xref: /sqlite-3.40.0/src/expr.c (revision 7b852416)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
48     assert( pExpr->op==TK_COLLATE || pExpr->op==TK_IF_NULL_ROW );
49     pExpr = pExpr->pLeft;
50     assert( pExpr!=0 );
51   }
52   op = pExpr->op;
53   if( op==TK_SELECT ){
54     assert( pExpr->flags&EP_xIsSelect );
55     assert( pExpr->x.pSelect!=0 );
56     assert( pExpr->x.pSelect->pEList!=0 );
57     assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
58     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
59   }
60   if( op==TK_REGISTER ) op = pExpr->op2;
61 #ifndef SQLITE_OMIT_CAST
62   if( op==TK_CAST ){
63     assert( !ExprHasProperty(pExpr, EP_IntValue) );
64     return sqlite3AffinityType(pExpr->u.zToken, 0);
65   }
66 #endif
67   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){
68     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
69   }
70   if( op==TK_SELECT_COLUMN ){
71     assert( pExpr->pLeft->flags&EP_xIsSelect );
72     return sqlite3ExprAffinity(
73         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
74     );
75   }
76   if( op==TK_VECTOR ){
77     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
78   }
79   return pExpr->affExpr;
80 }
81 
82 /*
83 ** Set the collating sequence for expression pExpr to be the collating
84 ** sequence named by pToken.   Return a pointer to a new Expr node that
85 ** implements the COLLATE operator.
86 **
87 ** If a memory allocation error occurs, that fact is recorded in pParse->db
88 ** and the pExpr parameter is returned unchanged.
89 */
90 Expr *sqlite3ExprAddCollateToken(
91   Parse *pParse,           /* Parsing context */
92   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
93   const Token *pCollName,  /* Name of collating sequence */
94   int dequote              /* True to dequote pCollName */
95 ){
96   if( pCollName->n>0 ){
97     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
98     if( pNew ){
99       pNew->pLeft = pExpr;
100       pNew->flags |= EP_Collate|EP_Skip;
101       pExpr = pNew;
102     }
103   }
104   return pExpr;
105 }
106 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
107   Token s;
108   assert( zC!=0 );
109   sqlite3TokenInit(&s, (char*)zC);
110   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
111 }
112 
113 /*
114 ** Skip over any TK_COLLATE operators.
115 */
116 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
117   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
118     assert( pExpr->op==TK_COLLATE );
119     pExpr = pExpr->pLeft;
120   }
121   return pExpr;
122 }
123 
124 /*
125 ** Skip over any TK_COLLATE operators and/or any unlikely()
126 ** or likelihood() or likely() functions at the root of an
127 ** expression.
128 */
129 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
130   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
131     if( ExprHasProperty(pExpr, EP_Unlikely) ){
132       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
133       assert( pExpr->x.pList->nExpr>0 );
134       assert( pExpr->op==TK_FUNCTION );
135       pExpr = pExpr->x.pList->a[0].pExpr;
136     }else{
137       assert( pExpr->op==TK_COLLATE );
138       pExpr = pExpr->pLeft;
139     }
140   }
141   return pExpr;
142 }
143 
144 /*
145 ** Return the collation sequence for the expression pExpr. If
146 ** there is no defined collating sequence, return NULL.
147 **
148 ** See also: sqlite3ExprNNCollSeq()
149 **
150 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
151 ** default collation if pExpr has no defined collation.
152 **
153 ** The collating sequence might be determined by a COLLATE operator
154 ** or by the presence of a column with a defined collating sequence.
155 ** COLLATE operators take first precedence.  Left operands take
156 ** precedence over right operands.
157 */
158 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
159   sqlite3 *db = pParse->db;
160   CollSeq *pColl = 0;
161   const Expr *p = pExpr;
162   while( p ){
163     int op = p->op;
164     if( op==TK_REGISTER ) op = p->op2;
165     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
166      && p->y.pTab!=0
167     ){
168       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
169       ** a TK_COLUMN but was previously evaluated and cached in a register */
170       int j = p->iColumn;
171       if( j>=0 ){
172         const char *zColl = p->y.pTab->aCol[j].zColl;
173         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
174       }
175       break;
176     }
177     if( op==TK_CAST || op==TK_UPLUS ){
178       p = p->pLeft;
179       continue;
180     }
181     if( op==TK_VECTOR ){
182       p = p->x.pList->a[0].pExpr;
183       continue;
184     }
185     if( op==TK_COLLATE ){
186       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
187       break;
188     }
189     if( p->flags & EP_Collate ){
190       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
191         p = p->pLeft;
192       }else{
193         Expr *pNext  = p->pRight;
194         /* The Expr.x union is never used at the same time as Expr.pRight */
195         assert( p->x.pList==0 || p->pRight==0 );
196         if( p->x.pList!=0
197          && !db->mallocFailed
198          && ALWAYS(!ExprHasProperty(p, EP_xIsSelect))
199         ){
200           int i;
201           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
202             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
203               pNext = p->x.pList->a[i].pExpr;
204               break;
205             }
206           }
207         }
208         p = pNext;
209       }
210     }else{
211       break;
212     }
213   }
214   if( sqlite3CheckCollSeq(pParse, pColl) ){
215     pColl = 0;
216   }
217   return pColl;
218 }
219 
220 /*
221 ** Return the collation sequence for the expression pExpr. If
222 ** there is no defined collating sequence, return a pointer to the
223 ** defautl collation sequence.
224 **
225 ** See also: sqlite3ExprCollSeq()
226 **
227 ** The sqlite3ExprCollSeq() routine works the same except that it
228 ** returns NULL if there is no defined collation.
229 */
230 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
231   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
232   if( p==0 ) p = pParse->db->pDfltColl;
233   assert( p!=0 );
234   return p;
235 }
236 
237 /*
238 ** Return TRUE if the two expressions have equivalent collating sequences.
239 */
240 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
241   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
242   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
243   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
244 }
245 
246 /*
247 ** pExpr is an operand of a comparison operator.  aff2 is the
248 ** type affinity of the other operand.  This routine returns the
249 ** type affinity that should be used for the comparison operator.
250 */
251 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
252   char aff1 = sqlite3ExprAffinity(pExpr);
253   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
254     /* Both sides of the comparison are columns. If one has numeric
255     ** affinity, use that. Otherwise use no affinity.
256     */
257     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
258       return SQLITE_AFF_NUMERIC;
259     }else{
260       return SQLITE_AFF_BLOB;
261     }
262   }else{
263     /* One side is a column, the other is not. Use the columns affinity. */
264     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
265     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
266   }
267 }
268 
269 /*
270 ** pExpr is a comparison operator.  Return the type affinity that should
271 ** be applied to both operands prior to doing the comparison.
272 */
273 static char comparisonAffinity(const Expr *pExpr){
274   char aff;
275   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
276           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
277           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
278   assert( pExpr->pLeft );
279   aff = sqlite3ExprAffinity(pExpr->pLeft);
280   if( pExpr->pRight ){
281     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
282   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
283     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
284   }else if( aff==0 ){
285     aff = SQLITE_AFF_BLOB;
286   }
287   return aff;
288 }
289 
290 /*
291 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
292 ** idx_affinity is the affinity of an indexed column. Return true
293 ** if the index with affinity idx_affinity may be used to implement
294 ** the comparison in pExpr.
295 */
296 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
297   char aff = comparisonAffinity(pExpr);
298   if( aff<SQLITE_AFF_TEXT ){
299     return 1;
300   }
301   if( aff==SQLITE_AFF_TEXT ){
302     return idx_affinity==SQLITE_AFF_TEXT;
303   }
304   return sqlite3IsNumericAffinity(idx_affinity);
305 }
306 
307 /*
308 ** Return the P5 value that should be used for a binary comparison
309 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
310 */
311 static u8 binaryCompareP5(
312   const Expr *pExpr1,   /* Left operand */
313   const Expr *pExpr2,   /* Right operand */
314   int jumpIfNull        /* Extra flags added to P5 */
315 ){
316   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
317   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
318   return aff;
319 }
320 
321 /*
322 ** Return a pointer to the collation sequence that should be used by
323 ** a binary comparison operator comparing pLeft and pRight.
324 **
325 ** If the left hand expression has a collating sequence type, then it is
326 ** used. Otherwise the collation sequence for the right hand expression
327 ** is used, or the default (BINARY) if neither expression has a collating
328 ** type.
329 **
330 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
331 ** it is not considered.
332 */
333 CollSeq *sqlite3BinaryCompareCollSeq(
334   Parse *pParse,
335   const Expr *pLeft,
336   const Expr *pRight
337 ){
338   CollSeq *pColl;
339   assert( pLeft );
340   if( pLeft->flags & EP_Collate ){
341     pColl = sqlite3ExprCollSeq(pParse, pLeft);
342   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
343     pColl = sqlite3ExprCollSeq(pParse, pRight);
344   }else{
345     pColl = sqlite3ExprCollSeq(pParse, pLeft);
346     if( !pColl ){
347       pColl = sqlite3ExprCollSeq(pParse, pRight);
348     }
349   }
350   return pColl;
351 }
352 
353 /* Expresssion p is a comparison operator.  Return a collation sequence
354 ** appropriate for the comparison operator.
355 **
356 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
357 ** However, if the OP_Commuted flag is set, then the order of the operands
358 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
359 ** correct collating sequence is found.
360 */
361 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
362   if( ExprHasProperty(p, EP_Commuted) ){
363     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
364   }else{
365     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
366   }
367 }
368 
369 /*
370 ** Generate code for a comparison operator.
371 */
372 static int codeCompare(
373   Parse *pParse,    /* The parsing (and code generating) context */
374   Expr *pLeft,      /* The left operand */
375   Expr *pRight,     /* The right operand */
376   int opcode,       /* The comparison opcode */
377   int in1, int in2, /* Register holding operands */
378   int dest,         /* Jump here if true.  */
379   int jumpIfNull,   /* If true, jump if either operand is NULL */
380   int isCommuted    /* The comparison has been commuted */
381 ){
382   int p5;
383   int addr;
384   CollSeq *p4;
385 
386   if( pParse->nErr ) return 0;
387   if( isCommuted ){
388     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
389   }else{
390     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
391   }
392   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
393   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
394                            (void*)p4, P4_COLLSEQ);
395   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
396   return addr;
397 }
398 
399 /*
400 ** Return true if expression pExpr is a vector, or false otherwise.
401 **
402 ** A vector is defined as any expression that results in two or more
403 ** columns of result.  Every TK_VECTOR node is an vector because the
404 ** parser will not generate a TK_VECTOR with fewer than two entries.
405 ** But a TK_SELECT might be either a vector or a scalar. It is only
406 ** considered a vector if it has two or more result columns.
407 */
408 int sqlite3ExprIsVector(Expr *pExpr){
409   return sqlite3ExprVectorSize(pExpr)>1;
410 }
411 
412 /*
413 ** If the expression passed as the only argument is of type TK_VECTOR
414 ** return the number of expressions in the vector. Or, if the expression
415 ** is a sub-select, return the number of columns in the sub-select. For
416 ** any other type of expression, return 1.
417 */
418 int sqlite3ExprVectorSize(Expr *pExpr){
419   u8 op = pExpr->op;
420   if( op==TK_REGISTER ) op = pExpr->op2;
421   if( op==TK_VECTOR ){
422     return pExpr->x.pList->nExpr;
423   }else if( op==TK_SELECT ){
424     return pExpr->x.pSelect->pEList->nExpr;
425   }else{
426     return 1;
427   }
428 }
429 
430 /*
431 ** Return a pointer to a subexpression of pVector that is the i-th
432 ** column of the vector (numbered starting with 0).  The caller must
433 ** ensure that i is within range.
434 **
435 ** If pVector is really a scalar (and "scalar" here includes subqueries
436 ** that return a single column!) then return pVector unmodified.
437 **
438 ** pVector retains ownership of the returned subexpression.
439 **
440 ** If the vector is a (SELECT ...) then the expression returned is
441 ** just the expression for the i-th term of the result set, and may
442 ** not be ready for evaluation because the table cursor has not yet
443 ** been positioned.
444 */
445 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
446   assert( i<sqlite3ExprVectorSize(pVector) );
447   if( sqlite3ExprIsVector(pVector) ){
448     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
449     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
450       return pVector->x.pSelect->pEList->a[i].pExpr;
451     }else{
452       return pVector->x.pList->a[i].pExpr;
453     }
454   }
455   return pVector;
456 }
457 
458 /*
459 ** Compute and return a new Expr object which when passed to
460 ** sqlite3ExprCode() will generate all necessary code to compute
461 ** the iField-th column of the vector expression pVector.
462 **
463 ** It is ok for pVector to be a scalar (as long as iField==0).
464 ** In that case, this routine works like sqlite3ExprDup().
465 **
466 ** The caller owns the returned Expr object and is responsible for
467 ** ensuring that the returned value eventually gets freed.
468 **
469 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
470 ** then the returned object will reference pVector and so pVector must remain
471 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
472 ** or a scalar expression, then it can be deleted as soon as this routine
473 ** returns.
474 **
475 ** A trick to cause a TK_SELECT pVector to be deleted together with
476 ** the returned Expr object is to attach the pVector to the pRight field
477 ** of the returned TK_SELECT_COLUMN Expr object.
478 */
479 Expr *sqlite3ExprForVectorField(
480   Parse *pParse,       /* Parsing context */
481   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
482   int iField           /* Which column of the vector to return */
483 ){
484   Expr *pRet;
485   if( pVector->op==TK_SELECT ){
486     assert( pVector->flags & EP_xIsSelect );
487     /* The TK_SELECT_COLUMN Expr node:
488     **
489     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
490     ** pRight:          not used.  But recursively deleted.
491     ** iColumn:         Index of a column in pVector
492     ** iTable:          0 or the number of columns on the LHS of an assignment
493     ** pLeft->iTable:   First in an array of register holding result, or 0
494     **                  if the result is not yet computed.
495     **
496     ** sqlite3ExprDelete() specifically skips the recursive delete of
497     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
498     ** can be attached to pRight to cause this node to take ownership of
499     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
500     ** with the same pLeft pointer to the pVector, but only one of them
501     ** will own the pVector.
502     */
503     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
504     if( pRet ){
505       pRet->iColumn = iField;
506       pRet->pLeft = pVector;
507     }
508     assert( pRet==0 || pRet->iTable==0 );
509   }else{
510     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
511     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
512     sqlite3RenameTokenRemap(pParse, pRet, pVector);
513   }
514   return pRet;
515 }
516 
517 /*
518 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
519 ** it. Return the register in which the result is stored (or, if the
520 ** sub-select returns more than one column, the first in an array
521 ** of registers in which the result is stored).
522 **
523 ** If pExpr is not a TK_SELECT expression, return 0.
524 */
525 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
526   int reg = 0;
527 #ifndef SQLITE_OMIT_SUBQUERY
528   if( pExpr->op==TK_SELECT ){
529     reg = sqlite3CodeSubselect(pParse, pExpr);
530   }
531 #endif
532   return reg;
533 }
534 
535 /*
536 ** Argument pVector points to a vector expression - either a TK_VECTOR
537 ** or TK_SELECT that returns more than one column. This function returns
538 ** the register number of a register that contains the value of
539 ** element iField of the vector.
540 **
541 ** If pVector is a TK_SELECT expression, then code for it must have
542 ** already been generated using the exprCodeSubselect() routine. In this
543 ** case parameter regSelect should be the first in an array of registers
544 ** containing the results of the sub-select.
545 **
546 ** If pVector is of type TK_VECTOR, then code for the requested field
547 ** is generated. In this case (*pRegFree) may be set to the number of
548 ** a temporary register to be freed by the caller before returning.
549 **
550 ** Before returning, output parameter (*ppExpr) is set to point to the
551 ** Expr object corresponding to element iElem of the vector.
552 */
553 static int exprVectorRegister(
554   Parse *pParse,                  /* Parse context */
555   Expr *pVector,                  /* Vector to extract element from */
556   int iField,                     /* Field to extract from pVector */
557   int regSelect,                  /* First in array of registers */
558   Expr **ppExpr,                  /* OUT: Expression element */
559   int *pRegFree                   /* OUT: Temp register to free */
560 ){
561   u8 op = pVector->op;
562   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
563   if( op==TK_REGISTER ){
564     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
565     return pVector->iTable+iField;
566   }
567   if( op==TK_SELECT ){
568     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
569      return regSelect+iField;
570   }
571   *ppExpr = pVector->x.pList->a[iField].pExpr;
572   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
573 }
574 
575 /*
576 ** Expression pExpr is a comparison between two vector values. Compute
577 ** the result of the comparison (1, 0, or NULL) and write that
578 ** result into register dest.
579 **
580 ** The caller must satisfy the following preconditions:
581 **
582 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
583 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
584 **    otherwise:                op==pExpr->op and p5==0
585 */
586 static void codeVectorCompare(
587   Parse *pParse,        /* Code generator context */
588   Expr *pExpr,          /* The comparison operation */
589   int dest,             /* Write results into this register */
590   u8 op,                /* Comparison operator */
591   u8 p5                 /* SQLITE_NULLEQ or zero */
592 ){
593   Vdbe *v = pParse->pVdbe;
594   Expr *pLeft = pExpr->pLeft;
595   Expr *pRight = pExpr->pRight;
596   int nLeft = sqlite3ExprVectorSize(pLeft);
597   int i;
598   int regLeft = 0;
599   int regRight = 0;
600   u8 opx = op;
601   int addrDone = sqlite3VdbeMakeLabel(pParse);
602   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
603 
604   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
605   if( pParse->nErr ) return;
606   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
607     sqlite3ErrorMsg(pParse, "row value misused");
608     return;
609   }
610   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
611        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
612        || pExpr->op==TK_LT || pExpr->op==TK_GT
613        || pExpr->op==TK_LE || pExpr->op==TK_GE
614   );
615   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
616             || (pExpr->op==TK_ISNOT && op==TK_NE) );
617   assert( p5==0 || pExpr->op!=op );
618   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
619 
620   p5 |= SQLITE_STOREP2;
621   if( opx==TK_LE ) opx = TK_LT;
622   if( opx==TK_GE ) opx = TK_GT;
623 
624   regLeft = exprCodeSubselect(pParse, pLeft);
625   regRight = exprCodeSubselect(pParse, pRight);
626 
627   for(i=0; 1 /*Loop exits by "break"*/; i++){
628     int regFree1 = 0, regFree2 = 0;
629     Expr *pL, *pR;
630     int r1, r2;
631     assert( i>=0 && i<nLeft );
632     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
633     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
634     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted);
635     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
636     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
637     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
638     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
639     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
640     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
641     sqlite3ReleaseTempReg(pParse, regFree1);
642     sqlite3ReleaseTempReg(pParse, regFree2);
643     if( i==nLeft-1 ){
644       break;
645     }
646     if( opx==TK_EQ ){
647       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
648       p5 |= SQLITE_KEEPNULL;
649     }else if( opx==TK_NE ){
650       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
651       p5 |= SQLITE_KEEPNULL;
652     }else{
653       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
654       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
655       VdbeCoverageIf(v, op==TK_LT);
656       VdbeCoverageIf(v, op==TK_GT);
657       VdbeCoverageIf(v, op==TK_LE);
658       VdbeCoverageIf(v, op==TK_GE);
659       if( i==nLeft-2 ) opx = op;
660     }
661   }
662   sqlite3VdbeResolveLabel(v, addrDone);
663 }
664 
665 #if SQLITE_MAX_EXPR_DEPTH>0
666 /*
667 ** Check that argument nHeight is less than or equal to the maximum
668 ** expression depth allowed. If it is not, leave an error message in
669 ** pParse.
670 */
671 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
672   int rc = SQLITE_OK;
673   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
674   if( nHeight>mxHeight ){
675     sqlite3ErrorMsg(pParse,
676        "Expression tree is too large (maximum depth %d)", mxHeight
677     );
678     rc = SQLITE_ERROR;
679   }
680   return rc;
681 }
682 
683 /* The following three functions, heightOfExpr(), heightOfExprList()
684 ** and heightOfSelect(), are used to determine the maximum height
685 ** of any expression tree referenced by the structure passed as the
686 ** first argument.
687 **
688 ** If this maximum height is greater than the current value pointed
689 ** to by pnHeight, the second parameter, then set *pnHeight to that
690 ** value.
691 */
692 static void heightOfExpr(Expr *p, int *pnHeight){
693   if( p ){
694     if( p->nHeight>*pnHeight ){
695       *pnHeight = p->nHeight;
696     }
697   }
698 }
699 static void heightOfExprList(ExprList *p, int *pnHeight){
700   if( p ){
701     int i;
702     for(i=0; i<p->nExpr; i++){
703       heightOfExpr(p->a[i].pExpr, pnHeight);
704     }
705   }
706 }
707 static void heightOfSelect(Select *pSelect, int *pnHeight){
708   Select *p;
709   for(p=pSelect; p; p=p->pPrior){
710     heightOfExpr(p->pWhere, pnHeight);
711     heightOfExpr(p->pHaving, pnHeight);
712     heightOfExpr(p->pLimit, pnHeight);
713     heightOfExprList(p->pEList, pnHeight);
714     heightOfExprList(p->pGroupBy, pnHeight);
715     heightOfExprList(p->pOrderBy, pnHeight);
716   }
717 }
718 
719 /*
720 ** Set the Expr.nHeight variable in the structure passed as an
721 ** argument. An expression with no children, Expr.pList or
722 ** Expr.pSelect member has a height of 1. Any other expression
723 ** has a height equal to the maximum height of any other
724 ** referenced Expr plus one.
725 **
726 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
727 ** if appropriate.
728 */
729 static void exprSetHeight(Expr *p){
730   int nHeight = 0;
731   heightOfExpr(p->pLeft, &nHeight);
732   heightOfExpr(p->pRight, &nHeight);
733   if( ExprHasProperty(p, EP_xIsSelect) ){
734     heightOfSelect(p->x.pSelect, &nHeight);
735   }else if( p->x.pList ){
736     heightOfExprList(p->x.pList, &nHeight);
737     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
738   }
739   p->nHeight = nHeight + 1;
740 }
741 
742 /*
743 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
744 ** the height is greater than the maximum allowed expression depth,
745 ** leave an error in pParse.
746 **
747 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
748 ** Expr.flags.
749 */
750 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
751   if( pParse->nErr ) return;
752   exprSetHeight(p);
753   sqlite3ExprCheckHeight(pParse, p->nHeight);
754 }
755 
756 /*
757 ** Return the maximum height of any expression tree referenced
758 ** by the select statement passed as an argument.
759 */
760 int sqlite3SelectExprHeight(Select *p){
761   int nHeight = 0;
762   heightOfSelect(p, &nHeight);
763   return nHeight;
764 }
765 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
766 /*
767 ** Propagate all EP_Propagate flags from the Expr.x.pList into
768 ** Expr.flags.
769 */
770 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
771   if( pParse->nErr ) return;
772   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
773     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
774   }
775 }
776 #define exprSetHeight(y)
777 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
778 
779 /*
780 ** This routine is the core allocator for Expr nodes.
781 **
782 ** Construct a new expression node and return a pointer to it.  Memory
783 ** for this node and for the pToken argument is a single allocation
784 ** obtained from sqlite3DbMalloc().  The calling function
785 ** is responsible for making sure the node eventually gets freed.
786 **
787 ** If dequote is true, then the token (if it exists) is dequoted.
788 ** If dequote is false, no dequoting is performed.  The deQuote
789 ** parameter is ignored if pToken is NULL or if the token does not
790 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
791 ** then the EP_DblQuoted flag is set on the expression node.
792 **
793 ** Special case:  If op==TK_INTEGER and pToken points to a string that
794 ** can be translated into a 32-bit integer, then the token is not
795 ** stored in u.zToken.  Instead, the integer values is written
796 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
797 ** is allocated to hold the integer text and the dequote flag is ignored.
