xref: /sqlite-3.40.0/src/expr.c (revision 85b623f2)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 **
15 ** $Id: expr.c,v 1.319 2007/12/13 21:54:11 drh Exp $
16 */
17 #include "sqliteInt.h"
18 #include <ctype.h>
19 
20 /*
21 ** Return the 'affinity' of the expression pExpr if any.
22 **
23 ** If pExpr is a column, a reference to a column via an 'AS' alias,
24 ** or a sub-select with a column as the return value, then the
25 ** affinity of that column is returned. Otherwise, 0x00 is returned,
26 ** indicating no affinity for the expression.
27 **
28 ** i.e. the WHERE clause expresssions in the following statements all
29 ** have an affinity:
30 **
31 ** CREATE TABLE t1(a);
32 ** SELECT * FROM t1 WHERE a;
33 ** SELECT a AS b FROM t1 WHERE b;
34 ** SELECT * FROM t1 WHERE (select a from t1);
35 */
36 char sqlite3ExprAffinity(Expr *pExpr){
37   int op = pExpr->op;
38   if( op==TK_SELECT ){
39     return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
40   }
41 #ifndef SQLITE_OMIT_CAST
42   if( op==TK_CAST ){
43     return sqlite3AffinityType(&pExpr->token);
44   }
45 #endif
46   return pExpr->affinity;
47 }
48 
49 /*
50 ** Set the collating sequence for expression pExpr to be the collating
51 ** sequence named by pToken.   Return a pointer to the revised expression.
52 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
53 ** flag.  An explicit collating sequence will override implicit
54 ** collating sequences.
55 */
56 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
57   char *zColl = 0;            /* Dequoted name of collation sequence */
58   CollSeq *pColl;
59   zColl = sqlite3NameFromToken(pParse->db, pName);
60   if( pExpr && zColl ){
61     pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
62     if( pColl ){
63       pExpr->pColl = pColl;
64       pExpr->flags |= EP_ExpCollate;
65     }
66   }
67   sqlite3_free(zColl);
68   return pExpr;
69 }
70 
71 /*
72 ** Return the default collation sequence for the expression pExpr. If
73 ** there is no default collation type, return 0.
74 */
75 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
76   CollSeq *pColl = 0;
77   if( pExpr ){
78     int op;
79     pColl = pExpr->pColl;
80     op = pExpr->op;
81     if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){
82       return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
83     }
84   }
85   if( sqlite3CheckCollSeq(pParse, pColl) ){
86     pColl = 0;
87   }
88   return pColl;
89 }
90 
91 /*
92 ** pExpr is an operand of a comparison operator.  aff2 is the
93 ** type affinity of the other operand.  This routine returns the
94 ** type affinity that should be used for the comparison operator.
95 */
96 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
97   char aff1 = sqlite3ExprAffinity(pExpr);
98   if( aff1 && aff2 ){
99     /* Both sides of the comparison are columns. If one has numeric
100     ** affinity, use that. Otherwise use no affinity.
101     */
102     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
103       return SQLITE_AFF_NUMERIC;
104     }else{
105       return SQLITE_AFF_NONE;
106     }
107   }else if( !aff1 && !aff2 ){
108     /* Neither side of the comparison is a column.  Compare the
109     ** results directly.
110     */
111     return SQLITE_AFF_NONE;
112   }else{
113     /* One side is a column, the other is not. Use the columns affinity. */
114     assert( aff1==0 || aff2==0 );
115     return (aff1 + aff2);
116   }
117 }
118 
119 /*
120 ** pExpr is a comparison operator.  Return the type affinity that should
121 ** be applied to both operands prior to doing the comparison.
122 */
123 static char comparisonAffinity(Expr *pExpr){
124   char aff;
125   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
126           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
127           pExpr->op==TK_NE );
128   assert( pExpr->pLeft );
129   aff = sqlite3ExprAffinity(pExpr->pLeft);
130   if( pExpr->pRight ){
131     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
132   }
133   else if( pExpr->pSelect ){
134     aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
135   }
136   else if( !aff ){
137     aff = SQLITE_AFF_NONE;
138   }
139   return aff;
140 }
141 
142 /*
143 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
144 ** idx_affinity is the affinity of an indexed column. Return true
145 ** if the index with affinity idx_affinity may be used to implement
146 ** the comparison in pExpr.
147 */
148 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
149   char aff = comparisonAffinity(pExpr);
150   switch( aff ){
151     case SQLITE_AFF_NONE:
152       return 1;
153     case SQLITE_AFF_TEXT:
154       return idx_affinity==SQLITE_AFF_TEXT;
155     default:
156       return sqlite3IsNumericAffinity(idx_affinity);
157   }
158 }
159 
160 /*
161 ** Return the P1 value that should be used for a binary comparison
162 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
163 ** If jumpIfNull is true, then set the low byte of the returned
164 ** P1 value to tell the opcode to jump if either expression
165 ** evaluates to NULL.
166 */
167 static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
168   char aff = sqlite3ExprAffinity(pExpr2);
169   return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0);
170 }
171 
172 /*
173 ** Return a pointer to the collation sequence that should be used by
174 ** a binary comparison operator comparing pLeft and pRight.
175 **
176 ** If the left hand expression has a collating sequence type, then it is
177 ** used. Otherwise the collation sequence for the right hand expression
178 ** is used, or the default (BINARY) if neither expression has a collating
179 ** type.
180 **
181 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
182 ** it is not considered.
183 */
184 CollSeq *sqlite3BinaryCompareCollSeq(
185   Parse *pParse,
186   Expr *pLeft,
187   Expr *pRight
188 ){
189   CollSeq *pColl;
190   assert( pLeft );
191   if( pLeft->flags & EP_ExpCollate ){
192     assert( pLeft->pColl );
193     pColl = pLeft->pColl;
194   }else if( pRight && pRight->flags & EP_ExpCollate ){
195     assert( pRight->pColl );
196     pColl = pRight->pColl;
197   }else{
198     pColl = sqlite3ExprCollSeq(pParse, pLeft);
199     if( !pColl ){
200       pColl = sqlite3ExprCollSeq(pParse, pRight);
201     }
202   }
203   return pColl;
204 }
205 
206 /*
207 ** Generate code for a comparison operator.
208 */
209 static int codeCompare(
210   Parse *pParse,    /* The parsing (and code generating) context */
211   Expr *pLeft,      /* The left operand */
212   Expr *pRight,     /* The right operand */
213   int opcode,       /* The comparison opcode */
214   int dest,         /* Jump here if true.  */
215   int jumpIfNull    /* If true, jump if either operand is NULL */
216 ){
217   int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull);
218   CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
219   return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ);
220 }
221 
222 /*
223 ** Construct a new expression node and return a pointer to it.  Memory
224 ** for this node is obtained from sqlite3_malloc().  The calling function
225 ** is responsible for making sure the node eventually gets freed.
226 */
227 Expr *sqlite3Expr(
228   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
229   int op,                 /* Expression opcode */
230   Expr *pLeft,            /* Left operand */
231   Expr *pRight,           /* Right operand */
232   const Token *pToken     /* Argument token */
233 ){
234   Expr *pNew;
235   pNew = sqlite3DbMallocZero(db, sizeof(Expr));
236   if( pNew==0 ){
237     /* When malloc fails, delete pLeft and pRight. Expressions passed to
238     ** this function must always be allocated with sqlite3Expr() for this
239     ** reason.
240     */
241     sqlite3ExprDelete(pLeft);
242     sqlite3ExprDelete(pRight);
243     return 0;
244   }
245   pNew->op = op;
246   pNew->pLeft = pLeft;
247   pNew->pRight = pRight;
248   pNew->iAgg = -1;
249   if( pToken ){
250     assert( pToken->dyn==0 );
251     pNew->span = pNew->token = *pToken;
252   }else if( pLeft ){
253     if( pRight ){
254       sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
255       if( pRight->flags & EP_ExpCollate ){
256         pNew->flags |= EP_ExpCollate;
257         pNew->pColl = pRight->pColl;
258       }
259     }
260     if( pLeft->flags & EP_ExpCollate ){
261       pNew->flags |= EP_ExpCollate;
262       pNew->pColl = pLeft->pColl;
263     }
264   }
265 
266   sqlite3ExprSetHeight(pNew);
267   return pNew;
268 }
269 
270 /*
271 ** Works like sqlite3Expr() except that it takes an extra Parse*
272 ** argument and notifies the associated connection object if malloc fails.
273 */
274 Expr *sqlite3PExpr(
275   Parse *pParse,          /* Parsing context */
276   int op,                 /* Expression opcode */
277   Expr *pLeft,            /* Left operand */
278   Expr *pRight,           /* Right operand */
279   const Token *pToken     /* Argument token */
280 ){
281   return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
282 }
283 
284 /*
285 ** When doing a nested parse, you can include terms in an expression
286 ** that look like this:   #0 #1 #2 ...  These terms refer to elements
287 ** on the stack.  "#0" means the top of the stack.
288 ** "#1" means the next down on the stack.  And so forth.
289 **
290 ** This routine is called by the parser to deal with on of those terms.
291 ** It immediately generates code to store the value in a memory location.
292 ** The returns an expression that will code to extract the value from
293 ** that memory location as needed.
294 */
295 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
296   Vdbe *v = pParse->pVdbe;
297   Expr *p;
298   int depth;
299   if( pParse->nested==0 ){
300     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
301     return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
302   }
303   if( v==0 ) return 0;
304   p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
305   if( p==0 ){
306     return 0;  /* Malloc failed */
307   }
308   depth = atoi((char*)&pToken->z[1]);
309   p->iTable = pParse->nMem++;
310   sqlite3VdbeAddOp(v, OP_Dup, depth, 0);
311   sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1);
312   return p;
313 }
314 
315 /*
316 ** Join two expressions using an AND operator.  If either expression is
317 ** NULL, then just return the other expression.
318 */
319 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
320   if( pLeft==0 ){
321     return pRight;
322   }else if( pRight==0 ){
323     return pLeft;
324   }else{
325     return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
326   }
327 }
328 
329 /*
330 ** Set the Expr.span field of the given expression to span all
331 ** text between the two given tokens.
332 */
333 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
334   assert( pRight!=0 );
335   assert( pLeft!=0 );
336   if( pExpr && pRight->z && pLeft->z ){
337     assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 );
338     if( pLeft->dyn==0 && pRight->dyn==0 ){
339       pExpr->span.z = pLeft->z;
340       pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
341     }else{
342       pExpr->span.z = 0;
343     }
344   }
345 }
346 
347 /*
348 ** Construct a new expression node for a function with multiple
349 ** arguments.
350 */
351 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
352   Expr *pNew;
353   assert( pToken );
354   pNew = sqlite3DbMallocZero(pParse->db, sizeof(Expr) );
355   if( pNew==0 ){
356     sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */
357     return 0;
358   }
359   pNew->op = TK_FUNCTION;
360   pNew->pList = pList;
361   assert( pToken->dyn==0 );
362   pNew->token = *pToken;
363   pNew->span = pNew->token;
364 
365   sqlite3ExprSetHeight(pNew);
366   return pNew;
367 }
368 
369 /*
370 ** Assign a variable number to an expression that encodes a wildcard
371 ** in the original SQL statement.
372 **
373 ** Wildcards consisting of a single "?" are assigned the next sequential
374 ** variable number.
375 **
376 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
377 ** sure "nnn" is not too be to avoid a denial of service attack when
378 ** the SQL statement comes from an external source.
379 **
380 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
381 ** as the previous instance of the same wildcard.  Or if this is the first
382 ** instance of the wildcard, the next sequenial variable number is
383 ** assigned.
