1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_IF_NULL_ROW ); 49 pExpr = pExpr->pLeft; 50 assert( pExpr!=0 ); 51 } 52 op = pExpr->op; 53 if( op==TK_SELECT ){ 54 assert( pExpr->flags&EP_xIsSelect ); 55 assert( pExpr->x.pSelect!=0 ); 56 assert( pExpr->x.pSelect->pEList!=0 ); 57 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 58 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 59 } 60 if( op==TK_REGISTER ) op = pExpr->op2; 61 #ifndef SQLITE_OMIT_CAST 62 if( op==TK_CAST ){ 63 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 64 return sqlite3AffinityType(pExpr->u.zToken, 0); 65 } 66 #endif 67 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ 68 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 69 } 70 if( op==TK_SELECT_COLUMN ){ 71 assert( pExpr->pLeft->flags&EP_xIsSelect ); 72 return sqlite3ExprAffinity( 73 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 74 ); 75 } 76 if( op==TK_VECTOR ){ 77 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 78 } 79 return pExpr->affExpr; 80 } 81 82 /* 83 ** Set the collating sequence for expression pExpr to be the collating 84 ** sequence named by pToken. Return a pointer to a new Expr node that 85 ** implements the COLLATE operator. 86 ** 87 ** If a memory allocation error occurs, that fact is recorded in pParse->db 88 ** and the pExpr parameter is returned unchanged. 89 */ 90 Expr *sqlite3ExprAddCollateToken( 91 Parse *pParse, /* Parsing context */ 92 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 93 const Token *pCollName, /* Name of collating sequence */ 94 int dequote /* True to dequote pCollName */ 95 ){ 96 if( pCollName->n>0 ){ 97 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 98 if( pNew ){ 99 pNew->pLeft = pExpr; 100 pNew->flags |= EP_Collate|EP_Skip; 101 pExpr = pNew; 102 } 103 } 104 return pExpr; 105 } 106 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 107 Token s; 108 assert( zC!=0 ); 109 sqlite3TokenInit(&s, (char*)zC); 110 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 111 } 112 113 /* 114 ** Skip over any TK_COLLATE operators. 115 */ 116 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 117 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 118 assert( pExpr->op==TK_COLLATE ); 119 pExpr = pExpr->pLeft; 120 } 121 return pExpr; 122 } 123 124 /* 125 ** Skip over any TK_COLLATE operators and/or any unlikely() 126 ** or likelihood() or likely() functions at the root of an 127 ** expression. 128 */ 129 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 130 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 131 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 132 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 133 assert( pExpr->x.pList->nExpr>0 ); 134 assert( pExpr->op==TK_FUNCTION ); 135 pExpr = pExpr->x.pList->a[0].pExpr; 136 }else{ 137 assert( pExpr->op==TK_COLLATE ); 138 pExpr = pExpr->pLeft; 139 } 140 } 141 return pExpr; 142 } 143 144 /* 145 ** Return the collation sequence for the expression pExpr. If 146 ** there is no defined collating sequence, return NULL. 147 ** 148 ** See also: sqlite3ExprNNCollSeq() 149 ** 150 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 151 ** default collation if pExpr has no defined collation. 152 ** 153 ** The collating sequence might be determined by a COLLATE operator 154 ** or by the presence of a column with a defined collating sequence. 155 ** COLLATE operators take first precedence. Left operands take 156 ** precedence over right operands. 157 */ 158 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 159 sqlite3 *db = pParse->db; 160 CollSeq *pColl = 0; 161 const Expr *p = pExpr; 162 while( p ){ 163 int op = p->op; 164 if( op==TK_REGISTER ) op = p->op2; 165 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 166 && p->y.pTab!=0 167 ){ 168 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 169 ** a TK_COLUMN but was previously evaluated and cached in a register */ 170 int j = p->iColumn; 171 if( j>=0 ){ 172 const char *zColl = p->y.pTab->aCol[j].zColl; 173 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 174 } 175 break; 176 } 177 if( op==TK_CAST || op==TK_UPLUS ){ 178 p = p->pLeft; 179 continue; 180 } 181 if( op==TK_VECTOR ){ 182 p = p->x.pList->a[0].pExpr; 183 continue; 184 } 185 if( op==TK_COLLATE ){ 186 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 187 break; 188 } 189 if( p->flags & EP_Collate ){ 190 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 191 p = p->pLeft; 192 }else{ 193 Expr *pNext = p->pRight; 194 /* The Expr.x union is never used at the same time as Expr.pRight */ 195 assert( p->x.pList==0 || p->pRight==0 ); 196 if( p->x.pList!=0 197 && !db->mallocFailed 198 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 199 ){ 200 int i; 201 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 202 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 203 pNext = p->x.pList->a[i].pExpr; 204 break; 205 } 206 } 207 } 208 p = pNext; 209 } 210 }else{ 211 break; 212 } 213 } 214 if( sqlite3CheckCollSeq(pParse, pColl) ){ 215 pColl = 0; 216 } 217 return pColl; 218 } 219 220 /* 221 ** Return the collation sequence for the expression pExpr. If 222 ** there is no defined collating sequence, return a pointer to the 223 ** defautl collation sequence. 224 ** 225 ** See also: sqlite3ExprCollSeq() 226 ** 227 ** The sqlite3ExprCollSeq() routine works the same except that it 228 ** returns NULL if there is no defined collation. 229 */ 230 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 231 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 232 if( p==0 ) p = pParse->db->pDfltColl; 233 assert( p!=0 ); 234 return p; 235 } 236 237 /* 238 ** Return TRUE if the two expressions have equivalent collating sequences. 239 */ 240 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 241 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 242 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 243 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 244 } 245 246 /* 247 ** pExpr is an operand of a comparison operator. aff2 is the 248 ** type affinity of the other operand. This routine returns the 249 ** type affinity that should be used for the comparison operator. 250 */ 251 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 252 char aff1 = sqlite3ExprAffinity(pExpr); 253 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 254 /* Both sides of the comparison are columns. If one has numeric 255 ** affinity, use that. Otherwise use no affinity. 256 */ 257 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 258 return SQLITE_AFF_NUMERIC; 259 }else{ 260 return SQLITE_AFF_BLOB; 261 } 262 }else{ 263 /* One side is a column, the other is not. Use the columns affinity. */ 264 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 265 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 266 } 267 } 268 269 /* 270 ** pExpr is a comparison operator. Return the type affinity that should 271 ** be applied to both operands prior to doing the comparison. 272 */ 273 static char comparisonAffinity(const Expr *pExpr){ 274 char aff; 275 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 276 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 277 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 278 assert( pExpr->pLeft ); 279 aff = sqlite3ExprAffinity(pExpr->pLeft); 280 if( pExpr->pRight ){ 281 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 282 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 283 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 284 }else if( aff==0 ){ 285 aff = SQLITE_AFF_BLOB; 286 } 287 return aff; 288 } 289 290 /* 291 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 292 ** idx_affinity is the affinity of an indexed column. Return true 293 ** if the index with affinity idx_affinity may be used to implement 294 ** the comparison in pExpr. 295 */ 296 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 297 char aff = comparisonAffinity(pExpr); 298 if( aff<SQLITE_AFF_TEXT ){ 299 return 1; 300 } 301 if( aff==SQLITE_AFF_TEXT ){ 302 return idx_affinity==SQLITE_AFF_TEXT; 303 } 304 return sqlite3IsNumericAffinity(idx_affinity); 305 } 306 307 /* 308 ** Return the P5 value that should be used for a binary comparison 309 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 310 */ 311 static u8 binaryCompareP5( 312 const Expr *pExpr1, /* Left operand */ 313 const Expr *pExpr2, /* Right operand */ 314 int jumpIfNull /* Extra flags added to P5 */ 315 ){ 316 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 317 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 318 return aff; 319 } 320 321 /* 322 ** Return a pointer to the collation sequence that should be used by 323 ** a binary comparison operator comparing pLeft and pRight. 324 ** 325 ** If the left hand expression has a collating sequence type, then it is 326 ** used. Otherwise the collation sequence for the right hand expression 327 ** is used, or the default (BINARY) if neither expression has a collating 328 ** type. 329 ** 330 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 331 ** it is not considered. 332 */ 333 CollSeq *sqlite3BinaryCompareCollSeq( 334 Parse *pParse, 335 const Expr *pLeft, 336 const Expr *pRight 337 ){ 338 CollSeq *pColl; 339 assert( pLeft ); 340 if( pLeft->flags & EP_Collate ){ 341 pColl = sqlite3ExprCollSeq(pParse, pLeft); 342 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 343 pColl = sqlite3ExprCollSeq(pParse, pRight); 344 }else{ 345 pColl = sqlite3ExprCollSeq(pParse, pLeft); 346 if( !pColl ){ 347 pColl = sqlite3ExprCollSeq(pParse, pRight); 348 } 349 } 350 return pColl; 351 } 352 353 /* Expresssion p is a comparison operator. Return a collation sequence 354 ** appropriate for the comparison operator. 355 ** 356 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 357 ** However, if the OP_Commuted flag is set, then the order of the operands 358 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 359 ** correct collating sequence is found. 360 */ 361 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 362 if( ExprHasProperty(p, EP_Commuted) ){ 363 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 364 }else{ 365 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 366 } 367 } 368 369 /* 370 ** Generate code for a comparison operator. 371 */ 372 static int codeCompare( 373 Parse *pParse, /* The parsing (and code generating) context */ 374 Expr *pLeft, /* The left operand */ 375 Expr *pRight, /* The right operand */ 376 int opcode, /* The comparison opcode */ 377 int in1, int in2, /* Register holding operands */ 378 int dest, /* Jump here if true. */ 379 int jumpIfNull, /* If true, jump if either operand is NULL */ 380 int isCommuted /* The comparison has been commuted */ 381 ){ 382 int p5; 383 int addr; 384 CollSeq *p4; 385 386 if( pParse->nErr ) return 0; 387 if( isCommuted ){ 388 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 389 }else{ 390 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 391 } 392 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 393 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 394 (void*)p4, P4_COLLSEQ); 395 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 396 return addr; 397 } 398 399 /* 400 ** Return true if expression pExpr is a vector, or false otherwise. 401 ** 402 ** A vector is defined as any expression that results in two or more 403 ** columns of result. Every TK_VECTOR node is an vector because the 404 ** parser will not generate a TK_VECTOR with fewer than two entries. 405 ** But a TK_SELECT might be either a vector or a scalar. It is only 406 ** considered a vector if it has two or more result columns. 407 */ 408 int sqlite3ExprIsVector(Expr *pExpr){ 409 return sqlite3ExprVectorSize(pExpr)>1; 410 } 411 412 /* 413 ** If the expression passed as the only argument is of type TK_VECTOR 414 ** return the number of expressions in the vector. Or, if the expression 415 ** is a sub-select, return the number of columns in the sub-select. For 416 ** any other type of expression, return 1. 417 */ 418 int sqlite3ExprVectorSize(Expr *pExpr){ 419 u8 op = pExpr->op; 420 if( op==TK_REGISTER ) op = pExpr->op2; 421 if( op==TK_VECTOR ){ 422 return pExpr->x.pList->nExpr; 423 }else if( op==TK_SELECT ){ 424 return pExpr->x.pSelect->pEList->nExpr; 425 }else{ 426 return 1; 427 } 428 } 429 430 /* 431 ** Return a pointer to a subexpression of pVector that is the i-th 432 ** column of the vector (numbered starting with 0). The caller must 433 ** ensure that i is within range. 434 ** 435 ** If pVector is really a scalar (and "scalar" here includes subqueries 436 ** that return a single column!) then return pVector unmodified. 437 ** 438 ** pVector retains ownership of the returned subexpression. 439 ** 440 ** If the vector is a (SELECT ...) then the expression returned is 441 ** just the expression for the i-th term of the result set, and may 442 ** not be ready for evaluation because the table cursor has not yet 443 ** been positioned. 444 */ 445 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 446 assert( i<sqlite3ExprVectorSize(pVector) ); 447 if( sqlite3ExprIsVector(pVector) ){ 448 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 449 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 450 return pVector->x.pSelect->pEList->a[i].pExpr; 451 }else{ 452 return pVector->x.pList->a[i].pExpr; 453 } 454 } 455 return pVector; 456 } 457 458 /* 459 ** Compute and return a new Expr object which when passed to 460 ** sqlite3ExprCode() will generate all necessary code to compute 461 ** the iField-th column of the vector expression pVector. 462 ** 463 ** It is ok for pVector to be a scalar (as long as iField==0). 464 ** In that case, this routine works like sqlite3ExprDup(). 465 ** 466 ** The caller owns the returned Expr object and is responsible for 467 ** ensuring that the returned value eventually gets freed. 468 ** 469 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 470 ** then the returned object will reference pVector and so pVector must remain 471 ** valid for the life of the returned object. If pVector is a TK_VECTOR 472 ** or a scalar expression, then it can be deleted as soon as this routine 473 ** returns. 474 ** 475 ** A trick to cause a TK_SELECT pVector to be deleted together with 476 ** the returned Expr object is to attach the pVector to the pRight field 477 ** of the returned TK_SELECT_COLUMN Expr object. 478 */ 479 Expr *sqlite3ExprForVectorField( 480 Parse *pParse, /* Parsing context */ 481 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 482 int iField /* Which column of the vector to return */ 483 ){ 484 Expr *pRet; 485 if( pVector->op==TK_SELECT ){ 486 assert( pVector->flags & EP_xIsSelect ); 487 /* The TK_SELECT_COLUMN Expr node: 488 ** 489 ** pLeft: pVector containing TK_SELECT. Not deleted. 490 ** pRight: not used. But recursively deleted. 491 ** iColumn: Index of a column in pVector 492 ** iTable: 0 or the number of columns on the LHS of an assignment 493 ** pLeft->iTable: First in an array of register holding result, or 0 494 ** if the result is not yet computed. 495 ** 496 ** sqlite3ExprDelete() specifically skips the recursive delete of 497 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 498 ** can be attached to pRight to cause this node to take ownership of 499 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 500 ** with the same pLeft pointer to the pVector, but only one of them 501 ** will own the pVector. 502 */ 503 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 504 if( pRet ){ 505 pRet->iColumn = iField; 506 pRet->pLeft = pVector; 507 } 508 assert( pRet==0 || pRet->iTable==0 ); 509 }else{ 510 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 511 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 512 sqlite3RenameTokenRemap(pParse, pRet, pVector); 513 } 514 return pRet; 515 } 516 517 /* 518 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 519 ** it. Return the register in which the result is stored (or, if the 520 ** sub-select returns more than one column, the first in an array 521 ** of registers in which the result is stored). 522 ** 523 ** If pExpr is not a TK_SELECT expression, return 0. 524 */ 525 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 526 int reg = 0; 527 #ifndef SQLITE_OMIT_SUBQUERY 528 if( pExpr->op==TK_SELECT ){ 529 reg = sqlite3CodeSubselect(pParse, pExpr); 530 } 531 #endif 532 return reg; 533 } 534 535 /* 536 ** Argument pVector points to a vector expression - either a TK_VECTOR 537 ** or TK_SELECT that returns more than one column. This function returns 538 ** the register number of a register that contains the value of 539 ** element iField of the vector. 540 ** 541 ** If pVector is a TK_SELECT expression, then code for it must have 542 ** already been generated using the exprCodeSubselect() routine. In this 543 ** case parameter regSelect should be the first in an array of registers 544 ** containing the results of the sub-select. 545 ** 546 ** If pVector is of type TK_VECTOR, then code for the requested field 547 ** is generated. In this case (*pRegFree) may be set to the number of 548 ** a temporary register to be freed by the caller before returning. 549 ** 550 ** Before returning, output parameter (*ppExpr) is set to point to the 551 ** Expr object corresponding to element iElem of the vector. 552 */ 553 static int exprVectorRegister( 554 Parse *pParse, /* Parse context */ 555 Expr *pVector, /* Vector to extract element from */ 556 int iField, /* Field to extract from pVector */ 557 int regSelect, /* First in array of registers */ 558 Expr **ppExpr, /* OUT: Expression element */ 559 int *pRegFree /* OUT: Temp register to free */ 560 ){ 561 u8 op = pVector->op; 562 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 563 if( op==TK_REGISTER ){ 564 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 565 return pVector->iTable+iField; 566 } 567 if( op==TK_SELECT ){ 568 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 569 return regSelect+iField; 570 } 571 *ppExpr = pVector->x.pList->a[iField].pExpr; 572 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 573 } 574 575 /* 576 ** Expression pExpr is a comparison between two vector values. Compute 577 ** the result of the comparison (1, 0, or NULL) and write that 578 ** result into register dest. 579 ** 580 ** The caller must satisfy the following preconditions: 581 ** 582 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 583 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 584 ** otherwise: op==pExpr->op and p5==0 585 */ 586 static void codeVectorCompare( 587 Parse *pParse, /* Code generator context */ 588 Expr *pExpr, /* The comparison operation */ 589 int dest, /* Write results into this register */ 590 u8 op, /* Comparison operator */ 591 u8 p5 /* SQLITE_NULLEQ or zero */ 592 ){ 593 Vdbe *v = pParse->pVdbe; 594 Expr *pLeft = pExpr->pLeft; 595 Expr *pRight = pExpr->pRight; 596 int nLeft = sqlite3ExprVectorSize(pLeft); 597 int i; 598 int regLeft = 0; 599 int regRight = 0; 600 u8 opx = op; 601 int addrDone = sqlite3VdbeMakeLabel(pParse); 602 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 603 604 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 605 if( pParse->nErr ) return; 606 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 607 sqlite3ErrorMsg(pParse, "row value misused"); 608 return; 609 } 610 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 611 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 612 || pExpr->op==TK_LT || pExpr->op==TK_GT 613 || pExpr->op==TK_LE || pExpr->op==TK_GE 614 ); 615 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 616 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 617 assert( p5==0 || pExpr->op!=op ); 618 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 619 620 p5 |= SQLITE_STOREP2; 621 if( opx==TK_LE ) opx = TK_LT; 622 if( opx==TK_GE ) opx = TK_GT; 623 624 regLeft = exprCodeSubselect(pParse, pLeft); 625 regRight = exprCodeSubselect(pParse, pRight); 626 627 for(i=0; 1 /*Loop exits by "break"*/; i++){ 628 int regFree1 = 0, regFree2 = 0; 629 Expr *pL, *pR; 630 int r1, r2; 631 assert( i>=0 && i<nLeft ); 632 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 633 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 634 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted); 635 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 636 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 637 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 638 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 639 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 640 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 641 sqlite3ReleaseTempReg(pParse, regFree1); 642 sqlite3ReleaseTempReg(pParse, regFree2); 643 if( i==nLeft-1 ){ 644 break; 645 } 646 if( opx==TK_EQ ){ 647 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 648 p5 |= SQLITE_KEEPNULL; 649 }else if( opx==TK_NE ){ 650 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 651 p5 |= SQLITE_KEEPNULL; 652 }else{ 653 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 654 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 655 VdbeCoverageIf(v, op==TK_LT); 656 VdbeCoverageIf(v, op==TK_GT); 657 VdbeCoverageIf(v, op==TK_LE); 658 VdbeCoverageIf(v, op==TK_GE); 659 if( i==nLeft-2 ) opx = op; 660 } 661 } 662 sqlite3VdbeResolveLabel(v, addrDone); 663 } 664 665 #if SQLITE_MAX_EXPR_DEPTH>0 666 /* 667 ** Check that argument nHeight is less than or equal to the maximum 668 ** expression depth allowed. If it is not, leave an error message in 669 ** pParse. 670 */ 671 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 672 int rc = SQLITE_OK; 673 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 674 if( nHeight>mxHeight ){ 675 sqlite3ErrorMsg(pParse, 676 "Expression tree is too large (maximum depth %d)", mxHeight 677 ); 678 rc = SQLITE_ERROR; 679 } 680 return rc; 681 } 682 683 /* The following three functions, heightOfExpr(), heightOfExprList() 684 ** and heightOfSelect(), are used to determine the maximum height 685 ** of any expression tree referenced by the structure passed as the 686 ** first argument. 687 ** 688 ** If this maximum height is greater than the current value pointed 689 ** to by pnHeight, the second parameter, then set *pnHeight to that 690 ** value. 691 */ 692 static void heightOfExpr(Expr *p, int *pnHeight){ 693 if( p ){ 694 if( p->nHeight>*pnHeight ){ 695 *pnHeight = p->nHeight; 696 } 697 } 698 } 699 static void heightOfExprList(ExprList *p, int *pnHeight){ 700 if( p ){ 701 int i; 702 for(i=0; i<p->nExpr; i++){ 703 heightOfExpr(p->a[i].pExpr, pnHeight); 704 } 705 } 706 } 707 static void heightOfSelect(Select *pSelect, int *pnHeight){ 708 Select *p; 709 for(p=pSelect; p; p=p->pPrior){ 710 heightOfExpr(p->pWhere, pnHeight); 711 heightOfExpr(p->pHaving, pnHeight); 712 heightOfExpr(p->pLimit, pnHeight); 713 heightOfExprList(p->pEList, pnHeight); 714 heightOfExprList(p->pGroupBy, pnHeight); 715 heightOfExprList(p->pOrderBy, pnHeight); 716 } 717 } 718 719 /* 720 ** Set the Expr.nHeight variable in the structure passed as an 721 ** argument. An expression with no children, Expr.pList or 722 ** Expr.pSelect member has a height of 1. Any other expression 723 ** has a height equal to the maximum height of any other 724 ** referenced Expr plus one. 725 ** 726 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 727 ** if appropriate. 728 */ 729 static void exprSetHeight(Expr *p){ 730 int nHeight = 0; 731 heightOfExpr(p->pLeft, &nHeight); 732 heightOfExpr(p->pRight, &nHeight); 733 if( ExprHasProperty(p, EP_xIsSelect) ){ 734 heightOfSelect(p->x.pSelect, &nHeight); 735 }else if( p->x.pList ){ 736 heightOfExprList(p->x.pList, &nHeight); 737 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 738 } 739 p->nHeight = nHeight + 1; 740 } 741 742 /* 743 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 744 ** the height is greater than the maximum allowed expression depth, 745 ** leave an error in pParse. 746 ** 747 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 748 ** Expr.flags. 749 */ 750 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 751 if( pParse->nErr ) return; 752 exprSetHeight(p); 753 sqlite3ExprCheckHeight(pParse, p->nHeight); 754 } 755 756 /* 757 ** Return the maximum height of any expression tree referenced 758 ** by the select statement passed as an argument. 759 */ 760 int sqlite3SelectExprHeight(Select *p){ 761 int nHeight = 0; 762 heightOfSelect(p, &nHeight); 763 return nHeight; 764 } 765 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 766 /* 767 ** Propagate all EP_Propagate flags from the Expr.x.pList into 768 ** Expr.flags. 769 */ 770 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 771 if( pParse->nErr ) return; 772 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 773 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 774 } 775 } 776 #define exprSetHeight(y) 777 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 778 779 /* 780 ** This routine is the core allocator for Expr nodes. 781 ** 782 ** Construct a new expression node and return a pointer to it. Memory 783 ** for this node and for the pToken argument is a single allocation 784 ** obtained from sqlite3DbMalloc(). The calling function 785 ** is responsible for making sure the node eventually gets freed. 786 ** 787 ** If dequote is true, then the token (if it exists) is dequoted. 788 ** If dequote is false, no dequoting is performed. The deQuote 789 ** parameter is ignored if pToken is NULL or if the token does not 790 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 791 ** then the EP_DblQuoted flag is set on the expression node. 792 ** 793 ** Special case: If op==TK_INTEGER and pToken points to a string that 794 ** can be translated into a 32-bit integer, then the token is not 795 ** stored in u.zToken. Instead, the integer values is written 796 ** into u.iValue and the EP_IntValue flag is set. No extra storage 797 ** is allocated to hold the integer text and the dequote flag is ignored. 798 */ 799 Expr *sqlite3ExprAlloc( 800 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 801 int op, /* Expression opcode */ 802 const Token *pToken, /* Token argument. Might be NULL */ 803 int dequote /* True to dequote */ 804 ){ 805 Expr *pNew; 806 int nExtra = 0; 807 int iValue = 0; 808 809 assert( db!=0 ); 810 if( pToken ){ 811 if( op!