798 */
799 Expr *sqlite3ExprAlloc(
800   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
801   int op,                 /* Expression opcode */
802   const Token *pToken,    /* Token argument.  Might be NULL */
803   int dequote             /* True to dequote */
804 ){
805   Expr *pNew;
806   int nExtra = 0;
807   int iValue = 0;
808 
809   assert( db!=0 );
810   if( pToken ){
811     if( op!=TK_INTEGER || pToken->z==0
812           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
813       nExtra = pToken->n+1;
814       assert( iValue>=0 );
815     }
816   }
817   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
818   if( pNew ){
819     memset(pNew, 0, sizeof(Expr));
820     pNew->op = (u8)op;
821     pNew->iAgg = -1;
822     if( pToken ){
823       if( nExtra==0 ){
824         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
825         pNew->u.iValue = iValue;
826       }else{
827         pNew->u.zToken = (char*)&pNew[1];
828         assert( pToken->z!=0 || pToken->n==0 );
829         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
830         pNew->u.zToken[pToken->n] = 0;
831         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
832           sqlite3DequoteExpr(pNew);
833         }
834       }
835     }
836 #if SQLITE_MAX_EXPR_DEPTH>0
837     pNew->nHeight = 1;
838 #endif
839   }
840   return pNew;
841 }
842 
843 /*
844 ** Allocate a new expression node from a zero-terminated token that has
845 ** already been dequoted.
846 */
847 Expr *sqlite3Expr(
848   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
849   int op,                 /* Expression opcode */
850   const char *zToken      /* Token argument.  Might be NULL */
851 ){
852   Token x;
853   x.z = zToken;
854   x.n = sqlite3Strlen30(zToken);
855   return sqlite3ExprAlloc(db, op, &x, 0);
856 }
857 
858 /*
859 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
860 **
861 ** If pRoot==NULL that means that a memory allocation error has occurred.
862 ** In that case, delete the subtrees pLeft and pRight.
863 */
864 void sqlite3ExprAttachSubtrees(
865   sqlite3 *db,
866   Expr *pRoot,
867   Expr *pLeft,
868   Expr *pRight
869 ){
870   if( pRoot==0 ){
871     assert( db->mallocFailed );
872     sqlite3ExprDelete(db, pLeft);
873     sqlite3ExprDelete(db, pRight);
874   }else{
875     if( pRight ){
876       pRoot->pRight = pRight;
877       pRoot->flags |= EP_Propagate & pRight->flags;
878     }
879     if( pLeft ){
880       pRoot->pLeft = pLeft;
881       pRoot->flags |= EP_Propagate & pLeft->flags;
882     }
883     exprSetHeight(pRoot);
884   }
885 }
886 
887 /*
888 ** Allocate an Expr node which joins as many as two subtrees.
889 **
890 ** One or both of the subtrees can be NULL.  Return a pointer to the new
891 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
892 ** free the subtrees and return NULL.
893 */
894 Expr *sqlite3PExpr(
895   Parse *pParse,          /* Parsing context */
896   int op,                 /* Expression opcode */
897   Expr *pLeft,            /* Left operand */
898   Expr *pRight            /* Right operand */
899 ){
900   Expr *p;
901   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
902   if( p ){
903     memset(p, 0, sizeof(Expr));
904     p->op = op & 0xff;
905     p->iAgg = -1;
906     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
907     sqlite3ExprCheckHeight(pParse, p->nHeight);
908   }else{
909     sqlite3ExprDelete(pParse->db, pLeft);
910     sqlite3ExprDelete(pParse->db, pRight);
911   }
912   return p;
913 }
914 
915 /*
916 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
917 ** do a memory allocation failure) then delete the pSelect object.
918 */
919 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
920   if( pExpr ){
921     pExpr->x.pSelect = pSelect;
922     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
923     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
924   }else{
925     assert( pParse->db->mallocFailed );
926     sqlite3SelectDelete(pParse->db, pSelect);
927   }
928 }
929 
930 
931 /*
932 ** Join two expressions using an AND operator.  If either expression is
933 ** NULL, then just return the other expression.
934 **
935 ** If one side or the other of the AND is known to be false, then instead
936 ** of returning an AND expression, just return a constant expression with
937 ** a value of false.
938 */
939 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
940   sqlite3 *db = pParse->db;
941   if( pLeft==0  ){
942     return pRight;
943   }else if( pRight==0 ){
944     return pLeft;
945   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
946          && !IN_RENAME_OBJECT
947   ){
948     sqlite3ExprDelete(db, pLeft);
949     sqlite3ExprDelete(db, pRight);
950     return sqlite3Expr(db, TK_INTEGER, "0");
951   }else{
952     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
953   }
954 }
955 
956 /*
957 ** Construct a new expression node for a function with multiple
958 ** arguments.
959 */
960 Expr *sqlite3ExprFunction(
961   Parse *pParse,        /* Parsing context */
962   ExprList *pList,      /* Argument list */
963   Token *pToken,        /* Name of the function */
964   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
965 ){
966   Expr *pNew;
967   sqlite3 *db = pParse->db;
968   assert( pToken );
969   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
970   if( pNew==0 ){
971     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
972     return 0;
973   }
974   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
975     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
976   }
977   pNew->x.pList = pList;
978   ExprSetProperty(pNew, EP_HasFunc);
979   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
980   sqlite3ExprSetHeightAndFlags(pParse, pNew);
981   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
982   return pNew;
983 }
984 
985 /*
986 ** Check to see if a function is usable according to current access
987 ** rules:
988 **
989 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
990 **
991 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
992 **                                top-level SQL
993 **
994 ** If the function is not usable, create an error.
995 */
996 void sqlite3ExprFunctionUsable(
997   Parse *pParse,         /* Parsing and code generating context */
998   Expr *pExpr,           /* The function invocation */
999   FuncDef *pDef          /* The function being invoked */
1000 ){
1001   assert( !IN_RENAME_OBJECT );
1002   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1003   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1004     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1005      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1006     ){
1007       /* Functions prohibited in triggers and views if:
1008       **     (1) tagged with SQLITE_DIRECTONLY
1009       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1010       **         is tagged with SQLITE_FUNC_UNSAFE) and
1011       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1012       **         that the schema is possibly tainted).
1013       */
1014       sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName);
1015     }
1016   }
1017 }
1018 
1019 /*
1020 ** Assign a variable number to an expression that encodes a wildcard
1021 ** in the original SQL statement.
1022 **
1023 ** Wildcards consisting of a single "?" are assigned the next sequential
1024 ** variable number.
1025 **
1026 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1027 ** sure "nnn" is not too big to avoid a denial of service attack when
1028 ** the SQL statement comes from an external source.
1029 **
1030 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1031 ** as the previous instance of the same wildcard.  Or if this is the first
1032 ** instance of the wildcard, the next sequential variable number is
1033 ** assigned.
1034 */
1035 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1036   sqlite3 *db = pParse->db;
1037   const char *z;
1038   ynVar x;
1039 
1040   if( pExpr==0 ) return;
1041   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1042   z = pExpr->u.zToken;
1043   assert( z!=0 );
1044   assert( z[0]!=0 );
1045   assert( n==(u32)sqlite3Strlen30(z) );
1046   if( z[1]==0 ){
1047     /* Wildcard of the form "?".  Assign the next variable number */
1048     assert( z[0]=='?' );
1049     x = (ynVar)(++pParse->nVar);
1050   }else{
1051     int doAdd = 0;
1052     if( z[0]=='?' ){
1053       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1054       ** use it as the variable number */
1055       i64 i;
1056       int bOk;
1057       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1058         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1059         bOk = 1;
1060       }else{
1061         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1062       }
1063       testcase( i==0 );
1064       testcase( i==1 );
1065       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1066       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1067       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1068         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1069             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1070         return;
1071       }
1072       x = (ynVar)i;
1073       if( x>pParse->nVar ){
1074         pParse->nVar = (int)x;
1075         doAdd = 1;
1076       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1077         doAdd = 1;
1078       }
1079     }else{
1080       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1081       ** number as the prior appearance of the same name, or if the name
1082       ** has never appeared before, reuse the same variable number
1083       */
1084       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1085       if( x==0 ){
1086         x = (ynVar)(++pParse->nVar);
1087         doAdd = 1;
1088       }
1089     }
1090     if( doAdd ){
1091       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1092     }
1093   }
1094   pExpr->iColumn = x;
1095   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1096     sqlite3ErrorMsg(pParse, "too many SQL variables");
1097   }
1098 }
1099 
1100 /*
1101 ** Recursively delete an expression tree.
1102 */
1103 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1104   assert( p!=0 );
1105   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1106   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1107 
1108   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1109   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1110           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1111 #ifdef SQLITE_DEBUG
1112   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1113     assert( p->pLeft==0 );
1114     assert( p->pRight==0 );
1115     assert( p->x.pSelect==0 );
1116   }
1117 #endif
1118   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1119     /* The Expr.x union is never used at the same time as Expr.pRight */
1120     assert( p->x.pList==0 || p->pRight==0 );
1121     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1122     if( p->pRight ){
1123       assert( !ExprHasProperty(p, EP_WinFunc) );
1124       sqlite3ExprDeleteNN(db, p->pRight);
1125     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1126       assert( !ExprHasProperty(p, EP_WinFunc) );
1127       sqlite3SelectDelete(db, p->x.pSelect);
1128     }else{
1129       sqlite3ExprListDelete(db, p->x.pList);
1130 #ifndef SQLITE_OMIT_WINDOWFUNC
1131       if( ExprHasProperty(p, EP_WinFunc) ){
1132         sqlite3WindowDelete(db, p->y.pWin);
1133       }
1134 #endif
1135     }
1136   }
1137   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1138   if( !ExprHasProperty(p, EP_Static) ){
1139     sqlite3DbFreeNN(db, p);
1140   }
1141 }
1142 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1143   if( p ) sqlite3ExprDeleteNN(db, p);
1144 }
1145 
1146 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1147 ** expression.
1148 */
1149 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1150   if( p ){
1151     if( IN_RENAME_OBJECT ){
1152       sqlite3RenameExprUnmap(pParse, p);
1153     }
1154     sqlite3ExprDeleteNN(pParse->db, p);
1155   }
1156 }
1157 
1158 /*
1159 ** Return the number of bytes allocated for the expression structure
1160 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1161 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1162 */
1163 static int exprStructSize(Expr *p){
1164   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1165   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1166   return EXPR_FULLSIZE;
1167 }
1168 
1169 /*
1170 ** The dupedExpr*Size() routines each return the number of bytes required
1171 ** to store a copy of an expression or expression tree.  They differ in
1172 ** how much of the tree is measured.
1173 **
1174 **     dupedExprStructSize()     Size of only the Expr structure
1175 **     dupedExprNodeSize()       Size of Expr + space for token
1176 **     dupedExprSize()           Expr + token + subtree components
1177 **
1178 ***************************************************************************
1179 **
1180 ** The dupedExprStructSize() function returns two values OR-ed together:
1181 ** (1) the space required for a copy of the Expr structure only and
1182 ** (2) the EP_xxx flags that indicate what the structure size should be.
1183 ** The return values is always one of:
1184 **
1185 **      EXPR_FULLSIZE
1186 **      EXPR_REDUCEDSIZE   | EP_Reduced
1187 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1188 **
1189 ** The size of the structure can be found by masking the return value
1190 ** of this routine with 0xfff.  The flags can be found by masking the
1191 ** return value with EP_Reduced|EP_TokenOnly.
1192 **
1193 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1194 ** (unreduced) Expr objects as they or originally constructed by the parser.
1195 ** During expression analysis, extra information is computed and moved into
1196 ** later parts of the Expr object and that extra information might get chopped
1197 ** off if the expression is reduced.  Note also that it does not work to
1198 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1199 ** to reduce a pristine expression tree from the parser.  The implementation
1200 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1201 ** to enforce this constraint.
1202 */
1203 static int dupedExprStructSize(Expr *p, int flags){
1204   int nSize;
1205   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1206   assert( EXPR_FULLSIZE<=0xfff );
1207   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1208   if( 0==flags || p->op==TK_SELECT_COLUMN
1209 #ifndef SQLITE_OMIT_WINDOWFUNC
1210    || ExprHasProperty(p, EP_WinFunc)
1211 #endif
1212   ){
1213     nSize = EXPR_FULLSIZE;
1214   }else{
1215     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1216     assert( !ExprHasProperty(p, EP_FromJoin) );
1217     assert( !ExprHasProperty(p, EP_MemToken) );
1218     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1219     if( p->pLeft || p->x.pList ){
1220       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1221     }else{
1222       assert( p->pRight==0 );
1223       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1224     }
1225   }
1226   return nSize;
1227 }
1228 
1229 /*
1230 ** This function returns the space in bytes required to store the copy
1231 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1232 ** string is defined.)
1233 */
1234 static int dupedExprNodeSize(Expr *p, int flags){
1235   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1236   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1237     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1238   }
1239   return ROUND8(nByte);
1240 }
1241 
1242 /*
1243 ** Return the number of bytes required to create a duplicate of the
1244 ** expression passed as the first argument. The second argument is a
1245 ** mask containing EXPRDUP_XXX flags.
1246 **
1247 ** The value returned includes space to create a copy of the Expr struct
1248 ** itself and the buffer referred to by Expr.u.zToken, if any.
1249 **
1250 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1251 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1252 ** and Expr.pRight variables (but not for any structures pointed to or
1253 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1254 */
1255 static int dupedExprSize(Expr *p, int flags){
1256   int nByte = 0;
1257   if( p ){
1258     nByte = dupedExprNodeSize(p, flags);
1259     if( flags&EXPRDUP_REDUCE ){
1260       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1261     }
1262   }
1263   return nByte;
1264 }
1265 
1266 /*
1267 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1268 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1269 ** to store the copy of expression p, the copies of p->u.zToken
1270 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1271 ** if any. Before returning, *pzBuffer is set to the first byte past the
1272 ** portion of the buffer copied into by this function.
1273 */
1274 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1275   Expr *pNew;           /* Value to return */
1276   u8 *zAlloc;           /* Memory space from which to build Expr object */
1277   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1278 
1279   assert( db!=0 );
1280   assert( p );
1281   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1282   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1283 
1284   /* Figure out where to write the new Expr structure. */
1285   if( pzBuffer ){
1286     zAlloc = *pzBuffer;
1287     staticFlag = EP_Static;
1288   }else{
1289     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1290     staticFlag = 0;
1291   }
1292   pNew = (Expr *)zAlloc;
1293 
1294   if( pNew ){
1295     /* Set nNewSize to the size allocated for the structure pointed to
1296     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1297     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1298     ** by the copy of the p->u.zToken string (if any).
1299     */
1300     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1301     const int nNewSize = nStructSize & 0xfff;
1302     int nToken;
1303     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1304       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1305     }else{
1306       nToken = 0;
1307     }
1308     if( dupFlags ){
1309       assert( ExprHasProperty(p, EP_Reduced)==0 );
1310       memcpy(zAlloc, p, nNewSize);
1311     }else{
1312       u32 nSize = (u32)exprStructSize(p);
1313       memcpy(zAlloc, p, nSize);
1314       if( nSize<EXPR_FULLSIZE ){
1315         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1316       }
1317     }
1318 
1319     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1320     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1321     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1322     pNew->flags |= staticFlag;
1323     ExprClearVVAProperties(pNew);
1324     if( dupFlags ){
1325       ExprSetVVAProperty(pNew, EP_Immutable);
1326     }
1327 
1328     /* Copy the p->u.zToken string, if any. */
1329     if( nToken ){
1330       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1331       memcpy(zToken, p->u.zToken, nToken);
1332     }
1333 
1334     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1335       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1336       if( ExprHasProperty(p, EP_xIsSelect) ){
1337         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1338       }else{
1339         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1340       }
1341     }
1342 
1343     /* Fill in pNew->pLeft and pNew->pRight. */
1344     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1345       zAlloc += dupedExprNodeSize(p, dupFlags);
1346       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1347         pNew->pLeft = p->pLeft ?
1348                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1349         pNew->pRight = p->pRight ?
1350                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1351       }
1352 #ifndef SQLITE_OMIT_WINDOWFUNC
1353       if( ExprHasProperty(p, EP_WinFunc) ){
1354         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1355         assert( ExprHasProperty(pNew, EP_WinFunc) );
1356       }
1357 #endif /* SQLITE_OMIT_WINDOWFUNC */
1358       if( pzBuffer ){
1359         *pzBuffer = zAlloc;
1360       }
1361     }else{
1362       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1363         if( pNew->op==TK_SELECT_COLUMN ){
1364           pNew->pLeft = p->pLeft;
1365           assert( p->iColumn==0 || p->pRight==0 );
1366           assert( p->pRight==0  || p->pRight==p->pLeft );
1367         }else{
1368           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1369         }
1370         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1371       }
1372     }
1373   }
1374   return pNew;
1375 }
1376 
1377 /*
1378 ** Create and return a deep copy of the object passed as the second
1379 ** argument. If an OOM condition is encountered, NULL is returned
1380 ** and the db->mallocFailed flag set.
1381 */
1382 #ifndef SQLITE_OMIT_CTE
1383 static With *withDup(sqlite3 *db, With *p){
1384   With *pRet = 0;
1385   if( p ){
1386     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1387     pRet = sqlite3DbMallocZero(db, nByte);
1388     if( pRet ){
1389       int i;
1390       pRet->nCte = p->nCte;
1391       for(i=0; i<p->nCte; i++){
1392         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1393         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1394         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1395       }
1396     }
1397   }
1398   return pRet;
1399 }
1400 #else
1401 # define withDup(x,y) 0
1402 #endif
1403 
1404 #ifndef SQLITE_OMIT_WINDOWFUNC
1405 /*
1406 ** The gatherSelectWindows() procedure and its helper routine
1407 ** gatherSelectWindowsCallback() are used to scan all the expressions
1408 ** an a newly duplicated SELECT statement and gather all of the Window
1409 ** objects found there, assembling them onto the linked list at Select->pWin.
1410 */
1411 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1412   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1413     Select *pSelect = pWalker->u.pSelect;
1414     Window *pWin = pExpr->y.pWin;
1415     assert( pWin );
1416     assert( IsWindowFunc(pExpr) );
1417     assert( pWin->ppThis==0 );
1418     sqlite3WindowLink(pSelect, pWin);
1419   }
1420   return WRC_Continue;
1421 }
1422 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1423   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1424 }
1425 static void gatherSelectWindows(Select *p){
1426   Walker w;
1427   w.xExprCallback = gatherSelectWindowsCallback;
1428   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1429   w.xSelectCallback2 = 0;
1430   w.pParse = 0;
1431   w.u.pSelect = p;
1432   sqlite3WalkSelect(&w, p);
1433 }
1434 #endif
1435 
1436 
1437 /*
1438 ** The following group of routines make deep copies of expressions,
1439 ** expression lists, ID lists, and select statements.  The copies can
1440 ** be deleted (by being passed to their respective ...Delete() routines)
1441 ** without effecting the originals.
1442 **
1443 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1444 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1445 ** by subsequent calls to sqlite*ListAppend() routines.
1446 **
1447 ** Any tables that the SrcList might point to are not duplicated.
1448 **
1449 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1450 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1451 ** truncated version of the usual Expr structure that will be stored as
1452 ** part of the in-memory representation of the database schema.
1453 */
1454 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1455   assert( flags==0 || flags==EXPRDUP_REDUCE );
1456   return p ? exprDup(db, p, flags, 0) : 0;
1457 }
1458 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1459   ExprList *pNew;
1460   struct ExprList_item *pItem, *pOldItem;
1461   int i;
1462   Expr *pPriorSelectCol = 0;
1463   assert( db!=0 );
1464   if( p==0 ) return 0;
1465   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1466   if( pNew==0 ) return 0;
1467   pNew->nExpr = p->nExpr;
1468   pItem = pNew->a;
1469   pOldItem = p->a;
1470   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1471     Expr *pOldExpr = pOldItem->pExpr;
1472     Expr *pNewExpr;
1473     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1474     if( pOldExpr
1475      && pOldExpr->op==TK_SELECT_COLUMN
1476      && (pNewExpr = pItem->pExpr)!=0
1477     ){
1478       assert( pNewExpr->iColumn==0 || i>0 );
1479       if( pNewExpr->iColumn==0 ){
1480         assert( pOldExpr->pLeft==pOldExpr->pRight );
1481         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1482       }else{
1483         assert( i>0 );
1484         assert( pItem[-1].pExpr!=0 );
1485         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1486         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1487         pNewExpr->pLeft = pPriorSelectCol;
1488       }
1489     }
1490     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1491     pItem->sortFlags = pOldItem->sortFlags;
1492     pItem->eEName = pOldItem->eEName;
1493     pItem->done = 0;
1494     pItem->bNulls = pOldItem->bNulls;
1495     pItem->bSorterRef = pOldItem->bSorterRef;
1496     pItem->u = pOldItem->u;
1497   }
1498   return pNew;
1499 }
1500 
1501 /*
1502 ** If cursors, triggers, views and subqueries are all omitted from
1503 ** the build, then none of the following routines, except for
1504 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1505 ** called with a NULL argument.
1506 */
1507 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1508  || !defined(SQLITE_OMIT_SUBQUERY)
1509 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1510   SrcList *pNew;
1511   int i;
1512   int nByte;
1513   assert( db!=0 );
1514   if( p==0 ) return 0;
1515   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1516   pNew = sqlite3DbMallocRawNN(db, nByte );
1517   if( pNew==0 ) return 0;
1518   pNew->nSrc = pNew->nAlloc = p->nSrc;
1519   for(i=0; i<p->nSrc; i++){
1520     struct SrcList_item *pNewItem = &pNew->a[i];
1521     struct SrcList_item *pOldItem = &p->a[i];
1522     Table *pTab;
1523     pNewItem->pSchema = pOldItem->pSchema;
1524     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1525     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1526     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1527     pNewItem->fg = pOldItem->fg;
1528     pNewItem->iCursor = pOldItem->iCursor;
1529     pNewItem->addrFillSub = pOldItem->addrFillSub;
1530     pNewItem->regReturn = pOldItem->regReturn;
1531     if( pNewItem->fg.isIndexedBy ){
1532       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1533     }
1534     pNewItem->pIBIndex = pOldItem->pIBIndex;
1535     if( pNewItem->fg.isTabFunc ){
1536       pNewItem->u1.pFuncArg =
1537           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1538     }
1539     pTab = pNewItem->pTab = pOldItem->pTab;
1540     if( pTab ){
1541       pTab->nTabRef++;
1542     }
1543     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1544     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1545     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1546     pNewItem->colUsed = pOldItem->colUsed;
1547   }
1548   return pNew;
1549 }
1550 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1551   IdList *pNew;
1552   int i;
1553   assert( db!=0 );
1554   if( p==0 ) return 0;
1555   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1556   if( pNew==0 ) return 0;
1557   pNew->nId = p->nId;
1558   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1559   if( pNew->a==0 ){
1560     sqlite3DbFreeNN(db, pNew);
1561     return 0;
1562   }
1563   /* Note that because the size of the allocation for p->a[] is not
1564   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1565   ** on the duplicate created by this function. */
1566   for(i=0; i<p->nId; i++){
1567     struct IdList_item *pNewItem = &pNew->a[i];
1568     struct IdList_item *pOldItem = &p->a[i];
1569     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1570     pNewItem->idx = pOldItem->idx;
1571   }
1572   return pNew;
1573 }
1574 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1575   Select *pRet = 0;
1576   Select *pNext = 0;
1577   Select **pp = &pRet;
1578   Select *p;
1579 
1580   assert( db!=0 );
1581   for(p=pDup; p; p=p->pPrior){
1582     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1583     if( pNew==0 ) break;
1584     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1585     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1586     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1587     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1588     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1589     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1590     pNew->op = p->op;
1591     pNew->pNext = pNext;
1592     pNew->pPrior = 0;
1593     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1594     pNew->iLimit = 0;
1595     pNew->iOffset = 0;
1596     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1597     pNew->addrOpenEphm[0] = -1;
1598     pNew->addrOpenEphm[1] = -1;
1599     pNew->nSelectRow = p->nSelectRow;
1600     pNew->pWith = withDup(db, p->pWith);
1601 #ifndef SQLITE_OMIT_WINDOWFUNC
1602     pNew->pWin = 0;
1603     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1604     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1605 #endif
1606     pNew->selId = p->selId;
1607     *pp = pNew;
1608     pp = &pNew->pPrior;
1609     pNext = pNew;
1610   }
1611 
1612   return pRet;
1613 }
1614 #else
1615 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1616   assert( p==0 );
1617   return 0;
1618 }
1619 #endif
1620 
1621 
1622 /*
1623 ** Add a new element to the end of an expression list.  If pList is
1624 ** initially NULL, then create a new expression list.
