1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 pExpr = sqlite3ExprSkipCollate(pExpr); 48 if( pExpr->flags & EP_Generic ) return 0; 49 op = pExpr->op; 50 if( op==TK_SELECT ){ 51 assert( pExpr->flags&EP_xIsSelect ); 52 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 53 } 54 if( op==TK_REGISTER ) op = pExpr->op2; 55 #ifndef SQLITE_OMIT_CAST 56 if( op==TK_CAST ){ 57 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 58 return sqlite3AffinityType(pExpr->u.zToken, 0); 59 } 60 #endif 61 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){ 62 return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn); 63 } 64 if( op==TK_SELECT_COLUMN ){ 65 assert( pExpr->pLeft->flags&EP_xIsSelect ); 66 return sqlite3ExprAffinity( 67 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 68 ); 69 } 70 return pExpr->affinity; 71 } 72 73 /* 74 ** Set the collating sequence for expression pExpr to be the collating 75 ** sequence named by pToken. Return a pointer to a new Expr node that 76 ** implements the COLLATE operator. 77 ** 78 ** If a memory allocation error occurs, that fact is recorded in pParse->db 79 ** and the pExpr parameter is returned unchanged. 80 */ 81 Expr *sqlite3ExprAddCollateToken( 82 Parse *pParse, /* Parsing context */ 83 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 84 const Token *pCollName, /* Name of collating sequence */ 85 int dequote /* True to dequote pCollName */ 86 ){ 87 if( pCollName->n>0 ){ 88 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 89 if( pNew ){ 90 pNew->pLeft = pExpr; 91 pNew->flags |= EP_Collate|EP_Skip; 92 pExpr = pNew; 93 } 94 } 95 return pExpr; 96 } 97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 98 Token s; 99 assert( zC!=0 ); 100 sqlite3TokenInit(&s, (char*)zC); 101 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 102 } 103 104 /* 105 ** Skip over any TK_COLLATE operators and any unlikely() 106 ** or likelihood() function at the root of an expression. 107 */ 108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 109 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 110 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 111 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 112 assert( pExpr->x.pList->nExpr>0 ); 113 assert( pExpr->op==TK_FUNCTION ); 114 pExpr = pExpr->x.pList->a[0].pExpr; 115 }else{ 116 assert( pExpr->op==TK_COLLATE ); 117 pExpr = pExpr->pLeft; 118 } 119 } 120 return pExpr; 121 } 122 123 /* 124 ** Return the collation sequence for the expression pExpr. If 125 ** there is no defined collating sequence, return NULL. 126 ** 127 ** See also: sqlite3ExprNNCollSeq() 128 ** 129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 130 ** default collation if pExpr has no defined collation. 131 ** 132 ** The collating sequence might be determined by a COLLATE operator 133 ** or by the presence of a column with a defined collating sequence. 134 ** COLLATE operators take first precedence. Left operands take 135 ** precedence over right operands. 136 */ 137 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 138 sqlite3 *db = pParse->db; 139 CollSeq *pColl = 0; 140 Expr *p = pExpr; 141 while( p ){ 142 int op = p->op; 143 if( p->flags & EP_Generic ) break; 144 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 145 || op==TK_REGISTER || op==TK_TRIGGER) 146 && p->pTab!=0 147 ){ 148 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 149 ** a TK_COLUMN but was previously evaluated and cached in a register */ 150 int j = p->iColumn; 151 if( j>=0 ){ 152 const char *zColl = p->pTab->aCol[j].zColl; 153 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 154 } 155 break; 156 } 157 if( op==TK_CAST || op==TK_UPLUS ){ 158 p = p->pLeft; 159 continue; 160 } 161 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 162 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 163 break; 164 } 165 if( p->flags & EP_Collate ){ 166 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 167 p = p->pLeft; 168 }else{ 169 Expr *pNext = p->pRight; 170 /* The Expr.x union is never used at the same time as Expr.pRight */ 171 assert( p->x.pList==0 || p->pRight==0 ); 172 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 173 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 174 ** least one EP_Collate. Thus the following two ALWAYS. */ 175 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 176 int i; 177 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 178 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 179 pNext = p->x.pList->a[i].pExpr; 180 break; 181 } 182 } 183 } 184 p = pNext; 185 } 186 }else{ 187 break; 188 } 189 } 190 if( sqlite3CheckCollSeq(pParse, pColl) ){ 191 pColl = 0; 192 } 193 return pColl; 194 } 195 196 /* 197 ** Return the collation sequence for the expression pExpr. If 198 ** there is no defined collating sequence, return a pointer to the 199 ** defautl collation sequence. 200 ** 201 ** See also: sqlite3ExprCollSeq() 202 ** 203 ** The sqlite3ExprCollSeq() routine works the same except that it 204 ** returns NULL if there is no defined collation. 205 */ 206 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){ 207 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 208 if( p==0 ) p = pParse->db->pDfltColl; 209 assert( p!=0 ); 210 return p; 211 } 212 213 /* 214 ** Return TRUE if the two expressions have equivalent collating sequences. 215 */ 216 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){ 217 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 218 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 219 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 220 } 221 222 /* 223 ** pExpr is an operand of a comparison operator. aff2 is the 224 ** type affinity of the other operand. This routine returns the 225 ** type affinity that should be used for the comparison operator. 226 */ 227 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 228 char aff1 = sqlite3ExprAffinity(pExpr); 229 if( aff1 && aff2 ){ 230 /* Both sides of the comparison are columns. If one has numeric 231 ** affinity, use that. Otherwise use no affinity. 232 */ 233 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 234 return SQLITE_AFF_NUMERIC; 235 }else{ 236 return SQLITE_AFF_BLOB; 237 } 238 }else if( !aff1 && !aff2 ){ 239 /* Neither side of the comparison is a column. Compare the 240 ** results directly. 241 */ 242 return SQLITE_AFF_BLOB; 243 }else{ 244 /* One side is a column, the other is not. Use the columns affinity. */ 245 assert( aff1==0 || aff2==0 ); 246 return (aff1 + aff2); 247 } 248 } 249 250 /* 251 ** pExpr is a comparison operator. Return the type affinity that should 252 ** be applied to both operands prior to doing the comparison. 253 */ 254 static char comparisonAffinity(Expr *pExpr){ 255 char aff; 256 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 257 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 258 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 259 assert( pExpr->pLeft ); 260 aff = sqlite3ExprAffinity(pExpr->pLeft); 261 if( pExpr->pRight ){ 262 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 263 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 264 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 265 }else if( aff==0 ){ 266 aff = SQLITE_AFF_BLOB; 267 } 268 return aff; 269 } 270 271 /* 272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 273 ** idx_affinity is the affinity of an indexed column. Return true 274 ** if the index with affinity idx_affinity may be used to implement 275 ** the comparison in pExpr. 276 */ 277 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 278 char aff = comparisonAffinity(pExpr); 279 switch( aff ){ 280 case SQLITE_AFF_BLOB: 281 return 1; 282 case SQLITE_AFF_TEXT: 283 return idx_affinity==SQLITE_AFF_TEXT; 284 default: 285 return sqlite3IsNumericAffinity(idx_affinity); 286 } 287 } 288 289 /* 290 ** Return the P5 value that should be used for a binary comparison 291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 292 */ 293 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 294 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 295 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 296 return aff; 297 } 298 299 /* 300 ** Return a pointer to the collation sequence that should be used by 301 ** a binary comparison operator comparing pLeft and pRight. 302 ** 303 ** If the left hand expression has a collating sequence type, then it is 304 ** used. Otherwise the collation sequence for the right hand expression 305 ** is used, or the default (BINARY) if neither expression has a collating 306 ** type. 307 ** 308 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 309 ** it is not considered. 310 */ 311 CollSeq *sqlite3BinaryCompareCollSeq( 312 Parse *pParse, 313 Expr *pLeft, 314 Expr *pRight 315 ){ 316 CollSeq *pColl; 317 assert( pLeft ); 318 if( pLeft->flags & EP_Collate ){ 319 pColl = sqlite3ExprCollSeq(pParse, pLeft); 320 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 321 pColl = sqlite3ExprCollSeq(pParse, pRight); 322 }else{ 323 pColl = sqlite3ExprCollSeq(pParse, pLeft); 324 if( !pColl ){ 325 pColl = sqlite3ExprCollSeq(pParse, pRight); 326 } 327 } 328 return pColl; 329 } 330 331 /* 332 ** Generate code for a comparison operator. 333 */ 334 static int codeCompare( 335 Parse *pParse, /* The parsing (and code generating) context */ 336 Expr *pLeft, /* The left operand */ 337 Expr *pRight, /* The right operand */ 338 int opcode, /* The comparison opcode */ 339 int in1, int in2, /* Register holding operands */ 340 int dest, /* Jump here if true. */ 341 int jumpIfNull /* If true, jump if either operand is NULL */ 342 ){ 343 int p5; 344 int addr; 345 CollSeq *p4; 346 347 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 348 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 349 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 350 (void*)p4, P4_COLLSEQ); 351 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 352 return addr; 353 } 354 355 /* 356 ** Return true if expression pExpr is a vector, or false otherwise. 357 ** 358 ** A vector is defined as any expression that results in two or more 359 ** columns of result. Every TK_VECTOR node is an vector because the 360 ** parser will not generate a TK_VECTOR with fewer than two entries. 361 ** But a TK_SELECT might be either a vector or a scalar. It is only 362 ** considered a vector if it has two or more result columns. 363 */ 364 int sqlite3ExprIsVector(Expr *pExpr){ 365 return sqlite3ExprVectorSize(pExpr)>1; 366 } 367 368 /* 369 ** If the expression passed as the only argument is of type TK_VECTOR 370 ** return the number of expressions in the vector. Or, if the expression 371 ** is a sub-select, return the number of columns in the sub-select. For 372 ** any other type of expression, return 1. 373 */ 374 int sqlite3ExprVectorSize(Expr *pExpr){ 375 u8 op = pExpr->op; 376 if( op==TK_REGISTER ) op = pExpr->op2; 377 if( op==TK_VECTOR ){ 378 return pExpr->x.pList->nExpr; 379 }else if( op==TK_SELECT ){ 380 return pExpr->x.pSelect->pEList->nExpr; 381 }else{ 382 return 1; 383 } 384 } 385 386 /* 387 ** Return a pointer to a subexpression of pVector that is the i-th 388 ** column of the vector (numbered starting with 0). The caller must 389 ** ensure that i is within range. 390 ** 391 ** If pVector is really a scalar (and "scalar" here includes subqueries 392 ** that return a single column!) then return pVector unmodified. 393 ** 394 ** pVector retains ownership of the returned subexpression. 395 ** 396 ** If the vector is a (SELECT ...) then the expression returned is 397 ** just the expression for the i-th term of the result set, and may 398 ** not be ready for evaluation because the table cursor has not yet 399 ** been positioned. 400 */ 401 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 402 assert( i<sqlite3ExprVectorSize(pVector) ); 403 if( sqlite3ExprIsVector(pVector) ){ 404 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 405 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 406 return pVector->x.pSelect->pEList->a[i].pExpr; 407 }else{ 408 return pVector->x.pList->a[i].pExpr; 409 } 410 } 411 return pVector; 412 } 413 414 /* 415 ** Compute and return a new Expr object which when passed to 416 ** sqlite3ExprCode() will generate all necessary code to compute 417 ** the iField-th column of the vector expression pVector. 418 ** 419 ** It is ok for pVector to be a scalar (as long as iField==0). 420 ** In that case, this routine works like sqlite3ExprDup(). 421 ** 422 ** The caller owns the returned Expr object and is responsible for 423 ** ensuring that the returned value eventually gets freed. 424 ** 425 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 426 ** then the returned object will reference pVector and so pVector must remain 427 ** valid for the life of the returned object. If pVector is a TK_VECTOR 428 ** or a scalar expression, then it can be deleted as soon as this routine 429 ** returns. 430 ** 431 ** A trick to cause a TK_SELECT pVector to be deleted together with 432 ** the returned Expr object is to attach the pVector to the pRight field 433 ** of the returned TK_SELECT_COLUMN Expr object. 434 */ 435 Expr *sqlite3ExprForVectorField( 436 Parse *pParse, /* Parsing context */ 437 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 438 int iField /* Which column of the vector to return */ 439 ){ 440 Expr *pRet; 441 if( pVector->op==TK_SELECT ){ 442 assert( pVector->flags & EP_xIsSelect ); 443 /* The TK_SELECT_COLUMN Expr node: 444 ** 445 ** pLeft: pVector containing TK_SELECT. Not deleted. 446 ** pRight: not used. But recursively deleted. 447 ** iColumn: Index of a column in pVector 448 ** iTable: 0 or the number of columns on the LHS of an assignment 449 ** pLeft->iTable: First in an array of register holding result, or 0 450 ** if the result is not yet computed. 451 ** 452 ** sqlite3ExprDelete() specifically skips the recursive delete of 453 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 454 ** can be attached to pRight to cause this node to take ownership of 455 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 456 ** with the same pLeft pointer to the pVector, but only one of them 457 ** will own the pVector. 458 */ 459 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 460 if( pRet ){ 461 pRet->iColumn = iField; 462 pRet->pLeft = pVector; 463 } 464 assert( pRet==0 || pRet->iTable==0 ); 465 }else{ 466 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 467 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 468 } 469 return pRet; 470 } 471 472 /* 473 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 474 ** it. Return the register in which the result is stored (or, if the 475 ** sub-select returns more than one column, the first in an array 476 ** of registers in which the result is stored). 477 ** 478 ** If pExpr is not a TK_SELECT expression, return 0. 479 */ 480 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 481 int reg = 0; 482 #ifndef SQLITE_OMIT_SUBQUERY 483 if( pExpr->op==TK_SELECT ){ 484 reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 485 } 486 #endif 487 return reg; 488 } 489 490 /* 491 ** Argument pVector points to a vector expression - either a TK_VECTOR 492 ** or TK_SELECT that returns more than one column. This function returns 493 ** the register number of a register that contains the value of 494 ** element iField of the vector. 495 ** 496 ** If pVector is a TK_SELECT expression, then code for it must have 497 ** already been generated using the exprCodeSubselect() routine. In this 498 ** case parameter regSelect should be the first in an array of registers 499 ** containing the results of the sub-select. 500 ** 501 ** If pVector is of type TK_VECTOR, then code for the requested field 502 ** is generated. In this case (*pRegFree) may be set to the number of 503 ** a temporary register to be freed by the caller before returning. 504 ** 505 ** Before returning, output parameter (*ppExpr) is set to point to the 506 ** Expr object corresponding to element iElem of the vector. 507 */ 508 static int exprVectorRegister( 509 Parse *pParse, /* Parse context */ 510 Expr *pVector, /* Vector to extract element from */ 511 int iField, /* Field to extract from pVector */ 512 int regSelect, /* First in array of registers */ 513 Expr **ppExpr, /* OUT: Expression element */ 514 int *pRegFree /* OUT: Temp register to free */ 515 ){ 516 u8 op = pVector->op; 517 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 518 if( op==TK_REGISTER ){ 519 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 520 return pVector->iTable+iField; 521 } 522 if( op==TK_SELECT ){ 523 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 524 return regSelect+iField; 525 } 526 *ppExpr = pVector->x.pList->a[iField].pExpr; 527 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 528 } 529 530 /* 531 ** Expression pExpr is a comparison between two vector values. Compute 532 ** the result of the comparison (1, 0, or NULL) and write that 533 ** result into register dest. 534 ** 535 ** The caller must satisfy the following preconditions: 536 ** 537 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 538 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 539 ** otherwise: op==pExpr->op and p5==0 540 */ 541 static void codeVectorCompare( 542 Parse *pParse, /* Code generator context */ 543 Expr *pExpr, /* The comparison operation */ 544 int dest, /* Write results into this register */ 545 u8 op, /* Comparison operator */ 546 u8 p5 /* SQLITE_NULLEQ or zero */ 547 ){ 548 Vdbe *v = pParse->pVdbe; 549 Expr *pLeft = pExpr->pLeft; 550 Expr *pRight = pExpr->pRight; 551 int nLeft = sqlite3ExprVectorSize(pLeft); 552 int i; 553 int regLeft = 0; 554 int regRight = 0; 555 u8 opx = op; 556 int addrDone = sqlite3VdbeMakeLabel(v); 557 558 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 559 sqlite3ErrorMsg(pParse, "row value misused"); 560 return; 561 } 562 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 563 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 564 || pExpr->op==TK_LT || pExpr->op==TK_GT 565 || pExpr->op==TK_LE || pExpr->op==TK_GE 566 ); 567 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 568 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 569 assert( p5==0 || pExpr->op!=op ); 570 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 571 572 p5 |= SQLITE_STOREP2; 573 if( opx==TK_LE ) opx = TK_LT; 574 if( opx==TK_GE ) opx = TK_GT; 575 576 regLeft = exprCodeSubselect(pParse, pLeft); 577 regRight = exprCodeSubselect(pParse, pRight); 578 579 for(i=0; 1 /*Loop exits by "break"*/; i++){ 580 int regFree1 = 0, regFree2 = 0; 581 Expr *pL, *pR; 582 int r1, r2; 583 assert( i>=0 && i<nLeft ); 584 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 585 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 586 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); 587 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 588 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 589 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 590 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 591 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 592 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 593 sqlite3ReleaseTempReg(pParse, regFree1); 594 sqlite3ReleaseTempReg(pParse, regFree2); 595 if( i==nLeft-1 ){ 596 break; 597 } 598 if( opx==TK_EQ ){ 599 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 600 p5 |= SQLITE_KEEPNULL; 601 }else if( opx==TK_NE ){ 602 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 603 p5 |= SQLITE_KEEPNULL; 604 }else{ 605 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 606 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 607 VdbeCoverageIf(v, op==TK_LT); 608 VdbeCoverageIf(v, op==TK_GT); 609 VdbeCoverageIf(v, op==TK_LE); 610 VdbeCoverageIf(v, op==TK_GE); 611 if( i==nLeft-2 ) opx = op; 612 } 613 } 614 sqlite3VdbeResolveLabel(v, addrDone); 615 } 616 617 #if SQLITE_MAX_EXPR_DEPTH>0 618 /* 619 ** Check that argument nHeight is less than or equal to the maximum 620 ** expression depth allowed. If it is not, leave an error message in 621 ** pParse. 622 */ 623 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 624 int rc = SQLITE_OK; 625 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 626 if( nHeight>mxHeight ){ 627 sqlite3ErrorMsg(pParse, 628 "Expression tree is too large (maximum depth %d)", mxHeight 629 ); 630 rc = SQLITE_ERROR; 631 } 632 return rc; 633 } 634 635 /* The following three functions, heightOfExpr(), heightOfExprList() 636 ** and heightOfSelect(), are used to determine the maximum height 637 ** of any expression tree referenced by the structure passed as the 638 ** first argument. 639 ** 640 ** If this maximum height is greater than the current value pointed 641 ** to by pnHeight, the second parameter, then set *pnHeight to that 642 ** value. 643 */ 644 static void heightOfExpr(Expr *p, int *pnHeight){ 645 if( p ){ 646 if( p->nHeight>*pnHeight ){ 647 *pnHeight = p->nHeight; 648 } 649 } 650 } 651 static void heightOfExprList(ExprList *p, int *pnHeight){ 652 if( p ){ 653 int i; 654 for(i=0; i<p->nExpr; i++){ 655 heightOfExpr(p->a[i].pExpr, pnHeight); 656 } 657 } 658 } 659 static void heightOfSelect(Select *pSelect, int *pnHeight){ 660 Select *p; 661 for(p=pSelect; p; p=p->pPrior){ 662 heightOfExpr(p->pWhere, pnHeight); 663 heightOfExpr(p->pHaving, pnHeight); 664 heightOfExpr(p->pLimit, pnHeight); 665 heightOfExprList(p->pEList, pnHeight); 666 heightOfExprList(p->pGroupBy, pnHeight); 667 heightOfExprList(p->pOrderBy, pnHeight); 668 } 669 } 670 671 /* 672 ** Set the Expr.nHeight variable in the structure passed as an 673 ** argument. An expression with no children, Expr.pList or 674 ** Expr.pSelect member has a height of 1. Any other expression 675 ** has a height equal to the maximum height of any other 676 ** referenced Expr plus one. 677 ** 678 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 679 ** if appropriate. 680 */ 681 static void exprSetHeight(Expr *p){ 682 int nHeight = 0; 683 heightOfExpr(p->pLeft, &nHeight); 684 heightOfExpr(p->pRight, &nHeight); 685 if( ExprHasProperty(p, EP_xIsSelect) ){ 686 heightOfSelect(p->x.pSelect, &nHeight); 687 }else if( p->x.pList ){ 688 heightOfExprList(p->x.pList, &nHeight); 689 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 690 } 691 p->nHeight = nHeight + 1; 692 } 693 694 /* 695 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 696 ** the height is greater than the maximum allowed expression depth, 697 ** leave an error in pParse. 698 ** 699 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 700 ** Expr.flags. 701 */ 702 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 703 if( pParse->nErr ) return; 704 exprSetHeight(p); 705 sqlite3ExprCheckHeight(pParse, p->nHeight); 706 } 707 708 /* 709 ** Return the maximum height of any expression tree referenced 710 ** by the select statement passed as an argument. 711 */ 712 int sqlite3SelectExprHeight(Select *p){ 713 int nHeight = 0; 714 heightOfSelect(p, &nHeight); 715 return nHeight; 716 } 717 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 718 /* 719 ** Propagate all EP_Propagate flags from the Expr.x.pList into 720 ** Expr.flags. 