=TK_INTEGER || pToken->z==0 812 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 813 nExtra = pToken->n+1; 814 assert( iValue>=0 ); 815 } 816 } 817 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 818 if( pNew ){ 819 memset(pNew, 0, sizeof(Expr)); 820 pNew->op = (u8)op; 821 pNew->iAgg = -1; 822 if( pToken ){ 823 if( nExtra==0 ){ 824 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 825 pNew->u.iValue = iValue; 826 }else{ 827 pNew->u.zToken = (char*)&pNew[1]; 828 assert( pToken->z!=0 || pToken->n==0 ); 829 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 830 pNew->u.zToken[pToken->n] = 0; 831 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 832 sqlite3DequoteExpr(pNew); 833 } 834 } 835 } 836 #if SQLITE_MAX_EXPR_DEPTH>0 837 pNew->nHeight = 1; 838 #endif 839 } 840 return pNew; 841 } 842 843 /* 844 ** Allocate a new expression node from a zero-terminated token that has 845 ** already been dequoted. 846 */ 847 Expr *sqlite3Expr( 848 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 849 int op, /* Expression opcode */ 850 const char *zToken /* Token argument. Might be NULL */ 851 ){ 852 Token x; 853 x.z = zToken; 854 x.n = sqlite3Strlen30(zToken); 855 return sqlite3ExprAlloc(db, op, &x, 0); 856 } 857 858 /* 859 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 860 ** 861 ** If pRoot==NULL that means that a memory allocation error has occurred. 862 ** In that case, delete the subtrees pLeft and pRight. 863 */ 864 void sqlite3ExprAttachSubtrees( 865 sqlite3 *db, 866 Expr *pRoot, 867 Expr *pLeft, 868 Expr *pRight 869 ){ 870 if( pRoot==0 ){ 871 assert( db->mallocFailed ); 872 sqlite3ExprDelete(db, pLeft); 873 sqlite3ExprDelete(db, pRight); 874 }else{ 875 if( pRight ){ 876 pRoot->pRight = pRight; 877 pRoot->flags |= EP_Propagate & pRight->flags; 878 } 879 if( pLeft ){ 880 pRoot->pLeft = pLeft; 881 pRoot->flags |= EP_Propagate & pLeft->flags; 882 } 883 exprSetHeight(pRoot); 884 } 885 } 886 887 /* 888 ** Allocate an Expr node which joins as many as two subtrees. 889 ** 890 ** One or both of the subtrees can be NULL. Return a pointer to the new 891 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 892 ** free the subtrees and return NULL. 893 */ 894 Expr *sqlite3PExpr( 895 Parse *pParse, /* Parsing context */ 896 int op, /* Expression opcode */ 897 Expr *pLeft, /* Left operand */ 898 Expr *pRight /* Right operand */ 899 ){ 900 Expr *p; 901 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 902 if( p ){ 903 memset(p, 0, sizeof(Expr)); 904 p->op = op & 0xff; 905 p->iAgg = -1; 906 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 907 sqlite3ExprCheckHeight(pParse, p->nHeight); 908 }else{ 909 sqlite3ExprDelete(pParse->db, pLeft); 910 sqlite3ExprDelete(pParse->db, pRight); 911 } 912 return p; 913 } 914 915 /* 916 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 917 ** do a memory allocation failure) then delete the pSelect object. 918 */ 919 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 920 if( pExpr ){ 921 pExpr->x.pSelect = pSelect; 922 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 923 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 924 }else{ 925 assert( pParse->db->mallocFailed ); 926 sqlite3SelectDelete(pParse->db, pSelect); 927 } 928 } 929 930 931 /* 932 ** Join two expressions using an AND operator. If either expression is 933 ** NULL, then just return the other expression. 934 ** 935 ** If one side or the other of the AND is known to be false, then instead 936 ** of returning an AND expression, just return a constant expression with 937 ** a value of false. 938 */ 939 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 940 sqlite3 *db = pParse->db; 941 if( pLeft==0 ){ 942 return pRight; 943 }else if( pRight==0 ){ 944 return pLeft; 945 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 946 && !IN_RENAME_OBJECT 947 ){ 948 sqlite3ExprDelete(db, pLeft); 949 sqlite3ExprDelete(db, pRight); 950 return sqlite3Expr(db, TK_INTEGER, "0"); 951 }else{ 952 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 953 } 954 } 955 956 /* 957 ** Construct a new expression node for a function with multiple 958 ** arguments. 959 */ 960 Expr *sqlite3ExprFunction( 961 Parse *pParse, /* Parsing context */ 962 ExprList *pList, /* Argument list */ 963 Token *pToken, /* Name of the function */ 964 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 965 ){ 966 Expr *pNew; 967 sqlite3 *db = pParse->db; 968 assert( pToken ); 969 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 970 if( pNew==0 ){ 971 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 972 return 0; 973 } 974 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 975 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 976 } 977 pNew->x.pList = pList; 978 ExprSetProperty(pNew, EP_HasFunc); 979 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 980 sqlite3ExprSetHeightAndFlags(pParse, pNew); 981 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 982 return pNew; 983 } 984 985 /* 986 ** Check to see if a function is usable according to current access 987 ** rules: 988 ** 989 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 990 ** 991 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 992 ** top-level SQL 993 ** 994 ** If the function is not usable, create an error. 995 */ 996 void sqlite3ExprFunctionUsable( 997 Parse *pParse, /* Parsing and code generating context */ 998 Expr *pExpr, /* The function invocation */ 999 FuncDef *pDef /* The function being invoked */ 1000 ){ 1001 assert( !IN_RENAME_OBJECT ); 1002 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1003 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1004 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1005 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1006 ){ 1007 /* Functions prohibited in triggers and views if: 1008 ** (1) tagged with SQLITE_DIRECTONLY 1009 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1010 ** is tagged with SQLITE_FUNC_UNSAFE) and 1011 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1012 ** that the schema is possibly tainted). 1013 */ 1014 sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName); 1015 } 1016 } 1017 } 1018 1019 /* 1020 ** Assign a variable number to an expression that encodes a wildcard 1021 ** in the original SQL statement. 1022 ** 1023 ** Wildcards consisting of a single "?" are assigned the next sequential 1024 ** variable number. 1025 ** 1026 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1027 ** sure "nnn" is not too big to avoid a denial of service attack when 1028 ** the SQL statement comes from an external source. 1029 ** 1030 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1031 ** as the previous instance of the same wildcard. Or if this is the first 1032 ** instance of the wildcard, the next sequential variable number is 1033 ** assigned. 1034 */ 1035 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1036 sqlite3 *db = pParse->db; 1037 const char *z; 1038 ynVar x; 1039 1040 if( pExpr==0 ) return; 1041 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1042 z = pExpr->u.zToken; 1043 assert( z!=0 ); 1044 assert( z[0]!=0 ); 1045 assert( n==(u32)sqlite3Strlen30(z) ); 1046 if( z[1]==0 ){ 1047 /* Wildcard of the form "?". Assign the next variable number */ 1048 assert( z[0]=='?' ); 1049 x = (ynVar)(++pParse->nVar); 1050 }else{ 1051 int doAdd = 0; 1052 if( z[0]=='?' ){ 1053 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1054 ** use it as the variable number */ 1055 i64 i; 1056 int bOk; 1057 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1058 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1059 bOk = 1; 1060 }else{ 1061 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1062 } 1063 testcase( i==0 ); 1064 testcase( i==1 ); 1065 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1066 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1067 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1068 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1069 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1070 return; 1071 } 1072 x = (ynVar)i; 1073 if( x>pParse->nVar ){ 1074 pParse->nVar = (int)x; 1075 doAdd = 1; 1076 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1077 doAdd = 1; 1078 } 1079 }else{ 1080 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1081 ** number as the prior appearance of the same name, or if the name 1082 ** has never appeared before, reuse the same variable number 1083 */ 1084 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1085 if( x==0 ){ 1086 x = (ynVar)(++pParse->nVar); 1087 doAdd = 1; 1088 } 1089 } 1090 if( doAdd ){ 1091 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1092 } 1093 } 1094 pExpr->iColumn = x; 1095 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1096 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1097 } 1098 } 1099 1100 /* 1101 ** Recursively delete an expression tree. 1102 */ 1103 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1104 assert( p!=0 ); 1105 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1106 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1107 1108 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1109 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1110 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1111 #ifdef SQLITE_DEBUG 1112 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1113 assert( p->pLeft==0 ); 1114 assert( p->pRight==0 ); 1115 assert( p->x.pSelect==0 ); 1116 } 1117 #endif 1118 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1119 /* The Expr.x union is never used at the same time as Expr.pRight */ 1120 assert( p->x.pList==0 || p->pRight==0 ); 1121 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1122 if( p->pRight ){ 1123 assert( !ExprHasProperty(p, EP_WinFunc) ); 1124 sqlite3ExprDeleteNN(db, p->pRight); 1125 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1126 assert( !ExprHasProperty(p, EP_WinFunc) ); 1127 sqlite3SelectDelete(db, p->x.pSelect); 1128 }else{ 1129 sqlite3ExprListDelete(db, p->x.pList); 1130 #ifndef SQLITE_OMIT_WINDOWFUNC 1131 if( ExprHasProperty(p, EP_WinFunc) ){ 1132 sqlite3WindowDelete(db, p->y.pWin); 1133 } 1134 #endif 1135 } 1136 } 1137 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1138 if( !ExprHasProperty(p, EP_Static) ){ 1139 sqlite3DbFreeNN(db, p); 1140 } 1141 } 1142 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1143 if( p ) sqlite3ExprDeleteNN(db, p); 1144 } 1145 1146 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1147 ** expression. 1148 */ 1149 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1150 if( p ){ 1151 if( IN_RENAME_OBJECT ){ 1152 sqlite3RenameExprUnmap(pParse, p); 1153 } 1154 sqlite3ExprDeleteNN(pParse->db, p); 1155 } 1156 } 1157 1158 /* 1159 ** Return the number of bytes allocated for the expression structure 1160 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1161 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1162 */ 1163 static int exprStructSize(Expr *p){ 1164 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1165 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1166 return EXPR_FULLSIZE; 1167 } 1168 1169 /* 1170 ** The dupedExpr*Size() routines each return the number of bytes required 1171 ** to store a copy of an expression or expression tree. They differ in 1172 ** how much of the tree is measured. 1173 ** 1174 ** dupedExprStructSize() Size of only the Expr structure 1175 ** dupedExprNodeSize() Size of Expr + space for token 1176 ** dupedExprSize() Expr + token + subtree components 1177 ** 1178 *************************************************************************** 1179 ** 1180 ** The dupedExprStructSize() function returns two values OR-ed together: 1181 ** (1) the space required for a copy of the Expr structure only and 1182 ** (2) the EP_xxx flags that indicate what the structure size should be. 1183 ** The return values is always one of: 1184 ** 1185 ** EXPR_FULLSIZE 1186 ** EXPR_REDUCEDSIZE | EP_Reduced 1187 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1188 ** 1189 ** The size of the structure can be found by masking the return value 1190 ** of this routine with 0xfff. The flags can be found by masking the 1191 ** return value with EP_Reduced|EP_TokenOnly. 1192 ** 1193 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1194 ** (unreduced) Expr objects as they or originally constructed by the parser. 1195 ** During expression analysis, extra information is computed and moved into 1196 ** later parts of the Expr object and that extra information might get chopped 1197 ** off if the expression is reduced. Note also that it does not work to 1198 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1199 ** to reduce a pristine expression tree from the parser. The implementation 1200 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1201 ** to enforce this constraint. 1202 */ 1203 static int dupedExprStructSize(Expr *p, int flags){ 1204 int nSize; 1205 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1206 assert( EXPR_FULLSIZE<=0xfff ); 1207 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1208 if( 0==flags || p->op==TK_SELECT_COLUMN 1209 #ifndef SQLITE_OMIT_WINDOWFUNC 1210 || ExprHasProperty(p, EP_WinFunc) 1211 #endif 1212 ){ 1213 nSize = EXPR_FULLSIZE; 1214 }else{ 1215 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1216 assert( !ExprHasProperty(p, EP_FromJoin) ); 1217 assert( !ExprHasProperty(p, EP_MemToken) ); 1218 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1219 if( p->pLeft || p->x.pList ){ 1220 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1221 }else{ 1222 assert( p->pRight==0 ); 1223 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1224 } 1225 } 1226 return nSize; 1227 } 1228 1229 /* 1230 ** This function returns the space in bytes required to store the copy 1231 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1232 ** string is defined.) 1233 */ 1234 static int dupedExprNodeSize(Expr *p, int flags){ 1235 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1236 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1237 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1238 } 1239 return ROUND8(nByte); 1240 } 1241 1242 /* 1243 ** Return the number of bytes required to create a duplicate of the 1244 ** expression passed as the first argument. The second argument is a 1245 ** mask containing EXPRDUP_XXX flags. 1246 ** 1247 ** The value returned includes space to create a copy of the Expr struct 1248 ** itself and the buffer referred to by Expr.u.zToken, if any. 1249 ** 1250 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1251 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1252 ** and Expr.pRight variables (but not for any structures pointed to or 1253 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1254 */ 1255 static int dupedExprSize(Expr *p, int flags){ 1256 int nByte = 0; 1257 if( p ){ 1258 nByte = dupedExprNodeSize(p, flags); 1259 if( flags&EXPRDUP_REDUCE ){ 1260 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1261 } 1262 } 1263 return nByte; 1264 } 1265 1266 /* 1267 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1268 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1269 ** to store the copy of expression p, the copies of p->u.zToken 1270 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1271 ** if any. Before returning, *pzBuffer is set to the first byte past the 1272 ** portion of the buffer copied into by this function. 1273 */ 1274 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1275 Expr *pNew; /* Value to return */ 1276 u8 *zAlloc; /* Memory space from which to build Expr object */ 1277 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1278 1279 assert( db!=0 ); 1280 assert( p ); 1281 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1282 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1283 1284 /* Figure out where to write the new Expr structure. */ 1285 if( pzBuffer ){ 1286 zAlloc = *pzBuffer; 1287 staticFlag = EP_Static; 1288 }else{ 1289 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1290 staticFlag = 0; 1291 } 1292 pNew = (Expr *)zAlloc; 1293 1294 if( pNew ){ 1295 /* Set nNewSize to the size allocated for the structure pointed to 1296 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1297 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1298 ** by the copy of the p->u.zToken string (if any). 1299 */ 1300 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1301 const int nNewSize = nStructSize & 0xfff; 1302 int nToken; 1303 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1304 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1305 }else{ 1306 nToken = 0; 1307 } 1308 if( dupFlags ){ 1309 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1310 memcpy(zAlloc, p, nNewSize); 1311 }else{ 1312 u32 nSize = (u32)exprStructSize(p); 1313 memcpy(zAlloc, p, nSize); 1314 if( nSize<EXPR_FULLSIZE ){ 1315 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1316 } 1317 } 1318 1319 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1320 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1321 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1322 pNew->flags |= staticFlag; 1323 ExprClearVVAProperties(pNew); 1324 if( dupFlags ){ 1325 ExprSetVVAProperty(pNew, EP_Immutable); 1326 } 1327 1328 /* Copy the p->u.zToken string, if any. */ 1329 if( nToken ){ 1330 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1331 memcpy(zToken, p->u.zToken, nToken); 1332 } 1333 1334 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1335 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1336 if( ExprHasProperty(p, EP_xIsSelect) ){ 1337 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1338 }else{ 1339 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1340 } 1341 } 1342 1343 /* Fill in pNew->pLeft and pNew->pRight. */ 1344 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1345 zAlloc += dupedExprNodeSize(p, dupFlags); 1346 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1347 pNew->pLeft = p->pLeft ? 1348 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1349 pNew->pRight = p->pRight ? 1350 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1351 } 1352 #ifndef SQLITE_OMIT_WINDOWFUNC 1353 if( ExprHasProperty(p, EP_WinFunc) ){ 1354 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1355 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1356 } 1357 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1358 if( pzBuffer ){ 1359 *pzBuffer = zAlloc; 1360 } 1361 }else{ 1362 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1363 if( pNew->op==TK_SELECT_COLUMN ){ 1364 pNew->pLeft = p->pLeft; 1365 assert( p->iColumn==0 || p->pRight==0 ); 1366 assert( p->pRight==0 || p->pRight==p->pLeft ); 1367 }else{ 1368 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1369 } 1370 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1371 } 1372 } 1373 } 1374 return pNew; 1375 } 1376 1377 /* 1378 ** Create and return a deep copy of the object passed as the second 1379 ** argument. If an OOM condition is encountered, NULL is returned 1380 ** and the db->mallocFailed flag set. 1381 */ 1382 #ifndef SQLITE_OMIT_CTE 1383 static With *withDup(sqlite3 *db, With *p){ 1384 With *pRet = 0; 1385 if( p ){ 1386 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1387 pRet = sqlite3DbMallocZero(db, nByte); 1388 if( pRet ){ 1389 int i; 1390 pRet->nCte = p->nCte; 1391 for(i=0; i<p->nCte; i++){ 1392 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1393 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1394 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1395 } 1396 } 1397 } 1398 return pRet; 1399 } 1400 #else 1401 # define withDup(x,y) 0 1402 #endif 1403 1404 #ifndef SQLITE_OMIT_WINDOWFUNC 1405 /* 1406 ** The gatherSelectWindows() procedure and its helper routine 1407 ** gatherSelectWindowsCallback() are used to scan all the expressions 1408 ** an a newly duplicated SELECT statement and gather all of the Window 1409 ** objects found there, assembling them onto the linked list at Select->pWin. 1410 */ 1411 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1412 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1413 Select *pSelect = pWalker->u.pSelect; 1414 Window *pWin = pExpr->y.pWin; 1415 assert( pWin ); 1416 assert( IsWindowFunc(pExpr) ); 1417 assert( pWin->ppThis==0 ); 1418 sqlite3WindowLink(pSelect, pWin); 1419 } 1420 return WRC_Continue; 1421 } 1422 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1423 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1424 } 1425 static void gatherSelectWindows(Select *p){ 1426 Walker w; 1427 w.xExprCallback = gatherSelectWindowsCallback; 1428 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1429 w.xSelectCallback2 = 0; 1430 w.pParse = 0; 1431 w.u.pSelect = p; 1432 sqlite3WalkSelect(&w, p); 1433 } 1434 #endif 1435 1436 1437 /* 1438 ** The following group of routines make deep copies of expressions, 1439 ** expression lists, ID lists, and select statements. The copies can 1440 ** be deleted (by being passed to their respective ...Delete() routines) 1441 ** without effecting the originals. 1442 ** 1443 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1444 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1445 ** by subsequent calls to sqlite*ListAppend() routines. 1446 ** 1447 ** Any tables that the SrcList might point to are not duplicated. 1448 ** 1449 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1450 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1451 ** truncated version of the usual Expr structure that will be stored as 1452 ** part of the in-memory representation of the database schema. 1453 */ 1454 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1455 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1456 return p ? exprDup(db, p, flags, 0) : 0; 1457 } 1458 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1459 ExprList *pNew; 1460 struct ExprList_item *pItem, *pOldItem; 1461 int i; 1462 Expr *pPriorSelectCol = 0; 1463 assert( db!=0 ); 1464 if( p==0 ) return 0; 1465 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1466 if( pNew==0 ) return 0; 1467 pNew->nExpr = p->nExpr; 1468 pItem = pNew->a; 1469 pOldItem = p->a; 1470 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1471 Expr *pOldExpr = pOldItem->pExpr; 1472 Expr *pNewExpr; 1473 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1474 if( pOldExpr 1475 && pOldExpr->op==TK_SELECT_COLUMN 1476 && (pNewExpr = pItem->pExpr)!=0 1477 ){ 1478 assert( pNewExpr->iColumn==0 || i>0 ); 1479 if( pNewExpr->iColumn==0 ){ 1480 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1481 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1482 }else{ 1483 assert( i>0 ); 1484 assert( pItem[-1].pExpr!=0 ); 1485 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1486 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1487 pNewExpr->pLeft = pPriorSelectCol; 1488 } 1489 } 1490 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1491 pItem->sortFlags = pOldItem->sortFlags; 1492 pItem->eEName = pOldItem->eEName; 1493 pItem->done = 0; 1494 pItem->bNulls = pOldItem->bNulls; 1495 pItem->bSorterRef = pOldItem->bSorterRef; 1496 pItem->u = pOldItem->u; 1497 } 1498 return pNew; 1499 } 1500 1501 /* 1502 ** If cursors, triggers, views and subqueries are all omitted from 1503 ** the build, then none of the following routines, except for 1504 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1505 ** called with a NULL argument. 1506 */ 1507 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1508 || !defined(SQLITE_OMIT_SUBQUERY) 1509 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1510 SrcList *pNew; 1511 int i; 1512 int nByte; 1513 assert( db!=0 ); 1514 if( p==0 ) return 0; 1515 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1516 pNew = sqlite3DbMallocRawNN(db, nByte ); 1517 if( pNew==0 ) return 0; 1518 pNew->nSrc = pNew->nAlloc = p->nSrc; 1519 for(i=0; i<p->nSrc; i++){ 1520 struct SrcList_item *pNewItem = &pNew->a[i]; 1521 struct SrcList_item *pOldItem = &p->a[i]; 1522 Table *pTab; 1523 pNewItem->pSchema = pOldItem->pSchema; 1524 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1525 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1526 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1527 pNewItem->fg = pOldItem->fg; 1528 pNewItem->iCursor = pOldItem->iCursor; 1529 pNewItem->addrFillSub = pOldItem->addrFillSub; 1530 pNewItem->regReturn = pOldItem->regReturn; 1531 if( pNewItem->fg.isIndexedBy ){ 1532 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1533 } 1534 pNewItem->pIBIndex = pOldItem->pIBIndex; 1535 if( pNewItem->fg.isTabFunc ){ 1536 pNewItem->u1.pFuncArg = 1537 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1538 } 1539 pTab = pNewItem->pTab = pOldItem->pTab; 1540 if( pTab ){ 1541 pTab->nTabRef++; 1542 } 1543 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1544 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1545 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1546 pNewItem->colUsed = pOldItem->colUsed; 1547 } 1548 return pNew; 1549 } 1550 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1551 IdList *pNew; 1552 int i; 1553 assert( db!=0 ); 1554 if( p==0 ) return 0; 1555 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1556 if( pNew==0 ) return 0; 1557 pNew->nId = p->nId; 1558 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1559 if( pNew->a==0 ){ 1560 sqlite3DbFreeNN(db, pNew); 1561 return 0; 1562 } 1563 /* Note that because the size of the allocation for p->a[] is not 1564 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1565 ** on the duplicate created by this function. */ 1566 for(i=0; i<p->nId; i++){ 1567 struct IdList_item *pNewItem = &pNew->a[i]; 1568 struct IdList_item *pOldItem = &p->a[i]; 1569 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1570 pNewItem->idx = pOldItem->idx; 1571 } 1572 return pNew; 1573 } 1574 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1575 Select *pRet = 0; 1576 Select *pNext = 0; 1577 Select **pp = &pRet; 1578 Select *p; 1579 1580 assert( db!