1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expresssions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op = pExpr->op; 35 if( op==TK_SELECT ){ 36 assert( pExpr->flags&EP_xIsSelect ); 37 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 38 } 39 #ifndef SQLITE_OMIT_CAST 40 if( op==TK_CAST ){ 41 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 42 return sqlite3AffinityType(pExpr->u.zToken); 43 } 44 #endif 45 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 46 && pExpr->pTab!=0 47 ){ 48 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 49 ** a TK_COLUMN but was previously evaluated and cached in a register */ 50 int j = pExpr->iColumn; 51 if( j<0 ) return SQLITE_AFF_INTEGER; 52 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 53 return pExpr->pTab->aCol[j].affinity; 54 } 55 return pExpr->affinity; 56 } 57 58 /* 59 ** Set the explicit collating sequence for an expression to the 60 ** collating sequence supplied in the second argument. 61 */ 62 Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){ 63 if( pExpr && pColl ){ 64 pExpr->pColl = pColl; 65 pExpr->flags |= EP_ExpCollate; 66 } 67 return pExpr; 68 } 69 70 /* 71 ** Set the collating sequence for expression pExpr to be the collating 72 ** sequence named by pToken. Return a pointer to the revised expression. 73 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 74 ** flag. An explicit collating sequence will override implicit 75 ** collating sequences. 76 */ 77 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){ 78 char *zColl = 0; /* Dequoted name of collation sequence */ 79 CollSeq *pColl; 80 sqlite3 *db = pParse->db; 81 zColl = sqlite3NameFromToken(db, pCollName); 82 pColl = sqlite3LocateCollSeq(pParse, zColl); 83 sqlite3ExprSetColl(pExpr, pColl); 84 sqlite3DbFree(db, zColl); 85 return pExpr; 86 } 87 88 /* 89 ** Return the default collation sequence for the expression pExpr. If 90 ** there is no default collation type, return 0. 91 */ 92 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 93 CollSeq *pColl = 0; 94 Expr *p = pExpr; 95 while( ALWAYS(p) ){ 96 int op; 97 pColl = p->pColl; 98 if( pColl ) break; 99 op = p->op; 100 if( p->pTab!=0 && ( 101 op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER 102 )){ 103 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 104 ** a TK_COLUMN but was previously evaluated and cached in a register */ 105 const char *zColl; 106 int j = p->iColumn; 107 if( j>=0 ){ 108 sqlite3 *db = pParse->db; 109 zColl = p->pTab->aCol[j].zColl; 110 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 111 pExpr->pColl = pColl; 112 } 113 break; 114 } 115 if( op!=TK_CAST && op!=TK_UPLUS ){ 116 break; 117 } 118 p = p->pLeft; 119 } 120 if( sqlite3CheckCollSeq(pParse, pColl) ){ 121 pColl = 0; 122 } 123 return pColl; 124 } 125 126 /* 127 ** pExpr is an operand of a comparison operator. aff2 is the 128 ** type affinity of the other operand. This routine returns the 129 ** type affinity that should be used for the comparison operator. 130 */ 131 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 132 char aff1 = sqlite3ExprAffinity(pExpr); 133 if( aff1 && aff2 ){ 134 /* Both sides of the comparison are columns. If one has numeric 135 ** affinity, use that. Otherwise use no affinity. 136 */ 137 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 138 return SQLITE_AFF_NUMERIC; 139 }else{ 140 return SQLITE_AFF_NONE; 141 } 142 }else if( !aff1 && !aff2 ){ 143 /* Neither side of the comparison is a column. Compare the 144 ** results directly. 145 */ 146 return SQLITE_AFF_NONE; 147 }else{ 148 /* One side is a column, the other is not. Use the columns affinity. */ 149 assert( aff1==0 || aff2==0 ); 150 return (aff1 + aff2); 151 } 152 } 153 154 /* 155 ** pExpr is a comparison operator. Return the type affinity that should 156 ** be applied to both operands prior to doing the comparison. 157 */ 158 static char comparisonAffinity(Expr *pExpr){ 159 char aff; 160 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 161 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 162 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 163 assert( pExpr->pLeft ); 164 aff = sqlite3ExprAffinity(pExpr->pLeft); 165 if( pExpr->pRight ){ 166 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 167 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 168 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 169 }else if( !aff ){ 170 aff = SQLITE_AFF_NONE; 171 } 172 return aff; 173 } 174 175 /* 176 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 177 ** idx_affinity is the affinity of an indexed column. Return true 178 ** if the index with affinity idx_affinity may be used to implement 179 ** the comparison in pExpr. 180 */ 181 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 182 char aff = comparisonAffinity(pExpr); 183 switch( aff ){ 184 case SQLITE_AFF_NONE: 185 return 1; 186 case SQLITE_AFF_TEXT: 187 return idx_affinity==SQLITE_AFF_TEXT; 188 default: 189 return sqlite3IsNumericAffinity(idx_affinity); 190 } 191 } 192 193 /* 194 ** Return the P5 value that should be used for a binary comparison 195 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 196 */ 197 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 198 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 199 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 200 return aff; 201 } 202 203 /* 204 ** Return a pointer to the collation sequence that should be used by 205 ** a binary comparison operator comparing pLeft and pRight. 206 ** 207 ** If the left hand expression has a collating sequence type, then it is 208 ** used. Otherwise the collation sequence for the right hand expression 209 ** is used, or the default (BINARY) if neither expression has a collating 210 ** type. 211 ** 212 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 213 ** it is not considered. 214 */ 215 CollSeq *sqlite3BinaryCompareCollSeq( 216 Parse *pParse, 217 Expr *pLeft, 218 Expr *pRight 219 ){ 220 CollSeq *pColl; 221 assert( pLeft ); 222 if( pLeft->flags & EP_ExpCollate ){ 223 assert( pLeft->pColl ); 224 pColl = pLeft->pColl; 225 }else if( pRight && pRight->flags & EP_ExpCollate ){ 226 assert( pRight->pColl ); 227 pColl = pRight->pColl; 228 }else{ 229 pColl = sqlite3ExprCollSeq(pParse, pLeft); 230 if( !pColl ){ 231 pColl = sqlite3ExprCollSeq(pParse, pRight); 232 } 233 } 234 return pColl; 235 } 236 237 /* 238 ** Generate code for a comparison operator. 239 */ 240 static int codeCompare( 241 Parse *pParse, /* The parsing (and code generating) context */ 242 Expr *pLeft, /* The left operand */ 243 Expr *pRight, /* The right operand */ 244 int opcode, /* The comparison opcode */ 245 int in1, int in2, /* Register holding operands */ 246 int dest, /* Jump here if true. */ 247 int jumpIfNull /* If true, jump if either operand is NULL */ 248 ){ 249 int p5; 250 int addr; 251 CollSeq *p4; 252 253 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 254 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 255 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 256 (void*)p4, P4_COLLSEQ); 257 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 258 return addr; 259 } 260 261 #if SQLITE_MAX_EXPR_DEPTH>0 262 /* 263 ** Check that argument nHeight is less than or equal to the maximum 264 ** expression depth allowed. If it is not, leave an error message in 265 ** pParse. 266 */ 267 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 268 int rc = SQLITE_OK; 269 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 270 if( nHeight>mxHeight ){ 271 sqlite3ErrorMsg(pParse, 272 "Expression tree is too large (maximum depth %d)", mxHeight 273 ); 274 rc = SQLITE_ERROR; 275 } 276 return rc; 277 } 278 279 /* The following three functions, heightOfExpr(), heightOfExprList() 280 ** and heightOfSelect(), are used to determine the maximum height 281 ** of any expression tree referenced by the structure passed as the 282 ** first argument. 283 ** 284 ** If this maximum height is greater than the current value pointed 285 ** to by pnHeight, the second parameter, then set *pnHeight to that 286 ** value. 287 */ 288 static void heightOfExpr(Expr *p, int *pnHeight){ 289 if( p ){ 290 if( p->nHeight>*pnHeight ){ 291 *pnHeight = p->nHeight; 292 } 293 } 294 } 295 static void heightOfExprList(ExprList *p, int *pnHeight){ 296 if( p ){ 297 int i; 298 for(i=0; i<p->nExpr; i++){ 299 heightOfExpr(p->a[i].pExpr, pnHeight); 300 } 301 } 302 } 303 static void heightOfSelect(Select *p, int *pnHeight){ 304 if( p ){ 305 heightOfExpr(p->pWhere, pnHeight); 306 heightOfExpr(p->pHaving, pnHeight); 307 heightOfExpr(p->pLimit, pnHeight); 308 heightOfExpr(p->pOffset, pnHeight); 309 heightOfExprList(p->pEList, pnHeight); 310 heightOfExprList(p->pGroupBy, pnHeight); 311 heightOfExprList(p->pOrderBy, pnHeight); 312 heightOfSelect(p->pPrior, pnHeight); 313 } 314 } 315 316 /* 317 ** Set the Expr.nHeight variable in the structure passed as an 318 ** argument. An expression with no children, Expr.pList or 319 ** Expr.pSelect member has a height of 1. Any other expression 320 ** has a height equal to the maximum height of any other 321 ** referenced Expr plus one. 322 */ 323 static void exprSetHeight(Expr *p){ 324 int nHeight = 0; 325 heightOfExpr(p->pLeft, &nHeight); 326 heightOfExpr(p->pRight, &nHeight); 327 if( ExprHasProperty(p, EP_xIsSelect) ){ 328 heightOfSelect(p->x.pSelect, &nHeight); 329 }else{ 330 heightOfExprList(p->x.pList, &nHeight); 331 } 332 p->nHeight = nHeight + 1; 333 } 334 335 /* 336 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 337 ** the height is greater than the maximum allowed expression depth, 338 ** leave an error in pParse. 339 */ 340 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 341 exprSetHeight(p); 342 sqlite3ExprCheckHeight(pParse, p->nHeight); 343 } 344 345 /* 346 ** Return the maximum height of any expression tree referenced 347 ** by the select statement passed as an argument. 348 */ 349 int sqlite3SelectExprHeight(Select *p){ 350 int nHeight = 0; 351 heightOfSelect(p, &nHeight); 352 return nHeight; 353 } 354 #else 355 #define exprSetHeight(y) 356 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 357 358 /* 359 ** This routine is the core allocator for Expr nodes. 360 ** 361 ** Construct a new expression node and return a pointer to it. Memory 362 ** for this node and for the pToken argument is a single allocation 363 ** obtained from sqlite3DbMalloc(). The calling function 364 ** is responsible for making sure the node eventually gets freed. 365 ** 366 ** If dequote is true, then the token (if it exists) is dequoted. 367 ** If dequote is false, no dequoting is performance. The deQuote 368 ** parameter is ignored if pToken is NULL or if the token does not 369 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 370 ** then the EP_DblQuoted flag is set on the expression node. 371 ** 372 ** Special case: If op==TK_INTEGER and pToken points to a string that 373 ** can be translated into a 32-bit integer, then the token is not 374 ** stored in u.zToken. Instead, the integer values is written 375 ** into u.iValue and the EP_IntValue flag is set. No extra storage 376 ** is allocated to hold the integer text and the dequote flag is ignored. 377 */ 378 Expr *sqlite3ExprAlloc( 379 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 380 int op, /* Expression opcode */ 381 const Token *pToken, /* Token argument. Might be NULL */ 382 int dequote /* True to dequote */ 383 ){ 384 Expr *pNew; 385 int nExtra = 0; 386 int iValue = 0; 387 388 if( pToken ){ 389 if( op!=TK_INTEGER || pToken->z==0 390 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 391 nExtra = pToken->n+1; 392 } 393 } 394 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 395 if( pNew ){ 396 pNew->op = (u8)op; 397 pNew->iAgg = -1; 398 if( pToken ){ 399 if( nExtra==0 ){ 400 pNew->flags |= EP_IntValue; 401 pNew->u.iValue = iValue; 402 }else{ 403 int c; 404 pNew->u.zToken = (char*)&pNew[1]; 405 memcpy(pNew->u.zToken, pToken->z, pToken->n); 406 pNew->u.zToken[pToken->n] = 0; 407 if( dequote && nExtra>=3 408 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 409 sqlite3Dequote(pNew->u.zToken); 410 if( c=='"' ) pNew->flags |= EP_DblQuoted; 411 } 412 } 413 } 414 #if SQLITE_MAX_EXPR_DEPTH>0 415 pNew->nHeight = 1; 416 #endif 417 } 418 return pNew; 419 } 420 421 /* 422 ** Allocate a new expression node from a zero-terminated token that has 423 ** already been dequoted. 424 */ 425 Expr *sqlite3Expr( 426 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 427 int op, /* Expression opcode */ 428 const char *zToken /* Token argument. Might be NULL */ 429 ){ 430 Token x; 431 x.z = zToken; 432 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 433 return sqlite3ExprAlloc(db, op, &x, 0); 434 } 435 436 /* 437 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 438 ** 439 ** If pRoot==NULL that means that a memory allocation error has occurred. 440 ** In that case, delete the subtrees pLeft and pRight. 441 */ 442 void sqlite3ExprAttachSubtrees( 443 sqlite3 *db, 444 Expr *pRoot, 445 Expr *pLeft, 446 Expr *pRight 447 ){ 448 if( pRoot==0 ){ 449 assert( db->mallocFailed ); 450 sqlite3ExprDelete(db, pLeft); 451 sqlite3ExprDelete(db, pRight); 452 }else{ 453 if( pRight ){ 454 pRoot->pRight = pRight; 455 if( pRight->flags & EP_ExpCollate ){ 456 pRoot->flags |= EP_ExpCollate; 457 pRoot->pColl = pRight->pColl; 458 } 459 } 460 if( pLeft ){ 461 pRoot->pLeft = pLeft; 462 if( pLeft->flags & EP_ExpCollate ){ 463 pRoot->flags |= EP_ExpCollate; 464 pRoot->pColl = pLeft->pColl; 465 } 466 } 467 exprSetHeight(pRoot); 468 } 469 } 470 471 /* 472 ** Allocate a Expr node which joins as many as two subtrees. 473 ** 474 ** One or both of the subtrees can be NULL. Return a pointer to the new 475 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 476 ** free the subtrees and return NULL. 477 */ 478 Expr *sqlite3PExpr( 479 Parse *pParse, /* Parsing context */ 480 int op, /* Expression opcode */ 481 Expr *pLeft, /* Left operand */ 482 Expr *pRight, /* Right operand */ 483 const Token *pToken /* Argument token */ 484 ){ 485 Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 486 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 487 if( p ) { 488 sqlite3ExprCheckHeight(pParse, p->nHeight); 489 } 490 return p; 491 } 492 493 /* 494 ** Join two expressions using an AND operator. If either expression is 495 ** NULL, then just return the other expression. 496 */ 497 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 498 if( pLeft==0 ){ 499 return pRight; 500 }else if( pRight==0 ){ 501 return pLeft; 502 }else{ 503 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 504 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 505 return pNew; 506 } 507 } 508 509 /* 510 ** Construct a new expression node for a function with multiple 511 ** arguments. 512 */ 513 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 514 Expr *pNew; 515 sqlite3 *db = pParse->db; 516 assert( pToken ); 517 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 518 if( pNew==0 ){ 519 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 520 return 0; 521 } 522 pNew->x.pList = pList; 523 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 524 sqlite3ExprSetHeight(pParse, pNew); 525 return pNew; 526 } 527 528 /* 529 ** Assign a variable number to an expression that encodes a wildcard 530 ** in the original SQL statement. 531 ** 532 ** Wildcards consisting of a single "?" are assigned the next sequential 533 ** variable number. 534 ** 535 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 536 ** sure "nnn" is not too be to avoid a denial of service attack when 537 ** the SQL statement comes from an external source. 