1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 ** 15 ** $Id: expr.c,v 1.319 2007/12/13 21:54:11 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 #include <ctype.h> 19 20 /* 21 ** Return the 'affinity' of the expression pExpr if any. 22 ** 23 ** If pExpr is a column, a reference to a column via an 'AS' alias, 24 ** or a sub-select with a column as the return value, then the 25 ** affinity of that column is returned. Otherwise, 0x00 is returned, 26 ** indicating no affinity for the expression. 27 ** 28 ** i.e. the WHERE clause expresssions in the following statements all 29 ** have an affinity: 30 ** 31 ** CREATE TABLE t1(a); 32 ** SELECT * FROM t1 WHERE a; 33 ** SELECT a AS b FROM t1 WHERE b; 34 ** SELECT * FROM t1 WHERE (select a from t1); 35 */ 36 char sqlite3ExprAffinity(Expr *pExpr){ 37 int op = pExpr->op; 38 if( op==TK_SELECT ){ 39 return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); 40 } 41 #ifndef SQLITE_OMIT_CAST 42 if( op==TK_CAST ){ 43 return sqlite3AffinityType(&pExpr->token); 44 } 45 #endif 46 return pExpr->affinity; 47 } 48 49 /* 50 ** Set the collating sequence for expression pExpr to be the collating 51 ** sequence named by pToken. Return a pointer to the revised expression. 52 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 53 ** flag. An explicit collating sequence will override implicit 54 ** collating sequences. 55 */ 56 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){ 57 char *zColl = 0; /* Dequoted name of collation sequence */ 58 CollSeq *pColl; 59 zColl = sqlite3NameFromToken(pParse->db, pName); 60 if( pExpr && zColl ){ 61 pColl = sqlite3LocateCollSeq(pParse, zColl, -1); 62 if( pColl ){ 63 pExpr->pColl = pColl; 64 pExpr->flags |= EP_ExpCollate; 65 } 66 } 67 sqlite3_free(zColl); 68 return pExpr; 69 } 70 71 /* 72 ** Return the default collation sequence for the expression pExpr. If 73 ** there is no default collation type, return 0. 74 */ 75 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 76 CollSeq *pColl = 0; 77 if( pExpr ){ 78 int op; 79 pColl = pExpr->pColl; 80 op = pExpr->op; 81 if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){ 82 return sqlite3ExprCollSeq(pParse, pExpr->pLeft); 83 } 84 } 85 if( sqlite3CheckCollSeq(pParse, pColl) ){ 86 pColl = 0; 87 } 88 return pColl; 89 } 90 91 /* 92 ** pExpr is an operand of a comparison operator. aff2 is the 93 ** type affinity of the other operand. This routine returns the 94 ** type affinity that should be used for the comparison operator. 95 */ 96 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 97 char aff1 = sqlite3ExprAffinity(pExpr); 98 if( aff1 && aff2 ){ 99 /* Both sides of the comparison are columns. If one has numeric 100 ** affinity, use that. Otherwise use no affinity. 101 */ 102 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 103 return SQLITE_AFF_NUMERIC; 104 }else{ 105 return SQLITE_AFF_NONE; 106 } 107 }else if( !aff1 && !aff2 ){ 108 /* Neither side of the comparison is a column. Compare the 109 ** results directly. 110 */ 111 return SQLITE_AFF_NONE; 112 }else{ 113 /* One side is a column, the other is not. Use the columns affinity. */ 114 assert( aff1==0 || aff2==0 ); 115 return (aff1 + aff2); 116 } 117 } 118 119 /* 120 ** pExpr is a comparison operator. Return the type affinity that should 121 ** be applied to both operands prior to doing the comparison. 122 */ 123 static char comparisonAffinity(Expr *pExpr){ 124 char aff; 125 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 126 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 127 pExpr->op==TK_NE ); 128 assert( pExpr->pLeft ); 129 aff = sqlite3ExprAffinity(pExpr->pLeft); 130 if( pExpr->pRight ){ 131 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 132 } 133 else if( pExpr->pSelect ){ 134 aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); 135 } 136 else if( !aff ){ 137 aff = SQLITE_AFF_NONE; 138 } 139 return aff; 140 } 141 142 /* 143 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 144 ** idx_affinity is the affinity of an indexed column. Return true 145 ** if the index with affinity idx_affinity may be used to implement 146 ** the comparison in pExpr. 147 */ 148 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 149 char aff = comparisonAffinity(pExpr); 150 switch( aff ){ 151 case SQLITE_AFF_NONE: 152 return 1; 153 case SQLITE_AFF_TEXT: 154 return idx_affinity==SQLITE_AFF_TEXT; 155 default: 156 return sqlite3IsNumericAffinity(idx_affinity); 157 } 158 } 159 160 /* 161 ** Return the P1 value that should be used for a binary comparison 162 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 163 ** If jumpIfNull is true, then set the low byte of the returned 164 ** P1 value to tell the opcode to jump if either expression 165 ** evaluates to NULL. 166 */ 167 static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 168 char aff = sqlite3ExprAffinity(pExpr2); 169 return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0); 170 } 171 172 /* 173 ** Return a pointer to the collation sequence that should be used by 174 ** a binary comparison operator comparing pLeft and pRight. 175 ** 176 ** If the left hand expression has a collating sequence type, then it is 177 ** used. Otherwise the collation sequence for the right hand expression 178 ** is used, or the default (BINARY) if neither expression has a collating 179 ** type. 180 ** 181 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 182 ** it is not considered. 183 */ 184 CollSeq *sqlite3BinaryCompareCollSeq( 185 Parse *pParse, 186 Expr *pLeft, 187 Expr *pRight 188 ){ 189 CollSeq *pColl; 190 assert( pLeft ); 191 if( pLeft->flags & EP_ExpCollate ){ 192 assert( pLeft->pColl ); 193 pColl = pLeft->pColl; 194 }else if( pRight && pRight->flags & EP_ExpCollate ){ 195 assert( pRight->pColl ); 196 pColl = pRight->pColl; 197 }else{ 198 pColl = sqlite3ExprCollSeq(pParse, pLeft); 199 if( !pColl ){ 200 pColl = sqlite3ExprCollSeq(pParse, pRight); 201 } 202 } 203 return pColl; 204 } 205 206 /* 207 ** Generate code for a comparison operator. 208 */ 209 static int codeCompare( 210 Parse *pParse, /* The parsing (and code generating) context */ 211 Expr *pLeft, /* The left operand */ 212 Expr *pRight, /* The right operand */ 213 int opcode, /* The comparison opcode */ 214 int dest, /* Jump here if true. */ 215 int jumpIfNull /* If true, jump if either operand is NULL */ 216 ){ 217 int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull); 218 CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 219 return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ); 220 } 221 222 /* 223 ** Construct a new expression node and return a pointer to it. Memory 224 ** for this node is obtained from sqlite3_malloc(). The calling function 225 ** is responsible for making sure the node eventually gets freed. 226 */ 227 Expr *sqlite3Expr( 228 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 229 int op, /* Expression opcode */ 230 Expr *pLeft, /* Left operand */ 231 Expr *pRight, /* Right operand */ 232 const Token *pToken /* Argument token */ 233 ){ 234 Expr *pNew; 235 pNew = sqlite3DbMallocZero(db, sizeof(Expr)); 236 if( pNew==0 ){ 237 /* When malloc fails, delete pLeft and pRight. Expressions passed to 238 ** this function must always be allocated with sqlite3Expr() for this 239 ** reason. 240 */ 241 sqlite3ExprDelete(pLeft); 242 sqlite3ExprDelete(pRight); 243 return 0; 244 } 245 pNew->op = op; 246 pNew->pLeft = pLeft; 247 pNew->pRight = pRight; 248 pNew->iAgg = -1; 249 if( pToken ){ 250 assert( pToken->dyn==0 ); 251 pNew->span = pNew->token = *pToken; 252 }else if( pLeft ){ 253 if( pRight ){ 254 sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); 255 if( pRight->flags & EP_ExpCollate ){ 256 pNew->flags |= EP_ExpCollate; 257 pNew->pColl = pRight->pColl; 258 } 259 } 260 if( pLeft->flags & EP_ExpCollate ){ 261 pNew->flags |= EP_ExpCollate; 262 pNew->pColl = pLeft->pColl; 263 } 264 } 265 266 sqlite3ExprSetHeight(pNew); 267 return pNew; 268 } 269 270 /* 271 ** Works like sqlite3Expr() except that it takes an extra Parse* 272 ** argument and notifies the associated connection object if malloc fails. 273 */ 274 Expr *sqlite3PExpr( 275 Parse *pParse, /* Parsing context */ 276 int op, /* Expression opcode */ 277 Expr *pLeft, /* Left operand */ 278 Expr *pRight, /* Right operand */ 279 const Token *pToken /* Argument token */ 280 ){ 281 return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken); 282 } 283 284 /* 285 ** When doing a nested parse, you can include terms in an expression 286 ** that look like this: #0 #1 #2 ... These terms refer to elements 287 ** on the stack. "#0" means the top of the stack. 288 ** "#1" means the next down on the stack. And so forth. 289 ** 290 ** This routine is called by the parser to deal with on of those terms. 291 ** It immediately generates code to store the value in a memory location. 292 ** The returns an expression that will code to extract the value from 293 ** that memory location as needed. 294 */ 295 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ 296 Vdbe *v = pParse->pVdbe; 297 Expr *p; 298 int depth; 299 if( pParse->nested==0 ){ 300 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); 301 return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); 302 } 303 if( v==0 ) return 0; 304 p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken); 305 if( p==0 ){ 306 return 0; /* Malloc failed */ 307 } 308 depth = atoi((char*)&pToken->z[1]); 309 p->iTable = pParse->nMem++; 310 sqlite3VdbeAddOp(v, OP_Dup, depth, 0); 311 sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1); 312 return p; 313 } 314 315 /* 316 ** Join two expressions using an AND operator. If either expression is 317 ** NULL, then just return the other expression. 318 */ 319 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 320 if( pLeft==0 ){ 321 return pRight; 322 }else if( pRight==0 ){ 323 return pLeft; 324 }else{ 325 return sqlite3Expr(db, TK_AND, pLeft, pRight, 0); 326 } 327 } 328 329 /* 330 ** Set the Expr.span field of the given expression to span all 331 ** text between the two given tokens. 332 */ 333 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ 334 assert( pRight!=0 ); 335 assert( pLeft!=0 ); 336 if( pExpr && pRight->z && pLeft->z ){ 337 assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 ); 338 if( pLeft->dyn==0 && pRight->dyn==0 ){ 339 pExpr->span.z = pLeft->z; 340 pExpr->span.n = pRight->n + (pRight->z - pLeft->z); 341 }else{ 342 pExpr->span.z = 0; 343 } 344 } 345 } 346 347 /* 348 ** Construct a new expression node for a function with multiple 349 ** arguments. 350 */ 351 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 352 Expr *pNew; 353 assert( pToken ); 354 pNew = sqlite3DbMallocZero(pParse->db, sizeof(Expr) ); 355 if( pNew==0 ){ 356 sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */ 357 return 0; 358 } 359 pNew->op = TK_FUNCTION; 360 pNew->pList = pList; 361 assert( pToken->dyn==0 ); 362 pNew->token = *pToken; 363 pNew->span = pNew->token; 364 365 sqlite3ExprSetHeight(pNew); 366 return pNew; 367 } 368 369 /* 370 ** Assign a variable number to an expression that encodes a wildcard 371 ** in the original SQL statement. 372 ** 373 ** Wildcards consisting of a single "?" are assigned the next sequential 374 ** variable number. 375 ** 376 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 377 ** sure "nnn" is not too be to avoid a denial of service attack when 378 ** the SQL statement comes from an external source. 