1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip) ){ 48 assert( pExpr->op==TK_COLLATE ); 49 pExpr = pExpr->pLeft; 50 assert( pExpr!=0 ); 51 } 52 op = pExpr->op; 53 if( op==TK_SELECT ){ 54 assert( pExpr->flags&EP_xIsSelect ); 55 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 56 } 57 if( op==TK_REGISTER ) op = pExpr->op2; 58 #ifndef SQLITE_OMIT_CAST 59 if( op==TK_CAST ){ 60 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 61 return sqlite3AffinityType(pExpr->u.zToken, 0); 62 } 63 #endif 64 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ 65 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 66 } 67 if( op==TK_SELECT_COLUMN ){ 68 assert( pExpr->pLeft->flags&EP_xIsSelect ); 69 return sqlite3ExprAffinity( 70 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 71 ); 72 } 73 if( op==TK_VECTOR ){ 74 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 75 } 76 return pExpr->affExpr; 77 } 78 79 /* 80 ** Set the collating sequence for expression pExpr to be the collating 81 ** sequence named by pToken. Return a pointer to a new Expr node that 82 ** implements the COLLATE operator. 83 ** 84 ** If a memory allocation error occurs, that fact is recorded in pParse->db 85 ** and the pExpr parameter is returned unchanged. 86 */ 87 Expr *sqlite3ExprAddCollateToken( 88 Parse *pParse, /* Parsing context */ 89 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 90 const Token *pCollName, /* Name of collating sequence */ 91 int dequote /* True to dequote pCollName */ 92 ){ 93 if( pCollName->n>0 ){ 94 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 95 if( pNew ){ 96 pNew->pLeft = pExpr; 97 pNew->flags |= EP_Collate|EP_Skip; 98 pExpr = pNew; 99 } 100 } 101 return pExpr; 102 } 103 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 104 Token s; 105 assert( zC!=0 ); 106 sqlite3TokenInit(&s, (char*)zC); 107 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 108 } 109 110 /* 111 ** Skip over any TK_COLLATE operators. 112 */ 113 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 114 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 115 assert( pExpr->op==TK_COLLATE ); 116 pExpr = pExpr->pLeft; 117 } 118 return pExpr; 119 } 120 121 /* 122 ** Skip over any TK_COLLATE operators and/or any unlikely() 123 ** or likelihood() or likely() functions at the root of an 124 ** expression. 125 */ 126 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 127 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 128 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 129 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 130 assert( pExpr->x.pList->nExpr>0 ); 131 assert( pExpr->op==TK_FUNCTION ); 132 pExpr = pExpr->x.pList->a[0].pExpr; 133 }else{ 134 assert( pExpr->op==TK_COLLATE ); 135 pExpr = pExpr->pLeft; 136 } 137 } 138 return pExpr; 139 } 140 141 /* 142 ** Return the collation sequence for the expression pExpr. If 143 ** there is no defined collating sequence, return NULL. 144 ** 145 ** See also: sqlite3ExprNNCollSeq() 146 ** 147 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 148 ** default collation if pExpr has no defined collation. 149 ** 150 ** The collating sequence might be determined by a COLLATE operator 151 ** or by the presence of a column with a defined collating sequence. 152 ** COLLATE operators take first precedence. Left operands take 153 ** precedence over right operands. 154 */ 155 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 156 sqlite3 *db = pParse->db; 157 CollSeq *pColl = 0; 158 Expr *p = pExpr; 159 while( p ){ 160 int op = p->op; 161 if( op==TK_REGISTER ) op = p->op2; 162 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 163 && p->y.pTab!=0 164 ){ 165 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 166 ** a TK_COLUMN but was previously evaluated and cached in a register */ 167 int j = p->iColumn; 168 if( j>=0 ){ 169 const char *zColl = p->y.pTab->aCol[j].zColl; 170 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 171 } 172 break; 173 } 174 if( op==TK_CAST || op==TK_UPLUS ){ 175 p = p->pLeft; 176 continue; 177 } 178 if( op==TK_VECTOR ){ 179 p = p->x.pList->a[0].pExpr; 180 continue; 181 } 182 if( op==TK_COLLATE ){ 183 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 184 break; 185 } 186 if( p->flags & EP_Collate ){ 187 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 188 p = p->pLeft; 189 }else{ 190 Expr *pNext = p->pRight; 191 /* The Expr.x union is never used at the same time as Expr.pRight */ 192 assert( p->x.pList==0 || p->pRight==0 ); 193 if( p->x.pList!=0 194 && !db->mallocFailed 195 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 196 ){ 197 int i; 198 for(i=0; i<p->x.pList->nExpr; i++){ 199 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 200 pNext = p->x.pList->a[i].pExpr; 201 break; 202 } 203 } 204 } 205 p = pNext; 206 } 207 }else{ 208 break; 209 } 210 } 211 if( sqlite3CheckCollSeq(pParse, pColl) ){ 212 pColl = 0; 213 } 214 return pColl; 215 } 216 217 /* 218 ** Return the collation sequence for the expression pExpr. If 219 ** there is no defined collating sequence, return a pointer to the 220 ** defautl collation sequence. 221 ** 222 ** See also: sqlite3ExprCollSeq() 223 ** 224 ** The sqlite3ExprCollSeq() routine works the same except that it 225 ** returns NULL if there is no defined collation. 226 */ 227 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){ 228 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 229 if( p==0 ) p = pParse->db->pDfltColl; 230 assert( p!=0 ); 231 return p; 232 } 233 234 /* 235 ** Return TRUE if the two expressions have equivalent collating sequences. 236 */ 237 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){ 238 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 239 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 240 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 241 } 242 243 /* 244 ** pExpr is an operand of a comparison operator. aff2 is the 245 ** type affinity of the other operand. This routine returns the 246 ** type affinity that should be used for the comparison operator. 247 */ 248 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 249 char aff1 = sqlite3ExprAffinity(pExpr); 250 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 251 /* Both sides of the comparison are columns. If one has numeric 252 ** affinity, use that. Otherwise use no affinity. 253 */ 254 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 255 return SQLITE_AFF_NUMERIC; 256 }else{ 257 return SQLITE_AFF_BLOB; 258 } 259 }else{ 260 /* One side is a column, the other is not. Use the columns affinity. */ 261 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 262 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 263 } 264 } 265 266 /* 267 ** pExpr is a comparison operator. Return the type affinity that should 268 ** be applied to both operands prior to doing the comparison. 269 */ 270 static char comparisonAffinity(Expr *pExpr){ 271 char aff; 272 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 273 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 274 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 275 assert( pExpr->pLeft ); 276 aff = sqlite3ExprAffinity(pExpr->pLeft); 277 if( pExpr->pRight ){ 278 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 279 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 280 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 281 }else if( aff==0 ){ 282 aff = SQLITE_AFF_BLOB; 283 } 284 return aff; 285 } 286 287 /* 288 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 289 ** idx_affinity is the affinity of an indexed column. Return true 290 ** if the index with affinity idx_affinity may be used to implement 291 ** the comparison in pExpr. 292 */ 293 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 294 char aff = comparisonAffinity(pExpr); 295 if( aff<SQLITE_AFF_TEXT ){ 296 return 1; 297 } 298 if( aff==SQLITE_AFF_TEXT ){ 299 return idx_affinity==SQLITE_AFF_TEXT; 300 } 301 return sqlite3IsNumericAffinity(idx_affinity); 302 } 303 304 /* 305 ** Return the P5 value that should be used for a binary comparison 306 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 307 */ 308 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 309 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 310 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 311 return aff; 312 } 313 314 /* 315 ** Return a pointer to the collation sequence that should be used by 316 ** a binary comparison operator comparing pLeft and pRight. 317 ** 318 ** If the left hand expression has a collating sequence type, then it is 319 ** used. Otherwise the collation sequence for the right hand expression 320 ** is used, or the default (BINARY) if neither expression has a collating 321 ** type. 322 ** 323 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 324 ** it is not considered. 325 */ 326 CollSeq *sqlite3BinaryCompareCollSeq( 327 Parse *pParse, 328 Expr *pLeft, 329 Expr *pRight 330 ){ 331 CollSeq *pColl; 332 assert( pLeft ); 333 if( pLeft->flags & EP_Collate ){ 334 pColl = sqlite3ExprCollSeq(pParse, pLeft); 335 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 336 pColl = sqlite3ExprCollSeq(pParse, pRight); 337 }else{ 338 pColl = sqlite3ExprCollSeq(pParse, pLeft); 339 if( !pColl ){ 340 pColl = sqlite3ExprCollSeq(pParse, pRight); 341 } 342 } 343 return pColl; 344 } 345 346 /* Expresssion p is a comparison operator. Return a collation sequence 347 ** appropriate for the comparison operator. 348 ** 349 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 350 ** However, if the OP_Commuted flag is set, then the order of the operands 351 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 352 ** correct collating sequence is found. 353 */ 354 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, Expr *p){ 355 if( ExprHasProperty(p, EP_Commuted) ){ 356 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 357 }else{ 358 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 359 } 360 } 361 362 /* 363 ** Generate code for a comparison operator. 364 */ 365 static int codeCompare( 366 Parse *pParse, /* The parsing (and code generating) context */ 367 Expr *pLeft, /* The left operand */ 368 Expr *pRight, /* The right operand */ 369 int opcode, /* The comparison opcode */ 370 int in1, int in2, /* Register holding operands */ 371 int dest, /* Jump here if true. */ 372 int jumpIfNull, /* If true, jump if either operand is NULL */ 373 int isCommuted /* The comparison has been commuted */ 374 ){ 375 int p5; 376 int addr; 377 CollSeq *p4; 378 379 if( pParse->nErr ) return 0; 380 if( isCommuted ){ 381 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 382 }else{ 383 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 384 } 385 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 386 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 387 (void*)p4, P4_COLLSEQ); 388 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 389 return addr; 390 } 391 392 /* 393 ** Return true if expression pExpr is a vector, or false otherwise. 394 ** 395 ** A vector is defined as any expression that results in two or more 396 ** columns of result. Every TK_VECTOR node is an vector because the 397 ** parser will not generate a TK_VECTOR with fewer than two entries. 398 ** But a TK_SELECT might be either a vector or a scalar. It is only 399 ** considered a vector if it has two or more result columns. 400 */ 401 int sqlite3ExprIsVector(Expr *pExpr){ 402 return sqlite3ExprVectorSize(pExpr)>1; 403 } 404 405 /* 406 ** If the expression passed as the only argument is of type TK_VECTOR 407 ** return the number of expressions in the vector. Or, if the expression 408 ** is a sub-select, return the number of columns in the sub-select. For 409 ** any other type of expression, return 1. 410 */ 411 int sqlite3ExprVectorSize(Expr *pExpr){ 412 u8 op = pExpr->op; 413 if( op==TK_REGISTER ) op = pExpr->op2; 414 if( op==TK_VECTOR ){ 415 return pExpr->x.pList->nExpr; 416 }else if( op==TK_SELECT ){ 417 return pExpr->x.pSelect->pEList->nExpr; 418 }else{ 419 return 1; 420 } 421 } 422 423 /* 424 ** Return a pointer to a subexpression of pVector that is the i-th 425 ** column of the vector (numbered starting with 0). The caller must 426 ** ensure that i is within range. 427 ** 428 ** If pVector is really a scalar (and "scalar" here includes subqueries 429 ** that return a single column!) then return pVector unmodified. 430 ** 431 ** pVector retains ownership of the returned subexpression. 432 ** 433 ** If the vector is a (SELECT ...) then the expression returned is 434 ** just the expression for the i-th term of the result set, and may 435 ** not be ready for evaluation because the table cursor has not yet 436 ** been positioned. 437 */ 438 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 439 assert( i<sqlite3ExprVectorSize(pVector) ); 440 if( sqlite3ExprIsVector(pVector) ){ 441 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 442 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 443 return pVector->x.pSelect->pEList->a[i].pExpr; 444 }else{ 445 return pVector->x.pList->a[i].pExpr; 446 } 447 } 448 return pVector; 449 } 450 451 /* 452 ** Compute and return a new Expr object which when passed to 453 ** sqlite3ExprCode() will generate all necessary code to compute 454 ** the iField-th column of the vector expression pVector. 455 ** 456 ** It is ok for pVector to be a scalar (as long as iField==0). 457 ** In that case, this routine works like sqlite3ExprDup(). 458 ** 459 ** The caller owns the returned Expr object and is responsible for 460 ** ensuring that the returned value eventually gets freed. 461 ** 462 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 463 ** then the returned object will reference pVector and so pVector must remain 464 ** valid for the life of the returned object. If pVector is a TK_VECTOR 465 ** or a scalar expression, then it can be deleted as soon as this routine 466 ** returns. 467 ** 468 ** A trick to cause a TK_SELECT pVector to be deleted together with 469 ** the returned Expr object is to attach the pVector to the pRight field 470 ** of the returned TK_SELECT_COLUMN Expr object. 471 */ 472 Expr *sqlite3ExprForVectorField( 473 Parse *pParse, /* Parsing context */ 474 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 475 int iField /* Which column of the vector to return */ 476 ){ 477 Expr *pRet; 478 if( pVector->op==TK_SELECT ){ 479 assert( pVector->flags & EP_xIsSelect ); 480 /* The TK_SELECT_COLUMN Expr node: 481 ** 482 ** pLeft: pVector containing TK_SELECT. Not deleted. 483 ** pRight: not used. But recursively deleted. 484 ** iColumn: Index of a column in pVector 485 ** iTable: 0 or the number of columns on the LHS of an assignment 486 ** pLeft->iTable: First in an array of register holding result, or 0 487 ** if the result is not yet computed. 488 ** 489 ** sqlite3ExprDelete() specifically skips the recursive delete of 490 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 491 ** can be attached to pRight to cause this node to take ownership of 492 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 493 ** with the same pLeft pointer to the pVector, but only one of them 494 ** will own the pVector. 495 */ 496 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 497 if( pRet ){ 498 pRet->iColumn = iField; 499 pRet->pLeft = pVector; 500 } 501 assert( pRet==0 || pRet->iTable==0 ); 502 }else{ 503 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 504 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 505 sqlite3RenameTokenRemap(pParse, pRet, pVector); 506 } 507 return pRet; 508 } 509 510 /* 511 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 512 ** it. Return the register in which the result is stored (or, if the 513 ** sub-select returns more than one column, the first in an array 514 ** of registers in which the result is stored). 515 ** 516 ** If pExpr is not a TK_SELECT expression, return 0. 517 */ 518 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 519 int reg = 0; 520 #ifndef SQLITE_OMIT_SUBQUERY 521 if( pExpr->op==TK_SELECT ){ 522 reg = sqlite3CodeSubselect(pParse, pExpr); 523 } 524 #endif 525 return reg; 526 } 527 528 /* 529 ** Argument pVector points to a vector expression - either a TK_VECTOR 530 ** or TK_SELECT that returns more than one column. This function returns 531 ** the register number of a register that contains the value of 532 ** element iField of the vector. 533 ** 534 ** If pVector is a TK_SELECT expression, then code for it must have 535 ** already been generated using the exprCodeSubselect() routine. In this 536 ** case parameter regSelect should be the first in an array of registers 537 ** containing the results of the sub-select. 538 ** 539 ** If pVector is of type TK_VECTOR, then code for the requested field 540 ** is generated. In this case (*pRegFree) may be set to the number of 541 ** a temporary register to be freed by the caller before returning. 542 ** 543 ** Before returning, output parameter (*ppExpr) is set to point to the 544 ** Expr object corresponding to element iElem of the vector. 545 */ 546 static int exprVectorRegister( 547 Parse *pParse, /* Parse context */ 548 Expr *pVector, /* Vector to extract element from */ 549 int iField, /* Field to extract from pVector */ 550 int regSelect, /* First in array of registers */ 551 Expr **ppExpr, /* OUT: Expression element */ 552 int *pRegFree /* OUT: Temp register to free */ 553 ){ 554 u8 op = pVector->op; 555 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 556 if( op==TK_REGISTER ){ 557 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 558 return pVector->iTable+iField; 559 } 560 if( op==TK_SELECT ){ 561 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 562 return regSelect+iField; 563 } 564 *ppExpr = pVector->x.pList->a[iField].pExpr; 565 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 566 } 567 568 /* 569 ** Expression pExpr is a comparison between two vector values. Compute 570 ** the result of the comparison (1, 0, or NULL) and write that 571 ** result into register dest. 572 ** 573 ** The caller must satisfy the following preconditions: 574 ** 575 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 576 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 577 ** otherwise: op==pExpr->op and p5==0 578 */ 579 static void codeVectorCompare( 580 Parse *pParse, /* Code generator context */ 581 Expr *pExpr, /* The comparison operation */ 582 int dest, /* Write results into this register */ 583 u8 op, /* Comparison operator */ 584 u8 p5 /* SQLITE_NULLEQ or zero */ 585 ){ 586 Vdbe *v = pParse->pVdbe; 587 Expr *pLeft = pExpr->pLeft; 588 Expr *pRight = pExpr->pRight; 589 int nLeft = sqlite3ExprVectorSize(pLeft); 590 int i; 591 int regLeft = 0; 592 int regRight = 0; 593 u8 opx = op; 594 int addrDone = sqlite3VdbeMakeLabel(pParse); 595 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 596 597 if( pParse->nErr ) return; 598 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 599 sqlite3ErrorMsg(pParse, "row value misused"); 600 return; 601 } 602 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 603 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 604 || pExpr->op==TK_LT || pExpr->op==TK_GT 605 || pExpr->op==TK_LE || pExpr->op==TK_GE 606 ); 607 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 608 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 609 assert( p5==0 || pExpr->op!=op ); 610 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 611 612 p5 |= SQLITE_STOREP2; 613 if( opx==TK_LE ) opx = TK_LT; 614 if( opx==TK_GE ) opx = TK_GT; 615 616 regLeft = exprCodeSubselect(pParse, pLeft); 617 regRight = exprCodeSubselect(pParse, pRight); 618 619 for(i=0; 1 /*Loop exits by "break"*/; i++){ 620 int regFree1 = 0, regFree2 = 0; 621 Expr *pL, *pR; 622 int r1, r2; 623 assert( i>=0 && i<nLeft ); 624 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 625 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 626 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted); 627 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 628 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 629 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 630 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 631 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 632 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 633 sqlite3ReleaseTempReg(pParse, regFree1); 634 sqlite3ReleaseTempReg(pParse, regFree2); 635 if( i==nLeft-1 ){ 636 break; 637 } 638 if( opx==TK_EQ ){ 639 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 640 p5 |= SQLITE_KEEPNULL; 641 }else if( opx==TK_NE ){ 642 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 643 p5 |= SQLITE_KEEPNULL; 644 }else{ 645 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 646 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 647 VdbeCoverageIf(v, op==TK_LT); 648 VdbeCoverageIf(v, op==TK_GT); 649 VdbeCoverageIf(v, op==TK_LE); 650 VdbeCoverageIf(v, op==TK_GE); 651 if( i==nLeft-2 ) opx = op; 652 } 653 } 654 sqlite3VdbeResolveLabel(v, addrDone); 655 } 656 657 #if SQLITE_MAX_EXPR_DEPTH>0 658 /* 659 ** Check that argument nHeight is less than or equal to the maximum 660 ** expression depth allowed. If it is not, leave an error message in 661 ** pParse. 662 */ 663 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 664 int rc = SQLITE_OK; 665 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 666 if( nHeight>mxHeight ){ 667 sqlite3ErrorMsg(pParse, 668 "Expression tree is too large (maximum depth %d)", mxHeight 669 ); 670 rc = SQLITE_ERROR; 671 } 672 return rc; 673 } 674 675 /* The following three functions, heightOfExpr(), heightOfExprList() 676 ** and heightOfSelect(), are used to determine the maximum height 677 ** of any expression tree referenced by the structure passed as the 678 ** first argument. 679 ** 680 ** If this maximum height is greater than the current value pointed 681 ** to by pnHeight, the second parameter, then set *pnHeight to that 682 ** value. 683 */ 684 static void heightOfExpr(Expr *p, int *pnHeight){ 685 if( p ){ 686 if( p->nHeight>*pnHeight ){ 687 *pnHeight = p->nHeight; 688 } 689 } 690 } 691 static void heightOfExprList(ExprList *p, int *pnHeight){ 692 if( p ){ 693 int i; 694 for(i=0; i<p->nExpr; i++){ 695 heightOfExpr(p->a[i].pExpr, pnHeight); 696 } 697 } 698 } 699 static void heightOfSelect(Select *pSelect, int *pnHeight){ 700 Select *p; 701 for(p=pSelect; p; p=p->pPrior){ 702 heightOfExpr(p->pWhere, pnHeight); 703 heightOfExpr(p->pHaving, pnHeight); 704 heightOfExpr(p->pLimit, pnHeight); 705 heightOfExprList(p->pEList, pnHeight); 706 heightOfExprList(p->pGroupBy, pnHeight); 707 heightOfExprList(p->pOrderBy, pnHeight); 708 } 709 } 710 711 /* 712 ** Set the Expr.nHeight variable in the structure passed as an 713 ** argument. An expression with no children, Expr.pList or 714 ** Expr.pSelect member has a height of 1. Any other expression 715 ** has a height equal to the maximum height of any other 716 ** referenced Expr plus one. 717 ** 718 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 719 ** if appropriate. 720 */ 721 static void exprSetHeight(Expr *p){ 722 int nHeight = 0; 723 heightOfExpr(p->pLeft, &nHeight); 724 heightOfExpr(p->pRight, &nHeight); 725 if( ExprHasProperty(p, EP_xIsSelect) ){ 726 heightOfSelect(p->x.pSelect, &nHeight); 727 }else if( p->x.pList ){ 728 heightOfExprList(p->x.pList, &nHeight); 729 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 730 } 731 p->nHeight = nHeight + 1; 732 } 733 734 /* 735 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 736 ** the height is greater than the maximum allowed expression depth, 737 ** leave an error in pParse. 738 ** 739 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 740 ** Expr.flags. 741 */ 742 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 743 if( pParse->nErr ) return; 744 exprSetHeight(p); 745 sqlite3ExprCheckHeight(pParse, p->nHeight); 746 } 747 748 /* 749 ** Return the maximum height of any expression tree referenced 750 ** by the select statement passed as an argument. 751 */ 752 int sqlite3SelectExprHeight(Select *p){ 753 int nHeight = 0; 754 heightOfSelect(p, &nHeight); 755 return nHeight; 756 } 757 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 758 /* 759 ** Propagate all EP_Propagate flags from the Expr.x.pList into 760 ** Expr.flags. 761 */ 762 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 763 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 764 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 765 } 766 } 767 #define exprSetHeight(y) 768 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 769 770 /* 771 ** This routine is the core allocator for Expr nodes. 772 ** 773 ** Construct a new expression node and return a pointer to it. Memory 774 ** for this node and for the pToken argument is a single allocation 775 ** obtained from sqlite3DbMalloc(). The calling function 776 ** is responsible for making sure the node eventually gets freed. 777 ** 778 ** If dequote is true, then the token (if it exists) is dequoted. 779 ** If dequote is false, no dequoting is performed. The deQuote 780 ** parameter is ignored if pToken is NULL or if the token does not 781 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 782 ** then the EP_DblQuoted flag is set on the expression node. 783 ** 784 ** Special case: If op==TK_INTEGER and pToken points to a string that 785 ** can be translated into a 32-bit integer, then the token is not 786 ** stored in u.zToken. Instead, the integer values is written 787 ** into u.iValue and the EP_IntValue flag is set. No extra storage 788 ** is allocated to hold the integer text and the dequote flag is ignored. 