xref: /sqlite-3.40.0/src/expr.c (revision 825fa17b)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){
25   if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER;
26   return pTab->aCol[iCol].affinity;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
48     assert( pExpr->op==TK_COLLATE
49          || pExpr->op==TK_IF_NULL_ROW
50          || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
51     pExpr = pExpr->pLeft;
52     assert( pExpr!=0 );
53   }
54   op = pExpr->op;
55   if( op==TK_REGISTER ) op = pExpr->op2;
56   if( op==TK_COLUMN || op==TK_AGG_COLUMN ){
57     assert( ExprUseYTab(pExpr) );
58     if( pExpr->y.pTab ){
59       return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
60     }
61   }
62   if( op==TK_SELECT ){
63     assert( ExprUseXSelect(pExpr) );
64     assert( pExpr->x.pSelect!=0 );
65     assert( pExpr->x.pSelect->pEList!=0 );
66     assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
67     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
68   }
69 #ifndef SQLITE_OMIT_CAST
70   if( op==TK_CAST ){
71     assert( !ExprHasProperty(pExpr, EP_IntValue) );
72     return sqlite3AffinityType(pExpr->u.zToken, 0);
73   }
74 #endif
75   if( op==TK_SELECT_COLUMN ){
76     assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) );
77     assert( pExpr->iColumn < pExpr->iTable );
78     assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr );
79     return sqlite3ExprAffinity(
80         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
81     );
82   }
83   if( op==TK_VECTOR ){
84     assert( ExprUseXList(pExpr) );
85     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
86   }
87   return pExpr->affExpr;
88 }
89 
90 /*
91 ** Set the collating sequence for expression pExpr to be the collating
92 ** sequence named by pToken.   Return a pointer to a new Expr node that
93 ** implements the COLLATE operator.
94 **
95 ** If a memory allocation error occurs, that fact is recorded in pParse->db
96 ** and the pExpr parameter is returned unchanged.
97 */
98 Expr *sqlite3ExprAddCollateToken(
99   const Parse *pParse,     /* Parsing context */
100   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
101   const Token *pCollName,  /* Name of collating sequence */
102   int dequote              /* True to dequote pCollName */
103 ){
104   if( pCollName->n>0 ){
105     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
106     if( pNew ){
107       pNew->pLeft = pExpr;
108       pNew->flags |= EP_Collate|EP_Skip;
109       pExpr = pNew;
110     }
111   }
112   return pExpr;
113 }
114 Expr *sqlite3ExprAddCollateString(
115   const Parse *pParse,  /* Parsing context */
116   Expr *pExpr,          /* Add the "COLLATE" clause to this expression */
117   const char *zC        /* The collating sequence name */
118 ){
119   Token s;
120   assert( zC!=0 );
121   sqlite3TokenInit(&s, (char*)zC);
122   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
123 }
124 
125 /*
126 ** Skip over any TK_COLLATE operators.
127 */
128 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
129   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
130     assert( pExpr->op==TK_COLLATE );
131     pExpr = pExpr->pLeft;
132   }
133   return pExpr;
134 }
135 
136 /*
137 ** Skip over any TK_COLLATE operators and/or any unlikely()
138 ** or likelihood() or likely() functions at the root of an
139 ** expression.
140 */
141 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
142   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
143     if( ExprHasProperty(pExpr, EP_Unlikely) ){
144       assert( ExprUseXList(pExpr) );
145       assert( pExpr->x.pList->nExpr>0 );
146       assert( pExpr->op==TK_FUNCTION );
147       pExpr = pExpr->x.pList->a[0].pExpr;
148     }else{
149       assert( pExpr->op==TK_COLLATE );
150       pExpr = pExpr->pLeft;
151     }
152   }
153   return pExpr;
154 }
155 
156 /*
157 ** Return the collation sequence for the expression pExpr. If
158 ** there is no defined collating sequence, return NULL.
159 **
160 ** See also: sqlite3ExprNNCollSeq()
161 **
162 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
163 ** default collation if pExpr has no defined collation.
164 **
165 ** The collating sequence might be determined by a COLLATE operator
166 ** or by the presence of a column with a defined collating sequence.
167 ** COLLATE operators take first precedence.  Left operands take
168 ** precedence over right operands.
169 */
170 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
171   sqlite3 *db = pParse->db;
172   CollSeq *pColl = 0;
173   const Expr *p = pExpr;
174   while( p ){
175     int op = p->op;
176     if( op==TK_REGISTER ) op = p->op2;
177     if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){
178       assert( ExprUseYTab(p) );
179       if( p->y.pTab!=0 ){
180         /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
181         ** a TK_COLUMN but was previously evaluated and cached in a register */
182         int j = p->iColumn;
183         if( j>=0 ){
184           const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]);
185           pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
186         }
187         break;
188       }
189     }
190     if( op==TK_CAST || op==TK_UPLUS ){
191       p = p->pLeft;
192       continue;
193     }
194     if( op==TK_VECTOR ){
195       assert( ExprUseXList(p) );
196       p = p->x.pList->a[0].pExpr;
197       continue;
198     }
199     if( op==TK_COLLATE ){
200       assert( !ExprHasProperty(p, EP_IntValue) );
201       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
202       break;
203     }
204     if( p->flags & EP_Collate ){
205       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
206         p = p->pLeft;
207       }else{
208         Expr *pNext  = p->pRight;
209         /* The Expr.x union is never used at the same time as Expr.pRight */
210         assert( ExprUseXList(p) );
211         assert( p->x.pList==0 || p->pRight==0 );
212         if( p->x.pList!=0 && !db->mallocFailed ){
213           int i;
214           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
215             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
216               pNext = p->x.pList->a[i].pExpr;
217               break;
218             }
219           }
220         }
221         p = pNext;
222       }
223     }else{
224       break;
225     }
226   }
227   if( sqlite3CheckCollSeq(pParse, pColl) ){
228     pColl = 0;
229   }
230   return pColl;
231 }
232 
233 /*
234 ** Return the collation sequence for the expression pExpr. If
235 ** there is no defined collating sequence, return a pointer to the
236 ** defautl collation sequence.
237 **
238 ** See also: sqlite3ExprCollSeq()
239 **
240 ** The sqlite3ExprCollSeq() routine works the same except that it
241 ** returns NULL if there is no defined collation.
242 */
243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
244   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
245   if( p==0 ) p = pParse->db->pDfltColl;
246   assert( p!=0 );
247   return p;
248 }
249 
250 /*
251 ** Return TRUE if the two expressions have equivalent collating sequences.
252 */
253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
254   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
255   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
256   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
257 }
258 
259 /*
260 ** pExpr is an operand of a comparison operator.  aff2 is the
261 ** type affinity of the other operand.  This routine returns the
262 ** type affinity that should be used for the comparison operator.
263 */
264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
265   char aff1 = sqlite3ExprAffinity(pExpr);
266   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
267     /* Both sides of the comparison are columns. If one has numeric
268     ** affinity, use that. Otherwise use no affinity.
269     */
270     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
271       return SQLITE_AFF_NUMERIC;
272     }else{
273       return SQLITE_AFF_BLOB;
274     }
275   }else{
276     /* One side is a column, the other is not. Use the columns affinity. */
277     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
278     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
279   }
280 }
281 
282 /*
283 ** pExpr is a comparison operator.  Return the type affinity that should
284 ** be applied to both operands prior to doing the comparison.
285 */
286 static char comparisonAffinity(const Expr *pExpr){
287   char aff;
288   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
289           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
290           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
291   assert( pExpr->pLeft );
292   aff = sqlite3ExprAffinity(pExpr->pLeft);
293   if( pExpr->pRight ){
294     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
295   }else if( ExprUseXSelect(pExpr) ){
296     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
297   }else if( aff==0 ){
298     aff = SQLITE_AFF_BLOB;
299   }
300   return aff;
301 }
302 
303 /*
304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
305 ** idx_affinity is the affinity of an indexed column. Return true
306 ** if the index with affinity idx_affinity may be used to implement
307 ** the comparison in pExpr.
308 */
309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
310   char aff = comparisonAffinity(pExpr);
311   if( aff<SQLITE_AFF_TEXT ){
312     return 1;
313   }
314   if( aff==SQLITE_AFF_TEXT ){
315     return idx_affinity==SQLITE_AFF_TEXT;
316   }
317   return sqlite3IsNumericAffinity(idx_affinity);
318 }
319 
320 /*
321 ** Return the P5 value that should be used for a binary comparison
322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
323 */
324 static u8 binaryCompareP5(
325   const Expr *pExpr1,   /* Left operand */
326   const Expr *pExpr2,   /* Right operand */
327   int jumpIfNull        /* Extra flags added to P5 */
328 ){
329   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
330   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
331   return aff;
332 }
333 
334 /*
335 ** Return a pointer to the collation sequence that should be used by
336 ** a binary comparison operator comparing pLeft and pRight.
337 **
338 ** If the left hand expression has a collating sequence type, then it is
339 ** used. Otherwise the collation sequence for the right hand expression
340 ** is used, or the default (BINARY) if neither expression has a collating
341 ** type.
342 **
343 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
344 ** it is not considered.
345 */
346 CollSeq *sqlite3BinaryCompareCollSeq(
347   Parse *pParse,
348   const Expr *pLeft,
349   const Expr *pRight
350 ){
351   CollSeq *pColl;
352   assert( pLeft );
353   if( pLeft->flags & EP_Collate ){
354     pColl = sqlite3ExprCollSeq(pParse, pLeft);
355   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
356     pColl = sqlite3ExprCollSeq(pParse, pRight);
357   }else{
358     pColl = sqlite3ExprCollSeq(pParse, pLeft);
359     if( !pColl ){
360       pColl = sqlite3ExprCollSeq(pParse, pRight);
361     }
362   }
363   return pColl;
364 }
365 
366 /* Expresssion p is a comparison operator.  Return a collation sequence
367 ** appropriate for the comparison operator.
368 **
369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
370 ** However, if the OP_Commuted flag is set, then the order of the operands
371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
372 ** correct collating sequence is found.
373 */
374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
375   if( ExprHasProperty(p, EP_Commuted) ){
376     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
377   }else{
378     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
379   }
380 }
381 
382 /*
383 ** Generate code for a comparison operator.
384 */
385 static int codeCompare(
386   Parse *pParse,    /* The parsing (and code generating) context */
387   Expr *pLeft,      /* The left operand */
388   Expr *pRight,     /* The right operand */
389   int opcode,       /* The comparison opcode */
390   int in1, int in2, /* Register holding operands */
391   int dest,         /* Jump here if true.  */
392   int jumpIfNull,   /* If true, jump if either operand is NULL */
393   int isCommuted    /* The comparison has been commuted */
394 ){
395   int p5;
396   int addr;
397   CollSeq *p4;
398 
399   if( pParse->nErr ) return 0;
400   if( isCommuted ){
401     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
402   }else{
403     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
404   }
405   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
406   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
407                            (void*)p4, P4_COLLSEQ);
408   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
409   return addr;
410 }
411 
412 /*
413 ** Return true if expression pExpr is a vector, or false otherwise.
414 **
415 ** A vector is defined as any expression that results in two or more
416 ** columns of result.  Every TK_VECTOR node is an vector because the
417 ** parser will not generate a TK_VECTOR with fewer than two entries.
418 ** But a TK_SELECT might be either a vector or a scalar. It is only
419 ** considered a vector if it has two or more result columns.
420 */
421 int sqlite3ExprIsVector(const Expr *pExpr){
422   return sqlite3ExprVectorSize(pExpr)>1;
423 }
424 
425 /*
426 ** If the expression passed as the only argument is of type TK_VECTOR
427 ** return the number of expressions in the vector. Or, if the expression
428 ** is a sub-select, return the number of columns in the sub-select. For
429 ** any other type of expression, return 1.
430 */
431 int sqlite3ExprVectorSize(const Expr *pExpr){
432   u8 op = pExpr->op;
433   if( op==TK_REGISTER ) op = pExpr->op2;
434   if( op==TK_VECTOR ){
435     assert( ExprUseXList(pExpr) );
436     return pExpr->x.pList->nExpr;
437   }else if( op==TK_SELECT ){
438     assert( ExprUseXSelect(pExpr) );
439     return pExpr->x.pSelect->pEList->nExpr;
440   }else{
441     return 1;
442   }
443 }
444 
445 /*
446 ** Return a pointer to a subexpression of pVector that is the i-th
447 ** column of the vector (numbered starting with 0).  The caller must
448 ** ensure that i is within range.
449 **
450 ** If pVector is really a scalar (and "scalar" here includes subqueries
451 ** that return a single column!) then return pVector unmodified.
452 **
453 ** pVector retains ownership of the returned subexpression.
454 **
455 ** If the vector is a (SELECT ...) then the expression returned is
456 ** just the expression for the i-th term of the result set, and may
457 ** not be ready for evaluation because the table cursor has not yet
458 ** been positioned.
459 */
460 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
461   assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR );
462   if( sqlite3ExprIsVector(pVector) ){
463     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
464     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
465       assert( ExprUseXSelect(pVector) );
466       return pVector->x.pSelect->pEList->a[i].pExpr;
467     }else{
468       assert( ExprUseXList(pVector) );
469       return pVector->x.pList->a[i].pExpr;
470     }
471   }
472   return pVector;
473 }
474 
475 /*
476 ** Compute and return a new Expr object which when passed to
477 ** sqlite3ExprCode() will generate all necessary code to compute
478 ** the iField-th column of the vector expression pVector.
479 **
480 ** It is ok for pVector to be a scalar (as long as iField==0).
481 ** In that case, this routine works like sqlite3ExprDup().
482 **
483 ** The caller owns the returned Expr object and is responsible for
484 ** ensuring that the returned value eventually gets freed.
485 **
486 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
487 ** then the returned object will reference pVector and so pVector must remain
488 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
489 ** or a scalar expression, then it can be deleted as soon as this routine
490 ** returns.
491 **
492 ** A trick to cause a TK_SELECT pVector to be deleted together with
493 ** the returned Expr object is to attach the pVector to the pRight field
494 ** of the returned TK_SELECT_COLUMN Expr object.
495 */
496 Expr *sqlite3ExprForVectorField(
497   Parse *pParse,       /* Parsing context */
498   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
499   int iField,          /* Which column of the vector to return */
500   int nField           /* Total number of columns in the vector */
501 ){
502   Expr *pRet;
503   if( pVector->op==TK_SELECT ){
504     assert( ExprUseXSelect(pVector) );
505     /* The TK_SELECT_COLUMN Expr node:
506     **
507     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
508     ** pRight:          not used.  But recursively deleted.
509     ** iColumn:         Index of a column in pVector
510     ** iTable:          0 or the number of columns on the LHS of an assignment
511     ** pLeft->iTable:   First in an array of register holding result, or 0
512     **                  if the result is not yet computed.
513     **
514     ** sqlite3ExprDelete() specifically skips the recursive delete of
515     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
516     ** can be attached to pRight to cause this node to take ownership of
517     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
518     ** with the same pLeft pointer to the pVector, but only one of them
519     ** will own the pVector.
520     */
521     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
522     if( pRet ){
523       pRet->iTable = nField;
524       pRet->iColumn = iField;
525       pRet->pLeft = pVector;
526     }
527   }else{
528     if( pVector->op==TK_VECTOR ){
529       Expr **ppVector;
530       assert( ExprUseXList(pVector) );
531       ppVector = &pVector->x.pList->a[iField].pExpr;
532       pVector = *ppVector;
533       if( IN_RENAME_OBJECT ){
534         /* This must be a vector UPDATE inside a trigger */
535         *ppVector = 0;
536         return pVector;
537       }
538     }
539     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
540   }
541   return pRet;
542 }
543 
544 /*
545 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
546 ** it. Return the register in which the result is stored (or, if the
547 ** sub-select returns more than one column, the first in an array
548 ** of registers in which the result is stored).
549 **
550 ** If pExpr is not a TK_SELECT expression, return 0.
551 */
552 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
553   int reg = 0;
554 #ifndef SQLITE_OMIT_SUBQUERY
555   if( pExpr->op==TK_SELECT ){
556     reg = sqlite3CodeSubselect(pParse, pExpr);
557   }
558 #endif
559   return reg;
560 }
561 
562 /*
563 ** Argument pVector points to a vector expression - either a TK_VECTOR
564 ** or TK_SELECT that returns more than one column. This function returns
565 ** the register number of a register that contains the value of
566 ** element iField of the vector.
567 **
568 ** If pVector is a TK_SELECT expression, then code for it must have
569 ** already been generated using the exprCodeSubselect() routine. In this
570 ** case parameter regSelect should be the first in an array of registers
571 ** containing the results of the sub-select.
572 **
573 ** If pVector is of type TK_VECTOR, then code for the requested field
574 ** is generated. In this case (*pRegFree) may be set to the number of
575 ** a temporary register to be freed by the caller before returning.
576 **
577 ** Before returning, output parameter (*ppExpr) is set to point to the
578 ** Expr object corresponding to element iElem of the vector.
579 */
580 static int exprVectorRegister(
581   Parse *pParse,                  /* Parse context */
582   Expr *pVector,                  /* Vector to extract element from */
583   int iField,                     /* Field to extract from pVector */
584   int regSelect,                  /* First in array of registers */
585   Expr **ppExpr,                  /* OUT: Expression element */
586   int *pRegFree                   /* OUT: Temp register to free */
587 ){
588   u8 op = pVector->op;
589   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR );
590   if( op==TK_REGISTER ){
591     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
592     return pVector->iTable+iField;
593   }
594   if( op==TK_SELECT ){
595     assert( ExprUseXSelect(pVector) );
596     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
597      return regSelect+iField;
598   }
599   if( op==TK_VECTOR ){
600     assert( ExprUseXList(pVector) );
601     *ppExpr = pVector->x.pList->a[iField].pExpr;
602     return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
603   }
604   return 0;
605 }
606 
607 /*
608 ** Expression pExpr is a comparison between two vector values. Compute
609 ** the result of the comparison (1, 0, or NULL) and write that
610 ** result into register dest.
611 **
612 ** The caller must satisfy the following preconditions:
613 **
614 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
615 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
616 **    otherwise:                op==pExpr->op and p5==0
617 */
618 static void codeVectorCompare(
619   Parse *pParse,        /* Code generator context */
620   Expr *pExpr,          /* The comparison operation */
621   int dest,             /* Write results into this register */
622   u8 op,                /* Comparison operator */
623   u8 p5                 /* SQLITE_NULLEQ or zero */
624 ){
625   Vdbe *v = pParse->pVdbe;
626   Expr *pLeft = pExpr->pLeft;
627   Expr *pRight = pExpr->pRight;
628   int nLeft = sqlite3ExprVectorSize(pLeft);
629   int i;
630   int regLeft = 0;
631   int regRight = 0;
632   u8 opx = op;
633   int addrCmp = 0;
634   int addrDone = sqlite3VdbeMakeLabel(pParse);
635   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
636 
637   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
638   if( pParse->nErr ) return;
639   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
640     sqlite3ErrorMsg(pParse, "row value misused");
641     return;
642   }
643   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
644        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
645        || pExpr->op==TK_LT || pExpr->op==TK_GT
646        || pExpr->op==TK_LE || pExpr->op==TK_GE
647   );
648   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
649             || (pExpr->op==TK_ISNOT && op==TK_NE) );
650   assert( p5==0 || pExpr->op!=op );
651   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
652 
653   if( op==TK_LE ) opx = TK_LT;
654   if( op==TK_GE ) opx = TK_GT;
655   if( op==TK_NE ) opx = TK_EQ;
656 
657   regLeft = exprCodeSubselect(pParse, pLeft);
658   regRight = exprCodeSubselect(pParse, pRight);
659 
660   sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
661   for(i=0; 1 /*Loop exits by "break"*/; i++){
662     int regFree1 = 0, regFree2 = 0;
663     Expr *pL = 0, *pR = 0;
664     int r1, r2;
665     assert( i>=0 && i<nLeft );
666     if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
667     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
668     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
669     addrCmp = sqlite3VdbeCurrentAddr(v);
670     codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
671     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
672     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
673     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
674     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
675     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
676     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
677     sqlite3ReleaseTempReg(pParse, regFree1);
678     sqlite3ReleaseTempReg(pParse, regFree2);
679     if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
680       addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
681       testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
682       testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
683     }
684     if( p5==SQLITE_NULLEQ ){
685       sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
686     }else{
687       sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
688     }
689     if( i==nLeft-1 ){
690       break;
691     }
692     if( opx==TK_EQ ){
693       sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
694     }else{
695       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
696       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
697       if( i==nLeft-2 ) opx = op;
698     }
699   }
700   sqlite3VdbeJumpHere(v, addrCmp);
701   sqlite3VdbeResolveLabel(v, addrDone);
702   if( op==TK_NE ){
703     sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
704   }
705 }
706 
707 #if SQLITE_MAX_EXPR_DEPTH>0
708 /*
709 ** Check that argument nHeight is less than or equal to the maximum
710 ** expression depth allowed. If it is not, leave an error message in
711 ** pParse.
712 */
713 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
714   int rc = SQLITE_OK;
715   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
716   if( nHeight>mxHeight ){
717     sqlite3ErrorMsg(pParse,
718        "Expression tree is too large (maximum depth %d)", mxHeight
719     );
720     rc = SQLITE_ERROR;
721   }
722   return rc;
723 }
724 
725 /* The following three functions, heightOfExpr(), heightOfExprList()
726 ** and heightOfSelect(), are used to determine the maximum height
727 ** of any expression tree referenced by the structure passed as the
728 ** first argument.
729 **
730 ** If this maximum height is greater than the current value pointed
731 ** to by pnHeight, the second parameter, then set *pnHeight to that
732 ** value.
733 */
734 static void heightOfExpr(const Expr *p, int *pnHeight){
735   if( p ){
736     if( p->nHeight>*pnHeight ){
737       *pnHeight = p->nHeight;
738     }
739   }
740 }
741 static void heightOfExprList(const ExprList *p, int *pnHeight){
742   if( p ){
743     int i;
744     for(i=0; i<p->nExpr; i++){
745       heightOfExpr(p->a[i].pExpr, pnHeight);
746     }
747   }
748 }
749 static void heightOfSelect(const Select *pSelect, int *pnHeight){
750   const Select *p;
751   for(p=pSelect; p; p=p->pPrior){
752     heightOfExpr(p->pWhere, pnHeight);
753     heightOfExpr(p->pHaving, pnHeight);
754     heightOfExpr(p->pLimit, pnHeight);
755     heightOfExprList(p->pEList, pnHeight);
756     heightOfExprList(p->pGroupBy, pnHeight);
757     heightOfExprList(p->pOrderBy, pnHeight);
758   }
759 }
760 
761 /*
762 ** Set the Expr.nHeight variable in the structure passed as an
763 ** argument. An expression with no children, Expr.pList or
764 ** Expr.pSelect member has a height of 1. Any other expression
765 ** has a height equal to the maximum height of any other
766 ** referenced Expr plus one.
767 **
768 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
769 ** if appropriate.
770 */
771 static void exprSetHeight(Expr *p){
772   int nHeight = p->pLeft ? p->pLeft->nHeight : 0;
773   if( p->pRight && p->pRight->nHeight>nHeight ) nHeight = p->pRight->nHeight;
774   if( ExprUseXSelect(p) ){
775     heightOfSelect(p->x.pSelect, &nHeight);
776   }else if( p->x.pList ){
777     heightOfExprList(p->x.pList, &nHeight);
778     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
779   }
780   p->nHeight = nHeight + 1;
781 }
782 
783 /*
784 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
785 ** the height is greater than the maximum allowed expression depth,
786 ** leave an error in pParse.
787 **
788 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
789 ** Expr.flags.
790 */
791 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
792   if( pParse->nErr ) return;
793   exprSetHeight(p);
794   sqlite3ExprCheckHeight(pParse, p->nHeight);
795 }
796 
797 /*
798 ** Return the maximum height of any expression tree referenced
799 ** by the select statement passed as an argument.
800 */
801 int sqlite3SelectExprHeight(const Select *p){
802   int nHeight = 0;
803   heightOfSelect(p, &nHeight);
804   return nHeight;
805 }
806 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
807 /*
808 ** Propagate all EP_Propagate flags from the Expr.x.pList into
809 ** Expr.flags.
810 */
811 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
812   if( pParse->nErr ) return;
813   if( p && ExprUseXList(p) && p->x.pList ){
814     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
815   }
816 }
817 #define exprSetHeight(y)
818 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
819 
820 /*
821 ** This routine is the core allocator for Expr nodes.
822 **
823 ** Construct a new expression node and return a pointer to it.  Memory
824 ** for this node and for the pToken argument is a single allocation
825 ** obtained from sqlite3DbMalloc().  The calling function
826 ** is responsible for making sure the node eventually gets freed.
827 **
828 ** If dequote is true, then the token (if it exists) is dequoted.
829 ** If dequote is false, no dequoting is performed.  The deQuote
830 ** parameter is ignored if pToken is NULL or if the token does not
831 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
832 ** then the EP_DblQuoted flag is set on the expression node.
833 **
834 ** Special case:  If op==TK_INTEGER and pToken points to a string that
835 ** can be translated into a 32-bit integer, then the token is not
836 ** stored in u.zToken.  Instead, the integer values is written
837 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
838 ** is allocated to hold the integer text and the dequote flag is ignored.