538 ** 539 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 540 ** as the previous instance of the same wildcard. Or if this is the first 541 ** instance of the wildcard, the next sequenial variable number is 542 ** assigned. 543 */ 544 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 545 sqlite3 *db = pParse->db; 546 const char *z; 547 548 if( pExpr==0 ) return; 549 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 550 z = pExpr->u.zToken; 551 assert( z!=0 ); 552 assert( z[0]!=0 ); 553 if( z[1]==0 ){ 554 /* Wildcard of the form "?". Assign the next variable number */ 555 assert( z[0]=='?' ); 556 pExpr->iColumn = (ynVar)(++pParse->nVar); 557 }else if( z[0]=='?' ){ 558 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 559 ** use it as the variable number */ 560 i64 i; 561 int bOk = 0==sqlite3Atoi64(&z[1], &i, sqlite3Strlen30(&z[1]), SQLITE_UTF8); 562 pExpr->iColumn = (ynVar)i; 563 testcase( i==0 ); 564 testcase( i==1 ); 565 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 566 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 567 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 568 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 569 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 570 } 571 if( i>pParse->nVar ){ 572 pParse->nVar = (int)i; 573 } 574 }else{ 575 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 576 ** number as the prior appearance of the same name, or if the name 577 ** has never appeared before, reuse the same variable number 578 */ 579 int i; 580 u32 n; 581 n = sqlite3Strlen30(z); 582 for(i=0; i<pParse->nVarExpr; i++){ 583 Expr *pE = pParse->apVarExpr[i]; 584 assert( pE!=0 ); 585 if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){ 586 pExpr->iColumn = pE->iColumn; 587 break; 588 } 589 } 590 if( i>=pParse->nVarExpr ){ 591 pExpr->iColumn = (ynVar)(++pParse->nVar); 592 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ 593 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; 594 pParse->apVarExpr = 595 sqlite3DbReallocOrFree( 596 db, 597 pParse->apVarExpr, 598 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) 599 ); 600 } 601 if( !db->mallocFailed ){ 602 assert( pParse->apVarExpr!=0 ); 603 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; 604 } 605 } 606 } 607 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 608 sqlite3ErrorMsg(pParse, "too many SQL variables"); 609 } 610 } 611 612 /* 613 ** Recursively delete an expression tree. 614 */ 615 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 616 if( p==0 ) return; 617 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 618 sqlite3ExprDelete(db, p->pLeft); 619 sqlite3ExprDelete(db, p->pRight); 620 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ 621 sqlite3DbFree(db, p->u.zToken); 622 } 623 if( ExprHasProperty(p, EP_xIsSelect) ){ 624 sqlite3SelectDelete(db, p->x.pSelect); 625 }else{ 626 sqlite3ExprListDelete(db, p->x.pList); 627 } 628 } 629 if( !ExprHasProperty(p, EP_Static) ){ 630 sqlite3DbFree(db, p); 631 } 632 } 633 634 /* 635 ** Return the number of bytes allocated for the expression structure 636 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 637 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 638 */ 639 static int exprStructSize(Expr *p){ 640 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 641 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 642 return EXPR_FULLSIZE; 643 } 644 645 /* 646 ** The dupedExpr*Size() routines each return the number of bytes required 647 ** to store a copy of an expression or expression tree. They differ in 648 ** how much of the tree is measured. 649 ** 650 ** dupedExprStructSize() Size of only the Expr structure 651 ** dupedExprNodeSize() Size of Expr + space for token 652 ** dupedExprSize() Expr + token + subtree components 653 ** 654 *************************************************************************** 655 ** 656 ** The dupedExprStructSize() function returns two values OR-ed together: 657 ** (1) the space required for a copy of the Expr structure only and 658 ** (2) the EP_xxx flags that indicate what the structure size should be. 659 ** The return values is always one of: 660 ** 661 ** EXPR_FULLSIZE 662 ** EXPR_REDUCEDSIZE | EP_Reduced 663 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 664 ** 665 ** The size of the structure can be found by masking the return value 666 ** of this routine with 0xfff. The flags can be found by masking the 667 ** return value with EP_Reduced|EP_TokenOnly. 668 ** 669 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 670 ** (unreduced) Expr objects as they or originally constructed by the parser. 671 ** During expression analysis, extra information is computed and moved into 672 ** later parts of teh Expr object and that extra information might get chopped 673 ** off if the expression is reduced. Note also that it does not work to 674 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal 675 ** to reduce a pristine expression tree from the parser. The implementation 676 ** of dupedExprStructSize() contain multiple assert() statements that attempt 677 ** to enforce this constraint. 678 */ 679 static int dupedExprStructSize(Expr *p, int flags){ 680 int nSize; 681 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 682 if( 0==(flags&EXPRDUP_REDUCE) ){ 683 nSize = EXPR_FULLSIZE; 684 }else{ 685 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 686 assert( !ExprHasProperty(p, EP_FromJoin) ); 687 assert( (p->flags2 & EP2_MallocedToken)==0 ); 688 assert( (p->flags2 & EP2_Irreducible)==0 ); 689 if( p->pLeft || p->pRight || p->pColl || p->x.pList ){ 690 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 691 }else{ 692 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 693 } 694 } 695 return nSize; 696 } 697 698 /* 699 ** This function returns the space in bytes required to store the copy 700 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 701 ** string is defined.) 702 */ 703 static int dupedExprNodeSize(Expr *p, int flags){ 704 int nByte = dupedExprStructSize(p, flags) & 0xfff; 705 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 706 nByte += sqlite3Strlen30(p->u.zToken)+1; 707 } 708 return ROUND8(nByte); 709 } 710 711 /* 712 ** Return the number of bytes required to create a duplicate of the 713 ** expression passed as the first argument. The second argument is a 714 ** mask containing EXPRDUP_XXX flags. 715 ** 716 ** The value returned includes space to create a copy of the Expr struct 717 ** itself and the buffer referred to by Expr.u.zToken, if any. 718 ** 719 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 720 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 721 ** and Expr.pRight variables (but not for any structures pointed to or 722 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 723 */ 724 static int dupedExprSize(Expr *p, int flags){ 725 int nByte = 0; 726 if( p ){ 727 nByte = dupedExprNodeSize(p, flags); 728 if( flags&EXPRDUP_REDUCE ){ 729 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 730 } 731 } 732 return nByte; 733 } 734 735 /* 736 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 737 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 738 ** to store the copy of expression p, the copies of p->u.zToken 739 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 740 ** if any. Before returning, *pzBuffer is set to the first byte passed the 741 ** portion of the buffer copied into by this function. 742 */ 743 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 744 Expr *pNew = 0; /* Value to return */ 745 if( p ){ 746 const int isReduced = (flags&EXPRDUP_REDUCE); 747 u8 *zAlloc; 748 u32 staticFlag = 0; 749 750 assert( pzBuffer==0 || isReduced ); 751 752 /* Figure out where to write the new Expr structure. */ 753 if( pzBuffer ){ 754 zAlloc = *pzBuffer; 755 staticFlag = EP_Static; 756 }else{ 757 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 758 } 759 pNew = (Expr *)zAlloc; 760 761 if( pNew ){ 762 /* Set nNewSize to the size allocated for the structure pointed to 763 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 764 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 765 ** by the copy of the p->u.zToken string (if any). 766 */ 767 const unsigned nStructSize = dupedExprStructSize(p, flags); 768 const int nNewSize = nStructSize & 0xfff; 769 int nToken; 770 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 771 nToken = sqlite3Strlen30(p->u.zToken) + 1; 772 }else{ 773 nToken = 0; 774 } 775 if( isReduced ){ 776 assert( ExprHasProperty(p, EP_Reduced)==0 ); 777 memcpy(zAlloc, p, nNewSize); 778 }else{ 779 int nSize = exprStructSize(p); 780 memcpy(zAlloc, p, nSize); 781 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 782 } 783 784 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 785 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 786 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 787 pNew->flags |= staticFlag; 788 789 /* Copy the p->u.zToken string, if any. */ 790 if( nToken ){ 791 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 792 memcpy(zToken, p->u.zToken, nToken); 793 } 794 795 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 796 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 797 if( ExprHasProperty(p, EP_xIsSelect) ){ 798 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 799 }else{ 800 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 801 } 802 } 803 804 /* Fill in pNew->pLeft and pNew->pRight. */ 805 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 806 zAlloc += dupedExprNodeSize(p, flags); 807 if( ExprHasProperty(pNew, EP_Reduced) ){ 808 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 809 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 810 } 811 if( pzBuffer ){ 812 *pzBuffer = zAlloc; 813 } 814 }else{ 815 pNew->flags2 = 0; 816 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 817 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 818 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 819 } 820 } 821 822 } 823 } 824 return pNew; 825 } 826 827 /* 828 ** The following group of routines make deep copies of expressions, 829 ** expression lists, ID lists, and select statements. The copies can 830 ** be deleted (by being passed to their respective ...Delete() routines) 831 ** without effecting the originals. 832 ** 833 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 834 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 835 ** by subsequent calls to sqlite*ListAppend() routines. 836 ** 837 ** Any tables that the SrcList might point to are not duplicated. 838 ** 839 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 840 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 841 ** truncated version of the usual Expr structure that will be stored as 842 ** part of the in-memory representation of the database schema. 843 */ 844 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 845 return exprDup(db, p, flags, 0); 846 } 847 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 848 ExprList *pNew; 849 struct ExprList_item *pItem, *pOldItem; 850 int i; 851 if( p==0 ) return 0; 852 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 853 if( pNew==0 ) return 0; 854 pNew->iECursor = 0; 855 pNew->nExpr = pNew->nAlloc = p->nExpr; 856 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); 857 if( pItem==0 ){ 858 sqlite3DbFree(db, pNew); 859 return 0; 860 } 861 pOldItem = p->a; 862 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 863 Expr *pOldExpr = pOldItem->pExpr; 864 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 865 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 866 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 867 pItem->sortOrder = pOldItem->sortOrder; 868 pItem->done = 0; 869 pItem->iCol = pOldItem->iCol; 870 pItem->iAlias = pOldItem->iAlias; 871 } 872 return pNew; 873 } 874 875 /* 876 ** If cursors, triggers, views and subqueries are all omitted from 877 ** the build, then none of the following routines, except for 878 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 879 ** called with a NULL argument. 880 */ 881 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 882 || !defined(SQLITE_OMIT_SUBQUERY) 883 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 884 SrcList *pNew; 885 int i; 886 int nByte; 887 if( p==0 ) return 0; 888 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 889 pNew = sqlite3DbMallocRaw(db, nByte ); 890 if( pNew==0 ) return 0; 891 pNew->nSrc = pNew->nAlloc = p->nSrc; 892 for(i=0; i<p->nSrc; i++){ 893 struct SrcList_item *pNewItem = &pNew->a[i]; 894 struct SrcList_item *pOldItem = &p->a[i]; 895 Table *pTab; 896 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 897 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 898 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 899 pNewItem->jointype = pOldItem->jointype; 900 pNewItem->iCursor = pOldItem->iCursor; 901 pNewItem->isPopulated = pOldItem->isPopulated; 902 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 903 pNewItem->notIndexed = pOldItem->notIndexed; 904 pNewItem->pIndex = pOldItem->pIndex; 905 pTab = pNewItem->pTab = pOldItem->pTab; 906 if( pTab ){ 907 pTab->nRef++; 908 } 909 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 910 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 911 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 912 pNewItem->colUsed = pOldItem->colUsed; 913 } 914 return pNew; 915 } 916 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 917 IdList *pNew; 918 int i; 919 if( p==0 ) return 0; 920 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 921 if( pNew==0 ) return 0; 922 pNew->nId = pNew->nAlloc = p->nId; 923 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 924 if( pNew->a==0 ){ 925 sqlite3DbFree(db, pNew); 926 return 0; 927 } 928 for(i=0; i<p->nId; i++){ 929 struct IdList_item *pNewItem = &pNew->a[i]; 930 struct IdList_item *pOldItem = &p->a[i]; 931 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 932 pNewItem->idx = pOldItem->idx; 933 } 934 return pNew; 935 } 936 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 937 Select *pNew; 938 if( p==0 ) return 0; 939 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 940 if( pNew==0 ) return 0; 941 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 942 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 943 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 944 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 945 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 946 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 947 pNew->op = p->op; 948 pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags); 949 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 950 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 951 pNew->iLimit = 0; 952 pNew->iOffset = 0; 953 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 954 pNew->pRightmost = 0; 955 pNew->addrOpenEphm[0] = -1; 956 pNew->addrOpenEphm[1] = -1; 957 pNew->addrOpenEphm[2] = -1; 958 return pNew; 959 } 960 #else 961 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 962 assert( p==0 ); 963 return 0; 964 } 965 #endif 966 967 968 /* 969 ** Add a new element to the end of an expression list. If pList is 970 ** initially NULL, then create a new expression list. 971 ** 972 ** If a memory allocation error occurs, the entire list is freed and 973 ** NULL is returned. If non-NULL is returned, then it is guaranteed 974 ** that the new entry was successfully appended. 