721 */ 722 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 723 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 724 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 725 } 726 } 727 #define exprSetHeight(y) 728 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 729 730 /* 731 ** This routine is the core allocator for Expr nodes. 732 ** 733 ** Construct a new expression node and return a pointer to it. Memory 734 ** for this node and for the pToken argument is a single allocation 735 ** obtained from sqlite3DbMalloc(). The calling function 736 ** is responsible for making sure the node eventually gets freed. 737 ** 738 ** If dequote is true, then the token (if it exists) is dequoted. 739 ** If dequote is false, no dequoting is performed. The deQuote 740 ** parameter is ignored if pToken is NULL or if the token does not 741 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 742 ** then the EP_DblQuoted flag is set on the expression node. 743 ** 744 ** Special case: If op==TK_INTEGER and pToken points to a string that 745 ** can be translated into a 32-bit integer, then the token is not 746 ** stored in u.zToken. Instead, the integer values is written 747 ** into u.iValue and the EP_IntValue flag is set. No extra storage 748 ** is allocated to hold the integer text and the dequote flag is ignored. 749 */ 750 Expr *sqlite3ExprAlloc( 751 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 752 int op, /* Expression opcode */ 753 const Token *pToken, /* Token argument. Might be NULL */ 754 int dequote /* True to dequote */ 755 ){ 756 Expr *pNew; 757 int nExtra = 0; 758 int iValue = 0; 759 760 assert( db!=0 ); 761 if( pToken ){ 762 if( op!=TK_INTEGER || pToken->z==0 763 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 764 nExtra = pToken->n+1; 765 assert( iValue>=0 ); 766 } 767 } 768 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 769 if( pNew ){ 770 memset(pNew, 0, sizeof(Expr)); 771 pNew->op = (u8)op; 772 pNew->iAgg = -1; 773 if( pToken ){ 774 if( nExtra==0 ){ 775 pNew->flags |= EP_IntValue|EP_Leaf; 776 pNew->u.iValue = iValue; 777 }else{ 778 pNew->u.zToken = (char*)&pNew[1]; 779 assert( pToken->z!=0 || pToken->n==0 ); 780 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 781 pNew->u.zToken[pToken->n] = 0; 782 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 783 if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted; 784 sqlite3Dequote(pNew->u.zToken); 785 } 786 } 787 } 788 #if SQLITE_MAX_EXPR_DEPTH>0 789 pNew->nHeight = 1; 790 #endif 791 } 792 return pNew; 793 } 794 795 /* 796 ** Allocate a new expression node from a zero-terminated token that has 797 ** already been dequoted. 798 */ 799 Expr *sqlite3Expr( 800 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 801 int op, /* Expression opcode */ 802 const char *zToken /* Token argument. Might be NULL */ 803 ){ 804 Token x; 805 x.z = zToken; 806 x.n = sqlite3Strlen30(zToken); 807 return sqlite3ExprAlloc(db, op, &x, 0); 808 } 809 810 /* 811 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 812 ** 813 ** If pRoot==NULL that means that a memory allocation error has occurred. 814 ** In that case, delete the subtrees pLeft and pRight. 815 */ 816 void sqlite3ExprAttachSubtrees( 817 sqlite3 *db, 818 Expr *pRoot, 819 Expr *pLeft, 820 Expr *pRight 821 ){ 822 if( pRoot==0 ){ 823 assert( db->mallocFailed ); 824 sqlite3ExprDelete(db, pLeft); 825 sqlite3ExprDelete(db, pRight); 826 }else{ 827 if( pRight ){ 828 pRoot->pRight = pRight; 829 pRoot->flags |= EP_Propagate & pRight->flags; 830 } 831 if( pLeft ){ 832 pRoot->pLeft = pLeft; 833 pRoot->flags |= EP_Propagate & pLeft->flags; 834 } 835 exprSetHeight(pRoot); 836 } 837 } 838 839 /* 840 ** Allocate an Expr node which joins as many as two subtrees. 841 ** 842 ** One or both of the subtrees can be NULL. Return a pointer to the new 843 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 844 ** free the subtrees and return NULL. 845 */ 846 Expr *sqlite3PExpr( 847 Parse *pParse, /* Parsing context */ 848 int op, /* Expression opcode */ 849 Expr *pLeft, /* Left operand */ 850 Expr *pRight /* Right operand */ 851 ){ 852 Expr *p; 853 if( op==TK_AND && pParse->nErr==0 ){ 854 /* Take advantage of short-circuit false optimization for AND */ 855 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 856 }else{ 857 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 858 if( p ){ 859 memset(p, 0, sizeof(Expr)); 860 p->op = op & TKFLG_MASK; 861 p->iAgg = -1; 862 } 863 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 864 } 865 if( p ) { 866 sqlite3ExprCheckHeight(pParse, p->nHeight); 867 } 868 return p; 869 } 870 871 /* 872 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 873 ** do a memory allocation failure) then delete the pSelect object. 874 */ 875 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 876 if( pExpr ){ 877 pExpr->x.pSelect = pSelect; 878 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 879 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 880 }else{ 881 assert( pParse->db->mallocFailed ); 882 sqlite3SelectDelete(pParse->db, pSelect); 883 } 884 } 885 886 887 /* 888 ** If the expression is always either TRUE or FALSE (respectively), 889 ** then return 1. If one cannot determine the truth value of the 890 ** expression at compile-time return 0. 891 ** 892 ** This is an optimization. If is OK to return 0 here even if 893 ** the expression really is always false or false (a false negative). 894 ** But it is a bug to return 1 if the expression might have different 895 ** boolean values in different circumstances (a false positive.) 896 ** 897 ** Note that if the expression is part of conditional for a 898 ** LEFT JOIN, then we cannot determine at compile-time whether or not 899 ** is it true or false, so always return 0. 900 */ 901 static int exprAlwaysTrue(Expr *p){ 902 int v = 0; 903 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 904 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 905 return v!=0; 906 } 907 static int exprAlwaysFalse(Expr *p){ 908 int v = 0; 909 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 910 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 911 return v==0; 912 } 913 914 /* 915 ** Join two expressions using an AND operator. If either expression is 916 ** NULL, then just return the other expression. 917 ** 918 ** If one side or the other of the AND is known to be false, then instead 919 ** of returning an AND expression, just return a constant expression with 920 ** a value of false. 921 */ 922 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 923 if( pLeft==0 ){ 924 return pRight; 925 }else if( pRight==0 ){ 926 return pLeft; 927 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 928 sqlite3ExprDelete(db, pLeft); 929 sqlite3ExprDelete(db, pRight); 930 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 931 }else{ 932 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 933 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 934 return pNew; 935 } 936 } 937 938 /* 939 ** Construct a new expression node for a function with multiple 940 ** arguments. 941 */ 942 Expr *sqlite3ExprFunction( 943 Parse *pParse, /* Parsing context */ 944 ExprList *pList, /* Argument list */ 945 Token *pToken, /* Name of the function */ 946 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 947 ){ 948 Expr *pNew; 949 sqlite3 *db = pParse->db; 950 assert( pToken ); 951 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 952 if( pNew==0 ){ 953 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 954 return 0; 955 } 956 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 957 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 958 } 959 pNew->x.pList = pList; 960 ExprSetProperty(pNew, EP_HasFunc); 961 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 962 sqlite3ExprSetHeightAndFlags(pParse, pNew); 963 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 964 return pNew; 965 } 966 967 /* 968 ** Assign a variable number to an expression that encodes a wildcard 969 ** in the original SQL statement. 970 ** 971 ** Wildcards consisting of a single "?" are assigned the next sequential 972 ** variable number. 973 ** 974 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 975 ** sure "nnn" is not too big to avoid a denial of service attack when 976 ** the SQL statement comes from an external source. 977 ** 978 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 979 ** as the previous instance of the same wildcard. Or if this is the first 980 ** instance of the wildcard, the next sequential variable number is 981 ** assigned. 982 */ 983 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 984 sqlite3 *db = pParse->db; 985 const char *z; 986 ynVar x; 987 988 if( pExpr==0 ) return; 989 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 990 z = pExpr->u.zToken; 991 assert( z!=0 ); 992 assert( z[0]!=0 ); 993 assert( n==(u32)sqlite3Strlen30(z) ); 994 if( z[1]==0 ){ 995 /* Wildcard of the form "?". Assign the next variable number */ 996 assert( z[0]=='?' ); 997 x = (ynVar)(++pParse->nVar); 998 }else{ 999 int doAdd = 0; 1000 if( z[0]=='?' ){ 1001 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1002 ** use it as the variable number */ 1003 i64 i; 1004 int bOk; 1005 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1006 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1007 bOk = 1; 1008 }else{ 1009 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1010 } 1011 testcase( i==0 ); 1012 testcase( i==1 ); 1013 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1014 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1015 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1016 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1017 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1018 return; 1019 } 1020 x = (ynVar)i; 1021 if( x>pParse->nVar ){ 1022 pParse->nVar = (int)x; 1023 doAdd = 1; 1024 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1025 doAdd = 1; 1026 } 1027 }else{ 1028 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1029 ** number as the prior appearance of the same name, or if the name 1030 ** has never appeared before, reuse the same variable number 1031 */ 1032 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1033 if( x==0 ){ 1034 x = (ynVar)(++pParse->nVar); 1035 doAdd = 1; 1036 } 1037 } 1038 if( doAdd ){ 1039 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1040 } 1041 } 1042 pExpr->iColumn = x; 1043 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1044 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1045 } 1046 } 1047 1048 /* 1049 ** Recursively delete an expression tree. 1050 */ 1051 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1052 assert( p!=0 ); 1053 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1054 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1055 #ifdef SQLITE_DEBUG 1056 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1057 assert( p->pLeft==0 ); 1058 assert( p->pRight==0 ); 1059 assert( p->x.pSelect==0 ); 1060 } 1061 #endif 1062 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1063 /* The Expr.x union is never used at the same time as Expr.pRight */ 1064 assert( p->x.pList==0 || p->pRight==0 ); 1065 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1066 if( p->pRight ){ 1067 sqlite3ExprDeleteNN(db, p->pRight); 1068 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1069 sqlite3SelectDelete(db, p->x.pSelect); 1070 }else{ 1071 sqlite3ExprListDelete(db, p->x.pList); 1072 } 1073 if( !ExprHasProperty(p, EP_Reduced) ){ 1074 sqlite3WindowDelete(db, p->pWin); 1075 } 1076 } 1077 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1078 if( !ExprHasProperty(p, EP_Static) ){ 1079 sqlite3DbFreeNN(db, p); 1080 } 1081 } 1082 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1083 if( p ) sqlite3ExprDeleteNN(db, p); 1084 } 1085 1086 /* 1087 ** Return the number of bytes allocated for the expression structure 1088 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1089 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1090 */ 1091 static int exprStructSize(Expr *p){ 1092 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1093 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1094 return EXPR_FULLSIZE; 1095 } 1096 1097 /* 1098 ** The dupedExpr*Size() routines each return the number of bytes required 1099 ** to store a copy of an expression or expression tree. They differ in 1100 ** how much of the tree is measured. 1101 ** 1102 ** dupedExprStructSize() Size of only the Expr structure 1103 ** dupedExprNodeSize() Size of Expr + space for token 1104 ** dupedExprSize() Expr + token + subtree components 1105 ** 1106 *************************************************************************** 1107 ** 1108 ** The dupedExprStructSize() function returns two values OR-ed together: 1109 ** (1) the space required for a copy of the Expr structure only and 1110 ** (2) the EP_xxx flags that indicate what the structure size should be. 1111 ** The return values is always one of: 1112 ** 1113 ** EXPR_FULLSIZE 1114 ** EXPR_REDUCEDSIZE | EP_Reduced 1115 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1116 ** 1117 ** The size of the structure can be found by masking the return value 1118 ** of this routine with 0xfff. The flags can be found by masking the 1119 ** return value with EP_Reduced|EP_TokenOnly. 1120 ** 1121 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1122 ** (unreduced) Expr objects as they or originally constructed by the parser. 1123 ** During expression analysis, extra information is computed and moved into 1124 ** later parts of the Expr object and that extra information might get chopped 1125 ** off if the expression is reduced. Note also that it does not work to 1126 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1127 ** to reduce a pristine expression tree from the parser. The implementation 1128 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1129 ** to enforce this constraint. 1130 */ 1131 static int dupedExprStructSize(Expr *p, int flags){ 1132 int nSize; 1133 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1134 assert( EXPR_FULLSIZE<=0xfff ); 1135 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1136 if( 0==flags || p->op==TK_SELECT_COLUMN 1137 #ifndef SQLITE_OMIT_WINDOWFUNC 1138 || p->pWin 1139 #endif 1140 ){ 1141 nSize = EXPR_FULLSIZE; 1142 }else{ 1143 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1144 assert( !ExprHasProperty(p, EP_FromJoin) ); 1145 assert( !ExprHasProperty(p, EP_MemToken) ); 1146 assert( !ExprHasProperty(p, EP_NoReduce) ); 1147 if( p->pLeft || p->x.pList ){ 1148 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1149 }else{ 1150 assert( p->pRight==0 ); 1151 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1152 } 1153 } 1154 return nSize; 1155 } 1156 1157 /* 1158 ** This function returns the space in bytes required to store the copy 1159 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1160 ** string is defined.) 1161 */ 1162 static int dupedExprNodeSize(Expr *p, int flags){ 1163 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1164 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1165 nByte += sqlite3Strlen30(p->u.zToken)+1; 1166 } 1167 return ROUND8(nByte); 1168 } 1169 1170 /* 1171 ** Return the number of bytes required to create a duplicate of the 1172 ** expression passed as the first argument. The second argument is a 1173 ** mask containing EXPRDUP_XXX flags. 1174 ** 1175 ** The value returned includes space to create a copy of the Expr struct 1176 ** itself and the buffer referred to by Expr.u.zToken, if any. 1177 ** 1178 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1179 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1180 ** and Expr.pRight variables (but not for any structures pointed to or 1181 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1182 */ 1183 static int dupedExprSize(Expr *p, int flags){ 1184 int nByte = 0; 1185 if( p ){ 1186 nByte = dupedExprNodeSize(p, flags); 1187 if( flags&EXPRDUP_REDUCE ){ 1188 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1189 } 1190 } 1191 return nByte; 1192 } 1193 1194 /* 1195 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1196 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1197 ** to store the copy of expression p, the copies of p->u.zToken 1198 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1199 ** if any. Before returning, *pzBuffer is set to the first byte past the 1200 ** portion of the buffer copied into by this function. 1201 */ 1202 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1203 Expr *pNew; /* Value to return */ 1204 u8 *zAlloc; /* Memory space from which to build Expr object */ 1205 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1206 1207 assert( db!=0 ); 1208 assert( p ); 1209 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1210 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1211 1212 /* Figure out where to write the new Expr structure. */ 1213 if( pzBuffer ){ 1214 zAlloc = *pzBuffer; 1215 staticFlag = EP_Static; 1216 }else{ 1217 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1218 staticFlag = 0; 1219 } 1220 pNew = (Expr *)zAlloc; 1221 1222 if( pNew ){ 1223 /* Set nNewSize to the size allocated for the structure pointed to 1224 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1225 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1226 ** by the copy of the p->u.zToken string (if any). 1227 */ 1228 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1229 const int nNewSize = nStructSize & 0xfff; 1230 int nToken; 1231 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1232 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1233 }else{ 1234 nToken = 0; 1235 } 1236 if( dupFlags ){ 1237 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1238 memcpy(zAlloc, p, nNewSize); 1239 }else{ 1240 u32 nSize = (u32)exprStructSize(p); 1241 memcpy(zAlloc, p, nSize); 1242 if( nSize<EXPR_FULLSIZE ){ 1243 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1244 } 1245 } 1246 1247 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1248 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1249 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1250 pNew->flags |= staticFlag; 1251 1252 /* Copy the p->u.zToken string, if any. */ 1253 if( nToken ){ 1254 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1255 memcpy(zToken, p->u.zToken, nToken); 1256 } 1257 1258 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1259 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1260 if( ExprHasProperty(p, EP_xIsSelect) ){ 1261 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1262 }else{ 1263 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1264 } 1265 } 1266 1267 /* Fill in pNew->pLeft and pNew->pRight. */ 1268 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 1269 zAlloc += dupedExprNodeSize(p, dupFlags); 1270 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1271 pNew->pLeft = p->pLeft ? 1272 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1273 pNew->pRight = p->pRight ? 1274 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1275 } 1276 if( pzBuffer ){ 1277 *pzBuffer = zAlloc; 1278 } 1279 }else{ 1280 #ifndef SQLITE_OMIT_WINDOWFUNC 1281 if( ExprHasProperty(p, EP_Reduced|EP_TokenOnly) ){ 1282 pNew->pWin = 0; 1283 }else{ 1284 pNew->pWin = sqlite3WindowDup(db, pNew, p->pWin); 1285 } 1286 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1287 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1288 if( pNew->op==TK_SELECT_COLUMN ){ 1289 pNew->pLeft = p->pLeft; 1290 assert( p->iColumn==0 || p->pRight==0 ); 1291 assert( p->pRight==0 || p->pRight==p->pLeft ); 1292 }else{ 1293 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1294 } 1295 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1296 } 1297 } 1298 } 1299 return pNew; 1300 } 1301 1302 /* 1303 ** Create and return a deep copy of the object passed as the second 1304 ** argument. If an OOM condition is encountered, NULL is returned 1305 ** and the db->mallocFailed flag set. 1306 */ 1307 #ifndef SQLITE_OMIT_CTE 1308 static With *withDup(sqlite3 *db, With *p){ 1309 With *pRet = 0; 1310 if( p ){ 1311 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1312 pRet = sqlite3DbMallocZero(db, nByte); 1313 if( pRet ){ 1314 int i; 1315 pRet->nCte = p->nCte; 1316 for(i=0; i<p->nCte; i++){ 1317 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1318 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1319 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1320 } 1321 } 1322 } 1323 return pRet; 1324 } 1325 #else 1326 # define withDup(x,y) 0 1327 #endif 1328 1329 /* 1330 ** The following group of routines make deep copies of expressions, 1331 ** expression lists, ID lists, and select statements. The copies can 1332 ** be deleted (by being passed to their respective ...Delete() routines) 1333 ** without effecting the originals. 1334 ** 1335 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1336 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1337 ** by subsequent calls to sqlite*ListAppend() routines. 1338 ** 1339 ** Any tables that the SrcList might point to are not duplicated. 1340 ** 1341 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1342 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1343 ** truncated version of the usual Expr structure that will be stored as 1344 ** part of the in-memory representation of the database schema. 1345 */ 1346 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1347 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1348 return p ? exprDup(db, p, flags, 0) : 0; 1349 } 1350 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1351 ExprList *pNew; 1352 struct ExprList_item *pItem, *pOldItem; 1353 int i; 1354 Expr *pPriorSelectCol = 0; 1355 assert( db!=0 ); 1356 if( p==0 ) return 0; 1357 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1358 if( pNew==0 ) return 0; 1359 pNew->nExpr = p->nExpr; 1360 pItem = pNew->a; 1361 pOldItem = p->a; 1362 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1363 Expr *pOldExpr = pOldItem->pExpr; 1364 Expr *pNewExpr; 1365 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1366 if( pOldExpr 1367 && pOldExpr->op==TK_SELECT_COLUMN 1368 && (pNewExpr = pItem->pExpr)!=0 1369 ){ 1370 assert( pNewExpr->iColumn==0 || i>0 ); 1371 if( pNewExpr->iColumn==0 ){ 1372 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1373 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1374 }else{ 1375 assert( i>0 ); 1376 assert( pItem[-1].pExpr!=0 ); 1377 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1378 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1379 pNewExpr->pLeft = pPriorSelectCol; 1380 } 1381 } 1382 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1383 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1384 pItem->sortOrder = pOldItem->sortOrder; 1385 pItem->done = 0; 1386 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1387 pItem->bSorterRef = pOldItem->bSorterRef; 1388 pItem->u = pOldItem->u; 1389 } 1390 return pNew; 1391 } 1392 1393 /* 1394 ** If cursors, triggers, views and subqueries are all omitted from 1395 ** the build, then none of the following routines, except for 1396 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1397 ** called with a NULL argument. 1398 */ 1399 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1400 || !defined(SQLITE_OMIT_SUBQUERY) 1401 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1402 SrcList *pNew; 1403 int i; 1404 int nByte; 1405 assert( db!