1625 **
1626 ** The pList argument must be either NULL or a pointer to an ExprList
1627 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1628 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1629 ** Reason:  This routine assumes that the number of slots in pList->a[]
1630 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1631 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1632 **
1633 ** If a memory allocation error occurs, the entire list is freed and
1634 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1635 ** that the new entry was successfully appended.
1636 */
1637 ExprList *sqlite3ExprListAppend(
1638   Parse *pParse,          /* Parsing context */
1639   ExprList *pList,        /* List to which to append. Might be NULL */
1640   Expr *pExpr             /* Expression to be appended. Might be NULL */
1641 ){
1642   struct ExprList_item *pItem;
1643   sqlite3 *db = pParse->db;
1644   assert( db!=0 );
1645   if( pList==0 ){
1646     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1647     if( pList==0 ){
1648       goto no_mem;
1649     }
1650     pList->nExpr = 0;
1651   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1652     ExprList *pNew;
1653     pNew = sqlite3DbRealloc(db, pList,
1654          sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0]));
1655     if( pNew==0 ){
1656       goto no_mem;
1657     }
1658     pList = pNew;
1659   }
1660   pItem = &pList->a[pList->nExpr++];
1661   assert( offsetof(struct ExprList_item,zEName)==sizeof(pItem->pExpr) );
1662   assert( offsetof(struct ExprList_item,pExpr)==0 );
1663   memset(&pItem->zEName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zEName));
1664   pItem->pExpr = pExpr;
1665   return pList;
1666 
1667 no_mem:
1668   /* Avoid leaking memory if malloc has failed. */
1669   sqlite3ExprDelete(db, pExpr);
1670   sqlite3ExprListDelete(db, pList);
1671   return 0;
1672 }
1673 
1674 /*
1675 ** pColumns and pExpr form a vector assignment which is part of the SET
1676 ** clause of an UPDATE statement.  Like this:
1677 **
1678 **        (a,b,c) = (expr1,expr2,expr3)
1679 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1680 **
1681 ** For each term of the vector assignment, append new entries to the
1682 ** expression list pList.  In the case of a subquery on the RHS, append
1683 ** TK_SELECT_COLUMN expressions.
1684 */
1685 ExprList *sqlite3ExprListAppendVector(
1686   Parse *pParse,         /* Parsing context */
1687   ExprList *pList,       /* List to which to append. Might be NULL */
1688   IdList *pColumns,      /* List of names of LHS of the assignment */
1689   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1690 ){
1691   sqlite3 *db = pParse->db;
1692   int n;
1693   int i;
1694   int iFirst = pList ? pList->nExpr : 0;
1695   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1696   ** exit prior to this routine being invoked */
1697   if( NEVER(pColumns==0) ) goto vector_append_error;
1698   if( pExpr==0 ) goto vector_append_error;
1699 
1700   /* If the RHS is a vector, then we can immediately check to see that
1701   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1702   ** wildcards ("*") in the result set of the SELECT must be expanded before
1703   ** we can do the size check, so defer the size check until code generation.
1704   */
1705   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1706     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1707                     pColumns->nId, n);
1708     goto vector_append_error;
1709   }
1710 
1711   for(i=0; i<pColumns->nId; i++){
1712     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1713     assert( pSubExpr!=0 || db->mallocFailed );
1714     assert( pSubExpr==0 || pSubExpr->iTable==0 );
1715     if( pSubExpr==0 ) continue;
1716     pSubExpr->iTable = pColumns->nId;
1717     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1718     if( pList ){
1719       assert( pList->nExpr==iFirst+i+1 );
1720       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1721       pColumns->a[i].zName = 0;
1722     }
1723   }
1724 
1725   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1726     Expr *pFirst = pList->a[iFirst].pExpr;
1727     assert( pFirst!=0 );
1728     assert( pFirst->op==TK_SELECT_COLUMN );
1729 
1730     /* Store the SELECT statement in pRight so it will be deleted when
1731     ** sqlite3ExprListDelete() is called */
1732     pFirst->pRight = pExpr;
1733     pExpr = 0;
1734 
1735     /* Remember the size of the LHS in iTable so that we can check that
1736     ** the RHS and LHS sizes match during code generation. */
1737     pFirst->iTable = pColumns->nId;
1738   }
1739 
1740 vector_append_error:
1741   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1742   sqlite3IdListDelete(db, pColumns);
1743   return pList;
1744 }
1745 
1746 /*
1747 ** Set the sort order for the last element on the given ExprList.
1748 */
1749 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1750   struct ExprList_item *pItem;
1751   if( p==0 ) return;
1752   assert( p->nExpr>0 );
1753 
1754   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1755   assert( iSortOrder==SQLITE_SO_UNDEFINED
1756        || iSortOrder==SQLITE_SO_ASC
1757        || iSortOrder==SQLITE_SO_DESC
1758   );
1759   assert( eNulls==SQLITE_SO_UNDEFINED
1760        || eNulls==SQLITE_SO_ASC
1761        || eNulls==SQLITE_SO_DESC
1762   );
1763 
1764   pItem = &p->a[p->nExpr-1];
1765   assert( pItem->bNulls==0 );
1766   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1767     iSortOrder = SQLITE_SO_ASC;
1768   }
1769   pItem->sortFlags = (u8)iSortOrder;
1770 
1771   if( eNulls!=SQLITE_SO_UNDEFINED ){
1772     pItem->bNulls = 1;
1773     if( iSortOrder!=eNulls ){
1774       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1775     }
1776   }
1777 }
1778 
1779 /*
1780 ** Set the ExprList.a[].zEName element of the most recently added item
1781 ** on the expression list.
1782 **
1783 ** pList might be NULL following an OOM error.  But pName should never be
1784 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1785 ** is set.
1786 */
1787 void sqlite3ExprListSetName(
1788   Parse *pParse,          /* Parsing context */
1789   ExprList *pList,        /* List to which to add the span. */
1790   Token *pName,           /* Name to be added */
1791   int dequote             /* True to cause the name to be dequoted */
1792 ){
1793   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1794   assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1795   if( pList ){
1796     struct ExprList_item *pItem;
1797     assert( pList->nExpr>0 );
1798     pItem = &pList->a[pList->nExpr-1];
1799     assert( pItem->zEName==0 );
1800     assert( pItem->eEName==ENAME_NAME );
1801     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1802     if( dequote ){
1803       /* If dequote==0, then pName->z does not point to part of a DDL
1804       ** statement handled by the parser. And so no token need be added
1805       ** to the token-map.  */
1806       sqlite3Dequote(pItem->zEName);
1807       if( IN_RENAME_OBJECT ){
1808         sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName);
1809       }
1810     }
1811   }
1812 }
1813 
1814 /*
1815 ** Set the ExprList.a[].zSpan element of the most recently added item
1816 ** on the expression list.
1817 **
1818 ** pList might be NULL following an OOM error.  But pSpan should never be
1819 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1820 ** is set.
1821 */
1822 void sqlite3ExprListSetSpan(
1823   Parse *pParse,          /* Parsing context */
1824   ExprList *pList,        /* List to which to add the span. */
1825   const char *zStart,     /* Start of the span */
1826   const char *zEnd        /* End of the span */
1827 ){
1828   sqlite3 *db = pParse->db;
1829   assert( pList!=0 || db->mallocFailed!=0 );
1830   if( pList ){
1831     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1832     assert( pList->nExpr>0 );
1833     if( pItem->zEName==0 ){
1834       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
1835       pItem->eEName = ENAME_SPAN;
1836     }
1837   }
1838 }
1839 
1840 /*
1841 ** If the expression list pEList contains more than iLimit elements,
1842 ** leave an error message in pParse.
1843 */
1844 void sqlite3ExprListCheckLength(
1845   Parse *pParse,
1846   ExprList *pEList,
1847   const char *zObject
1848 ){
1849   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1850   testcase( pEList && pEList->nExpr==mx );
1851   testcase( pEList && pEList->nExpr==mx+1 );
1852   if( pEList && pEList->nExpr>mx ){
1853     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1854   }
1855 }
1856 
1857 /*
1858 ** Delete an entire expression list.
1859 */
1860 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1861   int i = pList->nExpr;
1862   struct ExprList_item *pItem =  pList->a;
1863   assert( pList->nExpr>0 );
1864   do{
1865     sqlite3ExprDelete(db, pItem->pExpr);
1866     sqlite3DbFree(db, pItem->zEName);
1867     pItem++;
1868   }while( --i>0 );
1869   sqlite3DbFreeNN(db, pList);
1870 }
1871 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1872   if( pList ) exprListDeleteNN(db, pList);
1873 }
1874 
1875 /*
1876 ** Return the bitwise-OR of all Expr.flags fields in the given
1877 ** ExprList.
1878 */
1879 u32 sqlite3ExprListFlags(const ExprList *pList){
1880   int i;
1881   u32 m = 0;
1882   assert( pList!=0 );
1883   for(i=0; i<pList->nExpr; i++){
1884      Expr *pExpr = pList->a[i].pExpr;
1885      assert( pExpr!=0 );
1886      m |= pExpr->flags;
1887   }
1888   return m;
1889 }
1890 
1891 /*
1892 ** This is a SELECT-node callback for the expression walker that
1893 ** always "fails".  By "fail" in this case, we mean set
1894 ** pWalker->eCode to zero and abort.
1895 **
1896 ** This callback is used by multiple expression walkers.
1897 */
1898 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1899   UNUSED_PARAMETER(NotUsed);
1900   pWalker->eCode = 0;
1901   return WRC_Abort;
1902 }
1903 
1904 /*
1905 ** Check the input string to see if it is "true" or "false" (in any case).
1906 **
1907 **       If the string is....           Return
1908 **         "true"                         EP_IsTrue
1909 **         "false"                        EP_IsFalse
1910 **         anything else                  0
1911 */
1912 u32 sqlite3IsTrueOrFalse(const char *zIn){
1913   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
1914   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
1915   return 0;
1916 }
1917 
1918 
1919 /*
1920 ** If the input expression is an ID with the name "true" or "false"
1921 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1922 ** the conversion happened, and zero if the expression is unaltered.
1923 */
1924 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1925   u32 v;
1926   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1927   if( !ExprHasProperty(pExpr, EP_Quoted)
1928    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
1929   ){
1930     pExpr->op = TK_TRUEFALSE;
1931     ExprSetProperty(pExpr, v);
1932     return 1;
1933   }
1934   return 0;
1935 }
1936 
1937 /*
1938 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
1939 ** and 0 if it is FALSE.
1940 */
1941 int sqlite3ExprTruthValue(const Expr *pExpr){
1942   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
1943   assert( pExpr->op==TK_TRUEFALSE );
1944   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1945        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1946   return pExpr->u.zToken[4]==0;
1947 }
1948 
1949 /*
1950 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
1951 ** terms that are always true or false.  Return the simplified expression.
1952 ** Or return the original expression if no simplification is possible.
1953 **
1954 ** Examples:
1955 **
1956 **     (x<10) AND true                =>   (x<10)
1957 **     (x<10) AND false               =>   false
1958 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
1959 **     (x<10) AND (y=22 OR true)      =>   (x<10)
1960 **     (y=22) OR true                 =>   true
1961 */
1962 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
1963   assert( pExpr!=0 );
1964   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
1965     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
1966     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
1967     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
1968       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
1969     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
1970       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
1971     }
1972   }
1973   return pExpr;
1974 }
1975 
1976 
1977 /*
1978 ** These routines are Walker callbacks used to check expressions to
1979 ** see if they are "constant" for some definition of constant.  The
1980 ** Walker.eCode value determines the type of "constant" we are looking
1981 ** for.
1982 **
1983 ** These callback routines are used to implement the following:
1984 **
1985 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1986 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1987 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1988 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1989 **
1990 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1991 ** is found to not be a constant.
1992 **
1993 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
1994 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
1995 ** when parsing an existing schema out of the sqlite_schema table and 4
1996 ** when processing a new CREATE TABLE statement.  A bound parameter raises
1997 ** an error for new statements, but is silently converted
1998 ** to NULL for existing schemas.  This allows sqlite_schema tables that
1999 ** contain a bound parameter because they were generated by older versions
2000 ** of SQLite to be parsed by newer versions of SQLite without raising a
2001 ** malformed schema error.
2002 */
2003 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2004 
2005   /* If pWalker->eCode is 2 then any term of the expression that comes from
2006   ** the ON or USING clauses of a left join disqualifies the expression
2007   ** from being considered constant. */
2008   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
2009     pWalker->eCode = 0;
2010     return WRC_Abort;
2011   }
2012 
2013   switch( pExpr->op ){
2014     /* Consider functions to be constant if all their arguments are constant
2015     ** and either pWalker->eCode==4 or 5 or the function has the
2016     ** SQLITE_FUNC_CONST flag. */
2017     case TK_FUNCTION:
2018       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2019        && !ExprHasProperty(pExpr, EP_WinFunc)
2020       ){
2021         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2022         return WRC_Continue;
2023       }else{
2024         pWalker->eCode = 0;
2025         return WRC_Abort;
2026       }
2027     case TK_ID:
2028       /* Convert "true" or "false" in a DEFAULT clause into the
2029       ** appropriate TK_TRUEFALSE operator */
2030       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2031         return WRC_Prune;
2032       }
2033       /* no break */ deliberate_fall_through
2034     case TK_COLUMN:
2035     case TK_AGG_FUNCTION:
2036     case TK_AGG_COLUMN:
2037       testcase( pExpr->op==TK_ID );
2038       testcase( pExpr->op==TK_COLUMN );
2039       testcase( pExpr->op==TK_AGG_FUNCTION );
2040       testcase( pExpr->op==TK_AGG_COLUMN );
2041       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2042         return WRC_Continue;
2043       }
2044       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2045         return WRC_Continue;
2046       }
2047       /* no break */ deliberate_fall_through
2048     case TK_IF_NULL_ROW:
2049     case TK_REGISTER:
2050     case TK_DOT:
2051       testcase( pExpr->op==TK_REGISTER );
2052       testcase( pExpr->op==TK_IF_NULL_ROW );
2053       testcase( pExpr->op==TK_DOT );
2054       pWalker->eCode = 0;
2055       return WRC_Abort;
2056     case TK_VARIABLE:
2057       if( pWalker->eCode==5 ){
2058         /* Silently convert bound parameters that appear inside of CREATE
2059         ** statements into a NULL when parsing the CREATE statement text out
2060         ** of the sqlite_schema table */
2061         pExpr->op = TK_NULL;
2062       }else if( pWalker->eCode==4 ){
2063         /* A bound parameter in a CREATE statement that originates from
2064         ** sqlite3_prepare() causes an error */
2065         pWalker->eCode = 0;
2066         return WRC_Abort;
2067       }
2068       /* no break */ deliberate_fall_through
2069     default:
2070       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2071       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2072       return WRC_Continue;
2073   }
2074 }
2075 static int exprIsConst(Expr *p, int initFlag, int iCur){
2076   Walker w;
2077   w.eCode = initFlag;
2078   w.xExprCallback = exprNodeIsConstant;
2079   w.xSelectCallback = sqlite3SelectWalkFail;
2080 #ifdef SQLITE_DEBUG
2081   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2082 #endif
2083   w.u.iCur = iCur;
2084   sqlite3WalkExpr(&w, p);
2085   return w.eCode;
2086 }
2087 
2088 /*
2089 ** Walk an expression tree.  Return non-zero if the expression is constant
2090 ** and 0 if it involves variables or function calls.
2091 **
2092 ** For the purposes of this function, a double-quoted string (ex: "abc")
2093 ** is considered a variable but a single-quoted string (ex: 'abc') is
2094 ** a constant.
2095 */
2096 int sqlite3ExprIsConstant(Expr *p){
2097   return exprIsConst(p, 1, 0);
2098 }
2099 
2100 /*
2101 ** Walk an expression tree.  Return non-zero if
2102 **
2103 **   (1) the expression is constant, and
2104 **   (2) the expression does originate in the ON or USING clause
2105 **       of a LEFT JOIN, and
2106 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2107 **       operands created by the constant propagation optimization.
2108 **
2109 ** When this routine returns true, it indicates that the expression
2110 ** can be added to the pParse->pConstExpr list and evaluated once when
2111 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2112 */
2113 int sqlite3ExprIsConstantNotJoin(Expr *p){
2114   return exprIsConst(p, 2, 0);
2115 }
2116 
2117 /*
2118 ** Walk an expression tree.  Return non-zero if the expression is constant
2119 ** for any single row of the table with cursor iCur.  In other words, the
2120 ** expression must not refer to any non-deterministic function nor any
2121 ** table other than iCur.
2122 */
2123 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2124   return exprIsConst(p, 3, iCur);
2125 }
2126 
2127 
2128 /*
2129 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2130 */
2131 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2132   ExprList *pGroupBy = pWalker->u.pGroupBy;
2133   int i;
2134 
2135   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2136   ** it constant.  */
2137   for(i=0; i<pGroupBy->nExpr; i++){
2138     Expr *p = pGroupBy->a[i].pExpr;
2139     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2140       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2141       if( sqlite3IsBinary(pColl) ){
2142         return WRC_Prune;
2143       }
2144     }
2145   }
2146 
2147   /* Check if pExpr is a sub-select. If so, consider it variable. */
2148   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2149     pWalker->eCode = 0;
2150     return WRC_Abort;
2151   }
2152 
2153   return exprNodeIsConstant(pWalker, pExpr);
2154 }
2155 
2156 /*
2157 ** Walk the expression tree passed as the first argument. Return non-zero
2158 ** if the expression consists entirely of constants or copies of terms
2159 ** in pGroupBy that sort with the BINARY collation sequence.
2160 **
2161 ** This routine is used to determine if a term of the HAVING clause can
2162 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2163 ** the value of the HAVING clause term must be the same for all members of
2164 ** a "group".  The requirement that the GROUP BY term must be BINARY
2165 ** assumes that no other collating sequence will have a finer-grained
2166 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2167 ** A=B in every other collating sequence.  The requirement that the
2168 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2169 ** to promote HAVING clauses that use the same alternative collating
2170 ** sequence as the GROUP BY term, but that is much harder to check,
2171 ** alternative collating sequences are uncommon, and this is only an
2172 ** optimization, so we take the easy way out and simply require the
2173 ** GROUP BY to use the BINARY collating sequence.
2174 */
2175 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2176   Walker w;
2177   w.eCode = 1;
2178   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2179   w.xSelectCallback = 0;
2180   w.u.pGroupBy = pGroupBy;
2181   w.pParse = pParse;
2182   sqlite3WalkExpr(&w, p);
2183   return w.eCode;
2184 }
2185 
2186 /*
2187 ** Walk an expression tree for the DEFAULT field of a column definition
2188 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2189 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2190 ** the expression is constant or a function call with constant arguments.
2191 ** Return and 0 if there are any variables.
2192 **
2193 ** isInit is true when parsing from sqlite_schema.  isInit is false when
2194 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2195 ** (such as ? or $abc) in the expression are converted into NULL.  When
2196 ** isInit is false, parameters raise an error.  Parameters should not be
2197 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2198 ** allowed it, so we need to support it when reading sqlite_schema for
2199 ** backwards compatibility.
2200 **
2201 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2202 **
2203 ** For the purposes of this function, a double-quoted string (ex: "abc")
2204 ** is considered a variable but a single-quoted string (ex: 'abc') is
2205 ** a constant.
2206 */
2207 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2208   assert( isInit==0 || isInit==1 );
2209   return exprIsConst(p, 4+isInit, 0);
2210 }
2211 
2212 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2213 /*
2214 ** Walk an expression tree.  Return 1 if the expression contains a
2215 ** subquery of some kind.  Return 0 if there are no subqueries.
2216 */
2217 int sqlite3ExprContainsSubquery(Expr *p){
2218   Walker w;
2219   w.eCode = 1;
2220   w.xExprCallback = sqlite3ExprWalkNoop;
2221   w.xSelectCallback = sqlite3SelectWalkFail;
2222 #ifdef SQLITE_DEBUG
2223   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2224 #endif
2225   sqlite3WalkExpr(&w, p);
2226   return w.eCode==0;
2227 }
2228 #endif
2229 
2230 /*
2231 ** If the expression p codes a constant integer that is small enough
2232 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2233 ** in *pValue.  If the expression is not an integer or if it is too big
2234 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2235 */
2236 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2237   int rc = 0;
2238   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2239 
2240   /* If an expression is an integer literal that fits in a signed 32-bit
2241   ** integer, then the EP_IntValue flag will have already been set */
2242   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2243            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2244 
2245   if( p->flags & EP_IntValue ){
2246     *pValue = p->u.iValue;
2247     return 1;
2248   }
2249   switch( p->op ){
2250     case TK_UPLUS: {
2251       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2252       break;
2253     }
2254     case TK_UMINUS: {
2255       int v;
2256       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2257         assert( v!=(-2147483647-1) );
2258         *pValue = -v;
2259         rc = 1;
2260       }
2261       break;
2262     }
2263     default: break;
2264   }
2265   return rc;
2266 }
2267 
2268 /*
2269 ** Return FALSE if there is no chance that the expression can be NULL.
2270 **
2271 ** If the expression might be NULL or if the expression is too complex
2272 ** to tell return TRUE.
2273 **
2274 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2275 ** when we know that a value cannot be NULL.  Hence, a false positive
2276 ** (returning TRUE when in fact the expression can never be NULL) might
2277 ** be a small performance hit but is otherwise harmless.  On the other
2278 ** hand, a false negative (returning FALSE when the result could be NULL)
2279 ** will likely result in an incorrect answer.  So when in doubt, return
2280 ** TRUE.
2281 */
2282 int sqlite3ExprCanBeNull(const Expr *p){
2283   u8 op;
2284   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2285     p = p->pLeft;
2286   }
2287   op = p->op;
2288   if( op==TK_REGISTER ) op = p->op2;
2289   switch( op ){
2290     case TK_INTEGER:
2291     case TK_STRING:
2292     case TK_FLOAT:
2293     case TK_BLOB:
2294       return 0;
2295     case TK_COLUMN:
2296       return ExprHasProperty(p, EP_CanBeNull) ||
2297              p->y.pTab==0 ||  /* Reference to column of index on expression */
2298              (p->iColumn>=0
2299               && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */
2300               && p->y.pTab->aCol[p->iColumn].notNull==0);
2301     default:
2302       return 1;
2303   }
2304 }
2305 
2306 /*
2307 ** Return TRUE if the given expression is a constant which would be
2308 ** unchanged by OP_Affinity with the affinity given in the second
2309 ** argument.
2310 **
2311 ** This routine is used to determine if the OP_Affinity operation
2312 ** can be omitted.  When in doubt return FALSE.  A false negative
2313 ** is harmless.  A false positive, however, can result in the wrong
2314 ** answer.
