xref: /sqlite-3.40.0/src/expr.c (revision 79d5bc80)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip) ){
48     assert( pExpr->op==TK_COLLATE );
49     pExpr = pExpr->pLeft;
50     assert( pExpr!=0 );
51   }
52   op = pExpr->op;
53   if( op==TK_SELECT ){
54     assert( pExpr->flags&EP_xIsSelect );
55     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
56   }
57   if( op==TK_REGISTER ) op = pExpr->op2;
58 #ifndef SQLITE_OMIT_CAST
59   if( op==TK_CAST ){
60     assert( !ExprHasProperty(pExpr, EP_IntValue) );
61     return sqlite3AffinityType(pExpr->u.zToken, 0);
62   }
63 #endif
64   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){
65     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
66   }
67   if( op==TK_SELECT_COLUMN ){
68     assert( pExpr->pLeft->flags&EP_xIsSelect );
69     return sqlite3ExprAffinity(
70         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
71     );
72   }
73   if( op==TK_VECTOR ){
74     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
75   }
76   return pExpr->affExpr;
77 }
78 
79 /*
80 ** Set the collating sequence for expression pExpr to be the collating
81 ** sequence named by pToken.   Return a pointer to a new Expr node that
82 ** implements the COLLATE operator.
83 **
84 ** If a memory allocation error occurs, that fact is recorded in pParse->db
85 ** and the pExpr parameter is returned unchanged.
86 */
87 Expr *sqlite3ExprAddCollateToken(
88   Parse *pParse,           /* Parsing context */
89   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
90   const Token *pCollName,  /* Name of collating sequence */
91   int dequote              /* True to dequote pCollName */
92 ){
93   if( pCollName->n>0 ){
94     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
95     if( pNew ){
96       pNew->pLeft = pExpr;
97       pNew->flags |= EP_Collate|EP_Skip;
98       pExpr = pNew;
99     }
100   }
101   return pExpr;
102 }
103 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
104   Token s;
105   assert( zC!=0 );
106   sqlite3TokenInit(&s, (char*)zC);
107   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
108 }
109 
110 /*
111 ** Skip over any TK_COLLATE operators.
112 */
113 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
114   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
115     assert( pExpr->op==TK_COLLATE );
116     pExpr = pExpr->pLeft;
117   }
118   return pExpr;
119 }
120 
121 /*
122 ** Skip over any TK_COLLATE operators and/or any unlikely()
123 ** or likelihood() or likely() functions at the root of an
124 ** expression.
125 */
126 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
127   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
128     if( ExprHasProperty(pExpr, EP_Unlikely) ){
129       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
130       assert( pExpr->x.pList->nExpr>0 );
131       assert( pExpr->op==TK_FUNCTION );
132       pExpr = pExpr->x.pList->a[0].pExpr;
133     }else{
134       assert( pExpr->op==TK_COLLATE );
135       pExpr = pExpr->pLeft;
136     }
137   }
138   return pExpr;
139 }
140 
141 /*
142 ** Return the collation sequence for the expression pExpr. If
143 ** there is no defined collating sequence, return NULL.
144 **
145 ** See also: sqlite3ExprNNCollSeq()
146 **
147 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
148 ** default collation if pExpr has no defined collation.
149 **
150 ** The collating sequence might be determined by a COLLATE operator
151 ** or by the presence of a column with a defined collating sequence.
152 ** COLLATE operators take first precedence.  Left operands take
153 ** precedence over right operands.
154 */
155 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
156   sqlite3 *db = pParse->db;
157   CollSeq *pColl = 0;
158   Expr *p = pExpr;
159   while( p ){
160     int op = p->op;
161     if( op==TK_REGISTER ) op = p->op2;
162     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
163      && p->y.pTab!=0
164     ){
165       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
166       ** a TK_COLUMN but was previously evaluated and cached in a register */
167       int j = p->iColumn;
168       if( j>=0 ){
169         const char *zColl = p->y.pTab->aCol[j].zColl;
170         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
171       }
172       break;
173     }
174     if( op==TK_CAST || op==TK_UPLUS ){
175       p = p->pLeft;
176       continue;
177     }
178     if( op==TK_VECTOR ){
179       p = p->x.pList->a[0].pExpr;
180       continue;
181     }
182     if( op==TK_COLLATE ){
183       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
184       break;
185     }
186     if( p->flags & EP_Collate ){
187       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
188         p = p->pLeft;
189       }else{
190         Expr *pNext  = p->pRight;
191         /* The Expr.x union is never used at the same time as Expr.pRight */
192         assert( p->x.pList==0 || p->pRight==0 );
193         if( p->x.pList!=0
194          && !db->mallocFailed
195          && ALWAYS(!ExprHasProperty(p, EP_xIsSelect))
196         ){
197           int i;
198           for(i=0; i<p->x.pList->nExpr; i++){
199             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
200               pNext = p->x.pList->a[i].pExpr;
201               break;
202             }
203           }
204         }
205         p = pNext;
206       }
207     }else{
208       break;
209     }
210   }
211   if( sqlite3CheckCollSeq(pParse, pColl) ){
212     pColl = 0;
213   }
214   return pColl;
215 }
216 
217 /*
218 ** Return the collation sequence for the expression pExpr. If
219 ** there is no defined collating sequence, return a pointer to the
220 ** defautl collation sequence.
221 **
222 ** See also: sqlite3ExprCollSeq()
223 **
224 ** The sqlite3ExprCollSeq() routine works the same except that it
225 ** returns NULL if there is no defined collation.
226 */
227 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){
228   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
229   if( p==0 ) p = pParse->db->pDfltColl;
230   assert( p!=0 );
231   return p;
232 }
233 
234 /*
235 ** Return TRUE if the two expressions have equivalent collating sequences.
236 */
237 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){
238   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
239   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
240   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
241 }
242 
243 /*
244 ** pExpr is an operand of a comparison operator.  aff2 is the
245 ** type affinity of the other operand.  This routine returns the
246 ** type affinity that should be used for the comparison operator.
247 */
248 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
249   char aff1 = sqlite3ExprAffinity(pExpr);
250   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
251     /* Both sides of the comparison are columns. If one has numeric
252     ** affinity, use that. Otherwise use no affinity.
253     */
254     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
255       return SQLITE_AFF_NUMERIC;
256     }else{
257       return SQLITE_AFF_BLOB;
258     }
259   }else{
260     /* One side is a column, the other is not. Use the columns affinity. */
261     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
262     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
263   }
264 }
265 
266 /*
267 ** pExpr is a comparison operator.  Return the type affinity that should
268 ** be applied to both operands prior to doing the comparison.
269 */
270 static char comparisonAffinity(Expr *pExpr){
271   char aff;
272   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
273           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
274           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
275   assert( pExpr->pLeft );
276   aff = sqlite3ExprAffinity(pExpr->pLeft);
277   if( pExpr->pRight ){
278     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
279   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
280     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
281   }else if( aff==0 ){
282     aff = SQLITE_AFF_BLOB;
283   }
284   return aff;
285 }
286 
287 /*
288 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
289 ** idx_affinity is the affinity of an indexed column. Return true
290 ** if the index with affinity idx_affinity may be used to implement
291 ** the comparison in pExpr.
