1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 pExpr = sqlite3ExprSkipCollate(pExpr); 48 if( pExpr->flags & EP_Generic ) return 0; 49 op = pExpr->op; 50 if( op==TK_SELECT ){ 51 assert( pExpr->flags&EP_xIsSelect ); 52 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 53 } 54 if( op==TK_REGISTER ) op = pExpr->op2; 55 #ifndef SQLITE_OMIT_CAST 56 if( op==TK_CAST ){ 57 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 58 return sqlite3AffinityType(pExpr->u.zToken, 0); 59 } 60 #endif 61 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ 62 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 63 } 64 if( op==TK_SELECT_COLUMN ){ 65 assert( pExpr->pLeft->flags&EP_xIsSelect ); 66 return sqlite3ExprAffinity( 67 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 68 ); 69 } 70 return pExpr->affinity; 71 } 72 73 /* 74 ** Set the collating sequence for expression pExpr to be the collating 75 ** sequence named by pToken. Return a pointer to a new Expr node that 76 ** implements the COLLATE operator. 77 ** 78 ** If a memory allocation error occurs, that fact is recorded in pParse->db 79 ** and the pExpr parameter is returned unchanged. 80 */ 81 Expr *sqlite3ExprAddCollateToken( 82 Parse *pParse, /* Parsing context */ 83 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 84 const Token *pCollName, /* Name of collating sequence */ 85 int dequote /* True to dequote pCollName */ 86 ){ 87 if( pCollName->n>0 ){ 88 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 89 if( pNew ){ 90 pNew->pLeft = pExpr; 91 pNew->flags |= EP_Collate|EP_Skip; 92 pExpr = pNew; 93 } 94 } 95 return pExpr; 96 } 97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 98 Token s; 99 assert( zC!=0 ); 100 sqlite3TokenInit(&s, (char*)zC); 101 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 102 } 103 104 /* 105 ** Skip over any TK_COLLATE operators and any unlikely() 106 ** or likelihood() function at the root of an expression. 107 */ 108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 109 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 110 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 111 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 112 assert( pExpr->x.pList->nExpr>0 ); 113 assert( pExpr->op==TK_FUNCTION ); 114 pExpr = pExpr->x.pList->a[0].pExpr; 115 }else{ 116 assert( pExpr->op==TK_COLLATE ); 117 pExpr = pExpr->pLeft; 118 } 119 } 120 return pExpr; 121 } 122 123 /* 124 ** Return the collation sequence for the expression pExpr. If 125 ** there is no defined collating sequence, return NULL. 126 ** 127 ** See also: sqlite3ExprNNCollSeq() 128 ** 129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 130 ** default collation if pExpr has no defined collation. 131 ** 132 ** The collating sequence might be determined by a COLLATE operator 133 ** or by the presence of a column with a defined collating sequence. 134 ** COLLATE operators take first precedence. Left operands take 135 ** precedence over right operands. 136 */ 137 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 138 sqlite3 *db = pParse->db; 139 CollSeq *pColl = 0; 140 Expr *p = pExpr; 141 while( p ){ 142 int op = p->op; 143 if( p->flags & EP_Generic ) break; 144 if( op==TK_REGISTER ) op = p->op2; 145 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 146 && p->y.pTab!=0 147 ){ 148 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 149 ** a TK_COLUMN but was previously evaluated and cached in a register */ 150 int j = p->iColumn; 151 if( j>=0 ){ 152 const char *zColl = p->y.pTab->aCol[j].zColl; 153 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 154 } 155 break; 156 } 157 if( op==TK_CAST || op==TK_UPLUS ){ 158 p = p->pLeft; 159 continue; 160 } 161 if( op==TK_COLLATE ){ 162 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 163 break; 164 } 165 if( p->flags & EP_Collate ){ 166 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 167 p = p->pLeft; 168 }else{ 169 Expr *pNext = p->pRight; 170 /* The Expr.x union is never used at the same time as Expr.pRight */ 171 assert( p->x.pList==0 || p->pRight==0 ); 172 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 173 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 174 ** least one EP_Collate. Thus the following two ALWAYS. */ 175 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 176 int i; 177 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 178 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 179 pNext = p->x.pList->a[i].pExpr; 180 break; 181 } 182 } 183 } 184 p = pNext; 185 } 186 }else{ 187 break; 188 } 189 } 190 if( sqlite3CheckCollSeq(pParse, pColl) ){ 191 pColl = 0; 192 } 193 return pColl; 194 } 195 196 /* 197 ** Return the collation sequence for the expression pExpr. If 198 ** there is no defined collating sequence, return a pointer to the 199 ** defautl collation sequence. 200 ** 201 ** See also: sqlite3ExprCollSeq() 202 ** 203 ** The sqlite3ExprCollSeq() routine works the same except that it 204 ** returns NULL if there is no defined collation. 205 */ 206 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){ 207 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 208 if( p==0 ) p = pParse->db->pDfltColl; 209 assert( p!=0 ); 210 return p; 211 } 212 213 /* 214 ** Return TRUE if the two expressions have equivalent collating sequences. 215 */ 216 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){ 217 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 218 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 219 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 220 } 221 222 /* 223 ** pExpr is an operand of a comparison operator. aff2 is the 224 ** type affinity of the other operand. This routine returns the 225 ** type affinity that should be used for the comparison operator. 226 */ 227 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 228 char aff1 = sqlite3ExprAffinity(pExpr); 229 if( aff1 && aff2 ){ 230 /* Both sides of the comparison are columns. If one has numeric 231 ** affinity, use that. Otherwise use no affinity. 232 */ 233 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 234 return SQLITE_AFF_NUMERIC; 235 }else{ 236 return SQLITE_AFF_BLOB; 237 } 238 }else if( !aff1 && !aff2 ){ 239 /* Neither side of the comparison is a column. Compare the 240 ** results directly. 241 */ 242 return SQLITE_AFF_BLOB; 243 }else{ 244 /* One side is a column, the other is not. Use the columns affinity. */ 245 assert( aff1==0 || aff2==0 ); 246 return (aff1 + aff2); 247 } 248 } 249 250 /* 251 ** pExpr is a comparison operator. Return the type affinity that should 252 ** be applied to both operands prior to doing the comparison. 253 */ 254 static char comparisonAffinity(Expr *pExpr){ 255 char aff; 256 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 257 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 258 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 259 assert( pExpr->pLeft ); 260 aff = sqlite3ExprAffinity(pExpr->pLeft); 261 if( pExpr->pRight ){ 262 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 263 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 264 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 265 }else if( aff==0 ){ 266 aff = SQLITE_AFF_BLOB; 267 } 268 return aff; 269 } 270 271 /* 272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 273 ** idx_affinity is the affinity of an indexed column. Return true 274 ** if the index with affinity idx_affinity may be used to implement 275 ** the comparison in pExpr. 276 */ 277 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 278 char aff = comparisonAffinity(pExpr); 279 switch( aff ){ 280 case SQLITE_AFF_BLOB: 281 return 1; 282 case SQLITE_AFF_TEXT: 283 return idx_affinity==SQLITE_AFF_TEXT; 284 default: 285 return sqlite3IsNumericAffinity(idx_affinity); 286 } 287 } 288 289 /* 290 ** Return the P5 value that should be used for a binary comparison 291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 292 */ 293 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 294 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 295 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 296 return aff; 297 } 298 299 /* 300 ** Return a pointer to the collation sequence that should be used by 301 ** a binary comparison operator comparing pLeft and pRight. 302 ** 303 ** If the left hand expression has a collating sequence type, then it is 304 ** used. Otherwise the collation sequence for the right hand expression 305 ** is used, or the default (BINARY) if neither expression has a collating 306 ** type. 307 ** 308 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 309 ** it is not considered. 310 */ 311 CollSeq *sqlite3BinaryCompareCollSeq( 312 Parse *pParse, 313 Expr *pLeft, 314 Expr *pRight 315 ){ 316 CollSeq *pColl; 317 assert( pLeft ); 318 if( pLeft->flags & EP_Collate ){ 319 pColl = sqlite3ExprCollSeq(pParse, pLeft); 320 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 321 pColl = sqlite3ExprCollSeq(pParse, pRight); 322 }else{ 323 pColl = sqlite3ExprCollSeq(pParse, pLeft); 324 if( !pColl ){ 325 pColl = sqlite3ExprCollSeq(pParse, pRight); 326 } 327 } 328 return pColl; 329 } 330 331 /* 332 ** Generate code for a comparison operator. 333 */ 334 static int codeCompare( 335 Parse *pParse, /* The parsing (and code generating) context */ 336 Expr *pLeft, /* The left operand */ 337 Expr *pRight, /* The right operand */ 338 int opcode, /* The comparison opcode */ 339 int in1, int in2, /* Register holding operands */ 340 int dest, /* Jump here if true. */ 341 int jumpIfNull /* If true, jump if either operand is NULL */ 342 ){ 343 int p5; 344 int addr; 345 CollSeq *p4; 346 347 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 348 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 349 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 350 (void*)p4, P4_COLLSEQ); 351 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 352 return addr; 353 } 354 355 /* 356 ** Return true if expression pExpr is a vector, or false otherwise. 357 ** 358 ** A vector is defined as any expression that results in two or more 359 ** columns of result. Every TK_VECTOR node is an vector because the 360 ** parser will not generate a TK_VECTOR with fewer than two entries. 361 ** But a TK_SELECT might be either a vector or a scalar. It is only 362 ** considered a vector if it has two or more result columns. 363 */ 364 int sqlite3ExprIsVector(Expr *pExpr){ 365 return sqlite3ExprVectorSize(pExpr)>1; 366 } 367 368 /* 369 ** If the expression passed as the only argument is of type TK_VECTOR 370 ** return the number of expressions in the vector. Or, if the expression 371 ** is a sub-select, return the number of columns in the sub-select. For 372 ** any other type of expression, return 1. 373 */ 374 int sqlite3ExprVectorSize(Expr *pExpr){ 375 u8 op = pExpr->op; 376 if( op==TK_REGISTER ) op = pExpr->op2; 377 if( op==TK_VECTOR ){ 378 return pExpr->x.pList->nExpr; 379 }else if( op==TK_SELECT ){ 380 return pExpr->x.pSelect->pEList->nExpr; 381 }else{ 382 return 1; 383 } 384 } 385 386 /* 387 ** Return a pointer to a subexpression of pVector that is the i-th 388 ** column of the vector (numbered starting with 0). The caller must 389 ** ensure that i is within range. 390 ** 391 ** If pVector is really a scalar (and "scalar" here includes subqueries 392 ** that return a single column!) then return pVector unmodified. 393 ** 394 ** pVector retains ownership of the returned subexpression. 395 ** 396 ** If the vector is a (SELECT ...) then the expression returned is 397 ** just the expression for the i-th term of the result set, and may 398 ** not be ready for evaluation because the table cursor has not yet 399 ** been positioned. 400 */ 401 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 402 assert( i<sqlite3ExprVectorSize(pVector) ); 403 if( sqlite3ExprIsVector(pVector) ){ 404 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 405 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 406 return pVector->x.pSelect->pEList->a[i].pExpr; 407 }else{ 408 return pVector->x.pList->a[i].pExpr; 409 } 410 } 411 return pVector; 412 } 413 414 /* 415 ** Compute and return a new Expr object which when passed to 416 ** sqlite3ExprCode() will generate all necessary code to compute 417 ** the iField-th column of the vector expression pVector. 418 ** 419 ** It is ok for pVector to be a scalar (as long as iField==0). 420 ** In that case, this routine works like sqlite3ExprDup(). 421 ** 422 ** The caller owns the returned Expr object and is responsible for 423 ** ensuring that the returned value eventually gets freed. 424 ** 425 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 426 ** then the returned object will reference pVector and so pVector must remain 427 ** valid for the life of the returned object. If pVector is a TK_VECTOR 428 ** or a scalar expression, then it can be deleted as soon as this routine 429 ** returns. 430 ** 431 ** A trick to cause a TK_SELECT pVector to be deleted together with 432 ** the returned Expr object is to attach the pVector to the pRight field 433 ** of the returned TK_SELECT_COLUMN Expr object. 434 */ 435 Expr *sqlite3ExprForVectorField( 436 Parse *pParse, /* Parsing context */ 437 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 438 int iField /* Which column of the vector to return */ 439 ){ 440 Expr *pRet; 441 if( pVector->op==TK_SELECT ){ 442 assert( pVector->flags & EP_xIsSelect ); 443 /* The TK_SELECT_COLUMN Expr node: 444 ** 445 ** pLeft: pVector containing TK_SELECT. Not deleted. 446 ** pRight: not used. But recursively deleted. 447 ** iColumn: Index of a column in pVector 448 ** iTable: 0 or the number of columns on the LHS of an assignment 449 ** pLeft->iTable: First in an array of register holding result, or 0 450 ** if the result is not yet computed. 451 ** 452 ** sqlite3ExprDelete() specifically skips the recursive delete of 453 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 454 ** can be attached to pRight to cause this node to take ownership of 455 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 456 ** with the same pLeft pointer to the pVector, but only one of them 457 ** will own the pVector. 458 */ 459 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 460 if( pRet ){ 461 pRet->iColumn = iField; 462 pRet->pLeft = pVector; 463 } 464 assert( pRet==0 || pRet->iTable==0 ); 465 }else{ 466 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 467 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 468 sqlite3RenameTokenRemap(pParse, pRet, pVector); 469 } 470 return pRet; 471 } 472 473 /* 474 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 475 ** it. Return the register in which the result is stored (or, if the 476 ** sub-select returns more than one column, the first in an array 477 ** of registers in which the result is stored). 478 ** 479 ** If pExpr is not a TK_SELECT expression, return 0. 480 */ 481 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 482 int reg = 0; 483 #ifndef SQLITE_OMIT_SUBQUERY 484 if( pExpr->op==TK_SELECT ){ 485 reg = sqlite3CodeSubselect(pParse, pExpr); 486 } 487 #endif 488 return reg; 489 } 490 491 /* 492 ** Argument pVector points to a vector expression - either a TK_VECTOR 493 ** or TK_SELECT that returns more than one column. This function returns 494 ** the register number of a register that contains the value of 495 ** element iField of the vector. 496 ** 497 ** If pVector is a TK_SELECT expression, then code for it must have 498 ** already been generated using the exprCodeSubselect() routine. In this 499 ** case parameter regSelect should be the first in an array of registers 500 ** containing the results of the sub-select. 501 ** 502 ** If pVector is of type TK_VECTOR, then code for the requested field 503 ** is generated. In this case (*pRegFree) may be set to the number of 504 ** a temporary register to be freed by the caller before returning. 505 ** 506 ** Before returning, output parameter (*ppExpr) is set to point to the 507 ** Expr object corresponding to element iElem of the vector. 508 */ 509 static int exprVectorRegister( 510 Parse *pParse, /* Parse context */ 511 Expr *pVector, /* Vector to extract element from */ 512 int iField, /* Field to extract from pVector */ 513 int regSelect, /* First in array of registers */ 514 Expr **ppExpr, /* OUT: Expression element */ 515 int *pRegFree /* OUT: Temp register to free */ 516 ){ 517 u8 op = pVector->op; 518 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 519 if( op==TK_REGISTER ){ 520 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 521 return pVector->iTable+iField; 522 } 523 if( op==TK_SELECT ){ 524 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 525 return regSelect+iField; 526 } 527 *ppExpr = pVector->x.pList->a[iField].pExpr; 528 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 529 } 530 531 /* 532 ** Expression pExpr is a comparison between two vector values. Compute 533 ** the result of the comparison (1, 0, or NULL) and write that 534 ** result into register dest. 535 ** 536 ** The caller must satisfy the following preconditions: 537 ** 538 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 539 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 540 ** otherwise: op==pExpr->op and p5==0 541 */ 542 static void codeVectorCompare( 543 Parse *pParse, /* Code generator context */ 544 Expr *pExpr, /* The comparison operation */ 545 int dest, /* Write results into this register */ 546 u8 op, /* Comparison operator */ 547 u8 p5 /* SQLITE_NULLEQ or zero */ 548 ){ 549 Vdbe *v = pParse->pVdbe; 550 Expr *pLeft = pExpr->pLeft; 551 Expr *pRight = pExpr->pRight; 552 int nLeft = sqlite3ExprVectorSize(pLeft); 553 int i; 554 int regLeft = 0; 555 int regRight = 0; 556 u8 opx = op; 557 int addrDone = sqlite3VdbeMakeLabel(pParse); 558 559 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 560 sqlite3ErrorMsg(pParse, "row value misused"); 561 return; 562 } 563 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 564 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 565 || pExpr->op==TK_LT || pExpr->op==TK_GT 566 || pExpr->op==TK_LE || pExpr->op==TK_GE 567 ); 568 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 569 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 570 assert( p5==0 || pExpr->op!=op ); 571 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 572 573 p5 |= SQLITE_STOREP2; 574 if( opx==TK_LE ) opx = TK_LT; 575 if( opx==TK_GE ) opx = TK_GT; 576 577 regLeft = exprCodeSubselect(pParse, pLeft); 578 regRight = exprCodeSubselect(pParse, pRight); 579 580 for(i=0; 1 /*Loop exits by "break"*/; i++){ 581 int regFree1 = 0, regFree2 = 0; 582 Expr *pL, *pR; 583 int r1, r2; 584 assert( i>=0 && i<nLeft ); 585 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 586 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 587 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); 588 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 589 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 590 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 591 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 592 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 593 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 594 sqlite3ReleaseTempReg(pParse, regFree1); 595 sqlite3ReleaseTempReg(pParse, regFree2); 596 if( i==nLeft-1 ){ 597 break; 598 } 599 if( opx==TK_EQ ){ 600 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 601 p5 |= SQLITE_KEEPNULL; 602 }else if( opx==TK_NE ){ 603 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 604 p5 |= SQLITE_KEEPNULL; 605 }else{ 606 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 607 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 608 VdbeCoverageIf(v, op==TK_LT); 609 VdbeCoverageIf(v, op==TK_GT); 610 VdbeCoverageIf(v, op==TK_LE); 611 VdbeCoverageIf(v, op==TK_GE); 612 if( i==nLeft-2 ) opx = op; 613 } 614 } 615 sqlite3VdbeResolveLabel(v, addrDone); 616 } 617 618 #if SQLITE_MAX_EXPR_DEPTH>0 619 /* 620 ** Check that argument nHeight is less than or equal to the maximum 621 ** expression depth allowed. If it is not, leave an error message in 622 ** pParse. 623 */ 624 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 625 int rc = SQLITE_OK; 626 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 627 if( nHeight>mxHeight ){ 628 sqlite3ErrorMsg(pParse, 629 "Expression tree is too large (maximum depth %d)", mxHeight 630 ); 631 rc = SQLITE_ERROR; 632 } 633 return rc; 634 } 635 636 /* The following three functions, heightOfExpr(), heightOfExprList() 637 ** and heightOfSelect(), are used to determine the maximum height 638 ** of any expression tree referenced by the structure passed as the 639 ** first argument. 640 ** 641 ** If this maximum height is greater than the current value pointed 642 ** to by pnHeight, the second parameter, then set *pnHeight to that 643 ** value. 644 */ 645 static void heightOfExpr(Expr *p, int *pnHeight){ 646 if( p ){ 647 if( p->nHeight>*pnHeight ){ 648 *pnHeight = p->nHeight; 649 } 650 } 651 } 652 static void heightOfExprList(ExprList *p, int *pnHeight){ 653 if( p ){ 654 int i; 655 for(i=0; i<p->nExpr; i++){ 656 heightOfExpr(p->a[i].pExpr, pnHeight); 657 } 658 } 659 } 660 static void heightOfSelect(Select *pSelect, int *pnHeight){ 661 Select *p; 662 for(p=pSelect; p; p=p->pPrior){ 663 heightOfExpr(p->pWhere, pnHeight); 664 heightOfExpr(p->pHaving, pnHeight); 665 heightOfExpr(p->pLimit, pnHeight); 666 heightOfExprList(p->pEList, pnHeight); 667 heightOfExprList(p->pGroupBy, pnHeight); 668 heightOfExprList(p->pOrderBy, pnHeight); 669 } 670 } 671 672 /* 673 ** Set the Expr.nHeight variable in the structure passed as an 674 ** argument. An expression with no children, Expr.pList or 675 ** Expr.pSelect member has a height of 1. Any other expression 676 ** has a height equal to the maximum height of any other 677 ** referenced Expr plus one. 678 ** 679 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 680 ** if appropriate. 681 */ 682 static void exprSetHeight(Expr *p){ 683 int nHeight = 0; 684 heightOfExpr(p->pLeft, &nHeight); 685 heightOfExpr(p->pRight, &nHeight); 686 if( ExprHasProperty(p, EP_xIsSelect) ){ 687 heightOfSelect(p->x.pSelect, &nHeight); 688 }else if( p->x.pList ){ 689 heightOfExprList(p->x.pList, &nHeight); 690 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 691 } 692 p->nHeight = nHeight + 1; 693 } 694 695 /* 696 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 697 ** the height is greater than the maximum allowed expression depth, 698 ** leave an error in pParse. 699 ** 700 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 701 ** Expr.flags. 702 */ 703 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 704 if( pParse->nErr ) return; 705 exprSetHeight(p); 706 sqlite3ExprCheckHeight(pParse, p->nHeight); 707 } 708 709 /* 710 ** Return the maximum height of any expression tree referenced 711 ** by the select statement passed as an argument. 712 */ 713 int sqlite3SelectExprHeight(Select *p){ 714 int nHeight = 0; 715 heightOfSelect(p, &nHeight); 716 return nHeight; 717 } 718 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 719 /* 720 ** Propagate all EP_Propagate flags from the Expr.x.pList into 721 ** Expr.flags. 722 */ 723 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 724 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 725 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 726 } 727 } 728 #define exprSetHeight(y) 729 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 730 731 /* 732 ** This routine is the core allocator for Expr nodes. 733 ** 734 ** Construct a new expression node and return a pointer to it. Memory 735 ** for this node and for the pToken argument is a single allocation 736 ** obtained from sqlite3DbMalloc(). The calling function 737 ** is responsible for making sure the node eventually gets freed. 