xref: /sqlite-3.40.0/src/expr.c (revision 7ac2ee0a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(Expr *pExpr){
46   int op;
47   pExpr = sqlite3ExprSkipCollate(pExpr);
48   if( pExpr->flags & EP_Generic ) return 0;
49   op = pExpr->op;
50   if( op==TK_SELECT ){
51     assert( pExpr->flags&EP_xIsSelect );
52     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
53   }
54   if( op==TK_REGISTER ) op = pExpr->op2;
55 #ifndef SQLITE_OMIT_CAST
56   if( op==TK_CAST ){
57     assert( !ExprHasProperty(pExpr, EP_IntValue) );
58     return sqlite3AffinityType(pExpr->u.zToken, 0);
59   }
60 #endif
61   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){
62     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
63   }
64   if( op==TK_SELECT_COLUMN ){
65     assert( pExpr->pLeft->flags&EP_xIsSelect );
66     return sqlite3ExprAffinity(
67         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
68     );
69   }
70   return pExpr->affinity;
71 }
72 
73 /*
74 ** Set the collating sequence for expression pExpr to be the collating
75 ** sequence named by pToken.   Return a pointer to a new Expr node that
76 ** implements the COLLATE operator.
77 **
78 ** If a memory allocation error occurs, that fact is recorded in pParse->db
79 ** and the pExpr parameter is returned unchanged.
80 */
81 Expr *sqlite3ExprAddCollateToken(
82   Parse *pParse,           /* Parsing context */
83   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
84   const Token *pCollName,  /* Name of collating sequence */
85   int dequote              /* True to dequote pCollName */
86 ){
87   if( pCollName->n>0 ){
88     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
89     if( pNew ){
90       pNew->pLeft = pExpr;
91       pNew->flags |= EP_Collate|EP_Skip;
92       pExpr = pNew;
93     }
94   }
95   return pExpr;
96 }
97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
98   Token s;
99   assert( zC!=0 );
100   sqlite3TokenInit(&s, (char*)zC);
101   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
102 }
103 
104 /*
105 ** Skip over any TK_COLLATE operators and any unlikely()
106 ** or likelihood() function at the root of an expression.
107 */
108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
109   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
110     if( ExprHasProperty(pExpr, EP_Unlikely) ){
111       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
112       assert( pExpr->x.pList->nExpr>0 );
113       assert( pExpr->op==TK_FUNCTION );
114       pExpr = pExpr->x.pList->a[0].pExpr;
115     }else{
116       assert( pExpr->op==TK_COLLATE );
117       pExpr = pExpr->pLeft;
118     }
119   }
120   return pExpr;
121 }
122 
123 /*
124 ** Return the collation sequence for the expression pExpr. If
125 ** there is no defined collating sequence, return NULL.
126 **
127 ** See also: sqlite3ExprNNCollSeq()
128 **
129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
130 ** default collation if pExpr has no defined collation.
131 **
132 ** The collating sequence might be determined by a COLLATE operator
133 ** or by the presence of a column with a defined collating sequence.
134 ** COLLATE operators take first precedence.  Left operands take
135 ** precedence over right operands.
136 */
137 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
138   sqlite3 *db = pParse->db;
139   CollSeq *pColl = 0;
140   Expr *p = pExpr;
141   while( p ){
142     int op = p->op;
143     if( p->flags & EP_Generic ) break;
144     if( op==TK_REGISTER ) op = p->op2;
145     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
146      && p->y.pTab!=0
147     ){
148       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
149       ** a TK_COLUMN but was previously evaluated and cached in a register */
150       int j = p->iColumn;
151       if( j>=0 ){
152         const char *zColl = p->y.pTab->aCol[j].zColl;
153         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
154       }
155       break;
156     }
157     if( op==TK_CAST || op==TK_UPLUS ){
158       p = p->pLeft;
159       continue;
160     }
161     if( op==TK_COLLATE ){
162       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
163       break;
164     }
165     if( p->flags & EP_Collate ){
166       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
167         p = p->pLeft;
168       }else{
169         Expr *pNext  = p->pRight;
170         /* The Expr.x union is never used at the same time as Expr.pRight */
171         assert( p->x.pList==0 || p->pRight==0 );
172         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
173         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
174         ** least one EP_Collate. Thus the following two ALWAYS. */
175         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
176           int i;
177           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
178             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
179               pNext = p->x.pList->a[i].pExpr;
180               break;
181             }
182           }
183         }
184         p = pNext;
185       }
186     }else{
187       break;
188     }
189   }
190   if( sqlite3CheckCollSeq(pParse, pColl) ){
191     pColl = 0;
192   }
193   return pColl;
194 }
195 
196 /*
197 ** Return the collation sequence for the expression pExpr. If
198 ** there is no defined collating sequence, return a pointer to the
199 ** defautl collation sequence.
200 **
201 ** See also: sqlite3ExprCollSeq()
202 **
203 ** The sqlite3ExprCollSeq() routine works the same except that it
204 ** returns NULL if there is no defined collation.
205 */
206 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){
207   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
208   if( p==0 ) p = pParse->db->pDfltColl;
209   assert( p!=0 );
210   return p;
211 }
212 
213 /*
214 ** Return TRUE if the two expressions have equivalent collating sequences.
215 */
216 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){
217   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
218   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
219   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
220 }
221 
222 /*
223 ** pExpr is an operand of a comparison operator.  aff2 is the
224 ** type affinity of the other operand.  This routine returns the
225 ** type affinity that should be used for the comparison operator.
226 */
227 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
228   char aff1 = sqlite3ExprAffinity(pExpr);
229   if( aff1 && aff2 ){
230     /* Both sides of the comparison are columns. If one has numeric
231     ** affinity, use that. Otherwise use no affinity.
232     */
233     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
234       return SQLITE_AFF_NUMERIC;
235     }else{
236       return SQLITE_AFF_BLOB;
237     }
238   }else if( !aff1 && !aff2 ){
239     /* Neither side of the comparison is a column.  Compare the
240     ** results directly.
241     */
242     return SQLITE_AFF_BLOB;
243   }else{
244     /* One side is a column, the other is not. Use the columns affinity. */
245     assert( aff1==0 || aff2==0 );
246     return (aff1 + aff2);
247   }
248 }
249 
250 /*
251 ** pExpr is a comparison operator.  Return the type affinity that should
252 ** be applied to both operands prior to doing the comparison.
253 */
254 static char comparisonAffinity(Expr *pExpr){
255   char aff;
256   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
257           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
258           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
259   assert( pExpr->pLeft );
260   aff = sqlite3ExprAffinity(pExpr->pLeft);
261   if( pExpr->pRight ){
262     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
263   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
264     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
265   }else if( aff==0 ){
266     aff = SQLITE_AFF_BLOB;
267   }
268   return aff;
269 }
270 
271 /*
272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
273 ** idx_affinity is the affinity of an indexed column. Return true
274 ** if the index with affinity idx_affinity may be used to implement
275 ** the comparison in pExpr.
276 */
277 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
278   char aff = comparisonAffinity(pExpr);
279   switch( aff ){
280     case SQLITE_AFF_BLOB:
281       return 1;
282     case SQLITE_AFF_TEXT:
283       return idx_affinity==SQLITE_AFF_TEXT;
284     default:
285       return sqlite3IsNumericAffinity(idx_affinity);
286   }
287 }
288 
289 /*
290 ** Return the P5 value that should be used for a binary comparison
291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
292 */
293 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
294   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
295   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
296   return aff;
297 }
298 
299 /*
300 ** Return a pointer to the collation sequence that should be used by
301 ** a binary comparison operator comparing pLeft and pRight.
302 **
303 ** If the left hand expression has a collating sequence type, then it is
304 ** used. Otherwise the collation sequence for the right hand expression
305 ** is used, or the default (BINARY) if neither expression has a collating
306 ** type.
307 **
308 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
309 ** it is not considered.
310 */
311 CollSeq *sqlite3BinaryCompareCollSeq(
312   Parse *pParse,
313   Expr *pLeft,
314   Expr *pRight
315 ){
316   CollSeq *pColl;
317   assert( pLeft );
318   if( pLeft->flags & EP_Collate ){
319     pColl = sqlite3ExprCollSeq(pParse, pLeft);
320   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
321     pColl = sqlite3ExprCollSeq(pParse, pRight);
322   }else{
323     pColl = sqlite3ExprCollSeq(pParse, pLeft);
324     if( !pColl ){
325       pColl = sqlite3ExprCollSeq(pParse, pRight);
326     }
327   }
328   return pColl;
329 }
330 
331 /*
332 ** Generate code for a comparison operator.
333 */
334 static int codeCompare(
335   Parse *pParse,    /* The parsing (and code generating) context */
336   Expr *pLeft,      /* The left operand */
337   Expr *pRight,     /* The right operand */
338   int opcode,       /* The comparison opcode */
339   int in1, int in2, /* Register holding operands */
340   int dest,         /* Jump here if true.  */
341   int jumpIfNull    /* If true, jump if either operand is NULL */
342 ){
343   int p5;
344   int addr;
345   CollSeq *p4;
346 
347   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
348   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
349   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
350                            (void*)p4, P4_COLLSEQ);
351   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
352   return addr;
353 }
354 
355 /*
356 ** Return true if expression pExpr is a vector, or false otherwise.
357 **
358 ** A vector is defined as any expression that results in two or more
359 ** columns of result.  Every TK_VECTOR node is an vector because the
360 ** parser will not generate a TK_VECTOR with fewer than two entries.
361 ** But a TK_SELECT might be either a vector or a scalar. It is only
362 ** considered a vector if it has two or more result columns.
363 */
364 int sqlite3ExprIsVector(Expr *pExpr){
365   return sqlite3ExprVectorSize(pExpr)>1;
366 }
367 
368 /*
369 ** If the expression passed as the only argument is of type TK_VECTOR
370 ** return the number of expressions in the vector. Or, if the expression
371 ** is a sub-select, return the number of columns in the sub-select. For
372 ** any other type of expression, return 1.
373 */
374 int sqlite3ExprVectorSize(Expr *pExpr){
375   u8 op = pExpr->op;
376   if( op==TK_REGISTER ) op = pExpr->op2;
377   if( op==TK_VECTOR ){
378     return pExpr->x.pList->nExpr;
379   }else if( op==TK_SELECT ){
380     return pExpr->x.pSelect->pEList->nExpr;
381   }else{
382     return 1;
383   }
384 }
385 
386 /*
387 ** Return a pointer to a subexpression of pVector that is the i-th
388 ** column of the vector (numbered starting with 0).  The caller must
389 ** ensure that i is within range.
390 **
391 ** If pVector is really a scalar (and "scalar" here includes subqueries
392 ** that return a single column!) then return pVector unmodified.
393 **
394 ** pVector retains ownership of the returned subexpression.
395 **
396 ** If the vector is a (SELECT ...) then the expression returned is
397 ** just the expression for the i-th term of the result set, and may
398 ** not be ready for evaluation because the table cursor has not yet
399 ** been positioned.
400 */
401 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
402   assert( i<sqlite3ExprVectorSize(pVector) );
403   if( sqlite3ExprIsVector(pVector) ){
404     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
405     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
406       return pVector->x.pSelect->pEList->a[i].pExpr;
407     }else{
408       return pVector->x.pList->a[i].pExpr;
409     }
410   }
411   return pVector;
412 }
413 
414 /*
415 ** Compute and return a new Expr object which when passed to
416 ** sqlite3ExprCode() will generate all necessary code to compute
417 ** the iField-th column of the vector expression pVector.
418 **
419 ** It is ok for pVector to be a scalar (as long as iField==0).
420 ** In that case, this routine works like sqlite3ExprDup().
421 **
422 ** The caller owns the returned Expr object and is responsible for
423 ** ensuring that the returned value eventually gets freed.
424 **
425 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
426 ** then the returned object will reference pVector and so pVector must remain
427 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
428 ** or a scalar expression, then it can be deleted as soon as this routine
429 ** returns.
430 **
431 ** A trick to cause a TK_SELECT pVector to be deleted together with
432 ** the returned Expr object is to attach the pVector to the pRight field
433 ** of the returned TK_SELECT_COLUMN Expr object.
434 */
435 Expr *sqlite3ExprForVectorField(
436   Parse *pParse,       /* Parsing context */
437   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
438   int iField           /* Which column of the vector to return */
439 ){
440   Expr *pRet;
441   if( pVector->op==TK_SELECT ){
442     assert( pVector->flags & EP_xIsSelect );
443     /* The TK_SELECT_COLUMN Expr node:
444     **
445     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
446     ** pRight:          not used.  But recursively deleted.
447     ** iColumn:         Index of a column in pVector
448     ** iTable:          0 or the number of columns on the LHS of an assignment
449     ** pLeft->iTable:   First in an array of register holding result, or 0
450     **                  if the result is not yet computed.
451     **
452     ** sqlite3ExprDelete() specifically skips the recursive delete of
453     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
454     ** can be attached to pRight to cause this node to take ownership of
455     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
456     ** with the same pLeft pointer to the pVector, but only one of them
457     ** will own the pVector.
458     */
459     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
460     if( pRet ){
461       pRet->iColumn = iField;
462       pRet->pLeft = pVector;
463     }
464     assert( pRet==0 || pRet->iTable==0 );
465   }else{
466     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
467     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
468     sqlite3RenameTokenRemap(pParse, pRet, pVector);
469   }
470   return pRet;
471 }
472 
473 /*
474 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
475 ** it. Return the register in which the result is stored (or, if the
476 ** sub-select returns more than one column, the first in an array
477 ** of registers in which the result is stored).
478 **
479 ** If pExpr is not a TK_SELECT expression, return 0.
480 */
481 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
482   int reg = 0;
483 #ifndef SQLITE_OMIT_SUBQUERY
484   if( pExpr->op==TK_SELECT ){
485     reg = sqlite3CodeSubselect(pParse, pExpr);
486   }
487 #endif
488   return reg;
489 }
490 
491 /*
492 ** Argument pVector points to a vector expression - either a TK_VECTOR
493 ** or TK_SELECT that returns more than one column. This function returns
494 ** the register number of a register that contains the value of
495 ** element iField of the vector.
496 **
497 ** If pVector is a TK_SELECT expression, then code for it must have
498 ** already been generated using the exprCodeSubselect() routine. In this
499 ** case parameter regSelect should be the first in an array of registers
500 ** containing the results of the sub-select.
501 **
502 ** If pVector is of type TK_VECTOR, then code for the requested field
503 ** is generated. In this case (*pRegFree) may be set to the number of
504 ** a temporary register to be freed by the caller before returning.
505 **
506 ** Before returning, output parameter (*ppExpr) is set to point to the
507 ** Expr object corresponding to element iElem of the vector.
508 */
509 static int exprVectorRegister(
510   Parse *pParse,                  /* Parse context */
511   Expr *pVector,                  /* Vector to extract element from */
512   int iField,                     /* Field to extract from pVector */
513   int regSelect,                  /* First in array of registers */
514   Expr **ppExpr,                  /* OUT: Expression element */
515   int *pRegFree                   /* OUT: Temp register to free */
516 ){
517   u8 op = pVector->op;
518   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
519   if( op==TK_REGISTER ){
520     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
521     return pVector->iTable+iField;
522   }
523   if( op==TK_SELECT ){
524     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
525      return regSelect+iField;
526   }
527   *ppExpr = pVector->x.pList->a[iField].pExpr;
528   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
529 }
530 
531 /*
532 ** Expression pExpr is a comparison between two vector values. Compute
533 ** the result of the comparison (1, 0, or NULL) and write that
534 ** result into register dest.
535 **
536 ** The caller must satisfy the following preconditions:
537 **
538 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
539 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
540 **    otherwise:                op==pExpr->op and p5==0
541 */
542 static void codeVectorCompare(
543   Parse *pParse,        /* Code generator context */
544   Expr *pExpr,          /* The comparison operation */
545   int dest,             /* Write results into this register */
546   u8 op,                /* Comparison operator */
547   u8 p5                 /* SQLITE_NULLEQ or zero */
548 ){
549   Vdbe *v = pParse->pVdbe;
550   Expr *pLeft = pExpr->pLeft;
551   Expr *pRight = pExpr->pRight;
552   int nLeft = sqlite3ExprVectorSize(pLeft);
553   int i;
554   int regLeft = 0;
555   int regRight = 0;
556   u8 opx = op;
557   int addrDone = sqlite3VdbeMakeLabel(pParse);
558 
559   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
560     sqlite3ErrorMsg(pParse, "row value misused");
561     return;
562   }
563   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
564        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
565        || pExpr->op==TK_LT || pExpr->op==TK_GT
566        || pExpr->op==TK_LE || pExpr->op==TK_GE
567   );
568   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
569             || (pExpr->op==TK_ISNOT && op==TK_NE) );
570   assert( p5==0 || pExpr->op!=op );
571   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
572 
573   p5 |= SQLITE_STOREP2;
574   if( opx==TK_LE ) opx = TK_LT;
575   if( opx==TK_GE ) opx = TK_GT;
576 
577   regLeft = exprCodeSubselect(pParse, pLeft);
578   regRight = exprCodeSubselect(pParse, pRight);
579 
580   for(i=0; 1 /*Loop exits by "break"*/; i++){
581     int regFree1 = 0, regFree2 = 0;
582     Expr *pL, *pR;
583     int r1, r2;
584     assert( i>=0 && i<nLeft );
585     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
586     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
587     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5);
588     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
589     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
590     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
591     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
592     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
593     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
594     sqlite3ReleaseTempReg(pParse, regFree1);
595     sqlite3ReleaseTempReg(pParse, regFree2);
596     if( i==nLeft-1 ){
597       break;
598     }
599     if( opx==TK_EQ ){
600       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
601       p5 |= SQLITE_KEEPNULL;
602     }else if( opx==TK_NE ){
603       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
604       p5 |= SQLITE_KEEPNULL;
605     }else{
606       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
607       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
608       VdbeCoverageIf(v, op==TK_LT);
609       VdbeCoverageIf(v, op==TK_GT);
610       VdbeCoverageIf(v, op==TK_LE);
611       VdbeCoverageIf(v, op==TK_GE);
612       if( i==nLeft-2 ) opx = op;
613     }
614   }
615   sqlite3VdbeResolveLabel(v, addrDone);
616 }
617 
618 #if SQLITE_MAX_EXPR_DEPTH>0
619 /*
620 ** Check that argument nHeight is less than or equal to the maximum
621 ** expression depth allowed. If it is not, leave an error message in
622 ** pParse.
623 */
624 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
625   int rc = SQLITE_OK;
626   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
627   if( nHeight>mxHeight ){
628     sqlite3ErrorMsg(pParse,
629        "Expression tree is too large (maximum depth %d)", mxHeight
630     );
631     rc = SQLITE_ERROR;
632   }
633   return rc;
634 }
635 
636 /* The following three functions, heightOfExpr(), heightOfExprList()
637 ** and heightOfSelect(), are used to determine the maximum height
638 ** of any expression tree referenced by the structure passed as the
639 ** first argument.
640 **
641 ** If this maximum height is greater than the current value pointed
642 ** to by pnHeight, the second parameter, then set *pnHeight to that
643 ** value.
644 */
645 static void heightOfExpr(Expr *p, int *pnHeight){
646   if( p ){
647     if( p->nHeight>*pnHeight ){
648       *pnHeight = p->nHeight;
649     }
650   }
651 }
652 static void heightOfExprList(ExprList *p, int *pnHeight){
653   if( p ){
654     int i;
655     for(i=0; i<p->nExpr; i++){
656       heightOfExpr(p->a[i].pExpr, pnHeight);
657     }
658   }
659 }
660 static void heightOfSelect(Select *pSelect, int *pnHeight){
661   Select *p;
662   for(p=pSelect; p; p=p->pPrior){
663     heightOfExpr(p->pWhere, pnHeight);
664     heightOfExpr(p->pHaving, pnHeight);
665     heightOfExpr(p->pLimit, pnHeight);
666     heightOfExprList(p->pEList, pnHeight);
667     heightOfExprList(p->pGroupBy, pnHeight);
668     heightOfExprList(p->pOrderBy, pnHeight);
669   }
670 }
671 
672 /*
673 ** Set the Expr.nHeight variable in the structure passed as an
674 ** argument. An expression with no children, Expr.pList or
675 ** Expr.pSelect member has a height of 1. Any other expression
676 ** has a height equal to the maximum height of any other
677 ** referenced Expr plus one.
678 **
679 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
680 ** if appropriate.
681 */
682 static void exprSetHeight(Expr *p){
683   int nHeight = 0;
684   heightOfExpr(p->pLeft, &nHeight);
685   heightOfExpr(p->pRight, &nHeight);
686   if( ExprHasProperty(p, EP_xIsSelect) ){
687     heightOfSelect(p->x.pSelect, &nHeight);
688   }else if( p->x.pList ){
689     heightOfExprList(p->x.pList, &nHeight);
690     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
691   }
692   p->nHeight = nHeight + 1;
693 }
694 
695 /*
696 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
697 ** the height is greater than the maximum allowed expression depth,
698 ** leave an error in pParse.
699 **
700 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
701 ** Expr.flags.
702 */
703 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
704   if( pParse->nErr ) return;
705   exprSetHeight(p);
706   sqlite3ExprCheckHeight(pParse, p->nHeight);
707 }
708 
709 /*
710 ** Return the maximum height of any expression tree referenced
711 ** by the select statement passed as an argument.
712 */
713 int sqlite3SelectExprHeight(Select *p){
714   int nHeight = 0;
715   heightOfSelect(p, &nHeight);
716   return nHeight;
717 }
718 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
719 /*
720 ** Propagate all EP_Propagate flags from the Expr.x.pList into
721 ** Expr.flags.