789 */ 790 Expr *sqlite3ExprAlloc( 791 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 792 int op, /* Expression opcode */ 793 const Token *pToken, /* Token argument. Might be NULL */ 794 int dequote /* True to dequote */ 795 ){ 796 Expr *pNew; 797 int nExtra = 0; 798 int iValue = 0; 799 800 assert( db!=0 ); 801 if( pToken ){ 802 if( op!=TK_INTEGER || pToken->z==0 803 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 804 nExtra = pToken->n+1; 805 assert( iValue>=0 ); 806 } 807 } 808 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 809 if( pNew ){ 810 memset(pNew, 0, sizeof(Expr)); 811 pNew->op = (u8)op; 812 pNew->iAgg = -1; 813 if( pToken ){ 814 if( nExtra==0 ){ 815 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 816 pNew->u.iValue = iValue; 817 }else{ 818 pNew->u.zToken = (char*)&pNew[1]; 819 assert( pToken->z!=0 || pToken->n==0 ); 820 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 821 pNew->u.zToken[pToken->n] = 0; 822 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 823 sqlite3DequoteExpr(pNew); 824 } 825 } 826 } 827 #if SQLITE_MAX_EXPR_DEPTH>0 828 pNew->nHeight = 1; 829 #endif 830 } 831 return pNew; 832 } 833 834 /* 835 ** Allocate a new expression node from a zero-terminated token that has 836 ** already been dequoted. 837 */ 838 Expr *sqlite3Expr( 839 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 840 int op, /* Expression opcode */ 841 const char *zToken /* Token argument. Might be NULL */ 842 ){ 843 Token x; 844 x.z = zToken; 845 x.n = sqlite3Strlen30(zToken); 846 return sqlite3ExprAlloc(db, op, &x, 0); 847 } 848 849 /* 850 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 851 ** 852 ** If pRoot==NULL that means that a memory allocation error has occurred. 853 ** In that case, delete the subtrees pLeft and pRight. 854 */ 855 void sqlite3ExprAttachSubtrees( 856 sqlite3 *db, 857 Expr *pRoot, 858 Expr *pLeft, 859 Expr *pRight 860 ){ 861 if( pRoot==0 ){ 862 assert( db->mallocFailed ); 863 sqlite3ExprDelete(db, pLeft); 864 sqlite3ExprDelete(db, pRight); 865 }else{ 866 if( pRight ){ 867 pRoot->pRight = pRight; 868 pRoot->flags |= EP_Propagate & pRight->flags; 869 } 870 if( pLeft ){ 871 pRoot->pLeft = pLeft; 872 pRoot->flags |= EP_Propagate & pLeft->flags; 873 } 874 exprSetHeight(pRoot); 875 } 876 } 877 878 /* 879 ** Allocate an Expr node which joins as many as two subtrees. 880 ** 881 ** One or both of the subtrees can be NULL. Return a pointer to the new 882 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 883 ** free the subtrees and return NULL. 884 */ 885 Expr *sqlite3PExpr( 886 Parse *pParse, /* Parsing context */ 887 int op, /* Expression opcode */ 888 Expr *pLeft, /* Left operand */ 889 Expr *pRight /* Right operand */ 890 ){ 891 Expr *p; 892 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 893 if( p ){ 894 memset(p, 0, sizeof(Expr)); 895 p->op = op & 0xff; 896 p->iAgg = -1; 897 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 898 sqlite3ExprCheckHeight(pParse, p->nHeight); 899 }else{ 900 sqlite3ExprDelete(pParse->db, pLeft); 901 sqlite3ExprDelete(pParse->db, pRight); 902 } 903 return p; 904 } 905 906 /* 907 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 908 ** do a memory allocation failure) then delete the pSelect object. 909 */ 910 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 911 if( pExpr ){ 912 pExpr->x.pSelect = pSelect; 913 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 914 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 915 }else{ 916 assert( pParse->db->mallocFailed ); 917 sqlite3SelectDelete(pParse->db, pSelect); 918 } 919 } 920 921 922 /* 923 ** Join two expressions using an AND operator. If either expression is 924 ** NULL, then just return the other expression. 925 ** 926 ** If one side or the other of the AND is known to be false, then instead 927 ** of returning an AND expression, just return a constant expression with 928 ** a value of false. 929 */ 930 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 931 sqlite3 *db = pParse->db; 932 if( pLeft==0 ){ 933 return pRight; 934 }else if( pRight==0 ){ 935 return pLeft; 936 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 937 && !IN_RENAME_OBJECT 938 ){ 939 sqlite3ExprDelete(db, pLeft); 940 sqlite3ExprDelete(db, pRight); 941 return sqlite3Expr(db, TK_INTEGER, "0"); 942 }else{ 943 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 944 } 945 } 946 947 /* 948 ** Construct a new expression node for a function with multiple 949 ** arguments. 950 */ 951 Expr *sqlite3ExprFunction( 952 Parse *pParse, /* Parsing context */ 953 ExprList *pList, /* Argument list */ 954 Token *pToken, /* Name of the function */ 955 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 956 ){ 957 Expr *pNew; 958 sqlite3 *db = pParse->db; 959 assert( pToken ); 960 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 961 if( pNew==0 ){ 962 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 963 return 0; 964 } 965 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 966 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 967 } 968 pNew->x.pList = pList; 969 ExprSetProperty(pNew, EP_HasFunc); 970 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 971 sqlite3ExprSetHeightAndFlags(pParse, pNew); 972 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 973 return pNew; 974 } 975 976 /* 977 ** Assign a variable number to an expression that encodes a wildcard 978 ** in the original SQL statement. 979 ** 980 ** Wildcards consisting of a single "?" are assigned the next sequential 981 ** variable number. 982 ** 983 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 984 ** sure "nnn" is not too big to avoid a denial of service attack when 985 ** the SQL statement comes from an external source. 986 ** 987 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 988 ** as the previous instance of the same wildcard. Or if this is the first 989 ** instance of the wildcard, the next sequential variable number is 990 ** assigned. 991 */ 992 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 993 sqlite3 *db = pParse->db; 994 const char *z; 995 ynVar x; 996 997 if( pExpr==0 ) return; 998 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 999 z = pExpr->u.zToken; 1000 assert( z!=0 ); 1001 assert( z[0]!=0 ); 1002 assert( n==(u32)sqlite3Strlen30(z) ); 1003 if( z[1]==0 ){ 1004 /* Wildcard of the form "?". Assign the next variable number */ 1005 assert( z[0]=='?' ); 1006 x = (ynVar)(++pParse->nVar); 1007 }else{ 1008 int doAdd = 0; 1009 if( z[0]=='?' ){ 1010 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1011 ** use it as the variable number */ 1012 i64 i; 1013 int bOk; 1014 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1015 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1016 bOk = 1; 1017 }else{ 1018 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1019 } 1020 testcase( i==0 ); 1021 testcase( i==1 ); 1022 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1023 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1024 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1025 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1026 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1027 return; 1028 } 1029 x = (ynVar)i; 1030 if( x>pParse->nVar ){ 1031 pParse->nVar = (int)x; 1032 doAdd = 1; 1033 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1034 doAdd = 1; 1035 } 1036 }else{ 1037 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1038 ** number as the prior appearance of the same name, or if the name 1039 ** has never appeared before, reuse the same variable number 1040 */ 1041 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1042 if( x==0 ){ 1043 x = (ynVar)(++pParse->nVar); 1044 doAdd = 1; 1045 } 1046 } 1047 if( doAdd ){ 1048 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1049 } 1050 } 1051 pExpr->iColumn = x; 1052 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1053 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1054 } 1055 } 1056 1057 /* 1058 ** Recursively delete an expression tree. 1059 */ 1060 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1061 assert( p!=0 ); 1062 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1063 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1064 1065 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1066 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1067 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1068 #ifdef SQLITE_DEBUG 1069 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1070 assert( p->pLeft==0 ); 1071 assert( p->pRight==0 ); 1072 assert( p->x.pSelect==0 ); 1073 } 1074 #endif 1075 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1076 /* The Expr.x union is never used at the same time as Expr.pRight */ 1077 assert( p->x.pList==0 || p->pRight==0 ); 1078 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1079 if( p->pRight ){ 1080 assert( !ExprHasProperty(p, EP_WinFunc) ); 1081 sqlite3ExprDeleteNN(db, p->pRight); 1082 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1083 assert( !ExprHasProperty(p, EP_WinFunc) ); 1084 sqlite3SelectDelete(db, p->x.pSelect); 1085 }else{ 1086 sqlite3ExprListDelete(db, p->x.pList); 1087 #ifndef SQLITE_OMIT_WINDOWFUNC 1088 if( ExprHasProperty(p, EP_WinFunc) ){ 1089 sqlite3WindowDelete(db, p->y.pWin); 1090 } 1091 #endif 1092 } 1093 } 1094 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1095 if( !ExprHasProperty(p, EP_Static) ){ 1096 sqlite3DbFreeNN(db, p); 1097 } 1098 } 1099 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1100 if( p ) sqlite3ExprDeleteNN(db, p); 1101 } 1102 1103 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1104 ** expression. 1105 */ 1106 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1107 if( p ){ 1108 if( IN_RENAME_OBJECT ){ 1109 sqlite3RenameExprUnmap(pParse, p); 1110 } 1111 sqlite3ExprDeleteNN(pParse->db, p); 1112 } 1113 } 1114 1115 /* 1116 ** Return the number of bytes allocated for the expression structure 1117 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1118 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1119 */ 1120 static int exprStructSize(Expr *p){ 1121 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1122 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1123 return EXPR_FULLSIZE; 1124 } 1125 1126 /* 1127 ** The dupedExpr*Size() routines each return the number of bytes required 1128 ** to store a copy of an expression or expression tree. They differ in 1129 ** how much of the tree is measured. 1130 ** 1131 ** dupedExprStructSize() Size of only the Expr structure 1132 ** dupedExprNodeSize() Size of Expr + space for token 1133 ** dupedExprSize() Expr + token + subtree components 1134 ** 1135 *************************************************************************** 1136 ** 1137 ** The dupedExprStructSize() function returns two values OR-ed together: 1138 ** (1) the space required for a copy of the Expr structure only and 1139 ** (2) the EP_xxx flags that indicate what the structure size should be. 1140 ** The return values is always one of: 1141 ** 1142 ** EXPR_FULLSIZE 1143 ** EXPR_REDUCEDSIZE | EP_Reduced 1144 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1145 ** 1146 ** The size of the structure can be found by masking the return value 1147 ** of this routine with 0xfff. The flags can be found by masking the 1148 ** return value with EP_Reduced|EP_TokenOnly. 1149 ** 1150 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1151 ** (unreduced) Expr objects as they or originally constructed by the parser. 1152 ** During expression analysis, extra information is computed and moved into 1153 ** later parts of the Expr object and that extra information might get chopped 1154 ** off if the expression is reduced. Note also that it does not work to 1155 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1156 ** to reduce a pristine expression tree from the parser. The implementation 1157 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1158 ** to enforce this constraint. 1159 */ 1160 static int dupedExprStructSize(Expr *p, int flags){ 1161 int nSize; 1162 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1163 assert( EXPR_FULLSIZE<=0xfff ); 1164 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1165 if( 0==flags || p->op==TK_SELECT_COLUMN 1166 #ifndef SQLITE_OMIT_WINDOWFUNC 1167 || ExprHasProperty(p, EP_WinFunc) 1168 #endif 1169 ){ 1170 nSize = EXPR_FULLSIZE; 1171 }else{ 1172 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1173 assert( !ExprHasProperty(p, EP_FromJoin) ); 1174 assert( !ExprHasProperty(p, EP_MemToken) ); 1175 assert( !ExprHasProperty(p, EP_NoReduce) ); 1176 if( p->pLeft || p->x.pList ){ 1177 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1178 }else{ 1179 assert( p->pRight==0 ); 1180 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1181 } 1182 } 1183 return nSize; 1184 } 1185 1186 /* 1187 ** This function returns the space in bytes required to store the copy 1188 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1189 ** string is defined.) 1190 */ 1191 static int dupedExprNodeSize(Expr *p, int flags){ 1192 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1193 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1194 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1195 } 1196 return ROUND8(nByte); 1197 } 1198 1199 /* 1200 ** Return the number of bytes required to create a duplicate of the 1201 ** expression passed as the first argument. The second argument is a 1202 ** mask containing EXPRDUP_XXX flags. 1203 ** 1204 ** The value returned includes space to create a copy of the Expr struct 1205 ** itself and the buffer referred to by Expr.u.zToken, if any. 1206 ** 1207 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1208 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1209 ** and Expr.pRight variables (but not for any structures pointed to or 1210 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1211 */ 1212 static int dupedExprSize(Expr *p, int flags){ 1213 int nByte = 0; 1214 if( p ){ 1215 nByte = dupedExprNodeSize(p, flags); 1216 if( flags&EXPRDUP_REDUCE ){ 1217 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1218 } 1219 } 1220 return nByte; 1221 } 1222 1223 /* 1224 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1225 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1226 ** to store the copy of expression p, the copies of p->u.zToken 1227 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1228 ** if any. Before returning, *pzBuffer is set to the first byte past the 1229 ** portion of the buffer copied into by this function. 1230 */ 1231 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1232 Expr *pNew; /* Value to return */ 1233 u8 *zAlloc; /* Memory space from which to build Expr object */ 1234 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1235 1236 assert( db!=0 ); 1237 assert( p ); 1238 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1239 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1240 1241 /* Figure out where to write the new Expr structure. */ 1242 if( pzBuffer ){ 1243 zAlloc = *pzBuffer; 1244 staticFlag = EP_Static; 1245 }else{ 1246 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1247 staticFlag = 0; 1248 } 1249 pNew = (Expr *)zAlloc; 1250 1251 if( pNew ){ 1252 /* Set nNewSize to the size allocated for the structure pointed to 1253 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1254 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1255 ** by the copy of the p->u.zToken string (if any). 1256 */ 1257 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1258 const int nNewSize = nStructSize & 0xfff; 1259 int nToken; 1260 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1261 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1262 }else{ 1263 nToken = 0; 1264 } 1265 if( dupFlags ){ 1266 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1267 memcpy(zAlloc, p, nNewSize); 1268 }else{ 1269 u32 nSize = (u32)exprStructSize(p); 1270 memcpy(zAlloc, p, nSize); 1271 if( nSize<EXPR_FULLSIZE ){ 1272 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1273 } 1274 } 1275 1276 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1277 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1278 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1279 pNew->flags |= staticFlag; 1280 1281 /* Copy the p->u.zToken string, if any. */ 1282 if( nToken ){ 1283 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1284 memcpy(zToken, p->u.zToken, nToken); 1285 } 1286 1287 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1288 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1289 if( ExprHasProperty(p, EP_xIsSelect) ){ 1290 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1291 }else{ 1292 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1293 } 1294 } 1295 1296 /* Fill in pNew->pLeft and pNew->pRight. */ 1297 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1298 zAlloc += dupedExprNodeSize(p, dupFlags); 1299 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1300 pNew->pLeft = p->pLeft ? 1301 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1302 pNew->pRight = p->pRight ? 1303 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1304 } 1305 #ifndef SQLITE_OMIT_WINDOWFUNC 1306 if( ExprHasProperty(p, EP_WinFunc) ){ 1307 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1308 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1309 } 1310 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1311 if( pzBuffer ){ 1312 *pzBuffer = zAlloc; 1313 } 1314 }else{ 1315 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1316 if( pNew->op==TK_SELECT_COLUMN ){ 1317 pNew->pLeft = p->pLeft; 1318 assert( p->iColumn==0 || p->pRight==0 ); 1319 assert( p->pRight==0 || p->pRight==p->pLeft ); 1320 }else{ 1321 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1322 } 1323 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1324 } 1325 } 1326 } 1327 return pNew; 1328 } 1329 1330 /* 1331 ** Create and return a deep copy of the object passed as the second 1332 ** argument. If an OOM condition is encountered, NULL is returned 1333 ** and the db->mallocFailed flag set. 1334 */ 1335 #ifndef SQLITE_OMIT_CTE 1336 static With *withDup(sqlite3 *db, With *p){ 1337 With *pRet = 0; 1338 if( p ){ 1339 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1340 pRet = sqlite3DbMallocZero(db, nByte); 1341 if( pRet ){ 1342 int i; 1343 pRet->nCte = p->nCte; 1344 for(i=0; i<p->nCte; i++){ 1345 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1346 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1347 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1348 } 1349 } 1350 } 1351 return pRet; 1352 } 1353 #else 1354 # define withDup(x,y) 0 1355 #endif 1356 1357 #ifndef SQLITE_OMIT_WINDOWFUNC 1358 /* 1359 ** The gatherSelectWindows() procedure and its helper routine 1360 ** gatherSelectWindowsCallback() are used to scan all the expressions 1361 ** an a newly duplicated SELECT statement and gather all of the Window 1362 ** objects found there, assembling them onto the linked list at Select->pWin. 1363 */ 1364 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1365 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1366 Select *pSelect = pWalker->u.pSelect; 1367 Window *pWin = pExpr->y.pWin; 1368 assert( pWin ); 1369 assert( IsWindowFunc(pExpr) ); 1370 assert( pWin->ppThis==0 ); 1371 sqlite3WindowLink(pSelect, pWin); 1372 } 1373 return WRC_Continue; 1374 } 1375 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1376 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1377 } 1378 static void gatherSelectWindows(Select *p){ 1379 Walker w; 1380 w.xExprCallback = gatherSelectWindowsCallback; 1381 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1382 w.xSelectCallback2 = 0; 1383 w.pParse = 0; 1384 w.u.pSelect = p; 1385 sqlite3WalkSelect(&w, p); 1386 } 1387 #endif 1388 1389 1390 /* 1391 ** The following group of routines make deep copies of expressions, 1392 ** expression lists, ID lists, and select statements. The copies can 1393 ** be deleted (by being passed to their respective ...Delete() routines) 1394 ** without effecting the originals. 1395 ** 1396 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1397 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1398 ** by subsequent calls to sqlite*ListAppend() routines. 1399 ** 1400 ** Any tables that the SrcList might point to are not duplicated. 1401 ** 1402 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1403 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1404 ** truncated version of the usual Expr structure that will be stored as 1405 ** part of the in-memory representation of the database schema. 1406 */ 1407 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1408 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1409 return p ? exprDup(db, p, flags, 0) : 0; 1410 } 1411 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1412 ExprList *pNew; 1413 struct ExprList_item *pItem, *pOldItem; 1414 int i; 1415 Expr *pPriorSelectCol = 0; 1416 assert( db!=0 ); 1417 if( p==0 ) return 0; 1418 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1419 if( pNew==0 ) return 0; 1420 pNew->nExpr = p->nExpr; 1421 pItem = pNew->a; 1422 pOldItem = p->a; 1423 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1424 Expr *pOldExpr = pOldItem->pExpr; 1425 Expr *pNewExpr; 1426 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1427 if( pOldExpr 1428 && pOldExpr->op==TK_SELECT_COLUMN 1429 && (pNewExpr = pItem->pExpr)!=0 1430 ){ 1431 assert( pNewExpr->iColumn==0 || i>0 ); 1432 if( pNewExpr->iColumn==0 ){ 1433 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1434 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1435 }else{ 1436 assert( i>0 ); 1437 assert( pItem[-1].pExpr!=0 ); 1438 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1439 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1440 pNewExpr->pLeft = pPriorSelectCol; 1441 } 1442 } 1443 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1444 pItem->sortFlags = pOldItem->sortFlags; 1445 pItem->eEName = pOldItem->eEName; 1446 pItem->done = 0; 1447 pItem->bNulls = pOldItem->bNulls; 1448 pItem->bSorterRef = pOldItem->bSorterRef; 1449 pItem->u = pOldItem->u; 1450 } 1451 return pNew; 1452 } 1453 1454 /* 1455 ** If cursors, triggers, views and subqueries are all omitted from 1456 ** the build, then none of the following routines, except for 1457 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1458 ** called with a NULL argument. 1459 */ 1460 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1461 || !defined(SQLITE_OMIT_SUBQUERY) 1462 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1463 SrcList *pNew; 1464 int i; 1465 int nByte; 1466 assert( db!=0 ); 1467 if( p==0 ) return 0; 1468 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1469 pNew = sqlite3DbMallocRawNN(db, nByte ); 1470 if( pNew==0 ) return 0; 1471 pNew->nSrc = pNew->nAlloc = p->nSrc; 1472 for(i=0; i<p->nSrc; i++){ 1473 struct SrcList_item *pNewItem = &pNew->a[i]; 1474 struct SrcList_item *pOldItem = &p->a[i]; 1475 Table *pTab; 1476 pNewItem->pSchema = pOldItem->pSchema; 1477 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1478 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1479 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1480 pNewItem->fg = pOldItem->fg; 1481 pNewItem->iCursor = pOldItem->iCursor; 1482 pNewItem->addrFillSub = pOldItem->addrFillSub; 1483 pNewItem->regReturn = pOldItem->regReturn; 1484 if( pNewItem->fg.isIndexedBy ){ 1485 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1486 } 1487 pNewItem->pIBIndex = pOldItem->pIBIndex; 1488 if( pNewItem->fg.isTabFunc ){ 1489 pNewItem->u1.pFuncArg = 1490 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1491 } 1492 pTab = pNewItem->pTab = pOldItem->pTab; 1493 if( pTab ){ 1494 pTab->nTabRef++; 1495 } 1496 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1497 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1498 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1499 pNewItem->colUsed = pOldItem->colUsed; 1500 } 1501 return pNew; 1502 } 1503 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1504 IdList *pNew; 1505 int i; 1506 assert( db!=0 ); 1507 if( p==0 ) return 0; 1508 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1509 if( pNew==0 ) return 0; 1510 pNew->nId = p->nId; 1511 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1512 if( pNew->a==0 ){ 1513 sqlite3DbFreeNN(db, pNew); 1514 return 0; 1515 } 1516 /* Note that because the size of the allocation for p->a[] is not 1517 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1518 ** on the duplicate created by this function. */ 1519 for(i=0; i<p->nId; i++){ 1520 struct IdList_item *pNewItem = &pNew->a[i]; 1521 struct IdList_item *pOldItem = &p->a[i]; 1522 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1523 pNewItem->idx = pOldItem->idx; 1524 } 1525 return pNew; 1526 } 1527 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1528 Select *pRet = 0; 1529 Select *pNext = 0; 1530 Select **pp = &pRet; 1531 Select *p; 1532 1533 assert( db!