1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 pExpr = sqlite3ExprSkipCollate(pExpr); 48 if( pExpr->flags & EP_Generic ) return 0; 49 op = pExpr->op; 50 if( op==TK_SELECT ){ 51 assert( pExpr->flags&EP_xIsSelect ); 52 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 53 } 54 if( op==TK_REGISTER ) op = pExpr->op2; 55 #ifndef SQLITE_OMIT_CAST 56 if( op==TK_CAST ){ 57 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 58 return sqlite3AffinityType(pExpr->u.zToken, 0); 59 } 60 #endif 61 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){ 62 return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn); 63 } 64 if( op==TK_SELECT_COLUMN ){ 65 assert( pExpr->pLeft->flags&EP_xIsSelect ); 66 return sqlite3ExprAffinity( 67 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 68 ); 69 } 70 return pExpr->affinity; 71 } 72 73 /* 74 ** Set the collating sequence for expression pExpr to be the collating 75 ** sequence named by pToken. Return a pointer to a new Expr node that 76 ** implements the COLLATE operator. 77 ** 78 ** If a memory allocation error occurs, that fact is recorded in pParse->db 79 ** and the pExpr parameter is returned unchanged. 80 */ 81 Expr *sqlite3ExprAddCollateToken( 82 Parse *pParse, /* Parsing context */ 83 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 84 const Token *pCollName, /* Name of collating sequence */ 85 int dequote /* True to dequote pCollName */ 86 ){ 87 if( pCollName->n>0 ){ 88 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 89 if( pNew ){ 90 pNew->pLeft = pExpr; 91 pNew->flags |= EP_Collate|EP_Skip; 92 pExpr = pNew; 93 } 94 } 95 return pExpr; 96 } 97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 98 Token s; 99 assert( zC!=0 ); 100 sqlite3TokenInit(&s, (char*)zC); 101 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 102 } 103 104 /* 105 ** Skip over any TK_COLLATE operators and any unlikely() 106 ** or likelihood() function at the root of an expression. 107 */ 108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 109 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 110 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 111 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 112 assert( pExpr->x.pList->nExpr>0 ); 113 assert( pExpr->op==TK_FUNCTION ); 114 pExpr = pExpr->x.pList->a[0].pExpr; 115 }else{ 116 assert( pExpr->op==TK_COLLATE ); 117 pExpr = pExpr->pLeft; 118 } 119 } 120 return pExpr; 121 } 122 123 /* 124 ** Return the collation sequence for the expression pExpr. If 125 ** there is no defined collating sequence, return NULL. 126 ** 127 ** See also: sqlite3ExprNNCollSeq() 128 ** 129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 130 ** default collation if pExpr has no defined collation. 131 ** 132 ** The collating sequence might be determined by a COLLATE operator 133 ** or by the presence of a column with a defined collating sequence. 134 ** COLLATE operators take first precedence. Left operands take 135 ** precedence over right operands. 136 */ 137 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 138 sqlite3 *db = pParse->db; 139 CollSeq *pColl = 0; 140 Expr *p = pExpr; 141 while( p ){ 142 int op = p->op; 143 if( p->flags & EP_Generic ) break; 144 if( op==TK_CAST || op==TK_UPLUS ){ 145 p = p->pLeft; 146 continue; 147 } 148 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 149 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 150 break; 151 } 152 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 153 || op==TK_REGISTER || op==TK_TRIGGER) 154 && p->pTab!=0 155 ){ 156 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 157 ** a TK_COLUMN but was previously evaluated and cached in a register */ 158 int j = p->iColumn; 159 if( j>=0 ){ 160 const char *zColl = p->pTab->aCol[j].zColl; 161 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 162 } 163 break; 164 } 165 if( p->flags & EP_Collate ){ 166 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 167 p = p->pLeft; 168 }else{ 169 Expr *pNext = p->pRight; 170 /* The Expr.x union is never used at the same time as Expr.pRight */ 171 assert( p->x.pList==0 || p->pRight==0 ); 172 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 173 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 174 ** least one EP_Collate. Thus the following two ALWAYS. */ 175 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 176 int i; 177 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 178 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 179 pNext = p->x.pList->a[i].pExpr; 180 break; 181 } 182 } 183 } 184 p = pNext; 185 } 186 }else{ 187 break; 188 } 189 } 190 if( sqlite3CheckCollSeq(pParse, pColl) ){ 191 pColl = 0; 192 } 193 return pColl; 194 } 195 196 /* 197 ** Return the collation sequence for the expression pExpr. If 198 ** there is no defined collating sequence, return a pointer to the 199 ** defautl collation sequence. 200 ** 201 ** See also: sqlite3ExprCollSeq() 202 ** 203 ** The sqlite3ExprCollSeq() routine works the same except that it 204 ** returns NULL if there is no defined collation. 205 */ 206 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){ 207 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 208 if( p==0 ) p = pParse->db->pDfltColl; 209 assert( p!=0 ); 210 return p; 211 } 212 213 /* 214 ** Return TRUE if the two expressions have equivalent collating sequences. 215 */ 216 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){ 217 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 218 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 219 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 220 } 221 222 /* 223 ** pExpr is an operand of a comparison operator. aff2 is the 224 ** type affinity of the other operand. This routine returns the 225 ** type affinity that should be used for the comparison operator. 226 */ 227 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 228 char aff1 = sqlite3ExprAffinity(pExpr); 229 if( aff1 && aff2 ){ 230 /* Both sides of the comparison are columns. If one has numeric 231 ** affinity, use that. Otherwise use no affinity. 232 */ 233 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 234 return SQLITE_AFF_NUMERIC; 235 }else{ 236 return SQLITE_AFF_BLOB; 237 } 238 }else if( !aff1 && !aff2 ){ 239 /* Neither side of the comparison is a column. Compare the 240 ** results directly. 241 */ 242 return SQLITE_AFF_BLOB; 243 }else{ 244 /* One side is a column, the other is not. Use the columns affinity. */ 245 assert( aff1==0 || aff2==0 ); 246 return (aff1 + aff2); 247 } 248 } 249 250 /* 251 ** pExpr is a comparison operator. Return the type affinity that should 252 ** be applied to both operands prior to doing the comparison. 253 */ 254 static char comparisonAffinity(Expr *pExpr){ 255 char aff; 256 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 257 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 258 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 259 assert( pExpr->pLeft ); 260 aff = sqlite3ExprAffinity(pExpr->pLeft); 261 if( pExpr->pRight ){ 262 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 263 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 264 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 265 }else if( aff==0 ){ 266 aff = SQLITE_AFF_BLOB; 267 } 268 return aff; 269 } 270 271 /* 272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 273 ** idx_affinity is the affinity of an indexed column. Return true 274 ** if the index with affinity idx_affinity may be used to implement 275 ** the comparison in pExpr. 276 */ 277 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 278 char aff = comparisonAffinity(pExpr); 279 switch( aff ){ 280 case SQLITE_AFF_BLOB: 281 return 1; 282 case SQLITE_AFF_TEXT: 283 return idx_affinity==SQLITE_AFF_TEXT; 284 default: 285 return sqlite3IsNumericAffinity(idx_affinity); 286 } 287 } 288 289 /* 290 ** Return the P5 value that should be used for a binary comparison 291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 292 */ 293 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 294 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 295 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 296 return aff; 297 } 298 299 /* 300 ** Return a pointer to the collation sequence that should be used by 301 ** a binary comparison operator comparing pLeft and pRight. 302 ** 303 ** If the left hand expression has a collating sequence type, then it is 304 ** used. Otherwise the collation sequence for the right hand expression 305 ** is used, or the default (BINARY) if neither expression has a collating 306 ** type. 307 ** 308 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 309 ** it is not considered. 310 */ 311 CollSeq *sqlite3BinaryCompareCollSeq( 312 Parse *pParse, 313 Expr *pLeft, 314 Expr *pRight 315 ){ 316 CollSeq *pColl; 317 assert( pLeft ); 318 if( pLeft->flags & EP_Collate ){ 319 pColl = sqlite3ExprCollSeq(pParse, pLeft); 320 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 321 pColl = sqlite3ExprCollSeq(pParse, pRight); 322 }else{ 323 pColl = sqlite3ExprCollSeq(pParse, pLeft); 324 if( !pColl ){ 325 pColl = sqlite3ExprCollSeq(pParse, pRight); 326 } 327 } 328 return pColl; 329 } 330 331 /* 332 ** Generate code for a comparison operator. 333 */ 334 static int codeCompare( 335 Parse *pParse, /* The parsing (and code generating) context */ 336 Expr *pLeft, /* The left operand */ 337 Expr *pRight, /* The right operand */ 338 int opcode, /* The comparison opcode */ 339 int in1, int in2, /* Register holding operands */ 340 int dest, /* Jump here if true. */ 341 int jumpIfNull /* If true, jump if either operand is NULL */ 342 ){ 343 int p5; 344 int addr; 345 CollSeq *p4; 346 347 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 348 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 349 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 350 (void*)p4, P4_COLLSEQ); 351 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 352 return addr; 353 } 354 355 /* 356 ** Return true if expression pExpr is a vector, or false otherwise. 357 ** 358 ** A vector is defined as any expression that results in two or more 359 ** columns of result. Every TK_VECTOR node is an vector because the 360 ** parser will not generate a TK_VECTOR with fewer than two entries. 361 ** But a TK_SELECT might be either a vector or a scalar. It is only 362 ** considered a vector if it has two or more result columns. 363 */ 364 int sqlite3ExprIsVector(Expr *pExpr){ 365 return sqlite3ExprVectorSize(pExpr)>1; 366 } 367 368 /* 369 ** If the expression passed as the only argument is of type TK_VECTOR 370 ** return the number of expressions in the vector. Or, if the expression 371 ** is a sub-select, return the number of columns in the sub-select. For 372 ** any other type of expression, return 1. 373 */ 374 int sqlite3ExprVectorSize(Expr *pExpr){ 375 u8 op = pExpr->op; 376 if( op==TK_REGISTER ) op = pExpr->op2; 377 if( op==TK_VECTOR ){ 378 return pExpr->x.pList->nExpr; 379 }else if( op==TK_SELECT ){ 380 return pExpr->x.pSelect->pEList->nExpr; 381 }else{ 382 return 1; 383 } 384 } 385 386 /* 387 ** Return a pointer to a subexpression of pVector that is the i-th 388 ** column of the vector (numbered starting with 0). The caller must 389 ** ensure that i is within range. 390 ** 391 ** If pVector is really a scalar (and "scalar" here includes subqueries 392 ** that return a single column!) then return pVector unmodified. 393 ** 394 ** pVector retains ownership of the returned subexpression. 395 ** 396 ** If the vector is a (SELECT ...) then the expression returned is 397 ** just the expression for the i-th term of the result set, and may 398 ** not be ready for evaluation because the table cursor has not yet 399 ** been positioned. 400 */ 401 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 402 assert( i<sqlite3ExprVectorSize(pVector) ); 403 if( sqlite3ExprIsVector(pVector) ){ 404 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 405 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 406 return pVector->x.pSelect->pEList->a[i].pExpr; 407 }else{ 408 return pVector->x.pList->a[i].pExpr; 409 } 410 } 411 return pVector; 412 } 413 414 /* 415 ** Compute and return a new Expr object which when passed to 416 ** sqlite3ExprCode() will generate all necessary code to compute 417 ** the iField-th column of the vector expression pVector. 418 ** 419 ** It is ok for pVector to be a scalar (as long as iField==0). 420 ** In that case, this routine works like sqlite3ExprDup(). 421 ** 422 ** The caller owns the returned Expr object and is responsible for 423 ** ensuring that the returned value eventually gets freed. 424 ** 425 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 426 ** then the returned object will reference pVector and so pVector must remain 427 ** valid for the life of the returned object. If pVector is a TK_VECTOR 428 ** or a scalar expression, then it can be deleted as soon as this routine 429 ** returns. 430 ** 431 ** A trick to cause a TK_SELECT pVector to be deleted together with 432 ** the returned Expr object is to attach the pVector to the pRight field 433 ** of the returned TK_SELECT_COLUMN Expr object. 434 */ 435 Expr *sqlite3ExprForVectorField( 436 Parse *pParse, /* Parsing context */ 437 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 438 int iField /* Which column of the vector to return */ 439 ){ 440 Expr *pRet; 441 if( pVector->op==TK_SELECT ){ 442 assert( pVector->flags & EP_xIsSelect ); 443 /* The TK_SELECT_COLUMN Expr node: 444 ** 445 ** pLeft: pVector containing TK_SELECT. Not deleted. 446 ** pRight: not used. But recursively deleted. 447 ** iColumn: Index of a column in pVector 448 ** iTable: 0 or the number of columns on the LHS of an assignment 449 ** pLeft->iTable: First in an array of register holding result, or 0 450 ** if the result is not yet computed. 451 ** 452 ** sqlite3ExprDelete() specifically skips the recursive delete of 453 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 454 ** can be attached to pRight to cause this node to take ownership of 455 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 456 ** with the same pLeft pointer to the pVector, but only one of them 457 ** will own the pVector. 458 */ 459 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 460 if( pRet ){ 461 pRet->iColumn = iField; 462 pRet->pLeft = pVector; 463 } 464 assert( pRet==0 || pRet->iTable==0 ); 465 }else{ 466 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 467 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 468 } 469 return pRet; 470 } 471 472 /* 473 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 474 ** it. Return the register in which the result is stored (or, if the 475 ** sub-select returns more than one column, the first in an array 476 ** of registers in which the result is stored). 477 ** 478 ** If pExpr is not a TK_SELECT expression, return 0. 479 */ 480 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 481 int reg = 0; 482 #ifndef SQLITE_OMIT_SUBQUERY 483 if( pExpr->op==TK_SELECT ){ 484 reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 485 } 486 #endif 487 return reg; 488 } 489 490 /* 491 ** Argument pVector points to a vector expression - either a TK_VECTOR 492 ** or TK_SELECT that returns more than one column. This function returns 493 ** the register number of a register that contains the value of 494 ** element iField of the vector. 495 ** 496 ** If pVector is a TK_SELECT expression, then code for it must have 497 ** already been generated using the exprCodeSubselect() routine. In this 498 ** case parameter regSelect should be the first in an array of registers 499 ** containing the results of the sub-select. 500 ** 501 ** If pVector is of type TK_VECTOR, then code for the requested field 502 ** is generated. In this case (*pRegFree) may be set to the number of 503 ** a temporary register to be freed by the caller before returning. 504 ** 505 ** Before returning, output parameter (*ppExpr) is set to point to the 506 ** Expr object corresponding to element iElem of the vector. 507 */ 508 static int exprVectorRegister( 509 Parse *pParse, /* Parse context */ 510 Expr *pVector, /* Vector to extract element from */ 511 int iField, /* Field to extract from pVector */ 512 int regSelect, /* First in array of registers */ 513 Expr **ppExpr, /* OUT: Expression element */ 514 int *pRegFree /* OUT: Temp register to free */ 515 ){ 516 u8 op = pVector->op; 517 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 518 if( op==TK_REGISTER ){ 519 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 520 return pVector->iTable+iField; 521 } 522 if( op==TK_SELECT ){ 523 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 524 return regSelect+iField; 525 } 526 *ppExpr = pVector->x.pList->a[iField].pExpr; 527 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 528 } 529 530 /* 531 ** Expression pExpr is a comparison between two vector values. Compute 532 ** the result of the comparison (1, 0, or NULL) and write that 533 ** result into register dest. 534 ** 535 ** The caller must satisfy the following preconditions: 536 ** 537 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 538 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 539 ** otherwise: op==pExpr->op and p5==0 540 */ 541 static void codeVectorCompare( 542 Parse *pParse, /* Code generator context */ 543 Expr *pExpr, /* The comparison operation */ 544 int dest, /* Write results into this register */ 545 u8 op, /* Comparison operator */ 546 u8 p5 /* SQLITE_NULLEQ or zero */ 547 ){ 548 Vdbe *v = pParse->pVdbe; 549 Expr *pLeft = pExpr->pLeft; 550 Expr *pRight = pExpr->pRight; 551 int nLeft = sqlite3ExprVectorSize(pLeft); 552 int i; 553 int regLeft = 0; 554 int regRight = 0; 555 u8 opx = op; 556 int addrDone = sqlite3VdbeMakeLabel(v); 557 558 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 559 sqlite3ErrorMsg(pParse, "row value misused"); 560 return; 561 } 562 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 563 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 564 || pExpr->op==TK_LT || pExpr->op==TK_GT 565 || pExpr->op==TK_LE || pExpr->op==TK_GE 566 ); 567 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 568 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 569 assert( p5==0 || pExpr->op!=op ); 570 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 571 572 p5 |= SQLITE_STOREP2; 573 if( opx==TK_LE ) opx = TK_LT; 574 if( opx==TK_GE ) opx = TK_GT; 575 576 regLeft = exprCodeSubselect(pParse, pLeft); 577 regRight = exprCodeSubselect(pParse, pRight); 578 579 for(i=0; 1 /*Loop exits by "break"*/; i++){ 580 int regFree1 = 0, regFree2 = 0; 581 Expr *pL, *pR; 582 int r1, r2; 583 assert( i>=0 && i<nLeft ); 584 if( i>0 ) sqlite3ExprCachePush(pParse); 585 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 586 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 587 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); 588 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 589 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 590 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 591 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 592 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 593 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 594 sqlite3ReleaseTempReg(pParse, regFree1); 595 sqlite3ReleaseTempReg(pParse, regFree2); 596 if( i>0 ) sqlite3ExprCachePop(pParse); 597 if( i==nLeft-1 ){ 598 break; 599 } 600 if( opx==TK_EQ ){ 601 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 602 p5 |= SQLITE_KEEPNULL; 603 }else if( opx==TK_NE ){ 604 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 605 p5 |= SQLITE_KEEPNULL; 606 }else{ 607 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 608 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 609 VdbeCoverageIf(v, op==TK_LT); 610 VdbeCoverageIf(v, op==TK_GT); 611 VdbeCoverageIf(v, op==TK_LE); 612 VdbeCoverageIf(v, op==TK_GE); 613 if( i==nLeft-2 ) opx = op; 614 } 615 } 616 sqlite3VdbeResolveLabel(v, addrDone); 617 } 618 619 #if SQLITE_MAX_EXPR_DEPTH>0 620 /* 621 ** Check that argument nHeight is less than or equal to the maximum 622 ** expression depth allowed. If it is not, leave an error message in 623 ** pParse. 624 */ 625 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 626 int rc = SQLITE_OK; 627 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 628 if( nHeight>mxHeight ){ 629 sqlite3ErrorMsg(pParse, 630 "Expression tree is too large (maximum depth %d)", mxHeight 631 ); 632 rc = SQLITE_ERROR; 633 } 634 return rc; 635 } 636 637 /* The following three functions, heightOfExpr(), heightOfExprList() 638 ** and heightOfSelect(), are used to determine the maximum height 639 ** of any expression tree referenced by the structure passed as the 640 ** first argument. 641 ** 642 ** If this maximum height is greater than the current value pointed 643 ** to by pnHeight, the second parameter, then set *pnHeight to that 644 ** value. 645 */ 646 static void heightOfExpr(Expr *p, int *pnHeight){ 647 if( p ){ 648 if( p->nHeight>*pnHeight ){ 649 *pnHeight = p->nHeight; 650 } 651 } 652 } 653 static void heightOfExprList(ExprList *p, int *pnHeight){ 654 if( p ){ 655 int i; 656 for(i=0; i<p->nExpr; i++){ 657 heightOfExpr(p->a[i].pExpr, pnHeight); 658 } 659 } 660 } 661 static void heightOfSelect(Select *p, int *pnHeight){ 662 if( p ){ 663 heightOfExpr(p->pWhere, pnHeight); 664 heightOfExpr(p->pHaving, pnHeight); 665 heightOfExpr(p->pLimit, pnHeight); 666 heightOfExprList(p->pEList, pnHeight); 667 heightOfExprList(p->pGroupBy, pnHeight); 668 heightOfExprList(p->pOrderBy, pnHeight); 669 heightOfSelect(p->pPrior, pnHeight); 670 } 671 } 672 673 /* 674 ** Set the Expr.nHeight variable in the structure passed as an 675 ** argument. An expression with no children, Expr.pList or 676 ** Expr.pSelect member has a height of 1. Any other expression 677 ** has a height equal to the maximum height of any other 678 ** referenced Expr plus one. 679 ** 680 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 681 ** if appropriate. 682 */ 683 static void exprSetHeight(Expr *p){ 684 int nHeight = 0; 685 heightOfExpr(p->pLeft, &nHeight); 686 heightOfExpr(p->pRight, &nHeight); 687 if( ExprHasProperty(p, EP_xIsSelect) ){ 688 heightOfSelect(p->x.pSelect, &nHeight); 689 }else if( p->x.pList ){ 690 heightOfExprList(p->x.pList, &nHeight); 691 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 692 } 693 p->nHeight = nHeight + 1; 694 } 695 696 /* 697 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 698 ** the height is greater than the maximum allowed expression depth, 699 ** leave an error in pParse. 700 ** 701 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 702 ** Expr.flags. 703 */ 704 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 705 if( pParse->nErr ) return; 706 exprSetHeight(p); 707 sqlite3ExprCheckHeight(pParse, p->nHeight); 708 } 709 710 /* 711 ** Return the maximum height of any expression tree referenced 712 ** by the select statement passed as an argument. 713 */ 714 int sqlite3SelectExprHeight(Select *p){ 715 int nHeight = 0; 716 heightOfSelect(p, &nHeight); 717 return nHeight; 718 } 719 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 720 /* 721 ** Propagate all EP_Propagate flags from the Expr.x.pList into 722 ** Expr.flags. 