379 ** 380 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number 381 ** as the previous instance of the same wildcard. Or if this is the first 382 ** instance of the wildcard, the next sequenial variable number is 383 ** assigned. 384 */ 385 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 386 Token *pToken; 387 sqlite3 *db = pParse->db; 388 389 if( pExpr==0 ) return; 390 pToken = &pExpr->token; 391 assert( pToken->n>=1 ); 392 assert( pToken->z!=0 ); 393 assert( pToken->z[0]!=0 ); 394 if( pToken->n==1 ){ 395 /* Wildcard of the form "?". Assign the next variable number */ 396 pExpr->iTable = ++pParse->nVar; 397 }else if( pToken->z[0]=='?' ){ 398 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 399 ** use it as the variable number */ 400 int i; 401 pExpr->iTable = i = atoi((char*)&pToken->z[1]); 402 if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){ 403 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 404 SQLITE_MAX_VARIABLE_NUMBER); 405 } 406 if( i>pParse->nVar ){ 407 pParse->nVar = i; 408 } 409 }else{ 410 /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable 411 ** number as the prior appearance of the same name, or if the name 412 ** has never appeared before, reuse the same variable number 413 */ 414 int i, n; 415 n = pToken->n; 416 for(i=0; i<pParse->nVarExpr; i++){ 417 Expr *pE; 418 if( (pE = pParse->apVarExpr[i])!=0 419 && pE->token.n==n 420 && memcmp(pE->token.z, pToken->z, n)==0 ){ 421 pExpr->iTable = pE->iTable; 422 break; 423 } 424 } 425 if( i>=pParse->nVarExpr ){ 426 pExpr->iTable = ++pParse->nVar; 427 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ 428 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; 429 pParse->apVarExpr = 430 sqlite3DbReallocOrFree( 431 db, 432 pParse->apVarExpr, 433 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) 434 ); 435 } 436 if( !db->mallocFailed ){ 437 assert( pParse->apVarExpr!=0 ); 438 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; 439 } 440 } 441 } 442 if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){ 443 sqlite3ErrorMsg(pParse, "too many SQL variables"); 444 } 445 } 446 447 /* 448 ** Recursively delete an expression tree. 449 */ 450 void sqlite3ExprDelete(Expr *p){ 451 if( p==0 ) return; 452 if( p->span.dyn ) sqlite3_free((char*)p->span.z); 453 if( p->token.dyn ) sqlite3_free((char*)p->token.z); 454 sqlite3ExprDelete(p->pLeft); 455 sqlite3ExprDelete(p->pRight); 456 sqlite3ExprListDelete(p->pList); 457 sqlite3SelectDelete(p->pSelect); 458 sqlite3_free(p); 459 } 460 461 /* 462 ** The Expr.token field might be a string literal that is quoted. 463 ** If so, remove the quotation marks. 464 */ 465 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){ 466 if( ExprHasAnyProperty(p, EP_Dequoted) ){ 467 return; 468 } 469 ExprSetProperty(p, EP_Dequoted); 470 if( p->token.dyn==0 ){ 471 sqlite3TokenCopy(db, &p->token, &p->token); 472 } 473 sqlite3Dequote((char*)p->token.z); 474 } 475 476 477 /* 478 ** The following group of routines make deep copies of expressions, 479 ** expression lists, ID lists, and select statements. The copies can 480 ** be deleted (by being passed to their respective ...Delete() routines) 481 ** without effecting the originals. 482 ** 483 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 484 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 485 ** by subsequent calls to sqlite*ListAppend() routines. 486 ** 487 ** Any tables that the SrcList might point to are not duplicated. 488 */ 489 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){ 490 Expr *pNew; 491 if( p==0 ) return 0; 492 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 493 if( pNew==0 ) return 0; 494 memcpy(pNew, p, sizeof(*pNew)); 495 if( p->token.z!=0 ){ 496 pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n); 497 pNew->token.dyn = 1; 498 }else{ 499 assert( pNew->token.z==0 ); 500 } 501 pNew->span.z = 0; 502 pNew->pLeft = sqlite3ExprDup(db, p->pLeft); 503 pNew->pRight = sqlite3ExprDup(db, p->pRight); 504 pNew->pList = sqlite3ExprListDup(db, p->pList); 505 pNew->pSelect = sqlite3SelectDup(db, p->pSelect); 506 return pNew; 507 } 508 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){ 509 if( pTo->dyn ) sqlite3_free((char*)pTo->z); 510 if( pFrom->z ){ 511 pTo->n = pFrom->n; 512 pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n); 513 pTo->dyn = 1; 514 }else{ 515 pTo->z = 0; 516 } 517 } 518 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){ 519 ExprList *pNew; 520 struct ExprList_item *pItem, *pOldItem; 521 int i; 522 if( p==0 ) return 0; 523 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 524 if( pNew==0 ) return 0; 525 pNew->iECursor = 0; 526 pNew->nExpr = pNew->nAlloc = p->nExpr; 527 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); 528 if( pItem==0 ){ 529 sqlite3_free(pNew); 530 return 0; 531 } 532 pOldItem = p->a; 533 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 534 Expr *pNewExpr, *pOldExpr; 535 pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr); 536 if( pOldExpr->span.z!=0 && pNewExpr ){ 537 /* Always make a copy of the span for top-level expressions in the 538 ** expression list. The logic in SELECT processing that determines 539 ** the names of columns in the result set needs this information */ 540 sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span); 541 } 542 assert( pNewExpr==0 || pNewExpr->span.z!=0 543 || pOldExpr->span.z==0 544 || db->mallocFailed ); 545 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 546 pItem->sortOrder = pOldItem->sortOrder; 547 pItem->isAgg = pOldItem->isAgg; 548 pItem->done = 0; 549 } 550 return pNew; 551 } 552 553 /* 554 ** If cursors, triggers, views and subqueries are all omitted from 555 ** the build, then none of the following routines, except for 556 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 557 ** called with a NULL argument. 558 */ 559 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 560 || !defined(SQLITE_OMIT_SUBQUERY) 561 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){ 562 SrcList *pNew; 563 int i; 564 int nByte; 565 if( p==0 ) return 0; 566 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 567 pNew = sqlite3DbMallocRaw(db, nByte ); 568 if( pNew==0 ) return 0; 569 pNew->nSrc = pNew->nAlloc = p->nSrc; 570 for(i=0; i<p->nSrc; i++){ 571 struct SrcList_item *pNewItem = &pNew->a[i]; 572 struct SrcList_item *pOldItem = &p->a[i]; 573 Table *pTab; 574 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 575 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 576 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 577 pNewItem->jointype = pOldItem->jointype; 578 pNewItem->iCursor = pOldItem->iCursor; 579 pNewItem->isPopulated = pOldItem->isPopulated; 580 pTab = pNewItem->pTab = pOldItem->pTab; 581 if( pTab ){ 582 pTab->nRef++; 583 } 584 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect); 585 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn); 586 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 587 pNewItem->colUsed = pOldItem->colUsed; 588 } 589 return pNew; 590 } 591 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 592 IdList *pNew; 593 int i; 594 if( p==0 ) return 0; 595 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 596 if( pNew==0 ) return 0; 597 pNew->nId = pNew->nAlloc = p->nId; 598 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 599 if( pNew->a==0 ){ 600 sqlite3_free(pNew); 601 return 0; 602 } 603 for(i=0; i<p->nId; i++){ 604 struct IdList_item *pNewItem = &pNew->a[i]; 605 struct IdList_item *pOldItem = &p->a[i]; 606 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 607 pNewItem->idx = pOldItem->idx; 608 } 609 return pNew; 610 } 611 Select *sqlite3SelectDup(sqlite3 *db, Select *p){ 612 Select *pNew; 613 if( p==0 ) return 0; 614 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 615 if( pNew==0 ) return 0; 616 pNew->isDistinct = p->isDistinct; 617 pNew->pEList = sqlite3ExprListDup(db, p->pEList); 618 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc); 619 pNew->pWhere = sqlite3ExprDup(db, p->pWhere); 620 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy); 621 pNew->pHaving = sqlite3ExprDup(db, p->pHaving); 622 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy); 623 pNew->op = p->op; 624 pNew->pPrior = sqlite3SelectDup(db, p->pPrior); 625 pNew->pLimit = sqlite3ExprDup(db, p->pLimit); 626 pNew->pOffset = sqlite3ExprDup(db, p->pOffset); 627 pNew->iLimit = -1; 628 pNew->iOffset = -1; 629 pNew->isResolved = p->isResolved; 630 pNew->isAgg = p->isAgg; 631 pNew->usesEphm = 0; 632 pNew->disallowOrderBy = 0; 633 pNew->pRightmost = 0; 634 pNew->addrOpenEphm[0] = -1; 635 pNew->addrOpenEphm[1] = -1; 636 pNew->addrOpenEphm[2] = -1; 637 return pNew; 638 } 639 #else 640 Select *sqlite3SelectDup(sqlite3 *db, Select *p){ 641 assert( p==0 ); 642 return 0; 643 } 644 #endif 645 646 647 /* 648 ** Add a new element to the end of an expression list. If pList is 649 ** initially NULL, then create a new expression list. 650 */ 651 ExprList *sqlite3ExprListAppend( 652 Parse *pParse, /* Parsing context */ 653 ExprList *pList, /* List to which to append. Might be NULL */ 654 Expr *pExpr, /* Expression to be appended */ 655 Token *pName /* AS keyword for the expression */ 656 ){ 657 sqlite3 *db = pParse->db; 658 if( pList==0 ){ 659 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 660 if( pList==0 ){ 661 goto no_mem; 662 } 663 assert( pList->nAlloc==0 ); 664 } 665 if( pList->nAlloc<=pList->nExpr ){ 666 struct ExprList_item *a; 667 int n = pList->nAlloc*2 + 4; 668 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); 669 if( a==0 ){ 670 goto no_mem; 671 } 672 pList->a = a; 673 pList->nAlloc = n; 674 } 675 assert( pList->a!=0 ); 676 if( pExpr || pName ){ 677 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 678 memset(pItem, 0, sizeof(*pItem)); 679 pItem->zName = sqlite3NameFromToken(db, pName); 680 pItem->pExpr = pExpr; 681 } 682 return pList; 683 684 no_mem: 685 /* Avoid leaking memory if malloc has failed. */ 686 sqlite3ExprDelete(pExpr); 687 sqlite3ExprListDelete(pList); 688 return 0; 689 } 690 691 /* 692 ** If the expression list pEList contains more than iLimit elements, 693 ** leave an error message in pParse. 694 */ 695 void sqlite3ExprListCheckLength( 696 Parse *pParse, 697 ExprList *pEList, 698 int iLimit, 699 const char *zObject 700 ){ 701 if( pEList && pEList->nExpr>iLimit ){ 702 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 703 } 704 } 705 706 707 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 708 /* The following three functions, heightOfExpr(), heightOfExprList() 709 ** and heightOfSelect(), are used to determine the maximum height 710 ** of any expression tree referenced by the structure passed as the 711 ** first argument. 712 ** 713 ** If this maximum height is greater than the current value pointed 714 ** to by pnHeight, the second parameter, then set *pnHeight to that 715 ** value. 