292 */
293 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
294   char aff = comparisonAffinity(pExpr);
295   if( aff<SQLITE_AFF_TEXT ){
296     return 1;
297   }
298   if( aff==SQLITE_AFF_TEXT ){
299     return idx_affinity==SQLITE_AFF_TEXT;
300   }
301   return sqlite3IsNumericAffinity(idx_affinity);
302 }
303 
304 /*
305 ** Return the P5 value that should be used for a binary comparison
306 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
307 */
308 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
309   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
310   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
311   return aff;
312 }
313 
314 /*
315 ** Return a pointer to the collation sequence that should be used by
316 ** a binary comparison operator comparing pLeft and pRight.
317 **
318 ** If the left hand expression has a collating sequence type, then it is
319 ** used. Otherwise the collation sequence for the right hand expression
320 ** is used, or the default (BINARY) if neither expression has a collating
321 ** type.
322 **
323 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
324 ** it is not considered.
325 */
326 CollSeq *sqlite3BinaryCompareCollSeq(
327   Parse *pParse,
328   Expr *pLeft,
329   Expr *pRight
330 ){
331   CollSeq *pColl;
332   assert( pLeft );
333   if( pLeft->flags & EP_Collate ){
334     pColl = sqlite3ExprCollSeq(pParse, pLeft);
335   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
336     pColl = sqlite3ExprCollSeq(pParse, pRight);
337   }else{
338     pColl = sqlite3ExprCollSeq(pParse, pLeft);
339     if( !pColl ){
340       pColl = sqlite3ExprCollSeq(pParse, pRight);
341     }
342   }
343   return pColl;
344 }
345 
346 /* Expresssion p is a comparison operator.  Return a collation sequence
347 ** appropriate for the comparison operator.
348 **
349 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
350 ** However, if the OP_Commuted flag is set, then the order of the operands
351 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
352 ** correct collating sequence is found.
353 */
354 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, Expr *p){
355   if( ExprHasProperty(p, EP_Commuted) ){
356     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
357   }else{
358     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
359   }
360 }
361 
362 /*
363 ** Generate code for a comparison operator.
364 */
365 static int codeCompare(
366   Parse *pParse,    /* The parsing (and code generating) context */
367   Expr *pLeft,      /* The left operand */
368   Expr *pRight,     /* The right operand */
369   int opcode,       /* The comparison opcode */
370   int in1, int in2, /* Register holding operands */
371   int dest,         /* Jump here if true.  */
372   int jumpIfNull,   /* If true, jump if either operand is NULL */
373   int isCommuted    /* The comparison has been commuted */
374 ){
375   int p5;
376   int addr;
377   CollSeq *p4;
378 
379   if( pParse->nErr ) return 0;
380   if( isCommuted ){
381     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
382   }else{
383     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
384   }
385   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
386   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
387                            (void*)p4, P4_COLLSEQ);
388   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
389   return addr;
390 }
391 
392 /*
393 ** Return true if expression pExpr is a vector, or false otherwise.
394 **
395 ** A vector is defined as any expression that results in two or more
396 ** columns of result.  Every TK_VECTOR node is an vector because the
397 ** parser will not generate a TK_VECTOR with fewer than two entries.
398 ** But a TK_SELECT might be either a vector or a scalar. It is only
399 ** considered a vector if it has two or more result columns.
400 */
401 int sqlite3ExprIsVector(Expr *pExpr){
402   return sqlite3ExprVectorSize(pExpr)>1;
403 }
404 
405 /*
406 ** If the expression passed as the only argument is of type TK_VECTOR
407 ** return the number of expressions in the vector. Or, if the expression
408 ** is a sub-select, return the number of columns in the sub-select. For
409 ** any other type of expression, return 1.
410 */
411 int sqlite3ExprVectorSize(Expr *pExpr){
412   u8 op = pExpr->op;
413   if( op==TK_REGISTER ) op = pExpr->op2;
414   if( op==TK_VECTOR ){
415     return pExpr->x.pList->nExpr;
416   }else if( op==TK_SELECT ){
417     return pExpr->x.pSelect->pEList->nExpr;
418   }else{
419     return 1;
420   }
421 }
422 
423 /*
424 ** Return a pointer to a subexpression of pVector that is the i-th
425 ** column of the vector (numbered starting with 0).  The caller must
426 ** ensure that i is within range.
427 **
428 ** If pVector is really a scalar (and "scalar" here includes subqueries
429 ** that return a single column!) then return pVector unmodified.
430 **
431 ** pVector retains ownership of the returned subexpression.
432 **
433 ** If the vector is a (SELECT ...) then the expression returned is
434 ** just the expression for the i-th term of the result set, and may
435 ** not be ready for evaluation because the table cursor has not yet
436 ** been positioned.
437 */
438 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
439   assert( i<sqlite3ExprVectorSize(pVector) );
440   if( sqlite3ExprIsVector(pVector) ){
441     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
442     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
443       return pVector->x.pSelect->pEList->a[i].pExpr;
444     }else{
445       return pVector->x.pList->a[i].pExpr;
446     }
447   }
448   return pVector;
449 }
450 
451 /*
452 ** Compute and return a new Expr object which when passed to
453 ** sqlite3ExprCode() will generate all necessary code to compute
454 ** the iField-th column of the vector expression pVector.
455 **
456 ** It is ok for pVector to be a scalar (as long as iField==0).
457 ** In that case, this routine works like sqlite3ExprDup().
458 **
459 ** The caller owns the returned Expr object and is responsible for
460 ** ensuring that the returned value eventually gets freed.
461 **
462 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
463 ** then the returned object will reference pVector and so pVector must remain
464 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
465 ** or a scalar expression, then it can be deleted as soon as this routine
466 ** returns.
467 **
468 ** A trick to cause a TK_SELECT pVector to be deleted together with
469 ** the returned Expr object is to attach the pVector to the pRight field
470 ** of the returned TK_SELECT_COLUMN Expr object.
471 */
472 Expr *sqlite3ExprForVectorField(
473   Parse *pParse,       /* Parsing context */
474   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
475   int iField           /* Which column of the vector to return */
476 ){
477   Expr *pRet;
478   if( pVector->op==TK_SELECT ){
479     assert( pVector->flags & EP_xIsSelect );
480     /* The TK_SELECT_COLUMN Expr node:
481     **
482     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
483     ** pRight:          not used.  But recursively deleted.
484     ** iColumn:         Index of a column in pVector
485     ** iTable:          0 or the number of columns on the LHS of an assignment
486     ** pLeft->iTable:   First in an array of register holding result, or 0
487     **                  if the result is not yet computed.