722 */
723 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
724   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
725     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
726   }
727 }
728 #define exprSetHeight(y)
729 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
730 
731 /*
732 ** This routine is the core allocator for Expr nodes.
733 **
734 ** Construct a new expression node and return a pointer to it.  Memory
735 ** for this node and for the pToken argument is a single allocation
736 ** obtained from sqlite3DbMalloc().  The calling function
737 ** is responsible for making sure the node eventually gets freed.
738 **
739 ** If dequote is true, then the token (if it exists) is dequoted.
740 ** If dequote is false, no dequoting is performed.  The deQuote
741 ** parameter is ignored if pToken is NULL or if the token does not
742 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
743 ** then the EP_DblQuoted flag is set on the expression node.
744 **
745 ** Special case:  If op==TK_INTEGER and pToken points to a string that
746 ** can be translated into a 32-bit integer, then the token is not
747 ** stored in u.zToken.  Instead, the integer values is written
748 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
749 ** is allocated to hold the integer text and the dequote flag is ignored.
750 */
751 Expr *sqlite3ExprAlloc(
752   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
753   int op,                 /* Expression opcode */
754   const Token *pToken,    /* Token argument.  Might be NULL */
755   int dequote             /* True to dequote */
756 ){
757   Expr *pNew;
758   int nExtra = 0;
759   int iValue = 0;
760 
761   assert( db!=0 );
762   if( pToken ){
763     if( op!=TK_INTEGER || pToken->z==0
764           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
765       nExtra = pToken->n+1;
766       assert( iValue>=0 );
767     }
768   }
769   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
770   if( pNew ){
771     memset(pNew, 0, sizeof(Expr));
772     pNew->op = (u8)op;
773     pNew->iAgg = -1;
774     if( pToken ){
775       if( nExtra==0 ){
776         pNew->flags |= EP_IntValue|EP_Leaf;
777         pNew->u.iValue = iValue;
778       }else{
779         pNew->u.zToken = (char*)&pNew[1];
780         assert( pToken->z!=0 || pToken->n==0 );
781         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
782         pNew->u.zToken[pToken->n] = 0;
783         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
784           sqlite3DequoteExpr(pNew);
785         }
786       }
787     }
788 #if SQLITE_MAX_EXPR_DEPTH>0
789     pNew->nHeight = 1;
790 #endif
791   }
792   return pNew;
793 }
794 
795 /*
796 ** Allocate a new expression node from a zero-terminated token that has
797 ** already been dequoted.
798 */
799 Expr *sqlite3Expr(
800   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
801   int op,                 /* Expression opcode */
802   const char *zToken      /* Token argument.  Might be NULL */
803 ){
804   Token x;
805   x.z = zToken;
806   x.n = sqlite3Strlen30(zToken);
807   return sqlite3ExprAlloc(db, op, &x, 0);
808 }
809 
810 /*
811 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
812 **
813 ** If pRoot==NULL that means that a memory allocation error has occurred.
814 ** In that case, delete the subtrees pLeft and pRight.
815 */
816 void sqlite3ExprAttachSubtrees(
817   sqlite3 *db,
818   Expr *pRoot,
819   Expr *pLeft,
820   Expr *pRight
821 ){
822   if( pRoot==0 ){
823     assert( db->mallocFailed );
824     sqlite3ExprDelete(db, pLeft);
825     sqlite3ExprDelete(db, pRight);
826   }else{
827     if( pRight ){
828       pRoot->pRight = pRight;
829       pRoot->flags |= EP_Propagate & pRight->flags;
830     }
831     if( pLeft ){
832       pRoot->pLeft = pLeft;
833       pRoot->flags |= EP_Propagate & pLeft->flags;
834     }
835     exprSetHeight(pRoot);
836   }
837 }
838 
839 /*
840 ** Allocate an Expr node which joins as many as two subtrees.
841 **
842 ** One or both of the subtrees can be NULL.  Return a pointer to the new
843 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
844 ** free the subtrees and return NULL.
845 */
846 Expr *sqlite3PExpr(
847   Parse *pParse,          /* Parsing context */
848   int op,                 /* Expression opcode */
849   Expr *pLeft,            /* Left operand */
850   Expr *pRight            /* Right operand */
851 ){
852   Expr *p;
853   if( op==TK_AND && pParse->nErr==0 && !IN_RENAME_OBJECT ){
854     /* Take advantage of short-circuit false optimization for AND */
855     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
856   }else{
857     p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
858     if( p ){
859       memset(p, 0, sizeof(Expr));
860       p->op = op & TKFLG_MASK;
861       p->iAgg = -1;
862     }
863     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
864   }
865   if( p ) {
866     sqlite3ExprCheckHeight(pParse, p->nHeight);
867   }
868   return p;
869 }
870 
871 /*
872 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
873 ** do a memory allocation failure) then delete the pSelect object.
874 */
875 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
876   if( pExpr ){
877     pExpr->x.pSelect = pSelect;
878     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
879     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
880   }else{
881     assert( pParse->db->mallocFailed );
882     sqlite3SelectDelete(pParse->db, pSelect);
883   }
884 }
885 
886 
887 /*
888 ** If the expression is always either TRUE or FALSE (respectively),
889 ** then return 1.  If one cannot determine the truth value of the
890 ** expression at compile-time return 0.
891 **
892 ** This is an optimization.  If is OK to return 0 here even if
893 ** the expression really is always false or false (a false negative).
894 ** But it is a bug to return 1 if the expression might have different
895 ** boolean values in different circumstances (a false positive.)
896 **
897 ** Note that if the expression is part of conditional for a
898 ** LEFT JOIN, then we cannot determine at compile-time whether or not
899 ** is it true or false, so always return 0.
900 */
901 static int exprAlwaysTrue(Expr *p){
902   int v = 0;
903   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
904   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
905   return v!=0;
906 }
907 static int exprAlwaysFalse(Expr *p){
908   int v = 0;
909   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
910   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
911   return v==0;
912 }
913 
914 /*
915 ** Join two expressions using an AND operator.  If either expression is
916 ** NULL, then just return the other expression.
917 **
918 ** If one side or the other of the AND is known to be false, then instead
919 ** of returning an AND expression, just return a constant expression with
920 ** a value of false.
921 */
922 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
923   if( pLeft==0 ){
924     return pRight;
925   }else if( pRight==0 ){
926     return pLeft;
927   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
928     sqlite3ExprDelete(db, pLeft);
929     sqlite3ExprDelete(db, pRight);
930     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
931   }else{
932     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
933     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
934     return pNew;
935   }
936 }
937 
938 /*
939 ** Construct a new expression node for a function with multiple
940 ** arguments.
941 */
942 Expr *sqlite3ExprFunction(
943   Parse *pParse,        /* Parsing context */
944   ExprList *pList,      /* Argument list */
945   Token *pToken,        /* Name of the function */
946   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
947 ){
948   Expr *pNew;
949   sqlite3 *db = pParse->db;
950   assert( pToken );
951   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
952   if( pNew==0 ){
953     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
954     return 0;
955   }
956   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
957     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
958   }
959   pNew->x.pList = pList;
960   ExprSetProperty(pNew, EP_HasFunc);
961   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
962   sqlite3ExprSetHeightAndFlags(pParse, pNew);
963   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
964   return pNew;
965 }
966 
967 /*
968 ** Assign a variable number to an expression that encodes a wildcard
969 ** in the original SQL statement.
970 **
971 ** Wildcards consisting of a single "?" are assigned the next sequential
972 ** variable number.
973 **
974 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
975 ** sure "nnn" is not too big to avoid a denial of service attack when
976 ** the SQL statement comes from an external source.
977 **
978 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
979 ** as the previous instance of the same wildcard.  Or if this is the first
980 ** instance of the wildcard, the next sequential variable number is
981 ** assigned.
982 */
983 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
984   sqlite3 *db = pParse->db;
985   const char *z;
986   ynVar x;
987 
988   if( pExpr==0 ) return;
989   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
990   z = pExpr->u.zToken;
991   assert( z!=0 );
992   assert( z[0]!=0 );
993   assert( n==(u32)sqlite3Strlen30(z) );
994   if( z[1]==0 ){
995     /* Wildcard of the form "?".  Assign the next variable number */
996     assert( z[0]=='?' );
997     x = (ynVar)(++pParse->nVar);
998   }else{
999     int doAdd = 0;
1000     if( z[0]=='?' ){
1001       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1002       ** use it as the variable number */
1003       i64 i;
1004       int bOk;
1005       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1006         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1007         bOk = 1;
1008       }else{
1009         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1010       }
1011       testcase( i==0 );
1012       testcase( i==1 );
1013       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1014       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1015       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1016         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1017             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1018         return;
1019       }
1020       x = (ynVar)i;
1021       if( x>pParse->nVar ){
1022         pParse->nVar = (int)x;
1023         doAdd = 1;
1024       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1025         doAdd = 1;
1026       }
1027     }else{
1028       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1029       ** number as the prior appearance of the same name, or if the name
1030       ** has never appeared before, reuse the same variable number
1031       */
1032       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1033       if( x==0 ){
1034         x = (ynVar)(++pParse->nVar);
1035         doAdd = 1;
1036       }
1037     }
1038     if( doAdd ){
1039       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1040     }
1041   }
1042   pExpr->iColumn = x;
1043   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1044     sqlite3ErrorMsg(pParse, "too many SQL variables");
1045   }
1046 }
1047 
1048 /*
1049 ** Recursively delete an expression tree.
1050 */
1051 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1052   assert( p!=0 );
1053   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1054   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1055 
1056   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1057   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1058           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1059 #ifdef SQLITE_DEBUG
1060   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1061     assert( p->pLeft==0 );
1062     assert( p->pRight==0 );
1063     assert( p->x.pSelect==0 );
1064   }
1065 #endif
1066   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1067     /* The Expr.x union is never used at the same time as Expr.pRight */
1068     assert( p->x.pList==0 || p->pRight==0 );
1069     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1070     if( p->pRight ){
1071       sqlite3ExprDeleteNN(db, p->pRight);
1072     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1073       sqlite3SelectDelete(db, p->x.pSelect);
1074     }else{
1075       sqlite3ExprListDelete(db, p->x.pList);
1076     }
1077     if( ExprHasProperty(p, EP_WinFunc) ){
1078       assert( p->op==TK_FUNCTION );
1079       sqlite3WindowDelete(db, p->y.pWin);
1080     }
1081   }
1082   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1083   if( !ExprHasProperty(p, EP_Static) ){
1084     sqlite3DbFreeNN(db, p);
1085   }
1086 }
1087 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1088   if( p ) sqlite3ExprDeleteNN(db, p);
1089 }
1090 
1091 /*
1092 ** Return the number of bytes allocated for the expression structure
1093 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1094 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1095 */
1096 static int exprStructSize(Expr *p){
1097   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1098   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1099   return EXPR_FULLSIZE;
1100 }
1101 
1102 /*
1103 ** Copy the complete content of an Expr node, taking care not to read
1104 ** past the end of the structure for a reduced-size version of the source
1105 ** Expr.
1106 */
1107 static void exprNodeCopy(Expr *pDest, Expr *pSrc){
1108   memset(pDest, 0, sizeof(Expr));
1109   memcpy(pDest, pSrc, exprStructSize(pSrc));
1110 }
1111 
1112 /*
1113 ** The dupedExpr*Size() routines each return the number of bytes required
1114 ** to store a copy of an expression or expression tree.  They differ in
1115 ** how much of the tree is measured.
1116 **
1117 **     dupedExprStructSize()     Size of only the Expr structure
1118 **     dupedExprNodeSize()       Size of Expr + space for token
1119 **     dupedExprSize()           Expr + token + subtree components
1120 **
1121 ***************************************************************************
1122 **
1123 ** The dupedExprStructSize() function returns two values OR-ed together:
1124 ** (1) the space required for a copy of the Expr structure only and
1125 ** (2) the EP_xxx flags that indicate what the structure size should be.
1126 ** The return values is always one of:
1127 **
1128 **      EXPR_FULLSIZE
1129 **      EXPR_REDUCEDSIZE   | EP_Reduced
1130 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1131 **
1132 ** The size of the structure can be found by masking the return value
1133 ** of this routine with 0xfff.  The flags can be found by masking the
1134 ** return value with EP_Reduced|EP_TokenOnly.
1135 **
1136 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1137 ** (unreduced) Expr objects as they or originally constructed by the parser.
1138 ** During expression analysis, extra information is computed and moved into
1139 ** later parts of the Expr object and that extra information might get chopped
1140 ** off if the expression is reduced.  Note also that it does not work to
1141 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1142 ** to reduce a pristine expression tree from the parser.  The implementation
1143 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1144 ** to enforce this constraint.
1145 */
1146 static int dupedExprStructSize(Expr *p, int flags){
1147   int nSize;
1148   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1149   assert( EXPR_FULLSIZE<=0xfff );
1150   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1151   if( 0==flags || p->op==TK_SELECT_COLUMN
1152 #ifndef SQLITE_OMIT_WINDOWFUNC
1153    || ExprHasProperty(p, EP_WinFunc)
1154 #endif
1155   ){
1156     nSize = EXPR_FULLSIZE;
1157   }else{
1158     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1159     assert( !ExprHasProperty(p, EP_FromJoin) );
1160     assert( !ExprHasProperty(p, EP_MemToken) );
1161     assert( !ExprHasProperty(p, EP_NoReduce) );
1162     if( p->pLeft || p->x.pList ){
1163       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1164     }else{
1165       assert( p->pRight==0 );
1166       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1167     }
1168   }
1169   return nSize;
1170 }
1171 
1172 /*
1173 ** This function returns the space in bytes required to store the copy
1174 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1175 ** string is defined.)
1176 */
1177 static int dupedExprNodeSize(Expr *p, int flags){
1178   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1179   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1180     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1181   }
1182   return ROUND8(nByte);
1183 }
1184 
1185 /*
1186 ** Return the number of bytes required to create a duplicate of the
1187 ** expression passed as the first argument. The second argument is a
1188 ** mask containing EXPRDUP_XXX flags.
1189 **
1190 ** The value returned includes space to create a copy of the Expr struct
1191 ** itself and the buffer referred to by Expr.u.zToken, if any.
1192 **
1193 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1194 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1195 ** and Expr.pRight variables (but not for any structures pointed to or
1196 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1197 */
1198 static int dupedExprSize(Expr *p, int flags){
1199   int nByte = 0;
1200   if( p ){
1201     nByte = dupedExprNodeSize(p, flags);
1202     if( flags&EXPRDUP_REDUCE ){
1203       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1204     }
1205   }
1206   return nByte;
1207 }
1208 
1209 /*
1210 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1211 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1212 ** to store the copy of expression p, the copies of p->u.zToken
1213 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1214 ** if any. Before returning, *pzBuffer is set to the first byte past the
1215 ** portion of the buffer copied into by this function.
1216 */
1217 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1218   Expr *pNew;           /* Value to return */
1219   u8 *zAlloc;           /* Memory space from which to build Expr object */
1220   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1221 
1222   assert( db!=0 );
1223   assert( p );
1224   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1225   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1226 
1227   /* Figure out where to write the new Expr structure. */
1228   if( pzBuffer ){
1229     zAlloc = *pzBuffer;
1230     staticFlag = EP_Static;
1231   }else{
1232     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1233     staticFlag = 0;
1234   }
1235   pNew = (Expr *)zAlloc;
1236 
1237   if( pNew ){
1238     /* Set nNewSize to the size allocated for the structure pointed to
1239     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1240     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1241     ** by the copy of the p->u.zToken string (if any).
1242     */
1243     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1244     const int nNewSize = nStructSize & 0xfff;
1245     int nToken;
1246     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1247       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1248     }else{
1249       nToken = 0;
1250     }
1251     if( dupFlags ){
1252       assert( ExprHasProperty(p, EP_Reduced)==0 );
1253       memcpy(zAlloc, p, nNewSize);
1254     }else{
1255       u32 nSize = (u32)exprStructSize(p);
1256       memcpy(zAlloc, p, nSize);
1257       if( nSize<EXPR_FULLSIZE ){
1258         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1259       }
1260     }
1261 
1262     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1263     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1264     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1265     pNew->flags |= staticFlag;
1266 
1267     /* Copy the p->u.zToken string, if any. */
1268     if( nToken ){
1269       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1270       memcpy(zToken, p->u.zToken, nToken);
1271     }
1272 
1273     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1274       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1275       if( ExprHasProperty(p, EP_xIsSelect) ){
1276         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1277       }else{
1278         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1279       }
1280     }
1281 
1282     /* Fill in pNew->pLeft and pNew->pRight. */
1283     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1284       zAlloc += dupedExprNodeSize(p, dupFlags);
1285       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1286         pNew->pLeft = p->pLeft ?
1287                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1288         pNew->pRight = p->pRight ?
1289                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1290       }
1291 #ifndef SQLITE_OMIT_WINDOWFUNC
1292       if( ExprHasProperty(p, EP_WinFunc) ){
1293         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1294         assert( ExprHasProperty(pNew, EP_WinFunc) );
1295       }
1296 #endif /* SQLITE_OMIT_WINDOWFUNC */
1297       if( pzBuffer ){
1298         *pzBuffer = zAlloc;
1299       }
1300     }else{
1301       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1302         if( pNew->op==TK_SELECT_COLUMN ){
1303           pNew->pLeft = p->pLeft;
1304           assert( p->iColumn==0 || p->pRight==0 );
1305           assert( p->pRight==0  || p->pRight==p->pLeft );
1306         }else{
1307           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1308         }
1309         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1310       }
1311     }
1312   }
1313   return pNew;
1314 }
1315 
1316 /*
1317 ** Create and return a deep copy of the object passed as the second
1318 ** argument. If an OOM condition is encountered, NULL is returned
1319 ** and the db->mallocFailed flag set.
1320 */
1321 #ifndef SQLITE_OMIT_CTE
1322 static With *withDup(sqlite3 *db, With *p){
1323   With *pRet = 0;
1324   if( p ){
1325     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1326     pRet = sqlite3DbMallocZero(db, nByte);
1327     if( pRet ){
1328       int i;
1329       pRet->nCte = p->nCte;
1330       for(i=0; i<p->nCte; i++){
1331         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1332         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1333         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1334       }
1335     }
1336   }
1337   return pRet;
1338 }
1339 #else
1340 # define withDup(x,y) 0
1341 #endif
1342 
1343 #ifndef SQLITE_OMIT_WINDOWFUNC
1344 /*
1345 ** The gatherSelectWindows() procedure and its helper routine
1346 ** gatherSelectWindowsCallback() are used to scan all the expressions
1347 ** an a newly duplicated SELECT statement and gather all of the Window
1348 ** objects found there, assembling them onto the linked list at Select->pWin.
1349 */
1350 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1351   if( pExpr->op==TK_FUNCTION && pExpr->y.pWin!=0 ){
1352     assert( ExprHasProperty(pExpr, EP_WinFunc) );
1353     pExpr->y.pWin->pNextWin = pWalker->u.pSelect->pWin;
1354     pWalker->u.pSelect->pWin = pExpr->y.pWin;
1355   }
1356   return WRC_Continue;
1357 }
1358 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1359   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1360 }
1361 static void gatherSelectWindows(Select *p){
1362   Walker w;
1363   w.xExprCallback = gatherSelectWindowsCallback;
1364   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1365   w.xSelectCallback2 = 0;
1366   w.pParse = 0;
1367   w.u.pSelect = p;
1368   sqlite3WalkSelect(&w, p);
1369 }
1370 #endif
1371 
1372 
1373 /*
1374 ** The following group of routines make deep copies of expressions,
1375 ** expression lists, ID lists, and select statements.  The copies can
1376 ** be deleted (by being passed to their respective ...Delete() routines)
1377 ** without effecting the originals.
1378 **
1379 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1380 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1381 ** by subsequent calls to sqlite*ListAppend() routines.
1382 **
1383 ** Any tables that the SrcList might point to are not duplicated.
1384 **
1385 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1386 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1387 ** truncated version of the usual Expr structure that will be stored as
1388 ** part of the in-memory representation of the database schema.
1389 */
1390 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1391   assert( flags==0 || flags==EXPRDUP_REDUCE );
1392   return p ? exprDup(db, p, flags, 0) : 0;
1393 }
1394 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1395   ExprList *pNew;
1396   struct ExprList_item *pItem, *pOldItem;
1397   int i;
1398   Expr *pPriorSelectCol = 0;
1399   assert( db!=0 );
1400   if( p==0 ) return 0;
1401   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1402   if( pNew==0 ) return 0;
1403   pNew->nExpr = p->nExpr;
1404   pItem = pNew->a;
1405   pOldItem = p->a;
1406   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1407     Expr *pOldExpr = pOldItem->pExpr;
1408     Expr *pNewExpr;
1409     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1410     if( pOldExpr
1411      && pOldExpr->op==TK_SELECT_COLUMN
1412      && (pNewExpr = pItem->pExpr)!=0
1413     ){
1414       assert( pNewExpr->iColumn==0 || i>0 );
1415       if( pNewExpr->iColumn==0 ){
1416         assert( pOldExpr->pLeft==pOldExpr->pRight );
1417         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1418       }else{
1419         assert( i>0 );
1420         assert( pItem[-1].pExpr!=0 );
1421         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1422         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1423         pNewExpr->pLeft = pPriorSelectCol;
1424       }
1425     }
1426     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1427     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1428     pItem->sortOrder = pOldItem->sortOrder;
1429     pItem->done = 0;
1430     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1431     pItem->bSorterRef = pOldItem->bSorterRef;
1432     pItem->u = pOldItem->u;
1433   }
1434   return pNew;
1435 }
1436 
1437 /*
1438 ** If cursors, triggers, views and subqueries are all omitted from
1439 ** the build, then none of the following routines, except for
1440 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1441 ** called with a NULL argument.