384 */
385 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
386   Token *pToken;
387   sqlite3 *db = pParse->db;
388 
389   if( pExpr==0 ) return;
390   pToken = &pExpr->token;
391   assert( pToken->n>=1 );
392   assert( pToken->z!=0 );
393   assert( pToken->z[0]!=0 );
394   if( pToken->n==1 ){
395     /* Wildcard of the form "?".  Assign the next variable number */
396     pExpr->iTable = ++pParse->nVar;
397   }else if( pToken->z[0]=='?' ){
398     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
399     ** use it as the variable number */
400     int i;
401     pExpr->iTable = i = atoi((char*)&pToken->z[1]);
402     if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){
403       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
404           SQLITE_MAX_VARIABLE_NUMBER);
405     }
406     if( i>pParse->nVar ){
407       pParse->nVar = i;
408     }
409   }else{
410     /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable
411     ** number as the prior appearance of the same name, or if the name
412     ** has never appeared before, reuse the same variable number
413     */
414     int i, n;
415     n = pToken->n;
416     for(i=0; i<pParse->nVarExpr; i++){
417       Expr *pE;
418       if( (pE = pParse->apVarExpr[i])!=0
419           && pE->token.n==n
420           && memcmp(pE->token.z, pToken->z, n)==0 ){
421         pExpr->iTable = pE->iTable;
422         break;
423       }
424     }
425     if( i>=pParse->nVarExpr ){
426       pExpr->iTable = ++pParse->nVar;
427       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
428         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
429         pParse->apVarExpr =
430             sqlite3DbReallocOrFree(
431               db,
432               pParse->apVarExpr,
433               pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
434             );
435       }
436       if( !db->mallocFailed ){
437         assert( pParse->apVarExpr!=0 );
438         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
439       }
440     }
441   }
442   if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){
443     sqlite3ErrorMsg(pParse, "too many SQL variables");
444   }
445 }
446 
447 /*
448 ** Recursively delete an expression tree.
449 */
450 void sqlite3ExprDelete(Expr *p){
451   if( p==0 ) return;
452   if( p->span.dyn ) sqlite3_free((char*)p->span.z);
453   if( p->token.dyn ) sqlite3_free((char*)p->token.z);
454   sqlite3ExprDelete(p->pLeft);
455   sqlite3ExprDelete(p->pRight);
456   sqlite3ExprListDelete(p->pList);
457   sqlite3SelectDelete(p->pSelect);
458   sqlite3_free(p);
459 }
460 
461 /*
462 ** The Expr.token field might be a string literal that is quoted.
463 ** If so, remove the quotation marks.
464 */
465 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
466   if( ExprHasAnyProperty(p, EP_Dequoted) ){
467     return;
468   }
469   ExprSetProperty(p, EP_Dequoted);
470   if( p->token.dyn==0 ){
471     sqlite3TokenCopy(db, &p->token, &p->token);
472   }
473   sqlite3Dequote((char*)p->token.z);
474 }
475 
476 
477 /*
478 ** The following group of routines make deep copies of expressions,
479 ** expression lists, ID lists, and select statements.  The copies can
480 ** be deleted (by being passed to their respective ...Delete() routines)
481 ** without effecting the originals.
482 **
483 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
484 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
485 ** by subsequent calls to sqlite*ListAppend() routines.
486 **
487 ** Any tables that the SrcList might point to are not duplicated.
488 */
489 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
490   Expr *pNew;
491   if( p==0 ) return 0;
492   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
493   if( pNew==0 ) return 0;
494   memcpy(pNew, p, sizeof(*pNew));
495   if( p->token.z!=0 ){
496     pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
497     pNew->token.dyn = 1;
498   }else{
499     assert( pNew->token.z==0 );
500   }
501   pNew->span.z = 0;
502   pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
503   pNew->pRight = sqlite3ExprDup(db, p->pRight);
504   pNew->pList = sqlite3ExprListDup(db, p->pList);
505   pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
506   return pNew;
507 }
508 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
509   if( pTo->dyn ) sqlite3_free((char*)pTo->z);
510   if( pFrom->z ){
511     pTo->n = pFrom->n;
512     pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
513     pTo->dyn = 1;
514   }else{
515     pTo->z = 0;
516   }
517 }
518 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
519   ExprList *pNew;
520   struct ExprList_item *pItem, *pOldItem;
521   int i;
522   if( p==0 ) return 0;
523   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
524   if( pNew==0 ) return 0;
525   pNew->iECursor = 0;
526   pNew->nExpr = pNew->nAlloc = p->nExpr;
527   pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
528   if( pItem==0 ){
529     sqlite3_free(pNew);
530     return 0;
531   }
532   pOldItem = p->a;
533   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
534     Expr *pNewExpr, *pOldExpr;
535     pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
536     if( pOldExpr->span.z!=0 && pNewExpr ){
537       /* Always make a copy of the span for top-level expressions in the
538       ** expression list.  The logic in SELECT processing that determines
539       ** the names of columns in the result set needs this information */
540       sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
541     }
542     assert( pNewExpr==0 || pNewExpr->span.z!=0
543             || pOldExpr->span.z==0
544             || db->mallocFailed );
545     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
546     pItem->sortOrder = pOldItem->sortOrder;
547     pItem->isAgg = pOldItem->isAgg;
548     pItem->done = 0;
549   }
550   return pNew;
551 }
552 
553 /*
554 ** If cursors, triggers, views and subqueries are all omitted from
555 ** the build, then none of the following routines, except for
556 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
557 ** called with a NULL argument.
558 */
559 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
560  || !defined(SQLITE_OMIT_SUBQUERY)
561 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
562   SrcList *pNew;
563   int i;
564   int nByte;
565   if( p==0 ) return 0;
566   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
567   pNew = sqlite3DbMallocRaw(db, nByte );
568   if( pNew==0 ) return 0;
569   pNew->nSrc = pNew->nAlloc = p->nSrc;
570   for(i=0; i<p->nSrc; i++){
571     struct SrcList_item *pNewItem = &pNew->a[i];
572     struct SrcList_item *pOldItem = &p->a[i];
573     Table *pTab;
574     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
575     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
576     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
577     pNewItem->jointype = pOldItem->jointype;
578     pNewItem->iCursor = pOldItem->iCursor;
579     pNewItem->isPopulated = pOldItem->isPopulated;
580     pTab = pNewItem->pTab = pOldItem->pTab;
581     if( pTab ){
582       pTab->nRef++;
583     }
584     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
585     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
586     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
587     pNewItem->colUsed = pOldItem->colUsed;
588   }
589   return pNew;
590 }
591 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
592   IdList *pNew;
593   int i;
594   if( p==0 ) return 0;
595   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
596   if( pNew==0 ) return 0;
597   pNew->nId = pNew->nAlloc = p->nId;
598   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
599   if( pNew->a==0 ){
600     sqlite3_free(pNew);
601     return 0;
602   }
603   for(i=0; i<p->nId; i++){
604     struct IdList_item *pNewItem = &pNew->a[i];
605     struct IdList_item *pOldItem = &p->a[i];
606     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
607     pNewItem->idx = pOldItem->idx;
608   }
609   return pNew;
610 }
611 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
612   Select *pNew;
613   if( p==0 ) return 0;
614   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
615   if( pNew==0 ) return 0;
616   pNew->isDistinct = p->isDistinct;
617   pNew->pEList = sqlite3ExprListDup(db, p->pEList);
618   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
619   pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
620   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
621   pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
622   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
623   pNew->op = p->op;
624   pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
625   pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
626   pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
627   pNew->iLimit = -1;
628   pNew->iOffset = -1;
629   pNew->isResolved = p->isResolved;
630   pNew->isAgg = p->isAgg;
631   pNew->usesEphm = 0;
632   pNew->disallowOrderBy = 0;
633   pNew->pRightmost = 0;
634   pNew->addrOpenEphm[0] = -1;
635   pNew->addrOpenEphm[1] = -1;
636   pNew->addrOpenEphm[2] = -1;
637   return pNew;
638 }
639 #else
640 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
641   assert( p==0 );
642   return 0;
643 }
644 #endif
645 
646 
647 /*
648 ** Add a new element to the end of an expression list.  If pList is
649 ** initially NULL, then create a new expression list.
650 */
651 ExprList *sqlite3ExprListAppend(
652   Parse *pParse,          /* Parsing context */
653   ExprList *pList,        /* List to which to append. Might be NULL */
654   Expr *pExpr,            /* Expression to be appended */
655   Token *pName            /* AS keyword for the expression */
656 ){
657   sqlite3 *db = pParse->db;
658   if( pList==0 ){
659     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
660     if( pList==0 ){
661       goto no_mem;
662     }
663     assert( pList->nAlloc==0 );
664   }
665   if( pList->nAlloc<=pList->nExpr ){
666     struct ExprList_item *a;
667     int n = pList->nAlloc*2 + 4;
668     a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
669     if( a==0 ){
670       goto no_mem;
671     }
672     pList->a = a;
673     pList->nAlloc = n;
674   }
675   assert( pList->a!=0 );
676   if( pExpr || pName ){
677     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
678     memset(pItem, 0, sizeof(*pItem));
679     pItem->zName = sqlite3NameFromToken(db, pName);
680     pItem->pExpr = pExpr;
681   }
682   return pList;
683 
684 no_mem:
685   /* Avoid leaking memory if malloc has failed. */
686   sqlite3ExprDelete(pExpr);
687   sqlite3ExprListDelete(pList);
688   return 0;
689 }
690 
691 /*
692 ** If the expression list pEList contains more than iLimit elements,
693 ** leave an error message in pParse.
694 */
695 void sqlite3ExprListCheckLength(
696   Parse *pParse,
697   ExprList *pEList,
698   int iLimit,
699   const char *zObject
700 ){
701   if( pEList && pEList->nExpr>iLimit ){
702     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
703   }
704 }
705 
706 
707 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
708 /* The following three functions, heightOfExpr(), heightOfExprList()
709 ** and heightOfSelect(), are used to determine the maximum height
710 ** of any expression tree referenced by the structure passed as the
711 ** first argument.
712 **
713 ** If this maximum height is greater than the current value pointed
714 ** to by pnHeight, the second parameter, then set *pnHeight to that
715 ** value.
716 */
717 static void heightOfExpr(Expr *p, int *pnHeight){
718   if( p ){
719     if( p->nHeight>*pnHeight ){
720       *pnHeight = p->nHeight;
721     }
722   }
723 }
724 static void heightOfExprList(ExprList *p, int *pnHeight){
725   if( p ){
726     int i;
727     for(i=0; i<p->nExpr; i++){
728       heightOfExpr(p->a[i].pExpr, pnHeight);
729     }
730   }
731 }
732 static void heightOfSelect(Select *p, int *pnHeight){
733   if( p ){
734     heightOfExpr(p->pWhere, pnHeight);
735     heightOfExpr(p->pHaving, pnHeight);
736     heightOfExpr(p->pLimit, pnHeight);
737     heightOfExpr(p->pOffset, pnHeight);
738     heightOfExprList(p->pEList, pnHeight);
739     heightOfExprList(p->pGroupBy, pnHeight);
740     heightOfExprList(p->pOrderBy, pnHeight);
741     heightOfSelect(p->pPrior, pnHeight);
742   }
743 }
744 
745 /*
746 ** Set the Expr.nHeight variable in the structure passed as an
747 ** argument. An expression with no children, Expr.pList or
748 ** Expr.pSelect member has a height of 1. Any other expression
749 ** has a height equal to the maximum height of any other
750 ** referenced Expr plus one.
751 */
752 void sqlite3ExprSetHeight(Expr *p){
753   int nHeight = 0;
754   heightOfExpr(p->pLeft, &nHeight);
755   heightOfExpr(p->pRight, &nHeight);
756   heightOfExprList(p->pList, &nHeight);
757   heightOfSelect(p->pSelect, &nHeight);
758   p->nHeight = nHeight + 1;
759 }
760 
761 /*
762 ** Return the maximum height of any expression tree referenced
763 ** by the select statement passed as an argument.
764 */
765 int sqlite3SelectExprHeight(Select *p){
766   int nHeight = 0;
767   heightOfSelect(p, &nHeight);
768   return nHeight;
769 }
770 #endif
771 
772 /*
773 ** Delete an entire expression list.