2315 */
2316 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2317   u8 op;
2318   int unaryMinus = 0;
2319   if( aff==SQLITE_AFF_BLOB ) return 1;
2320   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2321     if( p->op==TK_UMINUS ) unaryMinus = 1;
2322     p = p->pLeft;
2323   }
2324   op = p->op;
2325   if( op==TK_REGISTER ) op = p->op2;
2326   switch( op ){
2327     case TK_INTEGER: {
2328       return aff>=SQLITE_AFF_NUMERIC;
2329     }
2330     case TK_FLOAT: {
2331       return aff>=SQLITE_AFF_NUMERIC;
2332     }
2333     case TK_STRING: {
2334       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2335     }
2336     case TK_BLOB: {
2337       return !unaryMinus;
2338     }
2339     case TK_COLUMN: {
2340       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2341       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2342     }
2343     default: {
2344       return 0;
2345     }
2346   }
2347 }
2348 
2349 /*
2350 ** Return TRUE if the given string is a row-id column name.
2351 */
2352 int sqlite3IsRowid(const char *z){
2353   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2354   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2355   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2356   return 0;
2357 }
2358 
2359 /*
2360 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2361 ** that can be simplified to a direct table access, then return
2362 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2363 ** or if the SELECT statement needs to be manifested into a transient
2364 ** table, then return NULL.
2365 */
2366 #ifndef SQLITE_OMIT_SUBQUERY
2367 static Select *isCandidateForInOpt(Expr *pX){
2368   Select *p;
2369   SrcList *pSrc;
2370   ExprList *pEList;
2371   Table *pTab;
2372   int i;
2373   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2374   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2375   p = pX->x.pSelect;
2376   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2377   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2378     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2379     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2380     return 0; /* No DISTINCT keyword and no aggregate functions */
2381   }
2382   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2383   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2384   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2385   pSrc = p->pSrc;
2386   assert( pSrc!=0 );
2387   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2388   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2389   pTab = pSrc->a[0].pTab;
2390   assert( pTab!=0 );
2391   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2392   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2393   pEList = p->pEList;
2394   assert( pEList!=0 );
2395   /* All SELECT results must be columns. */
2396   for(i=0; i<pEList->nExpr; i++){
2397     Expr *pRes = pEList->a[i].pExpr;
2398     if( pRes->op!=TK_COLUMN ) return 0;
2399     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2400   }
2401   return p;
2402 }
2403 #endif /* SQLITE_OMIT_SUBQUERY */
2404 
2405 #ifndef SQLITE_OMIT_SUBQUERY
2406 /*
2407 ** Generate code that checks the left-most column of index table iCur to see if
2408 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2409 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2410 ** to be set to NULL if iCur contains one or more NULL values.
2411 */
2412 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2413   int addr1;
2414   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2415   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2416   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2417   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2418   VdbeComment((v, "first_entry_in(%d)", iCur));
2419   sqlite3VdbeJumpHere(v, addr1);
2420 }
2421 #endif
2422 
2423 
2424 #ifndef SQLITE_OMIT_SUBQUERY
2425 /*
2426 ** The argument is an IN operator with a list (not a subquery) on the
2427 ** right-hand side.  Return TRUE if that list is constant.
2428 */
2429 static int sqlite3InRhsIsConstant(Expr *pIn){
2430   Expr *pLHS;
2431   int res;
2432   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2433   pLHS = pIn->pLeft;
2434   pIn->pLeft = 0;
2435   res = sqlite3ExprIsConstant(pIn);
2436   pIn->pLeft = pLHS;
2437   return res;
2438 }
2439 #endif
2440 
2441 /*
2442 ** This function is used by the implementation of the IN (...) operator.
2443 ** The pX parameter is the expression on the RHS of the IN operator, which
2444 ** might be either a list of expressions or a subquery.
2445 **
2446 ** The job of this routine is to find or create a b-tree object that can
2447 ** be used either to test for membership in the RHS set or to iterate through
2448 ** all members of the RHS set, skipping duplicates.
2449 **
2450 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2451 ** and pX->iTable is set to the index of that cursor.
2452 **
2453 ** The returned value of this function indicates the b-tree type, as follows:
2454 **
2455 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2456 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2457 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2458 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2459 **                         populated epheremal table.
2460 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2461 **                         implemented as a sequence of comparisons.
2462 **
2463 ** An existing b-tree might be used if the RHS expression pX is a simple
2464 ** subquery such as:
2465 **
2466 **     SELECT <column1>, <column2>... FROM <table>
2467 **
2468 ** If the RHS of the IN operator is a list or a more complex subquery, then
2469 ** an ephemeral table might need to be generated from the RHS and then
2470 ** pX->iTable made to point to the ephemeral table instead of an
2471 ** existing table.
2472 **
2473 ** The inFlags parameter must contain, at a minimum, one of the bits
2474 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2475 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2476 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2477 ** be used to loop over all values of the RHS of the IN operator.
2478 **
2479 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2480 ** through the set members) then the b-tree must not contain duplicates.
2481 ** An epheremal table will be created unless the selected columns are guaranteed
2482 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2483 ** a UNIQUE constraint or index.
2484 **
2485 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2486 ** for fast set membership tests) then an epheremal table must
2487 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2488 ** index can be found with the specified <columns> as its left-most.
2489 **
2490 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2491 ** if the RHS of the IN operator is a list (not a subquery) then this
2492 ** routine might decide that creating an ephemeral b-tree for membership
2493 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2494 ** calling routine should implement the IN operator using a sequence
2495 ** of Eq or Ne comparison operations.
2496 **
2497 ** When the b-tree is being used for membership tests, the calling function
2498 ** might need to know whether or not the RHS side of the IN operator
2499 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2500 ** if there is any chance that the (...) might contain a NULL value at
2501 ** runtime, then a register is allocated and the register number written
2502 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2503 ** NULL value, then *prRhsHasNull is left unchanged.
2504 **
2505 ** If a register is allocated and its location stored in *prRhsHasNull, then
2506 ** the value in that register will be NULL if the b-tree contains one or more
2507 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2508 ** NULL values.
2509 **
2510 ** If the aiMap parameter is not NULL, it must point to an array containing
2511 ** one element for each column returned by the SELECT statement on the RHS
2512 ** of the IN(...) operator. The i'th entry of the array is populated with the
2513 ** offset of the index column that matches the i'th column returned by the
2514 ** SELECT. For example, if the expression and selected index are:
2515 **
2516 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2517 **   CREATE INDEX i1 ON t1(b, c, a);
2518 **
2519 ** then aiMap[] is populated with {2, 0, 1}.
2520 */
2521 #ifndef SQLITE_OMIT_SUBQUERY
2522 int sqlite3FindInIndex(
2523   Parse *pParse,             /* Parsing context */
2524   Expr *pX,                  /* The IN expression */
2525   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2526   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2527   int *aiMap,                /* Mapping from Index fields to RHS fields */
2528   int *piTab                 /* OUT: index to use */
2529 ){
2530   Select *p;                            /* SELECT to the right of IN operator */
2531   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2532   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2533   int mustBeUnique;                     /* True if RHS must be unique */
2534   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2535 
2536   assert( pX->op==TK_IN );
2537   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2538 
2539   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2540   ** whether or not the SELECT result contains NULL values, check whether
2541   ** or not NULL is actually possible (it may not be, for example, due
2542   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2543   ** set prRhsHasNull to 0 before continuing.  */
2544   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2545     int i;
2546     ExprList *pEList = pX->x.pSelect->pEList;
2547     for(i=0; i<pEList->nExpr; i++){
2548       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2549     }
2550     if( i==pEList->nExpr ){
2551       prRhsHasNull = 0;
2552     }
2553   }
2554 
2555   /* Check to see if an existing table or index can be used to
2556   ** satisfy the query.  This is preferable to generating a new
2557   ** ephemeral table.  */
2558   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2559     sqlite3 *db = pParse->db;              /* Database connection */
2560     Table *pTab;                           /* Table <table>. */
2561     int iDb;                               /* Database idx for pTab */
2562     ExprList *pEList = p->pEList;
2563     int nExpr = pEList->nExpr;
2564 
2565     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2566     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2567     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2568     pTab = p->pSrc->a[0].pTab;
2569 
2570     /* Code an OP_Transaction and OP_TableLock for <table>. */
2571     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2572     assert( iDb>=0 && iDb<SQLITE_MAX_ATTACHED );
2573     sqlite3CodeVerifySchema(pParse, iDb);
2574     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2575 
2576     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2577     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2578       /* The "x IN (SELECT rowid FROM table)" case */
2579       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2580       VdbeCoverage(v);
2581 
2582       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2583       eType = IN_INDEX_ROWID;
2584       ExplainQueryPlan((pParse, 0,
2585             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2586       sqlite3VdbeJumpHere(v, iAddr);
2587     }else{
2588       Index *pIdx;                         /* Iterator variable */
2589       int affinity_ok = 1;
2590       int i;
2591 
2592       /* Check that the affinity that will be used to perform each
2593       ** comparison is the same as the affinity of each column in table
2594       ** on the RHS of the IN operator.  If it not, it is not possible to
2595       ** use any index of the RHS table.  */
2596       for(i=0; i<nExpr && affinity_ok; i++){
2597         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2598         int iCol = pEList->a[i].pExpr->iColumn;
2599         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2600         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2601         testcase( cmpaff==SQLITE_AFF_BLOB );
2602         testcase( cmpaff==SQLITE_AFF_TEXT );
2603         switch( cmpaff ){
2604           case SQLITE_AFF_BLOB:
2605             break;
2606           case SQLITE_AFF_TEXT:
2607             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2608             ** other has no affinity and the other side is TEXT.  Hence,
2609             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2610             ** and for the term on the LHS of the IN to have no affinity. */
2611             assert( idxaff==SQLITE_AFF_TEXT );
2612             break;
2613           default:
2614             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2615         }
2616       }
2617 
2618       if( affinity_ok ){
2619         /* Search for an existing index that will work for this IN operator */
2620         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2621           Bitmask colUsed;      /* Columns of the index used */
2622           Bitmask mCol;         /* Mask for the current column */
2623           if( pIdx->nColumn<nExpr ) continue;
2624           if( pIdx->pPartIdxWhere!=0 ) continue;
2625           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2626           ** BITMASK(nExpr) without overflowing */
2627           testcase( pIdx->nColumn==BMS-2 );
2628           testcase( pIdx->nColumn==BMS-1 );
2629           if( pIdx->nColumn>=BMS-1 ) continue;
2630           if( mustBeUnique ){
2631             if( pIdx->nKeyCol>nExpr
2632              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2633             ){
2634               continue;  /* This index is not unique over the IN RHS columns */
2635             }
2636           }
2637 
2638           colUsed = 0;   /* Columns of index used so far */
2639           for(i=0; i<nExpr; i++){
2640             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2641             Expr *pRhs = pEList->a[i].pExpr;
2642             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2643             int j;
2644 
2645             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2646             for(j=0; j<nExpr; j++){
2647               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2648               assert( pIdx->azColl[j] );
2649               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2650                 continue;
2651               }
2652               break;
2653             }
2654             if( j==nExpr ) break;
2655             mCol = MASKBIT(j);
2656             if( mCol & colUsed ) break; /* Each column used only once */
2657             colUsed |= mCol;
2658             if( aiMap ) aiMap[i] = j;
2659           }
2660 
2661           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2662           if( colUsed==(MASKBIT(nExpr)-1) ){
2663             /* If we reach this point, that means the index pIdx is usable */
2664             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2665             ExplainQueryPlan((pParse, 0,
2666                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2667             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2668             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2669             VdbeComment((v, "%s", pIdx->zName));
2670             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2671             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2672 
2673             if( prRhsHasNull ){
2674 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2675               i64 mask = (1<<nExpr)-1;
2676               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2677                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2678 #endif
2679               *prRhsHasNull = ++pParse->nMem;
2680               if( nExpr==1 ){
2681                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2682               }
2683             }
2684             sqlite3VdbeJumpHere(v, iAddr);
2685           }
2686         } /* End loop over indexes */
2687       } /* End if( affinity_ok ) */
2688     } /* End if not an rowid index */
2689   } /* End attempt to optimize using an index */
2690 
2691   /* If no preexisting index is available for the IN clause
2692   ** and IN_INDEX_NOOP is an allowed reply
2693   ** and the RHS of the IN operator is a list, not a subquery
2694   ** and the RHS is not constant or has two or fewer terms,
2695   ** then it is not worth creating an ephemeral table to evaluate
2696   ** the IN operator so return IN_INDEX_NOOP.
2697   */
2698   if( eType==0
2699    && (inFlags & IN_INDEX_NOOP_OK)
2700    && !ExprHasProperty(pX, EP_xIsSelect)
2701    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2702   ){
2703     eType = IN_INDEX_NOOP;
2704   }
2705 
2706   if( eType==0 ){
2707     /* Could not find an existing table or index to use as the RHS b-tree.
2708     ** We will have to generate an ephemeral table to do the job.
2709     */
2710     u32 savedNQueryLoop = pParse->nQueryLoop;
2711     int rMayHaveNull = 0;
2712     eType = IN_INDEX_EPH;
2713     if( inFlags & IN_INDEX_LOOP ){
2714       pParse->nQueryLoop = 0;
2715     }else if( prRhsHasNull ){
2716       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2717     }
2718     assert( pX->op==TK_IN );
2719     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2720     if( rMayHaveNull ){
2721       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2722     }
2723     pParse->nQueryLoop = savedNQueryLoop;
2724   }
2725 
2726   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2727     int i, n;
2728     n = sqlite3ExprVectorSize(pX->pLeft);
2729     for(i=0; i<n; i++) aiMap[i] = i;
2730   }
2731   *piTab = iTab;
2732   return eType;
2733 }
2734 #endif
2735 
2736 #ifndef SQLITE_OMIT_SUBQUERY
2737 /*
2738 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2739 ** function allocates and returns a nul-terminated string containing
2740 ** the affinities to be used for each column of the comparison.
2741 **
2742 ** It is the responsibility of the caller to ensure that the returned
2743 ** string is eventually freed using sqlite3DbFree().
2744 */
2745 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2746   Expr *pLeft = pExpr->pLeft;
2747   int nVal = sqlite3ExprVectorSize(pLeft);
2748   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2749   char *zRet;
2750 
2751   assert( pExpr->op==TK_IN );
2752   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2753   if( zRet ){
2754     int i;
2755     for(i=0; i<nVal; i++){
2756       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2757       char a = sqlite3ExprAffinity(pA);
2758       if( pSelect ){
2759         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2760       }else{
2761         zRet[i] = a;
2762       }
2763     }
2764     zRet[nVal] = '\0';
2765   }
2766   return zRet;
2767 }
2768 #endif
2769 
2770 #ifndef SQLITE_OMIT_SUBQUERY
2771 /*
2772 ** Load the Parse object passed as the first argument with an error
2773 ** message of the form:
2774 **
2775 **   "sub-select returns N columns - expected M"
2776 */
2777 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2778   if( pParse->nErr==0 ){
2779     const char *zFmt = "sub-select returns %d columns - expected %d";
2780     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2781   }
2782 }
2783 #endif
2784 
2785 /*
2786 ** Expression pExpr is a vector that has been used in a context where
2787 ** it is not permitted. If pExpr is a sub-select vector, this routine
2788 ** loads the Parse object with a message of the form:
2789 **
2790 **   "sub-select returns N columns - expected 1"
2791 **
2792 ** Or, if it is a regular scalar vector:
2793 **
2794 **   "row value misused"
2795 */
2796 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2797 #ifndef SQLITE_OMIT_SUBQUERY
2798   if( pExpr->flags & EP_xIsSelect ){
2799     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2800   }else
2801 #endif
2802   {
2803     sqlite3ErrorMsg(pParse, "row value misused");
2804   }
2805 }
2806 
2807 #ifndef SQLITE_OMIT_SUBQUERY
2808 /*
2809 ** Generate code that will construct an ephemeral table containing all terms
2810 ** in the RHS of an IN operator.  The IN operator can be in either of two
2811 ** forms:
2812 **
2813 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2814 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2815 **
2816 ** The pExpr parameter is the IN operator.  The cursor number for the
2817 ** constructed ephermeral table is returned.  The first time the ephemeral
2818 ** table is computed, the cursor number is also stored in pExpr->iTable,
2819 ** however the cursor number returned might not be the same, as it might
2820 ** have been duplicated using OP_OpenDup.
2821 **
2822 ** If the LHS expression ("x" in the examples) is a column value, or
2823 ** the SELECT statement returns a column value, then the affinity of that
2824 ** column is used to build the index keys. If both 'x' and the
2825 ** SELECT... statement are columns, then numeric affinity is used
2826 ** if either column has NUMERIC or INTEGER affinity. If neither
2827 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2828 ** is used.
2829 */
2830 void sqlite3CodeRhsOfIN(
2831   Parse *pParse,          /* Parsing context */
2832   Expr *pExpr,            /* The IN operator */
2833   int iTab                /* Use this cursor number */
2834 ){
2835   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2836   int addr;                   /* Address of OP_OpenEphemeral instruction */
2837   Expr *pLeft;                /* the LHS of the IN operator */
2838   KeyInfo *pKeyInfo = 0;      /* Key information */
2839   int nVal;                   /* Size of vector pLeft */
2840   Vdbe *v;                    /* The prepared statement under construction */
2841 
2842   v = pParse->pVdbe;
2843   assert( v!=0 );
2844 
2845   /* The evaluation of the IN must be repeated every time it
2846   ** is encountered if any of the following is true:
2847   **
2848   **    *  The right-hand side is a correlated subquery
2849   **    *  The right-hand side is an expression list containing variables
2850   **    *  We are inside a trigger
2851   **
2852   ** If all of the above are false, then we can compute the RHS just once
2853   ** and reuse it many names.
2854   */
2855   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2856     /* Reuse of the RHS is allowed */
2857     /* If this routine has already been coded, but the previous code
2858     ** might not have been invoked yet, so invoke it now as a subroutine.
2859     */
2860     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2861       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2862       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2863         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
2864               pExpr->x.pSelect->selId));
2865       }
2866       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2867                         pExpr->y.sub.iAddr);
2868       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
2869       sqlite3VdbeJumpHere(v, addrOnce);
2870       return;
2871     }
2872 
2873     /* Begin coding the subroutine */
2874     ExprSetProperty(pExpr, EP_Subrtn);
2875     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
2876     pExpr->y.sub.regReturn = ++pParse->nMem;
2877     pExpr->y.sub.iAddr =
2878       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2879     VdbeComment((v, "return address"));
2880 
2881     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2882   }
2883 
2884   /* Check to see if this is a vector IN operator */
2885   pLeft = pExpr->pLeft;
2886   nVal = sqlite3ExprVectorSize(pLeft);
2887 
2888   /* Construct the ephemeral table that will contain the content of
2889   ** RHS of the IN operator.
2890   */
2891   pExpr->iTable = iTab;
2892   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
2893 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2894   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2895     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
2896   }else{
2897     VdbeComment((v, "RHS of IN operator"));
2898   }
2899 #endif
2900   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2901 
2902   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2903     /* Case 1:     expr IN (SELECT ...)
2904     **
2905     ** Generate code to write the results of the select into the temporary
2906     ** table allocated and opened above.
2907     */
2908     Select *pSelect = pExpr->x.pSelect;
2909     ExprList *pEList = pSelect->pEList;
2910 
2911     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
2912         addrOnce?"":"CORRELATED ", pSelect->selId
2913     ));
2914     /* If the LHS and RHS of the IN operator do not match, that
2915     ** error will have been caught long before we reach this point. */
2916     if( ALWAYS(pEList->nExpr==nVal) ){
2917       SelectDest dest;
2918       int i;
2919       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
2920       dest.zAffSdst = exprINAffinity(pParse, pExpr);
2921       pSelect->iLimit = 0;
2922       testcase( pSelect->selFlags & SF_Distinct );
2923       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2924       if( sqlite3Select(pParse, pSelect, &dest) ){
2925         sqlite3DbFree(pParse->db, dest.zAffSdst);
2926         sqlite3KeyInfoUnref(pKeyInfo);
2927         return;
2928       }
2929       sqlite3DbFree(pParse->db, dest.zAffSdst);
2930       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2931       assert( pEList!=0 );
2932       assert( pEList->nExpr>0 );
2933       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2934       for(i=0; i<nVal; i++){
2935         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2936         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2937             pParse, p, pEList->a[i].pExpr
2938         );
2939       }
2940     }
2941   }else if( ALWAYS(pExpr->x.pList!=0) ){
2942     /* Case 2:     expr IN (exprlist)
2943     **
2944     ** For each expression, build an index key from the evaluation and
2945     ** store it in the temporary table. If <expr> is a column, then use
2946     ** that columns affinity when building index keys. If <expr> is not
2947     ** a column, use numeric affinity.
2948     */
2949     char affinity;            /* Affinity of the LHS of the IN */
2950     int i;
2951     ExprList *pList = pExpr->x.pList;
2952     struct ExprList_item *pItem;
2953     int r1, r2;
2954     affinity = sqlite3ExprAffinity(pLeft);
2955     if( affinity<=SQLITE_AFF_NONE ){
2956       affinity = SQLITE_AFF_BLOB;
2957     }else if( affinity==SQLITE_AFF_REAL ){
2958       affinity = SQLITE_AFF_NUMERIC;
2959     }
2960     if( pKeyInfo ){
2961       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2962       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2963     }
2964 
2965     /* Loop through each expression in <exprlist>. */
2966     r1 = sqlite3GetTempReg(pParse);
2967     r2 = sqlite3GetTempReg(pParse);
2968     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2969       Expr *pE2 = pItem->pExpr;
2970 
2971       /* If the expression is not constant then we will need to
2972       ** disable the test that was generated above that makes sure
2973       ** this code only executes once.  Because for a non-constant
2974       ** expression we need to rerun this code each time.
2975       */
2976       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
2977         sqlite3VdbeChangeToNoop(v, addrOnce);
2978         ExprClearProperty(pExpr, EP_Subrtn);
2979         addrOnce = 0;
2980       }
2981 
2982       /* Evaluate the expression and insert it into the temp table */
2983       sqlite3ExprCode(pParse, pE2, r1);
2984       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
2985       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
2986     }
2987     sqlite3ReleaseTempReg(pParse, r1);
2988     sqlite3ReleaseTempReg(pParse, r2);
2989   }
2990   if( pKeyInfo ){
2991     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2992   }
2993   if( addrOnce ){
2994     sqlite3VdbeJumpHere(v, addrOnce);
2995     /* Subroutine return */
2996     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
2997     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
2998     sqlite3ClearTempRegCache(pParse);
2999   }
3000 }
3001 #endif /* SQLITE_OMIT_SUBQUERY */
3002 
3003 /*
3004 ** Generate code for scalar subqueries used as a subquery expression
3005 ** or EXISTS operator:
3006 **
3007 **     (SELECT a FROM b)          -- subquery
3008 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
3009 **
3010 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3011 **
3012 ** Return the register that holds the result.  For a multi-column SELECT,
3013 ** the result is stored in a contiguous array of registers and the
3014 ** return value is the register of the left-most result column.
3015 ** Return 0 if an error occurs.
3016 */
3017 #ifndef SQLITE_OMIT_SUBQUERY
3018 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3019   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3020   int rReg = 0;               /* Register storing resulting */
3021   Select *pSel;               /* SELECT statement to encode */
3022   SelectDest dest;            /* How to deal with SELECT result */
3023   int nReg;                   /* Registers to allocate */
3024   Expr *pLimit;               /* New limit expression */
3025 
3026   Vdbe *v = pParse->pVdbe;
3027   assert( v!=0 );
3028   testcase( pExpr->op==TK_EXISTS );
3029   testcase( pExpr->op==TK_SELECT );
3030   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3031   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
3032   pSel = pExpr->x.pSelect;
3033 
3034   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3035   ** is encountered if any of the following is true:
3036   **
3037   **    *  The right-hand side is a correlated subquery
3038   **    *  The right-hand side is an expression list containing variables
3039   **    *  We are inside a trigger
3040   **
3041   ** If all of the above are false, then we can run this code just once
3042   ** save the results, and reuse the same result on subsequent invocations.
