xref: /sqlite-3.40.0/src/expr.c (revision 7fdb522c)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 **
15 ** $Id: expr.c,v 1.387 2008/07/28 19:34:53 drh Exp $
16 */
17 #include "sqliteInt.h"
18 #include <ctype.h>
19 
20 /*
21 ** Return the 'affinity' of the expression pExpr if any.
22 **
23 ** If pExpr is a column, a reference to a column via an 'AS' alias,
24 ** or a sub-select with a column as the return value, then the
25 ** affinity of that column is returned. Otherwise, 0x00 is returned,
26 ** indicating no affinity for the expression.
27 **
28 ** i.e. the WHERE clause expresssions in the following statements all
29 ** have an affinity:
30 **
31 ** CREATE TABLE t1(a);
32 ** SELECT * FROM t1 WHERE a;
33 ** SELECT a AS b FROM t1 WHERE b;
34 ** SELECT * FROM t1 WHERE (select a from t1);
35 */
36 char sqlite3ExprAffinity(Expr *pExpr){
37   int op = pExpr->op;
38   if( op==TK_SELECT ){
39     return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
40   }
41 #ifndef SQLITE_OMIT_CAST
42   if( op==TK_CAST ){
43     return sqlite3AffinityType(&pExpr->token);
44   }
45 #endif
46   return pExpr->affinity;
47 }
48 
49 /*
50 ** Set the collating sequence for expression pExpr to be the collating
51 ** sequence named by pToken.   Return a pointer to the revised expression.
52 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
53 ** flag.  An explicit collating sequence will override implicit
54 ** collating sequences.
55 */
56 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
57   char *zColl = 0;            /* Dequoted name of collation sequence */
58   CollSeq *pColl;
59   sqlite3 *db = pParse->db;
60   zColl = sqlite3NameFromToken(db, pName);
61   if( pExpr && zColl ){
62     pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
63     if( pColl ){
64       pExpr->pColl = pColl;
65       pExpr->flags |= EP_ExpCollate;
66     }
67   }
68   sqlite3DbFree(db, zColl);
69   return pExpr;
70 }
71 
72 /*
73 ** Return the default collation sequence for the expression pExpr. If
74 ** there is no default collation type, return 0.
75 */
76 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
77   CollSeq *pColl = 0;
78   if( pExpr ){
79     int op;
80     pColl = pExpr->pColl;
81     op = pExpr->op;
82     if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){
83       return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
84     }
85   }
86   if( sqlite3CheckCollSeq(pParse, pColl) ){
87     pColl = 0;
88   }
89   return pColl;
90 }
91 
92 /*
93 ** pExpr is an operand of a comparison operator.  aff2 is the
94 ** type affinity of the other operand.  This routine returns the
95 ** type affinity that should be used for the comparison operator.
96 */
97 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
98   char aff1 = sqlite3ExprAffinity(pExpr);
99   if( aff1 && aff2 ){
100     /* Both sides of the comparison are columns. If one has numeric
101     ** affinity, use that. Otherwise use no affinity.
102     */
103     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
104       return SQLITE_AFF_NUMERIC;
105     }else{
106       return SQLITE_AFF_NONE;
107     }
108   }else if( !aff1 && !aff2 ){
109     /* Neither side of the comparison is a column.  Compare the
110     ** results directly.
111     */
112     return SQLITE_AFF_NONE;
113   }else{
114     /* One side is a column, the other is not. Use the columns affinity. */
115     assert( aff1==0 || aff2==0 );
116     return (aff1 + aff2);
117   }
118 }
119 
120 /*
121 ** pExpr is a comparison operator.  Return the type affinity that should
122 ** be applied to both operands prior to doing the comparison.
123 */
124 static char comparisonAffinity(Expr *pExpr){
125   char aff;
126   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
127           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
128           pExpr->op==TK_NE );
129   assert( pExpr->pLeft );
130   aff = sqlite3ExprAffinity(pExpr->pLeft);
131   if( pExpr->pRight ){
132     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
133   }
134   else if( pExpr->pSelect ){
135     aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
136   }
137   else if( !aff ){
138     aff = SQLITE_AFF_NONE;
139   }
140   return aff;
141 }
142 
143 /*
144 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
145 ** idx_affinity is the affinity of an indexed column. Return true
146 ** if the index with affinity idx_affinity may be used to implement
147 ** the comparison in pExpr.
148 */
149 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
150   char aff = comparisonAffinity(pExpr);
151   switch( aff ){
152     case SQLITE_AFF_NONE:
153       return 1;
154     case SQLITE_AFF_TEXT:
155       return idx_affinity==SQLITE_AFF_TEXT;
156     default:
157       return sqlite3IsNumericAffinity(idx_affinity);
158   }
159 }
160 
161 /*
162 ** Return the P5 value that should be used for a binary comparison
163 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
164 */
165 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
166   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
167   aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull;
168   return aff;
169 }
170 
171 /*
172 ** Return a pointer to the collation sequence that should be used by
173 ** a binary comparison operator comparing pLeft and pRight.
174 **
175 ** If the left hand expression has a collating sequence type, then it is
176 ** used. Otherwise the collation sequence for the right hand expression
177 ** is used, or the default (BINARY) if neither expression has a collating
178 ** type.
179 **
180 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
181 ** it is not considered.
182 */
183 CollSeq *sqlite3BinaryCompareCollSeq(
184   Parse *pParse,
185   Expr *pLeft,
186   Expr *pRight
187 ){
188   CollSeq *pColl;
189   assert( pLeft );
190   if( pLeft->flags & EP_ExpCollate ){
191     assert( pLeft->pColl );
192     pColl = pLeft->pColl;
193   }else if( pRight && pRight->flags & EP_ExpCollate ){
194     assert( pRight->pColl );
195     pColl = pRight->pColl;
196   }else{
197     pColl = sqlite3ExprCollSeq(pParse, pLeft);
198     if( !pColl ){
199       pColl = sqlite3ExprCollSeq(pParse, pRight);
200     }
201   }
202   return pColl;
203 }
204 
205 /*
206 ** Generate the operands for a comparison operation.  Before
207 ** generating the code for each operand, set the EP_AnyAff
208 ** flag on the expression so that it will be able to used a
209 ** cached column value that has previously undergone an
210 ** affinity change.
211 */
212 static void codeCompareOperands(
213   Parse *pParse,    /* Parsing and code generating context */
214   Expr *pLeft,      /* The left operand */
215   int *pRegLeft,    /* Register where left operand is stored */
216   int *pFreeLeft,   /* Free this register when done */
217   Expr *pRight,     /* The right operand */
218   int *pRegRight,   /* Register where right operand is stored */
219   int *pFreeRight   /* Write temp register for right operand there */
220 ){
221   while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
222   pLeft->flags |= EP_AnyAff;
223   *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
224   while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
225   pRight->flags |= EP_AnyAff;
226   *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
227 }
228 
229 /*
230 ** Generate code for a comparison operator.
231 */
232 static int codeCompare(
233   Parse *pParse,    /* The parsing (and code generating) context */
234   Expr *pLeft,      /* The left operand */
235   Expr *pRight,     /* The right operand */
236   int opcode,       /* The comparison opcode */
237   int in1, int in2, /* Register holding operands */
238   int dest,         /* Jump here if true.  */
239   int jumpIfNull    /* If true, jump if either operand is NULL */
240 ){
241   int p5;
242   int addr;
243   CollSeq *p4;
244 
245   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
246   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
247   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
248                            (void*)p4, P4_COLLSEQ);
249   sqlite3VdbeChangeP5(pParse->pVdbe, p5);
250   if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){
251     sqlite3ExprCacheAffinityChange(pParse, in1, 1);
252     sqlite3ExprCacheAffinityChange(pParse, in2, 1);
253   }
254   return addr;
255 }
256 
257 #if SQLITE_MAX_EXPR_DEPTH>0
258 /*
259 ** Check that argument nHeight is less than or equal to the maximum
260 ** expression depth allowed. If it is not, leave an error message in
261 ** pParse.
262 */
263 static int checkExprHeight(Parse *pParse, int nHeight){
264   int rc = SQLITE_OK;
265   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
266   if( nHeight>mxHeight ){
267     sqlite3ErrorMsg(pParse,
268        "Expression tree is too large (maximum depth %d)", mxHeight
269     );
270     rc = SQLITE_ERROR;
271   }
272   return rc;
273 }
274 
275 /* The following three functions, heightOfExpr(), heightOfExprList()
276 ** and heightOfSelect(), are used to determine the maximum height
277 ** of any expression tree referenced by the structure passed as the
278 ** first argument.
279 **
280 ** If this maximum height is greater than the current value pointed
281 ** to by pnHeight, the second parameter, then set *pnHeight to that
282 ** value.
283 */
284 static void heightOfExpr(Expr *p, int *pnHeight){
285   if( p ){
286     if( p->nHeight>*pnHeight ){
287       *pnHeight = p->nHeight;
288     }
289   }
290 }
291 static void heightOfExprList(ExprList *p, int *pnHeight){
292   if( p ){
293     int i;
294     for(i=0; i<p->nExpr; i++){
295       heightOfExpr(p->a[i].pExpr, pnHeight);
296     }
297   }
298 }
299 static void heightOfSelect(Select *p, int *pnHeight){
300   if( p ){
301     heightOfExpr(p->pWhere, pnHeight);
302     heightOfExpr(p->pHaving, pnHeight);
303     heightOfExpr(p->pLimit, pnHeight);
304     heightOfExpr(p->pOffset, pnHeight);
305     heightOfExprList(p->pEList, pnHeight);
306     heightOfExprList(p->pGroupBy, pnHeight);
307     heightOfExprList(p->pOrderBy, pnHeight);
308     heightOfSelect(p->pPrior, pnHeight);
309   }
310 }
311 
312 /*
313 ** Set the Expr.nHeight variable in the structure passed as an
314 ** argument. An expression with no children, Expr.pList or
315 ** Expr.pSelect member has a height of 1. Any other expression
316 ** has a height equal to the maximum height of any other
317 ** referenced Expr plus one.
318 */
319 static void exprSetHeight(Expr *p){
320   int nHeight = 0;
321   heightOfExpr(p->pLeft, &nHeight);
322   heightOfExpr(p->pRight, &nHeight);
323   heightOfExprList(p->pList, &nHeight);
324   heightOfSelect(p->pSelect, &nHeight);
325   p->nHeight = nHeight + 1;
326 }
327 
328 /*
329 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
330 ** the height is greater than the maximum allowed expression depth,
331 ** leave an error in pParse.
332 */
333 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
334   exprSetHeight(p);
335   checkExprHeight(pParse, p->nHeight);
336 }
337 
338 /*
339 ** Return the maximum height of any expression tree referenced
340 ** by the select statement passed as an argument.
341 */
342 int sqlite3SelectExprHeight(Select *p){
343   int nHeight = 0;
344   heightOfSelect(p, &nHeight);
345   return nHeight;
346 }
347 #else
348   #define checkExprHeight(x,y)
349   #define exprSetHeight(y)
350 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
351 
352 /*
353 ** Construct a new expression node and return a pointer to it.  Memory
354 ** for this node is obtained from sqlite3_malloc().  The calling function
355 ** is responsible for making sure the node eventually gets freed.
356 */
357 Expr *sqlite3Expr(
358   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
359   int op,                 /* Expression opcode */
360   Expr *pLeft,            /* Left operand */
361   Expr *pRight,           /* Right operand */
362   const Token *pToken     /* Argument token */
363 ){
364   Expr *pNew;
365   pNew = sqlite3DbMallocZero(db, sizeof(Expr));
366   if( pNew==0 ){
367     /* When malloc fails, delete pLeft and pRight. Expressions passed to
368     ** this function must always be allocated with sqlite3Expr() for this
369     ** reason.
370     */
371     sqlite3ExprDelete(db, pLeft);
372     sqlite3ExprDelete(db, pRight);
373     return 0;
374   }
375   pNew->op = op;
376   pNew->pLeft = pLeft;
377   pNew->pRight = pRight;
378   pNew->iAgg = -1;
379   pNew->span.z = (u8*)"";
380   if( pToken ){
381     assert( pToken->dyn==0 );
382     pNew->span = pNew->token = *pToken;
383   }else if( pLeft ){
384     if( pRight ){
385       if( pRight->span.dyn==0 && pLeft->span.dyn==0 ){
386         sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
387       }
388       if( pRight->flags & EP_ExpCollate ){
389         pNew->flags |= EP_ExpCollate;
390         pNew->pColl = pRight->pColl;
391       }
392     }
393     if( pLeft->flags & EP_ExpCollate ){
394       pNew->flags |= EP_ExpCollate;
395       pNew->pColl = pLeft->pColl;
396     }
397   }
398 
399   exprSetHeight(pNew);
400   return pNew;
401 }
402 
403 /*
404 ** Works like sqlite3Expr() except that it takes an extra Parse*
405 ** argument and notifies the associated connection object if malloc fails.
406 */
407 Expr *sqlite3PExpr(
408   Parse *pParse,          /* Parsing context */
409   int op,                 /* Expression opcode */
410   Expr *pLeft,            /* Left operand */
411   Expr *pRight,           /* Right operand */
412   const Token *pToken     /* Argument token */
413 ){
414   Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
415   if( p ){
416     checkExprHeight(pParse, p->nHeight);
417   }
418   return p;
419 }
420 
421 /*
422 ** When doing a nested parse, you can include terms in an expression
423 ** that look like this:   #1 #2 ...  These terms refer to registers
424 ** in the virtual machine.  #N is the N-th register.
425 **
426 ** This routine is called by the parser to deal with on of those terms.
427 ** It immediately generates code to store the value in a memory location.
428 ** The returns an expression that will code to extract the value from
429 ** that memory location as needed.
430 */
431 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
432   Vdbe *v = pParse->pVdbe;
433   Expr *p;
434   if( pParse->nested==0 ){
435     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
436     return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
437   }
438   if( v==0 ) return 0;
439   p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
440   if( p==0 ){
441     return 0;  /* Malloc failed */
442   }
443   p->iTable = atoi((char*)&pToken->z[1]);
444   return p;
445 }
446 
447 /*
448 ** Join two expressions using an AND operator.  If either expression is
449 ** NULL, then just return the other expression.
450 */
451 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
452   if( pLeft==0 ){
453     return pRight;
454   }else if( pRight==0 ){
455     return pLeft;
456   }else{
457     return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
458   }
459 }
460 
461 /*
462 ** Set the Expr.span field of the given expression to span all
463 ** text between the two given tokens.  Both tokens must be pointing
464 ** at the same string.
465 */
466 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
467   assert( pRight!=0 );
468   assert( pLeft!=0 );
469   if( pExpr ){
470     pExpr->span.z = pLeft->z;
471     pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
472   }
473 }
474 
475 /*
476 ** Construct a new expression node for a function with multiple
477 ** arguments.
