize(pLeft); 2900 2901 /* Construct the ephemeral table that will contain the content of 2902 ** RHS of the IN operator. 2903 */ 2904 pExpr->iTable = iTab; 2905 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2906 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2907 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2908 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2909 }else{ 2910 VdbeComment((v, "RHS of IN operator")); 2911 } 2912 #endif 2913 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2914 2915 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2916 /* Case 1: expr IN (SELECT ...) 2917 ** 2918 ** Generate code to write the results of the select into the temporary 2919 ** table allocated and opened above. 2920 */ 2921 Select *pSelect = pExpr->x.pSelect; 2922 ExprList *pEList = pSelect->pEList; 2923 2924 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2925 addrOnce?"":"CORRELATED ", pSelect->selId 2926 )); 2927 /* If the LHS and RHS of the IN operator do not match, that 2928 ** error will have been caught long before we reach this point. */ 2929 if( ALWAYS(pEList->nExpr==nVal) ){ 2930 SelectDest dest; 2931 int i; 2932 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2933 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2934 pSelect->iLimit = 0; 2935 testcase( pSelect->selFlags & SF_Distinct ); 2936 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2937 if( sqlite3Select(pParse, pSelect, &dest) ){ 2938 sqlite3DbFree(pParse->db, dest.zAffSdst); 2939 sqlite3KeyInfoUnref(pKeyInfo); 2940 return; 2941 } 2942 sqlite3DbFree(pParse->db, dest.zAffSdst); 2943 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2944 assert( pEList!=0 ); 2945 assert( pEList->nExpr>0 ); 2946 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2947 for(i=0; i<nVal; i++){ 2948 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2949 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2950 pParse, p, pEList->a[i].pExpr 2951 ); 2952 } 2953 } 2954 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2955 /* Case 2: expr IN (exprlist) 2956 ** 2957 ** For each expression, build an index key from the evaluation and 2958 ** store it in the temporary table. If <expr> is a column, then use 2959 ** that columns affinity when building index keys. If <expr> is not 2960 ** a column, use numeric affinity. 2961 */ 2962 char affinity; /* Affinity of the LHS of the IN */ 2963 int i; 2964 ExprList *pList = pExpr->x.pList; 2965 struct ExprList_item *pItem; 2966 int r1, r2; 2967 affinity = sqlite3ExprAffinity(pLeft); 2968 if( affinity<=SQLITE_AFF_NONE ){ 2969 affinity = SQLITE_AFF_BLOB; 2970 }else if( affinity==SQLITE_AFF_REAL ){ 2971 affinity = SQLITE_AFF_NUMERIC; 2972 } 2973 if( pKeyInfo ){ 2974 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2975 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2976 } 2977 2978 /* Loop through each expression in <exprlist>. */ 2979 r1 = sqlite3GetTempReg(pParse); 2980 r2 = sqlite3GetTempReg(pParse); 2981 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2982 Expr *pE2 = pItem->pExpr; 2983 2984 /* If the expression is not constant then we will need to 2985 ** disable the test that was generated above that makes sure 2986 ** this code only executes once. Because for a non-constant 2987 ** expression we need to rerun this code each time. 2988 */ 2989 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 2990 sqlite3VdbeChangeToNoop(v, addrOnce); 2991 ExprClearProperty(pExpr, EP_Subrtn); 2992 addrOnce = 0; 2993 } 2994 2995 /* Evaluate the expression and insert it into the temp table */ 2996 sqlite3ExprCode(pParse, pE2, r1); 2997 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 2998 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 2999 } 3000 sqlite3ReleaseTempReg(pParse, r1); 3001 sqlite3ReleaseTempReg(pParse, r2); 3002 } 3003 if( pKeyInfo ){ 3004 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3005 } 3006 if( addrOnce ){ 3007 sqlite3VdbeJumpHere(v, addrOnce); 3008 /* Subroutine return */ 3009 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3010 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3011 sqlite3ClearTempRegCache(pParse); 3012 } 3013 } 3014 #endif /* SQLITE_OMIT_SUBQUERY */ 3015 3016 /* 3017 ** Generate code for scalar subqueries used as a subquery expression 3018 ** or EXISTS operator: 3019 ** 3020 ** (SELECT a FROM b) -- subquery 3021 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3022 ** 3023 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3024 ** 3025 ** Return the register that holds the result. For a multi-column SELECT, 3026 ** the result is stored in a contiguous array of registers and the 3027 ** return value is the register of the left-most result column. 3028 ** Return 0 if an error occurs. 3029 */ 3030 #ifndef SQLITE_OMIT_SUBQUERY 3031 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3032 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3033 int rReg = 0; /* Register storing resulting */ 3034 Select *pSel; /* SELECT statement to encode */ 3035 SelectDest dest; /* How to deal with SELECT result */ 3036 int nReg; /* Registers to allocate */ 3037 Expr *pLimit; /* New limit expression */ 3038 3039 Vdbe *v = pParse->pVdbe; 3040 assert( v!=0 ); 3041 testcase( pExpr->op==TK_EXISTS ); 3042 testcase( pExpr->op==TK_SELECT ); 3043 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3044 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 3045 pSel = pExpr->x.pSelect; 3046 3047 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3048 ** is encountered if any of the following is true: 3049 ** 3050 ** * The right-hand side is a correlated subquery 3051 ** * The right-hand side is an expression list containing variables 3052 ** * We are inside a trigger 3053 ** 3054 ** If all of the above are false, then we can run this code just once 3055 ** save the results, and reuse the same result on subsequent invocations. 3056 */ 3057 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3058 /* If this routine has already been coded, then invoke it as a 3059 ** subroutine. */ 3060 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3061 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3062 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3063 pExpr->y.sub.iAddr); 3064 return pExpr->iTable; 3065 } 3066 3067 /* Begin coding the subroutine */ 3068 ExprSetProperty(pExpr, EP_Subrtn); 3069 pExpr->y.sub.regReturn = ++pParse->nMem; 3070 pExpr->y.sub.iAddr = 3071 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3072 VdbeComment((v, "return address")); 3073 3074 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3075 } 3076 3077 /* For a SELECT, generate code to put the values for all columns of 3078 ** the first row into an array of registers and return the index of 3079 ** the first register. 3080 ** 3081 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3082 ** into a register and return that register number. 3083 ** 3084 ** In both cases, the query is augmented with "LIMIT 1". Any 3085 ** preexisting limit is discarded in place of the new LIMIT 1. 3086 */ 3087 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3088 addrOnce?"":"CORRELATED ", pSel->selId)); 3089 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3090 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3091 pParse->nMem += nReg; 3092 if( pExpr->op==TK_SELECT ){ 3093 dest.eDest = SRT_Mem; 3094 dest.iSdst = dest.iSDParm; 3095 dest.nSdst = nReg; 3096 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3097 VdbeComment((v, "Init subquery result")); 3098 }else{ 3099 dest.eDest = SRT_Exists; 3100 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3101 VdbeComment((v, "Init EXISTS result")); 3102 } 3103 if( pSel->pLimit ){ 3104 /* The subquery already has a limit. If the pre-existing limit is X 3105 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3106 sqlite3 *db = pParse->db; 3107 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3108 if( pLimit ){ 3109 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3110 pLimit = sqlite3PExpr(pParse, TK_NE, 3111 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3112 } 3113 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3114 pSel->pLimit->pLeft = pLimit; 3115 }else{ 3116 /* If there is no pre-existing limit add a limit of 1 */ 3117 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3118 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3119 } 3120 pSel->iLimit = 0; 3121 if( sqlite3Select(pParse, pSel, &dest) ){ 3122 return 0; 3123 } 3124 pExpr->iTable = rReg = dest.iSDParm; 3125 ExprSetVVAProperty(pExpr, EP_NoReduce); 3126 if( addrOnce ){ 3127 sqlite3VdbeJumpHere(v, addrOnce); 3128 3129 /* Subroutine return */ 3130 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3131 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3132 sqlite3ClearTempRegCache(pParse); 3133 } 3134 3135 return rReg; 3136 } 3137 #endif /* SQLITE_OMIT_SUBQUERY */ 3138 3139 #ifndef SQLITE_OMIT_SUBQUERY 3140 /* 3141 ** Expr pIn is an IN(...) expression. This function checks that the 3142 ** sub-select on the RHS of the IN() operator has the same number of 3143 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3144 ** a sub-query, that the LHS is a vector of size 1. 3145 */ 3146 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3147 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3148 if( (pIn->flags & EP_xIsSelect) ){ 3149 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3150 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3151 return 1; 3152 } 3153 }else if( nVector!=1 ){ 3154 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3155 return 1; 3156 } 3157 return 0; 3158 } 3159 #endif 3160 3161 #ifndef SQLITE_OMIT_SUBQUERY 3162 /* 3163 ** Generate code for an IN expression. 3164 ** 3165 ** x IN (SELECT ...) 3166 ** x IN (value, value, ...) 3167 ** 3168 ** The left-hand side (LHS) is a scalar or vector expression. The 3169 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3170 ** subquery. If the RHS is a subquery, the number of result columns must 3171 ** match the number of columns in the vector on the LHS. If the RHS is 3172 ** a list of values, the LHS must be a scalar. 3173 ** 3174 ** The IN operator is true if the LHS value is contained within the RHS. 3175 ** The result is false if the LHS is definitely not in the RHS. The 3176 ** result is NULL if the presence of the LHS in the RHS cannot be 3177 ** determined due to NULLs. 3178 ** 3179 ** This routine generates code that jumps to destIfFalse if the LHS is not 3180 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3181 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3182 ** within the RHS then fall through. 3183 ** 3184 ** See the separate in-operator.md documentation file in the canonical 3185 ** SQLite source tree for additional information. 3186 */ 3187 static void sqlite3ExprCodeIN( 3188 Parse *pParse, /* Parsing and code generating context */ 3189 Expr *pExpr, /* The IN expression */ 3190 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3191 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3192 ){ 3193 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3194 int eType; /* Type of the RHS */ 3195 int rLhs; /* Register(s) holding the LHS values */ 3196 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3197 Vdbe *v; /* Statement under construction */ 3198 int *aiMap = 0; /* Map from vector field to index column */ 3199 char *zAff = 0; /* Affinity string for comparisons */ 3200 int nVector; /* Size of vectors for this IN operator */ 3201 int iDummy; /* Dummy parameter to exprCodeVector() */ 3202 Expr *pLeft; /* The LHS of the IN operator */ 3203 int i; /* loop counter */ 3204 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3205 int destStep6 = 0; /* Start of code for Step 6 */ 3206 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3207 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3208 int addrTop; /* Top of the step-6 loop */ 3209 int iTab = 0; /* Index to use */ 3210 u8 okConstFactor = pParse->okConstFactor; 3211 3212 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3213 pLeft = pExpr->pLeft; 3214 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3215 zAff = exprINAffinity(pParse, pExpr); 3216 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3217 aiMap = (int*)sqlite3DbMallocZero( 3218 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3219 ); 3220 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3221 3222 /* Attempt to compute the RHS. After this step, if anything other than 3223 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3224 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3225 ** the RHS has not yet been coded. */ 3226 v = pParse->pVdbe; 3227 assert( v!=0 ); /* OOM detected prior to this routine */ 3228 VdbeNoopComment((v, "begin IN expr")); 3229 eType = sqlite3FindInIndex(pParse, pExpr, 3230 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3231 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3232 aiMap, &iTab); 3233 3234 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3235 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3236 ); 3237 #ifdef SQLITE_DEBUG 3238 /* Confirm that aiMap[] contains nVector integer values between 0 and 3239 ** nVector-1. */ 3240 for(i=0; i<nVector; i++){ 3241 int j, cnt; 3242 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3243 assert( cnt==1 ); 3244 } 3245 #endif 3246 3247 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3248 ** vector, then it is stored in an array of nVector registers starting 3249 ** at r1. 3250 ** 3251 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3252 ** so that the fields are in the same order as an existing index. The 3253 ** aiMap[] array contains a mapping from the original LHS field order to 3254 ** the field order that matches the RHS index. 