839 */
840 Expr *sqlite3ExprAlloc(
841   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
842   int op,                 /* Expression opcode */
843   const Token *pToken,    /* Token argument.  Might be NULL */
844   int dequote             /* True to dequote */
845 ){
846   Expr *pNew;
847   int nExtra = 0;
848   int iValue = 0;
849 
850   assert( db!=0 );
851   if( pToken ){
852     if( op!=TK_INTEGER || pToken->z==0
853           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
854       nExtra = pToken->n+1;
855       assert( iValue>=0 );
856     }
857   }
858   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
859   if( pNew ){
860     memset(pNew, 0, sizeof(Expr));
861     pNew->op = (u8)op;
862     pNew->iAgg = -1;
863     if( pToken ){
864       if( nExtra==0 ){
865         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
866         pNew->u.iValue = iValue;
867       }else{
868         pNew->u.zToken = (char*)&pNew[1];
869         assert( pToken->z!=0 || pToken->n==0 );
870         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
871         pNew->u.zToken[pToken->n] = 0;
872         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
873           sqlite3DequoteExpr(pNew);
874         }
875       }
876     }
877 #if SQLITE_MAX_EXPR_DEPTH>0
878     pNew->nHeight = 1;
879 #endif
880   }
881   return pNew;
882 }
883 
884 /*
885 ** Allocate a new expression node from a zero-terminated token that has
886 ** already been dequoted.
887 */
888 Expr *sqlite3Expr(
889   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
890   int op,                 /* Expression opcode */
891   const char *zToken      /* Token argument.  Might be NULL */
892 ){
893   Token x;
894   x.z = zToken;
895   x.n = sqlite3Strlen30(zToken);
896   return sqlite3ExprAlloc(db, op, &x, 0);
897 }
898 
899 /*
900 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
901 **
902 ** If pRoot==NULL that means that a memory allocation error has occurred.
903 ** In that case, delete the subtrees pLeft and pRight.
904 */
905 void sqlite3ExprAttachSubtrees(
906   sqlite3 *db,
907   Expr *pRoot,
908   Expr *pLeft,
909   Expr *pRight
910 ){
911   if( pRoot==0 ){
912     assert( db->mallocFailed );
913     sqlite3ExprDelete(db, pLeft);
914     sqlite3ExprDelete(db, pRight);
915   }else{
916     if( pRight ){
917       pRoot->pRight = pRight;
918       pRoot->flags |= EP_Propagate & pRight->flags;
919     }
920     if( pLeft ){
921       pRoot->pLeft = pLeft;
922       pRoot->flags |= EP_Propagate & pLeft->flags;
923     }
924     exprSetHeight(pRoot);
925   }
926 }
927 
928 /*
929 ** Allocate an Expr node which joins as many as two subtrees.
930 **
931 ** One or both of the subtrees can be NULL.  Return a pointer to the new
932 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
933 ** free the subtrees and return NULL.
934 */
935 Expr *sqlite3PExpr(
936   Parse *pParse,          /* Parsing context */
937   int op,                 /* Expression opcode */
938   Expr *pLeft,            /* Left operand */
939   Expr *pRight            /* Right operand */
940 ){
941   Expr *p;
942   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
943   if( p ){
944     memset(p, 0, sizeof(Expr));
945     p->op = op & 0xff;
946     p->iAgg = -1;
947     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
948     sqlite3ExprCheckHeight(pParse, p->nHeight);
949   }else{
950     sqlite3ExprDelete(pParse->db, pLeft);
951     sqlite3ExprDelete(pParse->db, pRight);
952   }
953   return p;
954 }
955 
956 /*
957 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
958 ** do a memory allocation failure) then delete the pSelect object.
959 */
960 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
961   if( pExpr ){
962     pExpr->x.pSelect = pSelect;
963     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
964     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
965   }else{
966     assert( pParse->db->mallocFailed );
967     sqlite3SelectDelete(pParse->db, pSelect);
968   }
969 }
970 
971 /*
972 ** Expression list pEList is a list of vector values. This function
973 ** converts the contents of pEList to a VALUES(...) Select statement
974 ** returning 1 row for each element of the list. For example, the
975 ** expression list:
976 **
977 **   ( (1,2), (3,4) (5,6) )
978 **
979 ** is translated to the equivalent of:
980 **
981 **   VALUES(1,2), (3,4), (5,6)
982 **
983 ** Each of the vector values in pEList must contain exactly nElem terms.
984 ** If a list element that is not a vector or does not contain nElem terms,
985 ** an error message is left in pParse.
986 **
987 ** This is used as part of processing IN(...) expressions with a list
988 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))".
989 */
990 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){
991   int ii;
992   Select *pRet = 0;
993   assert( nElem>1 );
994   for(ii=0; ii<pEList->nExpr; ii++){
995     Select *pSel;
996     Expr *pExpr = pEList->a[ii].pExpr;
997     int nExprElem;
998     if( pExpr->op==TK_VECTOR ){
999       assert( ExprUseXList(pExpr) );
1000       nExprElem = pExpr->x.pList->nExpr;
1001     }else{
1002       nExprElem = 1;
1003     }
1004     if( nExprElem!=nElem ){
1005       sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d",
1006           nExprElem, nExprElem>1?"s":"", nElem
1007       );
1008       break;
1009     }
1010     assert( ExprUseXList(pExpr) );
1011     pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0);
1012     pExpr->x.pList = 0;
1013     if( pSel ){
1014       if( pRet ){
1015         pSel->op = TK_ALL;
1016         pSel->pPrior = pRet;
1017       }
1018       pRet = pSel;
1019     }
1020   }
1021 
1022   if( pRet && pRet->pPrior ){
1023     pRet->selFlags |= SF_MultiValue;
1024   }
1025   sqlite3ExprListDelete(pParse->db, pEList);
1026   return pRet;
1027 }
1028 
1029 /*
1030 ** Join two expressions using an AND operator.  If either expression is
1031 ** NULL, then just return the other expression.
1032 **
1033 ** If one side or the other of the AND is known to be false, then instead
1034 ** of returning an AND expression, just return a constant expression with
1035 ** a value of false.
1036 */
1037 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
1038   sqlite3 *db = pParse->db;
1039   if( pLeft==0  ){
1040     return pRight;
1041   }else if( pRight==0 ){
1042     return pLeft;
1043   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
1044          && !IN_RENAME_OBJECT
1045   ){
1046     sqlite3ExprDeferredDelete(pParse, pLeft);
1047     sqlite3ExprDeferredDelete(pParse, pRight);
1048     return sqlite3Expr(db, TK_INTEGER, "0");
1049   }else{
1050     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
1051   }
1052 }
1053 
1054 /*
1055 ** Construct a new expression node for a function with multiple
1056 ** arguments.
1057 */
1058 Expr *sqlite3ExprFunction(
1059   Parse *pParse,        /* Parsing context */
1060   ExprList *pList,      /* Argument list */
1061   const Token *pToken,  /* Name of the function */
1062   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
1063 ){
1064   Expr *pNew;
1065   sqlite3 *db = pParse->db;
1066   assert( pToken );
1067   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
1068   if( pNew==0 ){
1069     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
1070     return 0;
1071   }
1072   assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) );
1073   pNew->w.iOfst = (int)(pToken->z - pParse->zTail);
1074   if( pList
1075    && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG]
1076    && !pParse->nested
1077   ){
1078     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
1079   }
1080   pNew->x.pList = pList;
1081   ExprSetProperty(pNew, EP_HasFunc);
1082   assert( ExprUseXList(pNew) );
1083   sqlite3ExprSetHeightAndFlags(pParse, pNew);
1084   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
1085   return pNew;
1086 }
1087 
1088 /*
1089 ** Check to see if a function is usable according to current access
1090 ** rules:
1091 **
1092 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
1093 **
1094 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
1095 **                                top-level SQL
1096 **
1097 ** If the function is not usable, create an error.
1098 */
1099 void sqlite3ExprFunctionUsable(
1100   Parse *pParse,         /* Parsing and code generating context */
1101   const Expr *pExpr,     /* The function invocation */
1102   const FuncDef *pDef    /* The function being invoked */
1103 ){
1104   assert( !IN_RENAME_OBJECT );
1105   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1106   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1107     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1108      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1109     ){
1110       /* Functions prohibited in triggers and views if:
1111       **     (1) tagged with SQLITE_DIRECTONLY
1112       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1113       **         is tagged with SQLITE_FUNC_UNSAFE) and
1114       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1115       **         that the schema is possibly tainted).
1116       */
1117       sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr);
1118     }
1119   }
1120 }
1121 
1122 /*
1123 ** Assign a variable number to an expression that encodes a wildcard
1124 ** in the original SQL statement.
1125 **
1126 ** Wildcards consisting of a single "?" are assigned the next sequential
1127 ** variable number.
1128 **
1129 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1130 ** sure "nnn" is not too big to avoid a denial of service attack when
1131 ** the SQL statement comes from an external source.
1132 **
1133 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1134 ** as the previous instance of the same wildcard.  Or if this is the first
1135 ** instance of the wildcard, the next sequential variable number is
1136 ** assigned.
1137 */
1138 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1139   sqlite3 *db = pParse->db;
1140   const char *z;
1141   ynVar x;
1142 
1143   if( pExpr==0 ) return;
1144   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1145   z = pExpr->u.zToken;
1146   assert( z!=0 );
1147   assert( z[0]!=0 );
1148   assert( n==(u32)sqlite3Strlen30(z) );
1149   if( z[1]==0 ){
1150     /* Wildcard of the form "?".  Assign the next variable number */
1151     assert( z[0]=='?' );
1152     x = (ynVar)(++pParse->nVar);
1153   }else{
1154     int doAdd = 0;
1155     if( z[0]=='?' ){
1156       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1157       ** use it as the variable number */
1158       i64 i;
1159       int bOk;
1160       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1161         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1162         bOk = 1;
1163       }else{
1164         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1165       }
1166       testcase( i==0 );
1167       testcase( i==1 );
1168       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1169       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1170       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1171         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1172             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1173         sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
1174         return;
1175       }
1176       x = (ynVar)i;
1177       if( x>pParse->nVar ){
1178         pParse->nVar = (int)x;
1179         doAdd = 1;
1180       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1181         doAdd = 1;
1182       }
1183     }else{
1184       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1185       ** number as the prior appearance of the same name, or if the name
1186       ** has never appeared before, reuse the same variable number
1187       */
1188       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1189       if( x==0 ){
1190         x = (ynVar)(++pParse->nVar);
1191         doAdd = 1;
1192       }
1193     }
1194     if( doAdd ){
1195       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1196     }
1197   }
1198   pExpr->iColumn = x;
1199   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1200     sqlite3ErrorMsg(pParse, "too many SQL variables");
1201     sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
1202   }
1203 }
1204 
1205 /*
1206 ** Recursively delete an expression tree.
1207 */
1208 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1209   assert( p!=0 );
1210   assert( !ExprUseUValue(p) || p->u.iValue>=0 );
1211   assert( !ExprUseYWin(p) || !ExprUseYSub(p) );
1212   assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed );
1213   assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) );
1214 #ifdef SQLITE_DEBUG
1215   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1216     assert( p->pLeft==0 );
1217     assert( p->pRight==0 );
1218     assert( !ExprUseXSelect(p) || p->x.pSelect==0 );
1219     assert( !ExprUseXList(p) || p->x.pList==0 );
1220   }
1221 #endif
1222   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1223     /* The Expr.x union is never used at the same time as Expr.pRight */
1224     assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 );
1225     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1226     if( p->pRight ){
1227       assert( !ExprHasProperty(p, EP_WinFunc) );
1228       sqlite3ExprDeleteNN(db, p->pRight);
1229     }else if( ExprUseXSelect(p) ){
1230       assert( !ExprHasProperty(p, EP_WinFunc) );
1231       sqlite3SelectDelete(db, p->x.pSelect);
1232     }else{
1233       sqlite3ExprListDelete(db, p->x.pList);
1234 #ifndef SQLITE_OMIT_WINDOWFUNC
1235       if( ExprHasProperty(p, EP_WinFunc) ){
1236         sqlite3WindowDelete(db, p->y.pWin);
1237       }
1238 #endif
1239     }
1240   }
1241   if( !ExprHasProperty(p, EP_Static) ){
1242     sqlite3DbFreeNN(db, p);
1243   }
1244 }
1245 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1246   if( p ) sqlite3ExprDeleteNN(db, p);
1247 }
1248 
1249 /*
1250 ** Clear both elements of an OnOrUsing object
1251 */
1252 void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){
1253   if( p==0 ){
1254     /* Nothing to clear */
1255   }else if( p->pOn ){
1256     sqlite3ExprDeleteNN(db, p->pOn);
1257   }else if( p->pUsing ){
1258     sqlite3IdListDelete(db, p->pUsing);
1259   }
1260 }
1261 
1262 /*
1263 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1264 ** This is similar to sqlite3ExprDelete() except that the delete is
1265 ** deferred untilthe pParse is deleted.
1266 **
1267 ** The pExpr might be deleted immediately on an OOM error.
1268 **
1269 ** The deferred delete is (currently) implemented by adding the
1270 ** pExpr to the pParse->pConstExpr list with a register number of 0.
1271 */
1272 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
1273   pParse->pConstExpr =
1274       sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
1275 }
1276 
1277 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1278 ** expression.
1279 */
1280 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1281   if( p ){
1282     if( IN_RENAME_OBJECT ){
1283       sqlite3RenameExprUnmap(pParse, p);
1284     }
1285     sqlite3ExprDeleteNN(pParse->db, p);
1286   }
1287 }
1288 
1289 /*
1290 ** Return the number of bytes allocated for the expression structure
1291 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1292 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1293 */
1294 static int exprStructSize(const Expr *p){
1295   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1296   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1297   return EXPR_FULLSIZE;
1298 }
1299 
1300 /*
1301 ** The dupedExpr*Size() routines each return the number of bytes required
1302 ** to store a copy of an expression or expression tree.  They differ in
1303 ** how much of the tree is measured.
1304 **
1305 **     dupedExprStructSize()     Size of only the Expr structure
1306 **     dupedExprNodeSize()       Size of Expr + space for token
1307 **     dupedExprSize()           Expr + token + subtree components
1308 **
1309 ***************************************************************************
1310 **
1311 ** The dupedExprStructSize() function returns two values OR-ed together:
1312 ** (1) the space required for a copy of the Expr structure only and
1313 ** (2) the EP_xxx flags that indicate what the structure size should be.
1314 ** The return values is always one of:
1315 **
1316 **      EXPR_FULLSIZE
1317 **      EXPR_REDUCEDSIZE   | EP_Reduced
1318 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1319 **
1320 ** The size of the structure can be found by masking the return value
1321 ** of this routine with 0xfff.  The flags can be found by masking the
1322 ** return value with EP_Reduced|EP_TokenOnly.
1323 **
1324 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1325 ** (unreduced) Expr objects as they or originally constructed by the parser.
1326 ** During expression analysis, extra information is computed and moved into
1327 ** later parts of the Expr object and that extra information might get chopped
1328 ** off if the expression is reduced.  Note also that it does not work to
1329 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1330 ** to reduce a pristine expression tree from the parser.  The implementation
1331 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1332 ** to enforce this constraint.
1333 */
1334 static int dupedExprStructSize(const Expr *p, int flags){
1335   int nSize;
1336   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1337   assert( EXPR_FULLSIZE<=0xfff );
1338   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1339   if( 0==flags || p->op==TK_SELECT_COLUMN
1340 #ifndef SQLITE_OMIT_WINDOWFUNC
1341    || ExprHasProperty(p, EP_WinFunc)
1342 #endif
1343   ){
1344     nSize = EXPR_FULLSIZE;
1345   }else{
1346     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1347     assert( !ExprHasProperty(p, EP_OuterON) );
1348     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1349     if( p->pLeft || p->x.pList ){
1350       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1351     }else{
1352       assert( p->pRight==0 );
1353       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1354     }
1355   }
1356   return nSize;
1357 }
1358 
1359 /*
1360 ** This function returns the space in bytes required to store the copy
1361 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1362 ** string is defined.)
1363 */
1364 static int dupedExprNodeSize(const Expr *p, int flags){
1365   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1366   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1367     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1368   }
1369   return ROUND8(nByte);
1370 }
1371 
1372 /*
1373 ** Return the number of bytes required to create a duplicate of the
1374 ** expression passed as the first argument. The second argument is a
1375 ** mask containing EXPRDUP_XXX flags.
1376 **
1377 ** The value returned includes space to create a copy of the Expr struct
1378 ** itself and the buffer referred to by Expr.u.zToken, if any.
1379 **
1380 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1381 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1382 ** and Expr.pRight variables (but not for any structures pointed to or
1383 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1384 */
1385 static int dupedExprSize(const Expr *p, int flags){
1386   int nByte = 0;
1387   if( p ){
1388     nByte = dupedExprNodeSize(p, flags);
1389     if( flags&EXPRDUP_REDUCE ){
1390       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1391     }
1392   }
1393   return nByte;
1394 }
1395 
1396 /*
1397 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1398 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1399 ** to store the copy of expression p, the copies of p->u.zToken
1400 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1401 ** if any. Before returning, *pzBuffer is set to the first byte past the
1402 ** portion of the buffer copied into by this function.
1403 */
1404 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){
1405   Expr *pNew;           /* Value to return */
1406   u8 *zAlloc;           /* Memory space from which to build Expr object */
1407   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1408 
1409   assert( db!=0 );
1410   assert( p );
1411   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1412   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1413 
1414   /* Figure out where to write the new Expr structure. */
1415   if( pzBuffer ){
1416     zAlloc = *pzBuffer;
1417     staticFlag = EP_Static;
1418     assert( zAlloc!=0 );
1419   }else{
1420     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1421     staticFlag = 0;
1422   }
1423   pNew = (Expr *)zAlloc;
1424 
1425   if( pNew ){
1426     /* Set nNewSize to the size allocated for the structure pointed to
1427     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1428     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1429     ** by the copy of the p->u.zToken string (if any).
1430     */
1431     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1432     const int nNewSize = nStructSize & 0xfff;
1433     int nToken;
1434     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1435       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1436     }else{
1437       nToken = 0;
1438     }
1439     if( dupFlags ){
1440       assert( ExprHasProperty(p, EP_Reduced)==0 );
1441       memcpy(zAlloc, p, nNewSize);
1442     }else{
1443       u32 nSize = (u32)exprStructSize(p);
1444       memcpy(zAlloc, p, nSize);
1445       if( nSize<EXPR_FULLSIZE ){
1446         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1447       }
1448     }
1449 
1450     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1451     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
1452     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1453     pNew->flags |= staticFlag;
1454     ExprClearVVAProperties(pNew);
1455     if( dupFlags ){
1456       ExprSetVVAProperty(pNew, EP_Immutable);
1457     }
1458 
1459     /* Copy the p->u.zToken string, if any. */
1460     if( nToken ){
1461       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1462       memcpy(zToken, p->u.zToken, nToken);
1463     }
1464 
1465     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1466       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1467       if( ExprUseXSelect(p) ){
1468         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1469       }else{
1470         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1471       }
1472     }
1473 
1474     /* Fill in pNew->pLeft and pNew->pRight. */
1475     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1476       zAlloc += dupedExprNodeSize(p, dupFlags);
1477       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1478         pNew->pLeft = p->pLeft ?
1479                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1480         pNew->pRight = p->pRight ?
1481                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1482       }
1483 #ifndef SQLITE_OMIT_WINDOWFUNC
1484       if( ExprHasProperty(p, EP_WinFunc) ){
1485         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1486         assert( ExprHasProperty(pNew, EP_WinFunc) );
1487       }
1488 #endif /* SQLITE_OMIT_WINDOWFUNC */
1489       if( pzBuffer ){
1490         *pzBuffer = zAlloc;
1491       }
1492     }else{
1493       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1494         if( pNew->op==TK_SELECT_COLUMN ){
1495           pNew->pLeft = p->pLeft;
1496           assert( p->pRight==0  || p->pRight==p->pLeft
1497                                 || ExprHasProperty(p->pLeft, EP_Subquery) );
1498         }else{
1499           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1500         }
1501         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1502       }
1503     }
1504   }
1505   return pNew;
1506 }
1507 
1508 /*
1509 ** Create and return a deep copy of the object passed as the second
1510 ** argument. If an OOM condition is encountered, NULL is returned
1511 ** and the db->mallocFailed flag set.
1512 */
1513 #ifndef SQLITE_OMIT_CTE
1514 With *sqlite3WithDup(sqlite3 *db, With *p){
1515   With *pRet = 0;
1516   if( p ){
1517     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1518     pRet = sqlite3DbMallocZero(db, nByte);
1519     if( pRet ){
1520       int i;
1521       pRet->nCte = p->nCte;
1522       for(i=0; i<p->nCte; i++){
1523         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1524         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1525         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1526         pRet->a[i].eM10d = p->a[i].eM10d;
1527       }
1528     }
1529   }
1530   return pRet;
1531 }
1532 #else
1533 # define sqlite3WithDup(x,y) 0
1534 #endif
1535 
1536 #ifndef SQLITE_OMIT_WINDOWFUNC
1537 /*
1538 ** The gatherSelectWindows() procedure and its helper routine
1539 ** gatherSelectWindowsCallback() are used to scan all the expressions
1540 ** an a newly duplicated SELECT statement and gather all of the Window
1541 ** objects found there, assembling them onto the linked list at Select->pWin.
1542 */
1543 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1544   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1545     Select *pSelect = pWalker->u.pSelect;
1546     Window *pWin = pExpr->y.pWin;
1547     assert( pWin );
1548     assert( IsWindowFunc(pExpr) );
1549     assert( pWin->ppThis==0 );
1550     sqlite3WindowLink(pSelect, pWin);
1551   }
1552   return WRC_Continue;
1553 }
1554 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1555   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1556 }
1557 static void gatherSelectWindows(Select *p){
1558   Walker w;
1559   w.xExprCallback = gatherSelectWindowsCallback;
1560   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1561   w.xSelectCallback2 = 0;
1562   w.pParse = 0;
1563   w.u.pSelect = p;
1564   sqlite3WalkSelect(&w, p);
1565 }
1566 #endif
1567 
1568 
1569 /*
1570 ** The following group of routines make deep copies of expressions,
1571 ** expression lists, ID lists, and select statements.  The copies can
1572 ** be deleted (by being passed to their respective ...Delete() routines)
1573 ** without effecting the originals.
1574 **
1575 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1576 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1577 ** by subsequent calls to sqlite*ListAppend() routines.
1578 **
1579 ** Any tables that the SrcList might point to are not duplicated.
1580 **
1581 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1582 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1583 ** truncated version of the usual Expr structure that will be stored as
1584 ** part of the in-memory representation of the database schema.
1585 */
1586 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){
1587   assert( flags==0 || flags==EXPRDUP_REDUCE );
1588   return p ? exprDup(db, p, flags, 0) : 0;
1589 }
1590 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){
1591   ExprList *pNew;
1592   struct ExprList_item *pItem;
1593   const struct ExprList_item *pOldItem;
1594   int i;
1595   Expr *pPriorSelectColOld = 0;
1596   Expr *pPriorSelectColNew = 0;
1597   assert( db!=0 );
1598   if( p==0 ) return 0;
1599   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1600   if( pNew==0 ) return 0;
1601   pNew->nExpr = p->nExpr;
1602   pNew->nAlloc = p->nAlloc;
1603   pItem = pNew->a;
1604   pOldItem = p->a;
1605   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1606     Expr *pOldExpr = pOldItem->pExpr;
1607     Expr *pNewExpr;
1608     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1609     if( pOldExpr
1610      && pOldExpr->op==TK_SELECT_COLUMN
1611      && (pNewExpr = pItem->pExpr)!=0
1612     ){
1613       if( pNewExpr->pRight ){
1614         pPriorSelectColOld = pOldExpr->pRight;
1615         pPriorSelectColNew = pNewExpr->pRight;
1616         pNewExpr->pLeft = pNewExpr->pRight;
1617       }else{
1618         if( pOldExpr->pLeft!=pPriorSelectColOld ){
1619           pPriorSelectColOld = pOldExpr->pLeft;
1620           pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags);
1621           pNewExpr->pRight = pPriorSelectColNew;
1622         }
1623         pNewExpr->pLeft = pPriorSelectColNew;
1624       }
1625     }
1626     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1627     pItem->fg = pOldItem->fg;
1628     pItem->fg.done = 0;
1629     pItem->u = pOldItem->u;
1630   }
1631   return pNew;
1632 }
1633 
1634 /*
1635 ** If cursors, triggers, views and subqueries are all omitted from
1636 ** the build, then none of the following routines, except for
1637 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1638 ** called with a NULL argument.