478 */
479 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
480   Expr *pNew;
481   sqlite3 *db = pParse->db;
482   assert( pToken );
483   pNew = sqlite3DbMallocZero(db, sizeof(Expr) );
484   if( pNew==0 ){
485     sqlite3ExprListDelete(db, pList); /* Avoid leaking memory when malloc fails */
486     return 0;
487   }
488   pNew->op = TK_FUNCTION;
489   pNew->pList = pList;
490   assert( pToken->dyn==0 );
491   pNew->token = *pToken;
492   pNew->span = pNew->token;
493 
494   sqlite3ExprSetHeight(pParse, pNew);
495   return pNew;
496 }
497 
498 /*
499 ** Assign a variable number to an expression that encodes a wildcard
500 ** in the original SQL statement.
501 **
502 ** Wildcards consisting of a single "?" are assigned the next sequential
503 ** variable number.
504 **
505 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
506 ** sure "nnn" is not too be to avoid a denial of service attack when
507 ** the SQL statement comes from an external source.
508 **
509 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
510 ** as the previous instance of the same wildcard.  Or if this is the first
511 ** instance of the wildcard, the next sequenial variable number is
512 ** assigned.
513 */
514 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
515   Token *pToken;
516   sqlite3 *db = pParse->db;
517 
518   if( pExpr==0 ) return;
519   pToken = &pExpr->token;
520   assert( pToken->n>=1 );
521   assert( pToken->z!=0 );
522   assert( pToken->z[0]!=0 );
523   if( pToken->n==1 ){
524     /* Wildcard of the form "?".  Assign the next variable number */
525     pExpr->iTable = ++pParse->nVar;
526   }else if( pToken->z[0]=='?' ){
527     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
528     ** use it as the variable number */
529     int i;
530     pExpr->iTable = i = atoi((char*)&pToken->z[1]);
531     testcase( i==0 );
532     testcase( i==1 );
533     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
534     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
535     if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
536       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
537           db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
538     }
539     if( i>pParse->nVar ){
540       pParse->nVar = i;
541     }
542   }else{
543     /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable
544     ** number as the prior appearance of the same name, or if the name
545     ** has never appeared before, reuse the same variable number
546     */
547     int i, n;
548     n = pToken->n;
549     for(i=0; i<pParse->nVarExpr; i++){
550       Expr *pE;
551       if( (pE = pParse->apVarExpr[i])!=0
552           && pE->token.n==n
553           && memcmp(pE->token.z, pToken->z, n)==0 ){
554         pExpr->iTable = pE->iTable;
555         break;
556       }
557     }
558     if( i>=pParse->nVarExpr ){
559       pExpr->iTable = ++pParse->nVar;
560       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
561         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
562         pParse->apVarExpr =
563             sqlite3DbReallocOrFree(
564               db,
565               pParse->apVarExpr,
566               pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
567             );
568       }
569       if( !db->mallocFailed ){
570         assert( pParse->apVarExpr!=0 );
571         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
572       }
573     }
574   }
575   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
576     sqlite3ErrorMsg(pParse, "too many SQL variables");
577   }
578 }
579 
580 /*
581 ** Recursively delete an expression tree.
582 */
583 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
584   if( p==0 ) return;
585   if( p->span.dyn ) sqlite3DbFree(db, (char*)p->span.z);
586   if( p->token.dyn ) sqlite3DbFree(db, (char*)p->token.z);
587   sqlite3ExprDelete(db, p->pLeft);
588   sqlite3ExprDelete(db, p->pRight);
589   sqlite3ExprListDelete(db, p->pList);
590   sqlite3SelectDelete(db, p->pSelect);
591   sqlite3DbFree(db, p);
592 }
593 
594 /*
595 ** The Expr.token field might be a string literal that is quoted.
596 ** If so, remove the quotation marks.
597 */
598 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
599   if( ExprHasAnyProperty(p, EP_Dequoted) ){
600     return;
601   }
602   ExprSetProperty(p, EP_Dequoted);
603   if( p->token.dyn==0 ){
604     sqlite3TokenCopy(db, &p->token, &p->token);
605   }
606   sqlite3Dequote((char*)p->token.z);
607 }
608 
609 
610 /*
611 ** The following group of routines make deep copies of expressions,
612 ** expression lists, ID lists, and select statements.  The copies can
613 ** be deleted (by being passed to their respective ...Delete() routines)
614 ** without effecting the originals.
615 **
616 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
617 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
618 ** by subsequent calls to sqlite*ListAppend() routines.
619 **
620 ** Any tables that the SrcList might point to are not duplicated.
621 */
622 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
623   Expr *pNew;
624   if( p==0 ) return 0;
625   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
626   if( pNew==0 ) return 0;
627   memcpy(pNew, p, sizeof(*pNew));
628   if( p->token.z!=0 ){
629     pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
630     pNew->token.dyn = 1;
631   }else{
632     assert( pNew->token.z==0 );
633   }
634   pNew->span.z = 0;
635   pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
636   pNew->pRight = sqlite3ExprDup(db, p->pRight);
637   pNew->pList = sqlite3ExprListDup(db, p->pList);
638   pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
639   return pNew;
640 }
641 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
642   if( pTo->dyn ) sqlite3DbFree(db, (char*)pTo->z);
643   if( pFrom->z ){
644     pTo->n = pFrom->n;
645     pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
646     pTo->dyn = 1;
647   }else{
648     pTo->z = 0;
649   }
650 }
651 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
652   ExprList *pNew;
653   struct ExprList_item *pItem, *pOldItem;
654   int i;
655   if( p==0 ) return 0;
656   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
657   if( pNew==0 ) return 0;
658   pNew->iECursor = 0;
659   pNew->nExpr = pNew->nAlloc = p->nExpr;
660   pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
661   if( pItem==0 ){
662     sqlite3DbFree(db, pNew);
663     return 0;
664   }
665   pOldItem = p->a;
666   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
667     Expr *pNewExpr, *pOldExpr;
668     pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
669     if( pOldExpr->span.z!=0 && pNewExpr ){
670       /* Always make a copy of the span for top-level expressions in the
671       ** expression list.  The logic in SELECT processing that determines
672       ** the names of columns in the result set needs this information */
673       sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
674     }
675     assert( pNewExpr==0 || pNewExpr->span.z!=0
676             || pOldExpr->span.z==0
677             || db->mallocFailed );
678     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
679     pItem->sortOrder = pOldItem->sortOrder;
680     pItem->isAgg = pOldItem->isAgg;
681     pItem->done = 0;
682   }
683   return pNew;
684 }
685 
686 /*
687 ** If cursors, triggers, views and subqueries are all omitted from
688 ** the build, then none of the following routines, except for
689 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
690 ** called with a NULL argument.
691 */
692 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
693  || !defined(SQLITE_OMIT_SUBQUERY)
694 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
695   SrcList *pNew;
696   int i;
697   int nByte;
698   if( p==0 ) return 0;
699   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
700   pNew = sqlite3DbMallocRaw(db, nByte );
701   if( pNew==0 ) return 0;
702   pNew->nSrc = pNew->nAlloc = p->nSrc;
703   for(i=0; i<p->nSrc; i++){
704     struct SrcList_item *pNewItem = &pNew->a[i];
705     struct SrcList_item *pOldItem = &p->a[i];
706     Table *pTab;
707     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
708     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
709     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
710     pNewItem->jointype = pOldItem->jointype;
711     pNewItem->iCursor = pOldItem->iCursor;
712     pNewItem->isPopulated = pOldItem->isPopulated;
713     pTab = pNewItem->pTab = pOldItem->pTab;
714     if( pTab ){
715       pTab->nRef++;
716     }
717     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
718     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
719     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
720     pNewItem->colUsed = pOldItem->colUsed;
721   }
722   return pNew;
723 }
724 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
725   IdList *pNew;
726   int i;
727   if( p==0 ) return 0;
728   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
729   if( pNew==0 ) return 0;
730   pNew->nId = pNew->nAlloc = p->nId;
731   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
732   if( pNew->a==0 ){
733     sqlite3DbFree(db, pNew);
734     return 0;
735   }
736   for(i=0; i<p->nId; i++){
737     struct IdList_item *pNewItem = &pNew->a[i];
738     struct IdList_item *pOldItem = &p->a[i];
739     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
740     pNewItem->idx = pOldItem->idx;
741   }
742   return pNew;
743 }
744 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
745   Select *pNew;
746   if( p==0 ) return 0;
747   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
748   if( pNew==0 ) return 0;
749   pNew->isDistinct = p->isDistinct;
750   pNew->pEList = sqlite3ExprListDup(db, p->pEList);
751   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
752   pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
753   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
754   pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
755   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
756   pNew->op = p->op;
757   pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
758   pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
759   pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
760   pNew->iLimit = 0;
761   pNew->iOffset = 0;
762   pNew->isResolved = p->isResolved;
763   pNew->isAgg = p->isAgg;
764   pNew->usesEphm = 0;
765   pNew->disallowOrderBy = 0;
766   pNew->pRightmost = 0;
767   pNew->addrOpenEphm[0] = -1;
768   pNew->addrOpenEphm[1] = -1;
769   pNew->addrOpenEphm[2] = -1;
770   return pNew;
771 }
772 #else
773 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
774   assert( p==0 );
775   return 0;
776 }
777 #endif
778 
779 
780 /*
781 ** Add a new element to the end of an expression list.  If pList is
782 ** initially NULL, then create a new expression list.
783 */
784 ExprList *sqlite3ExprListAppend(
785   Parse *pParse,          /* Parsing context */
786   ExprList *pList,        /* List to which to append. Might be NULL */
787   Expr *pExpr,            /* Expression to be appended */
788   Token *pName            /* AS keyword for the expression */
789 ){
790   sqlite3 *db = pParse->db;
791   if( pList==0 ){
792     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
793     if( pList==0 ){
794       goto no_mem;
795     }
796     assert( pList->nAlloc==0 );
797   }
798   if( pList->nAlloc<=pList->nExpr ){
799     struct ExprList_item *a;
800     int n = pList->nAlloc*2 + 4;
801     a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
802     if( a==0 ){
803       goto no_mem;
804     }
805     pList->a = a;
806     pList->nAlloc = n;
807   }
808   assert( pList->a!=0 );
809   if( pExpr || pName ){
810     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
811     memset(pItem, 0, sizeof(*pItem));
812     pItem->zName = sqlite3NameFromToken(db, pName);
813     pItem->pExpr = pExpr;
814   }
815   return pList;
816 
817 no_mem:
818   /* Avoid leaking memory if malloc has failed. */
819   sqlite3ExprDelete(db, pExpr);
820   sqlite3ExprListDelete(db, pList);
821   return 0;
822 }
823 
824 /*
825 ** If the expression list pEList contains more than iLimit elements,
826 ** leave an error message in pParse.
827 */
828 void sqlite3ExprListCheckLength(
829   Parse *pParse,
830   ExprList *pEList,
831   const char *zObject
832 ){
833   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
834   testcase( pEList && pEList->nExpr==mx );
835   testcase( pEList && pEList->nExpr==mx+1 );
836   if( pEList && pEList->nExpr>mx ){
837     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
838   }
839 }
840 
841 /*
842 ** Delete an entire expression list.
843 */
844 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
845   int i;
846   struct ExprList_item *pItem;
847   if( pList==0 ) return;
848   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
849   assert( pList->nExpr<=pList->nAlloc );
850   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
851     sqlite3ExprDelete(db, pItem->pExpr);
852     sqlite3DbFree(db, pItem->zName);
853   }
854   sqlite3DbFree(db, pList->a);
855   sqlite3DbFree(db, pList);
856 }
857 
858 /*
859 ** Walk an expression tree.  Call xFunc for each node visited.  xFunc
860 ** is called on the node before xFunc is called on the nodes children.
861 **
862 ** The return value from xFunc determines whether the tree walk continues.
863 ** 0 means continue walking the tree.  1 means do not walk children
864 ** of the current node but continue with siblings.  2 means abandon
865 ** the tree walk completely.
866 **
867 ** The return value from this routine is 1 to abandon the tree walk
868 ** and 0 to continue.
869 **
870 ** NOTICE:  This routine does *not* descend into subqueries.
871 */
872 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
873 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
874   int rc;
875   if( pExpr==0 ) return 0;
876   rc = (*xFunc)(pArg, pExpr);
877   if( rc==0 ){
878     if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
879     if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
880     if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
881   }
882   return rc>1;
883 }
884 
885 /*
886 ** Call walkExprTree() for every expression in list p.
887 */
888 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
889   int i;
890   struct ExprList_item *pItem;
891   if( !p ) return 0;
892   for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
893     if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
894   }
895   return 0;
896 }
897 
898 /*
899 ** Call walkExprTree() for every expression in Select p, not including
900 ** expressions that are part of sub-selects in any FROM clause or the LIMIT
901 ** or OFFSET expressions..
902 */
903 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
904   walkExprList(p->pEList, xFunc, pArg);
905   walkExprTree(p->pWhere, xFunc, pArg);
906   walkExprList(p->pGroupBy, xFunc, pArg);
907   walkExprTree(p->pHaving, xFunc, pArg);
908   walkExprList(p->pOrderBy, xFunc, pArg);
909   if( p->pPrior ){
910     walkSelectExpr(p->pPrior, xFunc, pArg);
911   }
912   return 0;
913 }
914 
915 
916 /*
917 ** This routine is designed as an xFunc for walkExprTree().
918 **
919 ** pArg is really a pointer to an integer.  If we can tell by looking
920 ** at pExpr that the expression that contains pExpr is not a constant
921 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
922 ** If pExpr does does not disqualify the expression from being a constant
923 ** then do nothing.
924 **
925 ** After walking the whole tree, if no nodes are found that disqualify
926 ** the expression as constant, then we assume the whole expression
927 ** is constant.  See sqlite3ExprIsConstant() for additional information.
928 */
929 static int exprNodeIsConstant(void *pArg, Expr *pExpr){
930   int *pN = (int*)pArg;
931 
932   /* If *pArg is 3 then any term of the expression that comes from
933   ** the ON or USING clauses of a join disqualifies the expression
934   ** from being considered constant. */
935   if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
936     *pN = 0;
937     return 2;
938   }
939 
940   switch( pExpr->op ){
941     /* Consider functions to be constant if all their arguments are constant
942     ** and *pArg==2 */
943     case TK_FUNCTION:
944       if( (*pN)==2 ) return 0;
945       /* Fall through */
946     case TK_ID:
947     case TK_COLUMN:
948     case TK_DOT:
949     case TK_AGG_FUNCTION:
950     case TK_AGG_COLUMN:
951 #ifndef SQLITE_OMIT_SUBQUERY
952     case TK_SELECT:
953     case TK_EXISTS:
954       testcase( pExpr->op==TK_SELECT );
955       testcase( pExpr->op==TK_EXISTS );
956 #endif
957       testcase( pExpr->op==TK_ID );
958       testcase( pExpr->op==TK_COLUMN );
959       testcase( pExpr->op==TK_DOT );
960       testcase( pExpr->op==TK_AGG_FUNCTION );
961       testcase( pExpr->op==TK_AGG_COLUMN );
962       *pN = 0;
963       return 2;
964     case TK_IN:
965       if( pExpr->pSelect ){
966         *pN = 0;
967         return 2;
968       }
969     default:
970       return 0;
971   }
972 }
973 
974 /*
975 ** Walk an expression tree.  Return 1 if the expression is constant
976 ** and 0 if it involves variables or function calls.