738 ** 739 ** If dequote is true, then the token (if it exists) is dequoted. 740 ** If dequote is false, no dequoting is performed. The deQuote 741 ** parameter is ignored if pToken is NULL or if the token does not 742 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 743 ** then the EP_DblQuoted flag is set on the expression node. 744 ** 745 ** Special case: If op==TK_INTEGER and pToken points to a string that 746 ** can be translated into a 32-bit integer, then the token is not 747 ** stored in u.zToken. Instead, the integer values is written 748 ** into u.iValue and the EP_IntValue flag is set. No extra storage 749 ** is allocated to hold the integer text and the dequote flag is ignored. 750 */ 751 Expr *sqlite3ExprAlloc( 752 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 753 int op, /* Expression opcode */ 754 const Token *pToken, /* Token argument. Might be NULL */ 755 int dequote /* True to dequote */ 756 ){ 757 Expr *pNew; 758 int nExtra = 0; 759 int iValue = 0; 760 761 assert( db!=0 ); 762 if( pToken ){ 763 if( op!=TK_INTEGER || pToken->z==0 764 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 765 nExtra = pToken->n+1; 766 assert( iValue>=0 ); 767 } 768 } 769 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 770 if( pNew ){ 771 memset(pNew, 0, sizeof(Expr)); 772 pNew->op = (u8)op; 773 pNew->iAgg = -1; 774 if( pToken ){ 775 if( nExtra==0 ){ 776 pNew->flags |= EP_IntValue|EP_Leaf; 777 pNew->u.iValue = iValue; 778 }else{ 779 pNew->u.zToken = (char*)&pNew[1]; 780 assert( pToken->z!=0 || pToken->n==0 ); 781 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 782 pNew->u.zToken[pToken->n] = 0; 783 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 784 sqlite3DequoteExpr(pNew); 785 } 786 } 787 } 788 #if SQLITE_MAX_EXPR_DEPTH>0 789 pNew->nHeight = 1; 790 #endif 791 } 792 return pNew; 793 } 794 795 /* 796 ** Allocate a new expression node from a zero-terminated token that has 797 ** already been dequoted. 798 */ 799 Expr *sqlite3Expr( 800 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 801 int op, /* Expression opcode */ 802 const char *zToken /* Token argument. Might be NULL */ 803 ){ 804 Token x; 805 x.z = zToken; 806 x.n = sqlite3Strlen30(zToken); 807 return sqlite3ExprAlloc(db, op, &x, 0); 808 } 809 810 /* 811 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 812 ** 813 ** If pRoot==NULL that means that a memory allocation error has occurred. 814 ** In that case, delete the subtrees pLeft and pRight. 815 */ 816 void sqlite3ExprAttachSubtrees( 817 sqlite3 *db, 818 Expr *pRoot, 819 Expr *pLeft, 820 Expr *pRight 821 ){ 822 if( pRoot==0 ){ 823 assert( db->mallocFailed ); 824 sqlite3ExprDelete(db, pLeft); 825 sqlite3ExprDelete(db, pRight); 826 }else{ 827 if( pRight ){ 828 pRoot->pRight = pRight; 829 pRoot->flags |= EP_Propagate & pRight->flags; 830 } 831 if( pLeft ){ 832 pRoot->pLeft = pLeft; 833 pRoot->flags |= EP_Propagate & pLeft->flags; 834 } 835 exprSetHeight(pRoot); 836 } 837 } 838 839 /* 840 ** Allocate an Expr node which joins as many as two subtrees. 841 ** 842 ** One or both of the subtrees can be NULL. Return a pointer to the new 843 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 844 ** free the subtrees and return NULL. 845 */ 846 Expr *sqlite3PExpr( 847 Parse *pParse, /* Parsing context */ 848 int op, /* Expression opcode */ 849 Expr *pLeft, /* Left operand */ 850 Expr *pRight /* Right operand */ 851 ){ 852 Expr *p; 853 if( op==TK_AND && pParse->nErr==0 && !IN_RENAME_OBJECT ){ 854 /* Take advantage of short-circuit false optimization for AND */ 855 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 856 }else{ 857 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 858 if( p ){ 859 memset(p, 0, sizeof(Expr)); 860 p->op = op & TKFLG_MASK; 861 p->iAgg = -1; 862 } 863 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 864 } 865 if( p ) { 866 sqlite3ExprCheckHeight(pParse, p->nHeight); 867 } 868 return p; 869 } 870 871 /* 872 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 873 ** do a memory allocation failure) then delete the pSelect object. 874 */ 875 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 876 if( pExpr ){ 877 pExpr->x.pSelect = pSelect; 878 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 879 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 880 }else{ 881 assert( pParse->db->mallocFailed ); 882 sqlite3SelectDelete(pParse->db, pSelect); 883 } 884 } 885 886 887 /* 888 ** If the expression is always either TRUE or FALSE (respectively), 889 ** then return 1. If one cannot determine the truth value of the 890 ** expression at compile-time return 0. 891 ** 892 ** This is an optimization. If is OK to return 0 here even if 893 ** the expression really is always false or false (a false negative). 894 ** But it is a bug to return 1 if the expression might have different 895 ** boolean values in different circumstances (a false positive.) 896 ** 897 ** Note that if the expression is part of conditional for a 898 ** LEFT JOIN, then we cannot determine at compile-time whether or not 899 ** is it true or false, so always return 0. 900 */ 901 static int exprAlwaysTrue(Expr *p){ 902 int v = 0; 903 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 904 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 905 return v!=0; 906 } 907 static int exprAlwaysFalse(Expr *p){ 908 int v = 0; 909 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 910 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 911 return v==0; 912 } 913 914 /* 915 ** Join two expressions using an AND operator. If either expression is 916 ** NULL, then just return the other expression. 917 ** 918 ** If one side or the other of the AND is known to be false, then instead 919 ** of returning an AND expression, just return a constant expression with 920 ** a value of false. 921 */ 922 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 923 if( pLeft==0 ){ 924 return pRight; 925 }else if( pRight==0 ){ 926 return pLeft; 927 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 928 sqlite3ExprDelete(db, pLeft); 929 sqlite3ExprDelete(db, pRight); 930 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 931 }else{ 932 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 933 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 934 return pNew; 935 } 936 } 937 938 /* 939 ** Construct a new expression node for a function with multiple 940 ** arguments. 941 */ 942 Expr *sqlite3ExprFunction( 943 Parse *pParse, /* Parsing context */ 944 ExprList *pList, /* Argument list */ 945 Token *pToken, /* Name of the function */ 946 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 947 ){ 948 Expr *pNew; 949 sqlite3 *db = pParse->db; 950 assert( pToken ); 951 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 952 if( pNew==0 ){ 953 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 954 return 0; 955 } 956 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 957 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 958 } 959 pNew->x.pList = pList; 960 ExprSetProperty(pNew, EP_HasFunc); 961 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 962 sqlite3ExprSetHeightAndFlags(pParse, pNew); 963 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 964 return pNew; 965 } 966 967 /* 968 ** Assign a variable number to an expression that encodes a wildcard 969 ** in the original SQL statement. 970 ** 971 ** Wildcards consisting of a single "?" are assigned the next sequential 972 ** variable number. 973 ** 974 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 975 ** sure "nnn" is not too big to avoid a denial of service attack when 976 ** the SQL statement comes from an external source. 977 ** 978 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 979 ** as the previous instance of the same wildcard. Or if this is the first 980 ** instance of the wildcard, the next sequential variable number is 981 ** assigned. 982 */ 983 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 984 sqlite3 *db = pParse->db; 985 const char *z; 986 ynVar x; 987 988 if( pExpr==0 ) return; 989 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 990 z = pExpr->u.zToken; 991 assert( z!=0 ); 992 assert( z[0]!=0 ); 993 assert( n==(u32)sqlite3Strlen30(z) ); 994 if( z[1]==0 ){ 995 /* Wildcard of the form "?". Assign the next variable number */ 996 assert( z[0]=='?' ); 997 x = (ynVar)(++pParse->nVar); 998 }else{ 999 int doAdd = 0; 1000 if( z[0]=='?' ){ 1001 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1002 ** use it as the variable number */ 1003 i64 i; 1004 int bOk; 1005 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1006 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1007 bOk = 1; 1008 }else{ 1009 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1010 } 1011 testcase( i==0 ); 1012 testcase( i==1 ); 1013 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1014 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1015 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1016 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1017 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1018 return; 1019 } 1020 x = (ynVar)i; 1021 if( x>pParse->nVar ){ 1022 pParse->nVar = (int)x; 1023 doAdd = 1; 1024 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1025 doAdd = 1; 1026 } 1027 }else{ 1028 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1029 ** number as the prior appearance of the same name, or if the name 1030 ** has never appeared before, reuse the same variable number 1031 */ 1032 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1033 if( x==0 ){ 1034 x = (ynVar)(++pParse->nVar); 1035 doAdd = 1; 1036 } 1037 } 1038 if( doAdd ){ 1039 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1040 } 1041 } 1042 pExpr->iColumn = x; 1043 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1044 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1045 } 1046 } 1047 1048 /* 1049 ** Recursively delete an expression tree. 1050 */ 1051 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1052 assert( p!=0 ); 1053 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1054 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1055 1056 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1057 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1058 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1059 #ifdef SQLITE_DEBUG 1060 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1061 assert( p->pLeft==0 ); 1062 assert( p->pRight==0 ); 1063 assert( p->x.pSelect==0 ); 1064 } 1065 #endif 1066 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1067 /* The Expr.x union is never used at the same time as Expr.pRight */ 1068 assert( p->x.pList==0 || p->pRight==0 ); 1069 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1070 if( p->pRight ){ 1071 sqlite3ExprDeleteNN(db, p->pRight); 1072 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1073 sqlite3SelectDelete(db, p->x.pSelect); 1074 }else{ 1075 sqlite3ExprListDelete(db, p->x.pList); 1076 } 1077 if( ExprHasProperty(p, EP_WinFunc) ){ 1078 assert( p->op==TK_FUNCTION ); 1079 sqlite3WindowDelete(db, p->y.pWin); 1080 } 1081 } 1082 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1083 if( !ExprHasProperty(p, EP_Static) ){ 1084 sqlite3DbFreeNN(db, p); 1085 } 1086 } 1087 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1088 if( p ) sqlite3ExprDeleteNN(db, p); 1089 } 1090 1091 /* 1092 ** Return the number of bytes allocated for the expression structure 1093 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1094 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1095 */ 1096 static int exprStructSize(Expr *p){ 1097 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1098 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1099 return EXPR_FULLSIZE; 1100 } 1101 1102 /* 1103 ** Copy the complete content of an Expr node, taking care not to read 1104 ** past the end of the structure for a reduced-size version of the source 1105 ** Expr. 1106 */ 1107 static void exprNodeCopy(Expr *pDest, Expr *pSrc){ 1108 memset(pDest, 0, sizeof(Expr)); 1109 memcpy(pDest, pSrc, exprStructSize(pSrc)); 1110 } 1111 1112 /* 1113 ** The dupedExpr*Size() routines each return the number of bytes required 1114 ** to store a copy of an expression or expression tree. They differ in 1115 ** how much of the tree is measured. 1116 ** 1117 ** dupedExprStructSize() Size of only the Expr structure 1118 ** dupedExprNodeSize() Size of Expr + space for token 1119 ** dupedExprSize() Expr + token + subtree components 1120 ** 1121 *************************************************************************** 1122 ** 1123 ** The dupedExprStructSize() function returns two values OR-ed together: 1124 ** (1) the space required for a copy of the Expr structure only and 1125 ** (2) the EP_xxx flags that indicate what the structure size should be. 1126 ** The return values is always one of: 1127 ** 1128 ** EXPR_FULLSIZE 1129 ** EXPR_REDUCEDSIZE | EP_Reduced 1130 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1131 ** 1132 ** The size of the structure can be found by masking the return value 1133 ** of this routine with 0xfff. The flags can be found by masking the 1134 ** return value with EP_Reduced|EP_TokenOnly. 1135 ** 1136 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1137 ** (unreduced) Expr objects as they or originally constructed by the parser. 1138 ** During expression analysis, extra information is computed and moved into 1139 ** later parts of the Expr object and that extra information might get chopped 1140 ** off if the expression is reduced. Note also that it does not work to 1141 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1142 ** to reduce a pristine expression tree from the parser. The implementation 1143 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1144 ** to enforce this constraint. 1145 */ 1146 static int dupedExprStructSize(Expr *p, int flags){ 1147 int nSize; 1148 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1149 assert( EXPR_FULLSIZE<=0xfff ); 1150 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1151 if( 0==flags || p->op==TK_SELECT_COLUMN 1152 #ifndef SQLITE_OMIT_WINDOWFUNC 1153 || ExprHasProperty(p, EP_WinFunc) 1154 #endif 1155 ){ 1156 nSize = EXPR_FULLSIZE; 1157 }else{ 1158 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1159 assert( !ExprHasProperty(p, EP_FromJoin) ); 1160 assert( !ExprHasProperty(p, EP_MemToken) ); 1161 assert( !ExprHasProperty(p, EP_NoReduce) ); 1162 if( p->pLeft || p->x.pList ){ 1163 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1164 }else{ 1165 assert( p->pRight==0 ); 1166 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1167 } 1168 } 1169 return nSize; 1170 } 1171 1172 /* 1173 ** This function returns the space in bytes required to store the copy 1174 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1175 ** string is defined.) 1176 */ 1177 static int dupedExprNodeSize(Expr *p, int flags){ 1178 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1179 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1180 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1181 } 1182 return ROUND8(nByte); 1183 } 1184 1185 /* 1186 ** Return the number of bytes required to create a duplicate of the 1187 ** expression passed as the first argument. The second argument is a 1188 ** mask containing EXPRDUP_XXX flags. 1189 ** 1190 ** The value returned includes space to create a copy of the Expr struct 1191 ** itself and the buffer referred to by Expr.u.zToken, if any. 1192 ** 1193 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1194 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1195 ** and Expr.pRight variables (but not for any structures pointed to or 1196 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1197 */ 1198 static int dupedExprSize(Expr *p, int flags){ 1199 int nByte = 0; 1200 if( p ){ 1201 nByte = dupedExprNodeSize(p, flags); 1202 if( flags&EXPRDUP_REDUCE ){ 1203 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1204 } 1205 } 1206 return nByte; 1207 } 1208 1209 /* 1210 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1211 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1212 ** to store the copy of expression p, the copies of p->u.zToken 1213 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1214 ** if any. Before returning, *pzBuffer is set to the first byte past the 1215 ** portion of the buffer copied into by this function. 1216 */ 1217 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1218 Expr *pNew; /* Value to return */ 1219 u8 *zAlloc; /* Memory space from which to build Expr object */ 1220 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1221 1222 assert( db!=0 ); 1223 assert( p ); 1224 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1225 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1226 1227 /* Figure out where to write the new Expr structure. */ 1228 if( pzBuffer ){ 1229 zAlloc = *pzBuffer; 1230 staticFlag = EP_Static; 1231 }else{ 1232 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1233 staticFlag = 0; 1234 } 1235 pNew = (Expr *)zAlloc; 1236 1237 if( pNew ){ 1238 /* Set nNewSize to the size allocated for the structure pointed to 1239 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1240 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1241 ** by the copy of the p->u.zToken string (if any). 1242 */ 1243 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1244 const int nNewSize = nStructSize & 0xfff; 1245 int nToken; 1246 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1247 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1248 }else{ 1249 nToken = 0; 1250 } 1251 if( dupFlags ){ 1252 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1253 memcpy(zAlloc, p, nNewSize); 1254 }else{ 1255 u32 nSize = (u32)exprStructSize(p); 1256 memcpy(zAlloc, p, nSize); 1257 if( nSize<EXPR_FULLSIZE ){ 1258 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1259 } 1260 } 1261 1262 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1263 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1264 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1265 pNew->flags |= staticFlag; 1266 1267 /* Copy the p->u.zToken string, if any. */ 1268 if( nToken ){ 1269 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1270 memcpy(zToken, p->u.zToken, nToken); 1271 } 1272 1273 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1274 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1275 if( ExprHasProperty(p, EP_xIsSelect) ){ 1276 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1277 }else{ 1278 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1279 } 1280 } 1281 1282 /* Fill in pNew->pLeft and pNew->pRight. */ 1283 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1284 zAlloc += dupedExprNodeSize(p, dupFlags); 1285 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1286 pNew->pLeft = p->pLeft ? 1287 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1288 pNew->pRight = p->pRight ? 1289 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1290 } 1291 #ifndef SQLITE_OMIT_WINDOWFUNC 1292 if( ExprHasProperty(p, EP_WinFunc) ){ 1293 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1294 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1295 } 1296 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1297 if( pzBuffer ){ 1298 *pzBuffer = zAlloc; 1299 } 1300 }else{ 1301 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1302 if( pNew->op==TK_SELECT_COLUMN ){ 1303 pNew->pLeft = p->pLeft; 1304 assert( p->iColumn==0 || p->pRight==0 ); 1305 assert( p->pRight==0 || p->pRight==p->pLeft ); 1306 }else{ 1307 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1308 } 1309 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1310 } 1311 } 1312 } 1313 return pNew; 1314 } 1315 1316 /* 1317 ** Create and return a deep copy of the object passed as the second 1318 ** argument. If an OOM condition is encountered, NULL is returned 1319 ** and the db->mallocFailed flag set. 1320 */ 1321 #ifndef SQLITE_OMIT_CTE 1322 static With *withDup(sqlite3 *db, With *p){ 1323 With *pRet = 0; 1324 if( p ){ 1325 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1326 pRet = sqlite3DbMallocZero(db, nByte); 1327 if( pRet ){ 1328 int i; 1329 pRet->nCte = p->nCte; 1330 for(i=0; i<p->nCte; i++){ 1331 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1332 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1333 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1334 } 1335 } 1336 } 1337 return pRet; 1338 } 1339 #else 1340 # define withDup(x,y) 0 1341 #endif 1342 1343 #ifndef SQLITE_OMIT_WINDOWFUNC 1344 /* 1345 ** The gatherSelectWindows() procedure and its helper routine 1346 ** gatherSelectWindowsCallback() are used to scan all the expressions 1347 ** an a newly duplicated SELECT statement and gather all of the Window 1348 ** objects found there, assembling them onto the linked list at Select->pWin. 1349 */ 1350 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1351 if( pExpr->op==TK_FUNCTION && pExpr->y.pWin!=0 ){ 1352 assert( ExprHasProperty(pExpr, EP_WinFunc) ); 1353 pExpr->y.pWin->pNextWin = pWalker->u.pSelect->pWin; 1354 pWalker->u.pSelect->pWin = pExpr->y.pWin; 1355 } 1356 return WRC_Continue; 1357 } 1358 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1359 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1360 } 1361 static void gatherSelectWindows(Select *p){ 1362 Walker w; 1363 w.xExprCallback = gatherSelectWindowsCallback; 1364 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1365 w.xSelectCallback2 = 0; 1366 w.pParse = 0; 1367 w.u.pSelect = p; 1368 sqlite3WalkSelect(&w, p); 1369 } 1370 #endif 1371 1372 1373 /* 1374 ** The following group of routines make deep copies of expressions, 1375 ** expression lists, ID lists, and select statements. The copies can 1376 ** be deleted (by being passed to their respective ...Delete() routines) 1377 ** without effecting the originals. 1378 ** 1379 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1380 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1381 ** by subsequent calls to sqlite*ListAppend() routines. 1382 ** 1383 ** Any tables that the SrcList might point to are not duplicated. 1384 ** 1385 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1386 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1387 ** truncated version of the usual Expr structure that will be stored as 1388 ** part of the in-memory representation of the database schema. 1389 */ 1390 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1391 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1392 return p ? exprDup(db, p, flags, 0) : 0; 1393 } 1394 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1395 ExprList *pNew; 1396 struct ExprList_item *pItem, *pOldItem; 1397 int i; 1398 Expr *pPriorSelectCol = 0; 1399 assert( db!=0 ); 1400 if( p==0 ) return 0; 1401 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1402 if( pNew==0 ) return 0; 1403 pNew->nExpr = p->nExpr; 1404 pItem = pNew->a; 1405 pOldItem = p->a; 1406 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1407 Expr *pOldExpr = pOldItem->pExpr; 1408 Expr *pNewExpr; 1409 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1410 if( pOldExpr 1411 && pOldExpr->op==TK_SELECT_COLUMN 1412 && (pNewExpr = pItem->pExpr)!=0 1413 ){ 1414 assert( pNewExpr->iColumn==0 || i>0 ); 1415 if( pNewExpr->iColumn==0 ){ 1416 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1417 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1418 }else{ 1419 assert( i>0 ); 1420 assert( pItem[-1].pExpr!