3255 ** 3256 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3257 ** even if it is constant, as OP_Affinity may be used on the register 3258 ** by code generated below. */ 3259 assert( pParse->okConstFactor==okConstFactor ); 3260 pParse->okConstFactor = 0; 3261 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3262 pParse->okConstFactor = okConstFactor; 3263 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3264 if( i==nVector ){ 3265 /* LHS fields are not reordered */ 3266 rLhs = rLhsOrig; 3267 }else{ 3268 /* Need to reorder the LHS fields according to aiMap */ 3269 rLhs = sqlite3GetTempRange(pParse, nVector); 3270 for(i=0; i<nVector; i++){ 3271 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3272 } 3273 } 3274 3275 /* If sqlite3FindInIndex() did not find or create an index that is 3276 ** suitable for evaluating the IN operator, then evaluate using a 3277 ** sequence of comparisons. 3278 ** 3279 ** This is step (1) in the in-operator.md optimized algorithm. 3280 */ 3281 if( eType==IN_INDEX_NOOP ){ 3282 ExprList *pList = pExpr->x.pList; 3283 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3284 int labelOk = sqlite3VdbeMakeLabel(pParse); 3285 int r2, regToFree; 3286 int regCkNull = 0; 3287 int ii; 3288 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3289 if( destIfNull!=destIfFalse ){ 3290 regCkNull = sqlite3GetTempReg(pParse); 3291 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3292 } 3293 for(ii=0; ii<pList->nExpr; ii++){ 3294 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3295 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3296 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3297 } 3298 sqlite3ReleaseTempReg(pParse, regToFree); 3299 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3300 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3301 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3302 (void*)pColl, P4_COLLSEQ); 3303 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3304 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3305 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3306 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3307 sqlite3VdbeChangeP5(v, zAff[0]); 3308 }else{ 3309 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3310 assert( destIfNull==destIfFalse ); 3311 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3312 (void*)pColl, P4_COLLSEQ); 3313 VdbeCoverageIf(v, op==OP_Ne); 3314 VdbeCoverageIf(v, op==OP_IsNull); 3315 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3316 } 3317 } 3318 if( regCkNull ){ 3319 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3320 sqlite3VdbeGoto(v, destIfFalse); 3321 } 3322 sqlite3VdbeResolveLabel(v, labelOk); 3323 sqlite3ReleaseTempReg(pParse, regCkNull); 3324 goto sqlite3ExprCodeIN_finished; 3325 } 3326 3327 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3328 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3329 ** We will then skip the binary search of the RHS. 3330 */ 3331 if( destIfNull==destIfFalse ){ 3332 destStep2 = destIfFalse; 3333 }else{ 3334 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3335 } 3336 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3337 for(i=0; i<nVector; i++){ 3338 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3339 if( sqlite3ExprCanBeNull(p) ){ 3340 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3341 VdbeCoverage(v); 3342 } 3343 } 3344 3345 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3346 ** of the RHS using the LHS as a probe. If found, the result is 3347 ** true. 3348 */ 3349 if( eType==IN_INDEX_ROWID ){ 3350 /* In this case, the RHS is the ROWID of table b-tree and so we also 3351 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3352 ** into a single opcode. */ 3353 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3354 VdbeCoverage(v); 3355 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3356 }else{ 3357 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3358 if( destIfFalse==destIfNull ){ 3359 /* Combine Step 3 and Step 5 into a single opcode */ 3360 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3361 rLhs, nVector); VdbeCoverage(v); 3362 goto sqlite3ExprCodeIN_finished; 3363 } 3364 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3365 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3366 rLhs, nVector); VdbeCoverage(v); 3367 } 3368 3369 /* Step 4. If the RHS is known to be non-NULL and we did not find 3370 ** an match on the search above, then the result must be FALSE. 3371 */ 3372 if( rRhsHasNull && nVector==1 ){ 3373 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3374 VdbeCoverage(v); 3375 } 3376 3377 /* Step 5. If we do not care about the difference between NULL and 3378 ** FALSE, then just return false. 3379 */ 3380 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3381 3382 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3383 ** If any comparison is NULL, then the result is NULL. If all 3384 ** comparisons are FALSE then the final result is FALSE. 3385 ** 3386 ** For a scalar LHS, it is sufficient to check just the first row 3387 ** of the RHS. 3388 */ 3389 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3390 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3391 VdbeCoverage(v); 3392 if( nVector>1 ){ 3393 destNotNull = sqlite3VdbeMakeLabel(pParse); 3394 }else{ 3395 /* For nVector==1, combine steps 6 and 7 by immediately returning 3396 ** FALSE if the first comparison is not NULL */ 3397 destNotNull = destIfFalse; 3398 } 3399 for(i=0; i<nVector; i++){ 3400 Expr *p; 3401 CollSeq *pColl; 3402 int r3 = sqlite3GetTempReg(pParse); 3403 p = sqlite3VectorFieldSubexpr(pLeft, i); 3404 pColl = sqlite3ExprCollSeq(pParse, p); 3405 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3406 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3407 (void*)pColl, P4_COLLSEQ); 3408 VdbeCoverage(v); 3409 sqlite3ReleaseTempReg(pParse, r3); 3410 } 3411 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3412 if( nVector>1 ){ 3413 sqlite3VdbeResolveLabel(v, destNotNull); 3414 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3415 VdbeCoverage(v); 3416 3417 /* Step 7: If we reach this point, we know that the result must 3418 ** be false. */ 3419 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3420 } 3421 3422 /* Jumps here in order to return true. */ 3423 sqlite3VdbeJumpHere(v, addrTruthOp); 3424 3425 sqlite3ExprCodeIN_finished: 3426 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3427 VdbeComment((v, "end IN expr")); 3428 sqlite3ExprCodeIN_oom_error: 3429 sqlite3DbFree(pParse->db, aiMap); 3430 sqlite3DbFree(pParse->db, zAff); 3431 } 3432 #endif /* SQLITE_OMIT_SUBQUERY */ 3433 3434 #ifndef SQLITE_OMIT_FLOATING_POINT 3435 /* 3436 ** Generate an instruction that will put the floating point 3437 ** value described by z[0..n-1] into register iMem. 3438 ** 3439 ** The z[] string will probably not be zero-terminated. But the 3440 ** z[n] character is guaranteed to be something that does not look 3441 ** like the continuation of the number. 3442 */ 3443 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3444 if( ALWAYS(z!=0) ){ 3445 double value; 3446 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3447 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3448 if( negateFlag ) value = -value; 3449 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3450 } 3451 } 3452 #endif 3453 3454 3455 /* 3456 ** Generate an instruction that will put the integer describe by 3457 ** text z[0..n-1] into register iMem. 3458 ** 3459 ** Expr.u.zToken is always UTF8 and zero-terminated. 3460 */ 3461 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3462 Vdbe *v = pParse->pVdbe; 3463 if( pExpr->flags & EP_IntValue ){ 3464 int i = pExpr->u.iValue; 3465 assert( i>=0 ); 3466 if( negFlag ) i = -i; 3467 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3468 }else{ 3469 int c; 3470 i64 value; 3471 const char *z = pExpr->u.zToken; 3472 assert( z!=0 ); 3473 c = sqlite3DecOrHexToI64(z, &value); 3474 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3475 #ifdef SQLITE_OMIT_FLOATING_POINT 3476 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3477 #else 3478 #ifndef SQLITE_OMIT_HEX_INTEGER 3479 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3480 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3481 }else 3482 #endif 3483 { 3484 codeReal(v, z, negFlag, iMem); 3485 } 3486 #endif 3487 }else{ 3488 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3489 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3490 } 3491 } 3492 } 3493 3494 3495 /* Generate code that will load into register regOut a value that is 3496 ** appropriate for the iIdxCol-th column of index pIdx. 3497 */ 3498 void sqlite3ExprCodeLoadIndexColumn( 3499 Parse *pParse, /* The parsing context */ 3500 Index *pIdx, /* The index whose column is to be loaded */ 3501 int iTabCur, /* Cursor pointing to a table row */ 3502 int iIdxCol, /* The column of the index to be loaded */ 3503 int regOut /* Store the index column value in this register */ 3504 ){ 3505 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3506 if( iTabCol==XN_EXPR ){ 3507 assert( pIdx->aColExpr ); 3508 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3509 pParse->iSelfTab = iTabCur + 1; 3510 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3511 pParse->iSelfTab = 0; 3512 }else{ 3513 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3514 iTabCol, regOut); 3515 } 3516 } 3517 3518 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3519 /* 3520 ** Generate code that will compute the value of generated column pCol 3521 ** and store the result in register regOut 3522 */ 3523 void sqlite3ExprCodeGeneratedColumn( 3524 Parse *pParse, 3525 Column *pCol, 3526 int regOut 3527 ){ 3528 int iAddr; 3529 Vdbe *v = pParse->pVdbe; 3530 assert( v!=0 ); 3531 assert( pParse->iSelfTab!=0 ); 3532 if( pParse->iSelfTab>0 ){ 3533 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3534 }else{ 3535 iAddr = 0; 3536 } 3537 sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut); 3538 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3539 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3540 } 3541 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3542 } 3543 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3544 3545 /* 3546 ** Generate code to extract the value of the iCol-th column of a table. 3547 */ 3548 void sqlite3ExprCodeGetColumnOfTable( 3549 Vdbe *v, /* Parsing context */ 3550 Table *pTab, /* The table containing the value */ 3551 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3552 int iCol, /* Index of the column to extract */ 3553 int regOut /* Extract the value into this register */ 3554 ){ 3555 Column *pCol; 3556 assert( v!=0 ); 3557 if( pTab==0 ){ 3558 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3559 return; 3560 } 3561 if( iCol<0 || iCol==pTab->iPKey ){ 3562 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3563 }else{ 3564 int op; 3565 int x; 3566 if( IsVirtual(pTab) ){ 3567 op = OP_VColumn; 3568 x = iCol; 3569 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3570 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3571 Parse *pParse = sqlite3VdbeParser(v); 3572 if( pCol->colFlags & COLFLAG_BUSY ){ 3573 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName); 3574 }else{ 3575 int savedSelfTab = pParse->iSelfTab; 3576 pCol->colFlags |= COLFLAG_BUSY; 3577 pParse->iSelfTab = iTabCur+1; 3578 sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut); 3579 pParse->iSelfTab = savedSelfTab; 3580 pCol->colFlags &= ~COLFLAG_BUSY; 3581 } 3582 return; 3583 #endif 3584 }else if( !HasRowid(pTab) ){ 3585 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3586 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3587 op = OP_Column; 3588 }else{ 3589 x = sqlite3TableColumnToStorage(pTab,iCol); 3590 testcase( x!=iCol ); 3591 op = OP_Column; 3592 } 3593 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3594 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3595 } 3596 } 3597 3598 /* 3599 ** Generate code that will extract the iColumn-th column from 3600 ** table pTab and store the column value in register iReg. 3601 ** 3602 ** There must be an open cursor to pTab in iTable when this routine 3603 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3604 */ 3605 int sqlite3ExprCodeGetColumn( 3606 Parse *pParse, /* Parsing and code generating context */ 3607 Table *pTab, /* Description of the table we are reading from */ 3608 int iColumn, /* Index of the table column */ 3609 int iTable, /* The cursor pointing to the table */ 3610 int iReg, /* Store results here */ 3611 u8 p5 /* P5 value for OP_Column + FLAGS */ 3612 ){ 3613 assert( pParse->pVdbe!=0 ); 3614 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3615 if( p5 ){ 3616 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3617 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3618 } 3619 return iReg; 3620 } 3621 3622 /* 3623 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3624 ** over to iTo..iTo+nReg-1. 3625 */ 3626 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3627 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3628 } 3629 3630 /* 3631 ** Convert a scalar expression node to a TK_REGISTER referencing 3632 ** register iReg. The caller must ensure that iReg already contains 3633 ** the correct value for the expression. 3634 */ 3635 static void exprToRegister(Expr *pExpr, int iReg){ 3636 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3637 if( NEVER(p==0) ) return; 3638 p->op2 = p->op; 3639 p->op = TK_REGISTER; 3640 p->iTable = iReg; 3641 ExprClearProperty(p, EP_Skip); 3642 } 3643 3644 /* 3645 ** Evaluate an expression (either a vector or a scalar expression) and store 3646 ** the result in continguous temporary registers. Return the index of 3647 ** the first register used to store the result. 3648 ** 3649 ** If the returned result register is a temporary scalar, then also write 3650 ** that register number into *piFreeable. If the returned result register 3651 ** is not a temporary or if the expression is a vector set *piFreeable 3652 ** to 0. 