977 **
978 ** For the purposes of this function, a double-quoted string (ex: "abc")
979 ** is considered a variable but a single-quoted string (ex: 'abc') is
980 ** a constant.
981 */
982 int sqlite3ExprIsConstant(Expr *p){
983   int isConst = 1;
984   walkExprTree(p, exprNodeIsConstant, &isConst);
985   return isConst;
986 }
987 
988 /*
989 ** Walk an expression tree.  Return 1 if the expression is constant
990 ** that does no originate from the ON or USING clauses of a join.
991 ** Return 0 if it involves variables or function calls or terms from
992 ** an ON or USING clause.
993 */
994 int sqlite3ExprIsConstantNotJoin(Expr *p){
995   int isConst = 3;
996   walkExprTree(p, exprNodeIsConstant, &isConst);
997   return isConst!=0;
998 }
999 
1000 /*
1001 ** Walk an expression tree.  Return 1 if the expression is constant
1002 ** or a function call with constant arguments.  Return and 0 if there
1003 ** are any variables.
1004 **
1005 ** For the purposes of this function, a double-quoted string (ex: "abc")
1006 ** is considered a variable but a single-quoted string (ex: 'abc') is
1007 ** a constant.
1008 */
1009 int sqlite3ExprIsConstantOrFunction(Expr *p){
1010   int isConst = 2;
1011   walkExprTree(p, exprNodeIsConstant, &isConst);
1012   return isConst!=0;
1013 }
1014 
1015 /*
1016 ** If the expression p codes a constant integer that is small enough
1017 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1018 ** in *pValue.  If the expression is not an integer or if it is too big
1019 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1020 */
1021 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1022   int rc = 0;
1023   if( p->flags & EP_IntValue ){
1024     *pValue = p->iTable;
1025     return 1;
1026   }
1027   switch( p->op ){
1028     case TK_INTEGER: {
1029       rc = sqlite3GetInt32((char*)p->token.z, pValue);
1030       break;
1031     }
1032     case TK_UPLUS: {
1033       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1034       break;
1035     }
1036     case TK_UMINUS: {
1037       int v;
1038       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1039         *pValue = -v;
1040         rc = 1;
1041       }
1042       break;
1043     }
1044     default: break;
1045   }
1046   if( rc ){
1047     p->op = TK_INTEGER;
1048     p->flags |= EP_IntValue;
1049     p->iTable = *pValue;
1050   }
1051   return rc;
1052 }
1053 
1054 /*
1055 ** Return TRUE if the given string is a row-id column name.
1056 */
1057 int sqlite3IsRowid(const char *z){
1058   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1059   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1060   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1061   return 0;
1062 }
1063 
1064 /*
1065 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
1066 ** that name in the set of source tables in pSrcList and make the pExpr
1067 ** expression node refer back to that source column.  The following changes
1068 ** are made to pExpr:
1069 **
1070 **    pExpr->iDb           Set the index in db->aDb[] of the database holding
1071 **                         the table.
1072 **    pExpr->iTable        Set to the cursor number for the table obtained
1073 **                         from pSrcList.
1074 **    pExpr->iColumn       Set to the column number within the table.
1075 **    pExpr->op            Set to TK_COLUMN.
1076 **    pExpr->pLeft         Any expression this points to is deleted
1077 **    pExpr->pRight        Any expression this points to is deleted.
1078 **
1079 ** The pDbToken is the name of the database (the "X").  This value may be
1080 ** NULL meaning that name is of the form Y.Z or Z.  Any available database
1081 ** can be used.  The pTableToken is the name of the table (the "Y").  This
1082 ** value can be NULL if pDbToken is also NULL.  If pTableToken is NULL it
1083 ** means that the form of the name is Z and that columns from any table
1084 ** can be used.
1085 **
1086 ** If the name cannot be resolved unambiguously, leave an error message
1087 ** in pParse and return non-zero.  Return zero on success.
1088 */
1089 static int lookupName(
1090   Parse *pParse,       /* The parsing context */
1091   Token *pDbToken,     /* Name of the database containing table, or NULL */
1092   Token *pTableToken,  /* Name of table containing column, or NULL */
1093   Token *pColumnToken, /* Name of the column. */
1094   NameContext *pNC,    /* The name context used to resolve the name */
1095   Expr *pExpr          /* Make this EXPR node point to the selected column */
1096 ){
1097   char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */
1098   char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */
1099   char *zCol = 0;      /* Name of the column.  The "Z" */
1100   int i, j;            /* Loop counters */
1101   int cnt = 0;         /* Number of matching column names */
1102   int cntTab = 0;      /* Number of matching table names */
1103   sqlite3 *db = pParse->db;  /* The database */
1104   struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
1105   struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
1106   NameContext *pTopNC = pNC;        /* First namecontext in the list */
1107   Schema *pSchema = 0;              /* Schema of the expression */
1108 
1109   assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
1110   zDb = sqlite3NameFromToken(db, pDbToken);
1111   zTab = sqlite3NameFromToken(db, pTableToken);
1112   zCol = sqlite3NameFromToken(db, pColumnToken);
1113   if( db->mallocFailed ){
1114     goto lookupname_end;
1115   }
1116 
1117   pExpr->iTable = -1;
1118   while( pNC && cnt==0 ){
1119     ExprList *pEList;
1120     SrcList *pSrcList = pNC->pSrcList;
1121 
1122     if( pSrcList ){
1123       for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
1124         Table *pTab;
1125         int iDb;
1126         Column *pCol;
1127 
1128         pTab = pItem->pTab;
1129         assert( pTab!=0 );
1130         iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1131         assert( pTab->nCol>0 );
1132         if( zTab ){
1133           if( pItem->zAlias ){
1134             char *zTabName = pItem->zAlias;
1135             if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
1136           }else{
1137             char *zTabName = pTab->zName;
1138             if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
1139             if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
1140               continue;
1141             }
1142           }
1143         }
1144         if( 0==(cntTab++) ){
1145           pExpr->iTable = pItem->iCursor;
1146           pSchema = pTab->pSchema;
1147           pMatch = pItem;
1148         }
1149         for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
1150           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
1151             const char *zColl = pTab->aCol[j].zColl;
1152             IdList *pUsing;
1153             cnt++;
1154             pExpr->iTable = pItem->iCursor;
1155             pMatch = pItem;
1156             pSchema = pTab->pSchema;
1157             /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
1158             pExpr->iColumn = j==pTab->iPKey ? -1 : j;
1159             pExpr->affinity = pTab->aCol[j].affinity;
1160             if( (pExpr->flags & EP_ExpCollate)==0 ){
1161               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
1162             }
1163             if( i<pSrcList->nSrc-1 ){
1164               if( pItem[1].jointype & JT_NATURAL ){
1165                 /* If this match occurred in the left table of a natural join,
1166                 ** then skip the right table to avoid a duplicate match */
1167                 pItem++;
1168                 i++;
1169               }else if( (pUsing = pItem[1].pUsing)!=0 ){
1170                 /* If this match occurs on a column that is in the USING clause
1171                 ** of a join, skip the search of the right table of the join
1172                 ** to avoid a duplicate match there. */
1173                 int k;
1174                 for(k=0; k<pUsing->nId; k++){
1175                   if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
1176                     pItem++;
1177                     i++;
1178                     break;
1179                   }
1180                 }
1181               }
1182             }
1183             break;
1184           }
1185         }
1186       }
1187     }
1188 
1189 #ifndef SQLITE_OMIT_TRIGGER
1190     /* If we have not already resolved the name, then maybe
1191     ** it is a new.* or old.* trigger argument reference
1192     */
1193     if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
1194       TriggerStack *pTriggerStack = pParse->trigStack;
1195       Table *pTab = 0;
1196       u32 *piColMask;
1197       if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
1198         pExpr->iTable = pTriggerStack->newIdx;
1199         assert( pTriggerStack->pTab );
1200         pTab = pTriggerStack->pTab;
1201         piColMask = &(pTriggerStack->newColMask);
1202       }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
1203         pExpr->iTable = pTriggerStack->oldIdx;
1204         assert( pTriggerStack->pTab );
1205         pTab = pTriggerStack->pTab;
1206         piColMask = &(pTriggerStack->oldColMask);
1207       }
1208 
1209       if( pTab ){
1210         int iCol;
1211         Column *pCol = pTab->aCol;
1212 
1213         pSchema = pTab->pSchema;
1214         cntTab++;
1215         for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
1216           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
1217             const char *zColl = pTab->aCol[iCol].zColl;
1218             cnt++;
1219             pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
1220             pExpr->affinity = pTab->aCol[iCol].affinity;
1221             if( (pExpr->flags & EP_ExpCollate)==0 ){
1222               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
1223             }
1224             pExpr->pTab = pTab;
1225             if( iCol>=0 ){
1226               testcase( iCol==31 );
1227               testcase( iCol==32 );
1228               *piColMask |= ((u32)1<<iCol) | (iCol>=32?0xffffffff:0);
1229             }
1230             break;
1231           }
1232         }
1233       }
1234     }
1235 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
1236 
1237     /*
1238     ** Perhaps the name is a reference to the ROWID
1239     */
1240     if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
1241       cnt = 1;
1242       pExpr->iColumn = -1;
1243       pExpr->affinity = SQLITE_AFF_INTEGER;
1244     }
1245 
1246     /*
1247     ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
1248     ** might refer to an result-set alias.  This happens, for example, when
1249     ** we are resolving names in the WHERE clause of the following command:
1250     **
1251     **     SELECT a+b AS x FROM table WHERE x<10;
1252     **
1253     ** In cases like this, replace pExpr with a copy of the expression that
1254     ** forms the result set entry ("a+b" in the example) and return immediately.
1255     ** Note that the expression in the result set should have already been
1256     ** resolved by the time the WHERE clause is resolved.
1257     */
1258     if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
1259       for(j=0; j<pEList->nExpr; j++){
1260         char *zAs = pEList->a[j].zName;
1261         if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
1262           Expr *pDup, *pOrig;
1263           assert( pExpr->pLeft==0 && pExpr->pRight==0 );
1264           assert( pExpr->pList==0 );
1265           assert( pExpr->pSelect==0 );
1266           pOrig = pEList->a[j].pExpr;
1267           if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
1268             sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
1269             sqlite3DbFree(db, zCol);
1270             return 2;
1271           }
1272           pDup = sqlite3ExprDup(db, pOrig);
1273           if( pExpr->flags & EP_ExpCollate ){
1274             pDup->pColl = pExpr->pColl;
1275             pDup->flags |= EP_ExpCollate;
1276           }
1277           if( pExpr->span.dyn ) sqlite3DbFree(db, (char*)pExpr->span.z);
1278           if( pExpr->token.dyn ) sqlite3DbFree(db, (char*)pExpr->token.z);
1279           memcpy(pExpr, pDup, sizeof(*pExpr));
1280           sqlite3DbFree(db, pDup);
1281           cnt = 1;
1282           pMatch = 0;
1283           assert( zTab==0 && zDb==0 );
1284           goto lookupname_end_2;
1285         }
1286       }
1287     }
1288 
1289     /* Advance to the next name context.  The loop will exit when either
1290     ** we have a match (cnt>0) or when we run out of name contexts.
1291     */
1292     if( cnt==0 ){
1293       pNC = pNC->pNext;
1294     }
1295   }
1296 
1297   /*
1298   ** If X and Y are NULL (in other words if only the column name Z is
1299   ** supplied) and the value of Z is enclosed in double-quotes, then
1300   ** Z is a string literal if it doesn't match any column names.  In that
1301   ** case, we need to return right away and not make any changes to
1302   ** pExpr.
1303   **
1304   ** Because no reference was made to outer contexts, the pNC->nRef
1305   ** fields are not changed in any context.
1306   */
1307   if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
1308     sqlite3DbFree(db, zCol);
1309     return 0;
1310   }
1311 
1312   /*
1313   ** cnt==0 means there was not match.  cnt>1 means there were two or
1314   ** more matches.  Either way, we have an error.
1315   */
1316   if( cnt!=1 ){
1317     const char *zErr;
1318     zErr = cnt==0 ? "no such column" : "ambiguous column name";
1319     if( zDb ){
1320       sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
1321     }else if( zTab ){
1322       sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
1323     }else{
1324       sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
1325     }
1326     pTopNC->nErr++;
1327   }
1328 
1329   /* If a column from a table in pSrcList is referenced, then record
1330   ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes
1331   ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the
1332   ** column number is greater than the number of bits in the bitmask
1333   ** then set the high-order bit of the bitmask.
1334   */
1335   if( pExpr->iColumn>=0 && pMatch!=0 ){
1336     int n = pExpr->iColumn;
1337     testcase( n==sizeof(Bitmask)*8-1 );
1338     if( n>=sizeof(Bitmask)*8 ){
1339       n = sizeof(Bitmask)*8-1;
1340     }
1341     assert( pMatch->iCursor==pExpr->iTable );
1342     pMatch->colUsed |= ((Bitmask)1)<<n;
1343   }
1344 
1345 lookupname_end:
1346   /* Clean up and return
1347   */
1348   sqlite3DbFree(db, zDb);
1349   sqlite3DbFree(db, zTab);
1350   sqlite3ExprDelete(db, pExpr->pLeft);
1351   pExpr->pLeft = 0;
1352   sqlite3ExprDelete(db, pExpr->pRight);
1353   pExpr->pRight = 0;
1354   pExpr->op = TK_COLUMN;
1355 lookupname_end_2:
1356   sqlite3DbFree(db, zCol);
1357   if( cnt==1 ){
1358     assert( pNC!=0 );
1359     sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
1360     if( pMatch && !pMatch->pSelect ){
1361       pExpr->pTab = pMatch->pTab;
1362     }
1363     /* Increment the nRef value on all name contexts from TopNC up to
1364     ** the point where the name matched. */
1365     for(;;){
1366       assert( pTopNC!=0 );
1367       pTopNC->nRef++;
1368       if( pTopNC==pNC ) break;
1369       pTopNC = pTopNC->pNext;
1370     }
1371     return 0;
1372   } else {
1373     return 1;
1374   }
1375 }
1376 
1377 /*
1378 ** This routine is designed as an xFunc for walkExprTree().
1379 **
1380 ** Resolve symbolic names into TK_COLUMN operators for the current
1381 ** node in the expression tree.  Return 0 to continue the search down
1382 ** the tree or 2 to abort the tree walk.
1383 **
1384 ** This routine also does error checking and name resolution for
1385 ** function names.  The operator for aggregate functions is changed
1386 ** to TK_AGG_FUNCTION.
1387 */
1388 static int nameResolverStep(void *pArg, Expr *pExpr){
1389   NameContext *pNC = (NameContext*)pArg;
1390   Parse *pParse;
1391 
1392   if( pExpr==0 ) return 1;
1393   assert( pNC!=0 );
1394   pParse = pNC->pParse;
1395 
1396   if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
1397   ExprSetProperty(pExpr, EP_Resolved);
1398 #ifndef NDEBUG
1399   if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
1400     SrcList *pSrcList = pNC->pSrcList;
1401     int i;
1402     for(i=0; i<pNC->pSrcList->nSrc; i++){
1403       assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
1404     }
1405   }
1406 #endif
1407   switch( pExpr->op ){
1408     /* Double-quoted strings (ex: "abc") are used as identifiers if
1409     ** possible.  Otherwise they remain as strings.  Single-quoted
1410     ** strings (ex: 'abc') are always string literals.