774 */
775 void sqlite3ExprListDelete(ExprList *pList){
776   int i;
777   struct ExprList_item *pItem;
778   if( pList==0 ) return;
779   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
780   assert( pList->nExpr<=pList->nAlloc );
781   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
782     sqlite3ExprDelete(pItem->pExpr);
783     sqlite3_free(pItem->zName);
784   }
785   sqlite3_free(pList->a);
786   sqlite3_free(pList);
787 }
788 
789 /*
790 ** Walk an expression tree.  Call xFunc for each node visited.
791 **
792 ** The return value from xFunc determines whether the tree walk continues.
793 ** 0 means continue walking the tree.  1 means do not walk children
794 ** of the current node but continue with siblings.  2 means abandon
795 ** the tree walk completely.
796 **
797 ** The return value from this routine is 1 to abandon the tree walk
798 ** and 0 to continue.
799 **
800 ** NOTICE:  This routine does *not* descend into subqueries.
801 */
802 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
803 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
804   int rc;
805   if( pExpr==0 ) return 0;
806   rc = (*xFunc)(pArg, pExpr);
807   if( rc==0 ){
808     if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
809     if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
810     if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
811   }
812   return rc>1;
813 }
814 
815 /*
816 ** Call walkExprTree() for every expression in list p.
817 */
818 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
819   int i;
820   struct ExprList_item *pItem;
821   if( !p ) return 0;
822   for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
823     if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
824   }
825   return 0;
826 }
827 
828 /*
829 ** Call walkExprTree() for every expression in Select p, not including
830 ** expressions that are part of sub-selects in any FROM clause or the LIMIT
831 ** or OFFSET expressions..
832 */
833 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
834   walkExprList(p->pEList, xFunc, pArg);
835   walkExprTree(p->pWhere, xFunc, pArg);
836   walkExprList(p->pGroupBy, xFunc, pArg);
837   walkExprTree(p->pHaving, xFunc, pArg);
838   walkExprList(p->pOrderBy, xFunc, pArg);
839   if( p->pPrior ){
840     walkSelectExpr(p->pPrior, xFunc, pArg);
841   }
842   return 0;
843 }
844 
845 
846 /*
847 ** This routine is designed as an xFunc for walkExprTree().
848 **
849 ** pArg is really a pointer to an integer.  If we can tell by looking
850 ** at pExpr that the expression that contains pExpr is not a constant
851 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
852 ** If pExpr does does not disqualify the expression from being a constant
853 ** then do nothing.
854 **
855 ** After walking the whole tree, if no nodes are found that disqualify
856 ** the expression as constant, then we assume the whole expression
857 ** is constant.  See sqlite3ExprIsConstant() for additional information.
858 */
859 static int exprNodeIsConstant(void *pArg, Expr *pExpr){
860   int *pN = (int*)pArg;
861 
862   /* If *pArg is 3 then any term of the expression that comes from
863   ** the ON or USING clauses of a join disqualifies the expression
864   ** from being considered constant. */
865   if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
866     *pN = 0;
867     return 2;
868   }
869 
870   switch( pExpr->op ){
871     /* Consider functions to be constant if all their arguments are constant
872     ** and *pArg==2 */
873     case TK_FUNCTION:
874       if( (*pN)==2 ) return 0;
875       /* Fall through */
876     case TK_ID:
877     case TK_COLUMN:
878     case TK_DOT:
879     case TK_AGG_FUNCTION:
880     case TK_AGG_COLUMN:
881 #ifndef SQLITE_OMIT_SUBQUERY
882     case TK_SELECT:
883     case TK_EXISTS:
884 #endif
885       *pN = 0;
886       return 2;
887     case TK_IN:
888       if( pExpr->pSelect ){
889         *pN = 0;
890         return 2;
891       }
892     default:
893       return 0;
894   }
895 }
896 
897 /*
898 ** Walk an expression tree.  Return 1 if the expression is constant
899 ** and 0 if it involves variables or function calls.
900 **
901 ** For the purposes of this function, a double-quoted string (ex: "abc")
902 ** is considered a variable but a single-quoted string (ex: 'abc') is
903 ** a constant.
904 */
905 int sqlite3ExprIsConstant(Expr *p){
906   int isConst = 1;
907   walkExprTree(p, exprNodeIsConstant, &isConst);
908   return isConst;
909 }
910 
911 /*
912 ** Walk an expression tree.  Return 1 if the expression is constant
913 ** that does no originate from the ON or USING clauses of a join.
914 ** Return 0 if it involves variables or function calls or terms from
915 ** an ON or USING clause.
916 */
917 int sqlite3ExprIsConstantNotJoin(Expr *p){
918   int isConst = 3;
919   walkExprTree(p, exprNodeIsConstant, &isConst);
920   return isConst!=0;
921 }
922 
923 /*
924 ** Walk an expression tree.  Return 1 if the expression is constant
925 ** or a function call with constant arguments.  Return and 0 if there
926 ** are any variables.
927 **
928 ** For the purposes of this function, a double-quoted string (ex: "abc")
929 ** is considered a variable but a single-quoted string (ex: 'abc') is
930 ** a constant.
931 */
932 int sqlite3ExprIsConstantOrFunction(Expr *p){
933   int isConst = 2;
934   walkExprTree(p, exprNodeIsConstant, &isConst);
935   return isConst!=0;
936 }
937 
938 /*
939 ** If the expression p codes a constant integer that is small enough
940 ** to fit in a 32-bit integer, return 1 and put the value of the integer
941 ** in *pValue.  If the expression is not an integer or if it is too big
942 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
943 */
944 int sqlite3ExprIsInteger(Expr *p, int *pValue){
945   switch( p->op ){
946     case TK_INTEGER: {
947       if( sqlite3GetInt32((char*)p->token.z, pValue) ){
948         return 1;
949       }
950       break;
951     }
952     case TK_UPLUS: {
953       return sqlite3ExprIsInteger(p->pLeft, pValue);
954     }
955     case TK_UMINUS: {
956       int v;
957       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
958         *pValue = -v;
959         return 1;
960       }
961       break;
962     }
963     default: break;
964   }
965   return 0;
966 }
967 
968 /*
969 ** Return TRUE if the given string is a row-id column name.
970 */
971 int sqlite3IsRowid(const char *z){
972   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
973   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
974   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
975   return 0;
976 }
977 
978 /*
979 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
980 ** that name in the set of source tables in pSrcList and make the pExpr
981 ** expression node refer back to that source column.  The following changes
982 ** are made to pExpr:
983 **
984 **    pExpr->iDb           Set the index in db->aDb[] of the database holding
985 **                         the table.
986 **    pExpr->iTable        Set to the cursor number for the table obtained
987 **                         from pSrcList.
988 **    pExpr->iColumn       Set to the column number within the table.
989 **    pExpr->op            Set to TK_COLUMN.
990 **    pExpr->pLeft         Any expression this points to is deleted
991 **    pExpr->pRight        Any expression this points to is deleted.
992 **
993 ** The pDbToken is the name of the database (the "X").  This value may be
994 ** NULL meaning that name is of the form Y.Z or Z.  Any available database
995 ** can be used.  The pTableToken is the name of the table (the "Y").  This
996 ** value can be NULL if pDbToken is also NULL.  If pTableToken is NULL it
997 ** means that the form of the name is Z and that columns from any table
998 ** can be used.
999 **
1000 ** If the name cannot be resolved unambiguously, leave an error message
1001 ** in pParse and return non-zero.  Return zero on success.
1002 */
1003 static int lookupName(
1004   Parse *pParse,       /* The parsing context */
1005   Token *pDbToken,     /* Name of the database containing table, or NULL */
1006   Token *pTableToken,  /* Name of table containing column, or NULL */
1007   Token *pColumnToken, /* Name of the column. */
1008   NameContext *pNC,    /* The name context used to resolve the name */
1009   Expr *pExpr          /* Make this EXPR node point to the selected column */
1010 ){
1011   char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */
1012   char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */
1013   char *zCol = 0;      /* Name of the column.  The "Z" */
1014   int i, j;            /* Loop counters */
1015   int cnt = 0;         /* Number of matching column names */
1016   int cntTab = 0;      /* Number of matching table names */
1017   sqlite3 *db = pParse->db;  /* The database */
1018   struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
1019   struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
1020   NameContext *pTopNC = pNC;        /* First namecontext in the list */
1021   Schema *pSchema = 0;              /* Schema of the expression */
1022 
1023   assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
1024   zDb = sqlite3NameFromToken(db, pDbToken);
1025   zTab = sqlite3NameFromToken(db, pTableToken);
1026   zCol = sqlite3NameFromToken(db, pColumnToken);
1027   if( db->mallocFailed ){
1028     goto lookupname_end;
1029   }
1030 
1031   pExpr->iTable = -1;
1032   while( pNC && cnt==0 ){
1033     ExprList *pEList;
1034     SrcList *pSrcList = pNC->pSrcList;
1035 
1036     if( pSrcList ){
1037       for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
1038         Table *pTab;
1039         int iDb;
1040         Column *pCol;
1041 
1042         pTab = pItem->pTab;
1043         assert( pTab!=0 );
1044         iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1045         assert( pTab->nCol>0 );
1046         if( zTab ){
1047           if( pItem->zAlias ){
1048             char *zTabName = pItem->zAlias;
1049             if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
1050           }else{
1051             char *zTabName = pTab->zName;
1052             if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
1053             if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
1054               continue;
1055             }
1056           }
1057         }
1058         if( 0==(cntTab++) ){
1059           pExpr->iTable = pItem->iCursor;
1060           pSchema = pTab->pSchema;
1061           pMatch = pItem;
1062         }
1063         for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
1064           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
1065             const char *zColl = pTab->aCol[j].zColl;
1066             IdList *pUsing;
1067             cnt++;
1068             pExpr->iTable = pItem->iCursor;
1069             pMatch = pItem;
1070             pSchema = pTab->pSchema;
1071             /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
1072             pExpr->iColumn = j==pTab->iPKey ? -1 : j;
1073             pExpr->affinity = pTab->aCol[j].affinity;
1074             if( (pExpr->flags & EP_ExpCollate)==0 ){
1075               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
1076             }
1077             if( i<pSrcList->nSrc-1 ){
1078               if( pItem[1].jointype & JT_NATURAL ){
1079                 /* If this match occurred in the left table of a natural join,
1080                 ** then skip the right table to avoid a duplicate match */
1081                 pItem++;
1082                 i++;
1083               }else if( (pUsing = pItem[1].pUsing)!=0 ){
1084                 /* If this match occurs on a column that is in the USING clause
1085                 ** of a join, skip the search of the right table of the join
1086                 ** to avoid a duplicate match there. */
1087                 int k;
1088                 for(k=0; k<pUsing->nId; k++){
1089                   if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
1090                     pItem++;
1091                     i++;
1092                     break;
1093                   }
1094                 }
1095               }
1096             }
1097             break;
1098           }
1099         }
1100       }
1101     }
1102 
1103 #ifndef SQLITE_OMIT_TRIGGER
1104     /* If we have not already resolved the name, then maybe
1105     ** it is a new.* or old.* trigger argument reference
1106     */
1107     if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
1108       TriggerStack *pTriggerStack = pParse->trigStack;
1109       Table *pTab = 0;
1110       if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
1111         pExpr->iTable = pTriggerStack->newIdx;
1112         assert( pTriggerStack->pTab );
1113         pTab = pTriggerStack->pTab;
1114       }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
1115         pExpr->iTable = pTriggerStack->oldIdx;
1116         assert( pTriggerStack->pTab );
1117         pTab = pTriggerStack->pTab;
1118       }
1119 
1120       if( pTab ){
1121         int iCol;
1122         Column *pCol = pTab->aCol;
1123 
1124         pSchema = pTab->pSchema;
1125         cntTab++;
1126         for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
1127           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
1128             const char *zColl = pTab->aCol[iCol].zColl;
1129             cnt++;
1130             pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
1131             pExpr->affinity = pTab->aCol[iCol].affinity;
1132             if( (pExpr->flags & EP_ExpCollate)==0 ){
1133               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
1134             }
1135             pExpr->pTab = pTab;
1136             break;
1137           }
1138         }
1139       }
1140     }
1141 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
1142 
1143     /*
1144     ** Perhaps the name is a reference to the ROWID
1145     */
1146     if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
1147       cnt = 1;
1148       pExpr->iColumn = -1;
1149       pExpr->affinity = SQLITE_AFF_INTEGER;
1150     }
1151 
1152     /*
1153     ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
1154     ** might refer to an result-set alias.  This happens, for example, when
1155     ** we are resolving names in the WHERE clause of the following command:
1156     **
1157     **     SELECT a+b AS x FROM table WHERE x<10;
1158     **
1159     ** In cases like this, replace pExpr with a copy of the expression that
1160     ** forms the result set entry ("a+b" in the example) and return immediately.