716 */ 717 static void heightOfExpr(Expr *p, int *pnHeight){ 718 if( p ){ 719 if( p->nHeight>*pnHeight ){ 720 *pnHeight = p->nHeight; 721 } 722 } 723 } 724 static void heightOfExprList(ExprList *p, int *pnHeight){ 725 if( p ){ 726 int i; 727 for(i=0; i<p->nExpr; i++){ 728 heightOfExpr(p->a[i].pExpr, pnHeight); 729 } 730 } 731 } 732 static void heightOfSelect(Select *p, int *pnHeight){ 733 if( p ){ 734 heightOfExpr(p->pWhere, pnHeight); 735 heightOfExpr(p->pHaving, pnHeight); 736 heightOfExpr(p->pLimit, pnHeight); 737 heightOfExpr(p->pOffset, pnHeight); 738 heightOfExprList(p->pEList, pnHeight); 739 heightOfExprList(p->pGroupBy, pnHeight); 740 heightOfExprList(p->pOrderBy, pnHeight); 741 heightOfSelect(p->pPrior, pnHeight); 742 } 743 } 744 745 /* 746 ** Set the Expr.nHeight variable in the structure passed as an 747 ** argument. An expression with no children, Expr.pList or 748 ** Expr.pSelect member has a height of 1. Any other expression 749 ** has a height equal to the maximum height of any other 750 ** referenced Expr plus one. 751 */ 752 void sqlite3ExprSetHeight(Expr *p){ 753 int nHeight = 0; 754 heightOfExpr(p->pLeft, &nHeight); 755 heightOfExpr(p->pRight, &nHeight); 756 heightOfExprList(p->pList, &nHeight); 757 heightOfSelect(p->pSelect, &nHeight); 758 p->nHeight = nHeight + 1; 759 } 760 761 /* 762 ** Return the maximum height of any expression tree referenced 763 ** by the select statement passed as an argument. 764 */ 765 int sqlite3SelectExprHeight(Select *p){ 766 int nHeight = 0; 767 heightOfSelect(p, &nHeight); 768 return nHeight; 769 } 770 #endif 771 772 /* 773 ** Delete an entire expression list. 774 */ 775 void sqlite3ExprListDelete(ExprList *pList){ 776 int i; 777 struct ExprList_item *pItem; 778 if( pList==0 ) return; 779 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 780 assert( pList->nExpr<=pList->nAlloc ); 781 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 782 sqlite3ExprDelete(pItem->pExpr); 783 sqlite3_free(pItem->zName); 784 } 785 sqlite3_free(pList->a); 786 sqlite3_free(pList); 787 } 788 789 /* 790 ** Walk an expression tree. Call xFunc for each node visited. 791 ** 792 ** The return value from xFunc determines whether the tree walk continues. 793 ** 0 means continue walking the tree. 1 means do not walk children 794 ** of the current node but continue with siblings. 2 means abandon 795 ** the tree walk completely. 796 ** 797 ** The return value from this routine is 1 to abandon the tree walk 798 ** and 0 to continue. 799 ** 800 ** NOTICE: This routine does *not* descend into subqueries. 801 */ 802 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); 803 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ 804 int rc; 805 if( pExpr==0 ) return 0; 806 rc = (*xFunc)(pArg, pExpr); 807 if( rc==0 ){ 808 if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; 809 if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; 810 if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; 811 } 812 return rc>1; 813 } 814 815 /* 816 ** Call walkExprTree() for every expression in list p. 817 */ 818 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ 819 int i; 820 struct ExprList_item *pItem; 821 if( !p ) return 0; 822 for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ 823 if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; 824 } 825 return 0; 826 } 827 828 /* 829 ** Call walkExprTree() for every expression in Select p, not including 830 ** expressions that are part of sub-selects in any FROM clause or the LIMIT 831 ** or OFFSET expressions.. 832 */ 833 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ 834 walkExprList(p->pEList, xFunc, pArg); 835 walkExprTree(p->pWhere, xFunc, pArg); 836 walkExprList(p->pGroupBy, xFunc, pArg); 837 walkExprTree(p->pHaving, xFunc, pArg); 838 walkExprList(p->pOrderBy, xFunc, pArg); 839 if( p->pPrior ){ 840 walkSelectExpr(p->pPrior, xFunc, pArg); 841 } 842 return 0; 843 } 844 845 846 /* 847 ** This routine is designed as an xFunc for walkExprTree(). 848 ** 849 ** pArg is really a pointer to an integer. If we can tell by looking 850 ** at pExpr that the expression that contains pExpr is not a constant 851 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk. 852 ** If pExpr does does not disqualify the expression from being a constant 853 ** then do nothing. 854 ** 855 ** After walking the whole tree, if no nodes are found that disqualify 856 ** the expression as constant, then we assume the whole expression 857 ** is constant. See sqlite3ExprIsConstant() for additional information. 858 */ 859 static int exprNodeIsConstant(void *pArg, Expr *pExpr){ 860 int *pN = (int*)pArg; 861 862 /* If *pArg is 3 then any term of the expression that comes from 863 ** the ON or USING clauses of a join disqualifies the expression 864 ** from being considered constant. */ 865 if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 866 *pN = 0; 867 return 2; 868 } 869 870 switch( pExpr->op ){ 871 /* Consider functions to be constant if all their arguments are constant 872 ** and *pArg==2 */ 873 case TK_FUNCTION: 874 if( (*pN)==2 ) return 0; 875 /* Fall through */ 876 case TK_ID: 877 case TK_COLUMN: 878 case TK_DOT: 879 case TK_AGG_FUNCTION: 880 case TK_AGG_COLUMN: 881 #ifndef SQLITE_OMIT_SUBQUERY 882 case TK_SELECT: 883 case TK_EXISTS: 884 #endif 885 *pN = 0; 886 return 2; 887 case TK_IN: 888 if( pExpr->pSelect ){ 889 *pN = 0; 890 return 2; 891 } 892 default: 893 return 0; 894 } 895 } 896 897 /* 898 ** Walk an expression tree. Return 1 if the expression is constant 899 ** and 0 if it involves variables or function calls. 900 ** 901 ** For the purposes of this function, a double-quoted string (ex: "abc") 902 ** is considered a variable but a single-quoted string (ex: 'abc') is 903 ** a constant. 904 */ 905 int sqlite3ExprIsConstant(Expr *p){ 906 int isConst = 1; 907 walkExprTree(p, exprNodeIsConstant, &isConst); 908 return isConst; 909 } 910 911 /* 912 ** Walk an expression tree. Return 1 if the expression is constant 913 ** that does no originate from the ON or USING clauses of a join. 914 ** Return 0 if it involves variables or function calls or terms from 915 ** an ON or USING clause. 916 */ 917 int sqlite3ExprIsConstantNotJoin(Expr *p){ 918 int isConst = 3; 919 walkExprTree(p, exprNodeIsConstant, &isConst); 920 return isConst!=0; 921 } 922 923 /* 924 ** Walk an expression tree. Return 1 if the expression is constant 925 ** or a function call with constant arguments. Return and 0 if there 926 ** are any variables. 927 ** 928 ** For the purposes of this function, a double-quoted string (ex: "abc") 929 ** is considered a variable but a single-quoted string (ex: 'abc') is 930 ** a constant. 931 */ 932 int sqlite3ExprIsConstantOrFunction(Expr *p){ 933 int isConst = 2; 934 walkExprTree(p, exprNodeIsConstant, &isConst); 935 return isConst!=0; 936 } 937 938 /* 939 ** If the expression p codes a constant integer that is small enough 940 ** to fit in a 32-bit integer, return 1 and put the value of the integer 941 ** in *pValue. If the expression is not an integer or if it is too big 942 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 943 */ 944 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 945 switch( p->op ){ 946 case TK_INTEGER: { 947 if( sqlite3GetInt32((char*)p->token.z, pValue) ){ 948 return 1; 949 } 950 break; 951 } 952 case TK_UPLUS: { 953 return sqlite3ExprIsInteger(p->pLeft, pValue); 954 } 955 case TK_UMINUS: { 956 int v; 957 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 958 *pValue = -v; 959 return 1; 960 } 961 break; 962 } 963 default: break; 964 } 965 return 0; 966 } 967 968 /* 969 ** Return TRUE if the given string is a row-id column name. 970 */ 971 int sqlite3IsRowid(const char *z){ 972 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 973 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 974 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 975 return 0; 976 } 977 978 /* 979 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up 980 ** that name in the set of source tables in pSrcList and make the pExpr 981 ** expression node refer back to that source column. The following changes 982 ** are made to pExpr: 983 ** 984 ** pExpr->iDb Set the index in db->aDb[] of the database holding 985 ** the table. 986 ** pExpr->iTable Set to the cursor number for the table obtained 987 ** from pSrcList. 988 ** pExpr->iColumn Set to the column number within the table. 989 ** pExpr->op Set to TK_COLUMN. 990 ** pExpr->pLeft Any expression this points to is deleted 991 ** pExpr->pRight Any expression this points to is deleted. 992 ** 993 ** The pDbToken is the name of the database (the "X"). This value may be 994 ** NULL meaning that name is of the form Y.Z or Z. Any available database 995 ** can be used. The pTableToken is the name of the table (the "Y"). This 996 ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it 997 ** means that the form of the name is Z and that columns from any table 998 ** can be used. 999 ** 1000 ** If the name cannot be resolved unambiguously, leave an error message 1001 ** in pParse and return non-zero. Return zero on success. 1002 */ 1003 static int lookupName( 1004 Parse *pParse, /* The parsing context */ 1005 Token *pDbToken, /* Name of the database containing table, or NULL */ 1006 Token *pTableToken, /* Name of table containing column, or NULL */ 1007 Token *pColumnToken, /* Name of the column. */ 1008 NameContext *pNC, /* The name context used to resolve the name */ 1009 Expr *pExpr /* Make this EXPR node point to the selected column */ 1010 ){ 1011 char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ 1012 char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ 1013 char *zCol = 0; /* Name of the column. The "Z" */ 1014 int i, j; /* Loop counters */ 1015 int cnt = 0; /* Number of matching column names */ 1016 int cntTab = 0; /* Number of matching table names */ 1017 sqlite3 *db = pParse->db; /* The database */ 1018 struct SrcList_item *pItem; /* Use for looping over pSrcList items */ 1019 struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ 1020 NameContext *pTopNC = pNC; /* First namecontext in the list */ 1021 Schema *pSchema = 0; /* Schema of the expression */ 1022 1023 assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ 1024 zDb = sqlite3NameFromToken(db, pDbToken); 1025 zTab = sqlite3NameFromToken(db, pTableToken); 1026 zCol = sqlite3NameFromToken(db, pColumnToken); 1027 if( db->mallocFailed ){ 1028 goto lookupname_end; 1029 } 1030 1031 pExpr->iTable = -1; 1032 while( pNC && cnt==0 ){ 1033 ExprList *pEList; 1034 SrcList *pSrcList = pNC->pSrcList; 1035 1036 if( pSrcList ){ 1037 for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ 1038 Table *pTab; 1039 int iDb; 1040 Column *pCol; 1041 1042 pTab = pItem->pTab; 1043 assert( pTab!=0 ); 1044 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1045 assert( pTab->nCol>0 ); 1046 if( zTab ){ 1047 if( pItem->zAlias ){ 1048 char *zTabName = pItem->zAlias; 1049 if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 1050 }else{ 1051 char *zTabName = pTab->zName; 1052 if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 1053 if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){ 1054 continue; 1055 } 1056 } 1057 } 1058 if( 0==(cntTab++) ){ 1059 pExpr->iTable = pItem->iCursor; 1060 pSchema = pTab->pSchema; 1061 pMatch = pItem; 1062 } 1063 for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ 1064 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 1065 const char *zColl = pTab->aCol[j].zColl; 1066 IdList *pUsing; 1067 cnt++; 1068 pExpr->iTable = pItem->iCursor; 1069 pMatch = pItem; 1070 pSchema = pTab->pSchema; 1071 /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ 1072 pExpr->iColumn = j==pTab->iPKey ? -1 : j; 1073 pExpr->affinity = pTab->aCol[j].affinity; 1074 if( (pExpr->flags & EP_ExpCollate)==0 ){ 1075 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); 1076 } 1077 if( i<pSrcList->nSrc-1 ){ 1078 if( pItem[1].jointype & JT_NATURAL ){ 1079 /* If this match occurred in the left table of a natural join, 1080 ** then skip the right table to avoid a duplicate match */ 1081 pItem++; 1082 i++; 1083 }else if( (pUsing = pItem[1].pUsing)!