1411     */
1412     case TK_STRING: {
1413       if( pExpr->token.z[0]=='\'' ) break;
1414       /* Fall thru into the TK_ID case if this is a double-quoted string */
1415     }
1416     /* A lone identifier is the name of a column.
1417     */
1418     case TK_ID: {
1419       lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
1420       return 1;
1421     }
1422 
1423     /* A table name and column name:     ID.ID
1424     ** Or a database, table and column:  ID.ID.ID
1425     */
1426     case TK_DOT: {
1427       Token *pColumn;
1428       Token *pTable;
1429       Token *pDb;
1430       Expr *pRight;
1431 
1432       /* if( pSrcList==0 ) break; */
1433       pRight = pExpr->pRight;
1434       if( pRight->op==TK_ID ){
1435         pDb = 0;
1436         pTable = &pExpr->pLeft->token;
1437         pColumn = &pRight->token;
1438       }else{
1439         assert( pRight->op==TK_DOT );
1440         pDb = &pExpr->pLeft->token;
1441         pTable = &pRight->pLeft->token;
1442         pColumn = &pRight->pRight->token;
1443       }
1444       lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
1445       return 1;
1446     }
1447 
1448     /* Resolve function names
1449     */
1450     case TK_CONST_FUNC:
1451     case TK_FUNCTION: {
1452       ExprList *pList = pExpr->pList;    /* The argument list */
1453       int n = pList ? pList->nExpr : 0;  /* Number of arguments */
1454       int no_such_func = 0;       /* True if no such function exists */
1455       int wrong_num_args = 0;     /* True if wrong number of arguments */
1456       int is_agg = 0;             /* True if is an aggregate function */
1457       int i;
1458       int auth;                   /* Authorization to use the function */
1459       int nId;                    /* Number of characters in function name */
1460       const char *zId;            /* The function name. */
1461       FuncDef *pDef;              /* Information about the function */
1462       int enc = ENC(pParse->db);  /* The database encoding */
1463 
1464       zId = (char*)pExpr->token.z;
1465       nId = pExpr->token.n;
1466       pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
1467       if( pDef==0 ){
1468         pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
1469         if( pDef==0 ){
1470           no_such_func = 1;
1471         }else{
1472           wrong_num_args = 1;
1473         }
1474       }else{
1475         is_agg = pDef->xFunc==0;
1476       }
1477 #ifndef SQLITE_OMIT_AUTHORIZATION
1478       if( pDef ){
1479         auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
1480         if( auth!=SQLITE_OK ){
1481           if( auth==SQLITE_DENY ){
1482             sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
1483                                     pDef->zName);
1484             pNC->nErr++;
1485           }
1486           pExpr->op = TK_NULL;
1487           return 1;
1488         }
1489       }
1490 #endif
1491       if( is_agg && !pNC->allowAgg ){
1492         sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
1493         pNC->nErr++;
1494         is_agg = 0;
1495       }else if( no_such_func ){
1496         sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
1497         pNC->nErr++;
1498       }else if( wrong_num_args ){
1499         sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
1500              nId, zId);
1501         pNC->nErr++;
1502       }
1503       if( is_agg ){
1504         pExpr->op = TK_AGG_FUNCTION;
1505         pNC->hasAgg = 1;
1506       }
1507       if( is_agg ) pNC->allowAgg = 0;
1508       for(i=0; pNC->nErr==0 && i<n; i++){
1509         walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
1510       }
1511       if( is_agg ) pNC->allowAgg = 1;
1512       /* FIX ME:  Compute pExpr->affinity based on the expected return
1513       ** type of the function
1514       */
1515       return is_agg;
1516     }
1517 #ifndef SQLITE_OMIT_SUBQUERY
1518     case TK_SELECT:
1519     case TK_EXISTS:
1520 #endif
1521     case TK_IN: {
1522       if( pExpr->pSelect ){
1523         int nRef = pNC->nRef;
1524 #ifndef SQLITE_OMIT_CHECK
1525         if( pNC->isCheck ){
1526           sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
1527         }
1528 #endif
1529         sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
1530         assert( pNC->nRef>=nRef );
1531         if( nRef!=pNC->nRef ){
1532           ExprSetProperty(pExpr, EP_VarSelect);
1533         }
1534       }
1535       break;
1536     }
1537 #ifndef SQLITE_OMIT_CHECK
1538     case TK_VARIABLE: {
1539       if( pNC->isCheck ){
1540         sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
1541       }
1542       break;
1543     }
1544 #endif
1545   }
1546   return 0;
1547 }
1548 
1549 /*
1550 ** This routine walks an expression tree and resolves references to
1551 ** table columns.  Nodes of the form ID.ID or ID resolve into an
1552 ** index to the table in the table list and a column offset.  The
1553 ** Expr.opcode for such nodes is changed to TK_COLUMN.  The Expr.iTable
1554 ** value is changed to the index of the referenced table in pTabList
1555 ** plus the "base" value.  The base value will ultimately become the
1556 ** VDBE cursor number for a cursor that is pointing into the referenced
1557 ** table.  The Expr.iColumn value is changed to the index of the column
1558 ** of the referenced table.  The Expr.iColumn value for the special
1559 ** ROWID column is -1.  Any INTEGER PRIMARY KEY column is tried as an
1560 ** alias for ROWID.
1561 **
1562 ** Also resolve function names and check the functions for proper
1563 ** usage.  Make sure all function names are recognized and all functions
1564 ** have the correct number of arguments.  Leave an error message
1565 ** in pParse->zErrMsg if anything is amiss.  Return the number of errors.
1566 **
1567 ** If the expression contains aggregate functions then set the EP_Agg
1568 ** property on the expression.
1569 */
1570 int sqlite3ExprResolveNames(
1571   NameContext *pNC,       /* Namespace to resolve expressions in. */
1572   Expr *pExpr             /* The expression to be analyzed. */
1573 ){
1574   int savedHasAgg;
1575 
1576   if( pExpr==0 ) return 0;
1577 #if SQLITE_MAX_EXPR_DEPTH>0
1578   {
1579     if( checkExprHeight(pNC->pParse, pExpr->nHeight + pNC->pParse->nHeight) ){
1580       return 1;
1581     }
1582     pNC->pParse->nHeight += pExpr->nHeight;
1583   }
1584 #endif
1585   savedHasAgg = pNC->hasAgg;
1586   pNC->hasAgg = 0;
1587   walkExprTree(pExpr, nameResolverStep, pNC);
1588 #if SQLITE_MAX_EXPR_DEPTH>0
1589   pNC->pParse->nHeight -= pExpr->nHeight;
1590 #endif
1591   if( pNC->nErr>0 ){
1592     ExprSetProperty(pExpr, EP_Error);
1593   }
1594   if( pNC->hasAgg ){
1595     ExprSetProperty(pExpr, EP_Agg);
1596   }else if( savedHasAgg ){
1597     pNC->hasAgg = 1;
1598   }
1599   return ExprHasProperty(pExpr, EP_Error);
1600 }
1601 
1602 /*
1603 ** A pointer instance of this structure is used to pass information
1604 ** through walkExprTree into codeSubqueryStep().
1605 */
1606 typedef struct QueryCoder QueryCoder;
1607 struct QueryCoder {
1608   Parse *pParse;       /* The parsing context */
1609   NameContext *pNC;    /* Namespace of first enclosing query */
1610 };
1611 
1612 #ifdef SQLITE_TEST
1613   int sqlite3_enable_in_opt = 1;
1614 #else
1615   #define sqlite3_enable_in_opt 1
1616 #endif
1617 
1618 /*
1619 ** Return true if the IN operator optimization is enabled and
1620 ** the SELECT statement p exists and is of the
1621 ** simple form:
1622 **
1623 **     SELECT <column> FROM <table>
1624 **
1625 ** If this is the case, it may be possible to use an existing table
1626 ** or index instead of generating an epheremal table.
1627 */
1628 #ifndef SQLITE_OMIT_SUBQUERY
1629 static int isCandidateForInOpt(Select *p){
1630   SrcList *pSrc;
1631   ExprList *pEList;
1632   Table *pTab;
1633   if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */
1634   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1635   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1636   if( p->isDistinct ) return 0;          /* No DISTINCT keyword */
1637   if( p->isAgg ) return 0;               /* Contains no aggregate functions */
1638   if( p->pGroupBy ) return 0;            /* Has no GROUP BY clause */
1639   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1640   if( p->pOffset ) return 0;
1641   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1642   pSrc = p->pSrc;
1643   if( pSrc==0 ) return 0;                /* A single table in the FROM clause */
1644   if( pSrc->nSrc!=1 ) return 0;
1645   if( pSrc->a[0].pSelect ) return 0;     /* FROM clause is not a subquery */
1646   pTab = pSrc->a[0].pTab;
1647   if( pTab==0 ) return 0;
1648   if( pTab->pSelect ) return 0;          /* FROM clause is not a view */
1649   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1650   pEList = p->pEList;
1651   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1652   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1653   return 1;
1654 }
1655 #endif /* SQLITE_OMIT_SUBQUERY */
1656 
1657 /*
1658 ** This function is used by the implementation of the IN (...) operator.
1659 ** It's job is to find or create a b-tree structure that may be used
1660 ** either to test for membership of the (...) set or to iterate through
1661 ** its members, skipping duplicates.
1662 **
1663 ** The cursor opened on the structure (database table, database index
1664 ** or ephermal table) is stored in pX->iTable before this function returns.
1665 ** The returned value indicates the structure type, as follows:
1666 **
1667 **   IN_INDEX_ROWID - The cursor was opened on a database table.
1668 **   IN_INDEX_INDEX - The cursor was opened on a database index.
1669 **   IN_INDEX_EPH -   The cursor was opened on a specially created and
1670 **                    populated epheremal table.
1671 **
1672 ** An existing structure may only be used if the SELECT is of the simple
1673 ** form:
1674 **
1675 **     SELECT <column> FROM <table>
1676 **
1677 ** If prNotFound parameter is 0, then the structure will be used to iterate
1678 ** through the set members, skipping any duplicates. In this case an
1679 ** epheremal table must be used unless the selected <column> is guaranteed
1680 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1681 ** is unique by virtue of a constraint or implicit index.
1682 **
1683 ** If the prNotFound parameter is not 0, then the structure will be used
1684 ** for fast set membership tests. In this case an epheremal table must
1685 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1686 ** be found with <column> as its left-most column.
1687 **
1688 ** When the structure is being used for set membership tests, the user
1689 ** needs to know whether or not the structure contains an SQL NULL
1690 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1691 ** If there is a chance that the structure may contain a NULL value at
1692 ** runtime, then a register is allocated and the register number written
1693 ** to *prNotFound. If there is no chance that the structure contains a
1694 ** NULL value, then *prNotFound is left unchanged.
1695 **
1696 ** If a register is allocated and its location stored in *prNotFound, then
1697 ** its initial value is NULL. If the structure does not remain constant
1698 ** for the duration of the query (i.e. the set is a correlated sub-select),
1699 ** the value of the allocated register is reset to NULL each time the
1700 ** structure is repopulated. This allows the caller to use vdbe code
1701 ** equivalent to the following:
1702 **
1703 **   if( register==NULL ){
1704 **     has_null = <test if data structure contains null>
1705 **     register = 1
1706 **   }
1707 **
1708 ** in order to avoid running the <test if data structure contains null>
1709 ** test more often than is necessary.
1710 */
1711 #ifndef SQLITE_OMIT_SUBQUERY
1712 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1713   Select *p;
1714   int eType = 0;
1715   int iTab = pParse->nTab++;
1716   int mustBeUnique = !prNotFound;
1717 
1718   /* The follwing if(...) expression is true if the SELECT is of the
1719   ** simple form:
1720   **
1721   **     SELECT <column> FROM <table>
1722   **
1723   ** If this is the case, it may be possible to use an existing table
1724   ** or index instead of generating an epheremal table.
1725   */
1726   p = pX->pSelect;
1727   if( isCandidateForInOpt(p) ){
1728     sqlite3 *db = pParse->db;
1729     Index *pIdx;
1730     Expr *pExpr = p->pEList->a[0].pExpr;
1731     int iCol = pExpr->iColumn;
1732     Vdbe *v = sqlite3GetVdbe(pParse);
1733 
1734     /* This function is only called from two places. In both cases the vdbe
1735     ** has already been allocated. So assume sqlite3GetVdbe() is always
1736     ** successful here.
1737     */
1738     assert(v);
1739     if( iCol<0 ){
1740       int iMem = ++pParse->nMem;
1741       int iAddr;
1742       Table *pTab = p->pSrc->a[0].pTab;
1743       int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1744       sqlite3VdbeUsesBtree(v, iDb);
1745 
1746       iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1747       sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1748 
1749       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1750       eType = IN_INDEX_ROWID;
1751 
1752       sqlite3VdbeJumpHere(v, iAddr);
1753     }else{
1754       /* The collation sequence used by the comparison. If an index is to
1755       ** be used in place of a temp-table, it must be ordered according
1756       ** to this collation sequence.
1757       */
1758       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1759 
1760       /* Check that the affinity that will be used to perform the
1761       ** comparison is the same as the affinity of the column. If
1762       ** it is not, it is not possible to use any index.
1763       */
1764       Table *pTab = p->pSrc->a[0].pTab;
1765       char aff = comparisonAffinity(pX);
1766       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
1767 
1768       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1769         if( (pIdx->aiColumn[0]==iCol)
1770          && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
1771          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1772         ){
1773           int iDb;
1774           int iMem = ++pParse->nMem;
1775           int iAddr;
1776           char *pKey;
1777 
1778           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1779           iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
1780           sqlite3VdbeUsesBtree(v, iDb);
1781 
1782           iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1783           sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1784 
1785           sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn);
1786           sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1787                                pKey,P4_KEYINFO_HANDOFF);
1788           VdbeComment((v, "%s", pIdx->zName));
1789           eType = IN_INDEX_INDEX;
1790 
1791           sqlite3VdbeJumpHere(v, iAddr);
1792           if( prNotFound && !pTab->aCol[iCol].notNull ){
1793             *prNotFound = ++pParse->nMem;
1794           }
1795         }
1796       }
1797     }
1798   }
1799 
1800   if( eType==0 ){
1801     int rMayHaveNull = 0;
1802     if( prNotFound ){
1803       *prNotFound = rMayHaveNull = ++pParse->nMem;
1804     }
1805     sqlite3CodeSubselect(pParse, pX, rMayHaveNull);
1806     eType = IN_INDEX_EPH;
1807   }else{
1808     pX->iTable = iTab;
1809   }
1810   return eType;
1811 }
1812 #endif
1813 
1814 /*
1815 ** Generate code for scalar subqueries used as an expression
1816 ** and IN operators.  Examples:
1817 **
1818 **     (SELECT a FROM b)          -- subquery
1819 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1820 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1821 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1822 **
1823 ** The pExpr parameter describes the expression that contains the IN
1824 ** operator or subquery.