=0 ); 1534 for(p=pDup; p; p=p->pPrior){ 1535 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1536 if( pNew==0 ) break; 1537 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1538 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1539 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1540 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1541 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1542 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1543 pNew->op = p->op; 1544 pNew->pNext = pNext; 1545 pNew->pPrior = 0; 1546 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1547 pNew->iLimit = 0; 1548 pNew->iOffset = 0; 1549 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1550 pNew->addrOpenEphm[0] = -1; 1551 pNew->addrOpenEphm[1] = -1; 1552 pNew->nSelectRow = p->nSelectRow; 1553 pNew->pWith = withDup(db, p->pWith); 1554 #ifndef SQLITE_OMIT_WINDOWFUNC 1555 pNew->pWin = 0; 1556 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1557 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1558 #endif 1559 pNew->selId = p->selId; 1560 *pp = pNew; 1561 pp = &pNew->pPrior; 1562 pNext = pNew; 1563 } 1564 1565 return pRet; 1566 } 1567 #else 1568 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1569 assert( p==0 ); 1570 return 0; 1571 } 1572 #endif 1573 1574 1575 /* 1576 ** Add a new element to the end of an expression list. If pList is 1577 ** initially NULL, then create a new expression list. 1578 ** 1579 ** The pList argument must be either NULL or a pointer to an ExprList 1580 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1581 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1582 ** Reason: This routine assumes that the number of slots in pList->a[] 1583 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1584 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1585 ** 1586 ** If a memory allocation error occurs, the entire list is freed and 1587 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1588 ** that the new entry was successfully appended. 1589 */ 1590 ExprList *sqlite3ExprListAppend( 1591 Parse *pParse, /* Parsing context */ 1592 ExprList *pList, /* List to which to append. Might be NULL */ 1593 Expr *pExpr /* Expression to be appended. Might be NULL */ 1594 ){ 1595 struct ExprList_item *pItem; 1596 sqlite3 *db = pParse->db; 1597 assert( db!=0 ); 1598 if( pList==0 ){ 1599 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1600 if( pList==0 ){ 1601 goto no_mem; 1602 } 1603 pList->nExpr = 0; 1604 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1605 ExprList *pNew; 1606 pNew = sqlite3DbRealloc(db, pList, 1607 sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0])); 1608 if( pNew==0 ){ 1609 goto no_mem; 1610 } 1611 pList = pNew; 1612 } 1613 pItem = &pList->a[pList->nExpr++]; 1614 assert( offsetof(struct ExprList_item,zEName)==sizeof(pItem->pExpr) ); 1615 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1616 memset(&pItem->zEName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zEName)); 1617 pItem->pExpr = pExpr; 1618 return pList; 1619 1620 no_mem: 1621 /* Avoid leaking memory if malloc has failed. */ 1622 sqlite3ExprDelete(db, pExpr); 1623 sqlite3ExprListDelete(db, pList); 1624 return 0; 1625 } 1626 1627 /* 1628 ** pColumns and pExpr form a vector assignment which is part of the SET 1629 ** clause of an UPDATE statement. Like this: 1630 ** 1631 ** (a,b,c) = (expr1,expr2,expr3) 1632 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1633 ** 1634 ** For each term of the vector assignment, append new entries to the 1635 ** expression list pList. In the case of a subquery on the RHS, append 1636 ** TK_SELECT_COLUMN expressions. 1637 */ 1638 ExprList *sqlite3ExprListAppendVector( 1639 Parse *pParse, /* Parsing context */ 1640 ExprList *pList, /* List to which to append. Might be NULL */ 1641 IdList *pColumns, /* List of names of LHS of the assignment */ 1642 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1643 ){ 1644 sqlite3 *db = pParse->db; 1645 int n; 1646 int i; 1647 int iFirst = pList ? pList->nExpr : 0; 1648 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1649 ** exit prior to this routine being invoked */ 1650 if( NEVER(pColumns==0) ) goto vector_append_error; 1651 if( pExpr==0 ) goto vector_append_error; 1652 1653 /* If the RHS is a vector, then we can immediately check to see that 1654 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1655 ** wildcards ("*") in the result set of the SELECT must be expanded before 1656 ** we can do the size check, so defer the size check until code generation. 1657 */ 1658 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1659 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1660 pColumns->nId, n); 1661 goto vector_append_error; 1662 } 1663 1664 for(i=0; i<pColumns->nId; i++){ 1665 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1666 assert( pSubExpr!=0 || db->mallocFailed ); 1667 assert( pSubExpr==0 || pSubExpr->iTable==0 ); 1668 if( pSubExpr==0 ) continue; 1669 pSubExpr->iTable = pColumns->nId; 1670 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1671 if( pList ){ 1672 assert( pList->nExpr==iFirst+i+1 ); 1673 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1674 pColumns->a[i].zName = 0; 1675 } 1676 } 1677 1678 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1679 Expr *pFirst = pList->a[iFirst].pExpr; 1680 assert( pFirst!=0 ); 1681 assert( pFirst->op==TK_SELECT_COLUMN ); 1682 1683 /* Store the SELECT statement in pRight so it will be deleted when 1684 ** sqlite3ExprListDelete() is called */ 1685 pFirst->pRight = pExpr; 1686 pExpr = 0; 1687 1688 /* Remember the size of the LHS in iTable so that we can check that 1689 ** the RHS and LHS sizes match during code generation. */ 1690 pFirst->iTable = pColumns->nId; 1691 } 1692 1693 vector_append_error: 1694 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1695 sqlite3IdListDelete(db, pColumns); 1696 return pList; 1697 } 1698 1699 /* 1700 ** Set the sort order for the last element on the given ExprList. 1701 */ 1702 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1703 struct ExprList_item *pItem; 1704 if( p==0 ) return; 1705 assert( p->nExpr>0 ); 1706 1707 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1708 assert( iSortOrder==SQLITE_SO_UNDEFINED 1709 || iSortOrder==SQLITE_SO_ASC 1710 || iSortOrder==SQLITE_SO_DESC 1711 ); 1712 assert( eNulls==SQLITE_SO_UNDEFINED 1713 || eNulls==SQLITE_SO_ASC 1714 || eNulls==SQLITE_SO_DESC 1715 ); 1716 1717 pItem = &p->a[p->nExpr-1]; 1718 assert( pItem->bNulls==0 ); 1719 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1720 iSortOrder = SQLITE_SO_ASC; 1721 } 1722 pItem->sortFlags = (u8)iSortOrder; 1723 1724 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1725 pItem->bNulls = 1; 1726 if( iSortOrder!=eNulls ){ 1727 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1728 } 1729 } 1730 } 1731 1732 /* 1733 ** Set the ExprList.a[].zEName element of the most recently added item 1734 ** on the expression list. 1735 ** 1736 ** pList might be NULL following an OOM error. But pName should never be 1737 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1738 ** is set. 1739 */ 1740 void sqlite3ExprListSetName( 1741 Parse *pParse, /* Parsing context */ 1742 ExprList *pList, /* List to which to add the span. */ 1743 Token *pName, /* Name to be added */ 1744 int dequote /* True to cause the name to be dequoted */ 1745 ){ 1746 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1747 if( pList ){ 1748 struct ExprList_item *pItem; 1749 assert( pList->nExpr>0 ); 1750 pItem = &pList->a[pList->nExpr-1]; 1751 assert( pItem->zEName==0 ); 1752 assert( pItem->eEName==ENAME_NAME ); 1753 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1754 if( dequote ) sqlite3Dequote(pItem->zEName); 1755 if( IN_RENAME_OBJECT ){ 1756 sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName); 1757 } 1758 } 1759 } 1760 1761 /* 1762 ** Set the ExprList.a[].zSpan element of the most recently added item 1763 ** on the expression list. 1764 ** 1765 ** pList might be NULL following an OOM error. But pSpan should never be 1766 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1767 ** is set. 1768 */ 1769 void sqlite3ExprListSetSpan( 1770 Parse *pParse, /* Parsing context */ 1771 ExprList *pList, /* List to which to add the span. */ 1772 const char *zStart, /* Start of the span */ 1773 const char *zEnd /* End of the span */ 1774 ){ 1775 sqlite3 *db = pParse->db; 1776 assert( pList!=0 || db->mallocFailed!=0 ); 1777 if( pList ){ 1778 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1779 assert( pList->nExpr>0 ); 1780 if( pItem->zEName==0 ){ 1781 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1782 pItem->eEName = ENAME_SPAN; 1783 } 1784 } 1785 } 1786 1787 /* 1788 ** If the expression list pEList contains more than iLimit elements, 1789 ** leave an error message in pParse. 1790 */ 1791 void sqlite3ExprListCheckLength( 1792 Parse *pParse, 1793 ExprList *pEList, 1794 const char *zObject 1795 ){ 1796 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1797 testcase( pEList && pEList->nExpr==mx ); 1798 testcase( pEList && pEList->nExpr==mx+1 ); 1799 if( pEList && pEList->nExpr>mx ){ 1800 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1801 } 1802 } 1803 1804 /* 1805 ** Delete an entire expression list. 1806 */ 1807 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1808 int i = pList->nExpr; 1809 struct ExprList_item *pItem = pList->a; 1810 assert( pList->nExpr>0 ); 1811 do{ 1812 sqlite3ExprDelete(db, pItem->pExpr); 1813 sqlite3DbFree(db, pItem->zEName); 1814 pItem++; 1815 }while( --i>0 ); 1816 sqlite3DbFreeNN(db, pList); 1817 } 1818 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1819 if( pList ) exprListDeleteNN(db, pList); 1820 } 1821 1822 /* 1823 ** Return the bitwise-OR of all Expr.flags fields in the given 1824 ** ExprList. 1825 */ 1826 u32 sqlite3ExprListFlags(const ExprList *pList){ 1827 int i; 1828 u32 m = 0; 1829 assert( pList!=0 ); 1830 for(i=0; i<pList->nExpr; i++){ 1831 Expr *pExpr = pList->a[i].pExpr; 1832 assert( pExpr!=0 ); 1833 m |= pExpr->flags; 1834 } 1835 return m; 1836 } 1837 1838 /* 1839 ** This is a SELECT-node callback for the expression walker that 1840 ** always "fails". By "fail" in this case, we mean set 1841 ** pWalker->eCode to zero and abort. 1842 ** 1843 ** This callback is used by multiple expression walkers. 1844 */ 1845 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1846 UNUSED_PARAMETER(NotUsed); 1847 pWalker->eCode = 0; 1848 return WRC_Abort; 1849 } 1850 1851 /* 1852 ** Check the input string to see if it is "true" or "false" (in any case). 1853 ** 1854 ** If the string is.... Return 1855 ** "true" EP_IsTrue 1856 ** "false" EP_IsFalse 1857 ** anything else 0 1858 */ 1859 u32 sqlite3IsTrueOrFalse(const char *zIn){ 1860 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 1861 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 1862 return 0; 1863 } 1864 1865 1866 /* 1867 ** If the input expression is an ID with the name "true" or "false" 1868 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1869 ** the conversion happened, and zero if the expression is unaltered. 1870 */ 1871 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1872 u32 v; 1873 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1874 if( !ExprHasProperty(pExpr, EP_Quoted) 1875 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 1876 ){ 1877 pExpr->op = TK_TRUEFALSE; 1878 ExprSetProperty(pExpr, v); 1879 return 1; 1880 } 1881 return 0; 1882 } 1883 1884 /* 1885 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1886 ** and 0 if it is FALSE. 1887 */ 1888 int sqlite3ExprTruthValue(const Expr *pExpr){ 1889 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 1890 assert( pExpr->op==TK_TRUEFALSE ); 1891 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1892 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1893 return pExpr->u.zToken[4]==0; 1894 } 1895 1896 /* 1897 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 1898 ** terms that are always true or false. Return the simplified expression. 1899 ** Or return the original expression if no simplification is possible. 1900 ** 1901 ** Examples: 1902 ** 1903 ** (x<10) AND true => (x<10) 1904 ** (x<10) AND false => false 1905 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 1906 ** (x<10) AND (y=22 OR true) => (x<10) 1907 ** (y=22) OR true => true 1908 */ 1909 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 1910 assert( pExpr!=0 ); 1911 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 1912 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 1913 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 1914 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 1915 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 1916 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 1917 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 1918 } 1919 } 1920 return pExpr; 1921 } 1922 1923 1924 /* 1925 ** These routines are Walker callbacks used to check expressions to 1926 ** see if they are "constant" for some definition of constant. The 1927 ** Walker.eCode value determines the type of "constant" we are looking 1928 ** for. 1929 ** 1930 ** These callback routines are used to implement the following: 1931 ** 1932 ** sqlite3ExprIsConstant() pWalker->eCode==1 1933 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1934 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1935 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1936 ** 1937 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1938 ** is found to not be a constant. 1939 ** 1940 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1941 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1942 ** an existing schema and 4 when processing a new statement. A bound 1943 ** parameter raises an error for new statements, but is silently converted 1944 ** to NULL for existing schemas. This allows sqlite_master tables that 1945 ** contain a bound parameter because they were generated by older versions 1946 ** of SQLite to be parsed by newer versions of SQLite without raising a 1947 ** malformed schema error. 1948 */ 1949 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1950 1951 /* If pWalker->eCode is 2 then any term of the expression that comes from 1952 ** the ON or USING clauses of a left join disqualifies the expression 1953 ** from being considered constant. */ 1954 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1955 pWalker->eCode = 0; 1956 return WRC_Abort; 1957 } 1958 1959 switch( pExpr->op ){ 1960 /* Consider functions to be constant if all their arguments are constant 1961 ** and either pWalker->eCode==4 or 5 or the function has the 1962 ** SQLITE_FUNC_CONST flag. */ 1963 case TK_FUNCTION: 1964 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 1965 && !ExprHasProperty(pExpr, EP_WinFunc) 1966 ){ 1967 return WRC_Continue; 1968 }else{ 1969 pWalker->eCode = 0; 1970 return WRC_Abort; 1971 } 1972 case TK_ID: 1973 /* Convert "true" or "false" in a DEFAULT clause into the 1974 ** appropriate TK_TRUEFALSE operator */ 1975 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 1976 return WRC_Prune; 1977 } 1978 /* Fall thru */ 1979 case TK_COLUMN: 1980 case TK_AGG_FUNCTION: 1981 case TK_AGG_COLUMN: 1982 testcase( pExpr->op==TK_ID ); 1983 testcase( pExpr->op==TK_COLUMN ); 1984 testcase( pExpr->op==TK_AGG_FUNCTION ); 1985 testcase( pExpr->op==TK_AGG_COLUMN ); 1986 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 1987 return WRC_Continue; 1988 } 1989 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1990 return WRC_Continue; 1991 } 1992 /* Fall through */ 1993 case TK_IF_NULL_ROW: 1994 case TK_REGISTER: 1995 testcase( pExpr->op==TK_REGISTER ); 1996 testcase( pExpr->op==TK_IF_NULL_ROW ); 1997 pWalker->eCode = 0; 1998 return WRC_Abort; 1999 case TK_VARIABLE: 2000 if( pWalker->eCode==5 ){ 2001 /* Silently convert bound parameters that appear inside of CREATE 2002 ** statements into a NULL when parsing the CREATE statement text out 2003 ** of the sqlite_master table */ 2004 pExpr->op = TK_NULL; 2005 }else if( pWalker->eCode==4 ){ 2006 /* A bound parameter in a CREATE statement that originates from 2007 ** sqlite3_prepare() causes an error */ 2008 pWalker->eCode = 0; 2009 return WRC_Abort; 2010 } 2011 /* Fall through */ 2012 default: 2013 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2014 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2015 return WRC_Continue; 2016 } 2017 } 2018 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2019 Walker w; 2020 w.eCode = initFlag; 2021 w.xExprCallback = exprNodeIsConstant; 2022 w.xSelectCallback = sqlite3SelectWalkFail; 2023 #ifdef SQLITE_DEBUG 2024 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2025 #endif 2026 w.u.iCur = iCur; 2027 sqlite3WalkExpr(&w, p); 2028 return w.eCode; 2029 } 2030 2031 /* 2032 ** Walk an expression tree. Return non-zero if the expression is constant 2033 ** and 0 if it involves variables or function calls. 2034 ** 2035 ** For the purposes of this function, a double-quoted string (ex: "abc") 2036 ** is considered a variable but a single-quoted string (ex: 'abc') is 2037 ** a constant. 2038 */ 2039 int sqlite3ExprIsConstant(Expr *p){ 2040 return exprIsConst(p, 1, 0); 2041 } 2042 2043 /* 2044 ** Walk an expression tree. Return non-zero if 2045 ** 2046 ** (1) the expression is constant, and 2047 ** (2) the expression does originate in the ON or USING clause 2048 ** of a LEFT JOIN, and 2049 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2050 ** operands created by the constant propagation optimization. 2051 ** 2052 ** When this routine returns true, it indicates that the expression 2053 ** can be added to the pParse->pConstExpr list and evaluated once when 2054 ** the prepared statement starts up. See sqlite3ExprCodeAtInit(). 2055 */ 2056 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2057 return exprIsConst(p, 2, 0); 2058 } 2059 2060 /* 2061 ** Walk an expression tree. Return non-zero if the expression is constant 2062 ** for any single row of the table with cursor iCur. In other words, the 2063 ** expression must not refer to any non-deterministic function nor any 2064 ** table other than iCur. 2065 */ 2066 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2067 return exprIsConst(p, 3, iCur); 2068 } 2069 2070 2071 /* 2072 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2073 */ 2074 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2075 ExprList *pGroupBy = pWalker->u.pGroupBy; 2076 int i; 2077 2078 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2079 ** it constant. */ 2080 for(i=0; i<pGroupBy->nExpr; i++){ 2081 Expr *p = pGroupBy->a[i].pExpr; 2082 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2083 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2084 if( sqlite3IsBinary(pColl) ){ 2085 return WRC_Prune; 2086 } 2087 } 2088 } 2089 2090 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2091 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2092 pWalker->eCode = 0; 2093 return WRC_Abort; 2094 } 2095 2096 return exprNodeIsConstant(pWalker, pExpr); 2097 } 2098 2099 /* 2100 ** Walk the expression tree passed as the first argument. Return non-zero 2101 ** if the expression consists entirely of constants or copies of terms 2102 ** in pGroupBy that sort with the BINARY collation sequence. 2103 ** 2104 ** This routine is used to determine if a term of the HAVING clause can 2105 ** be promoted into the WHERE clause. In order for such a promotion to work, 2106 ** the value of the HAVING clause term must be the same for all members of 2107 ** a "group". The requirement that the GROUP BY term must be BINARY 2108 ** assumes that no other collating sequence will have a finer-grained 2109 ** grouping than binary. In other words (A=B COLLATE binary) implies 2110 ** A=B in every other collating sequence. The requirement that the 2111 ** GROUP BY be BINARY is stricter than necessary. It would also work 2112 ** to promote HAVING clauses that use the same alternative collating 2113 ** sequence as the GROUP BY term, but that is much harder to check, 2114 ** alternative collating sequences are uncommon, and this is only an 2115 ** optimization, so we take the easy way out and simply require the 2116 ** GROUP BY to use the BINARY collating sequence. 2117 */ 2118 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2119 Walker w; 2120 w.eCode = 1; 2121 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2122 w.xSelectCallback = 0; 2123 w.u.pGroupBy = pGroupBy; 2124 w.pParse = pParse; 2125 sqlite3WalkExpr(&w, p); 2126 return w.eCode; 2127 } 2128 2129 /* 2130 ** Walk an expression tree. Return non-zero if the expression is constant 2131 ** or a function call with constant arguments. Return and 0 if there 2132 ** are any variables. 2133 ** 2134 ** For the purposes of this function, a double-quoted string (ex: "abc") 2135 ** is considered a variable but a single-quoted string (ex: 'abc') is 2136 ** a constant. 2137 */ 2138 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2139 assert( isInit==0 || isInit==1 ); 2140 return exprIsConst(p, 4+isInit, 0); 2141 } 2142 2143 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2144 /* 2145 ** Walk an expression tree. Return 1 if the expression contains a 2146 ** subquery of some kind. Return 0 if there are no subqueries. 2147 */ 2148 int sqlite3ExprContainsSubquery(Expr *p){ 2149 Walker w; 2150 w.eCode = 1; 2151 w.xExprCallback = sqlite3ExprWalkNoop; 2152 w.xSelectCallback = sqlite3SelectWalkFail; 2153 #ifdef SQLITE_DEBUG 2154 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2155 #endif 2156 sqlite3WalkExpr(&w, p); 2157 return w.eCode==0; 2158 } 2159 #endif 2160 2161 /* 2162 ** If the expression p codes a constant integer that is small enough 2163 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2164 ** in *pValue. If the expression is not an integer or if it is too big 2165 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2166 */ 2167 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2168 int rc = 0; 2169 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2170 2171 /* If an expression is an integer literal that fits in a signed 32-bit 2172 ** integer, then the EP_IntValue flag will have already been set */ 2173 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2174 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2175 2176 if( p->flags & EP_IntValue ){ 2177 *pValue = p->u.iValue; 2178 return 1; 2179 } 2180 switch( p->op ){ 2181 case TK_UPLUS: { 2182 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2183 break; 2184 } 2185 case TK_UMINUS: { 2186 int v; 2187 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2188 assert( v!=(-2147483647-1) ); 2189 *pValue = -v; 2190 rc = 1; 2191 } 2192 break; 2193 } 2194 default: break; 2195 } 2196 return rc; 2197 } 2198 2199 /* 2200 ** Return FALSE if there is no chance that the expression can be NULL. 2201 ** 2202 ** If the expression might be NULL or if the expression is too complex 2203 ** to tell return TRUE. 2204 ** 2205 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2206 ** when we know that a value cannot be NULL. Hence, a false positive 2207 ** (returning TRUE when in fact the expression can never be NULL) might 2208 ** be a small performance hit but is otherwise harmless. On the other 2209 ** hand, a false negative (returning FALSE when the result could be NULL) 2210 ** will likely result in an incorrect answer. So when in doubt, return 2211 ** TRUE. 2212 */ 2213 int sqlite3ExprCanBeNull(const Expr *p){ 2214 u8 op; 2215 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2216 p = p->pLeft; 2217 } 2218 op = p->op; 2219 if( op==TK_REGISTER ) op = p->op2; 2220 switch( op ){ 2221 case TK_INTEGER: 2222 case TK_STRING: 2223 case TK_FLOAT: 2224 case TK_BLOB: 2225 return 0; 2226 case TK_COLUMN: 2227 return ExprHasProperty(p, EP_CanBeNull) || 2228 p->y.pTab==0 || /* Reference to column of index on expression */ 2229 (p->iColumn>=0 2230 && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ 2231 && p->y.pTab->aCol[p->iColumn].notNull==0); 2232 default: 2233 return 1; 2234 } 2235 } 2236 2237 /* 2238 ** Return TRUE if the given expression is a constant which would be 2239 ** unchanged by OP_Affinity with the affinity given in the second 2240 ** argument. 2241 ** 2242 ** This routine is used to determine if the OP_Affinity operation 2243 ** can be omitted. When in doubt return FALSE. A false negative 2244 ** is harmless. A false positive, however, can result in the wrong 2245 ** answer. 2246 */ 2247 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2248 u8 op; 2249 int unaryMinus = 0; 2250 if( aff==SQLITE_AFF_BLOB ) return 1; 2251 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2252 if( p->op==TK_UMINUS ) unaryMinus = 1; 2253 p = p->pLeft; 2254 } 2255 op = p->op; 2256 if( op==TK_REGISTER ) op = p->op2; 2257 switch( op ){ 2258 case TK_INTEGER: { 2259 return aff>=SQLITE_AFF_NUMERIC; 2260 } 2261 case TK_FLOAT: { 2262 return aff>=SQLITE_AFF_NUMERIC; 2263 } 2264 case TK_STRING: { 2265 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2266 } 2267 case TK_BLOB: { 2268 return !unaryMinus; 2269 } 2270 case TK_COLUMN: { 2271 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2272 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2273 } 2274 default: { 2275 return 0; 2276 } 2277 } 2278 } 2279 2280 /* 2281 ** Return TRUE if the given string is a row-id column name. 2282 */ 2283 int sqlite3IsRowid(const char *z){ 2284 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2285 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2286 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2287 return 0; 2288 } 2289 2290 /* 2291 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2292 ** that can be simplified to a direct table access, then return 2293 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2294 ** or if the SELECT statement needs to be manifested into a transient 2295 ** table, then return NULL. 2296 */ 2297 #ifndef SQLITE_OMIT_SUBQUERY 2298 static Select *isCandidateForInOpt(Expr *pX){ 2299 Select *p; 2300 SrcList *pSrc; 2301 ExprList *pEList; 2302 Table *pTab; 2303 int i; 2304 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2305 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2306 p = pX->x.pSelect; 2307 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2308 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2309 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2310 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2311 return 0; /* No DISTINCT keyword and no aggregate functions */ 2312 } 2313 if( p->pGroupBy ) return 0; /* Has no GROUP BY clause */ 2314 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2315 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2316 pSrc = p->pSrc; 2317 assert( pSrc!