=0 ); 1421 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1422 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1423 pNewExpr->pLeft = pPriorSelectCol; 1424 } 1425 } 1426 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1427 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1428 pItem->sortOrder = pOldItem->sortOrder; 1429 pItem->done = 0; 1430 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1431 pItem->bSorterRef = pOldItem->bSorterRef; 1432 pItem->u = pOldItem->u; 1433 } 1434 return pNew; 1435 } 1436 1437 /* 1438 ** If cursors, triggers, views and subqueries are all omitted from 1439 ** the build, then none of the following routines, except for 1440 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1441 ** called with a NULL argument. 1442 */ 1443 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1444 || !defined(SQLITE_OMIT_SUBQUERY) 1445 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1446 SrcList *pNew; 1447 int i; 1448 int nByte; 1449 assert( db!=0 ); 1450 if( p==0 ) return 0; 1451 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1452 pNew = sqlite3DbMallocRawNN(db, nByte ); 1453 if( pNew==0 ) return 0; 1454 pNew->nSrc = pNew->nAlloc = p->nSrc; 1455 for(i=0; i<p->nSrc; i++){ 1456 struct SrcList_item *pNewItem = &pNew->a[i]; 1457 struct SrcList_item *pOldItem = &p->a[i]; 1458 Table *pTab; 1459 pNewItem->pSchema = pOldItem->pSchema; 1460 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1461 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1462 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1463 pNewItem->fg = pOldItem->fg; 1464 pNewItem->iCursor = pOldItem->iCursor; 1465 pNewItem->addrFillSub = pOldItem->addrFillSub; 1466 pNewItem->regReturn = pOldItem->regReturn; 1467 if( pNewItem->fg.isIndexedBy ){ 1468 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1469 } 1470 pNewItem->pIBIndex = pOldItem->pIBIndex; 1471 if( pNewItem->fg.isTabFunc ){ 1472 pNewItem->u1.pFuncArg = 1473 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1474 } 1475 pTab = pNewItem->pTab = pOldItem->pTab; 1476 if( pTab ){ 1477 pTab->nTabRef++; 1478 } 1479 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1480 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1481 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1482 pNewItem->colUsed = pOldItem->colUsed; 1483 } 1484 return pNew; 1485 } 1486 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1487 IdList *pNew; 1488 int i; 1489 assert( db!=0 ); 1490 if( p==0 ) return 0; 1491 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1492 if( pNew==0 ) return 0; 1493 pNew->nId = p->nId; 1494 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1495 if( pNew->a==0 ){ 1496 sqlite3DbFreeNN(db, pNew); 1497 return 0; 1498 } 1499 /* Note that because the size of the allocation for p->a[] is not 1500 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1501 ** on the duplicate created by this function. */ 1502 for(i=0; i<p->nId; i++){ 1503 struct IdList_item *pNewItem = &pNew->a[i]; 1504 struct IdList_item *pOldItem = &p->a[i]; 1505 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1506 pNewItem->idx = pOldItem->idx; 1507 } 1508 return pNew; 1509 } 1510 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1511 Select *pRet = 0; 1512 Select *pNext = 0; 1513 Select **pp = &pRet; 1514 Select *p; 1515 1516 assert( db!=0 ); 1517 for(p=pDup; p; p=p->pPrior){ 1518 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1519 if( pNew==0 ) break; 1520 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1521 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1522 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1523 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1524 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1525 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1526 pNew->op = p->op; 1527 pNew->pNext = pNext; 1528 pNew->pPrior = 0; 1529 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1530 pNew->iLimit = 0; 1531 pNew->iOffset = 0; 1532 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1533 pNew->addrOpenEphm[0] = -1; 1534 pNew->addrOpenEphm[1] = -1; 1535 pNew->nSelectRow = p->nSelectRow; 1536 pNew->pWith = withDup(db, p->pWith); 1537 #ifndef SQLITE_OMIT_WINDOWFUNC 1538 pNew->pWin = 0; 1539 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1540 if( p->pWin ) gatherSelectWindows(pNew); 1541 #endif 1542 pNew->selId = p->selId; 1543 *pp = pNew; 1544 pp = &pNew->pPrior; 1545 pNext = pNew; 1546 } 1547 1548 return pRet; 1549 } 1550 #else 1551 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1552 assert( p==0 ); 1553 return 0; 1554 } 1555 #endif 1556 1557 1558 /* 1559 ** Add a new element to the end of an expression list. If pList is 1560 ** initially NULL, then create a new expression list. 1561 ** 1562 ** The pList argument must be either NULL or a pointer to an ExprList 1563 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1564 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1565 ** Reason: This routine assumes that the number of slots in pList->a[] 1566 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1567 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1568 ** 1569 ** If a memory allocation error occurs, the entire list is freed and 1570 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1571 ** that the new entry was successfully appended. 1572 */ 1573 ExprList *sqlite3ExprListAppend( 1574 Parse *pParse, /* Parsing context */ 1575 ExprList *pList, /* List to which to append. Might be NULL */ 1576 Expr *pExpr /* Expression to be appended. Might be NULL */ 1577 ){ 1578 struct ExprList_item *pItem; 1579 sqlite3 *db = pParse->db; 1580 assert( db!=0 ); 1581 if( pList==0 ){ 1582 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1583 if( pList==0 ){ 1584 goto no_mem; 1585 } 1586 pList->nExpr = 0; 1587 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1588 ExprList *pNew; 1589 pNew = sqlite3DbRealloc(db, pList, 1590 sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0])); 1591 if( pNew==0 ){ 1592 goto no_mem; 1593 } 1594 pList = pNew; 1595 } 1596 pItem = &pList->a[pList->nExpr++]; 1597 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) ); 1598 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1599 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName)); 1600 pItem->pExpr = pExpr; 1601 return pList; 1602 1603 no_mem: 1604 /* Avoid leaking memory if malloc has failed. */ 1605 sqlite3ExprDelete(db, pExpr); 1606 sqlite3ExprListDelete(db, pList); 1607 return 0; 1608 } 1609 1610 /* 1611 ** pColumns and pExpr form a vector assignment which is part of the SET 1612 ** clause of an UPDATE statement. Like this: 1613 ** 1614 ** (a,b,c) = (expr1,expr2,expr3) 1615 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1616 ** 1617 ** For each term of the vector assignment, append new entries to the 1618 ** expression list pList. In the case of a subquery on the RHS, append 1619 ** TK_SELECT_COLUMN expressions. 1620 */ 1621 ExprList *sqlite3ExprListAppendVector( 1622 Parse *pParse, /* Parsing context */ 1623 ExprList *pList, /* List to which to append. Might be NULL */ 1624 IdList *pColumns, /* List of names of LHS of the assignment */ 1625 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1626 ){ 1627 sqlite3 *db = pParse->db; 1628 int n; 1629 int i; 1630 int iFirst = pList ? pList->nExpr : 0; 1631 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1632 ** exit prior to this routine being invoked */ 1633 if( NEVER(pColumns==0) ) goto vector_append_error; 1634 if( pExpr==0 ) goto vector_append_error; 1635 1636 /* If the RHS is a vector, then we can immediately check to see that 1637 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1638 ** wildcards ("*") in the result set of the SELECT must be expanded before 1639 ** we can do the size check, so defer the size check until code generation. 1640 */ 1641 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1642 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1643 pColumns->nId, n); 1644 goto vector_append_error; 1645 } 1646 1647 for(i=0; i<pColumns->nId; i++){ 1648 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1649 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1650 if( pList ){ 1651 assert( pList->nExpr==iFirst+i+1 ); 1652 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1653 pColumns->a[i].zName = 0; 1654 } 1655 } 1656 1657 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1658 Expr *pFirst = pList->a[iFirst].pExpr; 1659 assert( pFirst!=0 ); 1660 assert( pFirst->op==TK_SELECT_COLUMN ); 1661 1662 /* Store the SELECT statement in pRight so it will be deleted when 1663 ** sqlite3ExprListDelete() is called */ 1664 pFirst->pRight = pExpr; 1665 pExpr = 0; 1666 1667 /* Remember the size of the LHS in iTable so that we can check that 1668 ** the RHS and LHS sizes match during code generation. */ 1669 pFirst->iTable = pColumns->nId; 1670 } 1671 1672 vector_append_error: 1673 if( IN_RENAME_OBJECT ){ 1674 sqlite3RenameExprUnmap(pParse, pExpr); 1675 } 1676 sqlite3ExprDelete(db, pExpr); 1677 sqlite3IdListDelete(db, pColumns); 1678 return pList; 1679 } 1680 1681 /* 1682 ** Set the sort order for the last element on the given ExprList. 1683 */ 1684 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1685 if( p==0 ) return; 1686 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1687 assert( p->nExpr>0 ); 1688 if( iSortOrder<0 ){ 1689 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1690 return; 1691 } 1692 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1693 } 1694 1695 /* 1696 ** Set the ExprList.a[].zName element of the most recently added item 1697 ** on the expression list. 1698 ** 1699 ** pList might be NULL following an OOM error. But pName should never be 1700 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1701 ** is set. 1702 */ 1703 void sqlite3ExprListSetName( 1704 Parse *pParse, /* Parsing context */ 1705 ExprList *pList, /* List to which to add the span. */ 1706 Token *pName, /* Name to be added */ 1707 int dequote /* True to cause the name to be dequoted */ 1708 ){ 1709 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1710 if( pList ){ 1711 struct ExprList_item *pItem; 1712 assert( pList->nExpr>0 ); 1713 pItem = &pList->a[pList->nExpr-1]; 1714 assert( pItem->zName==0 ); 1715 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1716 if( dequote ) sqlite3Dequote(pItem->zName); 1717 if( IN_RENAME_OBJECT ){ 1718 sqlite3RenameTokenMap(pParse, (void*)pItem->zName, pName); 1719 } 1720 } 1721 } 1722 1723 /* 1724 ** Set the ExprList.a[].zSpan element of the most recently added item 1725 ** on the expression list. 1726 ** 1727 ** pList might be NULL following an OOM error. But pSpan should never be 1728 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1729 ** is set. 1730 */ 1731 void sqlite3ExprListSetSpan( 1732 Parse *pParse, /* Parsing context */ 1733 ExprList *pList, /* List to which to add the span. */ 1734 const char *zStart, /* Start of the span */ 1735 const char *zEnd /* End of the span */ 1736 ){ 1737 sqlite3 *db = pParse->db; 1738 assert( pList!=0 || db->mallocFailed!=0 ); 1739 if( pList ){ 1740 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1741 assert( pList->nExpr>0 ); 1742 sqlite3DbFree(db, pItem->zSpan); 1743 pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd); 1744 } 1745 } 1746 1747 /* 1748 ** If the expression list pEList contains more than iLimit elements, 1749 ** leave an error message in pParse. 1750 */ 1751 void sqlite3ExprListCheckLength( 1752 Parse *pParse, 1753 ExprList *pEList, 1754 const char *zObject 1755 ){ 1756 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1757 testcase( pEList && pEList->nExpr==mx ); 1758 testcase( pEList && pEList->nExpr==mx+1 ); 1759 if( pEList && pEList->nExpr>mx ){ 1760 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1761 } 1762 } 1763 1764 /* 1765 ** Delete an entire expression list. 1766 */ 1767 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1768 int i = pList->nExpr; 1769 struct ExprList_item *pItem = pList->a; 1770 assert( pList->nExpr>0 ); 1771 do{ 1772 sqlite3ExprDelete(db, pItem->pExpr); 1773 sqlite3DbFree(db, pItem->zName); 1774 sqlite3DbFree(db, pItem->zSpan); 1775 pItem++; 1776 }while( --i>0 ); 1777 sqlite3DbFreeNN(db, pList); 1778 } 1779 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1780 if( pList ) exprListDeleteNN(db, pList); 1781 } 1782 1783 /* 1784 ** Return the bitwise-OR of all Expr.flags fields in the given 1785 ** ExprList. 1786 */ 1787 u32 sqlite3ExprListFlags(const ExprList *pList){ 1788 int i; 1789 u32 m = 0; 1790 assert( pList!=0 ); 1791 for(i=0; i<pList->nExpr; i++){ 1792 Expr *pExpr = pList->a[i].pExpr; 1793 assert( pExpr!=0 ); 1794 m |= pExpr->flags; 1795 } 1796 return m; 1797 } 1798 1799 /* 1800 ** This is a SELECT-node callback for the expression walker that 1801 ** always "fails". By "fail" in this case, we mean set 1802 ** pWalker->eCode to zero and abort. 1803 ** 1804 ** This callback is used by multiple expression walkers. 1805 */ 1806 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1807 UNUSED_PARAMETER(NotUsed); 1808 pWalker->eCode = 0; 1809 return WRC_Abort; 1810 } 1811 1812 /* 1813 ** If the input expression is an ID with the name "true" or "false" 1814 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1815 ** the conversion happened, and zero if the expression is unaltered. 1816 */ 1817 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1818 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1819 if( !ExprHasProperty(pExpr, EP_Quoted) 1820 && (sqlite3StrICmp(pExpr->u.zToken, "true")==0 1821 || sqlite3StrICmp(pExpr->u.zToken, "false")==0) 1822 ){ 1823 pExpr->op = TK_TRUEFALSE; 1824 return 1; 1825 } 1826 return 0; 1827 } 1828 1829 /* 1830 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1831 ** and 0 if it is FALSE. 1832 */ 1833 int sqlite3ExprTruthValue(const Expr *pExpr){ 1834 assert( pExpr->op==TK_TRUEFALSE ); 1835 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1836 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1837 return pExpr->u.zToken[4]==0; 1838 } 1839 1840 1841 /* 1842 ** These routines are Walker callbacks used to check expressions to 1843 ** see if they are "constant" for some definition of constant. The 1844 ** Walker.eCode value determines the type of "constant" we are looking 1845 ** for. 1846 ** 1847 ** These callback routines are used to implement the following: 1848 ** 1849 ** sqlite3ExprIsConstant() pWalker->eCode==1 1850 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1851 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1852 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1853 ** 1854 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1855 ** is found to not be a constant. 1856 ** 1857 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1858 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1859 ** an existing schema and 4 when processing a new statement. A bound 1860 ** parameter raises an error for new statements, but is silently converted 1861 ** to NULL for existing schemas. This allows sqlite_master tables that 1862 ** contain a bound parameter because they were generated by older versions 1863 ** of SQLite to be parsed by newer versions of SQLite without raising a 1864 ** malformed schema error. 1865 */ 1866 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1867 1868 /* If pWalker->eCode is 2 then any term of the expression that comes from 1869 ** the ON or USING clauses of a left join disqualifies the expression 1870 ** from being considered constant. */ 1871 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1872 pWalker->eCode = 0; 1873 return WRC_Abort; 1874 } 1875 1876 switch( pExpr->op ){ 1877 /* Consider functions to be constant if all their arguments are constant 1878 ** and either pWalker->eCode==4 or 5 or the function has the 1879 ** SQLITE_FUNC_CONST flag. */ 1880 case TK_FUNCTION: 1881 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1882 return WRC_Continue; 1883 }else{ 1884 pWalker->eCode = 0; 1885 return WRC_Abort; 1886 } 1887 case TK_ID: 1888 /* Convert "true" or "false" in a DEFAULT clause into the 1889 ** appropriate TK_TRUEFALSE operator */ 1890 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 1891 return WRC_Prune; 1892 } 1893 /* Fall thru */ 1894 case TK_COLUMN: 1895 case TK_AGG_FUNCTION: 1896 case TK_AGG_COLUMN: 1897 testcase( pExpr->op==TK_ID ); 1898 testcase( pExpr->op==TK_COLUMN ); 1899 testcase( pExpr->op==TK_AGG_FUNCTION ); 1900 testcase( pExpr->op==TK_AGG_COLUMN ); 1901 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 1902 return WRC_Continue; 1903 } 1904 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1905 return WRC_Continue; 1906 } 1907 /* Fall through */ 1908 case TK_IF_NULL_ROW: 1909 case TK_REGISTER: 1910 testcase( pExpr->op==TK_REGISTER ); 1911 testcase( pExpr->op==TK_IF_NULL_ROW ); 1912 pWalker->eCode = 0; 1913 return WRC_Abort; 1914 case TK_VARIABLE: 1915 if( pWalker->eCode==5 ){ 1916 /* Silently convert bound parameters that appear inside of CREATE 1917 ** statements into a NULL when parsing the CREATE statement text out 1918 ** of the sqlite_master table */ 1919 pExpr->op = TK_NULL; 1920 }else if( pWalker->eCode==4 ){ 1921 /* A bound parameter in a CREATE statement that originates from 1922 ** sqlite3_prepare() causes an error */ 1923 pWalker->eCode = 0; 1924 return WRC_Abort; 1925 } 1926 /* Fall through */ 1927 default: 1928 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 1929 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 1930 return WRC_Continue; 1931 } 1932 } 1933 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1934 Walker w; 1935 w.eCode = initFlag; 1936 w.xExprCallback = exprNodeIsConstant; 1937 w.xSelectCallback = sqlite3SelectWalkFail; 1938 #ifdef SQLITE_DEBUG 1939 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1940 #endif 1941 w.u.iCur = iCur; 1942 sqlite3WalkExpr(&w, p); 1943 return w.eCode; 1944 } 1945 1946 /* 1947 ** Walk an expression tree. Return non-zero if the expression is constant 1948 ** and 0 if it involves variables or function calls. 1949 ** 1950 ** For the purposes of this function, a double-quoted string (ex: "abc") 1951 ** is considered a variable but a single-quoted string (ex: 'abc') is 1952 ** a constant. 1953 */ 1954 int sqlite3ExprIsConstant(Expr *p){ 1955 return exprIsConst(p, 1, 0); 1956 } 1957 1958 /* 1959 ** Walk an expression tree. Return non-zero if 1960 ** 1961 ** (1) the expression is constant, and 1962 ** (2) the expression does originate in the ON or USING clause 1963 ** of a LEFT JOIN, and 1964 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 1965 ** operands created by the constant propagation optimization. 1966 ** 1967 ** When this routine returns true, it indicates that the expression 1968 ** can be added to the pParse->pConstExpr list and evaluated once when 1969 ** the prepared statement starts up. See sqlite3ExprCodeAtInit(). 1970 */ 1971 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1972 return exprIsConst(p, 2, 0); 1973 } 1974 1975 /* 1976 ** Walk an expression tree. Return non-zero if the expression is constant 1977 ** for any single row of the table with cursor iCur. In other words, the 1978 ** expression must not refer to any non-deterministic function nor any 1979 ** table other than iCur. 1980 */ 1981 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1982 return exprIsConst(p, 3, iCur); 1983 } 1984 1985 1986 /* 1987 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 1988 */ 1989 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 1990 ExprList *pGroupBy = pWalker->u.pGroupBy; 1991 int i; 1992 1993 /* Check if pExpr is identical to any GROUP BY term. If so, consider 1994 ** it constant. */ 1995 for(i=0; i<pGroupBy->nExpr; i++){ 1996 Expr *p = pGroupBy->a[i].pExpr; 1997 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 1998 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 1999 if( sqlite3IsBinary(pColl) ){ 2000 return WRC_Prune; 2001 } 2002 } 2003 } 2004 2005 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2006 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2007 pWalker->eCode = 0; 2008 return WRC_Abort; 2009 } 2010 2011 return exprNodeIsConstant(pWalker, pExpr); 2012 } 2013 2014 /* 2015 ** Walk the expression tree passed as the first argument. Return non-zero 2016 ** if the expression consists entirely of constants or copies of terms 2017 ** in pGroupBy that sort with the BINARY collation sequence. 2018 ** 2019 ** This routine is used to determine if a term of the HAVING clause can 2020 ** be promoted into the WHERE clause. In order for such a promotion to work, 2021 ** the value of the HAVING clause term must be the same for all members of 2022 ** a "group". The requirement that the GROUP BY term must be BINARY 2023 ** assumes that no other collating sequence will have a finer-grained 2024 ** grouping than binary. In other words (A=B COLLATE binary) implies 2025 ** A=B in every other collating sequence. The requirement that the 2026 ** GROUP BY be BINARY is stricter than necessary. It would also work 2027 ** to promote HAVING clauses that use the same alternative collating 2028 ** sequence as the GROUP BY term, but that is much harder to check, 2029 ** alternative collating sequences are uncommon, and this is only an 2030 ** optimization, so we take the easy way out and simply require the 2031 ** GROUP BY to use the BINARY collating sequence. 2032 */ 2033 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2034 Walker w; 2035 w.eCode = 1; 2036 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2037 w.xSelectCallback = 0; 2038 w.u.pGroupBy = pGroupBy; 2039 w.pParse = pParse; 2040 sqlite3WalkExpr(&w, p); 2041 return w.eCode; 2042 } 2043 2044 /* 2045 ** Walk an expression tree. Return non-zero if the expression is constant 2046 ** or a function call with constant arguments. Return and 0 if there 2047 ** are any variables. 2048 ** 2049 ** For the purposes of this function, a double-quoted string (ex: "abc") 2050 ** is considered a variable but a single-quoted string (ex: 'abc') is 2051 ** a constant. 2052 */ 2053 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2054 assert( isInit==0 || isInit==1 ); 2055 return exprIsConst(p, 4+isInit, 0); 2056 } 2057 2058 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2059 /* 2060 ** Walk an expression tree. Return 1 if the expression contains a 2061 ** subquery of some kind. Return 0 if there are no subqueries. 2062 */ 2063 int sqlite3ExprContainsSubquery(Expr *p){ 2064 Walker w; 2065 w.eCode = 1; 2066 w.xExprCallback = sqlite3ExprWalkNoop; 2067 w.xSelectCallback = sqlite3SelectWalkFail; 2068 #ifdef SQLITE_DEBUG 2069 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2070 #endif 2071 sqlite3WalkExpr(&w, p); 2072 return w.eCode==0; 2073 } 2074 #endif 2075 2076 /* 2077 ** If the expression p codes a constant integer that is small enough 2078 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2079 ** in *pValue. If the expression is not an integer or if it is too big 2080 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2081 */ 2082 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2083 int rc = 0; 2084 if( p==0 ) return 0; /* Can only happen following on OOM */ 2085 2086 /* If an expression is an integer literal that fits in a signed 32-bit 2087 ** integer, then the EP_IntValue flag will have already been set */ 2088 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2089 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2090 2091 if( p->flags & EP_IntValue ){ 2092 *pValue = p->u.iValue; 2093 return 1; 2094 } 2095 switch( p->op ){ 2096 case TK_UPLUS: { 2097 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2098 break; 2099 } 2100 case TK_UMINUS: { 2101 int v; 2102 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2103 assert( v!