1825 */
1826 #ifndef SQLITE_OMIT_SUBQUERY
1827 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr, int rMayHaveNull){
1828   int testAddr = 0;                       /* One-time test address */
1829   Vdbe *v = sqlite3GetVdbe(pParse);
1830   if( v==0 ) return;
1831 
1832 
1833   /* This code must be run in its entirety every time it is encountered
1834   ** if any of the following is true:
1835   **
1836   **    *  The right-hand side is a correlated subquery
1837   **    *  The right-hand side is an expression list containing variables
1838   **    *  We are inside a trigger
1839   **
1840   ** If all of the above are false, then we can run this code just once
1841   ** save the results, and reuse the same result on subsequent invocations.
1842   */
1843   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
1844     int mem = ++pParse->nMem;
1845     sqlite3VdbeAddOp1(v, OP_If, mem);
1846     testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
1847     assert( testAddr>0 || pParse->db->mallocFailed );
1848   }
1849 
1850   switch( pExpr->op ){
1851     case TK_IN: {
1852       char affinity;
1853       KeyInfo keyInfo;
1854       int addr;        /* Address of OP_OpenEphemeral instruction */
1855 
1856       if( rMayHaveNull ){
1857         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1858       }
1859 
1860       affinity = sqlite3ExprAffinity(pExpr->pLeft);
1861 
1862       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1863       ** expression it is handled the same way. A virtual table is
1864       ** filled with single-field index keys representing the results
1865       ** from the SELECT or the <exprlist>.
1866       **
1867       ** If the 'x' expression is a column value, or the SELECT...
1868       ** statement returns a column value, then the affinity of that
1869       ** column is used to build the index keys. If both 'x' and the
1870       ** SELECT... statement are columns, then numeric affinity is used
1871       ** if either column has NUMERIC or INTEGER affinity. If neither
1872       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1873       ** is used.
1874       */
1875       pExpr->iTable = pParse->nTab++;
1876       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, 1);
1877       memset(&keyInfo, 0, sizeof(keyInfo));
1878       keyInfo.nField = 1;
1879 
1880       if( pExpr->pSelect ){
1881         /* Case 1:     expr IN (SELECT ...)
1882         **
1883         ** Generate code to write the results of the select into the temporary
1884         ** table allocated and opened above.
1885         */
1886         SelectDest dest;
1887         ExprList *pEList;
1888 
1889         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1890         dest.affinity = (int)affinity;
1891         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1892         if( sqlite3Select(pParse, pExpr->pSelect, &dest, 0, 0, 0) ){
1893           return;
1894         }
1895         pEList = pExpr->pSelect->pEList;
1896         if( pEList && pEList->nExpr>0 ){
1897           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1898               pEList->a[0].pExpr);
1899         }
1900       }else if( pExpr->pList ){
1901         /* Case 2:     expr IN (exprlist)
1902         **
1903         ** For each expression, build an index key from the evaluation and
1904         ** store it in the temporary table. If <expr> is a column, then use
1905         ** that columns affinity when building index keys. If <expr> is not
1906         ** a column, use numeric affinity.
1907         */
1908         int i;
1909         ExprList *pList = pExpr->pList;
1910         struct ExprList_item *pItem;
1911         int r1, r2, r3;
1912 
1913         if( !affinity ){
1914           affinity = SQLITE_AFF_NONE;
1915         }
1916         keyInfo.aColl[0] = pExpr->pLeft->pColl;
1917 
1918         /* Loop through each expression in <exprlist>. */
1919         r1 = sqlite3GetTempReg(pParse);
1920         r2 = sqlite3GetTempReg(pParse);
1921         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1922           Expr *pE2 = pItem->pExpr;
1923 
1924           /* If the expression is not constant then we will need to
1925           ** disable the test that was generated above that makes sure
1926           ** this code only executes once.  Because for a non-constant
1927           ** expression we need to rerun this code each time.
1928           */
1929           if( testAddr && !sqlite3ExprIsConstant(pE2) ){
1930             sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
1931             testAddr = 0;
1932           }
1933 
1934           /* Evaluate the expression and insert it into the temp table */
1935           pParse->disableColCache++;
1936           r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1937           assert( pParse->disableColCache>0 );
1938           pParse->disableColCache--;
1939           sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1940           sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1941           sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1942         }
1943         sqlite3ReleaseTempReg(pParse, r1);
1944         sqlite3ReleaseTempReg(pParse, r2);
1945       }
1946       sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1947       break;
1948     }
1949 
1950     case TK_EXISTS:
1951     case TK_SELECT: {
1952       /* This has to be a scalar SELECT.  Generate code to put the
1953       ** value of this select in a memory cell and record the number
1954       ** of the memory cell in iColumn.
1955       */
1956       static const Token one = { (u8*)"1", 0, 1 };
1957       Select *pSel;
1958       SelectDest dest;
1959 
1960       pSel = pExpr->pSelect;
1961       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1962       if( pExpr->op==TK_SELECT ){
1963         dest.eDest = SRT_Mem;
1964         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
1965         VdbeComment((v, "Init subquery result"));
1966       }else{
1967         dest.eDest = SRT_Exists;
1968         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
1969         VdbeComment((v, "Init EXISTS result"));
1970       }
1971       sqlite3ExprDelete(pParse->db, pSel->pLimit);
1972       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
1973       if( sqlite3Select(pParse, pSel, &dest, 0, 0, 0) ){
1974         return;
1975       }
1976       pExpr->iColumn = dest.iParm;
1977       break;
1978     }
1979   }
1980 
1981   if( testAddr ){
1982     sqlite3VdbeJumpHere(v, testAddr-1);
1983   }
1984 
1985   return;
1986 }
1987 #endif /* SQLITE_OMIT_SUBQUERY */
1988 
1989 /*
1990 ** Duplicate an 8-byte value
1991 */
1992 static char *dup8bytes(Vdbe *v, const char *in){
1993   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1994   if( out ){
1995     memcpy(out, in, 8);
1996   }
1997   return out;
1998 }
1999 
2000 /*
2001 ** Generate an instruction that will put the floating point
2002 ** value described by z[0..n-1] into register iMem.
2003 **
2004 ** The z[] string will probably not be zero-terminated.  But the
2005 ** z[n] character is guaranteed to be something that does not look
2006 ** like the continuation of the number.
2007 */
2008 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){
2009   assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
2010   if( z ){
2011     double value;
2012     char *zV;
2013     assert( !isdigit(z[n]) );
2014     sqlite3AtoF(z, &value);
2015     if( sqlite3IsNaN(value) ){
2016       sqlite3VdbeAddOp2(v, OP_Null, 0, iMem);
2017     }else{
2018       if( negateFlag ) value = -value;
2019       zV = dup8bytes(v, (char*)&value);
2020       sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
2021     }
2022   }
2023 }
2024 
2025 
2026 /*
2027 ** Generate an instruction that will put the integer describe by
2028 ** text z[0..n-1] into register iMem.
2029 **
2030 ** The z[] string will probably not be zero-terminated.  But the
2031 ** z[n] character is guaranteed to be something that does not look
2032 ** like the continuation of the number.
2033 */
2034 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){
2035   const char *z;
2036   if( pExpr->flags & EP_IntValue ){
2037     int i = pExpr->iTable;
2038     if( negFlag ) i = -i;
2039     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2040   }else if( (z = (char*)pExpr->token.z)!=0 ){
2041     int i;
2042     int n = pExpr->token.n;
2043     assert( !isdigit(z[n]) );
2044     if( sqlite3GetInt32(z, &i) ){
2045       if( negFlag ) i = -i;
2046       sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2047     }else if( sqlite3FitsIn64Bits(z, negFlag) ){
2048       i64 value;
2049       char *zV;
2050       sqlite3Atoi64(z, &value);
2051       if( negFlag ) value = -value;
2052       zV = dup8bytes(v, (char*)&value);
2053       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
2054     }else{
2055       codeReal(v, z, n, negFlag, iMem);
2056     }
2057   }
2058 }
2059 
2060 
2061 /*
2062 ** Generate code that will extract the iColumn-th column from
2063 ** table pTab and store the column value in a register.  An effort
2064 ** is made to store the column value in register iReg, but this is
2065 ** not guaranteed.  The location of the column value is returned.
2066 **
2067 ** There must be an open cursor to pTab in iTable when this routine
2068 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2069 **
2070 ** This routine might attempt to reuse the value of the column that
2071 ** has already been loaded into a register.  The value will always
2072 ** be used if it has not undergone any affinity changes.  But if
2073 ** an affinity change has occurred, then the cached value will only be
2074 ** used if allowAffChng is true.
2075 */
2076 int sqlite3ExprCodeGetColumn(
2077   Parse *pParse,   /* Parsing and code generating context */
2078   Table *pTab,     /* Description of the table we are reading from */
2079   int iColumn,     /* Index of the table column */
2080   int iTable,      /* The cursor pointing to the table */
2081   int iReg,        /* Store results here */
2082   int allowAffChng /* True if prior affinity changes are OK */
2083 ){
2084   Vdbe *v = pParse->pVdbe;
2085   int i;
2086   struct yColCache *p;
2087 
2088   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
2089     if( p->iTable==iTable && p->iColumn==iColumn
2090            && (!p->affChange || allowAffChng) ){
2091 #if 0
2092       sqlite3VdbeAddOp0(v, OP_Noop);
2093       VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg));
2094 #endif
2095       return p->iReg;
2096     }
2097   }
2098   assert( v!=0 );
2099   if( iColumn<0 ){
2100     int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
2101     sqlite3VdbeAddOp2(v, op, iTable, iReg);
2102   }else if( pTab==0 ){
2103     sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg);
2104   }else{
2105     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2106     sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
2107     sqlite3ColumnDefault(v, pTab, iColumn);
2108 #ifndef SQLITE_OMIT_FLOATING_POINT
2109     if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
2110       sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
2111     }
2112 #endif
2113   }
2114   if( pParse->disableColCache==0 ){
2115     i = pParse->iColCache;
2116     p = &pParse->aColCache[i];
2117     p->iTable = iTable;
2118     p->iColumn = iColumn;
2119     p->iReg = iReg;
2120     p->affChange = 0;
2121     i++;
2122     if( i>=ArraySize(pParse->aColCache) ) i = 0;
2123     if( i>pParse->nColCache ) pParse->nColCache = i;
2124     pParse->iColCache = i;
2125   }
2126   return iReg;
2127 }
2128 
2129 /*
2130 ** Clear all column cache entries associated with the vdbe
2131 ** cursor with cursor number iTable.
2132 */
2133 void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){
2134   if( iTable<0 ){
2135     pParse->nColCache = 0;
2136     pParse->iColCache = 0;
2137   }else{
2138     int i;
2139     for(i=0; i<pParse->nColCache; i++){
2140       if( pParse->aColCache[i].iTable==iTable ){
2141         testcase( i==pParse->nColCache-1 );
2142         pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
2143         pParse->iColCache = pParse->nColCache;
2144       }
2145     }
2146   }
2147 }
2148 
2149 /*
2150 ** Record the fact that an affinity change has occurred on iCount
2151 ** registers starting with iStart.
2152 */
2153 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2154   int iEnd = iStart + iCount - 1;
2155   int i;
2156   for(i=0; i<pParse->nColCache; i++){
2157     int r = pParse->aColCache[i].iReg;
2158     if( r>=iStart && r<=iEnd ){
2159       pParse->aColCache[i].affChange = 1;
2160     }
2161   }
2162 }
2163 
2164 /*
2165 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2166 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2167 */
2168 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2169   int i;
2170   if( iFrom==iTo ) return;
2171   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2172   for(i=0; i<pParse->nColCache; i++){
2173     int x = pParse->aColCache[i].iReg;
2174     if( x>=iFrom && x<iFrom+nReg ){
2175       pParse->aColCache[i].iReg += iTo-iFrom;
2176     }
2177   }
2178 }
2179 
2180 /*
2181 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
2182 ** over to iTo..iTo+nReg-1.
2183 */
2184 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
2185   int i;
2186   if( iFrom==iTo ) return;
2187   for(i=0; i<nReg; i++){
2188     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
2189   }
2190 }
2191 
2192 /*
2193 ** Return true if any register in the range iFrom..iTo (inclusive)
2194 ** is used as part of the column cache.
2195 */
2196 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2197   int i;
2198   for(i=0; i<pParse->nColCache; i++){
2199     int r = pParse->aColCache[i].iReg;
2200     if( r>=iFrom && r<=iTo ) return 1;
2201   }
2202   return 0;
2203 }
2204 
2205 /*
2206 ** Theres is a value in register iCurrent.  We ultimately want
2207 ** the value to be in register iTarget.  It might be that
2208 ** iCurrent and iTarget are the same register.
2209 **
2210 ** We are going to modify the value, so we need to make sure it
2211 ** is not a cached register.  If iCurrent is a cached register,
2212 ** then try to move the value over to iTarget.  If iTarget is a
2213 ** cached register, then clear the corresponding cache line.
2214 **
2215 ** Return the register that the value ends up in.
2216 */
2217 int sqlite3ExprWritableRegister(Parse *pParse, int iCurrent, int iTarget){
2218   int i;
2219   assert( pParse->pVdbe!=0 );
2220   if( !usedAsColumnCache(pParse, iCurrent, iCurrent) ){
2221     return iCurrent;
2222   }
2223   if( iCurrent!=iTarget ){
2224     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget);
2225   }
2226   for(i=0; i<pParse->nColCache; i++){
2227     if( pParse->aColCache[i].iReg==iTarget ){
2228       pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
2229       pParse->iColCache = pParse->nColCache;
2230     }
2231   }
2232   return iTarget;
2233 }
2234 
2235 /*
2236 ** If the last instruction coded is an ephemeral copy of any of
2237 ** the registers in the nReg registers beginning with iReg, then
2238 ** convert the last instruction from OP_SCopy to OP_Copy.
2239 */
2240 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
2241   int addr;
2242   VdbeOp *pOp;
2243   Vdbe *v;
2244 
2245   v = pParse->pVdbe;
2246   addr = sqlite3VdbeCurrentAddr(v);
2247   pOp = sqlite3VdbeGetOp(v, addr-1);
2248   assert( pOp || pParse->db->mallocFailed );
2249   if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
2250     pOp->opcode = OP_Copy;
2251   }
2252 }
2253 
2254 /*
2255 ** Generate code into the current Vdbe to evaluate the given
2256 ** expression.  Attempt to store the results in register "target".
2257 ** Return the register where results are stored.
2258 **
2259 ** With this routine, there is no guaranteed that results will
2260 ** be stored in target.  The result might be stored in some other
2261 ** register if it is convenient to do so.  The calling function
2262 ** must check the return code and move the results to the desired
2263 ** register.