975 */ 976 ExprList *sqlite3ExprListAppend( 977 Parse *pParse, /* Parsing context */ 978 ExprList *pList, /* List to which to append. Might be NULL */ 979 Expr *pExpr /* Expression to be appended. Might be NULL */ 980 ){ 981 sqlite3 *db = pParse->db; 982 if( pList==0 ){ 983 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 984 if( pList==0 ){ 985 goto no_mem; 986 } 987 assert( pList->nAlloc==0 ); 988 } 989 if( pList->nAlloc<=pList->nExpr ){ 990 struct ExprList_item *a; 991 int n = pList->nAlloc*2 + 4; 992 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); 993 if( a==0 ){ 994 goto no_mem; 995 } 996 pList->a = a; 997 pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]); 998 } 999 assert( pList->a!=0 ); 1000 if( 1 ){ 1001 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1002 memset(pItem, 0, sizeof(*pItem)); 1003 pItem->pExpr = pExpr; 1004 } 1005 return pList; 1006 1007 no_mem: 1008 /* Avoid leaking memory if malloc has failed. */ 1009 sqlite3ExprDelete(db, pExpr); 1010 sqlite3ExprListDelete(db, pList); 1011 return 0; 1012 } 1013 1014 /* 1015 ** Set the ExprList.a[].zName element of the most recently added item 1016 ** on the expression list. 1017 ** 1018 ** pList might be NULL following an OOM error. But pName should never be 1019 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1020 ** is set. 1021 */ 1022 void sqlite3ExprListSetName( 1023 Parse *pParse, /* Parsing context */ 1024 ExprList *pList, /* List to which to add the span. */ 1025 Token *pName, /* Name to be added */ 1026 int dequote /* True to cause the name to be dequoted */ 1027 ){ 1028 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1029 if( pList ){ 1030 struct ExprList_item *pItem; 1031 assert( pList->nExpr>0 ); 1032 pItem = &pList->a[pList->nExpr-1]; 1033 assert( pItem->zName==0 ); 1034 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1035 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1036 } 1037 } 1038 1039 /* 1040 ** Set the ExprList.a[].zSpan element of the most recently added item 1041 ** on the expression list. 1042 ** 1043 ** pList might be NULL following an OOM error. But pSpan should never be 1044 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1045 ** is set. 1046 */ 1047 void sqlite3ExprListSetSpan( 1048 Parse *pParse, /* Parsing context */ 1049 ExprList *pList, /* List to which to add the span. */ 1050 ExprSpan *pSpan /* The span to be added */ 1051 ){ 1052 sqlite3 *db = pParse->db; 1053 assert( pList!=0 || db->mallocFailed!=0 ); 1054 if( pList ){ 1055 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1056 assert( pList->nExpr>0 ); 1057 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1058 sqlite3DbFree(db, pItem->zSpan); 1059 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1060 (int)(pSpan->zEnd - pSpan->zStart)); 1061 } 1062 } 1063 1064 /* 1065 ** If the expression list pEList contains more than iLimit elements, 1066 ** leave an error message in pParse. 1067 */ 1068 void sqlite3ExprListCheckLength( 1069 Parse *pParse, 1070 ExprList *pEList, 1071 const char *zObject 1072 ){ 1073 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1074 testcase( pEList && pEList->nExpr==mx ); 1075 testcase( pEList && pEList->nExpr==mx+1 ); 1076 if( pEList && pEList->nExpr>mx ){ 1077 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1078 } 1079 } 1080 1081 /* 1082 ** Delete an entire expression list. 1083 */ 1084 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1085 int i; 1086 struct ExprList_item *pItem; 1087 if( pList==0 ) return; 1088 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 1089 assert( pList->nExpr<=pList->nAlloc ); 1090 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1091 sqlite3ExprDelete(db, pItem->pExpr); 1092 sqlite3DbFree(db, pItem->zName); 1093 sqlite3DbFree(db, pItem->zSpan); 1094 } 1095 sqlite3DbFree(db, pList->a); 1096 sqlite3DbFree(db, pList); 1097 } 1098 1099 /* 1100 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1101 ** to an integer. These routines are checking an expression to see 1102 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1103 ** not constant. 1104 ** 1105 ** These callback routines are used to implement the following: 1106 ** 1107 ** sqlite3ExprIsConstant() 1108 ** sqlite3ExprIsConstantNotJoin() 1109 ** sqlite3ExprIsConstantOrFunction() 1110 ** 1111 */ 1112 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1113 1114 /* If pWalker->u.i is 3 then any term of the expression that comes from 1115 ** the ON or USING clauses of a join disqualifies the expression 1116 ** from being considered constant. */ 1117 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 1118 pWalker->u.i = 0; 1119 return WRC_Abort; 1120 } 1121 1122 switch( pExpr->op ){ 1123 /* Consider functions to be constant if all their arguments are constant 1124 ** and pWalker->u.i==2 */ 1125 case TK_FUNCTION: 1126 if( pWalker->u.i==2 ) return 0; 1127 /* Fall through */ 1128 case TK_ID: 1129 case TK_COLUMN: 1130 case TK_AGG_FUNCTION: 1131 case TK_AGG_COLUMN: 1132 testcase( pExpr->op==TK_ID ); 1133 testcase( pExpr->op==TK_COLUMN ); 1134 testcase( pExpr->op==TK_AGG_FUNCTION ); 1135 testcase( pExpr->op==TK_AGG_COLUMN ); 1136 pWalker->u.i = 0; 1137 return WRC_Abort; 1138 default: 1139 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1140 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1141 return WRC_Continue; 1142 } 1143 } 1144 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1145 UNUSED_PARAMETER(NotUsed); 1146 pWalker->u.i = 0; 1147 return WRC_Abort; 1148 } 1149 static int exprIsConst(Expr *p, int initFlag){ 1150 Walker w; 1151 w.u.i = initFlag; 1152 w.xExprCallback = exprNodeIsConstant; 1153 w.xSelectCallback = selectNodeIsConstant; 1154 sqlite3WalkExpr(&w, p); 1155 return w.u.i; 1156 } 1157 1158 /* 1159 ** Walk an expression tree. Return 1 if the expression is constant 1160 ** and 0 if it involves variables or function calls. 1161 ** 1162 ** For the purposes of this function, a double-quoted string (ex: "abc") 1163 ** is considered a variable but a single-quoted string (ex: 'abc') is 1164 ** a constant. 1165 */ 1166 int sqlite3ExprIsConstant(Expr *p){ 1167 return exprIsConst(p, 1); 1168 } 1169 1170 /* 1171 ** Walk an expression tree. Return 1 if the expression is constant 1172 ** that does no originate from the ON or USING clauses of a join. 1173 ** Return 0 if it involves variables or function calls or terms from 1174 ** an ON or USING clause. 1175 */ 1176 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1177 return exprIsConst(p, 3); 1178 } 1179 1180 /* 1181 ** Walk an expression tree. Return 1 if the expression is constant 1182 ** or a function call with constant arguments. Return and 0 if there 1183 ** are any variables. 1184 ** 1185 ** For the purposes of this function, a double-quoted string (ex: "abc") 1186 ** is considered a variable but a single-quoted string (ex: 'abc') is 1187 ** a constant. 1188 */ 1189 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1190 return exprIsConst(p, 2); 1191 } 1192 1193 /* 1194 ** If the expression p codes a constant integer that is small enough 1195 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1196 ** in *pValue. If the expression is not an integer or if it is too big 1197 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1198 */ 1199 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1200 int rc = 0; 1201 if( p->flags & EP_IntValue ){ 1202 *pValue = p->u.iValue; 1203 return 1; 1204 } 1205 switch( p->op ){ 1206 case TK_INTEGER: { 1207 rc = sqlite3GetInt32(p->u.zToken, pValue); 1208 assert( rc==0 ); 1209 break; 1210 } 1211 case TK_UPLUS: { 1212 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1213 break; 1214 } 1215 case TK_UMINUS: { 1216 int v; 1217 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1218 *pValue = -v; 1219 rc = 1; 1220 } 1221 break; 1222 } 1223 default: break; 1224 } 1225 if( rc ){ 1226 assert( ExprHasAnyProperty(p, EP_Reduced|EP_TokenOnly) 1227 || (p->flags2 & EP2_MallocedToken)==0 ); 1228 p->op = TK_INTEGER; 1229 p->flags |= EP_IntValue; 1230 p->u.iValue = *pValue; 1231 } 1232 return rc; 1233 } 1234 1235 /* 1236 ** Return FALSE if there is no chance that the expression can be NULL. 1237 ** 1238 ** If the expression might be NULL or if the expression is too complex 1239 ** to tell return TRUE. 1240 ** 1241 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1242 ** when we know that a value cannot be NULL. Hence, a false positive 1243 ** (returning TRUE when in fact the expression can never be NULL) might 1244 ** be a small performance hit but is otherwise harmless. On the other 1245 ** hand, a false negative (returning FALSE when the result could be NULL) 1246 ** will likely result in an incorrect answer. So when in doubt, return 1247 ** TRUE. 1248 */ 1249 int sqlite3ExprCanBeNull(const Expr *p){ 1250 u8 op; 1251 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1252 op = p->op; 1253 if( op==TK_REGISTER ) op = p->op2; 1254 switch( op ){ 1255 case TK_INTEGER: 1256 case TK_STRING: 1257 case TK_FLOAT: 1258 case TK_BLOB: 1259 return 0; 1260 default: 1261 return 1; 1262 } 1263 } 1264 1265 /* 1266 ** Generate an OP_IsNull instruction that tests register iReg and jumps 1267 ** to location iDest if the value in iReg is NULL. The value in iReg 1268 ** was computed by pExpr. If we can look at pExpr at compile-time and 1269 ** determine that it can never generate a NULL, then the OP_IsNull operation 1270 ** can be omitted. 1271 */ 1272 void sqlite3ExprCodeIsNullJump( 1273 Vdbe *v, /* The VDBE under construction */ 1274 const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */ 1275 int iReg, /* Test the value in this register for NULL */ 1276 int iDest /* Jump here if the value is null */ 1277 ){ 1278 if( sqlite3ExprCanBeNull(pExpr) ){ 1279 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest); 1280 } 1281 } 1282 1283 /* 1284 ** Return TRUE if the given expression is a constant which would be 1285 ** unchanged by OP_Affinity with the affinity given in the second 1286 ** argument. 1287 ** 1288 ** This routine is used to determine if the OP_Affinity operation 1289 ** can be omitted. When in doubt return FALSE. A false negative 1290 ** is harmless. A false positive, however, can result in the wrong 1291 ** answer. 1292 */ 1293 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1294 u8 op; 1295 if( aff==SQLITE_AFF_NONE ) return 1; 1296 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1297 op = p->op; 1298 if( op==TK_REGISTER ) op = p->op2; 1299 switch( op ){ 1300 case TK_INTEGER: { 1301 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1302 } 1303 case TK_FLOAT: { 1304 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1305 } 1306 case TK_STRING: { 1307 return aff==SQLITE_AFF_TEXT; 1308 } 1309 case TK_BLOB: { 1310 return 1; 1311 } 1312 case TK_COLUMN: { 1313 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1314 return p->iColumn<0 1315 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1316 } 1317 default: { 1318 return 0; 1319 } 1320 } 1321 } 1322 1323 /* 1324 ** Return TRUE if the given string is a row-id column name. 1325 */ 1326 int sqlite3IsRowid(const char *z){ 1327 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1328 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1329 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1330 return 0; 1331 } 1332 1333 /* 1334 ** Return true if we are able to the IN operator optimization on a 1335 ** query of the form 1336 ** 1337 ** x IN (SELECT ...) 1338 ** 1339 ** Where the SELECT... clause is as specified by the parameter to this 1340 ** routine. 1341 ** 1342 ** The Select object passed in has already been preprocessed and no 1343 ** errors have been found. 1344 */ 1345 #ifndef SQLITE_OMIT_SUBQUERY 1346 static int isCandidateForInOpt(Select *p){ 1347 SrcList *pSrc; 1348 ExprList *pEList; 1349 Table *pTab; 1350 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1351 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1352 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1353 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1354 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1355 return 0; /* No DISTINCT keyword and no aggregate functions */ 1356 } 1357 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1358 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1359 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1360 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1361 pSrc = p->pSrc; 1362 assert( pSrc!=0 ); 1363 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1364 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1365 pTab = pSrc->a[0].pTab; 1366 if( NEVER(pTab==0) ) return 0; 1367 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1368 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1369 pEList = p->pEList; 1370 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1371 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1372 return 1; 1373 } 1374 #endif /* SQLITE_OMIT_SUBQUERY */ 1375 1376 /* 1377 ** This function is used by the implementation of the IN (...) operator. 1378 ** It's job is to find or create a b-tree structure that may be used 1379 ** either to test for membership of the (...) set or to iterate through 1380 ** its members, skipping duplicates. 1381 ** 1382 ** The index of the cursor opened on the b-tree (database table, database index 1383 ** or ephermal table) is stored in pX->iTable before this function returns. 1384 ** The returned value of this function indicates the b-tree type, as follows: 1385 ** 1386 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1387 ** IN_INDEX_INDEX - The cursor was opened on a database index. 1388 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1389 ** populated epheremal table. 1390 ** 1391 ** An existing b-tree may only be used if the SELECT is of the simple 1392 ** form: 1393 ** 1394 ** SELECT <column> FROM <table> 1395 ** 1396 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate 1397 ** through the set members, skipping any duplicates. In this case an 1398 ** epheremal table must be used unless the selected <column> is guaranteed 1399 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1400 ** has a UNIQUE constraint or UNIQUE index. 1401 ** 1402 ** If the prNotFound parameter is not 0, then the b-tree will be used 1403 ** for fast set membership tests. In this case an epheremal table must 1404 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1405 ** be found with <column> as its left-most column. 1406 ** 1407 ** When the b-tree is being used for membership tests, the calling function 1408 ** needs to know whether or not the structure contains an SQL NULL 1409 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1410 ** If there is any chance that the (...) might contain a NULL value at 1411 ** runtime, then a register is allocated and the register number written 1412 ** to *prNotFound. If there is no chance that the (...) contains a 1413 ** NULL value, then *prNotFound is left unchanged. 1414 ** 1415 ** If a register is allocated and its location stored in *prNotFound, then 1416 ** its initial value is NULL. If the (...) does not remain constant 1417 ** for the duration of the query (i.e. the SELECT within the (...) 1418 ** is a correlated subquery) then the value of the allocated register is 1419 ** reset to NULL each time the subquery is rerun. This allows the 1420 ** caller to use vdbe code equivalent to the following: 1421 ** 1422 ** if( register==NULL ){ 1423 ** has_null = <test if data structure contains null> 1424 ** register = 1 1425 ** } 1426 ** 1427 ** in order to avoid running the <test if data structure contains null> 1428 ** test more often than is necessary. 