1161     ** Note that the expression in the result set should have already been
1162     ** resolved by the time the WHERE clause is resolved.
1163     */
1164     if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
1165       for(j=0; j<pEList->nExpr; j++){
1166         char *zAs = pEList->a[j].zName;
1167         if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
1168           Expr *pDup, *pOrig;
1169           assert( pExpr->pLeft==0 && pExpr->pRight==0 );
1170           assert( pExpr->pList==0 );
1171           assert( pExpr->pSelect==0 );
1172           pOrig = pEList->a[j].pExpr;
1173           if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
1174             sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
1175             sqlite3_free(zCol);
1176             return 2;
1177           }
1178           pDup = sqlite3ExprDup(db, pOrig);
1179           if( pExpr->flags & EP_ExpCollate ){
1180             pDup->pColl = pExpr->pColl;
1181             pDup->flags |= EP_ExpCollate;
1182           }
1183           if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z);
1184           if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z);
1185           memcpy(pExpr, pDup, sizeof(*pExpr));
1186           sqlite3_free(pDup);
1187           cnt = 1;
1188           pMatch = 0;
1189           assert( zTab==0 && zDb==0 );
1190           goto lookupname_end_2;
1191         }
1192       }
1193     }
1194 
1195     /* Advance to the next name context.  The loop will exit when either
1196     ** we have a match (cnt>0) or when we run out of name contexts.
1197     */
1198     if( cnt==0 ){
1199       pNC = pNC->pNext;
1200     }
1201   }
1202 
1203   /*
1204   ** If X and Y are NULL (in other words if only the column name Z is
1205   ** supplied) and the value of Z is enclosed in double-quotes, then
1206   ** Z is a string literal if it doesn't match any column names.  In that
1207   ** case, we need to return right away and not make any changes to
1208   ** pExpr.
1209   **
1210   ** Because no reference was made to outer contexts, the pNC->nRef
1211   ** fields are not changed in any context.
1212   */
1213   if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
1214     sqlite3_free(zCol);
1215     return 0;
1216   }
1217 
1218   /*
1219   ** cnt==0 means there was not match.  cnt>1 means there were two or
1220   ** more matches.  Either way, we have an error.
1221   */
1222   if( cnt!=1 ){
1223     char *z = 0;
1224     char *zErr;
1225     zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s";
1226     if( zDb ){
1227       sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0);
1228     }else if( zTab ){
1229       sqlite3SetString(&z, zTab, ".", zCol, (char*)0);
1230     }else{
1231       z = sqlite3StrDup(zCol);
1232     }
1233     if( z ){
1234       sqlite3ErrorMsg(pParse, zErr, z);
1235       sqlite3_free(z);
1236       pTopNC->nErr++;
1237     }else{
1238       db->mallocFailed = 1;
1239     }
1240   }
1241 
1242   /* If a column from a table in pSrcList is referenced, then record
1243   ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes
1244   ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the
1245   ** column number is greater than the number of bits in the bitmask
1246   ** then set the high-order bit of the bitmask.
1247   */
1248   if( pExpr->iColumn>=0 && pMatch!=0 ){
1249     int n = pExpr->iColumn;
1250     if( n>=sizeof(Bitmask)*8 ){
1251       n = sizeof(Bitmask)*8-1;
1252     }
1253     assert( pMatch->iCursor==pExpr->iTable );
1254     pMatch->colUsed |= ((Bitmask)1)<<n;
1255   }
1256 
1257 lookupname_end:
1258   /* Clean up and return
1259   */
1260   sqlite3_free(zDb);
1261   sqlite3_free(zTab);
1262   sqlite3ExprDelete(pExpr->pLeft);
1263   pExpr->pLeft = 0;
1264   sqlite3ExprDelete(pExpr->pRight);
1265   pExpr->pRight = 0;
1266   pExpr->op = TK_COLUMN;
1267 lookupname_end_2:
1268   sqlite3_free(zCol);
1269   if( cnt==1 ){
1270     assert( pNC!=0 );
1271     sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
1272     if( pMatch && !pMatch->pSelect ){
1273       pExpr->pTab = pMatch->pTab;
1274     }
1275     /* Increment the nRef value on all name contexts from TopNC up to
1276     ** the point where the name matched. */
1277     for(;;){
1278       assert( pTopNC!=0 );
1279       pTopNC->nRef++;
1280       if( pTopNC==pNC ) break;
1281       pTopNC = pTopNC->pNext;
1282     }
1283     return 0;
1284   } else {
1285     return 1;
1286   }
1287 }
1288 
1289 /*
1290 ** This routine is designed as an xFunc for walkExprTree().
1291 **
1292 ** Resolve symbolic names into TK_COLUMN operators for the current
1293 ** node in the expression tree.  Return 0 to continue the search down
1294 ** the tree or 2 to abort the tree walk.
1295 **
1296 ** This routine also does error checking and name resolution for
1297 ** function names.  The operator for aggregate functions is changed
1298 ** to TK_AGG_FUNCTION.
1299 */
1300 static int nameResolverStep(void *pArg, Expr *pExpr){
1301   NameContext *pNC = (NameContext*)pArg;
1302   Parse *pParse;
1303 
1304   if( pExpr==0 ) return 1;
1305   assert( pNC!=0 );
1306   pParse = pNC->pParse;
1307 
1308   if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
1309   ExprSetProperty(pExpr, EP_Resolved);
1310 #ifndef NDEBUG
1311   if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
1312     SrcList *pSrcList = pNC->pSrcList;
1313     int i;
1314     for(i=0; i<pNC->pSrcList->nSrc; i++){
1315       assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
1316     }
1317   }
1318 #endif
1319   switch( pExpr->op ){
1320     /* Double-quoted strings (ex: "abc") are used as identifiers if
1321     ** possible.  Otherwise they remain as strings.  Single-quoted
1322     ** strings (ex: 'abc') are always string literals.
1323     */
1324     case TK_STRING: {
1325       if( pExpr->token.z[0]=='\'' ) break;
1326       /* Fall thru into the TK_ID case if this is a double-quoted string */
1327     }
1328     /* A lone identifier is the name of a column.
1329     */
1330     case TK_ID: {
1331       lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
1332       return 1;
1333     }
1334 
1335     /* A table name and column name:     ID.ID
1336     ** Or a database, table and column:  ID.ID.ID
1337     */
1338     case TK_DOT: {
1339       Token *pColumn;
1340       Token *pTable;
1341       Token *pDb;
1342       Expr *pRight;
1343 
1344       /* if( pSrcList==0 ) break; */
1345       pRight = pExpr->pRight;
1346       if( pRight->op==TK_ID ){
1347         pDb = 0;
1348         pTable = &pExpr->pLeft->token;
1349         pColumn = &pRight->token;
1350       }else{
1351         assert( pRight->op==TK_DOT );
1352         pDb = &pExpr->pLeft->token;
1353         pTable = &pRight->pLeft->token;
1354         pColumn = &pRight->pRight->token;
1355       }
1356       lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
1357       return 1;
1358     }
1359 
1360     /* Resolve function names
1361     */
1362     case TK_CONST_FUNC:
1363     case TK_FUNCTION: {
1364       ExprList *pList = pExpr->pList;    /* The argument list */
1365       int n = pList ? pList->nExpr : 0;  /* Number of arguments */
1366       int no_such_func = 0;       /* True if no such function exists */
1367       int wrong_num_args = 0;     /* True if wrong number of arguments */
1368       int is_agg = 0;             /* True if is an aggregate function */
1369       int i;
1370       int auth;                   /* Authorization to use the function */
1371       int nId;                    /* Number of characters in function name */
1372       const char *zId;            /* The function name. */
1373       FuncDef *pDef;              /* Information about the function */
1374       int enc = ENC(pParse->db);  /* The database encoding */
1375 
1376       zId = (char*)pExpr->token.z;
1377       nId = pExpr->token.n;
1378       pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
1379       if( pDef==0 ){
1380         pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
1381         if( pDef==0 ){
1382           no_such_func = 1;
1383         }else{
1384           wrong_num_args = 1;
1385         }
1386       }else{
1387         is_agg = pDef->xFunc==0;
1388       }
1389 #ifndef SQLITE_OMIT_AUTHORIZATION
1390       if( pDef ){
1391         auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
1392         if( auth!=SQLITE_OK ){
1393           if( auth==SQLITE_DENY ){
1394             sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
1395                                     pDef->zName);
1396             pNC->nErr++;
1397           }
1398           pExpr->op = TK_NULL;
1399           return 1;
1400         }
1401       }
1402 #endif
1403       if( is_agg && !pNC->allowAgg ){
1404         sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
1405         pNC->nErr++;
1406         is_agg = 0;
1407       }else if( no_such_func ){
1408         sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
1409         pNC->nErr++;
1410       }else if( wrong_num_args ){
1411         sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
1412              nId, zId);
1413         pNC->nErr++;
1414       }
1415       if( is_agg ){
1416         pExpr->op = TK_AGG_FUNCTION;
1417         pNC->hasAgg = 1;
1418       }
1419       if( is_agg ) pNC->allowAgg = 0;
1420       for(i=0; pNC->nErr==0 && i<n; i++){
1421         walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
1422       }
1423       if( is_agg ) pNC->allowAgg = 1;
1424       /* FIX ME:  Compute pExpr->affinity based on the expected return
1425       ** type of the function
1426       */
1427       return is_agg;
1428     }
1429 #ifndef SQLITE_OMIT_SUBQUERY
1430     case TK_SELECT:
1431     case TK_EXISTS:
1432 #endif
1433     case TK_IN: {
1434       if( pExpr->pSelect ){
1435         int nRef = pNC->nRef;
1436 #ifndef SQLITE_OMIT_CHECK
1437         if( pNC->isCheck ){
1438           sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
1439         }
1440 #endif
1441         sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
1442         assert( pNC->nRef>=nRef );
1443         if( nRef!=pNC->nRef ){
1444           ExprSetProperty(pExpr, EP_VarSelect);
1445         }
1446       }
1447       break;
1448     }
1449 #ifndef SQLITE_OMIT_CHECK
1450     case TK_VARIABLE: {
1451       if( pNC->isCheck ){
1452         sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
1453       }
1454       break;
1455     }
1456 #endif
1457   }
1458   return 0;
1459 }
1460 
1461 /*
1462 ** This routine walks an expression tree and resolves references to
1463 ** table columns.  Nodes of the form ID.ID or ID resolve into an
1464 ** index to the table in the table list and a column offset.  The
1465 ** Expr.opcode for such nodes is changed to TK_COLUMN.  The Expr.iTable
1466 ** value is changed to the index of the referenced table in pTabList
1467 ** plus the "base" value.  The base value will ultimately become the
1468 ** VDBE cursor number for a cursor that is pointing into the referenced
1469 ** table.  The Expr.iColumn value is changed to the index of the column
1470 ** of the referenced table.  The Expr.iColumn value for the special
1471 ** ROWID column is -1.  Any INTEGER PRIMARY KEY column is tried as an
1472 ** alias for ROWID.