723 */ 724 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 725 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 726 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 727 } 728 } 729 #define exprSetHeight(y) 730 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 731 732 /* 733 ** This routine is the core allocator for Expr nodes. 734 ** 735 ** Construct a new expression node and return a pointer to it. Memory 736 ** for this node and for the pToken argument is a single allocation 737 ** obtained from sqlite3DbMalloc(). The calling function 738 ** is responsible for making sure the node eventually gets freed. 739 ** 740 ** If dequote is true, then the token (if it exists) is dequoted. 741 ** If dequote is false, no dequoting is performed. The deQuote 742 ** parameter is ignored if pToken is NULL or if the token does not 743 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 744 ** then the EP_DblQuoted flag is set on the expression node. 745 ** 746 ** Special case: If op==TK_INTEGER and pToken points to a string that 747 ** can be translated into a 32-bit integer, then the token is not 748 ** stored in u.zToken. Instead, the integer values is written 749 ** into u.iValue and the EP_IntValue flag is set. No extra storage 750 ** is allocated to hold the integer text and the dequote flag is ignored. 751 */ 752 Expr *sqlite3ExprAlloc( 753 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 754 int op, /* Expression opcode */ 755 const Token *pToken, /* Token argument. Might be NULL */ 756 int dequote /* True to dequote */ 757 ){ 758 Expr *pNew; 759 int nExtra = 0; 760 int iValue = 0; 761 762 assert( db!=0 ); 763 if( pToken ){ 764 if( op!=TK_INTEGER || pToken->z==0 765 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 766 nExtra = pToken->n+1; 767 assert( iValue>=0 ); 768 } 769 } 770 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 771 if( pNew ){ 772 memset(pNew, 0, sizeof(Expr)); 773 pNew->op = (u8)op; 774 pNew->iAgg = -1; 775 if( pToken ){ 776 if( nExtra==0 ){ 777 pNew->flags |= EP_IntValue|EP_Leaf; 778 pNew->u.iValue = iValue; 779 }else{ 780 pNew->u.zToken = (char*)&pNew[1]; 781 assert( pToken->z!=0 || pToken->n==0 ); 782 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 783 pNew->u.zToken[pToken->n] = 0; 784 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 785 if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted; 786 sqlite3Dequote(pNew->u.zToken); 787 } 788 } 789 } 790 #if SQLITE_MAX_EXPR_DEPTH>0 791 pNew->nHeight = 1; 792 #endif 793 } 794 return pNew; 795 } 796 797 /* 798 ** Allocate a new expression node from a zero-terminated token that has 799 ** already been dequoted. 800 */ 801 Expr *sqlite3Expr( 802 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 803 int op, /* Expression opcode */ 804 const char *zToken /* Token argument. Might be NULL */ 805 ){ 806 Token x; 807 x.z = zToken; 808 x.n = sqlite3Strlen30(zToken); 809 return sqlite3ExprAlloc(db, op, &x, 0); 810 } 811 812 /* 813 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 814 ** 815 ** If pRoot==NULL that means that a memory allocation error has occurred. 816 ** In that case, delete the subtrees pLeft and pRight. 817 */ 818 void sqlite3ExprAttachSubtrees( 819 sqlite3 *db, 820 Expr *pRoot, 821 Expr *pLeft, 822 Expr *pRight 823 ){ 824 if( pRoot==0 ){ 825 assert( db->mallocFailed ); 826 sqlite3ExprDelete(db, pLeft); 827 sqlite3ExprDelete(db, pRight); 828 }else{ 829 if( pRight ){ 830 pRoot->pRight = pRight; 831 pRoot->flags |= EP_Propagate & pRight->flags; 832 } 833 if( pLeft ){ 834 pRoot->pLeft = pLeft; 835 pRoot->flags |= EP_Propagate & pLeft->flags; 836 } 837 exprSetHeight(pRoot); 838 } 839 } 840 841 /* 842 ** Allocate an Expr node which joins as many as two subtrees. 843 ** 844 ** One or both of the subtrees can be NULL. Return a pointer to the new 845 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 846 ** free the subtrees and return NULL. 847 */ 848 Expr *sqlite3PExpr( 849 Parse *pParse, /* Parsing context */ 850 int op, /* Expression opcode */ 851 Expr *pLeft, /* Left operand */ 852 Expr *pRight /* Right operand */ 853 ){ 854 Expr *p; 855 if( op==TK_AND && pParse->nErr==0 ){ 856 /* Take advantage of short-circuit false optimization for AND */ 857 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 858 }else{ 859 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 860 if( p ){ 861 memset(p, 0, sizeof(Expr)); 862 p->op = op & TKFLG_MASK; 863 p->iAgg = -1; 864 } 865 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 866 } 867 if( p ) { 868 sqlite3ExprCheckHeight(pParse, p->nHeight); 869 } 870 return p; 871 } 872 873 /* 874 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 875 ** do a memory allocation failure) then delete the pSelect object. 876 */ 877 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 878 if( pExpr ){ 879 pExpr->x.pSelect = pSelect; 880 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 881 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 882 }else{ 883 assert( pParse->db->mallocFailed ); 884 sqlite3SelectDelete(pParse->db, pSelect); 885 } 886 } 887 888 889 /* 890 ** If the expression is always either TRUE or FALSE (respectively), 891 ** then return 1. If one cannot determine the truth value of the 892 ** expression at compile-time return 0. 893 ** 894 ** This is an optimization. If is OK to return 0 here even if 895 ** the expression really is always false or false (a false negative). 896 ** But it is a bug to return 1 if the expression might have different 897 ** boolean values in different circumstances (a false positive.) 898 ** 899 ** Note that if the expression is part of conditional for a 900 ** LEFT JOIN, then we cannot determine at compile-time whether or not 901 ** is it true or false, so always return 0. 902 */ 903 static int exprAlwaysTrue(Expr *p){ 904 int v = 0; 905 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 906 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 907 return v!=0; 908 } 909 static int exprAlwaysFalse(Expr *p){ 910 int v = 0; 911 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 912 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 913 return v==0; 914 } 915 916 /* 917 ** Join two expressions using an AND operator. If either expression is 918 ** NULL, then just return the other expression. 919 ** 920 ** If one side or the other of the AND is known to be false, then instead 921 ** of returning an AND expression, just return a constant expression with 922 ** a value of false. 923 */ 924 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 925 if( pLeft==0 ){ 926 return pRight; 927 }else if( pRight==0 ){ 928 return pLeft; 929 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 930 sqlite3ExprDelete(db, pLeft); 931 sqlite3ExprDelete(db, pRight); 932 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 933 }else{ 934 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 935 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 936 return pNew; 937 } 938 } 939 940 /* 941 ** Construct a new expression node for a function with multiple 942 ** arguments. 943 */ 944 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 945 Expr *pNew; 946 sqlite3 *db = pParse->db; 947 assert( pToken ); 948 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 949 if( pNew==0 ){ 950 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 951 return 0; 952 } 953 pNew->x.pList = pList; 954 ExprSetProperty(pNew, EP_HasFunc); 955 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 956 sqlite3ExprSetHeightAndFlags(pParse, pNew); 957 return pNew; 958 } 959 960 /* 961 ** Assign a variable number to an expression that encodes a wildcard 962 ** in the original SQL statement. 963 ** 964 ** Wildcards consisting of a single "?" are assigned the next sequential 965 ** variable number. 966 ** 967 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 968 ** sure "nnn" is not too big to avoid a denial of service attack when 969 ** the SQL statement comes from an external source. 970 ** 971 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 972 ** as the previous instance of the same wildcard. Or if this is the first 973 ** instance of the wildcard, the next sequential variable number is 974 ** assigned. 975 */ 976 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 977 sqlite3 *db = pParse->db; 978 const char *z; 979 ynVar x; 980 981 if( pExpr==0 ) return; 982 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 983 z = pExpr->u.zToken; 984 assert( z!=0 ); 985 assert( z[0]!=0 ); 986 assert( n==(u32)sqlite3Strlen30(z) ); 987 if( z[1]==0 ){ 988 /* Wildcard of the form "?". Assign the next variable number */ 989 assert( z[0]=='?' ); 990 x = (ynVar)(++pParse->nVar); 991 }else{ 992 int doAdd = 0; 993 if( z[0]=='?' ){ 994 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 995 ** use it as the variable number */ 996 i64 i; 997 int bOk; 998 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 999 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1000 bOk = 1; 1001 }else{ 1002 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1003 } 1004 testcase( i==0 ); 1005 testcase( i==1 ); 1006 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1007 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1008 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1009 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1010 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1011 return; 1012 } 1013 x = (ynVar)i; 1014 if( x>pParse->nVar ){ 1015 pParse->nVar = (int)x; 1016 doAdd = 1; 1017 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1018 doAdd = 1; 1019 } 1020 }else{ 1021 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1022 ** number as the prior appearance of the same name, or if the name 1023 ** has never appeared before, reuse the same variable number 1024 */ 1025 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1026 if( x==0 ){ 1027 x = (ynVar)(++pParse->nVar); 1028 doAdd = 1; 1029 } 1030 } 1031 if( doAdd ){ 1032 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1033 } 1034 } 1035 pExpr->iColumn = x; 1036 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1037 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1038 } 1039 } 1040 1041 /* 1042 ** Recursively delete an expression tree. 1043 */ 1044 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1045 assert( p!=0 ); 1046 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1047 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1048 #ifdef SQLITE_DEBUG 1049 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1050 assert( p->pLeft==0 ); 1051 assert( p->pRight==0 ); 1052 assert( p->x.pSelect==0 ); 1053 } 1054 #endif 1055 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1056 /* The Expr.x union is never used at the same time as Expr.pRight */ 1057 assert( p->x.pList==0 || p->pRight==0 ); 1058 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1059 if( p->pRight ){ 1060 sqlite3ExprDeleteNN(db, p->pRight); 1061 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1062 sqlite3SelectDelete(db, p->x.pSelect); 1063 }else{ 1064 sqlite3ExprListDelete(db, p->x.pList); 1065 } 1066 } 1067 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1068 if( !ExprHasProperty(p, EP_Static) ){ 1069 sqlite3DbFreeNN(db, p); 1070 } 1071 } 1072 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1073 if( p ) sqlite3ExprDeleteNN(db, p); 1074 } 1075 1076 /* 1077 ** Return the number of bytes allocated for the expression structure 1078 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1079 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1080 */ 1081 static int exprStructSize(Expr *p){ 1082 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1083 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1084 return EXPR_FULLSIZE; 1085 } 1086 1087 /* 1088 ** The dupedExpr*Size() routines each return the number of bytes required 1089 ** to store a copy of an expression or expression tree. They differ in 1090 ** how much of the tree is measured. 1091 ** 1092 ** dupedExprStructSize() Size of only the Expr structure 1093 ** dupedExprNodeSize() Size of Expr + space for token 1094 ** dupedExprSize() Expr + token + subtree components 1095 ** 1096 *************************************************************************** 1097 ** 1098 ** The dupedExprStructSize() function returns two values OR-ed together: 1099 ** (1) the space required for a copy of the Expr structure only and 1100 ** (2) the EP_xxx flags that indicate what the structure size should be. 1101 ** The return values is always one of: 1102 ** 1103 ** EXPR_FULLSIZE 1104 ** EXPR_REDUCEDSIZE | EP_Reduced 1105 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1106 ** 1107 ** The size of the structure can be found by masking the return value 1108 ** of this routine with 0xfff. The flags can be found by masking the 1109 ** return value with EP_Reduced|EP_TokenOnly. 1110 ** 1111 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1112 ** (unreduced) Expr objects as they or originally constructed by the parser. 1113 ** During expression analysis, extra information is computed and moved into 1114 ** later parts of teh Expr object and that extra information might get chopped 1115 ** off if the expression is reduced. Note also that it does not work to 1116 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1117 ** to reduce a pristine expression tree from the parser. The implementation 1118 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1119 ** to enforce this constraint. 1120 */ 1121 static int dupedExprStructSize(Expr *p, int flags){ 1122 int nSize; 1123 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1124 assert( EXPR_FULLSIZE<=0xfff ); 1125 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1126 if( 0==flags || p->op==TK_SELECT_COLUMN ){ 1127 nSize = EXPR_FULLSIZE; 1128 }else{ 1129 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1130 assert( !ExprHasProperty(p, EP_FromJoin) ); 1131 assert( !ExprHasProperty(p, EP_MemToken) ); 1132 assert( !ExprHasProperty(p, EP_NoReduce) ); 1133 if( p->pLeft || p->x.pList ){ 1134 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1135 }else{ 1136 assert( p->pRight==0 ); 1137 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1138 } 1139 } 1140 return nSize; 1141 } 1142 1143 /* 1144 ** This function returns the space in bytes required to store the copy 1145 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1146 ** string is defined.) 1147 */ 1148 static int dupedExprNodeSize(Expr *p, int flags){ 1149 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1150 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1151 nByte += sqlite3Strlen30(p->u.zToken)+1; 1152 } 1153 return ROUND8(nByte); 1154 } 1155 1156 /* 1157 ** Return the number of bytes required to create a duplicate of the 1158 ** expression passed as the first argument. The second argument is a 1159 ** mask containing EXPRDUP_XXX flags. 1160 ** 1161 ** The value returned includes space to create a copy of the Expr struct 1162 ** itself and the buffer referred to by Expr.u.zToken, if any. 1163 ** 1164 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1165 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1166 ** and Expr.pRight variables (but not for any structures pointed to or 1167 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1168 */ 1169 static int dupedExprSize(Expr *p, int flags){ 1170 int nByte = 0; 1171 if( p ){ 1172 nByte = dupedExprNodeSize(p, flags); 1173 if( flags&EXPRDUP_REDUCE ){ 1174 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1175 } 1176 } 1177 return nByte; 1178 } 1179 1180 /* 1181 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1182 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1183 ** to store the copy of expression p, the copies of p->u.zToken 1184 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1185 ** if any. Before returning, *pzBuffer is set to the first byte past the 1186 ** portion of the buffer copied into by this function. 1187 */ 1188 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1189 Expr *pNew; /* Value to return */ 1190 u8 *zAlloc; /* Memory space from which to build Expr object */ 1191 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1192 1193 assert( db!=0 ); 1194 assert( p ); 1195 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1196 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1197 1198 /* Figure out where to write the new Expr structure. */ 1199 if( pzBuffer ){ 1200 zAlloc = *pzBuffer; 1201 staticFlag = EP_Static; 1202 }else{ 1203 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1204 staticFlag = 0; 1205 } 1206 pNew = (Expr *)zAlloc; 1207 1208 if( pNew ){ 1209 /* Set nNewSize to the size allocated for the structure pointed to 1210 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1211 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1212 ** by the copy of the p->u.zToken string (if any). 1213 */ 1214 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1215 const int nNewSize = nStructSize & 0xfff; 1216 int nToken; 1217 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1218 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1219 }else{ 1220 nToken = 0; 1221 } 1222 if( dupFlags ){ 1223 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1224 memcpy(zAlloc, p, nNewSize); 1225 }else{ 1226 u32 nSize = (u32)exprStructSize(p); 1227 memcpy(zAlloc, p, nSize); 1228 if( nSize<EXPR_FULLSIZE ){ 1229 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1230 } 1231 } 1232 1233 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1234 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1235 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1236 pNew->flags |= staticFlag; 1237 1238 /* Copy the p->u.zToken string, if any. */ 1239 if( nToken ){ 1240 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1241 memcpy(zToken, p->u.zToken, nToken); 1242 } 1243 1244 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1245 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1246 if( ExprHasProperty(p, EP_xIsSelect) ){ 1247 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1248 }else{ 1249 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1250 } 1251 } 1252 1253 /* Fill in pNew->pLeft and pNew->pRight. */ 1254 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 1255 zAlloc += dupedExprNodeSize(p, dupFlags); 1256 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1257 pNew->pLeft = p->pLeft ? 1258 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1259 pNew->pRight = p->pRight ? 1260 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1261 } 1262 if( pzBuffer ){ 1263 *pzBuffer = zAlloc; 1264 } 1265 }else{ 1266 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1267 if( pNew->op==TK_SELECT_COLUMN ){ 1268 pNew->pLeft = p->pLeft; 1269 assert( p->iColumn==0 || p->pRight==0 ); 1270 assert( p->pRight==0 || p->pRight==p->pLeft ); 1271 }else{ 1272 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1273 } 1274 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1275 } 1276 } 1277 } 1278 return pNew; 1279 } 1280 1281 /* 1282 ** Create and return a deep copy of the object passed as the second 1283 ** argument. If an OOM condition is encountered, NULL is returned 1284 ** and the db->mallocFailed flag set. 1285 */ 1286 #ifndef SQLITE_OMIT_CTE 1287 static With *withDup(sqlite3 *db, With *p){ 1288 With *pRet = 0; 1289 if( p ){ 1290 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1291 pRet = sqlite3DbMallocZero(db, nByte); 1292 if( pRet ){ 1293 int i; 1294 pRet->nCte = p->nCte; 1295 for(i=0; i<p->nCte; i++){ 1296 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1297 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1298 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1299 } 1300 } 1301 } 1302 return pRet; 1303 } 1304 #else 1305 # define withDup(x,y) 0 1306 #endif 1307 1308 /* 1309 ** The following group of routines make deep copies of expressions, 1310 ** expression lists, ID lists, and select statements. The copies can 1311 ** be deleted (by being passed to their respective ...Delete() routines) 1312 ** without effecting the originals. 1313 ** 1314 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1315 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1316 ** by subsequent calls to sqlite*ListAppend() routines. 1317 ** 1318 ** Any tables that the SrcList might point to are not duplicated. 1319 ** 1320 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1321 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1322 ** truncated version of the usual Expr structure that will be stored as 1323 ** part of the in-memory representation of the database schema. 1324 */ 1325 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1326 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1327 return p ? exprDup(db, p, flags, 0) : 0; 1328 } 1329 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1330 ExprList *pNew; 1331 struct ExprList_item *pItem, *pOldItem; 1332 int i; 1333 Expr *pPriorSelectCol = 0; 1334 assert( db!=0 ); 1335 if( p==0 ) return 0; 1336 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1337 if( pNew==0 ) return 0; 1338 pNew->nExpr = p->nExpr; 1339 pItem = pNew->a; 1340 pOldItem = p->a; 1341 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1342 Expr *pOldExpr = pOldItem->pExpr; 1343 Expr *pNewExpr; 1344 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1345 if( pOldExpr 1346 && pOldExpr->op==TK_SELECT_COLUMN 1347 && (pNewExpr = pItem->pExpr)!=0 1348 ){ 1349 assert( pNewExpr->iColumn==0 || i>0 ); 1350 if( pNewExpr->iColumn==0 ){ 1351 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1352 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1353 }else{ 1354 assert( i>0 ); 1355 assert( pItem[-1].pExpr!=0 ); 1356 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1357 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1358 pNewExpr->pLeft = pPriorSelectCol; 1359 } 1360 } 1361 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1362 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1363 pItem->sortOrder = pOldItem->sortOrder; 1364 pItem->done = 0; 1365 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1366 pItem->u = pOldItem->u; 1367 } 1368 return pNew; 1369 } 1370 1371 /* 1372 ** If cursors, triggers, views and subqueries are all omitted from 1373 ** the build, then none of the following routines, except for 1374 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1375 ** called with a NULL argument. 1376 */ 1377 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1378 || !defined(SQLITE_OMIT_SUBQUERY) 1379 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1380 SrcList *pNew; 1381 int i; 1382 int nByte; 1383 assert( db!