=0 ); 2318 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2319 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2320 pTab = pSrc->a[0].pTab; 2321 assert( pTab!=0 ); 2322 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2323 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2324 pEList = p->pEList; 2325 assert( pEList!=0 ); 2326 /* All SELECT results must be columns. */ 2327 for(i=0; i<pEList->nExpr; i++){ 2328 Expr *pRes = pEList->a[i].pExpr; 2329 if( pRes->op!=TK_COLUMN ) return 0; 2330 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2331 } 2332 return p; 2333 } 2334 #endif /* SQLITE_OMIT_SUBQUERY */ 2335 2336 #ifndef SQLITE_OMIT_SUBQUERY 2337 /* 2338 ** Generate code that checks the left-most column of index table iCur to see if 2339 ** it contains any NULL entries. Cause the register at regHasNull to be set 2340 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2341 ** to be set to NULL if iCur contains one or more NULL values. 2342 */ 2343 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2344 int addr1; 2345 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2346 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2347 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2348 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2349 VdbeComment((v, "first_entry_in(%d)", iCur)); 2350 sqlite3VdbeJumpHere(v, addr1); 2351 } 2352 #endif 2353 2354 2355 #ifndef SQLITE_OMIT_SUBQUERY 2356 /* 2357 ** The argument is an IN operator with a list (not a subquery) on the 2358 ** right-hand side. Return TRUE if that list is constant. 2359 */ 2360 static int sqlite3InRhsIsConstant(Expr *pIn){ 2361 Expr *pLHS; 2362 int res; 2363 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2364 pLHS = pIn->pLeft; 2365 pIn->pLeft = 0; 2366 res = sqlite3ExprIsConstant(pIn); 2367 pIn->pLeft = pLHS; 2368 return res; 2369 } 2370 #endif 2371 2372 /* 2373 ** This function is used by the implementation of the IN (...) operator. 2374 ** The pX parameter is the expression on the RHS of the IN operator, which 2375 ** might be either a list of expressions or a subquery. 2376 ** 2377 ** The job of this routine is to find or create a b-tree object that can 2378 ** be used either to test for membership in the RHS set or to iterate through 2379 ** all members of the RHS set, skipping duplicates. 2380 ** 2381 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2382 ** and pX->iTable is set to the index of that cursor. 2383 ** 2384 ** The returned value of this function indicates the b-tree type, as follows: 2385 ** 2386 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2387 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2388 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2389 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2390 ** populated epheremal table. 2391 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2392 ** implemented as a sequence of comparisons. 2393 ** 2394 ** An existing b-tree might be used if the RHS expression pX is a simple 2395 ** subquery such as: 2396 ** 2397 ** SELECT <column1>, <column2>... FROM <table> 2398 ** 2399 ** If the RHS of the IN operator is a list or a more complex subquery, then 2400 ** an ephemeral table might need to be generated from the RHS and then 2401 ** pX->iTable made to point to the ephemeral table instead of an 2402 ** existing table. 2403 ** 2404 ** The inFlags parameter must contain, at a minimum, one of the bits 2405 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2406 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2407 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2408 ** be used to loop over all values of the RHS of the IN operator. 2409 ** 2410 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2411 ** through the set members) then the b-tree must not contain duplicates. 2412 ** An epheremal table will be created unless the selected columns are guaranteed 2413 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2414 ** a UNIQUE constraint or index. 2415 ** 2416 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2417 ** for fast set membership tests) then an epheremal table must 2418 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2419 ** index can be found with the specified <columns> as its left-most. 2420 ** 2421 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2422 ** if the RHS of the IN operator is a list (not a subquery) then this 2423 ** routine might decide that creating an ephemeral b-tree for membership 2424 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2425 ** calling routine should implement the IN operator using a sequence 2426 ** of Eq or Ne comparison operations. 2427 ** 2428 ** When the b-tree is being used for membership tests, the calling function 2429 ** might need to know whether or not the RHS side of the IN operator 2430 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2431 ** if there is any chance that the (...) might contain a NULL value at 2432 ** runtime, then a register is allocated and the register number written 2433 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2434 ** NULL value, then *prRhsHasNull is left unchanged. 2435 ** 2436 ** If a register is allocated and its location stored in *prRhsHasNull, then 2437 ** the value in that register will be NULL if the b-tree contains one or more 2438 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2439 ** NULL values. 2440 ** 2441 ** If the aiMap parameter is not NULL, it must point to an array containing 2442 ** one element for each column returned by the SELECT statement on the RHS 2443 ** of the IN(...) operator. The i'th entry of the array is populated with the 2444 ** offset of the index column that matches the i'th column returned by the 2445 ** SELECT. For example, if the expression and selected index are: 2446 ** 2447 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2448 ** CREATE INDEX i1 ON t1(b, c, a); 2449 ** 2450 ** then aiMap[] is populated with {2, 0, 1}. 2451 */ 2452 #ifndef SQLITE_OMIT_SUBQUERY 2453 int sqlite3FindInIndex( 2454 Parse *pParse, /* Parsing context */ 2455 Expr *pX, /* The IN expression */ 2456 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2457 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2458 int *aiMap, /* Mapping from Index fields to RHS fields */ 2459 int *piTab /* OUT: index to use */ 2460 ){ 2461 Select *p; /* SELECT to the right of IN operator */ 2462 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2463 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2464 int mustBeUnique; /* True if RHS must be unique */ 2465 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2466 2467 assert( pX->op==TK_IN ); 2468 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2469 2470 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2471 ** whether or not the SELECT result contains NULL values, check whether 2472 ** or not NULL is actually possible (it may not be, for example, due 2473 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2474 ** set prRhsHasNull to 0 before continuing. */ 2475 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2476 int i; 2477 ExprList *pEList = pX->x.pSelect->pEList; 2478 for(i=0; i<pEList->nExpr; i++){ 2479 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2480 } 2481 if( i==pEList->nExpr ){ 2482 prRhsHasNull = 0; 2483 } 2484 } 2485 2486 /* Check to see if an existing table or index can be used to 2487 ** satisfy the query. This is preferable to generating a new 2488 ** ephemeral table. */ 2489 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2490 sqlite3 *db = pParse->db; /* Database connection */ 2491 Table *pTab; /* Table <table>. */ 2492 i16 iDb; /* Database idx for pTab */ 2493 ExprList *pEList = p->pEList; 2494 int nExpr = pEList->nExpr; 2495 2496 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2497 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2498 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2499 pTab = p->pSrc->a[0].pTab; 2500 2501 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2502 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2503 sqlite3CodeVerifySchema(pParse, iDb); 2504 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2505 2506 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2507 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2508 /* The "x IN (SELECT rowid FROM table)" case */ 2509 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2510 VdbeCoverage(v); 2511 2512 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2513 eType = IN_INDEX_ROWID; 2514 ExplainQueryPlan((pParse, 0, 2515 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2516 sqlite3VdbeJumpHere(v, iAddr); 2517 }else{ 2518 Index *pIdx; /* Iterator variable */ 2519 int affinity_ok = 1; 2520 int i; 2521 2522 /* Check that the affinity that will be used to perform each 2523 ** comparison is the same as the affinity of each column in table 2524 ** on the RHS of the IN operator. If it not, it is not possible to 2525 ** use any index of the RHS table. */ 2526 for(i=0; i<nExpr && affinity_ok; i++){ 2527 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2528 int iCol = pEList->a[i].pExpr->iColumn; 2529 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2530 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2531 testcase( cmpaff==SQLITE_AFF_BLOB ); 2532 testcase( cmpaff==SQLITE_AFF_TEXT ); 2533 switch( cmpaff ){ 2534 case SQLITE_AFF_BLOB: 2535 break; 2536 case SQLITE_AFF_TEXT: 2537 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2538 ** other has no affinity and the other side is TEXT. Hence, 2539 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2540 ** and for the term on the LHS of the IN to have no affinity. */ 2541 assert( idxaff==SQLITE_AFF_TEXT ); 2542 break; 2543 default: 2544 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2545 } 2546 } 2547 2548 if( affinity_ok ){ 2549 /* Search for an existing index that will work for this IN operator */ 2550 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2551 Bitmask colUsed; /* Columns of the index used */ 2552 Bitmask mCol; /* Mask for the current column */ 2553 if( pIdx->nColumn<nExpr ) continue; 2554 if( pIdx->pPartIdxWhere!=0 ) continue; 2555 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2556 ** BITMASK(nExpr) without overflowing */ 2557 testcase( pIdx->nColumn==BMS-2 ); 2558 testcase( pIdx->nColumn==BMS-1 ); 2559 if( pIdx->nColumn>=BMS-1 ) continue; 2560 if( mustBeUnique ){ 2561 if( pIdx->nKeyCol>nExpr 2562 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2563 ){ 2564 continue; /* This index is not unique over the IN RHS columns */ 2565 } 2566 } 2567 2568 colUsed = 0; /* Columns of index used so far */ 2569 for(i=0; i<nExpr; i++){ 2570 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2571 Expr *pRhs = pEList->a[i].pExpr; 2572 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2573 int j; 2574 2575 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2576 for(j=0; j<nExpr; j++){ 2577 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2578 assert( pIdx->azColl[j] ); 2579 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2580 continue; 2581 } 2582 break; 2583 } 2584 if( j==nExpr ) break; 2585 mCol = MASKBIT(j); 2586 if( mCol & colUsed ) break; /* Each column used only once */ 2587 colUsed |= mCol; 2588 if( aiMap ) aiMap[i] = j; 2589 } 2590 2591 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2592 if( colUsed==(MASKBIT(nExpr)-1) ){ 2593 /* If we reach this point, that means the index pIdx is usable */ 2594 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2595 ExplainQueryPlan((pParse, 0, 2596 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2597 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2598 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2599 VdbeComment((v, "%s", pIdx->zName)); 2600 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2601 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2602 2603 if( prRhsHasNull ){ 2604 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2605 i64 mask = (1<<nExpr)-1; 2606 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2607 iTab, 0, 0, (u8*)&mask, P4_INT64); 2608 #endif 2609 *prRhsHasNull = ++pParse->nMem; 2610 if( nExpr==1 ){ 2611 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2612 } 2613 } 2614 sqlite3VdbeJumpHere(v, iAddr); 2615 } 2616 } /* End loop over indexes */ 2617 } /* End if( affinity_ok ) */ 2618 } /* End if not an rowid index */ 2619 } /* End attempt to optimize using an index */ 2620 2621 /* If no preexisting index is available for the IN clause 2622 ** and IN_INDEX_NOOP is an allowed reply 2623 ** and the RHS of the IN operator is a list, not a subquery 2624 ** and the RHS is not constant or has two or fewer terms, 2625 ** then it is not worth creating an ephemeral table to evaluate 2626 ** the IN operator so return IN_INDEX_NOOP. 2627 */ 2628 if( eType==0 2629 && (inFlags & IN_INDEX_NOOP_OK) 2630 && !ExprHasProperty(pX, EP_xIsSelect) 2631 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2632 ){ 2633 eType = IN_INDEX_NOOP; 2634 } 2635 2636 if( eType==0 ){ 2637 /* Could not find an existing table or index to use as the RHS b-tree. 2638 ** We will have to generate an ephemeral table to do the job. 2639 */ 2640 u32 savedNQueryLoop = pParse->nQueryLoop; 2641 int rMayHaveNull = 0; 2642 eType = IN_INDEX_EPH; 2643 if( inFlags & IN_INDEX_LOOP ){ 2644 pParse->nQueryLoop = 0; 2645 }else if( prRhsHasNull ){ 2646 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2647 } 2648 assert( pX->op==TK_IN ); 2649 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2650 if( rMayHaveNull ){ 2651 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2652 } 2653 pParse->nQueryLoop = savedNQueryLoop; 2654 } 2655 2656 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2657 int i, n; 2658 n = sqlite3ExprVectorSize(pX->pLeft); 2659 for(i=0; i<n; i++) aiMap[i] = i; 2660 } 2661 *piTab = iTab; 2662 return eType; 2663 } 2664 #endif 2665 2666 #ifndef SQLITE_OMIT_SUBQUERY 2667 /* 2668 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2669 ** function allocates and returns a nul-terminated string containing 2670 ** the affinities to be used for each column of the comparison. 2671 ** 2672 ** It is the responsibility of the caller to ensure that the returned 2673 ** string is eventually freed using sqlite3DbFree(). 2674 */ 2675 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2676 Expr *pLeft = pExpr->pLeft; 2677 int nVal = sqlite3ExprVectorSize(pLeft); 2678 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2679 char *zRet; 2680 2681 assert( pExpr->op==TK_IN ); 2682 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2683 if( zRet ){ 2684 int i; 2685 for(i=0; i<nVal; i++){ 2686 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2687 char a = sqlite3ExprAffinity(pA); 2688 if( pSelect ){ 2689 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2690 }else{ 2691 zRet[i] = a; 2692 } 2693 } 2694 zRet[nVal] = '\0'; 2695 } 2696 return zRet; 2697 } 2698 #endif 2699 2700 #ifndef SQLITE_OMIT_SUBQUERY 2701 /* 2702 ** Load the Parse object passed as the first argument with an error 2703 ** message of the form: 2704 ** 2705 ** "sub-select returns N columns - expected M" 2706 */ 2707 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2708 if( pParse->nErr==0 ){ 2709 const char *zFmt = "sub-select returns %d columns - expected %d"; 2710 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2711 } 2712 } 2713 #endif 2714 2715 /* 2716 ** Expression pExpr is a vector that has been used in a context where 2717 ** it is not permitted. If pExpr is a sub-select vector, this routine 2718 ** loads the Parse object with a message of the form: 2719 ** 2720 ** "sub-select returns N columns - expected 1" 2721 ** 2722 ** Or, if it is a regular scalar vector: 2723 ** 2724 ** "row value misused" 2725 */ 2726 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2727 #ifndef SQLITE_OMIT_SUBQUERY 2728 if( pExpr->flags & EP_xIsSelect ){ 2729 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2730 }else 2731 #endif 2732 { 2733 sqlite3ErrorMsg(pParse, "row value misused"); 2734 } 2735 } 2736 2737 #ifndef SQLITE_OMIT_SUBQUERY 2738 /* 2739 ** Generate code that will construct an ephemeral table containing all terms 2740 ** in the RHS of an IN operator. The IN operator can be in either of two 2741 ** forms: 2742 ** 2743 ** x IN (4,5,11) -- IN operator with list on right-hand side 2744 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2745 ** 2746 ** The pExpr parameter is the IN operator. The cursor number for the 2747 ** constructed ephermeral table is returned. The first time the ephemeral 2748 ** table is computed, the cursor number is also stored in pExpr->iTable, 2749 ** however the cursor number returned might not be the same, as it might 2750 ** have been duplicated using OP_OpenDup. 2751 ** 2752 ** If the LHS expression ("x" in the examples) is a column value, or 2753 ** the SELECT statement returns a column value, then the affinity of that 2754 ** column is used to build the index keys. If both 'x' and the 2755 ** SELECT... statement are columns, then numeric affinity is used 2756 ** if either column has NUMERIC or INTEGER affinity. If neither 2757 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2758 ** is used. 2759 */ 2760 void sqlite3CodeRhsOfIN( 2761 Parse *pParse, /* Parsing context */ 2762 Expr *pExpr, /* The IN operator */ 2763 int iTab /* Use this cursor number */ 2764 ){ 2765 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2766 int addr; /* Address of OP_OpenEphemeral instruction */ 2767 Expr *pLeft; /* the LHS of the IN operator */ 2768 KeyInfo *pKeyInfo = 0; /* Key information */ 2769 int nVal; /* Size of vector pLeft */ 2770 Vdbe *v; /* The prepared statement under construction */ 2771 2772 v = pParse->pVdbe; 2773 assert( v!=0 ); 2774 2775 /* The evaluation of the IN must be repeated every time it 2776 ** is encountered if any of the following is true: 2777 ** 2778 ** * The right-hand side is a correlated subquery 2779 ** * The right-hand side is an expression list containing variables 2780 ** * We are inside a trigger 2781 ** 2782 ** If all of the above are false, then we can compute the RHS just once 2783 ** and reuse it many names. 2784 */ 2785 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2786 /* Reuse of the RHS is allowed */ 2787 /* If this routine has already been coded, but the previous code 2788 ** might not have been invoked yet, so invoke it now as a subroutine. 2789 */ 2790 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2791 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2792 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2793 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2794 pExpr->x.pSelect->selId)); 2795 } 2796 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2797 pExpr->y.sub.iAddr); 2798 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2799 sqlite3VdbeJumpHere(v, addrOnce); 2800 return; 2801 } 2802 2803 /* Begin coding the subroutine */ 2804 ExprSetProperty(pExpr, EP_Subrtn); 2805 pExpr->y.sub.regReturn = ++pParse->nMem; 2806 pExpr->y.sub.iAddr = 2807 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2808 VdbeComment((v, "return address")); 2809 2810 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2811 } 2812 2813 /* Check to see if this is a vector IN operator */ 2814 pLeft = pExpr->pLeft; 2815 nVal = sqlite3ExprVectorSize(pLeft); 2816 2817 /* Construct the ephemeral table that will contain the content of 2818 ** RHS of the IN operator. 2819 */ 2820 pExpr->iTable = iTab; 2821 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2822 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2823 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2824 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2825 }else{ 2826 VdbeComment((v, "RHS of IN operator")); 2827 } 2828 #endif 2829 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2830 2831 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2832 /* Case 1: expr IN (SELECT ...) 2833 ** 2834 ** Generate code to write the results of the select into the temporary 2835 ** table allocated and opened above. 2836 */ 2837 Select *pSelect = pExpr->x.pSelect; 2838 ExprList *pEList = pSelect->pEList; 2839 2840 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2841 addrOnce?"":"CORRELATED ", pSelect->selId 2842 )); 2843 /* If the LHS and RHS of the IN operator do not match, that 2844 ** error will have been caught long before we reach this point. */ 2845 if( ALWAYS(pEList->nExpr==nVal) ){ 2846 SelectDest dest; 2847 int i; 2848 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2849 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2850 pSelect->iLimit = 0; 2851 testcase( pSelect->selFlags & SF_Distinct ); 2852 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2853 if( sqlite3Select(pParse, pSelect, &dest) ){ 2854 sqlite3DbFree(pParse->db, dest.zAffSdst); 2855 sqlite3KeyInfoUnref(pKeyInfo); 2856 return; 2857 } 2858 sqlite3DbFree(pParse->db, dest.zAffSdst); 2859 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2860 assert( pEList!=0 ); 2861 assert( pEList->nExpr>0 ); 2862 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2863 for(i=0; i<nVal; i++){ 2864 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2865 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2866 pParse, p, pEList->a[i].pExpr 2867 ); 2868 } 2869 } 2870 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2871 /* Case 2: expr IN (exprlist) 2872 ** 2873 ** For each expression, build an index key from the evaluation and 2874 ** store it in the temporary table. If <expr> is a column, then use 2875 ** that columns affinity when building index keys. If <expr> is not 2876 ** a column, use numeric affinity. 2877 */ 2878 char affinity; /* Affinity of the LHS of the IN */ 2879 int i; 2880 ExprList *pList = pExpr->x.pList; 2881 struct ExprList_item *pItem; 2882 int r1, r2; 2883 affinity = sqlite3ExprAffinity(pLeft); 2884 if( affinity<=SQLITE_AFF_NONE ){ 2885 affinity = SQLITE_AFF_BLOB; 2886 } 2887 if( pKeyInfo ){ 2888 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2889 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2890 } 2891 2892 /* Loop through each expression in <exprlist>. */ 2893 r1 = sqlite3GetTempReg(pParse); 2894 r2 = sqlite3GetTempReg(pParse); 2895 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2896 Expr *pE2 = pItem->pExpr; 2897 2898 /* If the expression is not constant then we will need to 2899 ** disable the test that was generated above that makes sure 2900 ** this code only executes once. Because for a non-constant 2901 ** expression we need to rerun this code each time. 2902 */ 2903 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 2904 sqlite3VdbeChangeToNoop(v, addrOnce); 2905 ExprClearProperty(pExpr, EP_Subrtn); 2906 addrOnce = 0; 2907 } 2908 2909 /* Evaluate the expression and insert it into the temp table */ 2910 sqlite3ExprCode(pParse, pE2, r1); 2911 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 2912 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 2913 } 2914 sqlite3ReleaseTempReg(pParse, r1); 2915 sqlite3ReleaseTempReg(pParse, r2); 2916 } 2917 if( pKeyInfo ){ 2918 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2919 } 2920 if( addrOnce ){ 2921 sqlite3VdbeJumpHere(v, addrOnce); 2922 /* Subroutine return */ 2923 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2924 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2925 sqlite3ClearTempRegCache(pParse); 2926 } 2927 } 2928 #endif /* SQLITE_OMIT_SUBQUERY */ 2929 2930 /* 2931 ** Generate code for scalar subqueries used as a subquery expression 2932 ** or EXISTS operator: 2933 ** 2934 ** (SELECT a FROM b) -- subquery 2935 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2936 ** 2937 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 2938 ** 2939 ** Return the register that holds the result. For a multi-column SELECT, 2940 ** the result is stored in a contiguous array of registers and the 2941 ** return value is the register of the left-most result column. 2942 ** Return 0 if an error occurs. 