488     **
489     ** sqlite3ExprDelete() specifically skips the recursive delete of
490     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
491     ** can be attached to pRight to cause this node to take ownership of
492     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
493     ** with the same pLeft pointer to the pVector, but only one of them
494     ** will own the pVector.
495     */
496     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
497     if( pRet ){
498       pRet->iColumn = iField;
499       pRet->pLeft = pVector;
500     }
501     assert( pRet==0 || pRet->iTable==0 );
502   }else{
503     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
504     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
505     sqlite3RenameTokenRemap(pParse, pRet, pVector);
506   }
507   return pRet;
508 }
509 
510 /*
511 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
512 ** it. Return the register in which the result is stored (or, if the
513 ** sub-select returns more than one column, the first in an array
514 ** of registers in which the result is stored).
515 **
516 ** If pExpr is not a TK_SELECT expression, return 0.
517 */
518 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
519   int reg = 0;
520 #ifndef SQLITE_OMIT_SUBQUERY
521   if( pExpr->op==TK_SELECT ){
522     reg = sqlite3CodeSubselect(pParse, pExpr);
523   }
524 #endif
525   return reg;
526 }
527 
528 /*
529 ** Argument pVector points to a vector expression - either a TK_VECTOR
530 ** or TK_SELECT that returns more than one column. This function returns
531 ** the register number of a register that contains the value of
532 ** element iField of the vector.
533 **
534 ** If pVector is a TK_SELECT expression, then code for it must have
535 ** already been generated using the exprCodeSubselect() routine. In this
536 ** case parameter regSelect should be the first in an array of registers
537 ** containing the results of the sub-select.
538 **
539 ** If pVector is of type TK_VECTOR, then code for the requested field
540 ** is generated. In this case (*pRegFree) may be set to the number of
541 ** a temporary register to be freed by the caller before returning.
542 **
543 ** Before returning, output parameter (*ppExpr) is set to point to the
544 ** Expr object corresponding to element iElem of the vector.
545 */
546 static int exprVectorRegister(
547   Parse *pParse,                  /* Parse context */
548   Expr *pVector,                  /* Vector to extract element from */
549   int iField,                     /* Field to extract from pVector */
550   int regSelect,                  /* First in array of registers */
551   Expr **ppExpr,                  /* OUT: Expression element */
552   int *pRegFree                   /* OUT: Temp register to free */
553 ){
554   u8 op = pVector->op;
555   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
556   if( op==TK_REGISTER ){
557     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
558     return pVector->iTable+iField;
559   }
560   if( op==TK_SELECT ){
561     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
562      return regSelect+iField;
563   }
564   *ppExpr = pVector->x.pList->a[iField].pExpr;
565   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
566 }
567 
568 /*
569 ** Expression pExpr is a comparison between two vector values. Compute
570 ** the result of the comparison (1, 0, or NULL) and write that
571 ** result into register dest.
572 **
573 ** The caller must satisfy the following preconditions:
574 **
575 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
576 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
577 **    otherwise:                op==pExpr->op and p5==0
578 */
579 static void codeVectorCompare(
580   Parse *pParse,        /* Code generator context */
581   Expr *pExpr,          /* The comparison operation */
582   int dest,             /* Write results into this register */
583   u8 op,                /* Comparison operator */
584   u8 p5                 /* SQLITE_NULLEQ or zero */
585 ){
586   Vdbe *v = pParse->pVdbe;
587   Expr *pLeft = pExpr->pLeft;
588   Expr *pRight = pExpr->pRight;
589   int nLeft = sqlite3ExprVectorSize(pLeft);
590   int i;
591   int regLeft = 0;
592   int regRight = 0;
593   u8 opx = op;
594   int addrDone = sqlite3VdbeMakeLabel(pParse);
595   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
596 
597   if( pParse->nErr ) return;
598   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
599     sqlite3ErrorMsg(pParse, "row value misused");
600     return;
601   }
602   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
603        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
604        || pExpr->op==TK_LT || pExpr->op==TK_GT
605        || pExpr->op==TK_LE || pExpr->op==TK_GE
606   );
607   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
608             || (pExpr->op==TK_ISNOT && op==TK_NE) );
609   assert( p5==0 || pExpr->op!=op );
610   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
611 
612   p5 |= SQLITE_STOREP2;
613   if( opx==TK_LE ) opx = TK_LT;
614   if( opx==TK_GE ) opx = TK_GT;
615 
616   regLeft = exprCodeSubselect(pParse, pLeft);
617   regRight = exprCodeSubselect(pParse, pRight);
618 
619   for(i=0; 1 /*Loop exits by "break"*/; i++){
620     int regFree1 = 0, regFree2 = 0;
621     Expr *pL, *pR;
622     int r1, r2;
623     assert( i>=0 && i<nLeft );
624     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
625     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
626     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted);
627     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
628     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
629     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
630     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
631     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
632     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
633     sqlite3ReleaseTempReg(pParse, regFree1);
634     sqlite3ReleaseTempReg(pParse, regFree2);
635     if( i==nLeft-1 ){
636       break;
637     }
638     if( opx==TK_EQ ){
639       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
640       p5 |= SQLITE_KEEPNULL;
641     }else if( opx==TK_NE ){
642       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
643       p5 |= SQLITE_KEEPNULL;
644     }else{
645       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
646       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
647       VdbeCoverageIf(v, op==TK_LT);
648       VdbeCoverageIf(v, op==TK_GT);
649       VdbeCoverageIf(v, op==TK_LE);
650       VdbeCoverageIf(v, op==TK_GE);
651       if( i==nLeft-2 ) opx = op;
652     }
653   }
654   sqlite3VdbeResolveLabel(v, addrDone);
655 }
656 
657 #if SQLITE_MAX_EXPR_DEPTH>0
658 /*
659 ** Check that argument nHeight is less than or equal to the maximum
660 ** expression depth allowed. If it is not, leave an error message in
661 ** pParse.
662 */
663 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
664   int rc = SQLITE_OK;
665   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
666   if( nHeight>mxHeight ){
667     sqlite3ErrorMsg(pParse,
668        "Expression tree is too large (maximum depth %d)", mxHeight
669     );
670     rc = SQLITE_ERROR;
671   }
672   return rc;
673 }
674 
675 /* The following three functions, heightOfExpr(), heightOfExprList()
676 ** and heightOfSelect(), are used to determine the maximum height
677 ** of any expression tree referenced by the structure passed as the
678 ** first argument.
679 **
680 ** If this maximum height is greater than the current value pointed
681 ** to by pnHeight, the second parameter, then set *pnHeight to that
682 ** value.