3653 */ 3654 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3655 int iResult; 3656 int nResult = sqlite3ExprVectorSize(p); 3657 if( nResult==1 ){ 3658 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3659 }else{ 3660 *piFreeable = 0; 3661 if( p->op==TK_SELECT ){ 3662 #if SQLITE_OMIT_SUBQUERY 3663 iResult = 0; 3664 #else 3665 iResult = sqlite3CodeSubselect(pParse, p); 3666 #endif 3667 }else{ 3668 int i; 3669 iResult = pParse->nMem+1; 3670 pParse->nMem += nResult; 3671 for(i=0; i<nResult; i++){ 3672 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3673 } 3674 } 3675 } 3676 return iResult; 3677 } 3678 3679 /* 3680 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3681 ** so that a subsequent copy will not be merged into this one. 3682 */ 3683 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3684 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3685 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3686 } 3687 } 3688 3689 /* 3690 ** Generate code to implement special SQL functions that are implemented 3691 ** in-line rather than by using the usual callbacks. 3692 */ 3693 static int exprCodeInlineFunction( 3694 Parse *pParse, /* Parsing context */ 3695 ExprList *pFarg, /* List of function arguments */ 3696 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3697 int target /* Store function result in this register */ 3698 ){ 3699 int nFarg; 3700 Vdbe *v = pParse->pVdbe; 3701 assert( v!=0 ); 3702 assert( pFarg!=0 ); 3703 nFarg = pFarg->nExpr; 3704 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3705 switch( iFuncId ){ 3706 case INLINEFUNC_coalesce: { 3707 /* Attempt a direct implementation of the built-in COALESCE() and 3708 ** IFNULL() functions. This avoids unnecessary evaluation of 3709 ** arguments past the first non-NULL argument. 3710 */ 3711 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3712 int i; 3713 assert( nFarg>=2 ); 3714 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3715 for(i=1; i<nFarg; i++){ 3716 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3717 VdbeCoverage(v); 3718 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3719 } 3720 setDoNotMergeFlagOnCopy(v); 3721 sqlite3VdbeResolveLabel(v, endCoalesce); 3722 break; 3723 } 3724 case INLINEFUNC_iif: { 3725 Expr caseExpr; 3726 memset(&caseExpr, 0, sizeof(caseExpr)); 3727 caseExpr.op = TK_CASE; 3728 caseExpr.x.pList = pFarg; 3729 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3730 } 3731 3732 default: { 3733 /* The UNLIKELY() function is a no-op. The result is the value 3734 ** of the first argument. 3735 */ 3736 assert( nFarg==1 || nFarg==2 ); 3737 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3738 break; 3739 } 3740 3741 /*********************************************************************** 3742 ** Test-only SQL functions that are only usable if enabled 3743 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3744 */ 3745 case INLINEFUNC_expr_compare: { 3746 /* Compare two expressions using sqlite3ExprCompare() */ 3747 assert( nFarg==2 ); 3748 sqlite3VdbeAddOp2(v, OP_Integer, 3749 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3750 target); 3751 break; 3752 } 3753 3754 case INLINEFUNC_expr_implies_expr: { 3755 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3756 assert( nFarg==2 ); 3757 sqlite3VdbeAddOp2(v, OP_Integer, 3758 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3759 target); 3760 break; 3761 } 3762 3763 case INLINEFUNC_implies_nonnull_row: { 3764 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3765 Expr *pA1; 3766 assert( nFarg==2 ); 3767 pA1 = pFarg->a[1].pExpr; 3768 if( pA1->op==TK_COLUMN ){ 3769 sqlite3VdbeAddOp2(v, OP_Integer, 3770 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3771 target); 3772 }else{ 3773 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3774 } 3775 break; 3776 } 3777 3778 #ifdef SQLITE_DEBUG 3779 case INLINEFUNC_affinity: { 3780 /* The AFFINITY() function evaluates to a string that describes 3781 ** the type affinity of the argument. This is used for testing of 3782 ** the SQLite type logic. 3783 */ 3784 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3785 char aff; 3786 assert( nFarg==1 ); 3787 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3788 sqlite3VdbeLoadString(v, target, 3789 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3790 break; 3791 } 3792 #endif 3793 } 3794 return target; 3795 } 3796 3797 3798 /* 3799 ** Generate code into the current Vdbe to evaluate the given 3800 ** expression. Attempt to store the results in register "target". 3801 ** Return the register where results are stored. 3802 ** 3803 ** With this routine, there is no guarantee that results will 3804 ** be stored in target. The result might be stored in some other 3805 ** register if it is convenient to do so. The calling function 3806 ** must check the return code and move the results to the desired 3807 ** register. 3808 */ 3809 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3810 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3811 int op; /* The opcode being coded */ 3812 int inReg = target; /* Results stored in register inReg */ 3813 int regFree1 = 0; /* If non-zero free this temporary register */ 3814 int regFree2 = 0; /* If non-zero free this temporary register */ 3815 int r1, r2; /* Various register numbers */ 3816 Expr tempX; /* Temporary expression node */ 3817 int p5 = 0; 3818 3819 assert( target>0 && target<=pParse->nMem ); 3820 assert( v!=0 ); 3821 3822 expr_code_doover: 3823 if( pExpr==0 ){ 3824 op = TK_NULL; 3825 }else{ 3826 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3827 op = pExpr->op; 3828 } 3829 switch( op ){ 3830 case TK_AGG_COLUMN: { 3831 AggInfo *pAggInfo = pExpr->pAggInfo; 3832 struct AggInfo_col *pCol; 3833 assert( pAggInfo!=0 ); 3834 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 3835 pCol = &pAggInfo->aCol[pExpr->iAgg]; 3836 if( !pAggInfo->directMode ){ 3837 assert( pCol->iMem>0 ); 3838 return pCol->iMem; 3839 }else if( pAggInfo->useSortingIdx ){ 3840 Table *pTab = pCol->pTab; 3841 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3842 pCol->iSorterColumn, target); 3843 if( pCol->iColumn<0 ){ 3844 VdbeComment((v,"%s.rowid",pTab->zName)); 3845 }else{ 3846 VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName)); 3847 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 3848 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3849 } 3850 } 3851 return target; 3852 } 3853 /* Otherwise, fall thru into the TK_COLUMN case */ 3854 /* no break */ deliberate_fall_through 3855 } 3856 case TK_COLUMN: { 3857 int iTab = pExpr->iTable; 3858 int iReg; 3859 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3860 /* This COLUMN expression is really a constant due to WHERE clause 3861 ** constraints, and that constant is coded by the pExpr->pLeft 3862 ** expresssion. However, make sure the constant has the correct 3863 ** datatype by applying the Affinity of the table column to the 3864 ** constant. 3865 */ 3866 int aff; 3867 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3868 if( pExpr->y.pTab ){ 3869 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3870 }else{ 3871 aff = pExpr->affExpr; 3872 } 3873 if( aff>SQLITE_AFF_BLOB ){ 3874 static const char zAff[] = "B\000C\000D\000E"; 3875 assert( SQLITE_AFF_BLOB=='A' ); 3876 assert( SQLITE_AFF_TEXT=='B' ); 3877 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3878 &zAff[(aff-'B')*2], P4_STATIC); 3879 } 3880 return iReg; 3881 } 3882 if( iTab<0 ){ 3883 if( pParse->iSelfTab<0 ){ 3884 /* Other columns in the same row for CHECK constraints or 3885 ** generated columns or for inserting into partial index. 3886 ** The row is unpacked into registers beginning at 3887 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 3888 ** immediately prior to the first column. 3889 */ 3890 Column *pCol; 3891 Table *pTab = pExpr->y.pTab; 3892 int iSrc; 3893 int iCol = pExpr->iColumn; 3894 assert( pTab!=0 ); 3895 assert( iCol>=XN_ROWID ); 3896 assert( iCol<pTab->nCol ); 3897 if( iCol<0 ){ 3898 return -1-pParse->iSelfTab; 3899 } 3900 pCol = pTab->aCol + iCol; 3901 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 3902 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 3903 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3904 if( pCol->colFlags & COLFLAG_GENERATED ){ 3905 if( pCol->colFlags & COLFLAG_BUSY ){ 3906 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3907 pCol->zName); 3908 return 0; 3909 } 3910 pCol->colFlags |= COLFLAG_BUSY; 3911 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 3912 sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc); 3913 } 3914 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 3915 return iSrc; 3916 }else 3917 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3918 if( pCol->affinity==SQLITE_AFF_REAL ){ 3919 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 3920 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3921 return target; 3922 }else{ 3923 return iSrc; 3924 } 3925 }else{ 3926 /* Coding an expression that is part of an index where column names 3927 ** in the index refer to the table to which the index belongs */ 3928 iTab = pParse->iSelfTab - 1; 3929 } 3930 } 3931 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3932 pExpr->iColumn, iTab, target, 3933 pExpr->op2); 3934 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 3935 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 3936 } 3937 return iReg; 3938 } 3939 case TK_INTEGER: { 3940 codeInteger(pParse, pExpr, 0, target); 3941 return target; 3942 } 3943 case TK_TRUEFALSE: { 3944 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3945 return target; 3946 } 3947 #ifndef SQLITE_OMIT_FLOATING_POINT 3948 case TK_FLOAT: { 3949 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3950 codeReal(v, pExpr->u.zToken, 0, target); 3951 return target; 3952 } 3953 #endif 3954 case TK_STRING: { 3955 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3956 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3957 return target; 3958 } 3959 default: { 3960 /* Make NULL the default case so that if a bug causes an illegal 3961 ** Expr node to be passed into this function, it will be handled 3962 ** sanely and not crash. But keep the assert() to bring the problem 3963 ** to the attention of the developers. */ 3964 assert( op==TK_NULL ); 3965 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3966 return target; 3967 } 3968 #ifndef SQLITE_OMIT_BLOB_LITERAL 3969 case TK_BLOB: { 3970 int n; 3971 const char *z; 3972 char *zBlob; 3973 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3974 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3975 assert( pExpr->u.zToken[1]=='\'' ); 3976 z = &pExpr->u.zToken[2]; 3977 n = sqlite3Strlen30(z) - 1; 3978 assert( z[n]=='\'' ); 3979 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3980 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3981 return target; 3982 } 3983 #endif 3984 case TK_VARIABLE: { 3985 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3986 assert( pExpr->u.zToken!=0 ); 3987 assert( pExpr->u.zToken[0]!=0 ); 3988 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3989 if( pExpr->u.zToken[1]!=0 ){ 3990 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3991 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 3992 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3993 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3994 } 3995 return target; 3996 } 3997 case TK_REGISTER: { 3998 return pExpr->iTable; 3999 } 4000 #ifndef SQLITE_OMIT_CAST 4001 case TK_CAST: { 4002 /* Expressions of the form: CAST(pLeft AS token) */ 4003 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4004 if( inReg!=target ){ 4005 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4006 inReg = target; 4007 } 4008 sqlite3VdbeAddOp2(v, OP_Cast, target, 4009 sqlite3AffinityType(pExpr->u.zToken, 0)); 4010 return inReg; 4011 } 4012 #endif /* SQLITE_OMIT_CAST */ 4013 case TK_IS: 4014 case TK_ISNOT: 4015 op = (op==TK_IS) ? TK_EQ : TK_NE; 4016 p5 = SQLITE_NULLEQ; 4017 /* fall-through */ 4018 case TK_LT: 4019 case TK_LE: 4020 case TK_GT: 4021 case TK_GE: 4022 case TK_NE: 4023 case TK_EQ: { 4024 Expr *pLeft = pExpr->pLeft; 4025 if( sqlite3ExprIsVector(pLeft) ){ 4026 codeVectorCompare(pParse, pExpr, target, op, p5); 4027 }else{ 4028 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4029 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4030 codeCompare(pParse, pLeft, pExpr->pRight, op, 4031 r1, r2, inReg, SQLITE_STOREP2 | p5, 4032 ExprHasProperty(pExpr,EP_Commuted)); 4033 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4034 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4035 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4036 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4037 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4038 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4039 testcase( regFree1==0 ); 4040 testcase( regFree2==0 ); 4041 } 4042 break; 4043 } 4044 case TK_AND: 4045 case TK_OR: 4046 case TK_PLUS: 4047 case TK_STAR: 4048 case TK_MINUS: 4049 case TK_REM: 4050 case TK_BITAND: 4051 case TK_BITOR: 4052 case TK_SLASH: 4053 case TK_LSHIFT: 4054 case TK_RSHIFT: 4055 case TK_CONCAT: { 4056 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4057 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4058 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4059 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4060 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4061 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4062 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4063 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4064 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4065 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4066 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4067 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4068 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4069 