1473 **
1474 ** Also resolve function names and check the functions for proper
1475 ** usage.  Make sure all function names are recognized and all functions
1476 ** have the correct number of arguments.  Leave an error message
1477 ** in pParse->zErrMsg if anything is amiss.  Return the number of errors.
1478 **
1479 ** If the expression contains aggregate functions then set the EP_Agg
1480 ** property on the expression.
1481 */
1482 int sqlite3ExprResolveNames(
1483   NameContext *pNC,       /* Namespace to resolve expressions in. */
1484   Expr *pExpr             /* The expression to be analyzed. */
1485 ){
1486   int savedHasAgg;
1487   if( pExpr==0 ) return 0;
1488 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
1489   if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){
1490     sqlite3ErrorMsg(pNC->pParse,
1491        "Expression tree is too large (maximum depth %d)",
1492        SQLITE_MAX_EXPR_DEPTH
1493     );
1494     return 1;
1495   }
1496   pNC->pParse->nHeight += pExpr->nHeight;
1497 #endif
1498   savedHasAgg = pNC->hasAgg;
1499   pNC->hasAgg = 0;
1500   walkExprTree(pExpr, nameResolverStep, pNC);
1501 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
1502   pNC->pParse->nHeight -= pExpr->nHeight;
1503 #endif
1504   if( pNC->nErr>0 ){
1505     ExprSetProperty(pExpr, EP_Error);
1506   }
1507   if( pNC->hasAgg ){
1508     ExprSetProperty(pExpr, EP_Agg);
1509   }else if( savedHasAgg ){
1510     pNC->hasAgg = 1;
1511   }
1512   return ExprHasProperty(pExpr, EP_Error);
1513 }
1514 
1515 /*
1516 ** A pointer instance of this structure is used to pass information
1517 ** through walkExprTree into codeSubqueryStep().
1518 */
1519 typedef struct QueryCoder QueryCoder;
1520 struct QueryCoder {
1521   Parse *pParse;       /* The parsing context */
1522   NameContext *pNC;    /* Namespace of first enclosing query */
1523 };
1524 
1525 #ifdef SQLITE_TEST
1526   int sqlite3_enable_in_opt = 1;
1527 #else
1528   #define sqlite3_enable_in_opt 1
1529 #endif
1530 
1531 /*
1532 ** This function is used by the implementation of the IN (...) operator.
1533 ** It's job is to find or create a b-tree structure that may be used
1534 ** either to test for membership of the (...) set or to iterate through
1535 ** its members, skipping duplicates.
1536 **
1537 ** The cursor opened on the structure (database table, database index
1538 ** or ephermal table) is stored in pX->iTable before this function returns.
1539 ** The returned value indicates the structure type, as follows:
1540 **
1541 **   IN_INDEX_ROWID - The cursor was opened on a database table.
1542 **   IN_INDEX_INDEX - The cursor was opened on a database indec.
1543 **   IN_INDEX_EPH -   The cursor was opened on a specially created and
1544 **                    populated epheremal table.
1545 **
1546 ** An existing structure may only be used if the SELECT is of the simple
1547 ** form:
1548 **
1549 **     SELECT <column> FROM <table>
1550 **
1551 ** If the mustBeUnique parameter is false, the structure will be used
1552 ** for fast set membership tests. In this case an epheremal table must
1553 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1554 ** be found with <column> as its left-most column.
1555 **
1556 ** If mustBeUnique is true, then the structure will be used to iterate
1557 ** through the set members, skipping any duplicates. In this case an
1558 ** epheremal table must be used unless the selected <column> is guaranteed
1559 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1560 ** is unique by virtue of a constraint or implicit index.
1561 */
1562 #ifndef SQLITE_OMIT_SUBQUERY
1563 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int mustBeUnique){
1564   Select *p;
1565   int eType = 0;
1566   int iTab = pParse->nTab++;
1567 
1568   /* The follwing if(...) expression is true if the SELECT is of the
1569   ** simple form:
1570   **
1571   **     SELECT <column> FROM <table>
1572   **
1573   ** If this is the case, it may be possible to use an existing table
1574   ** or index instead of generating an epheremal table.
1575   */
1576   if( sqlite3_enable_in_opt
1577    && (p=pX->pSelect) && !p->pPrior
1578    && !p->isDistinct && !p->isAgg && !p->pGroupBy
1579    && p->pSrc && p->pSrc->nSrc==1 && !p->pSrc->a[0].pSelect
1580    && !p->pSrc->a[0].pTab->pSelect
1581    && p->pEList->nExpr==1 && p->pEList->a[0].pExpr->op==TK_COLUMN
1582    && !p->pLimit && !p->pOffset && !p->pWhere
1583   ){
1584     sqlite3 *db = pParse->db;
1585     Index *pIdx;
1586     Expr *pExpr = p->pEList->a[0].pExpr;
1587     int iCol = pExpr->iColumn;
1588     Vdbe *v = sqlite3GetVdbe(pParse);
1589 
1590     /* This function is only called from two places. In both cases the vdbe
1591     ** has already been allocated. So assume sqlite3GetVdbe() is always
1592     ** successful here.
1593     */
1594     assert(v);
1595     if( iCol<0 ){
1596       int iMem = pParse->nMem++;
1597       int iAddr;
1598       Table *pTab = p->pSrc->a[0].pTab;
1599       int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1600       sqlite3VdbeUsesBtree(v, iDb);
1601 
1602       sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
1603       iAddr = sqlite3VdbeAddOp(v, OP_If, 0, iMem);
1604       sqlite3VdbeAddOp(v, OP_MemInt, 1, iMem);
1605 
1606       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1607       eType = IN_INDEX_ROWID;
1608 
1609       sqlite3VdbeJumpHere(v, iAddr);
1610     }else{
1611       /* The collation sequence used by the comparison. If an index is to
1612       ** be used in place of a temp-table, it must be ordered according
1613       ** to this collation sequence.
1614       */
1615       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1616 
1617       /* Check that the affinity that will be used to perform the
1618       ** comparison is the same as the affinity of the column. If
1619       ** it is not, it is not possible to use any index.
1620       */
1621       Table *pTab = p->pSrc->a[0].pTab;
1622       char aff = comparisonAffinity(pX);
1623       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
1624 
1625       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1626         if( (pIdx->aiColumn[0]==iCol)
1627          && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
1628          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1629         ){
1630           int iDb;
1631           int iMem = pParse->nMem++;
1632           int iAddr;
1633           char *pKey;
1634 
1635           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1636           iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
1637           sqlite3VdbeUsesBtree(v, iDb);
1638 
1639           sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
1640           iAddr = sqlite3VdbeAddOp(v, OP_If, 0, iMem);
1641           sqlite3VdbeAddOp(v, OP_MemInt, 1, iMem);
1642 
1643           sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
1644           VdbeComment((v, "# %s", pIdx->zName));
1645           sqlite3VdbeOp3(v,OP_OpenRead,iTab,pIdx->tnum,pKey,P3_KEYINFO_HANDOFF);
1646           eType = IN_INDEX_INDEX;
1647           sqlite3VdbeAddOp(v, OP_SetNumColumns, iTab, pIdx->nColumn);
1648 
1649           sqlite3VdbeJumpHere(v, iAddr);
1650         }
1651       }
1652     }
1653   }
1654 
1655   if( eType==0 ){
1656     sqlite3CodeSubselect(pParse, pX);
1657     eType = IN_INDEX_EPH;
1658   }else{
1659     pX->iTable = iTab;
1660   }
1661   return eType;
1662 }
1663 #endif
1664 
1665 /*
1666 ** Generate code for scalar subqueries used as an expression
1667 ** and IN operators.  Examples:
1668 **
1669 **     (SELECT a FROM b)          -- subquery
1670 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1671 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1672 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1673 **
1674 ** The pExpr parameter describes the expression that contains the IN
1675 ** operator or subquery.
1676 */
1677 #ifndef SQLITE_OMIT_SUBQUERY
1678 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
1679   int testAddr = 0;                       /* One-time test address */
1680   Vdbe *v = sqlite3GetVdbe(pParse);
1681   if( v==0 ) return;
1682 
1683 
1684   /* This code must be run in its entirety every time it is encountered
1685   ** if any of the following is true:
1686   **
1687   **    *  The right-hand side is a correlated subquery
1688   **    *  The right-hand side is an expression list containing variables
1689   **    *  We are inside a trigger
1690   **
1691   ** If all of the above are false, then we can run this code just once
1692   ** save the results, and reuse the same result on subsequent invocations.
1693   */
1694   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
1695     int mem = pParse->nMem++;
1696     sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0);
1697     testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0);
1698     assert( testAddr>0 || pParse->db->mallocFailed );
1699     sqlite3VdbeAddOp(v, OP_MemInt, 1, mem);
1700   }
1701 
1702   switch( pExpr->op ){
1703     case TK_IN: {
1704       char affinity;
1705       KeyInfo keyInfo;
1706       int addr;        /* Address of OP_OpenEphemeral instruction */
1707 
1708       affinity = sqlite3ExprAffinity(pExpr->pLeft);
1709 
1710       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1711       ** expression it is handled the same way. A virtual table is
1712       ** filled with single-field index keys representing the results
1713       ** from the SELECT or the <exprlist>.
1714       **
1715       ** If the 'x' expression is a column value, or the SELECT...
1716       ** statement returns a column value, then the affinity of that
1717       ** column is used to build the index keys. If both 'x' and the
1718       ** SELECT... statement are columns, then numeric affinity is used
1719       ** if either column has NUMERIC or INTEGER affinity. If neither
1720       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1721       ** is used.
1722       */
1723       pExpr->iTable = pParse->nTab++;
1724       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0);
1725       memset(&keyInfo, 0, sizeof(keyInfo));
1726       keyInfo.nField = 1;
1727       sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1);
1728 
1729       if( pExpr->pSelect ){
1730         /* Case 1:     expr IN (SELECT ...)
1731         **
1732         ** Generate code to write the results of the select into the temporary
1733         ** table allocated and opened above.
1734         */
1735         int iParm = pExpr->iTable +  (((int)affinity)<<16);
1736         ExprList *pEList;
1737         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1738         if( sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0) ){
1739           return;
1740         }
1741         pEList = pExpr->pSelect->pEList;
1742         if( pEList && pEList->nExpr>0 ){
1743           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1744               pEList->a[0].pExpr);
1745         }
1746       }else if( pExpr->pList ){
1747         /* Case 2:     expr IN (exprlist)
1748         **
1749         ** For each expression, build an index key from the evaluation and
1750         ** store it in the temporary table. If <expr> is a column, then use
1751         ** that columns affinity when building index keys. If <expr> is not
1752         ** a column, use numeric affinity.
1753         */
1754         int i;
1755         ExprList *pList = pExpr->pList;
1756         struct ExprList_item *pItem;
1757 
1758         if( !affinity ){
1759           affinity = SQLITE_AFF_NONE;
1760         }
1761         keyInfo.aColl[0] = pExpr->pLeft->pColl;
1762 
1763         /* Loop through each expression in <exprlist>. */
1764         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1765           Expr *pE2 = pItem->pExpr;
1766 
1767           /* If the expression is not constant then we will need to
1768           ** disable the test that was generated above that makes sure
1769           ** this code only executes once.  Because for a non-constant
1770           ** expression we need to rerun this code each time.
1771           */
1772           if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){
1773             sqlite3VdbeChangeToNoop(v, testAddr-1, 3);
1774             testAddr = 0;
1775           }
1776 
1777           /* Evaluate the expression and insert it into the temp table */
1778           sqlite3ExprCode(pParse, pE2);
1779           sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);
1780           sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0);
1781         }
1782       }
1783       sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO);
1784       break;
1785     }
1786 
1787     case TK_EXISTS:
1788     case TK_SELECT: {
1789       /* This has to be a scalar SELECT.  Generate code to put the
1790       ** value of this select in a memory cell and record the number
1791       ** of the memory cell in iColumn.