=0 ); 1384 if( p==0 ) return 0; 1385 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1386 pNew = sqlite3DbMallocRawNN(db, nByte ); 1387 if( pNew==0 ) return 0; 1388 pNew->nSrc = pNew->nAlloc = p->nSrc; 1389 for(i=0; i<p->nSrc; i++){ 1390 struct SrcList_item *pNewItem = &pNew->a[i]; 1391 struct SrcList_item *pOldItem = &p->a[i]; 1392 Table *pTab; 1393 pNewItem->pSchema = pOldItem->pSchema; 1394 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1395 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1396 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1397 pNewItem->fg = pOldItem->fg; 1398 pNewItem->iCursor = pOldItem->iCursor; 1399 pNewItem->addrFillSub = pOldItem->addrFillSub; 1400 pNewItem->regReturn = pOldItem->regReturn; 1401 if( pNewItem->fg.isIndexedBy ){ 1402 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1403 } 1404 pNewItem->pIBIndex = pOldItem->pIBIndex; 1405 if( pNewItem->fg.isTabFunc ){ 1406 pNewItem->u1.pFuncArg = 1407 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1408 } 1409 pTab = pNewItem->pTab = pOldItem->pTab; 1410 if( pTab ){ 1411 pTab->nTabRef++; 1412 } 1413 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1414 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1415 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1416 pNewItem->colUsed = pOldItem->colUsed; 1417 } 1418 return pNew; 1419 } 1420 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1421 IdList *pNew; 1422 int i; 1423 assert( db!=0 ); 1424 if( p==0 ) return 0; 1425 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1426 if( pNew==0 ) return 0; 1427 pNew->nId = p->nId; 1428 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1429 if( pNew->a==0 ){ 1430 sqlite3DbFreeNN(db, pNew); 1431 return 0; 1432 } 1433 /* Note that because the size of the allocation for p->a[] is not 1434 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1435 ** on the duplicate created by this function. */ 1436 for(i=0; i<p->nId; i++){ 1437 struct IdList_item *pNewItem = &pNew->a[i]; 1438 struct IdList_item *pOldItem = &p->a[i]; 1439 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1440 pNewItem->idx = pOldItem->idx; 1441 } 1442 return pNew; 1443 } 1444 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1445 Select *pRet = 0; 1446 Select *pNext = 0; 1447 Select **pp = &pRet; 1448 Select *p; 1449 1450 assert( db!=0 ); 1451 for(p=pDup; p; p=p->pPrior){ 1452 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1453 if( pNew==0 ) break; 1454 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1455 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1456 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1457 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1458 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1459 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1460 pNew->op = p->op; 1461 pNew->pNext = pNext; 1462 pNew->pPrior = 0; 1463 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1464 pNew->iLimit = 0; 1465 pNew->iOffset = 0; 1466 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1467 pNew->addrOpenEphm[0] = -1; 1468 pNew->addrOpenEphm[1] = -1; 1469 pNew->nSelectRow = p->nSelectRow; 1470 pNew->pWith = withDup(db, p->pWith); 1471 sqlite3SelectSetName(pNew, p->zSelName); 1472 *pp = pNew; 1473 pp = &pNew->pPrior; 1474 pNext = pNew; 1475 } 1476 1477 return pRet; 1478 } 1479 #else 1480 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1481 assert( p==0 ); 1482 return 0; 1483 } 1484 #endif 1485 1486 1487 /* 1488 ** Add a new element to the end of an expression list. If pList is 1489 ** initially NULL, then create a new expression list. 1490 ** 1491 ** The pList argument must be either NULL or a pointer to an ExprList 1492 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1493 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1494 ** Reason: This routine assumes that the number of slots in pList->a[] 1495 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1496 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1497 ** 1498 ** If a memory allocation error occurs, the entire list is freed and 1499 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1500 ** that the new entry was successfully appended. 1501 */ 1502 ExprList *sqlite3ExprListAppend( 1503 Parse *pParse, /* Parsing context */ 1504 ExprList *pList, /* List to which to append. Might be NULL */ 1505 Expr *pExpr /* Expression to be appended. Might be NULL */ 1506 ){ 1507 struct ExprList_item *pItem; 1508 sqlite3 *db = pParse->db; 1509 assert( db!=0 ); 1510 if( pList==0 ){ 1511 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1512 if( pList==0 ){ 1513 goto no_mem; 1514 } 1515 pList->nExpr = 0; 1516 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1517 ExprList *pNew; 1518 pNew = sqlite3DbRealloc(db, pList, 1519 sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0])); 1520 if( pNew==0 ){ 1521 goto no_mem; 1522 } 1523 pList = pNew; 1524 } 1525 pItem = &pList->a[pList->nExpr++]; 1526 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) ); 1527 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1528 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName)); 1529 pItem->pExpr = pExpr; 1530 return pList; 1531 1532 no_mem: 1533 /* Avoid leaking memory if malloc has failed. */ 1534 sqlite3ExprDelete(db, pExpr); 1535 sqlite3ExprListDelete(db, pList); 1536 return 0; 1537 } 1538 1539 /* 1540 ** pColumns and pExpr form a vector assignment which is part of the SET 1541 ** clause of an UPDATE statement. Like this: 1542 ** 1543 ** (a,b,c) = (expr1,expr2,expr3) 1544 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1545 ** 1546 ** For each term of the vector assignment, append new entries to the 1547 ** expression list pList. In the case of a subquery on the RHS, append 1548 ** TK_SELECT_COLUMN expressions. 1549 */ 1550 ExprList *sqlite3ExprListAppendVector( 1551 Parse *pParse, /* Parsing context */ 1552 ExprList *pList, /* List to which to append. Might be NULL */ 1553 IdList *pColumns, /* List of names of LHS of the assignment */ 1554 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1555 ){ 1556 sqlite3 *db = pParse->db; 1557 int n; 1558 int i; 1559 int iFirst = pList ? pList->nExpr : 0; 1560 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1561 ** exit prior to this routine being invoked */ 1562 if( NEVER(pColumns==0) ) goto vector_append_error; 1563 if( pExpr==0 ) goto vector_append_error; 1564 1565 /* If the RHS is a vector, then we can immediately check to see that 1566 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1567 ** wildcards ("*") in the result set of the SELECT must be expanded before 1568 ** we can do the size check, so defer the size check until code generation. 1569 */ 1570 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1571 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1572 pColumns->nId, n); 1573 goto vector_append_error; 1574 } 1575 1576 for(i=0; i<pColumns->nId; i++){ 1577 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1578 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1579 if( pList ){ 1580 assert( pList->nExpr==iFirst+i+1 ); 1581 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1582 pColumns->a[i].zName = 0; 1583 } 1584 } 1585 1586 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1587 Expr *pFirst = pList->a[iFirst].pExpr; 1588 assert( pFirst!=0 ); 1589 assert( pFirst->op==TK_SELECT_COLUMN ); 1590 1591 /* Store the SELECT statement in pRight so it will be deleted when 1592 ** sqlite3ExprListDelete() is called */ 1593 pFirst->pRight = pExpr; 1594 pExpr = 0; 1595 1596 /* Remember the size of the LHS in iTable so that we can check that 1597 ** the RHS and LHS sizes match during code generation. */ 1598 pFirst->iTable = pColumns->nId; 1599 } 1600 1601 vector_append_error: 1602 sqlite3ExprDelete(db, pExpr); 1603 sqlite3IdListDelete(db, pColumns); 1604 return pList; 1605 } 1606 1607 /* 1608 ** Set the sort order for the last element on the given ExprList. 1609 */ 1610 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1611 if( p==0 ) return; 1612 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1613 assert( p->nExpr>0 ); 1614 if( iSortOrder<0 ){ 1615 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1616 return; 1617 } 1618 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1619 } 1620 1621 /* 1622 ** Set the ExprList.a[].zName element of the most recently added item 1623 ** on the expression list. 1624 ** 1625 ** pList might be NULL following an OOM error. But pName should never be 1626 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1627 ** is set. 1628 */ 1629 void sqlite3ExprListSetName( 1630 Parse *pParse, /* Parsing context */ 1631 ExprList *pList, /* List to which to add the span. */ 1632 Token *pName, /* Name to be added */ 1633 int dequote /* True to cause the name to be dequoted */ 1634 ){ 1635 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1636 if( pList ){ 1637 struct ExprList_item *pItem; 1638 assert( pList->nExpr>0 ); 1639 pItem = &pList->a[pList->nExpr-1]; 1640 assert( pItem->zName==0 ); 1641 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1642 if( dequote ) sqlite3Dequote(pItem->zName); 1643 } 1644 } 1645 1646 /* 1647 ** Set the ExprList.a[].zSpan element of the most recently added item 1648 ** on the expression list. 1649 ** 1650 ** pList might be NULL following an OOM error. But pSpan should never be 1651 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1652 ** is set. 1653 */ 1654 void sqlite3ExprListSetSpan( 1655 Parse *pParse, /* Parsing context */ 1656 ExprList *pList, /* List to which to add the span. */ 1657 const char *zStart, /* Start of the span */ 1658 const char *zEnd /* End of the span */ 1659 ){ 1660 sqlite3 *db = pParse->db; 1661 assert( pList!=0 || db->mallocFailed!=0 ); 1662 if( pList ){ 1663 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1664 assert( pList->nExpr>0 ); 1665 sqlite3DbFree(db, pItem->zSpan); 1666 pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd); 1667 } 1668 } 1669 1670 /* 1671 ** If the expression list pEList contains more than iLimit elements, 1672 ** leave an error message in pParse. 1673 */ 1674 void sqlite3ExprListCheckLength( 1675 Parse *pParse, 1676 ExprList *pEList, 1677 const char *zObject 1678 ){ 1679 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1680 testcase( pEList && pEList->nExpr==mx ); 1681 testcase( pEList && pEList->nExpr==mx+1 ); 1682 if( pEList && pEList->nExpr>mx ){ 1683 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1684 } 1685 } 1686 1687 /* 1688 ** Delete an entire expression list. 1689 */ 1690 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1691 int i = pList->nExpr; 1692 struct ExprList_item *pItem = pList->a; 1693 assert( pList->nExpr>0 ); 1694 do{ 1695 sqlite3ExprDelete(db, pItem->pExpr); 1696 sqlite3DbFree(db, pItem->zName); 1697 sqlite3DbFree(db, pItem->zSpan); 1698 pItem++; 1699 }while( --i>0 ); 1700 sqlite3DbFreeNN(db, pList); 1701 } 1702 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1703 if( pList ) exprListDeleteNN(db, pList); 1704 } 1705 1706 /* 1707 ** Return the bitwise-OR of all Expr.flags fields in the given 1708 ** ExprList. 1709 */ 1710 u32 sqlite3ExprListFlags(const ExprList *pList){ 1711 int i; 1712 u32 m = 0; 1713 assert( pList!=0 ); 1714 for(i=0; i<pList->nExpr; i++){ 1715 Expr *pExpr = pList->a[i].pExpr; 1716 assert( pExpr!=0 ); 1717 m |= pExpr->flags; 1718 } 1719 return m; 1720 } 1721 1722 /* 1723 ** This is a SELECT-node callback for the expression walker that 1724 ** always "fails". By "fail" in this case, we mean set 1725 ** pWalker->eCode to zero and abort. 1726 ** 1727 ** This callback is used by multiple expression walkers. 1728 */ 1729 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1730 UNUSED_PARAMETER(NotUsed); 1731 pWalker->eCode = 0; 1732 return WRC_Abort; 1733 } 1734 1735 /* 1736 ** These routines are Walker callbacks used to check expressions to 1737 ** see if they are "constant" for some definition of constant. The 1738 ** Walker.eCode value determines the type of "constant" we are looking 1739 ** for. 1740 ** 1741 ** These callback routines are used to implement the following: 1742 ** 1743 ** sqlite3ExprIsConstant() pWalker->eCode==1 1744 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1745 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1746 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1747 ** 1748 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1749 ** is found to not be a constant. 1750 ** 1751 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1752 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1753 ** an existing schema and 4 when processing a new statement. A bound 1754 ** parameter raises an error for new statements, but is silently converted 1755 ** to NULL for existing schemas. This allows sqlite_master tables that 1756 ** contain a bound parameter because they were generated by older versions 1757 ** of SQLite to be parsed by newer versions of SQLite without raising a 1758 ** malformed schema error. 1759 */ 1760 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1761 1762 /* If pWalker->eCode is 2 then any term of the expression that comes from 1763 ** the ON or USING clauses of a left join disqualifies the expression 1764 ** from being considered constant. */ 1765 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1766 pWalker->eCode = 0; 1767 return WRC_Abort; 1768 } 1769 1770 switch( pExpr->op ){ 1771 /* Consider functions to be constant if all their arguments are constant 1772 ** and either pWalker->eCode==4 or 5 or the function has the 1773 ** SQLITE_FUNC_CONST flag. */ 1774 case TK_FUNCTION: 1775 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1776 return WRC_Continue; 1777 }else{ 1778 pWalker->eCode = 0; 1779 return WRC_Abort; 1780 } 1781 case TK_ID: 1782 case TK_COLUMN: 1783 case TK_AGG_FUNCTION: 1784 case TK_AGG_COLUMN: 1785 testcase( pExpr->op==TK_ID ); 1786 testcase( pExpr->op==TK_COLUMN ); 1787 testcase( pExpr->op==TK_AGG_FUNCTION ); 1788 testcase( pExpr->op==TK_AGG_COLUMN ); 1789 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1790 return WRC_Continue; 1791 } 1792 /* Fall through */ 1793 case TK_IF_NULL_ROW: 1794 testcase( pExpr->op==TK_IF_NULL_ROW ); 1795 pWalker->eCode = 0; 1796 return WRC_Abort; 1797 case TK_VARIABLE: 1798 if( pWalker->eCode==5 ){ 1799 /* Silently convert bound parameters that appear inside of CREATE 1800 ** statements into a NULL when parsing the CREATE statement text out 1801 ** of the sqlite_master table */ 1802 pExpr->op = TK_NULL; 1803 }else if( pWalker->eCode==4 ){ 1804 /* A bound parameter in a CREATE statement that originates from 1805 ** sqlite3_prepare() causes an error */ 1806 pWalker->eCode = 0; 1807 return WRC_Abort; 1808 } 1809 /* Fall through */ 1810 default: 1811 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail will disallow */ 1812 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail will disallow */ 1813 return WRC_Continue; 1814 } 1815 } 1816 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1817 Walker w; 1818 w.eCode = initFlag; 1819 w.xExprCallback = exprNodeIsConstant; 1820 w.xSelectCallback = sqlite3SelectWalkFail; 1821 #ifdef SQLITE_DEBUG 1822 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1823 #endif 1824 w.u.iCur = iCur; 1825 sqlite3WalkExpr(&w, p); 1826 return w.eCode; 1827 } 1828 1829 /* 1830 ** Walk an expression tree. Return non-zero if the expression is constant 1831 ** and 0 if it involves variables or function calls. 1832 ** 1833 ** For the purposes of this function, a double-quoted string (ex: "abc") 1834 ** is considered a variable but a single-quoted string (ex: 'abc') is 1835 ** a constant. 1836 */ 1837 int sqlite3ExprIsConstant(Expr *p){ 1838 return exprIsConst(p, 1, 0); 1839 } 1840 1841 /* 1842 ** Walk an expression tree. Return non-zero if the expression is constant 1843 ** that does no originate from the ON or USING clauses of a join. 1844 ** Return 0 if it involves variables or function calls or terms from 1845 ** an ON or USING clause. 1846 */ 1847 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1848 return exprIsConst(p, 2, 0); 1849 } 1850 1851 /* 1852 ** Walk an expression tree. Return non-zero if the expression is constant 1853 ** for any single row of the table with cursor iCur. In other words, the 1854 ** expression must not refer to any non-deterministic function nor any 1855 ** table other than iCur. 1856 */ 1857 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1858 return exprIsConst(p, 3, iCur); 1859 } 1860 1861 1862 /* 1863 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 1864 */ 1865 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 1866 ExprList *pGroupBy = pWalker->u.pGroupBy; 1867 int i; 1868 1869 /* Check if pExpr is identical to any GROUP BY term. If so, consider 1870 ** it constant. */ 1871 for(i=0; i<pGroupBy->nExpr; i++){ 1872 Expr *p = pGroupBy->a[i].pExpr; 1873 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 1874 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 1875 if( sqlite3_stricmp("BINARY", pColl->zName)==0 ){ 1876 return WRC_Prune; 1877 } 1878 } 1879 } 1880 1881 /* Check if pExpr is a sub-select. If so, consider it variable. */ 1882 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1883 pWalker->eCode = 0; 1884 return WRC_Abort; 1885 } 1886 1887 return exprNodeIsConstant(pWalker, pExpr); 1888 } 1889 1890 /* 1891 ** Walk the expression tree passed as the first argument. Return non-zero 1892 ** if the expression consists entirely of constants or copies of terms 1893 ** in pGroupBy that sort with the BINARY collation sequence. 1894 ** 1895 ** This routine is used to determine if a term of the HAVING clause can 1896 ** be promoted into the WHERE clause. In order for such a promotion to work, 1897 ** the value of the HAVING clause term must be the same for all members of 1898 ** a "group". The requirement that the GROUP BY term must be BINARY 1899 ** assumes that no other collating sequence will have a finer-grained 1900 ** grouping than binary. In other words (A=B COLLATE binary) implies 1901 ** A=B in every other collating sequence. The requirement that the 1902 ** GROUP BY be BINARY is stricter than necessary. It would also work 1903 ** to promote HAVING clauses that use the same alternative collating 1904 ** sequence as the GROUP BY term, but that is much harder to check, 1905 ** alternative collating sequences are uncommon, and this is only an 1906 ** optimization, so we take the easy way out and simply require the 1907 ** GROUP BY to use the BINARY collating sequence. 1908 */ 1909 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 1910 Walker w; 1911 w.eCode = 1; 1912 w.xExprCallback = exprNodeIsConstantOrGroupBy; 1913 w.xSelectCallback = 0; 1914 w.u.pGroupBy = pGroupBy; 1915 w.pParse = pParse; 1916 sqlite3WalkExpr(&w, p); 1917 return w.eCode; 1918 } 1919 1920 /* 1921 ** Walk an expression tree. Return non-zero if the expression is constant 1922 ** or a function call with constant arguments. Return and 0 if there 1923 ** are any variables. 1924 ** 1925 ** For the purposes of this function, a double-quoted string (ex: "abc") 1926 ** is considered a variable but a single-quoted string (ex: 'abc') is 1927 ** a constant. 1928 */ 1929 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1930 assert( isInit==0 || isInit==1 ); 1931 return exprIsConst(p, 4+isInit, 0); 1932 } 1933 1934 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1935 /* 1936 ** Walk an expression tree. Return 1 if the expression contains a 1937 ** subquery of some kind. Return 0 if there are no subqueries. 1938 */ 1939 int sqlite3ExprContainsSubquery(Expr *p){ 1940 Walker w; 1941 w.eCode = 1; 1942 w.xExprCallback = sqlite3ExprWalkNoop; 1943 w.xSelectCallback = sqlite3SelectWalkFail; 1944 #ifdef SQLITE_DEBUG 1945 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1946 #endif 1947 sqlite3WalkExpr(&w, p); 1948 return w.eCode==0; 1949 } 1950 #endif 1951 1952 /* 1953 ** If the expression p codes a constant integer that is small enough 1954 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1955 ** in *pValue. If the expression is not an integer or if it is too big 1956 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1957 */ 1958 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1959 int rc = 0; 1960 if( p==0 ) return 0; /* Can only happen following on OOM */ 1961 1962 /* If an expression is an integer literal that fits in a signed 32-bit 1963 ** integer, then the EP_IntValue flag will have already been set */ 1964 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1965 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1966 1967 if( p->flags & EP_IntValue ){ 1968 *pValue = p->u.iValue; 1969 return 1; 1970 } 1971 switch( p->op ){ 1972 case TK_UPLUS: { 1973 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1974 break; 1975 } 1976 case TK_UMINUS: { 1977 int v; 1978 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1979 assert( v!=(-2147483647-1) ); 1980 *pValue = -v; 1981 rc = 1; 1982 } 1983 break; 1984 } 1985 default: break; 1986 } 1987 return rc; 1988 } 1989 1990 /* 1991 ** Return FALSE if there is no chance that the expression can be NULL. 1992 ** 1993 ** If the expression might be NULL or if the expression is too complex 1994 ** to tell return TRUE. 1995 ** 1996 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1997 ** when we know that a value cannot be NULL. Hence, a false positive 1998 ** (returning TRUE when in fact the expression can never be NULL) might 1999 ** be a small performance hit but is otherwise harmless. On the other 2000 ** hand, a false negative (returning FALSE when the result could be NULL) 2001 ** will likely result in an incorrect answer. So when in doubt, return 2002 ** TRUE. 2003 */ 2004 int sqlite3ExprCanBeNull(const Expr *p){ 2005 u8 op; 2006 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 2007 op = p->op; 2008 if( op==TK_REGISTER ) op = p->op2; 2009 switch( op ){ 2010 case TK_INTEGER: 2011 case TK_STRING: 2012 case TK_FLOAT: 2013 case TK_BLOB: 2014 return 0; 2015 case TK_COLUMN: 2016 return ExprHasProperty(p, EP_CanBeNull) || 2017 p->pTab==0 || /* Reference to column of index on expression */ 2018 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 2019 default: 2020 return 1; 2021 } 2022 } 2023 2024 /* 2025 ** Return TRUE if the given expression is a constant which would be 2026 ** unchanged by OP_Affinity with the affinity given in the second 2027 ** argument. 2028 ** 2029 ** This routine is used to determine if the OP_Affinity operation 2030 ** can be omitted. When in doubt return FALSE. A false negative 2031 ** is harmless. A false positive, however, can result in the wrong 2032 ** answer. 