1442 */
1443 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1444  || !defined(SQLITE_OMIT_SUBQUERY)
1445 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1446   SrcList *pNew;
1447   int i;
1448   int nByte;
1449   assert( db!=0 );
1450   if( p==0 ) return 0;
1451   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1452   pNew = sqlite3DbMallocRawNN(db, nByte );
1453   if( pNew==0 ) return 0;
1454   pNew->nSrc = pNew->nAlloc = p->nSrc;
1455   for(i=0; i<p->nSrc; i++){
1456     struct SrcList_item *pNewItem = &pNew->a[i];
1457     struct SrcList_item *pOldItem = &p->a[i];
1458     Table *pTab;
1459     pNewItem->pSchema = pOldItem->pSchema;
1460     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1461     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1462     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1463     pNewItem->fg = pOldItem->fg;
1464     pNewItem->iCursor = pOldItem->iCursor;
1465     pNewItem->addrFillSub = pOldItem->addrFillSub;
1466     pNewItem->regReturn = pOldItem->regReturn;
1467     if( pNewItem->fg.isIndexedBy ){
1468       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1469     }
1470     pNewItem->pIBIndex = pOldItem->pIBIndex;
1471     if( pNewItem->fg.isTabFunc ){
1472       pNewItem->u1.pFuncArg =
1473           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1474     }
1475     pTab = pNewItem->pTab = pOldItem->pTab;
1476     if( pTab ){
1477       pTab->nTabRef++;
1478     }
1479     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1480     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1481     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1482     pNewItem->colUsed = pOldItem->colUsed;
1483   }
1484   return pNew;
1485 }
1486 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1487   IdList *pNew;
1488   int i;
1489   assert( db!=0 );
1490   if( p==0 ) return 0;
1491   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1492   if( pNew==0 ) return 0;
1493   pNew->nId = p->nId;
1494   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1495   if( pNew->a==0 ){
1496     sqlite3DbFreeNN(db, pNew);
1497     return 0;
1498   }
1499   /* Note that because the size of the allocation for p->a[] is not
1500   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1501   ** on the duplicate created by this function. */
1502   for(i=0; i<p->nId; i++){
1503     struct IdList_item *pNewItem = &pNew->a[i];
1504     struct IdList_item *pOldItem = &p->a[i];
1505     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1506     pNewItem->idx = pOldItem->idx;
1507   }
1508   return pNew;
1509 }
1510 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1511   Select *pRet = 0;
1512   Select *pNext = 0;
1513   Select **pp = &pRet;
1514   Select *p;
1515 
1516   assert( db!=0 );
1517   for(p=pDup; p; p=p->pPrior){
1518     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1519     if( pNew==0 ) break;
1520     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1521     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1522     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1523     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1524     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1525     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1526     pNew->op = p->op;
1527     pNew->pNext = pNext;
1528     pNew->pPrior = 0;
1529     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1530     pNew->iLimit = 0;
1531     pNew->iOffset = 0;
1532     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1533     pNew->addrOpenEphm[0] = -1;
1534     pNew->addrOpenEphm[1] = -1;
1535     pNew->nSelectRow = p->nSelectRow;
1536     pNew->pWith = withDup(db, p->pWith);
1537 #ifndef SQLITE_OMIT_WINDOWFUNC
1538     pNew->pWin = 0;
1539     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1540     if( p->pWin ) gatherSelectWindows(pNew);
1541 #endif
1542     pNew->selId = p->selId;
1543     *pp = pNew;
1544     pp = &pNew->pPrior;
1545     pNext = pNew;
1546   }
1547 
1548   return pRet;
1549 }
1550 #else
1551 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1552   assert( p==0 );
1553   return 0;
1554 }
1555 #endif
1556 
1557 
1558 /*
1559 ** Add a new element to the end of an expression list.  If pList is
1560 ** initially NULL, then create a new expression list.
1561 **
1562 ** The pList argument must be either NULL or a pointer to an ExprList
1563 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1564 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1565 ** Reason:  This routine assumes that the number of slots in pList->a[]
1566 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1567 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1568 **
1569 ** If a memory allocation error occurs, the entire list is freed and
1570 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1571 ** that the new entry was successfully appended.
1572 */
1573 ExprList *sqlite3ExprListAppend(
1574   Parse *pParse,          /* Parsing context */
1575   ExprList *pList,        /* List to which to append. Might be NULL */
1576   Expr *pExpr             /* Expression to be appended. Might be NULL */
1577 ){
1578   struct ExprList_item *pItem;
1579   sqlite3 *db = pParse->db;
1580   assert( db!=0 );
1581   if( pList==0 ){
1582     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1583     if( pList==0 ){
1584       goto no_mem;
1585     }
1586     pList->nExpr = 0;
1587   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1588     ExprList *pNew;
1589     pNew = sqlite3DbRealloc(db, pList,
1590              sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0]));
1591     if( pNew==0 ){
1592       goto no_mem;
1593     }
1594     pList = pNew;
1595   }
1596   pItem = &pList->a[pList->nExpr++];
1597   assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) );
1598   assert( offsetof(struct ExprList_item,pExpr)==0 );
1599   memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName));
1600   pItem->pExpr = pExpr;
1601   return pList;
1602 
1603 no_mem:
1604   /* Avoid leaking memory if malloc has failed. */
1605   sqlite3ExprDelete(db, pExpr);
1606   sqlite3ExprListDelete(db, pList);
1607   return 0;
1608 }
1609 
1610 /*
1611 ** pColumns and pExpr form a vector assignment which is part of the SET
1612 ** clause of an UPDATE statement.  Like this:
1613 **
1614 **        (a,b,c) = (expr1,expr2,expr3)
1615 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1616 **
1617 ** For each term of the vector assignment, append new entries to the
1618 ** expression list pList.  In the case of a subquery on the RHS, append
1619 ** TK_SELECT_COLUMN expressions.
1620 */
1621 ExprList *sqlite3ExprListAppendVector(
1622   Parse *pParse,         /* Parsing context */
1623   ExprList *pList,       /* List to which to append. Might be NULL */
1624   IdList *pColumns,      /* List of names of LHS of the assignment */
1625   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1626 ){
1627   sqlite3 *db = pParse->db;
1628   int n;
1629   int i;
1630   int iFirst = pList ? pList->nExpr : 0;
1631   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1632   ** exit prior to this routine being invoked */
1633   if( NEVER(pColumns==0) ) goto vector_append_error;
1634   if( pExpr==0 ) goto vector_append_error;
1635 
1636   /* If the RHS is a vector, then we can immediately check to see that
1637   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1638   ** wildcards ("*") in the result set of the SELECT must be expanded before
1639   ** we can do the size check, so defer the size check until code generation.
1640   */
1641   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1642     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1643                     pColumns->nId, n);
1644     goto vector_append_error;
1645   }
1646 
1647   for(i=0; i<pColumns->nId; i++){
1648     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1649     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1650     if( pList ){
1651       assert( pList->nExpr==iFirst+i+1 );
1652       pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1653       pColumns->a[i].zName = 0;
1654     }
1655   }
1656 
1657   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1658     Expr *pFirst = pList->a[iFirst].pExpr;
1659     assert( pFirst!=0 );
1660     assert( pFirst->op==TK_SELECT_COLUMN );
1661 
1662     /* Store the SELECT statement in pRight so it will be deleted when
1663     ** sqlite3ExprListDelete() is called */
1664     pFirst->pRight = pExpr;
1665     pExpr = 0;
1666 
1667     /* Remember the size of the LHS in iTable so that we can check that
1668     ** the RHS and LHS sizes match during code generation. */
1669     pFirst->iTable = pColumns->nId;
1670   }
1671 
1672 vector_append_error:
1673   if( IN_RENAME_OBJECT ){
1674     sqlite3RenameExprUnmap(pParse, pExpr);
1675   }
1676   sqlite3ExprDelete(db, pExpr);
1677   sqlite3IdListDelete(db, pColumns);
1678   return pList;
1679 }
1680 
1681 /*
1682 ** Set the sort order for the last element on the given ExprList.
1683 */
1684 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1685   if( p==0 ) return;
1686   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1687   assert( p->nExpr>0 );
1688   if( iSortOrder<0 ){
1689     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1690     return;
1691   }
1692   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1693 }
1694 
1695 /*
1696 ** Set the ExprList.a[].zName element of the most recently added item
1697 ** on the expression list.
1698 **
1699 ** pList might be NULL following an OOM error.  But pName should never be
1700 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1701 ** is set.
1702 */
1703 void sqlite3ExprListSetName(
1704   Parse *pParse,          /* Parsing context */
1705   ExprList *pList,        /* List to which to add the span. */
1706   Token *pName,           /* Name to be added */
1707   int dequote             /* True to cause the name to be dequoted */
1708 ){
1709   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1710   if( pList ){
1711     struct ExprList_item *pItem;
1712     assert( pList->nExpr>0 );
1713     pItem = &pList->a[pList->nExpr-1];
1714     assert( pItem->zName==0 );
1715     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1716     if( dequote ) sqlite3Dequote(pItem->zName);
1717     if( IN_RENAME_OBJECT ){
1718       sqlite3RenameTokenMap(pParse, (void*)pItem->zName, pName);
1719     }
1720   }
1721 }
1722 
1723 /*
1724 ** Set the ExprList.a[].zSpan element of the most recently added item
1725 ** on the expression list.
1726 **
1727 ** pList might be NULL following an OOM error.  But pSpan should never be
1728 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1729 ** is set.
1730 */
1731 void sqlite3ExprListSetSpan(
1732   Parse *pParse,          /* Parsing context */
1733   ExprList *pList,        /* List to which to add the span. */
1734   const char *zStart,     /* Start of the span */
1735   const char *zEnd        /* End of the span */
1736 ){
1737   sqlite3 *db = pParse->db;
1738   assert( pList!=0 || db->mallocFailed!=0 );
1739   if( pList ){
1740     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1741     assert( pList->nExpr>0 );
1742     sqlite3DbFree(db, pItem->zSpan);
1743     pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd);
1744   }
1745 }
1746 
1747 /*
1748 ** If the expression list pEList contains more than iLimit elements,
1749 ** leave an error message in pParse.
1750 */
1751 void sqlite3ExprListCheckLength(
1752   Parse *pParse,
1753   ExprList *pEList,
1754   const char *zObject
1755 ){
1756   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1757   testcase( pEList && pEList->nExpr==mx );
1758   testcase( pEList && pEList->nExpr==mx+1 );
1759   if( pEList && pEList->nExpr>mx ){
1760     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1761   }
1762 }
1763 
1764 /*
1765 ** Delete an entire expression list.
1766 */
1767 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1768   int i = pList->nExpr;
1769   struct ExprList_item *pItem =  pList->a;
1770   assert( pList->nExpr>0 );
1771   do{
1772     sqlite3ExprDelete(db, pItem->pExpr);
1773     sqlite3DbFree(db, pItem->zName);
1774     sqlite3DbFree(db, pItem->zSpan);
1775     pItem++;
1776   }while( --i>0 );
1777   sqlite3DbFreeNN(db, pList);
1778 }
1779 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1780   if( pList ) exprListDeleteNN(db, pList);
1781 }
1782 
1783 /*
1784 ** Return the bitwise-OR of all Expr.flags fields in the given
1785 ** ExprList.
1786 */
1787 u32 sqlite3ExprListFlags(const ExprList *pList){
1788   int i;
1789   u32 m = 0;
1790   assert( pList!=0 );
1791   for(i=0; i<pList->nExpr; i++){
1792      Expr *pExpr = pList->a[i].pExpr;
1793      assert( pExpr!=0 );
1794      m |= pExpr->flags;
1795   }
1796   return m;
1797 }
1798 
1799 /*
1800 ** This is a SELECT-node callback for the expression walker that
1801 ** always "fails".  By "fail" in this case, we mean set
1802 ** pWalker->eCode to zero and abort.
1803 **
1804 ** This callback is used by multiple expression walkers.
1805 */
1806 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1807   UNUSED_PARAMETER(NotUsed);
1808   pWalker->eCode = 0;
1809   return WRC_Abort;
1810 }
1811 
1812 /*
1813 ** If the input expression is an ID with the name "true" or "false"
1814 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1815 ** the conversion happened, and zero if the expression is unaltered.
1816 */
1817 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1818   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1819   if( !ExprHasProperty(pExpr, EP_Quoted)
1820    && (sqlite3StrICmp(pExpr->u.zToken, "true")==0
1821        || sqlite3StrICmp(pExpr->u.zToken, "false")==0)
1822   ){
1823     pExpr->op = TK_TRUEFALSE;
1824     return 1;
1825   }
1826   return 0;
1827 }
1828 
1829 /*
1830 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
1831 ** and 0 if it is FALSE.
1832 */
1833 int sqlite3ExprTruthValue(const Expr *pExpr){
1834   assert( pExpr->op==TK_TRUEFALSE );
1835   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1836        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1837   return pExpr->u.zToken[4]==0;
1838 }
1839 
1840 
1841 /*
1842 ** These routines are Walker callbacks used to check expressions to
1843 ** see if they are "constant" for some definition of constant.  The
1844 ** Walker.eCode value determines the type of "constant" we are looking
1845 ** for.
1846 **
1847 ** These callback routines are used to implement the following:
1848 **
1849 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1850 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1851 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1852 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1853 **
1854 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1855 ** is found to not be a constant.
1856 **
1857 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1858 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1859 ** an existing schema and 4 when processing a new statement.  A bound
1860 ** parameter raises an error for new statements, but is silently converted
1861 ** to NULL for existing schemas.  This allows sqlite_master tables that
1862 ** contain a bound parameter because they were generated by older versions
1863 ** of SQLite to be parsed by newer versions of SQLite without raising a
1864 ** malformed schema error.
1865 */
1866 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1867 
1868   /* If pWalker->eCode is 2 then any term of the expression that comes from
1869   ** the ON or USING clauses of a left join disqualifies the expression
1870   ** from being considered constant. */
1871   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1872     pWalker->eCode = 0;
1873     return WRC_Abort;
1874   }
1875 
1876   switch( pExpr->op ){
1877     /* Consider functions to be constant if all their arguments are constant
1878     ** and either pWalker->eCode==4 or 5 or the function has the
1879     ** SQLITE_FUNC_CONST flag. */
1880     case TK_FUNCTION:
1881       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1882         return WRC_Continue;
1883       }else{
1884         pWalker->eCode = 0;
1885         return WRC_Abort;
1886       }
1887     case TK_ID:
1888       /* Convert "true" or "false" in a DEFAULT clause into the
1889       ** appropriate TK_TRUEFALSE operator */
1890       if( sqlite3ExprIdToTrueFalse(pExpr) ){
1891         return WRC_Prune;
1892       }
1893       /* Fall thru */
1894     case TK_COLUMN:
1895     case TK_AGG_FUNCTION:
1896     case TK_AGG_COLUMN:
1897       testcase( pExpr->op==TK_ID );
1898       testcase( pExpr->op==TK_COLUMN );
1899       testcase( pExpr->op==TK_AGG_FUNCTION );
1900       testcase( pExpr->op==TK_AGG_COLUMN );
1901       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
1902         return WRC_Continue;
1903       }
1904       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1905         return WRC_Continue;
1906       }
1907       /* Fall through */
1908     case TK_IF_NULL_ROW:
1909     case TK_REGISTER:
1910       testcase( pExpr->op==TK_REGISTER );
1911       testcase( pExpr->op==TK_IF_NULL_ROW );
1912       pWalker->eCode = 0;
1913       return WRC_Abort;
1914     case TK_VARIABLE:
1915       if( pWalker->eCode==5 ){
1916         /* Silently convert bound parameters that appear inside of CREATE
1917         ** statements into a NULL when parsing the CREATE statement text out
1918         ** of the sqlite_master table */
1919         pExpr->op = TK_NULL;
1920       }else if( pWalker->eCode==4 ){
1921         /* A bound parameter in a CREATE statement that originates from
1922         ** sqlite3_prepare() causes an error */
1923         pWalker->eCode = 0;
1924         return WRC_Abort;
1925       }
1926       /* Fall through */
1927     default:
1928       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
1929       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
1930       return WRC_Continue;
1931   }
1932 }
1933 static int exprIsConst(Expr *p, int initFlag, int iCur){
1934   Walker w;
1935   w.eCode = initFlag;
1936   w.xExprCallback = exprNodeIsConstant;
1937   w.xSelectCallback = sqlite3SelectWalkFail;
1938 #ifdef SQLITE_DEBUG
1939   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1940 #endif
1941   w.u.iCur = iCur;
1942   sqlite3WalkExpr(&w, p);
1943   return w.eCode;
1944 }
1945 
1946 /*
1947 ** Walk an expression tree.  Return non-zero if the expression is constant
1948 ** and 0 if it involves variables or function calls.
1949 **
1950 ** For the purposes of this function, a double-quoted string (ex: "abc")
1951 ** is considered a variable but a single-quoted string (ex: 'abc') is
1952 ** a constant.
1953 */
1954 int sqlite3ExprIsConstant(Expr *p){
1955   return exprIsConst(p, 1, 0);
1956 }
1957 
1958 /*
1959 ** Walk an expression tree.  Return non-zero if
1960 **
1961 **   (1) the expression is constant, and
1962 **   (2) the expression does originate in the ON or USING clause
1963 **       of a LEFT JOIN, and
1964 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
1965 **       operands created by the constant propagation optimization.
1966 **
1967 ** When this routine returns true, it indicates that the expression
1968 ** can be added to the pParse->pConstExpr list and evaluated once when
1969 ** the prepared statement starts up.  See sqlite3ExprCodeAtInit().
1970 */
1971 int sqlite3ExprIsConstantNotJoin(Expr *p){
1972   return exprIsConst(p, 2, 0);
1973 }
1974 
1975 /*
1976 ** Walk an expression tree.  Return non-zero if the expression is constant
1977 ** for any single row of the table with cursor iCur.  In other words, the
1978 ** expression must not refer to any non-deterministic function nor any
1979 ** table other than iCur.
1980 */
1981 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1982   return exprIsConst(p, 3, iCur);
1983 }
1984 
1985 
1986 /*
1987 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
1988 */
1989 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
1990   ExprList *pGroupBy = pWalker->u.pGroupBy;
1991   int i;
1992 
1993   /* Check if pExpr is identical to any GROUP BY term. If so, consider
1994   ** it constant.  */
1995   for(i=0; i<pGroupBy->nExpr; i++){
1996     Expr *p = pGroupBy->a[i].pExpr;
1997     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
1998       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
1999       if( sqlite3IsBinary(pColl) ){
2000         return WRC_Prune;
2001       }
2002     }
2003   }
2004 
2005   /* Check if pExpr is a sub-select. If so, consider it variable. */
2006   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2007     pWalker->eCode = 0;
2008     return WRC_Abort;
2009   }
2010 
2011   return exprNodeIsConstant(pWalker, pExpr);
2012 }
2013 
2014 /*
2015 ** Walk the expression tree passed as the first argument. Return non-zero
2016 ** if the expression consists entirely of constants or copies of terms
2017 ** in pGroupBy that sort with the BINARY collation sequence.
2018 **
2019 ** This routine is used to determine if a term of the HAVING clause can
2020 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2021 ** the value of the HAVING clause term must be the same for all members of
2022 ** a "group".  The requirement that the GROUP BY term must be BINARY
2023 ** assumes that no other collating sequence will have a finer-grained
2024 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2025 ** A=B in every other collating sequence.  The requirement that the
2026 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2027 ** to promote HAVING clauses that use the same alternative collating
2028 ** sequence as the GROUP BY term, but that is much harder to check,
2029 ** alternative collating sequences are uncommon, and this is only an
2030 ** optimization, so we take the easy way out and simply require the
2031 ** GROUP BY to use the BINARY collating sequence.
2032 */
2033 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2034   Walker w;
2035   w.eCode = 1;
2036   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2037   w.xSelectCallback = 0;
2038   w.u.pGroupBy = pGroupBy;
2039   w.pParse = pParse;
2040   sqlite3WalkExpr(&w, p);
2041   return w.eCode;
2042 }
2043 
2044 /*
2045 ** Walk an expression tree.  Return non-zero if the expression is constant
2046 ** or a function call with constant arguments.  Return and 0 if there
2047 ** are any variables.
2048 **
2049 ** For the purposes of this function, a double-quoted string (ex: "abc")
2050 ** is considered a variable but a single-quoted string (ex: 'abc') is
2051 ** a constant.
2052 */
2053 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2054   assert( isInit==0 || isInit==1 );
2055   return exprIsConst(p, 4+isInit, 0);
2056 }
2057 
2058 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2059 /*
2060 ** Walk an expression tree.  Return 1 if the expression contains a
2061 ** subquery of some kind.  Return 0 if there are no subqueries.