=(-2147483647-1) ); 2104 *pValue = -v; 2105 rc = 1; 2106 } 2107 break; 2108 } 2109 default: break; 2110 } 2111 return rc; 2112 } 2113 2114 /* 2115 ** Return FALSE if there is no chance that the expression can be NULL. 2116 ** 2117 ** If the expression might be NULL or if the expression is too complex 2118 ** to tell return TRUE. 2119 ** 2120 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2121 ** when we know that a value cannot be NULL. Hence, a false positive 2122 ** (returning TRUE when in fact the expression can never be NULL) might 2123 ** be a small performance hit but is otherwise harmless. On the other 2124 ** hand, a false negative (returning FALSE when the result could be NULL) 2125 ** will likely result in an incorrect answer. So when in doubt, return 2126 ** TRUE. 2127 */ 2128 int sqlite3ExprCanBeNull(const Expr *p){ 2129 u8 op; 2130 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2131 p = p->pLeft; 2132 } 2133 op = p->op; 2134 if( op==TK_REGISTER ) op = p->op2; 2135 switch( op ){ 2136 case TK_INTEGER: 2137 case TK_STRING: 2138 case TK_FLOAT: 2139 case TK_BLOB: 2140 return 0; 2141 case TK_COLUMN: 2142 return ExprHasProperty(p, EP_CanBeNull) || 2143 p->y.pTab==0 || /* Reference to column of index on expression */ 2144 (p->iColumn>=0 && p->y.pTab->aCol[p->iColumn].notNull==0); 2145 default: 2146 return 1; 2147 } 2148 } 2149 2150 /* 2151 ** Return TRUE if the given expression is a constant which would be 2152 ** unchanged by OP_Affinity with the affinity given in the second 2153 ** argument. 2154 ** 2155 ** This routine is used to determine if the OP_Affinity operation 2156 ** can be omitted. When in doubt return FALSE. A false negative 2157 ** is harmless. A false positive, however, can result in the wrong 2158 ** answer. 2159 */ 2160 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2161 u8 op; 2162 if( aff==SQLITE_AFF_BLOB ) return 1; 2163 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 2164 op = p->op; 2165 if( op==TK_REGISTER ) op = p->op2; 2166 switch( op ){ 2167 case TK_INTEGER: { 2168 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 2169 } 2170 case TK_FLOAT: { 2171 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 2172 } 2173 case TK_STRING: { 2174 return aff==SQLITE_AFF_TEXT; 2175 } 2176 case TK_BLOB: { 2177 return 1; 2178 } 2179 case TK_COLUMN: { 2180 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2181 return p->iColumn<0 2182 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 2183 } 2184 default: { 2185 return 0; 2186 } 2187 } 2188 } 2189 2190 /* 2191 ** Return TRUE if the given string is a row-id column name. 2192 */ 2193 int sqlite3IsRowid(const char *z){ 2194 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2195 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2196 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2197 return 0; 2198 } 2199 2200 /* 2201 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2202 ** that can be simplified to a direct table access, then return 2203 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2204 ** or if the SELECT statement needs to be manifested into a transient 2205 ** table, then return NULL. 2206 */ 2207 #ifndef SQLITE_OMIT_SUBQUERY 2208 static Select *isCandidateForInOpt(Expr *pX){ 2209 Select *p; 2210 SrcList *pSrc; 2211 ExprList *pEList; 2212 Table *pTab; 2213 int i; 2214 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2215 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2216 p = pX->x.pSelect; 2217 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2218 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2219 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2220 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2221 return 0; /* No DISTINCT keyword and no aggregate functions */ 2222 } 2223 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2224 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2225 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2226 pSrc = p->pSrc; 2227 assert( pSrc!=0 ); 2228 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2229 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2230 pTab = pSrc->a[0].pTab; 2231 assert( pTab!=0 ); 2232 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2233 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2234 pEList = p->pEList; 2235 assert( pEList!=0 ); 2236 /* All SELECT results must be columns. */ 2237 for(i=0; i<pEList->nExpr; i++){ 2238 Expr *pRes = pEList->a[i].pExpr; 2239 if( pRes->op!=TK_COLUMN ) return 0; 2240 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2241 } 2242 return p; 2243 } 2244 #endif /* SQLITE_OMIT_SUBQUERY */ 2245 2246 #ifndef SQLITE_OMIT_SUBQUERY 2247 /* 2248 ** Generate code that checks the left-most column of index table iCur to see if 2249 ** it contains any NULL entries. Cause the register at regHasNull to be set 2250 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2251 ** to be set to NULL if iCur contains one or more NULL values. 2252 */ 2253 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2254 int addr1; 2255 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2256 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2257 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2258 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2259 VdbeComment((v, "first_entry_in(%d)", iCur)); 2260 sqlite3VdbeJumpHere(v, addr1); 2261 } 2262 #endif 2263 2264 2265 #ifndef SQLITE_OMIT_SUBQUERY 2266 /* 2267 ** The argument is an IN operator with a list (not a subquery) on the 2268 ** right-hand side. Return TRUE if that list is constant. 2269 */ 2270 static int sqlite3InRhsIsConstant(Expr *pIn){ 2271 Expr *pLHS; 2272 int res; 2273 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2274 pLHS = pIn->pLeft; 2275 pIn->pLeft = 0; 2276 res = sqlite3ExprIsConstant(pIn); 2277 pIn->pLeft = pLHS; 2278 return res; 2279 } 2280 #endif 2281 2282 /* 2283 ** This function is used by the implementation of the IN (...) operator. 2284 ** The pX parameter is the expression on the RHS of the IN operator, which 2285 ** might be either a list of expressions or a subquery. 2286 ** 2287 ** The job of this routine is to find or create a b-tree object that can 2288 ** be used either to test for membership in the RHS set or to iterate through 2289 ** all members of the RHS set, skipping duplicates. 2290 ** 2291 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2292 ** and pX->iTable is set to the index of that cursor. 2293 ** 2294 ** The returned value of this function indicates the b-tree type, as follows: 2295 ** 2296 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2297 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2298 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2299 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2300 ** populated epheremal table. 2301 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2302 ** implemented as a sequence of comparisons. 2303 ** 2304 ** An existing b-tree might be used if the RHS expression pX is a simple 2305 ** subquery such as: 2306 ** 2307 ** SELECT <column1>, <column2>... FROM <table> 2308 ** 2309 ** If the RHS of the IN operator is a list or a more complex subquery, then 2310 ** an ephemeral table might need to be generated from the RHS and then 2311 ** pX->iTable made to point to the ephemeral table instead of an 2312 ** existing table. 2313 ** 2314 ** The inFlags parameter must contain, at a minimum, one of the bits 2315 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2316 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2317 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2318 ** be used to loop over all values of the RHS of the IN operator. 2319 ** 2320 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2321 ** through the set members) then the b-tree must not contain duplicates. 2322 ** An epheremal table will be created unless the selected columns are guaranteed 2323 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2324 ** a UNIQUE constraint or index. 2325 ** 2326 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2327 ** for fast set membership tests) then an epheremal table must 2328 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2329 ** index can be found with the specified <columns> as its left-most. 2330 ** 2331 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2332 ** if the RHS of the IN operator is a list (not a subquery) then this 2333 ** routine might decide that creating an ephemeral b-tree for membership 2334 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2335 ** calling routine should implement the IN operator using a sequence 2336 ** of Eq or Ne comparison operations. 2337 ** 2338 ** When the b-tree is being used for membership tests, the calling function 2339 ** might need to know whether or not the RHS side of the IN operator 2340 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2341 ** if there is any chance that the (...) might contain a NULL value at 2342 ** runtime, then a register is allocated and the register number written 2343 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2344 ** NULL value, then *prRhsHasNull is left unchanged. 2345 ** 2346 ** If a register is allocated and its location stored in *prRhsHasNull, then 2347 ** the value in that register will be NULL if the b-tree contains one or more 2348 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2349 ** NULL values. 2350 ** 2351 ** If the aiMap parameter is not NULL, it must point to an array containing 2352 ** one element for each column returned by the SELECT statement on the RHS 2353 ** of the IN(...) operator. The i'th entry of the array is populated with the 2354 ** offset of the index column that matches the i'th column returned by the 2355 ** SELECT. For example, if the expression and selected index are: 2356 ** 2357 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2358 ** CREATE INDEX i1 ON t1(b, c, a); 2359 ** 2360 ** then aiMap[] is populated with {2, 0, 1}. 2361 */ 2362 #ifndef SQLITE_OMIT_SUBQUERY 2363 int sqlite3FindInIndex( 2364 Parse *pParse, /* Parsing context */ 2365 Expr *pX, /* The right-hand side (RHS) of the IN operator */ 2366 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2367 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2368 int *aiMap, /* Mapping from Index fields to RHS fields */ 2369 int *piTab /* OUT: index to use */ 2370 ){ 2371 Select *p; /* SELECT to the right of IN operator */ 2372 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2373 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2374 int mustBeUnique; /* True if RHS must be unique */ 2375 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2376 2377 assert( pX->op==TK_IN ); 2378 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2379 2380 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2381 ** whether or not the SELECT result contains NULL values, check whether 2382 ** or not NULL is actually possible (it may not be, for example, due 2383 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2384 ** set prRhsHasNull to 0 before continuing. */ 2385 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2386 int i; 2387 ExprList *pEList = pX->x.pSelect->pEList; 2388 for(i=0; i<pEList->nExpr; i++){ 2389 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2390 } 2391 if( i==pEList->nExpr ){ 2392 prRhsHasNull = 0; 2393 } 2394 } 2395 2396 /* Check to see if an existing table or index can be used to 2397 ** satisfy the query. This is preferable to generating a new 2398 ** ephemeral table. */ 2399 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2400 sqlite3 *db = pParse->db; /* Database connection */ 2401 Table *pTab; /* Table <table>. */ 2402 i16 iDb; /* Database idx for pTab */ 2403 ExprList *pEList = p->pEList; 2404 int nExpr = pEList->nExpr; 2405 2406 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2407 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2408 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2409 pTab = p->pSrc->a[0].pTab; 2410 2411 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2412 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2413 sqlite3CodeVerifySchema(pParse, iDb); 2414 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2415 2416 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2417 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2418 /* The "x IN (SELECT rowid FROM table)" case */ 2419 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2420 VdbeCoverage(v); 2421 2422 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2423 eType = IN_INDEX_ROWID; 2424 ExplainQueryPlan((pParse, 0, 2425 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2426 sqlite3VdbeJumpHere(v, iAddr); 2427 }else{ 2428 Index *pIdx; /* Iterator variable */ 2429 int affinity_ok = 1; 2430 int i; 2431 2432 /* Check that the affinity that will be used to perform each 2433 ** comparison is the same as the affinity of each column in table 2434 ** on the RHS of the IN operator. If it not, it is not possible to 2435 ** use any index of the RHS table. */ 2436 for(i=0; i<nExpr && affinity_ok; i++){ 2437 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2438 int iCol = pEList->a[i].pExpr->iColumn; 2439 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2440 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2441 testcase( cmpaff==SQLITE_AFF_BLOB ); 2442 testcase( cmpaff==SQLITE_AFF_TEXT ); 2443 switch( cmpaff ){ 2444 case SQLITE_AFF_BLOB: 2445 break; 2446 case SQLITE_AFF_TEXT: 2447 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2448 ** other has no affinity and the other side is TEXT. Hence, 2449 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2450 ** and for the term on the LHS of the IN to have no affinity. */ 2451 assert( idxaff==SQLITE_AFF_TEXT ); 2452 break; 2453 default: 2454 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2455 } 2456 } 2457 2458 if( affinity_ok ){ 2459 /* Search for an existing index that will work for this IN operator */ 2460 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2461 Bitmask colUsed; /* Columns of the index used */ 2462 Bitmask mCol; /* Mask for the current column */ 2463 if( pIdx->nColumn<nExpr ) continue; 2464 if( pIdx->pPartIdxWhere!=0 ) continue; 2465 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2466 ** BITMASK(nExpr) without overflowing */ 2467 testcase( pIdx->nColumn==BMS-2 ); 2468 testcase( pIdx->nColumn==BMS-1 ); 2469 if( pIdx->nColumn>=BMS-1 ) continue; 2470 if( mustBeUnique ){ 2471 if( pIdx->nKeyCol>nExpr 2472 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2473 ){ 2474 continue; /* This index is not unique over the IN RHS columns */ 2475 } 2476 } 2477 2478 colUsed = 0; /* Columns of index used so far */ 2479 for(i=0; i<nExpr; i++){ 2480 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2481 Expr *pRhs = pEList->a[i].pExpr; 2482 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2483 int j; 2484 2485 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2486 for(j=0; j<nExpr; j++){ 2487 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2488 assert( pIdx->azColl[j] ); 2489 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2490 continue; 2491 } 2492 break; 2493 } 2494 if( j==nExpr ) break; 2495 mCol = MASKBIT(j); 2496 if( mCol & colUsed ) break; /* Each column used only once */ 2497 colUsed |= mCol; 2498 if( aiMap ) aiMap[i] = j; 2499 } 2500 2501 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2502 if( colUsed==(MASKBIT(nExpr)-1) ){ 2503 /* If we reach this point, that means the index pIdx is usable */ 2504 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2505 ExplainQueryPlan((pParse, 0, 2506 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2507 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2508 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2509 VdbeComment((v, "%s", pIdx->zName)); 2510 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2511 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2512 2513 if( prRhsHasNull ){ 2514 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2515 i64 mask = (1<<nExpr)-1; 2516 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2517 iTab, 0, 0, (u8*)&mask, P4_INT64); 2518 #endif 2519 *prRhsHasNull = ++pParse->nMem; 2520 if( nExpr==1 ){ 2521 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2522 } 2523 } 2524 sqlite3VdbeJumpHere(v, iAddr); 2525 } 2526 } /* End loop over indexes */ 2527 } /* End if( affinity_ok ) */ 2528 } /* End if not an rowid index */ 2529 } /* End attempt to optimize using an index */ 2530 2531 /* If no preexisting index is available for the IN clause 2532 ** and IN_INDEX_NOOP is an allowed reply 2533 ** and the RHS of the IN operator is a list, not a subquery 2534 ** and the RHS is not constant or has two or fewer terms, 2535 ** then it is not worth creating an ephemeral table to evaluate 2536 ** the IN operator so return IN_INDEX_NOOP. 2537 */ 2538 if( eType==0 2539 && (inFlags & IN_INDEX_NOOP_OK) 2540 && !ExprHasProperty(pX, EP_xIsSelect) 2541 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2542 ){ 2543 eType = IN_INDEX_NOOP; 2544 } 2545 2546 if( eType==0 ){ 2547 /* Could not find an existing table or index to use as the RHS b-tree. 2548 ** We will have to generate an ephemeral table to do the job. 2549 */ 2550 u32 savedNQueryLoop = pParse->nQueryLoop; 2551 int rMayHaveNull = 0; 2552 eType = IN_INDEX_EPH; 2553 if( inFlags & IN_INDEX_LOOP ){ 2554 pParse->nQueryLoop = 0; 2555 }else if( prRhsHasNull ){ 2556 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2557 } 2558 assert( pX->op==TK_IN ); 2559 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2560 if( rMayHaveNull ){ 2561 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2562 } 2563 pParse->nQueryLoop = savedNQueryLoop; 2564 } 2565 2566 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2567 int i, n; 2568 n = sqlite3ExprVectorSize(pX->pLeft); 2569 for(i=0; i<n; i++) aiMap[i] = i; 2570 } 2571 *piTab = iTab; 2572 return eType; 2573 } 2574 #endif 2575 2576 #ifndef SQLITE_OMIT_SUBQUERY 2577 /* 2578 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2579 ** function allocates and returns a nul-terminated string containing 2580 ** the affinities to be used for each column of the comparison. 2581 ** 2582 ** It is the responsibility of the caller to ensure that the returned 2583 ** string is eventually freed using sqlite3DbFree(). 2584 */ 2585 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2586 Expr *pLeft = pExpr->pLeft; 2587 int nVal = sqlite3ExprVectorSize(pLeft); 2588 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2589 char *zRet; 2590 2591 assert( pExpr->op==TK_IN ); 2592 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2593 if( zRet ){ 2594 int i; 2595 for(i=0; i<nVal; i++){ 2596 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2597 char a = sqlite3ExprAffinity(pA); 2598 if( pSelect ){ 2599 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2600 }else{ 2601 zRet[i] = a; 2602 } 2603 } 2604 zRet[nVal] = '\0'; 2605 } 2606 return zRet; 2607 } 2608 #endif 2609 2610 #ifndef SQLITE_OMIT_SUBQUERY 2611 /* 2612 ** Load the Parse object passed as the first argument with an error 2613 ** message of the form: 2614 ** 2615 ** "sub-select returns N columns - expected M" 2616 */ 2617 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2618 const char *zFmt = "sub-select returns %d columns - expected %d"; 2619 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2620 } 2621 #endif 2622 2623 /* 2624 ** Expression pExpr is a vector that has been used in a context where 2625 ** it is not permitted. If pExpr is a sub-select vector, this routine 2626 ** loads the Parse object with a message of the form: 2627 ** 2628 ** "sub-select returns N columns - expected 1" 2629 ** 2630 ** Or, if it is a regular scalar vector: 2631 ** 2632 ** "row value misused" 2633 */ 2634 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2635 #ifndef SQLITE_OMIT_SUBQUERY 2636 if( pExpr->flags & EP_xIsSelect ){ 2637 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2638 }else 2639 #endif 2640 { 2641 sqlite3ErrorMsg(pParse, "row value misused"); 2642 } 2643 } 2644 2645 #ifndef SQLITE_OMIT_SUBQUERY 2646 /* 2647 ** Generate code that will construct an ephemeral table containing all terms 2648 ** in the RHS of an IN operator. The IN operator can be in either of two 2649 ** forms: 2650 ** 2651 ** x IN (4,5,11) -- IN operator with list on right-hand side 2652 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2653 ** 2654 ** The pExpr parameter is the IN operator. The cursor number for the 2655 ** constructed ephermeral table is returned. The first time the ephemeral 2656 ** table is computed, the cursor number is also stored in pExpr->iTable, 2657 ** however the cursor number returned might not be the same, as it might 2658 ** have been duplicated using OP_OpenDup. 2659 ** 2660 ** If the LHS expression ("x" in the examples) is a column value, or 2661 ** the SELECT statement returns a column value, then the affinity of that 2662 ** column is used to build the index keys. If both 'x' and the 2663 ** SELECT... statement are columns, then numeric affinity is used 2664 ** if either column has NUMERIC or INTEGER affinity. If neither 2665 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2666 ** is used. 2667 */ 2668 void sqlite3CodeRhsOfIN( 2669 Parse *pParse, /* Parsing context */ 2670 Expr *pExpr, /* The IN operator */ 2671 int iTab /* Use this cursor number */ 2672 ){ 2673 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2674 int addr; /* Address of OP_OpenEphemeral instruction */ 2675 Expr *pLeft; /* the LHS of the IN operator */ 2676 KeyInfo *pKeyInfo = 0; /* Key information */ 2677 int nVal; /* Size of vector pLeft */ 2678 Vdbe *v; /* The prepared statement under construction */ 2679 2680 v = pParse->pVdbe; 2681 assert( v!=0 ); 2682 2683 /* The evaluation of the IN must be repeated every time it 2684 ** is encountered if any of the following is true: 2685 ** 2686 ** * The right-hand side is a correlated subquery 2687 ** * The right-hand side is an expression list containing variables 2688 ** * We are inside a trigger 2689 ** 2690 ** If all of the above are false, then we can compute the RHS just once 2691 ** and reuse it many names. 2692 */ 2693 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2694 /* Reuse of the RHS is allowed */ 2695 /* If this routine has already been coded, but the previous code 2696 ** might not have been invoked yet, so invoke it now as a subroutine. 2697 */ 2698 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2699 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2700 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2701 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2702 pExpr->x.pSelect->selId)); 2703 } 2704 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2705 pExpr->y.sub.iAddr); 2706 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2707 sqlite3VdbeJumpHere(v, addrOnce); 2708 return; 2709 } 2710 2711 /* Begin coding the subroutine */ 2712 ExprSetProperty(pExpr, EP_Subrtn); 2713 pExpr->y.sub.regReturn = ++pParse->nMem; 2714 pExpr->y.sub.iAddr = 2715 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2716 VdbeComment((v, "return address")); 2717 2718 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2719 } 2720 2721 /* Check to see if this is a vector IN operator */ 2722 pLeft = pExpr->pLeft; 2723 nVal = sqlite3ExprVectorSize(pLeft); 2724 2725 /* Construct the ephemeral table that will contain the content of 2726 ** RHS of the IN operator. 2727 */ 2728 pExpr->iTable = iTab; 2729 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2730 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2731 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2732 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2733 }else{ 2734 VdbeComment((v, "RHS of IN operator")); 2735 } 2736 #endif 2737 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2738 2739 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2740 /* Case 1: expr IN (SELECT ...) 