2033 */ 2034 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2035 u8 op; 2036 if( aff==SQLITE_AFF_BLOB ) return 1; 2037 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 2038 op = p->op; 2039 if( op==TK_REGISTER ) op = p->op2; 2040 switch( op ){ 2041 case TK_INTEGER: { 2042 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 2043 } 2044 case TK_FLOAT: { 2045 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 2046 } 2047 case TK_STRING: { 2048 return aff==SQLITE_AFF_TEXT; 2049 } 2050 case TK_BLOB: { 2051 return 1; 2052 } 2053 case TK_COLUMN: { 2054 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2055 return p->iColumn<0 2056 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 2057 } 2058 default: { 2059 return 0; 2060 } 2061 } 2062 } 2063 2064 /* 2065 ** Return TRUE if the given string is a row-id column name. 2066 */ 2067 int sqlite3IsRowid(const char *z){ 2068 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2069 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2070 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2071 return 0; 2072 } 2073 2074 /* 2075 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2076 ** that can be simplified to a direct table access, then return 2077 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2078 ** or if the SELECT statement needs to be manifested into a transient 2079 ** table, then return NULL. 2080 */ 2081 #ifndef SQLITE_OMIT_SUBQUERY 2082 static Select *isCandidateForInOpt(Expr *pX){ 2083 Select *p; 2084 SrcList *pSrc; 2085 ExprList *pEList; 2086 Table *pTab; 2087 int i; 2088 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2089 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2090 p = pX->x.pSelect; 2091 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2092 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2093 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2094 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2095 return 0; /* No DISTINCT keyword and no aggregate functions */ 2096 } 2097 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2098 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2099 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2100 pSrc = p->pSrc; 2101 assert( pSrc!=0 ); 2102 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2103 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2104 pTab = pSrc->a[0].pTab; 2105 assert( pTab!=0 ); 2106 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2107 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2108 pEList = p->pEList; 2109 assert( pEList!=0 ); 2110 /* All SELECT results must be columns. */ 2111 for(i=0; i<pEList->nExpr; i++){ 2112 Expr *pRes = pEList->a[i].pExpr; 2113 if( pRes->op!=TK_COLUMN ) return 0; 2114 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2115 } 2116 return p; 2117 } 2118 #endif /* SQLITE_OMIT_SUBQUERY */ 2119 2120 #ifndef SQLITE_OMIT_SUBQUERY 2121 /* 2122 ** Generate code that checks the left-most column of index table iCur to see if 2123 ** it contains any NULL entries. Cause the register at regHasNull to be set 2124 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2125 ** to be set to NULL if iCur contains one or more NULL values. 2126 */ 2127 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2128 int addr1; 2129 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2130 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2131 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2132 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2133 VdbeComment((v, "first_entry_in(%d)", iCur)); 2134 sqlite3VdbeJumpHere(v, addr1); 2135 } 2136 #endif 2137 2138 2139 #ifndef SQLITE_OMIT_SUBQUERY 2140 /* 2141 ** The argument is an IN operator with a list (not a subquery) on the 2142 ** right-hand side. Return TRUE if that list is constant. 2143 */ 2144 static int sqlite3InRhsIsConstant(Expr *pIn){ 2145 Expr *pLHS; 2146 int res; 2147 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2148 pLHS = pIn->pLeft; 2149 pIn->pLeft = 0; 2150 res = sqlite3ExprIsConstant(pIn); 2151 pIn->pLeft = pLHS; 2152 return res; 2153 } 2154 #endif 2155 2156 /* 2157 ** This function is used by the implementation of the IN (...) operator. 2158 ** The pX parameter is the expression on the RHS of the IN operator, which 2159 ** might be either a list of expressions or a subquery. 2160 ** 2161 ** The job of this routine is to find or create a b-tree object that can 2162 ** be used either to test for membership in the RHS set or to iterate through 2163 ** all members of the RHS set, skipping duplicates. 2164 ** 2165 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2166 ** and pX->iTable is set to the index of that cursor. 2167 ** 2168 ** The returned value of this function indicates the b-tree type, as follows: 2169 ** 2170 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2171 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2172 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2173 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2174 ** populated epheremal table. 2175 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2176 ** implemented as a sequence of comparisons. 2177 ** 2178 ** An existing b-tree might be used if the RHS expression pX is a simple 2179 ** subquery such as: 2180 ** 2181 ** SELECT <column1>, <column2>... FROM <table> 2182 ** 2183 ** If the RHS of the IN operator is a list or a more complex subquery, then 2184 ** an ephemeral table might need to be generated from the RHS and then 2185 ** pX->iTable made to point to the ephemeral table instead of an 2186 ** existing table. 2187 ** 2188 ** The inFlags parameter must contain, at a minimum, one of the bits 2189 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2190 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2191 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2192 ** be used to loop over all values of the RHS of the IN operator. 2193 ** 2194 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2195 ** through the set members) then the b-tree must not contain duplicates. 2196 ** An epheremal table will be created unless the selected columns are guaranteed 2197 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2198 ** a UNIQUE constraint or index. 2199 ** 2200 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2201 ** for fast set membership tests) then an epheremal table must 2202 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2203 ** index can be found with the specified <columns> as its left-most. 2204 ** 2205 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2206 ** if the RHS of the IN operator is a list (not a subquery) then this 2207 ** routine might decide that creating an ephemeral b-tree for membership 2208 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2209 ** calling routine should implement the IN operator using a sequence 2210 ** of Eq or Ne comparison operations. 2211 ** 2212 ** When the b-tree is being used for membership tests, the calling function 2213 ** might need to know whether or not the RHS side of the IN operator 2214 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2215 ** if there is any chance that the (...) might contain a NULL value at 2216 ** runtime, then a register is allocated and the register number written 2217 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2218 ** NULL value, then *prRhsHasNull is left unchanged. 2219 ** 2220 ** If a register is allocated and its location stored in *prRhsHasNull, then 2221 ** the value in that register will be NULL if the b-tree contains one or more 2222 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2223 ** NULL values. 2224 ** 2225 ** If the aiMap parameter is not NULL, it must point to an array containing 2226 ** one element for each column returned by the SELECT statement on the RHS 2227 ** of the IN(...) operator. The i'th entry of the array is populated with the 2228 ** offset of the index column that matches the i'th column returned by the 2229 ** SELECT. For example, if the expression and selected index are: 2230 ** 2231 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2232 ** CREATE INDEX i1 ON t1(b, c, a); 2233 ** 2234 ** then aiMap[] is populated with {2, 0, 1}. 2235 */ 2236 #ifndef SQLITE_OMIT_SUBQUERY 2237 int sqlite3FindInIndex( 2238 Parse *pParse, /* Parsing context */ 2239 Expr *pX, /* The right-hand side (RHS) of the IN operator */ 2240 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2241 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2242 int *aiMap /* Mapping from Index fields to RHS fields */ 2243 ){ 2244 Select *p; /* SELECT to the right of IN operator */ 2245 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2246 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2247 int mustBeUnique; /* True if RHS must be unique */ 2248 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2249 2250 assert( pX->op==TK_IN ); 2251 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2252 2253 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2254 ** whether or not the SELECT result contains NULL values, check whether 2255 ** or not NULL is actually possible (it may not be, for example, due 2256 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2257 ** set prRhsHasNull to 0 before continuing. */ 2258 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2259 int i; 2260 ExprList *pEList = pX->x.pSelect->pEList; 2261 for(i=0; i<pEList->nExpr; i++){ 2262 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2263 } 2264 if( i==pEList->nExpr ){ 2265 prRhsHasNull = 0; 2266 } 2267 } 2268 2269 /* Check to see if an existing table or index can be used to 2270 ** satisfy the query. This is preferable to generating a new 2271 ** ephemeral table. */ 2272 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2273 sqlite3 *db = pParse->db; /* Database connection */ 2274 Table *pTab; /* Table <table>. */ 2275 i16 iDb; /* Database idx for pTab */ 2276 ExprList *pEList = p->pEList; 2277 int nExpr = pEList->nExpr; 2278 2279 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2280 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2281 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2282 pTab = p->pSrc->a[0].pTab; 2283 2284 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2285 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2286 sqlite3CodeVerifySchema(pParse, iDb); 2287 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2288 2289 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2290 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2291 /* The "x IN (SELECT rowid FROM table)" case */ 2292 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2293 VdbeCoverage(v); 2294 2295 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2296 eType = IN_INDEX_ROWID; 2297 2298 sqlite3VdbeJumpHere(v, iAddr); 2299 }else{ 2300 Index *pIdx; /* Iterator variable */ 2301 int affinity_ok = 1; 2302 int i; 2303 2304 /* Check that the affinity that will be used to perform each 2305 ** comparison is the same as the affinity of each column in table 2306 ** on the RHS of the IN operator. If it not, it is not possible to 2307 ** use any index of the RHS table. */ 2308 for(i=0; i<nExpr && affinity_ok; i++){ 2309 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2310 int iCol = pEList->a[i].pExpr->iColumn; 2311 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2312 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2313 testcase( cmpaff==SQLITE_AFF_BLOB ); 2314 testcase( cmpaff==SQLITE_AFF_TEXT ); 2315 switch( cmpaff ){ 2316 case SQLITE_AFF_BLOB: 2317 break; 2318 case SQLITE_AFF_TEXT: 2319 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2320 ** other has no affinity and the other side is TEXT. Hence, 2321 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2322 ** and for the term on the LHS of the IN to have no affinity. */ 2323 assert( idxaff==SQLITE_AFF_TEXT ); 2324 break; 2325 default: 2326 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2327 } 2328 } 2329 2330 if( affinity_ok ){ 2331 /* Search for an existing index that will work for this IN operator */ 2332 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2333 Bitmask colUsed; /* Columns of the index used */ 2334 Bitmask mCol; /* Mask for the current column */ 2335 if( pIdx->nColumn<nExpr ) continue; 2336 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2337 ** BITMASK(nExpr) without overflowing */ 2338 testcase( pIdx->nColumn==BMS-2 ); 2339 testcase( pIdx->nColumn==BMS-1 ); 2340 if( pIdx->nColumn>=BMS-1 ) continue; 2341 if( mustBeUnique ){ 2342 if( pIdx->nKeyCol>nExpr 2343 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2344 ){ 2345 continue; /* This index is not unique over the IN RHS columns */ 2346 } 2347 } 2348 2349 colUsed = 0; /* Columns of index used so far */ 2350 for(i=0; i<nExpr; i++){ 2351 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2352 Expr *pRhs = pEList->a[i].pExpr; 2353 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2354 int j; 2355 2356 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2357 for(j=0; j<nExpr; j++){ 2358 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2359 assert( pIdx->azColl[j] ); 2360 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2361 continue; 2362 } 2363 break; 2364 } 2365 if( j==nExpr ) break; 2366 mCol = MASKBIT(j); 2367 if( mCol & colUsed ) break; /* Each column used only once */ 2368 colUsed |= mCol; 2369 if( aiMap ) aiMap[i] = j; 2370 } 2371 2372 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2373 if( colUsed==(MASKBIT(nExpr)-1) ){ 2374 /* If we reach this point, that means the index pIdx is usable */ 2375 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2376 #ifndef SQLITE_OMIT_EXPLAIN 2377 sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0, 2378 sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName), 2379 P4_DYNAMIC); 2380 #endif 2381 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2382 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2383 VdbeComment((v, "%s", pIdx->zName)); 2384 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2385 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2386 2387 if( prRhsHasNull ){ 2388 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2389 i64 mask = (1<<nExpr)-1; 2390 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2391 iTab, 0, 0, (u8*)&mask, P4_INT64); 2392 #endif 2393 *prRhsHasNull = ++pParse->nMem; 2394 if( nExpr==1 ){ 2395 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2396 } 2397 } 2398 sqlite3VdbeJumpHere(v, iAddr); 2399 } 2400 } /* End loop over indexes */ 2401 } /* End if( affinity_ok ) */ 2402 } /* End if not an rowid index */ 2403 } /* End attempt to optimize using an index */ 2404 2405 /* If no preexisting index is available for the IN clause 2406 ** and IN_INDEX_NOOP is an allowed reply 2407 ** and the RHS of the IN operator is a list, not a subquery 2408 ** and the RHS is not constant or has two or fewer terms, 2409 ** then it is not worth creating an ephemeral table to evaluate 2410 ** the IN operator so return IN_INDEX_NOOP. 2411 */ 2412 if( eType==0 2413 && (inFlags & IN_INDEX_NOOP_OK) 2414 && !ExprHasProperty(pX, EP_xIsSelect) 2415 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2416 ){ 2417 eType = IN_INDEX_NOOP; 2418 } 2419 2420 if( eType==0 ){ 2421 /* Could not find an existing table or index to use as the RHS b-tree. 2422 ** We will have to generate an ephemeral table to do the job. 2423 */ 2424 u32 savedNQueryLoop = pParse->nQueryLoop; 2425 int rMayHaveNull = 0; 2426 eType = IN_INDEX_EPH; 2427 if( inFlags & IN_INDEX_LOOP ){ 2428 pParse->nQueryLoop = 0; 2429 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 2430 eType = IN_INDEX_ROWID; 2431 } 2432 }else if( prRhsHasNull ){ 2433 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2434 } 2435 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 2436 pParse->nQueryLoop = savedNQueryLoop; 2437 }else{ 2438 pX->iTable = iTab; 2439 } 2440 2441 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2442 int i, n; 2443 n = sqlite3ExprVectorSize(pX->pLeft); 2444 for(i=0; i<n; i++) aiMap[i] = i; 2445 } 2446 return eType; 2447 } 2448 #endif 2449 2450 #ifndef SQLITE_OMIT_SUBQUERY 2451 /* 2452 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2453 ** function allocates and returns a nul-terminated string containing 2454 ** the affinities to be used for each column of the comparison. 2455 ** 2456 ** It is the responsibility of the caller to ensure that the returned 2457 ** string is eventually freed using sqlite3DbFree(). 2458 */ 2459 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2460 Expr *pLeft = pExpr->pLeft; 2461 int nVal = sqlite3ExprVectorSize(pLeft); 2462 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2463 char *zRet; 2464 2465 assert( pExpr->op==TK_IN ); 2466 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2467 if( zRet ){ 2468 int i; 2469 for(i=0; i<nVal; i++){ 2470 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2471 char a = sqlite3ExprAffinity(pA); 2472 if( pSelect ){ 2473 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2474 }else{ 2475 zRet[i] = a; 2476 } 2477 } 2478 zRet[nVal] = '\0'; 2479 } 2480 return zRet; 2481 } 2482 #endif 2483 2484 #ifndef SQLITE_OMIT_SUBQUERY 2485 /* 2486 ** Load the Parse object passed as the first argument with an error 2487 ** message of the form: 2488 ** 2489 ** "sub-select returns N columns - expected M" 2490 */ 2491 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2492 const char *zFmt = "sub-select returns %d columns - expected %d"; 2493 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2494 } 2495 #endif 2496 2497 /* 2498 ** Expression pExpr is a vector that has been used in a context where 2499 ** it is not permitted. If pExpr is a sub-select vector, this routine 2500 ** loads the Parse object with a message of the form: 2501 ** 2502 ** "sub-select returns N columns - expected 1" 2503 ** 2504 ** Or, if it is a regular scalar vector: 2505 ** 2506 ** "row value misused" 2507 */ 2508 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2509 #ifndef SQLITE_OMIT_SUBQUERY 2510 if( pExpr->flags & EP_xIsSelect ){ 2511 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2512 }else 2513 #endif 2514 { 2515 sqlite3ErrorMsg(pParse, "row value misused"); 2516 } 2517 } 2518 2519 /* 2520 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 2521 ** or IN operators. Examples: 2522 ** 2523 ** (SELECT a FROM b) -- subquery 2524 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2525 ** x IN (4,5,11) -- IN operator with list on right-hand side 2526 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2527 ** 2528 ** The pExpr parameter describes the expression that contains the IN 2529 ** operator or subquery. 2530 ** 2531 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 2532 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 2533 ** to some integer key column of a table B-Tree. In this case, use an 2534 ** intkey B-Tree to store the set of IN(...) values instead of the usual 2535 ** (slower) variable length keys B-Tree. 2536 ** 2537 ** If rMayHaveNull is non-zero, that means that the operation is an IN 2538 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 2539 ** All this routine does is initialize the register given by rMayHaveNull 2540 ** to NULL. Calling routines will take care of changing this register 2541 ** value to non-NULL if the RHS is NULL-free. 2542 ** 2543 ** For a SELECT or EXISTS operator, return the register that holds the 2544 ** result. For a multi-column SELECT, the result is stored in a contiguous 2545 ** array of registers and the return value is the register of the left-most 2546 ** result column. Return 0 for IN operators or if an error occurs. 2547 */ 2548 #ifndef SQLITE_OMIT_SUBQUERY 2549 int sqlite3CodeSubselect( 2550 Parse *pParse, /* Parsing context */ 2551 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 2552 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 2553 int isRowid /* If true, LHS of IN operator is a rowid */ 2554 ){ 2555 int jmpIfDynamic = -1; /* One-time test address */ 2556 int rReg = 0; /* Register storing resulting */ 2557 Vdbe *v = sqlite3GetVdbe(pParse); 2558 if( NEVER(v==0) ) return 0; 2559 sqlite3ExprCachePush(pParse); 2560 2561 /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it 2562 ** is encountered if any of the following is true: 2563 ** 2564 ** * The right-hand side is a correlated subquery 2565 ** * The right-hand side is an expression list containing variables 2566 ** * We are inside a trigger 2567 ** 2568 ** If all of the above are false, then we can run this code just once 2569 ** save the results, and reuse the same result on subsequent invocations. 2570 */ 2571 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2572 jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2573 } 2574 2575 #ifndef SQLITE_OMIT_EXPLAIN 2576 if( pParse->explain==2 ){ 2577 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d", 2578 jmpIfDynamic>=0?"":"CORRELATED ", 2579 pExpr->op==TK_IN?"LIST":"SCALAR", 2580 pParse->iNextSelectId 2581 ); 2582 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 2583 } 2584 #endif 2585 2586 switch( pExpr->op ){ 2587 case TK_IN: { 2588 int addr; /* Address of OP_OpenEphemeral instruction */ 2589 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 2590 KeyInfo *pKeyInfo = 0; /* Key information */ 2591 int nVal; /* Size of vector pLeft */ 2592 2593 nVal = sqlite3ExprVectorSize(pLeft); 2594 assert( !isRowid || nVal==1 ); 2595 2596 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 2597 ** expression it is handled the same way. An ephemeral table is 2598 ** filled with index keys representing the results from the 2599 ** SELECT or the <exprlist>. 2600 ** 2601 ** If the 'x' expression is a column value, or the SELECT... 2602 ** statement returns a column value, then the affinity of that 2603 ** column is used to build the index keys. If both 'x' and the 2604 ** SELECT... statement are columns, then numeric affinity is used 2605 ** if either column has NUMERIC or INTEGER affinity. If neither 2606 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2607 ** is used. 2608 */ 2609 pExpr->iTable = pParse->nTab++; 2610 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, 2611 pExpr->iTable, (isRowid?0:nVal)); 2612 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2613 2614 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2615 /* Case 1: expr IN (SELECT ...) 2616 ** 2617 ** Generate code to write the results of the select into the temporary 2618 ** table allocated and opened above. 2619 */ 2620 Select *pSelect = pExpr->x.pSelect; 2621 ExprList *pEList = pSelect->pEList; 2622 2623 assert( !isRowid ); 2624 /* If the LHS and RHS of the IN operator do not match, that 2625 ** error will have been caught long before we reach this point. */ 2626 if( ALWAYS(pEList->nExpr==nVal) ){ 2627 SelectDest dest; 2628 int i; 2629 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 2630 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2631 pSelect->iLimit = 0; 2632 testcase( pSelect->selFlags & SF_Distinct ); 2633 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2634 if( sqlite3Select(pParse, pSelect, &dest) ){ 2635 sqlite3DbFree(pParse->db, dest.zAffSdst); 2636 sqlite3KeyInfoUnref(pKeyInfo); 2637 return 0; 2638 } 2639 sqlite3DbFree(pParse->db, dest.zAffSdst); 2640 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2641 assert( pEList!=0 ); 2642 assert( pEList->nExpr>0 ); 2643 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2644 for(i=0; i<nVal; i++){ 2645 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2646 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2647 pParse, p, pEList->a[i].pExpr 2648 ); 2649 } 2650 } 2651 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2652 /* Case 2: expr IN (exprlist) 2653 ** 2654 ** For each expression, build an index key from the evaluation and 2655 ** store it in the temporary table. If <expr> is a column, then use 2656 ** that columns affinity when building index keys. If <expr> is not 2657 ** a column, use numeric affinity. 