2943 */ 2944 #ifndef SQLITE_OMIT_SUBQUERY 2945 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 2946 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 2947 int rReg = 0; /* Register storing resulting */ 2948 Select *pSel; /* SELECT statement to encode */ 2949 SelectDest dest; /* How to deal with SELECT result */ 2950 int nReg; /* Registers to allocate */ 2951 Expr *pLimit; /* New limit expression */ 2952 2953 Vdbe *v = pParse->pVdbe; 2954 assert( v!=0 ); 2955 testcase( pExpr->op==TK_EXISTS ); 2956 testcase( pExpr->op==TK_SELECT ); 2957 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2958 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2959 pSel = pExpr->x.pSelect; 2960 2961 /* The evaluation of the EXISTS/SELECT must be repeated every time it 2962 ** is encountered if any of the following is true: 2963 ** 2964 ** * The right-hand side is a correlated subquery 2965 ** * The right-hand side is an expression list containing variables 2966 ** * We are inside a trigger 2967 ** 2968 ** If all of the above are false, then we can run this code just once 2969 ** save the results, and reuse the same result on subsequent invocations. 2970 */ 2971 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2972 /* If this routine has already been coded, then invoke it as a 2973 ** subroutine. */ 2974 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2975 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 2976 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2977 pExpr->y.sub.iAddr); 2978 return pExpr->iTable; 2979 } 2980 2981 /* Begin coding the subroutine */ 2982 ExprSetProperty(pExpr, EP_Subrtn); 2983 pExpr->y.sub.regReturn = ++pParse->nMem; 2984 pExpr->y.sub.iAddr = 2985 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2986 VdbeComment((v, "return address")); 2987 2988 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2989 } 2990 2991 /* For a SELECT, generate code to put the values for all columns of 2992 ** the first row into an array of registers and return the index of 2993 ** the first register. 2994 ** 2995 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2996 ** into a register and return that register number. 2997 ** 2998 ** In both cases, the query is augmented with "LIMIT 1". Any 2999 ** preexisting limit is discarded in place of the new LIMIT 1. 3000 */ 3001 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3002 addrOnce?"":"CORRELATED ", pSel->selId)); 3003 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3004 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3005 pParse->nMem += nReg; 3006 if( pExpr->op==TK_SELECT ){ 3007 dest.eDest = SRT_Mem; 3008 dest.iSdst = dest.iSDParm; 3009 dest.nSdst = nReg; 3010 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3011 VdbeComment((v, "Init subquery result")); 3012 }else{ 3013 dest.eDest = SRT_Exists; 3014 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3015 VdbeComment((v, "Init EXISTS result")); 3016 } 3017 if( pSel->pLimit ){ 3018 /* The subquery already has a limit. If the pre-existing limit is X 3019 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3020 sqlite3 *db = pParse->db; 3021 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3022 if( pLimit ){ 3023 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3024 pLimit = sqlite3PExpr(pParse, TK_NE, 3025 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3026 } 3027 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3028 pSel->pLimit->pLeft = pLimit; 3029 }else{ 3030 /* If there is no pre-existing limit add a limit of 1 */ 3031 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3032 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3033 } 3034 pSel->iLimit = 0; 3035 if( sqlite3Select(pParse, pSel, &dest) ){ 3036 return 0; 3037 } 3038 pExpr->iTable = rReg = dest.iSDParm; 3039 ExprSetVVAProperty(pExpr, EP_NoReduce); 3040 if( addrOnce ){ 3041 sqlite3VdbeJumpHere(v, addrOnce); 3042 3043 /* Subroutine return */ 3044 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3045 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3046 sqlite3ClearTempRegCache(pParse); 3047 } 3048 3049 return rReg; 3050 } 3051 #endif /* SQLITE_OMIT_SUBQUERY */ 3052 3053 #ifndef SQLITE_OMIT_SUBQUERY 3054 /* 3055 ** Expr pIn is an IN(...) expression. This function checks that the 3056 ** sub-select on the RHS of the IN() operator has the same number of 3057 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3058 ** a sub-query, that the LHS is a vector of size 1. 3059 */ 3060 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3061 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3062 if( (pIn->flags & EP_xIsSelect) ){ 3063 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3064 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3065 return 1; 3066 } 3067 }else if( nVector!=1 ){ 3068 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3069 return 1; 3070 } 3071 return 0; 3072 } 3073 #endif 3074 3075 #ifndef SQLITE_OMIT_SUBQUERY 3076 /* 3077 ** Generate code for an IN expression. 3078 ** 3079 ** x IN (SELECT ...) 3080 ** x IN (value, value, ...) 3081 ** 3082 ** The left-hand side (LHS) is a scalar or vector expression. The 3083 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3084 ** subquery. If the RHS is a subquery, the number of result columns must 3085 ** match the number of columns in the vector on the LHS. If the RHS is 3086 ** a list of values, the LHS must be a scalar. 3087 ** 3088 ** The IN operator is true if the LHS value is contained within the RHS. 3089 ** The result is false if the LHS is definitely not in the RHS. The 3090 ** result is NULL if the presence of the LHS in the RHS cannot be 3091 ** determined due to NULLs. 3092 ** 3093 ** This routine generates code that jumps to destIfFalse if the LHS is not 3094 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3095 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3096 ** within the RHS then fall through. 3097 ** 3098 ** See the separate in-operator.md documentation file in the canonical 3099 ** SQLite source tree for additional information. 3100 */ 3101 static void sqlite3ExprCodeIN( 3102 Parse *pParse, /* Parsing and code generating context */ 3103 Expr *pExpr, /* The IN expression */ 3104 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3105 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3106 ){ 3107 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3108 int eType; /* Type of the RHS */ 3109 int rLhs; /* Register(s) holding the LHS values */ 3110 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3111 Vdbe *v; /* Statement under construction */ 3112 int *aiMap = 0; /* Map from vector field to index column */ 3113 char *zAff = 0; /* Affinity string for comparisons */ 3114 int nVector; /* Size of vectors for this IN operator */ 3115 int iDummy; /* Dummy parameter to exprCodeVector() */ 3116 Expr *pLeft; /* The LHS of the IN operator */ 3117 int i; /* loop counter */ 3118 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3119 int destStep6 = 0; /* Start of code for Step 6 */ 3120 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3121 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3122 int addrTop; /* Top of the step-6 loop */ 3123 int iTab = 0; /* Index to use */ 3124 3125 pLeft = pExpr->pLeft; 3126 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3127 zAff = exprINAffinity(pParse, pExpr); 3128 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3129 aiMap = (int*)sqlite3DbMallocZero( 3130 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3131 ); 3132 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3133 3134 /* Attempt to compute the RHS. After this step, if anything other than 3135 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3136 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3137 ** the RHS has not yet been coded. */ 3138 v = pParse->pVdbe; 3139 assert( v!=0 ); /* OOM detected prior to this routine */ 3140 VdbeNoopComment((v, "begin IN expr")); 3141 eType = sqlite3FindInIndex(pParse, pExpr, 3142 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3143 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3144 aiMap, &iTab); 3145 3146 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3147 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3148 ); 3149 #ifdef SQLITE_DEBUG 3150 /* Confirm that aiMap[] contains nVector integer values between 0 and 3151 ** nVector-1. */ 3152 for(i=0; i<nVector; i++){ 3153 int j, cnt; 3154 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3155 assert( cnt==1 ); 3156 } 3157 #endif 3158 3159 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3160 ** vector, then it is stored in an array of nVector registers starting 3161 ** at r1. 3162 ** 3163 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3164 ** so that the fields are in the same order as an existing index. The 3165 ** aiMap[] array contains a mapping from the original LHS field order to 3166 ** the field order that matches the RHS index. 3167 */ 3168 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3169 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3170 if( i==nVector ){ 3171 /* LHS fields are not reordered */ 3172 rLhs = rLhsOrig; 3173 }else{ 3174 /* Need to reorder the LHS fields according to aiMap */ 3175 rLhs = sqlite3GetTempRange(pParse, nVector); 3176 for(i=0; i<nVector; i++){ 3177 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3178 } 3179 } 3180 3181 /* If sqlite3FindInIndex() did not find or create an index that is 3182 ** suitable for evaluating the IN operator, then evaluate using a 3183 ** sequence of comparisons. 3184 ** 3185 ** This is step (1) in the in-operator.md optimized algorithm. 3186 */ 3187 if( eType==IN_INDEX_NOOP ){ 3188 ExprList *pList = pExpr->x.pList; 3189 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3190 int labelOk = sqlite3VdbeMakeLabel(pParse); 3191 int r2, regToFree; 3192 int regCkNull = 0; 3193 int ii; 3194 int bLhsReal; /* True if the LHS of the IN has REAL affinity */ 3195 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3196 if( destIfNull!=destIfFalse ){ 3197 regCkNull = sqlite3GetTempReg(pParse); 3198 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3199 } 3200 bLhsReal = sqlite3ExprAffinity(pExpr->pLeft)==SQLITE_AFF_REAL; 3201 for(ii=0; ii<pList->nExpr; ii++){ 3202 if( bLhsReal ){ 3203 r2 = regToFree = sqlite3GetTempReg(pParse); 3204 sqlite3ExprCode(pParse, pList->a[ii].pExpr, r2); 3205 sqlite3VdbeAddOp4(v, OP_Affinity, r2, 1, 0, "E", P4_STATIC); 3206 }else{ 3207 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3208 } 3209 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3210 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3211 } 3212 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3213 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3214 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3215 (void*)pColl, P4_COLLSEQ); 3216 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3217 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3218 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3219 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3220 sqlite3VdbeChangeP5(v, zAff[0]); 3221 }else{ 3222 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3223 assert( destIfNull==destIfFalse ); 3224 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3225 (void*)pColl, P4_COLLSEQ); 3226 VdbeCoverageIf(v, op==OP_Ne); 3227 VdbeCoverageIf(v, op==OP_IsNull); 3228 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3229 } 3230 sqlite3ReleaseTempReg(pParse, regToFree); 3231 } 3232 if( regCkNull ){ 3233 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3234 sqlite3VdbeGoto(v, destIfFalse); 3235 } 3236 sqlite3VdbeResolveLabel(v, labelOk); 3237 sqlite3ReleaseTempReg(pParse, regCkNull); 3238 goto sqlite3ExprCodeIN_finished; 3239 } 3240 3241 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3242 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3243 ** We will then skip the binary search of the RHS. 3244 */ 3245 if( destIfNull==destIfFalse ){ 3246 destStep2 = destIfFalse; 3247 }else{ 3248 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3249 } 3250 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3251 for(i=0; i<nVector; i++){ 3252 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3253 if( sqlite3ExprCanBeNull(p) ){ 3254 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3255 VdbeCoverage(v); 3256 } 3257 } 3258 3259 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3260 ** of the RHS using the LHS as a probe. If found, the result is 3261 ** true. 3262 */ 3263 if( eType==IN_INDEX_ROWID ){ 3264 /* In this case, the RHS is the ROWID of table b-tree and so we also 3265 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3266 ** into a single opcode. */ 3267 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3268 VdbeCoverage(v); 3269 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3270 }else{ 3271 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3272 if( destIfFalse==destIfNull ){ 3273 /* Combine Step 3 and Step 5 into a single opcode */ 3274 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3275 rLhs, nVector); VdbeCoverage(v); 3276 goto sqlite3ExprCodeIN_finished; 3277 } 3278 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3279 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3280 rLhs, nVector); VdbeCoverage(v); 3281 } 3282 3283 /* Step 4. If the RHS is known to be non-NULL and we did not find 3284 ** an match on the search above, then the result must be FALSE. 3285 */ 3286 if( rRhsHasNull && nVector==1 ){ 3287 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3288 VdbeCoverage(v); 3289 } 3290 3291 /* Step 5. If we do not care about the difference between NULL and 3292 ** FALSE, then just return false. 3293 */ 3294 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3295 3296 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3297 ** If any comparison is NULL, then the result is NULL. If all 3298 ** comparisons are FALSE then the final result is FALSE. 3299 ** 3300 ** For a scalar LHS, it is sufficient to check just the first row 3301 ** of the RHS. 3302 */ 3303 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3304 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3305 VdbeCoverage(v); 3306 if( nVector>1 ){ 3307 destNotNull = sqlite3VdbeMakeLabel(pParse); 3308 }else{ 3309 /* For nVector==1, combine steps 6 and 7 by immediately returning 3310 ** FALSE if the first comparison is not NULL */ 3311 destNotNull = destIfFalse; 3312 } 3313 for(i=0; i<nVector; i++){ 3314 Expr *p; 3315 CollSeq *pColl; 3316 int r3 = sqlite3GetTempReg(pParse); 3317 p = sqlite3VectorFieldSubexpr(pLeft, i); 3318 pColl = sqlite3ExprCollSeq(pParse, p); 3319 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3320 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3321 (void*)pColl, P4_COLLSEQ); 3322 VdbeCoverage(v); 3323 sqlite3ReleaseTempReg(pParse, r3); 3324 } 3325 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3326 if( nVector>1 ){ 3327 sqlite3VdbeResolveLabel(v, destNotNull); 3328 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3329 VdbeCoverage(v); 3330 3331 /* Step 7: If we reach this point, we know that the result must 3332 ** be false. */ 3333 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3334 } 3335 3336 /* Jumps here in order to return true. */ 3337 sqlite3VdbeJumpHere(v, addrTruthOp); 3338 3339 sqlite3ExprCodeIN_finished: 3340 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3341 VdbeComment((v, "end IN expr")); 3342 sqlite3ExprCodeIN_oom_error: 3343 sqlite3DbFree(pParse->db, aiMap); 3344 sqlite3DbFree(pParse->db, zAff); 3345 } 3346 #endif /* SQLITE_OMIT_SUBQUERY */ 3347 3348 #ifndef SQLITE_OMIT_FLOATING_POINT 3349 /* 3350 ** Generate an instruction that will put the floating point 3351 ** value described by z[0..n-1] into register iMem. 3352 ** 3353 ** The z[] string will probably not be zero-terminated. But the 3354 ** z[n] character is guaranteed to be something that does not look 3355 ** like the continuation of the number. 3356 */ 3357 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3358 if( ALWAYS(z!=0) ){ 3359 double value; 3360 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3361 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3362 if( negateFlag ) value = -value; 3363 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3364 } 3365 } 3366 #endif 3367 3368 3369 /* 3370 ** Generate an instruction that will put the integer describe by 3371 ** text z[0..n-1] into register iMem. 3372 ** 3373 ** Expr.u.zToken is always UTF8 and zero-terminated. 3374 */ 3375 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3376 Vdbe *v = pParse->pVdbe; 3377 if( pExpr->flags & EP_IntValue ){ 3378 int i = pExpr->u.iValue; 3379 assert( i>=0 ); 3380 if( negFlag ) i = -i; 3381 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3382 }else{ 3383 int c; 3384 i64 value; 3385 const char *z = pExpr->u.zToken; 3386 assert( z!=0 ); 3387 c = sqlite3DecOrHexToI64(z, &value); 3388 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3389 #ifdef SQLITE_OMIT_FLOATING_POINT 3390 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3391 #else 3392 #ifndef SQLITE_OMIT_HEX_INTEGER 3393 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3394 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3395 }else 3396 #endif 3397 { 3398 codeReal(v, z, negFlag, iMem); 3399 } 3400 #endif 3401 }else{ 3402 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3403 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3404 } 3405 } 3406 } 3407 3408 3409 /* Generate code that will load into register regOut a value that is 3410 ** appropriate for the iIdxCol-th column of index pIdx. 3411 */ 3412 void sqlite3ExprCodeLoadIndexColumn( 3413 Parse *pParse, /* The parsing context */ 3414 Index *pIdx, /* The index whose column is to be loaded */ 3415 int iTabCur, /* Cursor pointing to a table row */ 3416 int iIdxCol, /* The column of the index to be loaded */ 3417 int regOut /* Store the index column value in this register */ 3418 ){ 3419 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3420 if( iTabCol==XN_EXPR ){ 3421 assert( pIdx->aColExpr ); 3422 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3423 pParse->iSelfTab = iTabCur + 1; 3424 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3425 pParse->iSelfTab = 0; 3426 }else{ 3427 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3428 iTabCol, regOut); 3429 } 3430 } 3431 3432 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3433 /* 3434 ** Generate code that will compute the value of generated column pCol 3435 ** and store the result in register regOut 3436 */ 3437 void sqlite3ExprCodeGeneratedColumn( 3438 Parse *pParse, 3439 Column *pCol, 3440 int regOut 3441 ){ 3442 int iAddr; 3443 Vdbe *v = pParse->pVdbe; 3444 assert( v!=0 ); 3445 assert( pParse->iSelfTab!=0 ); 3446 if( pParse->iSelfTab>0 ){ 3447 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3448 }else{ 3449 iAddr = 0; 3450 } 3451 sqlite3ExprCode(pParse, pCol->pDflt, regOut); 3452 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3453 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3454 } 3455 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3456 } 3457 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3458 3459 /* 3460 ** Generate code to extract the value of the iCol-th column of a table. 3461 */ 3462 void sqlite3ExprCodeGetColumnOfTable( 3463 Vdbe *v, /* Parsing context */ 3464 Table *pTab, /* The table containing the value */ 3465 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3466 int iCol, /* Index of the column to extract */ 3467 int regOut /* Extract the value into this register */ 3468 ){ 3469 Column *pCol; 3470 assert( v!=0 ); 3471 if( pTab==0 ){ 3472 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3473 return; 3474 } 3475 if( iCol<0 || iCol==pTab->iPKey ){ 3476 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3477 }else{ 3478 int op; 3479 int x; 3480 if( IsVirtual(pTab) ){ 3481 op = OP_VColumn; 3482 x = iCol; 3483 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3484 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3485 Parse *pParse = sqlite3VdbeParser(v); 3486 if( pCol->colFlags & COLFLAG_BUSY ){ 3487 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName); 3488 }else{ 3489 int savedSelfTab = pParse->iSelfTab; 3490 pCol->colFlags |= COLFLAG_BUSY; 3491 pParse->iSelfTab = iTabCur+1; 3492 sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut); 3493 pParse->iSelfTab = savedSelfTab; 3494 pCol->colFlags &= ~COLFLAG_BUSY; 3495 } 3496 return; 3497 #endif 3498 }else if( !HasRowid(pTab) ){ 3499 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3500 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3501 op = OP_Column; 3502 }else{ 3503 x = sqlite3TableColumnToStorage(pTab,iCol); 3504 testcase( x!=iCol ); 3505 op = OP_Column; 3506 } 3507 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3508 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3509 } 3510 } 3511 3512 /* 3513 ** Generate code that will extract the iColumn-th column from 3514 ** table pTab and store the column value in register iReg. 3515 ** 3516 ** There must be an open cursor to pTab in iTable when this routine 3517 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3518 */ 3519 int sqlite3ExprCodeGetColumn( 3520 Parse *pParse, /* Parsing and code generating context */ 3521 Table *pTab, /* Description of the table we are reading from */ 3522 int iColumn, /* Index of the table column */ 3523 int iTable, /* The cursor pointing to the table */ 3524 int iReg, /* Store results here */ 3525 u8 p5 /* P5 value for OP_Column + FLAGS */ 3526 ){ 3527 assert( pParse->pVdbe!=0 ); 3528 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3529 if( p5 ){ 3530 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3531 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3532 } 3533 return iReg; 3534 } 3535 3536 /* 3537 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3538 ** over to iTo..iTo+nReg-1. 3539 */ 3540 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3541 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3542 } 3543 3544 /* 3545 ** Convert a scalar expression node to a TK_REGISTER referencing 3546 ** register iReg. The caller must ensure that iReg already contains 3547 ** the correct value for the expression. 3548 */ 3549 static void exprToRegister(Expr *pExpr, int iReg){ 3550 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3551 p->op2 = p->op; 3552 p->op = TK_REGISTER; 3553 p->iTable = iReg; 3554 ExprClearProperty(p, EP_Skip); 3555 } 3556 3557 /* 3558 ** Evaluate an expression (either a vector or a scalar expression) and store 3559 ** the result in continguous temporary registers. Return the index of 3560 ** the first register used to store the result. 3561 ** 3562 ** If the returned result register is a temporary scalar, then also write 3563 ** that register number into *piFreeable. If the returned result register 3564 ** is not a temporary or if the expression is a vector set *piFreeable 3565 ** to 0. 3566 */ 3567 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3568 int iResult; 3569 int nResult = sqlite3ExprVectorSize(p); 3570 if( nResult==1 ){ 3571 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3572 }else{ 3573 *piFreeable = 0; 3574 if( p->op==TK_SELECT ){ 3575 #if SQLITE_OMIT_SUBQUERY 3576 iResult = 0; 3577 #else 3578 iResult = sqlite3CodeSubselect(pParse, p); 3579 #endif 3580 }else{ 3581 int i; 3582 iResult = pParse->nMem+1; 3583 pParse->nMem += nResult; 3584 for(i=0; i<nResult; i++){ 3585 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3586 } 3587 } 3588 } 3589 return iResult; 3590 } 3591 3592 /* 3593 ** Generate code to implement special SQL functions that are implemented 3594 ** in-line rather than by using the usual callbacks. 3595 */ 3596 static int exprCodeInlineFunction( 3597 Parse *pParse, /* Parsing context */ 3598 ExprList *pFarg, /* List of function arguments */ 3599 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3600 int target /* Store function result in this register */ 3601 ){ 3602 int nFarg; 3603 Vdbe *v = pParse->pVdbe; 3604 assert( v!=0 ); 3605 assert( pFarg!=0 ); 3606 nFarg = pFarg->nExpr; 3607 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3608 switch( iFuncId ){ 3609 case INLINEFUNC_coalesce: { 3610 /* Attempt a direct implementation of the built-in COALESCE() and 3611 ** IFNULL() functions. This avoids unnecessary evaluation of 3612 ** arguments past the first non-NULL argument. 3613 */ 3614 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3615 int i; 3616 assert( nFarg>=2 ); 3617 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3618 for(i=1; i<nFarg; i++){ 3619 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3620 VdbeCoverage(v); 3621 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3622 } 3623 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3624 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3625 } 3626 sqlite3VdbeResolveLabel(v, endCoalesce); 3627 break; 3628 } 3629 3630 default: { 3631 /* The UNLIKELY() function is a no-op. The result is the value 3632 ** of the first argument. 