2264 */
2265 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2266   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2267   int op;                   /* The opcode being coded */
2268   int inReg = target;       /* Results stored in register inReg */
2269   int regFree1 = 0;         /* If non-zero free this temporary register */
2270   int regFree2 = 0;         /* If non-zero free this temporary register */
2271   int r1, r2, r3, r4;       /* Various register numbers */
2272 
2273   assert( v!=0 || pParse->db->mallocFailed );
2274   assert( target>0 && target<=pParse->nMem );
2275   if( v==0 ) return 0;
2276 
2277   if( pExpr==0 ){
2278     op = TK_NULL;
2279   }else{
2280     op = pExpr->op;
2281   }
2282   switch( op ){
2283     case TK_AGG_COLUMN: {
2284       AggInfo *pAggInfo = pExpr->pAggInfo;
2285       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2286       if( !pAggInfo->directMode ){
2287         assert( pCol->iMem>0 );
2288         inReg = pCol->iMem;
2289         break;
2290       }else if( pAggInfo->useSortingIdx ){
2291         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
2292                               pCol->iSorterColumn, target);
2293         break;
2294       }
2295       /* Otherwise, fall thru into the TK_COLUMN case */
2296     }
2297     case TK_COLUMN: {
2298       if( pExpr->iTable<0 ){
2299         /* This only happens when coding check constraints */
2300         assert( pParse->ckBase>0 );
2301         inReg = pExpr->iColumn + pParse->ckBase;
2302       }else{
2303         testcase( (pExpr->flags & EP_AnyAff)!=0 );
2304         inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2305                                  pExpr->iColumn, pExpr->iTable, target,
2306                                  pExpr->flags & EP_AnyAff);
2307       }
2308       break;
2309     }
2310     case TK_INTEGER: {
2311       codeInteger(v, pExpr, 0, target);
2312       break;
2313     }
2314     case TK_FLOAT: {
2315       codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
2316       break;
2317     }
2318     case TK_STRING: {
2319       sqlite3DequoteExpr(pParse->db, pExpr);
2320       sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0,
2321                         (char*)pExpr->token.z, pExpr->token.n);
2322       break;
2323     }
2324     case TK_NULL: {
2325       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2326       break;
2327     }
2328 #ifndef SQLITE_OMIT_BLOB_LITERAL
2329     case TK_BLOB: {
2330       int n;
2331       const char *z;
2332       char *zBlob;
2333       assert( pExpr->token.n>=3 );
2334       assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
2335       assert( pExpr->token.z[1]=='\'' );
2336       assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
2337       n = pExpr->token.n - 3;
2338       z = (char*)pExpr->token.z + 2;
2339       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2340       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2341       break;
2342     }
2343 #endif
2344     case TK_VARIABLE: {
2345       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target);
2346       if( pExpr->token.n>1 ){
2347         sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n);
2348       }
2349       break;
2350     }
2351     case TK_REGISTER: {
2352       inReg = pExpr->iTable;
2353       break;
2354     }
2355 #ifndef SQLITE_OMIT_CAST
2356     case TK_CAST: {
2357       /* Expressions of the form:   CAST(pLeft AS token) */
2358       int aff, to_op;
2359       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2360       aff = sqlite3AffinityType(&pExpr->token);
2361       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2362       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
2363       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
2364       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2365       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
2366       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
2367       testcase( to_op==OP_ToText );
2368       testcase( to_op==OP_ToBlob );
2369       testcase( to_op==OP_ToNumeric );
2370       testcase( to_op==OP_ToInt );
2371       testcase( to_op==OP_ToReal );
2372       sqlite3VdbeAddOp1(v, to_op, inReg);
2373       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2374       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2375       break;
2376     }
2377 #endif /* SQLITE_OMIT_CAST */
2378     case TK_LT:
2379     case TK_LE:
2380     case TK_GT:
2381     case TK_GE:
2382     case TK_NE:
2383     case TK_EQ: {
2384       assert( TK_LT==OP_Lt );
2385       assert( TK_LE==OP_Le );
2386       assert( TK_GT==OP_Gt );
2387       assert( TK_GE==OP_Ge );
2388       assert( TK_EQ==OP_Eq );
2389       assert( TK_NE==OP_Ne );
2390       testcase( op==TK_LT );
2391       testcase( op==TK_LE );
2392       testcase( op==TK_GT );
2393       testcase( op==TK_GE );
2394       testcase( op==TK_EQ );
2395       testcase( op==TK_NE );
2396       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
2397                                   pExpr->pRight, &r2, &regFree2);
2398       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2399                   r1, r2, inReg, SQLITE_STOREP2);
2400       testcase( regFree1==0 );
2401       testcase( regFree2==0 );
2402       break;
2403     }
2404     case TK_AND:
2405     case TK_OR:
2406     case TK_PLUS:
2407     case TK_STAR:
2408     case TK_MINUS:
2409     case TK_REM:
2410     case TK_BITAND:
2411     case TK_BITOR:
2412     case TK_SLASH:
2413     case TK_LSHIFT:
2414     case TK_RSHIFT:
2415     case TK_CONCAT: {
2416       assert( TK_AND==OP_And );
2417       assert( TK_OR==OP_Or );
2418       assert( TK_PLUS==OP_Add );
2419       assert( TK_MINUS==OP_Subtract );
2420       assert( TK_REM==OP_Remainder );
2421       assert( TK_BITAND==OP_BitAnd );
2422       assert( TK_BITOR==OP_BitOr );
2423       assert( TK_SLASH==OP_Divide );
2424       assert( TK_LSHIFT==OP_ShiftLeft );
2425       assert( TK_RSHIFT==OP_ShiftRight );
2426       assert( TK_CONCAT==OP_Concat );
2427       testcase( op==TK_AND );
2428       testcase( op==TK_OR );
2429       testcase( op==TK_PLUS );
2430       testcase( op==TK_MINUS );
2431       testcase( op==TK_REM );
2432       testcase( op==TK_BITAND );
2433       testcase( op==TK_BITOR );
2434       testcase( op==TK_SLASH );
2435       testcase( op==TK_LSHIFT );
2436       testcase( op==TK_RSHIFT );
2437       testcase( op==TK_CONCAT );
2438       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2439       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2440       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2441       testcase( regFree1==0 );
2442       testcase( regFree2==0 );
2443       break;
2444     }
2445     case TK_UMINUS: {
2446       Expr *pLeft = pExpr->pLeft;
2447       assert( pLeft );
2448       if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
2449         if( pLeft->op==TK_FLOAT ){
2450           codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target);
2451         }else{
2452           codeInteger(v, pLeft, 1, target);
2453         }
2454       }else{
2455         regFree1 = r1 = sqlite3GetTempReg(pParse);
2456         sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
2457         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2458         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2459         testcase( regFree2==0 );
2460       }
2461       inReg = target;
2462       break;
2463     }
2464     case TK_BITNOT:
2465     case TK_NOT: {
2466       assert( TK_BITNOT==OP_BitNot );
2467       assert( TK_NOT==OP_Not );
2468       testcase( op==TK_BITNOT );
2469       testcase( op==TK_NOT );
2470       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2471       testcase( inReg==target );
2472       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2473       inReg = sqlite3ExprWritableRegister(pParse, inReg, target);
2474       sqlite3VdbeAddOp1(v, op, inReg);
2475       break;
2476     }
2477     case TK_ISNULL:
2478     case TK_NOTNULL: {
2479       int addr;
2480       assert( TK_ISNULL==OP_IsNull );
2481       assert( TK_NOTNULL==OP_NotNull );
2482       testcase( op==TK_ISNULL );
2483       testcase( op==TK_NOTNULL );
2484       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2485       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2486       testcase( regFree1==0 );
2487       addr = sqlite3VdbeAddOp1(v, op, r1);
2488       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2489       sqlite3VdbeJumpHere(v, addr);
2490       break;
2491     }
2492     case TK_AGG_FUNCTION: {
2493       AggInfo *pInfo = pExpr->pAggInfo;
2494       if( pInfo==0 ){
2495         sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
2496             &pExpr->span);
2497       }else{
2498         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2499       }
2500       break;
2501     }
2502     case TK_CONST_FUNC:
2503     case TK_FUNCTION: {
2504       ExprList *pList = pExpr->pList;
2505       int nExpr = pList ? pList->nExpr : 0;
2506       FuncDef *pDef;
2507       int nId;
2508       const char *zId;
2509       int constMask = 0;
2510       int i;
2511       sqlite3 *db = pParse->db;
2512       u8 enc = ENC(db);
2513       CollSeq *pColl = 0;
2514 
2515       testcase( op==TK_CONST_FUNC );
2516       testcase( op==TK_FUNCTION );
2517       zId = (char*)pExpr->token.z;
2518       nId = pExpr->token.n;
2519       pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
2520       assert( pDef!=0 );
2521       if( pList ){
2522         nExpr = pList->nExpr;
2523         r1 = sqlite3GetTempRange(pParse, nExpr);
2524         sqlite3ExprCodeExprList(pParse, pList, r1, 1);
2525       }else{
2526         nExpr = r1 = 0;
2527       }
2528 #ifndef SQLITE_OMIT_VIRTUALTABLE
2529       /* Possibly overload the function if the first argument is
2530       ** a virtual table column.
2531       **
2532       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2533       ** second argument, not the first, as the argument to test to
2534       ** see if it is a column in a virtual table.  This is done because
2535       ** the left operand of infix functions (the operand we want to
2536       ** control overloading) ends up as the second argument to the
2537       ** function.  The expression "A glob B" is equivalent to
2538       ** "glob(B,A).  We want to use the A in "A glob B" to test
2539       ** for function overloading.  But we use the B term in "glob(B,A)".
2540       */
2541       if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
2542         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
2543       }else if( nExpr>0 ){
2544         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
2545       }
2546 #endif
2547       for(i=0; i<nExpr && i<32; i++){
2548         if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
2549           constMask |= (1<<i);
2550         }
2551         if( pDef->needCollSeq && !pColl ){
2552           pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
2553         }
2554       }
2555       if( pDef->needCollSeq ){
2556         if( !pColl ) pColl = pParse->db->pDfltColl;
2557         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2558       }
2559       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2560                         (char*)pDef, P4_FUNCDEF);
2561       sqlite3VdbeChangeP5(v, nExpr);
2562       if( nExpr ){
2563         sqlite3ReleaseTempRange(pParse, r1, nExpr);
2564       }
2565       sqlite3ExprCacheAffinityChange(pParse, r1, nExpr);
2566       break;
2567     }
2568 #ifndef SQLITE_OMIT_SUBQUERY
2569     case TK_EXISTS:
2570     case TK_SELECT: {
2571       testcase( op==TK_EXISTS );
2572       testcase( op==TK_SELECT );
2573       if( pExpr->iColumn==0 ){
2574         sqlite3CodeSubselect(pParse, pExpr, 0);
2575       }
2576       inReg = pExpr->iColumn;
2577       break;
2578     }
2579     case TK_IN: {
2580       int rNotFound = 0;
2581       int rMayHaveNull = 0;
2582       int j2, j3, j4, j5;
2583       char affinity;
2584       int eType;
2585 
2586       VdbeNoopComment((v, "begin IN expr r%d", target));
2587       eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull);
2588       if( rMayHaveNull ){
2589         rNotFound = ++pParse->nMem;
2590       }
2591 
2592       /* Figure out the affinity to use to create a key from the results
2593       ** of the expression. affinityStr stores a static string suitable for
2594       ** P4 of OP_MakeRecord.
2595       */
2596       affinity = comparisonAffinity(pExpr);
2597 
2598 
2599       /* Code the <expr> from "<expr> IN (...)". The temporary table
2600       ** pExpr->iTable contains the values that make up the (...) set.
2601       */
2602       pParse->disableColCache++;
2603       sqlite3ExprCode(pParse, pExpr->pLeft, target);
2604       pParse->disableColCache--;
2605       j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target);
2606       if( eType==IN_INDEX_ROWID ){
2607         j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target);
2608         j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target);
2609         sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2610         j5 = sqlite3VdbeAddOp0(v, OP_Goto);
2611         sqlite3VdbeJumpHere(v, j3);
2612         sqlite3VdbeJumpHere(v, j4);
2613         sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2614       }else{
2615         r2 = regFree2 = sqlite3GetTempReg(pParse);
2616 
2617         /* Create a record and test for set membership. If the set contains
2618         ** the value, then jump to the end of the test code. The target
2619         ** register still contains the true (1) value written to it earlier.
2620         */
2621         sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1);
2622         sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2623         j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
2624 
2625         /* If the set membership test fails, then the result of the
2626         ** "x IN (...)" expression must be either 0 or NULL. If the set
2627         ** contains no NULL values, then the result is 0. If the set
2628         ** contains one or more NULL values, then the result of the
2629         ** expression is also NULL.
2630         */
2631         if( rNotFound==0 ){
2632           /* This branch runs if it is known at compile time (now) that
2633           ** the set contains no NULL values. This happens as the result
2634           ** of a "NOT NULL" constraint in the database schema. No need
2635           ** to test the data structure at runtime in this case.
2636           */
2637           sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2638         }else{
2639           /* This block populates the rNotFound register with either NULL
2640           ** or 0 (an integer value). If the data structure contains one
2641           ** or more NULLs, then set rNotFound to NULL. Otherwise, set it
2642           ** to 0. If register rMayHaveNull is already set to some value
2643           ** other than NULL, then the test has already been run and
2644           ** rNotFound is already populated.
2645           */
2646           static const char nullRecord[] = { 0x02, 0x00 };
2647           j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull);
2648           sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound);
2649           sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0,
2650                              nullRecord, P4_STATIC);
2651           j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull);
2652           sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound);
2653           sqlite3VdbeJumpHere(v, j4);
2654           sqlite3VdbeJumpHere(v, j3);
2655 
2656           /* Copy the value of register rNotFound (which is either NULL or 0)
2657 	  ** into the target register. This will be the result of the
2658           ** expression.
2659           */
2660           sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target);
2661         }
2662       }
2663       sqlite3VdbeJumpHere(v, j2);
2664       sqlite3VdbeJumpHere(v, j5);
2665       VdbeComment((v, "end IN expr r%d", target));
2666       break;
2667     }
2668 #endif
2669     /*
2670     **    x BETWEEN y AND z
2671     **
2672     ** This is equivalent to
2673     **
2674     **    x>=y AND x<=z
2675     **
2676     ** X is stored in pExpr->pLeft.
2677     ** Y is stored in pExpr->pList->a[0].pExpr.
2678     ** Z is stored in pExpr->pList->a[1].pExpr.