2741 ** 2742 ** Generate code to write the results of the select into the temporary 2743 ** table allocated and opened above. 2744 */ 2745 Select *pSelect = pExpr->x.pSelect; 2746 ExprList *pEList = pSelect->pEList; 2747 2748 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2749 addrOnce?"":"CORRELATED ", pSelect->selId 2750 )); 2751 /* If the LHS and RHS of the IN operator do not match, that 2752 ** error will have been caught long before we reach this point. */ 2753 if( ALWAYS(pEList->nExpr==nVal) ){ 2754 SelectDest dest; 2755 int i; 2756 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2757 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2758 pSelect->iLimit = 0; 2759 testcase( pSelect->selFlags & SF_Distinct ); 2760 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2761 if( sqlite3Select(pParse, pSelect, &dest) ){ 2762 sqlite3DbFree(pParse->db, dest.zAffSdst); 2763 sqlite3KeyInfoUnref(pKeyInfo); 2764 return; 2765 } 2766 sqlite3DbFree(pParse->db, dest.zAffSdst); 2767 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2768 assert( pEList!=0 ); 2769 assert( pEList->nExpr>0 ); 2770 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2771 for(i=0; i<nVal; i++){ 2772 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2773 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2774 pParse, p, pEList->a[i].pExpr 2775 ); 2776 } 2777 } 2778 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2779 /* Case 2: expr IN (exprlist) 2780 ** 2781 ** For each expression, build an index key from the evaluation and 2782 ** store it in the temporary table. If <expr> is a column, then use 2783 ** that columns affinity when building index keys. If <expr> is not 2784 ** a column, use numeric affinity. 2785 */ 2786 char affinity; /* Affinity of the LHS of the IN */ 2787 int i; 2788 ExprList *pList = pExpr->x.pList; 2789 struct ExprList_item *pItem; 2790 int r1, r2, r3; 2791 affinity = sqlite3ExprAffinity(pLeft); 2792 if( !affinity ){ 2793 affinity = SQLITE_AFF_BLOB; 2794 } 2795 if( pKeyInfo ){ 2796 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2797 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2798 } 2799 2800 /* Loop through each expression in <exprlist>. */ 2801 r1 = sqlite3GetTempReg(pParse); 2802 r2 = sqlite3GetTempReg(pParse); 2803 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2804 Expr *pE2 = pItem->pExpr; 2805 2806 /* If the expression is not constant then we will need to 2807 ** disable the test that was generated above that makes sure 2808 ** this code only executes once. Because for a non-constant 2809 ** expression we need to rerun this code each time. 2810 */ 2811 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 2812 sqlite3VdbeChangeToNoop(v, addrOnce); 2813 addrOnce = 0; 2814 } 2815 2816 /* Evaluate the expression and insert it into the temp table */ 2817 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2818 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2819 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r3, 1); 2820 } 2821 sqlite3ReleaseTempReg(pParse, r1); 2822 sqlite3ReleaseTempReg(pParse, r2); 2823 } 2824 if( pKeyInfo ){ 2825 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2826 } 2827 if( addrOnce ){ 2828 sqlite3VdbeJumpHere(v, addrOnce); 2829 /* Subroutine return */ 2830 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2831 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2832 } 2833 } 2834 #endif /* SQLITE_OMIT_SUBQUERY */ 2835 2836 /* 2837 ** Generate code for scalar subqueries used as a subquery expression 2838 ** or EXISTS operator: 2839 ** 2840 ** (SELECT a FROM b) -- subquery 2841 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2842 ** 2843 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 2844 ** 2845 ** The register that holds the result. For a multi-column SELECT, 2846 ** the result is stored in a contiguous array of registers and the 2847 ** return value is the register of the left-most result column. 2848 ** Return 0 if an error occurs. 2849 */ 2850 #ifndef SQLITE_OMIT_SUBQUERY 2851 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 2852 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 2853 int rReg = 0; /* Register storing resulting */ 2854 Select *pSel; /* SELECT statement to encode */ 2855 SelectDest dest; /* How to deal with SELECT result */ 2856 int nReg; /* Registers to allocate */ 2857 Expr *pLimit; /* New limit expression */ 2858 2859 Vdbe *v = pParse->pVdbe; 2860 assert( v!=0 ); 2861 testcase( pExpr->op==TK_EXISTS ); 2862 testcase( pExpr->op==TK_SELECT ); 2863 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2864 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2865 pSel = pExpr->x.pSelect; 2866 2867 /* The evaluation of the EXISTS/SELECT must be repeated every time it 2868 ** is encountered if any of the following is true: 2869 ** 2870 ** * The right-hand side is a correlated subquery 2871 ** * The right-hand side is an expression list containing variables 2872 ** * We are inside a trigger 2873 ** 2874 ** If all of the above are false, then we can run this code just once 2875 ** save the results, and reuse the same result on subsequent invocations. 2876 */ 2877 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2878 /* If this routine has already been coded, then invoke it as a 2879 ** subroutine. */ 2880 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2881 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 2882 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2883 pExpr->y.sub.iAddr); 2884 return pExpr->iTable; 2885 } 2886 2887 /* Begin coding the subroutine */ 2888 ExprSetProperty(pExpr, EP_Subrtn); 2889 pExpr->y.sub.regReturn = ++pParse->nMem; 2890 pExpr->y.sub.iAddr = 2891 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2892 VdbeComment((v, "return address")); 2893 2894 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2895 } 2896 2897 /* For a SELECT, generate code to put the values for all columns of 2898 ** the first row into an array of registers and return the index of 2899 ** the first register. 2900 ** 2901 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2902 ** into a register and return that register number. 2903 ** 2904 ** In both cases, the query is augmented with "LIMIT 1". Any 2905 ** preexisting limit is discarded in place of the new LIMIT 1. 2906 */ 2907 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 2908 addrOnce?"":"CORRELATED ", pSel->selId)); 2909 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2910 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2911 pParse->nMem += nReg; 2912 if( pExpr->op==TK_SELECT ){ 2913 dest.eDest = SRT_Mem; 2914 dest.iSdst = dest.iSDParm; 2915 dest.nSdst = nReg; 2916 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2917 VdbeComment((v, "Init subquery result")); 2918 }else{ 2919 dest.eDest = SRT_Exists; 2920 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2921 VdbeComment((v, "Init EXISTS result")); 2922 } 2923 pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0); 2924 if( pSel->pLimit ){ 2925 sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft); 2926 pSel->pLimit->pLeft = pLimit; 2927 }else{ 2928 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 2929 } 2930 pSel->iLimit = 0; 2931 if( sqlite3Select(pParse, pSel, &dest) ){ 2932 return 0; 2933 } 2934 pExpr->iTable = rReg = dest.iSDParm; 2935 ExprSetVVAProperty(pExpr, EP_NoReduce); 2936 if( addrOnce ){ 2937 sqlite3VdbeJumpHere(v, addrOnce); 2938 2939 /* Subroutine return */ 2940 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2941 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2942 } 2943 2944 return rReg; 2945 } 2946 #endif /* SQLITE_OMIT_SUBQUERY */ 2947 2948 #ifndef SQLITE_OMIT_SUBQUERY 2949 /* 2950 ** Expr pIn is an IN(...) expression. This function checks that the 2951 ** sub-select on the RHS of the IN() operator has the same number of 2952 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 2953 ** a sub-query, that the LHS is a vector of size 1. 2954 */ 2955 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 2956 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 2957 if( (pIn->flags & EP_xIsSelect) ){ 2958 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 2959 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 2960 return 1; 2961 } 2962 }else if( nVector!=1 ){ 2963 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 2964 return 1; 2965 } 2966 return 0; 2967 } 2968 #endif 2969 2970 #ifndef SQLITE_OMIT_SUBQUERY 2971 /* 2972 ** Generate code for an IN expression. 2973 ** 2974 ** x IN (SELECT ...) 2975 ** x IN (value, value, ...) 2976 ** 2977 ** The left-hand side (LHS) is a scalar or vector expression. The 2978 ** right-hand side (RHS) is an array of zero or more scalar values, or a 2979 ** subquery. If the RHS is a subquery, the number of result columns must 2980 ** match the number of columns in the vector on the LHS. If the RHS is 2981 ** a list of values, the LHS must be a scalar. 2982 ** 2983 ** The IN operator is true if the LHS value is contained within the RHS. 2984 ** The result is false if the LHS is definitely not in the RHS. The 2985 ** result is NULL if the presence of the LHS in the RHS cannot be 2986 ** determined due to NULLs. 2987 ** 2988 ** This routine generates code that jumps to destIfFalse if the LHS is not 2989 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2990 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2991 ** within the RHS then fall through. 2992 ** 2993 ** See the separate in-operator.md documentation file in the canonical 2994 ** SQLite source tree for additional information. 2995 */ 2996 static void sqlite3ExprCodeIN( 2997 Parse *pParse, /* Parsing and code generating context */ 2998 Expr *pExpr, /* The IN expression */ 2999 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3000 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3001 ){ 3002 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3003 int eType; /* Type of the RHS */ 3004 int rLhs; /* Register(s) holding the LHS values */ 3005 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3006 Vdbe *v; /* Statement under construction */ 3007 int *aiMap = 0; /* Map from vector field to index column */ 3008 char *zAff = 0; /* Affinity string for comparisons */ 3009 int nVector; /* Size of vectors for this IN operator */ 3010 int iDummy; /* Dummy parameter to exprCodeVector() */ 3011 Expr *pLeft; /* The LHS of the IN operator */ 3012 int i; /* loop counter */ 3013 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3014 int destStep6 = 0; /* Start of code for Step 6 */ 3015 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3016 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3017 int addrTop; /* Top of the step-6 loop */ 3018 int iTab = 0; /* Index to use */ 3019 3020 pLeft = pExpr->pLeft; 3021 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3022 zAff = exprINAffinity(pParse, pExpr); 3023 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3024 aiMap = (int*)sqlite3DbMallocZero( 3025 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3026 ); 3027 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3028 3029 /* Attempt to compute the RHS. After this step, if anything other than 3030 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3031 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3032 ** the RHS has not yet been coded. */ 3033 v = pParse->pVdbe; 3034 assert( v!=0 ); /* OOM detected prior to this routine */ 3035 VdbeNoopComment((v, "begin IN expr")); 3036 eType = sqlite3FindInIndex(pParse, pExpr, 3037 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3038 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3039 aiMap, &iTab); 3040 3041 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3042 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3043 ); 3044 #ifdef SQLITE_DEBUG 3045 /* Confirm that aiMap[] contains nVector integer values between 0 and 3046 ** nVector-1. */ 3047 for(i=0; i<nVector; i++){ 3048 int j, cnt; 3049 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3050 assert( cnt==1 ); 3051 } 3052 #endif 3053 3054 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3055 ** vector, then it is stored in an array of nVector registers starting 3056 ** at r1. 3057 ** 3058 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3059 ** so that the fields are in the same order as an existing index. The 3060 ** aiMap[] array contains a mapping from the original LHS field order to 3061 ** the field order that matches the RHS index. 3062 */ 3063 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3064 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3065 if( i==nVector ){ 3066 /* LHS fields are not reordered */ 3067 rLhs = rLhsOrig; 3068 }else{ 3069 /* Need to reorder the LHS fields according to aiMap */ 3070 rLhs = sqlite3GetTempRange(pParse, nVector); 3071 for(i=0; i<nVector; i++){ 3072 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3073 } 3074 } 3075 3076 /* If sqlite3FindInIndex() did not find or create an index that is 3077 ** suitable for evaluating the IN operator, then evaluate using a 3078 ** sequence of comparisons. 3079 ** 3080 ** This is step (1) in the in-operator.md optimized algorithm. 3081 */ 3082 if( eType==IN_INDEX_NOOP ){ 3083 ExprList *pList = pExpr->x.pList; 3084 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3085 int labelOk = sqlite3VdbeMakeLabel(pParse); 3086 int r2, regToFree; 3087 int regCkNull = 0; 3088 int ii; 3089 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3090 if( destIfNull!=destIfFalse ){ 3091 regCkNull = sqlite3GetTempReg(pParse); 3092 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3093 } 3094 for(ii=0; ii<pList->nExpr; ii++){ 3095 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3096 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3097 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3098 } 3099 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3100 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 3101 (void*)pColl, P4_COLLSEQ); 3102 VdbeCoverageIf(v, ii<pList->nExpr-1); 3103 VdbeCoverageIf(v, ii==pList->nExpr-1); 3104 sqlite3VdbeChangeP5(v, zAff[0]); 3105 }else{ 3106 assert( destIfNull==destIfFalse ); 3107 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 3108 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 3109 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3110 } 3111 sqlite3ReleaseTempReg(pParse, regToFree); 3112 } 3113 if( regCkNull ){ 3114 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3115 sqlite3VdbeGoto(v, destIfFalse); 3116 } 3117 sqlite3VdbeResolveLabel(v, labelOk); 3118 sqlite3ReleaseTempReg(pParse, regCkNull); 3119 goto sqlite3ExprCodeIN_finished; 3120 } 3121 3122 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3123 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3124 ** We will then skip the binary search of the RHS. 3125 */ 3126 if( destIfNull==destIfFalse ){ 3127 destStep2 = destIfFalse; 3128 }else{ 3129 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3130 } 3131 for(i=0; i<nVector; i++){ 3132 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3133 if( sqlite3ExprCanBeNull(p) ){ 3134 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3135 VdbeCoverage(v); 3136 } 3137 } 3138 3139 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3140 ** of the RHS using the LHS as a probe. If found, the result is 3141 ** true. 3142 */ 3143 if( eType==IN_INDEX_ROWID ){ 3144 /* In this case, the RHS is the ROWID of table b-tree and so we also 3145 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3146 ** into a single opcode. */ 3147 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3148 VdbeCoverage(v); 3149 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3150 }else{ 3151 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3152 if( destIfFalse==destIfNull ){ 3153 /* Combine Step 3 and Step 5 into a single opcode */ 3154 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3155 rLhs, nVector); VdbeCoverage(v); 3156 goto sqlite3ExprCodeIN_finished; 3157 } 3158 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3159 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3160 rLhs, nVector); VdbeCoverage(v); 3161 } 3162 3163 /* Step 4. If the RHS is known to be non-NULL and we did not find 3164 ** an match on the search above, then the result must be FALSE. 3165 */ 3166 if( rRhsHasNull && nVector==1 ){ 3167 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3168 VdbeCoverage(v); 3169 } 3170 3171 /* Step 5. If we do not care about the difference between NULL and 3172 ** FALSE, then just return false. 3173 */ 3174 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3175 3176 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3177 ** If any comparison is NULL, then the result is NULL. If all 3178 ** comparisons are FALSE then the final result is FALSE. 3179 ** 3180 ** For a scalar LHS, it is sufficient to check just the first row 3181 ** of the RHS. 3182 */ 3183 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3184 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3185 VdbeCoverage(v); 3186 if( nVector>1 ){ 3187 destNotNull = sqlite3VdbeMakeLabel(pParse); 3188 }else{ 3189 /* For nVector==1, combine steps 6 and 7 by immediately returning 3190 ** FALSE if the first comparison is not NULL */ 3191 destNotNull = destIfFalse; 3192 } 3193 for(i=0; i<nVector; i++){ 3194 Expr *p; 3195 CollSeq *pColl; 3196 int r3 = sqlite3GetTempReg(pParse); 3197 p = sqlite3VectorFieldSubexpr(pLeft, i); 3198 pColl = sqlite3ExprCollSeq(pParse, p); 3199 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3200 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3201 (void*)pColl, P4_COLLSEQ); 3202 VdbeCoverage(v); 3203 sqlite3ReleaseTempReg(pParse, r3); 3204 } 3205 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3206 if( nVector>1 ){ 3207 sqlite3VdbeResolveLabel(v, destNotNull); 3208 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3209 VdbeCoverage(v); 3210 3211 /* Step 7: If we reach this point, we know that the result must 3212 ** be false. */ 3213 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3214 } 3215 3216 /* Jumps here in order to return true. */ 3217 sqlite3VdbeJumpHere(v, addrTruthOp); 3218 3219 sqlite3ExprCodeIN_finished: 3220 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3221 VdbeComment((v, "end IN expr")); 3222 sqlite3ExprCodeIN_oom_error: 3223 sqlite3DbFree(pParse->db, aiMap); 3224 sqlite3DbFree(pParse->db, zAff); 3225 } 3226 #endif /* SQLITE_OMIT_SUBQUERY */ 3227 3228 #ifndef SQLITE_OMIT_FLOATING_POINT 3229 /* 3230 ** Generate an instruction that will put the floating point 3231 ** value described by z[0..n-1] into register iMem. 3232 ** 3233 ** The z[] string will probably not be zero-terminated. But the 3234 ** z[n] character is guaranteed to be something that does not look 3235 ** like the continuation of the number. 3236 */ 3237 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3238 if( ALWAYS(z!=0) ){ 3239 double value; 3240 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3241 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3242 if( negateFlag ) value = -value; 3243 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3244 } 3245 } 3246 #endif 3247 3248 3249 /* 3250 ** Generate an instruction that will put the integer describe by 3251 ** text z[0..n-1] into register iMem. 3252 ** 3253 ** Expr.u.zToken is always UTF8 and zero-terminated. 3254 */ 3255 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3256 Vdbe *v = pParse->pVdbe; 3257 if( pExpr->flags & EP_IntValue ){ 3258 int i = pExpr->u.iValue; 3259 assert( i>=0 ); 3260 if( negFlag ) i = -i; 3261 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3262 }else{ 3263 int c; 3264 i64 value; 3265 const char *z = pExpr->u.zToken; 3266 assert( z!=0 ); 3267 c = sqlite3DecOrHexToI64(z, &value); 3268 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3269 #ifdef SQLITE_OMIT_FLOATING_POINT 3270 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3271 #else 3272 #ifndef SQLITE_OMIT_HEX_INTEGER 3273 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3274 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3275 }else 3276 #endif 3277 { 3278 codeReal(v, z, negFlag, iMem); 3279 } 3280 #endif 3281 }else{ 3282 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3283 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3284 } 3285 } 3286 } 3287 3288 3289 /* Generate code that will load into register regOut a value that is 3290 ** appropriate for the iIdxCol-th column of index pIdx. 3291 */ 3292 void sqlite3ExprCodeLoadIndexColumn( 3293 Parse *pParse, /* The parsing context */ 3294 Index *pIdx, /* The index whose column is to be loaded */ 3295 int iTabCur, /* Cursor pointing to a table row */ 3296 int iIdxCol, /* The column of the index to be loaded */ 3297 int regOut /* Store the index column value in this register */ 3298 ){ 3299 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3300 if( iTabCol==XN_EXPR ){ 3301 assert( pIdx->aColExpr ); 3302 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3303 pParse->iSelfTab = iTabCur + 1; 3304 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3305 pParse->iSelfTab = 0; 3306 }else{ 3307 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3308 iTabCol, regOut); 3309 } 3310 } 3311 3312 /* 3313 ** Generate code to extract the value of the iCol-th column of a table. 3314 */ 3315 void sqlite3ExprCodeGetColumnOfTable( 3316 Vdbe *v, /* The VDBE under construction */ 3317 Table *pTab, /* The table containing the value */ 3318 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3319 int iCol, /* Index of the column to extract */ 3320 int regOut /* Extract the value into this register */ 3321 ){ 3322 if( pTab==0 ){ 3323 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3324 return; 3325 } 3326 if( iCol<0 || iCol==pTab->iPKey ){ 3327 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3328 }else{ 3329 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 3330 int x = iCol; 3331 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ 3332 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3333 } 3334 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3335 } 3336 if( iCol>=0 ){ 3337 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3338 } 3339 } 3340 3341 /* 3342 ** Generate code that will extract the iColumn-th column from 3343 ** table pTab and store the column value in register iReg. 3344 ** 3345 ** There must be an open cursor to pTab in iTable when this routine 3346 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3347 */ 3348 int sqlite3ExprCodeGetColumn( 3349 Parse *pParse, /* Parsing and code generating context */ 3350 Table *pTab, /* Description of the table we are reading from */ 3351 int iColumn, /* Index of the table column */ 3352 int iTable, /* The cursor pointing to the table */ 3353 int iReg, /* Store results here */ 3354 u8 p5 /* P5 value for OP_Column + FLAGS */ 3355 ){ 3356 Vdbe *v = pParse->pVdbe; 3357 assert( v!=0 ); 3358 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 3359 if( p5 ){ 3360 sqlite3VdbeChangeP5(v, p5); 3361 } 3362 return iReg; 3363 } 3364 3365 /* 3366 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3367 ** over to iTo..iTo+nReg-1. 3368 */ 3369 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3370 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 3371 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3372 } 3373 3374 /* 3375 ** Convert a scalar expression node to a TK_REGISTER referencing 3376 ** register iReg. The caller must ensure that iReg already contains 3377 ** the correct value for the expression. 