2658 */ 2659 char affinity; /* Affinity of the LHS of the IN */ 2660 int i; 2661 ExprList *pList = pExpr->x.pList; 2662 struct ExprList_item *pItem; 2663 int r1, r2, r3; 2664 2665 affinity = sqlite3ExprAffinity(pLeft); 2666 if( !affinity ){ 2667 affinity = SQLITE_AFF_BLOB; 2668 } 2669 if( pKeyInfo ){ 2670 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2671 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2672 } 2673 2674 /* Loop through each expression in <exprlist>. */ 2675 r1 = sqlite3GetTempReg(pParse); 2676 r2 = sqlite3GetTempReg(pParse); 2677 if( isRowid ) sqlite3VdbeAddOp4(v, OP_Blob, 0, r2, 0, "", P4_STATIC); 2678 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2679 Expr *pE2 = pItem->pExpr; 2680 int iValToIns; 2681 2682 /* If the expression is not constant then we will need to 2683 ** disable the test that was generated above that makes sure 2684 ** this code only executes once. Because for a non-constant 2685 ** expression we need to rerun this code each time. 2686 */ 2687 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 2688 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 2689 jmpIfDynamic = -1; 2690 } 2691 2692 /* Evaluate the expression and insert it into the temp table */ 2693 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 2694 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 2695 }else{ 2696 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2697 if( isRowid ){ 2698 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2699 sqlite3VdbeCurrentAddr(v)+2); 2700 VdbeCoverage(v); 2701 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 2702 }else{ 2703 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2704 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 2705 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1); 2706 } 2707 } 2708 } 2709 sqlite3ReleaseTempReg(pParse, r1); 2710 sqlite3ReleaseTempReg(pParse, r2); 2711 } 2712 if( pKeyInfo ){ 2713 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2714 } 2715 break; 2716 } 2717 2718 case TK_EXISTS: 2719 case TK_SELECT: 2720 default: { 2721 /* Case 3: (SELECT ... FROM ...) 2722 ** or: EXISTS(SELECT ... FROM ...) 2723 ** 2724 ** For a SELECT, generate code to put the values for all columns of 2725 ** the first row into an array of registers and return the index of 2726 ** the first register. 2727 ** 2728 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2729 ** into a register and return that register number. 2730 ** 2731 ** In both cases, the query is augmented with "LIMIT 1". Any 2732 ** preexisting limit is discarded in place of the new LIMIT 1. 2733 */ 2734 Select *pSel; /* SELECT statement to encode */ 2735 SelectDest dest; /* How to deal with SELECT result */ 2736 int nReg; /* Registers to allocate */ 2737 Expr *pLimit; /* New limit expression */ 2738 2739 testcase( pExpr->op==TK_EXISTS ); 2740 testcase( pExpr->op==TK_SELECT ); 2741 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2742 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2743 2744 pSel = pExpr->x.pSelect; 2745 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2746 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2747 pParse->nMem += nReg; 2748 if( pExpr->op==TK_SELECT ){ 2749 dest.eDest = SRT_Mem; 2750 dest.iSdst = dest.iSDParm; 2751 dest.nSdst = nReg; 2752 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2753 VdbeComment((v, "Init subquery result")); 2754 }else{ 2755 dest.eDest = SRT_Exists; 2756 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2757 VdbeComment((v, "Init EXISTS result")); 2758 } 2759 pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0); 2760 if( pSel->pLimit ){ 2761 sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft); 2762 pSel->pLimit->pLeft = pLimit; 2763 }else{ 2764 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 2765 } 2766 pSel->iLimit = 0; 2767 pSel->selFlags &= ~SF_MultiValue; 2768 if( sqlite3Select(pParse, pSel, &dest) ){ 2769 return 0; 2770 } 2771 rReg = dest.iSDParm; 2772 ExprSetVVAProperty(pExpr, EP_NoReduce); 2773 break; 2774 } 2775 } 2776 2777 if( rHasNullFlag ){ 2778 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2779 } 2780 2781 if( jmpIfDynamic>=0 ){ 2782 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2783 } 2784 sqlite3ExprCachePop(pParse); 2785 2786 return rReg; 2787 } 2788 #endif /* SQLITE_OMIT_SUBQUERY */ 2789 2790 #ifndef SQLITE_OMIT_SUBQUERY 2791 /* 2792 ** Expr pIn is an IN(...) expression. This function checks that the 2793 ** sub-select on the RHS of the IN() operator has the same number of 2794 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 2795 ** a sub-query, that the LHS is a vector of size 1. 2796 */ 2797 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 2798 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 2799 if( (pIn->flags & EP_xIsSelect) ){ 2800 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 2801 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 2802 return 1; 2803 } 2804 }else if( nVector!=1 ){ 2805 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 2806 return 1; 2807 } 2808 return 0; 2809 } 2810 #endif 2811 2812 #ifndef SQLITE_OMIT_SUBQUERY 2813 /* 2814 ** Generate code for an IN expression. 2815 ** 2816 ** x IN (SELECT ...) 2817 ** x IN (value, value, ...) 2818 ** 2819 ** The left-hand side (LHS) is a scalar or vector expression. The 2820 ** right-hand side (RHS) is an array of zero or more scalar values, or a 2821 ** subquery. If the RHS is a subquery, the number of result columns must 2822 ** match the number of columns in the vector on the LHS. If the RHS is 2823 ** a list of values, the LHS must be a scalar. 2824 ** 2825 ** The IN operator is true if the LHS value is contained within the RHS. 2826 ** The result is false if the LHS is definitely not in the RHS. The 2827 ** result is NULL if the presence of the LHS in the RHS cannot be 2828 ** determined due to NULLs. 2829 ** 2830 ** This routine generates code that jumps to destIfFalse if the LHS is not 2831 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2832 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2833 ** within the RHS then fall through. 2834 ** 2835 ** See the separate in-operator.md documentation file in the canonical 2836 ** SQLite source tree for additional information. 2837 */ 2838 static void sqlite3ExprCodeIN( 2839 Parse *pParse, /* Parsing and code generating context */ 2840 Expr *pExpr, /* The IN expression */ 2841 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2842 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2843 ){ 2844 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2845 int eType; /* Type of the RHS */ 2846 int rLhs; /* Register(s) holding the LHS values */ 2847 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 2848 Vdbe *v; /* Statement under construction */ 2849 int *aiMap = 0; /* Map from vector field to index column */ 2850 char *zAff = 0; /* Affinity string for comparisons */ 2851 int nVector; /* Size of vectors for this IN operator */ 2852 int iDummy; /* Dummy parameter to exprCodeVector() */ 2853 Expr *pLeft; /* The LHS of the IN operator */ 2854 int i; /* loop counter */ 2855 int destStep2; /* Where to jump when NULLs seen in step 2 */ 2856 int destStep6 = 0; /* Start of code for Step 6 */ 2857 int addrTruthOp; /* Address of opcode that determines the IN is true */ 2858 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 2859 int addrTop; /* Top of the step-6 loop */ 2860 2861 pLeft = pExpr->pLeft; 2862 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 2863 zAff = exprINAffinity(pParse, pExpr); 2864 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 2865 aiMap = (int*)sqlite3DbMallocZero( 2866 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 2867 ); 2868 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 2869 2870 /* Attempt to compute the RHS. After this step, if anything other than 2871 ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable 2872 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 2873 ** the RHS has not yet been coded. */ 2874 v = pParse->pVdbe; 2875 assert( v!=0 ); /* OOM detected prior to this routine */ 2876 VdbeNoopComment((v, "begin IN expr")); 2877 eType = sqlite3FindInIndex(pParse, pExpr, 2878 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2879 destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap); 2880 2881 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 2882 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 2883 ); 2884 #ifdef SQLITE_DEBUG 2885 /* Confirm that aiMap[] contains nVector integer values between 0 and 2886 ** nVector-1. */ 2887 for(i=0; i<nVector; i++){ 2888 int j, cnt; 2889 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 2890 assert( cnt==1 ); 2891 } 2892 #endif 2893 2894 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 2895 ** vector, then it is stored in an array of nVector registers starting 2896 ** at r1. 2897 ** 2898 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 2899 ** so that the fields are in the same order as an existing index. The 2900 ** aiMap[] array contains a mapping from the original LHS field order to 2901 ** the field order that matches the RHS index. 2902 */ 2903 sqlite3ExprCachePush(pParse); 2904 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 2905 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 2906 if( i==nVector ){ 2907 /* LHS fields are not reordered */ 2908 rLhs = rLhsOrig; 2909 }else{ 2910 /* Need to reorder the LHS fields according to aiMap */ 2911 rLhs = sqlite3GetTempRange(pParse, nVector); 2912 for(i=0; i<nVector; i++){ 2913 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 2914 } 2915 } 2916 2917 /* If sqlite3FindInIndex() did not find or create an index that is 2918 ** suitable for evaluating the IN operator, then evaluate using a 2919 ** sequence of comparisons. 2920 ** 2921 ** This is step (1) in the in-operator.md optimized algorithm. 2922 */ 2923 if( eType==IN_INDEX_NOOP ){ 2924 ExprList *pList = pExpr->x.pList; 2925 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2926 int labelOk = sqlite3VdbeMakeLabel(v); 2927 int r2, regToFree; 2928 int regCkNull = 0; 2929 int ii; 2930 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2931 if( destIfNull!=destIfFalse ){ 2932 regCkNull = sqlite3GetTempReg(pParse); 2933 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 2934 } 2935 for(ii=0; ii<pList->nExpr; ii++){ 2936 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2937 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2938 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2939 } 2940 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2941 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 2942 (void*)pColl, P4_COLLSEQ); 2943 VdbeCoverageIf(v, ii<pList->nExpr-1); 2944 VdbeCoverageIf(v, ii==pList->nExpr-1); 2945 sqlite3VdbeChangeP5(v, zAff[0]); 2946 }else{ 2947 assert( destIfNull==destIfFalse ); 2948 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 2949 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2950 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 2951 } 2952 sqlite3ReleaseTempReg(pParse, regToFree); 2953 } 2954 if( regCkNull ){ 2955 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2956 sqlite3VdbeGoto(v, destIfFalse); 2957 } 2958 sqlite3VdbeResolveLabel(v, labelOk); 2959 sqlite3ReleaseTempReg(pParse, regCkNull); 2960 goto sqlite3ExprCodeIN_finished; 2961 } 2962 2963 /* Step 2: Check to see if the LHS contains any NULL columns. If the 2964 ** LHS does contain NULLs then the result must be either FALSE or NULL. 2965 ** We will then skip the binary search of the RHS. 2966 */ 2967 if( destIfNull==destIfFalse ){ 2968 destStep2 = destIfFalse; 2969 }else{ 2970 destStep2 = destStep6 = sqlite3VdbeMakeLabel(v); 2971 } 2972 for(i=0; i<nVector; i++){ 2973 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 2974 if( sqlite3ExprCanBeNull(p) ){ 2975 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 2976 VdbeCoverage(v); 2977 } 2978 } 2979 2980 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 2981 ** of the RHS using the LHS as a probe. If found, the result is 2982 ** true. 2983 */ 2984 if( eType==IN_INDEX_ROWID ){ 2985 /* In this case, the RHS is the ROWID of table b-tree and so we also 2986 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 2987 ** into a single opcode. */ 2988 sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs); 2989 VdbeCoverage(v); 2990 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 2991 }else{ 2992 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 2993 if( destIfFalse==destIfNull ){ 2994 /* Combine Step 3 and Step 5 into a single opcode */ 2995 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, 2996 rLhs, nVector); VdbeCoverage(v); 2997 goto sqlite3ExprCodeIN_finished; 2998 } 2999 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3000 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, 3001 rLhs, nVector); VdbeCoverage(v); 3002 } 3003 3004 /* Step 4. If the RHS is known to be non-NULL and we did not find 3005 ** an match on the search above, then the result must be FALSE. 3006 */ 3007 if( rRhsHasNull && nVector==1 ){ 3008 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3009 VdbeCoverage(v); 3010 } 3011 3012 /* Step 5. If we do not care about the difference between NULL and 3013 ** FALSE, then just return false. 3014 */ 3015 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3016 3017 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3018 ** If any comparison is NULL, then the result is NULL. If all 3019 ** comparisons are FALSE then the final result is FALSE. 3020 ** 3021 ** For a scalar LHS, it is sufficient to check just the first row 3022 ** of the RHS. 3023 */ 3024 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3025 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 3026 VdbeCoverage(v); 3027 if( nVector>1 ){ 3028 destNotNull = sqlite3VdbeMakeLabel(v); 3029 }else{ 3030 /* For nVector==1, combine steps 6 and 7 by immediately returning 3031 ** FALSE if the first comparison is not NULL */ 3032 destNotNull = destIfFalse; 3033 } 3034 for(i=0; i<nVector; i++){ 3035 Expr *p; 3036 CollSeq *pColl; 3037 int r3 = sqlite3GetTempReg(pParse); 3038 p = sqlite3VectorFieldSubexpr(pLeft, i); 3039 pColl = sqlite3ExprCollSeq(pParse, p); 3040 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3); 3041 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3042 (void*)pColl, P4_COLLSEQ); 3043 VdbeCoverage(v); 3044 sqlite3ReleaseTempReg(pParse, r3); 3045 } 3046 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3047 if( nVector>1 ){ 3048 sqlite3VdbeResolveLabel(v, destNotNull); 3049 sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1); 3050 VdbeCoverage(v); 3051 3052 /* Step 7: If we reach this point, we know that the result must 3053 ** be false. */ 3054 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3055 } 3056 3057 /* Jumps here in order to return true. */ 3058 sqlite3VdbeJumpHere(v, addrTruthOp); 3059 3060 sqlite3ExprCodeIN_finished: 3061 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3062 sqlite3ExprCachePop(pParse); 3063 VdbeComment((v, "end IN expr")); 3064 sqlite3ExprCodeIN_oom_error: 3065 sqlite3DbFree(pParse->db, aiMap); 3066 sqlite3DbFree(pParse->db, zAff); 3067 } 3068 #endif /* SQLITE_OMIT_SUBQUERY */ 3069 3070 #ifndef SQLITE_OMIT_FLOATING_POINT 3071 /* 3072 ** Generate an instruction that will put the floating point 3073 ** value described by z[0..n-1] into register iMem. 3074 ** 3075 ** The z[] string will probably not be zero-terminated. But the 3076 ** z[n] character is guaranteed to be something that does not look 3077 ** like the continuation of the number. 3078 */ 3079 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3080 if( ALWAYS(z!=0) ){ 3081 double value; 3082 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3083 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3084 if( negateFlag ) value = -value; 3085 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3086 } 3087 } 3088 #endif 3089 3090 3091 /* 3092 ** Generate an instruction that will put the integer describe by 3093 ** text z[0..n-1] into register iMem. 3094 ** 3095 ** Expr.u.zToken is always UTF8 and zero-terminated. 3096 */ 3097 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3098 Vdbe *v = pParse->pVdbe; 3099 if( pExpr->flags & EP_IntValue ){ 3100 int i = pExpr->u.iValue; 3101 assert( i>=0 ); 3102 if( negFlag ) i = -i; 3103 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3104 }else{ 3105 int c; 3106 i64 value; 3107 const char *z = pExpr->u.zToken; 3108 assert( z!=0 ); 3109 c = sqlite3DecOrHexToI64(z, &value); 3110 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3111 #ifdef SQLITE_OMIT_FLOATING_POINT 3112 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3113 #else 3114 #ifndef SQLITE_OMIT_HEX_INTEGER 3115 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3116 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3117 }else 3118 #endif 3119 { 3120 codeReal(v, z, negFlag, iMem); 3121 } 3122 #endif 3123 }else{ 3124 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3125 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3126 } 3127 } 3128 } 3129 3130 /* 3131 ** Erase column-cache entry number i 3132 */ 3133 static void cacheEntryClear(Parse *pParse, int i){ 3134 if( pParse->aColCache[i].tempReg ){ 3135 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3136 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3137 } 3138 } 3139 pParse->nColCache--; 3140 if( i<pParse->nColCache ){ 3141 pParse->aColCache[i] = pParse->aColCache[pParse->nColCache]; 3142 } 3143 } 3144 3145 3146 /* 3147 ** Record in the column cache that a particular column from a 3148 ** particular table is stored in a particular register. 3149 */ 3150 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 3151 int i; 3152 int minLru; 3153 int idxLru; 3154 struct yColCache *p; 3155 3156 /* Unless an error has occurred, register numbers are always positive. */ 3157 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 3158 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 3159 3160 /* The SQLITE_ColumnCache flag disables the column cache. This is used 3161 ** for testing only - to verify that SQLite always gets the same answer 3162 ** with and without the column cache. 3163 */ 3164 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 3165 3166 /* First replace any existing entry. 3167 ** 3168 ** Actually, the way the column cache is currently used, we are guaranteed 3169 ** that the object will never already be in cache. Verify this guarantee. 3170 */ 3171 #ifndef NDEBUG 3172 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3173 assert( p->iTable!=iTab || p->iColumn!=iCol ); 3174 } 3175 #endif 3176 3177 /* If the cache is already full, delete the least recently used entry */ 3178 if( pParse->nColCache>=SQLITE_N_COLCACHE ){ 3179 minLru = 0x7fffffff; 3180 idxLru = -1; 3181 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 3182 if( p->lru<minLru ){ 3183 idxLru = i; 3184 minLru = p->lru; 3185 } 3186 } 3187 p = &pParse->aColCache[idxLru]; 3188 }else{ 3189 p = &pParse->aColCache[pParse->nColCache++]; 3190 } 3191 3192 /* Add the new entry to the end of the cache */ 3193 p->iLevel = pParse->iCacheLevel; 3194 p->iTable = iTab; 3195 p->iColumn = iCol; 3196 p->iReg = iReg; 3197 p->tempReg = 0; 3198 p->lru = pParse->iCacheCnt++; 3199 } 3200 3201 /* 3202 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 3203 ** Purge the range of registers from the column cache. 3204 */ 3205 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 3206 int i = 0; 3207 while( i<pParse->nColCache ){ 3208 struct yColCache *p = &pParse->aColCache[i]; 3209 if( p->iReg >= iReg && p->iReg < iReg+nReg ){ 3210 cacheEntryClear(pParse, i); 3211 }else{ 3212 i++; 3213 } 3214 } 3215 } 3216 3217 /* 3218 ** Remember the current column cache context. Any new entries added 3219 ** added to the column cache after this call are removed when the 3220 ** corresponding pop occurs. 3221 */ 3222 void sqlite3ExprCachePush(Parse *pParse){ 3223 pParse->iCacheLevel++; 3224 #ifdef SQLITE_DEBUG 3225 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3226 printf("PUSH to %d\n", pParse->iCacheLevel); 3227 } 3228 #endif 3229 } 3230 3231 /* 3232 ** Remove from the column cache any entries that were added since the 3233 ** the previous sqlite3ExprCachePush operation. In other words, restore 3234 ** the cache to the state it was in prior the most recent Push. 3235 */ 3236 void sqlite3ExprCachePop(Parse *pParse){ 3237 int i = 0; 3238 assert( pParse->iCacheLevel>=1 ); 3239 pParse->iCacheLevel--; 3240 #ifdef SQLITE_DEBUG 3241 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3242 printf("POP to %d\n", pParse->iCacheLevel); 3243 } 3244 #endif 3245 while( i<pParse->nColCache ){ 3246 if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){ 3247 cacheEntryClear(pParse, i); 3248 }else{ 3249 i++; 3250 } 3251 } 3252 } 3253 3254 /* 3255 ** When a cached column is reused, make sure that its register is 3256 ** no longer available as a temp register. ticket #3879: that same 3257 ** register might be in the cache in multiple places, so be sure to 3258 ** get them all. 3259 */ 3260 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 3261 int i; 3262 struct yColCache *p; 3263 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3264 if( p->iReg==iReg ){ 3265 p->tempReg = 0; 3266 } 3267 } 3268 } 3269 3270 /* Generate code that will load into register regOut a value that is 3271 ** appropriate for the iIdxCol-th column of index pIdx. 3272 */ 3273 void sqlite3ExprCodeLoadIndexColumn( 3274 Parse *pParse, /* The parsing context */ 3275 Index *pIdx, /* The index whose column is to be loaded */ 3276 int iTabCur, /* Cursor pointing to a table row */ 3277 int iIdxCol, /* The column of the index to be loaded */ 3278 int regOut /* Store the index column value in this register */ 3279 ){ 3280 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3281 if( iTabCol==XN_EXPR ){ 3282 assert( pIdx->aColExpr ); 3283 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3284 pParse->iSelfTab = iTabCur + 1; 3285 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3286 pParse->iSelfTab = 0; 3287 }else{ 3288 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3289 iTabCol, regOut); 3290 } 3291 } 3292 3293 /* 3294 ** Generate code to extract the value of the iCol-th column of a table. 