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4070 testcase( regFree1==0 ); 4071 testcase( regFree2==0 ); 4072 break; 4073 } 4074 case TK_UMINUS: { 4075 Expr *pLeft = pExpr->pLeft; 4076 assert( pLeft ); 4077 if( pLeft->op==TK_INTEGER ){ 4078 codeInteger(pParse, pLeft, 1, target); 4079 return target; 4080 #ifndef SQLITE_OMIT_FLOATING_POINT 4081 }else if( pLeft->op==TK_FLOAT ){ 4082 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4083 codeReal(v, pLeft->u.zToken, 1, target); 4084 return target; 4085 #endif 4086 }else{ 4087 tempX.op = TK_INTEGER; 4088 tempX.flags = EP_IntValue|EP_TokenOnly; 4089 tempX.u.iValue = 0; 4090 ExprClearVVAProperties(&tempX); 4091 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4092 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4093 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4094 testcase( regFree2==0 ); 4095 } 4096 break; 4097 } 4098 case TK_BITNOT: 4099 case TK_NOT: { 4100 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4101 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4102 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4103 testcase( regFree1==0 ); 4104 sqlite3VdbeAddOp2(v, op, r1, inReg); 4105 break; 4106 } 4107 case TK_TRUTH: { 4108 int isTrue; /* IS TRUE or IS NOT TRUE */ 4109 int bNormal; /* IS TRUE or IS FALSE */ 4110 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4111 testcase( regFree1==0 ); 4112 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4113 bNormal = pExpr->op2==TK_IS; 4114 testcase( isTrue && bNormal); 4115 testcase( !isTrue && bNormal); 4116 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4117 break; 4118 } 4119 case TK_ISNULL: 4120 case TK_NOTNULL: { 4121 int addr; 4122 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4123 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4124 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4125 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4126 testcase( regFree1==0 ); 4127 addr = sqlite3VdbeAddOp1(v, op, r1); 4128 VdbeCoverageIf(v, op==TK_ISNULL); 4129 VdbeCoverageIf(v, op==TK_NOTNULL); 4130 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4131 sqlite3VdbeJumpHere(v, addr); 4132 break; 4133 } 4134 case TK_AGG_FUNCTION: { 4135 AggInfo *pInfo = pExpr->pAggInfo; 4136 if( pInfo==0 4137 || NEVER(pExpr->iAgg<0) 4138 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4139 ){ 4140 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4141 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 4142 }else{ 4143 return pInfo->aFunc[pExpr->iAgg].iMem; 4144 } 4145 break; 4146 } 4147 case TK_FUNCTION: { 4148 ExprList *pFarg; /* List of function arguments */ 4149 int nFarg; /* Number of function arguments */ 4150 FuncDef *pDef; /* The function definition object */ 4151 const char *zId; /* The function name */ 4152 u32 constMask = 0; /* Mask of function arguments that are constant */ 4153 int i; /* Loop counter */ 4154 sqlite3 *db = pParse->db; /* The database connection */ 4155 u8 enc = ENC(db); /* The text encoding used by this database */ 4156 CollSeq *pColl = 0; /* A collating sequence */ 4157 4158 #ifndef SQLITE_OMIT_WINDOWFUNC 4159 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4160 return pExpr->y.pWin->regResult; 4161 } 4162 #endif 4163 4164 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4165 /* SQL functions can be expensive. So try to avoid running them 4166 ** multiple times if we know they always give the same result */ 4167 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4168 } 4169 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4170 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4171 pFarg = pExpr->x.pList; 4172 nFarg = pFarg ? pFarg->nExpr : 0; 4173 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4174 zId = pExpr->u.zToken; 4175 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4176 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4177 if( pDef==0 && pParse->explain ){ 4178 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4179 } 4180 #endif 4181 if( pDef==0 || pDef->xFinalize!=0 ){ 4182 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 4183 break; 4184 } 4185 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4186 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4187 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4188 return exprCodeInlineFunction(pParse, pFarg, 4189 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4190 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4191 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4192 } 4193 4194 for(i=0; i<nFarg; i++){ 4195 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4196 testcase( i==31 ); 4197 constMask |= MASKBIT32(i); 4198 } 4199 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4200 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4201 } 4202 } 4203 if( pFarg ){ 4204 if( constMask ){ 4205 r1 = pParse->nMem+1; 4206 pParse->nMem += nFarg; 4207 }else{ 4208 r1 = sqlite3GetTempRange(pParse, nFarg); 4209 } 4210 4211 /* For length() and typeof() functions with a column argument, 4212 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4213 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4214 ** loading. 4215 */ 4216 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4217 u8 exprOp; 4218 assert( nFarg==1 ); 4219 assert( pFarg->a[0].pExpr!=0 ); 4220 exprOp = pFarg->a[0].pExpr->op; 4221 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4222 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4223 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4224 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4225 pFarg->a[0].pExpr->op2 = 4226 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4227 } 4228 } 4229 4230 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4231 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4232 }else{ 4233 r1 = 0; 4234 } 4235 #ifndef SQLITE_OMIT_VIRTUALTABLE 4236 /* Possibly overload the function if the first argument is 4237 ** a virtual table column. 4238 ** 4239 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4240 ** second argument, not the first, as the argument to test to 4241 ** see if it is a column in a virtual table. This is done because 4242 ** the left operand of infix functions (the operand we want to 4243 ** control overloading) ends up as the second argument to the 4244 ** function. The expression "A glob B" is equivalent to 4245 ** "glob(B,A). We want to use the A in "A glob B" to test 4246 ** for function overloading. But we use the B term in "glob(B,A)". 4247 */ 4248 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4249 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4250 }else if( nFarg>0 ){ 4251 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4252 } 4253 #endif 4254 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4255 if( !pColl ) pColl = db->pDfltColl; 4256 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4257 } 4258 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4259 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4260 Expr *pArg = pFarg->a[0].pExpr; 4261 if( pArg->op==TK_COLUMN ){ 4262 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4263 }else{ 4264 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4265 } 4266 }else 4267 #endif 4268 { 4269 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4270 pDef, pExpr->op2); 4271 } 4272 if( nFarg ){ 4273 if( constMask==0 ){ 4274 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4275 }else{ 4276 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4277 } 4278 } 4279 return target; 4280 } 4281 #ifndef SQLITE_OMIT_SUBQUERY 4282 case TK_EXISTS: 4283 case TK_SELECT: { 4284 int nCol; 4285 testcase( op==TK_EXISTS ); 4286 testcase( op==TK_SELECT ); 4287 if( pParse->db->mallocFailed ){ 4288 return 0; 4289 }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4290 sqlite3SubselectError(pParse, nCol, 1); 4291 }else{ 4292 return sqlite3CodeSubselect(pParse, pExpr); 4293 } 4294 break; 4295 } 4296 case TK_SELECT_COLUMN: { 4297 int n; 4298 if( pExpr->pLeft->iTable==0 ){ 4299 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4300 } 4301 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 4302 if( pExpr->iTable!=0 4303 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 4304 ){ 4305 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4306 pExpr->iTable, n); 4307 } 4308 return pExpr->pLeft->iTable + pExpr->iColumn; 4309 } 4310 case TK_IN: { 4311 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4312 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4313 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4314 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4315 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4316 sqlite3VdbeResolveLabel(v, destIfFalse); 4317 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4318 sqlite3VdbeResolveLabel(v, destIfNull); 4319 return target; 4320 } 4321 #endif /* SQLITE_OMIT_SUBQUERY */ 4322 4323 4324 /* 4325 ** x BETWEEN y AND z 4326 ** 4327 ** This is equivalent to 4328 ** 4329 ** x>=y AND x<=z 4330 ** 4331 ** X is stored in pExpr->pLeft. 4332 ** Y is stored in pExpr->pList->a[0].pExpr. 4333 ** Z is stored in pExpr->pList->a[1].pExpr. 4334 */ 4335 case TK_BETWEEN: { 4336 exprCodeBetween(pParse, pExpr, target, 0, 0); 4337 return target; 4338 } 4339 case TK_SPAN: 4340 case TK_COLLATE: 4341 case TK_UPLUS: { 4342 pExpr = pExpr->pLeft; 4343 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4344 } 4345 4346 case TK_TRIGGER: { 4347 /* If the opcode is TK_TRIGGER, then the expression is a reference 4348 ** to a column in the new.* or old.* pseudo-tables available to 4349 ** trigger programs. In this case Expr.iTable is set to 1 for the 4350 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4351 ** is set to the column of the pseudo-table to read, or to -1 to 4352 ** read the rowid field. 4353 ** 4354 ** The expression is implemented using an OP_Param opcode. The p1 4355 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4356 ** to reference another column of the old.* pseudo-table, where 4357 ** i is the index of the column. For a new.rowid reference, p1 is 4358 ** set to (n+1), where n is the number of columns in each pseudo-table. 4359 ** For a reference to any other column in the new.* pseudo-table, p1 4360 ** is set to (n+2+i), where n and i are as defined previously. For 4361 ** example, if the table on which triggers are being fired is 4362 ** declared as: 4363 ** 4364 ** CREATE TABLE t1(a, b); 4365 ** 4366 ** Then p1 is interpreted as follows: 4367 ** 4368 ** p1==0 -> old.rowid p1==3 -> new.rowid 4369 ** p1==1 -> old.a p1==4 -> new.a 4370 ** p1==2 -> old.b p1==5 -> new.b 4371 */ 4372 Table *pTab = pExpr->y.pTab; 4373 int iCol = pExpr->iColumn; 4374 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4375 + sqlite3TableColumnToStorage(pTab, iCol); 4376 4377 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4378 assert( iCol>=-1 && iCol<pTab->nCol ); 4379 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4380 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4381 4382 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4383 VdbeComment((v, "r[%d]=%s.%s", target, 4384 (pExpr->iTable ? "new" : "old"), 4385 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName) 4386 )); 4387 4388 #ifndef SQLITE_OMIT_FLOATING_POINT 4389 /* If the column has REAL affinity, it may currently be stored as an 4390 ** integer. Use OP_RealAffinity to make sure it is really real. 4391 ** 4392 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4393 ** floating point when extracting it from the record. */ 4394 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4395 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4396 } 4397 #endif 4398 break; 4399 } 4400 4401 case TK_VECTOR: { 4402 sqlite3ErrorMsg(pParse, "row value misused"); 4403 break; 4404 } 4405 4406 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4407 ** that derive from the right-hand table of a LEFT JOIN. The 4408 ** Expr.iTable value is the table number for the right-hand table. 4409 ** The expression is only evaluated if that table is not currently 4410 ** on a LEFT JOIN NULL row. 4411 */ 4412 case TK_IF_NULL_ROW: { 4413 int addrINR; 4414 u8 okConstFactor = pParse->okConstFactor; 4415 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4416 /* Temporarily disable factoring of constant expressions, since 4417 ** even though expressions may appear to be constant, they are not 4418 ** really constant because they originate from the right-hand side 4419 ** of a LEFT JOIN. */ 4420 pParse->okConstFactor = 0; 4421 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4422 pParse->okConstFactor = okConstFactor; 4423 sqlite3VdbeJumpHere(v, addrINR); 4424 sqlite3VdbeChangeP3(v, addrINR, inReg); 4425 break; 4426 } 4427 4428 /* 4429 ** Form A: 4430 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4431 ** 4432 ** Form B: 4433 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4434 ** 4435 ** Form A is can be transformed into the equivalent form B as follows: 4436 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4437 ** WHEN x=eN THEN rN ELSE y END 4438 ** 4439 ** X (if it exists) is in pExpr->pLeft. 4440 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4441 ** odd. The Y is also optional. If the number of elements in x.pList 4442 ** is even, then Y is omitted and the "otherwise" result is NULL. 4443 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4444 ** 4445 ** The result of the expression is the Ri for the first matching Ei, 4446 ** or if there is no matching Ei, the ELSE term Y, or if there is 4447 ** no ELSE term, NULL. 4448 */ 4449 case TK_CASE: { 4450 int endLabel; /* GOTO label for end of CASE stmt */ 4451 int nextCase; /* GOTO label for next WHEN clause */ 4452 int nExpr; /* 2x number of WHEN terms */ 4453 int i; /* Loop counter */ 4454 ExprList *pEList; /* List of WHEN terms */ 4455 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4456 Expr opCompare; /* The X==Ei expression */ 4457 Expr *pX; /* The X expression */ 4458 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4459 Expr *pDel = 0; 4460 sqlite3 *db = pParse->db; 4461 4462 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4463 assert(pExpr->x.pList->nExpr > 0); 4464 pEList = pExpr->x.pList; 4465 aListelem = pEList->a; 4466 nExpr = pEList->nExpr; 4467 endLabel = sqlite3VdbeMakeLabel(pParse); 4468 if( (pX = pExpr->pLeft)!