=0 ); 1406 if( p==0 ) return 0; 1407 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1408 pNew = sqlite3DbMallocRawNN(db, nByte ); 1409 if( pNew==0 ) return 0; 1410 pNew->nSrc = pNew->nAlloc = p->nSrc; 1411 for(i=0; i<p->nSrc; i++){ 1412 struct SrcList_item *pNewItem = &pNew->a[i]; 1413 struct SrcList_item *pOldItem = &p->a[i]; 1414 Table *pTab; 1415 pNewItem->pSchema = pOldItem->pSchema; 1416 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1417 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1418 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1419 pNewItem->fg = pOldItem->fg; 1420 pNewItem->iCursor = pOldItem->iCursor; 1421 pNewItem->addrFillSub = pOldItem->addrFillSub; 1422 pNewItem->regReturn = pOldItem->regReturn; 1423 if( pNewItem->fg.isIndexedBy ){ 1424 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1425 } 1426 pNewItem->pIBIndex = pOldItem->pIBIndex; 1427 if( pNewItem->fg.isTabFunc ){ 1428 pNewItem->u1.pFuncArg = 1429 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1430 } 1431 pTab = pNewItem->pTab = pOldItem->pTab; 1432 if( pTab ){ 1433 pTab->nTabRef++; 1434 } 1435 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1436 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1437 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1438 pNewItem->colUsed = pOldItem->colUsed; 1439 } 1440 return pNew; 1441 } 1442 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1443 IdList *pNew; 1444 int i; 1445 assert( db!=0 ); 1446 if( p==0 ) return 0; 1447 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1448 if( pNew==0 ) return 0; 1449 pNew->nId = p->nId; 1450 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1451 if( pNew->a==0 ){ 1452 sqlite3DbFreeNN(db, pNew); 1453 return 0; 1454 } 1455 /* Note that because the size of the allocation for p->a[] is not 1456 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1457 ** on the duplicate created by this function. */ 1458 for(i=0; i<p->nId; i++){ 1459 struct IdList_item *pNewItem = &pNew->a[i]; 1460 struct IdList_item *pOldItem = &p->a[i]; 1461 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1462 pNewItem->idx = pOldItem->idx; 1463 } 1464 return pNew; 1465 } 1466 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1467 Select *pRet = 0; 1468 Select *pNext = 0; 1469 Select **pp = &pRet; 1470 Select *p; 1471 1472 assert( db!=0 ); 1473 for(p=pDup; p; p=p->pPrior){ 1474 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1475 if( pNew==0 ) break; 1476 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1477 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1478 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1479 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1480 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1481 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1482 pNew->op = p->op; 1483 pNew->pNext = pNext; 1484 pNew->pPrior = 0; 1485 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1486 pNew->iLimit = 0; 1487 pNew->iOffset = 0; 1488 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1489 pNew->addrOpenEphm[0] = -1; 1490 pNew->addrOpenEphm[1] = -1; 1491 pNew->nSelectRow = p->nSelectRow; 1492 pNew->pWith = withDup(db, p->pWith); 1493 #ifndef SQLITE_OMIT_WINDOWFUNC 1494 pNew->pWin = 0; 1495 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1496 #endif 1497 pNew->selId = p->selId; 1498 *pp = pNew; 1499 pp = &pNew->pPrior; 1500 pNext = pNew; 1501 } 1502 1503 return pRet; 1504 } 1505 #else 1506 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1507 assert( p==0 ); 1508 return 0; 1509 } 1510 #endif 1511 1512 1513 /* 1514 ** Add a new element to the end of an expression list. If pList is 1515 ** initially NULL, then create a new expression list. 1516 ** 1517 ** The pList argument must be either NULL or a pointer to an ExprList 1518 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1519 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1520 ** Reason: This routine assumes that the number of slots in pList->a[] 1521 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1522 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1523 ** 1524 ** If a memory allocation error occurs, the entire list is freed and 1525 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1526 ** that the new entry was successfully appended. 1527 */ 1528 ExprList *sqlite3ExprListAppend( 1529 Parse *pParse, /* Parsing context */ 1530 ExprList *pList, /* List to which to append. Might be NULL */ 1531 Expr *pExpr /* Expression to be appended. Might be NULL */ 1532 ){ 1533 struct ExprList_item *pItem; 1534 sqlite3 *db = pParse->db; 1535 assert( db!=0 ); 1536 if( pList==0 ){ 1537 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1538 if( pList==0 ){ 1539 goto no_mem; 1540 } 1541 pList->nExpr = 0; 1542 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1543 ExprList *pNew; 1544 pNew = sqlite3DbRealloc(db, pList, 1545 sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0])); 1546 if( pNew==0 ){ 1547 goto no_mem; 1548 } 1549 pList = pNew; 1550 } 1551 pItem = &pList->a[pList->nExpr++]; 1552 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) ); 1553 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1554 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName)); 1555 pItem->pExpr = pExpr; 1556 return pList; 1557 1558 no_mem: 1559 /* Avoid leaking memory if malloc has failed. */ 1560 sqlite3ExprDelete(db, pExpr); 1561 sqlite3ExprListDelete(db, pList); 1562 return 0; 1563 } 1564 1565 /* 1566 ** pColumns and pExpr form a vector assignment which is part of the SET 1567 ** clause of an UPDATE statement. Like this: 1568 ** 1569 ** (a,b,c) = (expr1,expr2,expr3) 1570 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1571 ** 1572 ** For each term of the vector assignment, append new entries to the 1573 ** expression list pList. In the case of a subquery on the RHS, append 1574 ** TK_SELECT_COLUMN expressions. 1575 */ 1576 ExprList *sqlite3ExprListAppendVector( 1577 Parse *pParse, /* Parsing context */ 1578 ExprList *pList, /* List to which to append. Might be NULL */ 1579 IdList *pColumns, /* List of names of LHS of the assignment */ 1580 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1581 ){ 1582 sqlite3 *db = pParse->db; 1583 int n; 1584 int i; 1585 int iFirst = pList ? pList->nExpr : 0; 1586 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1587 ** exit prior to this routine being invoked */ 1588 if( NEVER(pColumns==0) ) goto vector_append_error; 1589 if( pExpr==0 ) goto vector_append_error; 1590 1591 /* If the RHS is a vector, then we can immediately check to see that 1592 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1593 ** wildcards ("*") in the result set of the SELECT must be expanded before 1594 ** we can do the size check, so defer the size check until code generation. 1595 */ 1596 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1597 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1598 pColumns->nId, n); 1599 goto vector_append_error; 1600 } 1601 1602 for(i=0; i<pColumns->nId; i++){ 1603 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1604 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1605 if( pList ){ 1606 assert( pList->nExpr==iFirst+i+1 ); 1607 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1608 pColumns->a[i].zName = 0; 1609 } 1610 } 1611 1612 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1613 Expr *pFirst = pList->a[iFirst].pExpr; 1614 assert( pFirst!=0 ); 1615 assert( pFirst->op==TK_SELECT_COLUMN ); 1616 1617 /* Store the SELECT statement in pRight so it will be deleted when 1618 ** sqlite3ExprListDelete() is called */ 1619 pFirst->pRight = pExpr; 1620 pExpr = 0; 1621 1622 /* Remember the size of the LHS in iTable so that we can check that 1623 ** the RHS and LHS sizes match during code generation. */ 1624 pFirst->iTable = pColumns->nId; 1625 } 1626 1627 vector_append_error: 1628 sqlite3ExprDelete(db, pExpr); 1629 sqlite3IdListDelete(db, pColumns); 1630 return pList; 1631 } 1632 1633 /* 1634 ** Set the sort order for the last element on the given ExprList. 1635 */ 1636 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1637 if( p==0 ) return; 1638 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1639 assert( p->nExpr>0 ); 1640 if( iSortOrder<0 ){ 1641 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1642 return; 1643 } 1644 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1645 } 1646 1647 /* 1648 ** Set the ExprList.a[].zName element of the most recently added item 1649 ** on the expression list. 1650 ** 1651 ** pList might be NULL following an OOM error. But pName should never be 1652 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1653 ** is set. 1654 */ 1655 void sqlite3ExprListSetName( 1656 Parse *pParse, /* Parsing context */ 1657 ExprList *pList, /* List to which to add the span. */ 1658 Token *pName, /* Name to be added */ 1659 int dequote /* True to cause the name to be dequoted */ 1660 ){ 1661 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1662 if( pList ){ 1663 struct ExprList_item *pItem; 1664 assert( pList->nExpr>0 ); 1665 pItem = &pList->a[pList->nExpr-1]; 1666 assert( pItem->zName==0 ); 1667 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1668 if( dequote ) sqlite3Dequote(pItem->zName); 1669 if( IN_RENAME_OBJECT ){ 1670 sqlite3RenameTokenMap(pParse, (void*)pItem->zName, pName); 1671 } 1672 } 1673 } 1674 1675 /* 1676 ** Set the ExprList.a[].zSpan element of the most recently added item 1677 ** on the expression list. 1678 ** 1679 ** pList might be NULL following an OOM error. But pSpan should never be 1680 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1681 ** is set. 1682 */ 1683 void sqlite3ExprListSetSpan( 1684 Parse *pParse, /* Parsing context */ 1685 ExprList *pList, /* List to which to add the span. */ 1686 const char *zStart, /* Start of the span */ 1687 const char *zEnd /* End of the span */ 1688 ){ 1689 sqlite3 *db = pParse->db; 1690 assert( pList!=0 || db->mallocFailed!=0 ); 1691 if( pList ){ 1692 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1693 assert( pList->nExpr>0 ); 1694 sqlite3DbFree(db, pItem->zSpan); 1695 pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd); 1696 } 1697 } 1698 1699 /* 1700 ** If the expression list pEList contains more than iLimit elements, 1701 ** leave an error message in pParse. 1702 */ 1703 void sqlite3ExprListCheckLength( 1704 Parse *pParse, 1705 ExprList *pEList, 1706 const char *zObject 1707 ){ 1708 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1709 testcase( pEList && pEList->nExpr==mx ); 1710 testcase( pEList && pEList->nExpr==mx+1 ); 1711 if( pEList && pEList->nExpr>mx ){ 1712 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1713 } 1714 } 1715 1716 /* 1717 ** Delete an entire expression list. 1718 */ 1719 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1720 int i = pList->nExpr; 1721 struct ExprList_item *pItem = pList->a; 1722 assert( pList->nExpr>0 ); 1723 do{ 1724 sqlite3ExprDelete(db, pItem->pExpr); 1725 sqlite3DbFree(db, pItem->zName); 1726 sqlite3DbFree(db, pItem->zSpan); 1727 pItem++; 1728 }while( --i>0 ); 1729 sqlite3DbFreeNN(db, pList); 1730 } 1731 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1732 if( pList ) exprListDeleteNN(db, pList); 1733 } 1734 1735 /* 1736 ** Return the bitwise-OR of all Expr.flags fields in the given 1737 ** ExprList. 1738 */ 1739 u32 sqlite3ExprListFlags(const ExprList *pList){ 1740 int i; 1741 u32 m = 0; 1742 assert( pList!=0 ); 1743 for(i=0; i<pList->nExpr; i++){ 1744 Expr *pExpr = pList->a[i].pExpr; 1745 assert( pExpr!=0 ); 1746 m |= pExpr->flags; 1747 } 1748 return m; 1749 } 1750 1751 /* 1752 ** This is a SELECT-node callback for the expression walker that 1753 ** always "fails". By "fail" in this case, we mean set 1754 ** pWalker->eCode to zero and abort. 1755 ** 1756 ** This callback is used by multiple expression walkers. 1757 */ 1758 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1759 UNUSED_PARAMETER(NotUsed); 1760 pWalker->eCode = 0; 1761 return WRC_Abort; 1762 } 1763 1764 /* 1765 ** If the input expression is an ID with the name "true" or "false" 1766 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1767 ** the conversion happened, and zero if the expression is unaltered. 1768 */ 1769 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1770 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1771 if( sqlite3StrICmp(pExpr->u.zToken, "true")==0 1772 || sqlite3StrICmp(pExpr->u.zToken, "false")==0 1773 ){ 1774 pExpr->op = TK_TRUEFALSE; 1775 return 1; 1776 } 1777 return 0; 1778 } 1779 1780 /* 1781 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1782 ** and 0 if it is FALSE. 1783 */ 1784 int sqlite3ExprTruthValue(const Expr *pExpr){ 1785 assert( pExpr->op==TK_TRUEFALSE ); 1786 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1787 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1788 return pExpr->u.zToken[4]==0; 1789 } 1790 1791 1792 /* 1793 ** These routines are Walker callbacks used to check expressions to 1794 ** see if they are "constant" for some definition of constant. The 1795 ** Walker.eCode value determines the type of "constant" we are looking 1796 ** for. 1797 ** 1798 ** These callback routines are used to implement the following: 1799 ** 1800 ** sqlite3ExprIsConstant() pWalker->eCode==1 1801 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1802 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1803 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1804 ** 1805 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1806 ** is found to not be a constant. 1807 ** 1808 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1809 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1810 ** an existing schema and 4 when processing a new statement. A bound 1811 ** parameter raises an error for new statements, but is silently converted 1812 ** to NULL for existing schemas. This allows sqlite_master tables that 1813 ** contain a bound parameter because they were generated by older versions 1814 ** of SQLite to be parsed by newer versions of SQLite without raising a 1815 ** malformed schema error. 1816 */ 1817 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1818 1819 /* If pWalker->eCode is 2 then any term of the expression that comes from 1820 ** the ON or USING clauses of a left join disqualifies the expression 1821 ** from being considered constant. */ 1822 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1823 pWalker->eCode = 0; 1824 return WRC_Abort; 1825 } 1826 1827 switch( pExpr->op ){ 1828 /* Consider functions to be constant if all their arguments are constant 1829 ** and either pWalker->eCode==4 or 5 or the function has the 1830 ** SQLITE_FUNC_CONST flag. */ 1831 case TK_FUNCTION: 1832 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1833 return WRC_Continue; 1834 }else{ 1835 pWalker->eCode = 0; 1836 return WRC_Abort; 1837 } 1838 case TK_ID: 1839 /* Convert "true" or "false" in a DEFAULT clause into the 1840 ** appropriate TK_TRUEFALSE operator */ 1841 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 1842 return WRC_Prune; 1843 } 1844 /* Fall thru */ 1845 case TK_COLUMN: 1846 case TK_AGG_FUNCTION: 1847 case TK_AGG_COLUMN: 1848 testcase( pExpr->op==TK_ID ); 1849 testcase( pExpr->op==TK_COLUMN ); 1850 testcase( pExpr->op==TK_AGG_FUNCTION ); 1851 testcase( pExpr->op==TK_AGG_COLUMN ); 1852 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 1853 return WRC_Continue; 1854 } 1855 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1856 return WRC_Continue; 1857 } 1858 /* Fall through */ 1859 case TK_IF_NULL_ROW: 1860 case TK_REGISTER: 1861 testcase( pExpr->op==TK_REGISTER ); 1862 testcase( pExpr->op==TK_IF_NULL_ROW ); 1863 pWalker->eCode = 0; 1864 return WRC_Abort; 1865 case TK_VARIABLE: 1866 if( pWalker->eCode==5 ){ 1867 /* Silently convert bound parameters that appear inside of CREATE 1868 ** statements into a NULL when parsing the CREATE statement text out 1869 ** of the sqlite_master table */ 1870 pExpr->op = TK_NULL; 1871 }else if( pWalker->eCode==4 ){ 1872 /* A bound parameter in a CREATE statement that originates from 1873 ** sqlite3_prepare() causes an error */ 1874 pWalker->eCode = 0; 1875 return WRC_Abort; 1876 } 1877 /* Fall through */ 1878 default: 1879 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 1880 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 1881 return WRC_Continue; 1882 } 1883 } 1884 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1885 Walker w; 1886 w.eCode = initFlag; 1887 w.xExprCallback = exprNodeIsConstant; 1888 w.xSelectCallback = sqlite3SelectWalkFail; 1889 #ifdef SQLITE_DEBUG 1890 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1891 #endif 1892 w.u.iCur = iCur; 1893 sqlite3WalkExpr(&w, p); 1894 return w.eCode; 1895 } 1896 1897 /* 1898 ** Walk an expression tree. Return non-zero if the expression is constant 1899 ** and 0 if it involves variables or function calls. 1900 ** 1901 ** For the purposes of this function, a double-quoted string (ex: "abc") 1902 ** is considered a variable but a single-quoted string (ex: 'abc') is 1903 ** a constant. 1904 */ 1905 int sqlite3ExprIsConstant(Expr *p){ 1906 return exprIsConst(p, 1, 0); 1907 } 1908 1909 /* 1910 ** Walk an expression tree. Return non-zero if 1911 ** 1912 ** (1) the expression is constant, and 1913 ** (2) the expression does originate in the ON or USING clause 1914 ** of a LEFT JOIN, and 1915 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 1916 ** operands created by the constant propagation optimization. 1917 ** 1918 ** When this routine returns true, it indicates that the expression 1919 ** can be added to the pParse->pConstExpr list and evaluated once when 1920 ** the prepared statement starts up. See sqlite3ExprCodeAtInit(). 1921 */ 1922 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1923 return exprIsConst(p, 2, 0); 1924 } 1925 1926 /* 1927 ** Walk an expression tree. Return non-zero if the expression is constant 1928 ** for any single row of the table with cursor iCur. In other words, the 1929 ** expression must not refer to any non-deterministic function nor any 1930 ** table other than iCur. 1931 */ 1932 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1933 return exprIsConst(p, 3, iCur); 1934 } 1935 1936 1937 /* 1938 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 1939 */ 1940 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 1941 ExprList *pGroupBy = pWalker->u.pGroupBy; 1942 int i; 1943 1944 /* Check if pExpr is identical to any GROUP BY term. If so, consider 1945 ** it constant. */ 1946 for(i=0; i<pGroupBy->nExpr; i++){ 1947 Expr *p = pGroupBy->a[i].pExpr; 1948 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 1949 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 1950 if( sqlite3IsBinary(pColl) ){ 1951 return WRC_Prune; 1952 } 1953 } 1954 } 1955 1956 /* Check if pExpr is a sub-select. If so, consider it variable. */ 1957 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1958 pWalker->eCode = 0; 1959 return WRC_Abort; 1960 } 1961 1962 return exprNodeIsConstant(pWalker, pExpr); 1963 } 1964 1965 /* 1966 ** Walk the expression tree passed as the first argument. Return non-zero 1967 ** if the expression consists entirely of constants or copies of terms 1968 ** in pGroupBy that sort with the BINARY collation sequence. 1969 ** 1970 ** This routine is used to determine if a term of the HAVING clause can 1971 ** be promoted into the WHERE clause. In order for such a promotion to work, 1972 ** the value of the HAVING clause term must be the same for all members of 1973 ** a "group". The requirement that the GROUP BY term must be BINARY 1974 ** assumes that no other collating sequence will have a finer-grained 1975 ** grouping than binary. In other words (A=B COLLATE binary) implies 1976 ** A=B in every other collating sequence. The requirement that the 1977 ** GROUP BY be BINARY is stricter than necessary. It would also work 1978 ** to promote HAVING clauses that use the same alternative collating 1979 ** sequence as the GROUP BY term, but that is much harder to check, 1980 ** alternative collating sequences are uncommon, and this is only an 1981 ** optimization, so we take the easy way out and simply require the 1982 ** GROUP BY to use the BINARY collating sequence. 1983 */ 1984 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 1985 Walker w; 1986 w.eCode = 1; 1987 w.xExprCallback = exprNodeIsConstantOrGroupBy; 1988 w.xSelectCallback = 0; 1989 w.u.pGroupBy = pGroupBy; 1990 w.pParse = pParse; 1991 sqlite3WalkExpr(&w, p); 1992 return w.eCode; 1993 } 1994 1995 /* 1996 ** Walk an expression tree. Return non-zero if the expression is constant 1997 ** or a function call with constant arguments. Return and 0 if there 1998 ** are any variables. 1999 ** 2000 ** For the purposes of this function, a double-quoted string (ex: "abc") 2001 ** is considered a variable but a single-quoted string (ex: 'abc') is 2002 ** a constant. 2003 */ 2004 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2005 assert( isInit==0 || isInit==1 ); 2006 return exprIsConst(p, 4+isInit, 0); 2007 } 2008 2009 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2010 /* 2011 ** Walk an expression tree. Return 1 if the expression contains a 2012 ** subquery of some kind. Return 0 if there are no subqueries. 2013 */ 2014 int sqlite3ExprContainsSubquery(Expr *p){ 2015 Walker w; 2016 w.eCode = 1; 2017 w.xExprCallback = sqlite3ExprWalkNoop; 2018 w.xSelectCallback = sqlite3SelectWalkFail; 2019 #ifdef SQLITE_DEBUG 2020 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2021 #endif 2022 sqlite3WalkExpr(&w, p); 2023 return w.eCode==0; 2024 } 2025 #endif 2026 2027 /* 2028 ** If the expression p codes a constant integer that is small enough 2029 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2030 ** in *pValue. If the expression is not an integer or if it is too big 2031 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2032 */ 2033 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2034 int rc = 0; 2035 if( p==0 ) return 0; /* Can only happen following on OOM */ 2036 2037 /* If an expression is an integer literal that fits in a signed 32-bit 2038 ** integer, then the EP_IntValue flag will have already been set */ 2039 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2040 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2041 2042 if( p->flags & EP_IntValue ){ 2043 *pValue = p->u.iValue; 2044 return 1; 2045 } 2046 switch( p->op ){ 2047 case TK_UPLUS: { 2048 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2049 break; 2050 } 2051 case TK_UMINUS: { 2052 int v; 2053 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2054 assert( v!