=0 ); 1581 for(p=pDup; p; p=p->pPrior){ 1582 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1583 if( pNew==0 ) break; 1584 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1585 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1586 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1587 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1588 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1589 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1590 pNew->op = p->op; 1591 pNew->pNext = pNext; 1592 pNew->pPrior = 0; 1593 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1594 pNew->iLimit = 0; 1595 pNew->iOffset = 0; 1596 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1597 pNew->addrOpenEphm[0] = -1; 1598 pNew->addrOpenEphm[1] = -1; 1599 pNew->nSelectRow = p->nSelectRow; 1600 pNew->pWith = withDup(db, p->pWith); 1601 #ifndef SQLITE_OMIT_WINDOWFUNC 1602 pNew->pWin = 0; 1603 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1604 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1605 #endif 1606 pNew->selId = p->selId; 1607 *pp = pNew; 1608 pp = &pNew->pPrior; 1609 pNext = pNew; 1610 } 1611 1612 return pRet; 1613 } 1614 #else 1615 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1616 assert( p==0 ); 1617 return 0; 1618 } 1619 #endif 1620 1621 1622 /* 1623 ** Add a new element to the end of an expression list. If pList is 1624 ** initially NULL, then create a new expression list. 1625 ** 1626 ** The pList argument must be either NULL or a pointer to an ExprList 1627 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1628 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1629 ** Reason: This routine assumes that the number of slots in pList->a[] 1630 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1631 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1632 ** 1633 ** If a memory allocation error occurs, the entire list is freed and 1634 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1635 ** that the new entry was successfully appended. 1636 */ 1637 ExprList *sqlite3ExprListAppend( 1638 Parse *pParse, /* Parsing context */ 1639 ExprList *pList, /* List to which to append. Might be NULL */ 1640 Expr *pExpr /* Expression to be appended. Might be NULL */ 1641 ){ 1642 struct ExprList_item *pItem; 1643 sqlite3 *db = pParse->db; 1644 assert( db!=0 ); 1645 if( pList==0 ){ 1646 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1647 if( pList==0 ){ 1648 goto no_mem; 1649 } 1650 pList->nExpr = 0; 1651 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1652 ExprList *pNew; 1653 pNew = sqlite3DbRealloc(db, pList, 1654 sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0])); 1655 if( pNew==0 ){ 1656 goto no_mem; 1657 } 1658 pList = pNew; 1659 } 1660 pItem = &pList->a[pList->nExpr++]; 1661 assert( offsetof(struct ExprList_item,zEName)==sizeof(pItem->pExpr) ); 1662 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1663 memset(&pItem->zEName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zEName)); 1664 pItem->pExpr = pExpr; 1665 return pList; 1666 1667 no_mem: 1668 /* Avoid leaking memory if malloc has failed. */ 1669 sqlite3ExprDelete(db, pExpr); 1670 sqlite3ExprListDelete(db, pList); 1671 return 0; 1672 } 1673 1674 /* 1675 ** pColumns and pExpr form a vector assignment which is part of the SET 1676 ** clause of an UPDATE statement. Like this: 1677 ** 1678 ** (a,b,c) = (expr1,expr2,expr3) 1679 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1680 ** 1681 ** For each term of the vector assignment, append new entries to the 1682 ** expression list pList. In the case of a subquery on the RHS, append 1683 ** TK_SELECT_COLUMN expressions. 1684 */ 1685 ExprList *sqlite3ExprListAppendVector( 1686 Parse *pParse, /* Parsing context */ 1687 ExprList *pList, /* List to which to append. Might be NULL */ 1688 IdList *pColumns, /* List of names of LHS of the assignment */ 1689 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1690 ){ 1691 sqlite3 *db = pParse->db; 1692 int n; 1693 int i; 1694 int iFirst = pList ? pList->nExpr : 0; 1695 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1696 ** exit prior to this routine being invoked */ 1697 if( NEVER(pColumns==0) ) goto vector_append_error; 1698 if( pExpr==0 ) goto vector_append_error; 1699 1700 /* If the RHS is a vector, then we can immediately check to see that 1701 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1702 ** wildcards ("*") in the result set of the SELECT must be expanded before 1703 ** we can do the size check, so defer the size check until code generation. 1704 */ 1705 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1706 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1707 pColumns->nId, n); 1708 goto vector_append_error; 1709 } 1710 1711 for(i=0; i<pColumns->nId; i++){ 1712 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1713 assert( pSubExpr!=0 || db->mallocFailed ); 1714 assert( pSubExpr==0 || pSubExpr->iTable==0 ); 1715 if( pSubExpr==0 ) continue; 1716 pSubExpr->iTable = pColumns->nId; 1717 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1718 if( pList ){ 1719 assert( pList->nExpr==iFirst+i+1 ); 1720 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1721 pColumns->a[i].zName = 0; 1722 } 1723 } 1724 1725 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1726 Expr *pFirst = pList->a[iFirst].pExpr; 1727 assert( pFirst!=0 ); 1728 assert( pFirst->op==TK_SELECT_COLUMN ); 1729 1730 /* Store the SELECT statement in pRight so it will be deleted when 1731 ** sqlite3ExprListDelete() is called */ 1732 pFirst->pRight = pExpr; 1733 pExpr = 0; 1734 1735 /* Remember the size of the LHS in iTable so that we can check that 1736 ** the RHS and LHS sizes match during code generation. */ 1737 pFirst->iTable = pColumns->nId; 1738 } 1739 1740 vector_append_error: 1741 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1742 sqlite3IdListDelete(db, pColumns); 1743 return pList; 1744 } 1745 1746 /* 1747 ** Set the sort order for the last element on the given ExprList. 1748 */ 1749 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1750 struct ExprList_item *pItem; 1751 if( p==0 ) return; 1752 assert( p->nExpr>0 ); 1753 1754 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1755 assert( iSortOrder==SQLITE_SO_UNDEFINED 1756 || iSortOrder==SQLITE_SO_ASC 1757 || iSortOrder==SQLITE_SO_DESC 1758 ); 1759 assert( eNulls==SQLITE_SO_UNDEFINED 1760 || eNulls==SQLITE_SO_ASC 1761 || eNulls==SQLITE_SO_DESC 1762 ); 1763 1764 pItem = &p->a[p->nExpr-1]; 1765 assert( pItem->bNulls==0 ); 1766 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1767 iSortOrder = SQLITE_SO_ASC; 1768 } 1769 pItem->sortFlags = (u8)iSortOrder; 1770 1771 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1772 pItem->bNulls = 1; 1773 if( iSortOrder!=eNulls ){ 1774 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1775 } 1776 } 1777 } 1778 1779 /* 1780 ** Set the ExprList.a[].zEName element of the most recently added item 1781 ** on the expression list. 1782 ** 1783 ** pList might be NULL following an OOM error. But pName should never be 1784 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1785 ** is set. 1786 */ 1787 void sqlite3ExprListSetName( 1788 Parse *pParse, /* Parsing context */ 1789 ExprList *pList, /* List to which to add the span. */ 1790 Token *pName, /* Name to be added */ 1791 int dequote /* True to cause the name to be dequoted */ 1792 ){ 1793 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1794 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1795 if( pList ){ 1796 struct ExprList_item *pItem; 1797 assert( pList->nExpr>0 ); 1798 pItem = &pList->a[pList->nExpr-1]; 1799 assert( pItem->zEName==0 ); 1800 assert( pItem->eEName==ENAME_NAME ); 1801 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1802 if( dequote ){ 1803 /* If dequote==0, then pName->z does not point to part of a DDL 1804 ** statement handled by the parser. And so no token need be added 1805 ** to the token-map. */ 1806 sqlite3Dequote(pItem->zEName); 1807 if( IN_RENAME_OBJECT ){ 1808 sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName); 1809 } 1810 } 1811 } 1812 } 1813 1814 /* 1815 ** Set the ExprList.a[].zSpan element of the most recently added item 1816 ** on the expression list. 1817 ** 1818 ** pList might be NULL following an OOM error. But pSpan should never be 1819 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1820 ** is set. 1821 */ 1822 void sqlite3ExprListSetSpan( 1823 Parse *pParse, /* Parsing context */ 1824 ExprList *pList, /* List to which to add the span. */ 1825 const char *zStart, /* Start of the span */ 1826 const char *zEnd /* End of the span */ 1827 ){ 1828 sqlite3 *db = pParse->db; 1829 assert( pList!=0 || db->mallocFailed!=0 ); 1830 if( pList ){ 1831 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1832 assert( pList->nExpr>0 ); 1833 if( pItem->zEName==0 ){ 1834 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1835 pItem->eEName = ENAME_SPAN; 1836 } 1837 } 1838 } 1839 1840 /* 1841 ** If the expression list pEList contains more than iLimit elements, 1842 ** leave an error message in pParse. 1843 */ 1844 void sqlite3ExprListCheckLength( 1845 Parse *pParse, 1846 ExprList *pEList, 1847 const char *zObject 1848 ){ 1849 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1850 testcase( pEList && pEList->nExpr==mx ); 1851 testcase( pEList && pEList->nExpr==mx+1 ); 1852 if( pEList && pEList->nExpr>mx ){ 1853 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1854 } 1855 } 1856 1857 /* 1858 ** Delete an entire expression list. 1859 */ 1860 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1861 int i = pList->nExpr; 1862 struct ExprList_item *pItem = pList->a; 1863 assert( pList->nExpr>0 ); 1864 do{ 1865 sqlite3ExprDelete(db, pItem->pExpr); 1866 sqlite3DbFree(db, pItem->zEName); 1867 pItem++; 1868 }while( --i>0 ); 1869 sqlite3DbFreeNN(db, pList); 1870 } 1871 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1872 if( pList ) exprListDeleteNN(db, pList); 1873 } 1874 1875 /* 1876 ** Return the bitwise-OR of all Expr.flags fields in the given 1877 ** ExprList. 1878 */ 1879 u32 sqlite3ExprListFlags(const ExprList *pList){ 1880 int i; 1881 u32 m = 0; 1882 assert( pList!=0 ); 1883 for(i=0; i<pList->nExpr; i++){ 1884 Expr *pExpr = pList->a[i].pExpr; 1885 assert( pExpr!=0 ); 1886 m |= pExpr->flags; 1887 } 1888 return m; 1889 } 1890 1891 /* 1892 ** This is a SELECT-node callback for the expression walker that 1893 ** always "fails". By "fail" in this case, we mean set 1894 ** pWalker->eCode to zero and abort. 1895 ** 1896 ** This callback is used by multiple expression walkers. 1897 */ 1898 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1899 UNUSED_PARAMETER(NotUsed); 1900 pWalker->eCode = 0; 1901 return WRC_Abort; 1902 } 1903 1904 /* 1905 ** Check the input string to see if it is "true" or "false" (in any case). 1906 ** 1907 ** If the string is.... Return 1908 ** "true" EP_IsTrue 1909 ** "false" EP_IsFalse 1910 ** anything else 0 1911 */ 1912 u32 sqlite3IsTrueOrFalse(const char *zIn){ 1913 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 1914 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 1915 return 0; 1916 } 1917 1918 1919 /* 1920 ** If the input expression is an ID with the name "true" or "false" 1921 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1922 ** the conversion happened, and zero if the expression is unaltered. 1923 */ 1924 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1925 u32 v; 1926 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1927 if( !ExprHasProperty(pExpr, EP_Quoted) 1928 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 1929 ){ 1930 pExpr->op = TK_TRUEFALSE; 1931 ExprSetProperty(pExpr, v); 1932 return 1; 1933 } 1934 return 0; 1935 } 1936 1937 /* 1938 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1939 ** and 0 if it is FALSE. 1940 */ 1941 int sqlite3ExprTruthValue(const Expr *pExpr){ 1942 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 1943 assert( pExpr->op==TK_TRUEFALSE ); 1944 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1945 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1946 return pExpr->u.zToken[4]==0; 1947 } 1948 1949 /* 1950 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 1951 ** terms that are always true or false. Return the simplified expression. 1952 ** Or return the original expression if no simplification is possible. 1953 ** 1954 ** Examples: 1955 ** 1956 ** (x<10) AND true => (x<10) 1957 ** (x<10) AND false => false 1958 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 1959 ** (x<10) AND (y=22 OR true) => (x<10) 1960 ** (y=22) OR true => true 1961 */ 1962 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 1963 assert( pExpr!=0 ); 1964 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 1965 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 1966 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 1967 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 1968 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 1969 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 1970 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 1971 } 1972 } 1973 return pExpr; 1974 } 1975 1976 1977 /* 1978 ** These routines are Walker callbacks used to check expressions to 1979 ** see if they are "constant" for some definition of constant. The 1980 ** Walker.eCode value determines the type of "constant" we are looking 1981 ** for. 1982 ** 1983 ** These callback routines are used to implement the following: 1984 ** 1985 ** sqlite3ExprIsConstant() pWalker->eCode==1 1986 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1987 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1988 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1989 ** 1990 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1991 ** is found to not be a constant. 1992 ** 1993 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 1994 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 1995 ** when parsing an existing schema out of the sqlite_schema table and 4 1996 ** when processing a new CREATE TABLE statement. A bound parameter raises 1997 ** an error for new statements, but is silently converted 1998 ** to NULL for existing schemas. This allows sqlite_schema tables that 1999 ** contain a bound parameter because they were generated by older versions 2000 ** of SQLite to be parsed by newer versions of SQLite without raising a 2001 ** malformed schema error. 2002 */ 2003 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2004 2005 /* If pWalker->eCode is 2 then any term of the expression that comes from 2006 ** the ON or USING clauses of a left join disqualifies the expression 2007 ** from being considered constant. */ 2008 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2009 pWalker->eCode = 0; 2010 return WRC_Abort; 2011 } 2012 2013 switch( pExpr->op ){ 2014 /* Consider functions to be constant if all their arguments are constant 2015 ** and either pWalker->eCode==4 or 5 or the function has the 2016 ** SQLITE_FUNC_CONST flag. */ 2017 case TK_FUNCTION: 2018 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2019 && !ExprHasProperty(pExpr, EP_WinFunc) 2020 ){ 2021 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2022 return WRC_Continue; 2023 }else{ 2024 pWalker->eCode = 0; 2025 return WRC_Abort; 2026 } 2027 case TK_ID: 2028 /* Convert "true" or "false" in a DEFAULT clause into the 2029 ** appropriate TK_TRUEFALSE operator */ 2030 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2031 return WRC_Prune; 2032 } 2033 /* no break */ deliberate_fall_through 2034 case TK_COLUMN: 2035 case TK_AGG_FUNCTION: 2036 case TK_AGG_COLUMN: 2037 testcase( pExpr->op==TK_ID ); 2038 testcase( pExpr->op==TK_COLUMN ); 2039 testcase( pExpr->op==TK_AGG_FUNCTION ); 2040 testcase( pExpr->op==TK_AGG_COLUMN ); 2041 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2042 return WRC_Continue; 2043 } 2044 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2045 return WRC_Continue; 2046 } 2047 /* no break */ deliberate_fall_through 2048 case TK_IF_NULL_ROW: 2049 case TK_REGISTER: 2050 case TK_DOT: 2051 testcase( pExpr->op==TK_REGISTER ); 2052 testcase( pExpr->op==TK_IF_NULL_ROW ); 2053 testcase( pExpr->op==TK_DOT ); 2054 pWalker->eCode = 0; 2055 return WRC_Abort; 2056 case TK_VARIABLE: 2057 if( pWalker->eCode==5 ){ 2058 /* Silently convert bound parameters that appear inside of CREATE 2059 ** statements into a NULL when parsing the CREATE statement text out 2060 ** of the sqlite_schema table */ 2061 pExpr->op = TK_NULL; 2062 }else if( pWalker->eCode==4 ){ 2063 /* A bound parameter in a CREATE statement that originates from 2064 ** sqlite3_prepare() causes an error */ 2065 pWalker->eCode = 0; 2066 return WRC_Abort; 2067 } 2068 /* no break */ deliberate_fall_through 2069 default: 2070 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2071 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2072 return WRC_Continue; 2073 } 2074 } 2075 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2076 Walker w; 2077 w.eCode = initFlag; 2078 w.xExprCallback = exprNodeIsConstant; 2079 w.xSelectCallback = sqlite3SelectWalkFail; 2080 #ifdef SQLITE_DEBUG 2081 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2082 #endif 2083 w.u.iCur = iCur; 2084 sqlite3WalkExpr(&w, p); 2085 return w.eCode; 2086 } 2087 2088 /* 2089 ** Walk an expression tree. Return non-zero if the expression is constant 2090 ** and 0 if it involves variables or function calls. 2091 ** 2092 ** For the purposes of this function, a double-quoted string (ex: "abc") 2093 ** is considered a variable but a single-quoted string (ex: 'abc') is 2094 ** a constant. 2095 */ 2096 int sqlite3ExprIsConstant(Expr *p){ 2097 return exprIsConst(p, 1, 0); 2098 } 2099 2100 /* 2101 ** Walk an expression tree. Return non-zero if 2102 ** 2103 ** (1) the expression is constant, and 2104 ** (2) the expression does originate in the ON or USING clause 2105 ** of a LEFT JOIN, and 2106 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2107 ** operands created by the constant propagation optimization. 2108 ** 2109 ** When this routine returns true, it indicates that the expression 2110 ** can be added to the pParse->pConstExpr list and evaluated once when 2111 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2112 */ 2113 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2114 return exprIsConst(p, 2, 0); 2115 } 2116 2117 /* 2118 ** Walk an expression tree. Return non-zero if the expression is constant 2119 ** for any single row of the table with cursor iCur. In other words, the 2120 ** expression must not refer to any non-deterministic function nor any 2121 ** table other than iCur. 2122 */ 2123 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2124 return exprIsConst(p, 3, iCur); 2125 } 2126 2127 2128 /* 2129 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2130 */ 2131 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2132 ExprList *pGroupBy = pWalker->u.pGroupBy; 2133 int i; 2134 2135 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2136 ** it constant. */ 2137 for(i=0; i<pGroupBy->nExpr; i++){ 2138 Expr *p = pGroupBy->a[i].pExpr; 2139 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2140 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2141 if( sqlite3IsBinary(pColl) ){ 2142 return WRC_Prune; 2143 } 2144 } 2145 } 2146 2147 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2148 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2149 pWalker->eCode = 0; 2150 return WRC_Abort; 2151 } 2152 2153 return exprNodeIsConstant(pWalker, pExpr); 2154 } 2155 2156 /* 2157 ** Walk the expression tree passed as the first argument. Return non-zero 2158 ** if the expression consists entirely of constants or copies of terms 2159 ** in pGroupBy that sort with the BINARY collation sequence. 2160 ** 2161 ** This routine is used to determine if a term of the HAVING clause can 2162 ** be promoted into the WHERE clause. In order for such a promotion to work, 2163 ** the value of the HAVING clause term must be the same for all members of 2164 ** a "group". The requirement that the GROUP BY term must be BINARY 2165 ** assumes that no other collating sequence will have a finer-grained 2166 ** grouping than binary. In other words (A=B COLLATE binary) implies 2167 ** A=B in every other collating sequence. The requirement that the 2168 ** GROUP BY be BINARY is stricter than necessary. It would also work 2169 ** to promote HAVING clauses that use the same alternative collating 2170 ** sequence as the GROUP BY term, but that is much harder to check, 2171 ** alternative collating sequences are uncommon, and this is only an 2172 ** optimization, so we take the easy way out and simply require the 2173 ** GROUP BY to use the BINARY collating sequence. 2174 */ 2175 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2176 Walker w; 2177 w.eCode = 1; 2178 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2179 w.xSelectCallback = 0; 2180 w.u.pGroupBy = pGroupBy; 2181 w.pParse = pParse; 2182 sqlite3WalkExpr(&w, p); 2183 return w.eCode; 2184 } 2185 2186 /* 2187 ** Walk an expression tree for the DEFAULT field of a column definition 2188 ** in a CREATE TABLE statement. Return non-zero if the expression is 2189 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2190 ** the expression is constant or a function call with constant arguments. 2191 ** Return and 0 if there are any variables. 2192 ** 2193 ** isInit is true when parsing from sqlite_schema. isInit is false when 2194 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2195 ** (such as ? or $abc) in the expression are converted into NULL. When 2196 ** isInit is false, parameters raise an error. Parameters should not be 2197 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2198 ** allowed it, so we need to support it when reading sqlite_schema for 2199 ** backwards compatibility. 2200 ** 2201 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2202 ** 2203 ** For the purposes of this function, a double-quoted string (ex: "abc") 2204 ** is considered a variable but a single-quoted string (ex: 'abc') is 2205 ** a constant. 2206 */ 2207 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2208 assert( isInit==0 || isInit==1 ); 2209 return exprIsConst(p, 4+isInit, 0); 2210 } 2211 2212 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2213 /* 2214 ** Walk an expression tree. Return 1 if the expression contains a 2215 ** subquery of some kind. Return 0 if there are no subqueries. 2216 */ 2217 int sqlite3ExprContainsSubquery(Expr *p){ 2218 Walker w; 2219 w.eCode = 1; 2220 w.xExprCallback = sqlite3ExprWalkNoop; 2221 w.xSelectCallback = sqlite3SelectWalkFail; 2222 #ifdef SQLITE_DEBUG 2223 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2224 #endif 2225 sqlite3WalkExpr(&w, p); 2226 return w.eCode==0; 2227 } 2228 #endif 2229 2230 /* 2231 ** If the expression p codes a constant integer that is small enough 2232 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2233 ** in *pValue. If the expression is not an integer or if it is too big 2234 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2235 */ 2236 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2237 int rc = 0; 2238 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2239 2240 /* If an expression is an integer literal that fits in a signed 32-bit 2241 ** integer, then the EP_IntValue flag will have already been set */ 2242 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2243 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2244 2245 if( p->flags & EP_IntValue ){ 2246 *pValue = p->u.iValue; 2247 return 1; 2248 } 2249 switch( p->op ){ 2250 case TK_UPLUS: { 2251 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2252 break; 2253 } 2254 case TK_UMINUS: { 2255 int v; 2256 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2257 assert( v!=(-2147483647-1) ); 2258 *pValue = -v; 2259 rc = 1; 2260 } 2261 break; 2262 } 2263 default: break; 2264 } 2265 return rc; 2266 } 2267 2268 /* 2269 ** Return FALSE if there is no chance that the expression can be NULL. 2270 ** 2271 ** If the expression might be NULL or if the expression is too complex 2272 ** to tell return TRUE. 2273 ** 2274 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2275 ** when we know that a value cannot be NULL. Hence, a false positive 2276 ** (returning TRUE when in fact the expression can never be NULL) might 2277 ** be a small performance hit but is otherwise harmless. On the other 2278 ** hand, a false negative (returning FALSE when the result could be NULL) 2279 ** will likely result in an incorrect answer. So when in doubt, return 2280 ** TRUE. 2281 */ 2282 int sqlite3ExprCanBeNull(const Expr *p){ 2283 u8 op; 2284 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2285 p = p->pLeft; 2286 } 2287 op = p->op; 2288 if( op==TK_REGISTER ) op = p->op2; 2289 switch( op ){ 2290 case TK_INTEGER: 2291 case TK_STRING: 2292 case TK_FLOAT: 2293 case TK_BLOB: 2294 return 0; 2295 case TK_COLUMN: 2296 return ExprHasProperty(p, EP_CanBeNull) || 2297 p->y.pTab==0 || /* Reference to column of index on expression */ 2298 (p->iColumn>=0 2299 && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ 2300 && p->y.pTab->aCol[p->iColumn].notNull==0); 2301 default: 2302 return 1; 2303 } 2304 } 2305 2306 /* 2307 ** Return TRUE if the given expression is a constant which would be 2308 ** unchanged by OP_Affinity with the affinity given in the second 2309 ** argument. 2310 ** 2311 ** This routine is used to determine if the OP_Affinity operation 2312 ** can be omitted. When in doubt return FALSE. A false negative 2313 ** is harmless. A false positive, however, can result in the wrong 2314 ** answer. 2315 */ 2316 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2317 u8 op; 2318 int unaryMinus = 0; 2319 if( aff==SQLITE_AFF_BLOB ) return 1; 2320 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2321 if( p->op==TK_UMINUS ) unaryMinus = 1; 2322 p = p->pLeft; 2323 } 2324 op = p->op; 2325 if( op==TK_REGISTER ) op = p->op2; 2326 switch( op ){ 2327 case TK_INTEGER: { 2328 return aff>=SQLITE_AFF_NUMERIC; 2329 } 2330 case TK_FLOAT: { 2331 return aff>=SQLITE_AFF_NUMERIC; 2332 } 2333 case TK_STRING: { 2334 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2335 } 2336 case TK_BLOB: { 2337 return !unaryMinus; 2338 } 2339 case TK_COLUMN: { 2340 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2341 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2342 } 2343 default: { 2344 return 0; 2345 } 2346 } 2347 } 2348 2349 /* 2350 ** Return TRUE if the given string is a row-id column name. 2351 */ 2352 int sqlite3IsRowid(const char *z){ 2353 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2354 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2355 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2356 return 0; 2357 } 2358 2359 /* 2360 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2361 ** that can be simplified to a direct table access, then return 2362 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2363 ** or if the SELECT statement needs to be manifested into a transient 2364 ** table, then return NULL. 2365 */ 2366 #ifndef SQLITE_OMIT_SUBQUERY 2367 static Select *isCandidateForInOpt(Expr *pX){ 2368 Select *p; 2369 SrcList *pSrc; 2370 ExprList *pEList; 2371 Table *pTab; 2372 int i; 2373 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2374 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2375 p = pX->x.pSelect; 2376 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2377 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2378 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2379 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2380 return 0; /* No DISTINCT keyword and no aggregate functions */ 2381 } 2382 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2383 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2384 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2385 pSrc = p->pSrc; 2386 assert( pSrc!