3043   */
3044   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3045     /* If this routine has already been coded, then invoke it as a
3046     ** subroutine. */
3047     if( ExprHasProperty(pExpr, EP_Subrtn) ){
3048       ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3049       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3050                         pExpr->y.sub.iAddr);
3051       return pExpr->iTable;
3052     }
3053 
3054     /* Begin coding the subroutine */
3055     ExprSetProperty(pExpr, EP_Subrtn);
3056     pExpr->y.sub.regReturn = ++pParse->nMem;
3057     pExpr->y.sub.iAddr =
3058       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
3059     VdbeComment((v, "return address"));
3060 
3061     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3062   }
3063 
3064   /* For a SELECT, generate code to put the values for all columns of
3065   ** the first row into an array of registers and return the index of
3066   ** the first register.
3067   **
3068   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3069   ** into a register and return that register number.
3070   **
3071   ** In both cases, the query is augmented with "LIMIT 1".  Any
3072   ** preexisting limit is discarded in place of the new LIMIT 1.
3073   */
3074   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3075         addrOnce?"":"CORRELATED ", pSel->selId));
3076   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3077   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3078   pParse->nMem += nReg;
3079   if( pExpr->op==TK_SELECT ){
3080     dest.eDest = SRT_Mem;
3081     dest.iSdst = dest.iSDParm;
3082     dest.nSdst = nReg;
3083     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3084     VdbeComment((v, "Init subquery result"));
3085   }else{
3086     dest.eDest = SRT_Exists;
3087     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3088     VdbeComment((v, "Init EXISTS result"));
3089   }
3090   if( pSel->pLimit ){
3091     /* The subquery already has a limit.  If the pre-existing limit is X
3092     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3093     sqlite3 *db = pParse->db;
3094     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3095     if( pLimit ){
3096       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3097       pLimit = sqlite3PExpr(pParse, TK_NE,
3098                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3099     }
3100     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3101     pSel->pLimit->pLeft = pLimit;
3102   }else{
3103     /* If there is no pre-existing limit add a limit of 1 */
3104     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3105     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3106   }
3107   pSel->iLimit = 0;
3108   if( sqlite3Select(pParse, pSel, &dest) ){
3109     return 0;
3110   }
3111   pExpr->iTable = rReg = dest.iSDParm;
3112   ExprSetVVAProperty(pExpr, EP_NoReduce);
3113   if( addrOnce ){
3114     sqlite3VdbeJumpHere(v, addrOnce);
3115 
3116     /* Subroutine return */
3117     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3118     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3119     sqlite3ClearTempRegCache(pParse);
3120   }
3121 
3122   return rReg;
3123 }
3124 #endif /* SQLITE_OMIT_SUBQUERY */
3125 
3126 #ifndef SQLITE_OMIT_SUBQUERY
3127 /*
3128 ** Expr pIn is an IN(...) expression. This function checks that the
3129 ** sub-select on the RHS of the IN() operator has the same number of
3130 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3131 ** a sub-query, that the LHS is a vector of size 1.
3132 */
3133 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3134   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3135   if( (pIn->flags & EP_xIsSelect) ){
3136     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3137       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3138       return 1;
3139     }
3140   }else if( nVector!=1 ){
3141     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3142     return 1;
3143   }
3144   return 0;
3145 }
3146 #endif
3147 
3148 #ifndef SQLITE_OMIT_SUBQUERY
3149 /*
3150 ** Generate code for an IN expression.
3151 **
3152 **      x IN (SELECT ...)
3153 **      x IN (value, value, ...)
3154 **
3155 ** The left-hand side (LHS) is a scalar or vector expression.  The
3156 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3157 ** subquery.  If the RHS is a subquery, the number of result columns must
3158 ** match the number of columns in the vector on the LHS.  If the RHS is
3159 ** a list of values, the LHS must be a scalar.
3160 **
3161 ** The IN operator is true if the LHS value is contained within the RHS.
3162 ** The result is false if the LHS is definitely not in the RHS.  The
3163 ** result is NULL if the presence of the LHS in the RHS cannot be
3164 ** determined due to NULLs.
3165 **
3166 ** This routine generates code that jumps to destIfFalse if the LHS is not
3167 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3168 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3169 ** within the RHS then fall through.
3170 **
3171 ** See the separate in-operator.md documentation file in the canonical
3172 ** SQLite source tree for additional information.
3173 */
3174 static void sqlite3ExprCodeIN(
3175   Parse *pParse,        /* Parsing and code generating context */
3176   Expr *pExpr,          /* The IN expression */
3177   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3178   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3179 ){
3180   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3181   int eType;            /* Type of the RHS */
3182   int rLhs;             /* Register(s) holding the LHS values */
3183   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3184   Vdbe *v;              /* Statement under construction */
3185   int *aiMap = 0;       /* Map from vector field to index column */
3186   char *zAff = 0;       /* Affinity string for comparisons */
3187   int nVector;          /* Size of vectors for this IN operator */
3188   int iDummy;           /* Dummy parameter to exprCodeVector() */
3189   Expr *pLeft;          /* The LHS of the IN operator */
3190   int i;                /* loop counter */
3191   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3192   int destStep6 = 0;    /* Start of code for Step 6 */
3193   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3194   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3195   int addrTop;          /* Top of the step-6 loop */
3196   int iTab = 0;         /* Index to use */
3197   u8 okConstFactor = pParse->okConstFactor;
3198 
3199   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3200   pLeft = pExpr->pLeft;
3201   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3202   zAff = exprINAffinity(pParse, pExpr);
3203   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3204   aiMap = (int*)sqlite3DbMallocZero(
3205       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3206   );
3207   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3208 
3209   /* Attempt to compute the RHS. After this step, if anything other than
3210   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3211   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3212   ** the RHS has not yet been coded.  */
3213   v = pParse->pVdbe;
3214   assert( v!=0 );       /* OOM detected prior to this routine */
3215   VdbeNoopComment((v, "begin IN expr"));
3216   eType = sqlite3FindInIndex(pParse, pExpr,
3217                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3218                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3219                              aiMap, &iTab);
3220 
3221   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3222        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3223   );
3224 #ifdef SQLITE_DEBUG
3225   /* Confirm that aiMap[] contains nVector integer values between 0 and
3226   ** nVector-1. */
3227   for(i=0; i<nVector; i++){
3228     int j, cnt;
3229     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3230     assert( cnt==1 );
3231   }
3232 #endif
3233 
3234   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3235   ** vector, then it is stored in an array of nVector registers starting
3236   ** at r1.
3237   **
3238   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3239   ** so that the fields are in the same order as an existing index.   The
3240   ** aiMap[] array contains a mapping from the original LHS field order to
3241   ** the field order that matches the RHS index.
3242   **
3243   ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3244   ** even if it is constant, as OP_Affinity may be used on the register
3245   ** by code generated below.  */
3246   assert( pParse->okConstFactor==okConstFactor );
3247   pParse->okConstFactor = 0;
3248   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3249   pParse->okConstFactor = okConstFactor;
3250   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3251   if( i==nVector ){
3252     /* LHS fields are not reordered */
3253     rLhs = rLhsOrig;
3254   }else{
3255     /* Need to reorder the LHS fields according to aiMap */
3256     rLhs = sqlite3GetTempRange(pParse, nVector);
3257     for(i=0; i<nVector; i++){
3258       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3259     }
3260   }
3261 
3262   /* If sqlite3FindInIndex() did not find or create an index that is
3263   ** suitable for evaluating the IN operator, then evaluate using a
3264   ** sequence of comparisons.
3265   **
3266   ** This is step (1) in the in-operator.md optimized algorithm.
3267   */
3268   if( eType==IN_INDEX_NOOP ){
3269     ExprList *pList = pExpr->x.pList;
3270     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3271     int labelOk = sqlite3VdbeMakeLabel(pParse);
3272     int r2, regToFree;
3273     int regCkNull = 0;
3274     int ii;
3275     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3276     if( destIfNull!=destIfFalse ){
3277       regCkNull = sqlite3GetTempReg(pParse);
3278       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3279     }
3280     for(ii=0; ii<pList->nExpr; ii++){
3281       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3282       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3283         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3284       }
3285       sqlite3ReleaseTempReg(pParse, regToFree);
3286       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3287         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3288         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3289                           (void*)pColl, P4_COLLSEQ);
3290         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3291         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3292         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3293         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3294         sqlite3VdbeChangeP5(v, zAff[0]);
3295       }else{
3296         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3297         assert( destIfNull==destIfFalse );
3298         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3299                           (void*)pColl, P4_COLLSEQ);
3300         VdbeCoverageIf(v, op==OP_Ne);
3301         VdbeCoverageIf(v, op==OP_IsNull);
3302         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3303       }
3304     }
3305     if( regCkNull ){
3306       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3307       sqlite3VdbeGoto(v, destIfFalse);
3308     }
3309     sqlite3VdbeResolveLabel(v, labelOk);
3310     sqlite3ReleaseTempReg(pParse, regCkNull);
3311     goto sqlite3ExprCodeIN_finished;
3312   }
3313 
3314   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3315   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3316   ** We will then skip the binary search of the RHS.
3317   */
3318   if( destIfNull==destIfFalse ){
3319     destStep2 = destIfFalse;
3320   }else{
3321     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3322   }
3323   if( pParse->nErr ) goto sqlite3ExprCodeIN_finished;
3324   for(i=0; i<nVector; i++){
3325     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3326     if( sqlite3ExprCanBeNull(p) ){
3327       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3328       VdbeCoverage(v);
3329     }
3330   }
3331 
3332   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3333   ** of the RHS using the LHS as a probe.  If found, the result is
3334   ** true.
3335   */
3336   if( eType==IN_INDEX_ROWID ){
3337     /* In this case, the RHS is the ROWID of table b-tree and so we also
3338     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3339     ** into a single opcode. */
3340     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3341     VdbeCoverage(v);
3342     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3343   }else{
3344     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3345     if( destIfFalse==destIfNull ){
3346       /* Combine Step 3 and Step 5 into a single opcode */
3347       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3348                            rLhs, nVector); VdbeCoverage(v);
3349       goto sqlite3ExprCodeIN_finished;
3350     }
3351     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3352     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3353                                       rLhs, nVector); VdbeCoverage(v);
3354   }
3355 
3356   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3357   ** an match on the search above, then the result must be FALSE.
3358   */
3359   if( rRhsHasNull && nVector==1 ){
3360     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3361     VdbeCoverage(v);
3362   }
3363 
3364   /* Step 5.  If we do not care about the difference between NULL and
3365   ** FALSE, then just return false.
3366   */
3367   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3368 
3369   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3370   ** If any comparison is NULL, then the result is NULL.  If all
3371   ** comparisons are FALSE then the final result is FALSE.
3372   **
3373   ** For a scalar LHS, it is sufficient to check just the first row
3374   ** of the RHS.
3375   */
3376   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3377   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3378   VdbeCoverage(v);
3379   if( nVector>1 ){
3380     destNotNull = sqlite3VdbeMakeLabel(pParse);
3381   }else{
3382     /* For nVector==1, combine steps 6 and 7 by immediately returning
3383     ** FALSE if the first comparison is not NULL */
3384     destNotNull = destIfFalse;
3385   }
3386   for(i=0; i<nVector; i++){
3387     Expr *p;
3388     CollSeq *pColl;
3389     int r3 = sqlite3GetTempReg(pParse);
3390     p = sqlite3VectorFieldSubexpr(pLeft, i);
3391     pColl = sqlite3ExprCollSeq(pParse, p);
3392     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3393     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3394                       (void*)pColl, P4_COLLSEQ);
3395     VdbeCoverage(v);
3396     sqlite3ReleaseTempReg(pParse, r3);
3397   }
3398   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3399   if( nVector>1 ){
3400     sqlite3VdbeResolveLabel(v, destNotNull);
3401     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3402     VdbeCoverage(v);
3403 
3404     /* Step 7:  If we reach this point, we know that the result must
3405     ** be false. */
3406     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3407   }
3408 
3409   /* Jumps here in order to return true. */
3410   sqlite3VdbeJumpHere(v, addrTruthOp);
3411 
3412 sqlite3ExprCodeIN_finished:
3413   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3414   VdbeComment((v, "end IN expr"));
3415 sqlite3ExprCodeIN_oom_error:
3416   sqlite3DbFree(pParse->db, aiMap);
3417   sqlite3DbFree(pParse->db, zAff);
3418 }
3419 #endif /* SQLITE_OMIT_SUBQUERY */
3420 
3421 #ifndef SQLITE_OMIT_FLOATING_POINT
3422 /*
3423 ** Generate an instruction that will put the floating point
3424 ** value described by z[0..n-1] into register iMem.
3425 **
3426 ** The z[] string will probably not be zero-terminated.  But the
3427 ** z[n] character is guaranteed to be something that does not look
3428 ** like the continuation of the number.
3429 */
3430 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3431   if( ALWAYS(z!=0) ){
3432     double value;
3433     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3434     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3435     if( negateFlag ) value = -value;
3436     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3437   }
3438 }
3439 #endif
3440 
3441 
3442 /*
3443 ** Generate an instruction that will put the integer describe by
3444 ** text z[0..n-1] into register iMem.
3445 **
3446 ** Expr.u.zToken is always UTF8 and zero-terminated.
3447 */
3448 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3449   Vdbe *v = pParse->pVdbe;
3450   if( pExpr->flags & EP_IntValue ){
3451     int i = pExpr->u.iValue;
3452     assert( i>=0 );
3453     if( negFlag ) i = -i;
3454     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3455   }else{
3456     int c;
3457     i64 value;
3458     const char *z = pExpr->u.zToken;
3459     assert( z!=0 );
3460     c = sqlite3DecOrHexToI64(z, &value);
3461     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3462 #ifdef SQLITE_OMIT_FLOATING_POINT
3463       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3464 #else
3465 #ifndef SQLITE_OMIT_HEX_INTEGER
3466       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3467         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3468       }else
3469 #endif
3470       {
3471         codeReal(v, z, negFlag, iMem);
3472       }
3473 #endif
3474     }else{
3475       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3476       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3477     }
3478   }
3479 }
3480 
3481 
3482 /* Generate code that will load into register regOut a value that is
3483 ** appropriate for the iIdxCol-th column of index pIdx.
3484 */
3485 void sqlite3ExprCodeLoadIndexColumn(
3486   Parse *pParse,  /* The parsing context */
3487   Index *pIdx,    /* The index whose column is to be loaded */
3488   int iTabCur,    /* Cursor pointing to a table row */
3489   int iIdxCol,    /* The column of the index to be loaded */
3490   int regOut      /* Store the index column value in this register */
3491 ){
3492   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3493   if( iTabCol==XN_EXPR ){
3494     assert( pIdx->aColExpr );
3495     assert( pIdx->aColExpr->nExpr>iIdxCol );
3496     pParse->iSelfTab = iTabCur + 1;
3497     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3498     pParse->iSelfTab = 0;
3499   }else{
3500     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3501                                     iTabCol, regOut);
3502   }
3503 }
3504 
3505 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3506 /*
3507 ** Generate code that will compute the value of generated column pCol
3508 ** and store the result in register regOut
3509 */
3510 void sqlite3ExprCodeGeneratedColumn(
3511   Parse *pParse,
3512   Column *pCol,
3513   int regOut
3514 ){
3515   int iAddr;
3516   Vdbe *v = pParse->pVdbe;
3517   assert( v!=0 );
3518   assert( pParse->iSelfTab!=0 );
3519   if( pParse->iSelfTab>0 ){
3520     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3521   }else{
3522     iAddr = 0;
3523   }
3524   sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut);
3525   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3526     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3527   }
3528   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3529 }
3530 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3531 
3532 /*
3533 ** Generate code to extract the value of the iCol-th column of a table.
3534 */
3535 void sqlite3ExprCodeGetColumnOfTable(
3536   Vdbe *v,        /* Parsing context */
3537   Table *pTab,    /* The table containing the value */
3538   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3539   int iCol,       /* Index of the column to extract */
3540   int regOut      /* Extract the value into this register */
3541 ){
3542   Column *pCol;
3543   assert( v!=0 );
3544   if( pTab==0 ){
3545     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3546     return;
3547   }
3548   if( iCol<0 || iCol==pTab->iPKey ){
3549     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3550   }else{
3551     int op;
3552     int x;
3553     if( IsVirtual(pTab) ){
3554       op = OP_VColumn;
3555       x = iCol;
3556 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3557     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3558       Parse *pParse = sqlite3VdbeParser(v);
3559       if( pCol->colFlags & COLFLAG_BUSY ){
3560         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName);
3561       }else{
3562         int savedSelfTab = pParse->iSelfTab;
3563         pCol->colFlags |= COLFLAG_BUSY;
3564         pParse->iSelfTab = iTabCur+1;
3565         sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut);
3566         pParse->iSelfTab = savedSelfTab;
3567         pCol->colFlags &= ~COLFLAG_BUSY;
3568       }
3569       return;
3570 #endif
3571     }else if( !HasRowid(pTab) ){
3572       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3573       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3574       op = OP_Column;
3575     }else{
3576       x = sqlite3TableColumnToStorage(pTab,iCol);
3577       testcase( x!=iCol );
3578       op = OP_Column;
3579     }
3580     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3581     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3582   }
3583 }
3584 
3585 /*
3586 ** Generate code that will extract the iColumn-th column from
3587 ** table pTab and store the column value in register iReg.
3588 **
3589 ** There must be an open cursor to pTab in iTable when this routine
3590 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3591 */
3592 int sqlite3ExprCodeGetColumn(
3593   Parse *pParse,   /* Parsing and code generating context */
3594   Table *pTab,     /* Description of the table we are reading from */
3595   int iColumn,     /* Index of the table column */
3596   int iTable,      /* The cursor pointing to the table */
3597   int iReg,        /* Store results here */
3598   u8 p5            /* P5 value for OP_Column + FLAGS */
3599 ){
3600   assert( pParse->pVdbe!=0 );
3601   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3602   if( p5 ){
3603     VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3604     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3605   }
3606   return iReg;
3607 }
3608 
3609 /*
3610 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3611 ** over to iTo..iTo+nReg-1.
3612 */
3613 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3614   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3615 }
3616 
3617 /*
3618 ** Convert a scalar expression node to a TK_REGISTER referencing
3619 ** register iReg.  The caller must ensure that iReg already contains
3620 ** the correct value for the expression.
3621 */
3622 static void exprToRegister(Expr *pExpr, int iReg){
3623   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3624   p->op2 = p->op;
3625   p->op = TK_REGISTER;
3626   p->iTable = iReg;
3627   ExprClearProperty(p, EP_Skip);
3628 }
3629 
3630 /*
3631 ** Evaluate an expression (either a vector or a scalar expression) and store
3632 ** the result in continguous temporary registers.  Return the index of
3633 ** the first register used to store the result.
3634 **
3635 ** If the returned result register is a temporary scalar, then also write
3636 ** that register number into *piFreeable.  If the returned result register
3637 ** is not a temporary or if the expression is a vector set *piFreeable
3638 ** to 0.
3639 */
3640 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3641   int iResult;
3642   int nResult = sqlite3ExprVectorSize(p);
3643   if( nResult==1 ){
3644     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3645   }else{
3646     *piFreeable = 0;
3647     if( p->op==TK_SELECT ){
3648 #if SQLITE_OMIT_SUBQUERY
3649       iResult = 0;
3650 #else
3651       iResult = sqlite3CodeSubselect(pParse, p);
3652 #endif
3653     }else{
3654       int i;
3655       iResult = pParse->nMem+1;
3656       pParse->nMem += nResult;
3657       for(i=0; i<nResult; i++){
3658         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3659       }
3660     }
3661   }
3662   return iResult;
3663 }
3664 
3665 /*
3666 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3667 ** so that a subsequent copy will not be merged into this one.
3668 */
3669 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3670   if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
3671     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3672   }
3673 }
3674 
3675 /*
3676 ** Generate code to implement special SQL functions that are implemented
3677 ** in-line rather than by using the usual callbacks.
3678 */
3679 static int exprCodeInlineFunction(
3680   Parse *pParse,        /* Parsing context */
3681   ExprList *pFarg,      /* List of function arguments */
3682   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3683   int target            /* Store function result in this register */
3684 ){
3685   int nFarg;
3686   Vdbe *v = pParse->pVdbe;
3687   assert( v!=0 );
3688   assert( pFarg!=0 );
3689   nFarg = pFarg->nExpr;
3690   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3691   switch( iFuncId ){
3692     case INLINEFUNC_coalesce: {
3693       /* Attempt a direct implementation of the built-in COALESCE() and
3694       ** IFNULL() functions.  This avoids unnecessary evaluation of
3695       ** arguments past the first non-NULL argument.
3696       */
3697       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3698       int i;
3699       assert( nFarg>=2 );
3700       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3701       for(i=1; i<nFarg; i++){
3702         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3703         VdbeCoverage(v);
3704         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3705       }
3706       setDoNotMergeFlagOnCopy(v);
3707       sqlite3VdbeResolveLabel(v, endCoalesce);
3708       break;
3709     }
3710     case INLINEFUNC_iif: {
3711       Expr caseExpr;
3712       memset(&caseExpr, 0, sizeof(caseExpr));
3713       caseExpr.op = TK_CASE;
3714       caseExpr.x.pList = pFarg;
3715       return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3716     }
3717 
3718     default: {
3719       /* The UNLIKELY() function is a no-op.  The result is the value
3720       ** of the first argument.
3721       */
3722       assert( nFarg==1 || nFarg==2 );
3723       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3724       break;
3725     }
3726 
3727   /***********************************************************************
3728   ** Test-only SQL functions that are only usable if enabled
3729   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3730   */
3731     case INLINEFUNC_expr_compare: {
3732       /* Compare two expressions using sqlite3ExprCompare() */
3733       assert( nFarg==2 );
3734       sqlite3VdbeAddOp2(v, OP_Integer,
3735          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3736          target);
3737       break;
3738     }
3739 
3740     case INLINEFUNC_expr_implies_expr: {
3741       /* Compare two expressions using sqlite3ExprImpliesExpr() */
3742       assert( nFarg==2 );
3743       sqlite3VdbeAddOp2(v, OP_Integer,
3744          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3745          target);
3746       break;
3747     }
3748 
3749     case INLINEFUNC_implies_nonnull_row: {
3750       /* REsult of sqlite3ExprImpliesNonNullRow() */
3751       Expr *pA1;
3752       assert( nFarg==2 );
3753       pA1 = pFarg->a[1].pExpr;
3754       if( pA1->op==TK_COLUMN ){
3755         sqlite3VdbeAddOp2(v, OP_Integer,
3756            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
3757            target);
3758       }else{
3759         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3760       }
3761       break;
3762     }
3763 
3764 #ifdef SQLITE_DEBUG
3765     case INLINEFUNC_affinity: {
3766       /* The AFFINITY() function evaluates to a string that describes
3767       ** the type affinity of the argument.  This is used for testing of
3768       ** the SQLite type logic.
3769       */
3770       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3771       char aff;
3772       assert( nFarg==1 );
3773       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3774       sqlite3VdbeLoadString(v, target,
3775               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3776       break;
3777     }
3778 #endif
3779   }
3780   return target;
3781 }
3782 
3783 
3784 /*
3785 ** Generate code into the current Vdbe to evaluate the given
3786 ** expression.  Attempt to store the results in register "target".
3787 ** Return the register where results are stored.
3788 **
3789 ** With this routine, there is no guarantee that results will
3790 ** be stored in target.  The result might be stored in some other
3791 ** register if it is convenient to do so.  The calling function
3792 ** must check the return code and move the results to the desired
3793 ** register.