=(-2147483647-1) ); 2055 *pValue = -v; 2056 rc = 1; 2057 } 2058 break; 2059 } 2060 default: break; 2061 } 2062 return rc; 2063 } 2064 2065 /* 2066 ** Return FALSE if there is no chance that the expression can be NULL. 2067 ** 2068 ** If the expression might be NULL or if the expression is too complex 2069 ** to tell return TRUE. 2070 ** 2071 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2072 ** when we know that a value cannot be NULL. Hence, a false positive 2073 ** (returning TRUE when in fact the expression can never be NULL) might 2074 ** be a small performance hit but is otherwise harmless. On the other 2075 ** hand, a false negative (returning FALSE when the result could be NULL) 2076 ** will likely result in an incorrect answer. So when in doubt, return 2077 ** TRUE. 2078 */ 2079 int sqlite3ExprCanBeNull(const Expr *p){ 2080 u8 op; 2081 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 2082 op = p->op; 2083 if( op==TK_REGISTER ) op = p->op2; 2084 switch( op ){ 2085 case TK_INTEGER: 2086 case TK_STRING: 2087 case TK_FLOAT: 2088 case TK_BLOB: 2089 return 0; 2090 case TK_COLUMN: 2091 return ExprHasProperty(p, EP_CanBeNull) || 2092 p->pTab==0 || /* Reference to column of index on expression */ 2093 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 2094 default: 2095 return 1; 2096 } 2097 } 2098 2099 /* 2100 ** Return TRUE if the given expression is a constant which would be 2101 ** unchanged by OP_Affinity with the affinity given in the second 2102 ** argument. 2103 ** 2104 ** This routine is used to determine if the OP_Affinity operation 2105 ** can be omitted. When in doubt return FALSE. A false negative 2106 ** is harmless. A false positive, however, can result in the wrong 2107 ** answer. 2108 */ 2109 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2110 u8 op; 2111 if( aff==SQLITE_AFF_BLOB ) return 1; 2112 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 2113 op = p->op; 2114 if( op==TK_REGISTER ) op = p->op2; 2115 switch( op ){ 2116 case TK_INTEGER: { 2117 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 2118 } 2119 case TK_FLOAT: { 2120 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 2121 } 2122 case TK_STRING: { 2123 return aff==SQLITE_AFF_TEXT; 2124 } 2125 case TK_BLOB: { 2126 return 1; 2127 } 2128 case TK_COLUMN: { 2129 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2130 return p->iColumn<0 2131 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 2132 } 2133 default: { 2134 return 0; 2135 } 2136 } 2137 } 2138 2139 /* 2140 ** Return TRUE if the given string is a row-id column name. 2141 */ 2142 int sqlite3IsRowid(const char *z){ 2143 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2144 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2145 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2146 return 0; 2147 } 2148 2149 /* 2150 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2151 ** that can be simplified to a direct table access, then return 2152 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2153 ** or if the SELECT statement needs to be manifested into a transient 2154 ** table, then return NULL. 2155 */ 2156 #ifndef SQLITE_OMIT_SUBQUERY 2157 static Select *isCandidateForInOpt(Expr *pX){ 2158 Select *p; 2159 SrcList *pSrc; 2160 ExprList *pEList; 2161 Table *pTab; 2162 int i; 2163 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2164 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2165 p = pX->x.pSelect; 2166 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2167 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2168 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2169 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2170 return 0; /* No DISTINCT keyword and no aggregate functions */ 2171 } 2172 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2173 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2174 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2175 pSrc = p->pSrc; 2176 assert( pSrc!=0 ); 2177 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2178 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2179 pTab = pSrc->a[0].pTab; 2180 assert( pTab!=0 ); 2181 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2182 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2183 pEList = p->pEList; 2184 assert( pEList!=0 ); 2185 /* All SELECT results must be columns. */ 2186 for(i=0; i<pEList->nExpr; i++){ 2187 Expr *pRes = pEList->a[i].pExpr; 2188 if( pRes->op!=TK_COLUMN ) return 0; 2189 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2190 } 2191 return p; 2192 } 2193 #endif /* SQLITE_OMIT_SUBQUERY */ 2194 2195 #ifndef SQLITE_OMIT_SUBQUERY 2196 /* 2197 ** Generate code that checks the left-most column of index table iCur to see if 2198 ** it contains any NULL entries. Cause the register at regHasNull to be set 2199 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2200 ** to be set to NULL if iCur contains one or more NULL values. 2201 */ 2202 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2203 int addr1; 2204 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2205 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2206 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2207 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2208 VdbeComment((v, "first_entry_in(%d)", iCur)); 2209 sqlite3VdbeJumpHere(v, addr1); 2210 } 2211 #endif 2212 2213 2214 #ifndef SQLITE_OMIT_SUBQUERY 2215 /* 2216 ** The argument is an IN operator with a list (not a subquery) on the 2217 ** right-hand side. Return TRUE if that list is constant. 2218 */ 2219 static int sqlite3InRhsIsConstant(Expr *pIn){ 2220 Expr *pLHS; 2221 int res; 2222 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2223 pLHS = pIn->pLeft; 2224 pIn->pLeft = 0; 2225 res = sqlite3ExprIsConstant(pIn); 2226 pIn->pLeft = pLHS; 2227 return res; 2228 } 2229 #endif 2230 2231 /* 2232 ** This function is used by the implementation of the IN (...) operator. 2233 ** The pX parameter is the expression on the RHS of the IN operator, which 2234 ** might be either a list of expressions or a subquery. 2235 ** 2236 ** The job of this routine is to find or create a b-tree object that can 2237 ** be used either to test for membership in the RHS set or to iterate through 2238 ** all members of the RHS set, skipping duplicates. 2239 ** 2240 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2241 ** and pX->iTable is set to the index of that cursor. 2242 ** 2243 ** The returned value of this function indicates the b-tree type, as follows: 2244 ** 2245 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2246 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2247 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2248 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2249 ** populated epheremal table. 2250 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2251 ** implemented as a sequence of comparisons. 2252 ** 2253 ** An existing b-tree might be used if the RHS expression pX is a simple 2254 ** subquery such as: 2255 ** 2256 ** SELECT <column1>, <column2>... FROM <table> 2257 ** 2258 ** If the RHS of the IN operator is a list or a more complex subquery, then 2259 ** an ephemeral table might need to be generated from the RHS and then 2260 ** pX->iTable made to point to the ephemeral table instead of an 2261 ** existing table. 2262 ** 2263 ** The inFlags parameter must contain, at a minimum, one of the bits 2264 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2265 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2266 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2267 ** be used to loop over all values of the RHS of the IN operator. 2268 ** 2269 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2270 ** through the set members) then the b-tree must not contain duplicates. 2271 ** An epheremal table will be created unless the selected columns are guaranteed 2272 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2273 ** a UNIQUE constraint or index. 2274 ** 2275 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2276 ** for fast set membership tests) then an epheremal table must 2277 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2278 ** index can be found with the specified <columns> as its left-most. 2279 ** 2280 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2281 ** if the RHS of the IN operator is a list (not a subquery) then this 2282 ** routine might decide that creating an ephemeral b-tree for membership 2283 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2284 ** calling routine should implement the IN operator using a sequence 2285 ** of Eq or Ne comparison operations. 2286 ** 2287 ** When the b-tree is being used for membership tests, the calling function 2288 ** might need to know whether or not the RHS side of the IN operator 2289 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2290 ** if there is any chance that the (...) might contain a NULL value at 2291 ** runtime, then a register is allocated and the register number written 2292 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2293 ** NULL value, then *prRhsHasNull is left unchanged. 2294 ** 2295 ** If a register is allocated and its location stored in *prRhsHasNull, then 2296 ** the value in that register will be NULL if the b-tree contains one or more 2297 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2298 ** NULL values. 2299 ** 2300 ** If the aiMap parameter is not NULL, it must point to an array containing 2301 ** one element for each column returned by the SELECT statement on the RHS 2302 ** of the IN(...) operator. The i'th entry of the array is populated with the 2303 ** offset of the index column that matches the i'th column returned by the 2304 ** SELECT. For example, if the expression and selected index are: 2305 ** 2306 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2307 ** CREATE INDEX i1 ON t1(b, c, a); 2308 ** 2309 ** then aiMap[] is populated with {2, 0, 1}. 2310 */ 2311 #ifndef SQLITE_OMIT_SUBQUERY 2312 int sqlite3FindInIndex( 2313 Parse *pParse, /* Parsing context */ 2314 Expr *pX, /* The right-hand side (RHS) of the IN operator */ 2315 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2316 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2317 int *aiMap /* Mapping from Index fields to RHS fields */ 2318 ){ 2319 Select *p; /* SELECT to the right of IN operator */ 2320 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2321 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2322 int mustBeUnique; /* True if RHS must be unique */ 2323 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2324 2325 assert( pX->op==TK_IN ); 2326 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2327 2328 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2329 ** whether or not the SELECT result contains NULL values, check whether 2330 ** or not NULL is actually possible (it may not be, for example, due 2331 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2332 ** set prRhsHasNull to 0 before continuing. */ 2333 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2334 int i; 2335 ExprList *pEList = pX->x.pSelect->pEList; 2336 for(i=0; i<pEList->nExpr; i++){ 2337 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2338 } 2339 if( i==pEList->nExpr ){ 2340 prRhsHasNull = 0; 2341 } 2342 } 2343 2344 /* Check to see if an existing table or index can be used to 2345 ** satisfy the query. This is preferable to generating a new 2346 ** ephemeral table. */ 2347 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2348 sqlite3 *db = pParse->db; /* Database connection */ 2349 Table *pTab; /* Table <table>. */ 2350 i16 iDb; /* Database idx for pTab */ 2351 ExprList *pEList = p->pEList; 2352 int nExpr = pEList->nExpr; 2353 2354 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2355 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2356 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2357 pTab = p->pSrc->a[0].pTab; 2358 2359 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2360 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2361 sqlite3CodeVerifySchema(pParse, iDb); 2362 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2363 2364 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2365 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2366 /* The "x IN (SELECT rowid FROM table)" case */ 2367 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2368 VdbeCoverage(v); 2369 2370 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2371 eType = IN_INDEX_ROWID; 2372 ExplainQueryPlan((pParse, 0, 2373 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2374 sqlite3VdbeJumpHere(v, iAddr); 2375 }else{ 2376 Index *pIdx; /* Iterator variable */ 2377 int affinity_ok = 1; 2378 int i; 2379 2380 /* Check that the affinity that will be used to perform each 2381 ** comparison is the same as the affinity of each column in table 2382 ** on the RHS of the IN operator. If it not, it is not possible to 2383 ** use any index of the RHS table. */ 2384 for(i=0; i<nExpr && affinity_ok; i++){ 2385 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2386 int iCol = pEList->a[i].pExpr->iColumn; 2387 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2388 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2389 testcase( cmpaff==SQLITE_AFF_BLOB ); 2390 testcase( cmpaff==SQLITE_AFF_TEXT ); 2391 switch( cmpaff ){ 2392 case SQLITE_AFF_BLOB: 2393 break; 2394 case SQLITE_AFF_TEXT: 2395 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2396 ** other has no affinity and the other side is TEXT. Hence, 2397 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2398 ** and for the term on the LHS of the IN to have no affinity. */ 2399 assert( idxaff==SQLITE_AFF_TEXT ); 2400 break; 2401 default: 2402 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2403 } 2404 } 2405 2406 if( affinity_ok ){ 2407 /* Search for an existing index that will work for this IN operator */ 2408 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2409 Bitmask colUsed; /* Columns of the index used */ 2410 Bitmask mCol; /* Mask for the current column */ 2411 if( pIdx->nColumn<nExpr ) continue; 2412 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2413 ** BITMASK(nExpr) without overflowing */ 2414 testcase( pIdx->nColumn==BMS-2 ); 2415 testcase( pIdx->nColumn==BMS-1 ); 2416 if( pIdx->nColumn>=BMS-1 ) continue; 2417 if( mustBeUnique ){ 2418 if( pIdx->nKeyCol>nExpr 2419 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2420 ){ 2421 continue; /* This index is not unique over the IN RHS columns */ 2422 } 2423 } 2424 2425 colUsed = 0; /* Columns of index used so far */ 2426 for(i=0; i<nExpr; i++){ 2427 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2428 Expr *pRhs = pEList->a[i].pExpr; 2429 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2430 int j; 2431 2432 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2433 for(j=0; j<nExpr; j++){ 2434 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2435 assert( pIdx->azColl[j] ); 2436 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2437 continue; 2438 } 2439 break; 2440 } 2441 if( j==nExpr ) break; 2442 mCol = MASKBIT(j); 2443 if( mCol & colUsed ) break; /* Each column used only once */ 2444 colUsed |= mCol; 2445 if( aiMap ) aiMap[i] = j; 2446 } 2447 2448 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2449 if( colUsed==(MASKBIT(nExpr)-1) ){ 2450 /* If we reach this point, that means the index pIdx is usable */ 2451 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2452 ExplainQueryPlan((pParse, 0, 2453 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2454 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2455 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2456 VdbeComment((v, "%s", pIdx->zName)); 2457 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2458 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2459 2460 if( prRhsHasNull ){ 2461 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2462 i64 mask = (1<<nExpr)-1; 2463 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2464 iTab, 0, 0, (u8*)&mask, P4_INT64); 2465 #endif 2466 *prRhsHasNull = ++pParse->nMem; 2467 if( nExpr==1 ){ 2468 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2469 } 2470 } 2471 sqlite3VdbeJumpHere(v, iAddr); 2472 } 2473 } /* End loop over indexes */ 2474 } /* End if( affinity_ok ) */ 2475 } /* End if not an rowid index */ 2476 } /* End attempt to optimize using an index */ 2477 2478 /* If no preexisting index is available for the IN clause 2479 ** and IN_INDEX_NOOP is an allowed reply 2480 ** and the RHS of the IN operator is a list, not a subquery 2481 ** and the RHS is not constant or has two or fewer terms, 2482 ** then it is not worth creating an ephemeral table to evaluate 2483 ** the IN operator so return IN_INDEX_NOOP. 2484 */ 2485 if( eType==0 2486 && (inFlags & IN_INDEX_NOOP_OK) 2487 && !ExprHasProperty(pX, EP_xIsSelect) 2488 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2489 ){ 2490 eType = IN_INDEX_NOOP; 2491 } 2492 2493 if( eType==0 ){ 2494 /* Could not find an existing table or index to use as the RHS b-tree. 2495 ** We will have to generate an ephemeral table to do the job. 2496 */ 2497 u32 savedNQueryLoop = pParse->nQueryLoop; 2498 int rMayHaveNull = 0; 2499 eType = IN_INDEX_EPH; 2500 if( inFlags & IN_INDEX_LOOP ){ 2501 pParse->nQueryLoop = 0; 2502 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 2503 eType = IN_INDEX_ROWID; 2504 } 2505 }else if( prRhsHasNull ){ 2506 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2507 } 2508 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 2509 pParse->nQueryLoop = savedNQueryLoop; 2510 }else{ 2511 pX->iTable = iTab; 2512 } 2513 2514 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2515 int i, n; 2516 n = sqlite3ExprVectorSize(pX->pLeft); 2517 for(i=0; i<n; i++) aiMap[i] = i; 2518 } 2519 return eType; 2520 } 2521 #endif 2522 2523 #ifndef SQLITE_OMIT_SUBQUERY 2524 /* 2525 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2526 ** function allocates and returns a nul-terminated string containing 2527 ** the affinities to be used for each column of the comparison. 2528 ** 2529 ** It is the responsibility of the caller to ensure that the returned 2530 ** string is eventually freed using sqlite3DbFree(). 2531 */ 2532 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2533 Expr *pLeft = pExpr->pLeft; 2534 int nVal = sqlite3ExprVectorSize(pLeft); 2535 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2536 char *zRet; 2537 2538 assert( pExpr->op==TK_IN ); 2539 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2540 if( zRet ){ 2541 int i; 2542 for(i=0; i<nVal; i++){ 2543 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2544 char a = sqlite3ExprAffinity(pA); 2545 if( pSelect ){ 2546 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2547 }else{ 2548 zRet[i] = a; 2549 } 2550 } 2551 zRet[nVal] = '\0'; 2552 } 2553 return zRet; 2554 } 2555 #endif 2556 2557 #ifndef SQLITE_OMIT_SUBQUERY 2558 /* 2559 ** Load the Parse object passed as the first argument with an error 2560 ** message of the form: 2561 ** 2562 ** "sub-select returns N columns - expected M" 2563 */ 2564 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2565 const char *zFmt = "sub-select returns %d columns - expected %d"; 2566 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2567 } 2568 #endif 2569 2570 /* 2571 ** Expression pExpr is a vector that has been used in a context where 2572 ** it is not permitted. If pExpr is a sub-select vector, this routine 2573 ** loads the Parse object with a message of the form: 2574 ** 2575 ** "sub-select returns N columns - expected 1" 2576 ** 2577 ** Or, if it is a regular scalar vector: 2578 ** 2579 ** "row value misused" 2580 */ 2581 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2582 #ifndef SQLITE_OMIT_SUBQUERY 2583 if( pExpr->flags & EP_xIsSelect ){ 2584 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2585 }else 2586 #endif 2587 { 2588 sqlite3ErrorMsg(pParse, "row value misused"); 2589 } 2590 } 2591 2592 /* 2593 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 2594 ** or IN operators. Examples: 2595 ** 2596 ** (SELECT a FROM b) -- subquery 2597 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2598 ** x IN (4,5,11) -- IN operator with list on right-hand side 2599 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2600 ** 2601 ** The pExpr parameter describes the expression that contains the IN 2602 ** operator or subquery. 2603 ** 2604 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 2605 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 2606 ** to some integer key column of a table B-Tree. In this case, use an 2607 ** intkey B-Tree to store the set of IN(...) values instead of the usual 2608 ** (slower) variable length keys B-Tree. 2609 ** 2610 ** If rMayHaveNull is non-zero, that means that the operation is an IN 2611 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 2612 ** All this routine does is initialize the register given by rMayHaveNull 2613 ** to NULL. Calling routines will take care of changing this register 2614 ** value to non-NULL if the RHS is NULL-free. 2615 ** 2616 ** For a SELECT or EXISTS operator, return the register that holds the 2617 ** result. For a multi-column SELECT, the result is stored in a contiguous 2618 ** array of registers and the return value is the register of the left-most 2619 ** result column. Return 0 for IN operators or if an error occurs. 2620 */ 2621 #ifndef SQLITE_OMIT_SUBQUERY 2622 int sqlite3CodeSubselect( 2623 Parse *pParse, /* Parsing context */ 2624 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 2625 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 2626 int isRowid /* If true, LHS of IN operator is a rowid */ 2627 ){ 2628 int jmpIfDynamic = -1; /* One-time test address */ 2629 int rReg = 0; /* Register storing resulting */ 2630 Vdbe *v = sqlite3GetVdbe(pParse); 2631 if( NEVER(v==0) ) return 0; 2632 2633 /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it 2634 ** is encountered if any of the following is true: 2635 ** 2636 ** * The right-hand side is a correlated subquery 2637 ** * The right-hand side is an expression list containing variables 2638 ** * We are inside a trigger 2639 ** 2640 ** If all of the above are false, then we can run this code just once 2641 ** save the results, and reuse the same result on subsequent invocations. 2642 */ 2643 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2644 jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2645 } 2646 2647 switch( pExpr->op ){ 2648 case TK_IN: { 2649 int addr; /* Address of OP_OpenEphemeral instruction */ 2650 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 2651 KeyInfo *pKeyInfo = 0; /* Key information */ 2652 int nVal; /* Size of vector pLeft */ 2653 2654 nVal = sqlite3ExprVectorSize(pLeft); 2655 assert( !isRowid || nVal==1 ); 2656 2657 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 2658 ** expression it is handled the same way. An ephemeral table is 2659 ** filled with index keys representing the results from the 2660 ** SELECT or the <exprlist>. 2661 ** 2662 ** If the 'x' expression is a column value, or the SELECT... 2663 ** statement returns a column value, then the affinity of that 2664 ** column is used to build the index keys. If both 'x' and the 2665 ** SELECT... statement are columns, then numeric affinity is used 2666 ** if either column has NUMERIC or INTEGER affinity. If neither 2667 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2668 ** is used. 2669 */ 2670 pExpr->iTable = pParse->nTab++; 2671 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, 2672 pExpr->iTable, (isRowid?0:nVal)); 2673 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2674 2675 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2676 /* Case 1: expr IN (SELECT ...) 