3295 */ 3296 void sqlite3ExprCodeGetColumnOfTable( 3297 Vdbe *v, /* The VDBE under construction */ 3298 Table *pTab, /* The table containing the value */ 3299 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3300 int iCol, /* Index of the column to extract */ 3301 int regOut /* Extract the value into this register */ 3302 ){ 3303 if( pTab==0 ){ 3304 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3305 return; 3306 } 3307 if( iCol<0 || iCol==pTab->iPKey ){ 3308 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3309 }else{ 3310 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 3311 int x = iCol; 3312 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ 3313 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3314 } 3315 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3316 } 3317 if( iCol>=0 ){ 3318 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3319 } 3320 } 3321 3322 /* 3323 ** Generate code that will extract the iColumn-th column from 3324 ** table pTab and store the column value in a register. 3325 ** 3326 ** An effort is made to store the column value in register iReg. This 3327 ** is not garanteeed for GetColumn() - the result can be stored in 3328 ** any register. But the result is guaranteed to land in register iReg 3329 ** for GetColumnToReg(). 3330 ** 3331 ** There must be an open cursor to pTab in iTable when this routine 3332 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3333 */ 3334 int sqlite3ExprCodeGetColumn( 3335 Parse *pParse, /* Parsing and code generating context */ 3336 Table *pTab, /* Description of the table we are reading from */ 3337 int iColumn, /* Index of the table column */ 3338 int iTable, /* The cursor pointing to the table */ 3339 int iReg, /* Store results here */ 3340 u8 p5 /* P5 value for OP_Column + FLAGS */ 3341 ){ 3342 Vdbe *v = pParse->pVdbe; 3343 int i; 3344 struct yColCache *p; 3345 3346 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3347 if( p->iTable==iTable && p->iColumn==iColumn ){ 3348 p->lru = pParse->iCacheCnt++; 3349 sqlite3ExprCachePinRegister(pParse, p->iReg); 3350 return p->iReg; 3351 } 3352 } 3353 assert( v!=0 ); 3354 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 3355 if( p5 ){ 3356 sqlite3VdbeChangeP5(v, p5); 3357 }else{ 3358 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 3359 } 3360 return iReg; 3361 } 3362 void sqlite3ExprCodeGetColumnToReg( 3363 Parse *pParse, /* Parsing and code generating context */ 3364 Table *pTab, /* Description of the table we are reading from */ 3365 int iColumn, /* Index of the table column */ 3366 int iTable, /* The cursor pointing to the table */ 3367 int iReg /* Store results here */ 3368 ){ 3369 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); 3370 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); 3371 } 3372 3373 3374 /* 3375 ** Clear all column cache entries. 3376 */ 3377 void sqlite3ExprCacheClear(Parse *pParse){ 3378 int i; 3379 3380 #ifdef SQLITE_DEBUG 3381 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3382 printf("CLEAR\n"); 3383 } 3384 #endif 3385 for(i=0; i<pParse->nColCache; i++){ 3386 if( pParse->aColCache[i].tempReg 3387 && pParse->nTempReg<ArraySize(pParse->aTempReg) 3388 ){ 3389 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3390 } 3391 } 3392 pParse->nColCache = 0; 3393 } 3394 3395 /* 3396 ** Record the fact that an affinity change has occurred on iCount 3397 ** registers starting with iStart. 3398 */ 3399 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 3400 sqlite3ExprCacheRemove(pParse, iStart, iCount); 3401 } 3402 3403 /* 3404 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3405 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 3406 */ 3407 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3408 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 3409 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3410 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 3411 } 3412 3413 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 3414 /* 3415 ** Return true if any register in the range iFrom..iTo (inclusive) 3416 ** is used as part of the column cache. 3417 ** 3418 ** This routine is used within assert() and testcase() macros only 3419 ** and does not appear in a normal build. 3420 */ 3421 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 3422 int i; 3423 struct yColCache *p; 3424 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3425 int r = p->iReg; 3426 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 3427 } 3428 return 0; 3429 } 3430 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 3431 3432 3433 /* 3434 ** Convert a scalar expression node to a TK_REGISTER referencing 3435 ** register iReg. The caller must ensure that iReg already contains 3436 ** the correct value for the expression. 3437 */ 3438 static void exprToRegister(Expr *p, int iReg){ 3439 p->op2 = p->op; 3440 p->op = TK_REGISTER; 3441 p->iTable = iReg; 3442 ExprClearProperty(p, EP_Skip); 3443 } 3444 3445 /* 3446 ** Evaluate an expression (either a vector or a scalar expression) and store 3447 ** the result in continguous temporary registers. Return the index of 3448 ** the first register used to store the result. 3449 ** 3450 ** If the returned result register is a temporary scalar, then also write 3451 ** that register number into *piFreeable. If the returned result register 3452 ** is not a temporary or if the expression is a vector set *piFreeable 3453 ** to 0. 3454 */ 3455 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3456 int iResult; 3457 int nResult = sqlite3ExprVectorSize(p); 3458 if( nResult==1 ){ 3459 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3460 }else{ 3461 *piFreeable = 0; 3462 if( p->op==TK_SELECT ){ 3463 #if SQLITE_OMIT_SUBQUERY 3464 iResult = 0; 3465 #else 3466 iResult = sqlite3CodeSubselect(pParse, p, 0, 0); 3467 #endif 3468 }else{ 3469 int i; 3470 iResult = pParse->nMem+1; 3471 pParse->nMem += nResult; 3472 for(i=0; i<nResult; i++){ 3473 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3474 } 3475 } 3476 } 3477 return iResult; 3478 } 3479 3480 3481 /* 3482 ** Generate code into the current Vdbe to evaluate the given 3483 ** expression. Attempt to store the results in register "target". 3484 ** Return the register where results are stored. 3485 ** 3486 ** With this routine, there is no guarantee that results will 3487 ** be stored in target. The result might be stored in some other 3488 ** register if it is convenient to do so. The calling function 3489 ** must check the return code and move the results to the desired 3490 ** register. 3491 */ 3492 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3493 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3494 int op; /* The opcode being coded */ 3495 int inReg = target; /* Results stored in register inReg */ 3496 int regFree1 = 0; /* If non-zero free this temporary register */ 3497 int regFree2 = 0; /* If non-zero free this temporary register */ 3498 int r1, r2; /* Various register numbers */ 3499 Expr tempX; /* Temporary expression node */ 3500 int p5 = 0; 3501 3502 assert( target>0 && target<=pParse->nMem ); 3503 if( v==0 ){ 3504 assert( pParse->db->mallocFailed ); 3505 return 0; 3506 } 3507 3508 if( pExpr==0 ){ 3509 op = TK_NULL; 3510 }else{ 3511 op = pExpr->op; 3512 } 3513 switch( op ){ 3514 case TK_AGG_COLUMN: { 3515 AggInfo *pAggInfo = pExpr->pAggInfo; 3516 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3517 if( !pAggInfo->directMode ){ 3518 assert( pCol->iMem>0 ); 3519 return pCol->iMem; 3520 }else if( pAggInfo->useSortingIdx ){ 3521 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3522 pCol->iSorterColumn, target); 3523 return target; 3524 } 3525 /* Otherwise, fall thru into the TK_COLUMN case */ 3526 } 3527 case TK_COLUMN: { 3528 int iTab = pExpr->iTable; 3529 if( iTab<0 ){ 3530 if( pParse->iSelfTab<0 ){ 3531 /* Generating CHECK constraints or inserting into partial index */ 3532 return pExpr->iColumn - pParse->iSelfTab; 3533 }else{ 3534 /* Coding an expression that is part of an index where column names 3535 ** in the index refer to the table to which the index belongs */ 3536 iTab = pParse->iSelfTab - 1; 3537 } 3538 } 3539 return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 3540 pExpr->iColumn, iTab, target, 3541 pExpr->op2); 3542 } 3543 case TK_INTEGER: { 3544 codeInteger(pParse, pExpr, 0, target); 3545 return target; 3546 } 3547 #ifndef SQLITE_OMIT_FLOATING_POINT 3548 case TK_FLOAT: { 3549 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3550 codeReal(v, pExpr->u.zToken, 0, target); 3551 return target; 3552 } 3553 #endif 3554 case TK_STRING: { 3555 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3556 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3557 return target; 3558 } 3559 case TK_NULL: { 3560 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3561 return target; 3562 } 3563 #ifndef SQLITE_OMIT_BLOB_LITERAL 3564 case TK_BLOB: { 3565 int n; 3566 const char *z; 3567 char *zBlob; 3568 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3569 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3570 assert( pExpr->u.zToken[1]=='\'' ); 3571 z = &pExpr->u.zToken[2]; 3572 n = sqlite3Strlen30(z) - 1; 3573 assert( z[n]=='\'' ); 3574 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3575 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3576 return target; 3577 } 3578 #endif 3579 case TK_VARIABLE: { 3580 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3581 assert( pExpr->u.zToken!=0 ); 3582 assert( pExpr->u.zToken[0]!=0 ); 3583 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3584 if( pExpr->u.zToken[1]!=0 ){ 3585 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3586 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); 3587 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3588 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3589 } 3590 return target; 3591 } 3592 case TK_REGISTER: { 3593 return pExpr->iTable; 3594 } 3595 #ifndef SQLITE_OMIT_CAST 3596 case TK_CAST: { 3597 /* Expressions of the form: CAST(pLeft AS token) */ 3598 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3599 if( inReg!=target ){ 3600 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3601 inReg = target; 3602 } 3603 sqlite3VdbeAddOp2(v, OP_Cast, target, 3604 sqlite3AffinityType(pExpr->u.zToken, 0)); 3605 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 3606 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 3607 return inReg; 3608 } 3609 #endif /* SQLITE_OMIT_CAST */ 3610 case TK_IS: 3611 case TK_ISNOT: 3612 op = (op==TK_IS) ? TK_EQ : TK_NE; 3613 p5 = SQLITE_NULLEQ; 3614 /* fall-through */ 3615 case TK_LT: 3616 case TK_LE: 3617 case TK_GT: 3618 case TK_GE: 3619 case TK_NE: 3620 case TK_EQ: { 3621 Expr *pLeft = pExpr->pLeft; 3622 if( sqlite3ExprIsVector(pLeft) ){ 3623 codeVectorCompare(pParse, pExpr, target, op, p5); 3624 }else{ 3625 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3626 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3627 codeCompare(pParse, pLeft, pExpr->pRight, op, 3628 r1, r2, inReg, SQLITE_STOREP2 | p5); 3629 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3630 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3631 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3632 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3633 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3634 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3635 testcase( regFree1==0 ); 3636 testcase( regFree2==0 ); 3637 } 3638 break; 3639 } 3640 case TK_AND: 3641 case TK_OR: 3642 case TK_PLUS: 3643 case TK_STAR: 3644 case TK_MINUS: 3645 case TK_REM: 3646 case TK_BITAND: 3647 case TK_BITOR: 3648 case TK_SLASH: 3649 case TK_LSHIFT: 3650 case TK_RSHIFT: 3651 case TK_CONCAT: { 3652 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3653 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3654 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3655 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3656 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3657 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3658 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3659 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3660 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3661 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3662 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3663 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3664 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3665 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3666 testcase( regFree1==0 ); 3667 testcase( regFree2==0 ); 3668 break; 3669 } 3670 case TK_UMINUS: { 3671 Expr *pLeft = pExpr->pLeft; 3672 assert( pLeft ); 3673 if( pLeft->op==TK_INTEGER ){ 3674 codeInteger(pParse, pLeft, 1, target); 3675 return target; 3676 #ifndef SQLITE_OMIT_FLOATING_POINT 3677 }else if( pLeft->op==TK_FLOAT ){ 3678 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3679 codeReal(v, pLeft->u.zToken, 1, target); 3680 return target; 3681 #endif 3682 }else{ 3683 tempX.op = TK_INTEGER; 3684 tempX.flags = EP_IntValue|EP_TokenOnly; 3685 tempX.u.iValue = 0; 3686 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3687 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3688 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3689 testcase( regFree2==0 ); 3690 } 3691 break; 3692 } 3693 case TK_BITNOT: 3694 case TK_NOT: { 3695 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3696 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3697 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3698 testcase( regFree1==0 ); 3699 sqlite3VdbeAddOp2(v, op, r1, inReg); 3700 break; 3701 } 3702 case TK_ISNULL: 3703 case TK_NOTNULL: { 3704 int addr; 3705 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3706 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3707 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3708 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3709 testcase( regFree1==0 ); 3710 addr = sqlite3VdbeAddOp1(v, op, r1); 3711 VdbeCoverageIf(v, op==TK_ISNULL); 3712 VdbeCoverageIf(v, op==TK_NOTNULL); 3713 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3714 sqlite3VdbeJumpHere(v, addr); 3715 break; 3716 } 3717 case TK_AGG_FUNCTION: { 3718 AggInfo *pInfo = pExpr->pAggInfo; 3719 if( pInfo==0 ){ 3720 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3721 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3722 }else{ 3723 return pInfo->aFunc[pExpr->iAgg].iMem; 3724 } 3725 break; 3726 } 3727 case TK_FUNCTION: { 3728 ExprList *pFarg; /* List of function arguments */ 3729 int nFarg; /* Number of function arguments */ 3730 FuncDef *pDef; /* The function definition object */ 3731 const char *zId; /* The function name */ 3732 u32 constMask = 0; /* Mask of function arguments that are constant */ 3733 int i; /* Loop counter */ 3734 sqlite3 *db = pParse->db; /* The database connection */ 3735 u8 enc = ENC(db); /* The text encoding used by this database */ 3736 CollSeq *pColl = 0; /* A collating sequence */ 3737 3738 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3739 /* SQL functions can be expensive. So try to move constant functions 3740 ** out of the inner loop, even if that means an extra OP_Copy. */ 3741 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3742 } 3743 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3744 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3745 pFarg = 0; 3746 }else{ 3747 pFarg = pExpr->x.pList; 3748 } 3749 nFarg = pFarg ? pFarg->nExpr : 0; 3750 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3751 zId = pExpr->u.zToken; 3752 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3753 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3754 if( pDef==0 && pParse->explain ){ 3755 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3756 } 3757 #endif 3758 if( pDef==0 || pDef->xFinalize!=0 ){ 3759 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3760 break; 3761 } 3762 3763 /* Attempt a direct implementation of the built-in COALESCE() and 3764 ** IFNULL() functions. This avoids unnecessary evaluation of 3765 ** arguments past the first non-NULL argument. 3766 */ 3767 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3768 int endCoalesce = sqlite3VdbeMakeLabel(v); 3769 assert( nFarg>=2 ); 3770 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3771 for(i=1; i<nFarg; i++){ 3772 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3773 VdbeCoverage(v); 3774 sqlite3ExprCacheRemove(pParse, target, 1); 3775 sqlite3ExprCachePush(pParse); 3776 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3777 sqlite3ExprCachePop(pParse); 3778 } 3779 sqlite3VdbeResolveLabel(v, endCoalesce); 3780 break; 3781 } 3782 3783 /* The UNLIKELY() function is a no-op. The result is the value 3784 ** of the first argument. 3785 */ 3786 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3787 assert( nFarg>=1 ); 3788 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3789 } 3790 3791 #ifdef SQLITE_DEBUG 3792 /* The AFFINITY() function evaluates to a string that describes 3793 ** the type affinity of the argument. This is used for testing of 3794 ** the SQLite type logic. 3795 */ 3796 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3797 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3798 char aff; 3799 assert( nFarg==1 ); 3800 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3801 sqlite3VdbeLoadString(v, target, 3802 aff ? azAff[aff-SQLITE_AFF_BLOB] : "none"); 3803 return target; 3804 } 3805 #endif 3806 3807 for(i=0; i<nFarg; i++){ 3808 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3809 testcase( i==31 ); 3810 constMask |= MASKBIT32(i); 3811 } 3812 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3813 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3814 } 3815 } 3816 if( pFarg ){ 3817 if( constMask ){ 3818 r1 = pParse->nMem+1; 3819 pParse->nMem += nFarg; 3820 }else{ 3821 r1 = sqlite3GetTempRange(pParse, nFarg); 3822 } 3823 3824 /* For length() and typeof() functions with a column argument, 3825 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3826 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3827 ** loading. 3828 */ 3829 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3830 u8 exprOp; 3831 assert( nFarg==1 ); 3832 assert( pFarg->a[0].pExpr!=0 ); 3833 exprOp = pFarg->a[0].pExpr->op; 3834 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3835 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3836 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3837 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3838 pFarg->a[0].pExpr->op2 = 3839 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3840 } 3841 } 3842 3843 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 3844 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3845 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3846 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 3847 }else{ 3848 r1 = 0; 3849 } 3850 #ifndef SQLITE_OMIT_VIRTUALTABLE 3851 /* Possibly overload the function if the first argument is 3852 ** a virtual table column. 3853 ** 3854 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3855 ** second argument, not the first, as the argument to test to 3856 ** see if it is a column in a virtual table. This is done because 3857 ** the left operand of infix functions (the operand we want to 3858 ** control overloading) ends up as the second argument to the 3859 ** function. The expression "A glob B" is equivalent to 3860 ** "glob(B,A). We want to use the A in "A glob B" to test 3861 ** for function overloading. But we use the B term in "glob(B,A)". 3862 */ 3863 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 3864 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3865 }else if( nFarg>0 ){ 3866 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3867 } 3868 #endif 3869 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3870 if( !pColl ) pColl = db->pDfltColl; 3871 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3872 } 3873 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 3874 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 3875 Expr *pArg = pFarg->a[0].pExpr; 3876 if( pArg->op==TK_COLUMN ){ 3877 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 3878 }else{ 3879 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3880 } 3881 }else 3882 #endif 3883 { 3884 sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0, 3885 constMask, r1, target, (char*)pDef, P4_FUNCDEF); 3886 sqlite3VdbeChangeP5(v, (u8)nFarg); 3887 } 3888 if( nFarg && constMask==0 ){ 3889 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3890 } 3891 return target; 3892 } 3893 #ifndef SQLITE_OMIT_SUBQUERY 3894 case TK_EXISTS: 3895 case TK_SELECT: { 3896 int nCol; 3897 testcase( op==TK_EXISTS ); 3898 testcase( op==TK_SELECT ); 3899 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 3900 sqlite3SubselectError(pParse, nCol, 1); 3901 }else{ 3902 return sqlite3CodeSubselect(pParse, pExpr, 0, 0); 3903 } 3904 break; 3905 } 3906 case TK_SELECT_COLUMN: { 3907 int n; 3908 if( pExpr->pLeft->iTable==0 ){ 3909 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0); 3910 } 3911 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 3912 if( pExpr->iTable 3913 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 3914 ){ 3915 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 3916 pExpr->iTable, n); 3917 } 3918 return pExpr->pLeft->iTable + pExpr->iColumn; 3919 } 3920 case TK_IN: { 3921 int destIfFalse = sqlite3VdbeMakeLabel(v); 3922 int destIfNull = sqlite3VdbeMakeLabel(v); 3923 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3924 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3925 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3926 sqlite3VdbeResolveLabel(v, destIfFalse); 3927 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3928 sqlite3VdbeResolveLabel(v, destIfNull); 3929 return target; 3930 } 3931 #endif /* SQLITE_OMIT_SUBQUERY */ 3932 3933 3934 /* 3935 ** x BETWEEN y AND z 3936 ** 3937 ** This is equivalent to 3938 ** 3939 ** x>=y AND x<=z 3940 ** 3941 ** X is stored in pExpr->pLeft. 3942 ** Y is stored in pExpr->pList->a[0].pExpr. 3943 ** Z is stored in pExpr->pList->a[1].pExpr. 3944 */ 3945 case TK_BETWEEN: { 3946 exprCodeBetween(pParse, pExpr, target, 0, 0); 3947 return target; 3948 } 3949 case TK_SPAN: 3950 case TK_COLLATE: 3951 case TK_UPLUS: { 3952 return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3953 } 3954 3955 case TK_TRIGGER: { 3956 /* If the opcode is TK_TRIGGER, then the expression is a reference 3957 ** to a column in the new.* or old.* pseudo-tables available to 3958 ** trigger programs. In this case Expr.iTable is set to 1 for the 3959 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3960 ** is set to the column of the pseudo-table to read, or to -1 to 3961 ** read the rowid field. 3962 ** 3963 ** The expression is implemented using an OP_Param opcode. The p1 3964 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3965 ** to reference another column of the old.* pseudo-table, where 3966 ** i is the index of the column. For a new.rowid reference, p1 is 3967 ** set to (n+1), where n is the number of columns in each pseudo-table. 3968 ** For a reference to any other column in the new.