=0 ); 2387 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2388 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2389 pTab = pSrc->a[0].pTab; 2390 assert( pTab!=0 ); 2391 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2392 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2393 pEList = p->pEList; 2394 assert( pEList!=0 ); 2395 /* All SELECT results must be columns. */ 2396 for(i=0; i<pEList->nExpr; i++){ 2397 Expr *pRes = pEList->a[i].pExpr; 2398 if( pRes->op!=TK_COLUMN ) return 0; 2399 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2400 } 2401 return p; 2402 } 2403 #endif /* SQLITE_OMIT_SUBQUERY */ 2404 2405 #ifndef SQLITE_OMIT_SUBQUERY 2406 /* 2407 ** Generate code that checks the left-most column of index table iCur to see if 2408 ** it contains any NULL entries. Cause the register at regHasNull to be set 2409 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2410 ** to be set to NULL if iCur contains one or more NULL values. 2411 */ 2412 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2413 int addr1; 2414 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2415 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2416 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2417 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2418 VdbeComment((v, "first_entry_in(%d)", iCur)); 2419 sqlite3VdbeJumpHere(v, addr1); 2420 } 2421 #endif 2422 2423 2424 #ifndef SQLITE_OMIT_SUBQUERY 2425 /* 2426 ** The argument is an IN operator with a list (not a subquery) on the 2427 ** right-hand side. Return TRUE if that list is constant. 2428 */ 2429 static int sqlite3InRhsIsConstant(Expr *pIn){ 2430 Expr *pLHS; 2431 int res; 2432 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2433 pLHS = pIn->pLeft; 2434 pIn->pLeft = 0; 2435 res = sqlite3ExprIsConstant(pIn); 2436 pIn->pLeft = pLHS; 2437 return res; 2438 } 2439 #endif 2440 2441 /* 2442 ** This function is used by the implementation of the IN (...) operator. 2443 ** The pX parameter is the expression on the RHS of the IN operator, which 2444 ** might be either a list of expressions or a subquery. 2445 ** 2446 ** The job of this routine is to find or create a b-tree object that can 2447 ** be used either to test for membership in the RHS set or to iterate through 2448 ** all members of the RHS set, skipping duplicates. 2449 ** 2450 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2451 ** and pX->iTable is set to the index of that cursor. 2452 ** 2453 ** The returned value of this function indicates the b-tree type, as follows: 2454 ** 2455 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2456 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2457 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2458 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2459 ** populated epheremal table. 2460 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2461 ** implemented as a sequence of comparisons. 2462 ** 2463 ** An existing b-tree might be used if the RHS expression pX is a simple 2464 ** subquery such as: 2465 ** 2466 ** SELECT <column1>, <column2>... FROM <table> 2467 ** 2468 ** If the RHS of the IN operator is a list or a more complex subquery, then 2469 ** an ephemeral table might need to be generated from the RHS and then 2470 ** pX->iTable made to point to the ephemeral table instead of an 2471 ** existing table. 2472 ** 2473 ** The inFlags parameter must contain, at a minimum, one of the bits 2474 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2475 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2476 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2477 ** be used to loop over all values of the RHS of the IN operator. 2478 ** 2479 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2480 ** through the set members) then the b-tree must not contain duplicates. 2481 ** An epheremal table will be created unless the selected columns are guaranteed 2482 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2483 ** a UNIQUE constraint or index. 2484 ** 2485 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2486 ** for fast set membership tests) then an epheremal table must 2487 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2488 ** index can be found with the specified <columns> as its left-most. 2489 ** 2490 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2491 ** if the RHS of the IN operator is a list (not a subquery) then this 2492 ** routine might decide that creating an ephemeral b-tree for membership 2493 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2494 ** calling routine should implement the IN operator using a sequence 2495 ** of Eq or Ne comparison operations. 2496 ** 2497 ** When the b-tree is being used for membership tests, the calling function 2498 ** might need to know whether or not the RHS side of the IN operator 2499 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2500 ** if there is any chance that the (...) might contain a NULL value at 2501 ** runtime, then a register is allocated and the register number written 2502 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2503 ** NULL value, then *prRhsHasNull is left unchanged. 2504 ** 2505 ** If a register is allocated and its location stored in *prRhsHasNull, then 2506 ** the value in that register will be NULL if the b-tree contains one or more 2507 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2508 ** NULL values. 2509 ** 2510 ** If the aiMap parameter is not NULL, it must point to an array containing 2511 ** one element for each column returned by the SELECT statement on the RHS 2512 ** of the IN(...) operator. The i'th entry of the array is populated with the 2513 ** offset of the index column that matches the i'th column returned by the 2514 ** SELECT. For example, if the expression and selected index are: 2515 ** 2516 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2517 ** CREATE INDEX i1 ON t1(b, c, a); 2518 ** 2519 ** then aiMap[] is populated with {2, 0, 1}. 2520 */ 2521 #ifndef SQLITE_OMIT_SUBQUERY 2522 int sqlite3FindInIndex( 2523 Parse *pParse, /* Parsing context */ 2524 Expr *pX, /* The IN expression */ 2525 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2526 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2527 int *aiMap, /* Mapping from Index fields to RHS fields */ 2528 int *piTab /* OUT: index to use */ 2529 ){ 2530 Select *p; /* SELECT to the right of IN operator */ 2531 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2532 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2533 int mustBeUnique; /* True if RHS must be unique */ 2534 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2535 2536 assert( pX->op==TK_IN ); 2537 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2538 2539 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2540 ** whether or not the SELECT result contains NULL values, check whether 2541 ** or not NULL is actually possible (it may not be, for example, due 2542 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2543 ** set prRhsHasNull to 0 before continuing. */ 2544 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2545 int i; 2546 ExprList *pEList = pX->x.pSelect->pEList; 2547 for(i=0; i<pEList->nExpr; i++){ 2548 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2549 } 2550 if( i==pEList->nExpr ){ 2551 prRhsHasNull = 0; 2552 } 2553 } 2554 2555 /* Check to see if an existing table or index can be used to 2556 ** satisfy the query. This is preferable to generating a new 2557 ** ephemeral table. */ 2558 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2559 sqlite3 *db = pParse->db; /* Database connection */ 2560 Table *pTab; /* Table <table>. */ 2561 int iDb; /* Database idx for pTab */ 2562 ExprList *pEList = p->pEList; 2563 int nExpr = pEList->nExpr; 2564 2565 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2566 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2567 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2568 pTab = p->pSrc->a[0].pTab; 2569 2570 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2571 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2572 assert( iDb>=0 && iDb<SQLITE_MAX_ATTACHED ); 2573 sqlite3CodeVerifySchema(pParse, iDb); 2574 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2575 2576 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2577 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2578 /* The "x IN (SELECT rowid FROM table)" case */ 2579 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2580 VdbeCoverage(v); 2581 2582 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2583 eType = IN_INDEX_ROWID; 2584 ExplainQueryPlan((pParse, 0, 2585 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2586 sqlite3VdbeJumpHere(v, iAddr); 2587 }else{ 2588 Index *pIdx; /* Iterator variable */ 2589 int affinity_ok = 1; 2590 int i; 2591 2592 /* Check that the affinity that will be used to perform each 2593 ** comparison is the same as the affinity of each column in table 2594 ** on the RHS of the IN operator. If it not, it is not possible to 2595 ** use any index of the RHS table. */ 2596 for(i=0; i<nExpr && affinity_ok; i++){ 2597 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2598 int iCol = pEList->a[i].pExpr->iColumn; 2599 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2600 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2601 testcase( cmpaff==SQLITE_AFF_BLOB ); 2602 testcase( cmpaff==SQLITE_AFF_TEXT ); 2603 switch( cmpaff ){ 2604 case SQLITE_AFF_BLOB: 2605 break; 2606 case SQLITE_AFF_TEXT: 2607 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2608 ** other has no affinity and the other side is TEXT. Hence, 2609 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2610 ** and for the term on the LHS of the IN to have no affinity. */ 2611 assert( idxaff==SQLITE_AFF_TEXT ); 2612 break; 2613 default: 2614 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2615 } 2616 } 2617 2618 if( affinity_ok ){ 2619 /* Search for an existing index that will work for this IN operator */ 2620 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2621 Bitmask colUsed; /* Columns of the index used */ 2622 Bitmask mCol; /* Mask for the current column */ 2623 if( pIdx->nColumn<nExpr ) continue; 2624 if( pIdx->pPartIdxWhere!=0 ) continue; 2625 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2626 ** BITMASK(nExpr) without overflowing */ 2627 testcase( pIdx->nColumn==BMS-2 ); 2628 testcase( pIdx->nColumn==BMS-1 ); 2629 if( pIdx->nColumn>=BMS-1 ) continue; 2630 if( mustBeUnique ){ 2631 if( pIdx->nKeyCol>nExpr 2632 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2633 ){ 2634 continue; /* This index is not unique over the IN RHS columns */ 2635 } 2636 } 2637 2638 colUsed = 0; /* Columns of index used so far */ 2639 for(i=0; i<nExpr; i++){ 2640 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2641 Expr *pRhs = pEList->a[i].pExpr; 2642 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2643 int j; 2644 2645 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2646 for(j=0; j<nExpr; j++){ 2647 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2648 assert( pIdx->azColl[j] ); 2649 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2650 continue; 2651 } 2652 break; 2653 } 2654 if( j==nExpr ) break; 2655 mCol = MASKBIT(j); 2656 if( mCol & colUsed ) break; /* Each column used only once */ 2657 colUsed |= mCol; 2658 if( aiMap ) aiMap[i] = j; 2659 } 2660 2661 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2662 if( colUsed==(MASKBIT(nExpr)-1) ){ 2663 /* If we reach this point, that means the index pIdx is usable */ 2664 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2665 ExplainQueryPlan((pParse, 0, 2666 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2667 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2668 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2669 VdbeComment((v, "%s", pIdx->zName)); 2670 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2671 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2672 2673 if( prRhsHasNull ){ 2674 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2675 i64 mask = (1<<nExpr)-1; 2676 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2677 iTab, 0, 0, (u8*)&mask, P4_INT64); 2678 #endif 2679 *prRhsHasNull = ++pParse->nMem; 2680 if( nExpr==1 ){ 2681 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2682 } 2683 } 2684 sqlite3VdbeJumpHere(v, iAddr); 2685 } 2686 } /* End loop over indexes */ 2687 } /* End if( affinity_ok ) */ 2688 } /* End if not an rowid index */ 2689 } /* End attempt to optimize using an index */ 2690 2691 /* If no preexisting index is available for the IN clause 2692 ** and IN_INDEX_NOOP is an allowed reply 2693 ** and the RHS of the IN operator is a list, not a subquery 2694 ** and the RHS is not constant or has two or fewer terms, 2695 ** then it is not worth creating an ephemeral table to evaluate 2696 ** the IN operator so return IN_INDEX_NOOP. 2697 */ 2698 if( eType==0 2699 && (inFlags & IN_INDEX_NOOP_OK) 2700 && !ExprHasProperty(pX, EP_xIsSelect) 2701 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2702 ){ 2703 eType = IN_INDEX_NOOP; 2704 } 2705 2706 if( eType==0 ){ 2707 /* Could not find an existing table or index to use as the RHS b-tree. 2708 ** We will have to generate an ephemeral table to do the job. 2709 */ 2710 u32 savedNQueryLoop = pParse->nQueryLoop; 2711 int rMayHaveNull = 0; 2712 eType = IN_INDEX_EPH; 2713 if( inFlags & IN_INDEX_LOOP ){ 2714 pParse->nQueryLoop = 0; 2715 }else if( prRhsHasNull ){ 2716 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2717 } 2718 assert( pX->op==TK_IN ); 2719 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2720 if( rMayHaveNull ){ 2721 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2722 } 2723 pParse->nQueryLoop = savedNQueryLoop; 2724 } 2725 2726 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2727 int i, n; 2728 n = sqlite3ExprVectorSize(pX->pLeft); 2729 for(i=0; i<n; i++) aiMap[i] = i; 2730 } 2731 *piTab = iTab; 2732 return eType; 2733 } 2734 #endif 2735 2736 #ifndef SQLITE_OMIT_SUBQUERY 2737 /* 2738 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2739 ** function allocates and returns a nul-terminated string containing 2740 ** the affinities to be used for each column of the comparison. 2741 ** 2742 ** It is the responsibility of the caller to ensure that the returned 2743 ** string is eventually freed using sqlite3DbFree(). 2744 */ 2745 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2746 Expr *pLeft = pExpr->pLeft; 2747 int nVal = sqlite3ExprVectorSize(pLeft); 2748 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2749 char *zRet; 2750 2751 assert( pExpr->op==TK_IN ); 2752 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2753 if( zRet ){ 2754 int i; 2755 for(i=0; i<nVal; i++){ 2756 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2757 char a = sqlite3ExprAffinity(pA); 2758 if( pSelect ){ 2759 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2760 }else{ 2761 zRet[i] = a; 2762 } 2763 } 2764 zRet[nVal] = '\0'; 2765 } 2766 return zRet; 2767 } 2768 #endif 2769 2770 #ifndef SQLITE_OMIT_SUBQUERY 2771 /* 2772 ** Load the Parse object passed as the first argument with an error 2773 ** message of the form: 2774 ** 2775 ** "sub-select returns N columns - expected M" 2776 */ 2777 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2778 if( pParse->nErr==0 ){ 2779 const char *zFmt = "sub-select returns %d columns - expected %d"; 2780 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2781 } 2782 } 2783 #endif 2784 2785 /* 2786 ** Expression pExpr is a vector that has been used in a context where 2787 ** it is not permitted. If pExpr is a sub-select vector, this routine 2788 ** loads the Parse object with a message of the form: 2789 ** 2790 ** "sub-select returns N columns - expected 1" 2791 ** 2792 ** Or, if it is a regular scalar vector: 2793 ** 2794 ** "row value misused" 2795 */ 2796 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2797 #ifndef SQLITE_OMIT_SUBQUERY 2798 if( pExpr->flags & EP_xIsSelect ){ 2799 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2800 }else 2801 #endif 2802 { 2803 sqlite3ErrorMsg(pParse, "row value misused"); 2804 } 2805 } 2806 2807 #ifndef SQLITE_OMIT_SUBQUERY 2808 /* 2809 ** Generate code that will construct an ephemeral table containing all terms 2810 ** in the RHS of an IN operator. The IN operator can be in either of two 2811 ** forms: 2812 ** 2813 ** x IN (4,5,11) -- IN operator with list on right-hand side 2814 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2815 ** 2816 ** The pExpr parameter is the IN operator. The cursor number for the 2817 ** constructed ephermeral table is returned. The first time the ephemeral 2818 ** table is computed, the cursor number is also stored in pExpr->iTable, 2819 ** however the cursor number returned might not be the same, as it might 2820 ** have been duplicated using OP_OpenDup. 2821 ** 2822 ** If the LHS expression ("x" in the examples) is a column value, or 2823 ** the SELECT statement returns a column value, then the affinity of that 2824 ** column is used to build the index keys. If both 'x' and the 2825 ** SELECT... statement are columns, then numeric affinity is used 2826 ** if either column has NUMERIC or INTEGER affinity. If neither 2827 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2828 ** is used. 2829 */ 2830 void sqlite3CodeRhsOfIN( 2831 Parse *pParse, /* Parsing context */ 2832 Expr *pExpr, /* The IN operator */ 2833 int iTab /* Use this cursor number */ 2834 ){ 2835 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2836 int addr; /* Address of OP_OpenEphemeral instruction */ 2837 Expr *pLeft; /* the LHS of the IN operator */ 2838 KeyInfo *pKeyInfo = 0; /* Key information */ 2839 int nVal; /* Size of vector pLeft */ 2840 Vdbe *v; /* The prepared statement under construction */ 2841 2842 v = pParse->pVdbe; 2843 assert( v!=0 ); 2844 2845 /* The evaluation of the IN must be repeated every time it 2846 ** is encountered if any of the following is true: 2847 ** 2848 ** * The right-hand side is a correlated subquery 2849 ** * The right-hand side is an expression list containing variables 2850 ** * We are inside a trigger 2851 ** 2852 ** If all of the above are false, then we can compute the RHS just once 2853 ** and reuse it many names. 2854 */ 2855 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2856 /* Reuse of the RHS is allowed */ 2857 /* If this routine has already been coded, but the previous code 2858 ** might not have been invoked yet, so invoke it now as a subroutine. 2859 */ 2860 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2861 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2862 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2863 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2864 pExpr->x.pSelect->selId)); 2865 } 2866 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2867 pExpr->y.sub.iAddr); 2868 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2869 sqlite3VdbeJumpHere(v, addrOnce); 2870 return; 2871 } 2872 2873 /* Begin coding the subroutine */ 2874 ExprSetProperty(pExpr, EP_Subrtn); 2875 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 2876 pExpr->y.sub.regReturn = ++pParse->nMem; 2877 pExpr->y.sub.iAddr = 2878 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2879 VdbeComment((v, "return address")); 2880 2881 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2882 } 2883 2884 /* Check to see if this is a vector IN operator */ 2885 pLeft = pExpr->pLeft; 2886 nVal = sqlite3ExprVectorSize(pLeft); 2887 2888 /* Construct the ephemeral table that will contain the content of 2889 ** RHS of the IN operator. 2890 */ 2891 pExpr->iTable = iTab; 2892 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2893 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2894 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2895 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2896 }else{ 2897 VdbeComment((v, "RHS of IN operator")); 2898 } 2899 #endif 2900 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2901 2902 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2903 /* Case 1: expr IN (SELECT ...) 2904 ** 2905 ** Generate code to write the results of the select into the temporary 2906 ** table allocated and opened above. 2907 */ 2908 Select *pSelect = pExpr->x.pSelect; 2909 ExprList *pEList = pSelect->pEList; 2910 2911 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2912 addrOnce?"":"CORRELATED ", pSelect->selId 2913 )); 2914 /* If the LHS and RHS of the IN operator do not match, that 2915 ** error will have been caught long before we reach this point. */ 2916 if( ALWAYS(pEList->nExpr==nVal) ){ 2917 SelectDest dest; 2918 int i; 2919 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2920 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2921 pSelect->iLimit = 0; 2922 testcase( pSelect->selFlags & SF_Distinct ); 2923 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2924 if( sqlite3Select(pParse, pSelect, &dest) ){ 2925 sqlite3DbFree(pParse->db, dest.zAffSdst); 2926 sqlite3KeyInfoUnref(pKeyInfo); 2927 return; 2928 } 2929 sqlite3DbFree(pParse->db, dest.zAffSdst); 2930 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2931 assert( pEList!=0 ); 2932 assert( pEList->nExpr>0 ); 2933 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2934 for(i=0; i<nVal; i++){ 2935 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2936 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2937 pParse, p, pEList->a[i].pExpr 2938 ); 2939 } 2940 } 2941 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2942 /* Case 2: expr IN (exprlist) 2943 ** 2944 ** For each expression, build an index key from the evaluation and 2945 ** store it in the temporary table. If <expr> is a column, then use 2946 ** that columns affinity when building index keys. If <expr> is not 2947 ** a column, use numeric affinity. 2948 */ 2949 char affinity; /* Affinity of the LHS of the IN */ 2950 int i; 2951 ExprList *pList = pExpr->x.pList; 2952 struct ExprList_item *pItem; 2953 int r1, r2; 2954 affinity = sqlite3ExprAffinity(pLeft); 2955 if( affinity<=SQLITE_AFF_NONE ){ 2956 affinity = SQLITE_AFF_BLOB; 2957 }else if( affinity==SQLITE_AFF_REAL ){ 2958 affinity = SQLITE_AFF_NUMERIC; 2959 } 2960 if( pKeyInfo ){ 2961 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2962 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2963 } 2964 2965 /* Loop through each expression in <exprlist>. */ 2966 r1 = sqlite3GetTempReg(pParse); 2967 r2 = sqlite3GetTempReg(pParse); 2968 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2969 Expr *pE2 = pItem->pExpr; 2970 2971 /* If the expression is not constant then we will need to 2972 ** disable the test that was generated above that makes sure 2973 ** this code only executes once. Because for a non-constant 2974 ** expression we need to rerun this code each time. 2975 */ 2976 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 2977 sqlite3VdbeChangeToNoop(v, addrOnce); 2978 ExprClearProperty(pExpr, EP_Subrtn); 2979 addrOnce = 0; 2980 } 2981 2982 /* Evaluate the expression and insert it into the temp table */ 2983 sqlite3ExprCode(pParse, pE2, r1); 2984 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 2985 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 2986 } 2987 sqlite3ReleaseTempReg(pParse, r1); 2988 sqlite3ReleaseTempReg(pParse, r2); 2989 } 2990 if( pKeyInfo ){ 2991 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2992 } 2993 if( addrOnce ){ 2994 sqlite3VdbeJumpHere(v, addrOnce); 2995 /* Subroutine return */ 2996 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2997 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2998 sqlite3ClearTempRegCache(pParse); 2999 } 3000 } 3001 #endif /* SQLITE_OMIT_SUBQUERY */ 3002 3003 /* 3004 ** Generate code for scalar subqueries used as a subquery expression 3005 ** or EXISTS operator: 3006 ** 3007 ** (SELECT a FROM b) -- subquery 3008 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3009 ** 3010 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3011 ** 3012 ** Return the register that holds the result. For a multi-column SELECT, 3013 ** the result is stored in a contiguous array of registers and the 3014 ** return value is the register of the left-most result column. 3015 ** Return 0 if an error occurs. 3016 */ 3017 #ifndef SQLITE_OMIT_SUBQUERY 3018 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3019 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3020 int rReg = 0; /* Register storing resulting */ 3021 Select *pSel; /* SELECT statement to encode */ 3022 SelectDest dest; /* How to deal with SELECT result */ 3023 int nReg; /* Registers to allocate */ 3024 Expr *pLimit; /* New limit expression */ 3025 3026 Vdbe *v = pParse->pVdbe; 3027 assert( v!=0 ); 3028 testcase( pExpr->op==TK_EXISTS ); 3029 testcase( pExpr->op==TK_SELECT ); 3030 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3031 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 3032 pSel = pExpr->x.pSelect; 3033 3034 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3035 ** is encountered if any of the following is true: 3036 ** 3037 ** * The right-hand side is a correlated subquery 3038 ** * The right-hand side is an expression list containing variables 3039 ** * We are inside a trigger 3040 ** 3041 ** If all of the above are false, then we can run this code just once 3042 ** save the results, and reuse the same result on subsequent invocations. 