2062 */
2063 int sqlite3ExprContainsSubquery(Expr *p){
2064   Walker w;
2065   w.eCode = 1;
2066   w.xExprCallback = sqlite3ExprWalkNoop;
2067   w.xSelectCallback = sqlite3SelectWalkFail;
2068 #ifdef SQLITE_DEBUG
2069   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2070 #endif
2071   sqlite3WalkExpr(&w, p);
2072   return w.eCode==0;
2073 }
2074 #endif
2075 
2076 /*
2077 ** If the expression p codes a constant integer that is small enough
2078 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2079 ** in *pValue.  If the expression is not an integer or if it is too big
2080 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2081 */
2082 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2083   int rc = 0;
2084   if( p==0 ) return 0;  /* Can only happen following on OOM */
2085 
2086   /* If an expression is an integer literal that fits in a signed 32-bit
2087   ** integer, then the EP_IntValue flag will have already been set */
2088   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2089            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2090 
2091   if( p->flags & EP_IntValue ){
2092     *pValue = p->u.iValue;
2093     return 1;
2094   }
2095   switch( p->op ){
2096     case TK_UPLUS: {
2097       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2098       break;
2099     }
2100     case TK_UMINUS: {
2101       int v;
2102       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2103         assert( v!=(-2147483647-1) );
2104         *pValue = -v;
2105         rc = 1;
2106       }
2107       break;
2108     }
2109     default: break;
2110   }
2111   return rc;
2112 }
2113 
2114 /*
2115 ** Return FALSE if there is no chance that the expression can be NULL.
2116 **
2117 ** If the expression might be NULL or if the expression is too complex
2118 ** to tell return TRUE.
2119 **
2120 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2121 ** when we know that a value cannot be NULL.  Hence, a false positive
2122 ** (returning TRUE when in fact the expression can never be NULL) might
2123 ** be a small performance hit but is otherwise harmless.  On the other
2124 ** hand, a false negative (returning FALSE when the result could be NULL)
2125 ** will likely result in an incorrect answer.  So when in doubt, return
2126 ** TRUE.
2127 */
2128 int sqlite3ExprCanBeNull(const Expr *p){
2129   u8 op;
2130   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2131     p = p->pLeft;
2132   }
2133   op = p->op;
2134   if( op==TK_REGISTER ) op = p->op2;
2135   switch( op ){
2136     case TK_INTEGER:
2137     case TK_STRING:
2138     case TK_FLOAT:
2139     case TK_BLOB:
2140       return 0;
2141     case TK_COLUMN:
2142       return ExprHasProperty(p, EP_CanBeNull) ||
2143              p->y.pTab==0 ||  /* Reference to column of index on expression */
2144              (p->iColumn>=0 && p->y.pTab->aCol[p->iColumn].notNull==0);
2145     default:
2146       return 1;
2147   }
2148 }
2149 
2150 /*
2151 ** Return TRUE if the given expression is a constant which would be
2152 ** unchanged by OP_Affinity with the affinity given in the second
2153 ** argument.
2154 **
2155 ** This routine is used to determine if the OP_Affinity operation
2156 ** can be omitted.  When in doubt return FALSE.  A false negative
2157 ** is harmless.  A false positive, however, can result in the wrong
2158 ** answer.
2159 */
2160 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2161   u8 op;
2162   if( aff==SQLITE_AFF_BLOB ) return 1;
2163   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2164   op = p->op;
2165   if( op==TK_REGISTER ) op = p->op2;
2166   switch( op ){
2167     case TK_INTEGER: {
2168       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
2169     }
2170     case TK_FLOAT: {
2171       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
2172     }
2173     case TK_STRING: {
2174       return aff==SQLITE_AFF_TEXT;
2175     }
2176     case TK_BLOB: {
2177       return 1;
2178     }
2179     case TK_COLUMN: {
2180       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2181       return p->iColumn<0
2182           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
2183     }
2184     default: {
2185       return 0;
2186     }
2187   }
2188 }
2189 
2190 /*
2191 ** Return TRUE if the given string is a row-id column name.
2192 */
2193 int sqlite3IsRowid(const char *z){
2194   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2195   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2196   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2197   return 0;
2198 }
2199 
2200 /*
2201 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2202 ** that can be simplified to a direct table access, then return
2203 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2204 ** or if the SELECT statement needs to be manifested into a transient
2205 ** table, then return NULL.
2206 */
2207 #ifndef SQLITE_OMIT_SUBQUERY
2208 static Select *isCandidateForInOpt(Expr *pX){
2209   Select *p;
2210   SrcList *pSrc;
2211   ExprList *pEList;
2212   Table *pTab;
2213   int i;
2214   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2215   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2216   p = pX->x.pSelect;
2217   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2218   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2219     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2220     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2221     return 0; /* No DISTINCT keyword and no aggregate functions */
2222   }
2223   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2224   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2225   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2226   pSrc = p->pSrc;
2227   assert( pSrc!=0 );
2228   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2229   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2230   pTab = pSrc->a[0].pTab;
2231   assert( pTab!=0 );
2232   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2233   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2234   pEList = p->pEList;
2235   assert( pEList!=0 );
2236   /* All SELECT results must be columns. */
2237   for(i=0; i<pEList->nExpr; i++){
2238     Expr *pRes = pEList->a[i].pExpr;
2239     if( pRes->op!=TK_COLUMN ) return 0;
2240     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2241   }
2242   return p;
2243 }
2244 #endif /* SQLITE_OMIT_SUBQUERY */
2245 
2246 #ifndef SQLITE_OMIT_SUBQUERY
2247 /*
2248 ** Generate code that checks the left-most column of index table iCur to see if
2249 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2250 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2251 ** to be set to NULL if iCur contains one or more NULL values.
2252 */
2253 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2254   int addr1;
2255   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2256   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2257   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2258   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2259   VdbeComment((v, "first_entry_in(%d)", iCur));
2260   sqlite3VdbeJumpHere(v, addr1);
2261 }
2262 #endif
2263 
2264 
2265 #ifndef SQLITE_OMIT_SUBQUERY
2266 /*
2267 ** The argument is an IN operator with a list (not a subquery) on the
2268 ** right-hand side.  Return TRUE if that list is constant.
2269 */
2270 static int sqlite3InRhsIsConstant(Expr *pIn){
2271   Expr *pLHS;
2272   int res;
2273   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2274   pLHS = pIn->pLeft;
2275   pIn->pLeft = 0;
2276   res = sqlite3ExprIsConstant(pIn);
2277   pIn->pLeft = pLHS;
2278   return res;
2279 }
2280 #endif
2281 
2282 /*
2283 ** This function is used by the implementation of the IN (...) operator.
2284 ** The pX parameter is the expression on the RHS of the IN operator, which
2285 ** might be either a list of expressions or a subquery.
2286 **
2287 ** The job of this routine is to find or create a b-tree object that can
2288 ** be used either to test for membership in the RHS set or to iterate through
2289 ** all members of the RHS set, skipping duplicates.
2290 **
2291 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2292 ** and pX->iTable is set to the index of that cursor.
2293 **
2294 ** The returned value of this function indicates the b-tree type, as follows:
2295 **
2296 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2297 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2298 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2299 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2300 **                         populated epheremal table.
2301 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2302 **                         implemented as a sequence of comparisons.
2303 **
2304 ** An existing b-tree might be used if the RHS expression pX is a simple
2305 ** subquery such as:
2306 **
2307 **     SELECT <column1>, <column2>... FROM <table>
2308 **
2309 ** If the RHS of the IN operator is a list or a more complex subquery, then
2310 ** an ephemeral table might need to be generated from the RHS and then
2311 ** pX->iTable made to point to the ephemeral table instead of an
2312 ** existing table.
2313 **
2314 ** The inFlags parameter must contain, at a minimum, one of the bits
2315 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2316 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2317 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2318 ** be used to loop over all values of the RHS of the IN operator.
2319 **
2320 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2321 ** through the set members) then the b-tree must not contain duplicates.
2322 ** An epheremal table will be created unless the selected columns are guaranteed
2323 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2324 ** a UNIQUE constraint or index.
2325 **
2326 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2327 ** for fast set membership tests) then an epheremal table must
2328 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2329 ** index can be found with the specified <columns> as its left-most.
2330 **
2331 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2332 ** if the RHS of the IN operator is a list (not a subquery) then this
2333 ** routine might decide that creating an ephemeral b-tree for membership
2334 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2335 ** calling routine should implement the IN operator using a sequence
2336 ** of Eq or Ne comparison operations.
2337 **
2338 ** When the b-tree is being used for membership tests, the calling function
2339 ** might need to know whether or not the RHS side of the IN operator
2340 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2341 ** if there is any chance that the (...) might contain a NULL value at
2342 ** runtime, then a register is allocated and the register number written
2343 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2344 ** NULL value, then *prRhsHasNull is left unchanged.
2345 **
2346 ** If a register is allocated and its location stored in *prRhsHasNull, then
2347 ** the value in that register will be NULL if the b-tree contains one or more
2348 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2349 ** NULL values.
2350 **
2351 ** If the aiMap parameter is not NULL, it must point to an array containing
2352 ** one element for each column returned by the SELECT statement on the RHS
2353 ** of the IN(...) operator. The i'th entry of the array is populated with the
2354 ** offset of the index column that matches the i'th column returned by the
2355 ** SELECT. For example, if the expression and selected index are:
2356 **
2357 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2358 **   CREATE INDEX i1 ON t1(b, c, a);
2359 **
2360 ** then aiMap[] is populated with {2, 0, 1}.
2361 */
2362 #ifndef SQLITE_OMIT_SUBQUERY
2363 int sqlite3FindInIndex(
2364   Parse *pParse,             /* Parsing context */
2365   Expr *pX,                  /* The right-hand side (RHS) of the IN operator */
2366   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2367   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2368   int *aiMap,                /* Mapping from Index fields to RHS fields */
2369   int *piTab                 /* OUT: index to use */
2370 ){
2371   Select *p;                            /* SELECT to the right of IN operator */
2372   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2373   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2374   int mustBeUnique;                     /* True if RHS must be unique */
2375   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2376 
2377   assert( pX->op==TK_IN );
2378   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2379 
2380   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2381   ** whether or not the SELECT result contains NULL values, check whether
2382   ** or not NULL is actually possible (it may not be, for example, due
2383   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2384   ** set prRhsHasNull to 0 before continuing.  */
2385   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2386     int i;
2387     ExprList *pEList = pX->x.pSelect->pEList;
2388     for(i=0; i<pEList->nExpr; i++){
2389       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2390     }
2391     if( i==pEList->nExpr ){
2392       prRhsHasNull = 0;
2393     }
2394   }
2395 
2396   /* Check to see if an existing table or index can be used to
2397   ** satisfy the query.  This is preferable to generating a new
2398   ** ephemeral table.  */
2399   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2400     sqlite3 *db = pParse->db;              /* Database connection */
2401     Table *pTab;                           /* Table <table>. */
2402     i16 iDb;                               /* Database idx for pTab */
2403     ExprList *pEList = p->pEList;
2404     int nExpr = pEList->nExpr;
2405 
2406     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2407     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2408     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2409     pTab = p->pSrc->a[0].pTab;
2410 
2411     /* Code an OP_Transaction and OP_TableLock for <table>. */
2412     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2413     sqlite3CodeVerifySchema(pParse, iDb);
2414     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2415 
2416     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2417     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2418       /* The "x IN (SELECT rowid FROM table)" case */
2419       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2420       VdbeCoverage(v);
2421 
2422       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2423       eType = IN_INDEX_ROWID;
2424       ExplainQueryPlan((pParse, 0,
2425             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2426       sqlite3VdbeJumpHere(v, iAddr);
2427     }else{
2428       Index *pIdx;                         /* Iterator variable */
2429       int affinity_ok = 1;
2430       int i;
2431 
2432       /* Check that the affinity that will be used to perform each
2433       ** comparison is the same as the affinity of each column in table
2434       ** on the RHS of the IN operator.  If it not, it is not possible to
2435       ** use any index of the RHS table.  */
2436       for(i=0; i<nExpr && affinity_ok; i++){
2437         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2438         int iCol = pEList->a[i].pExpr->iColumn;
2439         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2440         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2441         testcase( cmpaff==SQLITE_AFF_BLOB );
2442         testcase( cmpaff==SQLITE_AFF_TEXT );
2443         switch( cmpaff ){
2444           case SQLITE_AFF_BLOB:
2445             break;
2446           case SQLITE_AFF_TEXT:
2447             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2448             ** other has no affinity and the other side is TEXT.  Hence,
2449             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2450             ** and for the term on the LHS of the IN to have no affinity. */
2451             assert( idxaff==SQLITE_AFF_TEXT );
2452             break;
2453           default:
2454             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2455         }
2456       }
2457 
2458       if( affinity_ok ){
2459         /* Search for an existing index that will work for this IN operator */
2460         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2461           Bitmask colUsed;      /* Columns of the index used */
2462           Bitmask mCol;         /* Mask for the current column */
2463           if( pIdx->nColumn<nExpr ) continue;
2464           if( pIdx->pPartIdxWhere!=0 ) continue;
2465           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2466           ** BITMASK(nExpr) without overflowing */
2467           testcase( pIdx->nColumn==BMS-2 );
2468           testcase( pIdx->nColumn==BMS-1 );
2469           if( pIdx->nColumn>=BMS-1 ) continue;
2470           if( mustBeUnique ){
2471             if( pIdx->nKeyCol>nExpr
2472              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2473             ){
2474               continue;  /* This index is not unique over the IN RHS columns */
2475             }
2476           }
2477 
2478           colUsed = 0;   /* Columns of index used so far */
2479           for(i=0; i<nExpr; i++){
2480             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2481             Expr *pRhs = pEList->a[i].pExpr;
2482             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2483             int j;
2484 
2485             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2486             for(j=0; j<nExpr; j++){
2487               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2488               assert( pIdx->azColl[j] );
2489               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2490                 continue;
2491               }
2492               break;
2493             }
2494             if( j==nExpr ) break;
2495             mCol = MASKBIT(j);
2496             if( mCol & colUsed ) break; /* Each column used only once */
2497             colUsed |= mCol;
2498             if( aiMap ) aiMap[i] = j;
2499           }
2500 
2501           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2502           if( colUsed==(MASKBIT(nExpr)-1) ){
2503             /* If we reach this point, that means the index pIdx is usable */
2504             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2505             ExplainQueryPlan((pParse, 0,
2506                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2507             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2508             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2509             VdbeComment((v, "%s", pIdx->zName));
2510             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2511             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2512 
2513             if( prRhsHasNull ){
2514 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2515               i64 mask = (1<<nExpr)-1;
2516               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2517                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2518 #endif
2519               *prRhsHasNull = ++pParse->nMem;
2520               if( nExpr==1 ){
2521                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2522               }
2523             }
2524             sqlite3VdbeJumpHere(v, iAddr);
2525           }
2526         } /* End loop over indexes */
2527       } /* End if( affinity_ok ) */
2528     } /* End if not an rowid index */
2529   } /* End attempt to optimize using an index */
2530 
2531   /* If no preexisting index is available for the IN clause
2532   ** and IN_INDEX_NOOP is an allowed reply
2533   ** and the RHS of the IN operator is a list, not a subquery
2534   ** and the RHS is not constant or has two or fewer terms,
2535   ** then it is not worth creating an ephemeral table to evaluate
2536   ** the IN operator so return IN_INDEX_NOOP.
2537   */
2538   if( eType==0
2539    && (inFlags & IN_INDEX_NOOP_OK)
2540    && !ExprHasProperty(pX, EP_xIsSelect)
2541    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2542   ){
2543     eType = IN_INDEX_NOOP;
2544   }
2545 
2546   if( eType==0 ){
2547     /* Could not find an existing table or index to use as the RHS b-tree.
2548     ** We will have to generate an ephemeral table to do the job.
2549     */
2550     u32 savedNQueryLoop = pParse->nQueryLoop;
2551     int rMayHaveNull = 0;
2552     eType = IN_INDEX_EPH;
2553     if( inFlags & IN_INDEX_LOOP ){
2554       pParse->nQueryLoop = 0;
2555     }else if( prRhsHasNull ){
2556       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2557     }
2558     assert( pX->op==TK_IN );
2559     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2560     if( rMayHaveNull ){
2561       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2562     }
2563     pParse->nQueryLoop = savedNQueryLoop;
2564   }
2565 
2566   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2567     int i, n;
2568     n = sqlite3ExprVectorSize(pX->pLeft);
2569     for(i=0; i<n; i++) aiMap[i] = i;
2570   }
2571   *piTab = iTab;
2572   return eType;
2573 }
2574 #endif
2575 
2576 #ifndef SQLITE_OMIT_SUBQUERY
2577 /*
2578 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2579 ** function allocates and returns a nul-terminated string containing
2580 ** the affinities to be used for each column of the comparison.
2581 **
2582 ** It is the responsibility of the caller to ensure that the returned
2583 ** string is eventually freed using sqlite3DbFree().
2584 */
2585 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2586   Expr *pLeft = pExpr->pLeft;
2587   int nVal = sqlite3ExprVectorSize(pLeft);
2588   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2589   char *zRet;
2590 
2591   assert( pExpr->op==TK_IN );
2592   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2593   if( zRet ){
2594     int i;
2595     for(i=0; i<nVal; i++){
2596       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2597       char a = sqlite3ExprAffinity(pA);
2598       if( pSelect ){
2599         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2600       }else{
2601         zRet[i] = a;
2602       }
2603     }
2604     zRet[nVal] = '\0';
2605   }
2606   return zRet;
2607 }
2608 #endif
2609 
2610 #ifndef SQLITE_OMIT_SUBQUERY
2611 /*
2612 ** Load the Parse object passed as the first argument with an error
2613 ** message of the form:
2614 **
2615 **   "sub-select returns N columns - expected M"
2616 */
2617 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2618   const char *zFmt = "sub-select returns %d columns - expected %d";
2619   sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2620 }
2621 #endif
2622 
2623 /*
2624 ** Expression pExpr is a vector that has been used in a context where
2625 ** it is not permitted. If pExpr is a sub-select vector, this routine
2626 ** loads the Parse object with a message of the form:
2627 **
2628 **   "sub-select returns N columns - expected 1"
2629 **
2630 ** Or, if it is a regular scalar vector:
2631 **
2632 **   "row value misused"
2633 */
2634 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2635 #ifndef SQLITE_OMIT_SUBQUERY
2636   if( pExpr->flags & EP_xIsSelect ){
2637     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2638   }else
2639 #endif
2640   {
2641     sqlite3ErrorMsg(pParse, "row value misused");
2642   }
2643 }
2644 
2645 #ifndef SQLITE_OMIT_SUBQUERY
2646 /*
2647 ** Generate code that will construct an ephemeral table containing all terms
2648 ** in the RHS of an IN operator.  The IN operator can be in either of two
2649 ** forms:
2650 **
2651 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2652 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2653 **
2654 ** The pExpr parameter is the IN operator.  The cursor number for the
2655 ** constructed ephermeral table is returned.  The first time the ephemeral
2656 ** table is computed, the cursor number is also stored in pExpr->iTable,
2657 ** however the cursor number returned might not be the same, as it might
2658 ** have been duplicated using OP_OpenDup.
2659 **
2660 ** If the LHS expression ("x" in the examples) is a column value, or
2661 ** the SELECT statement returns a column value, then the affinity of that
2662 ** column is used to build the index keys. If both 'x' and the
2663 ** SELECT... statement are columns, then numeric affinity is used
2664 ** if either column has NUMERIC or INTEGER affinity. If neither
2665 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2666 ** is used.
2667 */
2668 void sqlite3CodeRhsOfIN(
2669   Parse *pParse,          /* Parsing context */
2670   Expr *pExpr,            /* The IN operator */
2671   int iTab                /* Use this cursor number */
2672 ){
2673   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2674   int addr;                   /* Address of OP_OpenEphemeral instruction */
2675   Expr *pLeft;                /* the LHS of the IN operator */
2676   KeyInfo *pKeyInfo = 0;      /* Key information */
2677   int nVal;                   /* Size of vector pLeft */
2678   Vdbe *v;                    /* The prepared statement under construction */
2679 
2680   v = pParse->pVdbe;
2681   assert( v!=0 );
2682 
2683   /* The evaluation of the IN must be repeated every time it
2684   ** is encountered if any of the following is true:
2685   **
2686   **    *  The right-hand side is a correlated subquery
2687   **    *  The right-hand side is an expression list containing variables
2688   **    *  We are inside a trigger
2689   **
2690   ** If all of the above are false, then we can compute the RHS just once
2691   ** and reuse it many names.
2692   */
2693   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2694     /* Reuse of the RHS is allowed */
2695     /* If this routine has already been coded, but the previous code
2696     ** might not have been invoked yet, so invoke it now as a subroutine.
2697     */
2698     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2699       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2700       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2701         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
2702               pExpr->x.pSelect->selId));
2703       }
2704       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2705                         pExpr->y.sub.iAddr);
2706       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
2707       sqlite3VdbeJumpHere(v, addrOnce);
2708       return;
2709     }
2710 
2711     /* Begin coding the subroutine */
2712     ExprSetProperty(pExpr, EP_Subrtn);
2713     pExpr->y.sub.regReturn = ++pParse->nMem;
2714     pExpr->y.sub.iAddr =
2715       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2716     VdbeComment((v, "return address"));
2717 
2718     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2719   }
2720 
2721   /* Check to see if this is a vector IN operator */
2722   pLeft = pExpr->pLeft;
2723   nVal = sqlite3ExprVectorSize(pLeft);
2724 
2725   /* Construct the ephemeral table that will contain the content of
2726   ** RHS of the IN operator.
2727   */
2728   pExpr->iTable = iTab;
2729   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
2730 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2731   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2732     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
2733   }else{
2734     VdbeComment((v, "RHS of IN operator"));
2735   }
2736 #endif
2737   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2738 
2739   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2740     /* Case 1:     expr IN (SELECT ...)
2741     **
2742     ** Generate code to write the results of the select into the temporary
2743     ** table allocated and opened above.