1639 */
1640 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1641  || !defined(SQLITE_OMIT_SUBQUERY)
1642 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){
1643   SrcList *pNew;
1644   int i;
1645   int nByte;
1646   assert( db!=0 );
1647   if( p==0 ) return 0;
1648   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1649   pNew = sqlite3DbMallocRawNN(db, nByte );
1650   if( pNew==0 ) return 0;
1651   pNew->nSrc = pNew->nAlloc = p->nSrc;
1652   for(i=0; i<p->nSrc; i++){
1653     SrcItem *pNewItem = &pNew->a[i];
1654     const SrcItem *pOldItem = &p->a[i];
1655     Table *pTab;
1656     pNewItem->pSchema = pOldItem->pSchema;
1657     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1658     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1659     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1660     pNewItem->fg = pOldItem->fg;
1661     pNewItem->iCursor = pOldItem->iCursor;
1662     pNewItem->addrFillSub = pOldItem->addrFillSub;
1663     pNewItem->regReturn = pOldItem->regReturn;
1664     if( pNewItem->fg.isIndexedBy ){
1665       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1666     }
1667     pNewItem->u2 = pOldItem->u2;
1668     if( pNewItem->fg.isCte ){
1669       pNewItem->u2.pCteUse->nUse++;
1670     }
1671     if( pNewItem->fg.isTabFunc ){
1672       pNewItem->u1.pFuncArg =
1673           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1674     }
1675     pTab = pNewItem->pTab = pOldItem->pTab;
1676     if( pTab ){
1677       pTab->nTabRef++;
1678     }
1679     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1680     if( pOldItem->fg.isUsing ){
1681       assert( pNewItem->fg.isUsing );
1682       pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing);
1683     }else{
1684       pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags);
1685     }
1686     pNewItem->colUsed = pOldItem->colUsed;
1687   }
1688   return pNew;
1689 }
1690 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){
1691   IdList *pNew;
1692   int i;
1693   assert( db!=0 );
1694   if( p==0 ) return 0;
1695   assert( p->eU4!=EU4_EXPR );
1696   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) );
1697   if( pNew==0 ) return 0;
1698   pNew->nId = p->nId;
1699   pNew->eU4 = p->eU4;
1700   for(i=0; i<p->nId; i++){
1701     struct IdList_item *pNewItem = &pNew->a[i];
1702     const struct IdList_item *pOldItem = &p->a[i];
1703     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1704     pNewItem->u4 = pOldItem->u4;
1705   }
1706   return pNew;
1707 }
1708 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){
1709   Select *pRet = 0;
1710   Select *pNext = 0;
1711   Select **pp = &pRet;
1712   const Select *p;
1713 
1714   assert( db!=0 );
1715   for(p=pDup; p; p=p->pPrior){
1716     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1717     if( pNew==0 ) break;
1718     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1719     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1720     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1721     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1722     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1723     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1724     pNew->op = p->op;
1725     pNew->pNext = pNext;
1726     pNew->pPrior = 0;
1727     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1728     pNew->iLimit = 0;
1729     pNew->iOffset = 0;
1730     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1731     pNew->addrOpenEphm[0] = -1;
1732     pNew->addrOpenEphm[1] = -1;
1733     pNew->nSelectRow = p->nSelectRow;
1734     pNew->pWith = sqlite3WithDup(db, p->pWith);
1735 #ifndef SQLITE_OMIT_WINDOWFUNC
1736     pNew->pWin = 0;
1737     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1738     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1739 #endif
1740     pNew->selId = p->selId;
1741     if( db->mallocFailed ){
1742       /* Any prior OOM might have left the Select object incomplete.
1743       ** Delete the whole thing rather than allow an incomplete Select
1744       ** to be used by the code generator. */
1745       pNew->pNext = 0;
1746       sqlite3SelectDelete(db, pNew);
1747       break;
1748     }
1749     *pp = pNew;
1750     pp = &pNew->pPrior;
1751     pNext = pNew;
1752   }
1753 
1754   return pRet;
1755 }
1756 #else
1757 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){
1758   assert( p==0 );
1759   return 0;
1760 }
1761 #endif
1762 
1763 
1764 /*
1765 ** Add a new element to the end of an expression list.  If pList is
1766 ** initially NULL, then create a new expression list.
1767 **
1768 ** The pList argument must be either NULL or a pointer to an ExprList
1769 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1770 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1771 ** Reason:  This routine assumes that the number of slots in pList->a[]
1772 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1773 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1774 **
1775 ** If a memory allocation error occurs, the entire list is freed and
1776 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1777 ** that the new entry was successfully appended.
1778 */
1779 static const struct ExprList_item zeroItem = {0};
1780 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
1781   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1782   Expr *pExpr             /* Expression to be appended. Might be NULL */
1783 ){
1784   struct ExprList_item *pItem;
1785   ExprList *pList;
1786 
1787   pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
1788   if( pList==0 ){
1789     sqlite3ExprDelete(db, pExpr);
1790     return 0;
1791   }
1792   pList->nAlloc = 4;
1793   pList->nExpr = 1;
1794   pItem = &pList->a[0];
1795   *pItem = zeroItem;
1796   pItem->pExpr = pExpr;
1797   return pList;
1798 }
1799 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
1800   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1801   ExprList *pList,        /* List to which to append. Might be NULL */
1802   Expr *pExpr             /* Expression to be appended. Might be NULL */
1803 ){
1804   struct ExprList_item *pItem;
1805   ExprList *pNew;
1806   pList->nAlloc *= 2;
1807   pNew = sqlite3DbRealloc(db, pList,
1808        sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
1809   if( pNew==0 ){
1810     sqlite3ExprListDelete(db, pList);
1811     sqlite3ExprDelete(db, pExpr);
1812     return 0;
1813   }else{
1814     pList = pNew;
1815   }
1816   pItem = &pList->a[pList->nExpr++];
1817   *pItem = zeroItem;
1818   pItem->pExpr = pExpr;
1819   return pList;
1820 }
1821 ExprList *sqlite3ExprListAppend(
1822   Parse *pParse,          /* Parsing context */
1823   ExprList *pList,        /* List to which to append. Might be NULL */
1824   Expr *pExpr             /* Expression to be appended. Might be NULL */
1825 ){
1826   struct ExprList_item *pItem;
1827   if( pList==0 ){
1828     return sqlite3ExprListAppendNew(pParse->db,pExpr);
1829   }
1830   if( pList->nAlloc<pList->nExpr+1 ){
1831     return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
1832   }
1833   pItem = &pList->a[pList->nExpr++];
1834   *pItem = zeroItem;
1835   pItem->pExpr = pExpr;
1836   return pList;
1837 }
1838 
1839 /*
1840 ** pColumns and pExpr form a vector assignment which is part of the SET
1841 ** clause of an UPDATE statement.  Like this:
1842 **
1843 **        (a,b,c) = (expr1,expr2,expr3)
1844 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1845 **
1846 ** For each term of the vector assignment, append new entries to the
1847 ** expression list pList.  In the case of a subquery on the RHS, append
1848 ** TK_SELECT_COLUMN expressions.
1849 */
1850 ExprList *sqlite3ExprListAppendVector(
1851   Parse *pParse,         /* Parsing context */
1852   ExprList *pList,       /* List to which to append. Might be NULL */
1853   IdList *pColumns,      /* List of names of LHS of the assignment */
1854   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1855 ){
1856   sqlite3 *db = pParse->db;
1857   int n;
1858   int i;
1859   int iFirst = pList ? pList->nExpr : 0;
1860   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1861   ** exit prior to this routine being invoked */
1862   if( NEVER(pColumns==0) ) goto vector_append_error;
1863   if( pExpr==0 ) goto vector_append_error;
1864 
1865   /* If the RHS is a vector, then we can immediately check to see that
1866   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1867   ** wildcards ("*") in the result set of the SELECT must be expanded before
1868   ** we can do the size check, so defer the size check until code generation.
1869   */
1870   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1871     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1872                     pColumns->nId, n);
1873     goto vector_append_error;
1874   }
1875 
1876   for(i=0; i<pColumns->nId; i++){
1877     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId);
1878     assert( pSubExpr!=0 || db->mallocFailed );
1879     if( pSubExpr==0 ) continue;
1880     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1881     if( pList ){
1882       assert( pList->nExpr==iFirst+i+1 );
1883       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1884       pColumns->a[i].zName = 0;
1885     }
1886   }
1887 
1888   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1889     Expr *pFirst = pList->a[iFirst].pExpr;
1890     assert( pFirst!=0 );
1891     assert( pFirst->op==TK_SELECT_COLUMN );
1892 
1893     /* Store the SELECT statement in pRight so it will be deleted when
1894     ** sqlite3ExprListDelete() is called */
1895     pFirst->pRight = pExpr;
1896     pExpr = 0;
1897 
1898     /* Remember the size of the LHS in iTable so that we can check that
1899     ** the RHS and LHS sizes match during code generation. */
1900     pFirst->iTable = pColumns->nId;
1901   }
1902 
1903 vector_append_error:
1904   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1905   sqlite3IdListDelete(db, pColumns);
1906   return pList;
1907 }
1908 
1909 /*
1910 ** Set the sort order for the last element on the given ExprList.
1911 */
1912 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1913   struct ExprList_item *pItem;
1914   if( p==0 ) return;
1915   assert( p->nExpr>0 );
1916 
1917   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1918   assert( iSortOrder==SQLITE_SO_UNDEFINED
1919        || iSortOrder==SQLITE_SO_ASC
1920        || iSortOrder==SQLITE_SO_DESC
1921   );
1922   assert( eNulls==SQLITE_SO_UNDEFINED
1923        || eNulls==SQLITE_SO_ASC
1924        || eNulls==SQLITE_SO_DESC
1925   );
1926 
1927   pItem = &p->a[p->nExpr-1];
1928   assert( pItem->fg.bNulls==0 );
1929   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1930     iSortOrder = SQLITE_SO_ASC;
1931   }
1932   pItem->fg.sortFlags = (u8)iSortOrder;
1933 
1934   if( eNulls!=SQLITE_SO_UNDEFINED ){
1935     pItem->fg.bNulls = 1;
1936     if( iSortOrder!=eNulls ){
1937       pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL;
1938     }
1939   }
1940 }
1941 
1942 /*
1943 ** Set the ExprList.a[].zEName element of the most recently added item
1944 ** on the expression list.
1945 **
1946 ** pList might be NULL following an OOM error.  But pName should never be
1947 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1948 ** is set.
1949 */
1950 void sqlite3ExprListSetName(
1951   Parse *pParse,          /* Parsing context */
1952   ExprList *pList,        /* List to which to add the span. */
1953   const Token *pName,     /* Name to be added */
1954   int dequote             /* True to cause the name to be dequoted */
1955 ){
1956   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1957   assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1958   if( pList ){
1959     struct ExprList_item *pItem;
1960     assert( pList->nExpr>0 );
1961     pItem = &pList->a[pList->nExpr-1];
1962     assert( pItem->zEName==0 );
1963     assert( pItem->fg.eEName==ENAME_NAME );
1964     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1965     if( dequote ){
1966       /* If dequote==0, then pName->z does not point to part of a DDL
1967       ** statement handled by the parser. And so no token need be added
1968       ** to the token-map.  */
1969       sqlite3Dequote(pItem->zEName);
1970       if( IN_RENAME_OBJECT ){
1971         sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName);
1972       }
1973     }
1974   }
1975 }
1976 
1977 /*
1978 ** Set the ExprList.a[].zSpan element of the most recently added item
1979 ** on the expression list.
1980 **
1981 ** pList might be NULL following an OOM error.  But pSpan should never be
1982 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1983 ** is set.
1984 */
1985 void sqlite3ExprListSetSpan(
1986   Parse *pParse,          /* Parsing context */
1987   ExprList *pList,        /* List to which to add the span. */
1988   const char *zStart,     /* Start of the span */
1989   const char *zEnd        /* End of the span */
1990 ){
1991   sqlite3 *db = pParse->db;
1992   assert( pList!=0 || db->mallocFailed!=0 );
1993   if( pList ){
1994     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1995     assert( pList->nExpr>0 );
1996     if( pItem->zEName==0 ){
1997       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
1998       pItem->fg.eEName = ENAME_SPAN;
1999     }
2000   }
2001 }
2002 
2003 /*
2004 ** If the expression list pEList contains more than iLimit elements,
2005 ** leave an error message in pParse.
2006 */
2007 void sqlite3ExprListCheckLength(
2008   Parse *pParse,
2009   ExprList *pEList,
2010   const char *zObject
2011 ){
2012   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
2013   testcase( pEList && pEList->nExpr==mx );
2014   testcase( pEList && pEList->nExpr==mx+1 );
2015   if( pEList && pEList->nExpr>mx ){
2016     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
2017   }
2018 }
2019 
2020 /*
2021 ** Delete an entire expression list.
2022 */
2023 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
2024   int i = pList->nExpr;
2025   struct ExprList_item *pItem =  pList->a;
2026   assert( pList->nExpr>0 );
2027   do{
2028     sqlite3ExprDelete(db, pItem->pExpr);
2029     sqlite3DbFree(db, pItem->zEName);
2030     pItem++;
2031   }while( --i>0 );
2032   sqlite3DbFreeNN(db, pList);
2033 }
2034 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
2035   if( pList ) exprListDeleteNN(db, pList);
2036 }
2037 
2038 /*
2039 ** Return the bitwise-OR of all Expr.flags fields in the given
2040 ** ExprList.
2041 */
2042 u32 sqlite3ExprListFlags(const ExprList *pList){
2043   int i;
2044   u32 m = 0;
2045   assert( pList!=0 );
2046   for(i=0; i<pList->nExpr; i++){
2047      Expr *pExpr = pList->a[i].pExpr;
2048      assert( pExpr!=0 );
2049      m |= pExpr->flags;
2050   }
2051   return m;
2052 }
2053 
2054 /*
2055 ** This is a SELECT-node callback for the expression walker that
2056 ** always "fails".  By "fail" in this case, we mean set
2057 ** pWalker->eCode to zero and abort.
2058 **
2059 ** This callback is used by multiple expression walkers.
2060 */
2061 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
2062   UNUSED_PARAMETER(NotUsed);
2063   pWalker->eCode = 0;
2064   return WRC_Abort;
2065 }
2066 
2067 /*
2068 ** Check the input string to see if it is "true" or "false" (in any case).
2069 **
2070 **       If the string is....           Return
2071 **         "true"                         EP_IsTrue
2072 **         "false"                        EP_IsFalse
2073 **         anything else                  0
2074 */
2075 u32 sqlite3IsTrueOrFalse(const char *zIn){
2076   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
2077   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
2078   return 0;
2079 }
2080 
2081 
2082 /*
2083 ** If the input expression is an ID with the name "true" or "false"
2084 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
2085 ** the conversion happened, and zero if the expression is unaltered.
2086 */
2087 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
2088   u32 v;
2089   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
2090   if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue)
2091    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
2092   ){
2093     pExpr->op = TK_TRUEFALSE;
2094     ExprSetProperty(pExpr, v);
2095     return 1;
2096   }
2097   return 0;
2098 }
2099 
2100 /*
2101 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
2102 ** and 0 if it is FALSE.
2103 */
2104 int sqlite3ExprTruthValue(const Expr *pExpr){
2105   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
2106   assert( pExpr->op==TK_TRUEFALSE );
2107   assert( !ExprHasProperty(pExpr, EP_IntValue) );
2108   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
2109        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
2110   return pExpr->u.zToken[4]==0;
2111 }
2112 
2113 /*
2114 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2115 ** terms that are always true or false.  Return the simplified expression.
2116 ** Or return the original expression if no simplification is possible.
2117 **
2118 ** Examples:
2119 **
2120 **     (x<10) AND true                =>   (x<10)
2121 **     (x<10) AND false               =>   false
2122 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
2123 **     (x<10) AND (y=22 OR true)      =>   (x<10)
2124 **     (y=22) OR true                 =>   true
2125 */
2126 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
2127   assert( pExpr!=0 );
2128   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
2129     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
2130     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
2131     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
2132       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
2133     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
2134       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
2135     }
2136   }
2137   return pExpr;
2138 }
2139 
2140 
2141 /*
2142 ** These routines are Walker callbacks used to check expressions to
2143 ** see if they are "constant" for some definition of constant.  The
2144 ** Walker.eCode value determines the type of "constant" we are looking
2145 ** for.
2146 **
2147 ** These callback routines are used to implement the following:
2148 **
2149 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
2150 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
2151 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
2152 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
2153 **
2154 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2155 ** is found to not be a constant.
2156 **
2157 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2158 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
2159 ** when parsing an existing schema out of the sqlite_schema table and 4
2160 ** when processing a new CREATE TABLE statement.  A bound parameter raises
2161 ** an error for new statements, but is silently converted
2162 ** to NULL for existing schemas.  This allows sqlite_schema tables that
2163 ** contain a bound parameter because they were generated by older versions
2164 ** of SQLite to be parsed by newer versions of SQLite without raising a
2165 ** malformed schema error.
2166 */
2167 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2168 
2169   /* If pWalker->eCode is 2 then any term of the expression that comes from
2170   ** the ON or USING clauses of an outer join disqualifies the expression
2171   ** from being considered constant. */
2172   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){
2173     pWalker->eCode = 0;
2174     return WRC_Abort;
2175   }
2176 
2177   switch( pExpr->op ){
2178     /* Consider functions to be constant if all their arguments are constant
2179     ** and either pWalker->eCode==4 or 5 or the function has the
2180     ** SQLITE_FUNC_CONST flag. */
2181     case TK_FUNCTION:
2182       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2183        && !ExprHasProperty(pExpr, EP_WinFunc)
2184       ){
2185         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2186         return WRC_Continue;
2187       }else{
2188         pWalker->eCode = 0;
2189         return WRC_Abort;
2190       }
2191     case TK_ID:
2192       /* Convert "true" or "false" in a DEFAULT clause into the
2193       ** appropriate TK_TRUEFALSE operator */
2194       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2195         return WRC_Prune;
2196       }
2197       /* no break */ deliberate_fall_through
2198     case TK_COLUMN:
2199     case TK_AGG_FUNCTION:
2200     case TK_AGG_COLUMN:
2201       testcase( pExpr->op==TK_ID );
2202       testcase( pExpr->op==TK_COLUMN );
2203       testcase( pExpr->op==TK_AGG_FUNCTION );
2204       testcase( pExpr->op==TK_AGG_COLUMN );
2205       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2206         return WRC_Continue;
2207       }
2208       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2209         return WRC_Continue;
2210       }
2211       /* no break */ deliberate_fall_through
2212     case TK_IF_NULL_ROW:
2213     case TK_REGISTER:
2214     case TK_DOT:
2215       testcase( pExpr->op==TK_REGISTER );
2216       testcase( pExpr->op==TK_IF_NULL_ROW );
2217       testcase( pExpr->op==TK_DOT );
2218       pWalker->eCode = 0;
2219       return WRC_Abort;
2220     case TK_VARIABLE:
2221       if( pWalker->eCode==5 ){
2222         /* Silently convert bound parameters that appear inside of CREATE
2223         ** statements into a NULL when parsing the CREATE statement text out
2224         ** of the sqlite_schema table */
2225         pExpr->op = TK_NULL;
2226       }else if( pWalker->eCode==4 ){
2227         /* A bound parameter in a CREATE statement that originates from
2228         ** sqlite3_prepare() causes an error */
2229         pWalker->eCode = 0;
2230         return WRC_Abort;
2231       }
2232       /* no break */ deliberate_fall_through
2233     default:
2234       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2235       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2236       return WRC_Continue;
2237   }
2238 }
2239 static int exprIsConst(Expr *p, int initFlag, int iCur){
2240   Walker w;
2241   w.eCode = initFlag;
2242   w.xExprCallback = exprNodeIsConstant;
2243   w.xSelectCallback = sqlite3SelectWalkFail;
2244 #ifdef SQLITE_DEBUG
2245   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2246 #endif
2247   w.u.iCur = iCur;
2248   sqlite3WalkExpr(&w, p);
2249   return w.eCode;
2250 }
2251 
2252 /*
2253 ** Walk an expression tree.  Return non-zero if the expression is constant
2254 ** and 0 if it involves variables or function calls.
2255 **
2256 ** For the purposes of this function, a double-quoted string (ex: "abc")
2257 ** is considered a variable but a single-quoted string (ex: 'abc') is
2258 ** a constant.
2259 */
2260 int sqlite3ExprIsConstant(Expr *p){
2261   return exprIsConst(p, 1, 0);
2262 }
2263 
2264 /*
2265 ** Walk an expression tree.  Return non-zero if
2266 **
2267 **   (1) the expression is constant, and
2268 **   (2) the expression does originate in the ON or USING clause
2269 **       of a LEFT JOIN, and
2270 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2271 **       operands created by the constant propagation optimization.
2272 **
2273 ** When this routine returns true, it indicates that the expression
2274 ** can be added to the pParse->pConstExpr list and evaluated once when
2275 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2276 */
2277 int sqlite3ExprIsConstantNotJoin(Expr *p){
2278   return exprIsConst(p, 2, 0);
2279 }
2280 
2281 /*
2282 ** Walk an expression tree.  Return non-zero if the expression is constant
2283 ** for any single row of the table with cursor iCur.  In other words, the
2284 ** expression must not refer to any non-deterministic function nor any
2285 ** table other than iCur.
2286 */
2287 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2288   return exprIsConst(p, 3, iCur);
2289 }
2290 
2291 /*
2292 ** Check pExpr to see if it is an invariant constraint on data source pSrc.
2293 ** This is an optimization.  False negatives will perhaps cause slower
2294 ** queries, but false positives will yield incorrect answers.  So when in
2295 ** doubt, return 0.
2296 **
2297 ** To be an invariant constraint, the following must be true:
2298 **
2299 **   (1)  pExpr cannot refer to any table other than pSrc->iCursor.
2300 **
2301 **   (2)  pExpr cannot use subqueries or non-deterministic functions.
2302 **
2303 **   (3)  pSrc cannot be part of the left operand for a RIGHT JOIN.
2304 **        (Is there some way to relax this constraint?)
2305 **
2306 **   (4)  If pSrc is the right operand of a LEFT JOIN, then...
2307 **         (4a)  pExpr must come from an ON clause..
2308            (4b)  and specifically the ON clause associated with the LEFT JOIN.
2309 **
2310 **   (5)  If pSrc is not the right operand of a LEFT JOIN or the left
2311 **        operand of a RIGHT JOIN, then pExpr must be from the WHERE
2312 **        clause, not an ON clause.
2313 */
2314 int sqlite3ExprIsTableConstraint(Expr *pExpr, const SrcItem *pSrc){
2315   if( pSrc->fg.jointype & JT_LTORJ ){
2316     return 0;  /* rule (3) */
2317   }
2318   if( pSrc->fg.jointype & JT_LEFT ){
2319     if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0;   /* rule (4a) */
2320     if( pExpr->w.iJoin!=pSrc->iCursor ) return 0;         /* rule (4b) */
2321   }else{
2322     if( ExprHasProperty(pExpr, EP_OuterON) ) return 0;    /* rule (5) */
2323   }
2324   return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */
2325 }
2326 
2327 
2328 /*
2329 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2330 */
2331 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2332   ExprList *pGroupBy = pWalker->u.pGroupBy;
2333   int i;
2334 
2335   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2336   ** it constant.  */
2337   for(i=0; i<pGroupBy->nExpr; i++){
2338     Expr *p = pGroupBy->a[i].pExpr;
2339     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2340       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2341       if( sqlite3IsBinary(pColl) ){
2342         return WRC_Prune;
2343       }
2344     }
2345   }
2346 
2347   /* Check if pExpr is a sub-select. If so, consider it variable. */
2348   if( ExprUseXSelect(pExpr) ){
2349     pWalker->eCode = 0;
2350     return WRC_Abort;
2351   }
2352 
2353   return exprNodeIsConstant(pWalker, pExpr);
2354 }
2355 
2356 /*
2357 ** Walk the expression tree passed as the first argument. Return non-zero
2358 ** if the expression consists entirely of constants or copies of terms
2359 ** in pGroupBy that sort with the BINARY collation sequence.
2360 **
2361 ** This routine is used to determine if a term of the HAVING clause can
2362 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2363 ** the value of the HAVING clause term must be the same for all members of
2364 ** a "group".  The requirement that the GROUP BY term must be BINARY
2365 ** assumes that no other collating sequence will have a finer-grained
2366 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2367 ** A=B in every other collating sequence.  The requirement that the
2368 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2369 ** to promote HAVING clauses that use the same alternative collating
2370 ** sequence as the GROUP BY term, but that is much harder to check,
2371 ** alternative collating sequences are uncommon, and this is only an
2372 ** optimization, so we take the easy way out and simply require the
2373 ** GROUP BY to use the BINARY collating sequence.
2374 */
2375 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2376   Walker w;
2377   w.eCode = 1;
2378   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2379   w.xSelectCallback = 0;
2380   w.u.pGroupBy = pGroupBy;
2381   w.pParse = pParse;
2382   sqlite3WalkExpr(&w, p);
2383   return w.eCode;
2384 }
2385 
2386 /*
2387 ** Walk an expression tree for the DEFAULT field of a column definition
2388 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2389 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2390 ** the expression is constant or a function call with constant arguments.
2391 ** Return and 0 if there are any variables.
2392 **
2393 ** isInit is true when parsing from sqlite_schema.  isInit is false when
2394 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2395 ** (such as ? or $abc) in the expression are converted into NULL.  When
2396 ** isInit is false, parameters raise an error.  Parameters should not be
2397 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2398 ** allowed it, so we need to support it when reading sqlite_schema for
2399 ** backwards compatibility.
2400 **
2401 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2402 **
2403 ** For the purposes of this function, a double-quoted string (ex: "abc")
2404 ** is considered a variable but a single-quoted string (ex: 'abc') is
2405 ** a constant.
2406 */
2407 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2408   assert( isInit==0 || isInit==1 );
2409   return exprIsConst(p, 4+isInit, 0);
2410 }
2411 
2412 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2413 /*
2414 ** Walk an expression tree.  Return 1 if the expression contains a
2415 ** subquery of some kind.  Return 0 if there are no subqueries.
2416 */
2417 int sqlite3ExprContainsSubquery(Expr *p){
2418   Walker w;
2419   w.eCode = 1;
2420   w.xExprCallback = sqlite3ExprWalkNoop;
2421   w.xSelectCallback = sqlite3SelectWalkFail;
2422 #ifdef SQLITE_DEBUG
2423   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2424 #endif
2425   sqlite3WalkExpr(&w, p);
2426   return w.eCode==0;
2427 }
2428 #endif
2429 
2430 /*
2431 ** If the expression p codes a constant integer that is small enough
2432 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2433 ** in *pValue.  If the expression is not an integer or if it is too big
2434 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2435 */
2436 int sqlite3ExprIsInteger(const Expr *p, int *pValue){
2437   int rc = 0;
2438   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2439 
2440   /* If an expression is an integer literal that fits in a signed 32-bit
2441   ** integer, then the EP_IntValue flag will have already been set */
2442   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2443            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2444 
2445   if( p->flags & EP_IntValue ){
2446     *pValue = p->u.iValue;
2447     return 1;
2448   }
2449   switch( p->op ){
2450     case TK_UPLUS: {
2451       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2452       break;
2453     }
2454     case TK_UMINUS: {
2455       int v = 0;
2456       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2457         assert( ((unsigned int)v)!=0x80000000 );
2458         *pValue = -v;
2459         rc = 1;
2460       }
2461       break;
2462     }
2463     default: break;
2464   }
2465   return rc;
2466 }
2467 
2468 /*
2469 ** Return FALSE if there is no chance that the expression can be NULL.