3378 */ 3379 static void exprToRegister(Expr *p, int iReg){ 3380 p->op2 = p->op; 3381 p->op = TK_REGISTER; 3382 p->iTable = iReg; 3383 ExprClearProperty(p, EP_Skip); 3384 } 3385 3386 /* 3387 ** Evaluate an expression (either a vector or a scalar expression) and store 3388 ** the result in continguous temporary registers. Return the index of 3389 ** the first register used to store the result. 3390 ** 3391 ** If the returned result register is a temporary scalar, then also write 3392 ** that register number into *piFreeable. If the returned result register 3393 ** is not a temporary or if the expression is a vector set *piFreeable 3394 ** to 0. 3395 */ 3396 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3397 int iResult; 3398 int nResult = sqlite3ExprVectorSize(p); 3399 if( nResult==1 ){ 3400 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3401 }else{ 3402 *piFreeable = 0; 3403 if( p->op==TK_SELECT ){ 3404 #if SQLITE_OMIT_SUBQUERY 3405 iResult = 0; 3406 #else 3407 iResult = sqlite3CodeSubselect(pParse, p); 3408 #endif 3409 }else{ 3410 int i; 3411 iResult = pParse->nMem+1; 3412 pParse->nMem += nResult; 3413 for(i=0; i<nResult; i++){ 3414 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3415 } 3416 } 3417 } 3418 return iResult; 3419 } 3420 3421 3422 /* 3423 ** Generate code into the current Vdbe to evaluate the given 3424 ** expression. Attempt to store the results in register "target". 3425 ** Return the register where results are stored. 3426 ** 3427 ** With this routine, there is no guarantee that results will 3428 ** be stored in target. The result might be stored in some other 3429 ** register if it is convenient to do so. The calling function 3430 ** must check the return code and move the results to the desired 3431 ** register. 3432 */ 3433 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3434 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3435 int op; /* The opcode being coded */ 3436 int inReg = target; /* Results stored in register inReg */ 3437 int regFree1 = 0; /* If non-zero free this temporary register */ 3438 int regFree2 = 0; /* If non-zero free this temporary register */ 3439 int r1, r2; /* Various register numbers */ 3440 Expr tempX; /* Temporary expression node */ 3441 int p5 = 0; 3442 3443 assert( target>0 && target<=pParse->nMem ); 3444 if( v==0 ){ 3445 assert( pParse->db->mallocFailed ); 3446 return 0; 3447 } 3448 3449 expr_code_doover: 3450 if( pExpr==0 ){ 3451 op = TK_NULL; 3452 }else{ 3453 op = pExpr->op; 3454 } 3455 switch( op ){ 3456 case TK_AGG_COLUMN: { 3457 AggInfo *pAggInfo = pExpr->pAggInfo; 3458 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3459 if( !pAggInfo->directMode ){ 3460 assert( pCol->iMem>0 ); 3461 return pCol->iMem; 3462 }else if( pAggInfo->useSortingIdx ){ 3463 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3464 pCol->iSorterColumn, target); 3465 return target; 3466 } 3467 /* Otherwise, fall thru into the TK_COLUMN case */ 3468 } 3469 case TK_COLUMN: { 3470 int iTab = pExpr->iTable; 3471 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3472 /* This COLUMN expression is really a constant due to WHERE clause 3473 ** constraints, and that constant is coded by the pExpr->pLeft 3474 ** expresssion. However, make sure the constant has the correct 3475 ** datatype by applying the Affinity of the table column to the 3476 ** constant. 3477 */ 3478 int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3479 int aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3480 if( aff!=SQLITE_AFF_BLOB ){ 3481 static const char zAff[] = "B\000C\000D\000E"; 3482 assert( SQLITE_AFF_BLOB=='A' ); 3483 assert( SQLITE_AFF_TEXT=='B' ); 3484 if( iReg!=target ){ 3485 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target); 3486 iReg = target; 3487 } 3488 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3489 &zAff[(aff-'B')*2], P4_STATIC); 3490 } 3491 return iReg; 3492 } 3493 if( iTab<0 ){ 3494 if( pParse->iSelfTab<0 ){ 3495 /* Generating CHECK constraints or inserting into partial index */ 3496 return pExpr->iColumn - pParse->iSelfTab; 3497 }else{ 3498 /* Coding an expression that is part of an index where column names 3499 ** in the index refer to the table to which the index belongs */ 3500 iTab = pParse->iSelfTab - 1; 3501 } 3502 } 3503 return sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3504 pExpr->iColumn, iTab, target, 3505 pExpr->op2); 3506 } 3507 case TK_INTEGER: { 3508 codeInteger(pParse, pExpr, 0, target); 3509 return target; 3510 } 3511 case TK_TRUEFALSE: { 3512 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3513 return target; 3514 } 3515 #ifndef SQLITE_OMIT_FLOATING_POINT 3516 case TK_FLOAT: { 3517 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3518 codeReal(v, pExpr->u.zToken, 0, target); 3519 return target; 3520 } 3521 #endif 3522 case TK_STRING: { 3523 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3524 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3525 return target; 3526 } 3527 case TK_NULL: { 3528 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3529 return target; 3530 } 3531 #ifndef SQLITE_OMIT_BLOB_LITERAL 3532 case TK_BLOB: { 3533 int n; 3534 const char *z; 3535 char *zBlob; 3536 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3537 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3538 assert( pExpr->u.zToken[1]=='\'' ); 3539 z = &pExpr->u.zToken[2]; 3540 n = sqlite3Strlen30(z) - 1; 3541 assert( z[n]=='\'' ); 3542 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3543 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3544 return target; 3545 } 3546 #endif 3547 case TK_VARIABLE: { 3548 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3549 assert( pExpr->u.zToken!=0 ); 3550 assert( pExpr->u.zToken[0]!=0 ); 3551 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3552 if( pExpr->u.zToken[1]!=0 ){ 3553 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3554 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); 3555 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3556 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3557 } 3558 return target; 3559 } 3560 case TK_REGISTER: { 3561 return pExpr->iTable; 3562 } 3563 #ifndef SQLITE_OMIT_CAST 3564 case TK_CAST: { 3565 /* Expressions of the form: CAST(pLeft AS token) */ 3566 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3567 if( inReg!=target ){ 3568 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3569 inReg = target; 3570 } 3571 sqlite3VdbeAddOp2(v, OP_Cast, target, 3572 sqlite3AffinityType(pExpr->u.zToken, 0)); 3573 return inReg; 3574 } 3575 #endif /* SQLITE_OMIT_CAST */ 3576 case TK_IS: 3577 case TK_ISNOT: 3578 op = (op==TK_IS) ? TK_EQ : TK_NE; 3579 p5 = SQLITE_NULLEQ; 3580 /* fall-through */ 3581 case TK_LT: 3582 case TK_LE: 3583 case TK_GT: 3584 case TK_GE: 3585 case TK_NE: 3586 case TK_EQ: { 3587 Expr *pLeft = pExpr->pLeft; 3588 if( sqlite3ExprIsVector(pLeft) ){ 3589 codeVectorCompare(pParse, pExpr, target, op, p5); 3590 }else{ 3591 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3592 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3593 codeCompare(pParse, pLeft, pExpr->pRight, op, 3594 r1, r2, inReg, SQLITE_STOREP2 | p5); 3595 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3596 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3597 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3598 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3599 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3600 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3601 testcase( regFree1==0 ); 3602 testcase( regFree2==0 ); 3603 } 3604 break; 3605 } 3606 case TK_AND: 3607 case TK_OR: 3608 case TK_PLUS: 3609 case TK_STAR: 3610 case TK_MINUS: 3611 case TK_REM: 3612 case TK_BITAND: 3613 case TK_BITOR: 3614 case TK_SLASH: 3615 case TK_LSHIFT: 3616 case TK_RSHIFT: 3617 case TK_CONCAT: { 3618 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3619 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3620 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3621 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3622 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3623 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3624 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3625 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3626 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3627 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3628 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3629 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3630 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3631 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3632 testcase( regFree1==0 ); 3633 testcase( regFree2==0 ); 3634 break; 3635 } 3636 case TK_UMINUS: { 3637 Expr *pLeft = pExpr->pLeft; 3638 assert( pLeft ); 3639 if( pLeft->op==TK_INTEGER ){ 3640 codeInteger(pParse, pLeft, 1, target); 3641 return target; 3642 #ifndef SQLITE_OMIT_FLOATING_POINT 3643 }else if( pLeft->op==TK_FLOAT ){ 3644 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3645 codeReal(v, pLeft->u.zToken, 1, target); 3646 return target; 3647 #endif 3648 }else{ 3649 tempX.op = TK_INTEGER; 3650 tempX.flags = EP_IntValue|EP_TokenOnly; 3651 tempX.u.iValue = 0; 3652 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3653 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3654 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3655 testcase( regFree2==0 ); 3656 } 3657 break; 3658 } 3659 case TK_BITNOT: 3660 case TK_NOT: { 3661 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3662 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3663 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3664 testcase( regFree1==0 ); 3665 sqlite3VdbeAddOp2(v, op, r1, inReg); 3666 break; 3667 } 3668 case TK_TRUTH: { 3669 int isTrue; /* IS TRUE or IS NOT TRUE */ 3670 int bNormal; /* IS TRUE or IS FALSE */ 3671 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3672 testcase( regFree1==0 ); 3673 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 3674 bNormal = pExpr->op2==TK_IS; 3675 testcase( isTrue && bNormal); 3676 testcase( !isTrue && bNormal); 3677 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 3678 break; 3679 } 3680 case TK_ISNULL: 3681 case TK_NOTNULL: { 3682 int addr; 3683 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3684 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3685 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3686 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3687 testcase( regFree1==0 ); 3688 addr = sqlite3VdbeAddOp1(v, op, r1); 3689 VdbeCoverageIf(v, op==TK_ISNULL); 3690 VdbeCoverageIf(v, op==TK_NOTNULL); 3691 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3692 sqlite3VdbeJumpHere(v, addr); 3693 break; 3694 } 3695 case TK_AGG_FUNCTION: { 3696 AggInfo *pInfo = pExpr->pAggInfo; 3697 if( pInfo==0 ){ 3698 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3699 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3700 }else{ 3701 return pInfo->aFunc[pExpr->iAgg].iMem; 3702 } 3703 break; 3704 } 3705 case TK_FUNCTION: { 3706 ExprList *pFarg; /* List of function arguments */ 3707 int nFarg; /* Number of function arguments */ 3708 FuncDef *pDef; /* The function definition object */ 3709 const char *zId; /* The function name */ 3710 u32 constMask = 0; /* Mask of function arguments that are constant */ 3711 int i; /* Loop counter */ 3712 sqlite3 *db = pParse->db; /* The database connection */ 3713 u8 enc = ENC(db); /* The text encoding used by this database */ 3714 CollSeq *pColl = 0; /* A collating sequence */ 3715 3716 #ifndef SQLITE_OMIT_WINDOWFUNC 3717 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3718 return pExpr->y.pWin->regResult; 3719 } 3720 #endif 3721 3722 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3723 /* SQL functions can be expensive. So try to move constant functions 3724 ** out of the inner loop, even if that means an extra OP_Copy. */ 3725 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3726 } 3727 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3728 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3729 pFarg = 0; 3730 }else{ 3731 pFarg = pExpr->x.pList; 3732 } 3733 nFarg = pFarg ? pFarg->nExpr : 0; 3734 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3735 zId = pExpr->u.zToken; 3736 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3737 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3738 if( pDef==0 && pParse->explain ){ 3739 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3740 } 3741 #endif 3742 if( pDef==0 || pDef->xFinalize!=0 ){ 3743 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3744 break; 3745 } 3746 3747 /* Attempt a direct implementation of the built-in COALESCE() and 3748 ** IFNULL() functions. This avoids unnecessary evaluation of 3749 ** arguments past the first non-NULL argument. 3750 */ 3751 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3752 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3753 assert( nFarg>=2 ); 3754 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3755 for(i=1; i<nFarg; i++){ 3756 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3757 VdbeCoverage(v); 3758 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3759 } 3760 sqlite3VdbeResolveLabel(v, endCoalesce); 3761 break; 3762 } 3763 3764 /* The UNLIKELY() function is a no-op. The result is the value 3765 ** of the first argument. 3766 */ 3767 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3768 assert( nFarg>=1 ); 3769 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3770 } 3771 3772 #ifdef SQLITE_DEBUG 3773 /* The AFFINITY() function evaluates to a string that describes 3774 ** the type affinity of the argument. This is used for testing of 3775 ** the SQLite type logic. 3776 */ 3777 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3778 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3779 char aff; 3780 assert( nFarg==1 ); 3781 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3782 sqlite3VdbeLoadString(v, target, 3783 aff ? azAff[aff-SQLITE_AFF_BLOB] : "none"); 3784 return target; 3785 } 3786 #endif 3787 3788 for(i=0; i<nFarg; i++){ 3789 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3790 testcase( i==31 ); 3791 constMask |= MASKBIT32(i); 3792 } 3793 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3794 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3795 } 3796 } 3797 if( pFarg ){ 3798 if( constMask ){ 3799 r1 = pParse->nMem+1; 3800 pParse->nMem += nFarg; 3801 }else{ 3802 r1 = sqlite3GetTempRange(pParse, nFarg); 3803 } 3804 3805 /* For length() and typeof() functions with a column argument, 3806 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3807 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3808 ** loading. 3809 */ 3810 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3811 u8 exprOp; 3812 assert( nFarg==1 ); 3813 assert( pFarg->a[0].pExpr!=0 ); 3814 exprOp = pFarg->a[0].pExpr->op; 3815 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3816 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3817 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3818 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3819 pFarg->a[0].pExpr->op2 = 3820 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3821 } 3822 } 3823 3824 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3825 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3826 }else{ 3827 r1 = 0; 3828 } 3829 #ifndef SQLITE_OMIT_VIRTUALTABLE 3830 /* Possibly overload the function if the first argument is 3831 ** a virtual table column. 3832 ** 3833 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3834 ** second argument, not the first, as the argument to test to 3835 ** see if it is a column in a virtual table. This is done because 3836 ** the left operand of infix functions (the operand we want to 3837 ** control overloading) ends up as the second argument to the 3838 ** function. The expression "A glob B" is equivalent to 3839 ** "glob(B,A). We want to use the A in "A glob B" to test 3840 ** for function overloading. But we use the B term in "glob(B,A)". 3841 */ 3842 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 3843 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3844 }else if( nFarg>0 ){ 3845 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3846 } 3847 #endif 3848 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3849 if( !pColl ) pColl = db->pDfltColl; 3850 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3851 } 3852 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 3853 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 3854 Expr *pArg = pFarg->a[0].pExpr; 3855 if( pArg->op==TK_COLUMN ){ 3856 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 3857 }else{ 3858 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3859 } 3860 }else 3861 #endif 3862 { 3863 sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0, 3864 constMask, r1, target, (char*)pDef, P4_FUNCDEF); 3865 sqlite3VdbeChangeP5(v, (u8)nFarg); 3866 } 3867 if( nFarg && constMask==0 ){ 3868 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3869 } 3870 return target; 3871 } 3872 #ifndef SQLITE_OMIT_SUBQUERY 3873 case TK_EXISTS: 3874 case TK_SELECT: { 3875 int nCol; 3876 testcase( op==TK_EXISTS ); 3877 testcase( op==TK_SELECT ); 3878 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 3879 sqlite3SubselectError(pParse, nCol, 1); 3880 }else{ 3881 return sqlite3CodeSubselect(pParse, pExpr); 3882 } 3883 break; 3884 } 3885 case TK_SELECT_COLUMN: { 3886 int n; 3887 if( pExpr->pLeft->iTable==0 ){ 3888 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 3889 } 3890 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 3891 if( pExpr->iTable 3892 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 3893 ){ 3894 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 3895 pExpr->iTable, n); 3896 } 3897 return pExpr->pLeft->iTable + pExpr->iColumn; 3898 } 3899 case TK_IN: { 3900 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 3901 int destIfNull = sqlite3VdbeMakeLabel(pParse); 3902 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3903 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3904 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3905 sqlite3VdbeResolveLabel(v, destIfFalse); 3906 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3907 sqlite3VdbeResolveLabel(v, destIfNull); 3908 return target; 3909 } 3910 #endif /* SQLITE_OMIT_SUBQUERY */ 3911 3912 3913 /* 3914 ** x BETWEEN y AND z 3915 ** 3916 ** This is equivalent to 3917 ** 3918 ** x>=y AND x<=z 3919 ** 3920 ** X is stored in pExpr->pLeft. 3921 ** Y is stored in pExpr->pList->a[0].pExpr. 3922 ** Z is stored in pExpr->pList->a[1].pExpr. 3923 */ 3924 case TK_BETWEEN: { 3925 exprCodeBetween(pParse, pExpr, target, 0, 0); 3926 return target; 3927 } 3928 case TK_SPAN: 3929 case TK_COLLATE: 3930 case TK_UPLUS: { 3931 pExpr = pExpr->pLeft; 3932 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 3933 } 3934 3935 case TK_TRIGGER: { 3936 /* If the opcode is TK_TRIGGER, then the expression is a reference 3937 ** to a column in the new.* or old.* pseudo-tables available to 3938 ** trigger programs. In this case Expr.iTable is set to 1 for the 3939 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3940 ** is set to the column of the pseudo-table to read, or to -1 to 3941 ** read the rowid field. 3942 ** 3943 ** The expression is implemented using an OP_Param opcode. The p1 3944 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3945 ** to reference another column of the old.* pseudo-table, where 3946 ** i is the index of the column. For a new.rowid reference, p1 is 3947 ** set to (n+1), where n is the number of columns in each pseudo-table. 3948 ** For a reference to any other column in the new.* pseudo-table, p1 3949 ** is set to (n+2+i), where n and i are as defined previously. For 3950 ** example, if the table on which triggers are being fired is 3951 ** declared as: 3952 ** 3953 ** CREATE TABLE t1(a, b); 3954 ** 3955 ** Then p1 is interpreted as follows: 3956 ** 3957 ** p1==0 -> old.rowid p1==3 -> new.rowid 3958 ** p1==1 -> old.a p1==4 -> new.a 3959 ** p1==2 -> old.b p1==5 -> new.b 3960 */ 3961 Table *pTab = pExpr->y.pTab; 3962 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3963 3964 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3965 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3966 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3967 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3968 3969 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3970 VdbeComment((v, "r[%d]=%s.%s", target, 3971 (pExpr->iTable ? "new" : "old"), 3972 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[pExpr->iColumn].zName) 3973 )); 3974 3975 #ifndef SQLITE_OMIT_FLOATING_POINT 3976 /* If the column has REAL affinity, it may currently be stored as an 3977 ** integer. Use OP_RealAffinity to make sure it is really real. 3978 ** 3979 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3980 ** floating point when extracting it from the record. */ 3981 if( pExpr->iColumn>=0 3982 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3983 ){ 3984 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3985 } 3986 #endif 3987 break; 3988 } 3989 3990 case TK_VECTOR: { 3991 sqlite3ErrorMsg(pParse, "row value misused"); 3992 break; 3993 } 3994 3995 case TK_IF_NULL_ROW: { 3996 int addrINR; 3997 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 3998 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3999 sqlite3VdbeJumpHere(v, addrINR); 4000 sqlite3VdbeChangeP3(v, addrINR, inReg); 4001 break; 4002 } 4003 4004 /* 4005 ** Form A: 4006 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4007 ** 4008 ** Form B: 4009 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4010 ** 4011 ** Form A is can be transformed into the equivalent form B as follows: 4012 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4013 ** WHEN x=eN THEN rN ELSE y END 4014 ** 4015 ** X (if it exists) is in pExpr->pLeft. 4016 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4017 ** odd. The Y is also optional. If the number of elements in x.pList 4018 ** is even, then Y is omitted and the "otherwise" result is NULL. 4019 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4020 ** 4021 ** The result of the expression is the Ri for the first matching Ei, 4022 ** or if there is no matching Ei, the ELSE term Y, or if there is 4023 ** no ELSE term, NULL. 4024 */ 4025 default: assert( op==TK_CASE ); { 4026 int endLabel; /* GOTO label for end of CASE stmt */ 4027 int nextCase; /* GOTO label for next WHEN clause */ 4028 int nExpr; /* 2x number of WHEN terms */ 4029 int i; /* Loop counter */ 4030 ExprList *pEList; /* List of WHEN terms */ 4031 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4032 Expr opCompare; /* The X==Ei expression */ 4033 Expr *pX; /* The X expression */ 4034 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4035 4036 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4037 assert(pExpr->x.pList->nExpr > 0); 4038 pEList = pExpr->x.pList; 4039 aListelem = pEList->a; 4040 nExpr = pEList->nExpr; 4041 endLabel = sqlite3VdbeMakeLabel(pParse); 4042 if( (pX = pExpr->pLeft)!=0 ){ 4043 exprNodeCopy(&tempX, pX); 4044 testcase( pX->op==TK_COLUMN ); 4045 exprToRegister(&tempX, exprCodeVector(pParse, &tempX, ®Free1)); 4046 testcase( regFree1==0 ); 4047 memset(&opCompare, 0, sizeof(opCompare)); 4048 opCompare.op = TK_EQ; 4049 opCompare.pLeft = &tempX; 4050 pTest = &opCompare; 4051 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4052 ** The value in regFree1 might get SCopy-ed into the file result. 