2744     */
2745     Select *pSelect = pExpr->x.pSelect;
2746     ExprList *pEList = pSelect->pEList;
2747 
2748     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
2749         addrOnce?"":"CORRELATED ", pSelect->selId
2750     ));
2751     /* If the LHS and RHS of the IN operator do not match, that
2752     ** error will have been caught long before we reach this point. */
2753     if( ALWAYS(pEList->nExpr==nVal) ){
2754       SelectDest dest;
2755       int i;
2756       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
2757       dest.zAffSdst = exprINAffinity(pParse, pExpr);
2758       pSelect->iLimit = 0;
2759       testcase( pSelect->selFlags & SF_Distinct );
2760       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2761       if( sqlite3Select(pParse, pSelect, &dest) ){
2762         sqlite3DbFree(pParse->db, dest.zAffSdst);
2763         sqlite3KeyInfoUnref(pKeyInfo);
2764         return;
2765       }
2766       sqlite3DbFree(pParse->db, dest.zAffSdst);
2767       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2768       assert( pEList!=0 );
2769       assert( pEList->nExpr>0 );
2770       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2771       for(i=0; i<nVal; i++){
2772         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2773         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2774             pParse, p, pEList->a[i].pExpr
2775         );
2776       }
2777     }
2778   }else if( ALWAYS(pExpr->x.pList!=0) ){
2779     /* Case 2:     expr IN (exprlist)
2780     **
2781     ** For each expression, build an index key from the evaluation and
2782     ** store it in the temporary table. If <expr> is a column, then use
2783     ** that columns affinity when building index keys. If <expr> is not
2784     ** a column, use numeric affinity.
2785     */
2786     char affinity;            /* Affinity of the LHS of the IN */
2787     int i;
2788     ExprList *pList = pExpr->x.pList;
2789     struct ExprList_item *pItem;
2790     int r1, r2, r3;
2791     affinity = sqlite3ExprAffinity(pLeft);
2792     if( !affinity ){
2793       affinity = SQLITE_AFF_BLOB;
2794     }
2795     if( pKeyInfo ){
2796       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2797       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2798     }
2799 
2800     /* Loop through each expression in <exprlist>. */
2801     r1 = sqlite3GetTempReg(pParse);
2802     r2 = sqlite3GetTempReg(pParse);
2803     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2804       Expr *pE2 = pItem->pExpr;
2805 
2806       /* If the expression is not constant then we will need to
2807       ** disable the test that was generated above that makes sure
2808       ** this code only executes once.  Because for a non-constant
2809       ** expression we need to rerun this code each time.
2810       */
2811       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
2812         sqlite3VdbeChangeToNoop(v, addrOnce);
2813         addrOnce = 0;
2814       }
2815 
2816       /* Evaluate the expression and insert it into the temp table */
2817       r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2818       sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2819       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r3, 1);
2820     }
2821     sqlite3ReleaseTempReg(pParse, r1);
2822     sqlite3ReleaseTempReg(pParse, r2);
2823   }
2824   if( pKeyInfo ){
2825     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2826   }
2827   if( addrOnce ){
2828     sqlite3VdbeJumpHere(v, addrOnce);
2829     /* Subroutine return */
2830     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
2831     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
2832   }
2833 }
2834 #endif /* SQLITE_OMIT_SUBQUERY */
2835 
2836 /*
2837 ** Generate code for scalar subqueries used as a subquery expression
2838 ** or EXISTS operator:
2839 **
2840 **     (SELECT a FROM b)          -- subquery
2841 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
2842 **
2843 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
2844 **
2845 ** The register that holds the result.  For a multi-column SELECT,
2846 ** the result is stored in a contiguous array of registers and the
2847 ** return value is the register of the left-most result column.
2848 ** Return 0 if an error occurs.
2849 */
2850 #ifndef SQLITE_OMIT_SUBQUERY
2851 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
2852   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
2853   int rReg = 0;               /* Register storing resulting */
2854   Select *pSel;               /* SELECT statement to encode */
2855   SelectDest dest;            /* How to deal with SELECT result */
2856   int nReg;                   /* Registers to allocate */
2857   Expr *pLimit;               /* New limit expression */
2858 
2859   Vdbe *v = pParse->pVdbe;
2860   assert( v!=0 );
2861   testcase( pExpr->op==TK_EXISTS );
2862   testcase( pExpr->op==TK_SELECT );
2863   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2864   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2865   pSel = pExpr->x.pSelect;
2866 
2867   /* The evaluation of the EXISTS/SELECT must be repeated every time it
2868   ** is encountered if any of the following is true:
2869   **
2870   **    *  The right-hand side is a correlated subquery
2871   **    *  The right-hand side is an expression list containing variables
2872   **    *  We are inside a trigger
2873   **
2874   ** If all of the above are false, then we can run this code just once
2875   ** save the results, and reuse the same result on subsequent invocations.
2876   */
2877   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2878     /* If this routine has already been coded, then invoke it as a
2879     ** subroutine. */
2880     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2881       ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
2882       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2883                         pExpr->y.sub.iAddr);
2884       return pExpr->iTable;
2885     }
2886 
2887     /* Begin coding the subroutine */
2888     ExprSetProperty(pExpr, EP_Subrtn);
2889     pExpr->y.sub.regReturn = ++pParse->nMem;
2890     pExpr->y.sub.iAddr =
2891       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2892     VdbeComment((v, "return address"));
2893 
2894     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2895   }
2896 
2897   /* For a SELECT, generate code to put the values for all columns of
2898   ** the first row into an array of registers and return the index of
2899   ** the first register.
2900   **
2901   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2902   ** into a register and return that register number.
2903   **
2904   ** In both cases, the query is augmented with "LIMIT 1".  Any
2905   ** preexisting limit is discarded in place of the new LIMIT 1.
2906   */
2907   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
2908         addrOnce?"":"CORRELATED ", pSel->selId));
2909   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2910   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2911   pParse->nMem += nReg;
2912   if( pExpr->op==TK_SELECT ){
2913     dest.eDest = SRT_Mem;
2914     dest.iSdst = dest.iSDParm;
2915     dest.nSdst = nReg;
2916     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2917     VdbeComment((v, "Init subquery result"));
2918   }else{
2919     dest.eDest = SRT_Exists;
2920     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2921     VdbeComment((v, "Init EXISTS result"));
2922   }
2923   pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0);
2924   if( pSel->pLimit ){
2925     sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft);
2926     pSel->pLimit->pLeft = pLimit;
2927   }else{
2928     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
2929   }
2930   pSel->iLimit = 0;
2931   if( sqlite3Select(pParse, pSel, &dest) ){
2932     return 0;
2933   }
2934   pExpr->iTable = rReg = dest.iSDParm;
2935   ExprSetVVAProperty(pExpr, EP_NoReduce);
2936   if( addrOnce ){
2937     sqlite3VdbeJumpHere(v, addrOnce);
2938 
2939     /* Subroutine return */
2940     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
2941     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
2942   }
2943 
2944   return rReg;
2945 }
2946 #endif /* SQLITE_OMIT_SUBQUERY */
2947 
2948 #ifndef SQLITE_OMIT_SUBQUERY
2949 /*
2950 ** Expr pIn is an IN(...) expression. This function checks that the
2951 ** sub-select on the RHS of the IN() operator has the same number of
2952 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
2953 ** a sub-query, that the LHS is a vector of size 1.
2954 */
2955 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
2956   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
2957   if( (pIn->flags & EP_xIsSelect) ){
2958     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
2959       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
2960       return 1;
2961     }
2962   }else if( nVector!=1 ){
2963     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
2964     return 1;
2965   }
2966   return 0;
2967 }
2968 #endif
2969 
2970 #ifndef SQLITE_OMIT_SUBQUERY
2971 /*
2972 ** Generate code for an IN expression.
2973 **
2974 **      x IN (SELECT ...)
2975 **      x IN (value, value, ...)
2976 **
2977 ** The left-hand side (LHS) is a scalar or vector expression.  The
2978 ** right-hand side (RHS) is an array of zero or more scalar values, or a
2979 ** subquery.  If the RHS is a subquery, the number of result columns must
2980 ** match the number of columns in the vector on the LHS.  If the RHS is
2981 ** a list of values, the LHS must be a scalar.
2982 **
2983 ** The IN operator is true if the LHS value is contained within the RHS.
2984 ** The result is false if the LHS is definitely not in the RHS.  The
2985 ** result is NULL if the presence of the LHS in the RHS cannot be
2986 ** determined due to NULLs.
2987 **
2988 ** This routine generates code that jumps to destIfFalse if the LHS is not
2989 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2990 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2991 ** within the RHS then fall through.
2992 **
2993 ** See the separate in-operator.md documentation file in the canonical
2994 ** SQLite source tree for additional information.
2995 */
2996 static void sqlite3ExprCodeIN(
2997   Parse *pParse,        /* Parsing and code generating context */
2998   Expr *pExpr,          /* The IN expression */
2999   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3000   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3001 ){
3002   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3003   int eType;            /* Type of the RHS */
3004   int rLhs;             /* Register(s) holding the LHS values */
3005   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3006   Vdbe *v;              /* Statement under construction */
3007   int *aiMap = 0;       /* Map from vector field to index column */
3008   char *zAff = 0;       /* Affinity string for comparisons */
3009   int nVector;          /* Size of vectors for this IN operator */
3010   int iDummy;           /* Dummy parameter to exprCodeVector() */
3011   Expr *pLeft;          /* The LHS of the IN operator */
3012   int i;                /* loop counter */
3013   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3014   int destStep6 = 0;    /* Start of code for Step 6 */
3015   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3016   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3017   int addrTop;          /* Top of the step-6 loop */
3018   int iTab = 0;         /* Index to use */
3019 
3020   pLeft = pExpr->pLeft;
3021   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3022   zAff = exprINAffinity(pParse, pExpr);
3023   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3024   aiMap = (int*)sqlite3DbMallocZero(
3025       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3026   );
3027   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3028 
3029   /* Attempt to compute the RHS. After this step, if anything other than
3030   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3031   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3032   ** the RHS has not yet been coded.  */
3033   v = pParse->pVdbe;
3034   assert( v!=0 );       /* OOM detected prior to this routine */
3035   VdbeNoopComment((v, "begin IN expr"));
3036   eType = sqlite3FindInIndex(pParse, pExpr,
3037                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3038                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3039                              aiMap, &iTab);
3040 
3041   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3042        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3043   );
3044 #ifdef SQLITE_DEBUG
3045   /* Confirm that aiMap[] contains nVector integer values between 0 and
3046   ** nVector-1. */
3047   for(i=0; i<nVector; i++){
3048     int j, cnt;
3049     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3050     assert( cnt==1 );
3051   }
3052 #endif
3053 
3054   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3055   ** vector, then it is stored in an array of nVector registers starting
3056   ** at r1.
3057   **
3058   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3059   ** so that the fields are in the same order as an existing index.   The
3060   ** aiMap[] array contains a mapping from the original LHS field order to
3061   ** the field order that matches the RHS index.
3062   */
3063   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3064   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3065   if( i==nVector ){
3066     /* LHS fields are not reordered */
3067     rLhs = rLhsOrig;
3068   }else{
3069     /* Need to reorder the LHS fields according to aiMap */
3070     rLhs = sqlite3GetTempRange(pParse, nVector);
3071     for(i=0; i<nVector; i++){
3072       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3073     }
3074   }
3075 
3076   /* If sqlite3FindInIndex() did not find or create an index that is
3077   ** suitable for evaluating the IN operator, then evaluate using a
3078   ** sequence of comparisons.
3079   **
3080   ** This is step (1) in the in-operator.md optimized algorithm.
3081   */
3082   if( eType==IN_INDEX_NOOP ){
3083     ExprList *pList = pExpr->x.pList;
3084     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3085     int labelOk = sqlite3VdbeMakeLabel(pParse);
3086     int r2, regToFree;
3087     int regCkNull = 0;
3088     int ii;
3089     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3090     if( destIfNull!=destIfFalse ){
3091       regCkNull = sqlite3GetTempReg(pParse);
3092       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3093     }
3094     for(ii=0; ii<pList->nExpr; ii++){
3095       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3096       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3097         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3098       }
3099       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3100         sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
3101                           (void*)pColl, P4_COLLSEQ);
3102         VdbeCoverageIf(v, ii<pList->nExpr-1);
3103         VdbeCoverageIf(v, ii==pList->nExpr-1);
3104         sqlite3VdbeChangeP5(v, zAff[0]);
3105       }else{
3106         assert( destIfNull==destIfFalse );
3107         sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
3108                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
3109         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3110       }
3111       sqlite3ReleaseTempReg(pParse, regToFree);
3112     }
3113     if( regCkNull ){
3114       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3115       sqlite3VdbeGoto(v, destIfFalse);
3116     }
3117     sqlite3VdbeResolveLabel(v, labelOk);
3118     sqlite3ReleaseTempReg(pParse, regCkNull);
3119     goto sqlite3ExprCodeIN_finished;
3120   }
3121 
3122   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3123   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3124   ** We will then skip the binary search of the RHS.
3125   */
3126   if( destIfNull==destIfFalse ){
3127     destStep2 = destIfFalse;
3128   }else{
3129     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3130   }
3131   for(i=0; i<nVector; i++){
3132     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3133     if( sqlite3ExprCanBeNull(p) ){
3134       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3135       VdbeCoverage(v);
3136     }
3137   }
3138 
3139   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3140   ** of the RHS using the LHS as a probe.  If found, the result is
3141   ** true.
3142   */
3143   if( eType==IN_INDEX_ROWID ){
3144     /* In this case, the RHS is the ROWID of table b-tree and so we also
3145     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3146     ** into a single opcode. */
3147     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3148     VdbeCoverage(v);
3149     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3150   }else{
3151     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3152     if( destIfFalse==destIfNull ){
3153       /* Combine Step 3 and Step 5 into a single opcode */
3154       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3155                            rLhs, nVector); VdbeCoverage(v);
3156       goto sqlite3ExprCodeIN_finished;
3157     }
3158     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3159     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3160                                       rLhs, nVector); VdbeCoverage(v);
3161   }
3162 
3163   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3164   ** an match on the search above, then the result must be FALSE.
3165   */
3166   if( rRhsHasNull && nVector==1 ){
3167     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3168     VdbeCoverage(v);
3169   }
3170 
3171   /* Step 5.  If we do not care about the difference between NULL and
3172   ** FALSE, then just return false.
3173   */
3174   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3175 
3176   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3177   ** If any comparison is NULL, then the result is NULL.  If all
3178   ** comparisons are FALSE then the final result is FALSE.
3179   **
3180   ** For a scalar LHS, it is sufficient to check just the first row
3181   ** of the RHS.
3182   */
3183   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3184   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3185   VdbeCoverage(v);
3186   if( nVector>1 ){
3187     destNotNull = sqlite3VdbeMakeLabel(pParse);
3188   }else{
3189     /* For nVector==1, combine steps 6 and 7 by immediately returning
3190     ** FALSE if the first comparison is not NULL */
3191     destNotNull = destIfFalse;
3192   }
3193   for(i=0; i<nVector; i++){
3194     Expr *p;
3195     CollSeq *pColl;
3196     int r3 = sqlite3GetTempReg(pParse);
3197     p = sqlite3VectorFieldSubexpr(pLeft, i);
3198     pColl = sqlite3ExprCollSeq(pParse, p);
3199     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3200     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3201                       (void*)pColl, P4_COLLSEQ);
3202     VdbeCoverage(v);
3203     sqlite3ReleaseTempReg(pParse, r3);
3204   }
3205   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3206   if( nVector>1 ){
3207     sqlite3VdbeResolveLabel(v, destNotNull);
3208     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3209     VdbeCoverage(v);
3210 
3211     /* Step 7:  If we reach this point, we know that the result must
3212     ** be false. */
3213     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3214   }
3215 
3216   /* Jumps here in order to return true. */
3217   sqlite3VdbeJumpHere(v, addrTruthOp);
3218 
3219 sqlite3ExprCodeIN_finished:
3220   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3221   VdbeComment((v, "end IN expr"));
3222 sqlite3ExprCodeIN_oom_error:
3223   sqlite3DbFree(pParse->db, aiMap);
3224   sqlite3DbFree(pParse->db, zAff);
3225 }
3226 #endif /* SQLITE_OMIT_SUBQUERY */
3227 
3228 #ifndef SQLITE_OMIT_FLOATING_POINT
3229 /*
3230 ** Generate an instruction that will put the floating point
3231 ** value described by z[0..n-1] into register iMem.
3232 **
3233 ** The z[] string will probably not be zero-terminated.  But the
3234 ** z[n] character is guaranteed to be something that does not look
3235 ** like the continuation of the number.
3236 */
3237 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3238   if( ALWAYS(z!=0) ){
3239     double value;
3240     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3241     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3242     if( negateFlag ) value = -value;
3243     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3244   }
3245 }
3246 #endif
3247 
3248 
3249 /*
3250 ** Generate an instruction that will put the integer describe by
3251 ** text z[0..n-1] into register iMem.
3252 **
3253 ** Expr.u.zToken is always UTF8 and zero-terminated.
3254 */
3255 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3256   Vdbe *v = pParse->pVdbe;
3257   if( pExpr->flags & EP_IntValue ){
3258     int i = pExpr->u.iValue;
3259     assert( i>=0 );
3260     if( negFlag ) i = -i;
3261     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3262   }else{
3263     int c;
3264     i64 value;
3265     const char *z = pExpr->u.zToken;
3266     assert( z!=0 );
3267     c = sqlite3DecOrHexToI64(z, &value);
3268     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3269 #ifdef SQLITE_OMIT_FLOATING_POINT
3270       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3271 #else
3272 #ifndef SQLITE_OMIT_HEX_INTEGER
3273       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3274         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3275       }else
3276 #endif
3277       {
3278         codeReal(v, z, negFlag, iMem);
3279       }
3280 #endif
3281     }else{
3282       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3283       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3284     }
3285   }
3286 }
3287 
3288 
3289 /* Generate code that will load into register regOut a value that is
3290 ** appropriate for the iIdxCol-th column of index pIdx.
3291 */
3292 void sqlite3ExprCodeLoadIndexColumn(
3293   Parse *pParse,  /* The parsing context */
3294   Index *pIdx,    /* The index whose column is to be loaded */
3295   int iTabCur,    /* Cursor pointing to a table row */
3296   int iIdxCol,    /* The column of the index to be loaded */
3297   int regOut      /* Store the index column value in this register */
3298 ){
3299   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3300   if( iTabCol==XN_EXPR ){
3301     assert( pIdx->aColExpr );
3302     assert( pIdx->aColExpr->nExpr>iIdxCol );
3303     pParse->iSelfTab = iTabCur + 1;
3304     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3305     pParse->iSelfTab = 0;
3306   }else{
3307     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3308                                     iTabCol, regOut);
3309   }
3310 }
3311 
3312 /*
3313 ** Generate code to extract the value of the iCol-th column of a table.
3314 */
3315 void sqlite3ExprCodeGetColumnOfTable(
3316   Vdbe *v,        /* The VDBE under construction */
3317   Table *pTab,    /* The table containing the value */
3318   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3319   int iCol,       /* Index of the column to extract */
3320   int regOut      /* Extract the value into this register */
3321 ){
3322   if( pTab==0 ){
3323     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3324     return;
3325   }
3326   if( iCol<0 || iCol==pTab->iPKey ){
3327     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3328   }else{
3329     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
3330     int x = iCol;
3331     if( !HasRowid(pTab) && !IsVirtual(pTab) ){
3332       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3333     }
3334     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3335   }
3336   if( iCol>=0 ){
3337     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3338   }
3339 }
3340 
3341 /*
3342 ** Generate code that will extract the iColumn-th column from
3343 ** table pTab and store the column value in register iReg.
3344 **
3345 ** There must be an open cursor to pTab in iTable when this routine
3346 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3347 */
3348 int sqlite3ExprCodeGetColumn(
3349   Parse *pParse,   /* Parsing and code generating context */
3350   Table *pTab,     /* Description of the table we are reading from */
3351   int iColumn,     /* Index of the table column */
3352   int iTable,      /* The cursor pointing to the table */
3353   int iReg,        /* Store results here */
3354   u8 p5            /* P5 value for OP_Column + FLAGS */
3355 ){
3356   Vdbe *v = pParse->pVdbe;
3357   assert( v!=0 );
3358   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
3359   if( p5 ){
3360     sqlite3VdbeChangeP5(v, p5);
3361   }
3362   return iReg;
3363 }
3364 
3365 /*
3366 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3367 ** over to iTo..iTo+nReg-1.
3368 */
3369 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3370   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
3371   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3372 }
3373 
3374 /*
3375 ** Convert a scalar expression node to a TK_REGISTER referencing
3376 ** register iReg.  The caller must ensure that iReg already contains
3377 ** the correct value for the expression.
3378 */
3379 static void exprToRegister(Expr *p, int iReg){
3380   p->op2 = p->op;
3381   p->op = TK_REGISTER;
3382   p->iTable = iReg;
3383   ExprClearProperty(p, EP_Skip);
3384 }
3385 
3386 /*
3387 ** Evaluate an expression (either a vector or a scalar expression) and store
3388 ** the result in continguous temporary registers.  Return the index of
3389 ** the first register used to store the result.
3390 **
3391 ** If the returned result register is a temporary scalar, then also write
3392 ** that register number into *piFreeable.  If the returned result register
3393 ** is not a temporary or if the expression is a vector set *piFreeable
3394 ** to 0.