=0 ){ 4469 pDel = sqlite3ExprDup(db, pX, 0); 4470 if( db->mallocFailed ){ 4471 sqlite3ExprDelete(db, pDel); 4472 break; 4473 } 4474 testcase( pX->op==TK_COLUMN ); 4475 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4476 testcase( regFree1==0 ); 4477 memset(&opCompare, 0, sizeof(opCompare)); 4478 opCompare.op = TK_EQ; 4479 opCompare.pLeft = pDel; 4480 pTest = &opCompare; 4481 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4482 ** The value in regFree1 might get SCopy-ed into the file result. 4483 ** So make sure that the regFree1 register is not reused for other 4484 ** purposes and possibly overwritten. */ 4485 regFree1 = 0; 4486 } 4487 for(i=0; i<nExpr-1; i=i+2){ 4488 if( pX ){ 4489 assert( pTest!=0 ); 4490 opCompare.pRight = aListelem[i].pExpr; 4491 }else{ 4492 pTest = aListelem[i].pExpr; 4493 } 4494 nextCase = sqlite3VdbeMakeLabel(pParse); 4495 testcase( pTest->op==TK_COLUMN ); 4496 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4497 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4498 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4499 sqlite3VdbeGoto(v, endLabel); 4500 sqlite3VdbeResolveLabel(v, nextCase); 4501 } 4502 if( (nExpr&1)!=0 ){ 4503 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4504 }else{ 4505 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4506 } 4507 sqlite3ExprDelete(db, pDel); 4508 setDoNotMergeFlagOnCopy(v); 4509 sqlite3VdbeResolveLabel(v, endLabel); 4510 break; 4511 } 4512 #ifndef SQLITE_OMIT_TRIGGER 4513 case TK_RAISE: { 4514 assert( pExpr->affExpr==OE_Rollback 4515 || pExpr->affExpr==OE_Abort 4516 || pExpr->affExpr==OE_Fail 4517 || pExpr->affExpr==OE_Ignore 4518 ); 4519 if( !pParse->pTriggerTab && !pParse->nested ){ 4520 sqlite3ErrorMsg(pParse, 4521 "RAISE() may only be used within a trigger-program"); 4522 return 0; 4523 } 4524 if( pExpr->affExpr==OE_Abort ){ 4525 sqlite3MayAbort(pParse); 4526 } 4527 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4528 if( pExpr->affExpr==OE_Ignore ){ 4529 sqlite3VdbeAddOp4( 4530 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4531 VdbeCoverage(v); 4532 }else{ 4533 sqlite3HaltConstraint(pParse, 4534 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4535 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4536 } 4537 4538 break; 4539 } 4540 #endif 4541 } 4542 sqlite3ReleaseTempReg(pParse, regFree1); 4543 sqlite3ReleaseTempReg(pParse, regFree2); 4544 return inReg; 4545 } 4546 4547 /* 4548 ** Generate code that will evaluate expression pExpr just one time 4549 ** per prepared statement execution. 4550 ** 4551 ** If the expression uses functions (that might throw an exception) then 4552 ** guard them with an OP_Once opcode to ensure that the code is only executed 4553 ** once. If no functions are involved, then factor the code out and put it at 4554 ** the end of the prepared statement in the initialization section. 4555 ** 4556 ** If regDest>=0 then the result is always stored in that register and the 4557 ** result is not reusable. If regDest<0 then this routine is free to 4558 ** store the value whereever it wants. The register where the expression 4559 ** is stored is returned. When regDest<0, two identical expressions might 4560 ** code to the same register, if they do not contain function calls and hence 4561 ** are factored out into the initialization section at the end of the 4562 ** prepared statement. 4563 */ 4564 int sqlite3ExprCodeRunJustOnce( 4565 Parse *pParse, /* Parsing context */ 4566 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4567 int regDest /* Store the value in this register */ 4568 ){ 4569 ExprList *p; 4570 assert( ConstFactorOk(pParse) ); 4571 p = pParse->pConstExpr; 4572 if( regDest<0 && p ){ 4573 struct ExprList_item *pItem; 4574 int i; 4575 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4576 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4577 return pItem->u.iConstExprReg; 4578 } 4579 } 4580 } 4581 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4582 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4583 Vdbe *v = pParse->pVdbe; 4584 int addr; 4585 assert( v ); 4586 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4587 pParse->okConstFactor = 0; 4588 if( !pParse->db->mallocFailed ){ 4589 if( regDest<0 ) regDest = ++pParse->nMem; 4590 sqlite3ExprCode(pParse, pExpr, regDest); 4591 } 4592 pParse->okConstFactor = 1; 4593 sqlite3ExprDelete(pParse->db, pExpr); 4594 sqlite3VdbeJumpHere(v, addr); 4595 }else{ 4596 p = sqlite3ExprListAppend(pParse, p, pExpr); 4597 if( p ){ 4598 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4599 pItem->reusable = regDest<0; 4600 if( regDest<0 ) regDest = ++pParse->nMem; 4601 pItem->u.iConstExprReg = regDest; 4602 } 4603 pParse->pConstExpr = p; 4604 } 4605 return regDest; 4606 } 4607 4608 /* 4609 ** Generate code to evaluate an expression and store the results 4610 ** into a register. Return the register number where the results 4611 ** are stored. 4612 ** 4613 ** If the register is a temporary register that can be deallocated, 4614 ** then write its number into *pReg. If the result register is not 4615 ** a temporary, then set *pReg to zero. 4616 ** 4617 ** If pExpr is a constant, then this routine might generate this 4618 ** code to fill the register in the initialization section of the 4619 ** VDBE program, in order to factor it out of the evaluation loop. 4620 */ 4621 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4622 int r2; 4623 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4624 if( ConstFactorOk(pParse) 4625 && ALWAYS(pExpr!=0) 4626 && pExpr->op!=TK_REGISTER 4627 && sqlite3ExprIsConstantNotJoin(pExpr) 4628 ){ 4629 *pReg = 0; 4630 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4631 }else{ 4632 int r1 = sqlite3GetTempReg(pParse); 4633 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4634 if( r2==r1 ){ 4635 *pReg = r1; 4636 }else{ 4637 sqlite3ReleaseTempReg(pParse, r1); 4638 *pReg = 0; 4639 } 4640 } 4641 return r2; 4642 } 4643 4644 /* 4645 ** Generate code that will evaluate expression pExpr and store the 4646 ** results in register target. The results are guaranteed to appear 4647 ** in register target. 4648 */ 4649 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4650 int inReg; 4651 4652 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4653 assert( target>0 && target<=pParse->nMem ); 4654 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4655 if( pParse->pVdbe==0 ) return; 4656 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4657 if( inReg!=target ){ 4658 u8 op; 4659 if( ExprHasProperty(pExpr,EP_Subquery) ){ 4660 op = OP_Copy; 4661 }else{ 4662 op = OP_SCopy; 4663 } 4664 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4665 } 4666 } 4667 4668 /* 4669 ** Make a transient copy of expression pExpr and then code it using 4670 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4671 ** except that the input expression is guaranteed to be unchanged. 4672 */ 4673 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4674 sqlite3 *db = pParse->db; 4675 pExpr = sqlite3ExprDup(db, pExpr, 0); 4676 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4677 sqlite3ExprDelete(db, pExpr); 4678 } 4679 4680 /* 4681 ** Generate code that will evaluate expression pExpr and store the 4682 ** results in register target. The results are guaranteed to appear 4683 ** in register target. If the expression is constant, then this routine 4684 ** might choose to code the expression at initialization time. 4685 */ 4686 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4687 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4688 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4689 }else{ 4690 sqlite3ExprCodeCopy(pParse, pExpr, target); 4691 } 4692 } 4693 4694 /* 4695 ** Generate code that pushes the value of every element of the given 4696 ** expression list into a sequence of registers beginning at target. 4697 ** 4698 ** Return the number of elements evaluated. The number returned will 4699 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4700 ** is defined. 4701 ** 4702 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4703 ** filled using OP_SCopy. OP_Copy must be used instead. 4704 ** 4705 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4706 ** factored out into initialization code. 4707 ** 4708 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4709 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4710 ** in registers at srcReg, and so the value can be copied from there. 4711 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4712 ** are simply omitted rather than being copied from srcReg. 4713 */ 4714 int sqlite3ExprCodeExprList( 4715 Parse *pParse, /* Parsing context */ 4716 ExprList *pList, /* The expression list to be coded */ 4717 int target, /* Where to write results */ 4718 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4719 u8 flags /* SQLITE_ECEL_* flags */ 4720 ){ 4721 struct ExprList_item *pItem; 4722 int i, j, n; 4723 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4724 Vdbe *v = pParse->pVdbe; 4725 assert( pList!=0 ); 4726 assert( target>0 ); 4727 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4728 n = pList->nExpr; 4729 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4730 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4731 Expr *pExpr = pItem->pExpr; 4732 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4733 if( pItem->bSorterRef ){ 4734 i--; 4735 n--; 4736 }else 4737 #endif 4738 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4739 if( flags & SQLITE_ECEL_OMITREF ){ 4740 i--; 4741 n--; 4742 }else{ 4743 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4744 } 4745 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4746 && sqlite3ExprIsConstantNotJoin(pExpr) 4747 ){ 4748 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4749 }else{ 4750 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4751 if( inReg!=target+i ){ 4752 VdbeOp *pOp; 4753 if( copyOp==OP_Copy 4754 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4755 && pOp->p1+pOp->p3+1==inReg 4756 && pOp->p2+pOp->p3+1==target+i 4757 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4758 ){ 4759 pOp->p3++; 4760 }else{ 4761 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4762 } 4763 } 4764 } 4765 } 4766 return n; 4767 } 4768 4769 /* 4770 ** Generate code for a BETWEEN operator. 4771 ** 4772 ** x BETWEEN y AND z 4773 ** 4774 ** The above is equivalent to 4775 ** 4776 ** x>=y AND x<=z 4777 ** 4778 ** Code it as such, taking care to do the common subexpression 4779 ** elimination of x. 4780 ** 4781 ** The xJumpIf parameter determines details: 4782 ** 4783 ** NULL: Store the boolean result in reg[dest] 4784 ** sqlite3ExprIfTrue: Jump to dest if true 4785 ** sqlite3ExprIfFalse: Jump to dest if false 4786 ** 4787 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4788 */ 4789 static void exprCodeBetween( 4790 Parse *pParse, /* Parsing and code generating context */ 4791 Expr *pExpr, /* The BETWEEN expression */ 4792 int dest, /* Jump destination or storage location */ 4793 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4794 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4795 ){ 4796 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4797 Expr compLeft; /* The x>=y term */ 4798 Expr compRight; /* The x<=z term */ 4799 int regFree1 = 0; /* Temporary use register */ 4800 Expr *pDel = 0; 4801 sqlite3 *db = pParse->db; 4802 4803 memset(&compLeft, 0, sizeof(Expr)); 4804 memset(&compRight, 0, sizeof(Expr)); 4805 memset(&exprAnd, 0, sizeof(Expr)); 4806 4807 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4808 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4809 if( db->mallocFailed==0 ){ 4810 exprAnd.op = TK_AND; 4811 exprAnd.pLeft = &compLeft; 4812 exprAnd.pRight = &compRight; 4813 compLeft.op = TK_GE; 4814 compLeft.pLeft = pDel; 4815 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4816 compRight.op = TK_LE; 4817 compRight.pLeft = pDel; 4818 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4819 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4820 if( xJump ){ 4821 xJump(pParse, &exprAnd, dest, jumpIfNull); 4822 }else{ 4823 /* Mark the expression is being from the ON or USING clause of a join 4824 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4825 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4826 ** for clarity, but we are out of bits in the Expr.flags field so we 4827 ** have to reuse the EP_FromJoin bit. Bummer. */ 4828 pDel->flags |= EP_FromJoin; 4829 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4830 } 4831 sqlite3ReleaseTempReg(pParse, regFree1); 4832 } 4833 sqlite3ExprDelete(db, pDel); 4834 4835 /* Ensure adequate test coverage */ 4836 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4837 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4838 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4839 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4840 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4841 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4842 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4843 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4844 testcase( xJump==0 ); 4845 } 4846 4847 /* 4848 ** Generate code for a boolean expression such that a jump is made 4849 ** to the label "dest" if the expression is true but execution 4850 ** continues straight thru if the expression is false. 