* pseudo-table, p1 3969 ** is set to (n+2+i), where n and i are as defined previously. For 3970 ** example, if the table on which triggers are being fired is 3971 ** declared as: 3972 ** 3973 ** CREATE TABLE t1(a, b); 3974 ** 3975 ** Then p1 is interpreted as follows: 3976 ** 3977 ** p1==0 -> old.rowid p1==3 -> new.rowid 3978 ** p1==1 -> old.a p1==4 -> new.a 3979 ** p1==2 -> old.b p1==5 -> new.b 3980 */ 3981 Table *pTab = pExpr->pTab; 3982 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3983 3984 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3985 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3986 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3987 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3988 3989 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3990 VdbeComment((v, "%s.%s -> $%d", 3991 (pExpr->iTable ? "new" : "old"), 3992 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3993 target 3994 )); 3995 3996 #ifndef SQLITE_OMIT_FLOATING_POINT 3997 /* If the column has REAL affinity, it may currently be stored as an 3998 ** integer. Use OP_RealAffinity to make sure it is really real. 3999 ** 4000 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4001 ** floating point when extracting it from the record. */ 4002 if( pExpr->iColumn>=0 4003 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 4004 ){ 4005 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4006 } 4007 #endif 4008 break; 4009 } 4010 4011 case TK_VECTOR: { 4012 sqlite3ErrorMsg(pParse, "row value misused"); 4013 break; 4014 } 4015 4016 case TK_IF_NULL_ROW: { 4017 int addrINR; 4018 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4019 sqlite3ExprCachePush(pParse); 4020 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4021 sqlite3ExprCachePop(pParse); 4022 sqlite3VdbeJumpHere(v, addrINR); 4023 sqlite3VdbeChangeP3(v, addrINR, inReg); 4024 break; 4025 } 4026 4027 /* 4028 ** Form A: 4029 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4030 ** 4031 ** Form B: 4032 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4033 ** 4034 ** Form A is can be transformed into the equivalent form B as follows: 4035 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4036 ** WHEN x=eN THEN rN ELSE y END 4037 ** 4038 ** X (if it exists) is in pExpr->pLeft. 4039 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4040 ** odd. The Y is also optional. If the number of elements in x.pList 4041 ** is even, then Y is omitted and the "otherwise" result is NULL. 4042 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4043 ** 4044 ** The result of the expression is the Ri for the first matching Ei, 4045 ** or if there is no matching Ei, the ELSE term Y, or if there is 4046 ** no ELSE term, NULL. 4047 */ 4048 default: assert( op==TK_CASE ); { 4049 int endLabel; /* GOTO label for end of CASE stmt */ 4050 int nextCase; /* GOTO label for next WHEN clause */ 4051 int nExpr; /* 2x number of WHEN terms */ 4052 int i; /* Loop counter */ 4053 ExprList *pEList; /* List of WHEN terms */ 4054 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4055 Expr opCompare; /* The X==Ei expression */ 4056 Expr *pX; /* The X expression */ 4057 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4058 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 4059 4060 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4061 assert(pExpr->x.pList->nExpr > 0); 4062 pEList = pExpr->x.pList; 4063 aListelem = pEList->a; 4064 nExpr = pEList->nExpr; 4065 endLabel = sqlite3VdbeMakeLabel(v); 4066 if( (pX = pExpr->pLeft)!=0 ){ 4067 tempX = *pX; 4068 testcase( pX->op==TK_COLUMN ); 4069 exprToRegister(&tempX, exprCodeVector(pParse, &tempX, ®Free1)); 4070 testcase( regFree1==0 ); 4071 memset(&opCompare, 0, sizeof(opCompare)); 4072 opCompare.op = TK_EQ; 4073 opCompare.pLeft = &tempX; 4074 pTest = &opCompare; 4075 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4076 ** The value in regFree1 might get SCopy-ed into the file result. 4077 ** So make sure that the regFree1 register is not reused for other 4078 ** purposes and possibly overwritten. */ 4079 regFree1 = 0; 4080 } 4081 for(i=0; i<nExpr-1; i=i+2){ 4082 sqlite3ExprCachePush(pParse); 4083 if( pX ){ 4084 assert( pTest!=0 ); 4085 opCompare.pRight = aListelem[i].pExpr; 4086 }else{ 4087 pTest = aListelem[i].pExpr; 4088 } 4089 nextCase = sqlite3VdbeMakeLabel(v); 4090 testcase( pTest->op==TK_COLUMN ); 4091 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4092 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4093 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4094 sqlite3VdbeGoto(v, endLabel); 4095 sqlite3ExprCachePop(pParse); 4096 sqlite3VdbeResolveLabel(v, nextCase); 4097 } 4098 if( (nExpr&1)!=0 ){ 4099 sqlite3ExprCachePush(pParse); 4100 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4101 sqlite3ExprCachePop(pParse); 4102 }else{ 4103 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4104 } 4105 assert( pParse->db->mallocFailed || pParse->nErr>0 4106 || pParse->iCacheLevel==iCacheLevel ); 4107 sqlite3VdbeResolveLabel(v, endLabel); 4108 break; 4109 } 4110 #ifndef SQLITE_OMIT_TRIGGER 4111 case TK_RAISE: { 4112 assert( pExpr->affinity==OE_Rollback 4113 || pExpr->affinity==OE_Abort 4114 || pExpr->affinity==OE_Fail 4115 || pExpr->affinity==OE_Ignore 4116 ); 4117 if( !pParse->pTriggerTab ){ 4118 sqlite3ErrorMsg(pParse, 4119 "RAISE() may only be used within a trigger-program"); 4120 return 0; 4121 } 4122 if( pExpr->affinity==OE_Abort ){ 4123 sqlite3MayAbort(pParse); 4124 } 4125 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4126 if( pExpr->affinity==OE_Ignore ){ 4127 sqlite3VdbeAddOp4( 4128 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4129 VdbeCoverage(v); 4130 }else{ 4131 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4132 pExpr->affinity, pExpr->u.zToken, 0, 0); 4133 } 4134 4135 break; 4136 } 4137 #endif 4138 } 4139 sqlite3ReleaseTempReg(pParse, regFree1); 4140 sqlite3ReleaseTempReg(pParse, regFree2); 4141 return inReg; 4142 } 4143 4144 /* 4145 ** Factor out the code of the given expression to initialization time. 4146 ** 4147 ** If regDest>=0 then the result is always stored in that register and the 4148 ** result is not reusable. If regDest<0 then this routine is free to 4149 ** store the value whereever it wants. The register where the expression 4150 ** is stored is returned. When regDest<0, two identical expressions will 4151 ** code to the same register. 4152 */ 4153 int sqlite3ExprCodeAtInit( 4154 Parse *pParse, /* Parsing context */ 4155 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4156 int regDest /* Store the value in this register */ 4157 ){ 4158 ExprList *p; 4159 assert( ConstFactorOk(pParse) ); 4160 p = pParse->pConstExpr; 4161 if( regDest<0 && p ){ 4162 struct ExprList_item *pItem; 4163 int i; 4164 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4165 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4166 return pItem->u.iConstExprReg; 4167 } 4168 } 4169 } 4170 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4171 p = sqlite3ExprListAppend(pParse, p, pExpr); 4172 if( p ){ 4173 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4174 pItem->reusable = regDest<0; 4175 if( regDest<0 ) regDest = ++pParse->nMem; 4176 pItem->u.iConstExprReg = regDest; 4177 } 4178 pParse->pConstExpr = p; 4179 return regDest; 4180 } 4181 4182 /* 4183 ** Generate code to evaluate an expression and store the results 4184 ** into a register. Return the register number where the results 4185 ** are stored. 4186 ** 4187 ** If the register is a temporary register that can be deallocated, 4188 ** then write its number into *pReg. If the result register is not 4189 ** a temporary, then set *pReg to zero. 4190 ** 4191 ** If pExpr is a constant, then this routine might generate this 4192 ** code to fill the register in the initialization section of the 4193 ** VDBE program, in order to factor it out of the evaluation loop. 4194 */ 4195 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4196 int r2; 4197 pExpr = sqlite3ExprSkipCollate(pExpr); 4198 if( ConstFactorOk(pParse) 4199 && pExpr->op!=TK_REGISTER 4200 && sqlite3ExprIsConstantNotJoin(pExpr) 4201 ){ 4202 *pReg = 0; 4203 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4204 }else{ 4205 int r1 = sqlite3GetTempReg(pParse); 4206 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4207 if( r2==r1 ){ 4208 *pReg = r1; 4209 }else{ 4210 sqlite3ReleaseTempReg(pParse, r1); 4211 *pReg = 0; 4212 } 4213 } 4214 return r2; 4215 } 4216 4217 /* 4218 ** Generate code that will evaluate expression pExpr and store the 4219 ** results in register target. The results are guaranteed to appear 4220 ** in register target. 4221 */ 4222 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4223 int inReg; 4224 4225 assert( target>0 && target<=pParse->nMem ); 4226 if( pExpr && pExpr->op==TK_REGISTER ){ 4227 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 4228 }else{ 4229 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4230 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4231 if( inReg!=target && pParse->pVdbe ){ 4232 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4233 } 4234 } 4235 } 4236 4237 /* 4238 ** Make a transient copy of expression pExpr and then code it using 4239 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4240 ** except that the input expression is guaranteed to be unchanged. 4241 */ 4242 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4243 sqlite3 *db = pParse->db; 4244 pExpr = sqlite3ExprDup(db, pExpr, 0); 4245 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4246 sqlite3ExprDelete(db, pExpr); 4247 } 4248 4249 /* 4250 ** Generate code that will evaluate expression pExpr and store the 4251 ** results in register target. The results are guaranteed to appear 4252 ** in register target. If the expression is constant, then this routine 4253 ** might choose to code the expression at initialization time. 4254 */ 4255 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4256 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 4257 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4258 }else{ 4259 sqlite3ExprCode(pParse, pExpr, target); 4260 } 4261 } 4262 4263 /* 4264 ** Generate code that evaluates the given expression and puts the result 4265 ** in register target. 4266 ** 4267 ** Also make a copy of the expression results into another "cache" register 4268 ** and modify the expression so that the next time it is evaluated, 4269 ** the result is a copy of the cache register. 4270 ** 4271 ** This routine is used for expressions that are used multiple 4272 ** times. They are evaluated once and the results of the expression 4273 ** are reused. 4274 */ 4275 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 4276 Vdbe *v = pParse->pVdbe; 4277 int iMem; 4278 4279 assert( target>0 ); 4280 assert( pExpr->op!=TK_REGISTER ); 4281 sqlite3ExprCode(pParse, pExpr, target); 4282 iMem = ++pParse->nMem; 4283 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 4284 exprToRegister(pExpr, iMem); 4285 } 4286 4287 /* 4288 ** Generate code that pushes the value of every element of the given 4289 ** expression list into a sequence of registers beginning at target. 4290 ** 4291 ** Return the number of elements evaluated. The number returned will 4292 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4293 ** is defined. 4294 ** 4295 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4296 ** filled using OP_SCopy. OP_Copy must be used instead. 4297 ** 4298 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4299 ** factored out into initialization code. 4300 ** 4301 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4302 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4303 ** in registers at srcReg, and so the value can be copied from there. 4304 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4305 ** are simply omitted rather than being copied from srcReg. 4306 */ 4307 int sqlite3ExprCodeExprList( 4308 Parse *pParse, /* Parsing context */ 4309 ExprList *pList, /* The expression list to be coded */ 4310 int target, /* Where to write results */ 4311 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4312 u8 flags /* SQLITE_ECEL_* flags */ 4313 ){ 4314 struct ExprList_item *pItem; 4315 int i, j, n; 4316 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4317 Vdbe *v = pParse->pVdbe; 4318 assert( pList!=0 ); 4319 assert( target>0 ); 4320 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4321 n = pList->nExpr; 4322 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4323 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4324 Expr *pExpr = pItem->pExpr; 4325 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4326 if( flags & SQLITE_ECEL_OMITREF ){ 4327 i--; 4328 n--; 4329 }else{ 4330 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4331 } 4332 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 4333 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4334 }else{ 4335 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4336 if( inReg!=target+i ){ 4337 VdbeOp *pOp; 4338 if( copyOp==OP_Copy 4339 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4340 && pOp->p1+pOp->p3+1==inReg 4341 && pOp->p2+pOp->p3+1==target+i 4342 ){ 4343 pOp->p3++; 4344 }else{ 4345 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4346 } 4347 } 4348 } 4349 } 4350 return n; 4351 } 4352 4353 /* 4354 ** Generate code for a BETWEEN operator. 4355 ** 4356 ** x BETWEEN y AND z 4357 ** 4358 ** The above is equivalent to 4359 ** 4360 ** x>=y AND x<=z 4361 ** 4362 ** Code it as such, taking care to do the common subexpression 4363 ** elimination of x. 4364 ** 4365 ** The xJumpIf parameter determines details: 4366 ** 4367 ** NULL: Store the boolean result in reg[dest] 4368 ** sqlite3ExprIfTrue: Jump to dest if true 4369 ** sqlite3ExprIfFalse: Jump to dest if false 4370 ** 4371 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4372 */ 4373 static void exprCodeBetween( 4374 Parse *pParse, /* Parsing and code generating context */ 4375 Expr *pExpr, /* The BETWEEN expression */ 4376 int dest, /* Jump destination or storage location */ 4377 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4378 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4379 ){ 4380 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4381 Expr compLeft; /* The x>=y term */ 4382 Expr compRight; /* The x<=z term */ 4383 Expr exprX; /* The x subexpression */ 4384 int regFree1 = 0; /* Temporary use register */ 4385 4386 4387 memset(&compLeft, 0, sizeof(Expr)); 4388 memset(&compRight, 0, sizeof(Expr)); 4389 memset(&exprAnd, 0, sizeof(Expr)); 4390 4391 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4392 exprX = *pExpr->pLeft; 4393 exprAnd.op = TK_AND; 4394 exprAnd.pLeft = &compLeft; 4395 exprAnd.pRight = &compRight; 4396 compLeft.op = TK_GE; 4397 compLeft.pLeft = &exprX; 4398 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4399 compRight.op = TK_LE; 4400 compRight.pLeft = &exprX; 4401 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4402 exprToRegister(&exprX, exprCodeVector(pParse, &exprX, ®Free1)); 4403 if( xJump ){ 4404 xJump(pParse, &exprAnd, dest, jumpIfNull); 4405 }else{ 4406 /* Mark the expression is being from the ON or USING clause of a join 4407 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4408 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4409 ** for clarity, but we are out of bits in the Expr.flags field so we 4410 ** have to reuse the EP_FromJoin bit. Bummer. */ 4411 exprX.flags |= EP_FromJoin; 4412 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4413 } 4414 sqlite3ReleaseTempReg(pParse, regFree1); 4415 4416 /* Ensure adequate test coverage */ 4417 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4418 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4419 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4420 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4421 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4422 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4423 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4424 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4425 testcase( xJump==0 ); 4426 } 4427 4428 /* 4429 ** Generate code for a boolean expression such that a jump is made 4430 ** to the label "dest" if the expression is true but execution 4431 ** continues straight thru if the expression is false. 4432 ** 4433 ** If the expression evaluates to NULL (neither true nor false), then 4434 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4435 ** 4436 ** This code depends on the fact that certain token values (ex: TK_EQ) 4437 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4438 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4439 ** the make process cause these values to align. Assert()s in the code 4440 ** below verify that the numbers are aligned correctly. 4441 */ 4442 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4443 Vdbe *v = pParse->pVdbe; 4444 int op = 0; 4445 int regFree1 = 0; 4446 int regFree2 = 0; 4447 int r1, r2; 4448 4449 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4450 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4451 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4452 op = pExpr->op; 4453 switch( op ){ 4454 case TK_AND: { 4455 int d2 = sqlite3VdbeMakeLabel(v); 4456 testcase( jumpIfNull==0 ); 4457 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 4458 sqlite3ExprCachePush(pParse); 4459 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4460 sqlite3VdbeResolveLabel(v, d2); 4461 sqlite3ExprCachePop(pParse); 4462 break; 4463 } 4464 case TK_OR: { 4465 testcase( jumpIfNull==0 ); 4466 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4467 sqlite3ExprCachePush(pParse); 4468 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4469 sqlite3ExprCachePop(pParse); 4470 break; 4471 } 4472 case TK_NOT: { 4473 testcase( jumpIfNull==0 ); 4474 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4475 break; 4476 } 4477 case TK_IS: 4478 case TK_ISNOT: 4479 testcase( op==TK_IS ); 4480 testcase( op==TK_ISNOT ); 4481 op = (op==TK_IS) ? TK_EQ : TK_NE; 4482 jumpIfNull = SQLITE_NULLEQ; 4483 /* Fall thru */ 4484 case TK_LT: 4485 case TK_LE: 4486 case TK_GT: 4487 case TK_GE: 4488 case TK_NE: 4489 case TK_EQ: { 4490 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4491 testcase( jumpIfNull==0 ); 4492 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4493 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4494 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4495 r1, r2, dest, jumpIfNull); 4496 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4497 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4498 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4499 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4500 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4501 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4502 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4503 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4504 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4505 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4506 testcase( regFree1==0 ); 4507 testcase( regFree2==0 ); 4508 break; 4509 } 4510 case TK_ISNULL: 4511 case TK_NOTNULL: { 4512 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4513 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4514 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4515 sqlite3VdbeAddOp2(v, op, r1, dest); 4516 VdbeCoverageIf(v, op==TK_ISNULL); 4517 VdbeCoverageIf(v, op==TK_NOTNULL); 4518 testcase( regFree1==0 ); 4519 break; 4520 } 4521 case TK_BETWEEN: { 4522 testcase( jumpIfNull==0 ); 4523 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4524 break; 4525 } 4526 #ifndef SQLITE_OMIT_SUBQUERY 4527 case TK_IN: { 4528 int destIfFalse = sqlite3VdbeMakeLabel(v); 4529 int destIfNull = jumpIfNull ? dest : destIfFalse; 4530 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4531 sqlite3VdbeGoto(v, dest); 4532 sqlite3VdbeResolveLabel(v, destIfFalse); 4533 break; 4534 } 4535 #endif 4536 default: { 4537 default_expr: 4538 if( exprAlwaysTrue(pExpr) ){ 4539 sqlite3VdbeGoto(v, dest); 4540 }else if( exprAlwaysFalse(pExpr) ){ 4541 /* No-op */ 4542 }else{ 4543 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4544 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4545 VdbeCoverage(v); 4546 testcase( regFree1==0 ); 4547 testcase( jumpIfNull==0 ); 4548 } 4549 break; 4550 } 4551 } 4552 sqlite3ReleaseTempReg(pParse, regFree1); 4553 sqlite3ReleaseTempReg(pParse, regFree2); 4554 } 4555 4556 /* 4557 ** Generate code for a boolean expression such that a jump is made 4558 ** to the label "dest" if the expression is false but execution 4559 ** continues straight thru if the expression is true. 4560 ** 4561 ** If the expression evaluates to NULL (neither true nor false) then 4562 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4563 ** is 0. 4564 */ 4565 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4566 Vdbe *v = pParse->pVdbe; 4567 int op = 0; 4568 int regFree1 = 0; 4569 int regFree2 = 0; 4570 int r1, r2; 4571 4572 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4573 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4574 if( pExpr==0 ) return; 4575 4576 /* The value of pExpr->op and op are related as follows: 4577 ** 4578 ** pExpr->op op 4579 ** --------- ---------- 4580 ** TK_ISNULL OP_NotNull 4581 ** TK_NOTNULL OP_IsNull 4582 ** TK_NE OP_Eq 4583 ** TK_EQ OP_Ne 4584 ** TK_GT OP_Le 4585 ** TK_LE OP_Gt 4586 ** TK_GE OP_Lt 4587 ** TK_LT OP_Ge 4588 ** 4589 ** For other values of pExpr->op, op is undefined and unused. 4590 ** The value of TK_ and OP_ constants are arranged such that we 4591 ** can compute the mapping above using the following expression. 4592 ** Assert()s verify that the computation is correct. 4593 */ 4594 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4595 4596 /* Verify correct alignment of TK_ and OP_ constants 4597 */ 4598 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4599 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4600 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4601 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4602 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4603 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4604 assert( pExpr->op!