3794 */
3795 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3796   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3797   int op;                   /* The opcode being coded */
3798   int inReg = target;       /* Results stored in register inReg */
3799   int regFree1 = 0;         /* If non-zero free this temporary register */
3800   int regFree2 = 0;         /* If non-zero free this temporary register */
3801   int r1, r2;               /* Various register numbers */
3802   Expr tempX;               /* Temporary expression node */
3803   int p5 = 0;
3804 
3805   assert( target>0 && target<=pParse->nMem );
3806   assert( v!=0 );
3807 
3808 expr_code_doover:
3809   if( pExpr==0 ){
3810     op = TK_NULL;
3811   }else{
3812     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3813     op = pExpr->op;
3814   }
3815   switch( op ){
3816     case TK_AGG_COLUMN: {
3817       AggInfo *pAggInfo = pExpr->pAggInfo;
3818       struct AggInfo_col *pCol;
3819       assert( pAggInfo!=0 );
3820       assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
3821       pCol = &pAggInfo->aCol[pExpr->iAgg];
3822       if( !pAggInfo->directMode ){
3823         assert( pCol->iMem>0 );
3824         return pCol->iMem;
3825       }else if( pAggInfo->useSortingIdx ){
3826         Table *pTab = pCol->pTab;
3827         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3828                               pCol->iSorterColumn, target);
3829         if( pCol->iColumn<0 ){
3830           VdbeComment((v,"%s.rowid",pTab->zName));
3831         }else{
3832           VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName));
3833           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
3834             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3835           }
3836         }
3837         return target;
3838       }
3839       /* Otherwise, fall thru into the TK_COLUMN case */
3840       /* no break */ deliberate_fall_through
3841     }
3842     case TK_COLUMN: {
3843       int iTab = pExpr->iTable;
3844       int iReg;
3845       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3846         /* This COLUMN expression is really a constant due to WHERE clause
3847         ** constraints, and that constant is coded by the pExpr->pLeft
3848         ** expresssion.  However, make sure the constant has the correct
3849         ** datatype by applying the Affinity of the table column to the
3850         ** constant.
3851         */
3852         int aff;
3853         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3854         if( pExpr->y.pTab ){
3855           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3856         }else{
3857           aff = pExpr->affExpr;
3858         }
3859         if( aff>SQLITE_AFF_BLOB ){
3860           static const char zAff[] = "B\000C\000D\000E";
3861           assert( SQLITE_AFF_BLOB=='A' );
3862           assert( SQLITE_AFF_TEXT=='B' );
3863           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3864                             &zAff[(aff-'B')*2], P4_STATIC);
3865         }
3866         return iReg;
3867       }
3868       if( iTab<0 ){
3869         if( pParse->iSelfTab<0 ){
3870           /* Other columns in the same row for CHECK constraints or
3871           ** generated columns or for inserting into partial index.
3872           ** The row is unpacked into registers beginning at
3873           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
3874           ** immediately prior to the first column.
3875           */
3876           Column *pCol;
3877           Table *pTab = pExpr->y.pTab;
3878           int iSrc;
3879           int iCol = pExpr->iColumn;
3880           assert( pTab!=0 );
3881           assert( iCol>=XN_ROWID );
3882           assert( iCol<pTab->nCol );
3883           if( iCol<0 ){
3884             return -1-pParse->iSelfTab;
3885           }
3886           pCol = pTab->aCol + iCol;
3887           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
3888           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
3889 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3890           if( pCol->colFlags & COLFLAG_GENERATED ){
3891             if( pCol->colFlags & COLFLAG_BUSY ){
3892               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3893                               pCol->zName);
3894               return 0;
3895             }
3896             pCol->colFlags |= COLFLAG_BUSY;
3897             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
3898               sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc);
3899             }
3900             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
3901             return iSrc;
3902           }else
3903 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3904           if( pCol->affinity==SQLITE_AFF_REAL ){
3905             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
3906             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3907             return target;
3908           }else{
3909             return iSrc;
3910           }
3911         }else{
3912           /* Coding an expression that is part of an index where column names
3913           ** in the index refer to the table to which the index belongs */
3914           iTab = pParse->iSelfTab - 1;
3915         }
3916       }
3917       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
3918                                pExpr->iColumn, iTab, target,
3919                                pExpr->op2);
3920       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
3921         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
3922       }
3923       return iReg;
3924     }
3925     case TK_INTEGER: {
3926       codeInteger(pParse, pExpr, 0, target);
3927       return target;
3928     }
3929     case TK_TRUEFALSE: {
3930       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3931       return target;
3932     }
3933 #ifndef SQLITE_OMIT_FLOATING_POINT
3934     case TK_FLOAT: {
3935       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3936       codeReal(v, pExpr->u.zToken, 0, target);
3937       return target;
3938     }
3939 #endif
3940     case TK_STRING: {
3941       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3942       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3943       return target;
3944     }
3945     default: {
3946       /* Make NULL the default case so that if a bug causes an illegal
3947       ** Expr node to be passed into this function, it will be handled
3948       ** sanely and not crash.  But keep the assert() to bring the problem
3949       ** to the attention of the developers. */
3950       assert( op==TK_NULL );
3951       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3952       return target;
3953     }
3954 #ifndef SQLITE_OMIT_BLOB_LITERAL
3955     case TK_BLOB: {
3956       int n;
3957       const char *z;
3958       char *zBlob;
3959       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3960       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3961       assert( pExpr->u.zToken[1]=='\'' );
3962       z = &pExpr->u.zToken[2];
3963       n = sqlite3Strlen30(z) - 1;
3964       assert( z[n]=='\'' );
3965       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3966       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3967       return target;
3968     }
3969 #endif
3970     case TK_VARIABLE: {
3971       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3972       assert( pExpr->u.zToken!=0 );
3973       assert( pExpr->u.zToken[0]!=0 );
3974       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3975       if( pExpr->u.zToken[1]!=0 ){
3976         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3977         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
3978         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3979         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3980       }
3981       return target;
3982     }
3983     case TK_REGISTER: {
3984       return pExpr->iTable;
3985     }
3986 #ifndef SQLITE_OMIT_CAST
3987     case TK_CAST: {
3988       /* Expressions of the form:   CAST(pLeft AS token) */
3989       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3990       if( inReg!=target ){
3991         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3992         inReg = target;
3993       }
3994       sqlite3VdbeAddOp2(v, OP_Cast, target,
3995                         sqlite3AffinityType(pExpr->u.zToken, 0));
3996       return inReg;
3997     }
3998 #endif /* SQLITE_OMIT_CAST */
3999     case TK_IS:
4000     case TK_ISNOT:
4001       op = (op==TK_IS) ? TK_EQ : TK_NE;
4002       p5 = SQLITE_NULLEQ;
4003       /* fall-through */
4004     case TK_LT:
4005     case TK_LE:
4006     case TK_GT:
4007     case TK_GE:
4008     case TK_NE:
4009     case TK_EQ: {
4010       Expr *pLeft = pExpr->pLeft;
4011       if( sqlite3ExprIsVector(pLeft) ){
4012         codeVectorCompare(pParse, pExpr, target, op, p5);
4013       }else{
4014         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4015         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4016         codeCompare(pParse, pLeft, pExpr->pRight, op,
4017             r1, r2, inReg, SQLITE_STOREP2 | p5,
4018             ExprHasProperty(pExpr,EP_Commuted));
4019         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4020         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4021         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4022         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4023         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4024         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4025         testcase( regFree1==0 );
4026         testcase( regFree2==0 );
4027       }
4028       break;
4029     }
4030     case TK_AND:
4031     case TK_OR:
4032     case TK_PLUS:
4033     case TK_STAR:
4034     case TK_MINUS:
4035     case TK_REM:
4036     case TK_BITAND:
4037     case TK_BITOR:
4038     case TK_SLASH:
4039     case TK_LSHIFT:
4040     case TK_RSHIFT:
4041     case TK_CONCAT: {
4042       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4043       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4044       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4045       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4046       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4047       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4048       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4049       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4050       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4051       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4052       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4053       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4054       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4055       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4056       testcase( regFree1==0 );
4057       testcase( regFree2==0 );
4058       break;
4059     }
4060     case TK_UMINUS: {
4061       Expr *pLeft = pExpr->pLeft;
4062       assert( pLeft );
4063       if( pLeft->op==TK_INTEGER ){
4064         codeInteger(pParse, pLeft, 1, target);
4065         return target;
4066 #ifndef SQLITE_OMIT_FLOATING_POINT
4067       }else if( pLeft->op==TK_FLOAT ){
4068         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4069         codeReal(v, pLeft->u.zToken, 1, target);
4070         return target;
4071 #endif
4072       }else{
4073         tempX.op = TK_INTEGER;
4074         tempX.flags = EP_IntValue|EP_TokenOnly;
4075         tempX.u.iValue = 0;
4076         ExprClearVVAProperties(&tempX);
4077         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4078         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4079         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4080         testcase( regFree2==0 );
4081       }
4082       break;
4083     }
4084     case TK_BITNOT:
4085     case TK_NOT: {
4086       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4087       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4088       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4089       testcase( regFree1==0 );
4090       sqlite3VdbeAddOp2(v, op, r1, inReg);
4091       break;
4092     }
4093     case TK_TRUTH: {
4094       int isTrue;    /* IS TRUE or IS NOT TRUE */
4095       int bNormal;   /* IS TRUE or IS FALSE */
4096       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4097       testcase( regFree1==0 );
4098       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4099       bNormal = pExpr->op2==TK_IS;
4100       testcase( isTrue && bNormal);
4101       testcase( !isTrue && bNormal);
4102       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4103       break;
4104     }
4105     case TK_ISNULL:
4106     case TK_NOTNULL: {
4107       int addr;
4108       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4109       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4110       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4111       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4112       testcase( regFree1==0 );
4113       addr = sqlite3VdbeAddOp1(v, op, r1);
4114       VdbeCoverageIf(v, op==TK_ISNULL);
4115       VdbeCoverageIf(v, op==TK_NOTNULL);
4116       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4117       sqlite3VdbeJumpHere(v, addr);
4118       break;
4119     }
4120     case TK_AGG_FUNCTION: {
4121       AggInfo *pInfo = pExpr->pAggInfo;
4122       if( pInfo==0
4123        || NEVER(pExpr->iAgg<0)
4124        || NEVER(pExpr->iAgg>=pInfo->nFunc)
4125       ){
4126         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4127         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
4128       }else{
4129         return pInfo->aFunc[pExpr->iAgg].iMem;
4130       }
4131       break;
4132     }
4133     case TK_FUNCTION: {
4134       ExprList *pFarg;       /* List of function arguments */
4135       int nFarg;             /* Number of function arguments */
4136       FuncDef *pDef;         /* The function definition object */
4137       const char *zId;       /* The function name */
4138       u32 constMask = 0;     /* Mask of function arguments that are constant */
4139       int i;                 /* Loop counter */
4140       sqlite3 *db = pParse->db;  /* The database connection */
4141       u8 enc = ENC(db);      /* The text encoding used by this database */
4142       CollSeq *pColl = 0;    /* A collating sequence */
4143 
4144 #ifndef SQLITE_OMIT_WINDOWFUNC
4145       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4146         return pExpr->y.pWin->regResult;
4147       }
4148 #endif
4149 
4150       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4151         /* SQL functions can be expensive. So try to avoid running them
4152         ** multiple times if we know they always give the same result */
4153         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4154       }
4155       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4156       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4157       pFarg = pExpr->x.pList;
4158       nFarg = pFarg ? pFarg->nExpr : 0;
4159       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4160       zId = pExpr->u.zToken;
4161       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4162 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4163       if( pDef==0 && pParse->explain ){
4164         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4165       }
4166 #endif
4167       if( pDef==0 || pDef->xFinalize!=0 ){
4168         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
4169         break;
4170       }
4171       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4172         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4173         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4174         return exprCodeInlineFunction(pParse, pFarg,
4175              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4176       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4177         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4178       }
4179 
4180       for(i=0; i<nFarg; i++){
4181         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4182           testcase( i==31 );
4183           constMask |= MASKBIT32(i);
4184         }
4185         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4186           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4187         }
4188       }
4189       if( pFarg ){
4190         if( constMask ){
4191           r1 = pParse->nMem+1;
4192           pParse->nMem += nFarg;
4193         }else{
4194           r1 = sqlite3GetTempRange(pParse, nFarg);
4195         }
4196 
4197         /* For length() and typeof() functions with a column argument,
4198         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4199         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4200         ** loading.
4201         */
4202         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4203           u8 exprOp;
4204           assert( nFarg==1 );
4205           assert( pFarg->a[0].pExpr!=0 );
4206           exprOp = pFarg->a[0].pExpr->op;
4207           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4208             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4209             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4210             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4211             pFarg->a[0].pExpr->op2 =
4212                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4213           }
4214         }
4215 
4216         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4217                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4218       }else{
4219         r1 = 0;
4220       }
4221 #ifndef SQLITE_OMIT_VIRTUALTABLE
4222       /* Possibly overload the function if the first argument is
4223       ** a virtual table column.
4224       **
4225       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4226       ** second argument, not the first, as the argument to test to
4227       ** see if it is a column in a virtual table.  This is done because
4228       ** the left operand of infix functions (the operand we want to
4229       ** control overloading) ends up as the second argument to the
4230       ** function.  The expression "A glob B" is equivalent to
4231       ** "glob(B,A).  We want to use the A in "A glob B" to test
4232       ** for function overloading.  But we use the B term in "glob(B,A)".
4233       */
4234       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4235         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4236       }else if( nFarg>0 ){
4237         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4238       }
4239 #endif
4240       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4241         if( !pColl ) pColl = db->pDfltColl;
4242         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4243       }
4244 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4245       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
4246         Expr *pArg = pFarg->a[0].pExpr;
4247         if( pArg->op==TK_COLUMN ){
4248           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4249         }else{
4250           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4251         }
4252       }else
4253 #endif
4254       {
4255         sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4256                                    pDef, pExpr->op2);
4257       }
4258       if( nFarg ){
4259         if( constMask==0 ){
4260           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4261         }else{
4262           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4263         }
4264       }
4265       return target;
4266     }
4267 #ifndef SQLITE_OMIT_SUBQUERY
4268     case TK_EXISTS:
4269     case TK_SELECT: {
4270       int nCol;
4271       testcase( op==TK_EXISTS );
4272       testcase( op==TK_SELECT );
4273       if( pParse->db->mallocFailed ){
4274         return 0;
4275       }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
4276         sqlite3SubselectError(pParse, nCol, 1);
4277       }else{
4278         return sqlite3CodeSubselect(pParse, pExpr);
4279       }
4280       break;
4281     }
4282     case TK_SELECT_COLUMN: {
4283       int n;
4284       if( pExpr->pLeft->iTable==0 ){
4285         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
4286       }
4287       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
4288       if( pExpr->iTable!=0
4289        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
4290       ){
4291         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4292                                 pExpr->iTable, n);
4293       }
4294       return pExpr->pLeft->iTable + pExpr->iColumn;
4295     }
4296     case TK_IN: {
4297       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4298       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4299       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4300       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4301       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4302       sqlite3VdbeResolveLabel(v, destIfFalse);
4303       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4304       sqlite3VdbeResolveLabel(v, destIfNull);
4305       return target;
4306     }
4307 #endif /* SQLITE_OMIT_SUBQUERY */
4308 
4309 
4310     /*
4311     **    x BETWEEN y AND z
4312     **
4313     ** This is equivalent to
4314     **
4315     **    x>=y AND x<=z
4316     **
4317     ** X is stored in pExpr->pLeft.
4318     ** Y is stored in pExpr->pList->a[0].pExpr.
4319     ** Z is stored in pExpr->pList->a[1].pExpr.
4320     */
4321     case TK_BETWEEN: {
4322       exprCodeBetween(pParse, pExpr, target, 0, 0);
4323       return target;
4324     }
4325     case TK_SPAN:
4326     case TK_COLLATE:
4327     case TK_UPLUS: {
4328       pExpr = pExpr->pLeft;
4329       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4330     }
4331 
4332     case TK_TRIGGER: {
4333       /* If the opcode is TK_TRIGGER, then the expression is a reference
4334       ** to a column in the new.* or old.* pseudo-tables available to
4335       ** trigger programs. In this case Expr.iTable is set to 1 for the
4336       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4337       ** is set to the column of the pseudo-table to read, or to -1 to
4338       ** read the rowid field.
4339       **
4340       ** The expression is implemented using an OP_Param opcode. The p1
4341       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4342       ** to reference another column of the old.* pseudo-table, where
4343       ** i is the index of the column. For a new.rowid reference, p1 is
4344       ** set to (n+1), where n is the number of columns in each pseudo-table.
4345       ** For a reference to any other column in the new.* pseudo-table, p1
4346       ** is set to (n+2+i), where n and i are as defined previously. For
4347       ** example, if the table on which triggers are being fired is
4348       ** declared as:
4349       **
4350       **   CREATE TABLE t1(a, b);
4351       **
4352       ** Then p1 is interpreted as follows:
4353       **
4354       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4355       **   p1==1   ->    old.a         p1==4   ->    new.a
4356       **   p1==2   ->    old.b         p1==5   ->    new.b
4357       */
4358       Table *pTab = pExpr->y.pTab;
4359       int iCol = pExpr->iColumn;
4360       int p1 = pExpr->iTable * (pTab->nCol+1) + 1
4361                      + sqlite3TableColumnToStorage(pTab, iCol);
4362 
4363       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4364       assert( iCol>=-1 && iCol<pTab->nCol );
4365       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4366       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4367 
4368       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4369       VdbeComment((v, "r[%d]=%s.%s", target,
4370         (pExpr->iTable ? "new" : "old"),
4371         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName)
4372       ));
4373 
4374 #ifndef SQLITE_OMIT_FLOATING_POINT
4375       /* If the column has REAL affinity, it may currently be stored as an
4376       ** integer. Use OP_RealAffinity to make sure it is really real.
4377       **
4378       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4379       ** floating point when extracting it from the record.  */
4380       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4381         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4382       }
4383 #endif
4384       break;
4385     }
4386 
4387     case TK_VECTOR: {
4388       sqlite3ErrorMsg(pParse, "row value misused");
4389       break;
4390     }
4391 
4392     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4393     ** that derive from the right-hand table of a LEFT JOIN.  The
4394     ** Expr.iTable value is the table number for the right-hand table.
4395     ** The expression is only evaluated if that table is not currently
4396     ** on a LEFT JOIN NULL row.
4397     */
4398     case TK_IF_NULL_ROW: {
4399       int addrINR;
4400       u8 okConstFactor = pParse->okConstFactor;
4401       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4402       /* Temporarily disable factoring of constant expressions, since
4403       ** even though expressions may appear to be constant, they are not
4404       ** really constant because they originate from the right-hand side
4405       ** of a LEFT JOIN. */
4406       pParse->okConstFactor = 0;
4407       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4408       pParse->okConstFactor = okConstFactor;
4409       sqlite3VdbeJumpHere(v, addrINR);
4410       sqlite3VdbeChangeP3(v, addrINR, inReg);
4411       break;
4412     }
4413 
4414     /*
4415     ** Form A:
4416     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4417     **
4418     ** Form B:
4419     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4420     **
4421     ** Form A is can be transformed into the equivalent form B as follows:
4422     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4423     **        WHEN x=eN THEN rN ELSE y END
4424     **
4425     ** X (if it exists) is in pExpr->pLeft.
4426     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4427     ** odd.  The Y is also optional.  If the number of elements in x.pList
4428     ** is even, then Y is omitted and the "otherwise" result is NULL.
4429     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4430     **
4431     ** The result of the expression is the Ri for the first matching Ei,
4432     ** or if there is no matching Ei, the ELSE term Y, or if there is
4433     ** no ELSE term, NULL.
4434     */
4435     case TK_CASE: {
4436       int endLabel;                     /* GOTO label for end of CASE stmt */
4437       int nextCase;                     /* GOTO label for next WHEN clause */
4438       int nExpr;                        /* 2x number of WHEN terms */
4439       int i;                            /* Loop counter */
4440       ExprList *pEList;                 /* List of WHEN terms */
4441       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4442       Expr opCompare;                   /* The X==Ei expression */
4443       Expr *pX;                         /* The X expression */
4444       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4445       Expr *pDel = 0;
4446       sqlite3 *db = pParse->db;
4447 
4448       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4449       assert(pExpr->x.pList->nExpr > 0);
4450       pEList = pExpr->x.pList;
4451       aListelem = pEList->a;
4452       nExpr = pEList->nExpr;
4453       endLabel = sqlite3VdbeMakeLabel(pParse);
4454       if( (pX = pExpr->pLeft)!=0 ){
4455         pDel = sqlite3ExprDup(db, pX, 0);
4456         if( db->mallocFailed ){
4457           sqlite3ExprDelete(db, pDel);
4458           break;
4459         }
4460         testcase( pX->op==TK_COLUMN );
4461         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4462         testcase( regFree1==0 );
4463         memset(&opCompare, 0, sizeof(opCompare));
4464         opCompare.op = TK_EQ;
4465         opCompare.pLeft = pDel;
4466         pTest = &opCompare;
4467         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4468         ** The value in regFree1 might get SCopy-ed into the file result.
4469         ** So make sure that the regFree1 register is not reused for other
4470         ** purposes and possibly overwritten.  */
4471         regFree1 = 0;
4472       }
4473       for(i=0; i<nExpr-1; i=i+2){
4474         if( pX ){
4475           assert( pTest!=0 );
4476           opCompare.pRight = aListelem[i].pExpr;
4477         }else{
4478           pTest = aListelem[i].pExpr;
4479         }
4480         nextCase = sqlite3VdbeMakeLabel(pParse);
4481         testcase( pTest->op==TK_COLUMN );
4482         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4483         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4484         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4485         sqlite3VdbeGoto(v, endLabel);
4486         sqlite3VdbeResolveLabel(v, nextCase);
4487       }
4488       if( (nExpr&1)!=0 ){
4489         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4490       }else{
4491         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4492       }
4493       sqlite3ExprDelete(db, pDel);
4494       setDoNotMergeFlagOnCopy(v);
4495       sqlite3VdbeResolveLabel(v, endLabel);
4496       break;
4497     }
4498 #ifndef SQLITE_OMIT_TRIGGER
4499     case TK_RAISE: {
4500       assert( pExpr->affExpr==OE_Rollback
4501            || pExpr->affExpr==OE_Abort
4502            || pExpr->affExpr==OE_Fail
4503            || pExpr->affExpr==OE_Ignore
4504       );
4505       if( !pParse->pTriggerTab && !pParse->nested ){
4506         sqlite3ErrorMsg(pParse,
4507                        "RAISE() may only be used within a trigger-program");
4508         return 0;
4509       }
4510       if( pExpr->affExpr==OE_Abort ){
4511         sqlite3MayAbort(pParse);
4512       }
4513       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4514       if( pExpr->affExpr==OE_Ignore ){
4515         sqlite3VdbeAddOp4(
4516             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4517         VdbeCoverage(v);
4518       }else{
4519         sqlite3HaltConstraint(pParse,
4520              pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4521              pExpr->affExpr, pExpr->u.zToken, 0, 0);
4522       }
4523 
4524       break;
4525     }
4526 #endif
4527   }
4528   sqlite3ReleaseTempReg(pParse, regFree1);
4529   sqlite3ReleaseTempReg(pParse, regFree2);
4530   return inReg;
4531 }
4532 
4533 /*
4534 ** Generate code that will evaluate expression pExpr just one time
4535 ** per prepared statement execution.
4536 **
4537 ** If the expression uses functions (that might throw an exception) then
4538 ** guard them with an OP_Once opcode to ensure that the code is only executed
4539 ** once. If no functions are involved, then factor the code out and put it at
4540 ** the end of the prepared statement in the initialization section.
4541 **
4542 ** If regDest>=0 then the result is always stored in that register and the
4543 ** result is not reusable.  If regDest<0 then this routine is free to
4544 ** store the value whereever it wants.  The register where the expression
4545 ** is stored is returned.  When regDest<0, two identical expressions might
4546 ** code to the same register, if they do not contain function calls and hence
4547 ** are factored out into the initialization section at the end of the
4548 ** prepared statement.