3043 */ 3044 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3045 /* If this routine has already been coded, then invoke it as a 3046 ** subroutine. */ 3047 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3048 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3049 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3050 pExpr->y.sub.iAddr); 3051 return pExpr->iTable; 3052 } 3053 3054 /* Begin coding the subroutine */ 3055 ExprSetProperty(pExpr, EP_Subrtn); 3056 pExpr->y.sub.regReturn = ++pParse->nMem; 3057 pExpr->y.sub.iAddr = 3058 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3059 VdbeComment((v, "return address")); 3060 3061 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3062 } 3063 3064 /* For a SELECT, generate code to put the values for all columns of 3065 ** the first row into an array of registers and return the index of 3066 ** the first register. 3067 ** 3068 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3069 ** into a register and return that register number. 3070 ** 3071 ** In both cases, the query is augmented with "LIMIT 1". Any 3072 ** preexisting limit is discarded in place of the new LIMIT 1. 3073 */ 3074 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3075 addrOnce?"":"CORRELATED ", pSel->selId)); 3076 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3077 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3078 pParse->nMem += nReg; 3079 if( pExpr->op==TK_SELECT ){ 3080 dest.eDest = SRT_Mem; 3081 dest.iSdst = dest.iSDParm; 3082 dest.nSdst = nReg; 3083 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3084 VdbeComment((v, "Init subquery result")); 3085 }else{ 3086 dest.eDest = SRT_Exists; 3087 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3088 VdbeComment((v, "Init EXISTS result")); 3089 } 3090 if( pSel->pLimit ){ 3091 /* The subquery already has a limit. If the pre-existing limit is X 3092 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3093 sqlite3 *db = pParse->db; 3094 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3095 if( pLimit ){ 3096 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3097 pLimit = sqlite3PExpr(pParse, TK_NE, 3098 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3099 } 3100 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3101 pSel->pLimit->pLeft = pLimit; 3102 }else{ 3103 /* If there is no pre-existing limit add a limit of 1 */ 3104 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3105 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3106 } 3107 pSel->iLimit = 0; 3108 if( sqlite3Select(pParse, pSel, &dest) ){ 3109 return 0; 3110 } 3111 pExpr->iTable = rReg = dest.iSDParm; 3112 ExprSetVVAProperty(pExpr, EP_NoReduce); 3113 if( addrOnce ){ 3114 sqlite3VdbeJumpHere(v, addrOnce); 3115 3116 /* Subroutine return */ 3117 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3118 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3119 sqlite3ClearTempRegCache(pParse); 3120 } 3121 3122 return rReg; 3123 } 3124 #endif /* SQLITE_OMIT_SUBQUERY */ 3125 3126 #ifndef SQLITE_OMIT_SUBQUERY 3127 /* 3128 ** Expr pIn is an IN(...) expression. This function checks that the 3129 ** sub-select on the RHS of the IN() operator has the same number of 3130 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3131 ** a sub-query, that the LHS is a vector of size 1. 3132 */ 3133 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3134 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3135 if( (pIn->flags & EP_xIsSelect) ){ 3136 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3137 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3138 return 1; 3139 } 3140 }else if( nVector!=1 ){ 3141 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3142 return 1; 3143 } 3144 return 0; 3145 } 3146 #endif 3147 3148 #ifndef SQLITE_OMIT_SUBQUERY 3149 /* 3150 ** Generate code for an IN expression. 3151 ** 3152 ** x IN (SELECT ...) 3153 ** x IN (value, value, ...) 3154 ** 3155 ** The left-hand side (LHS) is a scalar or vector expression. The 3156 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3157 ** subquery. If the RHS is a subquery, the number of result columns must 3158 ** match the number of columns in the vector on the LHS. If the RHS is 3159 ** a list of values, the LHS must be a scalar. 3160 ** 3161 ** The IN operator is true if the LHS value is contained within the RHS. 3162 ** The result is false if the LHS is definitely not in the RHS. The 3163 ** result is NULL if the presence of the LHS in the RHS cannot be 3164 ** determined due to NULLs. 3165 ** 3166 ** This routine generates code that jumps to destIfFalse if the LHS is not 3167 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3168 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3169 ** within the RHS then fall through. 3170 ** 3171 ** See the separate in-operator.md documentation file in the canonical 3172 ** SQLite source tree for additional information. 3173 */ 3174 static void sqlite3ExprCodeIN( 3175 Parse *pParse, /* Parsing and code generating context */ 3176 Expr *pExpr, /* The IN expression */ 3177 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3178 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3179 ){ 3180 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3181 int eType; /* Type of the RHS */ 3182 int rLhs; /* Register(s) holding the LHS values */ 3183 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3184 Vdbe *v; /* Statement under construction */ 3185 int *aiMap = 0; /* Map from vector field to index column */ 3186 char *zAff = 0; /* Affinity string for comparisons */ 3187 int nVector; /* Size of vectors for this IN operator */ 3188 int iDummy; /* Dummy parameter to exprCodeVector() */ 3189 Expr *pLeft; /* The LHS of the IN operator */ 3190 int i; /* loop counter */ 3191 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3192 int destStep6 = 0; /* Start of code for Step 6 */ 3193 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3194 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3195 int addrTop; /* Top of the step-6 loop */ 3196 int iTab = 0; /* Index to use */ 3197 u8 okConstFactor = pParse->okConstFactor; 3198 3199 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3200 pLeft = pExpr->pLeft; 3201 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3202 zAff = exprINAffinity(pParse, pExpr); 3203 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3204 aiMap = (int*)sqlite3DbMallocZero( 3205 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3206 ); 3207 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3208 3209 /* Attempt to compute the RHS. After this step, if anything other than 3210 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3211 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3212 ** the RHS has not yet been coded. */ 3213 v = pParse->pVdbe; 3214 assert( v!=0 ); /* OOM detected prior to this routine */ 3215 VdbeNoopComment((v, "begin IN expr")); 3216 eType = sqlite3FindInIndex(pParse, pExpr, 3217 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3218 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3219 aiMap, &iTab); 3220 3221 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3222 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3223 ); 3224 #ifdef SQLITE_DEBUG 3225 /* Confirm that aiMap[] contains nVector integer values between 0 and 3226 ** nVector-1. */ 3227 for(i=0; i<nVector; i++){ 3228 int j, cnt; 3229 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3230 assert( cnt==1 ); 3231 } 3232 #endif 3233 3234 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3235 ** vector, then it is stored in an array of nVector registers starting 3236 ** at r1. 3237 ** 3238 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3239 ** so that the fields are in the same order as an existing index. The 3240 ** aiMap[] array contains a mapping from the original LHS field order to 3241 ** the field order that matches the RHS index. 3242 ** 3243 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3244 ** even if it is constant, as OP_Affinity may be used on the register 3245 ** by code generated below. */ 3246 assert( pParse->okConstFactor==okConstFactor ); 3247 pParse->okConstFactor = 0; 3248 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3249 pParse->okConstFactor = okConstFactor; 3250 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3251 if( i==nVector ){ 3252 /* LHS fields are not reordered */ 3253 rLhs = rLhsOrig; 3254 }else{ 3255 /* Need to reorder the LHS fields according to aiMap */ 3256 rLhs = sqlite3GetTempRange(pParse, nVector); 3257 for(i=0; i<nVector; i++){ 3258 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3259 } 3260 } 3261 3262 /* If sqlite3FindInIndex() did not find or create an index that is 3263 ** suitable for evaluating the IN operator, then evaluate using a 3264 ** sequence of comparisons. 3265 ** 3266 ** This is step (1) in the in-operator.md optimized algorithm. 3267 */ 3268 if( eType==IN_INDEX_NOOP ){ 3269 ExprList *pList = pExpr->x.pList; 3270 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3271 int labelOk = sqlite3VdbeMakeLabel(pParse); 3272 int r2, regToFree; 3273 int regCkNull = 0; 3274 int ii; 3275 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3276 if( destIfNull!=destIfFalse ){ 3277 regCkNull = sqlite3GetTempReg(pParse); 3278 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3279 } 3280 for(ii=0; ii<pList->nExpr; ii++){ 3281 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3282 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3283 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3284 } 3285 sqlite3ReleaseTempReg(pParse, regToFree); 3286 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3287 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3288 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3289 (void*)pColl, P4_COLLSEQ); 3290 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3291 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3292 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3293 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3294 sqlite3VdbeChangeP5(v, zAff[0]); 3295 }else{ 3296 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3297 assert( destIfNull==destIfFalse ); 3298 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3299 (void*)pColl, P4_COLLSEQ); 3300 VdbeCoverageIf(v, op==OP_Ne); 3301 VdbeCoverageIf(v, op==OP_IsNull); 3302 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3303 } 3304 } 3305 if( regCkNull ){ 3306 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3307 sqlite3VdbeGoto(v, destIfFalse); 3308 } 3309 sqlite3VdbeResolveLabel(v, labelOk); 3310 sqlite3ReleaseTempReg(pParse, regCkNull); 3311 goto sqlite3ExprCodeIN_finished; 3312 } 3313 3314 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3315 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3316 ** We will then skip the binary search of the RHS. 3317 */ 3318 if( destIfNull==destIfFalse ){ 3319 destStep2 = destIfFalse; 3320 }else{ 3321 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3322 } 3323 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3324 for(i=0; i<nVector; i++){ 3325 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3326 if( sqlite3ExprCanBeNull(p) ){ 3327 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3328 VdbeCoverage(v); 3329 } 3330 } 3331 3332 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3333 ** of the RHS using the LHS as a probe. If found, the result is 3334 ** true. 3335 */ 3336 if( eType==IN_INDEX_ROWID ){ 3337 /* In this case, the RHS is the ROWID of table b-tree and so we also 3338 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3339 ** into a single opcode. */ 3340 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3341 VdbeCoverage(v); 3342 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3343 }else{ 3344 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3345 if( destIfFalse==destIfNull ){ 3346 /* Combine Step 3 and Step 5 into a single opcode */ 3347 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3348 rLhs, nVector); VdbeCoverage(v); 3349 goto sqlite3ExprCodeIN_finished; 3350 } 3351 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3352 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3353 rLhs, nVector); VdbeCoverage(v); 3354 } 3355 3356 /* Step 4. If the RHS is known to be non-NULL and we did not find 3357 ** an match on the search above, then the result must be FALSE. 3358 */ 3359 if( rRhsHasNull && nVector==1 ){ 3360 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3361 VdbeCoverage(v); 3362 } 3363 3364 /* Step 5. If we do not care about the difference between NULL and 3365 ** FALSE, then just return false. 3366 */ 3367 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3368 3369 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3370 ** If any comparison is NULL, then the result is NULL. If all 3371 ** comparisons are FALSE then the final result is FALSE. 3372 ** 3373 ** For a scalar LHS, it is sufficient to check just the first row 3374 ** of the RHS. 3375 */ 3376 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3377 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3378 VdbeCoverage(v); 3379 if( nVector>1 ){ 3380 destNotNull = sqlite3VdbeMakeLabel(pParse); 3381 }else{ 3382 /* For nVector==1, combine steps 6 and 7 by immediately returning 3383 ** FALSE if the first comparison is not NULL */ 3384 destNotNull = destIfFalse; 3385 } 3386 for(i=0; i<nVector; i++){ 3387 Expr *p; 3388 CollSeq *pColl; 3389 int r3 = sqlite3GetTempReg(pParse); 3390 p = sqlite3VectorFieldSubexpr(pLeft, i); 3391 pColl = sqlite3ExprCollSeq(pParse, p); 3392 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3393 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3394 (void*)pColl, P4_COLLSEQ); 3395 VdbeCoverage(v); 3396 sqlite3ReleaseTempReg(pParse, r3); 3397 } 3398 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3399 if( nVector>1 ){ 3400 sqlite3VdbeResolveLabel(v, destNotNull); 3401 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3402 VdbeCoverage(v); 3403 3404 /* Step 7: If we reach this point, we know that the result must 3405 ** be false. */ 3406 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3407 } 3408 3409 /* Jumps here in order to return true. */ 3410 sqlite3VdbeJumpHere(v, addrTruthOp); 3411 3412 sqlite3ExprCodeIN_finished: 3413 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3414 VdbeComment((v, "end IN expr")); 3415 sqlite3ExprCodeIN_oom_error: 3416 sqlite3DbFree(pParse->db, aiMap); 3417 sqlite3DbFree(pParse->db, zAff); 3418 } 3419 #endif /* SQLITE_OMIT_SUBQUERY */ 3420 3421 #ifndef SQLITE_OMIT_FLOATING_POINT 3422 /* 3423 ** Generate an instruction that will put the floating point 3424 ** value described by z[0..n-1] into register iMem. 3425 ** 3426 ** The z[] string will probably not be zero-terminated. But the 3427 ** z[n] character is guaranteed to be something that does not look 3428 ** like the continuation of the number. 3429 */ 3430 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3431 if( ALWAYS(z!=0) ){ 3432 double value; 3433 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3434 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3435 if( negateFlag ) value = -value; 3436 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3437 } 3438 } 3439 #endif 3440 3441 3442 /* 3443 ** Generate an instruction that will put the integer describe by 3444 ** text z[0..n-1] into register iMem. 3445 ** 3446 ** Expr.u.zToken is always UTF8 and zero-terminated. 3447 */ 3448 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3449 Vdbe *v = pParse->pVdbe; 3450 if( pExpr->flags & EP_IntValue ){ 3451 int i = pExpr->u.iValue; 3452 assert( i>=0 ); 3453 if( negFlag ) i = -i; 3454 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3455 }else{ 3456 int c; 3457 i64 value; 3458 const char *z = pExpr->u.zToken; 3459 assert( z!=0 ); 3460 c = sqlite3DecOrHexToI64(z, &value); 3461 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3462 #ifdef SQLITE_OMIT_FLOATING_POINT 3463 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3464 #else 3465 #ifndef SQLITE_OMIT_HEX_INTEGER 3466 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3467 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3468 }else 3469 #endif 3470 { 3471 codeReal(v, z, negFlag, iMem); 3472 } 3473 #endif 3474 }else{ 3475 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3476 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3477 } 3478 } 3479 } 3480 3481 3482 /* Generate code that will load into register regOut a value that is 3483 ** appropriate for the iIdxCol-th column of index pIdx. 3484 */ 3485 void sqlite3ExprCodeLoadIndexColumn( 3486 Parse *pParse, /* The parsing context */ 3487 Index *pIdx, /* The index whose column is to be loaded */ 3488 int iTabCur, /* Cursor pointing to a table row */ 3489 int iIdxCol, /* The column of the index to be loaded */ 3490 int regOut /* Store the index column value in this register */ 3491 ){ 3492 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3493 if( iTabCol==XN_EXPR ){ 3494 assert( pIdx->aColExpr ); 3495 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3496 pParse->iSelfTab = iTabCur + 1; 3497 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3498 pParse->iSelfTab = 0; 3499 }else{ 3500 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3501 iTabCol, regOut); 3502 } 3503 } 3504 3505 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3506 /* 3507 ** Generate code that will compute the value of generated column pCol 3508 ** and store the result in register regOut 3509 */ 3510 void sqlite3ExprCodeGeneratedColumn( 3511 Parse *pParse, 3512 Column *pCol, 3513 int regOut 3514 ){ 3515 int iAddr; 3516 Vdbe *v = pParse->pVdbe; 3517 assert( v!=0 ); 3518 assert( pParse->iSelfTab!=0 ); 3519 if( pParse->iSelfTab>0 ){ 3520 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3521 }else{ 3522 iAddr = 0; 3523 } 3524 sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut); 3525 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3526 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3527 } 3528 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3529 } 3530 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3531 3532 /* 3533 ** Generate code to extract the value of the iCol-th column of a table. 3534 */ 3535 void sqlite3ExprCodeGetColumnOfTable( 3536 Vdbe *v, /* Parsing context */ 3537 Table *pTab, /* The table containing the value */ 3538 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3539 int iCol, /* Index of the column to extract */ 3540 int regOut /* Extract the value into this register */ 3541 ){ 3542 Column *pCol; 3543 assert( v!=0 ); 3544 if( pTab==0 ){ 3545 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3546 return; 3547 } 3548 if( iCol<0 || iCol==pTab->iPKey ){ 3549 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3550 }else{ 3551 int op; 3552 int x; 3553 if( IsVirtual(pTab) ){ 3554 op = OP_VColumn; 3555 x = iCol; 3556 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3557 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3558 Parse *pParse = sqlite3VdbeParser(v); 3559 if( pCol->colFlags & COLFLAG_BUSY ){ 3560 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName); 3561 }else{ 3562 int savedSelfTab = pParse->iSelfTab; 3563 pCol->colFlags |= COLFLAG_BUSY; 3564 pParse->iSelfTab = iTabCur+1; 3565 sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut); 3566 pParse->iSelfTab = savedSelfTab; 3567 pCol->colFlags &= ~COLFLAG_BUSY; 3568 } 3569 return; 3570 #endif 3571 }else if( !HasRowid(pTab) ){ 3572 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3573 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3574 op = OP_Column; 3575 }else{ 3576 x = sqlite3TableColumnToStorage(pTab,iCol); 3577 testcase( x!=iCol ); 3578 op = OP_Column; 3579 } 3580 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3581 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3582 } 3583 } 3584 3585 /* 3586 ** Generate code that will extract the iColumn-th column from 3587 ** table pTab and store the column value in register iReg. 3588 ** 3589 ** There must be an open cursor to pTab in iTable when this routine 3590 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3591 */ 3592 int sqlite3ExprCodeGetColumn( 3593 Parse *pParse, /* Parsing and code generating context */ 3594 Table *pTab, /* Description of the table we are reading from */ 3595 int iColumn, /* Index of the table column */ 3596 int iTable, /* The cursor pointing to the table */ 3597 int iReg, /* Store results here */ 3598 u8 p5 /* P5 value for OP_Column + FLAGS */ 3599 ){ 3600 assert( pParse->pVdbe!=0 ); 3601 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3602 if( p5 ){ 3603 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3604 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3605 } 3606 return iReg; 3607 } 3608 3609 /* 3610 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3611 ** over to iTo..iTo+nReg-1. 3612 */ 3613 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3614 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3615 } 3616 3617 /* 3618 ** Convert a scalar expression node to a TK_REGISTER referencing 3619 ** register iReg. The caller must ensure that iReg already contains 3620 ** the correct value for the expression. 3621 */ 3622 static void exprToRegister(Expr *pExpr, int iReg){ 3623 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3624 p->op2 = p->op; 3625 p->op = TK_REGISTER; 3626 p->iTable = iReg; 3627 ExprClearProperty(p, EP_Skip); 3628 } 3629 3630 /* 3631 ** Evaluate an expression (either a vector or a scalar expression) and store 3632 ** the result in continguous temporary registers. Return the index of 3633 ** the first register used to store the result. 3634 ** 3635 ** If the returned result register is a temporary scalar, then also write 3636 ** that register number into *piFreeable. If the returned result register 3637 ** is not a temporary or if the expression is a vector set *piFreeable 3638 ** to 0. 3639 */ 3640 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3641 int iResult; 3642 int nResult = sqlite3ExprVectorSize(p); 3643 if( nResult==1 ){ 3644 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3645 }else{ 3646 *piFreeable = 0; 3647 if( p->op==TK_SELECT ){ 3648 #if SQLITE_OMIT_SUBQUERY 3649 iResult = 0; 3650 #else 3651 iResult = sqlite3CodeSubselect(pParse, p); 3652 #endif 3653 }else{ 3654 int i; 3655 iResult = pParse->nMem+1; 3656 pParse->nMem += nResult; 3657 for(i=0; i<nResult; i++){ 3658 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3659 } 3660 } 3661 } 3662 return iResult; 3663 } 3664 3665 /* 3666 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3667 ** so that a subsequent copy will not be merged into this one. 3668 */ 3669 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3670 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3671 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3672 } 3673 } 3674 3675 /* 3676 ** Generate code to implement special SQL functions that are implemented 3677 ** in-line rather than by using the usual callbacks. 3678 */ 3679 static int exprCodeInlineFunction( 3680 Parse *pParse, /* Parsing context */ 3681 ExprList *pFarg, /* List of function arguments */ 3682 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3683 int target /* Store function result in this register */ 3684 ){ 3685 int nFarg; 3686 Vdbe *v = pParse->pVdbe; 3687 assert( v!=0 ); 3688 assert( pFarg!=0 ); 3689 nFarg = pFarg->nExpr; 3690 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3691 switch( iFuncId ){ 3692 case INLINEFUNC_coalesce: { 3693 /* Attempt a direct implementation of the built-in COALESCE() and 3694 ** IFNULL() functions. This avoids unnecessary evaluation of 3695 ** arguments past the first non-NULL argument. 3696 */ 3697 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3698 int i; 3699 assert( nFarg>=2 ); 3700 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3701 for(i=1; i<nFarg; i++){ 3702 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3703 VdbeCoverage(v); 3704 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3705 } 3706 setDoNotMergeFlagOnCopy(v); 3707 sqlite3VdbeResolveLabel(v, endCoalesce); 3708 break; 3709 } 3710 case INLINEFUNC_iif: { 3711 Expr caseExpr; 3712 memset(&caseExpr, 0, sizeof(caseExpr)); 3713 caseExpr.op = TK_CASE; 3714 caseExpr.x.pList = pFarg; 3715 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3716 } 3717 3718 default: { 3719 /* The UNLIKELY() function is a no-op. The result is the value 3720 ** of the first argument. 3721 */ 3722 assert( nFarg==1 || nFarg==2 ); 3723 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3724 break; 3725 } 3726 3727 /*********************************************************************** 3728 ** Test-only SQL functions that are only usable if enabled 3729 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3730 */ 3731 case INLINEFUNC_expr_compare: { 3732 /* Compare two expressions using sqlite3ExprCompare() */ 3733 assert( nFarg==2 ); 3734 sqlite3VdbeAddOp2(v, OP_Integer, 3735 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3736 target); 3737 break; 3738 } 3739 3740 case INLINEFUNC_expr_implies_expr: { 3741 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3742 assert( nFarg==2 ); 3743 sqlite3VdbeAddOp2(v, OP_Integer, 3744 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3745 target); 3746 break; 3747 } 3748 3749 case INLINEFUNC_implies_nonnull_row: { 3750 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3751 Expr *pA1; 3752 assert( nFarg==2 ); 3753 pA1 = pFarg->a[1].pExpr; 3754 if( pA1->op==TK_COLUMN ){ 3755 sqlite3VdbeAddOp2(v, OP_Integer, 3756 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3757 target); 3758 }else{ 3759 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3760 } 3761 break; 3762 } 3763 3764 #ifdef SQLITE_DEBUG 3765 case INLINEFUNC_affinity: { 3766 /* The AFFINITY() function evaluates to a string that describes 3767 ** the type affinity of the argument. This is used for testing of 3768 ** the SQLite type logic. 3769 */ 3770 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3771 char aff; 3772 assert( nFarg==1 ); 3773 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3774 sqlite3VdbeLoadString(v, target, 3775 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3776 break; 3777 } 3778 #endif 3779 } 3780 return target; 3781 } 3782 3783 3784 /* 3785 ** Generate code into the current Vdbe to evaluate the given 3786 ** expression. Attempt to store the results in register "target". 