3633 */ 3634 assert( nFarg==1 || nFarg==2 ); 3635 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3636 break; 3637 } 3638 3639 /*********************************************************************** 3640 ** Test-only SQL functions that are only usable if enabled 3641 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3642 */ 3643 case INLINEFUNC_expr_compare: { 3644 /* Compare two expressions using sqlite3ExprCompare() */ 3645 assert( nFarg==2 ); 3646 sqlite3VdbeAddOp2(v, OP_Integer, 3647 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3648 target); 3649 break; 3650 } 3651 3652 case INLINEFUNC_expr_implies_expr: { 3653 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3654 assert( nFarg==2 ); 3655 sqlite3VdbeAddOp2(v, OP_Integer, 3656 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3657 target); 3658 break; 3659 } 3660 3661 case INLINEFUNC_implies_nonnull_row: { 3662 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3663 Expr *pA1; 3664 assert( nFarg==2 ); 3665 pA1 = pFarg->a[1].pExpr; 3666 if( pA1->op==TK_COLUMN ){ 3667 sqlite3VdbeAddOp2(v, OP_Integer, 3668 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3669 target); 3670 }else{ 3671 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3672 } 3673 break; 3674 } 3675 3676 #ifdef SQLITE_DEBUG 3677 case INLINEFUNC_affinity: { 3678 /* The AFFINITY() function evaluates to a string that describes 3679 ** the type affinity of the argument. This is used for testing of 3680 ** the SQLite type logic. 3681 */ 3682 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3683 char aff; 3684 assert( nFarg==1 ); 3685 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3686 sqlite3VdbeLoadString(v, target, 3687 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3688 break; 3689 } 3690 #endif 3691 } 3692 return target; 3693 } 3694 3695 3696 /* 3697 ** Generate code into the current Vdbe to evaluate the given 3698 ** expression. Attempt to store the results in register "target". 3699 ** Return the register where results are stored. 3700 ** 3701 ** With this routine, there is no guarantee that results will 3702 ** be stored in target. The result might be stored in some other 3703 ** register if it is convenient to do so. The calling function 3704 ** must check the return code and move the results to the desired 3705 ** register. 3706 */ 3707 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3708 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3709 int op; /* The opcode being coded */ 3710 int inReg = target; /* Results stored in register inReg */ 3711 int regFree1 = 0; /* If non-zero free this temporary register */ 3712 int regFree2 = 0; /* If non-zero free this temporary register */ 3713 int r1, r2; /* Various register numbers */ 3714 Expr tempX; /* Temporary expression node */ 3715 int p5 = 0; 3716 3717 assert( target>0 && target<=pParse->nMem ); 3718 if( v==0 ){ 3719 assert( pParse->db->mallocFailed ); 3720 return 0; 3721 } 3722 3723 expr_code_doover: 3724 if( pExpr==0 ){ 3725 op = TK_NULL; 3726 }else{ 3727 op = pExpr->op; 3728 } 3729 switch( op ){ 3730 case TK_AGG_COLUMN: { 3731 AggInfo *pAggInfo = pExpr->pAggInfo; 3732 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3733 if( !pAggInfo->directMode ){ 3734 assert( pCol->iMem>0 ); 3735 return pCol->iMem; 3736 }else if( pAggInfo->useSortingIdx ){ 3737 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3738 pCol->iSorterColumn, target); 3739 return target; 3740 } 3741 /* Otherwise, fall thru into the TK_COLUMN case */ 3742 } 3743 case TK_COLUMN: { 3744 int iTab = pExpr->iTable; 3745 int iReg; 3746 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3747 /* This COLUMN expression is really a constant due to WHERE clause 3748 ** constraints, and that constant is coded by the pExpr->pLeft 3749 ** expresssion. However, make sure the constant has the correct 3750 ** datatype by applying the Affinity of the table column to the 3751 ** constant. 3752 */ 3753 int aff; 3754 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3755 if( pExpr->y.pTab ){ 3756 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3757 }else{ 3758 aff = pExpr->affExpr; 3759 } 3760 if( aff>SQLITE_AFF_BLOB ){ 3761 static const char zAff[] = "B\000C\000D\000E"; 3762 assert( SQLITE_AFF_BLOB=='A' ); 3763 assert( SQLITE_AFF_TEXT=='B' ); 3764 if( iReg!=target ){ 3765 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target); 3766 iReg = target; 3767 } 3768 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3769 &zAff[(aff-'B')*2], P4_STATIC); 3770 } 3771 return iReg; 3772 } 3773 if( iTab<0 ){ 3774 if( pParse->iSelfTab<0 ){ 3775 /* Other columns in the same row for CHECK constraints or 3776 ** generated columns or for inserting into partial index. 3777 ** The row is unpacked into registers beginning at 3778 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 3779 ** immediately prior to the first column. 3780 */ 3781 Column *pCol; 3782 Table *pTab = pExpr->y.pTab; 3783 int iSrc; 3784 int iCol = pExpr->iColumn; 3785 assert( pTab!=0 ); 3786 assert( iCol>=XN_ROWID ); 3787 assert( iCol<pTab->nCol ); 3788 if( iCol<0 ){ 3789 return -1-pParse->iSelfTab; 3790 } 3791 pCol = pTab->aCol + iCol; 3792 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 3793 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 3794 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3795 if( pCol->colFlags & COLFLAG_GENERATED ){ 3796 if( pCol->colFlags & COLFLAG_BUSY ){ 3797 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3798 pCol->zName); 3799 return 0; 3800 } 3801 pCol->colFlags |= COLFLAG_BUSY; 3802 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 3803 sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc); 3804 } 3805 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 3806 return iSrc; 3807 }else 3808 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3809 if( pCol->affinity==SQLITE_AFF_REAL ){ 3810 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 3811 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3812 return target; 3813 }else{ 3814 return iSrc; 3815 } 3816 }else{ 3817 /* Coding an expression that is part of an index where column names 3818 ** in the index refer to the table to which the index belongs */ 3819 iTab = pParse->iSelfTab - 1; 3820 } 3821 } 3822 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3823 pExpr->iColumn, iTab, target, 3824 pExpr->op2); 3825 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 3826 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 3827 } 3828 return iReg; 3829 } 3830 case TK_INTEGER: { 3831 codeInteger(pParse, pExpr, 0, target); 3832 return target; 3833 } 3834 case TK_TRUEFALSE: { 3835 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3836 return target; 3837 } 3838 #ifndef SQLITE_OMIT_FLOATING_POINT 3839 case TK_FLOAT: { 3840 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3841 codeReal(v, pExpr->u.zToken, 0, target); 3842 return target; 3843 } 3844 #endif 3845 case TK_STRING: { 3846 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3847 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3848 return target; 3849 } 3850 default: { 3851 /* Make NULL the default case so that if a bug causes an illegal 3852 ** Expr node to be passed into this function, it will be handled 3853 ** sanely and not crash. But keep the assert() to bring the problem 3854 ** to the attention of the developers. */ 3855 assert( op==TK_NULL ); 3856 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3857 return target; 3858 } 3859 #ifndef SQLITE_OMIT_BLOB_LITERAL 3860 case TK_BLOB: { 3861 int n; 3862 const char *z; 3863 char *zBlob; 3864 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3865 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3866 assert( pExpr->u.zToken[1]=='\'' ); 3867 z = &pExpr->u.zToken[2]; 3868 n = sqlite3Strlen30(z) - 1; 3869 assert( z[n]=='\'' ); 3870 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3871 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3872 return target; 3873 } 3874 #endif 3875 case TK_VARIABLE: { 3876 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3877 assert( pExpr->u.zToken!=0 ); 3878 assert( pExpr->u.zToken[0]!=0 ); 3879 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3880 if( pExpr->u.zToken[1]!=0 ){ 3881 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3882 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 3883 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3884 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3885 } 3886 return target; 3887 } 3888 case TK_REGISTER: { 3889 return pExpr->iTable; 3890 } 3891 #ifndef SQLITE_OMIT_CAST 3892 case TK_CAST: { 3893 /* Expressions of the form: CAST(pLeft AS token) */ 3894 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3895 if( inReg!=target ){ 3896 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3897 inReg = target; 3898 } 3899 sqlite3VdbeAddOp2(v, OP_Cast, target, 3900 sqlite3AffinityType(pExpr->u.zToken, 0)); 3901 return inReg; 3902 } 3903 #endif /* SQLITE_OMIT_CAST */ 3904 case TK_IS: 3905 case TK_ISNOT: 3906 op = (op==TK_IS) ? TK_EQ : TK_NE; 3907 p5 = SQLITE_NULLEQ; 3908 /* fall-through */ 3909 case TK_LT: 3910 case TK_LE: 3911 case TK_GT: 3912 case TK_GE: 3913 case TK_NE: 3914 case TK_EQ: { 3915 Expr *pLeft = pExpr->pLeft; 3916 if( sqlite3ExprIsVector(pLeft) ){ 3917 codeVectorCompare(pParse, pExpr, target, op, p5); 3918 }else{ 3919 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3920 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3921 codeCompare(pParse, pLeft, pExpr->pRight, op, 3922 r1, r2, inReg, SQLITE_STOREP2 | p5, 3923 ExprHasProperty(pExpr,EP_Commuted)); 3924 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3925 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3926 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3927 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3928 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3929 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3930 testcase( regFree1==0 ); 3931 testcase( regFree2==0 ); 3932 } 3933 break; 3934 } 3935 case TK_AND: 3936 case TK_OR: 3937 case TK_PLUS: 3938 case TK_STAR: 3939 case TK_MINUS: 3940 case TK_REM: 3941 case TK_BITAND: 3942 case TK_BITOR: 3943 case TK_SLASH: 3944 case TK_LSHIFT: 3945 case TK_RSHIFT: 3946 case TK_CONCAT: { 3947 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3948 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3949 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3950 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3951 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3952 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3953 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3954 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3955 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3956 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3957 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3958 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3959 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3960 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3961 testcase( regFree1==0 ); 3962 testcase( regFree2==0 ); 3963 break; 3964 } 3965 case TK_UMINUS: { 3966 Expr *pLeft = pExpr->pLeft; 3967 assert( pLeft ); 3968 if( pLeft->op==TK_INTEGER ){ 3969 codeInteger(pParse, pLeft, 1, target); 3970 return target; 3971 #ifndef SQLITE_OMIT_FLOATING_POINT 3972 }else if( pLeft->op==TK_FLOAT ){ 3973 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3974 codeReal(v, pLeft->u.zToken, 1, target); 3975 return target; 3976 #endif 3977 }else{ 3978 tempX.op = TK_INTEGER; 3979 tempX.flags = EP_IntValue|EP_TokenOnly; 3980 tempX.u.iValue = 0; 3981 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3982 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3983 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3984 testcase( regFree2==0 ); 3985 } 3986 break; 3987 } 3988 case TK_BITNOT: 3989 case TK_NOT: { 3990 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3991 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3992 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3993 testcase( regFree1==0 ); 3994 sqlite3VdbeAddOp2(v, op, r1, inReg); 3995 break; 3996 } 3997 case TK_TRUTH: { 3998 int isTrue; /* IS TRUE or IS NOT TRUE */ 3999 int bNormal; /* IS TRUE or IS FALSE */ 4000 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4001 testcase( regFree1==0 ); 4002 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4003 bNormal = pExpr->op2==TK_IS; 4004 testcase( isTrue && bNormal); 4005 testcase( !isTrue && bNormal); 4006 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4007 break; 4008 } 4009 case TK_ISNULL: 4010 case TK_NOTNULL: { 4011 int addr; 4012 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4013 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4014 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4015 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4016 testcase( regFree1==0 ); 4017 addr = sqlite3VdbeAddOp1(v, op, r1); 4018 VdbeCoverageIf(v, op==TK_ISNULL); 4019 VdbeCoverageIf(v, op==TK_NOTNULL); 4020 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4021 sqlite3VdbeJumpHere(v, addr); 4022 break; 4023 } 4024 case TK_AGG_FUNCTION: { 4025 AggInfo *pInfo = pExpr->pAggInfo; 4026 if( pInfo==0 ){ 4027 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4028 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 4029 }else{ 4030 return pInfo->aFunc[pExpr->iAgg].iMem; 4031 } 4032 break; 4033 } 4034 case TK_FUNCTION: { 4035 ExprList *pFarg; /* List of function arguments */ 4036 int nFarg; /* Number of function arguments */ 4037 FuncDef *pDef; /* The function definition object */ 4038 const char *zId; /* The function name */ 4039 u32 constMask = 0; /* Mask of function arguments that are constant */ 4040 int i; /* Loop counter */ 4041 sqlite3 *db = pParse->db; /* The database connection */ 4042 u8 enc = ENC(db); /* The text encoding used by this database */ 4043 CollSeq *pColl = 0; /* A collating sequence */ 4044 4045 #ifndef SQLITE_OMIT_WINDOWFUNC 4046 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4047 return pExpr->y.pWin->regResult; 4048 } 4049 #endif 4050 4051 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4052 /* SQL functions can be expensive. So try to move constant functions 4053 ** out of the inner loop, even if that means an extra OP_Copy. */ 4054 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4055 } 4056 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4057 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 4058 pFarg = 0; 4059 }else{ 4060 pFarg = pExpr->x.pList; 4061 } 4062 nFarg = pFarg ? pFarg->nExpr : 0; 4063 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4064 zId = pExpr->u.zToken; 4065 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4066 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4067 if( pDef==0 && pParse->explain ){ 4068 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4069 } 4070 #endif 4071 if( pDef==0 || pDef->xFinalize!=0 ){ 4072 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 4073 break; 4074 } 4075 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4076 return exprCodeInlineFunction(pParse, pFarg, 4077 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4078 } 4079 4080 for(i=0; i<nFarg; i++){ 4081 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4082 testcase( i==31 ); 4083 constMask |= MASKBIT32(i); 4084 } 4085 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4086 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4087 } 4088 } 4089 if( pFarg ){ 4090 if( constMask ){ 4091 r1 = pParse->nMem+1; 4092 pParse->nMem += nFarg; 4093 }else{ 4094 r1 = sqlite3GetTempRange(pParse, nFarg); 4095 } 4096 4097 /* For length() and typeof() functions with a column argument, 4098 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4099 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4100 ** loading. 4101 */ 4102 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4103 u8 exprOp; 4104 assert( nFarg==1 ); 4105 assert( pFarg->a[0].pExpr!=0 ); 4106 exprOp = pFarg->a[0].pExpr->op; 4107 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4108 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4109 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4110 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4111 pFarg->a[0].pExpr->op2 = 4112 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4113 } 4114 } 4115 4116 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4117 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4118 }else{ 4119 r1 = 0; 4120 } 4121 #ifndef SQLITE_OMIT_VIRTUALTABLE 4122 /* Possibly overload the function if the first argument is 4123 ** a virtual table column. 4124 ** 4125 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4126 ** second argument, not the first, as the argument to test to 4127 ** see if it is a column in a virtual table. This is done because 4128 ** the left operand of infix functions (the operand we want to 4129 ** control overloading) ends up as the second argument to the 4130 ** function. The expression "A glob B" is equivalent to 4131 ** "glob(B,A). We want to use the A in "A glob B" to test 4132 ** for function overloading. But we use the B term in "glob(B,A)". 4133 */ 4134 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4135 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4136 }else if( nFarg>0 ){ 4137 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4138 } 4139 #endif 4140 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4141 if( !pColl ) pColl = db->pDfltColl; 4142 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4143 } 4144 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4145 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4146 Expr *pArg = pFarg->a[0].pExpr; 4147 if( pArg->op==TK_COLUMN ){ 4148 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4149 }else{ 4150 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4151 } 4152 }else 4153 #endif 4154 { 4155 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4156 pDef, pExpr->op2); 4157 } 4158 if( nFarg ){ 4159 if( constMask==0 ){ 4160 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4161 }else{ 4162 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4163 } 4164 } 4165 return target; 4166 } 4167 #ifndef SQLITE_OMIT_SUBQUERY 4168 case TK_EXISTS: 4169 case TK_SELECT: { 4170 int nCol; 4171 testcase( op==TK_EXISTS ); 4172 testcase( op==TK_SELECT ); 4173 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4174 sqlite3SubselectError(pParse, nCol, 1); 4175 }else{ 4176 return sqlite3CodeSubselect(pParse, pExpr); 4177 } 4178 break; 4179 } 4180 case TK_SELECT_COLUMN: { 4181 int n; 4182 if( pExpr->pLeft->iTable==0 ){ 4183 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4184 } 4185 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 4186 if( pExpr->iTable!=0 4187 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 4188 ){ 4189 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4190 pExpr->iTable, n); 4191 } 4192 return pExpr->pLeft->iTable + pExpr->iColumn; 4193 } 4194 case TK_IN: { 4195 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4196 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4197 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4198 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4199 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4200 sqlite3VdbeResolveLabel(v, destIfFalse); 4201 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4202 sqlite3VdbeResolveLabel(v, destIfNull); 4203 return target; 4204 } 4205 #endif /* SQLITE_OMIT_SUBQUERY */ 4206 4207 4208 /* 4209 ** x BETWEEN y AND z 4210 ** 4211 ** This is equivalent to 4212 ** 4213 ** x>=y AND x<=z 4214 ** 4215 ** X is stored in pExpr->pLeft. 4216 ** Y is stored in pExpr->pList->a[0].pExpr. 4217 ** Z is stored in pExpr->pList->a[1].pExpr. 4218 */ 4219 case TK_BETWEEN: { 4220 exprCodeBetween(pParse, pExpr, target, 0, 0); 4221 return target; 4222 } 4223 case TK_SPAN: 4224 case TK_COLLATE: 4225 case TK_UPLUS: { 4226 pExpr = pExpr->pLeft; 4227 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4228 } 4229 4230 case TK_TRIGGER: { 4231 /* If the opcode is TK_TRIGGER, then the expression is a reference 4232 ** to a column in the new.* or old.* pseudo-tables available to 4233 ** trigger programs. In this case Expr.iTable is set to 1 for the 4234 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4235 ** is set to the column of the pseudo-table to read, or to -1 to 4236 ** read the rowid field. 4237 ** 4238 ** The expression is implemented using an OP_Param opcode. The p1 4239 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4240 ** to reference another column of the old.* pseudo-table, where 4241 ** i is the index of the column. For a new.rowid reference, p1 is 4242 ** set to (n+1), where n is the number of columns in each pseudo-table. 4243 ** For a reference to any other column in the new.* pseudo-table, p1 4244 ** is set to (n+2+i), where n and i are as defined previously. For 4245 ** example, if the table on which triggers are being fired is 4246 ** declared as: 4247 ** 4248 ** CREATE TABLE t1(a, b); 4249 ** 4250 ** Then p1 is interpreted as follows: 4251 ** 4252 ** p1==0 -> old.rowid p1==3 -> new.rowid 4253 ** p1==1 -> old.a p1==4 -> new.a 4254 ** p1==2 -> old.b p1==5 -> new.b 4255 */ 4256 Table *pTab = pExpr->y.pTab; 4257 int iCol = pExpr->iColumn; 4258 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4259 + sqlite3TableColumnToStorage(pTab, iCol); 4260 4261 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4262 assert( iCol>=-1 && iCol<pTab->nCol ); 4263 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4264 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4265 4266 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4267 VdbeComment((v, "r[%d]=%s.%s", target, 4268 (pExpr->iTable ? "new" : "old"), 4269 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName) 4270 )); 4271 4272 #ifndef SQLITE_OMIT_FLOATING_POINT 4273 /* If the column has REAL affinity, it may currently be stored as an 4274 ** integer. Use OP_RealAffinity to make sure it is really real. 4275 ** 4276 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4277 ** floating point when extracting it from the record. */ 4278 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4279 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4280 } 4281 #endif 4282 break; 4283 } 4284 4285 case TK_VECTOR: { 4286 sqlite3ErrorMsg(pParse, "row value misused"); 4287 break; 4288 } 4289 4290 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4291 ** that derive from the right-hand table of a LEFT JOIN. The 4292 ** Expr.iTable value is the table number for the right-hand table. 4293 ** The expression is only evaluated if that table is not currently 4294 ** on a LEFT JOIN NULL row. 4295 */ 4296 case TK_IF_NULL_ROW: { 4297 int addrINR; 4298 u8 okConstFactor = pParse->okConstFactor; 4299 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4300 /* Temporarily disable factoring of constant expressions, since 4301 ** even though expressions may appear to be constant, they are not 4302 ** really constant because they originate from the right-hand side 4303 ** of a LEFT JOIN. */ 4304 pParse->okConstFactor = 0; 4305 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4306 pParse->okConstFactor = okConstFactor; 4307 sqlite3VdbeJumpHere(v, addrINR); 4308 sqlite3VdbeChangeP3(v, addrINR, inReg); 4309 break; 4310 } 4311 4312 /* 4313 ** Form A: 4314 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4315 ** 4316 ** Form B: 4317 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4318 ** 4319 ** Form A is can be transformed into the equivalent form B as follows: 4320 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4321 ** WHEN x=eN THEN rN ELSE y END 4322 ** 4323 ** X (if it exists) is in pExpr->pLeft. 4324 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4325 ** odd. The Y is also optional. If the number of elements in x.pList 4326 ** is even, then Y is omitted and the "otherwise" result is NULL. 4327 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4328 ** 4329 ** The result of the expression is the Ri for the first matching Ei, 4330 ** or if there is no matching Ei, the ELSE term Y, or if there is 4331 ** no ELSE term, NULL. 4332 */ 4333 case TK_CASE: { 4334 int endLabel; /* GOTO label for end of CASE stmt */ 4335 int nextCase; /* GOTO label for next WHEN clause */ 4336 int nExpr; /* 2x number of WHEN terms */ 4337 int i; /* Loop counter */ 4338 ExprList *pEList; /* List of WHEN terms */ 4339 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4340 Expr opCompare; /* The X==Ei expression */ 4341 Expr *pX; /* The X expression */ 4342 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4343 Expr *pDel = 0; 4344 sqlite3 *db = pParse->db; 4345 4346 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4347 assert(pExpr->x.pList->nExpr > 0); 4348 pEList = pExpr->x.pList; 4349 aListelem = pEList->a; 4350 nExpr = pEList->nExpr; 4351 endLabel = sqlite3VdbeMakeLabel(pParse); 4352 if( (pX = pExpr->pLeft)!=0 ){ 4353 pDel = sqlite3ExprDup(db, pX, 0); 4354 if( db->mallocFailed ){ 4355 sqlite3ExprDelete(db, pDel); 4356 break; 4357 } 4358 testcase( pX->op==TK_COLUMN ); 4359 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4360 testcase( regFree1==0 ); 4361 memset(&opCompare, 0, sizeof(opCompare)); 4362 opCompare.op = TK_EQ; 4363 opCompare.pLeft = pDel; 4364 pTest = &opCompare; 4365 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4366 ** The value in regFree1 might get SCopy-ed into the file result. 4367 ** So make sure that the regFree1 register is not reused for other 4368 ** purposes and possibly overwritten. */ 4369 regFree1 = 0; 4370 } 4371 for(i=0; i<nExpr-1; i=i+2){ 4372 if( pX ){ 4373 assert( pTest!