2470 **
2471 ** If the expression might be NULL or if the expression is too complex
2472 ** to tell return TRUE.
2473 **
2474 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2475 ** when we know that a value cannot be NULL.  Hence, a false positive
2476 ** (returning TRUE when in fact the expression can never be NULL) might
2477 ** be a small performance hit but is otherwise harmless.  On the other
2478 ** hand, a false negative (returning FALSE when the result could be NULL)
2479 ** will likely result in an incorrect answer.  So when in doubt, return
2480 ** TRUE.
2481 */
2482 int sqlite3ExprCanBeNull(const Expr *p){
2483   u8 op;
2484   assert( p!=0 );
2485   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2486     p = p->pLeft;
2487     assert( p!=0 );
2488   }
2489   op = p->op;
2490   if( op==TK_REGISTER ) op = p->op2;
2491   switch( op ){
2492     case TK_INTEGER:
2493     case TK_STRING:
2494     case TK_FLOAT:
2495     case TK_BLOB:
2496       return 0;
2497     case TK_COLUMN:
2498       assert( ExprUseYTab(p) );
2499       return ExprHasProperty(p, EP_CanBeNull) ||
2500              p->y.pTab==0 ||  /* Reference to column of index on expression */
2501              (p->iColumn>=0
2502               && p->y.pTab->aCol!=0 /* Possible due to prior error */
2503               && p->y.pTab->aCol[p->iColumn].notNull==0);
2504     default:
2505       return 1;
2506   }
2507 }
2508 
2509 /*
2510 ** Return TRUE if the given expression is a constant which would be
2511 ** unchanged by OP_Affinity with the affinity given in the second
2512 ** argument.
2513 **
2514 ** This routine is used to determine if the OP_Affinity operation
2515 ** can be omitted.  When in doubt return FALSE.  A false negative
2516 ** is harmless.  A false positive, however, can result in the wrong
2517 ** answer.
2518 */
2519 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2520   u8 op;
2521   int unaryMinus = 0;
2522   if( aff==SQLITE_AFF_BLOB ) return 1;
2523   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2524     if( p->op==TK_UMINUS ) unaryMinus = 1;
2525     p = p->pLeft;
2526   }
2527   op = p->op;
2528   if( op==TK_REGISTER ) op = p->op2;
2529   switch( op ){
2530     case TK_INTEGER: {
2531       return aff>=SQLITE_AFF_NUMERIC;
2532     }
2533     case TK_FLOAT: {
2534       return aff>=SQLITE_AFF_NUMERIC;
2535     }
2536     case TK_STRING: {
2537       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2538     }
2539     case TK_BLOB: {
2540       return !unaryMinus;
2541     }
2542     case TK_COLUMN: {
2543       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2544       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2545     }
2546     default: {
2547       return 0;
2548     }
2549   }
2550 }
2551 
2552 /*
2553 ** Return TRUE if the given string is a row-id column name.
2554 */
2555 int sqlite3IsRowid(const char *z){
2556   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2557   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2558   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2559   return 0;
2560 }
2561 
2562 /*
2563 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2564 ** that can be simplified to a direct table access, then return
2565 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2566 ** or if the SELECT statement needs to be manifested into a transient
2567 ** table, then return NULL.
2568 */
2569 #ifndef SQLITE_OMIT_SUBQUERY
2570 static Select *isCandidateForInOpt(const Expr *pX){
2571   Select *p;
2572   SrcList *pSrc;
2573   ExprList *pEList;
2574   Table *pTab;
2575   int i;
2576   if( !ExprUseXSelect(pX) ) return 0;                 /* Not a subquery */
2577   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2578   p = pX->x.pSelect;
2579   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2580   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2581     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2582     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2583     return 0; /* No DISTINCT keyword and no aggregate functions */
2584   }
2585   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2586   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2587   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2588   pSrc = p->pSrc;
2589   assert( pSrc!=0 );
2590   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2591   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2592   pTab = pSrc->a[0].pTab;
2593   assert( pTab!=0 );
2594   assert( !IsView(pTab)  );              /* FROM clause is not a view */
2595   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2596   pEList = p->pEList;
2597   assert( pEList!=0 );
2598   /* All SELECT results must be columns. */
2599   for(i=0; i<pEList->nExpr; i++){
2600     Expr *pRes = pEList->a[i].pExpr;
2601     if( pRes->op!=TK_COLUMN ) return 0;
2602     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2603   }
2604   return p;
2605 }
2606 #endif /* SQLITE_OMIT_SUBQUERY */
2607 
2608 #ifndef SQLITE_OMIT_SUBQUERY
2609 /*
2610 ** Generate code that checks the left-most column of index table iCur to see if
2611 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2612 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2613 ** to be set to NULL if iCur contains one or more NULL values.
2614 */
2615 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2616   int addr1;
2617   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2618   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2619   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2620   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2621   VdbeComment((v, "first_entry_in(%d)", iCur));
2622   sqlite3VdbeJumpHere(v, addr1);
2623 }
2624 #endif
2625 
2626 
2627 #ifndef SQLITE_OMIT_SUBQUERY
2628 /*
2629 ** The argument is an IN operator with a list (not a subquery) on the
2630 ** right-hand side.  Return TRUE if that list is constant.
2631 */
2632 static int sqlite3InRhsIsConstant(Expr *pIn){
2633   Expr *pLHS;
2634   int res;
2635   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2636   pLHS = pIn->pLeft;
2637   pIn->pLeft = 0;
2638   res = sqlite3ExprIsConstant(pIn);
2639   pIn->pLeft = pLHS;
2640   return res;
2641 }
2642 #endif
2643 
2644 /*
2645 ** This function is used by the implementation of the IN (...) operator.
2646 ** The pX parameter is the expression on the RHS of the IN operator, which
2647 ** might be either a list of expressions or a subquery.
2648 **
2649 ** The job of this routine is to find or create a b-tree object that can
2650 ** be used either to test for membership in the RHS set or to iterate through
2651 ** all members of the RHS set, skipping duplicates.
2652 **
2653 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2654 ** and the *piTab parameter is set to the index of that cursor.
2655 **
2656 ** The returned value of this function indicates the b-tree type, as follows:
2657 **
2658 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2659 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2660 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2661 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2662 **                         populated epheremal table.
2663 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2664 **                         implemented as a sequence of comparisons.
2665 **
2666 ** An existing b-tree might be used if the RHS expression pX is a simple
2667 ** subquery such as:
2668 **
2669 **     SELECT <column1>, <column2>... FROM <table>
2670 **
2671 ** If the RHS of the IN operator is a list or a more complex subquery, then
2672 ** an ephemeral table might need to be generated from the RHS and then
2673 ** pX->iTable made to point to the ephemeral table instead of an
2674 ** existing table.  In this case, the creation and initialization of the
2675 ** ephmeral table might be put inside of a subroutine, the EP_Subrtn flag
2676 ** will be set on pX and the pX->y.sub fields will be set to show where
2677 ** the subroutine is coded.
2678 **
2679 ** The inFlags parameter must contain, at a minimum, one of the bits
2680 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2681 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2682 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2683 ** be used to loop over all values of the RHS of the IN operator.
2684 **
2685 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2686 ** through the set members) then the b-tree must not contain duplicates.
2687 ** An epheremal table will be created unless the selected columns are guaranteed
2688 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2689 ** a UNIQUE constraint or index.
2690 **
2691 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2692 ** for fast set membership tests) then an epheremal table must
2693 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2694 ** index can be found with the specified <columns> as its left-most.
2695 **
2696 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2697 ** if the RHS of the IN operator is a list (not a subquery) then this
2698 ** routine might decide that creating an ephemeral b-tree for membership
2699 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2700 ** calling routine should implement the IN operator using a sequence
2701 ** of Eq or Ne comparison operations.
2702 **
2703 ** When the b-tree is being used for membership tests, the calling function
2704 ** might need to know whether or not the RHS side of the IN operator
2705 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2706 ** if there is any chance that the (...) might contain a NULL value at
2707 ** runtime, then a register is allocated and the register number written
2708 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2709 ** NULL value, then *prRhsHasNull is left unchanged.
2710 **
2711 ** If a register is allocated and its location stored in *prRhsHasNull, then
2712 ** the value in that register will be NULL if the b-tree contains one or more
2713 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2714 ** NULL values.
2715 **
2716 ** If the aiMap parameter is not NULL, it must point to an array containing
2717 ** one element for each column returned by the SELECT statement on the RHS
2718 ** of the IN(...) operator. The i'th entry of the array is populated with the
2719 ** offset of the index column that matches the i'th column returned by the
2720 ** SELECT. For example, if the expression and selected index are:
2721 **
2722 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2723 **   CREATE INDEX i1 ON t1(b, c, a);
2724 **
2725 ** then aiMap[] is populated with {2, 0, 1}.
2726 */
2727 #ifndef SQLITE_OMIT_SUBQUERY
2728 int sqlite3FindInIndex(
2729   Parse *pParse,             /* Parsing context */
2730   Expr *pX,                  /* The IN expression */
2731   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2732   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2733   int *aiMap,                /* Mapping from Index fields to RHS fields */
2734   int *piTab                 /* OUT: index to use */
2735 ){
2736   Select *p;                            /* SELECT to the right of IN operator */
2737   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2738   int iTab;                             /* Cursor of the RHS table */
2739   int mustBeUnique;                     /* True if RHS must be unique */
2740   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2741 
2742   assert( pX->op==TK_IN );
2743   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2744   iTab = pParse->nTab++;
2745 
2746   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2747   ** whether or not the SELECT result contains NULL values, check whether
2748   ** or not NULL is actually possible (it may not be, for example, due
2749   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2750   ** set prRhsHasNull to 0 before continuing.  */
2751   if( prRhsHasNull && ExprUseXSelect(pX) ){
2752     int i;
2753     ExprList *pEList = pX->x.pSelect->pEList;
2754     for(i=0; i<pEList->nExpr; i++){
2755       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2756     }
2757     if( i==pEList->nExpr ){
2758       prRhsHasNull = 0;
2759     }
2760   }
2761 
2762   /* Check to see if an existing table or index can be used to
2763   ** satisfy the query.  This is preferable to generating a new
2764   ** ephemeral table.  */
2765   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2766     sqlite3 *db = pParse->db;              /* Database connection */
2767     Table *pTab;                           /* Table <table>. */
2768     int iDb;                               /* Database idx for pTab */
2769     ExprList *pEList = p->pEList;
2770     int nExpr = pEList->nExpr;
2771 
2772     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2773     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2774     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2775     pTab = p->pSrc->a[0].pTab;
2776 
2777     /* Code an OP_Transaction and OP_TableLock for <table>. */
2778     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2779     assert( iDb>=0 && iDb<SQLITE_MAX_DB );
2780     sqlite3CodeVerifySchema(pParse, iDb);
2781     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2782 
2783     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2784     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2785       /* The "x IN (SELECT rowid FROM table)" case */
2786       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2787       VdbeCoverage(v);
2788 
2789       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2790       eType = IN_INDEX_ROWID;
2791       ExplainQueryPlan((pParse, 0,
2792             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2793       sqlite3VdbeJumpHere(v, iAddr);
2794     }else{
2795       Index *pIdx;                         /* Iterator variable */
2796       int affinity_ok = 1;
2797       int i;
2798 
2799       /* Check that the affinity that will be used to perform each
2800       ** comparison is the same as the affinity of each column in table
2801       ** on the RHS of the IN operator.  If it not, it is not possible to
2802       ** use any index of the RHS table.  */
2803       for(i=0; i<nExpr && affinity_ok; i++){
2804         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2805         int iCol = pEList->a[i].pExpr->iColumn;
2806         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2807         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2808         testcase( cmpaff==SQLITE_AFF_BLOB );
2809         testcase( cmpaff==SQLITE_AFF_TEXT );
2810         switch( cmpaff ){
2811           case SQLITE_AFF_BLOB:
2812             break;
2813           case SQLITE_AFF_TEXT:
2814             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2815             ** other has no affinity and the other side is TEXT.  Hence,
2816             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2817             ** and for the term on the LHS of the IN to have no affinity. */
2818             assert( idxaff==SQLITE_AFF_TEXT );
2819             break;
2820           default:
2821             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2822         }
2823       }
2824 
2825       if( affinity_ok ){
2826         /* Search for an existing index that will work for this IN operator */
2827         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2828           Bitmask colUsed;      /* Columns of the index used */
2829           Bitmask mCol;         /* Mask for the current column */
2830           if( pIdx->nColumn<nExpr ) continue;
2831           if( pIdx->pPartIdxWhere!=0 ) continue;
2832           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2833           ** BITMASK(nExpr) without overflowing */
2834           testcase( pIdx->nColumn==BMS-2 );
2835           testcase( pIdx->nColumn==BMS-1 );
2836           if( pIdx->nColumn>=BMS-1 ) continue;
2837           if( mustBeUnique ){
2838             if( pIdx->nKeyCol>nExpr
2839              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2840             ){
2841               continue;  /* This index is not unique over the IN RHS columns */
2842             }
2843           }
2844 
2845           colUsed = 0;   /* Columns of index used so far */
2846           for(i=0; i<nExpr; i++){
2847             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2848             Expr *pRhs = pEList->a[i].pExpr;
2849             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2850             int j;
2851 
2852             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2853             for(j=0; j<nExpr; j++){
2854               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2855               assert( pIdx->azColl[j] );
2856               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2857                 continue;
2858               }
2859               break;
2860             }
2861             if( j==nExpr ) break;
2862             mCol = MASKBIT(j);
2863             if( mCol & colUsed ) break; /* Each column used only once */
2864             colUsed |= mCol;
2865             if( aiMap ) aiMap[i] = j;
2866           }
2867 
2868           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2869           if( colUsed==(MASKBIT(nExpr)-1) ){
2870             /* If we reach this point, that means the index pIdx is usable */
2871             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2872             ExplainQueryPlan((pParse, 0,
2873                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2874             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2875             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2876             VdbeComment((v, "%s", pIdx->zName));
2877             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2878             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2879 
2880             if( prRhsHasNull ){
2881 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2882               i64 mask = (1<<nExpr)-1;
2883               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2884                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2885 #endif
2886               *prRhsHasNull = ++pParse->nMem;
2887               if( nExpr==1 ){
2888                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2889               }
2890             }
2891             sqlite3VdbeJumpHere(v, iAddr);
2892           }
2893         } /* End loop over indexes */
2894       } /* End if( affinity_ok ) */
2895     } /* End if not an rowid index */
2896   } /* End attempt to optimize using an index */
2897 
2898   /* If no preexisting index is available for the IN clause
2899   ** and IN_INDEX_NOOP is an allowed reply
2900   ** and the RHS of the IN operator is a list, not a subquery
2901   ** and the RHS is not constant or has two or fewer terms,
2902   ** then it is not worth creating an ephemeral table to evaluate
2903   ** the IN operator so return IN_INDEX_NOOP.
2904   */
2905   if( eType==0
2906    && (inFlags & IN_INDEX_NOOP_OK)
2907    && ExprUseXList(pX)
2908    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2909   ){
2910     pParse->nTab--;  /* Back out the allocation of the unused cursor */
2911     iTab = -1;       /* Cursor is not allocated */
2912     eType = IN_INDEX_NOOP;
2913   }
2914 
2915   if( eType==0 ){
2916     /* Could not find an existing table or index to use as the RHS b-tree.
2917     ** We will have to generate an ephemeral table to do the job.
2918     */
2919     u32 savedNQueryLoop = pParse->nQueryLoop;
2920     int rMayHaveNull = 0;
2921     eType = IN_INDEX_EPH;
2922     if( inFlags & IN_INDEX_LOOP ){
2923       pParse->nQueryLoop = 0;
2924     }else if( prRhsHasNull ){
2925       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2926     }
2927     assert( pX->op==TK_IN );
2928     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2929     if( rMayHaveNull ){
2930       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2931     }
2932     pParse->nQueryLoop = savedNQueryLoop;
2933   }
2934 
2935   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2936     int i, n;
2937     n = sqlite3ExprVectorSize(pX->pLeft);
2938     for(i=0; i<n; i++) aiMap[i] = i;
2939   }
2940   *piTab = iTab;
2941   return eType;
2942 }
2943 #endif
2944 
2945 #ifndef SQLITE_OMIT_SUBQUERY
2946 /*
2947 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2948 ** function allocates and returns a nul-terminated string containing
2949 ** the affinities to be used for each column of the comparison.
2950 **
2951 ** It is the responsibility of the caller to ensure that the returned
2952 ** string is eventually freed using sqlite3DbFree().
2953 */
2954 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){
2955   Expr *pLeft = pExpr->pLeft;
2956   int nVal = sqlite3ExprVectorSize(pLeft);
2957   Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0;
2958   char *zRet;
2959 
2960   assert( pExpr->op==TK_IN );
2961   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2962   if( zRet ){
2963     int i;
2964     for(i=0; i<nVal; i++){
2965       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2966       char a = sqlite3ExprAffinity(pA);
2967       if( pSelect ){
2968         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2969       }else{
2970         zRet[i] = a;
2971       }
2972     }
2973     zRet[nVal] = '\0';
2974   }
2975   return zRet;
2976 }
2977 #endif
2978 
2979 #ifndef SQLITE_OMIT_SUBQUERY
2980 /*
2981 ** Load the Parse object passed as the first argument with an error
2982 ** message of the form:
2983 **
2984 **   "sub-select returns N columns - expected M"
2985 */
2986 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2987   if( pParse->nErr==0 ){
2988     const char *zFmt = "sub-select returns %d columns - expected %d";
2989     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2990   }
2991 }
2992 #endif
2993 
2994 /*
2995 ** Expression pExpr is a vector that has been used in a context where
2996 ** it is not permitted. If pExpr is a sub-select vector, this routine
2997 ** loads the Parse object with a message of the form:
2998 **
2999 **   "sub-select returns N columns - expected 1"
3000 **
3001 ** Or, if it is a regular scalar vector:
3002 **
3003 **   "row value misused"
3004 */
3005 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
3006 #ifndef SQLITE_OMIT_SUBQUERY
3007   if( ExprUseXSelect(pExpr) ){
3008     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
3009   }else
3010 #endif
3011   {
3012     sqlite3ErrorMsg(pParse, "row value misused");
3013   }
3014 }
3015 
3016 #ifndef SQLITE_OMIT_SUBQUERY
3017 /*
3018 ** Generate code that will construct an ephemeral table containing all terms
3019 ** in the RHS of an IN operator.  The IN operator can be in either of two
3020 ** forms:
3021 **
3022 **     x IN (4,5,11)              -- IN operator with list on right-hand side
3023 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
3024 **
3025 ** The pExpr parameter is the IN operator.  The cursor number for the
3026 ** constructed ephermeral table is returned.  The first time the ephemeral
3027 ** table is computed, the cursor number is also stored in pExpr->iTable,
3028 ** however the cursor number returned might not be the same, as it might
3029 ** have been duplicated using OP_OpenDup.
3030 **
3031 ** If the LHS expression ("x" in the examples) is a column value, or
3032 ** the SELECT statement returns a column value, then the affinity of that
3033 ** column is used to build the index keys. If both 'x' and the
3034 ** SELECT... statement are columns, then numeric affinity is used
3035 ** if either column has NUMERIC or INTEGER affinity. If neither
3036 ** 'x' nor the SELECT... statement are columns, then numeric affinity
3037 ** is used.
3038 */
3039 void sqlite3CodeRhsOfIN(
3040   Parse *pParse,          /* Parsing context */
3041   Expr *pExpr,            /* The IN operator */
3042   int iTab                /* Use this cursor number */
3043 ){
3044   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
3045   int addr;                   /* Address of OP_OpenEphemeral instruction */
3046   Expr *pLeft;                /* the LHS of the IN operator */
3047   KeyInfo *pKeyInfo = 0;      /* Key information */
3048   int nVal;                   /* Size of vector pLeft */
3049   Vdbe *v;                    /* The prepared statement under construction */
3050 
3051   v = pParse->pVdbe;
3052   assert( v!=0 );
3053 
3054   /* The evaluation of the IN must be repeated every time it
3055   ** is encountered if any of the following is true:
3056   **
3057   **    *  The right-hand side is a correlated subquery
3058   **    *  The right-hand side is an expression list containing variables
3059   **    *  We are inside a trigger
3060   **
3061   ** If all of the above are false, then we can compute the RHS just once
3062   ** and reuse it many names.
3063   */
3064   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
3065     /* Reuse of the RHS is allowed */
3066     /* If this routine has already been coded, but the previous code
3067     ** might not have been invoked yet, so invoke it now as a subroutine.
3068     */
3069     if( ExprHasProperty(pExpr, EP_Subrtn) ){
3070       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3071       if( ExprUseXSelect(pExpr) ){
3072         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
3073               pExpr->x.pSelect->selId));
3074       }
3075       assert( ExprUseYSub(pExpr) );
3076       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3077                         pExpr->y.sub.iAddr);
3078       assert( iTab!=pExpr->iTable );
3079       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
3080       sqlite3VdbeJumpHere(v, addrOnce);
3081       return;
3082     }
3083 
3084     /* Begin coding the subroutine */
3085     assert( !ExprUseYWin(pExpr) );
3086     ExprSetProperty(pExpr, EP_Subrtn);
3087     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3088     pExpr->y.sub.regReturn = ++pParse->nMem;
3089     pExpr->y.sub.iAddr =
3090       sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
3091 
3092     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3093   }
3094 
3095   /* Check to see if this is a vector IN operator */
3096   pLeft = pExpr->pLeft;
3097   nVal = sqlite3ExprVectorSize(pLeft);
3098 
3099   /* Construct the ephemeral table that will contain the content of
3100   ** RHS of the IN operator.
3101   */
3102   pExpr->iTable = iTab;
3103   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
3104 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
3105   if( ExprUseXSelect(pExpr) ){
3106     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
3107   }else{
3108     VdbeComment((v, "RHS of IN operator"));
3109   }
3110 #endif
3111   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
3112 
3113   if( ExprUseXSelect(pExpr) ){
3114     /* Case 1:     expr IN (SELECT ...)
3115     **
3116     ** Generate code to write the results of the select into the temporary
3117     ** table allocated and opened above.
3118     */
3119     Select *pSelect = pExpr->x.pSelect;
3120     ExprList *pEList = pSelect->pEList;
3121 
3122     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
3123         addrOnce?"":"CORRELATED ", pSelect->selId
3124     ));
3125     /* If the LHS and RHS of the IN operator do not match, that
3126     ** error will have been caught long before we reach this point. */
3127     if( ALWAYS(pEList->nExpr==nVal) ){
3128       Select *pCopy;
3129       SelectDest dest;
3130       int i;
3131       int rc;
3132       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
3133       dest.zAffSdst = exprINAffinity(pParse, pExpr);
3134       pSelect->iLimit = 0;
3135       testcase( pSelect->selFlags & SF_Distinct );
3136       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
3137       pCopy = sqlite3SelectDup(pParse->db, pSelect, 0);
3138       rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest);
3139       sqlite3SelectDelete(pParse->db, pCopy);
3140       sqlite3DbFree(pParse->db, dest.zAffSdst);
3141       if( rc ){
3142         sqlite3KeyInfoUnref(pKeyInfo);
3143         return;
3144       }
3145       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
3146       assert( pEList!=0 );
3147       assert( pEList->nExpr>0 );
3148       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3149       for(i=0; i<nVal; i++){
3150         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
3151         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
3152             pParse, p, pEList->a[i].pExpr
3153         );
3154       }
3155     }
3156   }else if( ALWAYS(pExpr->x.pList!=0) ){
3157     /* Case 2:     expr IN (exprlist)
3158     **
3159     ** For each expression, build an index key from the evaluation and
3160     ** store it in the temporary table. If <expr> is a column, then use
3161     ** that columns affinity when building index keys. If <expr> is not
3162     ** a column, use numeric affinity.
3163     */
3164     char affinity;            /* Affinity of the LHS of the IN */
3165     int i;
3166     ExprList *pList = pExpr->x.pList;
3167     struct ExprList_item *pItem;
3168     int r1, r2;
3169     affinity = sqlite3ExprAffinity(pLeft);
3170     if( affinity<=SQLITE_AFF_NONE ){
3171       affinity = SQLITE_AFF_BLOB;
3172     }else if( affinity==SQLITE_AFF_REAL ){
3173       affinity = SQLITE_AFF_NUMERIC;
3174     }
3175     if( pKeyInfo ){
3176       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3177       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3178     }
3179 
3180     /* Loop through each expression in <exprlist>. */
3181     r1 = sqlite3GetTempReg(pParse);
3182     r2 = sqlite3GetTempReg(pParse);
3183     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
3184       Expr *pE2 = pItem->pExpr;
3185 
3186       /* If the expression is not constant then we will need to
3187       ** disable the test that was generated above that makes sure
3188       ** this code only executes once.  Because for a non-constant
3189       ** expression we need to rerun this code each time.