1792       */
1793       static const Token one = { (u8*)"1", 0, 1 };
1794       Select *pSel;
1795       int iMem;
1796       int sop;
1797 
1798       pExpr->iColumn = iMem = pParse->nMem++;
1799       pSel = pExpr->pSelect;
1800       if( pExpr->op==TK_SELECT ){
1801         sop = SRT_Mem;
1802         sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0);
1803         VdbeComment((v, "# Init subquery result"));
1804       }else{
1805         sop = SRT_Exists;
1806         sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem);
1807         VdbeComment((v, "# Init EXISTS result"));
1808       }
1809       sqlite3ExprDelete(pSel->pLimit);
1810       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
1811       if( sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0) ){
1812         return;
1813       }
1814       break;
1815     }
1816   }
1817 
1818   if( testAddr ){
1819     sqlite3VdbeJumpHere(v, testAddr);
1820   }
1821 
1822   return;
1823 }
1824 #endif /* SQLITE_OMIT_SUBQUERY */
1825 
1826 /*
1827 ** Duplicate an 8-byte value
1828 */
1829 static char *dup8bytes(Vdbe *v, const char *in){
1830   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1831   if( out ){
1832     memcpy(out, in, 8);
1833   }
1834   return out;
1835 }
1836 
1837 /*
1838 ** Generate an instruction that will put the floating point
1839 ** value described by z[0..n-1] on the stack.
1840 **
1841 ** The z[] string will probably not be zero-terminated.  But the
1842 ** z[n] character is guaranteed to be something that does not look
1843 ** like the continuation of the number.
1844 */
1845 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag){
1846   assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
1847   if( z ){
1848     double value;
1849     char *zV;
1850     assert( !isdigit(z[n]) );
1851     sqlite3AtoF(z, &value);
1852     if( negateFlag ) value = -value;
1853     zV = dup8bytes(v, (char*)&value);
1854     sqlite3VdbeOp3(v, OP_Real, 0, 0, zV, P3_REAL);
1855   }
1856 }
1857 
1858 
1859 /*
1860 ** Generate an instruction that will put the integer describe by
1861 ** text z[0..n-1] on the stack.
1862 **
1863 ** The z[] string will probably not be zero-terminated.  But the
1864 ** z[n] character is guaranteed to be something that does not look
1865 ** like the continuation of the number.
1866 */
1867 static void codeInteger(Vdbe *v, const char *z, int n, int negateFlag){
1868   assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
1869   if( z ){
1870     int i;
1871     assert( !isdigit(z[n]) );
1872     if( sqlite3GetInt32(z, &i) ){
1873       if( negateFlag ) i = -i;
1874       sqlite3VdbeAddOp(v, OP_Integer, i, 0);
1875     }else if( sqlite3FitsIn64Bits(z, negateFlag) ){
1876       i64 value;
1877       char *zV;
1878       sqlite3Atoi64(z, &value);
1879       if( negateFlag ) value = -value;
1880       zV = dup8bytes(v, (char*)&value);
1881       sqlite3VdbeOp3(v, OP_Int64, 0, 0, zV, P3_INT64);
1882     }else{
1883       codeReal(v, z, n, negateFlag);
1884     }
1885   }
1886 }
1887 
1888 
1889 /*
1890 ** Generate code that will extract the iColumn-th column from
1891 ** table pTab and push that column value on the stack.  There
1892 ** is an open cursor to pTab in iTable.  If iColumn<0 then
1893 ** code is generated that extracts the rowid.
1894 */
1895 void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){
1896   if( iColumn<0 ){
1897     int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
1898     sqlite3VdbeAddOp(v, op, iTable, 0);
1899   }else if( pTab==0 ){
1900     sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn);
1901   }else{
1902     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
1903     sqlite3VdbeAddOp(v, op, iTable, iColumn);
1904     sqlite3ColumnDefault(v, pTab, iColumn);
1905 #ifndef SQLITE_OMIT_FLOATING_POINT
1906     if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
1907       sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0);
1908     }
1909 #endif
1910   }
1911 }
1912 
1913 /*
1914 ** Generate code into the current Vdbe to evaluate the given
1915 ** expression and leave the result on the top of stack.
1916 **
1917 ** This code depends on the fact that certain token values (ex: TK_EQ)
1918 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
1919 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
1920 ** the make process cause these values to align.  Assert()s in the code
1921 ** below verify that the numbers are aligned correctly.
1922 */
1923 void sqlite3ExprCode(Parse *pParse, Expr *pExpr){
1924   Vdbe *v = pParse->pVdbe;
1925   int op;
1926   int stackChng = 1;    /* Amount of change to stack depth */
1927 
1928   if( v==0 ) return;
1929   if( pExpr==0 ){
1930     sqlite3VdbeAddOp(v, OP_Null, 0, 0);
1931     return;
1932   }
1933   op = pExpr->op;
1934   switch( op ){
1935     case TK_AGG_COLUMN: {
1936       AggInfo *pAggInfo = pExpr->pAggInfo;
1937       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
1938       if( !pAggInfo->directMode ){
1939         sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0);
1940         break;
1941       }else if( pAggInfo->useSortingIdx ){
1942         sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx,
1943                               pCol->iSorterColumn);
1944         break;
1945       }
1946       /* Otherwise, fall thru into the TK_COLUMN case */
1947     }
1948     case TK_COLUMN: {
1949       if( pExpr->iTable<0 ){
1950         /* This only happens when coding check constraints */
1951         assert( pParse->ckOffset>0 );
1952         sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1);
1953       }else{
1954         sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable);
1955       }
1956       break;
1957     }
1958     case TK_INTEGER: {
1959       codeInteger(v, (char*)pExpr->token.z, pExpr->token.n, 0);
1960       break;
1961     }
1962     case TK_FLOAT: {
1963       codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0);
1964       break;
1965     }
1966     case TK_STRING: {
1967       sqlite3DequoteExpr(pParse->db, pExpr);
1968       sqlite3VdbeOp3(v,OP_String8, 0, 0, (char*)pExpr->token.z, pExpr->token.n);
1969       break;
1970     }
1971     case TK_NULL: {
1972       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
1973       break;
1974     }
1975 #ifndef SQLITE_OMIT_BLOB_LITERAL
1976     case TK_BLOB: {
1977       int n;
1978       const char *z;
1979       assert( TK_BLOB==OP_HexBlob );
1980       n = pExpr->token.n - 3;
1981       z = (char*)pExpr->token.z + 2;
1982       assert( n>=0 );
1983       if( n==0 ){
1984         z = "";
1985       }
1986       sqlite3VdbeOp3(v, op, 0, 0, z, n);
1987       break;
1988     }
1989 #endif
1990     case TK_VARIABLE: {
1991       sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
1992       if( pExpr->token.n>1 ){
1993         sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n);
1994       }
1995       break;
1996     }
1997     case TK_REGISTER: {
1998       sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0);
1999       break;
2000     }
2001 #ifndef SQLITE_OMIT_CAST
2002     case TK_CAST: {
2003       /* Expressions of the form:   CAST(pLeft AS token) */
2004       int aff, to_op;
2005       sqlite3ExprCode(pParse, pExpr->pLeft);
2006       aff = sqlite3AffinityType(&pExpr->token);
2007       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2008       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
2009       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
2010       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2011       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
2012       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
2013       sqlite3VdbeAddOp(v, to_op, 0, 0);
2014       stackChng = 0;
2015       break;
2016     }
2017 #endif /* SQLITE_OMIT_CAST */
2018     case TK_LT:
2019     case TK_LE:
2020     case TK_GT:
2021     case TK_GE:
2022     case TK_NE:
2023     case TK_EQ: {
2024       assert( TK_LT==OP_Lt );
2025       assert( TK_LE==OP_Le );
2026       assert( TK_GT==OP_Gt );
2027       assert( TK_GE==OP_Ge );
2028       assert( TK_EQ==OP_Eq );
2029       assert( TK_NE==OP_Ne );
2030       sqlite3ExprCode(pParse, pExpr->pLeft);
2031       sqlite3ExprCode(pParse, pExpr->pRight);
2032       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0);
2033       stackChng = -1;
2034       break;
2035     }
2036     case TK_AND:
2037     case TK_OR:
2038     case TK_PLUS:
2039     case TK_STAR:
2040     case TK_MINUS:
2041     case TK_REM:
2042     case TK_BITAND:
2043     case TK_BITOR:
2044     case TK_SLASH:
2045     case TK_LSHIFT:
2046     case TK_RSHIFT:
2047     case TK_CONCAT: {
2048       assert( TK_AND==OP_And );
2049       assert( TK_OR==OP_Or );
2050       assert( TK_PLUS==OP_Add );
2051       assert( TK_MINUS==OP_Subtract );
2052       assert( TK_REM==OP_Remainder );
2053       assert( TK_BITAND==OP_BitAnd );
2054       assert( TK_BITOR==OP_BitOr );
2055       assert( TK_SLASH==OP_Divide );
2056       assert( TK_LSHIFT==OP_ShiftLeft );
2057       assert( TK_RSHIFT==OP_ShiftRight );
2058       assert( TK_CONCAT==OP_Concat );
2059       sqlite3ExprCode(pParse, pExpr->pLeft);
2060       sqlite3ExprCode(pParse, pExpr->pRight);
2061       sqlite3VdbeAddOp(v, op, 0, 0);
2062       stackChng = -1;
2063       break;
2064     }
2065     case TK_UMINUS: {
2066       Expr *pLeft = pExpr->pLeft;
2067       assert( pLeft );
2068       if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
2069         Token *p = &pLeft->token;
2070         if( pLeft->op==TK_FLOAT ){
2071           codeReal(v, (char*)p->z, p->n, 1);
2072         }else{
2073           codeInteger(v, (char*)p->z, p->n, 1);
2074         }
2075         break;
2076       }
2077       /* Fall through into TK_NOT */
2078     }
2079     case TK_BITNOT:
2080     case TK_NOT: {
2081       assert( TK_BITNOT==OP_BitNot );
2082       assert( TK_NOT==OP_Not );
2083       sqlite3ExprCode(pParse, pExpr->pLeft);
2084       sqlite3VdbeAddOp(v, op, 0, 0);
2085       stackChng = 0;
2086       break;
2087     }
2088     case TK_ISNULL:
2089     case TK_NOTNULL: {
2090       int dest;
2091       assert( TK_ISNULL==OP_IsNull );
2092       assert( TK_NOTNULL==OP_NotNull );
2093       sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
2094       sqlite3ExprCode(pParse, pExpr->pLeft);
2095       dest = sqlite3VdbeCurrentAddr(v) + 2;
2096       sqlite3VdbeAddOp(v, op, 1, dest);
2097       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
2098       stackChng = 0;
2099       break;
2100     }
2101     case TK_AGG_FUNCTION: {
2102       AggInfo *pInfo = pExpr->pAggInfo;
2103       if( pInfo==0 ){
2104         sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
2105             &pExpr->span);
2106       }else{
2107         sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0);
2108       }
2109       break;
2110     }
2111     case TK_CONST_FUNC:
2112     case TK_FUNCTION: {
2113       ExprList *pList = pExpr->pList;
2114       int nExpr = pList ? pList->nExpr : 0;
2115       FuncDef *pDef;
2116       int nId;
2117       const char *zId;
2118       int constMask = 0;
2119       int i;
2120       sqlite3 *db = pParse->db;
2121       u8 enc = ENC(db);
2122       CollSeq *pColl = 0;
2123 
2124       zId = (char*)pExpr->token.z;
2125       nId = pExpr->token.n;
2126       pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
2127       assert( pDef!=0 );
2128       nExpr = sqlite3ExprCodeExprList(pParse, pList);
2129 #ifndef SQLITE_OMIT_VIRTUALTABLE
2130       /* Possibly overload the function if the first argument is
2131       ** a virtual table column.