=0 ){ 1084 /* If this match occurs on a column that is in the USING clause 1085 ** of a join, skip the search of the right table of the join 1086 ** to avoid a duplicate match there. */ 1087 int k; 1088 for(k=0; k<pUsing->nId; k++){ 1089 if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ 1090 pItem++; 1091 i++; 1092 break; 1093 } 1094 } 1095 } 1096 } 1097 break; 1098 } 1099 } 1100 } 1101 } 1102 1103 #ifndef SQLITE_OMIT_TRIGGER 1104 /* If we have not already resolved the name, then maybe 1105 ** it is a new.* or old.* trigger argument reference 1106 */ 1107 if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ 1108 TriggerStack *pTriggerStack = pParse->trigStack; 1109 Table *pTab = 0; 1110 if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ 1111 pExpr->iTable = pTriggerStack->newIdx; 1112 assert( pTriggerStack->pTab ); 1113 pTab = pTriggerStack->pTab; 1114 }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ 1115 pExpr->iTable = pTriggerStack->oldIdx; 1116 assert( pTriggerStack->pTab ); 1117 pTab = pTriggerStack->pTab; 1118 } 1119 1120 if( pTab ){ 1121 int iCol; 1122 Column *pCol = pTab->aCol; 1123 1124 pSchema = pTab->pSchema; 1125 cntTab++; 1126 for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) { 1127 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 1128 const char *zColl = pTab->aCol[iCol].zColl; 1129 cnt++; 1130 pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol; 1131 pExpr->affinity = pTab->aCol[iCol].affinity; 1132 if( (pExpr->flags & EP_ExpCollate)==0 ){ 1133 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); 1134 } 1135 pExpr->pTab = pTab; 1136 break; 1137 } 1138 } 1139 } 1140 } 1141 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ 1142 1143 /* 1144 ** Perhaps the name is a reference to the ROWID 1145 */ 1146 if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ 1147 cnt = 1; 1148 pExpr->iColumn = -1; 1149 pExpr->affinity = SQLITE_AFF_INTEGER; 1150 } 1151 1152 /* 1153 ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z 1154 ** might refer to an result-set alias. This happens, for example, when 1155 ** we are resolving names in the WHERE clause of the following command: 1156 ** 1157 ** SELECT a+b AS x FROM table WHERE x<10; 1158 ** 1159 ** In cases like this, replace pExpr with a copy of the expression that 1160 ** forms the result set entry ("a+b" in the example) and return immediately. 1161 ** Note that the expression in the result set should have already been 1162 ** resolved by the time the WHERE clause is resolved. 1163 */ 1164 if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ 1165 for(j=0; j<pEList->nExpr; j++){ 1166 char *zAs = pEList->a[j].zName; 1167 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ 1168 Expr *pDup, *pOrig; 1169 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 1170 assert( pExpr->pList==0 ); 1171 assert( pExpr->pSelect==0 ); 1172 pOrig = pEList->a[j].pExpr; 1173 if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){ 1174 sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); 1175 sqlite3_free(zCol); 1176 return 2; 1177 } 1178 pDup = sqlite3ExprDup(db, pOrig); 1179 if( pExpr->flags & EP_ExpCollate ){ 1180 pDup->pColl = pExpr->pColl; 1181 pDup->flags |= EP_ExpCollate; 1182 } 1183 if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z); 1184 if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z); 1185 memcpy(pExpr, pDup, sizeof(*pExpr)); 1186 sqlite3_free(pDup); 1187 cnt = 1; 1188 pMatch = 0; 1189 assert( zTab==0 && zDb==0 ); 1190 goto lookupname_end_2; 1191 } 1192 } 1193 } 1194 1195 /* Advance to the next name context. The loop will exit when either 1196 ** we have a match (cnt>0) or when we run out of name contexts. 1197 */ 1198 if( cnt==0 ){ 1199 pNC = pNC->pNext; 1200 } 1201 } 1202 1203 /* 1204 ** If X and Y are NULL (in other words if only the column name Z is 1205 ** supplied) and the value of Z is enclosed in double-quotes, then 1206 ** Z is a string literal if it doesn't match any column names. In that 1207 ** case, we need to return right away and not make any changes to 1208 ** pExpr. 1209 ** 1210 ** Because no reference was made to outer contexts, the pNC->nRef 1211 ** fields are not changed in any context. 1212 */ 1213 if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ 1214 sqlite3_free(zCol); 1215 return 0; 1216 } 1217 1218 /* 1219 ** cnt==0 means there was not match. cnt>1 means there were two or 1220 ** more matches. Either way, we have an error. 1221 */ 1222 if( cnt!=1 ){ 1223 char *z = 0; 1224 char *zErr; 1225 zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s"; 1226 if( zDb ){ 1227 sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0); 1228 }else if( zTab ){ 1229 sqlite3SetString(&z, zTab, ".", zCol, (char*)0); 1230 }else{ 1231 z = sqlite3StrDup(zCol); 1232 } 1233 if( z ){ 1234 sqlite3ErrorMsg(pParse, zErr, z); 1235 sqlite3_free(z); 1236 pTopNC->nErr++; 1237 }else{ 1238 db->mallocFailed = 1; 1239 } 1240 } 1241 1242 /* If a column from a table in pSrcList is referenced, then record 1243 ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes 1244 ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the 1245 ** column number is greater than the number of bits in the bitmask 1246 ** then set the high-order bit of the bitmask. 1247 */ 1248 if( pExpr->iColumn>=0 && pMatch!=0 ){ 1249 int n = pExpr->iColumn; 1250 if( n>=sizeof(Bitmask)*8 ){ 1251 n = sizeof(Bitmask)*8-1; 1252 } 1253 assert( pMatch->iCursor==pExpr->iTable ); 1254 pMatch->colUsed |= ((Bitmask)1)<<n; 1255 } 1256 1257 lookupname_end: 1258 /* Clean up and return 1259 */ 1260 sqlite3_free(zDb); 1261 sqlite3_free(zTab); 1262 sqlite3ExprDelete(pExpr->pLeft); 1263 pExpr->pLeft = 0; 1264 sqlite3ExprDelete(pExpr->pRight); 1265 pExpr->pRight = 0; 1266 pExpr->op = TK_COLUMN; 1267 lookupname_end_2: 1268 sqlite3_free(zCol); 1269 if( cnt==1 ){ 1270 assert( pNC!=0 ); 1271 sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList); 1272 if( pMatch && !pMatch->pSelect ){ 1273 pExpr->pTab = pMatch->pTab; 1274 } 1275 /* Increment the nRef value on all name contexts from TopNC up to 1276 ** the point where the name matched. */ 1277 for(;;){ 1278 assert( pTopNC!=0 ); 1279 pTopNC->nRef++; 1280 if( pTopNC==pNC ) break; 1281 pTopNC = pTopNC->pNext; 1282 } 1283 return 0; 1284 } else { 1285 return 1; 1286 } 1287 } 1288 1289 /* 1290 ** This routine is designed as an xFunc for walkExprTree(). 1291 ** 1292 ** Resolve symbolic names into TK_COLUMN operators for the current 1293 ** node in the expression tree. Return 0 to continue the search down 1294 ** the tree or 2 to abort the tree walk. 1295 ** 1296 ** This routine also does error checking and name resolution for 1297 ** function names. The operator for aggregate functions is changed 1298 ** to TK_AGG_FUNCTION. 1299 */ 1300 static int nameResolverStep(void *pArg, Expr *pExpr){ 1301 NameContext *pNC = (NameContext*)pArg; 1302 Parse *pParse; 1303 1304 if( pExpr==0 ) return 1; 1305 assert( pNC!=0 ); 1306 pParse = pNC->pParse; 1307 1308 if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; 1309 ExprSetProperty(pExpr, EP_Resolved); 1310 #ifndef NDEBUG 1311 if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ 1312 SrcList *pSrcList = pNC->pSrcList; 1313 int i; 1314 for(i=0; i<pNC->pSrcList->nSrc; i++){ 1315 assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); 1316 } 1317 } 1318 #endif 1319 switch( pExpr->op ){ 1320 /* Double-quoted strings (ex: "abc") are used as identifiers if 1321 ** possible. Otherwise they remain as strings. Single-quoted 1322 ** strings (ex: 'abc') are always string literals. 1323 */ 1324 case TK_STRING: { 1325 if( pExpr->token.z[0]=='\'' ) break; 1326 /* Fall thru into the TK_ID case if this is a double-quoted string */ 1327 } 1328 /* A lone identifier is the name of a column. 1329 */ 1330 case TK_ID: { 1331 lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); 1332 return 1; 1333 } 1334 1335 /* A table name and column name: ID.ID 1336 ** Or a database, table and column: ID.ID.ID 1337 */ 1338 case TK_DOT: { 1339 Token *pColumn; 1340 Token *pTable; 1341 Token *pDb; 1342 Expr *pRight; 1343 1344 /* if( pSrcList==0 ) break; */ 1345 pRight = pExpr->pRight; 1346 if( pRight->op==TK_ID ){ 1347 pDb = 0; 1348 pTable = &pExpr->pLeft->token; 1349 pColumn = &pRight->token; 1350 }else{ 1351 assert( pRight->op==TK_DOT ); 1352 pDb = &pExpr->pLeft->token; 1353 pTable = &pRight->pLeft->token; 1354 pColumn = &pRight->pRight->token; 1355 } 1356 lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); 1357 return 1; 1358 } 1359 1360 /* Resolve function names 1361 */ 1362 case TK_CONST_FUNC: 1363 case TK_FUNCTION: { 1364 ExprList *pList = pExpr->pList; /* The argument list */ 1365 int n = pList ? pList->nExpr : 0; /* Number of arguments */ 1366 int no_such_func = 0; /* True if no such function exists */ 1367 int wrong_num_args = 0; /* True if wrong number of arguments */ 1368 int is_agg = 0; /* True if is an aggregate function */ 1369 int i; 1370 int auth; /* Authorization to use the function */ 1371 int nId; /* Number of characters in function name */ 1372 const char *zId; /* The function name. */ 1373 FuncDef *pDef; /* Information about the function */ 1374 int enc = ENC(pParse->db); /* The database encoding */ 1375 1376 zId = (char*)pExpr->token.z; 1377 nId = pExpr->token.n; 1378 pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); 1379 if( pDef==0 ){ 1380 pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); 1381 if( pDef==0 ){ 1382 no_such_func = 1; 1383 }else{ 1384 wrong_num_args = 1; 1385 } 1386 }else{ 1387 is_agg = pDef->xFunc==0; 1388 } 1389 #ifndef SQLITE_OMIT_AUTHORIZATION 1390 if( pDef ){ 1391 auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); 1392 if( auth!=SQLITE_OK ){ 1393 if( auth==SQLITE_DENY ){ 1394 sqlite3ErrorMsg(pParse, "not authorized to use function: %s", 1395 pDef->zName); 1396 pNC->nErr++; 1397 } 1398 pExpr->op = TK_NULL; 1399 return 1; 1400 } 1401 } 1402 #endif 1403 if( is_agg && !pNC->allowAgg ){ 1404 sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); 1405 pNC->nErr++; 1406 is_agg = 0; 1407 }else if( no_such_func ){ 1408 sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); 1409 pNC->nErr++; 1410 }else if( wrong_num_args ){ 1411 sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", 1412 nId, zId); 1413 pNC->nErr++; 1414 } 1415 if( is_agg ){ 1416 pExpr->op = TK_AGG_FUNCTION; 1417 pNC->hasAgg = 1; 1418 } 1419 if( is_agg ) pNC->allowAgg = 0; 1420 for(i=0; pNC->nErr==0 && i<n; i++){ 1421 walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC); 1422 } 1423 if( is_agg ) pNC->allowAgg = 1; 1424 /* FIX ME: Compute pExpr->affinity based on the expected return 1425 ** type of the function 1426 */ 1427 return is_agg; 1428 } 1429 #ifndef SQLITE_OMIT_SUBQUERY 1430 case TK_SELECT: 1431 case TK_EXISTS: 1432 #endif 1433 case TK_IN: { 1434 if( pExpr->pSelect ){ 1435 int nRef = pNC->nRef; 1436 #ifndef SQLITE_OMIT_CHECK 1437 if( pNC->isCheck ){ 1438 sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); 1439 } 1440 #endif 1441 sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); 1442 assert( pNC->nRef>=nRef ); 1443 if( nRef!