3787 ** Return the register where results are stored. 3788 ** 3789 ** With this routine, there is no guarantee that results will 3790 ** be stored in target. The result might be stored in some other 3791 ** register if it is convenient to do so. The calling function 3792 ** must check the return code and move the results to the desired 3793 ** register. 3794 */ 3795 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3796 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3797 int op; /* The opcode being coded */ 3798 int inReg = target; /* Results stored in register inReg */ 3799 int regFree1 = 0; /* If non-zero free this temporary register */ 3800 int regFree2 = 0; /* If non-zero free this temporary register */ 3801 int r1, r2; /* Various register numbers */ 3802 Expr tempX; /* Temporary expression node */ 3803 int p5 = 0; 3804 3805 assert( target>0 && target<=pParse->nMem ); 3806 assert( v!=0 ); 3807 3808 expr_code_doover: 3809 if( pExpr==0 ){ 3810 op = TK_NULL; 3811 }else{ 3812 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3813 op = pExpr->op; 3814 } 3815 switch( op ){ 3816 case TK_AGG_COLUMN: { 3817 AggInfo *pAggInfo = pExpr->pAggInfo; 3818 struct AggInfo_col *pCol; 3819 assert( pAggInfo!=0 ); 3820 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 3821 pCol = &pAggInfo->aCol[pExpr->iAgg]; 3822 if( !pAggInfo->directMode ){ 3823 assert( pCol->iMem>0 ); 3824 return pCol->iMem; 3825 }else if( pAggInfo->useSortingIdx ){ 3826 Table *pTab = pCol->pTab; 3827 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3828 pCol->iSorterColumn, target); 3829 if( pCol->iColumn<0 ){ 3830 VdbeComment((v,"%s.rowid",pTab->zName)); 3831 }else{ 3832 VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName)); 3833 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 3834 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3835 } 3836 } 3837 return target; 3838 } 3839 /* Otherwise, fall thru into the TK_COLUMN case */ 3840 /* no break */ deliberate_fall_through 3841 } 3842 case TK_COLUMN: { 3843 int iTab = pExpr->iTable; 3844 int iReg; 3845 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3846 /* This COLUMN expression is really a constant due to WHERE clause 3847 ** constraints, and that constant is coded by the pExpr->pLeft 3848 ** expresssion. However, make sure the constant has the correct 3849 ** datatype by applying the Affinity of the table column to the 3850 ** constant. 3851 */ 3852 int aff; 3853 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3854 if( pExpr->y.pTab ){ 3855 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3856 }else{ 3857 aff = pExpr->affExpr; 3858 } 3859 if( aff>SQLITE_AFF_BLOB ){ 3860 static const char zAff[] = "B\000C\000D\000E"; 3861 assert( SQLITE_AFF_BLOB=='A' ); 3862 assert( SQLITE_AFF_TEXT=='B' ); 3863 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3864 &zAff[(aff-'B')*2], P4_STATIC); 3865 } 3866 return iReg; 3867 } 3868 if( iTab<0 ){ 3869 if( pParse->iSelfTab<0 ){ 3870 /* Other columns in the same row for CHECK constraints or 3871 ** generated columns or for inserting into partial index. 3872 ** The row is unpacked into registers beginning at 3873 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 3874 ** immediately prior to the first column. 3875 */ 3876 Column *pCol; 3877 Table *pTab = pExpr->y.pTab; 3878 int iSrc; 3879 int iCol = pExpr->iColumn; 3880 assert( pTab!=0 ); 3881 assert( iCol>=XN_ROWID ); 3882 assert( iCol<pTab->nCol ); 3883 if( iCol<0 ){ 3884 return -1-pParse->iSelfTab; 3885 } 3886 pCol = pTab->aCol + iCol; 3887 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 3888 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 3889 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3890 if( pCol->colFlags & COLFLAG_GENERATED ){ 3891 if( pCol->colFlags & COLFLAG_BUSY ){ 3892 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3893 pCol->zName); 3894 return 0; 3895 } 3896 pCol->colFlags |= COLFLAG_BUSY; 3897 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 3898 sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc); 3899 } 3900 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 3901 return iSrc; 3902 }else 3903 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3904 if( pCol->affinity==SQLITE_AFF_REAL ){ 3905 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 3906 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3907 return target; 3908 }else{ 3909 return iSrc; 3910 } 3911 }else{ 3912 /* Coding an expression that is part of an index where column names 3913 ** in the index refer to the table to which the index belongs */ 3914 iTab = pParse->iSelfTab - 1; 3915 } 3916 } 3917 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3918 pExpr->iColumn, iTab, target, 3919 pExpr->op2); 3920 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 3921 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 3922 } 3923 return iReg; 3924 } 3925 case TK_INTEGER: { 3926 codeInteger(pParse, pExpr, 0, target); 3927 return target; 3928 } 3929 case TK_TRUEFALSE: { 3930 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3931 return target; 3932 } 3933 #ifndef SQLITE_OMIT_FLOATING_POINT 3934 case TK_FLOAT: { 3935 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3936 codeReal(v, pExpr->u.zToken, 0, target); 3937 return target; 3938 } 3939 #endif 3940 case TK_STRING: { 3941 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3942 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3943 return target; 3944 } 3945 default: { 3946 /* Make NULL the default case so that if a bug causes an illegal 3947 ** Expr node to be passed into this function, it will be handled 3948 ** sanely and not crash. But keep the assert() to bring the problem 3949 ** to the attention of the developers. */ 3950 assert( op==TK_NULL ); 3951 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3952 return target; 3953 } 3954 #ifndef SQLITE_OMIT_BLOB_LITERAL 3955 case TK_BLOB: { 3956 int n; 3957 const char *z; 3958 char *zBlob; 3959 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3960 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3961 assert( pExpr->u.zToken[1]=='\'' ); 3962 z = &pExpr->u.zToken[2]; 3963 n = sqlite3Strlen30(z) - 1; 3964 assert( z[n]=='\'' ); 3965 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3966 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3967 return target; 3968 } 3969 #endif 3970 case TK_VARIABLE: { 3971 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3972 assert( pExpr->u.zToken!=0 ); 3973 assert( pExpr->u.zToken[0]!=0 ); 3974 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3975 if( pExpr->u.zToken[1]!=0 ){ 3976 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3977 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 3978 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3979 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3980 } 3981 return target; 3982 } 3983 case TK_REGISTER: { 3984 return pExpr->iTable; 3985 } 3986 #ifndef SQLITE_OMIT_CAST 3987 case TK_CAST: { 3988 /* Expressions of the form: CAST(pLeft AS token) */ 3989 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3990 if( inReg!=target ){ 3991 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3992 inReg = target; 3993 } 3994 sqlite3VdbeAddOp2(v, OP_Cast, target, 3995 sqlite3AffinityType(pExpr->u.zToken, 0)); 3996 return inReg; 3997 } 3998 #endif /* SQLITE_OMIT_CAST */ 3999 case TK_IS: 4000 case TK_ISNOT: 4001 op = (op==TK_IS) ? TK_EQ : TK_NE; 4002 p5 = SQLITE_NULLEQ; 4003 /* fall-through */ 4004 case TK_LT: 4005 case TK_LE: 4006 case TK_GT: 4007 case TK_GE: 4008 case TK_NE: 4009 case TK_EQ: { 4010 Expr *pLeft = pExpr->pLeft; 4011 if( sqlite3ExprIsVector(pLeft) ){ 4012 codeVectorCompare(pParse, pExpr, target, op, p5); 4013 }else{ 4014 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4015 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4016 codeCompare(pParse, pLeft, pExpr->pRight, op, 4017 r1, r2, inReg, SQLITE_STOREP2 | p5, 4018 ExprHasProperty(pExpr,EP_Commuted)); 4019 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4020 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4021 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4022 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4023 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4024 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4025 testcase( regFree1==0 ); 4026 testcase( regFree2==0 ); 4027 } 4028 break; 4029 } 4030 case TK_AND: 4031 case TK_OR: 4032 case TK_PLUS: 4033 case TK_STAR: 4034 case TK_MINUS: 4035 case TK_REM: 4036 case TK_BITAND: 4037 case TK_BITOR: 4038 case TK_SLASH: 4039 case TK_LSHIFT: 4040 case TK_RSHIFT: 4041 case TK_CONCAT: { 4042 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4043 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4044 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4045 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4046 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4047 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4048 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4049 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4050 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4051 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4052 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4053 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4054 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4055 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4056 testcase( regFree1==0 ); 4057 testcase( regFree2==0 ); 4058 break; 4059 } 4060 case TK_UMINUS: { 4061 Expr *pLeft = pExpr->pLeft; 4062 assert( pLeft ); 4063 if( pLeft->op==TK_INTEGER ){ 4064 codeInteger(pParse, pLeft, 1, target); 4065 return target; 4066 #ifndef SQLITE_OMIT_FLOATING_POINT 4067 }else if( pLeft->op==TK_FLOAT ){ 4068 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4069 codeReal(v, pLeft->u.zToken, 1, target); 4070 return target; 4071 #endif 4072 }else{ 4073 tempX.op = TK_INTEGER; 4074 tempX.flags = EP_IntValue|EP_TokenOnly; 4075 tempX.u.iValue = 0; 4076 ExprClearVVAProperties(&tempX); 4077 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4078 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4079 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4080 testcase( regFree2==0 ); 4081 } 4082 break; 4083 } 4084 case TK_BITNOT: 4085 case TK_NOT: { 4086 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4087 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4088 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4089 testcase( regFree1==0 ); 4090 sqlite3VdbeAddOp2(v, op, r1, inReg); 4091 break; 4092 } 4093 case TK_TRUTH: { 4094 int isTrue; /* IS TRUE or IS NOT TRUE */ 4095 int bNormal; /* IS TRUE or IS FALSE */ 4096 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4097 testcase( regFree1==0 ); 4098 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4099 bNormal = pExpr->op2==TK_IS; 4100 testcase( isTrue && bNormal); 4101 testcase( !isTrue && bNormal); 4102 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4103 break; 4104 } 4105 case TK_ISNULL: 4106 case TK_NOTNULL: { 4107 int addr; 4108 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4109 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4110 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4111 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4112 testcase( regFree1==0 ); 4113 addr = sqlite3VdbeAddOp1(v, op, r1); 4114 VdbeCoverageIf(v, op==TK_ISNULL); 4115 VdbeCoverageIf(v, op==TK_NOTNULL); 4116 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4117 sqlite3VdbeJumpHere(v, addr); 4118 break; 4119 } 4120 case TK_AGG_FUNCTION: { 4121 AggInfo *pInfo = pExpr->pAggInfo; 4122 if( pInfo==0 4123 || NEVER(pExpr->iAgg<0) 4124 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4125 ){ 4126 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4127 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 4128 }else{ 4129 return pInfo->aFunc[pExpr->iAgg].iMem; 4130 } 4131 break; 4132 } 4133 case TK_FUNCTION: { 4134 ExprList *pFarg; /* List of function arguments */ 4135 int nFarg; /* Number of function arguments */ 4136 FuncDef *pDef; /* The function definition object */ 4137 const char *zId; /* The function name */ 4138 u32 constMask = 0; /* Mask of function arguments that are constant */ 4139 int i; /* Loop counter */ 4140 sqlite3 *db = pParse->db; /* The database connection */ 4141 u8 enc = ENC(db); /* The text encoding used by this database */ 4142 CollSeq *pColl = 0; /* A collating sequence */ 4143 4144 #ifndef SQLITE_OMIT_WINDOWFUNC 4145 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4146 return pExpr->y.pWin->regResult; 4147 } 4148 #endif 4149 4150 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4151 /* SQL functions can be expensive. So try to avoid running them 4152 ** multiple times if we know they always give the same result */ 4153 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4154 } 4155 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4156 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4157 pFarg = pExpr->x.pList; 4158 nFarg = pFarg ? pFarg->nExpr : 0; 4159 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4160 zId = pExpr->u.zToken; 4161 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4162 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4163 if( pDef==0 && pParse->explain ){ 4164 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4165 } 4166 #endif 4167 if( pDef==0 || pDef->xFinalize!=0 ){ 4168 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 4169 break; 4170 } 4171 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4172 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4173 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4174 return exprCodeInlineFunction(pParse, pFarg, 4175 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4176 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4177 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4178 } 4179 4180 for(i=0; i<nFarg; i++){ 4181 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4182 testcase( i==31 ); 4183 constMask |= MASKBIT32(i); 4184 } 4185 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4186 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4187 } 4188 } 4189 if( pFarg ){ 4190 if( constMask ){ 4191 r1 = pParse->nMem+1; 4192 pParse->nMem += nFarg; 4193 }else{ 4194 r1 = sqlite3GetTempRange(pParse, nFarg); 4195 } 4196 4197 /* For length() and typeof() functions with a column argument, 4198 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4199 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4200 ** loading. 4201 */ 4202 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4203 u8 exprOp; 4204 assert( nFarg==1 ); 4205 assert( pFarg->a[0].pExpr!=0 ); 4206 exprOp = pFarg->a[0].pExpr->op; 4207 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4208 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4209 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4210 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4211 pFarg->a[0].pExpr->op2 = 4212 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4213 } 4214 } 4215 4216 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4217 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4218 }else{ 4219 r1 = 0; 4220 } 4221 #ifndef SQLITE_OMIT_VIRTUALTABLE 4222 /* Possibly overload the function if the first argument is 4223 ** a virtual table column. 4224 ** 4225 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4226 ** second argument, not the first, as the argument to test to 4227 ** see if it is a column in a virtual table. This is done because 4228 ** the left operand of infix functions (the operand we want to 4229 ** control overloading) ends up as the second argument to the 4230 ** function. The expression "A glob B" is equivalent to 4231 ** "glob(B,A). We want to use the A in "A glob B" to test 4232 ** for function overloading. But we use the B term in "glob(B,A)". 4233 */ 4234 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4235 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4236 }else if( nFarg>0 ){ 4237 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4238 } 4239 #endif 4240 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4241 if( !pColl ) pColl = db->pDfltColl; 4242 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4243 } 4244 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4245 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4246 Expr *pArg = pFarg->a[0].pExpr; 4247 if( pArg->op==TK_COLUMN ){ 4248 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4249 }else{ 4250 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4251 } 4252 }else 4253 #endif 4254 { 4255 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4256 pDef, pExpr->op2); 4257 } 4258 if( nFarg ){ 4259 if( constMask==0 ){ 4260 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4261 }else{ 4262 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4263 } 4264 } 4265 return target; 4266 } 4267 #ifndef SQLITE_OMIT_SUBQUERY 4268 case TK_EXISTS: 4269 case TK_SELECT: { 4270 int nCol; 4271 testcase( op==TK_EXISTS ); 4272 testcase( op==TK_SELECT ); 4273 if( pParse->db->mallocFailed ){ 4274 return 0; 4275 }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4276 sqlite3SubselectError(pParse, nCol, 1); 4277 }else{ 4278 return sqlite3CodeSubselect(pParse, pExpr); 4279 } 4280 break; 4281 } 4282 case TK_SELECT_COLUMN: { 4283 int n; 4284 if( pExpr->pLeft->iTable==0 ){ 4285 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4286 } 4287 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 4288 if( pExpr->iTable!=0 4289 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 4290 ){ 4291 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4292 pExpr->iTable, n); 4293 } 4294 return pExpr->pLeft->iTable + pExpr->iColumn; 4295 } 4296 case TK_IN: { 4297 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4298 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4299 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4300 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4301 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4302 sqlite3VdbeResolveLabel(v, destIfFalse); 4303 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4304 sqlite3VdbeResolveLabel(v, destIfNull); 4305 return target; 4306 } 4307 #endif /* SQLITE_OMIT_SUBQUERY */ 4308 4309 4310 /* 4311 ** x BETWEEN y AND z 4312 ** 4313 ** This is equivalent to 4314 ** 4315 ** x>=y AND x<=z 4316 ** 4317 ** X is stored in pExpr->pLeft. 4318 ** Y is stored in pExpr->pList->a[0].pExpr. 4319 ** Z is stored in pExpr->pList->a[1].pExpr. 4320 */ 4321 case TK_BETWEEN: { 4322 exprCodeBetween(pParse, pExpr, target, 0, 0); 4323 return target; 4324 } 4325 case TK_SPAN: 4326 case TK_COLLATE: 4327 case TK_UPLUS: { 4328 pExpr = pExpr->pLeft; 4329 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4330 } 4331 4332 case TK_TRIGGER: { 4333 /* If the opcode is TK_TRIGGER, then the expression is a reference 4334 ** to a column in the new.* or old.* pseudo-tables available to 4335 ** trigger programs. In this case Expr.iTable is set to 1 for the 4336 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4337 ** is set to the column of the pseudo-table to read, or to -1 to 4338 ** read the rowid field. 4339 ** 4340 ** The expression is implemented using an OP_Param opcode. The p1 4341 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4342 ** to reference another column of the old.* pseudo-table, where 4343 ** i is the index of the column. For a new.rowid reference, p1 is 4344 ** set to (n+1), where n is the number of columns in each pseudo-table. 4345 ** For a reference to any other column in the new.* pseudo-table, p1 4346 ** is set to (n+2+i), where n and i are as defined previously. For 4347 ** example, if the table on which triggers are being fired is 4348 ** declared as: 4349 ** 4350 ** CREATE TABLE t1(a, b); 4351 ** 4352 ** Then p1 is interpreted as follows: 4353 ** 4354 ** p1==0 -> old.rowid p1==3 -> new.rowid 4355 ** p1==1 -> old.a p1==4 -> new.a 4356 ** p1==2 -> old.b p1==5 -> new.b 4357 */ 4358 Table *pTab = pExpr->y.pTab; 4359 int iCol = pExpr->iColumn; 4360 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4361 + sqlite3TableColumnToStorage(pTab, iCol); 4362 4363 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4364 assert( iCol>=-1 && iCol<pTab->nCol ); 4365 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4366 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4367 4368 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4369 VdbeComment((v, "r[%d]=%s.%s", target, 4370 (pExpr->iTable ? "new" : "old"), 4371 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName) 4372 )); 4373 4374 #ifndef SQLITE_OMIT_FLOATING_POINT 4375 /* If the column has REAL affinity, it may currently be stored as an 4376 ** integer. Use OP_RealAffinity to make sure it is really real. 4377 ** 4378 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4379 ** floating point when extracting it from the record. */ 4380 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4381 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4382 } 4383 #endif 4384 break; 4385 } 4386 4387 case TK_VECTOR: { 4388 sqlite3ErrorMsg(pParse, "row value misused"); 4389 break; 4390 } 4391 4392 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4393 ** that derive from the right-hand table of a LEFT JOIN. The 4394 ** Expr.iTable value is the table number for the right-hand table. 4395 ** The expression is only evaluated if that table is not currently 4396 ** on a LEFT JOIN NULL row. 4397 */ 4398 case TK_IF_NULL_ROW: { 4399 int addrINR; 4400 u8 okConstFactor = pParse->okConstFactor; 4401 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4402 /* Temporarily disable factoring of constant expressions, since 4403 ** even though expressions may appear to be constant, they are not 4404 ** really constant because they originate from the right-hand side 4405 ** of a LEFT JOIN. */ 4406 pParse->okConstFactor = 0; 4407 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4408 pParse->okConstFactor = okConstFactor; 4409 sqlite3VdbeJumpHere(v, addrINR); 4410 sqlite3VdbeChangeP3(v, addrINR, inReg); 4411 break; 4412 } 4413 4414 /* 4415 ** Form A: 4416 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4417 ** 4418 ** Form B: 4419 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4420 ** 4421 ** Form A is can be transformed into the equivalent form B as follows: 4422 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4423 ** WHEN x=eN THEN rN ELSE y END 4424 ** 4425 ** X (if it exists) is in pExpr->pLeft. 4426 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4427 ** odd. The Y is also optional. If the number of elements in x.pList 4428 ** is even, then Y is omitted and the "otherwise" result is NULL. 4429 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4430 ** 4431 ** The result of the expression is the Ri for the first matching Ei, 4432 ** or if there is no matching Ei, the ELSE term Y, or if there is 4433 ** no ELSE term, NULL. 4434 */ 4435 case TK_CASE: { 4436 int endLabel; /* GOTO label for end of CASE stmt */ 4437 int nextCase; /* GOTO label for next WHEN clause */ 4438 int nExpr; /* 2x number of WHEN terms */ 4439 int i; /* Loop counter */ 4440 ExprList *pEList; /* List of WHEN terms */ 4441 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4442 Expr opCompare; /* The X==Ei expression */ 4443 Expr *pX; /* The X expression */ 4444 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4445 Expr *pDel = 0; 4446 sqlite3 *db = pParse->db; 4447 4448 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4449 assert(pExpr->x.pList->nExpr > 0); 4450 pEList = pExpr->x.pList; 4451 aListelem = pEList->a; 4452 nExpr = pEList->nExpr; 4453 endLabel = sqlite3VdbeMakeLabel(pParse); 4454 if( (pX = pExpr->pLeft)!=0 ){ 4455 pDel = sqlite3ExprDup(db, pX, 0); 4456 if( db->mallocFailed ){ 4457 sqlite3ExprDelete(db, pDel); 4458 break; 4459 } 4460 testcase( pX->op==TK_COLUMN ); 4461 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4462 testcase( regFree1==0 ); 4463 memset(&opCompare, 0, sizeof(opCompare)); 4464 opCompare.op = TK_EQ; 4465 opCompare.pLeft = pDel; 4466 pTest = &opCompare; 4467 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4468 ** The value in regFree1 might get SCopy-ed into the file result. 4469 ** So make sure that the regFree1 register is not reused for other 4470 ** purposes and possibly overwritten. */ 4471 regFree1 = 0; 4472 } 4473 for(i=0; i<nExpr-1; i=i+2){ 4474 if( pX ){ 4475 assert( pTest!=0 ); 4476 opCompare.pRight = aListelem[i].pExpr; 4477 }else{ 4478 pTest = aListelem[i].pExpr; 4479 } 4480 nextCase = sqlite3VdbeMakeLabel(pParse); 4481 testcase( pTest->op==TK_COLUMN ); 4482 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4483 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4484 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4485 sqlite3VdbeGoto(v, endLabel); 4486 sqlite3VdbeResolveLabel(v, nextCase); 4487 } 4488 if( (nExpr&1)!=0 ){ 4489 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4490 }else{ 4491 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4492 } 4493 sqlite3ExprDelete(db, pDel); 4494 setDoNotMergeFlagOnCopy(v); 4495 sqlite3VdbeResolveLabel(v, endLabel); 4496 break; 4497 } 4498 #ifndef SQLITE_OMIT_TRIGGER 4499 case TK_RAISE: { 4500 assert( pExpr->affExpr==OE_Rollback 4501 || pExpr->affExpr==OE_Abort 4502 || pExpr->affExpr==OE_Fail 4503 || pExpr->affExpr==OE_Ignore 4504 ); 4505 if( !pParse->pTriggerTab && !pParse->nested ){ 4506 sqlite3ErrorMsg(pParse, 4507 "RAISE() may only be used within a trigger-program"); 4508 return 0; 4509 } 4510 if( pExpr->affExpr==OE_Abort ){ 4511 sqlite3MayAbort(pParse); 4512 } 4513 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4514 if( pExpr->affExpr==OE_Ignore ){ 4515 sqlite3VdbeAddOp4( 4516 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4517 VdbeCoverage(v); 4518 }else{ 4519 sqlite3HaltConstraint(pParse, 4520 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4521 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4522 } 4523 4524 break; 4525 } 4526 #endif 4527 } 4528 sqlite3ReleaseTempReg(pParse, regFree1); 4529 sqlite3ReleaseTempReg(pParse, regFree2); 4530 return inReg; 4531 } 4532 4533 /* 4534 ** Generate code that will evaluate expression pExpr just one time 4535 ** per prepared statement execution. 