2679     */
2680     case TK_BETWEEN: {
2681       Expr *pLeft = pExpr->pLeft;
2682       struct ExprList_item *pLItem = pExpr->pList->a;
2683       Expr *pRight = pLItem->pExpr;
2684 
2685       codeCompareOperands(pParse, pLeft, &r1, &regFree1,
2686                                   pRight, &r2, &regFree2);
2687       testcase( regFree1==0 );
2688       testcase( regFree2==0 );
2689       r3 = sqlite3GetTempReg(pParse);
2690       r4 = sqlite3GetTempReg(pParse);
2691       codeCompare(pParse, pLeft, pRight, OP_Ge,
2692                   r1, r2, r3, SQLITE_STOREP2);
2693       pLItem++;
2694       pRight = pLItem->pExpr;
2695       sqlite3ReleaseTempReg(pParse, regFree2);
2696       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2697       testcase( regFree2==0 );
2698       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2699       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2700       sqlite3ReleaseTempReg(pParse, r3);
2701       sqlite3ReleaseTempReg(pParse, r4);
2702       break;
2703     }
2704     case TK_UPLUS: {
2705       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2706       break;
2707     }
2708 
2709     /*
2710     ** Form A:
2711     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2712     **
2713     ** Form B:
2714     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2715     **
2716     ** Form A is can be transformed into the equivalent form B as follows:
2717     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2718     **        WHEN x=eN THEN rN ELSE y END
2719     **
2720     ** X (if it exists) is in pExpr->pLeft.
2721     ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
2722     ** ELSE clause and no other term matches, then the result of the
2723     ** exprssion is NULL.
2724     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2725     **
2726     ** The result of the expression is the Ri for the first matching Ei,
2727     ** or if there is no matching Ei, the ELSE term Y, or if there is
2728     ** no ELSE term, NULL.
2729     */
2730     case TK_CASE: {
2731       int endLabel;                     /* GOTO label for end of CASE stmt */
2732       int nextCase;                     /* GOTO label for next WHEN clause */
2733       int nExpr;                        /* 2x number of WHEN terms */
2734       int i;                            /* Loop counter */
2735       ExprList *pEList;                 /* List of WHEN terms */
2736       struct ExprList_item *aListelem;  /* Array of WHEN terms */
2737       Expr opCompare;                   /* The X==Ei expression */
2738       Expr cacheX;                      /* Cached expression X */
2739       Expr *pX;                         /* The X expression */
2740       Expr *pTest;                      /* X==Ei (form A) or just Ei (form B) */
2741 
2742       assert(pExpr->pList);
2743       assert((pExpr->pList->nExpr % 2) == 0);
2744       assert(pExpr->pList->nExpr > 0);
2745       pEList = pExpr->pList;
2746       aListelem = pEList->a;
2747       nExpr = pEList->nExpr;
2748       endLabel = sqlite3VdbeMakeLabel(v);
2749       if( (pX = pExpr->pLeft)!=0 ){
2750         cacheX = *pX;
2751         testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER );
2752         cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
2753         testcase( regFree1==0 );
2754         cacheX.op = TK_REGISTER;
2755         cacheX.iColumn = 0;
2756         opCompare.op = TK_EQ;
2757         opCompare.pLeft = &cacheX;
2758         pTest = &opCompare;
2759       }
2760       pParse->disableColCache++;
2761       for(i=0; i<nExpr; i=i+2){
2762         if( pX ){
2763           opCompare.pRight = aListelem[i].pExpr;
2764         }else{
2765           pTest = aListelem[i].pExpr;
2766         }
2767         nextCase = sqlite3VdbeMakeLabel(v);
2768         testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER );
2769         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2770         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2771         testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2772         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2773         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2774         sqlite3VdbeResolveLabel(v, nextCase);
2775       }
2776       if( pExpr->pRight ){
2777         sqlite3ExprCode(pParse, pExpr->pRight, target);
2778       }else{
2779         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2780       }
2781       sqlite3VdbeResolveLabel(v, endLabel);
2782       assert( pParse->disableColCache>0 );
2783       pParse->disableColCache--;
2784       break;
2785     }
2786 #ifndef SQLITE_OMIT_TRIGGER
2787     case TK_RAISE: {
2788       if( !pParse->trigStack ){
2789         sqlite3ErrorMsg(pParse,
2790                        "RAISE() may only be used within a trigger-program");
2791         return 0;
2792       }
2793       if( pExpr->iColumn!=OE_Ignore ){
2794          assert( pExpr->iColumn==OE_Rollback ||
2795                  pExpr->iColumn == OE_Abort ||
2796                  pExpr->iColumn == OE_Fail );
2797          sqlite3DequoteExpr(pParse->db, pExpr);
2798          sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0,
2799                         (char*)pExpr->token.z, pExpr->token.n);
2800       } else {
2801          assert( pExpr->iColumn == OE_Ignore );
2802          sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
2803          sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
2804          VdbeComment((v, "raise(IGNORE)"));
2805       }
2806       break;
2807     }
2808 #endif
2809   }
2810   sqlite3ReleaseTempReg(pParse, regFree1);
2811   sqlite3ReleaseTempReg(pParse, regFree2);
2812   return inReg;
2813 }
2814 
2815 /*
2816 ** Generate code to evaluate an expression and store the results
2817 ** into a register.  Return the register number where the results
2818 ** are stored.
2819 **
2820 ** If the register is a temporary register that can be deallocated,
2821 ** then write its number into *pReg.  If the result register is not
2822 ** a temporary, then set *pReg to zero.
2823 */
2824 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2825   int r1 = sqlite3GetTempReg(pParse);
2826   int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2827   if( r2==r1 ){
2828     *pReg = r1;
2829   }else{
2830     sqlite3ReleaseTempReg(pParse, r1);
2831     *pReg = 0;
2832   }
2833   return r2;
2834 }
2835 
2836 /*
2837 ** Generate code that will evaluate expression pExpr and store the
2838 ** results in register target.  The results are guaranteed to appear
2839 ** in register target.
2840 */
2841 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2842   int inReg;
2843 
2844   assert( target>0 && target<=pParse->nMem );
2845   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2846   assert( pParse->pVdbe || pParse->db->mallocFailed );
2847   if( inReg!=target && pParse->pVdbe ){
2848     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2849   }
2850   return target;
2851 }
2852 
2853 /*
2854 ** Generate code that evalutes the given expression and puts the result
2855 ** in register target.
2856 **
2857 ** Also make a copy of the expression results into another "cache" register
2858 ** and modify the expression so that the next time it is evaluated,
2859 ** the result is a copy of the cache register.
2860 **
2861 ** This routine is used for expressions that are used multiple
2862 ** times.  They are evaluated once and the results of the expression
2863 ** are reused.
2864 */
2865 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
2866   Vdbe *v = pParse->pVdbe;
2867   int inReg;
2868   inReg = sqlite3ExprCode(pParse, pExpr, target);
2869   assert( target>0 );
2870   if( pExpr->op!=TK_REGISTER ){
2871     int iMem;
2872     iMem = ++pParse->nMem;
2873     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
2874     pExpr->iTable = iMem;
2875     pExpr->iColumn = pExpr->op;
2876     pExpr->op = TK_REGISTER;
2877   }
2878   return inReg;
2879 }
2880 
2881 /*
2882 ** Return TRUE if pExpr is an constant expression that is appropriate
2883 ** for factoring out of a loop.  Appropriate expressions are:
2884 **
2885 **    *  Any expression that evaluates to two or more opcodes.
2886 **
2887 **    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
2888 **       or OP_Variable that does not need to be placed in a
2889 **       specific register.
2890 **
2891 ** There is no point in factoring out single-instruction constant
2892 ** expressions that need to be placed in a particular register.
2893 ** We could factor them out, but then we would end up adding an
2894 ** OP_SCopy instruction to move the value into the correct register
2895 ** later.  We might as well just use the original instruction and
2896 ** avoid the OP_SCopy.
2897 */
2898 static int isAppropriateForFactoring(Expr *p){
2899   if( !sqlite3ExprIsConstantNotJoin(p) ){
2900     return 0;  /* Only constant expressions are appropriate for factoring */
2901   }
2902   if( (p->flags & EP_FixedDest)==0 ){
2903     return 1;  /* Any constant without a fixed destination is appropriate */
2904   }
2905   while( p->op==TK_UPLUS ) p = p->pLeft;
2906   switch( p->op ){
2907 #ifndef SQLITE_OMIT_BLOB_LITERAL
2908     case TK_BLOB:
2909 #endif
2910     case TK_VARIABLE:
2911     case TK_INTEGER:
2912     case TK_FLOAT:
2913     case TK_NULL:
2914     case TK_STRING: {
2915       testcase( p->op==TK_BLOB );
2916       testcase( p->op==TK_VARIABLE );
2917       testcase( p->op==TK_INTEGER );
2918       testcase( p->op==TK_FLOAT );
2919       testcase( p->op==TK_NULL );
2920       testcase( p->op==TK_STRING );
2921       /* Single-instruction constants with a fixed destination are
2922       ** better done in-line.  If we factor them, they will just end
2923       ** up generating an OP_SCopy to move the value to the destination
2924       ** register. */
2925       return 0;
2926     }
2927     case TK_UMINUS: {
2928        if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
2929          return 0;
2930        }
2931        break;
2932     }
2933     default: {
2934       break;
2935     }
2936   }
2937   return 1;
2938 }
2939 
2940 /*
2941 ** If pExpr is a constant expression that is appropriate for
2942 ** factoring out of a loop, then evaluate the expression
2943 ** into a register and convert the expression into a TK_REGISTER
2944 ** expression.
2945 */
2946 static int evalConstExpr(void *pArg, Expr *pExpr){
2947   Parse *pParse = (Parse*)pArg;
2948   switch( pExpr->op ){
2949     case TK_REGISTER: {
2950       return 1;
2951     }
2952     case TK_FUNCTION:
2953     case TK_AGG_FUNCTION:
2954     case TK_CONST_FUNC: {
2955       /* The arguments to a function have a fixed destination.
2956       ** Mark them this way to avoid generated unneeded OP_SCopy
2957       ** instructions.
2958       */
2959       ExprList *pList = pExpr->pList;
2960       if( pList ){
2961         int i = pList->nExpr;
2962         struct ExprList_item *pItem = pList->a;
2963         for(; i>0; i--, pItem++){
2964           if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest;
2965         }
2966       }
2967       break;
2968     }
2969   }
2970   if( isAppropriateForFactoring(pExpr) ){
2971     int r1 = ++pParse->nMem;
2972     int r2;
2973     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2974     if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1);
2975     pExpr->iColumn = pExpr->op;
2976     pExpr->op = TK_REGISTER;
2977     pExpr->iTable = r2;
2978     return 1;
2979   }
2980   return 0;
2981 }
2982 
2983 /*
2984 ** Preevaluate constant subexpressions within pExpr and store the
2985 ** results in registers.  Modify pExpr so that the constant subexpresions
2986 ** are TK_REGISTER opcodes that refer to the precomputed values.
2987 */
2988 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
2989    walkExprTree(pExpr, evalConstExpr, pParse);
2990 }
2991 
2992 
2993 /*
2994 ** Generate code that pushes the value of every element of the given
2995 ** expression list into a sequence of registers beginning at target.
2996 **
2997 ** Return the number of elements evaluated.
2998 */
2999 int sqlite3ExprCodeExprList(
3000   Parse *pParse,     /* Parsing context */
3001   ExprList *pList,   /* The expression list to be coded */
3002   int target,        /* Where to write results */
3003   int doHardCopy     /* Call sqlite3ExprHardCopy on each element if true */
3004 ){
3005   struct ExprList_item *pItem;
3006   int i, n;
3007   assert( pList!=0 || pParse->db->mallocFailed );
3008   if( pList==0 ){
3009     return 0;
3010   }
3011   assert( target>0 );
3012   n = pList->nExpr;
3013   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3014     sqlite3ExprCode(pParse, pItem->pExpr, target+i);
3015     if( doHardCopy ) sqlite3ExprHardCopy(pParse, target, n);
3016   }
3017   return n;
3018 }
3019 
3020 /*
3021 ** Generate code for a boolean expression such that a jump is made
3022 ** to the label "dest" if the expression is true but execution
3023 ** continues straight thru if the expression is false.
3024 **
3025 ** If the expression evaluates to NULL (neither true nor false), then
3026 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3027 **
3028 ** This code depends on the fact that certain token values (ex: TK_EQ)
3029 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3030 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3031 ** the make process cause these values to align.  Assert()s in the code
3032 ** below verify that the numbers are aligned correctly.
3033 */
3034 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3035   Vdbe *v = pParse->pVdbe;
3036   int op = 0;
3037   int regFree1 = 0;
3038   int regFree2 = 0;
3039   int r1, r2;
3040 
3041   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3042   if( v==0 || pExpr==0 ) return;
3043   op = pExpr->op;
3044   switch( op ){
3045     case TK_AND: {
3046       int d2 = sqlite3VdbeMakeLabel(v);
3047       testcase( jumpIfNull==0 );
3048       testcase( pParse->disableColCache==0 );
3049       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3050       pParse->disableColCache++;
3051       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3052       assert( pParse->disableColCache>0 );
3053       pParse->disableColCache--;
3054       sqlite3VdbeResolveLabel(v, d2);
3055       break;
3056     }
3057     case TK_OR: {
3058       testcase( jumpIfNull==0 );
3059       testcase( pParse->disableColCache==0 );
3060       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3061       pParse->disableColCache++;
3062       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3063       assert( pParse->disableColCache>0 );
3064       pParse->disableColCache--;
3065       break;
3066     }
3067     case TK_NOT: {
3068       testcase( jumpIfNull==0 );
3069       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3070       break;
3071     }
3072     case TK_LT:
3073     case TK_LE:
3074     case TK_GT:
3075     case TK_GE:
3076     case TK_NE:
3077     case TK_EQ: {
3078       assert( TK_LT==OP_Lt );
3079       assert( TK_LE==OP_Le );
3080       assert( TK_GT==OP_Gt );
3081       assert( TK_GE==OP_Ge );
3082       assert( TK_EQ==OP_Eq );
3083       assert( TK_NE==OP_Ne );
3084       testcase( op==TK_LT );
3085       testcase( op==TK_LE );
3086       testcase( op==TK_GT );
3087       testcase( op==TK_GE );
3088       testcase( op==TK_EQ );
3089       testcase( op==TK_NE );
3090       testcase( jumpIfNull==0 );
3091       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
3092                                   pExpr->pRight, &r2, &regFree2);
3093       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3094                   r1, r2, dest, jumpIfNull);
3095       testcase( regFree1==0 );
3096       testcase( regFree2==0 );
3097       break;
3098     }
3099     case TK_ISNULL:
3100     case TK_NOTNULL: {
3101       assert( TK_ISNULL==OP_IsNull );
3102       assert( TK_NOTNULL==OP_NotNull );
3103       testcase( op==TK_ISNULL );
3104       testcase( op==TK_NOTNULL );
3105       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3106       sqlite3VdbeAddOp2(v, op, r1, dest);
3107       testcase( regFree1==0 );
3108       break;
3109     }
3110     case TK_BETWEEN: {
3111       /*    x BETWEEN y AND z
3112       **
3113       ** Is equivalent to
3114       **
3115       **    x>=y AND x<=z
3116       **
3117       ** Code it as such, taking care to do the common subexpression
3118       ** elementation of x.