2677 ** 2678 ** Generate code to write the results of the select into the temporary 2679 ** table allocated and opened above. 2680 */ 2681 Select *pSelect = pExpr->x.pSelect; 2682 ExprList *pEList = pSelect->pEList; 2683 2684 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY", 2685 jmpIfDynamic>=0?"":"CORRELATED " 2686 )); 2687 assert( !isRowid ); 2688 /* If the LHS and RHS of the IN operator do not match, that 2689 ** error will have been caught long before we reach this point. */ 2690 if( ALWAYS(pEList->nExpr==nVal) ){ 2691 SelectDest dest; 2692 int i; 2693 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 2694 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2695 pSelect->iLimit = 0; 2696 testcase( pSelect->selFlags & SF_Distinct ); 2697 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2698 if( sqlite3Select(pParse, pSelect, &dest) ){ 2699 sqlite3DbFree(pParse->db, dest.zAffSdst); 2700 sqlite3KeyInfoUnref(pKeyInfo); 2701 return 0; 2702 } 2703 sqlite3DbFree(pParse->db, dest.zAffSdst); 2704 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2705 assert( pEList!=0 ); 2706 assert( pEList->nExpr>0 ); 2707 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2708 for(i=0; i<nVal; i++){ 2709 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2710 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2711 pParse, p, pEList->a[i].pExpr 2712 ); 2713 } 2714 } 2715 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2716 /* Case 2: expr IN (exprlist) 2717 ** 2718 ** For each expression, build an index key from the evaluation and 2719 ** store it in the temporary table. If <expr> is a column, then use 2720 ** that columns affinity when building index keys. If <expr> is not 2721 ** a column, use numeric affinity. 2722 */ 2723 char affinity; /* Affinity of the LHS of the IN */ 2724 int i; 2725 ExprList *pList = pExpr->x.pList; 2726 struct ExprList_item *pItem; 2727 int r1, r2, r3; 2728 affinity = sqlite3ExprAffinity(pLeft); 2729 if( !affinity ){ 2730 affinity = SQLITE_AFF_BLOB; 2731 } 2732 if( pKeyInfo ){ 2733 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2734 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2735 } 2736 2737 /* Loop through each expression in <exprlist>. */ 2738 r1 = sqlite3GetTempReg(pParse); 2739 r2 = sqlite3GetTempReg(pParse); 2740 if( isRowid ) sqlite3VdbeAddOp4(v, OP_Blob, 0, r2, 0, "", P4_STATIC); 2741 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2742 Expr *pE2 = pItem->pExpr; 2743 int iValToIns; 2744 2745 /* If the expression is not constant then we will need to 2746 ** disable the test that was generated above that makes sure 2747 ** this code only executes once. Because for a non-constant 2748 ** expression we need to rerun this code each time. 2749 */ 2750 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 2751 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 2752 jmpIfDynamic = -1; 2753 } 2754 2755 /* Evaluate the expression and insert it into the temp table */ 2756 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 2757 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 2758 }else{ 2759 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2760 if( isRowid ){ 2761 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2762 sqlite3VdbeCurrentAddr(v)+2); 2763 VdbeCoverage(v); 2764 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 2765 }else{ 2766 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2767 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1); 2768 } 2769 } 2770 } 2771 sqlite3ReleaseTempReg(pParse, r1); 2772 sqlite3ReleaseTempReg(pParse, r2); 2773 } 2774 if( pKeyInfo ){ 2775 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2776 } 2777 break; 2778 } 2779 2780 case TK_EXISTS: 2781 case TK_SELECT: 2782 default: { 2783 /* Case 3: (SELECT ... FROM ...) 2784 ** or: EXISTS(SELECT ... FROM ...) 2785 ** 2786 ** For a SELECT, generate code to put the values for all columns of 2787 ** the first row into an array of registers and return the index of 2788 ** the first register. 2789 ** 2790 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2791 ** into a register and return that register number. 2792 ** 2793 ** In both cases, the query is augmented with "LIMIT 1". Any 2794 ** preexisting limit is discarded in place of the new LIMIT 1. 2795 */ 2796 Select *pSel; /* SELECT statement to encode */ 2797 SelectDest dest; /* How to deal with SELECT result */ 2798 int nReg; /* Registers to allocate */ 2799 Expr *pLimit; /* New limit expression */ 2800 2801 testcase( pExpr->op==TK_EXISTS ); 2802 testcase( pExpr->op==TK_SELECT ); 2803 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2804 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2805 2806 pSel = pExpr->x.pSelect; 2807 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY", 2808 jmpIfDynamic>=0?"":"CORRELATED ")); 2809 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2810 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2811 pParse->nMem += nReg; 2812 if( pExpr->op==TK_SELECT ){ 2813 dest.eDest = SRT_Mem; 2814 dest.iSdst = dest.iSDParm; 2815 dest.nSdst = nReg; 2816 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2817 VdbeComment((v, "Init subquery result")); 2818 }else{ 2819 dest.eDest = SRT_Exists; 2820 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2821 VdbeComment((v, "Init EXISTS result")); 2822 } 2823 pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0); 2824 if( pSel->pLimit ){ 2825 sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft); 2826 pSel->pLimit->pLeft = pLimit; 2827 }else{ 2828 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 2829 } 2830 pSel->iLimit = 0; 2831 if( sqlite3Select(pParse, pSel, &dest) ){ 2832 return 0; 2833 } 2834 rReg = dest.iSDParm; 2835 ExprSetVVAProperty(pExpr, EP_NoReduce); 2836 break; 2837 } 2838 } 2839 2840 if( rHasNullFlag ){ 2841 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2842 } 2843 2844 if( jmpIfDynamic>=0 ){ 2845 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2846 } 2847 2848 return rReg; 2849 } 2850 #endif /* SQLITE_OMIT_SUBQUERY */ 2851 2852 #ifndef SQLITE_OMIT_SUBQUERY 2853 /* 2854 ** Expr pIn is an IN(...) expression. This function checks that the 2855 ** sub-select on the RHS of the IN() operator has the same number of 2856 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 2857 ** a sub-query, that the LHS is a vector of size 1. 2858 */ 2859 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 2860 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 2861 if( (pIn->flags & EP_xIsSelect) ){ 2862 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 2863 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 2864 return 1; 2865 } 2866 }else if( nVector!=1 ){ 2867 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 2868 return 1; 2869 } 2870 return 0; 2871 } 2872 #endif 2873 2874 #ifndef SQLITE_OMIT_SUBQUERY 2875 /* 2876 ** Generate code for an IN expression. 2877 ** 2878 ** x IN (SELECT ...) 2879 ** x IN (value, value, ...) 2880 ** 2881 ** The left-hand side (LHS) is a scalar or vector expression. The 2882 ** right-hand side (RHS) is an array of zero or more scalar values, or a 2883 ** subquery. If the RHS is a subquery, the number of result columns must 2884 ** match the number of columns in the vector on the LHS. If the RHS is 2885 ** a list of values, the LHS must be a scalar. 2886 ** 2887 ** The IN operator is true if the LHS value is contained within the RHS. 2888 ** The result is false if the LHS is definitely not in the RHS. The 2889 ** result is NULL if the presence of the LHS in the RHS cannot be 2890 ** determined due to NULLs. 2891 ** 2892 ** This routine generates code that jumps to destIfFalse if the LHS is not 2893 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2894 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2895 ** within the RHS then fall through. 2896 ** 2897 ** See the separate in-operator.md documentation file in the canonical 2898 ** SQLite source tree for additional information. 2899 */ 2900 static void sqlite3ExprCodeIN( 2901 Parse *pParse, /* Parsing and code generating context */ 2902 Expr *pExpr, /* The IN expression */ 2903 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2904 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2905 ){ 2906 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2907 int eType; /* Type of the RHS */ 2908 int rLhs; /* Register(s) holding the LHS values */ 2909 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 2910 Vdbe *v; /* Statement under construction */ 2911 int *aiMap = 0; /* Map from vector field to index column */ 2912 char *zAff = 0; /* Affinity string for comparisons */ 2913 int nVector; /* Size of vectors for this IN operator */ 2914 int iDummy; /* Dummy parameter to exprCodeVector() */ 2915 Expr *pLeft; /* The LHS of the IN operator */ 2916 int i; /* loop counter */ 2917 int destStep2; /* Where to jump when NULLs seen in step 2 */ 2918 int destStep6 = 0; /* Start of code for Step 6 */ 2919 int addrTruthOp; /* Address of opcode that determines the IN is true */ 2920 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 2921 int addrTop; /* Top of the step-6 loop */ 2922 2923 pLeft = pExpr->pLeft; 2924 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 2925 zAff = exprINAffinity(pParse, pExpr); 2926 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 2927 aiMap = (int*)sqlite3DbMallocZero( 2928 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 2929 ); 2930 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 2931 2932 /* Attempt to compute the RHS. After this step, if anything other than 2933 ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable 2934 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 2935 ** the RHS has not yet been coded. */ 2936 v = pParse->pVdbe; 2937 assert( v!=0 ); /* OOM detected prior to this routine */ 2938 VdbeNoopComment((v, "begin IN expr")); 2939 eType = sqlite3FindInIndex(pParse, pExpr, 2940 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2941 destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap); 2942 2943 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 2944 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 2945 ); 2946 #ifdef SQLITE_DEBUG 2947 /* Confirm that aiMap[] contains nVector integer values between 0 and 2948 ** nVector-1. */ 2949 for(i=0; i<nVector; i++){ 2950 int j, cnt; 2951 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 2952 assert( cnt==1 ); 2953 } 2954 #endif 2955 2956 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 2957 ** vector, then it is stored in an array of nVector registers starting 2958 ** at r1. 2959 ** 2960 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 2961 ** so that the fields are in the same order as an existing index. The 2962 ** aiMap[] array contains a mapping from the original LHS field order to 2963 ** the field order that matches the RHS index. 2964 */ 2965 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 2966 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 2967 if( i==nVector ){ 2968 /* LHS fields are not reordered */ 2969 rLhs = rLhsOrig; 2970 }else{ 2971 /* Need to reorder the LHS fields according to aiMap */ 2972 rLhs = sqlite3GetTempRange(pParse, nVector); 2973 for(i=0; i<nVector; i++){ 2974 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 2975 } 2976 } 2977 2978 /* If sqlite3FindInIndex() did not find or create an index that is 2979 ** suitable for evaluating the IN operator, then evaluate using a 2980 ** sequence of comparisons. 2981 ** 2982 ** This is step (1) in the in-operator.md optimized algorithm. 2983 */ 2984 if( eType==IN_INDEX_NOOP ){ 2985 ExprList *pList = pExpr->x.pList; 2986 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2987 int labelOk = sqlite3VdbeMakeLabel(v); 2988 int r2, regToFree; 2989 int regCkNull = 0; 2990 int ii; 2991 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2992 if( destIfNull!=destIfFalse ){ 2993 regCkNull = sqlite3GetTempReg(pParse); 2994 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 2995 } 2996 for(ii=0; ii<pList->nExpr; ii++){ 2997 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2998 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2999 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3000 } 3001 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3002 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 3003 (void*)pColl, P4_COLLSEQ); 3004 VdbeCoverageIf(v, ii<pList->nExpr-1); 3005 VdbeCoverageIf(v, ii==pList->nExpr-1); 3006 sqlite3VdbeChangeP5(v, zAff[0]); 3007 }else{ 3008 assert( destIfNull==destIfFalse ); 3009 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 3010 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 3011 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3012 } 3013 sqlite3ReleaseTempReg(pParse, regToFree); 3014 } 3015 if( regCkNull ){ 3016 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3017 sqlite3VdbeGoto(v, destIfFalse); 3018 } 3019 sqlite3VdbeResolveLabel(v, labelOk); 3020 sqlite3ReleaseTempReg(pParse, regCkNull); 3021 goto sqlite3ExprCodeIN_finished; 3022 } 3023 3024 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3025 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3026 ** We will then skip the binary search of the RHS. 3027 */ 3028 if( destIfNull==destIfFalse ){ 3029 destStep2 = destIfFalse; 3030 }else{ 3031 destStep2 = destStep6 = sqlite3VdbeMakeLabel(v); 3032 } 3033 for(i=0; i<nVector; i++){ 3034 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3035 if( sqlite3ExprCanBeNull(p) ){ 3036 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3037 VdbeCoverage(v); 3038 } 3039 } 3040 3041 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3042 ** of the RHS using the LHS as a probe. If found, the result is 3043 ** true. 3044 */ 3045 if( eType==IN_INDEX_ROWID ){ 3046 /* In this case, the RHS is the ROWID of table b-tree and so we also 3047 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3048 ** into a single opcode. */ 3049 sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs); 3050 VdbeCoverage(v); 3051 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3052 }else{ 3053 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3054 if( destIfFalse==destIfNull ){ 3055 /* Combine Step 3 and Step 5 into a single opcode */ 3056 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, 3057 rLhs, nVector); VdbeCoverage(v); 3058 goto sqlite3ExprCodeIN_finished; 3059 } 3060 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3061 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, 3062 rLhs, nVector); VdbeCoverage(v); 3063 } 3064 3065 /* Step 4. If the RHS is known to be non-NULL and we did not find 3066 ** an match on the search above, then the result must be FALSE. 3067 */ 3068 if( rRhsHasNull && nVector==1 ){ 3069 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3070 VdbeCoverage(v); 3071 } 3072 3073 /* Step 5. If we do not care about the difference between NULL and 3074 ** FALSE, then just return false. 3075 */ 3076 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3077 3078 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3079 ** If any comparison is NULL, then the result is NULL. If all 3080 ** comparisons are FALSE then the final result is FALSE. 3081 ** 3082 ** For a scalar LHS, it is sufficient to check just the first row 3083 ** of the RHS. 3084 */ 3085 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3086 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 3087 VdbeCoverage(v); 3088 if( nVector>1 ){ 3089 destNotNull = sqlite3VdbeMakeLabel(v); 3090 }else{ 3091 /* For nVector==1, combine steps 6 and 7 by immediately returning 3092 ** FALSE if the first comparison is not NULL */ 3093 destNotNull = destIfFalse; 3094 } 3095 for(i=0; i<nVector; i++){ 3096 Expr *p; 3097 CollSeq *pColl; 3098 int r3 = sqlite3GetTempReg(pParse); 3099 p = sqlite3VectorFieldSubexpr(pLeft, i); 3100 pColl = sqlite3ExprCollSeq(pParse, p); 3101 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3); 3102 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3103 (void*)pColl, P4_COLLSEQ); 3104 VdbeCoverage(v); 3105 sqlite3ReleaseTempReg(pParse, r3); 3106 } 3107 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3108 if( nVector>1 ){ 3109 sqlite3VdbeResolveLabel(v, destNotNull); 3110 sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1); 3111 VdbeCoverage(v); 3112 3113 /* Step 7: If we reach this point, we know that the result must 3114 ** be false. */ 3115 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3116 } 3117 3118 /* Jumps here in order to return true. */ 3119 sqlite3VdbeJumpHere(v, addrTruthOp); 3120 3121 sqlite3ExprCodeIN_finished: 3122 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3123 VdbeComment((v, "end IN expr")); 3124 sqlite3ExprCodeIN_oom_error: 3125 sqlite3DbFree(pParse->db, aiMap); 3126 sqlite3DbFree(pParse->db, zAff); 3127 } 3128 #endif /* SQLITE_OMIT_SUBQUERY */ 3129 3130 #ifndef SQLITE_OMIT_FLOATING_POINT 3131 /* 3132 ** Generate an instruction that will put the floating point 3133 ** value described by z[0..n-1] into register iMem. 3134 ** 3135 ** The z[] string will probably not be zero-terminated. But the 3136 ** z[n] character is guaranteed to be something that does not look 3137 ** like the continuation of the number. 3138 */ 3139 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3140 if( ALWAYS(z!=0) ){ 3141 double value; 3142 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3143 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3144 if( negateFlag ) value = -value; 3145 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3146 } 3147 } 3148 #endif 3149 3150 3151 /* 3152 ** Generate an instruction that will put the integer describe by 3153 ** text z[0..n-1] into register iMem. 3154 ** 3155 ** Expr.u.zToken is always UTF8 and zero-terminated. 3156 */ 3157 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3158 Vdbe *v = pParse->pVdbe; 3159 if( pExpr->flags & EP_IntValue ){ 3160 int i = pExpr->u.iValue; 3161 assert( i>=0 ); 3162 if( negFlag ) i = -i; 3163 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3164 }else{ 3165 int c; 3166 i64 value; 3167 const char *z = pExpr->u.zToken; 3168 assert( z!=0 ); 3169 c = sqlite3DecOrHexToI64(z, &value); 3170 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3171 #ifdef SQLITE_OMIT_FLOATING_POINT 3172 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3173 #else 3174 #ifndef SQLITE_OMIT_HEX_INTEGER 3175 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3176 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3177 }else 3178 #endif 3179 { 3180 codeReal(v, z, negFlag, iMem); 3181 } 3182 #endif 3183 }else{ 3184 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3185 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3186 } 3187 } 3188 } 3189 3190 3191 /* Generate code that will load into register regOut a value that is 3192 ** appropriate for the iIdxCol-th column of index pIdx. 3193 */ 3194 void sqlite3ExprCodeLoadIndexColumn( 3195 Parse *pParse, /* The parsing context */ 3196 Index *pIdx, /* The index whose column is to be loaded */ 3197 int iTabCur, /* Cursor pointing to a table row */ 3198 int iIdxCol, /* The column of the index to be loaded */ 3199 int regOut /* Store the index column value in this register */ 3200 ){ 3201 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3202 if( iTabCol==XN_EXPR ){ 3203 assert( pIdx->aColExpr ); 3204 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3205 pParse->iSelfTab = iTabCur + 1; 3206 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3207 pParse->iSelfTab = 0; 3208 }else{ 3209 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3210 iTabCol, regOut); 3211 } 3212 } 3213 3214 /* 3215 ** Generate code to extract the value of the iCol-th column of a table. 3216 */ 3217 void sqlite3ExprCodeGetColumnOfTable( 3218 Vdbe *v, /* The VDBE under construction */ 3219 Table *pTab, /* The table containing the value */ 3220 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3221 int iCol, /* Index of the column to extract */ 3222 int regOut /* Extract the value into this register */ 3223 ){ 3224 if( pTab==0 ){ 3225 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3226 return; 3227 } 3228 if( iCol<0 || iCol==pTab->iPKey ){ 3229 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3230 }else{ 3231 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 3232 int x = iCol; 3233 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ 3234 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3235 } 3236 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3237 } 3238 if( iCol>=0 ){ 3239 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3240 } 3241 } 3242 3243 /* 3244 ** Generate code that will extract the iColumn-th column from 3245 ** table pTab and store the column value in register iReg. 3246 ** 3247 ** There must be an open cursor to pTab in iTable when this routine 3248 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3249 */ 3250 int sqlite3ExprCodeGetColumn( 3251 Parse *pParse, /* Parsing and code generating context */ 3252 Table *pTab, /* Description of the table we are reading from */ 3253 int iColumn, /* Index of the table column */ 3254 int iTable, /* The cursor pointing to the table */ 3255 int iReg, /* Store results here */ 3256 u8 p5 /* P5 value for OP_Column + FLAGS */ 3257 ){ 3258 Vdbe *v = pParse->pVdbe; 3259 assert( v!=0 ); 3260 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 3261 if( p5 ){ 3262 sqlite3VdbeChangeP5(v, p5); 3263 } 3264 return iReg; 3265 } 3266 3267 /* 3268 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3269 ** over to iTo..iTo+nReg-1. 3270 */ 3271 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3272 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 3273 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3274 } 3275 3276 /* 3277 ** Convert a scalar expression node to a TK_REGISTER referencing 3278 ** register iReg. The caller must ensure that iReg already contains 3279 ** the correct value for the expression. 3280 */ 3281 static void exprToRegister(Expr *p, int iReg){ 3282 p->op2 = p->op; 3283 p->op = TK_REGISTER; 3284 p->iTable = iReg; 3285 ExprClearProperty(p, EP_Skip); 3286 } 3287 3288 /* 3289 ** Evaluate an expression (either a vector or a scalar expression) and store 3290 ** the result in continguous temporary registers. Return the index of 3291 ** the first register used to store the result. 3292 ** 3293 ** If the returned result register is a temporary scalar, then also write 3294 ** that register number into *piFreeable. If the returned result register 3295 ** is not a temporary or if the expression is a vector set *piFreeable 3296 ** to 0. 3297 */ 3298 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3299 int iResult; 3300 int nResult = sqlite3ExprVectorSize(p); 3301 if( nResult==1 ){ 3302 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3303 }else{ 3304 *piFreeable = 0; 3305 if( p->op==TK_SELECT ){ 3306 #if SQLITE_OMIT_SUBQUERY 3307 iResult = 0; 3308 #else 3309 iResult = sqlite3CodeSubselect(pParse, p, 0, 0); 3310 #endif 3311 }else{ 3312 int i; 3313 iResult = pParse->nMem+1; 3314 pParse->nMem += nResult; 3315 for(i=0; i<nResult; i++){ 3316 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3317 } 3318 } 3319 } 3320 return iResult; 3321 } 3322 3323 3324 /* 3325 ** Generate code into the current Vdbe to evaluate the given 3326 ** expression. Attempt to store the results in register "target". 