3190       */
3191       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
3192         sqlite3VdbeChangeToNoop(v, addrOnce-1);
3193         sqlite3VdbeChangeToNoop(v, addrOnce);
3194         ExprClearProperty(pExpr, EP_Subrtn);
3195         addrOnce = 0;
3196       }
3197 
3198       /* Evaluate the expression and insert it into the temp table */
3199       sqlite3ExprCode(pParse, pE2, r1);
3200       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3201       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3202     }
3203     sqlite3ReleaseTempReg(pParse, r1);
3204     sqlite3ReleaseTempReg(pParse, r2);
3205   }
3206   if( pKeyInfo ){
3207     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3208   }
3209   if( addrOnce ){
3210     sqlite3VdbeJumpHere(v, addrOnce);
3211     /* Subroutine return */
3212     assert( ExprUseYSub(pExpr) );
3213     assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
3214             || pParse->nErr );
3215     sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
3216                       pExpr->y.sub.iAddr, 1);
3217     VdbeCoverage(v);
3218     sqlite3ClearTempRegCache(pParse);
3219   }
3220 }
3221 #endif /* SQLITE_OMIT_SUBQUERY */
3222 
3223 /*
3224 ** Generate code for scalar subqueries used as a subquery expression
3225 ** or EXISTS operator:
3226 **
3227 **     (SELECT a FROM b)          -- subquery
3228 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
3229 **
3230 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3231 **
3232 ** Return the register that holds the result.  For a multi-column SELECT,
3233 ** the result is stored in a contiguous array of registers and the
3234 ** return value is the register of the left-most result column.
3235 ** Return 0 if an error occurs.
3236 */
3237 #ifndef SQLITE_OMIT_SUBQUERY
3238 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3239   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3240   int rReg = 0;               /* Register storing resulting */
3241   Select *pSel;               /* SELECT statement to encode */
3242   SelectDest dest;            /* How to deal with SELECT result */
3243   int nReg;                   /* Registers to allocate */
3244   Expr *pLimit;               /* New limit expression */
3245 
3246   Vdbe *v = pParse->pVdbe;
3247   assert( v!=0 );
3248   if( pParse->nErr ) return 0;
3249   testcase( pExpr->op==TK_EXISTS );
3250   testcase( pExpr->op==TK_SELECT );
3251   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3252   assert( ExprUseXSelect(pExpr) );
3253   pSel = pExpr->x.pSelect;
3254 
3255   /* If this routine has already been coded, then invoke it as a
3256   ** subroutine. */
3257   if( ExprHasProperty(pExpr, EP_Subrtn) ){
3258     ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3259     assert( ExprUseYSub(pExpr) );
3260     sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3261                       pExpr->y.sub.iAddr);
3262     return pExpr->iTable;
3263   }
3264 
3265   /* Begin coding the subroutine */
3266   assert( !ExprUseYWin(pExpr) );
3267   assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) );
3268   ExprSetProperty(pExpr, EP_Subrtn);
3269   pExpr->y.sub.regReturn = ++pParse->nMem;
3270   pExpr->y.sub.iAddr =
3271     sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
3272 
3273   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3274   ** is encountered if any of the following is true:
3275   **
3276   **    *  The right-hand side is a correlated subquery
3277   **    *  The right-hand side is an expression list containing variables
3278   **    *  We are inside a trigger
3279   **
3280   ** If all of the above are false, then we can run this code just once
3281   ** save the results, and reuse the same result on subsequent invocations.
3282   */
3283   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3284     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3285   }
3286 
3287   /* For a SELECT, generate code to put the values for all columns of
3288   ** the first row into an array of registers and return the index of
3289   ** the first register.
3290   **
3291   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3292   ** into a register and return that register number.
3293   **
3294   ** In both cases, the query is augmented with "LIMIT 1".  Any
3295   ** preexisting limit is discarded in place of the new LIMIT 1.
3296   */
3297   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3298         addrOnce?"":"CORRELATED ", pSel->selId));
3299   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3300   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3301   pParse->nMem += nReg;
3302   if( pExpr->op==TK_SELECT ){
3303     dest.eDest = SRT_Mem;
3304     dest.iSdst = dest.iSDParm;
3305     dest.nSdst = nReg;
3306     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3307     VdbeComment((v, "Init subquery result"));
3308   }else{
3309     dest.eDest = SRT_Exists;
3310     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3311     VdbeComment((v, "Init EXISTS result"));
3312   }
3313   if( pSel->pLimit ){
3314     /* The subquery already has a limit.  If the pre-existing limit is X
3315     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3316     sqlite3 *db = pParse->db;
3317     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3318     if( pLimit ){
3319       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3320       pLimit = sqlite3PExpr(pParse, TK_NE,
3321                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3322     }
3323     sqlite3ExprDeferredDelete(pParse, pSel->pLimit->pLeft);
3324     pSel->pLimit->pLeft = pLimit;
3325   }else{
3326     /* If there is no pre-existing limit add a limit of 1 */
3327     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3328     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3329   }
3330   pSel->iLimit = 0;
3331   if( sqlite3Select(pParse, pSel, &dest) ){
3332     pExpr->op2 = pExpr->op;
3333     pExpr->op = TK_ERROR;
3334     return 0;
3335   }
3336   pExpr->iTable = rReg = dest.iSDParm;
3337   ExprSetVVAProperty(pExpr, EP_NoReduce);
3338   if( addrOnce ){
3339     sqlite3VdbeJumpHere(v, addrOnce);
3340   }
3341 
3342   /* Subroutine return */
3343   assert( ExprUseYSub(pExpr) );
3344   assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
3345           || pParse->nErr );
3346   sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
3347                     pExpr->y.sub.iAddr, 1);
3348   VdbeCoverage(v);
3349   sqlite3ClearTempRegCache(pParse);
3350   return rReg;
3351 }
3352 #endif /* SQLITE_OMIT_SUBQUERY */
3353 
3354 #ifndef SQLITE_OMIT_SUBQUERY
3355 /*
3356 ** Expr pIn is an IN(...) expression. This function checks that the
3357 ** sub-select on the RHS of the IN() operator has the same number of
3358 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3359 ** a sub-query, that the LHS is a vector of size 1.
3360 */
3361 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3362   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3363   if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){
3364     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3365       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3366       return 1;
3367     }
3368   }else if( nVector!=1 ){
3369     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3370     return 1;
3371   }
3372   return 0;
3373 }
3374 #endif
3375 
3376 #ifndef SQLITE_OMIT_SUBQUERY
3377 /*
3378 ** Generate code for an IN expression.
3379 **
3380 **      x IN (SELECT ...)
3381 **      x IN (value, value, ...)
3382 **
3383 ** The left-hand side (LHS) is a scalar or vector expression.  The
3384 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3385 ** subquery.  If the RHS is a subquery, the number of result columns must
3386 ** match the number of columns in the vector on the LHS.  If the RHS is
3387 ** a list of values, the LHS must be a scalar.
3388 **
3389 ** The IN operator is true if the LHS value is contained within the RHS.
3390 ** The result is false if the LHS is definitely not in the RHS.  The
3391 ** result is NULL if the presence of the LHS in the RHS cannot be
3392 ** determined due to NULLs.
3393 **
3394 ** This routine generates code that jumps to destIfFalse if the LHS is not
3395 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3396 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3397 ** within the RHS then fall through.
3398 **
3399 ** See the separate in-operator.md documentation file in the canonical
3400 ** SQLite source tree for additional information.
3401 */
3402 static void sqlite3ExprCodeIN(
3403   Parse *pParse,        /* Parsing and code generating context */
3404   Expr *pExpr,          /* The IN expression */
3405   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3406   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3407 ){
3408   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3409   int eType;            /* Type of the RHS */
3410   int rLhs;             /* Register(s) holding the LHS values */
3411   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3412   Vdbe *v;              /* Statement under construction */
3413   int *aiMap = 0;       /* Map from vector field to index column */
3414   char *zAff = 0;       /* Affinity string for comparisons */
3415   int nVector;          /* Size of vectors for this IN operator */
3416   int iDummy;           /* Dummy parameter to exprCodeVector() */
3417   Expr *pLeft;          /* The LHS of the IN operator */
3418   int i;                /* loop counter */
3419   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3420   int destStep6 = 0;    /* Start of code for Step 6 */
3421   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3422   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3423   int addrTop;          /* Top of the step-6 loop */
3424   int iTab = 0;         /* Index to use */
3425   u8 okConstFactor = pParse->okConstFactor;
3426 
3427   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3428   pLeft = pExpr->pLeft;
3429   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3430   zAff = exprINAffinity(pParse, pExpr);
3431   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3432   aiMap = (int*)sqlite3DbMallocZero(
3433       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3434   );
3435   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3436 
3437   /* Attempt to compute the RHS. After this step, if anything other than
3438   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3439   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3440   ** the RHS has not yet been coded.  */
3441   v = pParse->pVdbe;
3442   assert( v!=0 );       /* OOM detected prior to this routine */
3443   VdbeNoopComment((v, "begin IN expr"));
3444   eType = sqlite3FindInIndex(pParse, pExpr,
3445                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3446                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3447                              aiMap, &iTab);
3448 
3449   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3450        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3451   );
3452 #ifdef SQLITE_DEBUG
3453   /* Confirm that aiMap[] contains nVector integer values between 0 and
3454   ** nVector-1. */
3455   for(i=0; i<nVector; i++){
3456     int j, cnt;
3457     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3458     assert( cnt==1 );
3459   }
3460 #endif
3461 
3462   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3463   ** vector, then it is stored in an array of nVector registers starting
3464   ** at r1.
3465   **
3466   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3467   ** so that the fields are in the same order as an existing index.   The
3468   ** aiMap[] array contains a mapping from the original LHS field order to
3469   ** the field order that matches the RHS index.
3470   **
3471   ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3472   ** even if it is constant, as OP_Affinity may be used on the register
3473   ** by code generated below.  */
3474   assert( pParse->okConstFactor==okConstFactor );
3475   pParse->okConstFactor = 0;
3476   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3477   pParse->okConstFactor = okConstFactor;
3478   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3479   if( i==nVector ){
3480     /* LHS fields are not reordered */
3481     rLhs = rLhsOrig;
3482   }else{
3483     /* Need to reorder the LHS fields according to aiMap */
3484     rLhs = sqlite3GetTempRange(pParse, nVector);
3485     for(i=0; i<nVector; i++){
3486       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3487     }
3488   }
3489 
3490   /* If sqlite3FindInIndex() did not find or create an index that is
3491   ** suitable for evaluating the IN operator, then evaluate using a
3492   ** sequence of comparisons.
3493   **
3494   ** This is step (1) in the in-operator.md optimized algorithm.
3495   */
3496   if( eType==IN_INDEX_NOOP ){
3497     ExprList *pList;
3498     CollSeq *pColl;
3499     int labelOk = sqlite3VdbeMakeLabel(pParse);
3500     int r2, regToFree;
3501     int regCkNull = 0;
3502     int ii;
3503     assert( ExprUseXList(pExpr) );
3504     pList = pExpr->x.pList;
3505     pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3506     if( destIfNull!=destIfFalse ){
3507       regCkNull = sqlite3GetTempReg(pParse);
3508       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3509     }
3510     for(ii=0; ii<pList->nExpr; ii++){
3511       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3512       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3513         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3514       }
3515       sqlite3ReleaseTempReg(pParse, regToFree);
3516       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3517         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3518         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3519                           (void*)pColl, P4_COLLSEQ);
3520         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3521         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3522         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3523         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3524         sqlite3VdbeChangeP5(v, zAff[0]);
3525       }else{
3526         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3527         assert( destIfNull==destIfFalse );
3528         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3529                           (void*)pColl, P4_COLLSEQ);
3530         VdbeCoverageIf(v, op==OP_Ne);
3531         VdbeCoverageIf(v, op==OP_IsNull);
3532         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3533       }
3534     }
3535     if( regCkNull ){
3536       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3537       sqlite3VdbeGoto(v, destIfFalse);
3538     }
3539     sqlite3VdbeResolveLabel(v, labelOk);
3540     sqlite3ReleaseTempReg(pParse, regCkNull);
3541     goto sqlite3ExprCodeIN_finished;
3542   }
3543 
3544   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3545   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3546   ** We will then skip the binary search of the RHS.
3547   */
3548   if( destIfNull==destIfFalse ){
3549     destStep2 = destIfFalse;
3550   }else{
3551     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3552   }
3553   for(i=0; i<nVector; i++){
3554     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3555     if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error;
3556     if( sqlite3ExprCanBeNull(p) ){
3557       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3558       VdbeCoverage(v);
3559     }
3560   }
3561 
3562   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3563   ** of the RHS using the LHS as a probe.  If found, the result is
3564   ** true.
3565   */
3566   if( eType==IN_INDEX_ROWID ){
3567     /* In this case, the RHS is the ROWID of table b-tree and so we also
3568     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3569     ** into a single opcode. */
3570     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3571     VdbeCoverage(v);
3572     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3573   }else{
3574     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3575     if( destIfFalse==destIfNull ){
3576       /* Combine Step 3 and Step 5 into a single opcode */
3577       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3578                            rLhs, nVector); VdbeCoverage(v);
3579       goto sqlite3ExprCodeIN_finished;
3580     }
3581     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3582     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3583                                       rLhs, nVector); VdbeCoverage(v);
3584   }
3585 
3586   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3587   ** an match on the search above, then the result must be FALSE.
3588   */
3589   if( rRhsHasNull && nVector==1 ){
3590     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3591     VdbeCoverage(v);
3592   }
3593 
3594   /* Step 5.  If we do not care about the difference between NULL and
3595   ** FALSE, then just return false.
3596   */
3597   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3598 
3599   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3600   ** If any comparison is NULL, then the result is NULL.  If all
3601   ** comparisons are FALSE then the final result is FALSE.
3602   **
3603   ** For a scalar LHS, it is sufficient to check just the first row
3604   ** of the RHS.
3605   */
3606   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3607   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3608   VdbeCoverage(v);
3609   if( nVector>1 ){
3610     destNotNull = sqlite3VdbeMakeLabel(pParse);
3611   }else{
3612     /* For nVector==1, combine steps 6 and 7 by immediately returning
3613     ** FALSE if the first comparison is not NULL */
3614     destNotNull = destIfFalse;
3615   }
3616   for(i=0; i<nVector; i++){
3617     Expr *p;
3618     CollSeq *pColl;
3619     int r3 = sqlite3GetTempReg(pParse);
3620     p = sqlite3VectorFieldSubexpr(pLeft, i);
3621     pColl = sqlite3ExprCollSeq(pParse, p);
3622     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3623     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3624                       (void*)pColl, P4_COLLSEQ);
3625     VdbeCoverage(v);
3626     sqlite3ReleaseTempReg(pParse, r3);
3627   }
3628   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3629   if( nVector>1 ){
3630     sqlite3VdbeResolveLabel(v, destNotNull);
3631     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3632     VdbeCoverage(v);
3633 
3634     /* Step 7:  If we reach this point, we know that the result must
3635     ** be false. */
3636     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3637   }
3638 
3639   /* Jumps here in order to return true. */
3640   sqlite3VdbeJumpHere(v, addrTruthOp);
3641 
3642 sqlite3ExprCodeIN_finished:
3643   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3644   VdbeComment((v, "end IN expr"));
3645 sqlite3ExprCodeIN_oom_error:
3646   sqlite3DbFree(pParse->db, aiMap);
3647   sqlite3DbFree(pParse->db, zAff);
3648 }
3649 #endif /* SQLITE_OMIT_SUBQUERY */
3650 
3651 #ifndef SQLITE_OMIT_FLOATING_POINT
3652 /*
3653 ** Generate an instruction that will put the floating point
3654 ** value described by z[0..n-1] into register iMem.
3655 **
3656 ** The z[] string will probably not be zero-terminated.  But the
3657 ** z[n] character is guaranteed to be something that does not look
3658 ** like the continuation of the number.
3659 */
3660 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3661   if( ALWAYS(z!=0) ){
3662     double value;
3663     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3664     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3665     if( negateFlag ) value = -value;
3666     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3667   }
3668 }
3669 #endif
3670 
3671 
3672 /*
3673 ** Generate an instruction that will put the integer describe by
3674 ** text z[0..n-1] into register iMem.
3675 **
3676 ** Expr.u.zToken is always UTF8 and zero-terminated.
3677 */
3678 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3679   Vdbe *v = pParse->pVdbe;
3680   if( pExpr->flags & EP_IntValue ){
3681     int i = pExpr->u.iValue;
3682     assert( i>=0 );
3683     if( negFlag ) i = -i;
3684     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3685   }else{
3686     int c;
3687     i64 value;
3688     const char *z = pExpr->u.zToken;
3689     assert( z!=0 );
3690     c = sqlite3DecOrHexToI64(z, &value);
3691     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3692 #ifdef SQLITE_OMIT_FLOATING_POINT
3693       sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr);
3694 #else
3695 #ifndef SQLITE_OMIT_HEX_INTEGER
3696       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3697         sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T",
3698                         negFlag?"-":"",pExpr);
3699       }else
3700 #endif
3701       {
3702         codeReal(v, z, negFlag, iMem);
3703       }
3704 #endif
3705     }else{
3706       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3707       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3708     }
3709   }
3710 }
3711 
3712 
3713 /* Generate code that will load into register regOut a value that is
3714 ** appropriate for the iIdxCol-th column of index pIdx.
3715 */
3716 void sqlite3ExprCodeLoadIndexColumn(
3717   Parse *pParse,  /* The parsing context */
3718   Index *pIdx,    /* The index whose column is to be loaded */
3719   int iTabCur,    /* Cursor pointing to a table row */
3720   int iIdxCol,    /* The column of the index to be loaded */
3721   int regOut      /* Store the index column value in this register */
3722 ){
3723   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3724   if( iTabCol==XN_EXPR ){
3725     assert( pIdx->aColExpr );
3726     assert( pIdx->aColExpr->nExpr>iIdxCol );
3727     pParse->iSelfTab = iTabCur + 1;
3728     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3729     pParse->iSelfTab = 0;
3730   }else{
3731     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3732                                     iTabCol, regOut);
3733   }
3734 }
3735 
3736 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3737 /*
3738 ** Generate code that will compute the value of generated column pCol
3739 ** and store the result in register regOut
3740 */
3741 void sqlite3ExprCodeGeneratedColumn(
3742   Parse *pParse,     /* Parsing context */
3743   Table *pTab,       /* Table containing the generated column */
3744   Column *pCol,      /* The generated column */
3745   int regOut         /* Put the result in this register */
3746 ){
3747   int iAddr;
3748   Vdbe *v = pParse->pVdbe;
3749   assert( v!=0 );
3750   assert( pParse->iSelfTab!=0 );
3751   if( pParse->iSelfTab>0 ){
3752     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3753   }else{
3754     iAddr = 0;
3755   }
3756   sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut);
3757   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3758     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3759   }
3760   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3761 }
3762 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3763 
3764 /*
3765 ** Generate code to extract the value of the iCol-th column of a table.
3766 */
3767 void sqlite3ExprCodeGetColumnOfTable(
3768   Vdbe *v,        /* Parsing context */
3769   Table *pTab,    /* The table containing the value */
3770   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3771   int iCol,       /* Index of the column to extract */
3772   int regOut      /* Extract the value into this register */
3773 ){
3774   Column *pCol;
3775   assert( v!=0 );
3776   if( pTab==0 ){
3777     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3778     return;
3779   }
3780   if( iCol<0 || iCol==pTab->iPKey ){
3781     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3782     VdbeComment((v, "%s.rowid", pTab->zName));
3783   }else{
3784     int op;
3785     int x;
3786     if( IsVirtual(pTab) ){
3787       op = OP_VColumn;
3788       x = iCol;
3789 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3790     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3791       Parse *pParse = sqlite3VdbeParser(v);
3792       if( pCol->colFlags & COLFLAG_BUSY ){
3793         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3794                         pCol->zCnName);
3795       }else{
3796         int savedSelfTab = pParse->iSelfTab;
3797         pCol->colFlags |= COLFLAG_BUSY;
3798         pParse->iSelfTab = iTabCur+1;
3799         sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut);
3800         pParse->iSelfTab = savedSelfTab;
3801         pCol->colFlags &= ~COLFLAG_BUSY;
3802       }
3803       return;
3804 #endif
3805     }else if( !HasRowid(pTab) ){
3806       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3807       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3808       op = OP_Column;
3809     }else{
3810       x = sqlite3TableColumnToStorage(pTab,iCol);
3811       testcase( x!=iCol );
3812       op = OP_Column;
3813     }
3814     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3815     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3816   }
3817 }
3818 
3819 /*
3820 ** Generate code that will extract the iColumn-th column from
3821 ** table pTab and store the column value in register iReg.
3822 **
3823 ** There must be an open cursor to pTab in iTable when this routine
3824 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3825 */
3826 int sqlite3ExprCodeGetColumn(
3827   Parse *pParse,   /* Parsing and code generating context */
3828   Table *pTab,     /* Description of the table we are reading from */
3829   int iColumn,     /* Index of the table column */
3830   int iTable,      /* The cursor pointing to the table */
3831   int iReg,        /* Store results here */
3832   u8 p5            /* P5 value for OP_Column + FLAGS */
3833 ){
3834   assert( pParse->pVdbe!=0 );
3835   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3836   if( p5 ){
3837     VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3838     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3839   }
3840   return iReg;
3841 }
3842 
3843 /*
3844 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3845 ** over to iTo..iTo+nReg-1.
3846 */
3847 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3848   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3849 }
3850 
3851 /*
3852 ** Convert a scalar expression node to a TK_REGISTER referencing
3853 ** register iReg.  The caller must ensure that iReg already contains
3854 ** the correct value for the expression.
3855 */
3856 static void exprToRegister(Expr *pExpr, int iReg){
3857   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3858   if( NEVER(p==0) ) return;
3859   p->op2 = p->op;
3860   p->op = TK_REGISTER;
3861   p->iTable = iReg;
3862   ExprClearProperty(p, EP_Skip);
3863 }
3864 
3865 /*
3866 ** Evaluate an expression (either a vector or a scalar expression) and store
3867 ** the result in continguous temporary registers.  Return the index of
3868 ** the first register used to store the result.
3869 **
3870 ** If the returned result register is a temporary scalar, then also write
3871 ** that register number into *piFreeable.  If the returned result register
3872 ** is not a temporary or if the expression is a vector set *piFreeable
3873 ** to 0.
3874 */
3875 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3876   int iResult;
3877   int nResult = sqlite3ExprVectorSize(p);
3878   if( nResult==1 ){
3879     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3880   }else{
3881     *piFreeable = 0;
3882     if( p->op==TK_SELECT ){
3883 #if SQLITE_OMIT_SUBQUERY
3884       iResult = 0;
3885 #else
3886       iResult = sqlite3CodeSubselect(pParse, p);
3887 #endif
3888     }else{
3889       int i;
3890       iResult = pParse->nMem+1;
3891       pParse->nMem += nResult;
3892       assert( ExprUseXList(p) );
3893       for(i=0; i<nResult; i++){
3894         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3895       }
3896     }
3897   }
3898   return iResult;
3899 }
3900 
3901 /*
3902 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3903 ** so that a subsequent copy will not be merged into this one.
3904 */
3905 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3906   if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
3907     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3908   }
3909 }
3910 
3911 /*
3912 ** Generate code to implement special SQL functions that are implemented
3913 ** in-line rather than by using the usual callbacks.
3914 */
3915 static int exprCodeInlineFunction(
3916   Parse *pParse,        /* Parsing context */
3917   ExprList *pFarg,      /* List of function arguments */
3918   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3919   int target            /* Store function result in this register */
3920 ){
3921   int nFarg;
3922   Vdbe *v = pParse->pVdbe;
3923   assert( v!=0 );
3924   assert( pFarg!=0 );
3925   nFarg = pFarg->nExpr;
3926   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3927   switch( iFuncId ){
3928     case INLINEFUNC_coalesce: {
3929       /* Attempt a direct implementation of the built-in COALESCE() and
3930       ** IFNULL() functions.  This avoids unnecessary evaluation of
3931       ** arguments past the first non-NULL argument.
3932       */
3933       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3934       int i;
3935       assert( nFarg>=2 );
3936       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3937       for(i=1; i<nFarg; i++){
3938         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3939         VdbeCoverage(v);
3940         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3941       }
3942       setDoNotMergeFlagOnCopy(v);
3943       sqlite3VdbeResolveLabel(v, endCoalesce);
3944       break;
3945     }
3946     case INLINEFUNC_iif: {
3947       Expr caseExpr;
3948       memset(&caseExpr, 0, sizeof(caseExpr));
3949       caseExpr.op = TK_CASE;
3950       caseExpr.x.pList = pFarg;
3951       return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3952     }
3953 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
3954     case INLINEFUNC_sqlite_offset: {
3955       Expr *pArg = pFarg->a[0].pExpr;
3956       if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){
3957         sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
3958       }else{
3959         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3960       }
3961       break;
3962     }
3963 #endif
3964     default: {
3965       /* The UNLIKELY() function is a no-op.  The result is the value
3966       ** of the first argument.
3967       */
3968       assert( nFarg==1 || nFarg==2 );
3969       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3970       break;
3971     }
3972 
3973   /***********************************************************************
3974   ** Test-only SQL functions that are only usable if enabled
3975   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3976   */
3977 #if !defined(SQLITE_UNTESTABLE)
3978     case INLINEFUNC_expr_compare: {
3979       /* Compare two expressions using sqlite3ExprCompare() */
3980       assert( nFarg==2 );
3981       sqlite3VdbeAddOp2(v, OP_Integer,
3982          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3983          target);
3984       break;
3985     }
3986 
3987     case INLINEFUNC_expr_implies_expr: {
3988       /* Compare two expressions using sqlite3ExprImpliesExpr() */
3989       assert( nFarg==2 );
3990       sqlite3VdbeAddOp2(v, OP_Integer,
3991          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3992          target);
3993       break;
3994     }
3995 
3996     case INLINEFUNC_implies_nonnull_row: {
3997       /* REsult of sqlite3ExprImpliesNonNullRow() */
3998       Expr *pA1;
3999       assert( nFarg==2 );
4000       pA1 = pFarg->a[1].pExpr;
4001       if( pA1->op==TK_COLUMN ){
4002         sqlite3VdbeAddOp2(v, OP_Integer,
4003            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
4004            target);
4005       }else{
4006         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4007       }
4008       break;
4009     }
4010 
4011     case INLINEFUNC_affinity: {
4012       /* The AFFINITY() function evaluates to a string that describes
4013       ** the type affinity of the argument.  This is used for testing of
4014       ** the SQLite type logic.