1429 */ 1430 #ifndef SQLITE_OMIT_SUBQUERY 1431 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1432 Select *p; /* SELECT to the right of IN operator */ 1433 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1434 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1435 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ 1436 1437 assert( pX->op==TK_IN ); 1438 1439 /* Check to see if an existing table or index can be used to 1440 ** satisfy the query. This is preferable to generating a new 1441 ** ephemeral table. 1442 */ 1443 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1444 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1445 sqlite3 *db = pParse->db; /* Database connection */ 1446 Expr *pExpr = p->pEList->a[0].pExpr; /* Expression <column> */ 1447 int iCol = pExpr->iColumn; /* Index of column <column> */ 1448 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1449 Table *pTab = p->pSrc->a[0].pTab; /* Table <table>. */ 1450 int iDb; /* Database idx for pTab */ 1451 1452 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */ 1453 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1454 sqlite3CodeVerifySchema(pParse, iDb); 1455 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1456 1457 /* This function is only called from two places. In both cases the vdbe 1458 ** has already been allocated. So assume sqlite3GetVdbe() is always 1459 ** successful here. 1460 */ 1461 assert(v); 1462 if( iCol<0 ){ 1463 int iMem = ++pParse->nMem; 1464 int iAddr; 1465 1466 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1467 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1468 1469 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1470 eType = IN_INDEX_ROWID; 1471 1472 sqlite3VdbeJumpHere(v, iAddr); 1473 }else{ 1474 Index *pIdx; /* Iterator variable */ 1475 1476 /* The collation sequence used by the comparison. If an index is to 1477 ** be used in place of a temp-table, it must be ordered according 1478 ** to this collation sequence. */ 1479 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1480 1481 /* Check that the affinity that will be used to perform the 1482 ** comparison is the same as the affinity of the column. If 1483 ** it is not, it is not possible to use any index. 1484 */ 1485 char aff = comparisonAffinity(pX); 1486 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); 1487 1488 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1489 if( (pIdx->aiColumn[0]==iCol) 1490 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1491 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1492 ){ 1493 int iMem = ++pParse->nMem; 1494 int iAddr; 1495 char *pKey; 1496 1497 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); 1498 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1499 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1500 1501 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, 1502 pKey,P4_KEYINFO_HANDOFF); 1503 VdbeComment((v, "%s", pIdx->zName)); 1504 eType = IN_INDEX_INDEX; 1505 1506 sqlite3VdbeJumpHere(v, iAddr); 1507 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1508 *prNotFound = ++pParse->nMem; 1509 } 1510 } 1511 } 1512 } 1513 } 1514 1515 if( eType==0 ){ 1516 /* Could not found an existing table or index to use as the RHS b-tree. 1517 ** We will have to generate an ephemeral table to do the job. 1518 */ 1519 double savedNQueryLoop = pParse->nQueryLoop; 1520 int rMayHaveNull = 0; 1521 eType = IN_INDEX_EPH; 1522 if( prNotFound ){ 1523 *prNotFound = rMayHaveNull = ++pParse->nMem; 1524 }else{ 1525 testcase( pParse->nQueryLoop>(double)1 ); 1526 pParse->nQueryLoop = (double)1; 1527 if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ 1528 eType = IN_INDEX_ROWID; 1529 } 1530 } 1531 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1532 pParse->nQueryLoop = savedNQueryLoop; 1533 }else{ 1534 pX->iTable = iTab; 1535 } 1536 return eType; 1537 } 1538 #endif 1539 1540 /* 1541 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1542 ** or IN operators. Examples: 1543 ** 1544 ** (SELECT a FROM b) -- subquery 1545 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1546 ** x IN (4,5,11) -- IN operator with list on right-hand side 1547 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1548 ** 1549 ** The pExpr parameter describes the expression that contains the IN 1550 ** operator or subquery. 1551 ** 1552 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1553 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1554 ** to some integer key column of a table B-Tree. In this case, use an 1555 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1556 ** (slower) variable length keys B-Tree. 1557 ** 1558 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1559 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1560 ** Furthermore, the IN is in a WHERE clause and that we really want 1561 ** to iterate over the RHS of the IN operator in order to quickly locate 1562 ** all corresponding LHS elements. All this routine does is initialize 1563 ** the register given by rMayHaveNull to NULL. Calling routines will take 1564 ** care of changing this register value to non-NULL if the RHS is NULL-free. 1565 ** 1566 ** If rMayHaveNull is zero, that means that the subquery is being used 1567 ** for membership testing only. There is no need to initialize any 1568 ** registers to indicate the presense or absence of NULLs on the RHS. 1569 ** 1570 ** For a SELECT or EXISTS operator, return the register that holds the 1571 ** result. For IN operators or if an error occurs, the return value is 0. 1572 */ 1573 #ifndef SQLITE_OMIT_SUBQUERY 1574 int sqlite3CodeSubselect( 1575 Parse *pParse, /* Parsing context */ 1576 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1577 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ 1578 int isRowid /* If true, LHS of IN operator is a rowid */ 1579 ){ 1580 int testAddr = 0; /* One-time test address */ 1581 int rReg = 0; /* Register storing resulting */ 1582 Vdbe *v = sqlite3GetVdbe(pParse); 1583 if( NEVER(v==0) ) return 0; 1584 sqlite3ExprCachePush(pParse); 1585 1586 /* This code must be run in its entirety every time it is encountered 1587 ** if any of the following is true: 1588 ** 1589 ** * The right-hand side is a correlated subquery 1590 ** * The right-hand side is an expression list containing variables 1591 ** * We are inside a trigger 1592 ** 1593 ** If all of the above are false, then we can run this code just once 1594 ** save the results, and reuse the same result on subsequent invocations. 1595 */ 1596 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){ 1597 int mem = ++pParse->nMem; 1598 sqlite3VdbeAddOp1(v, OP_If, mem); 1599 testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem); 1600 assert( testAddr>0 || pParse->db->mallocFailed ); 1601 } 1602 1603 switch( pExpr->op ){ 1604 case TK_IN: { 1605 char affinity; /* Affinity of the LHS of the IN */ 1606 KeyInfo keyInfo; /* Keyinfo for the generated table */ 1607 int addr; /* Address of OP_OpenEphemeral instruction */ 1608 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1609 1610 if( rMayHaveNull ){ 1611 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1612 } 1613 1614 affinity = sqlite3ExprAffinity(pLeft); 1615 1616 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1617 ** expression it is handled the same way. An ephemeral table is 1618 ** filled with single-field index keys representing the results 1619 ** from the SELECT or the <exprlist>. 1620 ** 1621 ** If the 'x' expression is a column value, or the SELECT... 1622 ** statement returns a column value, then the affinity of that 1623 ** column is used to build the index keys. If both 'x' and the 1624 ** SELECT... statement are columns, then numeric affinity is used 1625 ** if either column has NUMERIC or INTEGER affinity. If neither 1626 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1627 ** is used. 1628 */ 1629 pExpr->iTable = pParse->nTab++; 1630 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1631 if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 1632 memset(&keyInfo, 0, sizeof(keyInfo)); 1633 keyInfo.nField = 1; 1634 1635 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1636 /* Case 1: expr IN (SELECT ...) 1637 ** 1638 ** Generate code to write the results of the select into the temporary 1639 ** table allocated and opened above. 1640 */ 1641 SelectDest dest; 1642 ExprList *pEList; 1643 1644 assert( !isRowid ); 1645 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1646 dest.affinity = (u8)affinity; 1647 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1648 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1649 return 0; 1650 } 1651 pEList = pExpr->x.pSelect->pEList; 1652 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 1653 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1654 pEList->a[0].pExpr); 1655 } 1656 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1657 /* Case 2: expr IN (exprlist) 1658 ** 1659 ** For each expression, build an index key from the evaluation and 1660 ** store it in the temporary table. If <expr> is a column, then use 1661 ** that columns affinity when building index keys. If <expr> is not 1662 ** a column, use numeric affinity. 1663 */ 1664 int i; 1665 ExprList *pList = pExpr->x.pList; 1666 struct ExprList_item *pItem; 1667 int r1, r2, r3; 1668 1669 if( !affinity ){ 1670 affinity = SQLITE_AFF_NONE; 1671 } 1672 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1673 1674 /* Loop through each expression in <exprlist>. */ 1675 r1 = sqlite3GetTempReg(pParse); 1676 r2 = sqlite3GetTempReg(pParse); 1677 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1678 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1679 Expr *pE2 = pItem->pExpr; 1680 int iValToIns; 1681 1682 /* If the expression is not constant then we will need to 1683 ** disable the test that was generated above that makes sure 1684 ** this code only executes once. Because for a non-constant 1685 ** expression we need to rerun this code each time. 1686 */ 1687 if( testAddr && !sqlite3ExprIsConstant(pE2) ){ 1688 sqlite3VdbeChangeToNoop(v, testAddr-1, 2); 1689 testAddr = 0; 1690 } 1691 1692 /* Evaluate the expression and insert it into the temp table */ 1693 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1694 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1695 }else{ 1696 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1697 if( isRowid ){ 1698 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1699 sqlite3VdbeCurrentAddr(v)+2); 1700 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1701 }else{ 1702 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1703 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1704 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1705 } 1706 } 1707 } 1708 sqlite3ReleaseTempReg(pParse, r1); 1709 sqlite3ReleaseTempReg(pParse, r2); 1710 } 1711 if( !isRowid ){ 1712 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); 1713 } 1714 break; 1715 } 1716 1717 case TK_EXISTS: 1718 case TK_SELECT: 1719 default: { 1720 /* If this has to be a scalar SELECT. Generate code to put the 1721 ** value of this select in a memory cell and record the number 1722 ** of the memory cell in iColumn. If this is an EXISTS, write 1723 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1724 ** and record that memory cell in iColumn. 1725 */ 1726 Select *pSel; /* SELECT statement to encode */ 1727 SelectDest dest; /* How to deal with SELECt result */ 1728 1729 testcase( pExpr->op==TK_EXISTS ); 1730 testcase( pExpr->op==TK_SELECT ); 1731 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1732 1733 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1734 pSel = pExpr->x.pSelect; 1735 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1736 if( pExpr->op==TK_SELECT ){ 1737 dest.eDest = SRT_Mem; 1738 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm); 1739 VdbeComment((v, "Init subquery result")); 1740 }else{ 1741 dest.eDest = SRT_Exists; 1742 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm); 1743 VdbeComment((v, "Init EXISTS result")); 1744 } 1745 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1746 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 1747 &sqlite3IntTokens[1]); 1748 if( sqlite3Select(pParse, pSel, &dest) ){ 1749 return 0; 1750 } 1751 rReg = dest.iParm; 1752 ExprSetIrreducible(pExpr); 1753 break; 1754 } 1755 } 1756 1757 if( testAddr ){ 1758 sqlite3VdbeJumpHere(v, testAddr-1); 1759 } 1760 sqlite3ExprCachePop(pParse, 1); 1761 1762 return rReg; 1763 } 1764 #endif /* SQLITE_OMIT_SUBQUERY */ 1765 1766 #ifndef SQLITE_OMIT_SUBQUERY 1767 /* 1768 ** Generate code for an IN expression. 1769 ** 1770 ** x IN (SELECT ...) 1771 ** x IN (value, value, ...) 1772 ** 1773 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 1774 ** is an array of zero or more values. The expression is true if the LHS is 1775 ** contained within the RHS. The value of the expression is unknown (NULL) 1776 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 1777 ** RHS contains one or more NULL values. 1778 ** 1779 ** This routine generates code will jump to destIfFalse if the LHS is not 1780 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 1781 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 1782 ** within the RHS then fall through. 1783 */ 1784 static void sqlite3ExprCodeIN( 1785 Parse *pParse, /* Parsing and code generating context */ 1786 Expr *pExpr, /* The IN expression */ 1787 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 1788 int destIfNull /* Jump here if the results are unknown due to NULLs */ 1789 ){ 1790 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 1791 char affinity; /* Comparison affinity to use */ 1792 int eType; /* Type of the RHS */ 1793 int r1; /* Temporary use register */ 1794 Vdbe *v; /* Statement under construction */ 1795 1796 /* Compute the RHS. After this step, the table with cursor 1797 ** pExpr->iTable will contains the values that make up the RHS. 1798 */ 1799 v = pParse->pVdbe; 1800 assert( v!=0 ); /* OOM detected prior to this routine */ 1801 VdbeNoopComment((v, "begin IN expr")); 1802 eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull); 1803 1804 /* Figure out the affinity to use to create a key from the results 1805 ** of the expression. affinityStr stores a static string suitable for 1806 ** P4 of OP_MakeRecord. 1807 */ 1808 affinity = comparisonAffinity(pExpr); 1809 1810 /* Code the LHS, the <expr> from "<expr> IN (...)". 1811 */ 1812 sqlite3ExprCachePush(pParse); 1813 r1 = sqlite3GetTempReg(pParse); 1814 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 1815 1816 /* If the LHS is NULL, then the result is either false or NULL depending 1817 ** on whether the RHS is empty or not, respectively. 1818 */ 1819 if( destIfNull==destIfFalse ){ 1820 /* Shortcut for the common case where the false and NULL outcomes are 1821 ** the same. */ 1822 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); 1823 }else{ 1824 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); 1825 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 1826 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 1827 sqlite3VdbeJumpHere(v, addr1); 1828 } 1829 1830 if( eType==IN_INDEX_ROWID ){ 1831 /* In this case, the RHS is the ROWID of table b-tree 1832 */ 1833 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); 1834 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 1835 }else{ 1836 /* In this case, the RHS is an index b-tree. 1837 */ 1838 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 1839 1840 /* If the set membership test fails, then the result of the 1841 ** "x IN (...)" expression must be either 0 or NULL. If the set 1842 ** contains no NULL values, then the result is 0. If the set 1843 ** contains one or more NULL values, then the result of the 1844 ** expression is also NULL. 1845 */ 1846 if( rRhsHasNull==0 || destIfFalse==destIfNull ){ 1847 /* This branch runs if it is known at compile time that the RHS 1848 ** cannot contain NULL values. This happens as the result 1849 ** of a "NOT NULL" constraint in the database schema. 