4536 ** 4537 ** If the expression uses functions (that might throw an exception) then 4538 ** guard them with an OP_Once opcode to ensure that the code is only executed 4539 ** once. If no functions are involved, then factor the code out and put it at 4540 ** the end of the prepared statement in the initialization section. 4541 ** 4542 ** If regDest>=0 then the result is always stored in that register and the 4543 ** result is not reusable. If regDest<0 then this routine is free to 4544 ** store the value whereever it wants. The register where the expression 4545 ** is stored is returned. When regDest<0, two identical expressions might 4546 ** code to the same register, if they do not contain function calls and hence 4547 ** are factored out into the initialization section at the end of the 4548 ** prepared statement. 4549 */ 4550 int sqlite3ExprCodeRunJustOnce( 4551 Parse *pParse, /* Parsing context */ 4552 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4553 int regDest /* Store the value in this register */ 4554 ){ 4555 ExprList *p; 4556 assert( ConstFactorOk(pParse) ); 4557 p = pParse->pConstExpr; 4558 if( regDest<0 && p ){ 4559 struct ExprList_item *pItem; 4560 int i; 4561 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4562 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4563 return pItem->u.iConstExprReg; 4564 } 4565 } 4566 } 4567 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4568 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4569 Vdbe *v = pParse->pVdbe; 4570 int addr; 4571 assert( v ); 4572 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4573 pParse->okConstFactor = 0; 4574 if( !pParse->db->mallocFailed ){ 4575 if( regDest<0 ) regDest = ++pParse->nMem; 4576 sqlite3ExprCode(pParse, pExpr, regDest); 4577 } 4578 pParse->okConstFactor = 1; 4579 sqlite3ExprDelete(pParse->db, pExpr); 4580 sqlite3VdbeJumpHere(v, addr); 4581 }else{ 4582 p = sqlite3ExprListAppend(pParse, p, pExpr); 4583 if( p ){ 4584 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4585 pItem->reusable = regDest<0; 4586 if( regDest<0 ) regDest = ++pParse->nMem; 4587 pItem->u.iConstExprReg = regDest; 4588 } 4589 pParse->pConstExpr = p; 4590 } 4591 return regDest; 4592 } 4593 4594 /* 4595 ** Generate code to evaluate an expression and store the results 4596 ** into a register. Return the register number where the results 4597 ** are stored. 4598 ** 4599 ** If the register is a temporary register that can be deallocated, 4600 ** then write its number into *pReg. If the result register is not 4601 ** a temporary, then set *pReg to zero. 4602 ** 4603 ** If pExpr is a constant, then this routine might generate this 4604 ** code to fill the register in the initialization section of the 4605 ** VDBE program, in order to factor it out of the evaluation loop. 4606 */ 4607 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4608 int r2; 4609 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4610 if( ConstFactorOk(pParse) 4611 && pExpr->op!=TK_REGISTER 4612 && sqlite3ExprIsConstantNotJoin(pExpr) 4613 ){ 4614 *pReg = 0; 4615 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4616 }else{ 4617 int r1 = sqlite3GetTempReg(pParse); 4618 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4619 if( r2==r1 ){ 4620 *pReg = r1; 4621 }else{ 4622 sqlite3ReleaseTempReg(pParse, r1); 4623 *pReg = 0; 4624 } 4625 } 4626 return r2; 4627 } 4628 4629 /* 4630 ** Generate code that will evaluate expression pExpr and store the 4631 ** results in register target. The results are guaranteed to appear 4632 ** in register target. 4633 */ 4634 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4635 int inReg; 4636 4637 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4638 assert( target>0 && target<=pParse->nMem ); 4639 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4640 if( pParse->pVdbe==0 ) return; 4641 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4642 if( inReg!=target ){ 4643 u8 op; 4644 if( ExprHasProperty(pExpr,EP_Subquery) ){ 4645 op = OP_Copy; 4646 }else{ 4647 op = OP_SCopy; 4648 } 4649 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4650 } 4651 } 4652 4653 /* 4654 ** Make a transient copy of expression pExpr and then code it using 4655 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4656 ** except that the input expression is guaranteed to be unchanged. 4657 */ 4658 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4659 sqlite3 *db = pParse->db; 4660 pExpr = sqlite3ExprDup(db, pExpr, 0); 4661 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4662 sqlite3ExprDelete(db, pExpr); 4663 } 4664 4665 /* 4666 ** Generate code that will evaluate expression pExpr and store the 4667 ** results in register target. The results are guaranteed to appear 4668 ** in register target. If the expression is constant, then this routine 4669 ** might choose to code the expression at initialization time. 4670 */ 4671 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4672 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4673 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4674 }else{ 4675 sqlite3ExprCodeCopy(pParse, pExpr, target); 4676 } 4677 } 4678 4679 /* 4680 ** Generate code that pushes the value of every element of the given 4681 ** expression list into a sequence of registers beginning at target. 4682 ** 4683 ** Return the number of elements evaluated. The number returned will 4684 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4685 ** is defined. 4686 ** 4687 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4688 ** filled using OP_SCopy. OP_Copy must be used instead. 4689 ** 4690 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4691 ** factored out into initialization code. 4692 ** 4693 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4694 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4695 ** in registers at srcReg, and so the value can be copied from there. 4696 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4697 ** are simply omitted rather than being copied from srcReg. 4698 */ 4699 int sqlite3ExprCodeExprList( 4700 Parse *pParse, /* Parsing context */ 4701 ExprList *pList, /* The expression list to be coded */ 4702 int target, /* Where to write results */ 4703 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4704 u8 flags /* SQLITE_ECEL_* flags */ 4705 ){ 4706 struct ExprList_item *pItem; 4707 int i, j, n; 4708 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4709 Vdbe *v = pParse->pVdbe; 4710 assert( pList!=0 ); 4711 assert( target>0 ); 4712 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4713 n = pList->nExpr; 4714 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4715 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4716 Expr *pExpr = pItem->pExpr; 4717 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4718 if( pItem->bSorterRef ){ 4719 i--; 4720 n--; 4721 }else 4722 #endif 4723 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4724 if( flags & SQLITE_ECEL_OMITREF ){ 4725 i--; 4726 n--; 4727 }else{ 4728 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4729 } 4730 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4731 && sqlite3ExprIsConstantNotJoin(pExpr) 4732 ){ 4733 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4734 }else{ 4735 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4736 if( inReg!=target+i ){ 4737 VdbeOp *pOp; 4738 if( copyOp==OP_Copy 4739 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4740 && pOp->p1+pOp->p3+1==inReg 4741 && pOp->p2+pOp->p3+1==target+i 4742 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4743 ){ 4744 pOp->p3++; 4745 }else{ 4746 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4747 } 4748 } 4749 } 4750 } 4751 return n; 4752 } 4753 4754 /* 4755 ** Generate code for a BETWEEN operator. 4756 ** 4757 ** x BETWEEN y AND z 4758 ** 4759 ** The above is equivalent to 4760 ** 4761 ** x>=y AND x<=z 4762 ** 4763 ** Code it as such, taking care to do the common subexpression 4764 ** elimination of x. 4765 ** 4766 ** The xJumpIf parameter determines details: 4767 ** 4768 ** NULL: Store the boolean result in reg[dest] 4769 ** sqlite3ExprIfTrue: Jump to dest if true 4770 ** sqlite3ExprIfFalse: Jump to dest if false 4771 ** 4772 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4773 */ 4774 static void exprCodeBetween( 4775 Parse *pParse, /* Parsing and code generating context */ 4776 Expr *pExpr, /* The BETWEEN expression */ 4777 int dest, /* Jump destination or storage location */ 4778 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4779 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4780 ){ 4781 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4782 Expr compLeft; /* The x>=y term */ 4783 Expr compRight; /* The x<=z term */ 4784 int regFree1 = 0; /* Temporary use register */ 4785 Expr *pDel = 0; 4786 sqlite3 *db = pParse->db; 4787 4788 memset(&compLeft, 0, sizeof(Expr)); 4789 memset(&compRight, 0, sizeof(Expr)); 4790 memset(&exprAnd, 0, sizeof(Expr)); 4791 4792 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4793 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4794 if( db->mallocFailed==0 ){ 4795 exprAnd.op = TK_AND; 4796 exprAnd.pLeft = &compLeft; 4797 exprAnd.pRight = &compRight; 4798 compLeft.op = TK_GE; 4799 compLeft.pLeft = pDel; 4800 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4801 compRight.op = TK_LE; 4802 compRight.pLeft = pDel; 4803 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4804 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4805 if( xJump ){ 4806 xJump(pParse, &exprAnd, dest, jumpIfNull); 4807 }else{ 4808 /* Mark the expression is being from the ON or USING clause of a join 4809 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4810 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4811 ** for clarity, but we are out of bits in the Expr.flags field so we 4812 ** have to reuse the EP_FromJoin bit. Bummer. */ 4813 pDel->flags |= EP_FromJoin; 4814 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4815 } 4816 sqlite3ReleaseTempReg(pParse, regFree1); 4817 } 4818 sqlite3ExprDelete(db, pDel); 4819 4820 /* Ensure adequate test coverage */ 4821 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4822 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4823 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4824 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4825 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4826 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4827 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4828 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4829 testcase( xJump==0 ); 4830 } 4831 4832 /* 4833 ** Generate code for a boolean expression such that a jump is made 4834 ** to the label "dest" if the expression is true but execution 4835 ** continues straight thru if the expression is false. 4836 ** 4837 ** If the expression evaluates to NULL (neither true nor false), then 4838 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4839 ** 4840 ** This code depends on the fact that certain token values (ex: TK_EQ) 4841 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4842 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4843 ** the make process cause these values to align. Assert()s in the code 4844 ** below verify that the numbers are aligned correctly. 4845 */ 4846 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4847 Vdbe *v = pParse->pVdbe; 4848 int op = 0; 4849 int regFree1 = 0; 4850 int regFree2 = 0; 4851 int r1, r2; 4852 4853 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4854 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4855 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4856 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 4857 op = pExpr->op; 4858 switch( op ){ 4859 case TK_AND: 4860 case TK_OR: { 4861 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4862 if( pAlt!=pExpr ){ 4863 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4864 }else if( op==TK_AND ){ 4865 int d2 = sqlite3VdbeMakeLabel(pParse); 4866 testcase( jumpIfNull==0 ); 4867 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4868 jumpIfNull^SQLITE_JUMPIFNULL); 4869 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4870 sqlite3VdbeResolveLabel(v, d2); 4871 }else{ 4872 testcase( jumpIfNull==0 ); 4873 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4874 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4875 } 4876 break; 4877 } 4878 case TK_NOT: { 4879 testcase( jumpIfNull==0 ); 4880 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4881 break; 4882 } 4883 case TK_TRUTH: { 4884 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4885 int isTrue; /* IS TRUE or IS NOT TRUE */ 4886 testcase( jumpIfNull==0 ); 4887 isNot = pExpr->op2==TK_ISNOT; 4888 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4889 testcase( isTrue && isNot ); 4890 testcase( !isTrue && isNot ); 4891 if( isTrue ^ isNot ){ 4892 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4893 isNot ? SQLITE_JUMPIFNULL : 0); 4894 }else{ 4895 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4896 isNot ? SQLITE_JUMPIFNULL : 0); 4897 } 4898 break; 4899 } 4900 case TK_IS: 4901 case TK_ISNOT: 4902 testcase( op==TK_IS ); 4903 testcase( op==TK_ISNOT ); 4904 op = (op==TK_IS) ? TK_EQ : TK_NE; 4905 jumpIfNull = SQLITE_NULLEQ; 4906 /* no break */ deliberate_fall_through 4907 case TK_LT: 4908 case TK_LE: 4909 case TK_GT: 4910 case TK_GE: 4911 case TK_NE: 4912 case TK_EQ: { 4913 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4914 testcase( jumpIfNull==0 ); 4915 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4916 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4917 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4918 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 4919 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4920 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4921 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4922 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4923 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4924 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4925 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4926 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4927 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4928 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4929 testcase( regFree1==0 ); 4930 testcase( regFree2==0 ); 4931 break; 4932 } 4933 case TK_ISNULL: 4934 case TK_NOTNULL: { 4935 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4936 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4937 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4938 sqlite3VdbeAddOp2(v, op, r1, dest); 4939 VdbeCoverageIf(v, op==TK_ISNULL); 4940 VdbeCoverageIf(v, op==TK_NOTNULL); 4941 testcase( regFree1==0 ); 4942 break; 4943 } 4944 case TK_BETWEEN: { 4945 testcase( jumpIfNull==0 ); 4946 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4947 break; 4948 } 4949 #ifndef SQLITE_OMIT_SUBQUERY 4950 case TK_IN: { 4951 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4952 int destIfNull = jumpIfNull ? dest : destIfFalse; 4953 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4954 sqlite3VdbeGoto(v, dest); 4955 sqlite3VdbeResolveLabel(v, destIfFalse); 4956 break; 4957 } 4958 #endif 4959 default: { 4960 default_expr: 4961 if( ExprAlwaysTrue(pExpr) ){ 4962 sqlite3VdbeGoto(v, dest); 4963 }else if( ExprAlwaysFalse(pExpr) ){ 4964 /* No-op */ 4965 }else{ 4966 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4967 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4968 VdbeCoverage(v); 4969 testcase( regFree1==0 ); 4970 testcase( jumpIfNull==0 ); 4971 } 4972 break; 4973 } 4974 } 4975 sqlite3ReleaseTempReg(pParse, regFree1); 4976 sqlite3ReleaseTempReg(pParse, regFree2); 4977 } 4978 4979 /* 4980 ** Generate code for a boolean expression such that a jump is made 4981 ** to the label "dest" if the expression is false but execution 4982 ** continues straight thru if the expression is true. 4983 ** 4984 ** If the expression evaluates to NULL (neither true nor false) then 4985 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4986 ** is 0. 4987 */ 4988 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4989 Vdbe *v = pParse->pVdbe; 4990 int op = 0; 4991 int regFree1 = 0; 4992 int regFree2 = 0; 4993 int r1, r2; 4994 4995 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4996 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4997 if( pExpr==0 ) return; 4998 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4999 5000 /* The value of pExpr->op and op are related as follows: 5001 ** 5002 ** pExpr->op op 5003 ** --------- ---------- 5004 ** TK_ISNULL OP_NotNull 5005 ** TK_NOTNULL OP_IsNull 5006 ** TK_NE OP_Eq 5007 ** TK_EQ OP_Ne 5008 ** TK_GT OP_Le 5009 ** TK_LE OP_Gt 5010 ** TK_GE OP_Lt 5011 ** TK_LT OP_Ge 5012 ** 5013 ** For other values of pExpr->op, op is undefined and unused. 5014 ** The value of TK_ and OP_ constants are arranged such that we 5015 ** can compute the mapping above using the following expression. 5016 ** Assert()s verify that the computation is correct. 5017 */ 5018 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5019 5020 /* Verify correct alignment of TK_ and OP_ constants 5021 */ 5022 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5023 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5024 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5025 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5026 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5027 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5028 assert( pExpr->op!=TK_GT || op==OP_Le ); 5029 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5030 5031 switch( pExpr->op ){ 5032 case TK_AND: 5033 case TK_OR: { 5034 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5035 if( pAlt!=pExpr ){ 5036 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5037 }else if( pExpr->op==TK_AND ){ 5038 testcase( jumpIfNull==0 ); 5039 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5040 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5041 }else{ 5042 int d2 = sqlite3VdbeMakeLabel(pParse); 5043 testcase( jumpIfNull==0 ); 5044 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5045 jumpIfNull^SQLITE_JUMPIFNULL); 5046 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5047 sqlite3VdbeResolveLabel(v, d2); 5048 } 5049 break; 5050 } 5051 case TK_NOT: { 5052 testcase( jumpIfNull==0 ); 5053 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5054 break; 5055 } 5056 case TK_TRUTH: { 5057 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5058 int isTrue; /* IS TRUE or IS NOT TRUE */ 5059 testcase( jumpIfNull==0 ); 5060 isNot = pExpr->op2==TK_ISNOT; 5061 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5062 testcase( isTrue && isNot ); 5063 testcase( !isTrue && isNot ); 5064 if( isTrue ^ isNot ){ 5065 /* IS TRUE and IS NOT FALSE */ 5066 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5067 isNot ? 0 : SQLITE_JUMPIFNULL); 5068 5069 }else{ 5070 /* IS FALSE and IS NOT TRUE */ 5071 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5072 isNot ? 0 : SQLITE_JUMPIFNULL); 5073 } 5074 break; 5075 } 5076 case TK_IS: 5077 case TK_ISNOT: 5078 testcase( pExpr->op==TK_IS ); 5079 testcase( pExpr->op==TK_ISNOT ); 5080 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5081 jumpIfNull = SQLITE_NULLEQ; 5082 /* no break */ deliberate_fall_through 5083 case TK_LT: 5084 case TK_LE: 5085 case TK_GT: 5086 case TK_GE: 5087 case TK_NE: 5088 case TK_EQ: { 5089 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5090 testcase( jumpIfNull==0 ); 5091 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5092 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5093 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5094 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5095 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5096 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5097 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5098 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5099 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5100 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5101 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5102 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5103 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5104 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5105 testcase( regFree1==0 ); 5106 testcase( regFree2==0 ); 5107 break; 5108 } 5109 case TK_ISNULL: 5110 case TK_NOTNULL: { 5111 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5112 sqlite3VdbeAddOp2(v, op, r1, dest); 5113 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5114 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5115 testcase( regFree1==0 ); 5116 break; 5117 } 5118 case TK_BETWEEN: { 5119 testcase( jumpIfNull==0 ); 5120 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5121 break; 5122 } 5123 #ifndef SQLITE_OMIT_SUBQUERY 5124 case TK_IN: { 5125 if( jumpIfNull ){ 5126 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5127 }else{ 5128 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5129 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5130 sqlite3VdbeResolveLabel(v, destIfNull); 5131 } 5132 break; 5133 } 5134 #endif 5135 default: { 5136 default_expr: 5137 if( ExprAlwaysFalse(pExpr) ){ 5138 sqlite3VdbeGoto(v, dest); 5139 }else if( ExprAlwaysTrue(pExpr) ){ 5140 /* no-op */ 5141 }else{ 5142 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5143 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5144 VdbeCoverage(v); 5145 testcase( regFree1==0 ); 5146 testcase( jumpIfNull==0 ); 5147 } 5148 break; 5149 } 5150 } 5151 sqlite3ReleaseTempReg(pParse, regFree1); 5152 sqlite3ReleaseTempReg(pParse, regFree2); 5153 } 5154 5155 /* 5156 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5157 ** code generation, and that copy is deleted after code generation. This 5158 ** ensures that the original pExpr is unchanged. 5159 */ 5160 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5161 sqlite3 *db = pParse->db; 5162 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5163 if( db->mallocFailed==0 ){ 5164 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5165 } 5166 sqlite3ExprDelete(db, pCopy); 5167 } 5168 5169 /* 5170 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5171 ** type of expression. 5172 ** 5173 ** If pExpr is a simple SQL value - an integer, real, string, blob 5174 ** or NULL value - then the VDBE currently being prepared is configured 5175 ** to re-prepare each time a new value is bound to variable pVar. 5176 ** 5177 ** Additionally, if pExpr is a simple SQL value and the value is the 5178 ** same as that currently bound to variable pVar, non-zero is returned. 5179 ** Otherwise, if the values are not the same or if pExpr is not a simple 5180 ** SQL value, zero is returned. 5181 */ 5182 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 5183 int res = 0; 5184 int iVar; 5185 sqlite3_value *pL, *pR = 0; 5186 5187 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5188 if( pR ){ 5189 iVar = pVar->iColumn; 5190 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5191 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5192 if( pL ){ 5193 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5194 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5195 } 5196 res = 0==sqlite3MemCompare(pL, pR, 0); 5197 } 5198 sqlite3ValueFree(pR); 5199 sqlite3ValueFree(pL); 5200 } 5201 5202 return res; 5203 } 5204 5205 /* 5206 ** Do a deep comparison of two expression trees. Return 0 if the two 5207 ** expressions are completely identical. Return 1 if they differ only 5208 ** by a COLLATE operator at the top level. Return 2 if there are differences 5209 ** other than the top-level COLLATE operator. 5210 ** 5211 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5212 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5213 ** 5214 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5215 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5216 ** 5217 ** Sometimes this routine will return 2 even if the two expressions 5218 ** really are equivalent. If we cannot prove that the expressions are 5219 ** identical, we return 2 just to be safe. So if this routine 5220 ** returns 2, then you do not really know for certain if the two 5221 ** expressions are the same. But if you get a 0 or 1 return, then you 5222 ** can be sure the expressions are the same. In the places where 5223 ** this routine is used, it does not hurt to get an extra 2 - that 5224 ** just might result in some slightly slower code. But returning 5225 ** an incorrect 0 or 1 could lead to a malfunction. 5226 ** 5227 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5228 ** pParse->pReprepare can be matched against literals in pB. The 5229 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5230 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5231 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5232 ** pB causes a return value of 2. 5233 */ 5234 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 5235 u32 combinedFlags; 5236 if( pA==0 || pB==0 ){ 5237 return pB==pA ? 0 : 2; 5238 } 5239 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5240 return 0; 5241 } 5242 combinedFlags = pA->flags | pB->flags; 5243 if( combinedFlags & EP_IntValue ){ 5244 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5245 return 0; 5246 } 5247 return 2; 5248 } 5249 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5250 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5251 return 1; 5252 } 5253 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5254 return 1; 5255 } 5256 return 2; 5257 } 5258 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5259 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5260 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5261 #ifndef SQLITE_OMIT_WINDOWFUNC 5262 assert( pA->op==pB->op ); 5263 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5264 return 2; 5265 } 5266 if( ExprHasProperty(pA,EP_WinFunc) ){ 5267 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5268 return 2; 5269 } 5270 } 5271 #endif 5272 }else if( pA->op==TK_NULL ){ 5273 return 0; 5274 }else if( pA->op==TK_COLLATE ){ 5275 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5276 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5277 return 2; 5278 } 5279 } 5280 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5281 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5282 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5283 if( combinedFlags & EP_xIsSelect ) return 2; 5284 if( (combinedFlags & EP_FixedCol)==0 5285 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5286 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5287 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5288 if( pA->op!