4015       */
4016       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
4017       char aff;
4018       assert( nFarg==1 );
4019       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
4020       sqlite3VdbeLoadString(v, target,
4021               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
4022       break;
4023     }
4024 #endif /* !defined(SQLITE_UNTESTABLE) */
4025   }
4026   return target;
4027 }
4028 
4029 
4030 /*
4031 ** Generate code into the current Vdbe to evaluate the given
4032 ** expression.  Attempt to store the results in register "target".
4033 ** Return the register where results are stored.
4034 **
4035 ** With this routine, there is no guarantee that results will
4036 ** be stored in target.  The result might be stored in some other
4037 ** register if it is convenient to do so.  The calling function
4038 ** must check the return code and move the results to the desired
4039 ** register.
4040 */
4041 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
4042   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
4043   int op;                   /* The opcode being coded */
4044   int inReg = target;       /* Results stored in register inReg */
4045   int regFree1 = 0;         /* If non-zero free this temporary register */
4046   int regFree2 = 0;         /* If non-zero free this temporary register */
4047   int r1, r2;               /* Various register numbers */
4048   Expr tempX;               /* Temporary expression node */
4049   int p5 = 0;
4050 
4051   assert( target>0 && target<=pParse->nMem );
4052   assert( v!=0 );
4053 
4054 expr_code_doover:
4055   if( pExpr==0 ){
4056     op = TK_NULL;
4057   }else{
4058     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
4059     op = pExpr->op;
4060   }
4061   switch( op ){
4062     case TK_AGG_COLUMN: {
4063       AggInfo *pAggInfo = pExpr->pAggInfo;
4064       struct AggInfo_col *pCol;
4065       assert( pAggInfo!=0 );
4066       assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
4067       pCol = &pAggInfo->aCol[pExpr->iAgg];
4068       if( !pAggInfo->directMode ){
4069         assert( pCol->iMem>0 );
4070         return pCol->iMem;
4071       }else if( pAggInfo->useSortingIdx ){
4072         Table *pTab = pCol->pTab;
4073         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
4074                               pCol->iSorterColumn, target);
4075         if( pCol->iColumn<0 ){
4076           VdbeComment((v,"%s.rowid",pTab->zName));
4077         }else{
4078           VdbeComment((v,"%s.%s",
4079               pTab->zName, pTab->aCol[pCol->iColumn].zCnName));
4080           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
4081             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4082           }
4083         }
4084         return target;
4085       }
4086       /* Otherwise, fall thru into the TK_COLUMN case */
4087       /* no break */ deliberate_fall_through
4088     }
4089     case TK_COLUMN: {
4090       int iTab = pExpr->iTable;
4091       int iReg;
4092       if( ExprHasProperty(pExpr, EP_FixedCol) ){
4093         /* This COLUMN expression is really a constant due to WHERE clause
4094         ** constraints, and that constant is coded by the pExpr->pLeft
4095         ** expresssion.  However, make sure the constant has the correct
4096         ** datatype by applying the Affinity of the table column to the
4097         ** constant.
4098         */
4099         int aff;
4100         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
4101         assert( ExprUseYTab(pExpr) );
4102         if( pExpr->y.pTab ){
4103           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
4104         }else{
4105           aff = pExpr->affExpr;
4106         }
4107         if( aff>SQLITE_AFF_BLOB ){
4108           static const char zAff[] = "B\000C\000D\000E";
4109           assert( SQLITE_AFF_BLOB=='A' );
4110           assert( SQLITE_AFF_TEXT=='B' );
4111           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
4112                             &zAff[(aff-'B')*2], P4_STATIC);
4113         }
4114         return iReg;
4115       }
4116       if( iTab<0 ){
4117         if( pParse->iSelfTab<0 ){
4118           /* Other columns in the same row for CHECK constraints or
4119           ** generated columns or for inserting into partial index.
4120           ** The row is unpacked into registers beginning at
4121           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
4122           ** immediately prior to the first column.
4123           */
4124           Column *pCol;
4125           Table *pTab;
4126           int iSrc;
4127           int iCol = pExpr->iColumn;
4128           assert( ExprUseYTab(pExpr) );
4129           pTab = pExpr->y.pTab;
4130           assert( pTab!=0 );
4131           assert( iCol>=XN_ROWID );
4132           assert( iCol<pTab->nCol );
4133           if( iCol<0 ){
4134             return -1-pParse->iSelfTab;
4135           }
4136           pCol = pTab->aCol + iCol;
4137           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
4138           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
4139 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4140           if( pCol->colFlags & COLFLAG_GENERATED ){
4141             if( pCol->colFlags & COLFLAG_BUSY ){
4142               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
4143                               pCol->zCnName);
4144               return 0;
4145             }
4146             pCol->colFlags |= COLFLAG_BUSY;
4147             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
4148               sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc);
4149             }
4150             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
4151             return iSrc;
4152           }else
4153 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
4154           if( pCol->affinity==SQLITE_AFF_REAL ){
4155             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
4156             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4157             return target;
4158           }else{
4159             return iSrc;
4160           }
4161         }else{
4162           /* Coding an expression that is part of an index where column names
4163           ** in the index refer to the table to which the index belongs */
4164           iTab = pParse->iSelfTab - 1;
4165         }
4166       }
4167       assert( ExprUseYTab(pExpr) );
4168       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
4169                                pExpr->iColumn, iTab, target,
4170                                pExpr->op2);
4171       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
4172         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
4173       }
4174       return iReg;
4175     }
4176     case TK_INTEGER: {
4177       codeInteger(pParse, pExpr, 0, target);
4178       return target;
4179     }
4180     case TK_TRUEFALSE: {
4181       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
4182       return target;
4183     }
4184 #ifndef SQLITE_OMIT_FLOATING_POINT
4185     case TK_FLOAT: {
4186       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4187       codeReal(v, pExpr->u.zToken, 0, target);
4188       return target;
4189     }
4190 #endif
4191     case TK_STRING: {
4192       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4193       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
4194       return target;
4195     }
4196     default: {
4197       /* Make NULL the default case so that if a bug causes an illegal
4198       ** Expr node to be passed into this function, it will be handled
4199       ** sanely and not crash.  But keep the assert() to bring the problem
4200       ** to the attention of the developers. */
4201       assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed );
4202       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4203       return target;
4204     }
4205 #ifndef SQLITE_OMIT_BLOB_LITERAL
4206     case TK_BLOB: {
4207       int n;
4208       const char *z;
4209       char *zBlob;
4210       if( pParse->nErr ) return target;
4211       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4212       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
4213       assert( pExpr->u.zToken[1]=='\'' );
4214       z = &pExpr->u.zToken[2];
4215       n = sqlite3Strlen30(z) - 1;
4216       assert( z[n]=='\'' );
4217       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
4218       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
4219       return target;
4220     }
4221 #endif
4222     case TK_VARIABLE: {
4223       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4224       assert( pExpr->u.zToken!=0 );
4225       assert( pExpr->u.zToken[0]!=0 );
4226       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
4227       if( pExpr->u.zToken[1]!=0 ){
4228         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
4229         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
4230         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
4231         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
4232       }
4233       return target;
4234     }
4235     case TK_REGISTER: {
4236       return pExpr->iTable;
4237     }
4238 #ifndef SQLITE_OMIT_CAST
4239     case TK_CAST: {
4240       /* Expressions of the form:   CAST(pLeft AS token) */
4241       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4242       if( inReg!=target ){
4243         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4244         inReg = target;
4245       }
4246       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4247       sqlite3VdbeAddOp2(v, OP_Cast, target,
4248                         sqlite3AffinityType(pExpr->u.zToken, 0));
4249       return inReg;
4250     }
4251 #endif /* SQLITE_OMIT_CAST */
4252     case TK_IS:
4253     case TK_ISNOT:
4254       op = (op==TK_IS) ? TK_EQ : TK_NE;
4255       p5 = SQLITE_NULLEQ;
4256       /* fall-through */
4257     case TK_LT:
4258     case TK_LE:
4259     case TK_GT:
4260     case TK_GE:
4261     case TK_NE:
4262     case TK_EQ: {
4263       Expr *pLeft = pExpr->pLeft;
4264       if( sqlite3ExprIsVector(pLeft) ){
4265         codeVectorCompare(pParse, pExpr, target, op, p5);
4266       }else{
4267         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4268         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4269         sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
4270         codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
4271             sqlite3VdbeCurrentAddr(v)+2, p5,
4272             ExprHasProperty(pExpr,EP_Commuted));
4273         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4274         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4275         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4276         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4277         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4278         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4279         if( p5==SQLITE_NULLEQ ){
4280           sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
4281         }else{
4282           sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
4283         }
4284         testcase( regFree1==0 );
4285         testcase( regFree2==0 );
4286       }
4287       break;
4288     }
4289     case TK_AND:
4290     case TK_OR:
4291     case TK_PLUS:
4292     case TK_STAR:
4293     case TK_MINUS:
4294     case TK_REM:
4295     case TK_BITAND:
4296     case TK_BITOR:
4297     case TK_SLASH:
4298     case TK_LSHIFT:
4299     case TK_RSHIFT:
4300     case TK_CONCAT: {
4301       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4302       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4303       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4304       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4305       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4306       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4307       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4308       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4309       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4310       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4311       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4312       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4313       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4314       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4315       testcase( regFree1==0 );
4316       testcase( regFree2==0 );
4317       break;
4318     }
4319     case TK_UMINUS: {
4320       Expr *pLeft = pExpr->pLeft;
4321       assert( pLeft );
4322       if( pLeft->op==TK_INTEGER ){
4323         codeInteger(pParse, pLeft, 1, target);
4324         return target;
4325 #ifndef SQLITE_OMIT_FLOATING_POINT
4326       }else if( pLeft->op==TK_FLOAT ){
4327         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4328         codeReal(v, pLeft->u.zToken, 1, target);
4329         return target;
4330 #endif
4331       }else{
4332         tempX.op = TK_INTEGER;
4333         tempX.flags = EP_IntValue|EP_TokenOnly;
4334         tempX.u.iValue = 0;
4335         ExprClearVVAProperties(&tempX);
4336         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4337         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4338         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4339         testcase( regFree2==0 );
4340       }
4341       break;
4342     }
4343     case TK_BITNOT:
4344     case TK_NOT: {
4345       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4346       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4347       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4348       testcase( regFree1==0 );
4349       sqlite3VdbeAddOp2(v, op, r1, inReg);
4350       break;
4351     }
4352     case TK_TRUTH: {
4353       int isTrue;    /* IS TRUE or IS NOT TRUE */
4354       int bNormal;   /* IS TRUE or IS FALSE */
4355       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4356       testcase( regFree1==0 );
4357       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4358       bNormal = pExpr->op2==TK_IS;
4359       testcase( isTrue && bNormal);
4360       testcase( !isTrue && bNormal);
4361       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4362       break;
4363     }
4364     case TK_ISNULL:
4365     case TK_NOTNULL: {
4366       int addr;
4367       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4368       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4369       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4370       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4371       testcase( regFree1==0 );
4372       addr = sqlite3VdbeAddOp1(v, op, r1);
4373       VdbeCoverageIf(v, op==TK_ISNULL);
4374       VdbeCoverageIf(v, op==TK_NOTNULL);
4375       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4376       sqlite3VdbeJumpHere(v, addr);
4377       break;
4378     }
4379     case TK_AGG_FUNCTION: {
4380       AggInfo *pInfo = pExpr->pAggInfo;
4381       if( pInfo==0
4382        || NEVER(pExpr->iAgg<0)
4383        || NEVER(pExpr->iAgg>=pInfo->nFunc)
4384       ){
4385         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4386         sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr);
4387       }else{
4388         return pInfo->aFunc[pExpr->iAgg].iMem;
4389       }
4390       break;
4391     }
4392     case TK_FUNCTION: {
4393       ExprList *pFarg;       /* List of function arguments */
4394       int nFarg;             /* Number of function arguments */
4395       FuncDef *pDef;         /* The function definition object */
4396       const char *zId;       /* The function name */
4397       u32 constMask = 0;     /* Mask of function arguments that are constant */
4398       int i;                 /* Loop counter */
4399       sqlite3 *db = pParse->db;  /* The database connection */
4400       u8 enc = ENC(db);      /* The text encoding used by this database */
4401       CollSeq *pColl = 0;    /* A collating sequence */
4402 
4403 #ifndef SQLITE_OMIT_WINDOWFUNC
4404       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4405         return pExpr->y.pWin->regResult;
4406       }
4407 #endif
4408 
4409       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4410         /* SQL functions can be expensive. So try to avoid running them
4411         ** multiple times if we know they always give the same result */
4412         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4413       }
4414       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4415       assert( ExprUseXList(pExpr) );
4416       pFarg = pExpr->x.pList;
4417       nFarg = pFarg ? pFarg->nExpr : 0;
4418       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4419       zId = pExpr->u.zToken;
4420       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4421 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4422       if( pDef==0 && pParse->explain ){
4423         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4424       }
4425 #endif
4426       if( pDef==0 || pDef->xFinalize!=0 ){
4427         sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr);
4428         break;
4429       }
4430       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4431         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4432         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4433         return exprCodeInlineFunction(pParse, pFarg,
4434              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4435       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4436         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4437       }
4438 
4439       for(i=0; i<nFarg; i++){
4440         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4441           testcase( i==31 );
4442           constMask |= MASKBIT32(i);
4443         }
4444         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4445           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4446         }
4447       }
4448       if( pFarg ){
4449         if( constMask ){
4450           r1 = pParse->nMem+1;
4451           pParse->nMem += nFarg;
4452         }else{
4453           r1 = sqlite3GetTempRange(pParse, nFarg);
4454         }
4455 
4456         /* For length() and typeof() functions with a column argument,
4457         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4458         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4459         ** loading.
4460         */
4461         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4462           u8 exprOp;
4463           assert( nFarg==1 );
4464           assert( pFarg->a[0].pExpr!=0 );
4465           exprOp = pFarg->a[0].pExpr->op;
4466           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4467             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4468             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4469             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4470             pFarg->a[0].pExpr->op2 =
4471                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4472           }
4473         }
4474 
4475         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4476                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4477       }else{
4478         r1 = 0;
4479       }
4480 #ifndef SQLITE_OMIT_VIRTUALTABLE
4481       /* Possibly overload the function if the first argument is
4482       ** a virtual table column.
4483       **
4484       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4485       ** second argument, not the first, as the argument to test to
4486       ** see if it is a column in a virtual table.  This is done because
4487       ** the left operand of infix functions (the operand we want to
4488       ** control overloading) ends up as the second argument to the
4489       ** function.  The expression "A glob B" is equivalent to
4490       ** "glob(B,A).  We want to use the A in "A glob B" to test
4491       ** for function overloading.  But we use the B term in "glob(B,A)".
4492       */
4493       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4494         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4495       }else if( nFarg>0 ){
4496         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4497       }
4498 #endif
4499       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4500         if( !pColl ) pColl = db->pDfltColl;
4501         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4502       }
4503       sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4504                                  pDef, pExpr->op2);
4505       if( nFarg ){
4506         if( constMask==0 ){
4507           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4508         }else{
4509           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4510         }
4511       }
4512       return target;
4513     }
4514 #ifndef SQLITE_OMIT_SUBQUERY
4515     case TK_EXISTS:
4516     case TK_SELECT: {
4517       int nCol;
4518       testcase( op==TK_EXISTS );
4519       testcase( op==TK_SELECT );
4520       if( pParse->db->mallocFailed ){
4521         return 0;
4522       }else if( op==TK_SELECT
4523              && ALWAYS( ExprUseXSelect(pExpr) )
4524              && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1
4525       ){
4526         sqlite3SubselectError(pParse, nCol, 1);
4527       }else{
4528         return sqlite3CodeSubselect(pParse, pExpr);
4529       }
4530       break;
4531     }
4532     case TK_SELECT_COLUMN: {
4533       int n;
4534       Expr *pLeft = pExpr->pLeft;
4535       if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){
4536         pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft);
4537         pLeft->op2 = pParse->withinRJSubrtn;
4538       }
4539       assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR );
4540       n = sqlite3ExprVectorSize(pLeft);
4541       if( pExpr->iTable!=n ){
4542         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4543                                 pExpr->iTable, n);
4544       }
4545       return pLeft->iTable + pExpr->iColumn;
4546     }
4547     case TK_IN: {
4548       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4549       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4550       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4551       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4552       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4553       sqlite3VdbeResolveLabel(v, destIfFalse);
4554       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4555       sqlite3VdbeResolveLabel(v, destIfNull);
4556       return target;
4557     }
4558 #endif /* SQLITE_OMIT_SUBQUERY */
4559 
4560 
4561     /*
4562     **    x BETWEEN y AND z
4563     **
4564     ** This is equivalent to
4565     **
4566     **    x>=y AND x<=z
4567     **
4568     ** X is stored in pExpr->pLeft.
4569     ** Y is stored in pExpr->pList->a[0].pExpr.
4570     ** Z is stored in pExpr->pList->a[1].pExpr.
4571     */
4572     case TK_BETWEEN: {
4573       exprCodeBetween(pParse, pExpr, target, 0, 0);
4574       return target;
4575     }
4576     case TK_COLLATE: {
4577       if( !ExprHasProperty(pExpr, EP_Collate)
4578        && ALWAYS(pExpr->pLeft)
4579        && pExpr->pLeft->op==TK_FUNCTION
4580       ){
4581         inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4582         if( inReg!=target ){
4583           sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4584           inReg = target;
4585         }
4586         sqlite3VdbeAddOp1(v, OP_ClrSubtype, inReg);
4587         return inReg;
4588       }else{
4589         pExpr = pExpr->pLeft;
4590         goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */
4591       }
4592     }
4593     case TK_SPAN:
4594     case TK_UPLUS: {
4595       pExpr = pExpr->pLeft;
4596       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4597     }
4598 
4599     case TK_TRIGGER: {
4600       /* If the opcode is TK_TRIGGER, then the expression is a reference
4601       ** to a column in the new.* or old.* pseudo-tables available to
4602       ** trigger programs. In this case Expr.iTable is set to 1 for the
4603       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4604       ** is set to the column of the pseudo-table to read, or to -1 to
4605       ** read the rowid field.
4606       **
4607       ** The expression is implemented using an OP_Param opcode. The p1
4608       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4609       ** to reference another column of the old.* pseudo-table, where
4610       ** i is the index of the column. For a new.rowid reference, p1 is
4611       ** set to (n+1), where n is the number of columns in each pseudo-table.
4612       ** For a reference to any other column in the new.* pseudo-table, p1
4613       ** is set to (n+2+i), where n and i are as defined previously. For
4614       ** example, if the table on which triggers are being fired is
4615       ** declared as:
4616       **
4617       **   CREATE TABLE t1(a, b);
4618       **
4619       ** Then p1 is interpreted as follows:
4620       **
4621       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4622       **   p1==1   ->    old.a         p1==4   ->    new.a
4623       **   p1==2   ->    old.b         p1==5   ->    new.b
4624       */
4625       Table *pTab;
4626       int iCol;
4627       int p1;
4628 
4629       assert( ExprUseYTab(pExpr) );
4630       pTab = pExpr->y.pTab;
4631       iCol = pExpr->iColumn;
4632       p1 = pExpr->iTable * (pTab->nCol+1) + 1
4633                      + sqlite3TableColumnToStorage(pTab, iCol);
4634 
4635       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4636       assert( iCol>=-1 && iCol<pTab->nCol );
4637       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4638       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4639 
4640       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4641       VdbeComment((v, "r[%d]=%s.%s", target,
4642         (pExpr->iTable ? "new" : "old"),
4643         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName)
4644       ));
4645 
4646 #ifndef SQLITE_OMIT_FLOATING_POINT
4647       /* If the column has REAL affinity, it may currently be stored as an
4648       ** integer. Use OP_RealAffinity to make sure it is really real.
4649       **
4650       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4651       ** floating point when extracting it from the record.  */
4652       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4653         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4654       }
4655 #endif
4656       break;
4657     }
4658 
4659     case TK_VECTOR: {
4660       sqlite3ErrorMsg(pParse, "row value misused");
4661       break;
4662     }
4663 
4664     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4665     ** that derive from the right-hand table of a LEFT JOIN.  The
4666     ** Expr.iTable value is the table number for the right-hand table.
4667     ** The expression is only evaluated if that table is not currently
4668     ** on a LEFT JOIN NULL row.
4669     */
4670     case TK_IF_NULL_ROW: {
4671       int addrINR;
4672       u8 okConstFactor = pParse->okConstFactor;
4673       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4674       /* Temporarily disable factoring of constant expressions, since
4675       ** even though expressions may appear to be constant, they are not
4676       ** really constant because they originate from the right-hand side
4677       ** of a LEFT JOIN. */
4678       pParse->okConstFactor = 0;
4679       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4680       pParse->okConstFactor = okConstFactor;
4681       sqlite3VdbeJumpHere(v, addrINR);
4682       sqlite3VdbeChangeP3(v, addrINR, inReg);
4683       break;
4684     }
4685 
4686     /*
4687     ** Form A:
4688     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4689     **
4690     ** Form B:
4691     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4692     **
4693     ** Form A is can be transformed into the equivalent form B as follows:
4694     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4695     **        WHEN x=eN THEN rN ELSE y END
4696     **
4697     ** X (if it exists) is in pExpr->pLeft.
4698     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4699     ** odd.  The Y is also optional.  If the number of elements in x.pList
4700     ** is even, then Y is omitted and the "otherwise" result is NULL.
4701     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4702     **
4703     ** The result of the expression is the Ri for the first matching Ei,
4704     ** or if there is no matching Ei, the ELSE term Y, or if there is
4705     ** no ELSE term, NULL.
4706     */
4707     case TK_CASE: {
4708       int endLabel;                     /* GOTO label for end of CASE stmt */
4709       int nextCase;                     /* GOTO label for next WHEN clause */
4710       int nExpr;                        /* 2x number of WHEN terms */
4711       int i;                            /* Loop counter */
4712       ExprList *pEList;                 /* List of WHEN terms */
4713       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4714       Expr opCompare;                   /* The X==Ei expression */
4715       Expr *pX;                         /* The X expression */
4716       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4717       Expr *pDel = 0;
4718       sqlite3 *db = pParse->db;
4719 
4720       assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 );
4721       assert(pExpr->x.pList->nExpr > 0);
4722       pEList = pExpr->x.pList;
4723       aListelem = pEList->a;
4724       nExpr = pEList->nExpr;
4725       endLabel = sqlite3VdbeMakeLabel(pParse);
4726       if( (pX = pExpr->pLeft)!=0 ){
4727         pDel = sqlite3ExprDup(db, pX, 0);
4728         if( db->mallocFailed ){
4729           sqlite3ExprDelete(db, pDel);
4730           break;
4731         }
4732         testcase( pX->op==TK_COLUMN );
4733         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4734         testcase( regFree1==0 );
4735         memset(&opCompare, 0, sizeof(opCompare));
4736         opCompare.op = TK_EQ;
4737         opCompare.pLeft = pDel;
4738         pTest = &opCompare;
4739         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4740         ** The value in regFree1 might get SCopy-ed into the file result.
4741         ** So make sure that the regFree1 register is not reused for other
4742         ** purposes and possibly overwritten.  */
4743         regFree1 = 0;
4744       }
4745       for(i=0; i<nExpr-1; i=i+2){
4746         if( pX ){
4747           assert( pTest!=0 );
4748           opCompare.pRight = aListelem[i].pExpr;
4749         }else{
4750           pTest = aListelem[i].pExpr;
4751         }
4752         nextCase = sqlite3VdbeMakeLabel(pParse);
4753         testcase( pTest->op==TK_COLUMN );
4754         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4755         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4756         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4757         sqlite3VdbeGoto(v, endLabel);
4758         sqlite3VdbeResolveLabel(v, nextCase);
4759       }
4760       if( (nExpr&1)!=0 ){
4761         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4762       }else{
4763         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4764       }
4765       sqlite3ExprDelete(db, pDel);
4766       setDoNotMergeFlagOnCopy(v);
4767       sqlite3VdbeResolveLabel(v, endLabel);
4768       break;
4769     }
4770 #ifndef SQLITE_OMIT_TRIGGER
4771     case TK_RAISE: {
4772       assert( pExpr->affExpr==OE_Rollback
4773            || pExpr->affExpr==OE_Abort
4774            || pExpr->affExpr==OE_Fail
4775            || pExpr->affExpr==OE_Ignore
4776       );
4777       if( !pParse->pTriggerTab && !pParse->nested ){
4778         sqlite3ErrorMsg(pParse,
4779                        "RAISE() may only be used within a trigger-program");
4780         return 0;
4781       }
4782       if( pExpr->affExpr==OE_Abort ){
4783         sqlite3MayAbort(pParse);
4784       }
4785       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4786       if( pExpr->affExpr==OE_Ignore ){
4787         sqlite3VdbeAddOp4(
4788             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4789         VdbeCoverage(v);
4790       }else{
4791         sqlite3HaltConstraint(pParse,
4792              pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4793              pExpr->affExpr, pExpr->u.zToken, 0, 0);
4794       }
4795 
4796       break;
4797     }
4798 #endif
4799   }
4800   sqlite3ReleaseTempReg(pParse, regFree1);
4801   sqlite3ReleaseTempReg(pParse, regFree2);
4802   return inReg;
4803 }
4804 
4805 /*
4806 ** Generate code that will evaluate expression pExpr just one time
4807 ** per prepared statement execution.