4851 ** 4852 ** If the expression evaluates to NULL (neither true nor false), then 4853 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4854 ** 4855 ** This code depends on the fact that certain token values (ex: TK_EQ) 4856 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4857 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4858 ** the make process cause these values to align. Assert()s in the code 4859 ** below verify that the numbers are aligned correctly. 4860 */ 4861 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4862 Vdbe *v = pParse->pVdbe; 4863 int op = 0; 4864 int regFree1 = 0; 4865 int regFree2 = 0; 4866 int r1, r2; 4867 4868 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4869 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4870 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4871 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 4872 op = pExpr->op; 4873 switch( op ){ 4874 case TK_AND: 4875 case TK_OR: { 4876 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4877 if( pAlt!=pExpr ){ 4878 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4879 }else if( op==TK_AND ){ 4880 int d2 = sqlite3VdbeMakeLabel(pParse); 4881 testcase( jumpIfNull==0 ); 4882 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4883 jumpIfNull^SQLITE_JUMPIFNULL); 4884 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4885 sqlite3VdbeResolveLabel(v, d2); 4886 }else{ 4887 testcase( jumpIfNull==0 ); 4888 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4889 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4890 } 4891 break; 4892 } 4893 case TK_NOT: { 4894 testcase( jumpIfNull==0 ); 4895 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4896 break; 4897 } 4898 case TK_TRUTH: { 4899 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4900 int isTrue; /* IS TRUE or IS NOT TRUE */ 4901 testcase( jumpIfNull==0 ); 4902 isNot = pExpr->op2==TK_ISNOT; 4903 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4904 testcase( isTrue && isNot ); 4905 testcase( !isTrue && isNot ); 4906 if( isTrue ^ isNot ){ 4907 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4908 isNot ? SQLITE_JUMPIFNULL : 0); 4909 }else{ 4910 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4911 isNot ? SQLITE_JUMPIFNULL : 0); 4912 } 4913 break; 4914 } 4915 case TK_IS: 4916 case TK_ISNOT: 4917 testcase( op==TK_IS ); 4918 testcase( op==TK_ISNOT ); 4919 op = (op==TK_IS) ? TK_EQ : TK_NE; 4920 jumpIfNull = SQLITE_NULLEQ; 4921 /* no break */ deliberate_fall_through 4922 case TK_LT: 4923 case TK_LE: 4924 case TK_GT: 4925 case TK_GE: 4926 case TK_NE: 4927 case TK_EQ: { 4928 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4929 testcase( jumpIfNull==0 ); 4930 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4931 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4932 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4933 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 4934 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4935 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4936 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4937 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4938 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4939 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4940 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4941 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4942 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4943 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4944 testcase( regFree1==0 ); 4945 testcase( regFree2==0 ); 4946 break; 4947 } 4948 case TK_ISNULL: 4949 case TK_NOTNULL: { 4950 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4951 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4952 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4953 sqlite3VdbeAddOp2(v, op, r1, dest); 4954 VdbeCoverageIf(v, op==TK_ISNULL); 4955 VdbeCoverageIf(v, op==TK_NOTNULL); 4956 testcase( regFree1==0 ); 4957 break; 4958 } 4959 case TK_BETWEEN: { 4960 testcase( jumpIfNull==0 ); 4961 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4962 break; 4963 } 4964 #ifndef SQLITE_OMIT_SUBQUERY 4965 case TK_IN: { 4966 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4967 int destIfNull = jumpIfNull ? dest : destIfFalse; 4968 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4969 sqlite3VdbeGoto(v, dest); 4970 sqlite3VdbeResolveLabel(v, destIfFalse); 4971 break; 4972 } 4973 #endif 4974 default: { 4975 default_expr: 4976 if( ExprAlwaysTrue(pExpr) ){ 4977 sqlite3VdbeGoto(v, dest); 4978 }else if( ExprAlwaysFalse(pExpr) ){ 4979 /* No-op */ 4980 }else{ 4981 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4982 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4983 VdbeCoverage(v); 4984 testcase( regFree1==0 ); 4985 testcase( jumpIfNull==0 ); 4986 } 4987 break; 4988 } 4989 } 4990 sqlite3ReleaseTempReg(pParse, regFree1); 4991 sqlite3ReleaseTempReg(pParse, regFree2); 4992 } 4993 4994 /* 4995 ** Generate code for a boolean expression such that a jump is made 4996 ** to the label "dest" if the expression is false but execution 4997 ** continues straight thru if the expression is true. 4998 ** 4999 ** If the expression evaluates to NULL (neither true nor false) then 5000 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5001 ** is 0. 5002 */ 5003 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5004 Vdbe *v = pParse->pVdbe; 5005 int op = 0; 5006 int regFree1 = 0; 5007 int regFree2 = 0; 5008 int r1, r2; 5009 5010 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5011 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5012 if( pExpr==0 ) return; 5013 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5014 5015 /* The value of pExpr->op and op are related as follows: 5016 ** 5017 ** pExpr->op op 5018 ** --------- ---------- 5019 ** TK_ISNULL OP_NotNull 5020 ** TK_NOTNULL OP_IsNull 5021 ** TK_NE OP_Eq 5022 ** TK_EQ OP_Ne 5023 ** TK_GT OP_Le 5024 ** TK_LE OP_Gt 5025 ** TK_GE OP_Lt 5026 ** TK_LT OP_Ge 5027 ** 5028 ** For other values of pExpr->op, op is undefined and unused. 5029 ** The value of TK_ and OP_ constants are arranged such that we 5030 ** can compute the mapping above using the following expression. 5031 ** Assert()s verify that the computation is correct. 5032 */ 5033 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5034 5035 /* Verify correct alignment of TK_ and OP_ constants 5036 */ 5037 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5038 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5039 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5040 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5041 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5042 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5043 assert( pExpr->op!=TK_GT || op==OP_Le ); 5044 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5045 5046 switch( pExpr->op ){ 5047 case TK_AND: 5048 case TK_OR: { 5049 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5050 if( pAlt!=pExpr ){ 5051 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5052 }else if( pExpr->op==TK_AND ){ 5053 testcase( jumpIfNull==0 ); 5054 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5055 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5056 }else{ 5057 int d2 = sqlite3VdbeMakeLabel(pParse); 5058 testcase( jumpIfNull==0 ); 5059 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5060 jumpIfNull^SQLITE_JUMPIFNULL); 5061 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5062 sqlite3VdbeResolveLabel(v, d2); 5063 } 5064 break; 5065 } 5066 case TK_NOT: { 5067 testcase( jumpIfNull==0 ); 5068 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5069 break; 5070 } 5071 case TK_TRUTH: { 5072 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5073 int isTrue; /* IS TRUE or IS NOT TRUE */ 5074 testcase( jumpIfNull==0 ); 5075 isNot = pExpr->op2==TK_ISNOT; 5076 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5077 testcase( isTrue && isNot ); 5078 testcase( !isTrue && isNot ); 5079 if( isTrue ^ isNot ){ 5080 /* IS TRUE and IS NOT FALSE */ 5081 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5082 isNot ? 0 : SQLITE_JUMPIFNULL); 5083 5084 }else{ 5085 /* IS FALSE and IS NOT TRUE */ 5086 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5087 isNot ? 0 : SQLITE_JUMPIFNULL); 5088 } 5089 break; 5090 } 5091 case TK_IS: 5092 case TK_ISNOT: 5093 testcase( pExpr->op==TK_IS ); 5094 testcase( pExpr->op==TK_ISNOT ); 5095 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5096 jumpIfNull = SQLITE_NULLEQ; 5097 /* no break */ deliberate_fall_through 5098 case TK_LT: 5099 case TK_LE: 5100 case TK_GT: 5101 case TK_GE: 5102 case TK_NE: 5103 case TK_EQ: { 5104 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5105 testcase( jumpIfNull==0 ); 5106 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5107 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5108 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5109 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5110 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5111 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5112 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5113 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5114 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5115 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5116 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5117 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5118 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5119 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5120 testcase( regFree1==0 ); 5121 testcase( regFree2==0 ); 5122 break; 5123 } 5124 case TK_ISNULL: 5125 case TK_NOTNULL: { 5126 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5127 sqlite3VdbeAddOp2(v, op, r1, dest); 5128 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5129 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5130 testcase( regFree1==0 ); 5131 break; 5132 } 5133 case TK_BETWEEN: { 5134 testcase( jumpIfNull==0 ); 5135 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5136 break; 5137 } 5138 #ifndef SQLITE_OMIT_SUBQUERY 5139 case TK_IN: { 5140 if( jumpIfNull ){ 5141 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5142 }else{ 5143 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5144 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5145 sqlite3VdbeResolveLabel(v, destIfNull); 5146 } 5147 break; 5148 } 5149 #endif 5150 default: { 5151 default_expr: 5152 if( ExprAlwaysFalse(pExpr) ){ 5153 sqlite3VdbeGoto(v, dest); 5154 }else if( ExprAlwaysTrue(pExpr) ){ 5155 /* no-op */ 5156 }else{ 5157 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5158 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5159 VdbeCoverage(v); 5160 testcase( regFree1==0 ); 5161 testcase( jumpIfNull==0 ); 5162 } 5163 break; 5164 } 5165 } 5166 sqlite3ReleaseTempReg(pParse, regFree1); 5167 sqlite3ReleaseTempReg(pParse, regFree2); 5168 } 5169 5170 /* 5171 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5172 ** code generation, and that copy is deleted after code generation. This 5173 ** ensures that the original pExpr is unchanged. 5174 */ 5175 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5176 sqlite3 *db = pParse->db; 5177 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5178 if( db->mallocFailed==0 ){ 5179 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5180 } 5181 sqlite3ExprDelete(db, pCopy); 5182 } 5183 5184 /* 5185 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5186 ** type of expression. 5187 ** 5188 ** If pExpr is a simple SQL value - an integer, real, string, blob 5189 ** or NULL value - then the VDBE currently being prepared is configured 5190 ** to re-prepare each time a new value is bound to variable pVar. 5191 ** 5192 ** Additionally, if pExpr is a simple SQL value and the value is the 5193 ** same as that currently bound to variable pVar, non-zero is returned. 5194 ** Otherwise, if the values are not the same or if pExpr is not a simple 5195 ** SQL value, zero is returned. 5196 */ 5197 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 5198 int res = 0; 5199 int iVar; 5200 sqlite3_value *pL, *pR = 0; 5201 5202 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5203 if( pR ){ 5204 iVar = pVar->iColumn; 5205 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5206 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5207 if( pL ){ 5208 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5209 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5210 } 5211 res = 0==sqlite3MemCompare(pL, pR, 0); 5212 } 5213 sqlite3ValueFree(pR); 5214 sqlite3ValueFree(pL); 5215 } 5216 5217 return res; 5218 } 5219 5220 /* 5221 ** Do a deep comparison of two expression trees. Return 0 if the two 5222 ** expressions are completely identical. Return 1 if they differ only 5223 ** by a COLLATE operator at the top level. Return 2 if there are differences 5224 ** other than the top-level COLLATE operator. 5225 ** 5226 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5227 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5228 ** 5229 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5230 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5231 ** 5232 ** Sometimes this routine will return 2 even if the two expressions 5233 ** really are equivalent. If we cannot prove that the expressions are 5234 ** identical, we return 2 just to be safe. So if this routine 5235 ** returns 2, then you do not really know for certain if the two 5236 ** expressions are the same. But if you get a 0 or 1 return, then you 5237 ** can be sure the expressions are the same. In the places where 5238 ** this routine is used, it does not hurt to get an extra 2 - that 5239 ** just might result in some slightly slower code. But returning 5240 ** an incorrect 0 or 1 could lead to a malfunction. 5241 ** 5242 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5243 ** pParse->pReprepare can be matched against literals in pB. The 5244 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5245 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5246 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5247 ** pB causes a return value of 2. 