683 */
684 static void heightOfExpr(Expr *p, int *pnHeight){
685   if( p ){
686     if( p->nHeight>*pnHeight ){
687       *pnHeight = p->nHeight;
688     }
689   }
690 }
691 static void heightOfExprList(ExprList *p, int *pnHeight){
692   if( p ){
693     int i;
694     for(i=0; i<p->nExpr; i++){
695       heightOfExpr(p->a[i].pExpr, pnHeight);
696     }
697   }
698 }
699 static void heightOfSelect(Select *pSelect, int *pnHeight){
700   Select *p;
701   for(p=pSelect; p; p=p->pPrior){
702     heightOfExpr(p->pWhere, pnHeight);
703     heightOfExpr(p->pHaving, pnHeight);
704     heightOfExpr(p->pLimit, pnHeight);
705     heightOfExprList(p->pEList, pnHeight);
706     heightOfExprList(p->pGroupBy, pnHeight);
707     heightOfExprList(p->pOrderBy, pnHeight);
708   }
709 }
710 
711 /*
712 ** Set the Expr.nHeight variable in the structure passed as an
713 ** argument. An expression with no children, Expr.pList or
714 ** Expr.pSelect member has a height of 1. Any other expression
715 ** has a height equal to the maximum height of any other
716 ** referenced Expr plus one.
717 **
718 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
719 ** if appropriate.
720 */
721 static void exprSetHeight(Expr *p){
722   int nHeight = 0;
723   heightOfExpr(p->pLeft, &nHeight);
724   heightOfExpr(p->pRight, &nHeight);
725   if( ExprHasProperty(p, EP_xIsSelect) ){
726     heightOfSelect(p->x.pSelect, &nHeight);
727   }else if( p->x.pList ){
728     heightOfExprList(p->x.pList, &nHeight);
729     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
730   }
731   p->nHeight = nHeight + 1;
732 }
733 
734 /*
735 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
736 ** the height is greater than the maximum allowed expression depth,
737 ** leave an error in pParse.
738 **
739 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
740 ** Expr.flags.
741 */
742 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
743   if( pParse->nErr ) return;
744   exprSetHeight(p);
745   sqlite3ExprCheckHeight(pParse, p->nHeight);
746 }
747 
748 /*
749 ** Return the maximum height of any expression tree referenced
750 ** by the select statement passed as an argument.
751 */
752 int sqlite3SelectExprHeight(Select *p){
753   int nHeight = 0;
754   heightOfSelect(p, &nHeight);
755   return nHeight;
756 }
757 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
758 /*
759 ** Propagate all EP_Propagate flags from the Expr.x.pList into
760 ** Expr.flags.
761 */
762 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
763   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
764     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
765   }
766 }
767 #define exprSetHeight(y)
768 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
769 
770 /*
771 ** This routine is the core allocator for Expr nodes.
772 **
773 ** Construct a new expression node and return a pointer to it.  Memory
774 ** for this node and for the pToken argument is a single allocation
775 ** obtained from sqlite3DbMalloc().  The calling function
776 ** is responsible for making sure the node eventually gets freed.
777 **
778 ** If dequote is true, then the token (if it exists) is dequoted.
779 ** If dequote is false, no dequoting is performed.  The deQuote
780 ** parameter is ignored if pToken is NULL or if the token does not
781 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
782 ** then the EP_DblQuoted flag is set on the expression node.
783 **
784 ** Special case:  If op==TK_INTEGER and pToken points to a string that
785 ** can be translated into a 32-bit integer, then the token is not
786 ** stored in u.zToken.  Instead, the integer values is written
787 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
788 ** is allocated to hold the integer text and the dequote flag is ignored.
789 */
790 Expr *sqlite3ExprAlloc(
791   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
792   int op,                 /* Expression opcode */
793   const Token *pToken,    /* Token argument.  Might be NULL */
794   int dequote             /* True to dequote */
795 ){
796   Expr *pNew;
797   int nExtra = 0;
798   int iValue = 0;
799 
800   assert( db!=0 );
801   if( pToken ){
802     if( op!=TK_INTEGER || pToken->z==0
803           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
804       nExtra = pToken->n+1;
805       assert( iValue>=0 );
806     }
807   }
808   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
809   if( pNew ){
810     memset(pNew, 0, sizeof(Expr));
811     pNew->op = (u8)op;
812     pNew->iAgg = -1;
813     if( pToken ){
814       if( nExtra==0 ){
815         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
816         pNew->u.iValue = iValue;
817       }else{
818         pNew->u.zToken = (char*)&pNew[1];
819         assert( pToken->z!=0 || pToken->n==0 );
820         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
821         pNew->u.zToken[pToken->n] = 0;
822         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
823           sqlite3DequoteExpr(pNew);
824         }
825       }
826     }
827 #if SQLITE_MAX_EXPR_DEPTH>0
828     pNew->nHeight = 1;
829 #endif
830   }
831   return pNew;
832 }
833 
834 /*
835 ** Allocate a new expression node from a zero-terminated token that has
836 ** already been dequoted.
837 */
838 Expr *sqlite3Expr(
839   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
840   int op,                 /* Expression opcode */
841   const char *zToken      /* Token argument.  Might be NULL */
842 ){
843   Token x;
844   x.z = zToken;
845   x.n = sqlite3Strlen30(zToken);
846   return sqlite3ExprAlloc(db, op, &x, 0);
847 }
848 
849 /*
850 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
851 **
852 ** If pRoot==NULL that means that a memory allocation error has occurred.
853 ** In that case, delete the subtrees pLeft and pRight.
854 */
855 void sqlite3ExprAttachSubtrees(
856   sqlite3 *db,
857   Expr *pRoot,
858   Expr *pLeft,
859   Expr *pRight
860 ){
861   if( pRoot==0 ){
862     assert( db->mallocFailed );
863     sqlite3ExprDelete(db, pLeft);
864     sqlite3ExprDelete(db, pRight);
865   }else{
866     if( pRight ){
867       pRoot->pRight = pRight;
868       pRoot->flags |= EP_Propagate & pRight->flags;
869     }
870     if( pLeft ){
871       pRoot->pLeft = pLeft;
872       pRoot->flags |= EP_Propagate & pLeft->flags;
873     }
874     exprSetHeight(pRoot);
875   }
876 }
877 
878 /*
879 ** Allocate an Expr node which joins as many as two subtrees.
880 **
881 ** One or both of the subtrees can be NULL.  Return a pointer to the new
882 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
883 ** free the subtrees and return NULL.
884 */
885 Expr *sqlite3PExpr(
886   Parse *pParse,          /* Parsing context */
887   int op,                 /* Expression opcode */
888   Expr *pLeft,            /* Left operand */
889   Expr *pRight            /* Right operand */
890 ){
891   Expr *p;
892   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
893   if( p ){
894     memset(p, 0, sizeof(Expr));
895     p->op = op & 0xff;
896     p->iAgg = -1;
897     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
898     sqlite3ExprCheckHeight(pParse, p->nHeight);
899   }else{
900     sqlite3ExprDelete(pParse->db, pLeft);
901     sqlite3ExprDelete(pParse->db, pRight);
902   }
903   return p;
904 }
905 
906 /*
907 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
908 ** do a memory allocation failure) then delete the pSelect object.