=pNC->nRef ){ 1444 ExprSetProperty(pExpr, EP_VarSelect); 1445 } 1446 } 1447 break; 1448 } 1449 #ifndef SQLITE_OMIT_CHECK 1450 case TK_VARIABLE: { 1451 if( pNC->isCheck ){ 1452 sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); 1453 } 1454 break; 1455 } 1456 #endif 1457 } 1458 return 0; 1459 } 1460 1461 /* 1462 ** This routine walks an expression tree and resolves references to 1463 ** table columns. Nodes of the form ID.ID or ID resolve into an 1464 ** index to the table in the table list and a column offset. The 1465 ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable 1466 ** value is changed to the index of the referenced table in pTabList 1467 ** plus the "base" value. The base value will ultimately become the 1468 ** VDBE cursor number for a cursor that is pointing into the referenced 1469 ** table. The Expr.iColumn value is changed to the index of the column 1470 ** of the referenced table. The Expr.iColumn value for the special 1471 ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an 1472 ** alias for ROWID. 1473 ** 1474 ** Also resolve function names and check the functions for proper 1475 ** usage. Make sure all function names are recognized and all functions 1476 ** have the correct number of arguments. Leave an error message 1477 ** in pParse->zErrMsg if anything is amiss. Return the number of errors. 1478 ** 1479 ** If the expression contains aggregate functions then set the EP_Agg 1480 ** property on the expression. 1481 */ 1482 int sqlite3ExprResolveNames( 1483 NameContext *pNC, /* Namespace to resolve expressions in. */ 1484 Expr *pExpr /* The expression to be analyzed. */ 1485 ){ 1486 int savedHasAgg; 1487 if( pExpr==0 ) return 0; 1488 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 1489 if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){ 1490 sqlite3ErrorMsg(pNC->pParse, 1491 "Expression tree is too large (maximum depth %d)", 1492 SQLITE_MAX_EXPR_DEPTH 1493 ); 1494 return 1; 1495 } 1496 pNC->pParse->nHeight += pExpr->nHeight; 1497 #endif 1498 savedHasAgg = pNC->hasAgg; 1499 pNC->hasAgg = 0; 1500 walkExprTree(pExpr, nameResolverStep, pNC); 1501 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 1502 pNC->pParse->nHeight -= pExpr->nHeight; 1503 #endif 1504 if( pNC->nErr>0 ){ 1505 ExprSetProperty(pExpr, EP_Error); 1506 } 1507 if( pNC->hasAgg ){ 1508 ExprSetProperty(pExpr, EP_Agg); 1509 }else if( savedHasAgg ){ 1510 pNC->hasAgg = 1; 1511 } 1512 return ExprHasProperty(pExpr, EP_Error); 1513 } 1514 1515 /* 1516 ** A pointer instance of this structure is used to pass information 1517 ** through walkExprTree into codeSubqueryStep(). 1518 */ 1519 typedef struct QueryCoder QueryCoder; 1520 struct QueryCoder { 1521 Parse *pParse; /* The parsing context */ 1522 NameContext *pNC; /* Namespace of first enclosing query */ 1523 }; 1524 1525 #ifdef SQLITE_TEST 1526 int sqlite3_enable_in_opt = 1; 1527 #else 1528 #define sqlite3_enable_in_opt 1 1529 #endif 1530 1531 /* 1532 ** This function is used by the implementation of the IN (...) operator. 1533 ** It's job is to find or create a b-tree structure that may be used 1534 ** either to test for membership of the (...) set or to iterate through 1535 ** its members, skipping duplicates. 1536 ** 1537 ** The cursor opened on the structure (database table, database index 1538 ** or ephermal table) is stored in pX->iTable before this function returns. 1539 ** The returned value indicates the structure type, as follows: 1540 ** 1541 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1542 ** IN_INDEX_INDEX - The cursor was opened on a database indec. 1543 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1544 ** populated epheremal table. 1545 ** 1546 ** An existing structure may only be used if the SELECT is of the simple 1547 ** form: 1548 ** 1549 ** SELECT <column> FROM <table> 1550 ** 1551 ** If the mustBeUnique parameter is false, the structure will be used 1552 ** for fast set membership tests. In this case an epheremal table must 1553 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1554 ** be found with <column> as its left-most column. 1555 ** 1556 ** If mustBeUnique is true, then the structure will be used to iterate 1557 ** through the set members, skipping any duplicates. In this case an 1558 ** epheremal table must be used unless the selected <column> is guaranteed 1559 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1560 ** is unique by virtue of a constraint or implicit index. 1561 */ 1562 #ifndef SQLITE_OMIT_SUBQUERY 1563 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int mustBeUnique){ 1564 Select *p; 1565 int eType = 0; 1566 int iTab = pParse->nTab++; 1567 1568 /* The follwing if(...) expression is true if the SELECT is of the 1569 ** simple form: 1570 ** 1571 ** SELECT <column> FROM <table> 1572 ** 1573 ** If this is the case, it may be possible to use an existing table 1574 ** or index instead of generating an epheremal table. 1575 */ 1576 if( sqlite3_enable_in_opt 1577 && (p=pX->pSelect) && !p->pPrior 1578 && !p->isDistinct && !p->isAgg && !p->pGroupBy 1579 && p->pSrc && p->pSrc->nSrc==1 && !p->pSrc->a[0].pSelect 1580 && !p->pSrc->a[0].pTab->pSelect 1581 && p->pEList->nExpr==1 && p->pEList->a[0].pExpr->op==TK_COLUMN 1582 && !p->pLimit && !p->pOffset && !p->pWhere 1583 ){ 1584 sqlite3 *db = pParse->db; 1585 Index *pIdx; 1586 Expr *pExpr = p->pEList->a[0].pExpr; 1587 int iCol = pExpr->iColumn; 1588 Vdbe *v = sqlite3GetVdbe(pParse); 1589 1590 /* This function is only called from two places. In both cases the vdbe 1591 ** has already been allocated. So assume sqlite3GetVdbe() is always 1592 ** successful here. 1593 */ 1594 assert(v); 1595 if( iCol<0 ){ 1596 int iMem = pParse->nMem++; 1597 int iAddr; 1598 Table *pTab = p->pSrc->a[0].pTab; 1599 int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1600 sqlite3VdbeUsesBtree(v, iDb); 1601 1602 sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0); 1603 iAddr = sqlite3VdbeAddOp(v, OP_If, 0, iMem); 1604 sqlite3VdbeAddOp(v, OP_MemInt, 1, iMem); 1605 1606 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1607 eType = IN_INDEX_ROWID; 1608 1609 sqlite3VdbeJumpHere(v, iAddr); 1610 }else{ 1611 /* The collation sequence used by the comparison. If an index is to 1612 ** be used in place of a temp-table, it must be ordered according 1613 ** to this collation sequence. 1614 */ 1615 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1616 1617 /* Check that the affinity that will be used to perform the 1618 ** comparison is the same as the affinity of the column. If 1619 ** it is not, it is not possible to use any index. 1620 */ 1621 Table *pTab = p->pSrc->a[0].pTab; 1622 char aff = comparisonAffinity(pX); 1623 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); 1624 1625 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1626 if( (pIdx->aiColumn[0]==iCol) 1627 && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0)) 1628 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1629 ){ 1630 int iDb; 1631 int iMem = pParse->nMem++; 1632 int iAddr; 1633 char *pKey; 1634 1635 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); 1636 iDb = sqlite3SchemaToIndex(db, pIdx->pSchema); 1637 sqlite3VdbeUsesBtree(v, iDb); 1638 1639 sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0); 1640 iAddr = sqlite3VdbeAddOp(v, OP_If, 0, iMem); 1641 sqlite3VdbeAddOp(v, OP_MemInt, 1, iMem); 1642 1643 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 1644 VdbeComment((v, "# %s", pIdx->zName)); 1645 sqlite3VdbeOp3(v,OP_OpenRead,iTab,pIdx->tnum,pKey,P3_KEYINFO_HANDOFF); 1646 eType = IN_INDEX_INDEX; 1647 sqlite3VdbeAddOp(v, OP_SetNumColumns, iTab, pIdx->nColumn); 1648 1649 sqlite3VdbeJumpHere(v, iAddr); 1650 } 1651 } 1652 } 1653 } 1654 1655 if( eType==0 ){ 1656 sqlite3CodeSubselect(pParse, pX); 1657 eType = IN_INDEX_EPH; 1658 }else{ 1659 pX->iTable = iTab; 1660 } 1661 return eType; 1662 } 1663 #endif 1664 1665 /* 1666 ** Generate code for scalar subqueries used as an expression 1667 ** and IN operators. Examples: 1668 ** 1669 ** (SELECT a FROM b) -- subquery 1670 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1671 ** x IN (4,5,11) -- IN operator with list on right-hand side 1672 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1673 ** 1674 ** The pExpr parameter describes the expression that contains the IN 1675 ** operator or subquery. 1676 */ 1677 #ifndef SQLITE_OMIT_SUBQUERY 1678 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 1679 int testAddr = 0; /* One-time test address */ 1680 Vdbe *v = sqlite3GetVdbe(pParse); 1681 if( v==0 ) return; 1682 1683 1684 /* This code must be run in its entirety every time it is encountered 1685 ** if any of the following is true: 1686 ** 1687 ** * The right-hand side is a correlated subquery 1688 ** * The right-hand side is an expression list containing variables 1689 ** * We are inside a trigger 1690 ** 1691 ** If all of the above are false, then we can run this code just once 1692 ** save the results, and reuse the same result on subsequent invocations. 1693 */ 1694 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ 1695 int mem = pParse->nMem++; 1696 sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0); 1697 testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0); 1698 assert( testAddr>0 || pParse->db->mallocFailed ); 1699 sqlite3VdbeAddOp(v, OP_MemInt, 1, mem); 1700 } 1701 1702 switch( pExpr->op ){ 1703 case TK_IN: { 1704 char affinity; 1705 KeyInfo keyInfo; 1706 int addr; /* Address of OP_OpenEphemeral instruction */ 1707 1708 affinity = sqlite3ExprAffinity(pExpr->pLeft); 1709 1710 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1711 ** expression it is handled the same way. A virtual table is 1712 ** filled with single-field index keys representing the results 1713 ** from the SELECT or the <exprlist>. 1714 ** 1715 ** If the 'x' expression is a column value, or the SELECT... 1716 ** statement returns a column value, then the affinity of that 1717 ** column is used to build the index keys. If both 'x' and the 1718 ** SELECT... statement are columns, then numeric affinity is used 1719 ** if either column has NUMERIC or INTEGER affinity. If neither 1720 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1721 ** is used. 1722 */ 1723 pExpr->iTable = pParse->nTab++; 1724 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0); 1725 memset(&keyInfo, 0, sizeof(keyInfo)); 1726 keyInfo.nField = 1; 1727 sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1); 1728 1729 if( pExpr->pSelect ){ 1730 /* Case 1: expr IN (SELECT ...) 1731 ** 1732 ** Generate code to write the results of the select into the temporary 1733 ** table allocated and opened above. 1734 */ 1735 int iParm = pExpr->iTable + (((int)affinity)<<16); 1736 ExprList *pEList; 1737 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1738 if( sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0) ){ 1739 return; 1740 } 1741 pEList = pExpr->pSelect->pEList; 1742 if( pEList && pEList->nExpr>0 ){ 1743 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1744 pEList->a[0].pExpr); 1745 } 1746 }else if( pExpr->pList ){ 1747 /* Case 2: expr IN (exprlist) 1748 ** 1749 ** For each expression, build an index key from the evaluation and 1750 ** store it in the temporary table. If <expr> is a column, then use 1751 ** that columns affinity when building index keys. If <expr> is not 1752 ** a column, use numeric affinity. 