3395 */
3396 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3397   int iResult;
3398   int nResult = sqlite3ExprVectorSize(p);
3399   if( nResult==1 ){
3400     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3401   }else{
3402     *piFreeable = 0;
3403     if( p->op==TK_SELECT ){
3404 #if SQLITE_OMIT_SUBQUERY
3405       iResult = 0;
3406 #else
3407       iResult = sqlite3CodeSubselect(pParse, p);
3408 #endif
3409     }else{
3410       int i;
3411       iResult = pParse->nMem+1;
3412       pParse->nMem += nResult;
3413       for(i=0; i<nResult; i++){
3414         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3415       }
3416     }
3417   }
3418   return iResult;
3419 }
3420 
3421 
3422 /*
3423 ** Generate code into the current Vdbe to evaluate the given
3424 ** expression.  Attempt to store the results in register "target".
3425 ** Return the register where results are stored.
3426 **
3427 ** With this routine, there is no guarantee that results will
3428 ** be stored in target.  The result might be stored in some other
3429 ** register if it is convenient to do so.  The calling function
3430 ** must check the return code and move the results to the desired
3431 ** register.
3432 */
3433 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3434   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3435   int op;                   /* The opcode being coded */
3436   int inReg = target;       /* Results stored in register inReg */
3437   int regFree1 = 0;         /* If non-zero free this temporary register */
3438   int regFree2 = 0;         /* If non-zero free this temporary register */
3439   int r1, r2;               /* Various register numbers */
3440   Expr tempX;               /* Temporary expression node */
3441   int p5 = 0;
3442 
3443   assert( target>0 && target<=pParse->nMem );
3444   if( v==0 ){
3445     assert( pParse->db->mallocFailed );
3446     return 0;
3447   }
3448 
3449 expr_code_doover:
3450   if( pExpr==0 ){
3451     op = TK_NULL;
3452   }else{
3453     op = pExpr->op;
3454   }
3455   switch( op ){
3456     case TK_AGG_COLUMN: {
3457       AggInfo *pAggInfo = pExpr->pAggInfo;
3458       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3459       if( !pAggInfo->directMode ){
3460         assert( pCol->iMem>0 );
3461         return pCol->iMem;
3462       }else if( pAggInfo->useSortingIdx ){
3463         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3464                               pCol->iSorterColumn, target);
3465         return target;
3466       }
3467       /* Otherwise, fall thru into the TK_COLUMN case */
3468     }
3469     case TK_COLUMN: {
3470       int iTab = pExpr->iTable;
3471       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3472         /* This COLUMN expression is really a constant due to WHERE clause
3473         ** constraints, and that constant is coded by the pExpr->pLeft
3474         ** expresssion.  However, make sure the constant has the correct
3475         ** datatype by applying the Affinity of the table column to the
3476         ** constant.
3477         */
3478         int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3479         int aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3480         if( aff!=SQLITE_AFF_BLOB ){
3481           static const char zAff[] = "B\000C\000D\000E";
3482           assert( SQLITE_AFF_BLOB=='A' );
3483           assert( SQLITE_AFF_TEXT=='B' );
3484           if( iReg!=target ){
3485             sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target);
3486             iReg = target;
3487           }
3488           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3489                             &zAff[(aff-'B')*2], P4_STATIC);
3490         }
3491         return iReg;
3492       }
3493       if( iTab<0 ){
3494         if( pParse->iSelfTab<0 ){
3495           /* Generating CHECK constraints or inserting into partial index */
3496           return pExpr->iColumn - pParse->iSelfTab;
3497         }else{
3498           /* Coding an expression that is part of an index where column names
3499           ** in the index refer to the table to which the index belongs */
3500           iTab = pParse->iSelfTab - 1;
3501         }
3502       }
3503       return sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
3504                                pExpr->iColumn, iTab, target,
3505                                pExpr->op2);
3506     }
3507     case TK_INTEGER: {
3508       codeInteger(pParse, pExpr, 0, target);
3509       return target;
3510     }
3511     case TK_TRUEFALSE: {
3512       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3513       return target;
3514     }
3515 #ifndef SQLITE_OMIT_FLOATING_POINT
3516     case TK_FLOAT: {
3517       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3518       codeReal(v, pExpr->u.zToken, 0, target);
3519       return target;
3520     }
3521 #endif
3522     case TK_STRING: {
3523       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3524       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3525       return target;
3526     }
3527     case TK_NULL: {
3528       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3529       return target;
3530     }
3531 #ifndef SQLITE_OMIT_BLOB_LITERAL
3532     case TK_BLOB: {
3533       int n;
3534       const char *z;
3535       char *zBlob;
3536       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3537       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3538       assert( pExpr->u.zToken[1]=='\'' );
3539       z = &pExpr->u.zToken[2];
3540       n = sqlite3Strlen30(z) - 1;
3541       assert( z[n]=='\'' );
3542       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3543       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3544       return target;
3545     }
3546 #endif
3547     case TK_VARIABLE: {
3548       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3549       assert( pExpr->u.zToken!=0 );
3550       assert( pExpr->u.zToken[0]!=0 );
3551       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3552       if( pExpr->u.zToken[1]!=0 ){
3553         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3554         assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 );
3555         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3556         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3557       }
3558       return target;
3559     }
3560     case TK_REGISTER: {
3561       return pExpr->iTable;
3562     }
3563 #ifndef SQLITE_OMIT_CAST
3564     case TK_CAST: {
3565       /* Expressions of the form:   CAST(pLeft AS token) */
3566       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3567       if( inReg!=target ){
3568         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3569         inReg = target;
3570       }
3571       sqlite3VdbeAddOp2(v, OP_Cast, target,
3572                         sqlite3AffinityType(pExpr->u.zToken, 0));
3573       return inReg;
3574     }
3575 #endif /* SQLITE_OMIT_CAST */
3576     case TK_IS:
3577     case TK_ISNOT:
3578       op = (op==TK_IS) ? TK_EQ : TK_NE;
3579       p5 = SQLITE_NULLEQ;
3580       /* fall-through */
3581     case TK_LT:
3582     case TK_LE:
3583     case TK_GT:
3584     case TK_GE:
3585     case TK_NE:
3586     case TK_EQ: {
3587       Expr *pLeft = pExpr->pLeft;
3588       if( sqlite3ExprIsVector(pLeft) ){
3589         codeVectorCompare(pParse, pExpr, target, op, p5);
3590       }else{
3591         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3592         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3593         codeCompare(pParse, pLeft, pExpr->pRight, op,
3594             r1, r2, inReg, SQLITE_STOREP2 | p5);
3595         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3596         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3597         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3598         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3599         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3600         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3601         testcase( regFree1==0 );
3602         testcase( regFree2==0 );
3603       }
3604       break;
3605     }
3606     case TK_AND:
3607     case TK_OR:
3608     case TK_PLUS:
3609     case TK_STAR:
3610     case TK_MINUS:
3611     case TK_REM:
3612     case TK_BITAND:
3613     case TK_BITOR:
3614     case TK_SLASH:
3615     case TK_LSHIFT:
3616     case TK_RSHIFT:
3617     case TK_CONCAT: {
3618       assert( TK_AND==OP_And );            testcase( op==TK_AND );
3619       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
3620       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
3621       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
3622       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
3623       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
3624       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
3625       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
3626       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
3627       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
3628       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
3629       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3630       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3631       sqlite3VdbeAddOp3(v, op, r2, r1, target);
3632       testcase( regFree1==0 );
3633       testcase( regFree2==0 );
3634       break;
3635     }
3636     case TK_UMINUS: {
3637       Expr *pLeft = pExpr->pLeft;
3638       assert( pLeft );
3639       if( pLeft->op==TK_INTEGER ){
3640         codeInteger(pParse, pLeft, 1, target);
3641         return target;
3642 #ifndef SQLITE_OMIT_FLOATING_POINT
3643       }else if( pLeft->op==TK_FLOAT ){
3644         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3645         codeReal(v, pLeft->u.zToken, 1, target);
3646         return target;
3647 #endif
3648       }else{
3649         tempX.op = TK_INTEGER;
3650         tempX.flags = EP_IntValue|EP_TokenOnly;
3651         tempX.u.iValue = 0;
3652         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3653         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3654         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3655         testcase( regFree2==0 );
3656       }
3657       break;
3658     }
3659     case TK_BITNOT:
3660     case TK_NOT: {
3661       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
3662       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
3663       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3664       testcase( regFree1==0 );
3665       sqlite3VdbeAddOp2(v, op, r1, inReg);
3666       break;
3667     }
3668     case TK_TRUTH: {
3669       int isTrue;    /* IS TRUE or IS NOT TRUE */
3670       int bNormal;   /* IS TRUE or IS FALSE */
3671       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3672       testcase( regFree1==0 );
3673       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
3674       bNormal = pExpr->op2==TK_IS;
3675       testcase( isTrue && bNormal);
3676       testcase( !isTrue && bNormal);
3677       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
3678       break;
3679     }
3680     case TK_ISNULL:
3681     case TK_NOTNULL: {
3682       int addr;
3683       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3684       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3685       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3686       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3687       testcase( regFree1==0 );
3688       addr = sqlite3VdbeAddOp1(v, op, r1);
3689       VdbeCoverageIf(v, op==TK_ISNULL);
3690       VdbeCoverageIf(v, op==TK_NOTNULL);
3691       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3692       sqlite3VdbeJumpHere(v, addr);
3693       break;
3694     }
3695     case TK_AGG_FUNCTION: {
3696       AggInfo *pInfo = pExpr->pAggInfo;
3697       if( pInfo==0 ){
3698         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3699         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3700       }else{
3701         return pInfo->aFunc[pExpr->iAgg].iMem;
3702       }
3703       break;
3704     }
3705     case TK_FUNCTION: {
3706       ExprList *pFarg;       /* List of function arguments */
3707       int nFarg;             /* Number of function arguments */
3708       FuncDef *pDef;         /* The function definition object */
3709       const char *zId;       /* The function name */
3710       u32 constMask = 0;     /* Mask of function arguments that are constant */
3711       int i;                 /* Loop counter */
3712       sqlite3 *db = pParse->db;  /* The database connection */
3713       u8 enc = ENC(db);      /* The text encoding used by this database */
3714       CollSeq *pColl = 0;    /* A collating sequence */
3715 
3716 #ifndef SQLITE_OMIT_WINDOWFUNC
3717       if( ExprHasProperty(pExpr, EP_WinFunc) ){
3718         return pExpr->y.pWin->regResult;
3719       }
3720 #endif
3721 
3722       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
3723         /* SQL functions can be expensive. So try to move constant functions
3724         ** out of the inner loop, even if that means an extra OP_Copy. */
3725         return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
3726       }
3727       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3728       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3729         pFarg = 0;
3730       }else{
3731         pFarg = pExpr->x.pList;
3732       }
3733       nFarg = pFarg ? pFarg->nExpr : 0;
3734       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3735       zId = pExpr->u.zToken;
3736       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3737 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3738       if( pDef==0 && pParse->explain ){
3739         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3740       }
3741 #endif
3742       if( pDef==0 || pDef->xFinalize!=0 ){
3743         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3744         break;
3745       }
3746 
3747       /* Attempt a direct implementation of the built-in COALESCE() and
3748       ** IFNULL() functions.  This avoids unnecessary evaluation of
3749       ** arguments past the first non-NULL argument.
3750       */
3751       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3752         int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3753         assert( nFarg>=2 );
3754         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3755         for(i=1; i<nFarg; i++){
3756           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3757           VdbeCoverage(v);
3758           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3759         }
3760         sqlite3VdbeResolveLabel(v, endCoalesce);
3761         break;
3762       }
3763 
3764       /* The UNLIKELY() function is a no-op.  The result is the value
3765       ** of the first argument.
3766       */
3767       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3768         assert( nFarg>=1 );
3769         return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3770       }
3771 
3772 #ifdef SQLITE_DEBUG
3773       /* The AFFINITY() function evaluates to a string that describes
3774       ** the type affinity of the argument.  This is used for testing of
3775       ** the SQLite type logic.
3776       */
3777       if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
3778         const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3779         char aff;
3780         assert( nFarg==1 );
3781         aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3782         sqlite3VdbeLoadString(v, target,
3783                               aff ? azAff[aff-SQLITE_AFF_BLOB] : "none");
3784         return target;
3785       }
3786 #endif
3787 
3788       for(i=0; i<nFarg; i++){
3789         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3790           testcase( i==31 );
3791           constMask |= MASKBIT32(i);
3792         }
3793         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
3794           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
3795         }
3796       }
3797       if( pFarg ){
3798         if( constMask ){
3799           r1 = pParse->nMem+1;
3800           pParse->nMem += nFarg;
3801         }else{
3802           r1 = sqlite3GetTempRange(pParse, nFarg);
3803         }
3804 
3805         /* For length() and typeof() functions with a column argument,
3806         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3807         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3808         ** loading.
3809         */
3810         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3811           u8 exprOp;
3812           assert( nFarg==1 );
3813           assert( pFarg->a[0].pExpr!=0 );
3814           exprOp = pFarg->a[0].pExpr->op;
3815           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3816             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3817             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3818             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3819             pFarg->a[0].pExpr->op2 =
3820                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3821           }
3822         }
3823 
3824         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3825                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3826       }else{
3827         r1 = 0;
3828       }
3829 #ifndef SQLITE_OMIT_VIRTUALTABLE
3830       /* Possibly overload the function if the first argument is
3831       ** a virtual table column.
3832       **
3833       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3834       ** second argument, not the first, as the argument to test to
3835       ** see if it is a column in a virtual table.  This is done because
3836       ** the left operand of infix functions (the operand we want to
3837       ** control overloading) ends up as the second argument to the
3838       ** function.  The expression "A glob B" is equivalent to
3839       ** "glob(B,A).  We want to use the A in "A glob B" to test
3840       ** for function overloading.  But we use the B term in "glob(B,A)".
3841       */
3842       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
3843         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3844       }else if( nFarg>0 ){
3845         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3846       }
3847 #endif
3848       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3849         if( !pColl ) pColl = db->pDfltColl;
3850         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3851       }
3852 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
3853       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
3854         Expr *pArg = pFarg->a[0].pExpr;
3855         if( pArg->op==TK_COLUMN ){
3856           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
3857         }else{
3858           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3859         }
3860       }else
3861 #endif
3862       {
3863         sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0,
3864                           constMask, r1, target, (char*)pDef, P4_FUNCDEF);
3865         sqlite3VdbeChangeP5(v, (u8)nFarg);
3866       }
3867       if( nFarg && constMask==0 ){
3868         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3869       }
3870       return target;
3871     }
3872 #ifndef SQLITE_OMIT_SUBQUERY
3873     case TK_EXISTS:
3874     case TK_SELECT: {
3875       int nCol;
3876       testcase( op==TK_EXISTS );
3877       testcase( op==TK_SELECT );
3878       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
3879         sqlite3SubselectError(pParse, nCol, 1);
3880       }else{
3881         return sqlite3CodeSubselect(pParse, pExpr);
3882       }
3883       break;
3884     }
3885     case TK_SELECT_COLUMN: {
3886       int n;
3887       if( pExpr->pLeft->iTable==0 ){
3888         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
3889       }
3890       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
3891       if( pExpr->iTable
3892        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
3893       ){
3894         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
3895                                 pExpr->iTable, n);
3896       }
3897       return pExpr->pLeft->iTable + pExpr->iColumn;
3898     }
3899     case TK_IN: {
3900       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
3901       int destIfNull = sqlite3VdbeMakeLabel(pParse);
3902       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3903       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3904       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3905       sqlite3VdbeResolveLabel(v, destIfFalse);
3906       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3907       sqlite3VdbeResolveLabel(v, destIfNull);
3908       return target;
3909     }
3910 #endif /* SQLITE_OMIT_SUBQUERY */
3911 
3912 
3913     /*
3914     **    x BETWEEN y AND z
3915     **
3916     ** This is equivalent to
3917     **
3918     **    x>=y AND x<=z
3919     **
3920     ** X is stored in pExpr->pLeft.
3921     ** Y is stored in pExpr->pList->a[0].pExpr.
3922     ** Z is stored in pExpr->pList->a[1].pExpr.
3923     */
3924     case TK_BETWEEN: {
3925       exprCodeBetween(pParse, pExpr, target, 0, 0);
3926       return target;
3927     }
3928     case TK_SPAN:
3929     case TK_COLLATE:
3930     case TK_UPLUS: {
3931       pExpr = pExpr->pLeft;
3932       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
3933     }
3934 
3935     case TK_TRIGGER: {
3936       /* If the opcode is TK_TRIGGER, then the expression is a reference
3937       ** to a column in the new.* or old.* pseudo-tables available to
3938       ** trigger programs. In this case Expr.iTable is set to 1 for the
3939       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3940       ** is set to the column of the pseudo-table to read, or to -1 to
3941       ** read the rowid field.
3942       **
3943       ** The expression is implemented using an OP_Param opcode. The p1
3944       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3945       ** to reference another column of the old.* pseudo-table, where
3946       ** i is the index of the column. For a new.rowid reference, p1 is
3947       ** set to (n+1), where n is the number of columns in each pseudo-table.
3948       ** For a reference to any other column in the new.* pseudo-table, p1
3949       ** is set to (n+2+i), where n and i are as defined previously. For
3950       ** example, if the table on which triggers are being fired is
3951       ** declared as:
3952       **
3953       **   CREATE TABLE t1(a, b);
3954       **
3955       ** Then p1 is interpreted as follows:
3956       **
3957       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3958       **   p1==1   ->    old.a         p1==4   ->    new.a
3959       **   p1==2   ->    old.b         p1==5   ->    new.b
3960       */
3961       Table *pTab = pExpr->y.pTab;
3962       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3963 
3964       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3965       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3966       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3967       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3968 
3969       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3970       VdbeComment((v, "r[%d]=%s.%s", target,
3971         (pExpr->iTable ? "new" : "old"),
3972         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[pExpr->iColumn].zName)
3973       ));
3974 
3975 #ifndef SQLITE_OMIT_FLOATING_POINT
3976       /* If the column has REAL affinity, it may currently be stored as an
3977       ** integer. Use OP_RealAffinity to make sure it is really real.
3978       **
3979       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3980       ** floating point when extracting it from the record.  */
3981       if( pExpr->iColumn>=0
3982        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3983       ){
3984         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3985       }
3986 #endif
3987       break;
3988     }
3989 
3990     case TK_VECTOR: {
3991       sqlite3ErrorMsg(pParse, "row value misused");
3992       break;
3993     }
3994 
3995     case TK_IF_NULL_ROW: {
3996       int addrINR;
3997       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
3998       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3999       sqlite3VdbeJumpHere(v, addrINR);
4000       sqlite3VdbeChangeP3(v, addrINR, inReg);
4001       break;
4002     }
4003 
4004     /*
4005     ** Form A:
4006     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4007     **
4008     ** Form B:
4009     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4010     **
4011     ** Form A is can be transformed into the equivalent form B as follows:
4012     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4013     **        WHEN x=eN THEN rN ELSE y END
4014     **
4015     ** X (if it exists) is in pExpr->pLeft.
4016     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4017     ** odd.  The Y is also optional.  If the number of elements in x.pList
4018     ** is even, then Y is omitted and the "otherwise" result is NULL.
4019     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4020     **
4021     ** The result of the expression is the Ri for the first matching Ei,
4022     ** or if there is no matching Ei, the ELSE term Y, or if there is
4023     ** no ELSE term, NULL.
4024     */
4025     default: assert( op==TK_CASE ); {
4026       int endLabel;                     /* GOTO label for end of CASE stmt */
4027       int nextCase;                     /* GOTO label for next WHEN clause */
4028       int nExpr;                        /* 2x number of WHEN terms */
4029       int i;                            /* Loop counter */
4030       ExprList *pEList;                 /* List of WHEN terms */
4031       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4032       Expr opCompare;                   /* The X==Ei expression */
4033       Expr *pX;                         /* The X expression */
4034       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4035 
4036       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4037       assert(pExpr->x.pList->nExpr > 0);
4038       pEList = pExpr->x.pList;
4039       aListelem = pEList->a;
4040       nExpr = pEList->nExpr;
4041       endLabel = sqlite3VdbeMakeLabel(pParse);
4042       if( (pX = pExpr->pLeft)!=0 ){
4043         exprNodeCopy(&tempX, pX);
4044         testcase( pX->op==TK_COLUMN );
4045         exprToRegister(&tempX, exprCodeVector(pParse, &tempX, &regFree1));
4046         testcase( regFree1==0 );
4047         memset(&opCompare, 0, sizeof(opCompare));
4048         opCompare.op = TK_EQ;
4049         opCompare.pLeft = &tempX;
4050         pTest = &opCompare;
4051         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4052         ** The value in regFree1 might get SCopy-ed into the file result.
4053         ** So make sure that the regFree1 register is not reused for other
4054         ** purposes and possibly overwritten.  */
4055         regFree1 = 0;
4056       }
4057       for(i=0; i<nExpr-1; i=i+2){
4058         if( pX ){
4059           assert( pTest!=0 );
4060           opCompare.pRight = aListelem[i].pExpr;
4061         }else{
4062           pTest = aListelem[i].pExpr;
4063         }
4064         nextCase = sqlite3VdbeMakeLabel(pParse);
4065         testcase( pTest->op==TK_COLUMN );
4066         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4067         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4068         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4069         sqlite3VdbeGoto(v, endLabel);
4070         sqlite3VdbeResolveLabel(v, nextCase);
4071       }
4072       if( (nExpr&1)!=0 ){
4073         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4074       }else{
4075         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4076       }
4077       sqlite3VdbeResolveLabel(v, endLabel);
4078       break;
4079     }
4080 #ifndef SQLITE_OMIT_TRIGGER
4081     case TK_RAISE: {
4082       assert( pExpr->affinity==OE_Rollback
4083            || pExpr->affinity==OE_Abort
4084            || pExpr->affinity==OE_Fail
4085            || pExpr->affinity==OE_Ignore
4086       );
4087       if( !pParse->pTriggerTab ){
4088         sqlite3ErrorMsg(pParse,
4089                        "RAISE() may only be used within a trigger-program");
4090         return 0;
4091       }
4092       if( pExpr->affinity==OE_Abort ){
4093         sqlite3MayAbort(pParse);
4094       }
4095       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4096       if( pExpr->affinity==OE_Ignore ){
4097         sqlite3VdbeAddOp4(
4098             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4099         VdbeCoverage(v);
4100       }else{
4101         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4102                               pExpr->affinity, pExpr->u.zToken, 0, 0);
4103       }
4104 
4105       break;
4106     }
4107 #endif
4108   }
4109   sqlite3ReleaseTempReg(pParse, regFree1);
4110   sqlite3ReleaseTempReg(pParse, regFree2);
4111   return inReg;
4112 }
4113 
4114 /*
4115 ** Factor out the code of the given expression to initialization time.