1850 ** 1851 ** Also run this branch if NULL is equivalent to FALSE 1852 ** for this particular IN operator. 1853 */ 1854 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 1855 1856 }else{ 1857 /* In this branch, the RHS of the IN might contain a NULL and 1858 ** the presence of a NULL on the RHS makes a difference in the 1859 ** outcome. 1860 */ 1861 int j1, j2, j3; 1862 1863 /* First check to see if the LHS is contained in the RHS. If so, 1864 ** then the presence of NULLs in the RHS does not matter, so jump 1865 ** over all of the code that follows. 1866 */ 1867 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 1868 1869 /* Here we begin generating code that runs if the LHS is not 1870 ** contained within the RHS. Generate additional code that 1871 ** tests the RHS for NULLs. If the RHS contains a NULL then 1872 ** jump to destIfNull. If there are no NULLs in the RHS then 1873 ** jump to destIfFalse. 1874 */ 1875 j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull); 1876 j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); 1877 sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull); 1878 sqlite3VdbeJumpHere(v, j3); 1879 sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1); 1880 sqlite3VdbeJumpHere(v, j2); 1881 1882 /* Jump to the appropriate target depending on whether or not 1883 ** the RHS contains a NULL 1884 */ 1885 sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); 1886 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 1887 1888 /* The OP_Found at the top of this branch jumps here when true, 1889 ** causing the overall IN expression evaluation to fall through. 1890 */ 1891 sqlite3VdbeJumpHere(v, j1); 1892 } 1893 } 1894 sqlite3ReleaseTempReg(pParse, r1); 1895 sqlite3ExprCachePop(pParse, 1); 1896 VdbeComment((v, "end IN expr")); 1897 } 1898 #endif /* SQLITE_OMIT_SUBQUERY */ 1899 1900 /* 1901 ** Duplicate an 8-byte value 1902 */ 1903 static char *dup8bytes(Vdbe *v, const char *in){ 1904 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 1905 if( out ){ 1906 memcpy(out, in, 8); 1907 } 1908 return out; 1909 } 1910 1911 #ifndef SQLITE_OMIT_FLOATING_POINT 1912 /* 1913 ** Generate an instruction that will put the floating point 1914 ** value described by z[0..n-1] into register iMem. 1915 ** 1916 ** The z[] string will probably not be zero-terminated. But the 1917 ** z[n] character is guaranteed to be something that does not look 1918 ** like the continuation of the number. 1919 */ 1920 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 1921 if( ALWAYS(z!=0) ){ 1922 double value; 1923 char *zV; 1924 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 1925 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 1926 if( negateFlag ) value = -value; 1927 zV = dup8bytes(v, (char*)&value); 1928 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 1929 } 1930 } 1931 #endif 1932 1933 1934 /* 1935 ** Generate an instruction that will put the integer describe by 1936 ** text z[0..n-1] into register iMem. 1937 ** 1938 ** Expr.u.zToken is always UTF8 and zero-terminated. 1939 */ 1940 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 1941 Vdbe *v = pParse->pVdbe; 1942 if( pExpr->flags & EP_IntValue ){ 1943 int i = pExpr->u.iValue; 1944 if( negFlag ) i = -i; 1945 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 1946 }else{ 1947 int c; 1948 i64 value; 1949 const char *z = pExpr->u.zToken; 1950 assert( z!=0 ); 1951 c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 1952 if( c==0 || (c==2 && negFlag) ){ 1953 char *zV; 1954 if( negFlag ){ value = -value; } 1955 zV = dup8bytes(v, (char*)&value); 1956 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 1957 }else{ 1958 #ifdef SQLITE_OMIT_FLOATING_POINT 1959 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 1960 #else 1961 codeReal(v, z, negFlag, iMem); 1962 #endif 1963 } 1964 } 1965 } 1966 1967 /* 1968 ** Clear a cache entry. 1969 */ 1970 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 1971 if( p->tempReg ){ 1972 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 1973 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 1974 } 1975 p->tempReg = 0; 1976 } 1977 } 1978 1979 1980 /* 1981 ** Record in the column cache that a particular column from a 1982 ** particular table is stored in a particular register. 1983 */ 1984 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 1985 int i; 1986 int minLru; 1987 int idxLru; 1988 struct yColCache *p; 1989 1990 assert( iReg>0 ); /* Register numbers are always positive */ 1991 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 1992 1993 /* The SQLITE_ColumnCache flag disables the column cache. This is used 1994 ** for testing only - to verify that SQLite always gets the same answer 1995 ** with and without the column cache. 1996 */ 1997 if( pParse->db->flags & SQLITE_ColumnCache ) return; 1998 1999 /* First replace any existing entry. 2000 ** 2001 ** Actually, the way the column cache is currently used, we are guaranteed 2002 ** that the object will never already be in cache. Verify this guarantee. 2003 */ 2004 #ifndef NDEBUG 2005 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2006 #if 0 /* This code wold remove the entry from the cache if it existed */ 2007 if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){ 2008 cacheEntryClear(pParse, p); 2009 p->iLevel = pParse->iCacheLevel; 2010 p->iReg = iReg; 2011 p->lru = pParse->iCacheCnt++; 2012 return; 2013 } 2014 #endif 2015 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2016 } 2017 #endif 2018 2019 /* Find an empty slot and replace it */ 2020 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2021 if( p->iReg==0 ){ 2022 p->iLevel = pParse->iCacheLevel; 2023 p->iTable = iTab; 2024 p->iColumn = iCol; 2025 p->iReg = iReg; 2026 p->tempReg = 0; 2027 p->lru = pParse->iCacheCnt++; 2028 return; 2029 } 2030 } 2031 2032 /* Replace the last recently used */ 2033 minLru = 0x7fffffff; 2034 idxLru = -1; 2035 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2036 if( p->lru<minLru ){ 2037 idxLru = i; 2038 minLru = p->lru; 2039 } 2040 } 2041 if( ALWAYS(idxLru>=0) ){ 2042 p = &pParse->aColCache[idxLru]; 2043 p->iLevel = pParse->iCacheLevel; 2044 p->iTable = iTab; 2045 p->iColumn = iCol; 2046 p->iReg = iReg; 2047 p->tempReg = 0; 2048 p->lru = pParse->iCacheCnt++; 2049 return; 2050 } 2051 } 2052 2053 /* 2054 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2055 ** Purge the range of registers from the column cache. 2056 */ 2057 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2058 int i; 2059 int iLast = iReg + nReg - 1; 2060 struct yColCache *p; 2061 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2062 int r = p->iReg; 2063 if( r>=iReg && r<=iLast ){ 2064 cacheEntryClear(pParse, p); 2065 p->iReg = 0; 2066 } 2067 } 2068 } 2069 2070 /* 2071 ** Remember the current column cache context. Any new entries added 2072 ** added to the column cache after this call are removed when the 2073 ** corresponding pop occurs. 2074 */ 2075 void sqlite3ExprCachePush(Parse *pParse){ 2076 pParse->iCacheLevel++; 2077 } 2078 2079 /* 2080 ** Remove from the column cache any entries that were added since the 2081 ** the previous N Push operations. In other words, restore the cache 2082 ** to the state it was in N Pushes ago. 2083 */ 2084 void sqlite3ExprCachePop(Parse *pParse, int N){ 2085 int i; 2086 struct yColCache *p; 2087 assert( N>0 ); 2088 assert( pParse->iCacheLevel>=N ); 2089 pParse->iCacheLevel -= N; 2090 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2091 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2092 cacheEntryClear(pParse, p); 2093 p->iReg = 0; 2094 } 2095 } 2096 } 2097 2098 /* 2099 ** When a cached column is reused, make sure that its register is 2100 ** no longer available as a temp register. ticket #3879: that same 2101 ** register might be in the cache in multiple places, so be sure to 2102 ** get them all. 2103 */ 2104 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2105 int i; 2106 struct yColCache *p; 2107 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2108 if( p->iReg==iReg ){ 2109 p->tempReg = 0; 2110 } 2111 } 2112 } 2113 2114 /* 2115 ** Generate code to extract the value of the iCol-th column of a table. 2116 */ 2117 void sqlite3ExprCodeGetColumnOfTable( 2118 Vdbe *v, /* The VDBE under construction */ 2119 Table *pTab, /* The table containing the value */ 2120 int iTabCur, /* The cursor for this table */ 2121 int iCol, /* Index of the column to extract */ 2122 int regOut /* Extract the valud into this register */ 2123 ){ 2124 if( iCol<0 || iCol==pTab->iPKey ){ 2125 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2126 }else{ 2127 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2128 sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut); 2129 } 2130 if( iCol>=0 ){ 2131 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2132 } 2133 } 2134 2135 /* 2136 ** Generate code that will extract the iColumn-th column from 2137 ** table pTab and store the column value in a register. An effort 2138 ** is made to store the column value in register iReg, but this is 2139 ** not guaranteed. The location of the column value is returned. 2140 ** 2141 ** There must be an open cursor to pTab in iTable when this routine 2142 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2143 */ 2144 int sqlite3ExprCodeGetColumn( 2145 Parse *pParse, /* Parsing and code generating context */ 2146 Table *pTab, /* Description of the table we are reading from */ 2147 int iColumn, /* Index of the table column */ 2148 int iTable, /* The cursor pointing to the table */ 2149 int iReg /* Store results here */ 2150 ){ 2151 Vdbe *v = pParse->pVdbe; 2152 int i; 2153 struct yColCache *p; 2154 2155 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2156 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2157 p->lru = pParse->iCacheCnt++; 2158 sqlite3ExprCachePinRegister(pParse, p->iReg); 2159 return p->iReg; 2160 } 2161 } 2162 assert( v!=0 ); 2163 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2164 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2165 return iReg; 2166 } 2167 2168 /* 2169 ** Clear all column cache entries. 2170 */ 2171 void sqlite3ExprCacheClear(Parse *pParse){ 2172 int i; 2173 struct yColCache *p; 2174 2175 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2176 if( p->iReg ){ 2177 cacheEntryClear(pParse, p); 2178 p->iReg = 0; 2179 } 2180 } 2181 } 2182 2183 /* 2184 ** Record the fact that an affinity change has occurred on iCount 2185 ** registers starting with iStart. 2186 */ 2187 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2188 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2189 } 2190 2191 /* 2192 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2193 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2194 */ 2195 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2196 int i; 2197 struct yColCache *p; 2198 if( NEVER(iFrom==iTo) ) return; 2199 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2200 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2201 int x = p->iReg; 2202 if( x>=iFrom && x<iFrom+nReg ){ 2203 p->iReg += iTo-iFrom; 2204 } 2205 } 2206 } 2207 2208 /* 2209 ** Generate code to copy content from registers iFrom...iFrom+nReg-1 2210 ** over to iTo..iTo+nReg-1. 2211 */ 2212 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){ 2213 int i; 2214 if( NEVER(iFrom==iTo) ) return; 2215 for(i=0; i<nReg; i++){ 2216 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i); 2217 } 2218 } 2219 2220 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2221 /* 2222 ** Return true if any register in the range iFrom..iTo (inclusive) 2223 ** is used as part of the column cache. 2224 ** 2225 ** This routine is used within assert() and testcase() macros only 2226 ** and does not appear in a normal build. 2227 */ 2228 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2229 int i; 2230 struct yColCache *p; 2231 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2232 int r = p->iReg; 2233 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2234 } 2235 return 0; 2236 } 2237 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2238 2239 /* 2240 ** Generate code into the current Vdbe to evaluate the given 2241 ** expression. Attempt to store the results in register "target". 2242 ** Return the register where results are stored. 2243 ** 2244 ** With this routine, there is no guarantee that results will 2245 ** be stored in target. The result might be stored in some other 2246 ** register if it is convenient to do so. The calling function 2247 ** must check the return code and move the results to the desired 2248 ** register. 2249 */ 2250 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2251 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2252 int op; /* The opcode being coded */ 2253 int inReg = target; /* Results stored in register inReg */ 2254 int regFree1 = 0; /* If non-zero free this temporary register */ 2255 int regFree2 = 0; /* If non-zero free this temporary register */ 2256 int r1, r2, r3, r4; /* Various register numbers */ 2257 sqlite3 *db = pParse->db; /* The database connection */ 2258 2259 assert( target>0 && target<=pParse->nMem ); 2260 if( v==0 ){ 2261 assert( pParse->db->mallocFailed ); 2262 return 0; 2263 } 2264 2265 if( pExpr==0 ){ 2266 op = TK_NULL; 2267 }else{ 2268 op = pExpr->op; 2269 } 2270 switch( op ){ 2271 case TK_AGG_COLUMN: { 2272 AggInfo *pAggInfo = pExpr->pAggInfo; 2273 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2274 if( !pAggInfo->directMode ){ 2275 assert( pCol->iMem>0 ); 2276 inReg = pCol->iMem; 2277 break; 2278 }else if( pAggInfo->useSortingIdx ){ 2279 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx, 2280 pCol->iSorterColumn, target); 2281 break; 2282 } 2283 /* Otherwise, fall thru into the TK_COLUMN case */ 2284 } 2285 case TK_COLUMN: { 2286 if( pExpr->iTable<0 ){ 2287 /* This only happens when coding check constraints */ 2288 assert( pParse->ckBase>0 ); 2289 inReg = pExpr->iColumn + pParse->ckBase; 2290 }else{ 2291 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2292 pExpr->iColumn, pExpr->iTable, target); 2293 } 2294 break; 2295 } 2296 case TK_INTEGER: { 2297 codeInteger(pParse, pExpr, 0, target); 2298 break; 2299 } 2300 #ifndef SQLITE_OMIT_FLOATING_POINT 2301 case TK_FLOAT: { 2302 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2303 codeReal(v, pExpr->u.zToken, 0, target); 2304 break; 2305 } 2306 #endif 2307 case TK_STRING: { 2308 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2309 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2310 break; 2311 } 2312 case TK_NULL: { 2313 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2314 break; 2315 } 2316 #ifndef SQLITE_OMIT_BLOB_LITERAL 2317 case TK_BLOB: { 2318 int n; 2319 const char *z; 2320 char *zBlob; 2321 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2322 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2323 assert( pExpr->u.zToken[1]=='\'' ); 2324 z = &pExpr->u.zToken[2]; 2325 n = sqlite3Strlen30(z) - 1; 2326 assert( z[n]=='\'' ); 2327 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2328 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2329 break; 2330 } 2331 #endif 2332 case TK_VARIABLE: { 2333 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2334 assert( pExpr->u.zToken!