2132       **
2133       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2134       ** second argument, not the first, as the argument to test to
2135       ** see if it is a column in a virtual table.  This is done because
2136       ** the left operand of infix functions (the operand we want to
2137       ** control overloading) ends up as the second argument to the
2138       ** function.  The expression "A glob B" is equivalent to
2139       ** "glob(B,A).  We want to use the A in "A glob B" to test
2140       ** for function overloading.  But we use the B term in "glob(B,A)".
2141       */
2142       if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
2143         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
2144       }else if( nExpr>0 ){
2145         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
2146       }
2147 #endif
2148       for(i=0; i<nExpr && i<32; i++){
2149         if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
2150           constMask |= (1<<i);
2151         }
2152         if( pDef->needCollSeq && !pColl ){
2153           pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
2154         }
2155       }
2156       if( pDef->needCollSeq ){
2157         if( !pColl ) pColl = pParse->db->pDfltColl;
2158         sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
2159       }
2160       sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF);
2161       stackChng = 1-nExpr;
2162       break;
2163     }
2164 #ifndef SQLITE_OMIT_SUBQUERY
2165     case TK_EXISTS:
2166     case TK_SELECT: {
2167       if( pExpr->iColumn==0 ){
2168         sqlite3CodeSubselect(pParse, pExpr);
2169       }
2170       sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
2171       VdbeComment((v, "# load subquery result"));
2172       break;
2173     }
2174     case TK_IN: {
2175       int addr;
2176       char affinity;
2177       int ckOffset = pParse->ckOffset;
2178       int eType;
2179       int iLabel = sqlite3VdbeMakeLabel(v);
2180 
2181       eType = sqlite3FindInIndex(pParse, pExpr, 0);
2182 
2183       /* Figure out the affinity to use to create a key from the results
2184       ** of the expression. affinityStr stores a static string suitable for
2185       ** P3 of OP_MakeRecord.
2186       */
2187       affinity = comparisonAffinity(pExpr);
2188 
2189       sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
2190       pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0);
2191 
2192       /* Code the <expr> from "<expr> IN (...)". The temporary table
2193       ** pExpr->iTable contains the values that make up the (...) set.
2194       */
2195       sqlite3ExprCode(pParse, pExpr->pLeft);
2196       addr = sqlite3VdbeCurrentAddr(v);
2197       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4);            /* addr + 0 */
2198       sqlite3VdbeAddOp(v, OP_Pop, 2, 0);
2199       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
2200       sqlite3VdbeAddOp(v, OP_Goto, 0, iLabel);
2201       if( eType==IN_INDEX_ROWID ){
2202         int iAddr = sqlite3VdbeCurrentAddr(v)+3;
2203         sqlite3VdbeAddOp(v, OP_MustBeInt, 1, iAddr);
2204         sqlite3VdbeAddOp(v, OP_NotExists, pExpr->iTable, iAddr);
2205         sqlite3VdbeAddOp(v, OP_Goto, pExpr->iTable, iLabel);
2206       }else{
2207         sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);   /* addr + 4 */
2208         sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, iLabel);
2209       }
2210       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);                  /* addr + 6 */
2211       sqlite3VdbeResolveLabel(v, iLabel);
2212 
2213       break;
2214     }
2215 #endif
2216     case TK_BETWEEN: {
2217       Expr *pLeft = pExpr->pLeft;
2218       struct ExprList_item *pLItem = pExpr->pList->a;
2219       Expr *pRight = pLItem->pExpr;
2220       sqlite3ExprCode(pParse, pLeft);
2221       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
2222       sqlite3ExprCode(pParse, pRight);
2223       codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0);
2224       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
2225       pLItem++;
2226       pRight = pLItem->pExpr;
2227       sqlite3ExprCode(pParse, pRight);
2228       codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0);
2229       sqlite3VdbeAddOp(v, OP_And, 0, 0);
2230       break;
2231     }
2232     case TK_UPLUS: {
2233       sqlite3ExprCode(pParse, pExpr->pLeft);
2234       stackChng = 0;
2235       break;
2236     }
2237     case TK_CASE: {
2238       int expr_end_label;
2239       int jumpInst;
2240       int nExpr;
2241       int i;
2242       ExprList *pEList;
2243       struct ExprList_item *aListelem;
2244 
2245       assert(pExpr->pList);
2246       assert((pExpr->pList->nExpr % 2) == 0);
2247       assert(pExpr->pList->nExpr > 0);
2248       pEList = pExpr->pList;
2249       aListelem = pEList->a;
2250       nExpr = pEList->nExpr;
2251       expr_end_label = sqlite3VdbeMakeLabel(v);
2252       if( pExpr->pLeft ){
2253         sqlite3ExprCode(pParse, pExpr->pLeft);
2254       }
2255       for(i=0; i<nExpr; i=i+2){
2256         sqlite3ExprCode(pParse, aListelem[i].pExpr);
2257         if( pExpr->pLeft ){
2258           sqlite3VdbeAddOp(v, OP_Dup, 1, 1);
2259           jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr,
2260                                  OP_Ne, 0, 1);
2261           sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
2262         }else{
2263           jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0);
2264         }
2265         sqlite3ExprCode(pParse, aListelem[i+1].pExpr);
2266         sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label);
2267         sqlite3VdbeJumpHere(v, jumpInst);
2268       }
2269       if( pExpr->pLeft ){
2270         sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
2271       }
2272       if( pExpr->pRight ){
2273         sqlite3ExprCode(pParse, pExpr->pRight);
2274       }else{
2275         sqlite3VdbeAddOp(v, OP_Null, 0, 0);
2276       }
2277       sqlite3VdbeResolveLabel(v, expr_end_label);
2278       break;
2279     }
2280 #ifndef SQLITE_OMIT_TRIGGER
2281     case TK_RAISE: {
2282       if( !pParse->trigStack ){
2283         sqlite3ErrorMsg(pParse,
2284                        "RAISE() may only be used within a trigger-program");
2285         return;
2286       }
2287       if( pExpr->iColumn!=OE_Ignore ){
2288          assert( pExpr->iColumn==OE_Rollback ||
2289                  pExpr->iColumn == OE_Abort ||
2290                  pExpr->iColumn == OE_Fail );
2291          sqlite3DequoteExpr(pParse->db, pExpr);
2292          sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
2293                         (char*)pExpr->token.z, pExpr->token.n);
2294       } else {
2295          assert( pExpr->iColumn == OE_Ignore );
2296          sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0);
2297          sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
2298          VdbeComment((v, "# raise(IGNORE)"));
2299       }
2300       stackChng = 0;
2301       break;
2302     }
2303 #endif
2304   }
2305 
2306   if( pParse->ckOffset ){
2307     pParse->ckOffset += stackChng;
2308     assert( pParse->ckOffset );
2309   }
2310 }
2311 
2312 #ifndef SQLITE_OMIT_TRIGGER
2313 /*
2314 ** Generate code that evalutes the given expression and leaves the result
2315 ** on the stack.  See also sqlite3ExprCode().
2316 **
2317 ** This routine might also cache the result and modify the pExpr tree
2318 ** so that it will make use of the cached result on subsequent evaluations
2319 ** rather than evaluate the whole expression again.  Trivial expressions are
2320 ** not cached.  If the expression is cached, its result is stored in a
2321 ** memory location.
2322 */
2323 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){
2324   Vdbe *v = pParse->pVdbe;
2325   int iMem;
2326   int addr1, addr2;
2327   if( v==0 ) return;
2328   addr1 = sqlite3VdbeCurrentAddr(v);
2329   sqlite3ExprCode(pParse, pExpr);
2330   addr2 = sqlite3VdbeCurrentAddr(v);
2331   if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){
2332     iMem = pExpr->iTable = pParse->nMem++;
2333     sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
2334     pExpr->op = TK_REGISTER;
2335   }
2336 }
2337 #endif
2338 
2339 /*
2340 ** Generate code that pushes the value of every element of the given
2341 ** expression list onto the stack.
2342 **
2343 ** Return the number of elements pushed onto the stack.
2344 */
2345 int sqlite3ExprCodeExprList(
2346   Parse *pParse,     /* Parsing context */
2347   ExprList *pList    /* The expression list to be coded */
2348 ){
2349   struct ExprList_item *pItem;
2350   int i, n;
2351   if( pList==0 ) return 0;
2352   n = pList->nExpr;
2353   for(pItem=pList->a, i=n; i>0; i--, pItem++){
2354     sqlite3ExprCode(pParse, pItem->pExpr);
2355   }
2356   return n;
2357 }
2358 
2359 /*
2360 ** Generate code for a boolean expression such that a jump is made
2361 ** to the label "dest" if the expression is true but execution
2362 ** continues straight thru if the expression is false.
2363 **
2364 ** If the expression evaluates to NULL (neither true nor false), then
2365 ** take the jump if the jumpIfNull flag is true.
2366 **
2367 ** This code depends on the fact that certain token values (ex: TK_EQ)
2368 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
2369 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
2370 ** the make process cause these values to align.  Assert()s in the code
2371 ** below verify that the numbers are aligned correctly.
2372 */
2373 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
2374   Vdbe *v = pParse->pVdbe;
2375   int op = 0;
2376   int ckOffset = pParse->ckOffset;
2377   if( v==0 || pExpr==0 ) return;
2378   op = pExpr->op;
2379   switch( op ){
2380     case TK_AND: {
2381       int d2 = sqlite3VdbeMakeLabel(v);
2382       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
2383       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
2384       sqlite3VdbeResolveLabel(v, d2);
2385       break;
2386     }
2387     case TK_OR: {
2388       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
2389       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
2390       break;
2391     }
2392     case TK_NOT: {
2393       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
2394       break;
2395     }
2396     case TK_LT:
2397     case TK_LE:
2398     case TK_GT:
2399     case TK_GE:
2400     case TK_NE:
2401     case TK_EQ: {
2402       assert( TK_LT==OP_Lt );
2403       assert( TK_LE==OP_Le );
2404       assert( TK_GT==OP_Gt );
2405       assert( TK_GE==OP_Ge );
2406       assert( TK_EQ==OP_Eq );
2407       assert( TK_NE==OP_Ne );
2408       sqlite3ExprCode(pParse, pExpr->pLeft);
2409       sqlite3ExprCode(pParse, pExpr->pRight);
2410       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
2411       break;
2412     }
2413     case TK_ISNULL:
2414     case TK_NOTNULL: {
2415       assert( TK_ISNULL==OP_IsNull );
2416       assert( TK_NOTNULL==OP_NotNull );
2417       sqlite3ExprCode(pParse, pExpr->pLeft);
2418       sqlite3VdbeAddOp(v, op, 1, dest);
2419       break;
2420     }
2421     case TK_BETWEEN: {
2422       /* The expression "x BETWEEN y AND z" is implemented as:
2423       **
2424       ** 1 IF (x < y) GOTO 3
2425       ** 2 IF (x <= z) GOTO <dest>
2426       ** 3 ...
2427       */
2428       int addr;
2429       Expr *pLeft = pExpr->pLeft;
2430       Expr *pRight = pExpr->pList->a[0].pExpr;
2431       sqlite3ExprCode(pParse, pLeft);
2432       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
2433       sqlite3ExprCode(pParse, pRight);
2434       addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull);
2435 
2436       pRight = pExpr->pList->a[1].pExpr;
2437       sqlite3ExprCode(pParse, pRight);
2438       codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull);
2439 
2440       sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
2441       sqlite3VdbeJumpHere(v, addr);
2442       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
2443       break;
2444     }
2445     default: {
2446       sqlite3ExprCode(pParse, pExpr);
2447       sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest);
2448       break;
2449     }
2450   }
2451   pParse->ckOffset = ckOffset;
2452 }
2453 
2454 /*
2455 ** Generate code for a boolean expression such that a jump is made
2456 ** to the label "dest" if the expression is false but execution
2457 ** continues straight thru if the expression is true.
2458 **
2459 ** If the expression evaluates to NULL (neither true nor false) then
2460 ** jump if jumpIfNull is true or fall through if jumpIfNull is false.