3327 ** Return the register where results are stored. 3328 ** 3329 ** With this routine, there is no guarantee that results will 3330 ** be stored in target. The result might be stored in some other 3331 ** register if it is convenient to do so. The calling function 3332 ** must check the return code and move the results to the desired 3333 ** register. 3334 */ 3335 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3336 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3337 int op; /* The opcode being coded */ 3338 int inReg = target; /* Results stored in register inReg */ 3339 int regFree1 = 0; /* If non-zero free this temporary register */ 3340 int regFree2 = 0; /* If non-zero free this temporary register */ 3341 int r1, r2; /* Various register numbers */ 3342 Expr tempX; /* Temporary expression node */ 3343 int p5 = 0; 3344 3345 assert( target>0 && target<=pParse->nMem ); 3346 if( v==0 ){ 3347 assert( pParse->db->mallocFailed ); 3348 return 0; 3349 } 3350 3351 expr_code_doover: 3352 if( pExpr==0 ){ 3353 op = TK_NULL; 3354 }else{ 3355 op = pExpr->op; 3356 } 3357 switch( op ){ 3358 case TK_AGG_COLUMN: { 3359 AggInfo *pAggInfo = pExpr->pAggInfo; 3360 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3361 if( !pAggInfo->directMode ){ 3362 assert( pCol->iMem>0 ); 3363 return pCol->iMem; 3364 }else if( pAggInfo->useSortingIdx ){ 3365 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3366 pCol->iSorterColumn, target); 3367 return target; 3368 } 3369 /* Otherwise, fall thru into the TK_COLUMN case */ 3370 } 3371 case TK_COLUMN: { 3372 int iTab = pExpr->iTable; 3373 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3374 /* This COLUMN expression is really a constant due to WHERE clause 3375 ** constraints, and that constant is coded by the pExpr->pLeft 3376 ** expresssion. However, make sure the constant has the correct 3377 ** datatype by applying the Affinity of the table column to the 3378 ** constant. 3379 */ 3380 int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3381 int aff = sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn); 3382 if( aff!=SQLITE_AFF_BLOB ){ 3383 static const char zAff[] = "B\000C\000D\000E"; 3384 assert( SQLITE_AFF_BLOB=='A' ); 3385 assert( SQLITE_AFF_TEXT=='B' ); 3386 if( iReg!=target ){ 3387 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target); 3388 iReg = target; 3389 } 3390 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3391 &zAff[(aff-'B')*2], P4_STATIC); 3392 } 3393 return iReg; 3394 } 3395 if( iTab<0 ){ 3396 if( pParse->iSelfTab<0 ){ 3397 /* Generating CHECK constraints or inserting into partial index */ 3398 return pExpr->iColumn - pParse->iSelfTab; 3399 }else{ 3400 /* Coding an expression that is part of an index where column names 3401 ** in the index refer to the table to which the index belongs */ 3402 iTab = pParse->iSelfTab - 1; 3403 } 3404 } 3405 return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 3406 pExpr->iColumn, iTab, target, 3407 pExpr->op2); 3408 } 3409 case TK_INTEGER: { 3410 codeInteger(pParse, pExpr, 0, target); 3411 return target; 3412 } 3413 case TK_TRUEFALSE: { 3414 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3415 return target; 3416 } 3417 #ifndef SQLITE_OMIT_FLOATING_POINT 3418 case TK_FLOAT: { 3419 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3420 codeReal(v, pExpr->u.zToken, 0, target); 3421 return target; 3422 } 3423 #endif 3424 case TK_STRING: { 3425 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3426 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3427 return target; 3428 } 3429 case TK_NULL: { 3430 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3431 return target; 3432 } 3433 #ifndef SQLITE_OMIT_BLOB_LITERAL 3434 case TK_BLOB: { 3435 int n; 3436 const char *z; 3437 char *zBlob; 3438 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3439 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3440 assert( pExpr->u.zToken[1]=='\'' ); 3441 z = &pExpr->u.zToken[2]; 3442 n = sqlite3Strlen30(z) - 1; 3443 assert( z[n]=='\'' ); 3444 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3445 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3446 return target; 3447 } 3448 #endif 3449 case TK_VARIABLE: { 3450 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3451 assert( pExpr->u.zToken!=0 ); 3452 assert( pExpr->u.zToken[0]!=0 ); 3453 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3454 if( pExpr->u.zToken[1]!=0 ){ 3455 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3456 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); 3457 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3458 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3459 } 3460 return target; 3461 } 3462 case TK_REGISTER: { 3463 return pExpr->iTable; 3464 } 3465 #ifndef SQLITE_OMIT_CAST 3466 case TK_CAST: { 3467 /* Expressions of the form: CAST(pLeft AS token) */ 3468 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3469 if( inReg!=target ){ 3470 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3471 inReg = target; 3472 } 3473 sqlite3VdbeAddOp2(v, OP_Cast, target, 3474 sqlite3AffinityType(pExpr->u.zToken, 0)); 3475 return inReg; 3476 } 3477 #endif /* SQLITE_OMIT_CAST */ 3478 case TK_IS: 3479 case TK_ISNOT: 3480 op = (op==TK_IS) ? TK_EQ : TK_NE; 3481 p5 = SQLITE_NULLEQ; 3482 /* fall-through */ 3483 case TK_LT: 3484 case TK_LE: 3485 case TK_GT: 3486 case TK_GE: 3487 case TK_NE: 3488 case TK_EQ: { 3489 Expr *pLeft = pExpr->pLeft; 3490 if( sqlite3ExprIsVector(pLeft) ){ 3491 codeVectorCompare(pParse, pExpr, target, op, p5); 3492 }else{ 3493 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3494 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3495 codeCompare(pParse, pLeft, pExpr->pRight, op, 3496 r1, r2, inReg, SQLITE_STOREP2 | p5); 3497 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3498 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3499 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3500 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3501 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3502 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3503 testcase( regFree1==0 ); 3504 testcase( regFree2==0 ); 3505 } 3506 break; 3507 } 3508 case TK_AND: 3509 case TK_OR: 3510 case TK_PLUS: 3511 case TK_STAR: 3512 case TK_MINUS: 3513 case TK_REM: 3514 case TK_BITAND: 3515 case TK_BITOR: 3516 case TK_SLASH: 3517 case TK_LSHIFT: 3518 case TK_RSHIFT: 3519 case TK_CONCAT: { 3520 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3521 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3522 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3523 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3524 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3525 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3526 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3527 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3528 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3529 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3530 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3531 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3532 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3533 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3534 testcase( regFree1==0 ); 3535 testcase( regFree2==0 ); 3536 break; 3537 } 3538 case TK_UMINUS: { 3539 Expr *pLeft = pExpr->pLeft; 3540 assert( pLeft ); 3541 if( pLeft->op==TK_INTEGER ){ 3542 codeInteger(pParse, pLeft, 1, target); 3543 return target; 3544 #ifndef SQLITE_OMIT_FLOATING_POINT 3545 }else if( pLeft->op==TK_FLOAT ){ 3546 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3547 codeReal(v, pLeft->u.zToken, 1, target); 3548 return target; 3549 #endif 3550 }else{ 3551 tempX.op = TK_INTEGER; 3552 tempX.flags = EP_IntValue|EP_TokenOnly; 3553 tempX.u.iValue = 0; 3554 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3555 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3556 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3557 testcase( regFree2==0 ); 3558 } 3559 break; 3560 } 3561 case TK_BITNOT: 3562 case TK_NOT: { 3563 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3564 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3565 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3566 testcase( regFree1==0 ); 3567 sqlite3VdbeAddOp2(v, op, r1, inReg); 3568 break; 3569 } 3570 case TK_TRUTH: { 3571 int isTrue; /* IS TRUE or IS NOT TRUE */ 3572 int bNormal; /* IS TRUE or IS FALSE */ 3573 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3574 testcase( regFree1==0 ); 3575 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 3576 bNormal = pExpr->op2==TK_IS; 3577 testcase( isTrue && bNormal); 3578 testcase( !isTrue && bNormal); 3579 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 3580 break; 3581 } 3582 case TK_ISNULL: 3583 case TK_NOTNULL: { 3584 int addr; 3585 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3586 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3587 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3588 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3589 testcase( regFree1==0 ); 3590 addr = sqlite3VdbeAddOp1(v, op, r1); 3591 VdbeCoverageIf(v, op==TK_ISNULL); 3592 VdbeCoverageIf(v, op==TK_NOTNULL); 3593 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3594 sqlite3VdbeJumpHere(v, addr); 3595 break; 3596 } 3597 case TK_AGG_FUNCTION: { 3598 AggInfo *pInfo = pExpr->pAggInfo; 3599 if( pInfo==0 ){ 3600 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3601 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3602 }else{ 3603 return pInfo->aFunc[pExpr->iAgg].iMem; 3604 } 3605 break; 3606 } 3607 case TK_FUNCTION: { 3608 ExprList *pFarg; /* List of function arguments */ 3609 int nFarg; /* Number of function arguments */ 3610 FuncDef *pDef; /* The function definition object */ 3611 const char *zId; /* The function name */ 3612 u32 constMask = 0; /* Mask of function arguments that are constant */ 3613 int i; /* Loop counter */ 3614 sqlite3 *db = pParse->db; /* The database connection */ 3615 u8 enc = ENC(db); /* The text encoding used by this database */ 3616 CollSeq *pColl = 0; /* A collating sequence */ 3617 3618 #ifndef SQLITE_OMIT_WINDOWFUNC 3619 if( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) && pExpr->pWin ){ 3620 return pExpr->pWin->regResult; 3621 } 3622 #endif 3623 3624 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3625 /* SQL functions can be expensive. So try to move constant functions 3626 ** out of the inner loop, even if that means an extra OP_Copy. */ 3627 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3628 } 3629 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3630 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3631 pFarg = 0; 3632 }else{ 3633 pFarg = pExpr->x.pList; 3634 } 3635 nFarg = pFarg ? pFarg->nExpr : 0; 3636 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3637 zId = pExpr->u.zToken; 3638 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3639 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3640 if( pDef==0 && pParse->explain ){ 3641 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3642 } 3643 #endif 3644 if( pDef==0 || pDef->xFinalize!=0 ){ 3645 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3646 break; 3647 } 3648 3649 /* Attempt a direct implementation of the built-in COALESCE() and 3650 ** IFNULL() functions. This avoids unnecessary evaluation of 3651 ** arguments past the first non-NULL argument. 3652 */ 3653 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3654 int endCoalesce = sqlite3VdbeMakeLabel(v); 3655 assert( nFarg>=2 ); 3656 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3657 for(i=1; i<nFarg; i++){ 3658 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3659 VdbeCoverage(v); 3660 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3661 } 3662 sqlite3VdbeResolveLabel(v, endCoalesce); 3663 break; 3664 } 3665 3666 /* The UNLIKELY() function is a no-op. The result is the value 3667 ** of the first argument. 3668 */ 3669 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3670 assert( nFarg>=1 ); 3671 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3672 } 3673 3674 #ifdef SQLITE_DEBUG 3675 /* The AFFINITY() function evaluates to a string that describes 3676 ** the type affinity of the argument. This is used for testing of 3677 ** the SQLite type logic. 3678 */ 3679 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3680 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3681 char aff; 3682 assert( nFarg==1 ); 3683 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3684 sqlite3VdbeLoadString(v, target, 3685 aff ? azAff[aff-SQLITE_AFF_BLOB] : "none"); 3686 return target; 3687 } 3688 #endif 3689 3690 for(i=0; i<nFarg; i++){ 3691 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3692 testcase( i==31 ); 3693 constMask |= MASKBIT32(i); 3694 } 3695 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3696 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3697 } 3698 } 3699 if( pFarg ){ 3700 if( constMask ){ 3701 r1 = pParse->nMem+1; 3702 pParse->nMem += nFarg; 3703 }else{ 3704 r1 = sqlite3GetTempRange(pParse, nFarg); 3705 } 3706 3707 /* For length() and typeof() functions with a column argument, 3708 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3709 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3710 ** loading. 3711 */ 3712 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3713 u8 exprOp; 3714 assert( nFarg==1 ); 3715 assert( pFarg->a[0].pExpr!=0 ); 3716 exprOp = pFarg->a[0].pExpr->op; 3717 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3718 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3719 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3720 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3721 pFarg->a[0].pExpr->op2 = 3722 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3723 } 3724 } 3725 3726 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3727 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3728 }else{ 3729 r1 = 0; 3730 } 3731 #ifndef SQLITE_OMIT_VIRTUALTABLE 3732 /* Possibly overload the function if the first argument is 3733 ** a virtual table column. 3734 ** 3735 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3736 ** second argument, not the first, as the argument to test to 3737 ** see if it is a column in a virtual table. This is done because 3738 ** the left operand of infix functions (the operand we want to 3739 ** control overloading) ends up as the second argument to the 3740 ** function. The expression "A glob B" is equivalent to 3741 ** "glob(B,A). We want to use the A in "A glob B" to test 3742 ** for function overloading. But we use the B term in "glob(B,A)". 3743 */ 3744 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 3745 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3746 }else if( nFarg>0 ){ 3747 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3748 } 3749 #endif 3750 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3751 if( !pColl ) pColl = db->pDfltColl; 3752 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3753 } 3754 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 3755 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 3756 Expr *pArg = pFarg->a[0].pExpr; 3757 if( pArg->op==TK_COLUMN ){ 3758 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 3759 }else{ 3760 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3761 } 3762 }else 3763 #endif 3764 { 3765 sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0, 3766 constMask, r1, target, (char*)pDef, P4_FUNCDEF); 3767 sqlite3VdbeChangeP5(v, (u8)nFarg); 3768 } 3769 if( nFarg && constMask==0 ){ 3770 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3771 } 3772 return target; 3773 } 3774 #ifndef SQLITE_OMIT_SUBQUERY 3775 case TK_EXISTS: 3776 case TK_SELECT: { 3777 int nCol; 3778 testcase( op==TK_EXISTS ); 3779 testcase( op==TK_SELECT ); 3780 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 3781 sqlite3SubselectError(pParse, nCol, 1); 3782 }else{ 3783 return sqlite3CodeSubselect(pParse, pExpr, 0, 0); 3784 } 3785 break; 3786 } 3787 case TK_SELECT_COLUMN: { 3788 int n; 3789 if( pExpr->pLeft->iTable==0 ){ 3790 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0); 3791 } 3792 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 3793 if( pExpr->iTable 3794 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 3795 ){ 3796 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 3797 pExpr->iTable, n); 3798 } 3799 return pExpr->pLeft->iTable + pExpr->iColumn; 3800 } 3801 case TK_IN: { 3802 int destIfFalse = sqlite3VdbeMakeLabel(v); 3803 int destIfNull = sqlite3VdbeMakeLabel(v); 3804 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3805 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3806 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3807 sqlite3VdbeResolveLabel(v, destIfFalse); 3808 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3809 sqlite3VdbeResolveLabel(v, destIfNull); 3810 return target; 3811 } 3812 #endif /* SQLITE_OMIT_SUBQUERY */ 3813 3814 3815 /* 3816 ** x BETWEEN y AND z 3817 ** 3818 ** This is equivalent to 3819 ** 3820 ** x>=y AND x<=z 3821 ** 3822 ** X is stored in pExpr->pLeft. 3823 ** Y is stored in pExpr->pList->a[0].pExpr. 3824 ** Z is stored in pExpr->pList->a[1].pExpr. 3825 */ 3826 case TK_BETWEEN: { 3827 exprCodeBetween(pParse, pExpr, target, 0, 0); 3828 return target; 3829 } 3830 case TK_SPAN: 3831 case TK_COLLATE: 3832 case TK_UPLUS: { 3833 pExpr = pExpr->pLeft; 3834 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 3835 } 3836 3837 case TK_TRIGGER: { 3838 /* If the opcode is TK_TRIGGER, then the expression is a reference 3839 ** to a column in the new.* or old.* pseudo-tables available to 3840 ** trigger programs. In this case Expr.iTable is set to 1 for the 3841 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3842 ** is set to the column of the pseudo-table to read, or to -1 to 3843 ** read the rowid field. 3844 ** 3845 ** The expression is implemented using an OP_Param opcode. The p1 3846 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3847 ** to reference another column of the old.* pseudo-table, where 3848 ** i is the index of the column. For a new.rowid reference, p1 is 3849 ** set to (n+1), where n is the number of columns in each pseudo-table. 3850 ** For a reference to any other column in the new.* pseudo-table, p1 3851 ** is set to (n+2+i), where n and i are as defined previously. For 3852 ** example, if the table on which triggers are being fired is 3853 ** declared as: 3854 ** 3855 ** CREATE TABLE t1(a, b); 3856 ** 3857 ** Then p1 is interpreted as follows: 3858 ** 3859 ** p1==0 -> old.rowid p1==3 -> new.rowid 3860 ** p1==1 -> old.a p1==4 -> new.a 3861 ** p1==2 -> old.b p1==5 -> new.b 3862 */ 3863 Table *pTab = pExpr->pTab; 3864 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3865 3866 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3867 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3868 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3869 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3870 3871 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3872 VdbeComment((v, "r[%d]=%s.%s", target, 3873 (pExpr->iTable ? "new" : "old"), 3874 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName) 3875 )); 3876 3877 #ifndef SQLITE_OMIT_FLOATING_POINT 3878 /* If the column has REAL affinity, it may currently be stored as an 3879 ** integer. Use OP_RealAffinity to make sure it is really real. 3880 ** 3881 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3882 ** floating point when extracting it from the record. */ 3883 if( pExpr->iColumn>=0 3884 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3885 ){ 3886 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3887 } 3888 #endif 3889 break; 3890 } 3891 3892 case TK_VECTOR: { 3893 sqlite3ErrorMsg(pParse, "row value misused"); 3894 break; 3895 } 3896 3897 case TK_IF_NULL_ROW: { 3898 int addrINR; 3899 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 3900 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3901 sqlite3VdbeJumpHere(v, addrINR); 3902 sqlite3VdbeChangeP3(v, addrINR, inReg); 3903 break; 3904 } 3905 3906 /* 3907 ** Form A: 3908 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3909 ** 3910 ** Form B: 3911 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3912 ** 3913 ** Form A is can be transformed into the equivalent form B as follows: 3914 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3915 ** WHEN x=eN THEN rN ELSE y END 3916 ** 3917 ** X (if it exists) is in pExpr->pLeft. 3918 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3919 ** odd. The Y is also optional. If the number of elements in x.pList 3920 ** is even, then Y is omitted and the "otherwise" result is NULL. 3921 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3922 ** 3923 ** The result of the expression is the Ri for the first matching Ei, 3924 ** or if there is no matching Ei, the ELSE term Y, or if there is 3925 ** no ELSE term, NULL. 3926 */ 3927 default: assert( op==TK_CASE ); { 3928 int endLabel; /* GOTO label for end of CASE stmt */ 3929 int nextCase; /* GOTO label for next WHEN clause */ 3930 int nExpr; /* 2x number of WHEN terms */ 3931 int i; /* Loop counter */ 3932 ExprList *pEList; /* List of WHEN terms */ 3933 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3934 Expr opCompare; /* The X==Ei expression */ 3935 Expr *pX; /* The X expression */ 3936 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 3937 3938 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 3939 assert(pExpr->x.pList->nExpr > 0); 3940 pEList = pExpr->x.pList; 3941 aListelem = pEList->a; 3942 nExpr = pEList->nExpr; 3943 endLabel = sqlite3VdbeMakeLabel(v); 3944 if( (pX = pExpr->pLeft)!=0 ){ 3945 tempX = *pX; 3946 testcase( pX->op==TK_COLUMN ); 3947 exprToRegister(&tempX, exprCodeVector(pParse, &tempX, ®Free1)); 3948 testcase( regFree1==0 ); 3949 memset(&opCompare, 0, sizeof(opCompare)); 3950 opCompare.op = TK_EQ; 3951 opCompare.pLeft = &tempX; 3952 pTest = &opCompare; 3953 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 3954 ** The value in regFree1 might get SCopy-ed into the file result. 3955 ** So make sure that the regFree1 register is not reused for other 3956 ** purposes and possibly overwritten. */ 3957 regFree1 = 0; 3958 } 3959 for(i=0; i<nExpr-1; i=i+2){ 3960 if( pX ){ 3961 assert( pTest!=0 ); 3962 opCompare.pRight = aListelem[i].pExpr; 3963 }else{ 3964 pTest = aListelem[i].pExpr; 3965 } 3966 nextCase = sqlite3VdbeMakeLabel(v); 3967 testcase( pTest->op==TK_COLUMN ); 3968 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 3969 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 3970 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 3971 sqlite3VdbeGoto(v, endLabel); 3972 sqlite3VdbeResolveLabel(v, nextCase); 3973 } 3974 if( (nExpr&1)!