=TK_GT || op==OP_Le ); 4605 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4606 4607 switch( pExpr->op ){ 4608 case TK_AND: { 4609 testcase( jumpIfNull==0 ); 4610 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4611 sqlite3ExprCachePush(pParse); 4612 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4613 sqlite3ExprCachePop(pParse); 4614 break; 4615 } 4616 case TK_OR: { 4617 int d2 = sqlite3VdbeMakeLabel(v); 4618 testcase( jumpIfNull==0 ); 4619 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 4620 sqlite3ExprCachePush(pParse); 4621 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4622 sqlite3VdbeResolveLabel(v, d2); 4623 sqlite3ExprCachePop(pParse); 4624 break; 4625 } 4626 case TK_NOT: { 4627 testcase( jumpIfNull==0 ); 4628 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4629 break; 4630 } 4631 case TK_IS: 4632 case TK_ISNOT: 4633 testcase( pExpr->op==TK_IS ); 4634 testcase( pExpr->op==TK_ISNOT ); 4635 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4636 jumpIfNull = SQLITE_NULLEQ; 4637 /* Fall thru */ 4638 case TK_LT: 4639 case TK_LE: 4640 case TK_GT: 4641 case TK_GE: 4642 case TK_NE: 4643 case TK_EQ: { 4644 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4645 testcase( jumpIfNull==0 ); 4646 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4647 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4648 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4649 r1, r2, dest, jumpIfNull); 4650 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4651 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4652 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4653 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4654 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4655 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4656 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4657 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4658 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4659 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4660 testcase( regFree1==0 ); 4661 testcase( regFree2==0 ); 4662 break; 4663 } 4664 case TK_ISNULL: 4665 case TK_NOTNULL: { 4666 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4667 sqlite3VdbeAddOp2(v, op, r1, dest); 4668 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4669 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4670 testcase( regFree1==0 ); 4671 break; 4672 } 4673 case TK_BETWEEN: { 4674 testcase( jumpIfNull==0 ); 4675 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4676 break; 4677 } 4678 #ifndef SQLITE_OMIT_SUBQUERY 4679 case TK_IN: { 4680 if( jumpIfNull ){ 4681 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4682 }else{ 4683 int destIfNull = sqlite3VdbeMakeLabel(v); 4684 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4685 sqlite3VdbeResolveLabel(v, destIfNull); 4686 } 4687 break; 4688 } 4689 #endif 4690 default: { 4691 default_expr: 4692 if( exprAlwaysFalse(pExpr) ){ 4693 sqlite3VdbeGoto(v, dest); 4694 }else if( exprAlwaysTrue(pExpr) ){ 4695 /* no-op */ 4696 }else{ 4697 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4698 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4699 VdbeCoverage(v); 4700 testcase( regFree1==0 ); 4701 testcase( jumpIfNull==0 ); 4702 } 4703 break; 4704 } 4705 } 4706 sqlite3ReleaseTempReg(pParse, regFree1); 4707 sqlite3ReleaseTempReg(pParse, regFree2); 4708 } 4709 4710 /* 4711 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4712 ** code generation, and that copy is deleted after code generation. This 4713 ** ensures that the original pExpr is unchanged. 4714 */ 4715 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4716 sqlite3 *db = pParse->db; 4717 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4718 if( db->mallocFailed==0 ){ 4719 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4720 } 4721 sqlite3ExprDelete(db, pCopy); 4722 } 4723 4724 /* 4725 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 4726 ** type of expression. 4727 ** 4728 ** If pExpr is a simple SQL value - an integer, real, string, blob 4729 ** or NULL value - then the VDBE currently being prepared is configured 4730 ** to re-prepare each time a new value is bound to variable pVar. 4731 ** 4732 ** Additionally, if pExpr is a simple SQL value and the value is the 4733 ** same as that currently bound to variable pVar, non-zero is returned. 4734 ** Otherwise, if the values are not the same or if pExpr is not a simple 4735 ** SQL value, zero is returned. 4736 */ 4737 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 4738 int res = 0; 4739 int iVar; 4740 sqlite3_value *pL, *pR = 0; 4741 4742 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 4743 if( pR ){ 4744 iVar = pVar->iColumn; 4745 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 4746 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 4747 if( pL ){ 4748 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 4749 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 4750 } 4751 res = 0==sqlite3MemCompare(pL, pR, 0); 4752 } 4753 sqlite3ValueFree(pR); 4754 sqlite3ValueFree(pL); 4755 } 4756 4757 return res; 4758 } 4759 4760 /* 4761 ** Do a deep comparison of two expression trees. Return 0 if the two 4762 ** expressions are completely identical. Return 1 if they differ only 4763 ** by a COLLATE operator at the top level. Return 2 if there are differences 4764 ** other than the top-level COLLATE operator. 4765 ** 4766 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4767 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4768 ** 4769 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4770 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4771 ** 4772 ** Sometimes this routine will return 2 even if the two expressions 4773 ** really are equivalent. If we cannot prove that the expressions are 4774 ** identical, we return 2 just to be safe. So if this routine 4775 ** returns 2, then you do not really know for certain if the two 4776 ** expressions are the same. But if you get a 0 or 1 return, then you 4777 ** can be sure the expressions are the same. In the places where 4778 ** this routine is used, it does not hurt to get an extra 2 - that 4779 ** just might result in some slightly slower code. But returning 4780 ** an incorrect 0 or 1 could lead to a malfunction. 4781 ** 4782 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 4783 ** pParse->pReprepare can be matched against literals in pB. The 4784 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 4785 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 4786 ** Argument pParse should normally be NULL. If it is not NULL and pA or 4787 ** pB causes a return value of 2. 4788 */ 4789 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 4790 u32 combinedFlags; 4791 if( pA==0 || pB==0 ){ 4792 return pB==pA ? 0 : 2; 4793 } 4794 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 4795 return 0; 4796 } 4797 combinedFlags = pA->flags | pB->flags; 4798 if( combinedFlags & EP_IntValue ){ 4799 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 4800 return 0; 4801 } 4802 return 2; 4803 } 4804 if( pA->op!=pB->op ){ 4805 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 4806 return 1; 4807 } 4808 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 4809 return 1; 4810 } 4811 return 2; 4812 } 4813 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 4814 if( pA->op==TK_FUNCTION ){ 4815 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4816 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4817 return pA->op==TK_COLLATE ? 1 : 2; 4818 } 4819 } 4820 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4821 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 4822 if( combinedFlags & EP_xIsSelect ) return 2; 4823 if( sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 4824 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 4825 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4826 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ 4827 if( pA->iColumn!=pB->iColumn ) return 2; 4828 if( pA->iTable!=pB->iTable 4829 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4830 } 4831 } 4832 return 0; 4833 } 4834 4835 /* 4836 ** Compare two ExprList objects. Return 0 if they are identical and 4837 ** non-zero if they differ in any way. 4838 ** 4839 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4840 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4841 ** 4842 ** This routine might return non-zero for equivalent ExprLists. The 4843 ** only consequence will be disabled optimizations. But this routine 4844 ** must never return 0 if the two ExprList objects are different, or 4845 ** a malfunction will result. 4846 ** 4847 ** Two NULL pointers are considered to be the same. But a NULL pointer 4848 ** always differs from a non-NULL pointer. 4849 */ 4850 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4851 int i; 4852 if( pA==0 && pB==0 ) return 0; 4853 if( pA==0 || pB==0 ) return 1; 4854 if( pA->nExpr!=pB->nExpr ) return 1; 4855 for(i=0; i<pA->nExpr; i++){ 4856 Expr *pExprA = pA->a[i].pExpr; 4857 Expr *pExprB = pB->a[i].pExpr; 4858 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 4859 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1; 4860 } 4861 return 0; 4862 } 4863 4864 /* 4865 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 4866 ** are ignored. 4867 */ 4868 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 4869 return sqlite3ExprCompare(0, 4870 sqlite3ExprSkipCollate(pA), 4871 sqlite3ExprSkipCollate(pB), 4872 iTab); 4873 } 4874 4875 /* 4876 ** Return true if we can prove the pE2 will always be true if pE1 is 4877 ** true. Return false if we cannot complete the proof or if pE2 might 4878 ** be false. Examples: 4879 ** 4880 ** pE1: x==5 pE2: x==5 Result: true 4881 ** pE1: x>0 pE2: x==5 Result: false 4882 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 4883 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 4884 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 4885 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 4886 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 4887 ** 4888 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 4889 ** Expr.iTable<0 then assume a table number given by iTab. 4890 ** 4891 ** If pParse is not NULL, then the values of bound variables in pE1 are 4892 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 4893 ** modified to record which bound variables are referenced. If pParse 4894 ** is NULL, then false will be returned if pE1 contains any bound variables. 4895 ** 4896 ** When in doubt, return false. Returning true might give a performance 4897 ** improvement. Returning false might cause a performance reduction, but 4898 ** it will always give the correct answer and is hence always safe. 4899 */ 4900 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 4901 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 4902 return 1; 4903 } 4904 if( pE2->op==TK_OR 4905 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 4906 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 4907 ){ 4908 return 1; 4909 } 4910 if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){ 4911 Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft); 4912 testcase( pX!=pE1->pLeft ); 4913 if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1; 4914 } 4915 return 0; 4916 } 4917 4918 /* 4919 ** An instance of the following structure is used by the tree walker 4920 ** to determine if an expression can be evaluated by reference to the 4921 ** index only, without having to do a search for the corresponding 4922 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 4923 ** is the cursor for the table. 4924 */ 4925 struct IdxCover { 4926 Index *pIdx; /* The index to be tested for coverage */ 4927 int iCur; /* Cursor number for the table corresponding to the index */ 4928 }; 4929 4930 /* 4931 ** Check to see if there are references to columns in table 4932 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 4933 ** pWalker->u.pIdxCover->pIdx. 4934 */ 4935 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 4936 if( pExpr->op==TK_COLUMN 4937 && pExpr->iTable==pWalker->u.pIdxCover->iCur 4938 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 4939 ){ 4940 pWalker->eCode = 1; 4941 return WRC_Abort; 4942 } 4943 return WRC_Continue; 4944 } 4945 4946 /* 4947 ** Determine if an index pIdx on table with cursor iCur contains will 4948 ** the expression pExpr. Return true if the index does cover the 4949 ** expression and false if the pExpr expression references table columns 4950 ** that are not found in the index pIdx. 4951 ** 4952 ** An index covering an expression means that the expression can be 4953 ** evaluated using only the index and without having to lookup the 4954 ** corresponding table entry. 4955 */ 4956 int sqlite3ExprCoveredByIndex( 4957 Expr *pExpr, /* The index to be tested */ 4958 int iCur, /* The cursor number for the corresponding table */ 4959 Index *pIdx /* The index that might be used for coverage */ 4960 ){ 4961 Walker w; 4962 struct IdxCover xcov; 4963 memset(&w, 0, sizeof(w)); 4964 xcov.iCur = iCur; 4965 xcov.pIdx = pIdx; 4966 w.xExprCallback = exprIdxCover; 4967 w.u.pIdxCover = &xcov; 4968 sqlite3WalkExpr(&w, pExpr); 4969 return !w.eCode; 4970 } 4971 4972 4973 /* 4974 ** An instance of the following structure is used by the tree walker 4975 ** to count references to table columns in the arguments of an 4976 ** aggregate function, in order to implement the 4977 ** sqlite3FunctionThisSrc() routine. 4978 */ 4979 struct SrcCount { 4980 SrcList *pSrc; /* One particular FROM clause in a nested query */ 4981 int nThis; /* Number of references to columns in pSrcList */ 4982 int nOther; /* Number of references to columns in other FROM clauses */ 4983 }; 4984 4985 /* 4986 ** Count the number of references to columns. 4987 */ 4988 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 4989 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 4990 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 4991 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 4992 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 4993 ** NEVER() will need to be removed. */ 4994 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 4995 int i; 4996 struct SrcCount *p = pWalker->u.pSrcCount; 4997 SrcList *pSrc = p->pSrc; 4998 int nSrc = pSrc ? pSrc->nSrc : 0; 4999 for(i=0; i<nSrc; i++){ 5000 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5001 } 5002 if( i<nSrc ){ 5003 p->nThis++; 5004 }else{ 5005 p->nOther++; 5006 } 5007 } 5008 return WRC_Continue; 5009 } 5010 5011 /* 5012 ** Determine if any of the arguments to the pExpr Function reference 5013 ** pSrcList. Return true if they do. Also return true if the function 5014 ** has no arguments or has only constant arguments. Return false if pExpr 5015 ** references columns but not columns of tables found in pSrcList. 5016 */ 5017 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5018 Walker w; 5019 struct SrcCount cnt; 5020 assert( pExpr->op==TK_AGG_FUNCTION ); 5021 w.xExprCallback = exprSrcCount; 5022 w.xSelectCallback = 0; 5023 w.u.pSrcCount = &cnt; 5024 cnt.pSrc = pSrcList; 5025 cnt.nThis = 0; 5026 cnt.nOther = 0; 5027 sqlite3WalkExprList(&w, pExpr->x.pList); 5028 return cnt.nThis>0 || cnt.nOther==0; 5029 } 5030 5031 /* 5032 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5033 ** the new element. Return a negative number if malloc fails. 5034 */ 5035 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5036 int i; 5037 pInfo->aCol = sqlite3ArrayAllocate( 5038 db, 5039 pInfo->aCol, 5040 sizeof(pInfo->aCol[0]), 5041 &pInfo->nColumn, 5042 &i 5043 ); 5044 return i; 5045 } 5046 5047 /* 5048 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5049 ** the new element. Return a negative number if malloc fails. 5050 */ 5051 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5052 int i; 5053 pInfo->aFunc = sqlite3ArrayAllocate( 5054 db, 5055 pInfo->aFunc, 5056 sizeof(pInfo->aFunc[0]), 5057 &pInfo->nFunc, 5058 &i 5059 ); 5060 return i; 5061 } 5062 5063 /* 5064 ** This is the xExprCallback for a tree walker. It is used to 5065 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5066 ** for additional information. 5067 */ 5068 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5069 int i; 5070 NameContext *pNC = pWalker->u.pNC; 5071 Parse *pParse = pNC->pParse; 5072 SrcList *pSrcList = pNC->pSrcList; 5073 AggInfo *pAggInfo = pNC->pAggInfo; 5074 5075 switch( pExpr->op ){ 5076 case TK_AGG_COLUMN: 5077 case TK_COLUMN: { 5078 testcase( pExpr->op==TK_AGG_COLUMN ); 5079 testcase( pExpr->op==TK_COLUMN ); 5080 /* Check to see if the column is in one of the tables in the FROM 5081 ** clause of the aggregate query */ 5082 if( ALWAYS(pSrcList!=0) ){ 5083 struct SrcList_item *pItem = pSrcList->a; 5084 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5085 struct AggInfo_col *pCol; 5086 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5087 if( pExpr->iTable==pItem->iCursor ){ 5088 /* If we reach this point, it means that pExpr refers to a table 5089 ** that is in the FROM clause of the aggregate query. 5090 ** 5091 ** Make an entry for the column in pAggInfo->aCol[] if there 5092 ** is not an entry there already. 5093 */ 5094 int k; 5095 pCol = pAggInfo->aCol; 5096 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5097 if( pCol->iTable==pExpr->iTable && 5098 pCol->iColumn==pExpr->iColumn ){ 5099 break; 5100 } 5101 } 5102 if( (k>=pAggInfo->nColumn) 5103 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5104 ){ 5105 pCol = &pAggInfo->aCol[k]; 5106 pCol->pTab = pExpr->pTab; 5107 pCol->iTable = pExpr->iTable; 5108 pCol->iColumn = pExpr->iColumn; 5109 pCol->iMem = ++pParse->nMem; 5110 pCol->iSorterColumn = -1; 5111 pCol->pExpr = pExpr; 5112 if( pAggInfo->pGroupBy ){ 5113 int j, n; 5114 ExprList *pGB = pAggInfo->pGroupBy; 5115 struct ExprList_item *pTerm = pGB->a; 5116 n = pGB->nExpr; 5117 for(j=0; j<n; j++, pTerm++){ 5118 Expr *pE = pTerm->pExpr; 5119 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5120 pE->iColumn==pExpr->iColumn ){ 5121 pCol->iSorterColumn = j; 5122 break; 5123 } 5124 } 5125 } 5126 if( pCol->iSorterColumn<0 ){ 5127 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5128 } 5129 } 5130 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5131 ** because it was there before or because we just created it). 5132 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5133 ** pAggInfo->aCol[] entry. 5134 */ 5135 ExprSetVVAProperty(pExpr, EP_NoReduce); 5136 pExpr->pAggInfo = pAggInfo; 5137 pExpr->op = TK_AGG_COLUMN; 5138 pExpr->iAgg = (i16)k; 5139 break; 5140 } /* endif pExpr->iTable==pItem->iCursor */ 5141 } /* end loop over pSrcList */ 5142 } 5143 return WRC_Prune; 5144 } 5145 case TK_AGG_FUNCTION: { 5146 if( (pNC->ncFlags & NC_InAggFunc)==0 5147 && pWalker->walkerDepth==pExpr->op2 5148 ){ 5149 /* Check to see if pExpr is a duplicate of another aggregate 5150 ** function that is already in the pAggInfo structure 5151 */ 5152 struct AggInfo_func *pItem = pAggInfo->aFunc; 5153 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5154 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5155 break; 5156 } 5157 } 5158 if( i>=pAggInfo->nFunc ){ 5159 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5160 */ 5161 u8 enc = ENC(pParse->db); 5162 i = addAggInfoFunc(pParse->db, pAggInfo); 5163 if( i>=0 ){ 5164 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5165 pItem = &pAggInfo->aFunc[i]; 5166 pItem->pExpr = pExpr; 5167 pItem->iMem = ++pParse->nMem; 5168 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5169 pItem->pFunc = sqlite3FindFunction(pParse->db, 5170 pExpr->u.zToken, 5171 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5172 if( pExpr->flags & EP_Distinct ){ 5173 pItem->iDistinct = pParse->nTab++; 5174 }else{ 5175 pItem->iDistinct = -1; 5176 } 5177 } 5178 } 5179 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5180 */ 5181 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5182 ExprSetVVAProperty(pExpr, EP_NoReduce); 5183 pExpr->iAgg = (i16)i; 5184 pExpr->pAggInfo = pAggInfo; 5185 return WRC_Prune; 5186 }else{ 5187 return WRC_Continue; 5188 } 5189 } 5190 } 5191 return WRC_Continue; 5192 } 5193 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5194 UNUSED_PARAMETER(pSelect); 5195 pWalker->walkerDepth++; 5196 return WRC_Continue; 5197 } 5198 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5199 UNUSED_PARAMETER(pSelect); 5200 pWalker->walkerDepth--; 5201 } 5202 5203 /* 5204 ** Analyze the pExpr expression looking for aggregate functions and 5205 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5206 ** points to. Additional entries are made on the AggInfo object as 5207 ** necessary. 5208 ** 5209 ** This routine should only be called after the expression has been 5210 ** analyzed by sqlite3ResolveExprNames(). 5211 */ 5212 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5213 Walker w; 5214 w.xExprCallback = analyzeAggregate; 5215 w.xSelectCallback = analyzeAggregatesInSelect; 5216 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5217 w.walkerDepth = 0; 5218 w.u.pNC = pNC; 5219 assert( pNC->pSrcList!=0 ); 5220 sqlite3WalkExpr(&w, pExpr); 5221 } 5222 5223 /* 5224 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5225 ** expression list. Return the number of errors. 5226 ** 5227 ** If an error is found, the analysis is cut short. 5228 */ 5229 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5230 struct ExprList_item *pItem; 5231 int i; 5232 if( pList ){ 5233 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5234 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5235 } 5236 } 5237 } 5238 5239 /* 5240 ** Allocate a single new register for use to hold some intermediate result. 5241 */ 5242 int sqlite3GetTempReg(Parse *pParse){ 5243 if( pParse->nTempReg==0 ){ 5244 return ++pParse->nMem; 5245 } 5246 return pParse->aTempReg[--pParse->nTempReg]; 5247 } 5248 5249 /* 5250 ** Deallocate a register, making available for reuse for some other 5251 ** purpose. 5252 ** 5253 ** If a register is currently being used by the column cache, then 5254 ** the deallocation is deferred until the column cache line that uses 5255 ** the register becomes stale. 5256 */ 5257 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5258 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5259 int i; 5260 struct yColCache *p; 5261 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 5262 if( p->iReg==iReg ){ 5263 p->tempReg = 1; 5264 return; 5265 } 5266 } 5267 pParse->aTempReg[pParse->nTempReg++] = iReg; 5268 } 5269 } 5270 5271 /* 5272 ** Allocate or deallocate a block of nReg consecutive registers. 5273 */ 5274 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5275 int i, n; 5276 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5277 i = pParse->iRangeReg; 5278 n = pParse->nRangeReg; 5279 if( nReg<=n ){ 5280 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 5281 pParse->iRangeReg += nReg; 5282 pParse->nRangeReg -= nReg; 5283 }else{ 5284 i = pParse->nMem+1; 5285 pParse->nMem += nReg; 5286 } 5287 return i; 5288 } 5289 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5290 if( nReg==1 ){ 5291 sqlite3ReleaseTempReg(pParse, iReg); 5292 return; 5293 } 5294 sqlite3ExprCacheRemove(pParse, iReg, nReg); 5295 if( nReg>pParse->nRangeReg ){ 5296 pParse->nRangeReg = nReg; 5297 pParse->iRangeReg = iReg; 5298 } 5299 } 5300 5301 /* 5302 ** Mark all temporary registers as being unavailable for reuse. 5303 */ 5304 void sqlite3ClearTempRegCache(Parse *pParse){ 5305 pParse->nTempReg = 0; 5306 pParse->nRangeReg = 0; 5307 } 5308 5309 /* 5310 ** Validate that no temporary register falls within the range of 5311 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5312 ** statements. 5313 */ 5314 #ifdef SQLITE_DEBUG 5315 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5316 int i; 5317 if( pParse->nRangeReg>0 5318 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5319 && pParse->iRangeReg <= iLast 5320 ){ 5321 return 0; 5322 } 5323 for(i=0; i<pParse->nTempReg; i++){ 5324 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5325 return 0; 5326 } 5327 } 5328 return 1; 5329 } 5330 #endif /* SQLITE_DEBUG */ 5331