3119       */
3120       Expr exprAnd;
3121       Expr compLeft;
3122       Expr compRight;
3123       Expr exprX;
3124 
3125       exprX = *pExpr->pLeft;
3126       exprAnd.op = TK_AND;
3127       exprAnd.pLeft = &compLeft;
3128       exprAnd.pRight = &compRight;
3129       compLeft.op = TK_GE;
3130       compLeft.pLeft = &exprX;
3131       compLeft.pRight = pExpr->pList->a[0].pExpr;
3132       compRight.op = TK_LE;
3133       compRight.pLeft = &exprX;
3134       compRight.pRight = pExpr->pList->a[1].pExpr;
3135       exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
3136       testcase( regFree1==0 );
3137       exprX.op = TK_REGISTER;
3138       testcase( jumpIfNull==0 );
3139       sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3140       break;
3141     }
3142     default: {
3143       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3144       sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3145       testcase( regFree1==0 );
3146       testcase( jumpIfNull==0 );
3147       break;
3148     }
3149   }
3150   sqlite3ReleaseTempReg(pParse, regFree1);
3151   sqlite3ReleaseTempReg(pParse, regFree2);
3152 }
3153 
3154 /*
3155 ** Generate code for a boolean expression such that a jump is made
3156 ** to the label "dest" if the expression is false but execution
3157 ** continues straight thru if the expression is true.
3158 **
3159 ** If the expression evaluates to NULL (neither true nor false) then
3160 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3161 ** is 0.
3162 */
3163 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3164   Vdbe *v = pParse->pVdbe;
3165   int op = 0;
3166   int regFree1 = 0;
3167   int regFree2 = 0;
3168   int r1, r2;
3169 
3170   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3171   if( v==0 || pExpr==0 ) return;
3172 
3173   /* The value of pExpr->op and op are related as follows:
3174   **
3175   **       pExpr->op            op
3176   **       ---------          ----------
3177   **       TK_ISNULL          OP_NotNull
3178   **       TK_NOTNULL         OP_IsNull
3179   **       TK_NE              OP_Eq
3180   **       TK_EQ              OP_Ne
3181   **       TK_GT              OP_Le
3182   **       TK_LE              OP_Gt
3183   **       TK_GE              OP_Lt
3184   **       TK_LT              OP_Ge
3185   **
3186   ** For other values of pExpr->op, op is undefined and unused.
3187   ** The value of TK_ and OP_ constants are arranged such that we
3188   ** can compute the mapping above using the following expression.
3189   ** Assert()s verify that the computation is correct.
3190   */
3191   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3192 
3193   /* Verify correct alignment of TK_ and OP_ constants
3194   */
3195   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3196   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3197   assert( pExpr->op!=TK_NE || op==OP_Eq );
3198   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3199   assert( pExpr->op!=TK_LT || op==OP_Ge );
3200   assert( pExpr->op!=TK_LE || op==OP_Gt );
3201   assert( pExpr->op!=TK_GT || op==OP_Le );
3202   assert( pExpr->op!=TK_GE || op==OP_Lt );
3203 
3204   switch( pExpr->op ){
3205     case TK_AND: {
3206       testcase( jumpIfNull==0 );
3207       testcase( pParse->disableColCache==0 );
3208       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3209       pParse->disableColCache++;
3210       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3211       assert( pParse->disableColCache>0 );
3212       pParse->disableColCache--;
3213       break;
3214     }
3215     case TK_OR: {
3216       int d2 = sqlite3VdbeMakeLabel(v);
3217       testcase( jumpIfNull==0 );
3218       testcase( pParse->disableColCache==0 );
3219       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3220       pParse->disableColCache++;
3221       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3222       assert( pParse->disableColCache>0 );
3223       pParse->disableColCache--;
3224       sqlite3VdbeResolveLabel(v, d2);
3225       break;
3226     }
3227     case TK_NOT: {
3228       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3229       break;
3230     }
3231     case TK_LT:
3232     case TK_LE:
3233     case TK_GT:
3234     case TK_GE:
3235     case TK_NE:
3236     case TK_EQ: {
3237       testcase( op==TK_LT );
3238       testcase( op==TK_LE );
3239       testcase( op==TK_GT );
3240       testcase( op==TK_GE );
3241       testcase( op==TK_EQ );
3242       testcase( op==TK_NE );
3243       testcase( jumpIfNull==0 );
3244       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
3245                                   pExpr->pRight, &r2, &regFree2);
3246       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3247                   r1, r2, dest, jumpIfNull);
3248       testcase( regFree1==0 );
3249       testcase( regFree2==0 );
3250       break;
3251     }
3252     case TK_ISNULL:
3253     case TK_NOTNULL: {
3254       testcase( op==TK_ISNULL );
3255       testcase( op==TK_NOTNULL );
3256       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3257       sqlite3VdbeAddOp2(v, op, r1, dest);
3258       testcase( regFree1==0 );
3259       break;
3260     }
3261     case TK_BETWEEN: {
3262       /*    x BETWEEN y AND z
3263       **
3264       ** Is equivalent to
3265       **
3266       **    x>=y AND x<=z
3267       **
3268       ** Code it as such, taking care to do the common subexpression
3269       ** elementation of x.
3270       */
3271       Expr exprAnd;
3272       Expr compLeft;
3273       Expr compRight;
3274       Expr exprX;
3275 
3276       exprX = *pExpr->pLeft;
3277       exprAnd.op = TK_AND;
3278       exprAnd.pLeft = &compLeft;
3279       exprAnd.pRight = &compRight;
3280       compLeft.op = TK_GE;
3281       compLeft.pLeft = &exprX;
3282       compLeft.pRight = pExpr->pList->a[0].pExpr;
3283       compRight.op = TK_LE;
3284       compRight.pLeft = &exprX;
3285       compRight.pRight = pExpr->pList->a[1].pExpr;
3286       exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
3287       testcase( regFree1==0 );
3288       exprX.op = TK_REGISTER;
3289       testcase( jumpIfNull==0 );
3290       sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3291       break;
3292     }
3293     default: {
3294       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3295       sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3296       testcase( regFree1==0 );
3297       testcase( jumpIfNull==0 );
3298       break;
3299     }
3300   }
3301   sqlite3ReleaseTempReg(pParse, regFree1);
3302   sqlite3ReleaseTempReg(pParse, regFree2);
3303 }
3304 
3305 /*
3306 ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
3307 ** if they are identical and return FALSE if they differ in any way.
3308 **
3309 ** Sometimes this routine will return FALSE even if the two expressions
3310 ** really are equivalent.  If we cannot prove that the expressions are
3311 ** identical, we return FALSE just to be safe.  So if this routine
3312 ** returns false, then you do not really know for certain if the two
3313 ** expressions are the same.  But if you get a TRUE return, then you
3314 ** can be sure the expressions are the same.  In the places where
3315 ** this routine is used, it does not hurt to get an extra FALSE - that
3316 ** just might result in some slightly slower code.  But returning
3317 ** an incorrect TRUE could lead to a malfunction.
3318 */
3319 int sqlite3ExprCompare(Expr *pA, Expr *pB){
3320   int i;
3321   if( pA==0||pB==0 ){
3322     return pB==pA;
3323   }
3324   if( pA->op!=pB->op ) return 0;
3325   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
3326   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
3327   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
3328   if( pA->pList ){
3329     if( pB->pList==0 ) return 0;
3330     if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
3331     for(i=0; i<pA->pList->nExpr; i++){
3332       if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
3333         return 0;
3334       }
3335     }
3336   }else if( pB->pList ){
3337     return 0;
3338   }
3339   if( pA->pSelect || pB->pSelect ) return 0;
3340   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
3341   if( pA->op!=TK_COLUMN && pA->token.z ){
3342     if( pB->token.z==0 ) return 0;
3343     if( pB->token.n!=pA->token.n ) return 0;
3344     if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
3345       return 0;
3346     }
3347   }
3348   return 1;
3349 }
3350 
3351 
3352 /*
3353 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
3354 ** the new element.  Return a negative number if malloc fails.
3355 */
3356 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3357   int i;
3358   pInfo->aCol = sqlite3ArrayAllocate(
3359        db,
3360        pInfo->aCol,
3361        sizeof(pInfo->aCol[0]),
3362        3,
3363        &pInfo->nColumn,
3364        &pInfo->nColumnAlloc,
3365        &i
3366   );
3367   return i;
3368 }
3369 
3370 /*
3371 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
3372 ** the new element.  Return a negative number if malloc fails.
3373 */
3374 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3375   int i;
3376   pInfo->aFunc = sqlite3ArrayAllocate(
3377        db,
3378        pInfo->aFunc,
3379        sizeof(pInfo->aFunc[0]),
3380        3,
3381        &pInfo->nFunc,
3382        &pInfo->nFuncAlloc,
3383        &i
3384   );
3385   return i;
3386 }
3387 
3388 /*
3389 ** This is an xFunc for walkExprTree() used to implement
3390 ** sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
3391 ** for additional information.
3392 **
3393 ** This routine analyzes the aggregate function at pExpr.
3394 */
3395 static int analyzeAggregate(void *pArg, Expr *pExpr){
3396   int i;
3397   NameContext *pNC = (NameContext *)pArg;
3398   Parse *pParse = pNC->pParse;
3399   SrcList *pSrcList = pNC->pSrcList;
3400   AggInfo *pAggInfo = pNC->pAggInfo;
3401 
3402   switch( pExpr->op ){
3403     case TK_AGG_COLUMN:
3404     case TK_COLUMN: {
3405       /* Check to see if the column is in one of the tables in the FROM
3406       ** clause of the aggregate query */
3407       if( pSrcList ){
3408         struct SrcList_item *pItem = pSrcList->a;
3409         for(i=0; i<pSrcList->nSrc; i++, pItem++){
3410           struct AggInfo_col *pCol;
3411           if( pExpr->iTable==pItem->iCursor ){
3412             /* If we reach this point, it means that pExpr refers to a table
3413             ** that is in the FROM clause of the aggregate query.
3414             **
3415             ** Make an entry for the column in pAggInfo->aCol[] if there
3416             ** is not an entry there already.
3417             */
3418             int k;
3419             pCol = pAggInfo->aCol;
3420             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
3421               if( pCol->iTable==pExpr->iTable &&
3422                   pCol->iColumn==pExpr->iColumn ){
3423                 break;
3424               }
3425             }
3426             if( (k>=pAggInfo->nColumn)
3427              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
3428             ){
3429               pCol = &pAggInfo->aCol[k];
3430               pCol->pTab = pExpr->pTab;
3431               pCol->iTable = pExpr->iTable;
3432               pCol->iColumn = pExpr->iColumn;
3433               pCol->iMem = ++pParse->nMem;
3434               pCol->iSorterColumn = -1;
3435               pCol->pExpr = pExpr;
3436               if( pAggInfo->pGroupBy ){
3437                 int j, n;
3438                 ExprList *pGB = pAggInfo->pGroupBy;
3439                 struct ExprList_item *pTerm = pGB->a;
3440                 n = pGB->nExpr;
3441                 for(j=0; j<n; j++, pTerm++){
3442                   Expr *pE = pTerm->pExpr;
3443                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
3444                       pE->iColumn==pExpr->iColumn ){
3445                     pCol->iSorterColumn = j;
3446                     break;
3447                   }
3448                 }
3449               }
3450               if( pCol->iSorterColumn<0 ){
3451                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
3452               }
3453             }
3454             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
3455             ** because it was there before or because we just created it).
3456             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
3457             ** pAggInfo->aCol[] entry.
3458             */
3459             pExpr->pAggInfo = pAggInfo;
3460             pExpr->op = TK_AGG_COLUMN;
3461             pExpr->iAgg = k;
3462             break;
3463           } /* endif pExpr->iTable==pItem->iCursor */
3464         } /* end loop over pSrcList */
3465       }
3466       return 1;
3467     }
3468     case TK_AGG_FUNCTION: {
3469       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
3470       ** to be ignored */
3471       if( pNC->nDepth==0 ){
3472         /* Check to see if pExpr is a duplicate of another aggregate
3473         ** function that is already in the pAggInfo structure
3474         */
3475         struct AggInfo_func *pItem = pAggInfo->aFunc;
3476         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
3477           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
3478             break;
3479           }
3480         }
3481         if( i>=pAggInfo->nFunc ){
3482           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
3483           */
3484           u8 enc = ENC(pParse->db);
3485           i = addAggInfoFunc(pParse->db, pAggInfo);
3486           if( i>=0 ){
3487             pItem = &pAggInfo->aFunc[i];
3488             pItem->pExpr = pExpr;
3489             pItem->iMem = ++pParse->nMem;
3490             pItem->pFunc = sqlite3FindFunction(pParse->db,
3491                    (char*)pExpr->token.z, pExpr->token.n,
3492                    pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
3493             if( pExpr->flags & EP_Distinct ){
3494               pItem->iDistinct = pParse->nTab++;
3495             }else{
3496               pItem->iDistinct = -1;
3497             }
3498           }
3499         }
3500         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
3501         */
3502         pExpr->iAgg = i;
3503         pExpr->pAggInfo = pAggInfo;
3504         return 1;
3505       }
3506     }
3507   }
3508 
3509   /* Recursively walk subqueries looking for TK_COLUMN nodes that need
3510   ** to be changed to TK_AGG_COLUMN.  But increment nDepth so that
3511   ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
3512   */
3513   if( pExpr->pSelect ){
3514     pNC->nDepth++;
3515     walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
3516     pNC->nDepth--;
3517   }
3518   return 0;
3519 }
3520 
3521 /*
3522 ** Analyze the given expression looking for aggregate functions and
3523 ** for variables that need to be added to the pParse->aAgg[] array.
3524 ** Make additional entries to the pParse->aAgg[] array as necessary.
3525 **
3526 ** This routine should only be called after the expression has been
3527 ** analyzed by sqlite3ExprResolveNames().
3528 */
3529 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
3530   walkExprTree(pExpr, analyzeAggregate, pNC);
3531 }
3532 
3533 /*
3534 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
3535 ** expression list.  Return the number of errors.
3536 **
3537 ** If an error is found, the analysis is cut short.
3538 */
3539 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
3540   struct ExprList_item *pItem;
3541   int i;
3542   if( pList ){
3543     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
3544       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
3545     }
3546   }
3547 }
3548 
3549 /*
3550 ** Allocate or deallocate temporary use registers during code generation.
3551 */
3552 int sqlite3GetTempReg(Parse *pParse){
3553   if( pParse->nTempReg==0 ){
3554     return ++pParse->nMem;
3555   }
3556   return pParse->aTempReg[--pParse->nTempReg];
3557 }
3558 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
3559   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3560     sqlite3ExprWritableRegister(pParse, iReg, iReg);
3561     pParse->aTempReg[pParse->nTempReg++] = iReg;
3562   }
3563 }
3564 
3565 /*
3566 ** Allocate or deallocate a block of nReg consecutive registers
3567 */
3568 int sqlite3GetTempRange(Parse *pParse, int nReg){
3569   int i, n;
3570   i = pParse->iRangeReg;
3571   n = pParse->nRangeReg;
3572   if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
3573     pParse->iRangeReg += nReg;
3574     pParse->nRangeReg -= nReg;
3575   }else{
3576     i = pParse->nMem+1;
3577     pParse->nMem += nReg;
3578   }
3579   return i;
3580 }
3581 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
3582   if( nReg>pParse->nRangeReg ){
3583     pParse->nRangeReg = nReg;
3584     pParse->iRangeReg = iReg;
3585   }
3586 }
3587