4549 */
4550 int sqlite3ExprCodeRunJustOnce(
4551   Parse *pParse,    /* Parsing context */
4552   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4553   int regDest       /* Store the value in this register */
4554 ){
4555   ExprList *p;
4556   assert( ConstFactorOk(pParse) );
4557   p = pParse->pConstExpr;
4558   if( regDest<0 && p ){
4559     struct ExprList_item *pItem;
4560     int i;
4561     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4562       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4563         return pItem->u.iConstExprReg;
4564       }
4565     }
4566   }
4567   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4568   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4569     Vdbe *v = pParse->pVdbe;
4570     int addr;
4571     assert( v );
4572     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4573     pParse->okConstFactor = 0;
4574     if( !pParse->db->mallocFailed ){
4575       if( regDest<0 ) regDest = ++pParse->nMem;
4576       sqlite3ExprCode(pParse, pExpr, regDest);
4577     }
4578     pParse->okConstFactor = 1;
4579     sqlite3ExprDelete(pParse->db, pExpr);
4580     sqlite3VdbeJumpHere(v, addr);
4581   }else{
4582     p = sqlite3ExprListAppend(pParse, p, pExpr);
4583     if( p ){
4584        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4585        pItem->reusable = regDest<0;
4586        if( regDest<0 ) regDest = ++pParse->nMem;
4587        pItem->u.iConstExprReg = regDest;
4588     }
4589     pParse->pConstExpr = p;
4590   }
4591   return regDest;
4592 }
4593 
4594 /*
4595 ** Generate code to evaluate an expression and store the results
4596 ** into a register.  Return the register number where the results
4597 ** are stored.
4598 **
4599 ** If the register is a temporary register that can be deallocated,
4600 ** then write its number into *pReg.  If the result register is not
4601 ** a temporary, then set *pReg to zero.
4602 **
4603 ** If pExpr is a constant, then this routine might generate this
4604 ** code to fill the register in the initialization section of the
4605 ** VDBE program, in order to factor it out of the evaluation loop.
4606 */
4607 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4608   int r2;
4609   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4610   if( ConstFactorOk(pParse)
4611    && pExpr->op!=TK_REGISTER
4612    && sqlite3ExprIsConstantNotJoin(pExpr)
4613   ){
4614     *pReg  = 0;
4615     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4616   }else{
4617     int r1 = sqlite3GetTempReg(pParse);
4618     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4619     if( r2==r1 ){
4620       *pReg = r1;
4621     }else{
4622       sqlite3ReleaseTempReg(pParse, r1);
4623       *pReg = 0;
4624     }
4625   }
4626   return r2;
4627 }
4628 
4629 /*
4630 ** Generate code that will evaluate expression pExpr and store the
4631 ** results in register target.  The results are guaranteed to appear
4632 ** in register target.
4633 */
4634 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4635   int inReg;
4636 
4637   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4638   assert( target>0 && target<=pParse->nMem );
4639   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4640   if( pParse->pVdbe==0 ) return;
4641   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4642   if( inReg!=target ){
4643     u8 op;
4644     if( ExprHasProperty(pExpr,EP_Subquery) ){
4645       op = OP_Copy;
4646     }else{
4647       op = OP_SCopy;
4648     }
4649     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4650   }
4651 }
4652 
4653 /*
4654 ** Make a transient copy of expression pExpr and then code it using
4655 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4656 ** except that the input expression is guaranteed to be unchanged.
4657 */
4658 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4659   sqlite3 *db = pParse->db;
4660   pExpr = sqlite3ExprDup(db, pExpr, 0);
4661   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4662   sqlite3ExprDelete(db, pExpr);
4663 }
4664 
4665 /*
4666 ** Generate code that will evaluate expression pExpr and store the
4667 ** results in register target.  The results are guaranteed to appear
4668 ** in register target.  If the expression is constant, then this routine
4669 ** might choose to code the expression at initialization time.
4670 */
4671 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4672   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4673     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4674   }else{
4675     sqlite3ExprCodeCopy(pParse, pExpr, target);
4676   }
4677 }
4678 
4679 /*
4680 ** Generate code that pushes the value of every element of the given
4681 ** expression list into a sequence of registers beginning at target.
4682 **
4683 ** Return the number of elements evaluated.  The number returned will
4684 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4685 ** is defined.
4686 **
4687 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4688 ** filled using OP_SCopy.  OP_Copy must be used instead.
4689 **
4690 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4691 ** factored out into initialization code.
4692 **
4693 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4694 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4695 ** in registers at srcReg, and so the value can be copied from there.
4696 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4697 ** are simply omitted rather than being copied from srcReg.
4698 */
4699 int sqlite3ExprCodeExprList(
4700   Parse *pParse,     /* Parsing context */
4701   ExprList *pList,   /* The expression list to be coded */
4702   int target,        /* Where to write results */
4703   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4704   u8 flags           /* SQLITE_ECEL_* flags */
4705 ){
4706   struct ExprList_item *pItem;
4707   int i, j, n;
4708   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4709   Vdbe *v = pParse->pVdbe;
4710   assert( pList!=0 );
4711   assert( target>0 );
4712   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4713   n = pList->nExpr;
4714   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4715   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4716     Expr *pExpr = pItem->pExpr;
4717 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4718     if( pItem->bSorterRef ){
4719       i--;
4720       n--;
4721     }else
4722 #endif
4723     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4724       if( flags & SQLITE_ECEL_OMITREF ){
4725         i--;
4726         n--;
4727       }else{
4728         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4729       }
4730     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4731            && sqlite3ExprIsConstantNotJoin(pExpr)
4732     ){
4733       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
4734     }else{
4735       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4736       if( inReg!=target+i ){
4737         VdbeOp *pOp;
4738         if( copyOp==OP_Copy
4739          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4740          && pOp->p1+pOp->p3+1==inReg
4741          && pOp->p2+pOp->p3+1==target+i
4742          && pOp->p5==0  /* The do-not-merge flag must be clear */
4743         ){
4744           pOp->p3++;
4745         }else{
4746           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4747         }
4748       }
4749     }
4750   }
4751   return n;
4752 }
4753 
4754 /*
4755 ** Generate code for a BETWEEN operator.
4756 **
4757 **    x BETWEEN y AND z
4758 **
4759 ** The above is equivalent to
4760 **
4761 **    x>=y AND x<=z
4762 **
4763 ** Code it as such, taking care to do the common subexpression
4764 ** elimination of x.
4765 **
4766 ** The xJumpIf parameter determines details:
4767 **
4768 **    NULL:                   Store the boolean result in reg[dest]
4769 **    sqlite3ExprIfTrue:      Jump to dest if true
4770 **    sqlite3ExprIfFalse:     Jump to dest if false
4771 **
4772 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4773 */
4774 static void exprCodeBetween(
4775   Parse *pParse,    /* Parsing and code generating context */
4776   Expr *pExpr,      /* The BETWEEN expression */
4777   int dest,         /* Jump destination or storage location */
4778   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4779   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4780 ){
4781   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4782   Expr compLeft;    /* The  x>=y  term */
4783   Expr compRight;   /* The  x<=z  term */
4784   int regFree1 = 0; /* Temporary use register */
4785   Expr *pDel = 0;
4786   sqlite3 *db = pParse->db;
4787 
4788   memset(&compLeft, 0, sizeof(Expr));
4789   memset(&compRight, 0, sizeof(Expr));
4790   memset(&exprAnd, 0, sizeof(Expr));
4791 
4792   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4793   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4794   if( db->mallocFailed==0 ){
4795     exprAnd.op = TK_AND;
4796     exprAnd.pLeft = &compLeft;
4797     exprAnd.pRight = &compRight;
4798     compLeft.op = TK_GE;
4799     compLeft.pLeft = pDel;
4800     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4801     compRight.op = TK_LE;
4802     compRight.pLeft = pDel;
4803     compRight.pRight = pExpr->x.pList->a[1].pExpr;
4804     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4805     if( xJump ){
4806       xJump(pParse, &exprAnd, dest, jumpIfNull);
4807     }else{
4808       /* Mark the expression is being from the ON or USING clause of a join
4809       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4810       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4811       ** for clarity, but we are out of bits in the Expr.flags field so we
4812       ** have to reuse the EP_FromJoin bit.  Bummer. */
4813       pDel->flags |= EP_FromJoin;
4814       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4815     }
4816     sqlite3ReleaseTempReg(pParse, regFree1);
4817   }
4818   sqlite3ExprDelete(db, pDel);
4819 
4820   /* Ensure adequate test coverage */
4821   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4822   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4823   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4824   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4825   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4826   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4827   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4828   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4829   testcase( xJump==0 );
4830 }
4831 
4832 /*
4833 ** Generate code for a boolean expression such that a jump is made
4834 ** to the label "dest" if the expression is true but execution
4835 ** continues straight thru if the expression is false.
4836 **
4837 ** If the expression evaluates to NULL (neither true nor false), then
4838 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4839 **
4840 ** This code depends on the fact that certain token values (ex: TK_EQ)
4841 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4842 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4843 ** the make process cause these values to align.  Assert()s in the code
4844 ** below verify that the numbers are aligned correctly.
4845 */
4846 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4847   Vdbe *v = pParse->pVdbe;
4848   int op = 0;
4849   int regFree1 = 0;
4850   int regFree2 = 0;
4851   int r1, r2;
4852 
4853   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4854   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4855   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4856   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
4857   op = pExpr->op;
4858   switch( op ){
4859     case TK_AND:
4860     case TK_OR: {
4861       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4862       if( pAlt!=pExpr ){
4863         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
4864       }else if( op==TK_AND ){
4865         int d2 = sqlite3VdbeMakeLabel(pParse);
4866         testcase( jumpIfNull==0 );
4867         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
4868                            jumpIfNull^SQLITE_JUMPIFNULL);
4869         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4870         sqlite3VdbeResolveLabel(v, d2);
4871       }else{
4872         testcase( jumpIfNull==0 );
4873         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4874         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4875       }
4876       break;
4877     }
4878     case TK_NOT: {
4879       testcase( jumpIfNull==0 );
4880       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4881       break;
4882     }
4883     case TK_TRUTH: {
4884       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4885       int isTrue;     /* IS TRUE or IS NOT TRUE */
4886       testcase( jumpIfNull==0 );
4887       isNot = pExpr->op2==TK_ISNOT;
4888       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4889       testcase( isTrue && isNot );
4890       testcase( !isTrue && isNot );
4891       if( isTrue ^ isNot ){
4892         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4893                           isNot ? SQLITE_JUMPIFNULL : 0);
4894       }else{
4895         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4896                            isNot ? SQLITE_JUMPIFNULL : 0);
4897       }
4898       break;
4899     }
4900     case TK_IS:
4901     case TK_ISNOT:
4902       testcase( op==TK_IS );
4903       testcase( op==TK_ISNOT );
4904       op = (op==TK_IS) ? TK_EQ : TK_NE;
4905       jumpIfNull = SQLITE_NULLEQ;
4906       /* no break */ deliberate_fall_through
4907     case TK_LT:
4908     case TK_LE:
4909     case TK_GT:
4910     case TK_GE:
4911     case TK_NE:
4912     case TK_EQ: {
4913       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4914       testcase( jumpIfNull==0 );
4915       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4916       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4917       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4918                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
4919       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4920       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4921       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4922       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4923       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4924       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4925       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4926       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4927       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4928       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4929       testcase( regFree1==0 );
4930       testcase( regFree2==0 );
4931       break;
4932     }
4933     case TK_ISNULL:
4934     case TK_NOTNULL: {
4935       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4936       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4937       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4938       sqlite3VdbeAddOp2(v, op, r1, dest);
4939       VdbeCoverageIf(v, op==TK_ISNULL);
4940       VdbeCoverageIf(v, op==TK_NOTNULL);
4941       testcase( regFree1==0 );
4942       break;
4943     }
4944     case TK_BETWEEN: {
4945       testcase( jumpIfNull==0 );
4946       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4947       break;
4948     }
4949 #ifndef SQLITE_OMIT_SUBQUERY
4950     case TK_IN: {
4951       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4952       int destIfNull = jumpIfNull ? dest : destIfFalse;
4953       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4954       sqlite3VdbeGoto(v, dest);
4955       sqlite3VdbeResolveLabel(v, destIfFalse);
4956       break;
4957     }
4958 #endif
4959     default: {
4960     default_expr:
4961       if( ExprAlwaysTrue(pExpr) ){
4962         sqlite3VdbeGoto(v, dest);
4963       }else if( ExprAlwaysFalse(pExpr) ){
4964         /* No-op */
4965       }else{
4966         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4967         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4968         VdbeCoverage(v);
4969         testcase( regFree1==0 );
4970         testcase( jumpIfNull==0 );
4971       }
4972       break;
4973     }
4974   }
4975   sqlite3ReleaseTempReg(pParse, regFree1);
4976   sqlite3ReleaseTempReg(pParse, regFree2);
4977 }
4978 
4979 /*
4980 ** Generate code for a boolean expression such that a jump is made
4981 ** to the label "dest" if the expression is false but execution
4982 ** continues straight thru if the expression is true.
4983 **
4984 ** If the expression evaluates to NULL (neither true nor false) then
4985 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4986 ** is 0.
4987 */
4988 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4989   Vdbe *v = pParse->pVdbe;
4990   int op = 0;
4991   int regFree1 = 0;
4992   int regFree2 = 0;
4993   int r1, r2;
4994 
4995   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4996   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4997   if( pExpr==0 )    return;
4998   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
4999 
5000   /* The value of pExpr->op and op are related as follows:
5001   **
5002   **       pExpr->op            op
5003   **       ---------          ----------
5004   **       TK_ISNULL          OP_NotNull
5005   **       TK_NOTNULL         OP_IsNull
5006   **       TK_NE              OP_Eq
5007   **       TK_EQ              OP_Ne
5008   **       TK_GT              OP_Le
5009   **       TK_LE              OP_Gt
5010   **       TK_GE              OP_Lt
5011   **       TK_LT              OP_Ge
5012   **
5013   ** For other values of pExpr->op, op is undefined and unused.
5014   ** The value of TK_ and OP_ constants are arranged such that we
5015   ** can compute the mapping above using the following expression.
5016   ** Assert()s verify that the computation is correct.
5017   */
5018   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5019 
5020   /* Verify correct alignment of TK_ and OP_ constants
5021   */
5022   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5023   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5024   assert( pExpr->op!=TK_NE || op==OP_Eq );
5025   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5026   assert( pExpr->op!=TK_LT || op==OP_Ge );
5027   assert( pExpr->op!=TK_LE || op==OP_Gt );
5028   assert( pExpr->op!=TK_GT || op==OP_Le );
5029   assert( pExpr->op!=TK_GE || op==OP_Lt );
5030 
5031   switch( pExpr->op ){
5032     case TK_AND:
5033     case TK_OR: {
5034       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5035       if( pAlt!=pExpr ){
5036         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5037       }else if( pExpr->op==TK_AND ){
5038         testcase( jumpIfNull==0 );
5039         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5040         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5041       }else{
5042         int d2 = sqlite3VdbeMakeLabel(pParse);
5043         testcase( jumpIfNull==0 );
5044         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5045                           jumpIfNull^SQLITE_JUMPIFNULL);
5046         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5047         sqlite3VdbeResolveLabel(v, d2);
5048       }
5049       break;
5050     }
5051     case TK_NOT: {
5052       testcase( jumpIfNull==0 );
5053       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5054       break;
5055     }
5056     case TK_TRUTH: {
5057       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5058       int isTrue;  /* IS TRUE or IS NOT TRUE */
5059       testcase( jumpIfNull==0 );
5060       isNot = pExpr->op2==TK_ISNOT;
5061       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5062       testcase( isTrue && isNot );
5063       testcase( !isTrue && isNot );
5064       if( isTrue ^ isNot ){
5065         /* IS TRUE and IS NOT FALSE */
5066         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5067                            isNot ? 0 : SQLITE_JUMPIFNULL);
5068 
5069       }else{
5070         /* IS FALSE and IS NOT TRUE */
5071         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5072                           isNot ? 0 : SQLITE_JUMPIFNULL);
5073       }
5074       break;
5075     }
5076     case TK_IS:
5077     case TK_ISNOT:
5078       testcase( pExpr->op==TK_IS );
5079       testcase( pExpr->op==TK_ISNOT );
5080       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5081       jumpIfNull = SQLITE_NULLEQ;
5082       /* no break */ deliberate_fall_through
5083     case TK_LT:
5084     case TK_LE:
5085     case TK_GT:
5086     case TK_GE:
5087     case TK_NE:
5088     case TK_EQ: {
5089       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5090       testcase( jumpIfNull==0 );
5091       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5092       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5093       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5094                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5095       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5096       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5097       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5098       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5099       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5100       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5101       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5102       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5103       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5104       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5105       testcase( regFree1==0 );
5106       testcase( regFree2==0 );
5107       break;
5108     }
5109     case TK_ISNULL:
5110     case TK_NOTNULL: {
5111       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5112       sqlite3VdbeAddOp2(v, op, r1, dest);
5113       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5114       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5115       testcase( regFree1==0 );
5116       break;
5117     }
5118     case TK_BETWEEN: {
5119       testcase( jumpIfNull==0 );
5120       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5121       break;
5122     }
5123 #ifndef SQLITE_OMIT_SUBQUERY
5124     case TK_IN: {
5125       if( jumpIfNull ){
5126         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5127       }else{
5128         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5129         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5130         sqlite3VdbeResolveLabel(v, destIfNull);
5131       }
5132       break;
5133     }
5134 #endif
5135     default: {
5136     default_expr:
5137       if( ExprAlwaysFalse(pExpr) ){
5138         sqlite3VdbeGoto(v, dest);
5139       }else if( ExprAlwaysTrue(pExpr) ){
5140         /* no-op */
5141       }else{
5142         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5143         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5144         VdbeCoverage(v);
5145         testcase( regFree1==0 );
5146         testcase( jumpIfNull==0 );
5147       }
5148       break;
5149     }
5150   }
5151   sqlite3ReleaseTempReg(pParse, regFree1);
5152   sqlite3ReleaseTempReg(pParse, regFree2);
5153 }
5154 
5155 /*
5156 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5157 ** code generation, and that copy is deleted after code generation. This
5158 ** ensures that the original pExpr is unchanged.
5159 */
5160 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5161   sqlite3 *db = pParse->db;
5162   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5163   if( db->mallocFailed==0 ){
5164     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5165   }
5166   sqlite3ExprDelete(db, pCopy);
5167 }
5168 
5169 /*
5170 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5171 ** type of expression.
5172 **
5173 ** If pExpr is a simple SQL value - an integer, real, string, blob
5174 ** or NULL value - then the VDBE currently being prepared is configured
5175 ** to re-prepare each time a new value is bound to variable pVar.
5176 **
5177 ** Additionally, if pExpr is a simple SQL value and the value is the
5178 ** same as that currently bound to variable pVar, non-zero is returned.
5179 ** Otherwise, if the values are not the same or if pExpr is not a simple
5180 ** SQL value, zero is returned.
5181 */
5182 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
5183   int res = 0;
5184   int iVar;
5185   sqlite3_value *pL, *pR = 0;
5186 
5187   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5188   if( pR ){
5189     iVar = pVar->iColumn;
5190     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5191     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5192     if( pL ){
5193       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5194         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5195       }
5196       res =  0==sqlite3MemCompare(pL, pR, 0);
5197     }
5198     sqlite3ValueFree(pR);
5199     sqlite3ValueFree(pL);
5200   }
5201 
5202   return res;
5203 }
5204 
5205 /*
5206 ** Do a deep comparison of two expression trees.  Return 0 if the two
5207 ** expressions are completely identical.  Return 1 if they differ only
5208 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5209 ** other than the top-level COLLATE operator.
5210 **
5211 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5212 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5213 **
5214 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5215 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5216 **
5217 ** Sometimes this routine will return 2 even if the two expressions
5218 ** really are equivalent.  If we cannot prove that the expressions are
5219 ** identical, we return 2 just to be safe.  So if this routine
5220 ** returns 2, then you do not really know for certain if the two
5221 ** expressions are the same.  But if you get a 0 or 1 return, then you
5222 ** can be sure the expressions are the same.  In the places where
5223 ** this routine is used, it does not hurt to get an extra 2 - that
5224 ** just might result in some slightly slower code.  But returning
5225 ** an incorrect 0 or 1 could lead to a malfunction.
5226 **
5227 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5228 ** pParse->pReprepare can be matched against literals in pB.  The
5229 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5230 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5231 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5232 ** pB causes a return value of 2.
5233 */
5234 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
5235   u32 combinedFlags;
5236   if( pA==0 || pB==0 ){
5237     return pB==pA ? 0 : 2;
5238   }
5239   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5240     return 0;
5241   }
5242   combinedFlags = pA->flags | pB->flags;
5243   if( combinedFlags & EP_IntValue ){
5244     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5245       return 0;
5246     }
5247     return 2;
5248   }
5249   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5250     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5251       return 1;
5252     }
5253     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5254       return 1;
5255     }
5256     return 2;
5257   }
5258   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
5259     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5260       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5261 #ifndef SQLITE_OMIT_WINDOWFUNC
5262       assert( pA->op==pB->op );
5263       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5264         return 2;
5265       }
5266       if( ExprHasProperty(pA,EP_WinFunc) ){
5267         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5268           return 2;
5269         }
5270       }
5271 #endif
5272     }else if( pA->op==TK_NULL ){
5273       return 0;
5274     }else if( pA->op==TK_COLLATE ){
5275       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5276     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
5277       return 2;
5278     }
5279   }
5280   if( (pA->flags & (EP_Distinct|EP_Commuted))
5281      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5282   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5283     if( combinedFlags & EP_xIsSelect ) return 2;
5284     if( (combinedFlags & EP_FixedCol)==0
5285      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5286     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5287     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5288     if( pA->op!=TK_STRING
5289      && pA->op!=TK_TRUEFALSE
5290      && ALWAYS((combinedFlags & EP_Reduced)==0)
5291     ){
5292       if( pA->iColumn!=pB->iColumn ) return 2;
5293       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5294       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5295         return 2;
5296       }
5297     }
5298   }
5299   return 0;
5300 }
5301 
5302 /*
5303 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5304 ** if they are certainly different, or 2 if it is not possible to
5305 ** determine if they are identical or not.
5306 **
5307 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5308 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5309 **
5310 ** This routine might return non-zero for equivalent ExprLists.  The
5311 ** only consequence will be disabled optimizations.  But this routine
5312 ** must never return 0 if the two ExprList objects are different, or
5313 ** a malfunction will result.
5314 **
5315 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5316 ** always differs from a non-NULL pointer.
5317 */
5318 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
5319   int i;
5320   if( pA==0 && pB==0 ) return 0;
5321   if( pA==0 || pB==0 ) return 1;
5322   if( pA->nExpr!=pB->nExpr ) return 1;
5323   for(i=0; i<pA->nExpr; i++){
5324     int res;
5325     Expr *pExprA = pA->a[i].pExpr;
5326     Expr *pExprB = pB->a[i].pExpr;
5327     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
5328     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5329   }
5330   return 0;
5331 }
5332 
5333 /*
5334 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5335 ** are ignored.