=0 ); 4374 opCompare.pRight = aListelem[i].pExpr; 4375 }else{ 4376 pTest = aListelem[i].pExpr; 4377 } 4378 nextCase = sqlite3VdbeMakeLabel(pParse); 4379 testcase( pTest->op==TK_COLUMN ); 4380 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4381 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4382 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4383 sqlite3VdbeGoto(v, endLabel); 4384 sqlite3VdbeResolveLabel(v, nextCase); 4385 } 4386 if( (nExpr&1)!=0 ){ 4387 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4388 }else{ 4389 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4390 } 4391 sqlite3ExprDelete(db, pDel); 4392 sqlite3VdbeResolveLabel(v, endLabel); 4393 break; 4394 } 4395 #ifndef SQLITE_OMIT_TRIGGER 4396 case TK_RAISE: { 4397 assert( pExpr->affExpr==OE_Rollback 4398 || pExpr->affExpr==OE_Abort 4399 || pExpr->affExpr==OE_Fail 4400 || pExpr->affExpr==OE_Ignore 4401 ); 4402 if( !pParse->pTriggerTab ){ 4403 sqlite3ErrorMsg(pParse, 4404 "RAISE() may only be used within a trigger-program"); 4405 return 0; 4406 } 4407 if( pExpr->affExpr==OE_Abort ){ 4408 sqlite3MayAbort(pParse); 4409 } 4410 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4411 if( pExpr->affExpr==OE_Ignore ){ 4412 sqlite3VdbeAddOp4( 4413 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4414 VdbeCoverage(v); 4415 }else{ 4416 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4417 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4418 } 4419 4420 break; 4421 } 4422 #endif 4423 } 4424 sqlite3ReleaseTempReg(pParse, regFree1); 4425 sqlite3ReleaseTempReg(pParse, regFree2); 4426 return inReg; 4427 } 4428 4429 /* 4430 ** Factor out the code of the given expression to initialization time. 4431 ** 4432 ** If regDest>=0 then the result is always stored in that register and the 4433 ** result is not reusable. If regDest<0 then this routine is free to 4434 ** store the value whereever it wants. The register where the expression 4435 ** is stored is returned. When regDest<0, two identical expressions will 4436 ** code to the same register. 4437 */ 4438 int sqlite3ExprCodeAtInit( 4439 Parse *pParse, /* Parsing context */ 4440 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4441 int regDest /* Store the value in this register */ 4442 ){ 4443 ExprList *p; 4444 assert( ConstFactorOk(pParse) ); 4445 p = pParse->pConstExpr; 4446 if( regDest<0 && p ){ 4447 struct ExprList_item *pItem; 4448 int i; 4449 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4450 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4451 return pItem->u.iConstExprReg; 4452 } 4453 } 4454 } 4455 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4456 p = sqlite3ExprListAppend(pParse, p, pExpr); 4457 if( p ){ 4458 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4459 pItem->reusable = regDest<0; 4460 if( regDest<0 ) regDest = ++pParse->nMem; 4461 pItem->u.iConstExprReg = regDest; 4462 } 4463 pParse->pConstExpr = p; 4464 return regDest; 4465 } 4466 4467 /* 4468 ** Generate code to evaluate an expression and store the results 4469 ** into a register. Return the register number where the results 4470 ** are stored. 4471 ** 4472 ** If the register is a temporary register that can be deallocated, 4473 ** then write its number into *pReg. If the result register is not 4474 ** a temporary, then set *pReg to zero. 4475 ** 4476 ** If pExpr is a constant, then this routine might generate this 4477 ** code to fill the register in the initialization section of the 4478 ** VDBE program, in order to factor it out of the evaluation loop. 4479 */ 4480 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4481 int r2; 4482 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4483 if( ConstFactorOk(pParse) 4484 && pExpr->op!=TK_REGISTER 4485 && sqlite3ExprIsConstantNotJoin(pExpr) 4486 ){ 4487 *pReg = 0; 4488 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4489 }else{ 4490 int r1 = sqlite3GetTempReg(pParse); 4491 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4492 if( r2==r1 ){ 4493 *pReg = r1; 4494 }else{ 4495 sqlite3ReleaseTempReg(pParse, r1); 4496 *pReg = 0; 4497 } 4498 } 4499 return r2; 4500 } 4501 4502 /* 4503 ** Generate code that will evaluate expression pExpr and store the 4504 ** results in register target. The results are guaranteed to appear 4505 ** in register target. 4506 */ 4507 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4508 int inReg; 4509 4510 assert( target>0 && target<=pParse->nMem ); 4511 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4512 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4513 if( inReg!=target && pParse->pVdbe ){ 4514 u8 op; 4515 if( ExprHasProperty(pExpr,EP_Subquery) ){ 4516 op = OP_Copy; 4517 }else{ 4518 op = OP_SCopy; 4519 } 4520 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4521 } 4522 } 4523 4524 /* 4525 ** Make a transient copy of expression pExpr and then code it using 4526 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4527 ** except that the input expression is guaranteed to be unchanged. 4528 */ 4529 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4530 sqlite3 *db = pParse->db; 4531 pExpr = sqlite3ExprDup(db, pExpr, 0); 4532 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4533 sqlite3ExprDelete(db, pExpr); 4534 } 4535 4536 /* 4537 ** Generate code that will evaluate expression pExpr and store the 4538 ** results in register target. The results are guaranteed to appear 4539 ** in register target. If the expression is constant, then this routine 4540 ** might choose to code the expression at initialization time. 4541 */ 4542 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4543 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4544 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4545 }else{ 4546 sqlite3ExprCode(pParse, pExpr, target); 4547 } 4548 } 4549 4550 /* 4551 ** Generate code that pushes the value of every element of the given 4552 ** expression list into a sequence of registers beginning at target. 4553 ** 4554 ** Return the number of elements evaluated. The number returned will 4555 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4556 ** is defined. 4557 ** 4558 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4559 ** filled using OP_SCopy. OP_Copy must be used instead. 4560 ** 4561 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4562 ** factored out into initialization code. 4563 ** 4564 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4565 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4566 ** in registers at srcReg, and so the value can be copied from there. 4567 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4568 ** are simply omitted rather than being copied from srcReg. 4569 */ 4570 int sqlite3ExprCodeExprList( 4571 Parse *pParse, /* Parsing context */ 4572 ExprList *pList, /* The expression list to be coded */ 4573 int target, /* Where to write results */ 4574 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4575 u8 flags /* SQLITE_ECEL_* flags */ 4576 ){ 4577 struct ExprList_item *pItem; 4578 int i, j, n; 4579 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4580 Vdbe *v = pParse->pVdbe; 4581 assert( pList!=0 ); 4582 assert( target>0 ); 4583 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4584 n = pList->nExpr; 4585 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4586 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4587 Expr *pExpr = pItem->pExpr; 4588 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4589 if( pItem->bSorterRef ){ 4590 i--; 4591 n--; 4592 }else 4593 #endif 4594 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4595 if( flags & SQLITE_ECEL_OMITREF ){ 4596 i--; 4597 n--; 4598 }else{ 4599 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4600 } 4601 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4602 && sqlite3ExprIsConstantNotJoin(pExpr) 4603 ){ 4604 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4605 }else{ 4606 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4607 if( inReg!=target+i ){ 4608 VdbeOp *pOp; 4609 if( copyOp==OP_Copy 4610 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4611 && pOp->p1+pOp->p3+1==inReg 4612 && pOp->p2+pOp->p3+1==target+i 4613 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4614 ){ 4615 pOp->p3++; 4616 }else{ 4617 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4618 } 4619 } 4620 } 4621 } 4622 return n; 4623 } 4624 4625 /* 4626 ** Generate code for a BETWEEN operator. 4627 ** 4628 ** x BETWEEN y AND z 4629 ** 4630 ** The above is equivalent to 4631 ** 4632 ** x>=y AND x<=z 4633 ** 4634 ** Code it as such, taking care to do the common subexpression 4635 ** elimination of x. 4636 ** 4637 ** The xJumpIf parameter determines details: 4638 ** 4639 ** NULL: Store the boolean result in reg[dest] 4640 ** sqlite3ExprIfTrue: Jump to dest if true 4641 ** sqlite3ExprIfFalse: Jump to dest if false 4642 ** 4643 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4644 */ 4645 static void exprCodeBetween( 4646 Parse *pParse, /* Parsing and code generating context */ 4647 Expr *pExpr, /* The BETWEEN expression */ 4648 int dest, /* Jump destination or storage location */ 4649 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4650 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4651 ){ 4652 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4653 Expr compLeft; /* The x>=y term */ 4654 Expr compRight; /* The x<=z term */ 4655 int regFree1 = 0; /* Temporary use register */ 4656 Expr *pDel = 0; 4657 sqlite3 *db = pParse->db; 4658 4659 memset(&compLeft, 0, sizeof(Expr)); 4660 memset(&compRight, 0, sizeof(Expr)); 4661 memset(&exprAnd, 0, sizeof(Expr)); 4662 4663 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4664 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4665 if( db->mallocFailed==0 ){ 4666 exprAnd.op = TK_AND; 4667 exprAnd.pLeft = &compLeft; 4668 exprAnd.pRight = &compRight; 4669 compLeft.op = TK_GE; 4670 compLeft.pLeft = pDel; 4671 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4672 compRight.op = TK_LE; 4673 compRight.pLeft = pDel; 4674 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4675 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4676 if( xJump ){ 4677 xJump(pParse, &exprAnd, dest, jumpIfNull); 4678 }else{ 4679 /* Mark the expression is being from the ON or USING clause of a join 4680 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4681 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4682 ** for clarity, but we are out of bits in the Expr.flags field so we 4683 ** have to reuse the EP_FromJoin bit. Bummer. */ 4684 pDel->flags |= EP_FromJoin; 4685 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4686 } 4687 sqlite3ReleaseTempReg(pParse, regFree1); 4688 } 4689 sqlite3ExprDelete(db, pDel); 4690 4691 /* Ensure adequate test coverage */ 4692 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4693 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4694 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4695 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4696 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4697 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4698 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4699 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4700 testcase( xJump==0 ); 4701 } 4702 4703 /* 4704 ** Generate code for a boolean expression such that a jump is made 4705 ** to the label "dest" if the expression is true but execution 4706 ** continues straight thru if the expression is false. 4707 ** 4708 ** If the expression evaluates to NULL (neither true nor false), then 4709 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4710 ** 4711 ** This code depends on the fact that certain token values (ex: TK_EQ) 4712 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4713 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4714 ** the make process cause these values to align. Assert()s in the code 4715 ** below verify that the numbers are aligned correctly. 4716 */ 4717 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4718 Vdbe *v = pParse->pVdbe; 4719 int op = 0; 4720 int regFree1 = 0; 4721 int regFree2 = 0; 4722 int r1, r2; 4723 4724 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4725 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4726 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4727 op = pExpr->op; 4728 switch( op ){ 4729 case TK_AND: 4730 case TK_OR: { 4731 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4732 if( pAlt!=pExpr ){ 4733 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4734 }else if( op==TK_AND ){ 4735 int d2 = sqlite3VdbeMakeLabel(pParse); 4736 testcase( jumpIfNull==0 ); 4737 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4738 jumpIfNull^SQLITE_JUMPIFNULL); 4739 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4740 sqlite3VdbeResolveLabel(v, d2); 4741 }else{ 4742 testcase( jumpIfNull==0 ); 4743 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4744 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4745 } 4746 break; 4747 } 4748 case TK_NOT: { 4749 testcase( jumpIfNull==0 ); 4750 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4751 break; 4752 } 4753 case TK_TRUTH: { 4754 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4755 int isTrue; /* IS TRUE or IS NOT TRUE */ 4756 testcase( jumpIfNull==0 ); 4757 isNot = pExpr->op2==TK_ISNOT; 4758 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4759 testcase( isTrue && isNot ); 4760 testcase( !isTrue && isNot ); 4761 if( isTrue ^ isNot ){ 4762 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4763 isNot ? SQLITE_JUMPIFNULL : 0); 4764 }else{ 4765 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4766 isNot ? SQLITE_JUMPIFNULL : 0); 4767 } 4768 break; 4769 } 4770 case TK_IS: 4771 case TK_ISNOT: 4772 testcase( op==TK_IS ); 4773 testcase( op==TK_ISNOT ); 4774 op = (op==TK_IS) ? TK_EQ : TK_NE; 4775 jumpIfNull = SQLITE_NULLEQ; 4776 /* Fall thru */ 4777 case TK_LT: 4778 case TK_LE: 4779 case TK_GT: 4780 case TK_GE: 4781 case TK_NE: 4782 case TK_EQ: { 4783 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4784 testcase( jumpIfNull==0 ); 4785 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4786 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4787 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4788 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 4789 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4790 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4791 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4792 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4793 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4794 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4795 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4796 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4797 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4798 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4799 testcase( regFree1==0 ); 4800 testcase( regFree2==0 ); 4801 break; 4802 } 4803 case TK_ISNULL: 4804 case TK_NOTNULL: { 4805 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4806 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4807 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4808 sqlite3VdbeAddOp2(v, op, r1, dest); 4809 VdbeCoverageIf(v, op==TK_ISNULL); 4810 VdbeCoverageIf(v, op==TK_NOTNULL); 4811 testcase( regFree1==0 ); 4812 break; 4813 } 4814 case TK_BETWEEN: { 4815 testcase( jumpIfNull==0 ); 4816 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4817 break; 4818 } 4819 #ifndef SQLITE_OMIT_SUBQUERY 4820 case TK_IN: { 4821 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4822 int destIfNull = jumpIfNull ? dest : destIfFalse; 4823 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4824 sqlite3VdbeGoto(v, dest); 4825 sqlite3VdbeResolveLabel(v, destIfFalse); 4826 break; 4827 } 4828 #endif 4829 default: { 4830 default_expr: 4831 if( ExprAlwaysTrue(pExpr) ){ 4832 sqlite3VdbeGoto(v, dest); 4833 }else if( ExprAlwaysFalse(pExpr) ){ 4834 /* No-op */ 4835 }else{ 4836 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4837 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4838 VdbeCoverage(v); 4839 testcase( regFree1==0 ); 4840 testcase( jumpIfNull==0 ); 4841 } 4842 break; 4843 } 4844 } 4845 sqlite3ReleaseTempReg(pParse, regFree1); 4846 sqlite3ReleaseTempReg(pParse, regFree2); 4847 } 4848 4849 /* 4850 ** Generate code for a boolean expression such that a jump is made 4851 ** to the label "dest" if the expression is false but execution 4852 ** continues straight thru if the expression is true. 4853 ** 4854 ** If the expression evaluates to NULL (neither true nor false) then 4855 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4856 ** is 0. 4857 */ 4858 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4859 Vdbe *v = pParse->pVdbe; 4860 int op = 0; 4861 int regFree1 = 0; 4862 int regFree2 = 0; 4863 int r1, r2; 4864 4865 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4866 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4867 if( pExpr==0 ) return; 4868 4869 /* The value of pExpr->op and op are related as follows: 4870 ** 4871 ** pExpr->op op 4872 ** --------- ---------- 4873 ** TK_ISNULL OP_NotNull 4874 ** TK_NOTNULL OP_IsNull 4875 ** TK_NE OP_Eq 4876 ** TK_EQ OP_Ne 4877 ** TK_GT OP_Le 4878 ** TK_LE OP_Gt 4879 ** TK_GE OP_Lt 4880 ** TK_LT OP_Ge 4881 ** 4882 ** For other values of pExpr->op, op is undefined and unused. 4883 ** The value of TK_ and OP_ constants are arranged such that we 4884 ** can compute the mapping above using the following expression. 4885 ** Assert()s verify that the computation is correct. 4886 */ 4887 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4888 4889 /* Verify correct alignment of TK_ and OP_ constants 4890 */ 4891 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4892 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4893 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4894 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4895 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4896 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4897 assert( pExpr->op!=TK_GT || op==OP_Le ); 4898 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4899 4900 switch( pExpr->op ){ 4901 case TK_AND: 4902 case TK_OR: { 4903 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4904 if( pAlt!=pExpr ){ 4905 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 4906 }else if( pExpr->op==TK_AND ){ 4907 testcase( jumpIfNull==0 ); 4908 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4909 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4910 }else{ 4911 int d2 = sqlite3VdbeMakeLabel(pParse); 4912 testcase( jumpIfNull==0 ); 4913 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 4914 jumpIfNull^SQLITE_JUMPIFNULL); 4915 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4916 sqlite3VdbeResolveLabel(v, d2); 4917 } 4918 break; 4919 } 4920 case TK_NOT: { 4921 testcase( jumpIfNull==0 ); 4922 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4923 break; 4924 } 4925 case TK_TRUTH: { 4926 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4927 int isTrue; /* IS TRUE or IS NOT TRUE */ 4928 testcase( jumpIfNull==0 ); 4929 isNot = pExpr->op2==TK_ISNOT; 4930 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4931 testcase( isTrue && isNot ); 4932 testcase( !isTrue && isNot ); 4933 if( isTrue ^ isNot ){ 4934 /* IS TRUE and IS NOT FALSE */ 4935 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4936 isNot ? 0 : SQLITE_JUMPIFNULL); 4937 4938 }else{ 4939 /* IS FALSE and IS NOT TRUE */ 4940 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4941 isNot ? 0 : SQLITE_JUMPIFNULL); 4942 } 4943 break; 4944 } 4945 case TK_IS: 4946 case TK_ISNOT: 4947 testcase( pExpr->op==TK_IS ); 4948 testcase( pExpr->op==TK_ISNOT ); 4949 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4950 jumpIfNull = SQLITE_NULLEQ; 4951 /* Fall thru */ 4952 case TK_LT: 4953 case TK_LE: 4954 case TK_GT: 4955 case TK_GE: 4956 case TK_NE: 4957 case TK_EQ: { 4958 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4959 testcase( jumpIfNull==0 ); 4960 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4961 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4962 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4963 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 4964 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4965 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4966 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4967 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4968 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4969 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4970 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4971 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4972 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4973 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4974 testcase( regFree1==0 ); 4975 testcase( regFree2==0 ); 4976 break; 4977 } 4978 case TK_ISNULL: 4979 case TK_NOTNULL: { 4980 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4981 sqlite3VdbeAddOp2(v, op, r1, dest); 4982 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4983 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4984 testcase( regFree1==0 ); 4985 break; 4986 } 4987 case TK_BETWEEN: { 4988 testcase( jumpIfNull==0 ); 4989 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4990 break; 4991 } 4992 #ifndef SQLITE_OMIT_SUBQUERY 4993 case TK_IN: { 4994 if( jumpIfNull ){ 4995 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4996 }else{ 4997 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4998 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4999 sqlite3VdbeResolveLabel(v, destIfNull); 5000 } 5001 break; 5002 } 5003 #endif 5004 default: { 5005 default_expr: 5006 if( ExprAlwaysFalse(pExpr) ){ 5007 sqlite3VdbeGoto(v, dest); 5008 }else if( ExprAlwaysTrue(pExpr) ){ 5009 /* no-op */ 5010 }else{ 5011 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5012 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5013 VdbeCoverage(v); 5014 testcase( regFree1==0 ); 5015 testcase( jumpIfNull==0 ); 5016 } 5017 break; 5018 } 5019 } 5020 sqlite3ReleaseTempReg(pParse, regFree1); 5021 sqlite3ReleaseTempReg(pParse, regFree2); 5022 } 5023 5024 /* 5025 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5026 ** code generation, and that copy is deleted after code generation. This 5027 ** ensures that the original pExpr is unchanged. 5028 */ 5029 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5030 sqlite3 *db = pParse->db; 5031 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5032 if( db->mallocFailed==0 ){ 5033 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5034 } 5035 sqlite3ExprDelete(db, pCopy); 5036 } 5037 5038 /* 5039 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5040 ** type of expression. 5041 ** 5042 ** If pExpr is a simple SQL value - an integer, real, string, blob 5043 ** or NULL value - then the VDBE currently being prepared is configured 5044 ** to re-prepare each time a new value is bound to variable pVar. 5045 ** 5046 ** Additionally, if pExpr is a simple SQL value and the value is the 5047 ** same as that currently bound to variable pVar, non-zero is returned. 5048 ** Otherwise, if the values are not the same or if pExpr is not a simple 5049 ** SQL value, zero is returned. 5050 */ 5051 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 5052 int res = 0; 5053 int iVar; 5054 sqlite3_value *pL, *pR = 0; 5055 5056 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5057 if( pR ){ 5058 iVar = pVar->iColumn; 5059 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5060 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5061 if( pL ){ 5062 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5063 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5064 } 5065 res = 0==sqlite3MemCompare(pL, pR, 0); 5066 } 5067 sqlite3ValueFree(pR); 5068 sqlite3ValueFree(pL); 5069 } 5070 5071 return res; 5072 } 5073 5074 /* 5075 ** Do a deep comparison of two expression trees. Return 0 if the two 5076 ** expressions are completely identical. Return 1 if they differ only 5077 ** by a COLLATE operator at the top level. Return 2 if there are differences 5078 ** other than the top-level COLLATE operator. 5079 ** 5080 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5081 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5082 ** 5083 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5084 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5085 ** 5086 ** Sometimes this routine will return 2 even if the two expressions 5087 ** really are equivalent. If we cannot prove that the expressions are 5088 ** identical, we return 2 just to be safe. So if this routine 5089 ** returns 2, then you do not really know for certain if the two 5090 ** expressions are the same. But if you get a 0 or 1 return, then you 5091 ** can be sure the expressions are the same. In the places where 5092 ** this routine is used, it does not hurt to get an extra 2 - that 5093 ** just might result in some slightly slower code. But returning 5094 ** an incorrect 0 or 1 could lead to a malfunction. 5095 ** 5096 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5097 ** pParse->pReprepare can be matched against literals in pB. The 5098 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5099 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5100 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5101 ** pB causes a return value of 2. 