1753 */ 1754 int i; 1755 ExprList *pList = pExpr->pList; 1756 struct ExprList_item *pItem; 1757 1758 if( !affinity ){ 1759 affinity = SQLITE_AFF_NONE; 1760 } 1761 keyInfo.aColl[0] = pExpr->pLeft->pColl; 1762 1763 /* Loop through each expression in <exprlist>. */ 1764 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1765 Expr *pE2 = pItem->pExpr; 1766 1767 /* If the expression is not constant then we will need to 1768 ** disable the test that was generated above that makes sure 1769 ** this code only executes once. Because for a non-constant 1770 ** expression we need to rerun this code each time. 1771 */ 1772 if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){ 1773 sqlite3VdbeChangeToNoop(v, testAddr-1, 3); 1774 testAddr = 0; 1775 } 1776 1777 /* Evaluate the expression and insert it into the temp table */ 1778 sqlite3ExprCode(pParse, pE2); 1779 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); 1780 sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0); 1781 } 1782 } 1783 sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO); 1784 break; 1785 } 1786 1787 case TK_EXISTS: 1788 case TK_SELECT: { 1789 /* This has to be a scalar SELECT. Generate code to put the 1790 ** value of this select in a memory cell and record the number 1791 ** of the memory cell in iColumn. 1792 */ 1793 static const Token one = { (u8*)"1", 0, 1 }; 1794 Select *pSel; 1795 int iMem; 1796 int sop; 1797 1798 pExpr->iColumn = iMem = pParse->nMem++; 1799 pSel = pExpr->pSelect; 1800 if( pExpr->op==TK_SELECT ){ 1801 sop = SRT_Mem; 1802 sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0); 1803 VdbeComment((v, "# Init subquery result")); 1804 }else{ 1805 sop = SRT_Exists; 1806 sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem); 1807 VdbeComment((v, "# Init EXISTS result")); 1808 } 1809 sqlite3ExprDelete(pSel->pLimit); 1810 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); 1811 if( sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0) ){ 1812 return; 1813 } 1814 break; 1815 } 1816 } 1817 1818 if( testAddr ){ 1819 sqlite3VdbeJumpHere(v, testAddr); 1820 } 1821 1822 return; 1823 } 1824 #endif /* SQLITE_OMIT_SUBQUERY */ 1825 1826 /* 1827 ** Duplicate an 8-byte value 1828 */ 1829 static char *dup8bytes(Vdbe *v, const char *in){ 1830 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 1831 if( out ){ 1832 memcpy(out, in, 8); 1833 } 1834 return out; 1835 } 1836 1837 /* 1838 ** Generate an instruction that will put the floating point 1839 ** value described by z[0..n-1] on the stack. 1840 ** 1841 ** The z[] string will probably not be zero-terminated. But the 1842 ** z[n] character is guaranteed to be something that does not look 1843 ** like the continuation of the number. 1844 */ 1845 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag){ 1846 assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); 1847 if( z ){ 1848 double value; 1849 char *zV; 1850 assert( !isdigit(z[n]) ); 1851 sqlite3AtoF(z, &value); 1852 if( negateFlag ) value = -value; 1853 zV = dup8bytes(v, (char*)&value); 1854 sqlite3VdbeOp3(v, OP_Real, 0, 0, zV, P3_REAL); 1855 } 1856 } 1857 1858 1859 /* 1860 ** Generate an instruction that will put the integer describe by 1861 ** text z[0..n-1] on the stack. 1862 ** 1863 ** The z[] string will probably not be zero-terminated. But the 1864 ** z[n] character is guaranteed to be something that does not look 1865 ** like the continuation of the number. 1866 */ 1867 static void codeInteger(Vdbe *v, const char *z, int n, int negateFlag){ 1868 assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); 1869 if( z ){ 1870 int i; 1871 assert( !isdigit(z[n]) ); 1872 if( sqlite3GetInt32(z, &i) ){ 1873 if( negateFlag ) i = -i; 1874 sqlite3VdbeAddOp(v, OP_Integer, i, 0); 1875 }else if( sqlite3FitsIn64Bits(z, negateFlag) ){ 1876 i64 value; 1877 char *zV; 1878 sqlite3Atoi64(z, &value); 1879 if( negateFlag ) value = -value; 1880 zV = dup8bytes(v, (char*)&value); 1881 sqlite3VdbeOp3(v, OP_Int64, 0, 0, zV, P3_INT64); 1882 }else{ 1883 codeReal(v, z, n, negateFlag); 1884 } 1885 } 1886 } 1887 1888 1889 /* 1890 ** Generate code that will extract the iColumn-th column from 1891 ** table pTab and push that column value on the stack. There 1892 ** is an open cursor to pTab in iTable. If iColumn<0 then 1893 ** code is generated that extracts the rowid. 1894 */ 1895 void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){ 1896 if( iColumn<0 ){ 1897 int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid; 1898 sqlite3VdbeAddOp(v, op, iTable, 0); 1899 }else if( pTab==0 ){ 1900 sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn); 1901 }else{ 1902 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 1903 sqlite3VdbeAddOp(v, op, iTable, iColumn); 1904 sqlite3ColumnDefault(v, pTab, iColumn); 1905 #ifndef SQLITE_OMIT_FLOATING_POINT 1906 if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){ 1907 sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0); 1908 } 1909 #endif 1910 } 1911 } 1912 1913 /* 1914 ** Generate code into the current Vdbe to evaluate the given 1915 ** expression and leave the result on the top of stack. 1916 ** 1917 ** This code depends on the fact that certain token values (ex: TK_EQ) 1918 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 1919 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 1920 ** the make process cause these values to align. Assert()s in the code 1921 ** below verify that the numbers are aligned correctly. 1922 */ 1923 void sqlite3ExprCode(Parse *pParse, Expr *pExpr){ 1924 Vdbe *v = pParse->pVdbe; 1925 int op; 1926 int stackChng = 1; /* Amount of change to stack depth */ 1927 1928 if( v==0 ) return; 1929 if( pExpr==0 ){ 1930 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1931 return; 1932 } 1933 op = pExpr->op; 1934 switch( op ){ 1935 case TK_AGG_COLUMN: { 1936 AggInfo *pAggInfo = pExpr->pAggInfo; 1937 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 1938 if( !pAggInfo->directMode ){ 1939 sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0); 1940 break; 1941 }else if( pAggInfo->useSortingIdx ){ 1942 sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx, 1943 pCol->iSorterColumn); 1944 break; 1945 } 1946 /* Otherwise, fall thru into the TK_COLUMN case */ 1947 } 1948 case TK_COLUMN: { 1949 if( pExpr->iTable<0 ){ 1950 /* This only happens when coding check constraints */ 1951 assert( pParse->ckOffset>0 ); 1952 sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1); 1953 }else{ 1954 sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable); 1955 } 1956 break; 1957 } 1958 case TK_INTEGER: { 1959 codeInteger(v, (char*)pExpr->token.z, pExpr->token.n, 0); 1960 break; 1961 } 1962 case TK_FLOAT: { 1963 codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0); 1964 break; 1965 } 1966 case TK_STRING: { 1967 sqlite3DequoteExpr(pParse->db, pExpr); 1968 sqlite3VdbeOp3(v,OP_String8, 0, 0, (char*)pExpr->token.z, pExpr->token.n); 1969 break; 1970 } 1971 case TK_NULL: { 1972 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1973 break; 1974 } 1975 #ifndef SQLITE_OMIT_BLOB_LITERAL 1976 case TK_BLOB: { 1977 int n; 1978 const char *z; 1979 assert( TK_BLOB==OP_HexBlob ); 1980 n = pExpr->token.n - 3; 1981 z = (char*)pExpr->token.z + 2; 1982 assert( n>=0 ); 1983 if( n==0 ){ 1984 z = ""; 1985 } 1986 sqlite3VdbeOp3(v, op, 0, 0, z, n); 1987 break; 1988 } 1989 #endif 1990 case TK_VARIABLE: { 1991 sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0); 1992 if( pExpr->token.n>1 ){ 1993 sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n); 1994 } 1995 break; 1996 } 1997 case TK_REGISTER: { 1998 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0); 1999 break; 2000 } 2001 #ifndef SQLITE_OMIT_CAST 2002 case TK_CAST: { 2003 /* Expressions of the form: CAST(pLeft AS token) */ 2004 int aff, to_op; 2005 sqlite3ExprCode(pParse, pExpr->pLeft); 2006 aff = sqlite3AffinityType(&pExpr->token); 2007 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2008 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2009 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2010 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2011 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2012 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2013 sqlite3VdbeAddOp(v, to_op, 0, 0); 2014 stackChng = 0; 2015 break; 2016 } 2017 #endif /* SQLITE_OMIT_CAST */ 2018 case TK_LT: 2019 case TK_LE: 2020 case TK_GT: 2021 case TK_GE: 2022 case TK_NE: 2023 case TK_EQ: { 2024 assert( TK_LT==OP_Lt ); 2025 assert( TK_LE==OP_Le ); 2026 assert( TK_GT==OP_Gt ); 2027 assert( TK_GE==OP_Ge ); 2028 assert( TK_EQ==OP_Eq ); 2029 assert( TK_NE==OP_Ne ); 2030 sqlite3ExprCode(pParse, pExpr->pLeft); 2031 sqlite3ExprCode(pParse, pExpr->pRight); 2032 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0); 2033 stackChng = -1; 2034 break; 2035 } 2036 case TK_AND: 2037 case TK_OR: 2038 case TK_PLUS: 2039 case TK_STAR: 2040 case TK_MINUS: 2041 case TK_REM: 2042 case TK_BITAND: 2043 case TK_BITOR: 2044 case TK_SLASH: 2045 case TK_LSHIFT: 2046 case TK_RSHIFT: 2047 case TK_CONCAT: { 2048 assert( TK_AND==OP_And ); 2049 assert( TK_OR==OP_Or ); 2050 assert( TK_PLUS==OP_Add ); 2051 assert( TK_MINUS==OP_Subtract ); 2052 assert( TK_REM==OP_Remainder ); 2053 assert( TK_BITAND==OP_BitAnd ); 2054 assert( TK_BITOR==OP_BitOr ); 2055 assert( TK_SLASH==OP_Divide ); 2056 assert( TK_LSHIFT==OP_ShiftLeft ); 2057 assert( TK_RSHIFT==OP_ShiftRight ); 2058 assert( TK_CONCAT==OP_Concat ); 2059 sqlite3ExprCode(pParse, pExpr->pLeft); 2060 sqlite3ExprCode(pParse, pExpr->pRight); 2061 sqlite3VdbeAddOp(v, op, 0, 0); 2062 stackChng = -1; 2063 break; 2064 } 2065 case TK_UMINUS: { 2066 Expr *pLeft = pExpr->pLeft; 2067 assert( pLeft ); 2068 if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ 2069 Token *p = &pLeft->token; 2070 if( pLeft->op==TK_FLOAT ){ 2071 codeReal(v, (char*)p->z, p->n, 1); 2072 }else{ 2073 codeInteger(v, (char*)p->z, p->n, 1); 2074 } 2075 break; 2076 } 2077 /* Fall through into TK_NOT */ 2078 } 2079 case TK_BITNOT: 2080 case TK_NOT: { 2081 assert( TK_BITNOT==OP_BitNot ); 2082 assert( TK_NOT==OP_Not ); 2083 sqlite3ExprCode(pParse, pExpr->pLeft); 2084 sqlite3VdbeAddOp(v, op, 0, 0); 2085 stackChng = 0; 2086 break; 2087 } 2088 case TK_ISNULL: 2089 case TK_NOTNULL: { 2090 int dest; 2091 assert( TK_ISNULL==OP_IsNull ); 2092 assert( TK_NOTNULL==OP_NotNull ); 2093 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 2094 sqlite3ExprCode(pParse, pExpr->pLeft); 2095 dest = sqlite3VdbeCurrentAddr(v) + 2; 2096 sqlite3VdbeAddOp(v, op, 1, dest); 2097 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); 2098 stackChng = 0; 2099 break; 2100 } 2101 case TK_AGG_FUNCTION: { 2102 AggInfo *pInfo = pExpr->pAggInfo; 2103 if( pInfo==0 ){ 2104 sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", 2105 &pExpr->span); 2106 }else{ 2107 sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0); 2108 } 2109 break; 2110 } 2111 case TK_CONST_FUNC: 2112 case TK_FUNCTION: { 2113 ExprList *pList = pExpr->pList; 2114 int nExpr = pList ? pList->nExpr : 0; 2115 FuncDef *pDef; 2116 int nId; 2117 const char *zId; 2118 int constMask = 0; 2119 int i; 2120 sqlite3 *db = pParse->db; 2121 u8 enc = ENC(db); 2122 CollSeq *pColl = 0; 2123 2124 zId = (char*)pExpr->token.z; 2125 nId = pExpr->token.n; 2126 pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); 2127 assert( pDef!