4808 **
4809 ** If the expression uses functions (that might throw an exception) then
4810 ** guard them with an OP_Once opcode to ensure that the code is only executed
4811 ** once. If no functions are involved, then factor the code out and put it at
4812 ** the end of the prepared statement in the initialization section.
4813 **
4814 ** If regDest>=0 then the result is always stored in that register and the
4815 ** result is not reusable.  If regDest<0 then this routine is free to
4816 ** store the value whereever it wants.  The register where the expression
4817 ** is stored is returned.  When regDest<0, two identical expressions might
4818 ** code to the same register, if they do not contain function calls and hence
4819 ** are factored out into the initialization section at the end of the
4820 ** prepared statement.
4821 */
4822 int sqlite3ExprCodeRunJustOnce(
4823   Parse *pParse,    /* Parsing context */
4824   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4825   int regDest       /* Store the value in this register */
4826 ){
4827   ExprList *p;
4828   assert( ConstFactorOk(pParse) );
4829   p = pParse->pConstExpr;
4830   if( regDest<0 && p ){
4831     struct ExprList_item *pItem;
4832     int i;
4833     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4834       if( pItem->fg.reusable
4835        && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0
4836       ){
4837         return pItem->u.iConstExprReg;
4838       }
4839     }
4840   }
4841   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4842   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4843     Vdbe *v = pParse->pVdbe;
4844     int addr;
4845     assert( v );
4846     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4847     pParse->okConstFactor = 0;
4848     if( !pParse->db->mallocFailed ){
4849       if( regDest<0 ) regDest = ++pParse->nMem;
4850       sqlite3ExprCode(pParse, pExpr, regDest);
4851     }
4852     pParse->okConstFactor = 1;
4853     sqlite3ExprDelete(pParse->db, pExpr);
4854     sqlite3VdbeJumpHere(v, addr);
4855   }else{
4856     p = sqlite3ExprListAppend(pParse, p, pExpr);
4857     if( p ){
4858        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4859        pItem->fg.reusable = regDest<0;
4860        if( regDest<0 ) regDest = ++pParse->nMem;
4861        pItem->u.iConstExprReg = regDest;
4862     }
4863     pParse->pConstExpr = p;
4864   }
4865   return regDest;
4866 }
4867 
4868 /*
4869 ** Generate code to evaluate an expression and store the results
4870 ** into a register.  Return the register number where the results
4871 ** are stored.
4872 **
4873 ** If the register is a temporary register that can be deallocated,
4874 ** then write its number into *pReg.  If the result register is not
4875 ** a temporary, then set *pReg to zero.
4876 **
4877 ** If pExpr is a constant, then this routine might generate this
4878 ** code to fill the register in the initialization section of the
4879 ** VDBE program, in order to factor it out of the evaluation loop.
4880 */
4881 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4882   int r2;
4883   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4884   if( ConstFactorOk(pParse)
4885    && ALWAYS(pExpr!=0)
4886    && pExpr->op!=TK_REGISTER
4887    && sqlite3ExprIsConstantNotJoin(pExpr)
4888   ){
4889     *pReg  = 0;
4890     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4891   }else{
4892     int r1 = sqlite3GetTempReg(pParse);
4893     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4894     if( r2==r1 ){
4895       *pReg = r1;
4896     }else{
4897       sqlite3ReleaseTempReg(pParse, r1);
4898       *pReg = 0;
4899     }
4900   }
4901   return r2;
4902 }
4903 
4904 /*
4905 ** Generate code that will evaluate expression pExpr and store the
4906 ** results in register target.  The results are guaranteed to appear
4907 ** in register target.
4908 */
4909 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4910   int inReg;
4911 
4912   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4913   assert( target>0 && target<=pParse->nMem );
4914   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4915   if( pParse->pVdbe==0 ) return;
4916   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4917   if( inReg!=target ){
4918     u8 op;
4919     if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){
4920       op = OP_Copy;
4921     }else{
4922       op = OP_SCopy;
4923     }
4924     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4925   }
4926 }
4927 
4928 /*
4929 ** Make a transient copy of expression pExpr and then code it using
4930 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4931 ** except that the input expression is guaranteed to be unchanged.
4932 */
4933 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4934   sqlite3 *db = pParse->db;
4935   pExpr = sqlite3ExprDup(db, pExpr, 0);
4936   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4937   sqlite3ExprDelete(db, pExpr);
4938 }
4939 
4940 /*
4941 ** Generate code that will evaluate expression pExpr and store the
4942 ** results in register target.  The results are guaranteed to appear
4943 ** in register target.  If the expression is constant, then this routine
4944 ** might choose to code the expression at initialization time.
4945 */
4946 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4947   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4948     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4949   }else{
4950     sqlite3ExprCodeCopy(pParse, pExpr, target);
4951   }
4952 }
4953 
4954 /*
4955 ** Generate code that pushes the value of every element of the given
4956 ** expression list into a sequence of registers beginning at target.
4957 **
4958 ** Return the number of elements evaluated.  The number returned will
4959 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4960 ** is defined.
4961 **
4962 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4963 ** filled using OP_SCopy.  OP_Copy must be used instead.
4964 **
4965 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4966 ** factored out into initialization code.
4967 **
4968 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4969 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4970 ** in registers at srcReg, and so the value can be copied from there.
4971 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4972 ** are simply omitted rather than being copied from srcReg.
4973 */
4974 int sqlite3ExprCodeExprList(
4975   Parse *pParse,     /* Parsing context */
4976   ExprList *pList,   /* The expression list to be coded */
4977   int target,        /* Where to write results */
4978   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4979   u8 flags           /* SQLITE_ECEL_* flags */
4980 ){
4981   struct ExprList_item *pItem;
4982   int i, j, n;
4983   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4984   Vdbe *v = pParse->pVdbe;
4985   assert( pList!=0 );
4986   assert( target>0 );
4987   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4988   n = pList->nExpr;
4989   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4990   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4991     Expr *pExpr = pItem->pExpr;
4992 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4993     if( pItem->fg.bSorterRef ){
4994       i--;
4995       n--;
4996     }else
4997 #endif
4998     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4999       if( flags & SQLITE_ECEL_OMITREF ){
5000         i--;
5001         n--;
5002       }else{
5003         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
5004       }
5005     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
5006            && sqlite3ExprIsConstantNotJoin(pExpr)
5007     ){
5008       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
5009     }else{
5010       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
5011       if( inReg!=target+i ){
5012         VdbeOp *pOp;
5013         if( copyOp==OP_Copy
5014          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
5015          && pOp->p1+pOp->p3+1==inReg
5016          && pOp->p2+pOp->p3+1==target+i
5017          && pOp->p5==0  /* The do-not-merge flag must be clear */
5018         ){
5019           pOp->p3++;
5020         }else{
5021           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
5022         }
5023       }
5024     }
5025   }
5026   return n;
5027 }
5028 
5029 /*
5030 ** Generate code for a BETWEEN operator.
5031 **
5032 **    x BETWEEN y AND z
5033 **
5034 ** The above is equivalent to
5035 **
5036 **    x>=y AND x<=z
5037 **
5038 ** Code it as such, taking care to do the common subexpression
5039 ** elimination of x.
5040 **
5041 ** The xJumpIf parameter determines details:
5042 **
5043 **    NULL:                   Store the boolean result in reg[dest]
5044 **    sqlite3ExprIfTrue:      Jump to dest if true
5045 **    sqlite3ExprIfFalse:     Jump to dest if false
5046 **
5047 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
5048 */
5049 static void exprCodeBetween(
5050   Parse *pParse,    /* Parsing and code generating context */
5051   Expr *pExpr,      /* The BETWEEN expression */
5052   int dest,         /* Jump destination or storage location */
5053   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
5054   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
5055 ){
5056   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
5057   Expr compLeft;    /* The  x>=y  term */
5058   Expr compRight;   /* The  x<=z  term */
5059   int regFree1 = 0; /* Temporary use register */
5060   Expr *pDel = 0;
5061   sqlite3 *db = pParse->db;
5062 
5063   memset(&compLeft, 0, sizeof(Expr));
5064   memset(&compRight, 0, sizeof(Expr));
5065   memset(&exprAnd, 0, sizeof(Expr));
5066 
5067   assert( ExprUseXList(pExpr) );
5068   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
5069   if( db->mallocFailed==0 ){
5070     exprAnd.op = TK_AND;
5071     exprAnd.pLeft = &compLeft;
5072     exprAnd.pRight = &compRight;
5073     compLeft.op = TK_GE;
5074     compLeft.pLeft = pDel;
5075     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
5076     compRight.op = TK_LE;
5077     compRight.pLeft = pDel;
5078     compRight.pRight = pExpr->x.pList->a[1].pExpr;
5079     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
5080     if( xJump ){
5081       xJump(pParse, &exprAnd, dest, jumpIfNull);
5082     }else{
5083       /* Mark the expression is being from the ON or USING clause of a join
5084       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
5085       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
5086       ** for clarity, but we are out of bits in the Expr.flags field so we
5087       ** have to reuse the EP_OuterON bit.  Bummer. */
5088       pDel->flags |= EP_OuterON;
5089       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
5090     }
5091     sqlite3ReleaseTempReg(pParse, regFree1);
5092   }
5093   sqlite3ExprDelete(db, pDel);
5094 
5095   /* Ensure adequate test coverage */
5096   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
5097   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
5098   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
5099   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
5100   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
5101   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
5102   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
5103   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
5104   testcase( xJump==0 );
5105 }
5106 
5107 /*
5108 ** Generate code for a boolean expression such that a jump is made
5109 ** to the label "dest" if the expression is true but execution
5110 ** continues straight thru if the expression is false.
5111 **
5112 ** If the expression evaluates to NULL (neither true nor false), then
5113 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
5114 **
5115 ** This code depends on the fact that certain token values (ex: TK_EQ)
5116 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
5117 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
5118 ** the make process cause these values to align.  Assert()s in the code
5119 ** below verify that the numbers are aligned correctly.
5120 */
5121 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5122   Vdbe *v = pParse->pVdbe;
5123   int op = 0;
5124   int regFree1 = 0;
5125   int regFree2 = 0;
5126   int r1, r2;
5127 
5128   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5129   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
5130   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
5131   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
5132   op = pExpr->op;
5133   switch( op ){
5134     case TK_AND:
5135     case TK_OR: {
5136       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5137       if( pAlt!=pExpr ){
5138         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
5139       }else if( op==TK_AND ){
5140         int d2 = sqlite3VdbeMakeLabel(pParse);
5141         testcase( jumpIfNull==0 );
5142         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
5143                            jumpIfNull^SQLITE_JUMPIFNULL);
5144         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5145         sqlite3VdbeResolveLabel(v, d2);
5146       }else{
5147         testcase( jumpIfNull==0 );
5148         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5149         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5150       }
5151       break;
5152     }
5153     case TK_NOT: {
5154       testcase( jumpIfNull==0 );
5155       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5156       break;
5157     }
5158     case TK_TRUTH: {
5159       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
5160       int isTrue;     /* IS TRUE or IS NOT TRUE */
5161       testcase( jumpIfNull==0 );
5162       isNot = pExpr->op2==TK_ISNOT;
5163       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5164       testcase( isTrue && isNot );
5165       testcase( !isTrue && isNot );
5166       if( isTrue ^ isNot ){
5167         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5168                           isNot ? SQLITE_JUMPIFNULL : 0);
5169       }else{
5170         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5171                            isNot ? SQLITE_JUMPIFNULL : 0);
5172       }
5173       break;
5174     }
5175     case TK_IS:
5176     case TK_ISNOT:
5177       testcase( op==TK_IS );
5178       testcase( op==TK_ISNOT );
5179       op = (op==TK_IS) ? TK_EQ : TK_NE;
5180       jumpIfNull = SQLITE_NULLEQ;
5181       /* no break */ deliberate_fall_through
5182     case TK_LT:
5183     case TK_LE:
5184     case TK_GT:
5185     case TK_GE:
5186     case TK_NE:
5187     case TK_EQ: {
5188       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5189       testcase( jumpIfNull==0 );
5190       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5191       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5192       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5193                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
5194       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5195       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5196       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5197       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5198       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5199       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5200       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5201       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5202       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5203       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5204       testcase( regFree1==0 );
5205       testcase( regFree2==0 );
5206       break;
5207     }
5208     case TK_ISNULL:
5209     case TK_NOTNULL: {
5210       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
5211       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
5212       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5213       sqlite3VdbeAddOp2(v, op, r1, dest);
5214       VdbeCoverageIf(v, op==TK_ISNULL);
5215       VdbeCoverageIf(v, op==TK_NOTNULL);
5216       testcase( regFree1==0 );
5217       break;
5218     }
5219     case TK_BETWEEN: {
5220       testcase( jumpIfNull==0 );
5221       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
5222       break;
5223     }
5224 #ifndef SQLITE_OMIT_SUBQUERY
5225     case TK_IN: {
5226       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
5227       int destIfNull = jumpIfNull ? dest : destIfFalse;
5228       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
5229       sqlite3VdbeGoto(v, dest);
5230       sqlite3VdbeResolveLabel(v, destIfFalse);
5231       break;
5232     }
5233 #endif
5234     default: {
5235     default_expr:
5236       if( ExprAlwaysTrue(pExpr) ){
5237         sqlite3VdbeGoto(v, dest);
5238       }else if( ExprAlwaysFalse(pExpr) ){
5239         /* No-op */
5240       }else{
5241         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5242         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
5243         VdbeCoverage(v);
5244         testcase( regFree1==0 );
5245         testcase( jumpIfNull==0 );
5246       }
5247       break;
5248     }
5249   }
5250   sqlite3ReleaseTempReg(pParse, regFree1);
5251   sqlite3ReleaseTempReg(pParse, regFree2);
5252 }
5253 
5254 /*
5255 ** Generate code for a boolean expression such that a jump is made
5256 ** to the label "dest" if the expression is false but execution
5257 ** continues straight thru if the expression is true.
5258 **
5259 ** If the expression evaluates to NULL (neither true nor false) then
5260 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5261 ** is 0.
5262 */
5263 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5264   Vdbe *v = pParse->pVdbe;
5265   int op = 0;
5266   int regFree1 = 0;
5267   int regFree2 = 0;
5268   int r1, r2;
5269 
5270   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5271   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5272   if( pExpr==0 )    return;
5273   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5274 
5275   /* The value of pExpr->op and op are related as follows:
5276   **
5277   **       pExpr->op            op
5278   **       ---------          ----------
5279   **       TK_ISNULL          OP_NotNull
5280   **       TK_NOTNULL         OP_IsNull
5281   **       TK_NE              OP_Eq
5282   **       TK_EQ              OP_Ne
5283   **       TK_GT              OP_Le
5284   **       TK_LE              OP_Gt
5285   **       TK_GE              OP_Lt
5286   **       TK_LT              OP_Ge
5287   **
5288   ** For other values of pExpr->op, op is undefined and unused.
5289   ** The value of TK_ and OP_ constants are arranged such that we
5290   ** can compute the mapping above using the following expression.
5291   ** Assert()s verify that the computation is correct.
5292   */
5293   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5294 
5295   /* Verify correct alignment of TK_ and OP_ constants
5296   */
5297   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5298   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5299   assert( pExpr->op!=TK_NE || op==OP_Eq );
5300   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5301   assert( pExpr->op!=TK_LT || op==OP_Ge );
5302   assert( pExpr->op!=TK_LE || op==OP_Gt );
5303   assert( pExpr->op!=TK_GT || op==OP_Le );
5304   assert( pExpr->op!=TK_GE || op==OP_Lt );
5305 
5306   switch( pExpr->op ){
5307     case TK_AND:
5308     case TK_OR: {
5309       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5310       if( pAlt!=pExpr ){
5311         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5312       }else if( pExpr->op==TK_AND ){
5313         testcase( jumpIfNull==0 );
5314         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5315         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5316       }else{
5317         int d2 = sqlite3VdbeMakeLabel(pParse);
5318         testcase( jumpIfNull==0 );
5319         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5320                           jumpIfNull^SQLITE_JUMPIFNULL);
5321         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5322         sqlite3VdbeResolveLabel(v, d2);
5323       }
5324       break;
5325     }
5326     case TK_NOT: {
5327       testcase( jumpIfNull==0 );
5328       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5329       break;
5330     }
5331     case TK_TRUTH: {
5332       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5333       int isTrue;  /* IS TRUE or IS NOT TRUE */
5334       testcase( jumpIfNull==0 );
5335       isNot = pExpr->op2==TK_ISNOT;
5336       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5337       testcase( isTrue && isNot );
5338       testcase( !isTrue && isNot );
5339       if( isTrue ^ isNot ){
5340         /* IS TRUE and IS NOT FALSE */
5341         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5342                            isNot ? 0 : SQLITE_JUMPIFNULL);
5343 
5344       }else{
5345         /* IS FALSE and IS NOT TRUE */
5346         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5347                           isNot ? 0 : SQLITE_JUMPIFNULL);
5348       }
5349       break;
5350     }
5351     case TK_IS:
5352     case TK_ISNOT:
5353       testcase( pExpr->op==TK_IS );
5354       testcase( pExpr->op==TK_ISNOT );
5355       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5356       jumpIfNull = SQLITE_NULLEQ;
5357       /* no break */ deliberate_fall_through
5358     case TK_LT:
5359     case TK_LE:
5360     case TK_GT:
5361     case TK_GE:
5362     case TK_NE:
5363     case TK_EQ: {
5364       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5365       testcase( jumpIfNull==0 );
5366       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5367       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5368       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5369                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5370       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5371       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5372       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5373       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5374       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5375       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5376       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5377       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5378       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5379       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5380       testcase( regFree1==0 );
5381       testcase( regFree2==0 );
5382       break;
5383     }
5384     case TK_ISNULL:
5385     case TK_NOTNULL: {
5386       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5387       sqlite3VdbeAddOp2(v, op, r1, dest);
5388       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5389       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5390       testcase( regFree1==0 );
5391       break;
5392     }
5393     case TK_BETWEEN: {
5394       testcase( jumpIfNull==0 );
5395       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5396       break;
5397     }
5398 #ifndef SQLITE_OMIT_SUBQUERY
5399     case TK_IN: {
5400       if( jumpIfNull ){
5401         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5402       }else{
5403         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5404         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5405         sqlite3VdbeResolveLabel(v, destIfNull);
5406       }
5407       break;
5408     }
5409 #endif
5410     default: {
5411     default_expr:
5412       if( ExprAlwaysFalse(pExpr) ){
5413         sqlite3VdbeGoto(v, dest);
5414       }else if( ExprAlwaysTrue(pExpr) ){
5415         /* no-op */
5416       }else{
5417         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5418         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5419         VdbeCoverage(v);
5420         testcase( regFree1==0 );
5421         testcase( jumpIfNull==0 );
5422       }
5423       break;
5424     }
5425   }
5426   sqlite3ReleaseTempReg(pParse, regFree1);
5427   sqlite3ReleaseTempReg(pParse, regFree2);
5428 }
5429 
5430 /*
5431 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5432 ** code generation, and that copy is deleted after code generation. This
5433 ** ensures that the original pExpr is unchanged.
5434 */
5435 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5436   sqlite3 *db = pParse->db;
5437   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5438   if( db->mallocFailed==0 ){
5439     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5440   }
5441   sqlite3ExprDelete(db, pCopy);
5442 }
5443 
5444 /*
5445 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5446 ** type of expression.
5447 **
5448 ** If pExpr is a simple SQL value - an integer, real, string, blob
5449 ** or NULL value - then the VDBE currently being prepared is configured
5450 ** to re-prepare each time a new value is bound to variable pVar.
5451 **
5452 ** Additionally, if pExpr is a simple SQL value and the value is the
5453 ** same as that currently bound to variable pVar, non-zero is returned.
5454 ** Otherwise, if the values are not the same or if pExpr is not a simple
5455 ** SQL value, zero is returned.
5456 */
5457 static int exprCompareVariable(
5458   const Parse *pParse,
5459   const Expr *pVar,
5460   const Expr *pExpr
5461 ){
5462   int res = 0;
5463   int iVar;
5464   sqlite3_value *pL, *pR = 0;
5465 
5466   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5467   if( pR ){
5468     iVar = pVar->iColumn;
5469     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5470     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5471     if( pL ){
5472       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5473         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5474       }
5475       res =  0==sqlite3MemCompare(pL, pR, 0);
5476     }
5477     sqlite3ValueFree(pR);
5478     sqlite3ValueFree(pL);
5479   }
5480 
5481   return res;
5482 }
5483 
5484 /*
5485 ** Do a deep comparison of two expression trees.  Return 0 if the two
5486 ** expressions are completely identical.  Return 1 if they differ only
5487 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5488 ** other than the top-level COLLATE operator.
5489 **
5490 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5491 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5492 **
5493 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5494 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5495 **
5496 ** Sometimes this routine will return 2 even if the two expressions
5497 ** really are equivalent.  If we cannot prove that the expressions are
5498 ** identical, we return 2 just to be safe.  So if this routine
5499 ** returns 2, then you do not really know for certain if the two
5500 ** expressions are the same.  But if you get a 0 or 1 return, then you
5501 ** can be sure the expressions are the same.  In the places where
5502 ** this routine is used, it does not hurt to get an extra 2 - that
5503 ** just might result in some slightly slower code.  But returning
5504 ** an incorrect 0 or 1 could lead to a malfunction.
5505 **
5506 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5507 ** pParse->pReprepare can be matched against literals in pB.  The
5508 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5509 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5510 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5511 ** pB causes a return value of 2.
5512 */
5513 int sqlite3ExprCompare(
5514   const Parse *pParse,
5515   const Expr *pA,
5516   const Expr *pB,
5517   int iTab
5518 ){
5519   u32 combinedFlags;
5520   if( pA==0 || pB==0 ){
5521     return pB==pA ? 0 : 2;
5522   }
5523   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5524     return 0;
5525   }
5526   combinedFlags = pA->flags | pB->flags;
5527   if( combinedFlags & EP_IntValue ){
5528     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5529       return 0;
5530     }
5531     return 2;
5532   }
5533   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5534     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5535       return 1;
5536     }
5537     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5538       return 1;
5539     }
5540     return 2;
5541   }
5542   assert( !ExprHasProperty(pA, EP_IntValue) );
5543   assert( !ExprHasProperty(pB, EP_IntValue) );
5544   if( pA->u.zToken ){
5545     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5546       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5547 #ifndef SQLITE_OMIT_WINDOWFUNC
5548       assert( pA->op==pB->op );
5549       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5550         return 2;
5551       }
5552       if( ExprHasProperty(pA,EP_WinFunc) ){
5553         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5554           return 2;
5555         }
5556       }
5557 #endif
5558     }else if( pA->op==TK_NULL ){
5559       return 0;
5560     }else if( pA->op==TK_COLLATE ){
5561       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5562     }else
5563     if( pB->u.zToken!=0
5564      && pA->op!=TK_COLUMN
5565      && pA->op!=TK_AGG_COLUMN
5566      && strcmp(pA->u.zToken,pB->u.zToken)!=0
5567     ){
5568       return 2;
5569     }
5570   }
5571   if( (pA->flags & (EP_Distinct|EP_Commuted))
5572      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5573   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5574     if( combinedFlags & EP_xIsSelect ) return 2;
5575     if( (combinedFlags & EP_FixedCol)==0
5576      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5577     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5578     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5579     if( pA->op!=TK_STRING
5580      && pA->op!=TK_TRUEFALSE
5581      && ALWAYS((combinedFlags & EP_Reduced)==0)
5582     ){
5583       if( pA->iColumn!=pB->iColumn ) return 2;
5584       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5585       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5586         return 2;
5587       }
5588     }
5589   }
5590   return 0;
5591 }
5592 
5593 /*
5594 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5595 ** if they are certainly different, or 2 if it is not possible to
5596 ** determine if they are identical or not.
5597 **
5598 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5599 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5600 **
5601 ** This routine might return non-zero for equivalent ExprLists.  The
5602 ** only consequence will be disabled optimizations.  But this routine
5603 ** must never return 0 if the two ExprList objects are different, or
5604 ** a malfunction will result.
5605 **
5606 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5607 ** always differs from a non-NULL pointer.
5608 */
5609 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){
5610   int i;
5611   if( pA==0 && pB==0 ) return 0;
5612   if( pA==0 || pB==0 ) return 1;
5613   if( pA->nExpr!=pB->nExpr ) return 1;
5614   for(i=0; i<pA->nExpr; i++){
5615     int res;
5616     Expr *pExprA = pA->a[i].pExpr;
5617     Expr *pExprB = pB->a[i].pExpr;
5618     if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1;
5619     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5620   }
5621   return 0;
5622 }
5623 
5624 /*
5625 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5626 ** are ignored.