=0 ){ 3975 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3976 }else{ 3977 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3978 } 3979 sqlite3VdbeResolveLabel(v, endLabel); 3980 break; 3981 } 3982 #ifndef SQLITE_OMIT_TRIGGER 3983 case TK_RAISE: { 3984 assert( pExpr->affinity==OE_Rollback 3985 || pExpr->affinity==OE_Abort 3986 || pExpr->affinity==OE_Fail 3987 || pExpr->affinity==OE_Ignore 3988 ); 3989 if( !pParse->pTriggerTab ){ 3990 sqlite3ErrorMsg(pParse, 3991 "RAISE() may only be used within a trigger-program"); 3992 return 0; 3993 } 3994 if( pExpr->affinity==OE_Abort ){ 3995 sqlite3MayAbort(pParse); 3996 } 3997 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3998 if( pExpr->affinity==OE_Ignore ){ 3999 sqlite3VdbeAddOp4( 4000 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4001 VdbeCoverage(v); 4002 }else{ 4003 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4004 pExpr->affinity, pExpr->u.zToken, 0, 0); 4005 } 4006 4007 break; 4008 } 4009 #endif 4010 } 4011 sqlite3ReleaseTempReg(pParse, regFree1); 4012 sqlite3ReleaseTempReg(pParse, regFree2); 4013 return inReg; 4014 } 4015 4016 /* 4017 ** Factor out the code of the given expression to initialization time. 4018 ** 4019 ** If regDest>=0 then the result is always stored in that register and the 4020 ** result is not reusable. If regDest<0 then this routine is free to 4021 ** store the value whereever it wants. The register where the expression 4022 ** is stored is returned. When regDest<0, two identical expressions will 4023 ** code to the same register. 4024 */ 4025 int sqlite3ExprCodeAtInit( 4026 Parse *pParse, /* Parsing context */ 4027 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4028 int regDest /* Store the value in this register */ 4029 ){ 4030 ExprList *p; 4031 assert( ConstFactorOk(pParse) ); 4032 p = pParse->pConstExpr; 4033 if( regDest<0 && p ){ 4034 struct ExprList_item *pItem; 4035 int i; 4036 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4037 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4038 return pItem->u.iConstExprReg; 4039 } 4040 } 4041 } 4042 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4043 p = sqlite3ExprListAppend(pParse, p, pExpr); 4044 if( p ){ 4045 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4046 pItem->reusable = regDest<0; 4047 if( regDest<0 ) regDest = ++pParse->nMem; 4048 pItem->u.iConstExprReg = regDest; 4049 } 4050 pParse->pConstExpr = p; 4051 return regDest; 4052 } 4053 4054 /* 4055 ** Generate code to evaluate an expression and store the results 4056 ** into a register. Return the register number where the results 4057 ** are stored. 4058 ** 4059 ** If the register is a temporary register that can be deallocated, 4060 ** then write its number into *pReg. If the result register is not 4061 ** a temporary, then set *pReg to zero. 4062 ** 4063 ** If pExpr is a constant, then this routine might generate this 4064 ** code to fill the register in the initialization section of the 4065 ** VDBE program, in order to factor it out of the evaluation loop. 4066 */ 4067 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4068 int r2; 4069 pExpr = sqlite3ExprSkipCollate(pExpr); 4070 if( ConstFactorOk(pParse) 4071 && pExpr->op!=TK_REGISTER 4072 && sqlite3ExprIsConstantNotJoin(pExpr) 4073 ){ 4074 *pReg = 0; 4075 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4076 }else{ 4077 int r1 = sqlite3GetTempReg(pParse); 4078 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4079 if( r2==r1 ){ 4080 *pReg = r1; 4081 }else{ 4082 sqlite3ReleaseTempReg(pParse, r1); 4083 *pReg = 0; 4084 } 4085 } 4086 return r2; 4087 } 4088 4089 /* 4090 ** Generate code that will evaluate expression pExpr and store the 4091 ** results in register target. The results are guaranteed to appear 4092 ** in register target. 4093 */ 4094 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4095 int inReg; 4096 4097 assert( target>0 && target<=pParse->nMem ); 4098 if( pExpr && pExpr->op==TK_REGISTER ){ 4099 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 4100 }else{ 4101 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4102 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4103 if( inReg!=target && pParse->pVdbe ){ 4104 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4105 } 4106 } 4107 } 4108 4109 /* 4110 ** Make a transient copy of expression pExpr and then code it using 4111 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4112 ** except that the input expression is guaranteed to be unchanged. 4113 */ 4114 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4115 sqlite3 *db = pParse->db; 4116 pExpr = sqlite3ExprDup(db, pExpr, 0); 4117 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4118 sqlite3ExprDelete(db, pExpr); 4119 } 4120 4121 /* 4122 ** Generate code that will evaluate expression pExpr and store the 4123 ** results in register target. The results are guaranteed to appear 4124 ** in register target. If the expression is constant, then this routine 4125 ** might choose to code the expression at initialization time. 4126 */ 4127 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4128 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4129 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4130 }else{ 4131 sqlite3ExprCode(pParse, pExpr, target); 4132 } 4133 } 4134 4135 /* 4136 ** Generate code that evaluates the given expression and puts the result 4137 ** in register target. 4138 ** 4139 ** Also make a copy of the expression results into another "cache" register 4140 ** and modify the expression so that the next time it is evaluated, 4141 ** the result is a copy of the cache register. 4142 ** 4143 ** This routine is used for expressions that are used multiple 4144 ** times. They are evaluated once and the results of the expression 4145 ** are reused. 4146 */ 4147 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 4148 Vdbe *v = pParse->pVdbe; 4149 int iMem; 4150 4151 assert( target>0 ); 4152 assert( pExpr->op!=TK_REGISTER ); 4153 sqlite3ExprCode(pParse, pExpr, target); 4154 iMem = ++pParse->nMem; 4155 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 4156 exprToRegister(pExpr, iMem); 4157 } 4158 4159 /* 4160 ** Generate code that pushes the value of every element of the given 4161 ** expression list into a sequence of registers beginning at target. 4162 ** 4163 ** Return the number of elements evaluated. The number returned will 4164 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4165 ** is defined. 4166 ** 4167 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4168 ** filled using OP_SCopy. OP_Copy must be used instead. 4169 ** 4170 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4171 ** factored out into initialization code. 4172 ** 4173 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4174 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4175 ** in registers at srcReg, and so the value can be copied from there. 4176 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4177 ** are simply omitted rather than being copied from srcReg. 4178 */ 4179 int sqlite3ExprCodeExprList( 4180 Parse *pParse, /* Parsing context */ 4181 ExprList *pList, /* The expression list to be coded */ 4182 int target, /* Where to write results */ 4183 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4184 u8 flags /* SQLITE_ECEL_* flags */ 4185 ){ 4186 struct ExprList_item *pItem; 4187 int i, j, n; 4188 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4189 Vdbe *v = pParse->pVdbe; 4190 assert( pList!=0 ); 4191 assert( target>0 ); 4192 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4193 n = pList->nExpr; 4194 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4195 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4196 Expr *pExpr = pItem->pExpr; 4197 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4198 if( pItem->bSorterRef ){ 4199 i--; 4200 n--; 4201 }else 4202 #endif 4203 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4204 if( flags & SQLITE_ECEL_OMITREF ){ 4205 i--; 4206 n--; 4207 }else{ 4208 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4209 } 4210 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4211 && sqlite3ExprIsConstantNotJoin(pExpr) 4212 ){ 4213 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4214 }else{ 4215 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4216 if( inReg!=target+i ){ 4217 VdbeOp *pOp; 4218 if( copyOp==OP_Copy 4219 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4220 && pOp->p1+pOp->p3+1==inReg 4221 && pOp->p2+pOp->p3+1==target+i 4222 ){ 4223 pOp->p3++; 4224 }else{ 4225 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4226 } 4227 } 4228 } 4229 } 4230 return n; 4231 } 4232 4233 /* 4234 ** Generate code for a BETWEEN operator. 4235 ** 4236 ** x BETWEEN y AND z 4237 ** 4238 ** The above is equivalent to 4239 ** 4240 ** x>=y AND x<=z 4241 ** 4242 ** Code it as such, taking care to do the common subexpression 4243 ** elimination of x. 4244 ** 4245 ** The xJumpIf parameter determines details: 4246 ** 4247 ** NULL: Store the boolean result in reg[dest] 4248 ** sqlite3ExprIfTrue: Jump to dest if true 4249 ** sqlite3ExprIfFalse: Jump to dest if false 4250 ** 4251 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4252 */ 4253 static void exprCodeBetween( 4254 Parse *pParse, /* Parsing and code generating context */ 4255 Expr *pExpr, /* The BETWEEN expression */ 4256 int dest, /* Jump destination or storage location */ 4257 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4258 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4259 ){ 4260 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4261 Expr compLeft; /* The x>=y term */ 4262 Expr compRight; /* The x<=z term */ 4263 Expr exprX; /* The x subexpression */ 4264 int regFree1 = 0; /* Temporary use register */ 4265 4266 4267 memset(&compLeft, 0, sizeof(Expr)); 4268 memset(&compRight, 0, sizeof(Expr)); 4269 memset(&exprAnd, 0, sizeof(Expr)); 4270 4271 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4272 exprX = *pExpr->pLeft; 4273 exprAnd.op = TK_AND; 4274 exprAnd.pLeft = &compLeft; 4275 exprAnd.pRight = &compRight; 4276 compLeft.op = TK_GE; 4277 compLeft.pLeft = &exprX; 4278 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4279 compRight.op = TK_LE; 4280 compRight.pLeft = &exprX; 4281 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4282 exprToRegister(&exprX, exprCodeVector(pParse, &exprX, ®Free1)); 4283 if( xJump ){ 4284 xJump(pParse, &exprAnd, dest, jumpIfNull); 4285 }else{ 4286 /* Mark the expression is being from the ON or USING clause of a join 4287 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4288 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4289 ** for clarity, but we are out of bits in the Expr.flags field so we 4290 ** have to reuse the EP_FromJoin bit. Bummer. */ 4291 exprX.flags |= EP_FromJoin; 4292 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4293 } 4294 sqlite3ReleaseTempReg(pParse, regFree1); 4295 4296 /* Ensure adequate test coverage */ 4297 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4298 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4299 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4300 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4301 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4302 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4303 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4304 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4305 testcase( xJump==0 ); 4306 } 4307 4308 /* 4309 ** Generate code for a boolean expression such that a jump is made 4310 ** to the label "dest" if the expression is true but execution 4311 ** continues straight thru if the expression is false. 4312 ** 4313 ** If the expression evaluates to NULL (neither true nor false), then 4314 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4315 ** 4316 ** This code depends on the fact that certain token values (ex: TK_EQ) 4317 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4318 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4319 ** the make process cause these values to align. Assert()s in the code 4320 ** below verify that the numbers are aligned correctly. 4321 */ 4322 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4323 Vdbe *v = pParse->pVdbe; 4324 int op = 0; 4325 int regFree1 = 0; 4326 int regFree2 = 0; 4327 int r1, r2; 4328 4329 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4330 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4331 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4332 op = pExpr->op; 4333 switch( op ){ 4334 case TK_AND: { 4335 int d2 = sqlite3VdbeMakeLabel(v); 4336 testcase( jumpIfNull==0 ); 4337 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 4338 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4339 sqlite3VdbeResolveLabel(v, d2); 4340 break; 4341 } 4342 case TK_OR: { 4343 testcase( jumpIfNull==0 ); 4344 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4345 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4346 break; 4347 } 4348 case TK_NOT: { 4349 testcase( jumpIfNull==0 ); 4350 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4351 break; 4352 } 4353 case TK_TRUTH: { 4354 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4355 int isTrue; /* IS TRUE or IS NOT TRUE */ 4356 testcase( jumpIfNull==0 ); 4357 isNot = pExpr->op2==TK_ISNOT; 4358 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4359 testcase( isTrue && isNot ); 4360 testcase( !isTrue && isNot ); 4361 if( isTrue ^ isNot ){ 4362 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4363 isNot ? SQLITE_JUMPIFNULL : 0); 4364 }else{ 4365 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4366 isNot ? SQLITE_JUMPIFNULL : 0); 4367 } 4368 break; 4369 } 4370 case TK_IS: 4371 case TK_ISNOT: 4372 testcase( op==TK_IS ); 4373 testcase( op==TK_ISNOT ); 4374 op = (op==TK_IS) ? TK_EQ : TK_NE; 4375 jumpIfNull = SQLITE_NULLEQ; 4376 /* Fall thru */ 4377 case TK_LT: 4378 case TK_LE: 4379 case TK_GT: 4380 case TK_GE: 4381 case TK_NE: 4382 case TK_EQ: { 4383 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4384 testcase( jumpIfNull==0 ); 4385 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4386 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4387 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4388 r1, r2, dest, jumpIfNull); 4389 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4390 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4391 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4392 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4393 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4394 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4395 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4396 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4397 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4398 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4399 testcase( regFree1==0 ); 4400 testcase( regFree2==0 ); 4401 break; 4402 } 4403 case TK_ISNULL: 4404 case TK_NOTNULL: { 4405 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4406 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4407 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4408 sqlite3VdbeAddOp2(v, op, r1, dest); 4409 VdbeCoverageIf(v, op==TK_ISNULL); 4410 VdbeCoverageIf(v, op==TK_NOTNULL); 4411 testcase( regFree1==0 ); 4412 break; 4413 } 4414 case TK_BETWEEN: { 4415 testcase( jumpIfNull==0 ); 4416 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4417 break; 4418 } 4419 #ifndef SQLITE_OMIT_SUBQUERY 4420 case TK_IN: { 4421 int destIfFalse = sqlite3VdbeMakeLabel(v); 4422 int destIfNull = jumpIfNull ? dest : destIfFalse; 4423 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4424 sqlite3VdbeGoto(v, dest); 4425 sqlite3VdbeResolveLabel(v, destIfFalse); 4426 break; 4427 } 4428 #endif 4429 default: { 4430 default_expr: 4431 if( exprAlwaysTrue(pExpr) ){ 4432 sqlite3VdbeGoto(v, dest); 4433 }else if( exprAlwaysFalse(pExpr) ){ 4434 /* No-op */ 4435 }else{ 4436 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4437 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4438 VdbeCoverage(v); 4439 testcase( regFree1==0 ); 4440 testcase( jumpIfNull==0 ); 4441 } 4442 break; 4443 } 4444 } 4445 sqlite3ReleaseTempReg(pParse, regFree1); 4446 sqlite3ReleaseTempReg(pParse, regFree2); 4447 } 4448 4449 /* 4450 ** Generate code for a boolean expression such that a jump is made 4451 ** to the label "dest" if the expression is false but execution 4452 ** continues straight thru if the expression is true. 4453 ** 4454 ** If the expression evaluates to NULL (neither true nor false) then 4455 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4456 ** is 0. 4457 */ 4458 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4459 Vdbe *v = pParse->pVdbe; 4460 int op = 0; 4461 int regFree1 = 0; 4462 int regFree2 = 0; 4463 int r1, r2; 4464 4465 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4466 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4467 if( pExpr==0 ) return; 4468 4469 /* The value of pExpr->op and op are related as follows: 4470 ** 4471 ** pExpr->op op 4472 ** --------- ---------- 4473 ** TK_ISNULL OP_NotNull 4474 ** TK_NOTNULL OP_IsNull 4475 ** TK_NE OP_Eq 4476 ** TK_EQ OP_Ne 4477 ** TK_GT OP_Le 4478 ** TK_LE OP_Gt 4479 ** TK_GE OP_Lt 4480 ** TK_LT OP_Ge 4481 ** 4482 ** For other values of pExpr->op, op is undefined and unused. 4483 ** The value of TK_ and OP_ constants are arranged such that we 4484 ** can compute the mapping above using the following expression. 4485 ** Assert()s verify that the computation is correct. 4486 */ 4487 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4488 4489 /* Verify correct alignment of TK_ and OP_ constants 4490 */ 4491 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4492 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4493 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4494 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4495 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4496 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4497 assert( pExpr->op!=TK_GT || op==OP_Le ); 4498 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4499 4500 switch( pExpr->op ){ 4501 case TK_AND: { 4502 testcase( jumpIfNull==0 ); 4503 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4504 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4505 break; 4506 } 4507 case TK_OR: { 4508 int d2 = sqlite3VdbeMakeLabel(v); 4509 testcase( jumpIfNull==0 ); 4510 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 4511 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4512 sqlite3VdbeResolveLabel(v, d2); 4513 break; 4514 } 4515 case TK_NOT: { 4516 testcase( jumpIfNull==0 ); 4517 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4518 break; 4519 } 4520 case TK_TRUTH: { 4521 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4522 int isTrue; /* IS TRUE or IS NOT TRUE */ 4523 testcase( jumpIfNull==0 ); 4524 isNot = pExpr->op2==TK_ISNOT; 4525 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4526 testcase( isTrue && isNot ); 4527 testcase( !isTrue && isNot ); 4528 if( isTrue ^ isNot ){ 4529 /* IS TRUE and IS NOT FALSE */ 4530 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4531 isNot ? 0 : SQLITE_JUMPIFNULL); 4532 4533 }else{ 4534 /* IS FALSE and IS NOT TRUE */ 4535 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4536 isNot ? 0 : SQLITE_JUMPIFNULL); 4537 } 4538 break; 4539 } 4540 case TK_IS: 4541 case TK_ISNOT: 4542 testcase( pExpr->op==TK_IS ); 4543 testcase( pExpr->op==TK_ISNOT ); 4544 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4545 jumpIfNull = SQLITE_NULLEQ; 4546 /* Fall thru */ 4547 case TK_LT: 4548 case TK_LE: 4549 case TK_GT: 4550 case TK_GE: 4551 case TK_NE: 4552 case TK_EQ: { 4553 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4554 testcase( jumpIfNull==0 ); 4555 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4556 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4557 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4558 r1, r2, dest, jumpIfNull); 4559 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4560 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4561 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4562 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4563 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4564 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4565 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4566 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4567 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4568 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4569 testcase( regFree1==0 ); 4570 testcase( regFree2==0 ); 4571 break; 4572 } 4573 case TK_ISNULL: 4574 case TK_NOTNULL: { 4575 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4576 sqlite3VdbeAddOp2(v, op, r1, dest); 4577 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4578 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4579 testcase( regFree1==0 ); 4580 break; 4581 } 4582 case TK_BETWEEN: { 4583 testcase( jumpIfNull==0 ); 4584 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4585 break; 4586 } 4587 #ifndef SQLITE_OMIT_SUBQUERY 4588 case TK_IN: { 4589 if( jumpIfNull ){ 4590 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4591 }else{ 4592 int destIfNull = sqlite3VdbeMakeLabel(v); 4593 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4594 sqlite3VdbeResolveLabel(v, destIfNull); 4595 } 4596 break; 4597 } 4598 #endif 4599 default: { 4600 default_expr: 4601 if( exprAlwaysFalse(pExpr) ){ 4602 sqlite3VdbeGoto(v, dest); 4603 }else if( exprAlwaysTrue(pExpr) ){ 4604 /* no-op */ 4605 }else{ 4606 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4607 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4608 VdbeCoverage(v); 4609 testcase( regFree1==0 ); 4610 testcase( jumpIfNull==0 ); 4611 } 4612 break; 4613 } 4614 } 4615 sqlite3ReleaseTempReg(pParse, regFree1); 4616 sqlite3ReleaseTempReg(pParse, regFree2); 4617 } 4618 4619 /* 4620 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4621 ** code generation, and that copy is deleted after code generation. This 4622 ** ensures that the original pExpr is unchanged. 4623 */ 4624 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4625 sqlite3 *db = pParse->db; 4626 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4627 if( db->mallocFailed==0 ){ 4628 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4629 } 4630 sqlite3ExprDelete(db, pCopy); 4631 } 4632 4633 /* 4634 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 4635 ** type of expression. 4636 ** 4637 ** If pExpr is a simple SQL value - an integer, real, string, blob 4638 ** or NULL value - then the VDBE currently being prepared is configured 4639 ** to re-prepare each time a new value is bound to variable pVar. 4640 ** 4641 ** Additionally, if pExpr is a simple SQL value and the value is the 4642 ** same as that currently bound to variable pVar, non-zero is returned. 4643 ** Otherwise, if the values are not the same or if pExpr is not a simple 4644 ** SQL value, zero is returned. 