=0 ); 2128 nExpr = sqlite3ExprCodeExprList(pParse, pList); 2129 #ifndef SQLITE_OMIT_VIRTUALTABLE 2130 /* Possibly overload the function if the first argument is 2131 ** a virtual table column. 2132 ** 2133 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2134 ** second argument, not the first, as the argument to test to 2135 ** see if it is a column in a virtual table. This is done because 2136 ** the left operand of infix functions (the operand we want to 2137 ** control overloading) ends up as the second argument to the 2138 ** function. The expression "A glob B" is equivalent to 2139 ** "glob(B,A). We want to use the A in "A glob B" to test 2140 ** for function overloading. But we use the B term in "glob(B,A)". 2141 */ 2142 if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){ 2143 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr); 2144 }else if( nExpr>0 ){ 2145 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr); 2146 } 2147 #endif 2148 for(i=0; i<nExpr && i<32; i++){ 2149 if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ 2150 constMask |= (1<<i); 2151 } 2152 if( pDef->needCollSeq && !pColl ){ 2153 pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); 2154 } 2155 } 2156 if( pDef->needCollSeq ){ 2157 if( !pColl ) pColl = pParse->db->pDfltColl; 2158 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); 2159 } 2160 sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF); 2161 stackChng = 1-nExpr; 2162 break; 2163 } 2164 #ifndef SQLITE_OMIT_SUBQUERY 2165 case TK_EXISTS: 2166 case TK_SELECT: { 2167 if( pExpr->iColumn==0 ){ 2168 sqlite3CodeSubselect(pParse, pExpr); 2169 } 2170 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); 2171 VdbeComment((v, "# load subquery result")); 2172 break; 2173 } 2174 case TK_IN: { 2175 int addr; 2176 char affinity; 2177 int ckOffset = pParse->ckOffset; 2178 int eType; 2179 int iLabel = sqlite3VdbeMakeLabel(v); 2180 2181 eType = sqlite3FindInIndex(pParse, pExpr, 0); 2182 2183 /* Figure out the affinity to use to create a key from the results 2184 ** of the expression. affinityStr stores a static string suitable for 2185 ** P3 of OP_MakeRecord. 2186 */ 2187 affinity = comparisonAffinity(pExpr); 2188 2189 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 2190 pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0); 2191 2192 /* Code the <expr> from "<expr> IN (...)". The temporary table 2193 ** pExpr->iTable contains the values that make up the (...) set. 2194 */ 2195 sqlite3ExprCode(pParse, pExpr->pLeft); 2196 addr = sqlite3VdbeCurrentAddr(v); 2197 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4); /* addr + 0 */ 2198 sqlite3VdbeAddOp(v, OP_Pop, 2, 0); 2199 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 2200 sqlite3VdbeAddOp(v, OP_Goto, 0, iLabel); 2201 if( eType==IN_INDEX_ROWID ){ 2202 int iAddr = sqlite3VdbeCurrentAddr(v)+3; 2203 sqlite3VdbeAddOp(v, OP_MustBeInt, 1, iAddr); 2204 sqlite3VdbeAddOp(v, OP_NotExists, pExpr->iTable, iAddr); 2205 sqlite3VdbeAddOp(v, OP_Goto, pExpr->iTable, iLabel); 2206 }else{ 2207 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); /* addr + 4 */ 2208 sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, iLabel); 2209 } 2210 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */ 2211 sqlite3VdbeResolveLabel(v, iLabel); 2212 2213 break; 2214 } 2215 #endif 2216 case TK_BETWEEN: { 2217 Expr *pLeft = pExpr->pLeft; 2218 struct ExprList_item *pLItem = pExpr->pList->a; 2219 Expr *pRight = pLItem->pExpr; 2220 sqlite3ExprCode(pParse, pLeft); 2221 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 2222 sqlite3ExprCode(pParse, pRight); 2223 codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0); 2224 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 2225 pLItem++; 2226 pRight = pLItem->pExpr; 2227 sqlite3ExprCode(pParse, pRight); 2228 codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0); 2229 sqlite3VdbeAddOp(v, OP_And, 0, 0); 2230 break; 2231 } 2232 case TK_UPLUS: { 2233 sqlite3ExprCode(pParse, pExpr->pLeft); 2234 stackChng = 0; 2235 break; 2236 } 2237 case TK_CASE: { 2238 int expr_end_label; 2239 int jumpInst; 2240 int nExpr; 2241 int i; 2242 ExprList *pEList; 2243 struct ExprList_item *aListelem; 2244 2245 assert(pExpr->pList); 2246 assert((pExpr->pList->nExpr % 2) == 0); 2247 assert(pExpr->pList->nExpr > 0); 2248 pEList = pExpr->pList; 2249 aListelem = pEList->a; 2250 nExpr = pEList->nExpr; 2251 expr_end_label = sqlite3VdbeMakeLabel(v); 2252 if( pExpr->pLeft ){ 2253 sqlite3ExprCode(pParse, pExpr->pLeft); 2254 } 2255 for(i=0; i<nExpr; i=i+2){ 2256 sqlite3ExprCode(pParse, aListelem[i].pExpr); 2257 if( pExpr->pLeft ){ 2258 sqlite3VdbeAddOp(v, OP_Dup, 1, 1); 2259 jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr, 2260 OP_Ne, 0, 1); 2261 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2262 }else{ 2263 jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0); 2264 } 2265 sqlite3ExprCode(pParse, aListelem[i+1].pExpr); 2266 sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label); 2267 sqlite3VdbeJumpHere(v, jumpInst); 2268 } 2269 if( pExpr->pLeft ){ 2270 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2271 } 2272 if( pExpr->pRight ){ 2273 sqlite3ExprCode(pParse, pExpr->pRight); 2274 }else{ 2275 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 2276 } 2277 sqlite3VdbeResolveLabel(v, expr_end_label); 2278 break; 2279 } 2280 #ifndef SQLITE_OMIT_TRIGGER 2281 case TK_RAISE: { 2282 if( !pParse->trigStack ){ 2283 sqlite3ErrorMsg(pParse, 2284 "RAISE() may only be used within a trigger-program"); 2285 return; 2286 } 2287 if( pExpr->iColumn!=OE_Ignore ){ 2288 assert( pExpr->iColumn==OE_Rollback || 2289 pExpr->iColumn == OE_Abort || 2290 pExpr->iColumn == OE_Fail ); 2291 sqlite3DequoteExpr(pParse->db, pExpr); 2292 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 2293 (char*)pExpr->token.z, pExpr->token.n); 2294 } else { 2295 assert( pExpr->iColumn == OE_Ignore ); 2296 sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0); 2297 sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump); 2298 VdbeComment((v, "# raise(IGNORE)")); 2299 } 2300 stackChng = 0; 2301 break; 2302 } 2303 #endif 2304 } 2305 2306 if( pParse->ckOffset ){ 2307 pParse->ckOffset += stackChng; 2308 assert( pParse->ckOffset ); 2309 } 2310 } 2311 2312 #ifndef SQLITE_OMIT_TRIGGER 2313 /* 2314 ** Generate code that evalutes the given expression and leaves the result 2315 ** on the stack. See also sqlite3ExprCode(). 2316 ** 2317 ** This routine might also cache the result and modify the pExpr tree 2318 ** so that it will make use of the cached result on subsequent evaluations 2319 ** rather than evaluate the whole expression again. Trivial expressions are 2320 ** not cached. If the expression is cached, its result is stored in a 2321 ** memory location. 2322 */ 2323 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){ 2324 Vdbe *v = pParse->pVdbe; 2325 int iMem; 2326 int addr1, addr2; 2327 if( v==0 ) return; 2328 addr1 = sqlite3VdbeCurrentAddr(v); 2329 sqlite3ExprCode(pParse, pExpr); 2330 addr2 = sqlite3VdbeCurrentAddr(v); 2331 if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){ 2332 iMem = pExpr->iTable = pParse->nMem++; 2333 sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); 2334 pExpr->op = TK_REGISTER; 2335 } 2336 } 2337 #endif 2338 2339 /* 2340 ** Generate code that pushes the value of every element of the given 2341 ** expression list onto the stack. 2342 ** 2343 ** Return the number of elements pushed onto the stack. 2344 */ 2345 int sqlite3ExprCodeExprList( 2346 Parse *pParse, /* Parsing context */ 2347 ExprList *pList /* The expression list to be coded */ 2348 ){ 2349 struct ExprList_item *pItem; 2350 int i, n; 2351 if( pList==0 ) return 0; 2352 n = pList->nExpr; 2353 for(pItem=pList->a, i=n; i>0; i--, pItem++){ 2354 sqlite3ExprCode(pParse, pItem->pExpr); 2355 } 2356 return n; 2357 } 2358 2359 /* 2360 ** Generate code for a boolean expression such that a jump is made 2361 ** to the label "dest" if the expression is true but execution 2362 ** continues straight thru if the expression is false. 2363 ** 2364 ** If the expression evaluates to NULL (neither true nor false), then 2365 ** take the jump if the jumpIfNull flag is true. 2366 ** 2367 ** This code depends on the fact that certain token values (ex: TK_EQ) 2368 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 2369 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 2370 ** the make process cause these values to align. Assert()s in the code 2371 ** below verify that the numbers are aligned correctly. 2372 */ 2373 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2374 Vdbe *v = pParse->pVdbe; 2375 int op = 0; 2376 int ckOffset = pParse->ckOffset; 2377 if( v==0 || pExpr==0 ) return; 2378 op = pExpr->op; 2379 switch( op ){ 2380 case TK_AND: { 2381 int d2 = sqlite3VdbeMakeLabel(v); 2382 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull); 2383 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2384 sqlite3VdbeResolveLabel(v, d2); 2385 break; 2386 } 2387 case TK_OR: { 2388 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 2389 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2390 break; 2391 } 2392 case TK_NOT: { 2393 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 2394 break; 2395 } 2396 case TK_LT: 2397 case TK_LE: 2398 case TK_GT: 2399 case TK_GE: 2400 case TK_NE: 2401 case TK_EQ: { 2402 assert( TK_LT==OP_Lt ); 2403 assert( TK_LE==OP_Le ); 2404 assert( TK_GT==OP_Gt ); 2405 assert( TK_GE==OP_Ge ); 2406 assert( TK_EQ==OP_Eq ); 2407 assert( TK_NE==OP_Ne ); 2408 sqlite3ExprCode(pParse, pExpr->pLeft); 2409 sqlite3ExprCode(pParse, pExpr->pRight); 2410 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); 2411 break; 2412 } 2413 case TK_ISNULL: 2414 case TK_NOTNULL: { 2415 assert( TK_ISNULL==OP_IsNull ); 2416 assert( TK_NOTNULL==OP_NotNull ); 2417 sqlite3ExprCode(pParse, pExpr->pLeft); 2418 sqlite3VdbeAddOp(v, op, 1, dest); 2419 break; 2420 } 2421 case TK_BETWEEN: { 2422 /* The expression "x BETWEEN y AND z" is implemented as: 2423 ** 2424 ** 1 IF (x < y) GOTO 3 2425 ** 2 IF (x <= z) GOTO <dest> 2426 ** 3 ... 2427 */ 2428 int addr; 2429 Expr *pLeft = pExpr->pLeft; 2430 Expr *pRight = pExpr->pList->a[0].pExpr; 2431 sqlite3ExprCode(pParse, pLeft); 2432 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 2433 sqlite3ExprCode(pParse, pRight); 2434 addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull); 2435 2436 pRight = pExpr->pList->a[1].pExpr; 2437 sqlite3ExprCode(pParse, pRight); 2438 codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull); 2439 2440 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 2441 sqlite3VdbeJumpHere(v, addr); 2442 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2443 break; 2444 } 2445 default: { 2446 sqlite3ExprCode(pParse, pExpr); 2447 sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest); 2448 break; 2449 } 2450 } 2451 pParse->ckOffset = ckOffset; 2452 } 2453 2454 /* 2455 ** Generate code for a boolean expression such that a jump is made 2456 ** to the label "dest" if the expression is false but execution 2457 ** continues straight thru if the expression is true. 2458 ** 2459 ** If the expression evaluates to NULL (neither true nor false) then 2460 ** jump if jumpIfNull is true or fall through if jumpIfNull is false. 