5102 */ 5103 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 5104 u32 combinedFlags; 5105 if( pA==0 || pB==0 ){ 5106 return pB==pA ? 0 : 2; 5107 } 5108 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5109 return 0; 5110 } 5111 combinedFlags = pA->flags | pB->flags; 5112 if( combinedFlags & EP_IntValue ){ 5113 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5114 return 0; 5115 } 5116 return 2; 5117 } 5118 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5119 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5120 return 1; 5121 } 5122 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5123 return 1; 5124 } 5125 return 2; 5126 } 5127 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5128 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5129 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5130 #ifndef SQLITE_OMIT_WINDOWFUNC 5131 assert( pA->op==pB->op ); 5132 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5133 return 2; 5134 } 5135 if( ExprHasProperty(pA,EP_WinFunc) ){ 5136 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5137 return 2; 5138 } 5139 } 5140 #endif 5141 }else if( pA->op==TK_NULL ){ 5142 return 0; 5143 }else if( pA->op==TK_COLLATE ){ 5144 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5145 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5146 return 2; 5147 } 5148 } 5149 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5150 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5151 if( (combinedFlags & EP_TokenOnly)==0 ){ 5152 if( combinedFlags & EP_xIsSelect ) return 2; 5153 if( (combinedFlags & EP_FixedCol)==0 5154 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5155 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5156 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5157 if( pA->op!=TK_STRING 5158 && pA->op!=TK_TRUEFALSE 5159 && (combinedFlags & EP_Reduced)==0 5160 ){ 5161 if( pA->iColumn!=pB->iColumn ) return 2; 5162 if( pA->op2!=pB->op2 ){ 5163 if( pA->op==TK_TRUTH ) return 2; 5164 if( pA->op==TK_FUNCTION && iTab<0 ){ 5165 /* Ex: CREATE TABLE t1(a CHECK( a<julianday('now') )); 5166 ** INSERT INTO t1(a) VALUES(julianday('now')+10); 5167 ** Without this test, sqlite3ExprCodeAtInit() will run on the 5168 ** the julianday() of INSERT first, and remember that expression. 5169 ** Then sqlite3ExprCodeInit() will see the julianday() in the CHECK 5170 ** constraint as redundant, reusing the one from the INSERT, even 5171 ** though the julianday() in INSERT lacks the critical NC_IsCheck 5172 ** flag. See ticket [830277d9db6c3ba1] (2019-10-30) 5173 */ 5174 return 2; 5175 } 5176 } 5177 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5178 return 2; 5179 } 5180 } 5181 } 5182 return 0; 5183 } 5184 5185 /* 5186 ** Compare two ExprList objects. Return 0 if they are identical and 5187 ** non-zero if they differ in any way. 5188 ** 5189 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5190 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5191 ** 5192 ** This routine might return non-zero for equivalent ExprLists. The 5193 ** only consequence will be disabled optimizations. But this routine 5194 ** must never return 0 if the two ExprList objects are different, or 5195 ** a malfunction will result. 5196 ** 5197 ** Two NULL pointers are considered to be the same. But a NULL pointer 5198 ** always differs from a non-NULL pointer. 5199 */ 5200 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 5201 int i; 5202 if( pA==0 && pB==0 ) return 0; 5203 if( pA==0 || pB==0 ) return 1; 5204 if( pA->nExpr!=pB->nExpr ) return 1; 5205 for(i=0; i<pA->nExpr; i++){ 5206 Expr *pExprA = pA->a[i].pExpr; 5207 Expr *pExprB = pB->a[i].pExpr; 5208 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5209 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1; 5210 } 5211 return 0; 5212 } 5213 5214 /* 5215 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5216 ** are ignored. 5217 */ 5218 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 5219 return sqlite3ExprCompare(0, 5220 sqlite3ExprSkipCollateAndLikely(pA), 5221 sqlite3ExprSkipCollateAndLikely(pB), 5222 iTab); 5223 } 5224 5225 /* 5226 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5227 ** 5228 ** Or if seenNot is true, return non-zero if Expr p can only be 5229 ** non-NULL if pNN is not NULL 5230 */ 5231 static int exprImpliesNotNull( 5232 Parse *pParse, /* Parsing context */ 5233 Expr *p, /* The expression to be checked */ 5234 Expr *pNN, /* The expression that is NOT NULL */ 5235 int iTab, /* Table being evaluated */ 5236 int seenNot /* Return true only if p can be any non-NULL value */ 5237 ){ 5238 assert( p ); 5239 assert( pNN ); 5240 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5241 return pNN->op!=TK_NULL; 5242 } 5243 switch( p->op ){ 5244 case TK_IN: { 5245 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5246 assert( ExprHasProperty(p,EP_xIsSelect) 5247 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5248 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5249 } 5250 case TK_BETWEEN: { 5251 ExprList *pList = p->x.pList; 5252 assert( pList!=0 ); 5253 assert( pList->nExpr==2 ); 5254 if( seenNot ) return 0; 5255 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5256 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5257 ){ 5258 return 1; 5259 } 5260 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5261 } 5262 case TK_EQ: 5263 case TK_NE: 5264 case TK_LT: 5265 case TK_LE: 5266 case TK_GT: 5267 case TK_GE: 5268 case TK_PLUS: 5269 case TK_MINUS: 5270 case TK_BITOR: 5271 case TK_LSHIFT: 5272 case TK_RSHIFT: 5273 case TK_CONCAT: 5274 seenNot = 1; 5275 /* Fall thru */ 5276 case TK_STAR: 5277 case TK_REM: 5278 case TK_BITAND: 5279 case TK_SLASH: { 5280 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5281 /* Fall thru into the next case */ 5282 } 5283 case TK_SPAN: 5284 case TK_COLLATE: 5285 case TK_UPLUS: 5286 case TK_UMINUS: { 5287 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5288 } 5289 case TK_TRUTH: { 5290 if( seenNot ) return 0; 5291 if( p->op2!=TK_IS ) return 0; 5292 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5293 } 5294 case TK_BITNOT: 5295 case TK_NOT: { 5296 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5297 } 5298 } 5299 return 0; 5300 } 5301 5302 /* 5303 ** Return true if we can prove the pE2 will always be true if pE1 is 5304 ** true. Return false if we cannot complete the proof or if pE2 might 5305 ** be false. Examples: 5306 ** 5307 ** pE1: x==5 pE2: x==5 Result: true 5308 ** pE1: x>0 pE2: x==5 Result: false 5309 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5310 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5311 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5312 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5313 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5314 ** 5315 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5316 ** Expr.iTable<0 then assume a table number given by iTab. 5317 ** 5318 ** If pParse is not NULL, then the values of bound variables in pE1 are 5319 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5320 ** modified to record which bound variables are referenced. If pParse 5321 ** is NULL, then false will be returned if pE1 contains any bound variables. 5322 ** 5323 ** When in doubt, return false. Returning true might give a performance 5324 ** improvement. Returning false might cause a performance reduction, but 5325 ** it will always give the correct answer and is hence always safe. 5326 */ 5327 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5328 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5329 return 1; 5330 } 5331 if( pE2->op==TK_OR 5332 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5333 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5334 ){ 5335 return 1; 5336 } 5337 if( pE2->op==TK_NOTNULL 5338 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5339 ){ 5340 return 1; 5341 } 5342 return 0; 5343 } 5344 5345 /* 5346 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5347 ** If the expression node requires that the table at pWalker->iCur 5348 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5349 ** 5350 ** This routine controls an optimization. False positives (setting 5351 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5352 ** (never setting pWalker->eCode) is a harmless missed optimization. 5353 */ 5354 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5355 testcase( pExpr->op==TK_AGG_COLUMN ); 5356 testcase( pExpr->op==TK_AGG_FUNCTION ); 5357 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5358 switch( pExpr->op ){ 5359 case TK_ISNOT: 5360 case TK_ISNULL: 5361 case TK_NOTNULL: 5362 case TK_IS: 5363 case TK_OR: 5364 case TK_VECTOR: 5365 case TK_CASE: 5366 case TK_IN: 5367 case TK_FUNCTION: 5368 case TK_TRUTH: 5369 testcase( pExpr->op==TK_ISNOT ); 5370 testcase( pExpr->op==TK_ISNULL ); 5371 testcase( pExpr->op==TK_NOTNULL ); 5372 testcase( pExpr->op==TK_IS ); 5373 testcase( pExpr->op==TK_OR ); 5374 testcase( pExpr->op==TK_VECTOR ); 5375 testcase( pExpr->op==TK_CASE ); 5376 testcase( pExpr->op==TK_IN ); 5377 testcase( pExpr->op==TK_FUNCTION ); 5378 testcase( pExpr->op==TK_TRUTH ); 5379 return WRC_Prune; 5380 case TK_COLUMN: 5381 if( pWalker->u.iCur==pExpr->iTable ){ 5382 pWalker->eCode = 1; 5383 return WRC_Abort; 5384 } 5385 return WRC_Prune; 5386 5387 case TK_AND: 5388 if( pWalker->eCode==0 ){ 5389 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5390 if( pWalker->eCode ){ 5391 pWalker->eCode = 0; 5392 sqlite3WalkExpr(pWalker, pExpr->pRight); 5393 } 5394 } 5395 return WRC_Prune; 5396 5397 case TK_BETWEEN: 5398 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5399 assert( pWalker->eCode ); 5400 return WRC_Abort; 5401 } 5402 return WRC_Prune; 5403 5404 /* Virtual tables are allowed to use constraints like x=NULL. So 5405 ** a term of the form x=y does not prove that y is not null if x 5406 ** is the column of a virtual table */ 5407 case TK_EQ: 5408 case TK_NE: 5409 case TK_LT: 5410 case TK_LE: 5411 case TK_GT: 5412 case TK_GE: 5413 testcase( pExpr->op==TK_EQ ); 5414 testcase( pExpr->op==TK_NE ); 5415 testcase( pExpr->op==TK_LT ); 5416 testcase( pExpr->op==TK_LE ); 5417 testcase( pExpr->op==TK_GT ); 5418 testcase( pExpr->op==TK_GE ); 5419 if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab)) 5420 || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab)) 5421 ){ 5422 return WRC_Prune; 5423 } 5424 5425 default: 5426 return WRC_Continue; 5427 } 5428 } 5429 5430 /* 5431 ** Return true (non-zero) if expression p can only be true if at least 5432 ** one column of table iTab is non-null. In other words, return true 5433 ** if expression p will always be NULL or false if every column of iTab 5434 ** is NULL. 5435 ** 5436 ** False negatives are acceptable. In other words, it is ok to return 5437 ** zero even if expression p will never be true of every column of iTab 5438 ** is NULL. A false negative is merely a missed optimization opportunity. 5439 ** 5440 ** False positives are not allowed, however. A false positive may result 5441 ** in an incorrect answer. 5442 ** 5443 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5444 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5445 ** 5446 ** This routine is used to check if a LEFT JOIN can be converted into 5447 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5448 ** clause requires that some column of the right table of the LEFT JOIN 5449 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5450 ** ordinary join. 5451 */ 5452 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5453 Walker w; 5454 p = sqlite3ExprSkipCollateAndLikely(p); 5455 if( p==0 ) return 0; 5456 if( p->op==TK_NOTNULL ){ 5457 p = p->pLeft; 5458 }else{ 5459 while( p->op==TK_AND ){ 5460 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5461 p = p->pRight; 5462 } 5463 } 5464 w.xExprCallback = impliesNotNullRow; 5465 w.xSelectCallback = 0; 5466 w.xSelectCallback2 = 0; 5467 w.eCode = 0; 5468 w.u.iCur = iTab; 5469 sqlite3WalkExpr(&w, p); 5470 return w.eCode; 5471 } 5472 5473 /* 5474 ** An instance of the following structure is used by the tree walker 5475 ** to determine if an expression can be evaluated by reference to the 5476 ** index only, without having to do a search for the corresponding 5477 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5478 ** is the cursor for the table. 5479 */ 5480 struct IdxCover { 5481 Index *pIdx; /* The index to be tested for coverage */ 5482 int iCur; /* Cursor number for the table corresponding to the index */ 5483 }; 5484 5485 /* 5486 ** Check to see if there are references to columns in table 5487 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5488 ** pWalker->u.pIdxCover->pIdx. 5489 */ 5490 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5491 if( pExpr->op==TK_COLUMN 5492 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5493 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5494 ){ 5495 pWalker->eCode = 1; 5496 return WRC_Abort; 5497 } 5498 return WRC_Continue; 5499 } 5500 5501 /* 5502 ** Determine if an index pIdx on table with cursor iCur contains will 5503 ** the expression pExpr. Return true if the index does cover the 5504 ** expression and false if the pExpr expression references table columns 5505 ** that are not found in the index pIdx. 5506 ** 5507 ** An index covering an expression means that the expression can be 5508 ** evaluated using only the index and without having to lookup the 5509 ** corresponding table entry. 5510 */ 5511 int sqlite3ExprCoveredByIndex( 5512 Expr *pExpr, /* The index to be tested */ 5513 int iCur, /* The cursor number for the corresponding table */ 5514 Index *pIdx /* The index that might be used for coverage */ 5515 ){ 5516 Walker w; 5517 struct IdxCover xcov; 5518 memset(&w, 0, sizeof(w)); 5519 xcov.iCur = iCur; 5520 xcov.pIdx = pIdx; 5521 w.xExprCallback = exprIdxCover; 5522 w.u.pIdxCover = &xcov; 5523 sqlite3WalkExpr(&w, pExpr); 5524 return !w.eCode; 5525 } 5526 5527 5528 /* 5529 ** An instance of the following structure is used by the tree walker 5530 ** to count references to table columns in the arguments of an 5531 ** aggregate function, in order to implement the 5532 ** sqlite3FunctionThisSrc() routine. 5533 */ 5534 struct SrcCount { 5535 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5536 int nThis; /* Number of references to columns in pSrcList */ 5537 int nOther; /* Number of references to columns in other FROM clauses */ 5538 }; 5539 5540 /* 5541 ** Count the number of references to columns. 5542 */ 5543 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5544 /* There was once a NEVER() on the second term on the grounds that 5545 ** sqlite3FunctionUsesThisSrc() was always called before 5546 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet 5547 ** been converted into TK_AGG_COLUMN. But this is no longer true due 5548 ** to window functions - sqlite3WindowRewrite() may now indirectly call 5549 ** FunctionUsesThisSrc() when creating a new sub-select. */ 5550 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 5551 int i; 5552 struct SrcCount *p = pWalker->u.pSrcCount; 5553 SrcList *pSrc = p->pSrc; 5554 int nSrc = pSrc ? pSrc->nSrc : 0; 5555 for(i=0; i<nSrc; i++){ 5556 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5557 } 5558 if( i<nSrc ){ 5559 p->nThis++; 5560 }else if( nSrc==0 || pExpr->iTable<pSrc->a[0].iCursor ){ 5561 /* In a well-formed parse tree (no name resolution errors), 5562 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5563 ** outer context. Those are the only ones to count as "other" */ 5564 p->nOther++; 5565 } 5566 } 5567 return WRC_Continue; 5568 } 5569 5570 /* 5571 ** Determine if any of the arguments to the pExpr Function reference 5572 ** pSrcList. Return true if they do. Also return true if the function 5573 ** has no arguments or has only constant arguments. Return false if pExpr 5574 ** references columns but not columns of tables found in pSrcList. 5575 */ 5576 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5577 Walker w; 5578 struct SrcCount cnt; 5579 assert( pExpr->op==TK_AGG_FUNCTION ); 5580 memset(&w, 0, sizeof(w)); 5581 w.xExprCallback = exprSrcCount; 5582 w.xSelectCallback = sqlite3SelectWalkNoop; 5583 w.u.pSrcCount = &cnt; 5584 cnt.pSrc = pSrcList; 5585 cnt.nThis = 0; 5586 cnt.nOther = 0; 5587 sqlite3WalkExprList(&w, pExpr->x.pList); 5588 #ifndef SQLITE_OMIT_WINDOWFUNC 5589 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5590 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5591 } 5592 #endif 5593 return cnt.nThis>0 || cnt.nOther==0; 5594 } 5595 5596 /* 5597 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5598 ** the new element. Return a negative number if malloc fails. 5599 */ 5600 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5601 int i; 5602 pInfo->aCol = sqlite3ArrayAllocate( 5603 db, 5604 pInfo->aCol, 5605 sizeof(pInfo->aCol[0]), 5606 &pInfo->nColumn, 5607 &i 5608 ); 5609 return i; 5610 } 5611 5612 /* 5613 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5614 ** the new element. Return a negative number if malloc fails. 5615 */ 5616 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5617 int i; 5618 pInfo->aFunc = sqlite3ArrayAllocate( 5619 db, 5620 pInfo->aFunc, 5621 sizeof(pInfo->aFunc[0]), 5622 &pInfo->nFunc, 5623 &i 5624 ); 5625 return i; 5626 } 5627 5628 /* 5629 ** This is the xExprCallback for a tree walker. It is used to 5630 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5631 ** for additional information. 5632 */ 5633 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5634 int i; 5635 NameContext *pNC = pWalker->u.pNC; 5636 Parse *pParse = pNC->pParse; 5637 SrcList *pSrcList = pNC->pSrcList; 5638 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5639 5640 assert( pNC->ncFlags & NC_UAggInfo ); 5641 switch( pExpr->op ){ 5642 case TK_AGG_COLUMN: 5643 case TK_COLUMN: { 5644 testcase( pExpr->op==TK_AGG_COLUMN ); 5645 testcase( pExpr->op==TK_COLUMN ); 5646 /* Check to see if the column is in one of the tables in the FROM 5647 ** clause of the aggregate query */ 5648 if( ALWAYS(pSrcList!=0) ){ 5649 struct SrcList_item *pItem = pSrcList->a; 5650 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5651 struct AggInfo_col *pCol; 5652 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5653 if( pExpr->iTable==pItem->iCursor ){ 5654 /* If we reach this point, it means that pExpr refers to a table 5655 ** that is in the FROM clause of the aggregate query. 5656 ** 5657 ** Make an entry for the column in pAggInfo->aCol[] if there 5658 ** is not an entry there already. 5659 */ 5660 int k; 5661 pCol = pAggInfo->aCol; 5662 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5663 if( pCol->iTable==pExpr->iTable && 5664 pCol->iColumn==pExpr->iColumn ){ 5665 break; 5666 } 5667 } 5668 if( (k>=pAggInfo->nColumn) 5669 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5670 ){ 5671 pCol = &pAggInfo->aCol[k]; 5672 pCol->pTab = pExpr->y.pTab; 5673 pCol->iTable = pExpr->iTable; 5674 pCol->iColumn = pExpr->iColumn; 5675 pCol->iMem = ++pParse->nMem; 5676 pCol->iSorterColumn = -1; 5677 pCol->pExpr = pExpr; 5678 if( pAggInfo->pGroupBy ){ 5679 int j, n; 5680 ExprList *pGB = pAggInfo->pGroupBy; 5681 struct ExprList_item *pTerm = pGB->a; 5682 n = pGB->nExpr; 5683 for(j=0; j<n; j++, pTerm++){ 5684 Expr *pE = pTerm->pExpr; 5685 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5686 pE->iColumn==pExpr->iColumn ){ 5687 pCol->iSorterColumn = j; 5688 break; 5689 } 5690 } 5691 } 5692 if( pCol->iSorterColumn<0 ){ 5693 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5694 } 5695 } 5696 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5697 ** because it was there before or because we just created it). 5698 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5699 ** pAggInfo->aCol[] entry. 5700 */ 5701 ExprSetVVAProperty(pExpr, EP_NoReduce); 5702 pExpr->pAggInfo = pAggInfo; 5703 pExpr->op = TK_AGG_COLUMN; 5704 pExpr->iAgg = (i16)k; 5705 break; 5706 } /* endif pExpr->iTable==pItem->iCursor */ 5707 } /* end loop over pSrcList */ 5708 } 5709 return WRC_Prune; 5710 } 5711 case TK_AGG_FUNCTION: { 5712 if( (pNC->ncFlags & NC_InAggFunc)==0 5713 && pWalker->walkerDepth==pExpr->op2 5714 ){ 5715 /* Check to see if pExpr is a duplicate of another aggregate 5716 ** function that is already in the pAggInfo structure 5717 */ 5718 struct AggInfo_func *pItem = pAggInfo->aFunc; 5719 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5720 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5721 break; 5722 } 5723 } 5724 if( i>=pAggInfo->nFunc ){ 5725 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5726 */ 5727 u8 enc = ENC(pParse->db); 5728 i = addAggInfoFunc(pParse->db, pAggInfo); 5729 if( i>=0 ){ 5730 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5731 pItem = &pAggInfo->aFunc[i]; 5732 pItem->pExpr = pExpr; 5733 pItem->iMem = ++pParse->nMem; 5734 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5735 pItem->pFunc = sqlite3FindFunction(pParse->db, 5736 pExpr->u.zToken, 5737 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5738 if( pExpr->flags & EP_Distinct ){ 5739 pItem->iDistinct = pParse->nTab++; 5740 }else{ 5741 pItem->iDistinct = -1; 5742 } 5743 } 5744 } 5745 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5746 */ 5747 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5748 ExprSetVVAProperty(pExpr, EP_NoReduce); 5749 pExpr->iAgg = (i16)i; 5750 pExpr->pAggInfo = pAggInfo; 5751 return WRC_Prune; 5752 }else{ 5753 return WRC_Continue; 5754 } 5755 } 5756 } 5757 return WRC_Continue; 5758 } 5759 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5760 UNUSED_PARAMETER(pSelect); 5761 pWalker->walkerDepth++; 5762 return WRC_Continue; 5763 } 5764 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5765 UNUSED_PARAMETER(pSelect); 5766 pWalker->walkerDepth--; 5767 } 5768 5769 /* 5770 ** Analyze the pExpr expression looking for aggregate functions and 5771 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5772 ** points to. Additional entries are made on the AggInfo object as 5773 ** necessary. 5774 ** 5775 ** This routine should only be called after the expression has been 5776 ** analyzed by sqlite3ResolveExprNames(). 5777 */ 5778 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5779 Walker w; 5780 w.xExprCallback = analyzeAggregate; 5781 w.xSelectCallback = analyzeAggregatesInSelect; 5782 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5783 w.walkerDepth = 0; 5784 w.u.pNC = pNC; 5785 w.pParse = 0; 5786 assert( pNC->pSrcList!=0 ); 5787 sqlite3WalkExpr(&w, pExpr); 5788 } 5789 5790 /* 5791 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5792 ** expression list. Return the number of errors. 5793 ** 5794 ** If an error is found, the analysis is cut short. 5795 */ 5796 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5797 struct ExprList_item *pItem; 5798 int i; 5799 if( pList ){ 5800 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5801 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5802 } 5803 } 5804 } 5805 5806 /* 5807 ** Allocate a single new register for use to hold some intermediate result. 5808 */ 5809 int sqlite3GetTempReg(Parse *pParse){ 5810 if( pParse->nTempReg==0 ){ 5811 return ++pParse->nMem; 5812 } 5813 return pParse->aTempReg[--pParse->nTempReg]; 5814 } 5815 5816 /* 5817 ** Deallocate a register, making available for reuse for some other 5818 ** purpose. 5819 */ 5820 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5821 if( iReg ){ 5822 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 5823 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5824 pParse->aTempReg[pParse->nTempReg++] = iReg; 5825 } 5826 } 5827 } 5828 5829 /* 5830 ** Allocate or deallocate a block of nReg consecutive registers. 5831 */ 5832 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5833 int i, n; 5834 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5835 i = pParse->iRangeReg; 5836 n = pParse->nRangeReg; 5837 if( nReg<=n ){ 5838 pParse->iRangeReg += nReg; 5839 pParse->nRangeReg -= nReg; 5840 }else{ 5841 i = pParse->nMem+1; 5842 pParse->nMem += nReg; 5843 } 5844 return i; 5845 } 5846 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5847 if( nReg==1 ){ 5848 sqlite3ReleaseTempReg(pParse, iReg); 5849 return; 5850 } 5851 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 5852 if( nReg>pParse->nRangeReg ){ 5853 pParse->nRangeReg = nReg; 5854 pParse->iRangeReg = iReg; 5855 } 5856 } 5857 5858 /* 5859 ** Mark all temporary registers as being unavailable for reuse. 5860 ** 5861 ** Always invoke this procedure after coding a subroutine or co-routine 5862 ** that might be invoked from other parts of the code, to ensure that 5863 ** the sub/co-routine does not use registers in common with the code that 5864 ** invokes the sub/co-routine. 5865 */ 5866 void sqlite3ClearTempRegCache(Parse *pParse){ 5867 pParse->nTempReg = 0; 5868 pParse->nRangeReg = 0; 5869 } 5870 5871 /* 5872 ** Validate that no temporary register falls within the range of 5873 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5874 ** statements. 5875 */ 5876 #ifdef SQLITE_DEBUG 5877 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5878 int i; 5879 if( pParse->nRangeReg>0 5880 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5881 && pParse->iRangeReg <= iLast 5882 ){ 5883 return 0; 5884 } 5885 for(i=0; i<pParse->nTempReg; i++){ 5886 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5887 return 0; 5888 } 5889 } 5890 return 1; 5891 } 5892 #endif /* SQLITE_DEBUG */ 5893