=0 ); 2335 assert( pExpr->u.zToken[0]!=0 ); 2336 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2337 if( pExpr->u.zToken[1]!=0 ){ 2338 sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, 0); 2339 } 2340 break; 2341 } 2342 case TK_REGISTER: { 2343 inReg = pExpr->iTable; 2344 break; 2345 } 2346 case TK_AS: { 2347 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2348 break; 2349 } 2350 #ifndef SQLITE_OMIT_CAST 2351 case TK_CAST: { 2352 /* Expressions of the form: CAST(pLeft AS token) */ 2353 int aff, to_op; 2354 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2355 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2356 aff = sqlite3AffinityType(pExpr->u.zToken); 2357 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2358 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2359 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2360 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2361 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2362 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2363 testcase( to_op==OP_ToText ); 2364 testcase( to_op==OP_ToBlob ); 2365 testcase( to_op==OP_ToNumeric ); 2366 testcase( to_op==OP_ToInt ); 2367 testcase( to_op==OP_ToReal ); 2368 if( inReg!=target ){ 2369 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2370 inReg = target; 2371 } 2372 sqlite3VdbeAddOp1(v, to_op, inReg); 2373 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2374 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2375 break; 2376 } 2377 #endif /* SQLITE_OMIT_CAST */ 2378 case TK_LT: 2379 case TK_LE: 2380 case TK_GT: 2381 case TK_GE: 2382 case TK_NE: 2383 case TK_EQ: { 2384 assert( TK_LT==OP_Lt ); 2385 assert( TK_LE==OP_Le ); 2386 assert( TK_GT==OP_Gt ); 2387 assert( TK_GE==OP_Ge ); 2388 assert( TK_EQ==OP_Eq ); 2389 assert( TK_NE==OP_Ne ); 2390 testcase( op==TK_LT ); 2391 testcase( op==TK_LE ); 2392 testcase( op==TK_GT ); 2393 testcase( op==TK_GE ); 2394 testcase( op==TK_EQ ); 2395 testcase( op==TK_NE ); 2396 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2397 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2398 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2399 r1, r2, inReg, SQLITE_STOREP2); 2400 testcase( regFree1==0 ); 2401 testcase( regFree2==0 ); 2402 break; 2403 } 2404 case TK_IS: 2405 case TK_ISNOT: { 2406 testcase( op==TK_IS ); 2407 testcase( op==TK_ISNOT ); 2408 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2409 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2410 op = (op==TK_IS) ? TK_EQ : TK_NE; 2411 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2412 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2413 testcase( regFree1==0 ); 2414 testcase( regFree2==0 ); 2415 break; 2416 } 2417 case TK_AND: 2418 case TK_OR: 2419 case TK_PLUS: 2420 case TK_STAR: 2421 case TK_MINUS: 2422 case TK_REM: 2423 case TK_BITAND: 2424 case TK_BITOR: 2425 case TK_SLASH: 2426 case TK_LSHIFT: 2427 case TK_RSHIFT: 2428 case TK_CONCAT: { 2429 assert( TK_AND==OP_And ); 2430 assert( TK_OR==OP_Or ); 2431 assert( TK_PLUS==OP_Add ); 2432 assert( TK_MINUS==OP_Subtract ); 2433 assert( TK_REM==OP_Remainder ); 2434 assert( TK_BITAND==OP_BitAnd ); 2435 assert( TK_BITOR==OP_BitOr ); 2436 assert( TK_SLASH==OP_Divide ); 2437 assert( TK_LSHIFT==OP_ShiftLeft ); 2438 assert( TK_RSHIFT==OP_ShiftRight ); 2439 assert( TK_CONCAT==OP_Concat ); 2440 testcase( op==TK_AND ); 2441 testcase( op==TK_OR ); 2442 testcase( op==TK_PLUS ); 2443 testcase( op==TK_MINUS ); 2444 testcase( op==TK_REM ); 2445 testcase( op==TK_BITAND ); 2446 testcase( op==TK_BITOR ); 2447 testcase( op==TK_SLASH ); 2448 testcase( op==TK_LSHIFT ); 2449 testcase( op==TK_RSHIFT ); 2450 testcase( op==TK_CONCAT ); 2451 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2452 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2453 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2454 testcase( regFree1==0 ); 2455 testcase( regFree2==0 ); 2456 break; 2457 } 2458 case TK_UMINUS: { 2459 Expr *pLeft = pExpr->pLeft; 2460 assert( pLeft ); 2461 if( pLeft->op==TK_INTEGER ){ 2462 codeInteger(pParse, pLeft, 1, target); 2463 #ifndef SQLITE_OMIT_FLOATING_POINT 2464 }else if( pLeft->op==TK_FLOAT ){ 2465 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2466 codeReal(v, pLeft->u.zToken, 1, target); 2467 #endif 2468 }else{ 2469 regFree1 = r1 = sqlite3GetTempReg(pParse); 2470 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); 2471 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2472 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2473 testcase( regFree2==0 ); 2474 } 2475 inReg = target; 2476 break; 2477 } 2478 case TK_BITNOT: 2479 case TK_NOT: { 2480 assert( TK_BITNOT==OP_BitNot ); 2481 assert( TK_NOT==OP_Not ); 2482 testcase( op==TK_BITNOT ); 2483 testcase( op==TK_NOT ); 2484 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2485 testcase( regFree1==0 ); 2486 inReg = target; 2487 sqlite3VdbeAddOp2(v, op, r1, inReg); 2488 break; 2489 } 2490 case TK_ISNULL: 2491 case TK_NOTNULL: { 2492 int addr; 2493 assert( TK_ISNULL==OP_IsNull ); 2494 assert( TK_NOTNULL==OP_NotNull ); 2495 testcase( op==TK_ISNULL ); 2496 testcase( op==TK_NOTNULL ); 2497 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2498 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2499 testcase( regFree1==0 ); 2500 addr = sqlite3VdbeAddOp1(v, op, r1); 2501 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2502 sqlite3VdbeJumpHere(v, addr); 2503 break; 2504 } 2505 case TK_AGG_FUNCTION: { 2506 AggInfo *pInfo = pExpr->pAggInfo; 2507 if( pInfo==0 ){ 2508 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2509 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2510 }else{ 2511 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2512 } 2513 break; 2514 } 2515 case TK_CONST_FUNC: 2516 case TK_FUNCTION: { 2517 ExprList *pFarg; /* List of function arguments */ 2518 int nFarg; /* Number of function arguments */ 2519 FuncDef *pDef; /* The function definition object */ 2520 int nId; /* Length of the function name in bytes */ 2521 const char *zId; /* The function name */ 2522 int constMask = 0; /* Mask of function arguments that are constant */ 2523 int i; /* Loop counter */ 2524 u8 enc = ENC(db); /* The text encoding used by this database */ 2525 CollSeq *pColl = 0; /* A collating sequence */ 2526 2527 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2528 testcase( op==TK_CONST_FUNC ); 2529 testcase( op==TK_FUNCTION ); 2530 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 2531 pFarg = 0; 2532 }else{ 2533 pFarg = pExpr->x.pList; 2534 } 2535 nFarg = pFarg ? pFarg->nExpr : 0; 2536 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2537 zId = pExpr->u.zToken; 2538 nId = sqlite3Strlen30(zId); 2539 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2540 if( pDef==0 ){ 2541 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2542 break; 2543 } 2544 2545 /* Attempt a direct implementation of the built-in COALESCE() and 2546 ** IFNULL() functions. This avoids unnecessary evalation of 2547 ** arguments past the first non-NULL argument. 2548 */ 2549 if( pDef->flags & SQLITE_FUNC_COALESCE ){ 2550 int endCoalesce = sqlite3VdbeMakeLabel(v); 2551 assert( nFarg>=2 ); 2552 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2553 for(i=1; i<nFarg; i++){ 2554 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2555 sqlite3ExprCacheRemove(pParse, target, 1); 2556 sqlite3ExprCachePush(pParse); 2557 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2558 sqlite3ExprCachePop(pParse, 1); 2559 } 2560 sqlite3VdbeResolveLabel(v, endCoalesce); 2561 break; 2562 } 2563 2564 2565 if( pFarg ){ 2566 r1 = sqlite3GetTempRange(pParse, nFarg); 2567 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2568 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); 2569 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ 2570 }else{ 2571 r1 = 0; 2572 } 2573 #ifndef SQLITE_OMIT_VIRTUALTABLE 2574 /* Possibly overload the function if the first argument is 2575 ** a virtual table column. 2576 ** 2577 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2578 ** second argument, not the first, as the argument to test to 2579 ** see if it is a column in a virtual table. This is done because 2580 ** the left operand of infix functions (the operand we want to 2581 ** control overloading) ends up as the second argument to the 2582 ** function. The expression "A glob B" is equivalent to 2583 ** "glob(B,A). We want to use the A in "A glob B" to test 2584 ** for function overloading. But we use the B term in "glob(B,A)". 2585 */ 2586 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2587 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2588 }else if( nFarg>0 ){ 2589 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2590 } 2591 #endif 2592 for(i=0; i<nFarg; i++){ 2593 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2594 constMask |= (1<<i); 2595 } 2596 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2597 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2598 } 2599 } 2600 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){ 2601 if( !pColl ) pColl = db->pDfltColl; 2602 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2603 } 2604 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2605 (char*)pDef, P4_FUNCDEF); 2606 sqlite3VdbeChangeP5(v, (u8)nFarg); 2607 if( nFarg ){ 2608 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2609 } 2610 break; 2611 } 2612 #ifndef SQLITE_OMIT_SUBQUERY 2613 case TK_EXISTS: 2614 case TK_SELECT: { 2615 testcase( op==TK_EXISTS ); 2616 testcase( op==TK_SELECT ); 2617 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2618 break; 2619 } 2620 case TK_IN: { 2621 int destIfFalse = sqlite3VdbeMakeLabel(v); 2622 int destIfNull = sqlite3VdbeMakeLabel(v); 2623 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2624 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2625 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2626 sqlite3VdbeResolveLabel(v, destIfFalse); 2627 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2628 sqlite3VdbeResolveLabel(v, destIfNull); 2629 break; 2630 } 2631 #endif /* SQLITE_OMIT_SUBQUERY */ 2632 2633 2634 /* 2635 ** x BETWEEN y AND z 2636 ** 2637 ** This is equivalent to 2638 ** 2639 ** x>=y AND x<=z 2640 ** 2641 ** X is stored in pExpr->pLeft. 2642 ** Y is stored in pExpr->pList->a[0].pExpr. 2643 ** Z is stored in pExpr->pList->a[1].pExpr. 2644 */ 2645 case TK_BETWEEN: { 2646 Expr *pLeft = pExpr->pLeft; 2647 struct ExprList_item *pLItem = pExpr->x.pList->a; 2648 Expr *pRight = pLItem->pExpr; 2649 2650 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 2651 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2652 testcase( regFree1==0 ); 2653 testcase( regFree2==0 ); 2654 r3 = sqlite3GetTempReg(pParse); 2655 r4 = sqlite3GetTempReg(pParse); 2656 codeCompare(pParse, pLeft, pRight, OP_Ge, 2657 r1, r2, r3, SQLITE_STOREP2); 2658 pLItem++; 2659 pRight = pLItem->pExpr; 2660 sqlite3ReleaseTempReg(pParse, regFree2); 2661 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2662 testcase( regFree2==0 ); 2663 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2664 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2665 sqlite3ReleaseTempReg(pParse, r3); 2666 sqlite3ReleaseTempReg(pParse, r4); 2667 break; 2668 } 2669 case TK_UPLUS: { 2670 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2671 break; 2672 } 2673 2674 case TK_TRIGGER: { 2675 /* If the opcode is TK_TRIGGER, then the expression is a reference 2676 ** to a column in the new.* or old.* pseudo-tables available to 2677 ** trigger programs. In this case Expr.iTable is set to 1 for the 2678 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 2679 ** is set to the column of the pseudo-table to read, or to -1 to 2680 ** read the rowid field. 2681 ** 2682 ** The expression is implemented using an OP_Param opcode. The p1 2683 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 2684 ** to reference another column of the old.* pseudo-table, where 2685 ** i is the index of the column. For a new.rowid reference, p1 is 2686 ** set to (n+1), where n is the number of columns in each pseudo-table. 2687 ** For a reference to any other column in the new.* pseudo-table, p1 2688 ** is set to (n+2+i), where n and i are as defined previously. For 2689 ** example, if the table on which triggers are being fired is 2690 ** declared as: 2691 ** 2692 ** CREATE TABLE t1(a, b); 2693 ** 2694 ** Then p1 is interpreted as follows: 2695 ** 2696 ** p1==0 -> old.rowid p1==3 -> new.rowid 2697 ** p1==1 -> old.a p1==4 -> new.a 2698 ** p1==2 -> old.b p1==5 -> new.b 2699 */ 2700 Table *pTab = pExpr->pTab; 2701 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 2702 2703 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 2704 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 2705 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 2706 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 2707 2708 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 2709 VdbeComment((v, "%s.%s -> $%d", 2710 (pExpr->iTable ? "new" : "old"), 2711 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 2712 target 2713 )); 2714 2715 #ifndef SQLITE_OMIT_FLOATING_POINT 2716 /* If the column has REAL affinity, it may currently be stored as an 2717 ** integer. Use OP_RealAffinity to make sure it is really real. */ 2718 if( pExpr->iColumn>=0 2719 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 2720 ){ 2721 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 2722 } 2723 #endif 2724 break; 2725 } 2726 2727 2728 /* 2729 ** Form A: 2730 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2731 ** 2732 ** Form B: 2733 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2734 ** 2735 ** Form A is can be transformed into the equivalent form B as follows: 2736 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2737 ** WHEN x=eN THEN rN ELSE y END 2738 ** 2739 ** X (if it exists) is in pExpr->pLeft. 2740 ** Y is in pExpr->pRight. The Y is also optional. If there is no 2741 ** ELSE clause and no other term matches, then the result of the 2742 ** exprssion is NULL. 2743 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2744 ** 2745 ** The result of the expression is the Ri for the first matching Ei, 2746 ** or if there is no matching Ei, the ELSE term Y, or if there is 2747 ** no ELSE term, NULL. 2748 */ 2749 default: assert( op==TK_CASE ); { 2750 int endLabel; /* GOTO label for end of CASE stmt */ 2751 int nextCase; /* GOTO label for next WHEN clause */ 2752 int nExpr; /* 2x number of WHEN terms */ 2753 int i; /* Loop counter */ 2754 ExprList *pEList; /* List of WHEN terms */ 2755 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2756 Expr opCompare; /* The X==Ei expression */ 2757 Expr cacheX; /* Cached expression X */ 2758 Expr *pX; /* The X expression */ 2759 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 2760 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 2761 2762 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 2763 assert((pExpr->x.pList->nExpr % 2) == 0); 2764 assert(pExpr->x.pList->nExpr > 0); 2765 pEList = pExpr->x.pList; 2766 aListelem = pEList->a; 2767 nExpr = pEList->nExpr; 2768 endLabel = sqlite3VdbeMakeLabel(v); 2769 if( (pX = pExpr->pLeft)!=0 ){ 2770 cacheX = *pX; 2771 testcase( pX->op==TK_COLUMN ); 2772 testcase( pX->op==TK_REGISTER ); 2773 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); 2774 testcase( regFree1==0 ); 2775 cacheX.op = TK_REGISTER; 2776 opCompare.op = TK_EQ; 2777 opCompare.pLeft = &cacheX; 2778 pTest = &opCompare; 2779 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 2780 ** The value in regFree1 might get SCopy-ed into the file result. 