4116 **
4117 ** If regDest>=0 then the result is always stored in that register and the
4118 ** result is not reusable.  If regDest<0 then this routine is free to
4119 ** store the value whereever it wants.  The register where the expression
4120 ** is stored is returned.  When regDest<0, two identical expressions will
4121 ** code to the same register.
4122 */
4123 int sqlite3ExprCodeAtInit(
4124   Parse *pParse,    /* Parsing context */
4125   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4126   int regDest       /* Store the value in this register */
4127 ){
4128   ExprList *p;
4129   assert( ConstFactorOk(pParse) );
4130   p = pParse->pConstExpr;
4131   if( regDest<0 && p ){
4132     struct ExprList_item *pItem;
4133     int i;
4134     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4135       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4136         return pItem->u.iConstExprReg;
4137       }
4138     }
4139   }
4140   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4141   p = sqlite3ExprListAppend(pParse, p, pExpr);
4142   if( p ){
4143      struct ExprList_item *pItem = &p->a[p->nExpr-1];
4144      pItem->reusable = regDest<0;
4145      if( regDest<0 ) regDest = ++pParse->nMem;
4146      pItem->u.iConstExprReg = regDest;
4147   }
4148   pParse->pConstExpr = p;
4149   return regDest;
4150 }
4151 
4152 /*
4153 ** Generate code to evaluate an expression and store the results
4154 ** into a register.  Return the register number where the results
4155 ** are stored.
4156 **
4157 ** If the register is a temporary register that can be deallocated,
4158 ** then write its number into *pReg.  If the result register is not
4159 ** a temporary, then set *pReg to zero.
4160 **
4161 ** If pExpr is a constant, then this routine might generate this
4162 ** code to fill the register in the initialization section of the
4163 ** VDBE program, in order to factor it out of the evaluation loop.
4164 */
4165 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4166   int r2;
4167   pExpr = sqlite3ExprSkipCollate(pExpr);
4168   if( ConstFactorOk(pParse)
4169    && pExpr->op!=TK_REGISTER
4170    && sqlite3ExprIsConstantNotJoin(pExpr)
4171   ){
4172     *pReg  = 0;
4173     r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4174   }else{
4175     int r1 = sqlite3GetTempReg(pParse);
4176     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4177     if( r2==r1 ){
4178       *pReg = r1;
4179     }else{
4180       sqlite3ReleaseTempReg(pParse, r1);
4181       *pReg = 0;
4182     }
4183   }
4184   return r2;
4185 }
4186 
4187 /*
4188 ** Generate code that will evaluate expression pExpr and store the
4189 ** results in register target.  The results are guaranteed to appear
4190 ** in register target.
4191 */
4192 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4193   int inReg;
4194 
4195   assert( target>0 && target<=pParse->nMem );
4196   if( pExpr && pExpr->op==TK_REGISTER ){
4197     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
4198   }else{
4199     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4200     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4201     if( inReg!=target && pParse->pVdbe ){
4202       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4203     }
4204   }
4205 }
4206 
4207 /*
4208 ** Make a transient copy of expression pExpr and then code it using
4209 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4210 ** except that the input expression is guaranteed to be unchanged.
4211 */
4212 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4213   sqlite3 *db = pParse->db;
4214   pExpr = sqlite3ExprDup(db, pExpr, 0);
4215   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4216   sqlite3ExprDelete(db, pExpr);
4217 }
4218 
4219 /*
4220 ** Generate code that will evaluate expression pExpr and store the
4221 ** results in register target.  The results are guaranteed to appear
4222 ** in register target.  If the expression is constant, then this routine
4223 ** might choose to code the expression at initialization time.
4224 */
4225 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4226   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4227     sqlite3ExprCodeAtInit(pParse, pExpr, target);
4228   }else{
4229     sqlite3ExprCode(pParse, pExpr, target);
4230   }
4231 }
4232 
4233 /*
4234 ** Generate code that evaluates the given expression and puts the result
4235 ** in register target.
4236 **
4237 ** Also make a copy of the expression results into another "cache" register
4238 ** and modify the expression so that the next time it is evaluated,
4239 ** the result is a copy of the cache register.
4240 **
4241 ** This routine is used for expressions that are used multiple
4242 ** times.  They are evaluated once and the results of the expression
4243 ** are reused.
4244 */
4245 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
4246   Vdbe *v = pParse->pVdbe;
4247   int iMem;
4248 
4249   assert( target>0 );
4250   assert( pExpr->op!=TK_REGISTER );
4251   sqlite3ExprCode(pParse, pExpr, target);
4252   iMem = ++pParse->nMem;
4253   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
4254   exprToRegister(pExpr, iMem);
4255 }
4256 
4257 /*
4258 ** Generate code that pushes the value of every element of the given
4259 ** expression list into a sequence of registers beginning at target.
4260 **
4261 ** Return the number of elements evaluated.  The number returned will
4262 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4263 ** is defined.
4264 **
4265 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4266 ** filled using OP_SCopy.  OP_Copy must be used instead.
4267 **
4268 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4269 ** factored out into initialization code.
4270 **
4271 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4272 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4273 ** in registers at srcReg, and so the value can be copied from there.
4274 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4275 ** are simply omitted rather than being copied from srcReg.
4276 */
4277 int sqlite3ExprCodeExprList(
4278   Parse *pParse,     /* Parsing context */
4279   ExprList *pList,   /* The expression list to be coded */
4280   int target,        /* Where to write results */
4281   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4282   u8 flags           /* SQLITE_ECEL_* flags */
4283 ){
4284   struct ExprList_item *pItem;
4285   int i, j, n;
4286   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4287   Vdbe *v = pParse->pVdbe;
4288   assert( pList!=0 );
4289   assert( target>0 );
4290   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4291   n = pList->nExpr;
4292   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4293   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4294     Expr *pExpr = pItem->pExpr;
4295 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4296     if( pItem->bSorterRef ){
4297       i--;
4298       n--;
4299     }else
4300 #endif
4301     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4302       if( flags & SQLITE_ECEL_OMITREF ){
4303         i--;
4304         n--;
4305       }else{
4306         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4307       }
4308     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4309            && sqlite3ExprIsConstantNotJoin(pExpr)
4310     ){
4311       sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4312     }else{
4313       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4314       if( inReg!=target+i ){
4315         VdbeOp *pOp;
4316         if( copyOp==OP_Copy
4317          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4318          && pOp->p1+pOp->p3+1==inReg
4319          && pOp->p2+pOp->p3+1==target+i
4320         ){
4321           pOp->p3++;
4322         }else{
4323           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4324         }
4325       }
4326     }
4327   }
4328   return n;
4329 }
4330 
4331 /*
4332 ** Generate code for a BETWEEN operator.
4333 **
4334 **    x BETWEEN y AND z
4335 **
4336 ** The above is equivalent to
4337 **
4338 **    x>=y AND x<=z
4339 **
4340 ** Code it as such, taking care to do the common subexpression
4341 ** elimination of x.
4342 **
4343 ** The xJumpIf parameter determines details:
4344 **
4345 **    NULL:                   Store the boolean result in reg[dest]
4346 **    sqlite3ExprIfTrue:      Jump to dest if true
4347 **    sqlite3ExprIfFalse:     Jump to dest if false
4348 **
4349 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4350 */
4351 static void exprCodeBetween(
4352   Parse *pParse,    /* Parsing and code generating context */
4353   Expr *pExpr,      /* The BETWEEN expression */
4354   int dest,         /* Jump destination or storage location */
4355   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4356   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4357 ){
4358  Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4359   Expr compLeft;    /* The  x>=y  term */
4360   Expr compRight;   /* The  x<=z  term */
4361   Expr exprX;       /* The  x  subexpression */
4362   int regFree1 = 0; /* Temporary use register */
4363 
4364   memset(&compLeft, 0, sizeof(Expr));
4365   memset(&compRight, 0, sizeof(Expr));
4366   memset(&exprAnd, 0, sizeof(Expr));
4367 
4368   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4369   exprNodeCopy(&exprX, pExpr->pLeft);
4370   exprAnd.op = TK_AND;
4371   exprAnd.pLeft = &compLeft;
4372   exprAnd.pRight = &compRight;
4373   compLeft.op = TK_GE;
4374   compLeft.pLeft = &exprX;
4375   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4376   compRight.op = TK_LE;
4377   compRight.pLeft = &exprX;
4378   compRight.pRight = pExpr->x.pList->a[1].pExpr;
4379   exprToRegister(&exprX, exprCodeVector(pParse, &exprX, &regFree1));
4380   if( xJump ){
4381     xJump(pParse, &exprAnd, dest, jumpIfNull);
4382   }else{
4383     /* Mark the expression is being from the ON or USING clause of a join
4384     ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4385     ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4386     ** for clarity, but we are out of bits in the Expr.flags field so we
4387     ** have to reuse the EP_FromJoin bit.  Bummer. */
4388     exprX.flags |= EP_FromJoin;
4389     sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4390   }
4391   sqlite3ReleaseTempReg(pParse, regFree1);
4392 
4393   /* Ensure adequate test coverage */
4394   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4395   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4396   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4397   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4398   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4399   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4400   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4401   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4402   testcase( xJump==0 );
4403 }
4404 
4405 /*
4406 ** Generate code for a boolean expression such that a jump is made
4407 ** to the label "dest" if the expression is true but execution
4408 ** continues straight thru if the expression is false.
4409 **
4410 ** If the expression evaluates to NULL (neither true nor false), then
4411 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4412 **
4413 ** This code depends on the fact that certain token values (ex: TK_EQ)
4414 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4415 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4416 ** the make process cause these values to align.  Assert()s in the code
4417 ** below verify that the numbers are aligned correctly.
4418 */
4419 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4420   Vdbe *v = pParse->pVdbe;
4421   int op = 0;
4422   int regFree1 = 0;
4423   int regFree2 = 0;
4424   int r1, r2;
4425 
4426   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4427   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4428   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4429   op = pExpr->op;
4430   switch( op ){
4431     case TK_AND: {
4432       int d2 = sqlite3VdbeMakeLabel(pParse);
4433       testcase( jumpIfNull==0 );
4434       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
4435       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4436       sqlite3VdbeResolveLabel(v, d2);
4437       break;
4438     }
4439     case TK_OR: {
4440       testcase( jumpIfNull==0 );
4441       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4442       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4443       break;
4444     }
4445     case TK_NOT: {
4446       testcase( jumpIfNull==0 );
4447       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4448       break;
4449     }
4450     case TK_TRUTH: {
4451       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4452       int isTrue;     /* IS TRUE or IS NOT TRUE */
4453       testcase( jumpIfNull==0 );
4454       isNot = pExpr->op2==TK_ISNOT;
4455       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4456       testcase( isTrue && isNot );
4457       testcase( !isTrue && isNot );
4458       if( isTrue ^ isNot ){
4459         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4460                           isNot ? SQLITE_JUMPIFNULL : 0);
4461       }else{
4462         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4463                            isNot ? SQLITE_JUMPIFNULL : 0);
4464       }
4465       break;
4466     }
4467     case TK_IS:
4468     case TK_ISNOT:
4469       testcase( op==TK_IS );
4470       testcase( op==TK_ISNOT );
4471       op = (op==TK_IS) ? TK_EQ : TK_NE;
4472       jumpIfNull = SQLITE_NULLEQ;
4473       /* Fall thru */
4474     case TK_LT:
4475     case TK_LE:
4476     case TK_GT:
4477     case TK_GE:
4478     case TK_NE:
4479     case TK_EQ: {
4480       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4481       testcase( jumpIfNull==0 );
4482       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4483       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4484       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4485                   r1, r2, dest, jumpIfNull);
4486       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4487       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4488       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4489       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4490       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4491       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4492       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4493       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4494       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4495       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4496       testcase( regFree1==0 );
4497       testcase( regFree2==0 );
4498       break;
4499     }
4500     case TK_ISNULL:
4501     case TK_NOTNULL: {
4502       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4503       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4504       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4505       sqlite3VdbeAddOp2(v, op, r1, dest);
4506       VdbeCoverageIf(v, op==TK_ISNULL);
4507       VdbeCoverageIf(v, op==TK_NOTNULL);
4508       testcase( regFree1==0 );
4509       break;
4510     }
4511     case TK_BETWEEN: {
4512       testcase( jumpIfNull==0 );
4513       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4514       break;
4515     }
4516 #ifndef SQLITE_OMIT_SUBQUERY
4517     case TK_IN: {
4518       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4519       int destIfNull = jumpIfNull ? dest : destIfFalse;
4520       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4521       sqlite3VdbeGoto(v, dest);
4522       sqlite3VdbeResolveLabel(v, destIfFalse);
4523       break;
4524     }
4525 #endif
4526     default: {
4527     default_expr:
4528       if( exprAlwaysTrue(pExpr) ){
4529         sqlite3VdbeGoto(v, dest);
4530       }else if( exprAlwaysFalse(pExpr) ){
4531         /* No-op */
4532       }else{
4533         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4534         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4535         VdbeCoverage(v);
4536         testcase( regFree1==0 );
4537         testcase( jumpIfNull==0 );
4538       }
4539       break;
4540     }
4541   }
4542   sqlite3ReleaseTempReg(pParse, regFree1);
4543   sqlite3ReleaseTempReg(pParse, regFree2);
4544 }
4545 
4546 /*
4547 ** Generate code for a boolean expression such that a jump is made
4548 ** to the label "dest" if the expression is false but execution
4549 ** continues straight thru if the expression is true.
4550 **
4551 ** If the expression evaluates to NULL (neither true nor false) then
4552 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4553 ** is 0.
4554 */
4555 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4556   Vdbe *v = pParse->pVdbe;
4557   int op = 0;
4558   int regFree1 = 0;
4559   int regFree2 = 0;
4560   int r1, r2;
4561 
4562   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4563   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4564   if( pExpr==0 )    return;
4565 
4566   /* The value of pExpr->op and op are related as follows:
4567   **
4568   **       pExpr->op            op
4569   **       ---------          ----------
4570   **       TK_ISNULL          OP_NotNull
4571   **       TK_NOTNULL         OP_IsNull
4572   **       TK_NE              OP_Eq
4573   **       TK_EQ              OP_Ne
4574   **       TK_GT              OP_Le
4575   **       TK_LE              OP_Gt
4576   **       TK_GE              OP_Lt
4577   **       TK_LT              OP_Ge
4578   **
4579   ** For other values of pExpr->op, op is undefined and unused.
4580   ** The value of TK_ and OP_ constants are arranged such that we
4581   ** can compute the mapping above using the following expression.
4582   ** Assert()s verify that the computation is correct.
4583   */
4584   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4585 
4586   /* Verify correct alignment of TK_ and OP_ constants
4587   */
4588   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4589   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4590   assert( pExpr->op!=TK_NE || op==OP_Eq );
4591   assert( pExpr->op!=TK_EQ || op==OP_Ne );
4592   assert( pExpr->op!=TK_LT || op==OP_Ge );
4593   assert( pExpr->op!=TK_LE || op==OP_Gt );
4594   assert( pExpr->op!=TK_GT || op==OP_Le );
4595   assert( pExpr->op!=TK_GE || op==OP_Lt );
4596 
4597   switch( pExpr->op ){
4598     case TK_AND: {
4599       testcase( jumpIfNull==0 );
4600       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4601       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4602       break;
4603     }
4604     case TK_OR: {
4605       int d2 = sqlite3VdbeMakeLabel(pParse);
4606       testcase( jumpIfNull==0 );
4607       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
4608       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4609       sqlite3VdbeResolveLabel(v, d2);
4610       break;
4611     }
4612     case TK_NOT: {
4613       testcase( jumpIfNull==0 );
4614       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4615       break;
4616     }
4617     case TK_TRUTH: {
4618       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
4619       int isTrue;  /* IS TRUE or IS NOT TRUE */
4620       testcase( jumpIfNull==0 );
4621       isNot = pExpr->op2==TK_ISNOT;
4622       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4623       testcase( isTrue && isNot );
4624       testcase( !isTrue && isNot );
4625       if( isTrue ^ isNot ){
4626         /* IS TRUE and IS NOT FALSE */
4627         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4628                            isNot ? 0 : SQLITE_JUMPIFNULL);
4629 
4630       }else{
4631         /* IS FALSE and IS NOT TRUE */
4632         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4633                           isNot ? 0 : SQLITE_JUMPIFNULL);
4634       }
4635       break;
4636     }
4637     case TK_IS:
4638     case TK_ISNOT:
4639       testcase( pExpr->op==TK_IS );
4640       testcase( pExpr->op==TK_ISNOT );
4641       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4642       jumpIfNull = SQLITE_NULLEQ;
4643       /* Fall thru */
4644     case TK_LT:
4645     case TK_LE:
4646     case TK_GT:
4647     case TK_GE:
4648     case TK_NE:
4649     case TK_EQ: {
4650       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4651       testcase( jumpIfNull==0 );
4652       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4653       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4654       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4655                   r1, r2, dest, jumpIfNull);
4656       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4657       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4658       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4659       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4660       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4661       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4662       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4663       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4664       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4665       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4666       testcase( regFree1==0 );
4667       testcase( regFree2==0 );
4668       break;
4669     }
4670     case TK_ISNULL:
4671     case TK_NOTNULL: {
4672       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4673       sqlite3VdbeAddOp2(v, op, r1, dest);
4674       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
4675       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
4676       testcase( regFree1==0 );
4677       break;
4678     }
4679     case TK_BETWEEN: {
4680       testcase( jumpIfNull==0 );
4681       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4682       break;
4683     }
4684 #ifndef SQLITE_OMIT_SUBQUERY
4685     case TK_IN: {
4686       if( jumpIfNull ){
4687         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4688       }else{
4689         int destIfNull = sqlite3VdbeMakeLabel(pParse);
4690         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4691         sqlite3VdbeResolveLabel(v, destIfNull);
4692       }
4693       break;
4694     }
4695 #endif
4696     default: {
4697     default_expr:
4698       if( exprAlwaysFalse(pExpr) ){
4699         sqlite3VdbeGoto(v, dest);
4700       }else if( exprAlwaysTrue(pExpr) ){
4701         /* no-op */
4702       }else{
4703         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4704         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4705         VdbeCoverage(v);
4706         testcase( regFree1==0 );
4707         testcase( jumpIfNull==0 );
4708       }
4709       break;
4710     }
4711   }
4712   sqlite3ReleaseTempReg(pParse, regFree1);
4713   sqlite3ReleaseTempReg(pParse, regFree2);
4714 }
4715 
4716 /*
4717 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4718 ** code generation, and that copy is deleted after code generation. This
4719 ** ensures that the original pExpr is unchanged.
4720 */
4721 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4722   sqlite3 *db = pParse->db;
4723   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4724   if( db->mallocFailed==0 ){
4725     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4726   }
4727   sqlite3ExprDelete(db, pCopy);
4728 }
4729 
4730 /*
4731 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
4732 ** type of expression.
4733 **
4734 ** If pExpr is a simple SQL value - an integer, real, string, blob
4735 ** or NULL value - then the VDBE currently being prepared is configured
4736 ** to re-prepare each time a new value is bound to variable pVar.
4737 **
4738 ** Additionally, if pExpr is a simple SQL value and the value is the
4739 ** same as that currently bound to variable pVar, non-zero is returned.
4740 ** Otherwise, if the values are not the same or if pExpr is not a simple
4741 ** SQL value, zero is returned.
4742 */
4743 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
4744   int res = 0;
4745   int iVar;
4746   sqlite3_value *pL, *pR = 0;
4747 
4748   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
4749   if( pR ){
4750     iVar = pVar->iColumn;
4751     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
4752     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
4753     if( pL ){
4754       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
4755         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
4756       }
4757       res =  0==sqlite3MemCompare(pL, pR, 0);
4758     }
4759     sqlite3ValueFree(pR);
4760     sqlite3ValueFree(pL);
4761   }
4762 
4763   return res;
4764 }
4765 
4766 /*
4767 ** Do a deep comparison of two expression trees.  Return 0 if the two
4768 ** expressions are completely identical.  Return 1 if they differ only
4769 ** by a COLLATE operator at the top level.  Return 2 if there are differences
4770 ** other than the top-level COLLATE operator.
4771 **
4772 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4773 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4774 **
4775 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
4776 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4777 **
4778 ** Sometimes this routine will return 2 even if the two expressions
4779 ** really are equivalent.  If we cannot prove that the expressions are
4780 ** identical, we return 2 just to be safe.  So if this routine
4781 ** returns 2, then you do not really know for certain if the two
4782 ** expressions are the same.  But if you get a 0 or 1 return, then you
4783 ** can be sure the expressions are the same.  In the places where
4784 ** this routine is used, it does not hurt to get an extra 2 - that
4785 ** just might result in some slightly slower code.  But returning
4786 ** an incorrect 0 or 1 could lead to a malfunction.