4645 */ 4646 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 4647 int res = 0; 4648 int iVar; 4649 sqlite3_value *pL, *pR = 0; 4650 4651 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 4652 if( pR ){ 4653 iVar = pVar->iColumn; 4654 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 4655 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 4656 if( pL ){ 4657 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 4658 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 4659 } 4660 res = 0==sqlite3MemCompare(pL, pR, 0); 4661 } 4662 sqlite3ValueFree(pR); 4663 sqlite3ValueFree(pL); 4664 } 4665 4666 return res; 4667 } 4668 4669 /* 4670 ** Do a deep comparison of two expression trees. Return 0 if the two 4671 ** expressions are completely identical. Return 1 if they differ only 4672 ** by a COLLATE operator at the top level. Return 2 if there are differences 4673 ** other than the top-level COLLATE operator. 4674 ** 4675 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4676 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4677 ** 4678 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4679 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4680 ** 4681 ** Sometimes this routine will return 2 even if the two expressions 4682 ** really are equivalent. If we cannot prove that the expressions are 4683 ** identical, we return 2 just to be safe. So if this routine 4684 ** returns 2, then you do not really know for certain if the two 4685 ** expressions are the same. But if you get a 0 or 1 return, then you 4686 ** can be sure the expressions are the same. In the places where 4687 ** this routine is used, it does not hurt to get an extra 2 - that 4688 ** just might result in some slightly slower code. But returning 4689 ** an incorrect 0 or 1 could lead to a malfunction. 4690 ** 4691 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 4692 ** pParse->pReprepare can be matched against literals in pB. The 4693 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 4694 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 4695 ** Argument pParse should normally be NULL. If it is not NULL and pA or 4696 ** pB causes a return value of 2. 4697 */ 4698 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 4699 u32 combinedFlags; 4700 if( pA==0 || pB==0 ){ 4701 return pB==pA ? 0 : 2; 4702 } 4703 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 4704 return 0; 4705 } 4706 combinedFlags = pA->flags | pB->flags; 4707 if( combinedFlags & EP_IntValue ){ 4708 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 4709 return 0; 4710 } 4711 return 2; 4712 } 4713 if( pA->op!=pB->op ){ 4714 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 4715 return 1; 4716 } 4717 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 4718 return 1; 4719 } 4720 return 2; 4721 } 4722 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 4723 if( pA->op==TK_FUNCTION ){ 4724 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4725 }else if( pA->op==TK_COLLATE ){ 4726 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4727 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4728 return 2; 4729 } 4730 } 4731 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4732 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 4733 if( combinedFlags & EP_xIsSelect ) return 2; 4734 if( (combinedFlags & EP_FixedCol)==0 4735 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 4736 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 4737 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4738 assert( (combinedFlags & EP_Reduced)==0 ); 4739 if( pA->op!=TK_STRING && pA->op!=TK_TRUEFALSE ){ 4740 if( pA->iColumn!=pB->iColumn ) return 2; 4741 if( pA->iTable!=pB->iTable 4742 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4743 } 4744 #ifndef SQLITE_OMIT_WINDOWFUNC 4745 /* Justification for the assert(): 4746 ** window functions have p->op==TK_FUNCTION but aggregate functions 4747 ** have p->op==TK_AGG_FUNCTION. So any comparison between an aggregate 4748 ** function and a window function should have failed before reaching 4749 ** this point. And, it is not possible to have a window function and 4750 ** a scalar function with the same name and number of arguments. So 4751 ** if we reach this point, either A and B both window functions or 4752 ** neither are a window functions. */ 4753 assert( (pA->pWin==0)==(pB->pWin==0) ); 4754 4755 if( pA->pWin!=0 ){ 4756 if( sqlite3WindowCompare(pParse,pA->pWin,pB->pWin)!=0 ) return 2; 4757 } 4758 #endif 4759 } 4760 return 0; 4761 } 4762 4763 /* 4764 ** Compare two ExprList objects. Return 0 if they are identical and 4765 ** non-zero if they differ in any way. 4766 ** 4767 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4768 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4769 ** 4770 ** This routine might return non-zero for equivalent ExprLists. The 4771 ** only consequence will be disabled optimizations. But this routine 4772 ** must never return 0 if the two ExprList objects are different, or 4773 ** a malfunction will result. 4774 ** 4775 ** Two NULL pointers are considered to be the same. But a NULL pointer 4776 ** always differs from a non-NULL pointer. 4777 */ 4778 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4779 int i; 4780 if( pA==0 && pB==0 ) return 0; 4781 if( pA==0 || pB==0 ) return 1; 4782 if( pA->nExpr!=pB->nExpr ) return 1; 4783 for(i=0; i<pA->nExpr; i++){ 4784 Expr *pExprA = pA->a[i].pExpr; 4785 Expr *pExprB = pB->a[i].pExpr; 4786 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 4787 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1; 4788 } 4789 return 0; 4790 } 4791 4792 /* 4793 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 4794 ** are ignored. 4795 */ 4796 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 4797 return sqlite3ExprCompare(0, 4798 sqlite3ExprSkipCollate(pA), 4799 sqlite3ExprSkipCollate(pB), 4800 iTab); 4801 } 4802 4803 /* 4804 ** Return true if we can prove the pE2 will always be true if pE1 is 4805 ** true. Return false if we cannot complete the proof or if pE2 might 4806 ** be false. Examples: 4807 ** 4808 ** pE1: x==5 pE2: x==5 Result: true 4809 ** pE1: x>0 pE2: x==5 Result: false 4810 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 4811 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 4812 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 4813 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 4814 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 4815 ** 4816 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 4817 ** Expr.iTable<0 then assume a table number given by iTab. 4818 ** 4819 ** If pParse is not NULL, then the values of bound variables in pE1 are 4820 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 4821 ** modified to record which bound variables are referenced. If pParse 4822 ** is NULL, then false will be returned if pE1 contains any bound variables. 4823 ** 4824 ** When in doubt, return false. Returning true might give a performance 4825 ** improvement. Returning false might cause a performance reduction, but 4826 ** it will always give the correct answer and is hence always safe. 4827 */ 4828 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 4829 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 4830 return 1; 4831 } 4832 if( pE2->op==TK_OR 4833 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 4834 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 4835 ){ 4836 return 1; 4837 } 4838 if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){ 4839 Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft); 4840 testcase( pX!=pE1->pLeft ); 4841 if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1; 4842 } 4843 return 0; 4844 } 4845 4846 /* 4847 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow(). 4848 ** If the expression node requires that the table at pWalker->iCur 4849 ** have a non-NULL column, then set pWalker->eCode to 1 and abort. 4850 */ 4851 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 4852 /* This routine is only called for WHERE clause expressions and so it 4853 ** cannot have any TK_AGG_COLUMN entries because those are only found 4854 ** in HAVING clauses. We can get a TK_AGG_FUNCTION in a WHERE clause, 4855 ** but that is an illegal construct and the query will be rejected at 4856 ** a later stage of processing, so the TK_AGG_FUNCTION case does not 4857 ** need to be considered here. */ 4858 assert( pExpr->op!=TK_AGG_COLUMN ); 4859 testcase( pExpr->op==TK_AGG_FUNCTION ); 4860 4861 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 4862 switch( pExpr->op ){ 4863 case TK_ISNOT: 4864 case TK_NOT: 4865 case TK_ISNULL: 4866 case TK_IS: 4867 case TK_OR: 4868 case TK_CASE: 4869 case TK_IN: 4870 case TK_FUNCTION: 4871 testcase( pExpr->op==TK_ISNOT ); 4872 testcase( pExpr->op==TK_NOT ); 4873 testcase( pExpr->op==TK_ISNULL ); 4874 testcase( pExpr->op==TK_IS ); 4875 testcase( pExpr->op==TK_OR ); 4876 testcase( pExpr->op==TK_CASE ); 4877 testcase( pExpr->op==TK_IN ); 4878 testcase( pExpr->op==TK_FUNCTION ); 4879 return WRC_Prune; 4880 case TK_COLUMN: 4881 if( pWalker->u.iCur==pExpr->iTable ){ 4882 pWalker->eCode = 1; 4883 return WRC_Abort; 4884 } 4885 return WRC_Prune; 4886 4887 /* Virtual tables are allowed to use constraints like x=NULL. So 4888 ** a term of the form x=y does not prove that y is not null if x 4889 ** is the column of a virtual table */ 4890 case TK_EQ: 4891 case TK_NE: 4892 case TK_LT: 4893 case TK_LE: 4894 case TK_GT: 4895 case TK_GE: 4896 testcase( pExpr->op==TK_EQ ); 4897 testcase( pExpr->op==TK_NE ); 4898 testcase( pExpr->op==TK_LT ); 4899 testcase( pExpr->op==TK_LE ); 4900 testcase( pExpr->op==TK_GT ); 4901 testcase( pExpr->op==TK_GE ); 4902 if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->pTab)) 4903 || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->pTab)) 4904 ){ 4905 return WRC_Prune; 4906 } 4907 default: 4908 return WRC_Continue; 4909 } 4910 } 4911 4912 /* 4913 ** Return true (non-zero) if expression p can only be true if at least 4914 ** one column of table iTab is non-null. In other words, return true 4915 ** if expression p will always be NULL or false if every column of iTab 4916 ** is NULL. 4917 ** 4918 ** False negatives are acceptable. In other words, it is ok to return 4919 ** zero even if expression p will never be true of every column of iTab 4920 ** is NULL. A false negative is merely a missed optimization opportunity. 4921 ** 4922 ** False positives are not allowed, however. A false positive may result 4923 ** in an incorrect answer. 4924 ** 4925 ** Terms of p that are marked with EP_FromJoin (and hence that come from 4926 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 4927 ** 4928 ** This routine is used to check if a LEFT JOIN can be converted into 4929 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 4930 ** clause requires that some column of the right table of the LEFT JOIN 4931 ** be non-NULL, then the LEFT JOIN can be safely converted into an 4932 ** ordinary join. 4933 */ 4934 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 4935 Walker w; 4936 w.xExprCallback = impliesNotNullRow; 4937 w.xSelectCallback = 0; 4938 w.xSelectCallback2 = 0; 4939 w.eCode = 0; 4940 w.u.iCur = iTab; 4941 sqlite3WalkExpr(&w, p); 4942 return w.eCode; 4943 } 4944 4945 /* 4946 ** An instance of the following structure is used by the tree walker 4947 ** to determine if an expression can be evaluated by reference to the 4948 ** index only, without having to do a search for the corresponding 4949 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 4950 ** is the cursor for the table. 4951 */ 4952 struct IdxCover { 4953 Index *pIdx; /* The index to be tested for coverage */ 4954 int iCur; /* Cursor number for the table corresponding to the index */ 4955 }; 4956 4957 /* 4958 ** Check to see if there are references to columns in table 4959 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 4960 ** pWalker->u.pIdxCover->pIdx. 4961 */ 4962 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 4963 if( pExpr->op==TK_COLUMN 4964 && pExpr->iTable==pWalker->u.pIdxCover->iCur 4965 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 4966 ){ 4967 pWalker->eCode = 1; 4968 return WRC_Abort; 4969 } 4970 return WRC_Continue; 4971 } 4972 4973 /* 4974 ** Determine if an index pIdx on table with cursor iCur contains will 4975 ** the expression pExpr. Return true if the index does cover the 4976 ** expression and false if the pExpr expression references table columns 4977 ** that are not found in the index pIdx. 4978 ** 4979 ** An index covering an expression means that the expression can be 4980 ** evaluated using only the index and without having to lookup the 4981 ** corresponding table entry. 4982 */ 4983 int sqlite3ExprCoveredByIndex( 4984 Expr *pExpr, /* The index to be tested */ 4985 int iCur, /* The cursor number for the corresponding table */ 4986 Index *pIdx /* The index that might be used for coverage */ 4987 ){ 4988 Walker w; 4989 struct IdxCover xcov; 4990 memset(&w, 0, sizeof(w)); 4991 xcov.iCur = iCur; 4992 xcov.pIdx = pIdx; 4993 w.xExprCallback = exprIdxCover; 4994 w.u.pIdxCover = &xcov; 4995 sqlite3WalkExpr(&w, pExpr); 4996 return !w.eCode; 4997 } 4998 4999 5000 /* 5001 ** An instance of the following structure is used by the tree walker 5002 ** to count references to table columns in the arguments of an 5003 ** aggregate function, in order to implement the 5004 ** sqlite3FunctionThisSrc() routine. 5005 */ 5006 struct SrcCount { 5007 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5008 int nThis; /* Number of references to columns in pSrcList */ 5009 int nOther; /* Number of references to columns in other FROM clauses */ 5010 }; 5011 5012 /* 5013 ** Count the number of references to columns. 5014 */ 5015 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5016 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 5017 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 5018 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 5019 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 5020 ** NEVER() will need to be removed. */ 5021 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 5022 int i; 5023 struct SrcCount *p = pWalker->u.pSrcCount; 5024 SrcList *pSrc = p->pSrc; 5025 int nSrc = pSrc ? pSrc->nSrc : 0; 5026 for(i=0; i<nSrc; i++){ 5027 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5028 } 5029 if( i<nSrc ){ 5030 p->nThis++; 5031 }else{ 5032 p->nOther++; 5033 } 5034 } 5035 return WRC_Continue; 5036 } 5037 5038 /* 5039 ** Determine if any of the arguments to the pExpr Function reference 5040 ** pSrcList. Return true if they do. Also return true if the function 5041 ** has no arguments or has only constant arguments. Return false if pExpr 5042 ** references columns but not columns of tables found in pSrcList. 5043 */ 5044 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5045 Walker w; 5046 struct SrcCount cnt; 5047 assert( pExpr->op==TK_AGG_FUNCTION ); 5048 w.xExprCallback = exprSrcCount; 5049 w.xSelectCallback = 0; 5050 w.u.pSrcCount = &cnt; 5051 cnt.pSrc = pSrcList; 5052 cnt.nThis = 0; 5053 cnt.nOther = 0; 5054 sqlite3WalkExprList(&w, pExpr->x.pList); 5055 return cnt.nThis>0 || cnt.nOther==0; 5056 } 5057 5058 /* 5059 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5060 ** the new element. Return a negative number if malloc fails. 5061 */ 5062 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5063 int i; 5064 pInfo->aCol = sqlite3ArrayAllocate( 5065 db, 5066 pInfo->aCol, 5067 sizeof(pInfo->aCol[0]), 5068 &pInfo->nColumn, 5069 &i 5070 ); 5071 return i; 5072 } 5073 5074 /* 5075 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5076 ** the new element. Return a negative number if malloc fails. 5077 */ 5078 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5079 int i; 5080 pInfo->aFunc = sqlite3ArrayAllocate( 5081 db, 5082 pInfo->aFunc, 5083 sizeof(pInfo->aFunc[0]), 5084 &pInfo->nFunc, 5085 &i 5086 ); 5087 return i; 5088 } 5089 5090 /* 5091 ** This is the xExprCallback for a tree walker. It is used to 5092 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5093 ** for additional information. 5094 */ 5095 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5096 int i; 5097 NameContext *pNC = pWalker->u.pNC; 5098 Parse *pParse = pNC->pParse; 5099 SrcList *pSrcList = pNC->pSrcList; 5100 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5101 5102 assert( pNC->ncFlags & NC_UAggInfo ); 5103 switch( pExpr->op ){ 5104 case TK_AGG_COLUMN: 5105 case TK_COLUMN: { 5106 testcase( pExpr->op==TK_AGG_COLUMN ); 5107 testcase( pExpr->op==TK_COLUMN ); 5108 /* Check to see if the column is in one of the tables in the FROM 5109 ** clause of the aggregate query */ 5110 if( ALWAYS(pSrcList!=0) ){ 5111 struct SrcList_item *pItem = pSrcList->a; 5112 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5113 struct AggInfo_col *pCol; 5114 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5115 if( pExpr->iTable==pItem->iCursor ){ 5116 /* If we reach this point, it means that pExpr refers to a table 5117 ** that is in the FROM clause of the aggregate query. 5118 ** 5119 ** Make an entry for the column in pAggInfo->aCol[] if there 5120 ** is not an entry there already. 5121 */ 5122 int k; 5123 pCol = pAggInfo->aCol; 5124 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5125 if( pCol->iTable==pExpr->iTable && 5126 pCol->iColumn==pExpr->iColumn ){ 5127 break; 5128 } 5129 } 5130 if( (k>=pAggInfo->nColumn) 5131 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5132 ){ 5133 pCol = &pAggInfo->aCol[k]; 5134 pCol->pTab = pExpr->pTab; 5135 pCol->iTable = pExpr->iTable; 5136 pCol->iColumn = pExpr->iColumn; 5137 pCol->iMem = ++pParse->nMem; 5138 pCol->iSorterColumn = -1; 5139 pCol->pExpr = pExpr; 5140 if( pAggInfo->pGroupBy ){ 5141 int j, n; 5142 ExprList *pGB = pAggInfo->pGroupBy; 5143 struct ExprList_item *pTerm = pGB->a; 5144 n = pGB->nExpr; 5145 for(j=0; j<n; j++, pTerm++){ 5146 Expr *pE = pTerm->pExpr; 5147 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5148 pE->iColumn==pExpr->iColumn ){ 5149 pCol->iSorterColumn = j; 5150 break; 5151 } 5152 } 5153 } 5154 if( pCol->iSorterColumn<0 ){ 5155 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5156 } 5157 } 5158 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5159 ** because it was there before or because we just created it). 5160 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5161 ** pAggInfo->aCol[] entry. 5162 */ 5163 ExprSetVVAProperty(pExpr, EP_NoReduce); 5164 pExpr->pAggInfo = pAggInfo; 5165 pExpr->op = TK_AGG_COLUMN; 5166 pExpr->iAgg = (i16)k; 5167 break; 5168 } /* endif pExpr->iTable==pItem->iCursor */ 5169 } /* end loop over pSrcList */ 5170 } 5171 return WRC_Prune; 5172 } 5173 case TK_AGG_FUNCTION: { 5174 if( (pNC->ncFlags & NC_InAggFunc)==0 5175 && pWalker->walkerDepth==pExpr->op2 5176 ){ 5177 /* Check to see if pExpr is a duplicate of another aggregate 5178 ** function that is already in the pAggInfo structure 5179 */ 5180 struct AggInfo_func *pItem = pAggInfo->aFunc; 5181 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5182 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5183 break; 5184 } 5185 } 5186 if( i>=pAggInfo->nFunc ){ 5187 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5188 */ 5189 u8 enc = ENC(pParse->db); 5190 i = addAggInfoFunc(pParse->db, pAggInfo); 5191 if( i>=0 ){ 5192 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5193 pItem = &pAggInfo->aFunc[i]; 5194 pItem->pExpr = pExpr; 5195 pItem->iMem = ++pParse->nMem; 5196 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5197 pItem->pFunc = sqlite3FindFunction(pParse->db, 5198 pExpr->u.zToken, 5199 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5200 if( pExpr->flags & EP_Distinct ){ 5201 pItem->iDistinct = pParse->nTab++; 5202 }else{ 5203 pItem->iDistinct = -1; 5204 } 5205 } 5206 } 5207 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5208 */ 5209 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5210 ExprSetVVAProperty(pExpr, EP_NoReduce); 5211 pExpr->iAgg = (i16)i; 5212 pExpr->pAggInfo = pAggInfo; 5213 return WRC_Prune; 5214 }else{ 5215 return WRC_Continue; 5216 } 5217 } 5218 } 5219 return WRC_Continue; 5220 } 5221 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5222 UNUSED_PARAMETER(pSelect); 5223 pWalker->walkerDepth++; 5224 return WRC_Continue; 5225 } 5226 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5227 UNUSED_PARAMETER(pSelect); 5228 pWalker->walkerDepth--; 5229 } 5230 5231 /* 5232 ** Analyze the pExpr expression looking for aggregate functions and 5233 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5234 ** points to. Additional entries are made on the AggInfo object as 5235 ** necessary. 5236 ** 5237 ** This routine should only be called after the expression has been 5238 ** analyzed by sqlite3ResolveExprNames(). 5239 */ 5240 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5241 Walker w; 5242 w.xExprCallback = analyzeAggregate; 5243 w.xSelectCallback = analyzeAggregatesInSelect; 5244 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5245 w.walkerDepth = 0; 5246 w.u.pNC = pNC; 5247 assert( pNC->pSrcList!=0 ); 5248 sqlite3WalkExpr(&w, pExpr); 5249 } 5250 5251 /* 5252 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5253 ** expression list. Return the number of errors. 5254 ** 5255 ** If an error is found, the analysis is cut short. 5256 */ 5257 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5258 struct ExprList_item *pItem; 5259 int i; 5260 if( pList ){ 5261 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5262 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5263 } 5264 } 5265 } 5266 5267 /* 5268 ** Allocate a single new register for use to hold some intermediate result. 5269 */ 5270 int sqlite3GetTempReg(Parse *pParse){ 5271 if( pParse->nTempReg==0 ){ 5272 return ++pParse->nMem; 5273 } 5274 return pParse->aTempReg[--pParse->nTempReg]; 5275 } 5276 5277 /* 5278 ** Deallocate a register, making available for reuse for some other 5279 ** purpose. 5280 */ 5281 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5282 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5283 pParse->aTempReg[pParse->nTempReg++] = iReg; 5284 } 5285 } 5286 5287 /* 5288 ** Allocate or deallocate a block of nReg consecutive registers. 5289 */ 5290 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5291 int i, n; 5292 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5293 i = pParse->iRangeReg; 5294 n = pParse->nRangeReg; 5295 if( nReg<=n ){ 5296 pParse->iRangeReg += nReg; 5297 pParse->nRangeReg -= nReg; 5298 }else{ 5299 i = pParse->nMem+1; 5300 pParse->nMem += nReg; 5301 } 5302 return i; 5303 } 5304 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5305 if( nReg==1 ){ 5306 sqlite3ReleaseTempReg(pParse, iReg); 5307 return; 5308 } 5309 if( nReg>pParse->nRangeReg ){ 5310 pParse->nRangeReg = nReg; 5311 pParse->iRangeReg = iReg; 5312 } 5313 } 5314 5315 /* 5316 ** Mark all temporary registers as being unavailable for reuse. 5317 */ 5318 void sqlite3ClearTempRegCache(Parse *pParse){ 5319 pParse->nTempReg = 0; 5320 pParse->nRangeReg = 0; 5321 } 5322 5323 /* 5324 ** Validate that no temporary register falls within the range of 5325 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5326 ** statements. 5327 */ 5328 #ifdef SQLITE_DEBUG 5329 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5330 int i; 5331 if( pParse->nRangeReg>0 5332 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5333 && pParse->iRangeReg <= iLast 5334 ){ 5335 return 0; 5336 } 5337 for(i=0; i<pParse->nTempReg; i++){ 5338 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5339 return 0; 5340 } 5341 } 5342 return 1; 5343 } 5344 #endif /* SQLITE_DEBUG */ 5345