2461 */ 2462 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2463 Vdbe *v = pParse->pVdbe; 2464 int op = 0; 2465 int ckOffset = pParse->ckOffset; 2466 if( v==0 || pExpr==0 ) return; 2467 2468 /* The value of pExpr->op and op are related as follows: 2469 ** 2470 ** pExpr->op op 2471 ** --------- ---------- 2472 ** TK_ISNULL OP_NotNull 2473 ** TK_NOTNULL OP_IsNull 2474 ** TK_NE OP_Eq 2475 ** TK_EQ OP_Ne 2476 ** TK_GT OP_Le 2477 ** TK_LE OP_Gt 2478 ** TK_GE OP_Lt 2479 ** TK_LT OP_Ge 2480 ** 2481 ** For other values of pExpr->op, op is undefined and unused. 2482 ** The value of TK_ and OP_ constants are arranged such that we 2483 ** can compute the mapping above using the following expression. 2484 ** Assert()s verify that the computation is correct. 2485 */ 2486 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 2487 2488 /* Verify correct alignment of TK_ and OP_ constants 2489 */ 2490 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 2491 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 2492 assert( pExpr->op!=TK_NE || op==OP_Eq ); 2493 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 2494 assert( pExpr->op!=TK_LT || op==OP_Ge ); 2495 assert( pExpr->op!=TK_LE || op==OP_Gt ); 2496 assert( pExpr->op!=TK_GT || op==OP_Le ); 2497 assert( pExpr->op!=TK_GE || op==OP_Lt ); 2498 2499 switch( pExpr->op ){ 2500 case TK_AND: { 2501 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 2502 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 2503 break; 2504 } 2505 case TK_OR: { 2506 int d2 = sqlite3VdbeMakeLabel(v); 2507 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull); 2508 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 2509 sqlite3VdbeResolveLabel(v, d2); 2510 break; 2511 } 2512 case TK_NOT: { 2513 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 2514 break; 2515 } 2516 case TK_LT: 2517 case TK_LE: 2518 case TK_GT: 2519 case TK_GE: 2520 case TK_NE: 2521 case TK_EQ: { 2522 sqlite3ExprCode(pParse, pExpr->pLeft); 2523 sqlite3ExprCode(pParse, pExpr->pRight); 2524 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); 2525 break; 2526 } 2527 case TK_ISNULL: 2528 case TK_NOTNULL: { 2529 sqlite3ExprCode(pParse, pExpr->pLeft); 2530 sqlite3VdbeAddOp(v, op, 1, dest); 2531 break; 2532 } 2533 case TK_BETWEEN: { 2534 /* The expression is "x BETWEEN y AND z". It is implemented as: 2535 ** 2536 ** 1 IF (x >= y) GOTO 3 2537 ** 2 GOTO <dest> 2538 ** 3 IF (x > z) GOTO <dest> 2539 */ 2540 int addr; 2541 Expr *pLeft = pExpr->pLeft; 2542 Expr *pRight = pExpr->pList->a[0].pExpr; 2543 sqlite3ExprCode(pParse, pLeft); 2544 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 2545 sqlite3ExprCode(pParse, pRight); 2546 addr = sqlite3VdbeCurrentAddr(v); 2547 codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull); 2548 2549 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2550 sqlite3VdbeAddOp(v, OP_Goto, 0, dest); 2551 pRight = pExpr->pList->a[1].pExpr; 2552 sqlite3ExprCode(pParse, pRight); 2553 codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull); 2554 break; 2555 } 2556 default: { 2557 sqlite3ExprCode(pParse, pExpr); 2558 sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest); 2559 break; 2560 } 2561 } 2562 pParse->ckOffset = ckOffset; 2563 } 2564 2565 /* 2566 ** Do a deep comparison of two expression trees. Return TRUE (non-zero) 2567 ** if they are identical and return FALSE if they differ in any way. 2568 ** 2569 ** Sometimes this routine will return FALSE even if the two expressions 2570 ** really are equivalent. If we cannot prove that the expressions are 2571 ** identical, we return FALSE just to be safe. So if this routine 2572 ** returns false, then you do not really know for certain if the two 2573 ** expressions are the same. But if you get a TRUE return, then you 2574 ** can be sure the expressions are the same. In the places where 2575 ** this routine is used, it does not hurt to get an extra FALSE - that 2576 ** just might result in some slightly slower code. But returning 2577 ** an incorrect TRUE could lead to a malfunction. 2578 */ 2579 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 2580 int i; 2581 if( pA==0||pB==0 ){ 2582 return pB==pA; 2583 } 2584 if( pA->op!=pB->op ) return 0; 2585 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; 2586 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; 2587 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; 2588 if( pA->pList ){ 2589 if( pB->pList==0 ) return 0; 2590 if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; 2591 for(i=0; i<pA->pList->nExpr; i++){ 2592 if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ 2593 return 0; 2594 } 2595 } 2596 }else if( pB->pList ){ 2597 return 0; 2598 } 2599 if( pA->pSelect || pB->pSelect ) return 0; 2600 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; 2601 if( pA->op!=TK_COLUMN && pA->token.z ){ 2602 if( pB->token.z==0 ) return 0; 2603 if( pB->token.n!=pA->token.n ) return 0; 2604 if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ 2605 return 0; 2606 } 2607 } 2608 return 1; 2609 } 2610 2611 2612 /* 2613 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 2614 ** the new element. Return a negative number if malloc fails. 2615 */ 2616 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 2617 int i; 2618 pInfo->aCol = sqlite3ArrayAllocate( 2619 db, 2620 pInfo->aCol, 2621 sizeof(pInfo->aCol[0]), 2622 3, 2623 &pInfo->nColumn, 2624 &pInfo->nColumnAlloc, 2625 &i 2626 ); 2627 return i; 2628 } 2629 2630 /* 2631 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 2632 ** the new element. Return a negative number if malloc fails. 2633 */ 2634 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 2635 int i; 2636 pInfo->aFunc = sqlite3ArrayAllocate( 2637 db, 2638 pInfo->aFunc, 2639 sizeof(pInfo->aFunc[0]), 2640 3, 2641 &pInfo->nFunc, 2642 &pInfo->nFuncAlloc, 2643 &i 2644 ); 2645 return i; 2646 } 2647 2648 /* 2649 ** This is an xFunc for walkExprTree() used to implement 2650 ** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 2651 ** for additional information. 2652 ** 2653 ** This routine analyzes the aggregate function at pExpr. 2654 */ 2655 static int analyzeAggregate(void *pArg, Expr *pExpr){ 2656 int i; 2657 NameContext *pNC = (NameContext *)pArg; 2658 Parse *pParse = pNC->pParse; 2659 SrcList *pSrcList = pNC->pSrcList; 2660 AggInfo *pAggInfo = pNC->pAggInfo; 2661 2662 switch( pExpr->op ){ 2663 case TK_AGG_COLUMN: 2664 case TK_COLUMN: { 2665 /* Check to see if the column is in one of the tables in the FROM 2666 ** clause of the aggregate query */ 2667 if( pSrcList ){ 2668 struct SrcList_item *pItem = pSrcList->a; 2669 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 2670 struct AggInfo_col *pCol; 2671 if( pExpr->iTable==pItem->iCursor ){ 2672 /* If we reach this point, it means that pExpr refers to a table 2673 ** that is in the FROM clause of the aggregate query. 2674 ** 2675 ** Make an entry for the column in pAggInfo->aCol[] if there 2676 ** is not an entry there already. 2677 */ 2678 int k; 2679 pCol = pAggInfo->aCol; 2680 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 2681 if( pCol->iTable==pExpr->iTable && 2682 pCol->iColumn==pExpr->iColumn ){ 2683 break; 2684 } 2685 } 2686 if( (k>=pAggInfo->nColumn) 2687 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 2688 ){ 2689 pCol = &pAggInfo->aCol[k]; 2690 pCol->pTab = pExpr->pTab; 2691 pCol->iTable = pExpr->iTable; 2692 pCol->iColumn = pExpr->iColumn; 2693 pCol->iMem = pParse->nMem++; 2694 pCol->iSorterColumn = -1; 2695 pCol->pExpr = pExpr; 2696 if( pAggInfo->pGroupBy ){ 2697 int j, n; 2698 ExprList *pGB = pAggInfo->pGroupBy; 2699 struct ExprList_item *pTerm = pGB->a; 2700 n = pGB->nExpr; 2701 for(j=0; j<n; j++, pTerm++){ 2702 Expr *pE = pTerm->pExpr; 2703 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 2704 pE->iColumn==pExpr->iColumn ){ 2705 pCol->iSorterColumn = j; 2706 break; 2707 } 2708 } 2709 } 2710 if( pCol->iSorterColumn<0 ){ 2711 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 2712 } 2713 } 2714 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 2715 ** because it was there before or because we just created it). 2716 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 2717 ** pAggInfo->aCol[] entry. 2718 */ 2719 pExpr->pAggInfo = pAggInfo; 2720 pExpr->op = TK_AGG_COLUMN; 2721 pExpr->iAgg = k; 2722 break; 2723 } /* endif pExpr->iTable==pItem->iCursor */ 2724 } /* end loop over pSrcList */ 2725 } 2726 return 1; 2727 } 2728 case TK_AGG_FUNCTION: { 2729 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 2730 ** to be ignored */ 2731 if( pNC->nDepth==0 ){ 2732 /* Check to see if pExpr is a duplicate of another aggregate 2733 ** function that is already in the pAggInfo structure 2734 */ 2735 struct AggInfo_func *pItem = pAggInfo->aFunc; 2736 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 2737 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ 2738 break; 2739 } 2740 } 2741 if( i>=pAggInfo->nFunc ){ 2742 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 2743 */ 2744 u8 enc = ENC(pParse->db); 2745 i = addAggInfoFunc(pParse->db, pAggInfo); 2746 if( i>=0 ){ 2747 pItem = &pAggInfo->aFunc[i]; 2748 pItem->pExpr = pExpr; 2749 pItem->iMem = pParse->nMem++; 2750 pItem->pFunc = sqlite3FindFunction(pParse->db, 2751 (char*)pExpr->token.z, pExpr->token.n, 2752 pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); 2753 if( pExpr->flags & EP_Distinct ){ 2754 pItem->iDistinct = pParse->nTab++; 2755 }else{ 2756 pItem->iDistinct = -1; 2757 } 2758 } 2759 } 2760 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 2761 */ 2762 pExpr->iAgg = i; 2763 pExpr->pAggInfo = pAggInfo; 2764 return 1; 2765 } 2766 } 2767 } 2768 2769 /* Recursively walk subqueries looking for TK_COLUMN nodes that need 2770 ** to be changed to TK_AGG_COLUMN. But increment nDepth so that 2771 ** TK_AGG_FUNCTION nodes in subqueries will be unchanged. 2772 */ 2773 if( pExpr->pSelect ){ 2774 pNC->nDepth++; 2775 walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); 2776 pNC->nDepth--; 2777 } 2778 return 0; 2779 } 2780 2781 /* 2782 ** Analyze the given expression looking for aggregate functions and 2783 ** for variables that need to be added to the pParse->aAgg[] array. 2784 ** Make additional entries to the pParse->aAgg[] array as necessary. 2785 ** 2786 ** This routine should only be called after the expression has been 2787 ** analyzed by sqlite3ExprResolveNames(). 2788 ** 2789 ** If errors are seen, leave an error message in zErrMsg and return 2790 ** the number of errors. 2791 */ 2792 int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 2793 int nErr = pNC->pParse->nErr; 2794 walkExprTree(pExpr, analyzeAggregate, pNC); 2795 return pNC->pParse->nErr - nErr; 2796 } 2797 2798 /* 2799 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 2800 ** expression list. Return the number of errors. 2801 ** 2802 ** If an error is found, the analysis is cut short. 2803 */ 2804 int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 2805 struct ExprList_item *pItem; 2806 int i; 2807 int nErr = 0; 2808 if( pList ){ 2809 for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){ 2810 nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 2811 } 2812 } 2813 return nErr; 2814 } 2815