2781 ** So make sure that the regFree1 register is not reused for other 2782 ** purposes and possibly overwritten. */ 2783 regFree1 = 0; 2784 } 2785 for(i=0; i<nExpr; i=i+2){ 2786 sqlite3ExprCachePush(pParse); 2787 if( pX ){ 2788 assert( pTest!=0 ); 2789 opCompare.pRight = aListelem[i].pExpr; 2790 }else{ 2791 pTest = aListelem[i].pExpr; 2792 } 2793 nextCase = sqlite3VdbeMakeLabel(v); 2794 testcase( pTest->op==TK_COLUMN ); 2795 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2796 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2797 testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); 2798 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2799 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2800 sqlite3ExprCachePop(pParse, 1); 2801 sqlite3VdbeResolveLabel(v, nextCase); 2802 } 2803 if( pExpr->pRight ){ 2804 sqlite3ExprCachePush(pParse); 2805 sqlite3ExprCode(pParse, pExpr->pRight, target); 2806 sqlite3ExprCachePop(pParse, 1); 2807 }else{ 2808 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2809 } 2810 assert( db->mallocFailed || pParse->nErr>0 2811 || pParse->iCacheLevel==iCacheLevel ); 2812 sqlite3VdbeResolveLabel(v, endLabel); 2813 break; 2814 } 2815 #ifndef SQLITE_OMIT_TRIGGER 2816 case TK_RAISE: { 2817 assert( pExpr->affinity==OE_Rollback 2818 || pExpr->affinity==OE_Abort 2819 || pExpr->affinity==OE_Fail 2820 || pExpr->affinity==OE_Ignore 2821 ); 2822 if( !pParse->pTriggerTab ){ 2823 sqlite3ErrorMsg(pParse, 2824 "RAISE() may only be used within a trigger-program"); 2825 return 0; 2826 } 2827 if( pExpr->affinity==OE_Abort ){ 2828 sqlite3MayAbort(pParse); 2829 } 2830 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2831 if( pExpr->affinity==OE_Ignore ){ 2832 sqlite3VdbeAddOp4( 2833 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 2834 }else{ 2835 sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0); 2836 } 2837 2838 break; 2839 } 2840 #endif 2841 } 2842 sqlite3ReleaseTempReg(pParse, regFree1); 2843 sqlite3ReleaseTempReg(pParse, regFree2); 2844 return inReg; 2845 } 2846 2847 /* 2848 ** Generate code to evaluate an expression and store the results 2849 ** into a register. Return the register number where the results 2850 ** are stored. 2851 ** 2852 ** If the register is a temporary register that can be deallocated, 2853 ** then write its number into *pReg. If the result register is not 2854 ** a temporary, then set *pReg to zero. 2855 */ 2856 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 2857 int r1 = sqlite3GetTempReg(pParse); 2858 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2859 if( r2==r1 ){ 2860 *pReg = r1; 2861 }else{ 2862 sqlite3ReleaseTempReg(pParse, r1); 2863 *pReg = 0; 2864 } 2865 return r2; 2866 } 2867 2868 /* 2869 ** Generate code that will evaluate expression pExpr and store the 2870 ** results in register target. The results are guaranteed to appear 2871 ** in register target. 2872 */ 2873 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 2874 int inReg; 2875 2876 assert( target>0 && target<=pParse->nMem ); 2877 if( pExpr && pExpr->op==TK_REGISTER ){ 2878 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 2879 }else{ 2880 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2881 assert( pParse->pVdbe || pParse->db->mallocFailed ); 2882 if( inReg!=target && pParse->pVdbe ){ 2883 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 2884 } 2885 } 2886 return target; 2887 } 2888 2889 /* 2890 ** Generate code that evalutes the given expression and puts the result 2891 ** in register target. 2892 ** 2893 ** Also make a copy of the expression results into another "cache" register 2894 ** and modify the expression so that the next time it is evaluated, 2895 ** the result is a copy of the cache register. 2896 ** 2897 ** This routine is used for expressions that are used multiple 2898 ** times. They are evaluated once and the results of the expression 2899 ** are reused. 2900 */ 2901 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 2902 Vdbe *v = pParse->pVdbe; 2903 int inReg; 2904 inReg = sqlite3ExprCode(pParse, pExpr, target); 2905 assert( target>0 ); 2906 /* This routine is called for terms to INSERT or UPDATE. And the only 2907 ** other place where expressions can be converted into TK_REGISTER is 2908 ** in WHERE clause processing. So as currently implemented, there is 2909 ** no way for a TK_REGISTER to exist here. But it seems prudent to 2910 ** keep the ALWAYS() in case the conditions above change with future 2911 ** modifications or enhancements. */ 2912 if( ALWAYS(pExpr->op!=TK_REGISTER) ){ 2913 int iMem; 2914 iMem = ++pParse->nMem; 2915 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 2916 pExpr->iTable = iMem; 2917 pExpr->op2 = pExpr->op; 2918 pExpr->op = TK_REGISTER; 2919 } 2920 return inReg; 2921 } 2922 2923 /* 2924 ** Return TRUE if pExpr is an constant expression that is appropriate 2925 ** for factoring out of a loop. Appropriate expressions are: 2926 ** 2927 ** * Any expression that evaluates to two or more opcodes. 2928 ** 2929 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 2930 ** or OP_Variable that does not need to be placed in a 2931 ** specific register. 2932 ** 2933 ** There is no point in factoring out single-instruction constant 2934 ** expressions that need to be placed in a particular register. 2935 ** We could factor them out, but then we would end up adding an 2936 ** OP_SCopy instruction to move the value into the correct register 2937 ** later. We might as well just use the original instruction and 2938 ** avoid the OP_SCopy. 2939 */ 2940 static int isAppropriateForFactoring(Expr *p){ 2941 if( !sqlite3ExprIsConstantNotJoin(p) ){ 2942 return 0; /* Only constant expressions are appropriate for factoring */ 2943 } 2944 if( (p->flags & EP_FixedDest)==0 ){ 2945 return 1; /* Any constant without a fixed destination is appropriate */ 2946 } 2947 while( p->op==TK_UPLUS ) p = p->pLeft; 2948 switch( p->op ){ 2949 #ifndef SQLITE_OMIT_BLOB_LITERAL 2950 case TK_BLOB: 2951 #endif 2952 case TK_VARIABLE: 2953 case TK_INTEGER: 2954 case TK_FLOAT: 2955 case TK_NULL: 2956 case TK_STRING: { 2957 testcase( p->op==TK_BLOB ); 2958 testcase( p->op==TK_VARIABLE ); 2959 testcase( p->op==TK_INTEGER ); 2960 testcase( p->op==TK_FLOAT ); 2961 testcase( p->op==TK_NULL ); 2962 testcase( p->op==TK_STRING ); 2963 /* Single-instruction constants with a fixed destination are 2964 ** better done in-line. If we factor them, they will just end 2965 ** up generating an OP_SCopy to move the value to the destination 2966 ** register. */ 2967 return 0; 2968 } 2969 case TK_UMINUS: { 2970 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ 2971 return 0; 2972 } 2973 break; 2974 } 2975 default: { 2976 break; 2977 } 2978 } 2979 return 1; 2980 } 2981 2982 /* 2983 ** If pExpr is a constant expression that is appropriate for 2984 ** factoring out of a loop, then evaluate the expression 2985 ** into a register and convert the expression into a TK_REGISTER 2986 ** expression. 2987 */ 2988 static int evalConstExpr(Walker *pWalker, Expr *pExpr){ 2989 Parse *pParse = pWalker->pParse; 2990 switch( pExpr->op ){ 2991 case TK_IN: 2992 case TK_REGISTER: { 2993 return WRC_Prune; 2994 } 2995 case TK_FUNCTION: 2996 case TK_AGG_FUNCTION: 2997 case TK_CONST_FUNC: { 2998 /* The arguments to a function have a fixed destination. 2999 ** Mark them this way to avoid generated unneeded OP_SCopy 3000 ** instructions. 3001 */ 3002 ExprList *pList = pExpr->x.pList; 3003 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3004 if( pList ){ 3005 int i = pList->nExpr; 3006 struct ExprList_item *pItem = pList->a; 3007 for(; i>0; i--, pItem++){ 3008 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest; 3009 } 3010 } 3011 break; 3012 } 3013 } 3014 if( isAppropriateForFactoring(pExpr) ){ 3015 int r1 = ++pParse->nMem; 3016 int r2; 3017 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3018 if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1); 3019 pExpr->op2 = pExpr->op; 3020 pExpr->op = TK_REGISTER; 3021 pExpr->iTable = r2; 3022 return WRC_Prune; 3023 } 3024 return WRC_Continue; 3025 } 3026 3027 /* 3028 ** Preevaluate constant subexpressions within pExpr and store the 3029 ** results in registers. Modify pExpr so that the constant subexpresions 3030 ** are TK_REGISTER opcodes that refer to the precomputed values. 3031 */ 3032 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ 3033 Walker w; 3034 w.xExprCallback = evalConstExpr; 3035 w.xSelectCallback = 0; 3036 w.pParse = pParse; 3037 sqlite3WalkExpr(&w, pExpr); 3038 } 3039 3040 3041 /* 3042 ** Generate code that pushes the value of every element of the given 3043 ** expression list into a sequence of registers beginning at target. 3044 ** 3045 ** Return the number of elements evaluated. 3046 */ 3047 int sqlite3ExprCodeExprList( 3048 Parse *pParse, /* Parsing context */ 3049 ExprList *pList, /* The expression list to be coded */ 3050 int target, /* Where to write results */ 3051 int doHardCopy /* Make a hard copy of every element */ 3052 ){ 3053 struct ExprList_item *pItem; 3054 int i, n; 3055 assert( pList!=0 ); 3056 assert( target>0 ); 3057 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3058 n = pList->nExpr; 3059 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3060 Expr *pExpr = pItem->pExpr; 3061 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3062 if( inReg!=target+i ){ 3063 sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy, 3064 inReg, target+i); 3065 } 3066 } 3067 return n; 3068 } 3069 3070 /* 3071 ** Generate code for a BETWEEN operator. 3072 ** 3073 ** x BETWEEN y AND z 3074 ** 3075 ** The above is equivalent to 3076 ** 3077 ** x>=y AND x<=z 3078 ** 3079 ** Code it as such, taking care to do the common subexpression 3080 ** elementation of x. 3081 */ 3082 static void exprCodeBetween( 3083 Parse *pParse, /* Parsing and code generating context */ 3084 Expr *pExpr, /* The BETWEEN expression */ 3085 int dest, /* Jump here if the jump is taken */ 3086 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3087 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3088 ){ 3089 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3090 Expr compLeft; /* The x>=y term */ 3091 Expr compRight; /* The x<=z term */ 3092 Expr exprX; /* The x subexpression */ 3093 int regFree1 = 0; /* Temporary use register */ 3094 3095 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3096 exprX = *pExpr->pLeft; 3097 exprAnd.op = TK_AND; 3098 exprAnd.pLeft = &compLeft; 3099 exprAnd.pRight = &compRight; 3100 compLeft.op = TK_GE; 3101 compLeft.pLeft = &exprX; 3102 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3103 compRight.op = TK_LE; 3104 compRight.pLeft = &exprX; 3105 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3106 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3107 exprX.op = TK_REGISTER; 3108 if( jumpIfTrue ){ 3109 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3110 }else{ 3111 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3112 } 3113 sqlite3ReleaseTempReg(pParse, regFree1); 3114 3115 /* Ensure adequate test coverage */ 3116 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3117 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3118 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3119 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3120 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3121 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3122 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3123 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3124 } 3125 3126 /* 3127 ** Generate code for a boolean expression such that a jump is made 3128 ** to the label "dest" if the expression is true but execution 3129 ** continues straight thru if the expression is false. 3130 ** 3131 ** If the expression evaluates to NULL (neither true nor false), then 3132 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3133 ** 3134 ** This code depends on the fact that certain token values (ex: TK_EQ) 3135 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3136 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3137 ** the make process cause these values to align. Assert()s in the code 3138 ** below verify that the numbers are aligned correctly. 3139 */ 3140 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3141 Vdbe *v = pParse->pVdbe; 3142 int op = 0; 3143 int regFree1 = 0; 3144 int regFree2 = 0; 3145 int r1, r2; 3146 3147 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3148 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3149 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3150 op = pExpr->op; 3151 switch( op ){ 3152 case TK_AND: { 3153 int d2 = sqlite3VdbeMakeLabel(v); 3154 testcase( jumpIfNull==0 ); 3155 sqlite3ExprCachePush(pParse); 3156 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3157 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3158 sqlite3VdbeResolveLabel(v, d2); 3159 sqlite3ExprCachePop(pParse, 1); 3160 break; 3161 } 3162 case TK_OR: { 3163 testcase( jumpIfNull==0 ); 3164 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3165 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3166 break; 3167 } 3168 case TK_NOT: { 3169 testcase( jumpIfNull==0 ); 3170 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3171 break; 3172 } 3173 case TK_LT: 3174 case TK_LE: 3175 case TK_GT: 3176 case TK_GE: 3177 case TK_NE: 3178 case TK_EQ: { 3179 assert( TK_LT==OP_Lt ); 3180 assert( TK_LE==OP_Le ); 3181 assert( TK_GT==OP_Gt ); 3182 assert( TK_GE==OP_Ge ); 3183 assert( TK_EQ==OP_Eq ); 3184 assert( TK_NE==OP_Ne ); 3185 testcase( op==TK_LT ); 3186 testcase( op==TK_LE ); 3187 testcase( op==TK_GT ); 3188 testcase( op==TK_GE ); 3189 testcase( op==TK_EQ ); 3190 testcase( op==TK_NE ); 3191 testcase( jumpIfNull==0 ); 3192 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3193 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3194 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3195 r1, r2, dest, jumpIfNull); 3196 testcase( regFree1==0 ); 3197 testcase( regFree2==0 ); 3198 break; 3199 } 3200 case TK_IS: 3201 case TK_ISNOT: { 3202 testcase( op==TK_IS ); 3203 testcase( op==TK_ISNOT ); 3204 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3205 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3206 op = (op==TK_IS) ? TK_EQ : TK_NE; 3207 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3208 r1, r2, dest, SQLITE_NULLEQ); 3209 testcase( regFree1==0 ); 3210 testcase( regFree2==0 ); 3211 break; 3212 } 3213 case TK_ISNULL: 3214 case TK_NOTNULL: { 3215 assert( TK_ISNULL==OP_IsNull ); 3216 assert( TK_NOTNULL==OP_NotNull ); 3217 testcase( op==TK_ISNULL ); 3218 testcase( op==TK_NOTNULL ); 3219 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3220 sqlite3VdbeAddOp2(v, op, r1, dest); 3221 testcase( regFree1==0 ); 3222 break; 3223 } 3224 case TK_BETWEEN: { 3225 testcase( jumpIfNull==0 ); 3226 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3227 break; 3228 } 3229 case TK_IN: { 3230 int destIfFalse = sqlite3VdbeMakeLabel(v); 3231 int destIfNull = jumpIfNull ? dest : destIfFalse; 3232 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3233 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3234 sqlite3VdbeResolveLabel(v, destIfFalse); 3235 break; 3236 } 3237 default: { 3238 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3239 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3240 testcase( regFree1==0 ); 3241 testcase( jumpIfNull==0 ); 3242 break; 3243 } 3244 } 3245 sqlite3ReleaseTempReg(pParse, regFree1); 3246 sqlite3ReleaseTempReg(pParse, regFree2); 3247 } 3248 3249 /* 3250 ** Generate code for a boolean expression such that a jump is made 3251 ** to the label "dest" if the expression is false but execution 3252 ** continues straight thru if the expression is true. 3253 ** 3254 ** If the expression evaluates to NULL (neither true nor false) then 3255 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3256 ** is 0. 