=TK_STRING 5289 && pA->op!=TK_TRUEFALSE 5290 && ALWAYS((combinedFlags & EP_Reduced)==0) 5291 ){ 5292 if( pA->iColumn!=pB->iColumn ) return 2; 5293 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5294 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5295 return 2; 5296 } 5297 } 5298 } 5299 return 0; 5300 } 5301 5302 /* 5303 ** Compare two ExprList objects. Return 0 if they are identical, 1 5304 ** if they are certainly different, or 2 if it is not possible to 5305 ** determine if they are identical or not. 5306 ** 5307 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5308 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5309 ** 5310 ** This routine might return non-zero for equivalent ExprLists. The 5311 ** only consequence will be disabled optimizations. But this routine 5312 ** must never return 0 if the two ExprList objects are different, or 5313 ** a malfunction will result. 5314 ** 5315 ** Two NULL pointers are considered to be the same. But a NULL pointer 5316 ** always differs from a non-NULL pointer. 5317 */ 5318 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 5319 int i; 5320 if( pA==0 && pB==0 ) return 0; 5321 if( pA==0 || pB==0 ) return 1; 5322 if( pA->nExpr!=pB->nExpr ) return 1; 5323 for(i=0; i<pA->nExpr; i++){ 5324 int res; 5325 Expr *pExprA = pA->a[i].pExpr; 5326 Expr *pExprB = pB->a[i].pExpr; 5327 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5328 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5329 } 5330 return 0; 5331 } 5332 5333 /* 5334 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5335 ** are ignored. 5336 */ 5337 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 5338 return sqlite3ExprCompare(0, 5339 sqlite3ExprSkipCollateAndLikely(pA), 5340 sqlite3ExprSkipCollateAndLikely(pB), 5341 iTab); 5342 } 5343 5344 /* 5345 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5346 ** 5347 ** Or if seenNot is true, return non-zero if Expr p can only be 5348 ** non-NULL if pNN is not NULL 5349 */ 5350 static int exprImpliesNotNull( 5351 Parse *pParse, /* Parsing context */ 5352 Expr *p, /* The expression to be checked */ 5353 Expr *pNN, /* The expression that is NOT NULL */ 5354 int iTab, /* Table being evaluated */ 5355 int seenNot /* Return true only if p can be any non-NULL value */ 5356 ){ 5357 assert( p ); 5358 assert( pNN ); 5359 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5360 return pNN->op!=TK_NULL; 5361 } 5362 switch( p->op ){ 5363 case TK_IN: { 5364 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5365 assert( ExprHasProperty(p,EP_xIsSelect) 5366 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5367 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5368 } 5369 case TK_BETWEEN: { 5370 ExprList *pList = p->x.pList; 5371 assert( pList!=0 ); 5372 assert( pList->nExpr==2 ); 5373 if( seenNot ) return 0; 5374 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5375 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5376 ){ 5377 return 1; 5378 } 5379 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5380 } 5381 case TK_EQ: 5382 case TK_NE: 5383 case TK_LT: 5384 case TK_LE: 5385 case TK_GT: 5386 case TK_GE: 5387 case TK_PLUS: 5388 case TK_MINUS: 5389 case TK_BITOR: 5390 case TK_LSHIFT: 5391 case TK_RSHIFT: 5392 case TK_CONCAT: 5393 seenNot = 1; 5394 /* no break */ deliberate_fall_through 5395 case TK_STAR: 5396 case TK_REM: 5397 case TK_BITAND: 5398 case TK_SLASH: { 5399 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5400 /* no break */ deliberate_fall_through 5401 } 5402 case TK_SPAN: 5403 case TK_COLLATE: 5404 case TK_UPLUS: 5405 case TK_UMINUS: { 5406 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5407 } 5408 case TK_TRUTH: { 5409 if( seenNot ) return 0; 5410 if( p->op2!=TK_IS ) return 0; 5411 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5412 } 5413 case TK_BITNOT: 5414 case TK_NOT: { 5415 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5416 } 5417 } 5418 return 0; 5419 } 5420 5421 /* 5422 ** Return true if we can prove the pE2 will always be true if pE1 is 5423 ** true. Return false if we cannot complete the proof or if pE2 might 5424 ** be false. Examples: 5425 ** 5426 ** pE1: x==5 pE2: x==5 Result: true 5427 ** pE1: x>0 pE2: x==5 Result: false 5428 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5429 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5430 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5431 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5432 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5433 ** 5434 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5435 ** Expr.iTable<0 then assume a table number given by iTab. 5436 ** 5437 ** If pParse is not NULL, then the values of bound variables in pE1 are 5438 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5439 ** modified to record which bound variables are referenced. If pParse 5440 ** is NULL, then false will be returned if pE1 contains any bound variables. 5441 ** 5442 ** When in doubt, return false. Returning true might give a performance 5443 ** improvement. Returning false might cause a performance reduction, but 5444 ** it will always give the correct answer and is hence always safe. 5445 */ 5446 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5447 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5448 return 1; 5449 } 5450 if( pE2->op==TK_OR 5451 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5452 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5453 ){ 5454 return 1; 5455 } 5456 if( pE2->op==TK_NOTNULL 5457 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5458 ){ 5459 return 1; 5460 } 5461 return 0; 5462 } 5463 5464 /* 5465 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5466 ** If the expression node requires that the table at pWalker->iCur 5467 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5468 ** 5469 ** This routine controls an optimization. False positives (setting 5470 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5471 ** (never setting pWalker->eCode) is a harmless missed optimization. 5472 */ 5473 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5474 testcase( pExpr->op==TK_AGG_COLUMN ); 5475 testcase( pExpr->op==TK_AGG_FUNCTION ); 5476 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5477 switch( pExpr->op ){ 5478 case TK_ISNOT: 5479 case TK_ISNULL: 5480 case TK_NOTNULL: 5481 case TK_IS: 5482 case TK_OR: 5483 case TK_VECTOR: 5484 case TK_CASE: 5485 case TK_IN: 5486 case TK_FUNCTION: 5487 case TK_TRUTH: 5488 testcase( pExpr->op==TK_ISNOT ); 5489 testcase( pExpr->op==TK_ISNULL ); 5490 testcase( pExpr->op==TK_NOTNULL ); 5491 testcase( pExpr->op==TK_IS ); 5492 testcase( pExpr->op==TK_OR ); 5493 testcase( pExpr->op==TK_VECTOR ); 5494 testcase( pExpr->op==TK_CASE ); 5495 testcase( pExpr->op==TK_IN ); 5496 testcase( pExpr->op==TK_FUNCTION ); 5497 testcase( pExpr->op==TK_TRUTH ); 5498 return WRC_Prune; 5499 case TK_COLUMN: 5500 if( pWalker->u.iCur==pExpr->iTable ){ 5501 pWalker->eCode = 1; 5502 return WRC_Abort; 5503 } 5504 return WRC_Prune; 5505 5506 case TK_AND: 5507 if( pWalker->eCode==0 ){ 5508 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5509 if( pWalker->eCode ){ 5510 pWalker->eCode = 0; 5511 sqlite3WalkExpr(pWalker, pExpr->pRight); 5512 } 5513 } 5514 return WRC_Prune; 5515 5516 case TK_BETWEEN: 5517 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5518 assert( pWalker->eCode ); 5519 return WRC_Abort; 5520 } 5521 return WRC_Prune; 5522 5523 /* Virtual tables are allowed to use constraints like x=NULL. So 5524 ** a term of the form x=y does not prove that y is not null if x 5525 ** is the column of a virtual table */ 5526 case TK_EQ: 5527 case TK_NE: 5528 case TK_LT: 5529 case TK_LE: 5530 case TK_GT: 5531 case TK_GE: { 5532 Expr *pLeft = pExpr->pLeft; 5533 Expr *pRight = pExpr->pRight; 5534 testcase( pExpr->op==TK_EQ ); 5535 testcase( pExpr->op==TK_NE ); 5536 testcase( pExpr->op==TK_LT ); 5537 testcase( pExpr->op==TK_LE ); 5538 testcase( pExpr->op==TK_GT ); 5539 testcase( pExpr->op==TK_GE ); 5540 /* The y.pTab=0 assignment in wherecode.c always happens after the 5541 ** impliesNotNullRow() test */ 5542 if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0) 5543 && IsVirtual(pLeft->y.pTab)) 5544 || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0) 5545 && IsVirtual(pRight->y.pTab)) 5546 ){ 5547 return WRC_Prune; 5548 } 5549 /* no break */ deliberate_fall_through 5550 } 5551 default: 5552 return WRC_Continue; 5553 } 5554 } 5555 5556 /* 5557 ** Return true (non-zero) if expression p can only be true if at least 5558 ** one column of table iTab is non-null. In other words, return true 5559 ** if expression p will always be NULL or false if every column of iTab 5560 ** is NULL. 5561 ** 5562 ** False negatives are acceptable. In other words, it is ok to return 5563 ** zero even if expression p will never be true of every column of iTab 5564 ** is NULL. A false negative is merely a missed optimization opportunity. 5565 ** 5566 ** False positives are not allowed, however. A false positive may result 5567 ** in an incorrect answer. 5568 ** 5569 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5570 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5571 ** 5572 ** This routine is used to check if a LEFT JOIN can be converted into 5573 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5574 ** clause requires that some column of the right table of the LEFT JOIN 5575 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5576 ** ordinary join. 5577 */ 5578 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5579 Walker w; 5580 p = sqlite3ExprSkipCollateAndLikely(p); 5581 if( p==0 ) return 0; 5582 if( p->op==TK_NOTNULL ){ 5583 p = p->pLeft; 5584 }else{ 5585 while( p->op==TK_AND ){ 5586 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5587 p = p->pRight; 5588 } 5589 } 5590 w.xExprCallback = impliesNotNullRow; 5591 w.xSelectCallback = 0; 5592 w.xSelectCallback2 = 0; 5593 w.eCode = 0; 5594 w.u.iCur = iTab; 5595 sqlite3WalkExpr(&w, p); 5596 return w.eCode; 5597 } 5598 5599 /* 5600 ** An instance of the following structure is used by the tree walker 5601 ** to determine if an expression can be evaluated by reference to the 5602 ** index only, without having to do a search for the corresponding 5603 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5604 ** is the cursor for the table. 5605 */ 5606 struct IdxCover { 5607 Index *pIdx; /* The index to be tested for coverage */ 5608 int iCur; /* Cursor number for the table corresponding to the index */ 5609 }; 5610 5611 /* 5612 ** Check to see if there are references to columns in table 5613 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5614 ** pWalker->u.pIdxCover->pIdx. 5615 */ 5616 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5617 if( pExpr->op==TK_COLUMN 5618 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5619 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5620 ){ 5621 pWalker->eCode = 1; 5622 return WRC_Abort; 5623 } 5624 return WRC_Continue; 5625 } 5626 5627 /* 5628 ** Determine if an index pIdx on table with cursor iCur contains will 5629 ** the expression pExpr. Return true if the index does cover the 5630 ** expression and false if the pExpr expression references table columns 5631 ** that are not found in the index pIdx. 5632 ** 5633 ** An index covering an expression means that the expression can be 5634 ** evaluated using only the index and without having to lookup the 5635 ** corresponding table entry. 5636 */ 5637 int sqlite3ExprCoveredByIndex( 5638 Expr *pExpr, /* The index to be tested */ 5639 int iCur, /* The cursor number for the corresponding table */ 5640 Index *pIdx /* The index that might be used for coverage */ 5641 ){ 5642 Walker w; 5643 struct IdxCover xcov; 5644 memset(&w, 0, sizeof(w)); 5645 xcov.iCur = iCur; 5646 xcov.pIdx = pIdx; 5647 w.xExprCallback = exprIdxCover; 5648 w.u.pIdxCover = &xcov; 5649 sqlite3WalkExpr(&w, pExpr); 5650 return !w.eCode; 5651 } 5652 5653 5654 /* 5655 ** An instance of the following structure is used by the tree walker 5656 ** to count references to table columns in the arguments of an 5657 ** aggregate function, in order to implement the 5658 ** sqlite3FunctionThisSrc() routine. 5659 */ 5660 struct SrcCount { 5661 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5662 int iSrcInner; /* Smallest cursor number in this context */ 5663 int nThis; /* Number of references to columns in pSrcList */ 5664 int nOther; /* Number of references to columns in other FROM clauses */ 5665 }; 5666 5667 /* 5668 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first 5669 ** SELECT with a FROM clause encountered during this iteration, set 5670 ** SrcCount.iSrcInner to the cursor number of the leftmost object in 5671 ** the FROM cause. 5672 */ 5673 static int selectSrcCount(Walker *pWalker, Select *pSel){ 5674 struct SrcCount *p = pWalker->u.pSrcCount; 5675 if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){ 5676 pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor; 5677 } 5678 return WRC_Continue; 5679 } 5680 5681 /* 5682 ** Count the number of references to columns. 5683 */ 5684 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5685 /* There was once a NEVER() on the second term on the grounds that 5686 ** sqlite3FunctionUsesThisSrc() was always called before 5687 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet 5688 ** been converted into TK_AGG_COLUMN. But this is no longer true due 5689 ** to window functions - sqlite3WindowRewrite() may now indirectly call 5690 ** FunctionUsesThisSrc() when creating a new sub-select. */ 5691 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 5692 int i; 5693 struct SrcCount *p = pWalker->u.pSrcCount; 5694 SrcList *pSrc = p->pSrc; 5695 int nSrc = pSrc ? pSrc->nSrc : 0; 5696 for(i=0; i<nSrc; i++){ 5697 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5698 } 5699 if( i<nSrc ){ 5700 p->nThis++; 5701 }else if( pExpr->iTable<p->iSrcInner ){ 5702 /* In a well-formed parse tree (no name resolution errors), 5703 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5704 ** outer context. Those are the only ones to count as "other" */ 5705 p->nOther++; 5706 } 5707 } 5708 return WRC_Continue; 5709 } 5710 5711 /* 5712 ** Determine if any of the arguments to the pExpr Function reference 5713 ** pSrcList. Return true if they do. Also return true if the function 5714 ** has no arguments or has only constant arguments. Return false if pExpr 5715 ** references columns but not columns of tables found in pSrcList. 5716 */ 5717 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5718 Walker w; 5719 struct SrcCount cnt; 5720 assert( pExpr->op==TK_AGG_FUNCTION ); 5721 memset(&w, 0, sizeof(w)); 5722 w.xExprCallback = exprSrcCount; 5723 w.xSelectCallback = selectSrcCount; 5724 w.u.pSrcCount = &cnt; 5725 cnt.pSrc = pSrcList; 5726 cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF; 5727 cnt.nThis = 0; 5728 cnt.nOther = 0; 5729 sqlite3WalkExprList(&w, pExpr->x.pList); 5730 #ifndef SQLITE_OMIT_WINDOWFUNC 5731 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5732 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5733 } 5734 #endif 5735 return cnt.nThis>0 || cnt.nOther==0; 5736 } 5737 5738 /* 5739 ** This is a Walker expression node callback. 5740 ** 5741 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 5742 ** object that is referenced does not refer directly to the Expr. If 5743 ** it does, make a copy. This is done because the pExpr argument is 5744 ** subject to change. 5745 ** 5746 ** The copy is stored on pParse->pConstExpr with a register number of 0. 5747 ** This will cause the expression to be deleted automatically when the 5748 ** Parse object is destroyed, but the zero register number means that it 5749 ** will not generate any code in the preamble. 5750 */ 5751 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 5752 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 5753 && pExpr->pAggInfo!=0 5754 ){ 5755 AggInfo *pAggInfo = pExpr->pAggInfo; 5756 int iAgg = pExpr->iAgg; 5757 Parse *pParse = pWalker->pParse; 5758 sqlite3 *db = pParse->db; 5759 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 5760 if( pExpr->op==TK_AGG_COLUMN ){ 5761 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 5762 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 5763 pExpr = sqlite3ExprDup(db, pExpr, 0); 5764 if( pExpr ){ 5765 pAggInfo->aCol[iAgg].pCExpr = pExpr; 5766 pParse->pConstExpr = 5767 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 5768 } 5769 } 5770 }else{ 5771 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 5772 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 5773 pExpr = sqlite3ExprDup(db, pExpr, 0); 5774 if( pExpr ){ 5775 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 5776 pParse->pConstExpr = 5777 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 5778 } 5779 } 5780 } 5781 } 5782 return WRC_Continue; 5783 } 5784 5785 /* 5786 ** Initialize a Walker object so that will persist AggInfo entries referenced 5787 ** by the tree that is walked. 5788 */ 5789 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 5790 memset(pWalker, 0, sizeof(*pWalker)); 5791 pWalker->pParse = pParse; 5792 pWalker->xExprCallback = agginfoPersistExprCb; 5793 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 5794 } 5795 5796 /* 5797 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5798 ** the new element. Return a negative number if malloc fails. 5799 */ 5800 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5801 int i; 5802 pInfo->aCol = sqlite3ArrayAllocate( 5803 db, 5804 pInfo->aCol, 5805 sizeof(pInfo->aCol[0]), 5806 &pInfo->nColumn, 5807 &i 5808 ); 5809 return i; 5810 } 5811 5812 /* 5813 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5814 ** the new element. Return a negative number if malloc fails. 5815 */ 5816 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5817 int i; 5818 pInfo->aFunc = sqlite3ArrayAllocate( 5819 db, 5820 pInfo->aFunc, 5821 sizeof(pInfo->aFunc[0]), 5822 &pInfo->nFunc, 5823 &i 5824 ); 5825 return i; 5826 } 5827 5828 /* 5829 ** This is the xExprCallback for a tree walker. It is used to 5830 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5831 ** for additional information. 5832 */ 5833 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5834 int i; 5835 NameContext *pNC = pWalker->u.pNC; 5836 Parse *pParse = pNC->pParse; 5837 SrcList *pSrcList = pNC->pSrcList; 5838 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5839 5840 assert( pNC->ncFlags & NC_UAggInfo ); 5841 switch( pExpr->op ){ 5842 case TK_AGG_COLUMN: 5843 case TK_COLUMN: { 5844 testcase( pExpr->op==TK_AGG_COLUMN ); 5845 testcase( pExpr->op==TK_COLUMN ); 5846 /* Check to see if the column is in one of the tables in the FROM 5847 ** clause of the aggregate query */ 5848 if( ALWAYS(pSrcList!=0) ){ 5849 struct SrcList_item *pItem = pSrcList->a; 5850 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5851 struct AggInfo_col *pCol; 5852 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5853 if( pExpr->iTable==pItem->iCursor ){ 5854 /* If we reach this point, it means that pExpr refers to a table 5855 ** that is in the FROM clause of the aggregate query. 5856 ** 5857 ** Make an entry for the column in pAggInfo->aCol[] if there 5858 ** is not an entry there already. 5859 */ 5860 int k; 5861 pCol = pAggInfo->aCol; 5862 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5863 if( pCol->iTable==pExpr->iTable && 5864 pCol->iColumn==pExpr->iColumn ){ 5865 break; 5866 } 5867 } 5868 if( (k>=pAggInfo->nColumn) 5869 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5870 ){ 5871 pCol = &pAggInfo->aCol[k]; 5872 pCol->pTab = pExpr->y.pTab; 5873 pCol->iTable = pExpr->iTable; 5874 pCol->iColumn = pExpr->iColumn; 5875 pCol->iMem = ++pParse->nMem; 5876 pCol->iSorterColumn = -1; 5877 pCol->pCExpr = pExpr; 5878 if( pAggInfo->pGroupBy ){ 5879 int j, n; 5880 ExprList *pGB = pAggInfo->pGroupBy; 5881 struct ExprList_item *pTerm = pGB->a; 5882 n = pGB->nExpr; 5883 for(j=0; j<n; j++, pTerm++){ 5884 Expr *pE = pTerm->pExpr; 5885 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5886 pE->iColumn==pExpr->iColumn ){ 5887 pCol->iSorterColumn = j; 5888 break; 5889 } 5890 } 5891 } 5892 if( pCol->iSorterColumn<0 ){ 5893 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5894 } 5895 } 5896 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5897 ** because it was there before or because we just created it). 5898 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5899 ** pAggInfo->aCol[] entry. 5900 */ 5901 ExprSetVVAProperty(pExpr, EP_NoReduce); 5902 pExpr->pAggInfo = pAggInfo; 5903 pExpr->op = TK_AGG_COLUMN; 5904 pExpr->iAgg = (i16)k; 5905 break; 5906 } /* endif pExpr->iTable==pItem->iCursor */ 5907 } /* end loop over pSrcList */ 5908 } 5909 return WRC_Prune; 5910 } 5911 case TK_AGG_FUNCTION: { 5912 if( (pNC->ncFlags & NC_InAggFunc)==0 5913 && pWalker->walkerDepth==pExpr->op2 5914 ){ 5915 /* Check to see if pExpr is a duplicate of another aggregate 5916 ** function that is already in the pAggInfo structure 5917 */ 5918 struct AggInfo_func *pItem = pAggInfo->aFunc; 5919 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5920 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 5921 break; 5922 } 5923 } 5924 if( i>=pAggInfo->nFunc ){ 5925 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5926 */ 5927 u8 enc = ENC(pParse->db); 5928 i = addAggInfoFunc(pParse->db, pAggInfo); 5929 if( i>=0 ){ 5930 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5931 pItem = &pAggInfo->aFunc[i]; 5932 pItem->pFExpr = pExpr; 5933 pItem->iMem = ++pParse->nMem; 5934 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5935 pItem->pFunc = sqlite3FindFunction(pParse->db, 5936 pExpr->u.zToken, 5937 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5938 if( pExpr->flags & EP_Distinct ){ 5939 pItem->iDistinct = pParse->nTab++; 5940 }else{ 5941 pItem->iDistinct = -1; 5942 } 5943 } 5944 } 5945 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5946 */ 5947 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5948 ExprSetVVAProperty(pExpr, EP_NoReduce); 5949 pExpr->iAgg = (i16)i; 5950 pExpr->pAggInfo = pAggInfo; 5951 return WRC_Prune; 5952 }else{ 5953 return WRC_Continue; 5954 } 5955 } 5956 } 5957 return WRC_Continue; 5958 } 5959 5960 /* 5961 ** Analyze the pExpr expression looking for aggregate functions and 5962 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5963 ** points to. Additional entries are made on the AggInfo object as 5964 ** necessary. 5965 ** 5966 ** This routine should only be called after the expression has been 5967 ** analyzed by sqlite3ResolveExprNames(). 5968 */ 5969 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5970 Walker w; 5971 w.xExprCallback = analyzeAggregate; 5972 w.xSelectCallback = sqlite3WalkerDepthIncrease; 5973 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 5974 w.walkerDepth = 0; 5975 w.u.pNC = pNC; 5976 w.pParse = 0; 5977 assert( pNC->pSrcList!=0 ); 5978 sqlite3WalkExpr(&w, pExpr); 5979 } 5980 5981 /* 5982 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5983 ** expression list. Return the number of errors. 5984 ** 5985 ** If an error is found, the analysis is cut short. 5986 */ 5987 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5988 struct ExprList_item *pItem; 5989 int i; 5990 if( pList ){ 5991 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5992 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5993 } 5994 } 5995 } 5996 5997 /* 5998 ** Allocate a single new register for use to hold some intermediate result. 5999 */ 6000 int sqlite3GetTempReg(Parse *pParse){ 6001 if( pParse->nTempReg==0 ){ 6002 return ++pParse->nMem; 6003 } 6004 return pParse->aTempReg[--pParse->nTempReg]; 6005 } 6006 6007 /* 6008 ** Deallocate a register, making available for reuse for some other 6009 ** purpose. 6010 */ 6011 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6012 if( iReg ){ 6013 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6014 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6015 pParse->aTempReg[pParse->nTempReg++] = iReg; 6016 } 6017 } 6018 } 6019 6020 /* 6021 ** Allocate or deallocate a block of nReg consecutive registers. 6022 */ 6023 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6024 int i, n; 6025 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6026 i = pParse->iRangeReg; 6027 n = pParse->nRangeReg; 6028 if( nReg<=n ){ 6029 pParse->iRangeReg += nReg; 6030 pParse->nRangeReg -= nReg; 6031 }else{ 6032 i = pParse->nMem+1; 6033 pParse->nMem += nReg; 6034 } 6035 return i; 6036 } 6037 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6038 if( nReg==1 ){ 6039 sqlite3ReleaseTempReg(pParse, iReg); 6040 return; 6041 } 6042 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6043 if( nReg>pParse->nRangeReg ){ 6044 pParse->nRangeReg = nReg; 6045 pParse->iRangeReg = iReg; 6046 } 6047 } 6048 6049 /* 6050 ** Mark all temporary registers as being unavailable for reuse. 6051 ** 6052 ** Always invoke this procedure after coding a subroutine or co-routine 6053 ** that might be invoked from other parts of the code, to ensure that 6054 ** the sub/co-routine does not use registers in common with the code that 6055 ** invokes the sub/co-routine. 6056 */ 6057 void sqlite3ClearTempRegCache(Parse *pParse){ 6058 pParse->nTempReg = 0; 6059 pParse->nRangeReg = 0; 6060 } 6061 6062 /* 6063 ** Validate that no temporary register falls within the range of 6064 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6065 ** statements. 6066 */ 6067 #ifdef SQLITE_DEBUG 6068 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6069 int i; 6070 if( pParse->nRangeReg>0 6071 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6072 && pParse->iRangeReg <= iLast 6073 ){ 6074 return 0; 6075 } 6076 for(i=0; i<pParse->nTempReg; i++){ 6077 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6078 return 0; 6079 } 6080 } 6081 return 1; 6082 } 6083 #endif /* SQLITE_DEBUG */ 6084