909 */
910 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
911   if( pExpr ){
912     pExpr->x.pSelect = pSelect;
913     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
914     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
915   }else{
916     assert( pParse->db->mallocFailed );
917     sqlite3SelectDelete(pParse->db, pSelect);
918   }
919 }
920 
921 
922 /*
923 ** Join two expressions using an AND operator.  If either expression is
924 ** NULL, then just return the other expression.
925 **
926 ** If one side or the other of the AND is known to be false, then instead
927 ** of returning an AND expression, just return a constant expression with
928 ** a value of false.
929 */
930 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
931   sqlite3 *db = pParse->db;
932   if( pLeft==0  ){
933     return pRight;
934   }else if( pRight==0 ){
935     return pLeft;
936   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
937          && !IN_RENAME_OBJECT
938   ){
939     sqlite3ExprDelete(db, pLeft);
940     sqlite3ExprDelete(db, pRight);
941     return sqlite3Expr(db, TK_INTEGER, "0");
942   }else{
943     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
944   }
945 }
946 
947 /*
948 ** Construct a new expression node for a function with multiple
949 ** arguments.
950 */
951 Expr *sqlite3ExprFunction(
952   Parse *pParse,        /* Parsing context */
953   ExprList *pList,      /* Argument list */
954   Token *pToken,        /* Name of the function */
955   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
956 ){
957   Expr *pNew;
958   sqlite3 *db = pParse->db;
959   assert( pToken );
960   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
961   if( pNew==0 ){
962     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
963     return 0;
964   }
965   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
966     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
967   }
968   pNew->x.pList = pList;
969   ExprSetProperty(pNew, EP_HasFunc);
970   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
971   sqlite3ExprSetHeightAndFlags(pParse, pNew);
972   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
973   return pNew;
974 }
975 
976 /*
977 ** Assign a variable number to an expression that encodes a wildcard
978 ** in the original SQL statement.
979 **
980 ** Wildcards consisting of a single "?" are assigned the next sequential
981 ** variable number.
982 **
983 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
984 ** sure "nnn" is not too big to avoid a denial of service attack when
985 ** the SQL statement comes from an external source.
986 **
987 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
988 ** as the previous instance of the same wildcard.  Or if this is the first
989 ** instance of the wildcard, the next sequential variable number is
990 ** assigned.
991 */
992 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
993   sqlite3 *db = pParse->db;
994   const char *z;
995   ynVar x;
996 
997   if( pExpr==0 ) return;
998   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
999   z = pExpr->u.zToken;
1000   assert( z!=0 );
1001   assert( z[0]!=0 );
1002   assert( n==(u32)sqlite3Strlen30(z) );
1003   if( z[1]==0 ){
1004     /* Wildcard of the form "?".  Assign the next variable number */
1005     assert( z[0]=='?' );
1006     x = (ynVar)(++pParse->nVar);
1007   }else{
1008     int doAdd = 0;
1009     if( z[0]=='?' ){
1010       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1011       ** use it as the variable number */
1012       i64 i;
1013       int bOk;
1014       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1015         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1016         bOk = 1;
1017       }else{
1018         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1019       }
1020       testcase( i==0 );
1021       testcase( i==1 );
1022       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1023       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1024       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1025         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1026             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1027         return;
1028       }
1029       x = (ynVar)i;
1030       if( x>pParse->nVar ){
1031         pParse->nVar = (int)x;
1032         doAdd = 1;
1033       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1034         doAdd = 1;
1035       }
1036     }else{
1037       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1038       ** number as the prior appearance of the same name, or if the name
1039       ** has never appeared before, reuse the same variable number
1040       */
1041       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1042       if( x==0 ){
1043         x = (ynVar)(++pParse->nVar);
1044         doAdd = 1;
1045       }
1046     }
1047     if( doAdd ){
1048       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1049     }
1050   }
1051   pExpr->iColumn = x;
1052   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1053     sqlite3ErrorMsg(pParse, "too many SQL variables");
1054   }
1055 }
1056 
1057 /*
1058 ** Recursively delete an expression tree.
1059 */
1060 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1061   assert( p!=0 );
1062   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1063   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1064 
1065   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1066   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1067           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1068 #ifdef SQLITE_DEBUG
1069   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1070     assert( p->pLeft==0 );
1071     assert( p->pRight==0 );
1072     assert( p->x.pSelect==0 );
1073   }
1074 #endif
1075   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1076     /* The Expr.x union is never used at the same time as Expr.pRight */
1077     assert( p->x.pList==0 || p->pRight==0 );
1078     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1079     if( p->pRight ){
1080       assert( !ExprHasProperty(p, EP_WinFunc) );
1081       sqlite3ExprDeleteNN(db, p->pRight);
1082     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1083       assert( !ExprHasProperty(p, EP_WinFunc) );
1084       sqlite3SelectDelete(db, p->x.pSelect);
1085     }else{
1086       sqlite3ExprListDelete(db, p->x.pList);
1087 #ifndef SQLITE_OMIT_WINDOWFUNC
1088       if( ExprHasProperty(p, EP_WinFunc) ){
1089         sqlite3WindowDelete(db, p->y.pWin);
1090       }
1091 #endif
1092     }
1093   }
1094   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1095   if( !ExprHasProperty(p, EP_Static) ){
1096     sqlite3DbFreeNN(db, p);
1097   }
1098 }
1099 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1100   if( p ) sqlite3ExprDeleteNN(db, p);
1101 }
1102 
1103 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1104 ** expression.
1105 */
1106 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1107   if( p ){
1108     if( IN_RENAME_OBJECT ){
1109       sqlite3RenameExprUnmap(pParse, p);
1110     }
1111     sqlite3ExprDeleteNN(pParse->db, p);
1112   }
1113 }
1114 
1115 /*
1116 ** Return the number of bytes allocated for the expression structure
1117 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1118 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1119 */
1120 static int exprStructSize(Expr *p){
1121   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1122   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1123   return EXPR_FULLSIZE;
1124 }
1125 
1126 /*
1127 ** The dupedExpr*Size() routines each return the number of bytes required
1128 ** to store a copy of an expression or expression tree.  They differ in
1129 ** how much of the tree is measured.
1130 **
1131 **     dupedExprStructSize()     Size of only the Expr structure
1132 **     dupedExprNodeSize()       Size of Expr + space for token
1133 **     dupedExprSize()           Expr + token + subtree components
1134 **
1135 ***************************************************************************
1136 **
1137 ** The dupedExprStructSize() function returns two values OR-ed together:
1138 ** (1) the space required for a copy of the Expr structure only and
1139 ** (2) the EP_xxx flags that indicate what the structure size should be.
1140 ** The return values is always one of:
1141 **
1142 **      EXPR_FULLSIZE
1143 **      EXPR_REDUCEDSIZE   | EP_Reduced
1144 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1145 **
1146 ** The size of the structure can be found by masking the return value
1147 ** of this routine with 0xfff.  The flags can be found by masking the
1148 ** return value with EP_Reduced|EP_TokenOnly.