4053 ** So make sure that the regFree1 register is not reused for other 4054 ** purposes and possibly overwritten. */ 4055 regFree1 = 0; 4056 } 4057 for(i=0; i<nExpr-1; i=i+2){ 4058 if( pX ){ 4059 assert( pTest!=0 ); 4060 opCompare.pRight = aListelem[i].pExpr; 4061 }else{ 4062 pTest = aListelem[i].pExpr; 4063 } 4064 nextCase = sqlite3VdbeMakeLabel(pParse); 4065 testcase( pTest->op==TK_COLUMN ); 4066 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4067 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4068 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4069 sqlite3VdbeGoto(v, endLabel); 4070 sqlite3VdbeResolveLabel(v, nextCase); 4071 } 4072 if( (nExpr&1)!=0 ){ 4073 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4074 }else{ 4075 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4076 } 4077 sqlite3VdbeResolveLabel(v, endLabel); 4078 break; 4079 } 4080 #ifndef SQLITE_OMIT_TRIGGER 4081 case TK_RAISE: { 4082 assert( pExpr->affinity==OE_Rollback 4083 || pExpr->affinity==OE_Abort 4084 || pExpr->affinity==OE_Fail 4085 || pExpr->affinity==OE_Ignore 4086 ); 4087 if( !pParse->pTriggerTab ){ 4088 sqlite3ErrorMsg(pParse, 4089 "RAISE() may only be used within a trigger-program"); 4090 return 0; 4091 } 4092 if( pExpr->affinity==OE_Abort ){ 4093 sqlite3MayAbort(pParse); 4094 } 4095 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4096 if( pExpr->affinity==OE_Ignore ){ 4097 sqlite3VdbeAddOp4( 4098 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4099 VdbeCoverage(v); 4100 }else{ 4101 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4102 pExpr->affinity, pExpr->u.zToken, 0, 0); 4103 } 4104 4105 break; 4106 } 4107 #endif 4108 } 4109 sqlite3ReleaseTempReg(pParse, regFree1); 4110 sqlite3ReleaseTempReg(pParse, regFree2); 4111 return inReg; 4112 } 4113 4114 /* 4115 ** Factor out the code of the given expression to initialization time. 4116 ** 4117 ** If regDest>=0 then the result is always stored in that register and the 4118 ** result is not reusable. If regDest<0 then this routine is free to 4119 ** store the value whereever it wants. The register where the expression 4120 ** is stored is returned. When regDest<0, two identical expressions will 4121 ** code to the same register. 4122 */ 4123 int sqlite3ExprCodeAtInit( 4124 Parse *pParse, /* Parsing context */ 4125 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4126 int regDest /* Store the value in this register */ 4127 ){ 4128 ExprList *p; 4129 assert( ConstFactorOk(pParse) ); 4130 p = pParse->pConstExpr; 4131 if( regDest<0 && p ){ 4132 struct ExprList_item *pItem; 4133 int i; 4134 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4135 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4136 return pItem->u.iConstExprReg; 4137 } 4138 } 4139 } 4140 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4141 p = sqlite3ExprListAppend(pParse, p, pExpr); 4142 if( p ){ 4143 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4144 pItem->reusable = regDest<0; 4145 if( regDest<0 ) regDest = ++pParse->nMem; 4146 pItem->u.iConstExprReg = regDest; 4147 } 4148 pParse->pConstExpr = p; 4149 return regDest; 4150 } 4151 4152 /* 4153 ** Generate code to evaluate an expression and store the results 4154 ** into a register. Return the register number where the results 4155 ** are stored. 4156 ** 4157 ** If the register is a temporary register that can be deallocated, 4158 ** then write its number into *pReg. If the result register is not 4159 ** a temporary, then set *pReg to zero. 4160 ** 4161 ** If pExpr is a constant, then this routine might generate this 4162 ** code to fill the register in the initialization section of the 4163 ** VDBE program, in order to factor it out of the evaluation loop. 4164 */ 4165 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4166 int r2; 4167 pExpr = sqlite3ExprSkipCollate(pExpr); 4168 if( ConstFactorOk(pParse) 4169 && pExpr->op!=TK_REGISTER 4170 && sqlite3ExprIsConstantNotJoin(pExpr) 4171 ){ 4172 *pReg = 0; 4173 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4174 }else{ 4175 int r1 = sqlite3GetTempReg(pParse); 4176 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4177 if( r2==r1 ){ 4178 *pReg = r1; 4179 }else{ 4180 sqlite3ReleaseTempReg(pParse, r1); 4181 *pReg = 0; 4182 } 4183 } 4184 return r2; 4185 } 4186 4187 /* 4188 ** Generate code that will evaluate expression pExpr and store the 4189 ** results in register target. The results are guaranteed to appear 4190 ** in register target. 4191 */ 4192 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4193 int inReg; 4194 4195 assert( target>0 && target<=pParse->nMem ); 4196 if( pExpr && pExpr->op==TK_REGISTER ){ 4197 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 4198 }else{ 4199 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4200 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4201 if( inReg!=target && pParse->pVdbe ){ 4202 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4203 } 4204 } 4205 } 4206 4207 /* 4208 ** Make a transient copy of expression pExpr and then code it using 4209 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4210 ** except that the input expression is guaranteed to be unchanged. 4211 */ 4212 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4213 sqlite3 *db = pParse->db; 4214 pExpr = sqlite3ExprDup(db, pExpr, 0); 4215 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4216 sqlite3ExprDelete(db, pExpr); 4217 } 4218 4219 /* 4220 ** Generate code that will evaluate expression pExpr and store the 4221 ** results in register target. The results are guaranteed to appear 4222 ** in register target. If the expression is constant, then this routine 4223 ** might choose to code the expression at initialization time. 4224 */ 4225 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4226 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4227 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4228 }else{ 4229 sqlite3ExprCode(pParse, pExpr, target); 4230 } 4231 } 4232 4233 /* 4234 ** Generate code that evaluates the given expression and puts the result 4235 ** in register target. 4236 ** 4237 ** Also make a copy of the expression results into another "cache" register 4238 ** and modify the expression so that the next time it is evaluated, 4239 ** the result is a copy of the cache register. 4240 ** 4241 ** This routine is used for expressions that are used multiple 4242 ** times. They are evaluated once and the results of the expression 4243 ** are reused. 4244 */ 4245 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 4246 Vdbe *v = pParse->pVdbe; 4247 int iMem; 4248 4249 assert( target>0 ); 4250 assert( pExpr->op!=TK_REGISTER ); 4251 sqlite3ExprCode(pParse, pExpr, target); 4252 iMem = ++pParse->nMem; 4253 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 4254 exprToRegister(pExpr, iMem); 4255 } 4256 4257 /* 4258 ** Generate code that pushes the value of every element of the given 4259 ** expression list into a sequence of registers beginning at target. 4260 ** 4261 ** Return the number of elements evaluated. The number returned will 4262 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4263 ** is defined. 4264 ** 4265 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4266 ** filled using OP_SCopy. OP_Copy must be used instead. 4267 ** 4268 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4269 ** factored out into initialization code. 4270 ** 4271 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4272 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4273 ** in registers at srcReg, and so the value can be copied from there. 4274 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4275 ** are simply omitted rather than being copied from srcReg. 4276 */ 4277 int sqlite3ExprCodeExprList( 4278 Parse *pParse, /* Parsing context */ 4279 ExprList *pList, /* The expression list to be coded */ 4280 int target, /* Where to write results */ 4281 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4282 u8 flags /* SQLITE_ECEL_* flags */ 4283 ){ 4284 struct ExprList_item *pItem; 4285 int i, j, n; 4286 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4287 Vdbe *v = pParse->pVdbe; 4288 assert( pList!=0 ); 4289 assert( target>0 ); 4290 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4291 n = pList->nExpr; 4292 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4293 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4294 Expr *pExpr = pItem->pExpr; 4295 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4296 if( pItem->bSorterRef ){ 4297 i--; 4298 n--; 4299 }else 4300 #endif 4301 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4302 if( flags & SQLITE_ECEL_OMITREF ){ 4303 i--; 4304 n--; 4305 }else{ 4306 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4307 } 4308 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4309 && sqlite3ExprIsConstantNotJoin(pExpr) 4310 ){ 4311 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4312 }else{ 4313 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4314 if( inReg!=target+i ){ 4315 VdbeOp *pOp; 4316 if( copyOp==OP_Copy 4317 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4318 && pOp->p1+pOp->p3+1==inReg 4319 && pOp->p2+pOp->p3+1==target+i 4320 ){ 4321 pOp->p3++; 4322 }else{ 4323 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4324 } 4325 } 4326 } 4327 } 4328 return n; 4329 } 4330 4331 /* 4332 ** Generate code for a BETWEEN operator. 4333 ** 4334 ** x BETWEEN y AND z 4335 ** 4336 ** The above is equivalent to 4337 ** 4338 ** x>=y AND x<=z 4339 ** 4340 ** Code it as such, taking care to do the common subexpression 4341 ** elimination of x. 4342 ** 4343 ** The xJumpIf parameter determines details: 4344 ** 4345 ** NULL: Store the boolean result in reg[dest] 4346 ** sqlite3ExprIfTrue: Jump to dest if true 4347 ** sqlite3ExprIfFalse: Jump to dest if false 4348 ** 4349 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4350 */ 4351 static void exprCodeBetween( 4352 Parse *pParse, /* Parsing and code generating context */ 4353 Expr *pExpr, /* The BETWEEN expression */ 4354 int dest, /* Jump destination or storage location */ 4355 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4356 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4357 ){ 4358 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4359 Expr compLeft; /* The x>=y term */ 4360 Expr compRight; /* The x<=z term */ 4361 Expr exprX; /* The x subexpression */ 4362 int regFree1 = 0; /* Temporary use register */ 4363 4364 memset(&compLeft, 0, sizeof(Expr)); 4365 memset(&compRight, 0, sizeof(Expr)); 4366 memset(&exprAnd, 0, sizeof(Expr)); 4367 4368 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4369 exprNodeCopy(&exprX, pExpr->pLeft); 4370 exprAnd.op = TK_AND; 4371 exprAnd.pLeft = &compLeft; 4372 exprAnd.pRight = &compRight; 4373 compLeft.op = TK_GE; 4374 compLeft.pLeft = &exprX; 4375 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4376 compRight.op = TK_LE; 4377 compRight.pLeft = &exprX; 4378 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4379 exprToRegister(&exprX, exprCodeVector(pParse, &exprX, ®Free1)); 4380 if( xJump ){ 4381 xJump(pParse, &exprAnd, dest, jumpIfNull); 4382 }else{ 4383 /* Mark the expression is being from the ON or USING clause of a join 4384 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4385 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4386 ** for clarity, but we are out of bits in the Expr.flags field so we 4387 ** have to reuse the EP_FromJoin bit. Bummer. */ 4388 exprX.flags |= EP_FromJoin; 4389 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4390 } 4391 sqlite3ReleaseTempReg(pParse, regFree1); 4392 4393 /* Ensure adequate test coverage */ 4394 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4395 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4396 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4397 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4398 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4399 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4400 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4401 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4402 testcase( xJump==0 ); 4403 } 4404 4405 /* 4406 ** Generate code for a boolean expression such that a jump is made 4407 ** to the label "dest" if the expression is true but execution 4408 ** continues straight thru if the expression is false. 4409 ** 4410 ** If the expression evaluates to NULL (neither true nor false), then 4411 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4412 ** 4413 ** This code depends on the fact that certain token values (ex: TK_EQ) 4414 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4415 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4416 ** the make process cause these values to align. Assert()s in the code 4417 ** below verify that the numbers are aligned correctly. 4418 */ 4419 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4420 Vdbe *v = pParse->pVdbe; 4421 int op = 0; 4422 int regFree1 = 0; 4423 int regFree2 = 0; 4424 int r1, r2; 4425 4426 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4427 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4428 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4429 op = pExpr->op; 4430 switch( op ){ 4431 case TK_AND: { 4432 int d2 = sqlite3VdbeMakeLabel(pParse); 4433 testcase( jumpIfNull==0 ); 4434 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 4435 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4436 sqlite3VdbeResolveLabel(v, d2); 4437 break; 4438 } 4439 case TK_OR: { 4440 testcase( jumpIfNull==0 ); 4441 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4442 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4443 break; 4444 } 4445 case TK_NOT: { 4446 testcase( jumpIfNull==0 ); 4447 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4448 break; 4449 } 4450 case TK_TRUTH: { 4451 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4452 int isTrue; /* IS TRUE or IS NOT TRUE */ 4453 testcase( jumpIfNull==0 ); 4454 isNot = pExpr->op2==TK_ISNOT; 4455 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4456 testcase( isTrue && isNot ); 4457 testcase( !isTrue && isNot ); 4458 if( isTrue ^ isNot ){ 4459 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4460 isNot ? SQLITE_JUMPIFNULL : 0); 4461 }else{ 4462 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4463 isNot ? SQLITE_JUMPIFNULL : 0); 4464 } 4465 break; 4466 } 4467 case TK_IS: 4468 case TK_ISNOT: 4469 testcase( op==TK_IS ); 4470 testcase( op==TK_ISNOT ); 4471 op = (op==TK_IS) ? TK_EQ : TK_NE; 4472 jumpIfNull = SQLITE_NULLEQ; 4473 /* Fall thru */ 4474 case TK_LT: 4475 case TK_LE: 4476 case TK_GT: 4477 case TK_GE: 4478 case TK_NE: 4479 case TK_EQ: { 4480 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4481 testcase( jumpIfNull==0 ); 4482 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4483 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4484 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4485 r1, r2, dest, jumpIfNull); 4486 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4487 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4488 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4489 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4490 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4491 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4492 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4493 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4494 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4495 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4496 testcase( regFree1==0 ); 4497 testcase( regFree2==0 ); 4498 break; 4499 } 4500 case TK_ISNULL: 4501 case TK_NOTNULL: { 4502 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4503 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4504 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4505 sqlite3VdbeAddOp2(v, op, r1, dest); 4506 VdbeCoverageIf(v, op==TK_ISNULL); 4507 VdbeCoverageIf(v, op==TK_NOTNULL); 4508 testcase( regFree1==0 ); 4509 break; 4510 } 4511 case TK_BETWEEN: { 4512 testcase( jumpIfNull==0 ); 4513 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4514 break; 4515 } 4516 #ifndef SQLITE_OMIT_SUBQUERY 4517 case TK_IN: { 4518 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4519 int destIfNull = jumpIfNull ? dest : destIfFalse; 4520 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4521 sqlite3VdbeGoto(v, dest); 4522 sqlite3VdbeResolveLabel(v, destIfFalse); 4523 break; 4524 } 4525 #endif 4526 default: { 4527 default_expr: 4528 if( exprAlwaysTrue(pExpr) ){ 4529 sqlite3VdbeGoto(v, dest); 4530 }else if( exprAlwaysFalse(pExpr) ){ 4531 /* No-op */ 4532 }else{ 4533 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4534 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4535 VdbeCoverage(v); 4536 testcase( regFree1==0 ); 4537 testcase( jumpIfNull==0 ); 4538 } 4539 break; 4540 } 4541 } 4542 sqlite3ReleaseTempReg(pParse, regFree1); 4543 sqlite3ReleaseTempReg(pParse, regFree2); 4544 } 4545 4546 /* 4547 ** Generate code for a boolean expression such that a jump is made 4548 ** to the label "dest" if the expression is false but execution 4549 ** continues straight thru if the expression is true. 4550 ** 4551 ** If the expression evaluates to NULL (neither true nor false) then 4552 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4553 ** is 0. 4554 */ 4555 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4556 Vdbe *v = pParse->pVdbe; 4557 int op = 0; 4558 int regFree1 = 0; 4559 int regFree2 = 0; 4560 int r1, r2; 4561 4562 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4563 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4564 if( pExpr==0 ) return; 4565 4566 /* The value of pExpr->op and op are related as follows: 4567 ** 4568 ** pExpr->op op 4569 ** --------- ---------- 4570 ** TK_ISNULL OP_NotNull 4571 ** TK_NOTNULL OP_IsNull 4572 ** TK_NE OP_Eq 4573 ** TK_EQ OP_Ne 4574 ** TK_GT OP_Le 4575 ** TK_LE OP_Gt 4576 ** TK_GE OP_Lt 4577 ** TK_LT OP_Ge 4578 ** 4579 ** For other values of pExpr->op, op is undefined and unused. 4580 ** The value of TK_ and OP_ constants are arranged such that we 4581 ** can compute the mapping above using the following expression. 4582 ** Assert()s verify that the computation is correct. 4583 */ 4584 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4585 4586 /* Verify correct alignment of TK_ and OP_ constants 4587 */ 4588 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4589 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4590 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4591 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4592 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4593 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4594 assert( pExpr->op!=TK_GT || op==OP_Le ); 4595 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4596 4597 switch( pExpr->op ){ 4598 case TK_AND: { 4599 testcase( jumpIfNull==0 ); 4600 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4601 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4602 break; 4603 } 4604 case TK_OR: { 4605 int d2 = sqlite3VdbeMakeLabel(pParse); 4606 testcase( jumpIfNull==0 ); 4607 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 4608 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4609 sqlite3VdbeResolveLabel(v, d2); 4610 break; 4611 } 4612 case TK_NOT: { 4613 testcase( jumpIfNull==0 ); 4614 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4615 break; 4616 } 4617 case TK_TRUTH: { 4618 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4619 int isTrue; /* IS TRUE or IS NOT TRUE */ 4620 testcase( jumpIfNull==0 ); 4621 isNot = pExpr->op2==TK_ISNOT; 4622 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4623 testcase( isTrue && isNot ); 4624 testcase( !isTrue && isNot ); 4625 if( isTrue ^ isNot ){ 4626 /* IS TRUE and IS NOT FALSE */ 4627 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4628 isNot ? 0 : SQLITE_JUMPIFNULL); 4629 4630 }else{ 4631 /* IS FALSE and IS NOT TRUE */ 4632 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4633 isNot ? 0 : SQLITE_JUMPIFNULL); 4634 } 4635 break; 4636 } 4637 case TK_IS: 4638 case TK_ISNOT: 4639 testcase( pExpr->op==TK_IS ); 4640 testcase( pExpr->op==TK_ISNOT ); 4641 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4642 jumpIfNull = SQLITE_NULLEQ; 4643 /* Fall thru */ 4644 case TK_LT: 4645 case TK_LE: 4646 case TK_GT: 4647 case TK_GE: 4648 case TK_NE: 4649 case TK_EQ: { 4650 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4651 testcase( jumpIfNull==0 ); 4652 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4653 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4654 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4655 r1, r2, dest, jumpIfNull); 4656 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4657 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4658 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4659 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4660 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4661 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4662 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4663 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4664 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4665 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4666 testcase( regFree1==0 ); 4667 testcase( regFree2==0 ); 4668 break; 4669 } 4670 case TK_ISNULL: 4671 case TK_NOTNULL: { 4672 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4673 sqlite3VdbeAddOp2(v, op, r1, dest); 4674 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4675 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4676 testcase( regFree1==0 ); 4677 break; 4678 } 4679 case TK_BETWEEN: { 4680 testcase( jumpIfNull==0 ); 4681 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4682 break; 4683 } 4684 #ifndef SQLITE_OMIT_SUBQUERY 4685 case TK_IN: { 4686 if( jumpIfNull ){ 4687 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4688 }else{ 4689 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4690 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4691 sqlite3VdbeResolveLabel(v, destIfNull); 4692 } 4693 break; 4694 } 4695 #endif 4696 default: { 4697 default_expr: 4698 if( exprAlwaysFalse(pExpr) ){ 4699 sqlite3VdbeGoto(v, dest); 4700 }else if( exprAlwaysTrue(pExpr) ){ 4701 /* no-op */ 4702 }else{ 4703 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4704 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4705 VdbeCoverage(v); 4706 testcase( regFree1==0 ); 4707 testcase( jumpIfNull==0 ); 4708 } 4709 break; 4710 } 4711 } 4712 sqlite3ReleaseTempReg(pParse, regFree1); 4713 sqlite3ReleaseTempReg(pParse, regFree2); 4714 } 4715 4716 /* 4717 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4718 ** code generation, and that copy is deleted after code generation. This 4719 ** ensures that the original pExpr is unchanged. 4720 */ 4721 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4722 sqlite3 *db = pParse->db; 4723 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4724 if( db->mallocFailed==0 ){ 4725 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4726 } 4727 sqlite3ExprDelete(db, pCopy); 4728 } 4729 4730 /* 4731 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 4732 ** type of expression. 4733 ** 4734 ** If pExpr is a simple SQL value - an integer, real, string, blob 4735 ** or NULL value - then the VDBE currently being prepared is configured 4736 ** to re-prepare each time a new value is bound to variable pVar. 4737 ** 4738 ** Additionally, if pExpr is a simple SQL value and the value is the 4739 ** same as that currently bound to variable pVar, non-zero is returned. 