5248 */ 5249 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 5250 u32 combinedFlags; 5251 if( pA==0 || pB==0 ){ 5252 return pB==pA ? 0 : 2; 5253 } 5254 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5255 return 0; 5256 } 5257 combinedFlags = pA->flags | pB->flags; 5258 if( combinedFlags & EP_IntValue ){ 5259 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5260 return 0; 5261 } 5262 return 2; 5263 } 5264 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5265 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5266 return 1; 5267 } 5268 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5269 return 1; 5270 } 5271 return 2; 5272 } 5273 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5274 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5275 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5276 #ifndef SQLITE_OMIT_WINDOWFUNC 5277 assert( pA->op==pB->op ); 5278 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5279 return 2; 5280 } 5281 if( ExprHasProperty(pA,EP_WinFunc) ){ 5282 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5283 return 2; 5284 } 5285 } 5286 #endif 5287 }else if( pA->op==TK_NULL ){ 5288 return 0; 5289 }else if( pA->op==TK_COLLATE ){ 5290 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5291 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5292 return 2; 5293 } 5294 } 5295 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5296 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5297 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5298 if( combinedFlags & EP_xIsSelect ) return 2; 5299 if( (combinedFlags & EP_FixedCol)==0 5300 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5301 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5302 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5303 if( pA->op!=TK_STRING 5304 && pA->op!=TK_TRUEFALSE 5305 && ALWAYS((combinedFlags & EP_Reduced)==0) 5306 ){ 5307 if( pA->iColumn!=pB->iColumn ) return 2; 5308 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5309 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5310 return 2; 5311 } 5312 } 5313 } 5314 return 0; 5315 } 5316 5317 /* 5318 ** Compare two ExprList objects. Return 0 if they are identical, 1 5319 ** if they are certainly different, or 2 if it is not possible to 5320 ** determine if they are identical or not. 5321 ** 5322 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5323 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5324 ** 5325 ** This routine might return non-zero for equivalent ExprLists. The 5326 ** only consequence will be disabled optimizations. But this routine 5327 ** must never return 0 if the two ExprList objects are different, or 5328 ** a malfunction will result. 5329 ** 5330 ** Two NULL pointers are considered to be the same. But a NULL pointer 5331 ** always differs from a non-NULL pointer. 5332 */ 5333 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 5334 int i; 5335 if( pA==0 && pB==0 ) return 0; 5336 if( pA==0 || pB==0 ) return 1; 5337 if( pA->nExpr!=pB->nExpr ) return 1; 5338 for(i=0; i<pA->nExpr; i++){ 5339 int res; 5340 Expr *pExprA = pA->a[i].pExpr; 5341 Expr *pExprB = pB->a[i].pExpr; 5342 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5343 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5344 } 5345 return 0; 5346 } 5347 5348 /* 5349 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5350 ** are ignored. 5351 */ 5352 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 5353 return sqlite3ExprCompare(0, 5354 sqlite3ExprSkipCollateAndLikely(pA), 5355 sqlite3ExprSkipCollateAndLikely(pB), 5356 iTab); 5357 } 5358 5359 /* 5360 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5361 ** 5362 ** Or if seenNot is true, return non-zero if Expr p can only be 5363 ** non-NULL if pNN is not NULL 5364 */ 5365 static int exprImpliesNotNull( 5366 Parse *pParse, /* Parsing context */ 5367 Expr *p, /* The expression to be checked */ 5368 Expr *pNN, /* The expression that is NOT NULL */ 5369 int iTab, /* Table being evaluated */ 5370 int seenNot /* Return true only if p can be any non-NULL value */ 5371 ){ 5372 assert( p ); 5373 assert( pNN ); 5374 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5375 return pNN->op!=TK_NULL; 5376 } 5377 switch( p->op ){ 5378 case TK_IN: { 5379 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5380 assert( ExprHasProperty(p,EP_xIsSelect) 5381 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5382 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5383 } 5384 case TK_BETWEEN: { 5385 ExprList *pList = p->x.pList; 5386 assert( pList!=0 ); 5387 assert( pList->nExpr==2 ); 5388 if( seenNot ) return 0; 5389 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5390 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5391 ){ 5392 return 1; 5393 } 5394 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5395 } 5396 case TK_EQ: 5397 case TK_NE: 5398 case TK_LT: 5399 case TK_LE: 5400 case TK_GT: 5401 case TK_GE: 5402 case TK_PLUS: 5403 case TK_MINUS: 5404 case TK_BITOR: 5405 case TK_LSHIFT: 5406 case TK_RSHIFT: 5407 case TK_CONCAT: 5408 seenNot = 1; 5409 /* no break */ deliberate_fall_through 5410 case TK_STAR: 5411 case TK_REM: 5412 case TK_BITAND: 5413 case TK_SLASH: { 5414 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5415 /* no break */ deliberate_fall_through 5416 } 5417 case TK_SPAN: 5418 case TK_COLLATE: 5419 case TK_UPLUS: 5420 case TK_UMINUS: { 5421 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5422 } 5423 case TK_TRUTH: { 5424 if( seenNot ) return 0; 5425 if( p->op2!=TK_IS ) return 0; 5426 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5427 } 5428 case TK_BITNOT: 5429 case TK_NOT: { 5430 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5431 } 5432 } 5433 return 0; 5434 } 5435 5436 /* 5437 ** Return true if we can prove the pE2 will always be true if pE1 is 5438 ** true. Return false if we cannot complete the proof or if pE2 might 5439 ** be false. Examples: 5440 ** 5441 ** pE1: x==5 pE2: x==5 Result: true 5442 ** pE1: x>0 pE2: x==5 Result: false 5443 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5444 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5445 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5446 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5447 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5448 ** 5449 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5450 ** Expr.iTable<0 then assume a table number given by iTab. 5451 ** 5452 ** If pParse is not NULL, then the values of bound variables in pE1 are 5453 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5454 ** modified to record which bound variables are referenced. If pParse 5455 ** is NULL, then false will be returned if pE1 contains any bound variables. 5456 ** 5457 ** When in doubt, return false. Returning true might give a performance 5458 ** improvement. Returning false might cause a performance reduction, but 5459 ** it will always give the correct answer and is hence always safe. 5460 */ 5461 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5462 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5463 return 1; 5464 } 5465 if( pE2->op==TK_OR 5466 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5467 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5468 ){ 5469 return 1; 5470 } 5471 if( pE2->op==TK_NOTNULL 5472 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5473 ){ 5474 return 1; 5475 } 5476 return 0; 5477 } 5478 5479 /* 5480 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5481 ** If the expression node requires that the table at pWalker->iCur 5482 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5483 ** 5484 ** This routine controls an optimization. False positives (setting 5485 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5486 ** (never setting pWalker->eCode) is a harmless missed optimization. 5487 */ 5488 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5489 testcase( pExpr->op==TK_AGG_COLUMN ); 5490 testcase( pExpr->op==TK_AGG_FUNCTION ); 5491 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5492 switch( pExpr->op ){ 5493 case TK_ISNOT: 5494 case TK_ISNULL: 5495 case TK_NOTNULL: 5496 case TK_IS: 5497 case TK_OR: 5498 case TK_VECTOR: 5499 case TK_CASE: 5500 case TK_IN: 5501 case TK_FUNCTION: 5502 case TK_TRUTH: 5503 testcase( pExpr->op==TK_ISNOT ); 5504 testcase( pExpr->op==TK_ISNULL ); 5505 testcase( pExpr->op==TK_NOTNULL ); 5506 testcase( pExpr->op==TK_IS ); 5507 testcase( pExpr->op==TK_OR ); 5508 testcase( pExpr->op==TK_VECTOR ); 5509 testcase( pExpr->op==TK_CASE ); 5510 testcase( pExpr->op==TK_IN ); 5511 testcase( pExpr->op==TK_FUNCTION ); 5512 testcase( pExpr->op==TK_TRUTH ); 5513 return WRC_Prune; 5514 case TK_COLUMN: 5515 if( pWalker->u.iCur==pExpr->iTable ){ 5516 pWalker->eCode = 1; 5517 return WRC_Abort; 5518 } 5519 return WRC_Prune; 5520 5521 case TK_AND: 5522 if( pWalker->eCode==0 ){ 5523 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5524 if( pWalker->eCode ){ 5525 pWalker->eCode = 0; 5526 sqlite3WalkExpr(pWalker, pExpr->pRight); 5527 } 5528 } 5529 return WRC_Prune; 5530 5531 case TK_BETWEEN: 5532 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5533 assert( pWalker->eCode ); 5534 return WRC_Abort; 5535 } 5536 return WRC_Prune; 5537 5538 /* Virtual tables are allowed to use constraints like x=NULL. So 5539 ** a term of the form x=y does not prove that y is not null if x 5540 ** is the column of a virtual table */ 5541 case TK_EQ: 5542 case TK_NE: 5543 case TK_LT: 5544 case TK_LE: 5545 case TK_GT: 5546 case TK_GE: { 5547 Expr *pLeft = pExpr->pLeft; 5548 Expr *pRight = pExpr->pRight; 5549 testcase( pExpr->op==TK_EQ ); 5550 testcase( pExpr->op==TK_NE ); 5551 testcase( pExpr->op==TK_LT ); 5552 testcase( pExpr->op==TK_LE ); 5553 testcase( pExpr->op==TK_GT ); 5554 testcase( pExpr->op==TK_GE ); 5555 /* The y.pTab=0 assignment in wherecode.c always happens after the 5556 ** impliesNotNullRow() test */ 5557 if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0) 5558 && IsVirtual(pLeft->y.pTab)) 5559 || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0) 5560 && IsVirtual(pRight->y.pTab)) 5561 ){ 5562 return WRC_Prune; 5563 } 5564 /* no break */ deliberate_fall_through 5565 } 5566 default: 5567 return WRC_Continue; 5568 } 5569 } 5570 5571 /* 5572 ** Return true (non-zero) if expression p can only be true if at least 5573 ** one column of table iTab is non-null. In other words, return true 5574 ** if expression p will always be NULL or false if every column of iTab 5575 ** is NULL. 5576 ** 5577 ** False negatives are acceptable. In other words, it is ok to return 5578 ** zero even if expression p will never be true of every column of iTab 5579 ** is NULL. A false negative is merely a missed optimization opportunity. 5580 ** 5581 ** False positives are not allowed, however. A false positive may result 5582 ** in an incorrect answer. 5583 ** 5584 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5585 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5586 ** 5587 ** This routine is used to check if a LEFT JOIN can be converted into 5588 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5589 ** clause requires that some column of the right table of the LEFT JOIN 5590 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5591 ** ordinary join. 5592 */ 5593 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5594 Walker w; 5595 p = sqlite3ExprSkipCollateAndLikely(p); 5596 if( p==0 ) return 0; 5597 if( p->op==TK_NOTNULL ){ 5598 p = p->pLeft; 5599 }else{ 5600 while( p->op==TK_AND ){ 5601 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5602 p = p->pRight; 5603 } 5604 } 5605 w.xExprCallback = impliesNotNullRow; 5606 w.xSelectCallback = 0; 5607 w.xSelectCallback2 = 0; 5608 w.eCode = 0; 5609 w.u.iCur = iTab; 5610 sqlite3WalkExpr(&w, p); 5611 return w.eCode; 5612 } 5613 5614 /* 5615 ** An instance of the following structure is used by the tree walker 5616 ** to determine if an expression can be evaluated by reference to the 5617 ** index only, without having to do a search for the corresponding 5618 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5619 ** is the cursor for the table. 5620 */ 5621 struct IdxCover { 5622 Index *pIdx; /* The index to be tested for coverage */ 5623 int iCur; /* Cursor number for the table corresponding to the index */ 5624 }; 5625 5626 /* 5627 ** Check to see if there are references to columns in table 5628 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5629 ** pWalker->u.pIdxCover->pIdx. 5630 */ 5631 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5632 if( pExpr->op==TK_COLUMN 5633 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5634 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5635 ){ 5636 pWalker->eCode = 1; 5637 return WRC_Abort; 5638 } 5639 return WRC_Continue; 5640 } 5641 5642 /* 5643 ** Determine if an index pIdx on table with cursor iCur contains will 5644 ** the expression pExpr. Return true if the index does cover the 5645 ** expression and false if the pExpr expression references table columns 5646 ** that are not found in the index pIdx. 5647 ** 5648 ** An index covering an expression means that the expression can be 5649 ** evaluated using only the index and without having to lookup the 5650 ** corresponding table entry. 5651 */ 5652 int sqlite3ExprCoveredByIndex( 5653 Expr *pExpr, /* The index to be tested */ 5654 int iCur, /* The cursor number for the corresponding table */ 5655 Index *pIdx /* The index that might be used for coverage */ 5656 ){ 5657 Walker w; 5658 struct IdxCover xcov; 5659 memset(&w, 0, sizeof(w)); 5660 xcov.iCur = iCur; 5661 xcov.pIdx = pIdx; 5662 w.xExprCallback = exprIdxCover; 5663 w.u.pIdxCover = &xcov; 5664 sqlite3WalkExpr(&w, pExpr); 5665 return !w.eCode; 5666 } 5667 5668 5669 /* 5670 ** An instance of the following structure is used by the tree walker 5671 ** to count references to table columns in the arguments of an 5672 ** aggregate function, in order to implement the 5673 ** sqlite3FunctionThisSrc() routine. 