1149 **
1150 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1151 ** (unreduced) Expr objects as they or originally constructed by the parser.
1152 ** During expression analysis, extra information is computed and moved into
1153 ** later parts of the Expr object and that extra information might get chopped
1154 ** off if the expression is reduced.  Note also that it does not work to
1155 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1156 ** to reduce a pristine expression tree from the parser.  The implementation
1157 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1158 ** to enforce this constraint.
1159 */
1160 static int dupedExprStructSize(Expr *p, int flags){
1161   int nSize;
1162   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1163   assert( EXPR_FULLSIZE<=0xfff );
1164   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1165   if( 0==flags || p->op==TK_SELECT_COLUMN
1166 #ifndef SQLITE_OMIT_WINDOWFUNC
1167    || ExprHasProperty(p, EP_WinFunc)
1168 #endif
1169   ){
1170     nSize = EXPR_FULLSIZE;
1171   }else{
1172     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1173     assert( !ExprHasProperty(p, EP_FromJoin) );
1174     assert( !ExprHasProperty(p, EP_MemToken) );
1175     assert( !ExprHasProperty(p, EP_NoReduce) );
1176     if( p->pLeft || p->x.pList ){
1177       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1178     }else{
1179       assert( p->pRight==0 );
1180       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1181     }
1182   }
1183   return nSize;
1184 }
1185 
1186 /*
1187 ** This function returns the space in bytes required to store the copy
1188 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1189 ** string is defined.)
1190 */
1191 static int dupedExprNodeSize(Expr *p, int flags){
1192   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1193   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1194     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1195   }
1196   return ROUND8(nByte);
1197 }
1198 
1199 /*
1200 ** Return the number of bytes required to create a duplicate of the
1201 ** expression passed as the first argument. The second argument is a
1202 ** mask containing EXPRDUP_XXX flags.
1203 **
1204 ** The value returned includes space to create a copy of the Expr struct
1205 ** itself and the buffer referred to by Expr.u.zToken, if any.
1206 **
1207 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1208 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1209 ** and Expr.pRight variables (but not for any structures pointed to or
1210 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1211 */
1212 static int dupedExprSize(Expr *p, int flags){
1213   int nByte = 0;
1214   if( p ){
1215     nByte = dupedExprNodeSize(p, flags);
1216     if( flags&EXPRDUP_REDUCE ){
1217       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1218     }
1219   }
1220   return nByte;
1221 }
1222 
1223 /*
1224 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1225 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1226 ** to store the copy of expression p, the copies of p->u.zToken
1227 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1228 ** if any. Before returning, *pzBuffer is set to the first byte past the
1229 ** portion of the buffer copied into by this function.
1230 */
1231 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1232   Expr *pNew;           /* Value to return */
1233   u8 *zAlloc;           /* Memory space from which to build Expr object */
1234   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1235 
1236   assert( db!=0 );
1237   assert( p );
1238   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1239   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1240 
1241   /* Figure out where to write the new Expr structure. */
1242   if( pzBuffer ){
1243     zAlloc = *pzBuffer;
1244     staticFlag = EP_Static;
1245   }else{
1246     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1247     staticFlag = 0;
1248   }
1249   pNew = (Expr *)zAlloc;
1250 
1251   if( pNew ){
1252     /* Set nNewSize to the size allocated for the structure pointed to
1253     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1254     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1255     ** by the copy of the p->u.zToken string (if any).
1256     */
1257     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1258     const int nNewSize = nStructSize & 0xfff;
1259     int nToken;
1260     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1261       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1262     }else{
1263       nToken = 0;
1264     }
1265     if( dupFlags ){
1266       assert( ExprHasProperty(p, EP_Reduced)==0 );
1267       memcpy(zAlloc, p, nNewSize);
1268     }else{
1269       u32 nSize = (u32)exprStructSize(p);
1270       memcpy(zAlloc, p, nSize);
1271       if( nSize<EXPR_FULLSIZE ){
1272         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1273       }
1274     }
1275 
1276     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1277     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1278     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1279     pNew->flags |= staticFlag;
1280 
1281     /* Copy the p->u.zToken string, if any. */
1282     if( nToken ){
1283       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1284       memcpy(zToken, p->u.zToken, nToken);
1285     }
1286 
1287     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1288       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1289       if( ExprHasProperty(p, EP_xIsSelect) ){
1290         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1291       }else{
1292         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1293       }
1294     }
1295 
1296     /* Fill in pNew->pLeft and pNew->pRight. */
1297     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1298       zAlloc += dupedExprNodeSize(p, dupFlags);
1299       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1300         pNew->pLeft = p->pLeft ?
1301                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1302         pNew->pRight = p->pRight ?
1303                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1304       }
1305 #ifndef SQLITE_OMIT_WINDOWFUNC
1306       if( ExprHasProperty(p, EP_WinFunc) ){
1307         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1308         assert( ExprHasProperty(pNew, EP_WinFunc) );
1309       }
1310 #endif /* SQLITE_OMIT_WINDOWFUNC */
1311       if( pzBuffer ){
1312         *pzBuffer = zAlloc;
1313       }
1314     }else{
1315       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1316         if( pNew->op==TK_SELECT_COLUMN ){
1317           pNew->pLeft = p->pLeft;
1318           assert( p->iColumn==0 || p->pRight==0 );
1319           assert( p->pRight==0  || p->pRight==p->pLeft );
1320         }else{
1321           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1322         }
1323         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1324       }
1325     }
1326   }
1327   return pNew;
1328 }
1329 
1330 /*
1331 ** Create and return a deep copy of the object passed as the second
1332 ** argument. If an OOM condition is encountered, NULL is returned
1333 ** and the db->mallocFailed flag set.
1334 */
1335 #ifndef SQLITE_OMIT_CTE
1336 static With *withDup(sqlite3 *db, With *p){
1337   With *pRet = 0;
1338   if( p ){
1339     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1340     pRet = sqlite3DbMallocZero(db, nByte);
1341     if( pRet ){
1342       int i;
1343       pRet->nCte = p->nCte;
1344       for(i=0; i<p->nCte; i++){
1345         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1346         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1347         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1348       }
1349     }
1350   }
1351   return pRet;
1352 }
1353 #else
1354 # define withDup(x,y) 0
1355 #endif
1356 
1357 #ifndef SQLITE_OMIT_WINDOWFUNC
1358 /*
1359 ** The gatherSelectWindows() procedure and its helper routine
1360 ** gatherSelectWindowsCallback() are used to scan all the expressions
1361 ** an a newly duplicated SELECT statement and gather all of the Window
1362 ** objects found there, assembling them onto the linked list at Select->pWin.