4740 ** Otherwise, if the values are not the same or if pExpr is not a simple 4741 ** SQL value, zero is returned. 4742 */ 4743 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 4744 int res = 0; 4745 int iVar; 4746 sqlite3_value *pL, *pR = 0; 4747 4748 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 4749 if( pR ){ 4750 iVar = pVar->iColumn; 4751 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 4752 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 4753 if( pL ){ 4754 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 4755 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 4756 } 4757 res = 0==sqlite3MemCompare(pL, pR, 0); 4758 } 4759 sqlite3ValueFree(pR); 4760 sqlite3ValueFree(pL); 4761 } 4762 4763 return res; 4764 } 4765 4766 /* 4767 ** Do a deep comparison of two expression trees. Return 0 if the two 4768 ** expressions are completely identical. Return 1 if they differ only 4769 ** by a COLLATE operator at the top level. Return 2 if there are differences 4770 ** other than the top-level COLLATE operator. 4771 ** 4772 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4773 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4774 ** 4775 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4776 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4777 ** 4778 ** Sometimes this routine will return 2 even if the two expressions 4779 ** really are equivalent. If we cannot prove that the expressions are 4780 ** identical, we return 2 just to be safe. So if this routine 4781 ** returns 2, then you do not really know for certain if the two 4782 ** expressions are the same. But if you get a 0 or 1 return, then you 4783 ** can be sure the expressions are the same. In the places where 4784 ** this routine is used, it does not hurt to get an extra 2 - that 4785 ** just might result in some slightly slower code. But returning 4786 ** an incorrect 0 or 1 could lead to a malfunction. 4787 ** 4788 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 4789 ** pParse->pReprepare can be matched against literals in pB. The 4790 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 4791 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 4792 ** Argument pParse should normally be NULL. If it is not NULL and pA or 4793 ** pB causes a return value of 2. 4794 */ 4795 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 4796 u32 combinedFlags; 4797 if( pA==0 || pB==0 ){ 4798 return pB==pA ? 0 : 2; 4799 } 4800 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 4801 return 0; 4802 } 4803 combinedFlags = pA->flags | pB->flags; 4804 if( combinedFlags & EP_IntValue ){ 4805 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 4806 return 0; 4807 } 4808 return 2; 4809 } 4810 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 4811 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 4812 return 1; 4813 } 4814 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 4815 return 1; 4816 } 4817 return 2; 4818 } 4819 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 4820 if( pA->op==TK_FUNCTION ){ 4821 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4822 #ifndef SQLITE_OMIT_WINDOWFUNC 4823 /* Justification for the assert(): 4824 ** window functions have p->op==TK_FUNCTION but aggregate functions 4825 ** have p->op==TK_AGG_FUNCTION. So any comparison between an aggregate 4826 ** function and a window function should have failed before reaching 4827 ** this point. And, it is not possible to have a window function and 4828 ** a scalar function with the same name and number of arguments. So 4829 ** if we reach this point, either A and B both window functions or 4830 ** neither are a window functions. */ 4831 assert( ExprHasProperty(pA,EP_WinFunc)==ExprHasProperty(pB,EP_WinFunc) ); 4832 if( ExprHasProperty(pA,EP_WinFunc) ){ 4833 if( sqlite3WindowCompare(pParse,pA->y.pWin,pB->y.pWin)!=0 ) return 2; 4834 } 4835 #endif 4836 }else if( pA->op==TK_NULL ){ 4837 return 0; 4838 }else if( pA->op==TK_COLLATE ){ 4839 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4840 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4841 return 2; 4842 } 4843 } 4844 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4845 if( (combinedFlags & EP_TokenOnly)==0 ){ 4846 if( combinedFlags & EP_xIsSelect ) return 2; 4847 if( (combinedFlags & EP_FixedCol)==0 4848 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 4849 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 4850 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4851 if( pA->op!=TK_STRING 4852 && pA->op!=TK_TRUEFALSE 4853 && (combinedFlags & EP_Reduced)==0 4854 ){ 4855 if( pA->iColumn!=pB->iColumn ) return 2; 4856 if( pA->iTable!=pB->iTable 4857 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4858 } 4859 } 4860 return 0; 4861 } 4862 4863 /* 4864 ** Compare two ExprList objects. Return 0 if they are identical and 4865 ** non-zero if they differ in any way. 4866 ** 4867 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4868 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4869 ** 4870 ** This routine might return non-zero for equivalent ExprLists. The 4871 ** only consequence will be disabled optimizations. But this routine 4872 ** must never return 0 if the two ExprList objects are different, or 4873 ** a malfunction will result. 4874 ** 4875 ** Two NULL pointers are considered to be the same. But a NULL pointer 4876 ** always differs from a non-NULL pointer. 4877 */ 4878 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4879 int i; 4880 if( pA==0 && pB==0 ) return 0; 4881 if( pA==0 || pB==0 ) return 1; 4882 if( pA->nExpr!=pB->nExpr ) return 1; 4883 for(i=0; i<pA->nExpr; i++){ 4884 Expr *pExprA = pA->a[i].pExpr; 4885 Expr *pExprB = pB->a[i].pExpr; 4886 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 4887 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1; 4888 } 4889 return 0; 4890 } 4891 4892 /* 4893 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 4894 ** are ignored. 4895 */ 4896 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 4897 return sqlite3ExprCompare(0, 4898 sqlite3ExprSkipCollate(pA), 4899 sqlite3ExprSkipCollate(pB), 4900 iTab); 4901 } 4902 4903 /* 4904 ** Return true if we can prove the pE2 will always be true if pE1 is 4905 ** true. Return false if we cannot complete the proof or if pE2 might 4906 ** be false. Examples: 4907 ** 4908 ** pE1: x==5 pE2: x==5 Result: true 4909 ** pE1: x>0 pE2: x==5 Result: false 4910 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 4911 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 4912 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 4913 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 4914 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 4915 ** 4916 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 4917 ** Expr.iTable<0 then assume a table number given by iTab. 4918 ** 4919 ** If pParse is not NULL, then the values of bound variables in pE1 are 4920 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 4921 ** modified to record which bound variables are referenced. If pParse 4922 ** is NULL, then false will be returned if pE1 contains any bound variables. 4923 ** 4924 ** When in doubt, return false. Returning true might give a performance 4925 ** improvement. Returning false might cause a performance reduction, but 4926 ** it will always give the correct answer and is hence always safe. 4927 */ 4928 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 4929 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 4930 return 1; 4931 } 4932 if( pE2->op==TK_OR 4933 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 4934 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 4935 ){ 4936 return 1; 4937 } 4938 if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){ 4939 Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft); 4940 testcase( pX!=pE1->pLeft ); 4941 if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1; 4942 } 4943 return 0; 4944 } 4945 4946 /* 4947 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow(). 4948 ** If the expression node requires that the table at pWalker->iCur 4949 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 4950 ** 4951 ** This routine controls an optimization. False positives (setting 4952 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 4953 ** (never setting pWalker->eCode) is a harmless missed optimization. 4954 */ 4955 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 4956 testcase( pExpr->op==TK_AGG_COLUMN ); 4957 testcase( pExpr->op==TK_AGG_FUNCTION ); 4958 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 4959 switch( pExpr->op ){ 4960 case TK_ISNOT: 4961 case TK_NOT: 4962 case TK_ISNULL: 4963 case TK_NOTNULL: 4964 case TK_IS: 4965 case TK_OR: 4966 case TK_CASE: 4967 case TK_IN: 4968 case TK_FUNCTION: 4969 testcase( pExpr->op==TK_ISNOT ); 4970 testcase( pExpr->op==TK_NOT ); 4971 testcase( pExpr->op==TK_ISNULL ); 4972 testcase( pExpr->op==TK_NOTNULL ); 4973 testcase( pExpr->op==TK_IS ); 4974 testcase( pExpr->op==TK_OR ); 4975 testcase( pExpr->op==TK_CASE ); 4976 testcase( pExpr->op==TK_IN ); 4977 testcase( pExpr->op==TK_FUNCTION ); 4978 return WRC_Prune; 4979 case TK_COLUMN: 4980 if( pWalker->u.iCur==pExpr->iTable ){ 4981 pWalker->eCode = 1; 4982 return WRC_Abort; 4983 } 4984 return WRC_Prune; 4985 4986 /* Virtual tables are allowed to use constraints like x=NULL. So 4987 ** a term of the form x=y does not prove that y is not null if x 4988 ** is the column of a virtual table */ 4989 case TK_EQ: 4990 case TK_NE: 4991 case TK_LT: 4992 case TK_LE: 4993 case TK_GT: 4994 case TK_GE: 4995 testcase( pExpr->op==TK_EQ ); 4996 testcase( pExpr->op==TK_NE ); 4997 testcase( pExpr->op==TK_LT ); 4998 testcase( pExpr->op==TK_LE ); 4999 testcase( pExpr->op==TK_GT ); 5000 testcase( pExpr->op==TK_GE ); 5001 if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab)) 5002 || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab)) 5003 ){ 5004 return WRC_Prune; 5005 } 5006 default: 5007 return WRC_Continue; 5008 } 5009 } 5010 5011 /* 5012 ** Return true (non-zero) if expression p can only be true if at least 5013 ** one column of table iTab is non-null. In other words, return true 5014 ** if expression p will always be NULL or false if every column of iTab 5015 ** is NULL. 5016 ** 5017 ** False negatives are acceptable. In other words, it is ok to return 5018 ** zero even if expression p will never be true of every column of iTab 5019 ** is NULL. A false negative is merely a missed optimization opportunity. 5020 ** 5021 ** False positives are not allowed, however. A false positive may result 5022 ** in an incorrect answer. 5023 ** 5024 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5025 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5026 ** 5027 ** This routine is used to check if a LEFT JOIN can be converted into 5028 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5029 ** clause requires that some column of the right table of the LEFT JOIN 5030 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5031 ** ordinary join. 5032 */ 5033 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5034 Walker w; 5035 w.xExprCallback = impliesNotNullRow; 5036 w.xSelectCallback = 0; 5037 w.xSelectCallback2 = 0; 5038 w.eCode = 0; 5039 w.u.iCur = iTab; 5040 sqlite3WalkExpr(&w, p); 5041 return w.eCode; 5042 } 5043 5044 /* 5045 ** An instance of the following structure is used by the tree walker 5046 ** to determine if an expression can be evaluated by reference to the 5047 ** index only, without having to do a search for the corresponding 5048 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5049 ** is the cursor for the table. 5050 */ 5051 struct IdxCover { 5052 Index *pIdx; /* The index to be tested for coverage */ 5053 int iCur; /* Cursor number for the table corresponding to the index */ 5054 }; 5055 5056 /* 5057 ** Check to see if there are references to columns in table 5058 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5059 ** pWalker->u.pIdxCover->pIdx. 5060 */ 5061 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5062 if( pExpr->op==TK_COLUMN 5063 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5064 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5065 ){ 5066 pWalker->eCode = 1; 5067 return WRC_Abort; 5068 } 5069 return WRC_Continue; 5070 } 5071 5072 /* 5073 ** Determine if an index pIdx on table with cursor iCur contains will 5074 ** the expression pExpr. Return true if the index does cover the 5075 ** expression and false if the pExpr expression references table columns 5076 ** that are not found in the index pIdx. 5077 ** 5078 ** An index covering an expression means that the expression can be 5079 ** evaluated using only the index and without having to lookup the 5080 ** corresponding table entry. 5081 */ 5082 int sqlite3ExprCoveredByIndex( 5083 Expr *pExpr, /* The index to be tested */ 5084 int iCur, /* The cursor number for the corresponding table */ 5085 Index *pIdx /* The index that might be used for coverage */ 5086 ){ 5087 Walker w; 5088 struct IdxCover xcov; 5089 memset(&w, 0, sizeof(w)); 5090 xcov.iCur = iCur; 5091 xcov.pIdx = pIdx; 5092 w.xExprCallback = exprIdxCover; 5093 w.u.pIdxCover = &xcov; 5094 sqlite3WalkExpr(&w, pExpr); 5095 return !w.eCode; 5096 } 5097 5098 5099 /* 5100 ** An instance of the following structure is used by the tree walker 5101 ** to count references to table columns in the arguments of an 5102 ** aggregate function, in order to implement the 5103 ** sqlite3FunctionThisSrc() routine. 5104 */ 5105 struct SrcCount { 5106 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5107 int nThis; /* Number of references to columns in pSrcList */ 5108 int nOther; /* Number of references to columns in other FROM clauses */ 5109 }; 5110 5111 /* 5112 ** Count the number of references to columns. 5113 */ 5114 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5115 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 5116 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 5117 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 5118 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 5119 ** NEVER() will need to be removed. */ 5120 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 5121 int i; 5122 struct SrcCount *p = pWalker->u.pSrcCount; 5123 SrcList *pSrc = p->pSrc; 5124 int nSrc = pSrc ? pSrc->nSrc : 0; 5125 for(i=0; i<nSrc; i++){ 5126 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5127 } 5128 if( i<nSrc ){ 5129 p->nThis++; 5130 }else{ 5131 p->nOther++; 5132 } 5133 } 5134 return WRC_Continue; 5135 } 5136 5137 /* 5138 ** Determine if any of the arguments to the pExpr Function reference 5139 ** pSrcList. Return true if they do. Also return true if the function 5140 ** has no arguments or has only constant arguments. Return false if pExpr 5141 ** references columns but not columns of tables found in pSrcList. 5142 */ 5143 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5144 Walker w; 5145 struct SrcCount cnt; 5146 assert( pExpr->op==TK_AGG_FUNCTION ); 5147 w.xExprCallback = exprSrcCount; 5148 w.xSelectCallback = 0; 5149 w.u.pSrcCount = &cnt; 5150 cnt.pSrc = pSrcList; 5151 cnt.nThis = 0; 5152 cnt.nOther = 0; 5153 sqlite3WalkExprList(&w, pExpr->x.pList); 5154 return cnt.nThis>0 || cnt.nOther==0; 5155 } 5156 5157 /* 5158 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5159 ** the new element. Return a negative number if malloc fails. 5160 */ 5161 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5162 int i; 5163 pInfo->aCol = sqlite3ArrayAllocate( 5164 db, 5165 pInfo->aCol, 5166 sizeof(pInfo->aCol[0]), 5167 &pInfo->nColumn, 5168 &i 5169 ); 5170 return i; 5171 } 5172 5173 /* 5174 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5175 ** the new element. Return a negative number if malloc fails. 5176 */ 5177 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5178 int i; 5179 pInfo->aFunc = sqlite3ArrayAllocate( 5180 db, 5181 pInfo->aFunc, 5182 sizeof(pInfo->aFunc[0]), 5183 &pInfo->nFunc, 5184 &i 5185 ); 5186 return i; 5187 } 5188 5189 /* 5190 ** This is the xExprCallback for a tree walker. It is used to 5191 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5192 ** for additional information. 5193 */ 5194 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5195 int i; 5196 NameContext *pNC = pWalker->u.pNC; 5197 Parse *pParse = pNC->pParse; 5198 SrcList *pSrcList = pNC->pSrcList; 5199 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5200 5201 assert( pNC->ncFlags & NC_UAggInfo ); 5202 switch( pExpr->op ){ 5203 case TK_AGG_COLUMN: 5204 case TK_COLUMN: { 5205 testcase( pExpr->op==TK_AGG_COLUMN ); 5206 testcase( pExpr->op==TK_COLUMN ); 5207 /* Check to see if the column is in one of the tables in the FROM 5208 ** clause of the aggregate query */ 5209 if( ALWAYS(pSrcList!=0) ){ 5210 struct SrcList_item *pItem = pSrcList->a; 5211 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5212 struct AggInfo_col *pCol; 5213 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5214 if( pExpr->iTable==pItem->iCursor ){ 5215 /* If we reach this point, it means that pExpr refers to a table 5216 ** that is in the FROM clause of the aggregate query. 5217 ** 5218 ** Make an entry for the column in pAggInfo->aCol[] if there 5219 ** is not an entry there already. 5220 */ 5221 int k; 5222 pCol = pAggInfo->aCol; 5223 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5224 if( pCol->iTable==pExpr->iTable && 5225 pCol->iColumn==pExpr->iColumn ){ 5226 break; 5227 } 5228 } 5229 if( (k>=pAggInfo->nColumn) 5230 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5231 ){ 5232 pCol = &pAggInfo->aCol[k]; 5233 pCol->pTab = pExpr->y.pTab; 5234 pCol->iTable = pExpr->iTable; 5235 pCol->iColumn = pExpr->iColumn; 5236 pCol->iMem = ++pParse->nMem; 5237 pCol->iSorterColumn = -1; 5238 pCol->pExpr = pExpr; 5239 if( pAggInfo->pGroupBy ){ 5240 int j, n; 5241 ExprList *pGB = pAggInfo->pGroupBy; 5242 struct ExprList_item *pTerm = pGB->a; 5243 n = pGB->nExpr; 5244 for(j=0; j<n; j++, pTerm++){ 5245 Expr *pE = pTerm->pExpr; 5246 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5247 pE->iColumn==pExpr->iColumn ){ 5248 pCol->iSorterColumn = j; 5249 break; 5250 } 5251 } 5252 } 5253 if( pCol->iSorterColumn<0 ){ 5254 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5255 } 5256 } 5257 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5258 ** because it was there before or because we just created it). 5259 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5260 ** pAggInfo->aCol[] entry. 5261 */ 5262 ExprSetVVAProperty(pExpr, EP_NoReduce); 5263 pExpr->pAggInfo = pAggInfo; 5264 pExpr->op = TK_AGG_COLUMN; 5265 pExpr->iAgg = (i16)k; 5266 break; 5267 } /* endif pExpr->iTable==pItem->iCursor */ 5268 } /* end loop over pSrcList */ 5269 } 5270 return WRC_Prune; 5271 } 5272 case TK_AGG_FUNCTION: { 5273 if( (pNC->ncFlags & NC_InAggFunc)==0 5274 && pWalker->walkerDepth==pExpr->op2 5275 ){ 5276 /* Check to see if pExpr is a duplicate of another aggregate 5277 ** function that is already in the pAggInfo structure 5278 */ 5279 struct AggInfo_func *pItem = pAggInfo->aFunc; 5280 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5281 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5282 break; 5283 } 5284 } 5285 if( i>=pAggInfo->nFunc ){ 5286 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5287 */ 5288 u8 enc = ENC(pParse->db); 5289 i = addAggInfoFunc(pParse->db, pAggInfo); 5290 if( i>=0 ){ 5291 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5292 pItem = &pAggInfo->aFunc[i]; 5293 pItem->pExpr = pExpr; 5294 pItem->iMem = ++pParse->nMem; 5295 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5296 pItem->pFunc = sqlite3FindFunction(pParse->db, 5297 pExpr->u.zToken, 5298 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5299 if( pExpr->flags & EP_Distinct ){ 5300 pItem->iDistinct = pParse->nTab++; 5301 }else{ 5302 pItem->iDistinct = -1; 5303 } 5304 } 5305 } 5306 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5307 */ 5308 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5309 ExprSetVVAProperty(pExpr, EP_NoReduce); 5310 pExpr->iAgg = (i16)i; 5311 pExpr->pAggInfo = pAggInfo; 5312 return WRC_Prune; 5313 }else{ 5314 return WRC_Continue; 5315 } 5316 } 5317 } 5318 return WRC_Continue; 5319 } 5320 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5321 UNUSED_PARAMETER(pSelect); 5322 pWalker->walkerDepth++; 5323 return WRC_Continue; 5324 } 5325 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5326 UNUSED_PARAMETER(pSelect); 5327 pWalker->walkerDepth--; 5328 } 5329 5330 /* 5331 ** Analyze the pExpr expression looking for aggregate functions and 5332 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5333 ** points to. Additional entries are made on the AggInfo object as 5334 ** necessary. 5335 ** 5336 ** This routine should only be called after the expression has been 5337 ** analyzed by sqlite3ResolveExprNames(). 5338 */ 5339 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5340 Walker w; 5341 w.xExprCallback = analyzeAggregate; 5342 w.xSelectCallback = analyzeAggregatesInSelect; 5343 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5344 w.walkerDepth = 0; 5345 w.u.pNC = pNC; 5346 w.pParse = 0; 5347 assert( pNC->pSrcList!=0 ); 5348 sqlite3WalkExpr(&w, pExpr); 5349 } 5350 5351 /* 5352 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5353 ** expression list. Return the number of errors. 5354 ** 5355 ** If an error is found, the analysis is cut short. 5356 */ 5357 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5358 struct ExprList_item *pItem; 5359 int i; 5360 if( pList ){ 5361 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5362 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5363 } 5364 } 5365 } 5366 5367 /* 5368 ** Allocate a single new register for use to hold some intermediate result. 5369 */ 5370 int sqlite3GetTempReg(Parse *pParse){ 5371 if( pParse->nTempReg==0 ){ 5372 return ++pParse->nMem; 5373 } 5374 return pParse->aTempReg[--pParse->nTempReg]; 5375 } 5376 5377 /* 5378 ** Deallocate a register, making available for reuse for some other 5379 ** purpose. 5380 */ 5381 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5382 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5383 pParse->aTempReg[pParse->nTempReg++] = iReg; 5384 } 5385 } 5386 5387 /* 5388 ** Allocate or deallocate a block of nReg consecutive registers. 5389 */ 5390 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5391 int i, n; 5392 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5393 i = pParse->iRangeReg; 5394 n = pParse->nRangeReg; 5395 if( nReg<=n ){ 5396 pParse->iRangeReg += nReg; 5397 pParse->nRangeReg -= nReg; 5398 }else{ 5399 i = pParse->nMem+1; 5400 pParse->nMem += nReg; 5401 } 5402 return i; 5403 } 5404 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5405 if( nReg==1 ){ 5406 sqlite3ReleaseTempReg(pParse, iReg); 5407 return; 5408 } 5409 if( nReg>pParse->nRangeReg ){ 5410 pParse->nRangeReg = nReg; 5411 pParse->iRangeReg = iReg; 5412 } 5413 } 5414 5415 /* 5416 ** Mark all temporary registers as being unavailable for reuse. 5417 */ 5418 void sqlite3ClearTempRegCache(Parse *pParse){ 5419 pParse->nTempReg = 0; 5420 pParse->nRangeReg = 0; 5421 } 5422 5423 /* 5424 ** Validate that no temporary register falls within the range of 5425 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5426 ** statements. 5427 */ 5428 #ifdef SQLITE_DEBUG 5429 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5430 int i; 5431 if( pParse->nRangeReg>0 5432 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5433 && pParse->iRangeReg <= iLast 5434 ){ 5435 return 0; 5436 } 5437 for(i=0; i<pParse->nTempReg; i++){ 5438 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5439 return 0; 5440 } 5441 } 5442 return 1; 5443 } 5444 #endif /* SQLITE_DEBUG */ 5445