5674 */ 5675 struct SrcCount { 5676 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5677 int iSrcInner; /* Smallest cursor number in this context */ 5678 int nThis; /* Number of references to columns in pSrcList */ 5679 int nOther; /* Number of references to columns in other FROM clauses */ 5680 }; 5681 5682 /* 5683 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first 5684 ** SELECT with a FROM clause encountered during this iteration, set 5685 ** SrcCount.iSrcInner to the cursor number of the leftmost object in 5686 ** the FROM cause. 5687 */ 5688 static int selectSrcCount(Walker *pWalker, Select *pSel){ 5689 struct SrcCount *p = pWalker->u.pSrcCount; 5690 if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){ 5691 pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor; 5692 } 5693 return WRC_Continue; 5694 } 5695 5696 /* 5697 ** Count the number of references to columns. 5698 */ 5699 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5700 /* There was once a NEVER() on the second term on the grounds that 5701 ** sqlite3FunctionUsesThisSrc() was always called before 5702 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet 5703 ** been converted into TK_AGG_COLUMN. But this is no longer true due 5704 ** to window functions - sqlite3WindowRewrite() may now indirectly call 5705 ** FunctionUsesThisSrc() when creating a new sub-select. */ 5706 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 5707 int i; 5708 struct SrcCount *p = pWalker->u.pSrcCount; 5709 SrcList *pSrc = p->pSrc; 5710 int nSrc = pSrc ? pSrc->nSrc : 0; 5711 for(i=0; i<nSrc; i++){ 5712 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5713 } 5714 if( i<nSrc ){ 5715 p->nThis++; 5716 }else if( pExpr->iTable<p->iSrcInner ){ 5717 /* In a well-formed parse tree (no name resolution errors), 5718 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5719 ** outer context. Those are the only ones to count as "other" */ 5720 p->nOther++; 5721 } 5722 } 5723 return WRC_Continue; 5724 } 5725 5726 /* 5727 ** Determine if any of the arguments to the pExpr Function reference 5728 ** pSrcList. Return true if they do. Also return true if the function 5729 ** has no arguments or has only constant arguments. Return false if pExpr 5730 ** references columns but not columns of tables found in pSrcList. 5731 */ 5732 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5733 Walker w; 5734 struct SrcCount cnt; 5735 assert( pExpr->op==TK_AGG_FUNCTION ); 5736 memset(&w, 0, sizeof(w)); 5737 w.xExprCallback = exprSrcCount; 5738 w.xSelectCallback = selectSrcCount; 5739 w.u.pSrcCount = &cnt; 5740 cnt.pSrc = pSrcList; 5741 cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF; 5742 cnt.nThis = 0; 5743 cnt.nOther = 0; 5744 sqlite3WalkExprList(&w, pExpr->x.pList); 5745 #ifndef SQLITE_OMIT_WINDOWFUNC 5746 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5747 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5748 } 5749 #endif 5750 return cnt.nThis>0 || cnt.nOther==0; 5751 } 5752 5753 /* 5754 ** This is a Walker expression node callback. 5755 ** 5756 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 5757 ** object that is referenced does not refer directly to the Expr. If 5758 ** it does, make a copy. This is done because the pExpr argument is 5759 ** subject to change. 5760 ** 5761 ** The copy is stored on pParse->pConstExpr with a register number of 0. 5762 ** This will cause the expression to be deleted automatically when the 5763 ** Parse object is destroyed, but the zero register number means that it 5764 ** will not generate any code in the preamble. 5765 */ 5766 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 5767 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 5768 && pExpr->pAggInfo!=0 5769 ){ 5770 AggInfo *pAggInfo = pExpr->pAggInfo; 5771 int iAgg = pExpr->iAgg; 5772 Parse *pParse = pWalker->pParse; 5773 sqlite3 *db = pParse->db; 5774 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 5775 if( pExpr->op==TK_AGG_COLUMN ){ 5776 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 5777 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 5778 pExpr = sqlite3ExprDup(db, pExpr, 0); 5779 if( pExpr ){ 5780 pAggInfo->aCol[iAgg].pCExpr = pExpr; 5781 pParse->pConstExpr = 5782 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 5783 } 5784 } 5785 }else{ 5786 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 5787 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 5788 pExpr = sqlite3ExprDup(db, pExpr, 0); 5789 if( pExpr ){ 5790 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 5791 pParse->pConstExpr = 5792 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 5793 } 5794 } 5795 } 5796 } 5797 return WRC_Continue; 5798 } 5799 5800 /* 5801 ** Initialize a Walker object so that will persist AggInfo entries referenced 5802 ** by the tree that is walked. 5803 */ 5804 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 5805 memset(pWalker, 0, sizeof(*pWalker)); 5806 pWalker->pParse = pParse; 5807 pWalker->xExprCallback = agginfoPersistExprCb; 5808 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 5809 } 5810 5811 /* 5812 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5813 ** the new element. Return a negative number if malloc fails. 5814 */ 5815 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5816 int i; 5817 pInfo->aCol = sqlite3ArrayAllocate( 5818 db, 5819 pInfo->aCol, 5820 sizeof(pInfo->aCol[0]), 5821 &pInfo->nColumn, 5822 &i 5823 ); 5824 return i; 5825 } 5826 5827 /* 5828 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5829 ** the new element. Return a negative number if malloc fails. 5830 */ 5831 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5832 int i; 5833 pInfo->aFunc = sqlite3ArrayAllocate( 5834 db, 5835 pInfo->aFunc, 5836 sizeof(pInfo->aFunc[0]), 5837 &pInfo->nFunc, 5838 &i 5839 ); 5840 return i; 5841 } 5842 5843 /* 5844 ** This is the xExprCallback for a tree walker. It is used to 5845 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5846 ** for additional information. 5847 */ 5848 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5849 int i; 5850 NameContext *pNC = pWalker->u.pNC; 5851 Parse *pParse = pNC->pParse; 5852 SrcList *pSrcList = pNC->pSrcList; 5853 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5854 5855 assert( pNC->ncFlags & NC_UAggInfo ); 5856 switch( pExpr->op ){ 5857 case TK_AGG_COLUMN: 5858 case TK_COLUMN: { 5859 testcase( pExpr->op==TK_AGG_COLUMN ); 5860 testcase( pExpr->op==TK_COLUMN ); 5861 /* Check to see if the column is in one of the tables in the FROM 5862 ** clause of the aggregate query */ 5863 if( ALWAYS(pSrcList!=0) ){ 5864 struct SrcList_item *pItem = pSrcList->a; 5865 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5866 struct AggInfo_col *pCol; 5867 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5868 if( pExpr->iTable==pItem->iCursor ){ 5869 /* If we reach this point, it means that pExpr refers to a table 5870 ** that is in the FROM clause of the aggregate query. 5871 ** 5872 ** Make an entry for the column in pAggInfo->aCol[] if there 5873 ** is not an entry there already. 5874 */ 5875 int k; 5876 pCol = pAggInfo->aCol; 5877 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5878 if( pCol->iTable==pExpr->iTable && 5879 pCol->iColumn==pExpr->iColumn ){ 5880 break; 5881 } 5882 } 5883 if( (k>=pAggInfo->nColumn) 5884 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5885 ){ 5886 pCol = &pAggInfo->aCol[k]; 5887 pCol->pTab = pExpr->y.pTab; 5888 pCol->iTable = pExpr->iTable; 5889 pCol->iColumn = pExpr->iColumn; 5890 pCol->iMem = ++pParse->nMem; 5891 pCol->iSorterColumn = -1; 5892 pCol->pCExpr = pExpr; 5893 if( pAggInfo->pGroupBy ){ 5894 int j, n; 5895 ExprList *pGB = pAggInfo->pGroupBy; 5896 struct ExprList_item *pTerm = pGB->a; 5897 n = pGB->nExpr; 5898 for(j=0; j<n; j++, pTerm++){ 5899 Expr *pE = pTerm->pExpr; 5900 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5901 pE->iColumn==pExpr->iColumn ){ 5902 pCol->iSorterColumn = j; 5903 break; 5904 } 5905 } 5906 } 5907 if( pCol->iSorterColumn<0 ){ 5908 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5909 } 5910 } 5911 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5912 ** because it was there before or because we just created it). 5913 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5914 ** pAggInfo->aCol[] entry. 5915 */ 5916 ExprSetVVAProperty(pExpr, EP_NoReduce); 5917 pExpr->pAggInfo = pAggInfo; 5918 pExpr->op = TK_AGG_COLUMN; 5919 pExpr->iAgg = (i16)k; 5920 break; 5921 } /* endif pExpr->iTable==pItem->iCursor */ 5922 } /* end loop over pSrcList */ 5923 } 5924 return WRC_Prune; 5925 } 5926 case TK_AGG_FUNCTION: { 5927 if( (pNC->ncFlags & NC_InAggFunc)==0 5928 && pWalker->walkerDepth==pExpr->op2 5929 ){ 5930 /* Check to see if pExpr is a duplicate of another aggregate 5931 ** function that is already in the pAggInfo structure 5932 */ 5933 struct AggInfo_func *pItem = pAggInfo->aFunc; 5934 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5935 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 5936 break; 5937 } 5938 } 5939 if( i>=pAggInfo->nFunc ){ 5940 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5941 */ 5942 u8 enc = ENC(pParse->db); 5943 i = addAggInfoFunc(pParse->db, pAggInfo); 5944 if( i>=0 ){ 5945 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5946 pItem = &pAggInfo->aFunc[i]; 5947 pItem->pFExpr = pExpr; 5948 pItem->iMem = ++pParse->nMem; 5949 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5950 pItem->pFunc = sqlite3FindFunction(pParse->db, 5951 pExpr->u.zToken, 5952 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5953 if( pExpr->flags & EP_Distinct ){ 5954 pItem->iDistinct = pParse->nTab++; 5955 }else{ 5956 pItem->iDistinct = -1; 5957 } 5958 } 5959 } 5960 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5961 */ 5962 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5963 ExprSetVVAProperty(pExpr, EP_NoReduce); 5964 pExpr->iAgg = (i16)i; 5965 pExpr->pAggInfo = pAggInfo; 5966 return WRC_Prune; 5967 }else{ 5968 return WRC_Continue; 5969 } 5970 } 5971 } 5972 return WRC_Continue; 5973 } 5974 5975 /* 5976 ** Analyze the pExpr expression looking for aggregate functions and 5977 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5978 ** points to. Additional entries are made on the AggInfo object as 5979 ** necessary. 5980 ** 5981 ** This routine should only be called after the expression has been 5982 ** analyzed by sqlite3ResolveExprNames(). 5983 */ 5984 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5985 Walker w; 5986 w.xExprCallback = analyzeAggregate; 5987 w.xSelectCallback = sqlite3WalkerDepthIncrease; 5988 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 5989 w.walkerDepth = 0; 5990 w.u.pNC = pNC; 5991 w.pParse = 0; 5992 assert( pNC->pSrcList!=0 ); 5993 sqlite3WalkExpr(&w, pExpr); 5994 } 5995 5996 /* 5997 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5998 ** expression list. Return the number of errors. 5999 ** 6000 ** If an error is found, the analysis is cut short. 6001 */ 6002 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6003 struct ExprList_item *pItem; 6004 int i; 6005 if( pList ){ 6006 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6007 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6008 } 6009 } 6010 } 6011 6012 /* 6013 ** Allocate a single new register for use to hold some intermediate result. 6014 */ 6015 int sqlite3GetTempReg(Parse *pParse){ 6016 if( pParse->nTempReg==0 ){ 6017 return ++pParse->nMem; 6018 } 6019 return pParse->aTempReg[--pParse->nTempReg]; 6020 } 6021 6022 /* 6023 ** Deallocate a register, making available for reuse for some other 6024 ** purpose. 6025 */ 6026 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6027 if( iReg ){ 6028 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6029 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6030 pParse->aTempReg[pParse->nTempReg++] = iReg; 6031 } 6032 } 6033 } 6034 6035 /* 6036 ** Allocate or deallocate a block of nReg consecutive registers. 6037 */ 6038 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6039 int i, n; 6040 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6041 i = pParse->iRangeReg; 6042 n = pParse->nRangeReg; 6043 if( nReg<=n ){ 6044 pParse->iRangeReg += nReg; 6045 pParse->nRangeReg -= nReg; 6046 }else{ 6047 i = pParse->nMem+1; 6048 pParse->nMem += nReg; 6049 } 6050 return i; 6051 } 6052 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6053 if( nReg==1 ){ 6054 sqlite3ReleaseTempReg(pParse, iReg); 6055 return; 6056 } 6057 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6058 if( nReg>pParse->nRangeReg ){ 6059 pParse->nRangeReg = nReg; 6060 pParse->iRangeReg = iReg; 6061 } 6062 } 6063 6064 /* 6065 ** Mark all temporary registers as being unavailable for reuse. 6066 ** 6067 ** Always invoke this procedure after coding a subroutine or co-routine 6068 ** that might be invoked from other parts of the code, to ensure that 6069 ** the sub/co-routine does not use registers in common with the code that 6070 ** invokes the sub/co-routine. 6071 */ 6072 void sqlite3ClearTempRegCache(Parse *pParse){ 6073 pParse->nTempReg = 0; 6074 pParse->nRangeReg = 0; 6075 } 6076 6077 /* 6078 ** Validate that no temporary register falls within the range of 6079 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6080 ** statements. 6081 */ 6082 #ifdef SQLITE_DEBUG 6083 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6084 int i; 6085 if( pParse->nRangeReg>0 6086 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6087 && pParse->iRangeReg <= iLast 6088 ){ 6089 return 0; 6090 } 6091 for(i=0; i<pParse->nTempReg; i++){ 6092 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6093 return 0; 6094 } 6095 } 6096 return 1; 6097 } 6098 #endif /* SQLITE_DEBUG */ 6099