2461 */
2462 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
2463   Vdbe *v = pParse->pVdbe;
2464   int op = 0;
2465   int ckOffset = pParse->ckOffset;
2466   if( v==0 || pExpr==0 ) return;
2467 
2468   /* The value of pExpr->op and op are related as follows:
2469   **
2470   **       pExpr->op            op
2471   **       ---------          ----------
2472   **       TK_ISNULL          OP_NotNull
2473   **       TK_NOTNULL         OP_IsNull
2474   **       TK_NE              OP_Eq
2475   **       TK_EQ              OP_Ne
2476   **       TK_GT              OP_Le
2477   **       TK_LE              OP_Gt
2478   **       TK_GE              OP_Lt
2479   **       TK_LT              OP_Ge
2480   **
2481   ** For other values of pExpr->op, op is undefined and unused.
2482   ** The value of TK_ and OP_ constants are arranged such that we
2483   ** can compute the mapping above using the following expression.
2484   ** Assert()s verify that the computation is correct.
2485   */
2486   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
2487 
2488   /* Verify correct alignment of TK_ and OP_ constants
2489   */
2490   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
2491   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
2492   assert( pExpr->op!=TK_NE || op==OP_Eq );
2493   assert( pExpr->op!=TK_EQ || op==OP_Ne );
2494   assert( pExpr->op!=TK_LT || op==OP_Ge );
2495   assert( pExpr->op!=TK_LE || op==OP_Gt );
2496   assert( pExpr->op!=TK_GT || op==OP_Le );
2497   assert( pExpr->op!=TK_GE || op==OP_Lt );
2498 
2499   switch( pExpr->op ){
2500     case TK_AND: {
2501       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
2502       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
2503       break;
2504     }
2505     case TK_OR: {
2506       int d2 = sqlite3VdbeMakeLabel(v);
2507       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
2508       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
2509       sqlite3VdbeResolveLabel(v, d2);
2510       break;
2511     }
2512     case TK_NOT: {
2513       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
2514       break;
2515     }
2516     case TK_LT:
2517     case TK_LE:
2518     case TK_GT:
2519     case TK_GE:
2520     case TK_NE:
2521     case TK_EQ: {
2522       sqlite3ExprCode(pParse, pExpr->pLeft);
2523       sqlite3ExprCode(pParse, pExpr->pRight);
2524       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
2525       break;
2526     }
2527     case TK_ISNULL:
2528     case TK_NOTNULL: {
2529       sqlite3ExprCode(pParse, pExpr->pLeft);
2530       sqlite3VdbeAddOp(v, op, 1, dest);
2531       break;
2532     }
2533     case TK_BETWEEN: {
2534       /* The expression is "x BETWEEN y AND z". It is implemented as:
2535       **
2536       ** 1 IF (x >= y) GOTO 3
2537       ** 2 GOTO <dest>
2538       ** 3 IF (x > z) GOTO <dest>
2539       */
2540       int addr;
2541       Expr *pLeft = pExpr->pLeft;
2542       Expr *pRight = pExpr->pList->a[0].pExpr;
2543       sqlite3ExprCode(pParse, pLeft);
2544       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
2545       sqlite3ExprCode(pParse, pRight);
2546       addr = sqlite3VdbeCurrentAddr(v);
2547       codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull);
2548 
2549       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
2550       sqlite3VdbeAddOp(v, OP_Goto, 0, dest);
2551       pRight = pExpr->pList->a[1].pExpr;
2552       sqlite3ExprCode(pParse, pRight);
2553       codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull);
2554       break;
2555     }
2556     default: {
2557       sqlite3ExprCode(pParse, pExpr);
2558       sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
2559       break;
2560     }
2561   }
2562   pParse->ckOffset = ckOffset;
2563 }
2564 
2565 /*
2566 ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
2567 ** if they are identical and return FALSE if they differ in any way.
2568 **
2569 ** Sometimes this routine will return FALSE even if the two expressions
2570 ** really are equivalent.  If we cannot prove that the expressions are
2571 ** identical, we return FALSE just to be safe.  So if this routine
2572 ** returns false, then you do not really know for certain if the two
2573 ** expressions are the same.  But if you get a TRUE return, then you
2574 ** can be sure the expressions are the same.  In the places where
2575 ** this routine is used, it does not hurt to get an extra FALSE - that
2576 ** just might result in some slightly slower code.  But returning
2577 ** an incorrect TRUE could lead to a malfunction.
2578 */
2579 int sqlite3ExprCompare(Expr *pA, Expr *pB){
2580   int i;
2581   if( pA==0||pB==0 ){
2582     return pB==pA;
2583   }
2584   if( pA->op!=pB->op ) return 0;
2585   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
2586   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
2587   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
2588   if( pA->pList ){
2589     if( pB->pList==0 ) return 0;
2590     if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
2591     for(i=0; i<pA->pList->nExpr; i++){
2592       if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
2593         return 0;
2594       }
2595     }
2596   }else if( pB->pList ){
2597     return 0;
2598   }
2599   if( pA->pSelect || pB->pSelect ) return 0;
2600   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
2601   if( pA->op!=TK_COLUMN && pA->token.z ){
2602     if( pB->token.z==0 ) return 0;
2603     if( pB->token.n!=pA->token.n ) return 0;
2604     if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
2605       return 0;
2606     }
2607   }
2608   return 1;
2609 }
2610 
2611 
2612 /*
2613 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
2614 ** the new element.  Return a negative number if malloc fails.
2615 */
2616 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
2617   int i;
2618   pInfo->aCol = sqlite3ArrayAllocate(
2619        db,
2620        pInfo->aCol,
2621        sizeof(pInfo->aCol[0]),
2622        3,
2623        &pInfo->nColumn,
2624        &pInfo->nColumnAlloc,
2625        &i
2626   );
2627   return i;
2628 }
2629 
2630 /*
2631 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
2632 ** the new element.  Return a negative number if malloc fails.
2633 */
2634 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
2635   int i;
2636   pInfo->aFunc = sqlite3ArrayAllocate(
2637        db,
2638        pInfo->aFunc,
2639        sizeof(pInfo->aFunc[0]),
2640        3,
2641        &pInfo->nFunc,
2642        &pInfo->nFuncAlloc,
2643        &i
2644   );
2645   return i;
2646 }
2647 
2648 /*
2649 ** This is an xFunc for walkExprTree() used to implement
2650 ** sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
2651 ** for additional information.
2652 **
2653 ** This routine analyzes the aggregate function at pExpr.
2654 */
2655 static int analyzeAggregate(void *pArg, Expr *pExpr){
2656   int i;
2657   NameContext *pNC = (NameContext *)pArg;
2658   Parse *pParse = pNC->pParse;
2659   SrcList *pSrcList = pNC->pSrcList;
2660   AggInfo *pAggInfo = pNC->pAggInfo;
2661 
2662   switch( pExpr->op ){
2663     case TK_AGG_COLUMN:
2664     case TK_COLUMN: {
2665       /* Check to see if the column is in one of the tables in the FROM
2666       ** clause of the aggregate query */
2667       if( pSrcList ){
2668         struct SrcList_item *pItem = pSrcList->a;
2669         for(i=0; i<pSrcList->nSrc; i++, pItem++){
2670           struct AggInfo_col *pCol;
2671           if( pExpr->iTable==pItem->iCursor ){
2672             /* If we reach this point, it means that pExpr refers to a table
2673             ** that is in the FROM clause of the aggregate query.
2674             **
2675             ** Make an entry for the column in pAggInfo->aCol[] if there
2676             ** is not an entry there already.
2677             */
2678             int k;
2679             pCol = pAggInfo->aCol;
2680             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
2681               if( pCol->iTable==pExpr->iTable &&
2682                   pCol->iColumn==pExpr->iColumn ){
2683                 break;
2684               }
2685             }
2686             if( (k>=pAggInfo->nColumn)
2687              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
2688             ){
2689               pCol = &pAggInfo->aCol[k];
2690               pCol->pTab = pExpr->pTab;
2691               pCol->iTable = pExpr->iTable;
2692               pCol->iColumn = pExpr->iColumn;
2693               pCol->iMem = pParse->nMem++;
2694               pCol->iSorterColumn = -1;
2695               pCol->pExpr = pExpr;
2696               if( pAggInfo->pGroupBy ){
2697                 int j, n;
2698                 ExprList *pGB = pAggInfo->pGroupBy;
2699                 struct ExprList_item *pTerm = pGB->a;
2700                 n = pGB->nExpr;
2701                 for(j=0; j<n; j++, pTerm++){
2702                   Expr *pE = pTerm->pExpr;
2703                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
2704                       pE->iColumn==pExpr->iColumn ){
2705                     pCol->iSorterColumn = j;
2706                     break;
2707                   }
2708                 }
2709               }
2710               if( pCol->iSorterColumn<0 ){
2711                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
2712               }
2713             }
2714             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
2715             ** because it was there before or because we just created it).
2716             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
2717             ** pAggInfo->aCol[] entry.
2718             */
2719             pExpr->pAggInfo = pAggInfo;
2720             pExpr->op = TK_AGG_COLUMN;
2721             pExpr->iAgg = k;
2722             break;
2723           } /* endif pExpr->iTable==pItem->iCursor */
2724         } /* end loop over pSrcList */
2725       }
2726       return 1;
2727     }
2728     case TK_AGG_FUNCTION: {
2729       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
2730       ** to be ignored */
2731       if( pNC->nDepth==0 ){
2732         /* Check to see if pExpr is a duplicate of another aggregate
2733         ** function that is already in the pAggInfo structure
2734         */
2735         struct AggInfo_func *pItem = pAggInfo->aFunc;
2736         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
2737           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
2738             break;
2739           }
2740         }
2741         if( i>=pAggInfo->nFunc ){
2742           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
2743           */
2744           u8 enc = ENC(pParse->db);
2745           i = addAggInfoFunc(pParse->db, pAggInfo);
2746           if( i>=0 ){
2747             pItem = &pAggInfo->aFunc[i];
2748             pItem->pExpr = pExpr;
2749             pItem->iMem = pParse->nMem++;
2750             pItem->pFunc = sqlite3FindFunction(pParse->db,
2751                    (char*)pExpr->token.z, pExpr->token.n,
2752                    pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
2753             if( pExpr->flags & EP_Distinct ){
2754               pItem->iDistinct = pParse->nTab++;
2755             }else{
2756               pItem->iDistinct = -1;
2757             }
2758           }
2759         }
2760         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
2761         */
2762         pExpr->iAgg = i;
2763         pExpr->pAggInfo = pAggInfo;
2764         return 1;
2765       }
2766     }
2767   }
2768 
2769   /* Recursively walk subqueries looking for TK_COLUMN nodes that need
2770   ** to be changed to TK_AGG_COLUMN.  But increment nDepth so that
2771   ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
2772   */
2773   if( pExpr->pSelect ){
2774     pNC->nDepth++;
2775     walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
2776     pNC->nDepth--;
2777   }
2778   return 0;
2779 }
2780 
2781 /*
2782 ** Analyze the given expression looking for aggregate functions and
2783 ** for variables that need to be added to the pParse->aAgg[] array.
2784 ** Make additional entries to the pParse->aAgg[] array as necessary.
2785 **
2786 ** This routine should only be called after the expression has been
2787 ** analyzed by sqlite3ExprResolveNames().
2788 **
2789 ** If errors are seen, leave an error message in zErrMsg and return
2790 ** the number of errors.
2791 */
2792 int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
2793   int nErr = pNC->pParse->nErr;
2794   walkExprTree(pExpr, analyzeAggregate, pNC);
2795   return pNC->pParse->nErr - nErr;
2796 }
2797 
2798 /*
2799 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
2800 ** expression list.  Return the number of errors.
2801 **
2802 ** If an error is found, the analysis is cut short.
2803 */
2804 int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
2805   struct ExprList_item *pItem;
2806   int i;
2807   int nErr = 0;
2808   if( pList ){
2809     for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){
2810       nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
2811     }
2812   }
2813   return nErr;
2814 }
2815