1363 */
1364 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1365   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1366     Select *pSelect = pWalker->u.pSelect;
1367     Window *pWin = pExpr->y.pWin;
1368     assert( pWin );
1369     assert( IsWindowFunc(pExpr) );
1370     assert( pWin->ppThis==0 );
1371     sqlite3WindowLink(pSelect, pWin);
1372   }
1373   return WRC_Continue;
1374 }
1375 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1376   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1377 }
1378 static void gatherSelectWindows(Select *p){
1379   Walker w;
1380   w.xExprCallback = gatherSelectWindowsCallback;
1381   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1382   w.xSelectCallback2 = 0;
1383   w.pParse = 0;
1384   w.u.pSelect = p;
1385   sqlite3WalkSelect(&w, p);
1386 }
1387 #endif
1388 
1389 
1390 /*
1391 ** The following group of routines make deep copies of expressions,
1392 ** expression lists, ID lists, and select statements.  The copies can
1393 ** be deleted (by being passed to their respective ...Delete() routines)
1394 ** without effecting the originals.
1395 **
1396 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1397 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1398 ** by subsequent calls to sqlite*ListAppend() routines.
1399 **
1400 ** Any tables that the SrcList might point to are not duplicated.
1401 **
1402 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1403 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1404 ** truncated version of the usual Expr structure that will be stored as
1405 ** part of the in-memory representation of the database schema.
1406 */
1407 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1408   assert( flags==0 || flags==EXPRDUP_REDUCE );
1409   return p ? exprDup(db, p, flags, 0) : 0;
1410 }
1411 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1412   ExprList *pNew;
1413   struct ExprList_item *pItem, *pOldItem;
1414   int i;
1415   Expr *pPriorSelectCol = 0;
1416   assert( db!=0 );
1417   if( p==0 ) return 0;
1418   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1419   if( pNew==0 ) return 0;
1420   pNew->nExpr = p->nExpr;
1421   pItem = pNew->a;
1422   pOldItem = p->a;
1423   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1424     Expr *pOldExpr = pOldItem->pExpr;
1425     Expr *pNewExpr;
1426     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1427     if( pOldExpr
1428      && pOldExpr->op==TK_SELECT_COLUMN
1429      && (pNewExpr = pItem->pExpr)!=0
1430     ){
1431       assert( pNewExpr->iColumn==0 || i>0 );
1432       if( pNewExpr->iColumn==0 ){
1433         assert( pOldExpr->pLeft==pOldExpr->pRight );
1434         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1435       }else{
1436         assert( i>0 );
1437         assert( pItem[-1].pExpr!=0 );
1438         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1439         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1440         pNewExpr->pLeft = pPriorSelectCol;
1441       }
1442     }
1443     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1444     pItem->sortFlags = pOldItem->sortFlags;
1445     pItem->eEName = pOldItem->eEName;
1446     pItem->done = 0;
1447     pItem->bNulls = pOldItem->bNulls;
1448     pItem->bSorterRef = pOldItem->bSorterRef;
1449     pItem->u = pOldItem->u;
1450   }
1451   return pNew;
1452 }
1453 
1454 /*
1455 ** If cursors, triggers, views and subqueries are all omitted from
1456 ** the build, then none of the following routines, except for
1457 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1458 ** called with a NULL argument.
1459 */
1460 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1461  || !defined(SQLITE_OMIT_SUBQUERY)
1462 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1463   SrcList *pNew;
1464   int i;
1465   int nByte;
1466   assert( db!=0 );
1467   if( p==0 ) return 0;
1468   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1469   pNew = sqlite3DbMallocRawNN(db, nByte );
1470   if( pNew==0 ) return 0;
1471   pNew->nSrc = pNew->nAlloc = p->nSrc;
1472   for(i=0; i<p->nSrc; i++){
1473     struct SrcList_item *pNewItem = &pNew->a[i];
1474     struct SrcList_item *pOldItem = &p->a[i];
1475     Table *pTab;
1476     pNewItem->pSchema = pOldItem->pSchema;
1477     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1478     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1479     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1480     pNewItem->fg = pOldItem->fg;
1481     pNewItem->iCursor = pOldItem->iCursor;
1482     pNewItem->addrFillSub = pOldItem->addrFillSub;
1483     pNewItem->regReturn = pOldItem->regReturn;
1484     if( pNewItem->fg.isIndexedBy ){
1485       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1486     }
1487     pNewItem->pIBIndex = pOldItem->pIBIndex;
1488     if( pNewItem->fg.isTabFunc ){
1489       pNewItem->u1.pFuncArg =
1490           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1491     }
1492     pTab = pNewItem->pTab = pOldItem->pTab;
1493     if( pTab ){
1494       pTab->nTabRef++;
1495     }
1496     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1497     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1498     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1499     pNewItem->colUsed = pOldItem->colUsed;
1500   }
1501   return pNew;
1502 }
1503 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1504   IdList *pNew;
1505   int i;
1506   assert( db!=0 );
1507   if( p==0 ) return 0;
1508   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1509   if( pNew==0 ) return 0;
1510   pNew->nId = p->nId;
1511   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1512   if( pNew->a==0 ){
1513     sqlite3DbFreeNN(db, pNew);
1514     return 0;
1515   }
1516   /* Note that because the size of the allocation for p->a[] is not
1517   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1518   ** on the duplicate created by this function. */
1519   for(i=0; i<p->nId; i++){
1520     struct IdList_item *pNewItem = &pNew->a[i];
1521     struct IdList_item *pOldItem = &p->a[i];
1522     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1523     pNewItem->idx = pOldItem->idx;
1524   }
1525   return pNew;
1526 }
1527 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1528   Select *pRet = 0;
1529   Select *pNext = 0;
1530   Select **pp = &pRet;
1531   Select *p;
1532 
1533   assert( db!=0 );
1534   for(p=pDup; p; p=p->pPrior){
1535     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1536     if( pNew==0 ) break;
1537     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1538     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1539     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1540     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1541     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1542     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1543     pNew->op = p->op;
1544     pNew->pNext = pNext;
1545     pNew->pPrior = 0;
1546     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1547     pNew->iLimit = 0;
1548     pNew->iOffset = 0;
1549     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1550     pNew->addrOpenEphm[0] = -1;
1551     pNew->addrOpenEphm[1] = -1;
1552     pNew->nSelectRow = p->nSelectRow;
1553     pNew->pWith = withDup(db, p->pWith);
1554 #ifndef SQLITE_OMIT_WINDOWFUNC
1555     pNew->pWin = 0;
1556     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1557     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1558 #endif
1559     pNew->selId = p->selId;
1560     *pp = pNew;
1561     pp = &pNew->pPrior;
1562     pNext = pNew;
1563   }
1564 
1565   return pRet;
1566 }
1567 #else
1568 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1569   assert( p==0 );
1570   return 0;
1571 }
1572 #endif
1573 
1574 
1575 /*
1576 ** Add a new element to the end of an expression list.  If pList is
1577 ** initially NULL, then create a new expression list.
1578 **
1579 ** The pList argument must be either NULL or a pointer to an ExprList
1580 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1581 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1582 ** Reason:  This routine assumes that the number of slots in pList->a[]
1583 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1584 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1585 **
1586 ** If a memory allocation error occurs, the entire list is freed and
1587 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1588 ** that the new entry was successfully appended.