5336 */
5337 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
5338   return sqlite3ExprCompare(0,
5339              sqlite3ExprSkipCollateAndLikely(pA),
5340              sqlite3ExprSkipCollateAndLikely(pB),
5341              iTab);
5342 }
5343 
5344 /*
5345 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5346 **
5347 ** Or if seenNot is true, return non-zero if Expr p can only be
5348 ** non-NULL if pNN is not NULL
5349 */
5350 static int exprImpliesNotNull(
5351   Parse *pParse,      /* Parsing context */
5352   Expr *p,            /* The expression to be checked */
5353   Expr *pNN,          /* The expression that is NOT NULL */
5354   int iTab,           /* Table being evaluated */
5355   int seenNot         /* Return true only if p can be any non-NULL value */
5356 ){
5357   assert( p );
5358   assert( pNN );
5359   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5360     return pNN->op!=TK_NULL;
5361   }
5362   switch( p->op ){
5363     case TK_IN: {
5364       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5365       assert( ExprHasProperty(p,EP_xIsSelect)
5366            || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5367       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5368     }
5369     case TK_BETWEEN: {
5370       ExprList *pList = p->x.pList;
5371       assert( pList!=0 );
5372       assert( pList->nExpr==2 );
5373       if( seenNot ) return 0;
5374       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5375        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5376       ){
5377         return 1;
5378       }
5379       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5380     }
5381     case TK_EQ:
5382     case TK_NE:
5383     case TK_LT:
5384     case TK_LE:
5385     case TK_GT:
5386     case TK_GE:
5387     case TK_PLUS:
5388     case TK_MINUS:
5389     case TK_BITOR:
5390     case TK_LSHIFT:
5391     case TK_RSHIFT:
5392     case TK_CONCAT:
5393       seenNot = 1;
5394       /* no break */ deliberate_fall_through
5395     case TK_STAR:
5396     case TK_REM:
5397     case TK_BITAND:
5398     case TK_SLASH: {
5399       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5400       /* no break */ deliberate_fall_through
5401     }
5402     case TK_SPAN:
5403     case TK_COLLATE:
5404     case TK_UPLUS:
5405     case TK_UMINUS: {
5406       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5407     }
5408     case TK_TRUTH: {
5409       if( seenNot ) return 0;
5410       if( p->op2!=TK_IS ) return 0;
5411       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5412     }
5413     case TK_BITNOT:
5414     case TK_NOT: {
5415       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5416     }
5417   }
5418   return 0;
5419 }
5420 
5421 /*
5422 ** Return true if we can prove the pE2 will always be true if pE1 is
5423 ** true.  Return false if we cannot complete the proof or if pE2 might
5424 ** be false.  Examples:
5425 **
5426 **     pE1: x==5       pE2: x==5             Result: true
5427 **     pE1: x>0        pE2: x==5             Result: false
5428 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5429 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5430 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5431 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5432 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5433 **
5434 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5435 ** Expr.iTable<0 then assume a table number given by iTab.
5436 **
5437 ** If pParse is not NULL, then the values of bound variables in pE1 are
5438 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5439 ** modified to record which bound variables are referenced.  If pParse
5440 ** is NULL, then false will be returned if pE1 contains any bound variables.
5441 **
5442 ** When in doubt, return false.  Returning true might give a performance
5443 ** improvement.  Returning false might cause a performance reduction, but
5444 ** it will always give the correct answer and is hence always safe.
5445 */
5446 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5447   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5448     return 1;
5449   }
5450   if( pE2->op==TK_OR
5451    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5452              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5453   ){
5454     return 1;
5455   }
5456   if( pE2->op==TK_NOTNULL
5457    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5458   ){
5459     return 1;
5460   }
5461   return 0;
5462 }
5463 
5464 /*
5465 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5466 ** If the expression node requires that the table at pWalker->iCur
5467 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5468 **
5469 ** This routine controls an optimization.  False positives (setting
5470 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5471 ** (never setting pWalker->eCode) is a harmless missed optimization.
5472 */
5473 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5474   testcase( pExpr->op==TK_AGG_COLUMN );
5475   testcase( pExpr->op==TK_AGG_FUNCTION );
5476   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5477   switch( pExpr->op ){
5478     case TK_ISNOT:
5479     case TK_ISNULL:
5480     case TK_NOTNULL:
5481     case TK_IS:
5482     case TK_OR:
5483     case TK_VECTOR:
5484     case TK_CASE:
5485     case TK_IN:
5486     case TK_FUNCTION:
5487     case TK_TRUTH:
5488       testcase( pExpr->op==TK_ISNOT );
5489       testcase( pExpr->op==TK_ISNULL );
5490       testcase( pExpr->op==TK_NOTNULL );
5491       testcase( pExpr->op==TK_IS );
5492       testcase( pExpr->op==TK_OR );
5493       testcase( pExpr->op==TK_VECTOR );
5494       testcase( pExpr->op==TK_CASE );
5495       testcase( pExpr->op==TK_IN );
5496       testcase( pExpr->op==TK_FUNCTION );
5497       testcase( pExpr->op==TK_TRUTH );
5498       return WRC_Prune;
5499     case TK_COLUMN:
5500       if( pWalker->u.iCur==pExpr->iTable ){
5501         pWalker->eCode = 1;
5502         return WRC_Abort;
5503       }
5504       return WRC_Prune;
5505 
5506     case TK_AND:
5507       if( pWalker->eCode==0 ){
5508         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5509         if( pWalker->eCode ){
5510           pWalker->eCode = 0;
5511           sqlite3WalkExpr(pWalker, pExpr->pRight);
5512         }
5513       }
5514       return WRC_Prune;
5515 
5516     case TK_BETWEEN:
5517       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5518         assert( pWalker->eCode );
5519         return WRC_Abort;
5520       }
5521       return WRC_Prune;
5522 
5523     /* Virtual tables are allowed to use constraints like x=NULL.  So
5524     ** a term of the form x=y does not prove that y is not null if x
5525     ** is the column of a virtual table */
5526     case TK_EQ:
5527     case TK_NE:
5528     case TK_LT:
5529     case TK_LE:
5530     case TK_GT:
5531     case TK_GE: {
5532       Expr *pLeft = pExpr->pLeft;
5533       Expr *pRight = pExpr->pRight;
5534       testcase( pExpr->op==TK_EQ );
5535       testcase( pExpr->op==TK_NE );
5536       testcase( pExpr->op==TK_LT );
5537       testcase( pExpr->op==TK_LE );
5538       testcase( pExpr->op==TK_GT );
5539       testcase( pExpr->op==TK_GE );
5540       /* The y.pTab=0 assignment in wherecode.c always happens after the
5541       ** impliesNotNullRow() test */
5542       if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0)
5543                                && IsVirtual(pLeft->y.pTab))
5544        || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0)
5545                                && IsVirtual(pRight->y.pTab))
5546       ){
5547         return WRC_Prune;
5548       }
5549       /* no break */ deliberate_fall_through
5550     }
5551     default:
5552       return WRC_Continue;
5553   }
5554 }
5555 
5556 /*
5557 ** Return true (non-zero) if expression p can only be true if at least
5558 ** one column of table iTab is non-null.  In other words, return true
5559 ** if expression p will always be NULL or false if every column of iTab
5560 ** is NULL.
5561 **
5562 ** False negatives are acceptable.  In other words, it is ok to return
5563 ** zero even if expression p will never be true of every column of iTab
5564 ** is NULL.  A false negative is merely a missed optimization opportunity.
5565 **
5566 ** False positives are not allowed, however.  A false positive may result
5567 ** in an incorrect answer.
5568 **
5569 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5570 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5571 **
5572 ** This routine is used to check if a LEFT JOIN can be converted into
5573 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5574 ** clause requires that some column of the right table of the LEFT JOIN
5575 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5576 ** ordinary join.
5577 */
5578 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5579   Walker w;
5580   p = sqlite3ExprSkipCollateAndLikely(p);
5581   if( p==0 ) return 0;
5582   if( p->op==TK_NOTNULL ){
5583     p = p->pLeft;
5584   }else{
5585     while( p->op==TK_AND ){
5586       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5587       p = p->pRight;
5588     }
5589   }
5590   w.xExprCallback = impliesNotNullRow;
5591   w.xSelectCallback = 0;
5592   w.xSelectCallback2 = 0;
5593   w.eCode = 0;
5594   w.u.iCur = iTab;
5595   sqlite3WalkExpr(&w, p);
5596   return w.eCode;
5597 }
5598 
5599 /*
5600 ** An instance of the following structure is used by the tree walker
5601 ** to determine if an expression can be evaluated by reference to the
5602 ** index only, without having to do a search for the corresponding
5603 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5604 ** is the cursor for the table.
5605 */
5606 struct IdxCover {
5607   Index *pIdx;     /* The index to be tested for coverage */
5608   int iCur;        /* Cursor number for the table corresponding to the index */
5609 };
5610 
5611 /*
5612 ** Check to see if there are references to columns in table
5613 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5614 ** pWalker->u.pIdxCover->pIdx.
5615 */
5616 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5617   if( pExpr->op==TK_COLUMN
5618    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5619    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5620   ){
5621     pWalker->eCode = 1;
5622     return WRC_Abort;
5623   }
5624   return WRC_Continue;
5625 }
5626 
5627 /*
5628 ** Determine if an index pIdx on table with cursor iCur contains will
5629 ** the expression pExpr.  Return true if the index does cover the
5630 ** expression and false if the pExpr expression references table columns
5631 ** that are not found in the index pIdx.
5632 **
5633 ** An index covering an expression means that the expression can be
5634 ** evaluated using only the index and without having to lookup the
5635 ** corresponding table entry.
5636 */
5637 int sqlite3ExprCoveredByIndex(
5638   Expr *pExpr,        /* The index to be tested */
5639   int iCur,           /* The cursor number for the corresponding table */
5640   Index *pIdx         /* The index that might be used for coverage */
5641 ){
5642   Walker w;
5643   struct IdxCover xcov;
5644   memset(&w, 0, sizeof(w));
5645   xcov.iCur = iCur;
5646   xcov.pIdx = pIdx;
5647   w.xExprCallback = exprIdxCover;
5648   w.u.pIdxCover = &xcov;
5649   sqlite3WalkExpr(&w, pExpr);
5650   return !w.eCode;
5651 }
5652 
5653 
5654 /*
5655 ** An instance of the following structure is used by the tree walker
5656 ** to count references to table columns in the arguments of an
5657 ** aggregate function, in order to implement the
5658 ** sqlite3FunctionThisSrc() routine.
5659 */
5660 struct SrcCount {
5661   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5662   int iSrcInner;   /* Smallest cursor number in this context */
5663   int nThis;       /* Number of references to columns in pSrcList */
5664   int nOther;      /* Number of references to columns in other FROM clauses */
5665 };
5666 
5667 /*
5668 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first
5669 ** SELECT with a FROM clause encountered during this iteration, set
5670 ** SrcCount.iSrcInner to the cursor number of the leftmost object in
5671 ** the FROM cause.
5672 */
5673 static int selectSrcCount(Walker *pWalker, Select *pSel){
5674   struct SrcCount *p = pWalker->u.pSrcCount;
5675   if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){
5676     pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor;
5677   }
5678   return WRC_Continue;
5679 }
5680 
5681 /*
5682 ** Count the number of references to columns.
5683 */
5684 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5685   /* There was once a NEVER() on the second term on the grounds that
5686   ** sqlite3FunctionUsesThisSrc() was always called before
5687   ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet
5688   ** been converted into TK_AGG_COLUMN. But this is no longer true due
5689   ** to window functions - sqlite3WindowRewrite() may now indirectly call
5690   ** FunctionUsesThisSrc() when creating a new sub-select. */
5691   if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){
5692     int i;
5693     struct SrcCount *p = pWalker->u.pSrcCount;
5694     SrcList *pSrc = p->pSrc;
5695     int nSrc = pSrc ? pSrc->nSrc : 0;
5696     for(i=0; i<nSrc; i++){
5697       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5698     }
5699     if( i<nSrc ){
5700       p->nThis++;
5701     }else if( pExpr->iTable<p->iSrcInner ){
5702       /* In a well-formed parse tree (no name resolution errors),
5703       ** TK_COLUMN nodes with smaller Expr.iTable values are in an
5704       ** outer context.  Those are the only ones to count as "other" */
5705       p->nOther++;
5706     }
5707   }
5708   return WRC_Continue;
5709 }
5710 
5711 /*
5712 ** Determine if any of the arguments to the pExpr Function reference
5713 ** pSrcList.  Return true if they do.  Also return true if the function
5714 ** has no arguments or has only constant arguments.  Return false if pExpr
5715 ** references columns but not columns of tables found in pSrcList.
5716 */
5717 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5718   Walker w;
5719   struct SrcCount cnt;
5720   assert( pExpr->op==TK_AGG_FUNCTION );
5721   memset(&w, 0, sizeof(w));
5722   w.xExprCallback = exprSrcCount;
5723   w.xSelectCallback = selectSrcCount;
5724   w.u.pSrcCount = &cnt;
5725   cnt.pSrc = pSrcList;
5726   cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF;
5727   cnt.nThis = 0;
5728   cnt.nOther = 0;
5729   sqlite3WalkExprList(&w, pExpr->x.pList);
5730 #ifndef SQLITE_OMIT_WINDOWFUNC
5731   if( ExprHasProperty(pExpr, EP_WinFunc) ){
5732     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
5733   }
5734 #endif
5735   return cnt.nThis>0 || cnt.nOther==0;
5736 }
5737 
5738 /*
5739 ** This is a Walker expression node callback.
5740 **
5741 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
5742 ** object that is referenced does not refer directly to the Expr.  If
5743 ** it does, make a copy.  This is done because the pExpr argument is
5744 ** subject to change.
5745 **
5746 ** The copy is stored on pParse->pConstExpr with a register number of 0.
5747 ** This will cause the expression to be deleted automatically when the
5748 ** Parse object is destroyed, but the zero register number means that it
5749 ** will not generate any code in the preamble.
5750 */
5751 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
5752   if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
5753    && pExpr->pAggInfo!=0
5754   ){
5755     AggInfo *pAggInfo = pExpr->pAggInfo;
5756     int iAgg = pExpr->iAgg;
5757     Parse *pParse = pWalker->pParse;
5758     sqlite3 *db = pParse->db;
5759     assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION );
5760     if( pExpr->op==TK_AGG_COLUMN ){
5761       assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
5762       if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
5763         pExpr = sqlite3ExprDup(db, pExpr, 0);
5764         if( pExpr ){
5765           pAggInfo->aCol[iAgg].pCExpr = pExpr;
5766           pParse->pConstExpr =
5767              sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
5768         }
5769       }
5770     }else{
5771       assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
5772       if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
5773         pExpr = sqlite3ExprDup(db, pExpr, 0);
5774         if( pExpr ){
5775           pAggInfo->aFunc[iAgg].pFExpr = pExpr;
5776           pParse->pConstExpr =
5777              sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
5778         }
5779       }
5780     }
5781   }
5782   return WRC_Continue;
5783 }
5784 
5785 /*
5786 ** Initialize a Walker object so that will persist AggInfo entries referenced
5787 ** by the tree that is walked.
5788 */
5789 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
5790   memset(pWalker, 0, sizeof(*pWalker));
5791   pWalker->pParse = pParse;
5792   pWalker->xExprCallback = agginfoPersistExprCb;
5793   pWalker->xSelectCallback = sqlite3SelectWalkNoop;
5794 }
5795 
5796 /*
5797 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5798 ** the new element.  Return a negative number if malloc fails.
5799 */
5800 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5801   int i;
5802   pInfo->aCol = sqlite3ArrayAllocate(
5803        db,
5804        pInfo->aCol,
5805        sizeof(pInfo->aCol[0]),
5806        &pInfo->nColumn,
5807        &i
5808   );
5809   return i;
5810 }
5811 
5812 /*
5813 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5814 ** the new element.  Return a negative number if malloc fails.
5815 */
5816 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5817   int i;
5818   pInfo->aFunc = sqlite3ArrayAllocate(
5819        db,
5820        pInfo->aFunc,
5821        sizeof(pInfo->aFunc[0]),
5822        &pInfo->nFunc,
5823        &i
5824   );
5825   return i;
5826 }
5827 
5828 /*
5829 ** This is the xExprCallback for a tree walker.  It is used to
5830 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5831 ** for additional information.
5832 */
5833 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5834   int i;
5835   NameContext *pNC = pWalker->u.pNC;
5836   Parse *pParse = pNC->pParse;
5837   SrcList *pSrcList = pNC->pSrcList;
5838   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5839 
5840   assert( pNC->ncFlags & NC_UAggInfo );
5841   switch( pExpr->op ){
5842     case TK_AGG_COLUMN:
5843     case TK_COLUMN: {
5844       testcase( pExpr->op==TK_AGG_COLUMN );
5845       testcase( pExpr->op==TK_COLUMN );
5846       /* Check to see if the column is in one of the tables in the FROM
5847       ** clause of the aggregate query */
5848       if( ALWAYS(pSrcList!=0) ){
5849         struct SrcList_item *pItem = pSrcList->a;
5850         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5851           struct AggInfo_col *pCol;
5852           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5853           if( pExpr->iTable==pItem->iCursor ){
5854             /* If we reach this point, it means that pExpr refers to a table
5855             ** that is in the FROM clause of the aggregate query.
5856             **
5857             ** Make an entry for the column in pAggInfo->aCol[] if there
5858             ** is not an entry there already.
5859             */
5860             int k;
5861             pCol = pAggInfo->aCol;
5862             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5863               if( pCol->iTable==pExpr->iTable &&
5864                   pCol->iColumn==pExpr->iColumn ){
5865                 break;
5866               }
5867             }
5868             if( (k>=pAggInfo->nColumn)
5869              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5870             ){
5871               pCol = &pAggInfo->aCol[k];
5872               pCol->pTab = pExpr->y.pTab;
5873               pCol->iTable = pExpr->iTable;
5874               pCol->iColumn = pExpr->iColumn;
5875               pCol->iMem = ++pParse->nMem;
5876               pCol->iSorterColumn = -1;
5877               pCol->pCExpr = pExpr;
5878               if( pAggInfo->pGroupBy ){
5879                 int j, n;
5880                 ExprList *pGB = pAggInfo->pGroupBy;
5881                 struct ExprList_item *pTerm = pGB->a;
5882                 n = pGB->nExpr;
5883                 for(j=0; j<n; j++, pTerm++){
5884                   Expr *pE = pTerm->pExpr;
5885                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5886                       pE->iColumn==pExpr->iColumn ){
5887                     pCol->iSorterColumn = j;
5888                     break;
5889                   }
5890                 }
5891               }
5892               if( pCol->iSorterColumn<0 ){
5893                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5894               }
5895             }
5896             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5897             ** because it was there before or because we just created it).
5898             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5899             ** pAggInfo->aCol[] entry.
5900             */
5901             ExprSetVVAProperty(pExpr, EP_NoReduce);
5902             pExpr->pAggInfo = pAggInfo;
5903             pExpr->op = TK_AGG_COLUMN;
5904             pExpr->iAgg = (i16)k;
5905             break;
5906           } /* endif pExpr->iTable==pItem->iCursor */
5907         } /* end loop over pSrcList */
5908       }
5909       return WRC_Prune;
5910     }
5911     case TK_AGG_FUNCTION: {
5912       if( (pNC->ncFlags & NC_InAggFunc)==0
5913        && pWalker->walkerDepth==pExpr->op2
5914       ){
5915         /* Check to see if pExpr is a duplicate of another aggregate
5916         ** function that is already in the pAggInfo structure
5917         */
5918         struct AggInfo_func *pItem = pAggInfo->aFunc;
5919         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5920           if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
5921             break;
5922           }
5923         }
5924         if( i>=pAggInfo->nFunc ){
5925           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5926           */
5927           u8 enc = ENC(pParse->db);
5928           i = addAggInfoFunc(pParse->db, pAggInfo);
5929           if( i>=0 ){
5930             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5931             pItem = &pAggInfo->aFunc[i];
5932             pItem->pFExpr = pExpr;
5933             pItem->iMem = ++pParse->nMem;
5934             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5935             pItem->pFunc = sqlite3FindFunction(pParse->db,
5936                    pExpr->u.zToken,
5937                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5938             if( pExpr->flags & EP_Distinct ){
5939               pItem->iDistinct = pParse->nTab++;
5940             }else{
5941               pItem->iDistinct = -1;
5942             }
5943           }
5944         }
5945         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5946         */
5947         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5948         ExprSetVVAProperty(pExpr, EP_NoReduce);
5949         pExpr->iAgg = (i16)i;
5950         pExpr->pAggInfo = pAggInfo;
5951         return WRC_Prune;
5952       }else{
5953         return WRC_Continue;
5954       }
5955     }
5956   }
5957   return WRC_Continue;
5958 }
5959 
5960 /*
5961 ** Analyze the pExpr expression looking for aggregate functions and
5962 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5963 ** points to.  Additional entries are made on the AggInfo object as
5964 ** necessary.
5965 **
5966 ** This routine should only be called after the expression has been
5967 ** analyzed by sqlite3ResolveExprNames().
5968 */
5969 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5970   Walker w;
5971   w.xExprCallback = analyzeAggregate;
5972   w.xSelectCallback = sqlite3WalkerDepthIncrease;
5973   w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
5974   w.walkerDepth = 0;
5975   w.u.pNC = pNC;
5976   w.pParse = 0;
5977   assert( pNC->pSrcList!=0 );
5978   sqlite3WalkExpr(&w, pExpr);
5979 }
5980 
5981 /*
5982 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5983 ** expression list.  Return the number of errors.
5984 **
5985 ** If an error is found, the analysis is cut short.
5986 */
5987 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5988   struct ExprList_item *pItem;
5989   int i;
5990   if( pList ){
5991     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5992       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5993     }
5994   }
5995 }
5996 
5997 /*
5998 ** Allocate a single new register for use to hold some intermediate result.
5999 */
6000 int sqlite3GetTempReg(Parse *pParse){
6001   if( pParse->nTempReg==0 ){
6002     return ++pParse->nMem;
6003   }
6004   return pParse->aTempReg[--pParse->nTempReg];
6005 }
6006 
6007 /*
6008 ** Deallocate a register, making available for reuse for some other
6009 ** purpose.
6010 */
6011 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6012   if( iReg ){
6013     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6014     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6015       pParse->aTempReg[pParse->nTempReg++] = iReg;
6016     }
6017   }
6018 }
6019 
6020 /*
6021 ** Allocate or deallocate a block of nReg consecutive registers.
6022 */
6023 int sqlite3GetTempRange(Parse *pParse, int nReg){
6024   int i, n;
6025   if( nReg==1 ) return sqlite3GetTempReg(pParse);
6026   i = pParse->iRangeReg;
6027   n = pParse->nRangeReg;
6028   if( nReg<=n ){
6029     pParse->iRangeReg += nReg;
6030     pParse->nRangeReg -= nReg;
6031   }else{
6032     i = pParse->nMem+1;
6033     pParse->nMem += nReg;
6034   }
6035   return i;
6036 }
6037 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6038   if( nReg==1 ){
6039     sqlite3ReleaseTempReg(pParse, iReg);
6040     return;
6041   }
6042   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6043   if( nReg>pParse->nRangeReg ){
6044     pParse->nRangeReg = nReg;
6045     pParse->iRangeReg = iReg;
6046   }
6047 }
6048 
6049 /*
6050 ** Mark all temporary registers as being unavailable for reuse.
6051 **
6052 ** Always invoke this procedure after coding a subroutine or co-routine
6053 ** that might be invoked from other parts of the code, to ensure that
6054 ** the sub/co-routine does not use registers in common with the code that
6055 ** invokes the sub/co-routine.
6056 */
6057 void sqlite3ClearTempRegCache(Parse *pParse){
6058   pParse->nTempReg = 0;
6059   pParse->nRangeReg = 0;
6060 }
6061 
6062 /*
6063 ** Validate that no temporary register falls within the range of
6064 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
6065 ** statements.
6066 */
6067 #ifdef SQLITE_DEBUG
6068 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6069   int i;
6070   if( pParse->nRangeReg>0
6071    && pParse->iRangeReg+pParse->nRangeReg > iFirst
6072    && pParse->iRangeReg <= iLast
6073   ){
6074      return 0;
6075   }
6076   for(i=0; i<pParse->nTempReg; i++){
6077     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6078       return 0;
6079     }
6080   }
6081   return 1;
6082 }
6083 #endif /* SQLITE_DEBUG */
6084