5627 */
5628 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){
5629   return sqlite3ExprCompare(0,
5630              sqlite3ExprSkipCollateAndLikely(pA),
5631              sqlite3ExprSkipCollateAndLikely(pB),
5632              iTab);
5633 }
5634 
5635 /*
5636 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5637 **
5638 ** Or if seenNot is true, return non-zero if Expr p can only be
5639 ** non-NULL if pNN is not NULL
5640 */
5641 static int exprImpliesNotNull(
5642   const Parse *pParse,/* Parsing context */
5643   const Expr *p,      /* The expression to be checked */
5644   const Expr *pNN,    /* The expression that is NOT NULL */
5645   int iTab,           /* Table being evaluated */
5646   int seenNot         /* Return true only if p can be any non-NULL value */
5647 ){
5648   assert( p );
5649   assert( pNN );
5650   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5651     return pNN->op!=TK_NULL;
5652   }
5653   switch( p->op ){
5654     case TK_IN: {
5655       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5656       assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5657       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5658     }
5659     case TK_BETWEEN: {
5660       ExprList *pList;
5661       assert( ExprUseXList(p) );
5662       pList = p->x.pList;
5663       assert( pList!=0 );
5664       assert( pList->nExpr==2 );
5665       if( seenNot ) return 0;
5666       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5667        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5668       ){
5669         return 1;
5670       }
5671       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5672     }
5673     case TK_EQ:
5674     case TK_NE:
5675     case TK_LT:
5676     case TK_LE:
5677     case TK_GT:
5678     case TK_GE:
5679     case TK_PLUS:
5680     case TK_MINUS:
5681     case TK_BITOR:
5682     case TK_LSHIFT:
5683     case TK_RSHIFT:
5684     case TK_CONCAT:
5685       seenNot = 1;
5686       /* no break */ deliberate_fall_through
5687     case TK_STAR:
5688     case TK_REM:
5689     case TK_BITAND:
5690     case TK_SLASH: {
5691       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5692       /* no break */ deliberate_fall_through
5693     }
5694     case TK_SPAN:
5695     case TK_COLLATE:
5696     case TK_UPLUS:
5697     case TK_UMINUS: {
5698       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5699     }
5700     case TK_TRUTH: {
5701       if( seenNot ) return 0;
5702       if( p->op2!=TK_IS ) return 0;
5703       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5704     }
5705     case TK_BITNOT:
5706     case TK_NOT: {
5707       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5708     }
5709   }
5710   return 0;
5711 }
5712 
5713 /*
5714 ** Return true if we can prove the pE2 will always be true if pE1 is
5715 ** true.  Return false if we cannot complete the proof or if pE2 might
5716 ** be false.  Examples:
5717 **
5718 **     pE1: x==5       pE2: x==5             Result: true
5719 **     pE1: x>0        pE2: x==5             Result: false
5720 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5721 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5722 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5723 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5724 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5725 **
5726 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5727 ** Expr.iTable<0 then assume a table number given by iTab.
5728 **
5729 ** If pParse is not NULL, then the values of bound variables in pE1 are
5730 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5731 ** modified to record which bound variables are referenced.  If pParse
5732 ** is NULL, then false will be returned if pE1 contains any bound variables.
5733 **
5734 ** When in doubt, return false.  Returning true might give a performance
5735 ** improvement.  Returning false might cause a performance reduction, but
5736 ** it will always give the correct answer and is hence always safe.
5737 */
5738 int sqlite3ExprImpliesExpr(
5739   const Parse *pParse,
5740   const Expr *pE1,
5741   const Expr *pE2,
5742   int iTab
5743 ){
5744   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5745     return 1;
5746   }
5747   if( pE2->op==TK_OR
5748    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5749              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5750   ){
5751     return 1;
5752   }
5753   if( pE2->op==TK_NOTNULL
5754    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5755   ){
5756     return 1;
5757   }
5758   return 0;
5759 }
5760 
5761 /*
5762 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5763 ** If the expression node requires that the table at pWalker->iCur
5764 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5765 **
5766 ** This routine controls an optimization.  False positives (setting
5767 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5768 ** (never setting pWalker->eCode) is a harmless missed optimization.
5769 */
5770 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5771   testcase( pExpr->op==TK_AGG_COLUMN );
5772   testcase( pExpr->op==TK_AGG_FUNCTION );
5773   if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune;
5774   switch( pExpr->op ){
5775     case TK_ISNOT:
5776     case TK_ISNULL:
5777     case TK_NOTNULL:
5778     case TK_IS:
5779     case TK_OR:
5780     case TK_VECTOR:
5781     case TK_CASE:
5782     case TK_IN:
5783     case TK_FUNCTION:
5784     case TK_TRUTH:
5785       testcase( pExpr->op==TK_ISNOT );
5786       testcase( pExpr->op==TK_ISNULL );
5787       testcase( pExpr->op==TK_NOTNULL );
5788       testcase( pExpr->op==TK_IS );
5789       testcase( pExpr->op==TK_OR );
5790       testcase( pExpr->op==TK_VECTOR );
5791       testcase( pExpr->op==TK_CASE );
5792       testcase( pExpr->op==TK_IN );
5793       testcase( pExpr->op==TK_FUNCTION );
5794       testcase( pExpr->op==TK_TRUTH );
5795       return WRC_Prune;
5796     case TK_COLUMN:
5797       if( pWalker->u.iCur==pExpr->iTable ){
5798         pWalker->eCode = 1;
5799         return WRC_Abort;
5800       }
5801       return WRC_Prune;
5802 
5803     case TK_AND:
5804       if( pWalker->eCode==0 ){
5805         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5806         if( pWalker->eCode ){
5807           pWalker->eCode = 0;
5808           sqlite3WalkExpr(pWalker, pExpr->pRight);
5809         }
5810       }
5811       return WRC_Prune;
5812 
5813     case TK_BETWEEN:
5814       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5815         assert( pWalker->eCode );
5816         return WRC_Abort;
5817       }
5818       return WRC_Prune;
5819 
5820     /* Virtual tables are allowed to use constraints like x=NULL.  So
5821     ** a term of the form x=y does not prove that y is not null if x
5822     ** is the column of a virtual table */
5823     case TK_EQ:
5824     case TK_NE:
5825     case TK_LT:
5826     case TK_LE:
5827     case TK_GT:
5828     case TK_GE: {
5829       Expr *pLeft = pExpr->pLeft;
5830       Expr *pRight = pExpr->pRight;
5831       testcase( pExpr->op==TK_EQ );
5832       testcase( pExpr->op==TK_NE );
5833       testcase( pExpr->op==TK_LT );
5834       testcase( pExpr->op==TK_LE );
5835       testcase( pExpr->op==TK_GT );
5836       testcase( pExpr->op==TK_GE );
5837       /* The y.pTab=0 assignment in wherecode.c always happens after the
5838       ** impliesNotNullRow() test */
5839       assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) );
5840       assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) );
5841       if( (pLeft->op==TK_COLUMN
5842            && pLeft->y.pTab!=0
5843            && IsVirtual(pLeft->y.pTab))
5844        || (pRight->op==TK_COLUMN
5845            && pRight->y.pTab!=0
5846            && IsVirtual(pRight->y.pTab))
5847       ){
5848         return WRC_Prune;
5849       }
5850       /* no break */ deliberate_fall_through
5851     }
5852     default:
5853       return WRC_Continue;
5854   }
5855 }
5856 
5857 /*
5858 ** Return true (non-zero) if expression p can only be true if at least
5859 ** one column of table iTab is non-null.  In other words, return true
5860 ** if expression p will always be NULL or false if every column of iTab
5861 ** is NULL.
5862 **
5863 ** False negatives are acceptable.  In other words, it is ok to return
5864 ** zero even if expression p will never be true of every column of iTab
5865 ** is NULL.  A false negative is merely a missed optimization opportunity.
5866 **
5867 ** False positives are not allowed, however.  A false positive may result
5868 ** in an incorrect answer.
5869 **
5870 ** Terms of p that are marked with EP_OuterON (and hence that come from
5871 ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis.
5872 **
5873 ** This routine is used to check if a LEFT JOIN can be converted into
5874 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5875 ** clause requires that some column of the right table of the LEFT JOIN
5876 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5877 ** ordinary join.
5878 */
5879 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5880   Walker w;
5881   p = sqlite3ExprSkipCollateAndLikely(p);
5882   if( p==0 ) return 0;
5883   if( p->op==TK_NOTNULL ){
5884     p = p->pLeft;
5885   }else{
5886     while( p->op==TK_AND ){
5887       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5888       p = p->pRight;
5889     }
5890   }
5891   w.xExprCallback = impliesNotNullRow;
5892   w.xSelectCallback = 0;
5893   w.xSelectCallback2 = 0;
5894   w.eCode = 0;
5895   w.u.iCur = iTab;
5896   sqlite3WalkExpr(&w, p);
5897   return w.eCode;
5898 }
5899 
5900 /*
5901 ** An instance of the following structure is used by the tree walker
5902 ** to determine if an expression can be evaluated by reference to the
5903 ** index only, without having to do a search for the corresponding
5904 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5905 ** is the cursor for the table.
5906 */
5907 struct IdxCover {
5908   Index *pIdx;     /* The index to be tested for coverage */
5909   int iCur;        /* Cursor number for the table corresponding to the index */
5910 };
5911 
5912 /*
5913 ** Check to see if there are references to columns in table
5914 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5915 ** pWalker->u.pIdxCover->pIdx.
5916 */
5917 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5918   if( pExpr->op==TK_COLUMN
5919    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5920    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5921   ){
5922     pWalker->eCode = 1;
5923     return WRC_Abort;
5924   }
5925   return WRC_Continue;
5926 }
5927 
5928 /*
5929 ** Determine if an index pIdx on table with cursor iCur contains will
5930 ** the expression pExpr.  Return true if the index does cover the
5931 ** expression and false if the pExpr expression references table columns
5932 ** that are not found in the index pIdx.
5933 **
5934 ** An index covering an expression means that the expression can be
5935 ** evaluated using only the index and without having to lookup the
5936 ** corresponding table entry.
5937 */
5938 int sqlite3ExprCoveredByIndex(
5939   Expr *pExpr,        /* The index to be tested */
5940   int iCur,           /* The cursor number for the corresponding table */
5941   Index *pIdx         /* The index that might be used for coverage */
5942 ){
5943   Walker w;
5944   struct IdxCover xcov;
5945   memset(&w, 0, sizeof(w));
5946   xcov.iCur = iCur;
5947   xcov.pIdx = pIdx;
5948   w.xExprCallback = exprIdxCover;
5949   w.u.pIdxCover = &xcov;
5950   sqlite3WalkExpr(&w, pExpr);
5951   return !w.eCode;
5952 }
5953 
5954 
5955 /* Structure used to pass information throught the Walker in order to
5956 ** implement sqlite3ReferencesSrcList().
5957 */
5958 struct RefSrcList {
5959   sqlite3 *db;         /* Database connection used for sqlite3DbRealloc() */
5960   SrcList *pRef;       /* Looking for references to these tables */
5961   i64 nExclude;        /* Number of tables to exclude from the search */
5962   int *aiExclude;      /* Cursor IDs for tables to exclude from the search */
5963 };
5964 
5965 /*
5966 ** Walker SELECT callbacks for sqlite3ReferencesSrcList().
5967 **
5968 ** When entering a new subquery on the pExpr argument, add all FROM clause
5969 ** entries for that subquery to the exclude list.
5970 **
5971 ** When leaving the subquery, remove those entries from the exclude list.
5972 */
5973 static int selectRefEnter(Walker *pWalker, Select *pSelect){
5974   struct RefSrcList *p = pWalker->u.pRefSrcList;
5975   SrcList *pSrc = pSelect->pSrc;
5976   i64 i, j;
5977   int *piNew;
5978   if( pSrc->nSrc==0 ) return WRC_Continue;
5979   j = p->nExclude;
5980   p->nExclude += pSrc->nSrc;
5981   piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int));
5982   if( piNew==0 ){
5983     p->nExclude = 0;
5984     return WRC_Abort;
5985   }else{
5986     p->aiExclude = piNew;
5987   }
5988   for(i=0; i<pSrc->nSrc; i++, j++){
5989      p->aiExclude[j] = pSrc->a[i].iCursor;
5990   }
5991   return WRC_Continue;
5992 }
5993 static void selectRefLeave(Walker *pWalker, Select *pSelect){
5994   struct RefSrcList *p = pWalker->u.pRefSrcList;
5995   SrcList *pSrc = pSelect->pSrc;
5996   if( p->nExclude ){
5997     assert( p->nExclude>=pSrc->nSrc );
5998     p->nExclude -= pSrc->nSrc;
5999   }
6000 }
6001 
6002 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList().
6003 **
6004 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any
6005 ** of the tables shown in RefSrcList.pRef.
6006 **
6007 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a
6008 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude.
6009 */
6010 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){
6011   if( pExpr->op==TK_COLUMN
6012    || pExpr->op==TK_AGG_COLUMN
6013   ){
6014     int i;
6015     struct RefSrcList *p = pWalker->u.pRefSrcList;
6016     SrcList *pSrc = p->pRef;
6017     int nSrc = pSrc ? pSrc->nSrc : 0;
6018     for(i=0; i<nSrc; i++){
6019       if( pExpr->iTable==pSrc->a[i].iCursor ){
6020         pWalker->eCode |= 1;
6021         return WRC_Continue;
6022       }
6023     }
6024     for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){}
6025     if( i>=p->nExclude ){
6026       pWalker->eCode |= 2;
6027     }
6028   }
6029   return WRC_Continue;
6030 }
6031 
6032 /*
6033 ** Check to see if pExpr references any tables in pSrcList.
6034 ** Possible return values:
6035 **
6036 **    1         pExpr does references a table in pSrcList.
6037 **
6038 **    0         pExpr references some table that is not defined in either
6039 **              pSrcList or in subqueries of pExpr itself.
6040 **
6041 **   -1         pExpr only references no tables at all, or it only
6042 **              references tables defined in subqueries of pExpr itself.
6043 **
6044 ** As currently used, pExpr is always an aggregate function call.  That
6045 ** fact is exploited for efficiency.
6046 */
6047 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){
6048   Walker w;
6049   struct RefSrcList x;
6050   memset(&w, 0, sizeof(w));
6051   memset(&x, 0, sizeof(x));
6052   w.xExprCallback = exprRefToSrcList;
6053   w.xSelectCallback = selectRefEnter;
6054   w.xSelectCallback2 = selectRefLeave;
6055   w.u.pRefSrcList = &x;
6056   x.db = pParse->db;
6057   x.pRef = pSrcList;
6058   assert( pExpr->op==TK_AGG_FUNCTION );
6059   assert( ExprUseXList(pExpr) );
6060   sqlite3WalkExprList(&w, pExpr->x.pList);
6061 #ifndef SQLITE_OMIT_WINDOWFUNC
6062   if( ExprHasProperty(pExpr, EP_WinFunc) ){
6063     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
6064   }
6065 #endif
6066   sqlite3DbFree(pParse->db, x.aiExclude);
6067   if( w.eCode & 0x01 ){
6068     return 1;
6069   }else if( w.eCode ){
6070     return 0;
6071   }else{
6072     return -1;
6073   }
6074 }
6075 
6076 /*
6077 ** This is a Walker expression node callback.
6078 **
6079 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
6080 ** object that is referenced does not refer directly to the Expr.  If
6081 ** it does, make a copy.  This is done because the pExpr argument is
6082 ** subject to change.
6083 **
6084 ** The copy is stored on pParse->pConstExpr with a register number of 0.
6085 ** This will cause the expression to be deleted automatically when the
6086 ** Parse object is destroyed, but the zero register number means that it
6087 ** will not generate any code in the preamble.
6088 */
6089 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
6090   if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
6091    && pExpr->pAggInfo!=0
6092   ){
6093     AggInfo *pAggInfo = pExpr->pAggInfo;
6094     int iAgg = pExpr->iAgg;
6095     Parse *pParse = pWalker->pParse;
6096     sqlite3 *db = pParse->db;
6097     assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION );
6098     if( pExpr->op==TK_AGG_COLUMN ){
6099       assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
6100       if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
6101         pExpr = sqlite3ExprDup(db, pExpr, 0);
6102         if( pExpr ){
6103           pAggInfo->aCol[iAgg].pCExpr = pExpr;
6104           sqlite3ExprDeferredDelete(pParse, pExpr);
6105         }
6106       }
6107     }else{
6108       assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
6109       if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
6110         pExpr = sqlite3ExprDup(db, pExpr, 0);
6111         if( pExpr ){
6112           pAggInfo->aFunc[iAgg].pFExpr = pExpr;
6113           sqlite3ExprDeferredDelete(pParse, pExpr);
6114         }
6115       }
6116     }
6117   }
6118   return WRC_Continue;
6119 }
6120 
6121 /*
6122 ** Initialize a Walker object so that will persist AggInfo entries referenced
6123 ** by the tree that is walked.
6124 */
6125 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
6126   memset(pWalker, 0, sizeof(*pWalker));
6127   pWalker->pParse = pParse;
6128   pWalker->xExprCallback = agginfoPersistExprCb;
6129   pWalker->xSelectCallback = sqlite3SelectWalkNoop;
6130 }
6131 
6132 /*
6133 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
6134 ** the new element.  Return a negative number if malloc fails.
6135 */
6136 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
6137   int i;
6138   pInfo->aCol = sqlite3ArrayAllocate(
6139        db,
6140        pInfo->aCol,
6141        sizeof(pInfo->aCol[0]),
6142        &pInfo->nColumn,
6143        &i
6144   );
6145   return i;
6146 }
6147 
6148 /*
6149 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
6150 ** the new element.  Return a negative number if malloc fails.
6151 */
6152 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
6153   int i;
6154   pInfo->aFunc = sqlite3ArrayAllocate(
6155        db,
6156        pInfo->aFunc,
6157        sizeof(pInfo->aFunc[0]),
6158        &pInfo->nFunc,
6159        &i
6160   );
6161   return i;
6162 }
6163 
6164 /*
6165 ** This is the xExprCallback for a tree walker.  It is used to
6166 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
6167 ** for additional information.
6168 */
6169 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
6170   int i;
6171   NameContext *pNC = pWalker->u.pNC;
6172   Parse *pParse = pNC->pParse;
6173   SrcList *pSrcList = pNC->pSrcList;
6174   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
6175 
6176   assert( pNC->ncFlags & NC_UAggInfo );
6177   switch( pExpr->op ){
6178     case TK_AGG_COLUMN:
6179     case TK_COLUMN: {
6180       testcase( pExpr->op==TK_AGG_COLUMN );
6181       testcase( pExpr->op==TK_COLUMN );
6182       /* Check to see if the column is in one of the tables in the FROM
6183       ** clause of the aggregate query */
6184       if( ALWAYS(pSrcList!=0) ){
6185         SrcItem *pItem = pSrcList->a;
6186         for(i=0; i<pSrcList->nSrc; i++, pItem++){
6187           struct AggInfo_col *pCol;
6188           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6189           if( pExpr->iTable==pItem->iCursor ){
6190             /* If we reach this point, it means that pExpr refers to a table
6191             ** that is in the FROM clause of the aggregate query.
6192             **
6193             ** Make an entry for the column in pAggInfo->aCol[] if there
6194             ** is not an entry there already.
6195             */
6196             int k;
6197             pCol = pAggInfo->aCol;
6198             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
6199               if( pCol->iTable==pExpr->iTable &&
6200                   pCol->iColumn==pExpr->iColumn ){
6201                 break;
6202               }
6203             }
6204             if( (k>=pAggInfo->nColumn)
6205              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
6206             ){
6207               pCol = &pAggInfo->aCol[k];
6208               assert( ExprUseYTab(pExpr) );
6209               pCol->pTab = pExpr->y.pTab;
6210               pCol->iTable = pExpr->iTable;
6211               pCol->iColumn = pExpr->iColumn;
6212               pCol->iMem = ++pParse->nMem;
6213               pCol->iSorterColumn = -1;
6214               pCol->pCExpr = pExpr;
6215               if( pAggInfo->pGroupBy ){
6216                 int j, n;
6217                 ExprList *pGB = pAggInfo->pGroupBy;
6218                 struct ExprList_item *pTerm = pGB->a;
6219                 n = pGB->nExpr;
6220                 for(j=0; j<n; j++, pTerm++){
6221                   Expr *pE = pTerm->pExpr;
6222                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
6223                       pE->iColumn==pExpr->iColumn ){
6224                     pCol->iSorterColumn = j;
6225                     break;
6226                   }
6227                 }
6228               }
6229               if( pCol->iSorterColumn<0 ){
6230                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
6231               }
6232             }
6233             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
6234             ** because it was there before or because we just created it).
6235             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
6236             ** pAggInfo->aCol[] entry.
6237             */
6238             ExprSetVVAProperty(pExpr, EP_NoReduce);
6239             pExpr->pAggInfo = pAggInfo;
6240             pExpr->op = TK_AGG_COLUMN;
6241             pExpr->iAgg = (i16)k;
6242             break;
6243           } /* endif pExpr->iTable==pItem->iCursor */
6244         } /* end loop over pSrcList */
6245       }
6246       return WRC_Prune;
6247     }
6248     case TK_AGG_FUNCTION: {
6249       if( (pNC->ncFlags & NC_InAggFunc)==0
6250        && pWalker->walkerDepth==pExpr->op2
6251       ){
6252         /* Check to see if pExpr is a duplicate of another aggregate
6253         ** function that is already in the pAggInfo structure
6254         */
6255         struct AggInfo_func *pItem = pAggInfo->aFunc;
6256         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
6257           if( pItem->pFExpr==pExpr ) break;
6258           if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
6259             break;
6260           }
6261         }
6262         if( i>=pAggInfo->nFunc ){
6263           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
6264           */
6265           u8 enc = ENC(pParse->db);
6266           i = addAggInfoFunc(pParse->db, pAggInfo);
6267           if( i>=0 ){
6268             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6269             pItem = &pAggInfo->aFunc[i];
6270             pItem->pFExpr = pExpr;
6271             pItem->iMem = ++pParse->nMem;
6272             assert( ExprUseUToken(pExpr) );
6273             pItem->pFunc = sqlite3FindFunction(pParse->db,
6274                    pExpr->u.zToken,
6275                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
6276             if( pExpr->flags & EP_Distinct ){
6277               pItem->iDistinct = pParse->nTab++;
6278             }else{
6279               pItem->iDistinct = -1;
6280             }
6281           }
6282         }
6283         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
6284         */
6285         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6286         ExprSetVVAProperty(pExpr, EP_NoReduce);
6287         pExpr->iAgg = (i16)i;
6288         pExpr->pAggInfo = pAggInfo;
6289         return WRC_Prune;
6290       }else{
6291         return WRC_Continue;
6292       }
6293     }
6294   }
6295   return WRC_Continue;
6296 }
6297 
6298 /*
6299 ** Analyze the pExpr expression looking for aggregate functions and
6300 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6301 ** points to.  Additional entries are made on the AggInfo object as
6302 ** necessary.
6303 **
6304 ** This routine should only be called after the expression has been
6305 ** analyzed by sqlite3ResolveExprNames().
6306 */
6307 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
6308   Walker w;
6309   w.xExprCallback = analyzeAggregate;
6310   w.xSelectCallback = sqlite3WalkerDepthIncrease;
6311   w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
6312   w.walkerDepth = 0;
6313   w.u.pNC = pNC;
6314   w.pParse = 0;
6315   assert( pNC->pSrcList!=0 );
6316   sqlite3WalkExpr(&w, pExpr);
6317 }
6318 
6319 /*
6320 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6321 ** expression list.  Return the number of errors.
6322 **
6323 ** If an error is found, the analysis is cut short.
6324 */
6325 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6326   struct ExprList_item *pItem;
6327   int i;
6328   if( pList ){
6329     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6330       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
6331     }
6332   }
6333 }
6334 
6335 /*
6336 ** Allocate a single new register for use to hold some intermediate result.
6337 */
6338 int sqlite3GetTempReg(Parse *pParse){
6339   if( pParse->nTempReg==0 ){
6340     return ++pParse->nMem;
6341   }
6342   return pParse->aTempReg[--pParse->nTempReg];
6343 }
6344 
6345 /*
6346 ** Deallocate a register, making available for reuse for some other
6347 ** purpose.
6348 */
6349 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6350   if( iReg ){
6351     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6352     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6353       pParse->aTempReg[pParse->nTempReg++] = iReg;
6354     }
6355   }
6356 }
6357 
6358 /*
6359 ** Allocate or deallocate a block of nReg consecutive registers.
6360 */
6361 int sqlite3GetTempRange(Parse *pParse, int nReg){
6362   int i, n;
6363   if( nReg==1 ) return sqlite3GetTempReg(pParse);
6364   i = pParse->iRangeReg;
6365   n = pParse->nRangeReg;
6366   if( nReg<=n ){
6367     pParse->iRangeReg += nReg;
6368     pParse->nRangeReg -= nReg;
6369   }else{
6370     i = pParse->nMem+1;
6371     pParse->nMem += nReg;
6372   }
6373   return i;
6374 }
6375 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6376   if( nReg==1 ){
6377     sqlite3ReleaseTempReg(pParse, iReg);
6378     return;
6379   }
6380   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6381   if( nReg>pParse->nRangeReg ){
6382     pParse->nRangeReg = nReg;
6383     pParse->iRangeReg = iReg;
6384   }
6385 }
6386 
6387 /*
6388 ** Mark all temporary registers as being unavailable for reuse.
6389 **
6390 ** Always invoke this procedure after coding a subroutine or co-routine
6391 ** that might be invoked from other parts of the code, to ensure that
6392 ** the sub/co-routine does not use registers in common with the code that
6393 ** invokes the sub/co-routine.
6394 */
6395 void sqlite3ClearTempRegCache(Parse *pParse){
6396   pParse->nTempReg = 0;
6397   pParse->nRangeReg = 0;
6398 }
6399 
6400 /*
6401 ** Validate that no temporary register falls within the range of
6402 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
6403 ** statements.
6404 */
6405 #ifdef SQLITE_DEBUG
6406 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6407   int i;
6408   if( pParse->nRangeReg>0
6409    && pParse->iRangeReg+pParse->nRangeReg > iFirst
6410    && pParse->iRangeReg <= iLast
6411   ){
6412      return 0;
6413   }
6414   for(i=0; i<pParse->nTempReg; i++){
6415     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6416       return 0;
6417     }
6418   }
6419   return 1;
6420 }
6421 #endif /* SQLITE_DEBUG */
6422