4787 **
4788 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
4789 ** pParse->pReprepare can be matched against literals in pB.  The
4790 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
4791 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
4792 ** Argument pParse should normally be NULL. If it is not NULL and pA or
4793 ** pB causes a return value of 2.
4794 */
4795 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
4796   u32 combinedFlags;
4797   if( pA==0 || pB==0 ){
4798     return pB==pA ? 0 : 2;
4799   }
4800   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
4801     return 0;
4802   }
4803   combinedFlags = pA->flags | pB->flags;
4804   if( combinedFlags & EP_IntValue ){
4805     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
4806       return 0;
4807     }
4808     return 2;
4809   }
4810   if( pA->op!=pB->op || pA->op==TK_RAISE ){
4811     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
4812       return 1;
4813     }
4814     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
4815       return 1;
4816     }
4817     return 2;
4818   }
4819   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
4820     if( pA->op==TK_FUNCTION ){
4821       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4822 #ifndef SQLITE_OMIT_WINDOWFUNC
4823       /* Justification for the assert():
4824       ** window functions have p->op==TK_FUNCTION but aggregate functions
4825       ** have p->op==TK_AGG_FUNCTION.  So any comparison between an aggregate
4826       ** function and a window function should have failed before reaching
4827       ** this point.  And, it is not possible to have a window function and
4828       ** a scalar function with the same name and number of arguments.  So
4829       ** if we reach this point, either A and B both window functions or
4830       ** neither are a window functions. */
4831       assert( ExprHasProperty(pA,EP_WinFunc)==ExprHasProperty(pB,EP_WinFunc) );
4832       if( ExprHasProperty(pA,EP_WinFunc) ){
4833         if( sqlite3WindowCompare(pParse,pA->y.pWin,pB->y.pWin)!=0 ) return 2;
4834       }
4835 #endif
4836     }else if( pA->op==TK_NULL ){
4837       return 0;
4838     }else if( pA->op==TK_COLLATE ){
4839       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4840     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4841       return 2;
4842     }
4843   }
4844   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4845   if( (combinedFlags & EP_TokenOnly)==0 ){
4846     if( combinedFlags & EP_xIsSelect ) return 2;
4847     if( (combinedFlags & EP_FixedCol)==0
4848      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
4849     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
4850     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4851     if( pA->op!=TK_STRING
4852      && pA->op!=TK_TRUEFALSE
4853      && (combinedFlags & EP_Reduced)==0
4854     ){
4855       if( pA->iColumn!=pB->iColumn ) return 2;
4856       if( pA->iTable!=pB->iTable
4857        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4858     }
4859   }
4860   return 0;
4861 }
4862 
4863 /*
4864 ** Compare two ExprList objects.  Return 0 if they are identical and
4865 ** non-zero if they differ in any way.
4866 **
4867 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4868 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4869 **
4870 ** This routine might return non-zero for equivalent ExprLists.  The
4871 ** only consequence will be disabled optimizations.  But this routine
4872 ** must never return 0 if the two ExprList objects are different, or
4873 ** a malfunction will result.
4874 **
4875 ** Two NULL pointers are considered to be the same.  But a NULL pointer
4876 ** always differs from a non-NULL pointer.
4877 */
4878 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4879   int i;
4880   if( pA==0 && pB==0 ) return 0;
4881   if( pA==0 || pB==0 ) return 1;
4882   if( pA->nExpr!=pB->nExpr ) return 1;
4883   for(i=0; i<pA->nExpr; i++){
4884     Expr *pExprA = pA->a[i].pExpr;
4885     Expr *pExprB = pB->a[i].pExpr;
4886     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4887     if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1;
4888   }
4889   return 0;
4890 }
4891 
4892 /*
4893 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
4894 ** are ignored.
4895 */
4896 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
4897   return sqlite3ExprCompare(0,
4898              sqlite3ExprSkipCollate(pA),
4899              sqlite3ExprSkipCollate(pB),
4900              iTab);
4901 }
4902 
4903 /*
4904 ** Return true if we can prove the pE2 will always be true if pE1 is
4905 ** true.  Return false if we cannot complete the proof or if pE2 might
4906 ** be false.  Examples:
4907 **
4908 **     pE1: x==5       pE2: x==5             Result: true
4909 **     pE1: x>0        pE2: x==5             Result: false
4910 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
4911 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
4912 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
4913 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
4914 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
4915 **
4916 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
4917 ** Expr.iTable<0 then assume a table number given by iTab.
4918 **
4919 ** If pParse is not NULL, then the values of bound variables in pE1 are
4920 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
4921 ** modified to record which bound variables are referenced.  If pParse
4922 ** is NULL, then false will be returned if pE1 contains any bound variables.
4923 **
4924 ** When in doubt, return false.  Returning true might give a performance
4925 ** improvement.  Returning false might cause a performance reduction, but
4926 ** it will always give the correct answer and is hence always safe.
4927 */
4928 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
4929   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
4930     return 1;
4931   }
4932   if( pE2->op==TK_OR
4933    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
4934              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
4935   ){
4936     return 1;
4937   }
4938   if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){
4939     Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft);
4940     testcase( pX!=pE1->pLeft );
4941     if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1;
4942   }
4943   return 0;
4944 }
4945 
4946 /*
4947 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow().
4948 ** If the expression node requires that the table at pWalker->iCur
4949 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
4950 **
4951 ** This routine controls an optimization.  False positives (setting
4952 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
4953 ** (never setting pWalker->eCode) is a harmless missed optimization.
4954 */
4955 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
4956   testcase( pExpr->op==TK_AGG_COLUMN );
4957   testcase( pExpr->op==TK_AGG_FUNCTION );
4958   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
4959   switch( pExpr->op ){
4960     case TK_ISNOT:
4961     case TK_NOT:
4962     case TK_ISNULL:
4963     case TK_NOTNULL:
4964     case TK_IS:
4965     case TK_OR:
4966     case TK_CASE:
4967     case TK_IN:
4968     case TK_FUNCTION:
4969       testcase( pExpr->op==TK_ISNOT );
4970       testcase( pExpr->op==TK_NOT );
4971       testcase( pExpr->op==TK_ISNULL );
4972       testcase( pExpr->op==TK_NOTNULL );
4973       testcase( pExpr->op==TK_IS );
4974       testcase( pExpr->op==TK_OR );
4975       testcase( pExpr->op==TK_CASE );
4976       testcase( pExpr->op==TK_IN );
4977       testcase( pExpr->op==TK_FUNCTION );
4978       return WRC_Prune;
4979     case TK_COLUMN:
4980       if( pWalker->u.iCur==pExpr->iTable ){
4981         pWalker->eCode = 1;
4982         return WRC_Abort;
4983       }
4984       return WRC_Prune;
4985 
4986     /* Virtual tables are allowed to use constraints like x=NULL.  So
4987     ** a term of the form x=y does not prove that y is not null if x
4988     ** is the column of a virtual table */
4989     case TK_EQ:
4990     case TK_NE:
4991     case TK_LT:
4992     case TK_LE:
4993     case TK_GT:
4994     case TK_GE:
4995       testcase( pExpr->op==TK_EQ );
4996       testcase( pExpr->op==TK_NE );
4997       testcase( pExpr->op==TK_LT );
4998       testcase( pExpr->op==TK_LE );
4999       testcase( pExpr->op==TK_GT );
5000       testcase( pExpr->op==TK_GE );
5001       if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab))
5002        || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab))
5003       ){
5004        return WRC_Prune;
5005       }
5006     default:
5007       return WRC_Continue;
5008   }
5009 }
5010 
5011 /*
5012 ** Return true (non-zero) if expression p can only be true if at least
5013 ** one column of table iTab is non-null.  In other words, return true
5014 ** if expression p will always be NULL or false if every column of iTab
5015 ** is NULL.
5016 **
5017 ** False negatives are acceptable.  In other words, it is ok to return
5018 ** zero even if expression p will never be true of every column of iTab
5019 ** is NULL.  A false negative is merely a missed optimization opportunity.
5020 **
5021 ** False positives are not allowed, however.  A false positive may result
5022 ** in an incorrect answer.
5023 **
5024 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5025 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5026 **
5027 ** This routine is used to check if a LEFT JOIN can be converted into
5028 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5029 ** clause requires that some column of the right table of the LEFT JOIN
5030 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5031 ** ordinary join.
5032 */
5033 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5034   Walker w;
5035   w.xExprCallback = impliesNotNullRow;
5036   w.xSelectCallback = 0;
5037   w.xSelectCallback2 = 0;
5038   w.eCode = 0;
5039   w.u.iCur = iTab;
5040   sqlite3WalkExpr(&w, p);
5041   return w.eCode;
5042 }
5043 
5044 /*
5045 ** An instance of the following structure is used by the tree walker
5046 ** to determine if an expression can be evaluated by reference to the
5047 ** index only, without having to do a search for the corresponding
5048 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5049 ** is the cursor for the table.
5050 */
5051 struct IdxCover {
5052   Index *pIdx;     /* The index to be tested for coverage */
5053   int iCur;        /* Cursor number for the table corresponding to the index */
5054 };
5055 
5056 /*
5057 ** Check to see if there are references to columns in table
5058 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5059 ** pWalker->u.pIdxCover->pIdx.
5060 */
5061 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5062   if( pExpr->op==TK_COLUMN
5063    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5064    && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5065   ){
5066     pWalker->eCode = 1;
5067     return WRC_Abort;
5068   }
5069   return WRC_Continue;
5070 }
5071 
5072 /*
5073 ** Determine if an index pIdx on table with cursor iCur contains will
5074 ** the expression pExpr.  Return true if the index does cover the
5075 ** expression and false if the pExpr expression references table columns
5076 ** that are not found in the index pIdx.
5077 **
5078 ** An index covering an expression means that the expression can be
5079 ** evaluated using only the index and without having to lookup the
5080 ** corresponding table entry.
5081 */
5082 int sqlite3ExprCoveredByIndex(
5083   Expr *pExpr,        /* The index to be tested */
5084   int iCur,           /* The cursor number for the corresponding table */
5085   Index *pIdx         /* The index that might be used for coverage */
5086 ){
5087   Walker w;
5088   struct IdxCover xcov;
5089   memset(&w, 0, sizeof(w));
5090   xcov.iCur = iCur;
5091   xcov.pIdx = pIdx;
5092   w.xExprCallback = exprIdxCover;
5093   w.u.pIdxCover = &xcov;
5094   sqlite3WalkExpr(&w, pExpr);
5095   return !w.eCode;
5096 }
5097 
5098 
5099 /*
5100 ** An instance of the following structure is used by the tree walker
5101 ** to count references to table columns in the arguments of an
5102 ** aggregate function, in order to implement the
5103 ** sqlite3FunctionThisSrc() routine.
5104 */
5105 struct SrcCount {
5106   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5107   int nThis;       /* Number of references to columns in pSrcList */
5108   int nOther;      /* Number of references to columns in other FROM clauses */
5109 };
5110 
5111 /*
5112 ** Count the number of references to columns.
5113 */
5114 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5115   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
5116   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
5117   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
5118   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
5119   ** NEVER() will need to be removed. */
5120   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
5121     int i;
5122     struct SrcCount *p = pWalker->u.pSrcCount;
5123     SrcList *pSrc = p->pSrc;
5124     int nSrc = pSrc ? pSrc->nSrc : 0;
5125     for(i=0; i<nSrc; i++){
5126       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5127     }
5128     if( i<nSrc ){
5129       p->nThis++;
5130     }else{
5131       p->nOther++;
5132     }
5133   }
5134   return WRC_Continue;
5135 }
5136 
5137 /*
5138 ** Determine if any of the arguments to the pExpr Function reference
5139 ** pSrcList.  Return true if they do.  Also return true if the function
5140 ** has no arguments or has only constant arguments.  Return false if pExpr
5141 ** references columns but not columns of tables found in pSrcList.
5142 */
5143 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5144   Walker w;
5145   struct SrcCount cnt;
5146   assert( pExpr->op==TK_AGG_FUNCTION );
5147   w.xExprCallback = exprSrcCount;
5148   w.xSelectCallback = 0;
5149   w.u.pSrcCount = &cnt;
5150   cnt.pSrc = pSrcList;
5151   cnt.nThis = 0;
5152   cnt.nOther = 0;
5153   sqlite3WalkExprList(&w, pExpr->x.pList);
5154   return cnt.nThis>0 || cnt.nOther==0;
5155 }
5156 
5157 /*
5158 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5159 ** the new element.  Return a negative number if malloc fails.
5160 */
5161 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5162   int i;
5163   pInfo->aCol = sqlite3ArrayAllocate(
5164        db,
5165        pInfo->aCol,
5166        sizeof(pInfo->aCol[0]),
5167        &pInfo->nColumn,
5168        &i
5169   );
5170   return i;
5171 }
5172 
5173 /*
5174 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5175 ** the new element.  Return a negative number if malloc fails.
5176 */
5177 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5178   int i;
5179   pInfo->aFunc = sqlite3ArrayAllocate(
5180        db,
5181        pInfo->aFunc,
5182        sizeof(pInfo->aFunc[0]),
5183        &pInfo->nFunc,
5184        &i
5185   );
5186   return i;
5187 }
5188 
5189 /*
5190 ** This is the xExprCallback for a tree walker.  It is used to
5191 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5192 ** for additional information.
5193 */
5194 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5195   int i;
5196   NameContext *pNC = pWalker->u.pNC;
5197   Parse *pParse = pNC->pParse;
5198   SrcList *pSrcList = pNC->pSrcList;
5199   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5200 
5201   assert( pNC->ncFlags & NC_UAggInfo );
5202   switch( pExpr->op ){
5203     case TK_AGG_COLUMN:
5204     case TK_COLUMN: {
5205       testcase( pExpr->op==TK_AGG_COLUMN );
5206       testcase( pExpr->op==TK_COLUMN );
5207       /* Check to see if the column is in one of the tables in the FROM
5208       ** clause of the aggregate query */
5209       if( ALWAYS(pSrcList!=0) ){
5210         struct SrcList_item *pItem = pSrcList->a;
5211         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5212           struct AggInfo_col *pCol;
5213           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5214           if( pExpr->iTable==pItem->iCursor ){
5215             /* If we reach this point, it means that pExpr refers to a table
5216             ** that is in the FROM clause of the aggregate query.
5217             **
5218             ** Make an entry for the column in pAggInfo->aCol[] if there
5219             ** is not an entry there already.
5220             */
5221             int k;
5222             pCol = pAggInfo->aCol;
5223             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5224               if( pCol->iTable==pExpr->iTable &&
5225                   pCol->iColumn==pExpr->iColumn ){
5226                 break;
5227               }
5228             }
5229             if( (k>=pAggInfo->nColumn)
5230              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5231             ){
5232               pCol = &pAggInfo->aCol[k];
5233               pCol->pTab = pExpr->y.pTab;
5234               pCol->iTable = pExpr->iTable;
5235               pCol->iColumn = pExpr->iColumn;
5236               pCol->iMem = ++pParse->nMem;
5237               pCol->iSorterColumn = -1;
5238               pCol->pExpr = pExpr;
5239               if( pAggInfo->pGroupBy ){
5240                 int j, n;
5241                 ExprList *pGB = pAggInfo->pGroupBy;
5242                 struct ExprList_item *pTerm = pGB->a;
5243                 n = pGB->nExpr;
5244                 for(j=0; j<n; j++, pTerm++){
5245                   Expr *pE = pTerm->pExpr;
5246                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5247                       pE->iColumn==pExpr->iColumn ){
5248                     pCol->iSorterColumn = j;
5249                     break;
5250                   }
5251                 }
5252               }
5253               if( pCol->iSorterColumn<0 ){
5254                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5255               }
5256             }
5257             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5258             ** because it was there before or because we just created it).
5259             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5260             ** pAggInfo->aCol[] entry.
5261             */
5262             ExprSetVVAProperty(pExpr, EP_NoReduce);
5263             pExpr->pAggInfo = pAggInfo;
5264             pExpr->op = TK_AGG_COLUMN;
5265             pExpr->iAgg = (i16)k;
5266             break;
5267           } /* endif pExpr->iTable==pItem->iCursor */
5268         } /* end loop over pSrcList */
5269       }
5270       return WRC_Prune;
5271     }
5272     case TK_AGG_FUNCTION: {
5273       if( (pNC->ncFlags & NC_InAggFunc)==0
5274        && pWalker->walkerDepth==pExpr->op2
5275       ){
5276         /* Check to see if pExpr is a duplicate of another aggregate
5277         ** function that is already in the pAggInfo structure
5278         */
5279         struct AggInfo_func *pItem = pAggInfo->aFunc;
5280         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5281           if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5282             break;
5283           }
5284         }
5285         if( i>=pAggInfo->nFunc ){
5286           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5287           */
5288           u8 enc = ENC(pParse->db);
5289           i = addAggInfoFunc(pParse->db, pAggInfo);
5290           if( i>=0 ){
5291             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5292             pItem = &pAggInfo->aFunc[i];
5293             pItem->pExpr = pExpr;
5294             pItem->iMem = ++pParse->nMem;
5295             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5296             pItem->pFunc = sqlite3FindFunction(pParse->db,
5297                    pExpr->u.zToken,
5298                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5299             if( pExpr->flags & EP_Distinct ){
5300               pItem->iDistinct = pParse->nTab++;
5301             }else{
5302               pItem->iDistinct = -1;
5303             }
5304           }
5305         }
5306         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5307         */
5308         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5309         ExprSetVVAProperty(pExpr, EP_NoReduce);
5310         pExpr->iAgg = (i16)i;
5311         pExpr->pAggInfo = pAggInfo;
5312         return WRC_Prune;
5313       }else{
5314         return WRC_Continue;
5315       }
5316     }
5317   }
5318   return WRC_Continue;
5319 }
5320 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5321   UNUSED_PARAMETER(pSelect);
5322   pWalker->walkerDepth++;
5323   return WRC_Continue;
5324 }
5325 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5326   UNUSED_PARAMETER(pSelect);
5327   pWalker->walkerDepth--;
5328 }
5329 
5330 /*
5331 ** Analyze the pExpr expression looking for aggregate functions and
5332 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5333 ** points to.  Additional entries are made on the AggInfo object as
5334 ** necessary.
5335 **
5336 ** This routine should only be called after the expression has been
5337 ** analyzed by sqlite3ResolveExprNames().
5338 */
5339 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5340   Walker w;
5341   w.xExprCallback = analyzeAggregate;
5342   w.xSelectCallback = analyzeAggregatesInSelect;
5343   w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5344   w.walkerDepth = 0;
5345   w.u.pNC = pNC;
5346   w.pParse = 0;
5347   assert( pNC->pSrcList!=0 );
5348   sqlite3WalkExpr(&w, pExpr);
5349 }
5350 
5351 /*
5352 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5353 ** expression list.  Return the number of errors.
5354 **
5355 ** If an error is found, the analysis is cut short.
5356 */
5357 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5358   struct ExprList_item *pItem;
5359   int i;
5360   if( pList ){
5361     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5362       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5363     }
5364   }
5365 }
5366 
5367 /*
5368 ** Allocate a single new register for use to hold some intermediate result.
5369 */
5370 int sqlite3GetTempReg(Parse *pParse){
5371   if( pParse->nTempReg==0 ){
5372     return ++pParse->nMem;
5373   }
5374   return pParse->aTempReg[--pParse->nTempReg];
5375 }
5376 
5377 /*
5378 ** Deallocate a register, making available for reuse for some other
5379 ** purpose.
5380 */
5381 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5382   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5383     pParse->aTempReg[pParse->nTempReg++] = iReg;
5384   }
5385 }
5386 
5387 /*
5388 ** Allocate or deallocate a block of nReg consecutive registers.
5389 */
5390 int sqlite3GetTempRange(Parse *pParse, int nReg){
5391   int i, n;
5392   if( nReg==1 ) return sqlite3GetTempReg(pParse);
5393   i = pParse->iRangeReg;
5394   n = pParse->nRangeReg;
5395   if( nReg<=n ){
5396     pParse->iRangeReg += nReg;
5397     pParse->nRangeReg -= nReg;
5398   }else{
5399     i = pParse->nMem+1;
5400     pParse->nMem += nReg;
5401   }
5402   return i;
5403 }
5404 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5405   if( nReg==1 ){
5406     sqlite3ReleaseTempReg(pParse, iReg);
5407     return;
5408   }
5409   if( nReg>pParse->nRangeReg ){
5410     pParse->nRangeReg = nReg;
5411     pParse->iRangeReg = iReg;
5412   }
5413 }
5414 
5415 /*
5416 ** Mark all temporary registers as being unavailable for reuse.
5417 */
5418 void sqlite3ClearTempRegCache(Parse *pParse){
5419   pParse->nTempReg = 0;
5420   pParse->nRangeReg = 0;
5421 }
5422 
5423 /*
5424 ** Validate that no temporary register falls within the range of
5425 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5426 ** statements.
5427 */
5428 #ifdef SQLITE_DEBUG
5429 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5430   int i;
5431   if( pParse->nRangeReg>0
5432    && pParse->iRangeReg+pParse->nRangeReg > iFirst
5433    && pParse->iRangeReg <= iLast
5434   ){
5435      return 0;
5436   }
5437   for(i=0; i<pParse->nTempReg; i++){
5438     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5439       return 0;
5440     }
5441   }
5442   return 1;
5443 }
5444 #endif /* SQLITE_DEBUG */
5445