3257 */ 3258 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3259 Vdbe *v = pParse->pVdbe; 3260 int op = 0; 3261 int regFree1 = 0; 3262 int regFree2 = 0; 3263 int r1, r2; 3264 3265 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3266 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3267 if( pExpr==0 ) return; 3268 3269 /* The value of pExpr->op and op are related as follows: 3270 ** 3271 ** pExpr->op op 3272 ** --------- ---------- 3273 ** TK_ISNULL OP_NotNull 3274 ** TK_NOTNULL OP_IsNull 3275 ** TK_NE OP_Eq 3276 ** TK_EQ OP_Ne 3277 ** TK_GT OP_Le 3278 ** TK_LE OP_Gt 3279 ** TK_GE OP_Lt 3280 ** TK_LT OP_Ge 3281 ** 3282 ** For other values of pExpr->op, op is undefined and unused. 3283 ** The value of TK_ and OP_ constants are arranged such that we 3284 ** can compute the mapping above using the following expression. 3285 ** Assert()s verify that the computation is correct. 3286 */ 3287 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3288 3289 /* Verify correct alignment of TK_ and OP_ constants 3290 */ 3291 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3292 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3293 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3294 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3295 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3296 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3297 assert( pExpr->op!=TK_GT || op==OP_Le ); 3298 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3299 3300 switch( pExpr->op ){ 3301 case TK_AND: { 3302 testcase( jumpIfNull==0 ); 3303 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3304 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3305 break; 3306 } 3307 case TK_OR: { 3308 int d2 = sqlite3VdbeMakeLabel(v); 3309 testcase( jumpIfNull==0 ); 3310 sqlite3ExprCachePush(pParse); 3311 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3312 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3313 sqlite3VdbeResolveLabel(v, d2); 3314 sqlite3ExprCachePop(pParse, 1); 3315 break; 3316 } 3317 case TK_NOT: { 3318 testcase( jumpIfNull==0 ); 3319 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3320 break; 3321 } 3322 case TK_LT: 3323 case TK_LE: 3324 case TK_GT: 3325 case TK_GE: 3326 case TK_NE: 3327 case TK_EQ: { 3328 testcase( op==TK_LT ); 3329 testcase( op==TK_LE ); 3330 testcase( op==TK_GT ); 3331 testcase( op==TK_GE ); 3332 testcase( op==TK_EQ ); 3333 testcase( op==TK_NE ); 3334 testcase( jumpIfNull==0 ); 3335 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3336 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3337 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3338 r1, r2, dest, jumpIfNull); 3339 testcase( regFree1==0 ); 3340 testcase( regFree2==0 ); 3341 break; 3342 } 3343 case TK_IS: 3344 case TK_ISNOT: { 3345 testcase( pExpr->op==TK_IS ); 3346 testcase( pExpr->op==TK_ISNOT ); 3347 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3348 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3349 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3350 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3351 r1, r2, dest, SQLITE_NULLEQ); 3352 testcase( regFree1==0 ); 3353 testcase( regFree2==0 ); 3354 break; 3355 } 3356 case TK_ISNULL: 3357 case TK_NOTNULL: { 3358 testcase( op==TK_ISNULL ); 3359 testcase( op==TK_NOTNULL ); 3360 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3361 sqlite3VdbeAddOp2(v, op, r1, dest); 3362 testcase( regFree1==0 ); 3363 break; 3364 } 3365 case TK_BETWEEN: { 3366 testcase( jumpIfNull==0 ); 3367 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3368 break; 3369 } 3370 case TK_IN: { 3371 if( jumpIfNull ){ 3372 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3373 }else{ 3374 int destIfNull = sqlite3VdbeMakeLabel(v); 3375 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3376 sqlite3VdbeResolveLabel(v, destIfNull); 3377 } 3378 break; 3379 } 3380 default: { 3381 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3382 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3383 testcase( regFree1==0 ); 3384 testcase( jumpIfNull==0 ); 3385 break; 3386 } 3387 } 3388 sqlite3ReleaseTempReg(pParse, regFree1); 3389 sqlite3ReleaseTempReg(pParse, regFree2); 3390 } 3391 3392 /* 3393 ** Do a deep comparison of two expression trees. Return 0 if the two 3394 ** expressions are completely identical. Return 1 if they differ only 3395 ** by a COLLATE operator at the top level. Return 2 if there are differences 3396 ** other than the top-level COLLATE operator. 3397 ** 3398 ** Sometimes this routine will return 2 even if the two expressions 3399 ** really are equivalent. If we cannot prove that the expressions are 3400 ** identical, we return 2 just to be safe. So if this routine 3401 ** returns 2, then you do not really know for certain if the two 3402 ** expressions are the same. But if you get a 0 or 1 return, then you 3403 ** can be sure the expressions are the same. In the places where 3404 ** this routine is used, it does not hurt to get an extra 2 - that 3405 ** just might result in some slightly slower code. But returning 3406 ** an incorrect 0 or 1 could lead to a malfunction. 3407 */ 3408 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 3409 if( pA==0||pB==0 ){ 3410 return pB==pA ? 0 : 2; 3411 } 3412 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); 3413 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); 3414 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ 3415 return 2; 3416 } 3417 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3418 if( pA->op!=pB->op ) return 2; 3419 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2; 3420 if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2; 3421 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2; 3422 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2; 3423 if( ExprHasProperty(pA, EP_IntValue) ){ 3424 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){ 3425 return 2; 3426 } 3427 }else if( pA->op!=TK_COLUMN && pA->u.zToken ){ 3428 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2; 3429 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3430 return 2; 3431 } 3432 } 3433 if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1; 3434 if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2; 3435 return 0; 3436 } 3437 3438 /* 3439 ** Compare two ExprList objects. Return 0 if they are identical and 3440 ** non-zero if they differ in any way. 3441 ** 3442 ** This routine might return non-zero for equivalent ExprLists. The 3443 ** only consequence will be disabled optimizations. But this routine 3444 ** must never return 0 if the two ExprList objects are different, or 3445 ** a malfunction will result. 3446 ** 3447 ** Two NULL pointers are considered to be the same. But a NULL pointer 3448 ** always differs from a non-NULL pointer. 3449 */ 3450 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){ 3451 int i; 3452 if( pA==0 && pB==0 ) return 0; 3453 if( pA==0 || pB==0 ) return 1; 3454 if( pA->nExpr!=pB->nExpr ) return 1; 3455 for(i=0; i<pA->nExpr; i++){ 3456 Expr *pExprA = pA->a[i].pExpr; 3457 Expr *pExprB = pB->a[i].pExpr; 3458 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3459 if( sqlite3ExprCompare(pExprA, pExprB) ) return 1; 3460 } 3461 return 0; 3462 } 3463 3464 /* 3465 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3466 ** the new element. Return a negative number if malloc fails. 3467 */ 3468 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3469 int i; 3470 pInfo->aCol = sqlite3ArrayAllocate( 3471 db, 3472 pInfo->aCol, 3473 sizeof(pInfo->aCol[0]), 3474 3, 3475 &pInfo->nColumn, 3476 &pInfo->nColumnAlloc, 3477 &i 3478 ); 3479 return i; 3480 } 3481 3482 /* 3483 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3484 ** the new element. Return a negative number if malloc fails. 3485 */ 3486 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3487 int i; 3488 pInfo->aFunc = sqlite3ArrayAllocate( 3489 db, 3490 pInfo->aFunc, 3491 sizeof(pInfo->aFunc[0]), 3492 3, 3493 &pInfo->nFunc, 3494 &pInfo->nFuncAlloc, 3495 &i 3496 ); 3497 return i; 3498 } 3499 3500 /* 3501 ** This is the xExprCallback for a tree walker. It is used to 3502 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3503 ** for additional information. 3504 */ 3505 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 3506 int i; 3507 NameContext *pNC = pWalker->u.pNC; 3508 Parse *pParse = pNC->pParse; 3509 SrcList *pSrcList = pNC->pSrcList; 3510 AggInfo *pAggInfo = pNC->pAggInfo; 3511 3512 switch( pExpr->op ){ 3513 case TK_AGG_COLUMN: 3514 case TK_COLUMN: { 3515 testcase( pExpr->op==TK_AGG_COLUMN ); 3516 testcase( pExpr->op==TK_COLUMN ); 3517 /* Check to see if the column is in one of the tables in the FROM 3518 ** clause of the aggregate query */ 3519 if( ALWAYS(pSrcList!=0) ){ 3520 struct SrcList_item *pItem = pSrcList->a; 3521 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3522 struct AggInfo_col *pCol; 3523 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3524 if( pExpr->iTable==pItem->iCursor ){ 3525 /* If we reach this point, it means that pExpr refers to a table 3526 ** that is in the FROM clause of the aggregate query. 3527 ** 3528 ** Make an entry for the column in pAggInfo->aCol[] if there 3529 ** is not an entry there already. 3530 */ 3531 int k; 3532 pCol = pAggInfo->aCol; 3533 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 3534 if( pCol->iTable==pExpr->iTable && 3535 pCol->iColumn==pExpr->iColumn ){ 3536 break; 3537 } 3538 } 3539 if( (k>=pAggInfo->nColumn) 3540 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 3541 ){ 3542 pCol = &pAggInfo->aCol[k]; 3543 pCol->pTab = pExpr->pTab; 3544 pCol->iTable = pExpr->iTable; 3545 pCol->iColumn = pExpr->iColumn; 3546 pCol->iMem = ++pParse->nMem; 3547 pCol->iSorterColumn = -1; 3548 pCol->pExpr = pExpr; 3549 if( pAggInfo->pGroupBy ){ 3550 int j, n; 3551 ExprList *pGB = pAggInfo->pGroupBy; 3552 struct ExprList_item *pTerm = pGB->a; 3553 n = pGB->nExpr; 3554 for(j=0; j<n; j++, pTerm++){ 3555 Expr *pE = pTerm->pExpr; 3556 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 3557 pE->iColumn==pExpr->iColumn ){ 3558 pCol->iSorterColumn = j; 3559 break; 3560 } 3561 } 3562 } 3563 if( pCol->iSorterColumn<0 ){ 3564 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 3565 } 3566 } 3567 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 3568 ** because it was there before or because we just created it). 3569 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 3570 ** pAggInfo->aCol[] entry. 3571 */ 3572 ExprSetIrreducible(pExpr); 3573 pExpr->pAggInfo = pAggInfo; 3574 pExpr->op = TK_AGG_COLUMN; 3575 pExpr->iAgg = (i16)k; 3576 break; 3577 } /* endif pExpr->iTable==pItem->iCursor */ 3578 } /* end loop over pSrcList */ 3579 } 3580 return WRC_Prune; 3581 } 3582 case TK_AGG_FUNCTION: { 3583 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 3584 ** to be ignored */ 3585 if( pNC->nDepth==0 ){ 3586 /* Check to see if pExpr is a duplicate of another aggregate 3587 ** function that is already in the pAggInfo structure 3588 */ 3589 struct AggInfo_func *pItem = pAggInfo->aFunc; 3590 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 3591 if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){ 3592 break; 3593 } 3594 } 3595 if( i>=pAggInfo->nFunc ){ 3596 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 3597 */ 3598 u8 enc = ENC(pParse->db); 3599 i = addAggInfoFunc(pParse->db, pAggInfo); 3600 if( i>=0 ){ 3601 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3602 pItem = &pAggInfo->aFunc[i]; 3603 pItem->pExpr = pExpr; 3604 pItem->iMem = ++pParse->nMem; 3605 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3606 pItem->pFunc = sqlite3FindFunction(pParse->db, 3607 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 3608 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 3609 if( pExpr->flags & EP_Distinct ){ 3610 pItem->iDistinct = pParse->nTab++; 3611 }else{ 3612 pItem->iDistinct = -1; 3613 } 3614 } 3615 } 3616 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 3617 */ 3618 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3619 ExprSetIrreducible(pExpr); 3620 pExpr->iAgg = (i16)i; 3621 pExpr->pAggInfo = pAggInfo; 3622 return WRC_Prune; 3623 } 3624 } 3625 } 3626 return WRC_Continue; 3627 } 3628 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 3629 NameContext *pNC = pWalker->u.pNC; 3630 if( pNC->nDepth==0 ){ 3631 pNC->nDepth++; 3632 sqlite3WalkSelect(pWalker, pSelect); 3633 pNC->nDepth--; 3634 return WRC_Prune; 3635 }else{ 3636 return WRC_Continue; 3637 } 3638 } 3639 3640 /* 3641 ** Analyze the given expression looking for aggregate functions and 3642 ** for variables that need to be added to the pParse->aAgg[] array. 3643 ** Make additional entries to the pParse->aAgg[] array as necessary. 3644 ** 3645 ** This routine should only be called after the expression has been 3646 ** analyzed by sqlite3ResolveExprNames(). 3647 */ 3648 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 3649 Walker w; 3650 w.xExprCallback = analyzeAggregate; 3651 w.xSelectCallback = analyzeAggregatesInSelect; 3652 w.u.pNC = pNC; 3653 assert( pNC->pSrcList!=0 ); 3654 sqlite3WalkExpr(&w, pExpr); 3655 } 3656 3657 /* 3658 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 3659 ** expression list. Return the number of errors. 3660 ** 3661 ** If an error is found, the analysis is cut short. 3662 */ 3663 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 3664 struct ExprList_item *pItem; 3665 int i; 3666 if( pList ){ 3667 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 3668 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 3669 } 3670 } 3671 } 3672 3673 /* 3674 ** Allocate a single new register for use to hold some intermediate result. 3675 */ 3676 int sqlite3GetTempReg(Parse *pParse){ 3677 if( pParse->nTempReg==0 ){ 3678 return ++pParse->nMem; 3679 } 3680 return pParse->aTempReg[--pParse->nTempReg]; 3681 } 3682 3683 /* 3684 ** Deallocate a register, making available for reuse for some other 3685 ** purpose. 3686 ** 3687 ** If a register is currently being used by the column cache, then 3688 ** the dallocation is deferred until the column cache line that uses 3689 ** the register becomes stale. 3690 */ 3691 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 3692 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3693 int i; 3694 struct yColCache *p; 3695 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 3696 if( p->iReg==iReg ){ 3697 p->tempReg = 1; 3698 return; 3699 } 3700 } 3701 pParse->aTempReg[pParse->nTempReg++] = iReg; 3702 } 3703 } 3704 3705 /* 3706 ** Allocate or deallocate a block of nReg consecutive registers 3707 */ 3708 int sqlite3GetTempRange(Parse *pParse, int nReg){ 3709 int i, n; 3710 i = pParse->iRangeReg; 3711 n = pParse->nRangeReg; 3712 if( nReg<=n ){ 3713 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 3714 pParse->iRangeReg += nReg; 3715 pParse->nRangeReg -= nReg; 3716 }else{ 3717 i = pParse->nMem+1; 3718 pParse->nMem += nReg; 3719 } 3720 return i; 3721 } 3722 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 3723 sqlite3ExprCacheRemove(pParse, iReg, nReg); 3724 if( nReg>pParse->nRangeReg ){ 3725 pParse->nRangeReg = nReg; 3726 pParse->iRangeReg = iReg; 3727 } 3728 } 3729