1589 */
1590 ExprList *sqlite3ExprListAppend(
1591   Parse *pParse,          /* Parsing context */
1592   ExprList *pList,        /* List to which to append. Might be NULL */
1593   Expr *pExpr             /* Expression to be appended. Might be NULL */
1594 ){
1595   struct ExprList_item *pItem;
1596   sqlite3 *db = pParse->db;
1597   assert( db!=0 );
1598   if( pList==0 ){
1599     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1600     if( pList==0 ){
1601       goto no_mem;
1602     }
1603     pList->nExpr = 0;
1604   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1605     ExprList *pNew;
1606     pNew = sqlite3DbRealloc(db, pList,
1607          sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0]));
1608     if( pNew==0 ){
1609       goto no_mem;
1610     }
1611     pList = pNew;
1612   }
1613   pItem = &pList->a[pList->nExpr++];
1614   assert( offsetof(struct ExprList_item,zEName)==sizeof(pItem->pExpr) );
1615   assert( offsetof(struct ExprList_item,pExpr)==0 );
1616   memset(&pItem->zEName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zEName));
1617   pItem->pExpr = pExpr;
1618   return pList;
1619 
1620 no_mem:
1621   /* Avoid leaking memory if malloc has failed. */
1622   sqlite3ExprDelete(db, pExpr);
1623   sqlite3ExprListDelete(db, pList);
1624   return 0;
1625 }
1626 
1627 /*
1628 ** pColumns and pExpr form a vector assignment which is part of the SET
1629 ** clause of an UPDATE statement.  Like this:
1630 **
1631 **        (a,b,c) = (expr1,expr2,expr3)
1632 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1633 **
1634 ** For each term of the vector assignment, append new entries to the
1635 ** expression list pList.  In the case of a subquery on the RHS, append
1636 ** TK_SELECT_COLUMN expressions.
1637 */
1638 ExprList *sqlite3ExprListAppendVector(
1639   Parse *pParse,         /* Parsing context */
1640   ExprList *pList,       /* List to which to append. Might be NULL */
1641   IdList *pColumns,      /* List of names of LHS of the assignment */
1642   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1643 ){
1644   sqlite3 *db = pParse->db;
1645   int n;
1646   int i;
1647   int iFirst = pList ? pList->nExpr : 0;
1648   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1649   ** exit prior to this routine being invoked */
1650   if( NEVER(pColumns==0) ) goto vector_append_error;
1651   if( pExpr==0 ) goto vector_append_error;
1652 
1653   /* If the RHS is a vector, then we can immediately check to see that
1654   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1655   ** wildcards ("*") in the result set of the SELECT must be expanded before
1656   ** we can do the size check, so defer the size check until code generation.
1657   */
1658   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1659     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1660                     pColumns->nId, n);
1661     goto vector_append_error;
1662   }
1663 
1664   for(i=0; i<pColumns->nId; i++){
1665     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1666     assert( pSubExpr!=0 || db->mallocFailed );
1667     assert( pSubExpr==0 || pSubExpr->iTable==0 );
1668     if( pSubExpr==0 ) continue;
1669     pSubExpr->iTable = pColumns->nId;
1670     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1671     if( pList ){
1672       assert( pList->nExpr==iFirst+i+1 );
1673       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1674       pColumns->a[i].zName = 0;
1675     }
1676   }
1677 
1678   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1679     Expr *pFirst = pList->a[iFirst].pExpr;
1680     assert( pFirst!=0 );
1681     assert( pFirst->op==TK_SELECT_COLUMN );
1682 
1683     /* Store the SELECT statement in pRight so it will be deleted when
1684     ** sqlite3ExprListDelete() is called */
1685     pFirst->pRight = pExpr;
1686     pExpr = 0;
1687 
1688     /* Remember the size of the LHS in iTable so that we can check that
1689     ** the RHS and LHS sizes match during code generation. */
1690     pFirst->iTable = pColumns->nId;
1691   }
1692 
1693 vector_append_error:
1694   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1695   sqlite3IdListDelete(db, pColumns);
1696   return pList;
1697 }
1698 
1699 /*
1700 ** Set the sort order for the last element on the given ExprList.
1701 */
1702 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1703   struct ExprList_item *pItem;
1704   if( p==0 ) return;
1705   assert( p->nExpr>0 );
1706 
1707   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1708   assert( iSortOrder==SQLITE_SO_UNDEFINED
1709        || iSortOrder==SQLITE_SO_ASC
1710        || iSortOrder==SQLITE_SO_DESC
1711   );
1712   assert( eNulls==SQLITE_SO_UNDEFINED
1713        || eNulls==SQLITE_SO_ASC
1714        || eNulls==SQLITE_SO_DESC
1715   );
1716 
1717   pItem = &p->a[p->nExpr-1];
1718   assert( pItem->bNulls==0 );
1719   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1720     iSortOrder = SQLITE_SO_ASC;
1721   }
1722   pItem->sortFlags = (u8)iSortOrder;
1723 
1724   if( eNulls!=SQLITE_SO_UNDEFINED ){
1725     pItem->bNulls = 1;
1726     if( iSortOrder!=eNulls ){
1727       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1728     }
1729   }
1730 }
1731 
1732 /*
1733 ** Set the ExprList.a[].zEName element of the most recently added item
1734 ** on the expression list.
1735 **
1736 ** pList might be NULL following an OOM error.  But pName should never be
1737 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1738 ** is set.
1739 */
1740 void sqlite3ExprListSetName(
1741   Parse *pParse,          /* Parsing context */
1742   ExprList *pList,        /* List to which to add the span. */
1743   Token *pName,           /* Name to be added */
1744   int dequote             /* True to cause the name to be dequoted */
1745 ){
1746   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1747   if( pList ){
1748     struct ExprList_item *pItem;
1749     assert( pList->nExpr>0 );
1750     pItem = &pList->a[pList->nExpr-1];
1751     assert( pItem->zEName==0 );
1752     assert( pItem->eEName==ENAME_NAME );
1753     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1754     if( dequote ) sqlite3Dequote(pItem->zEName);
1755     if( IN_RENAME_OBJECT ){
1756       sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName);
1757     }
1758   }
1759 }
1760 
1761 /*
1762 ** Set the ExprList.a[].zSpan element of the most recently added item
1763 ** on the expression list.
1764 **
1765 ** pList might be NULL following an OOM error.  But pSpan should never be
1766 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1767 ** is set.
1768 */
1769 void sqlite3ExprListSetSpan(
1770   Parse *pParse,          /* Parsing context */
1771   ExprList *pList,        /* List to which to add the span. */
1772   const char *zStart,     /* Start of the span */
1773   const char *zEnd        /* End of the span */
1774 ){
1775   sqlite3 *db = pParse->db;
1776   assert( pList!=0 || db->mallocFailed!=0 );
1777   if( pList ){
1778     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1779     assert( pList->nExpr>0 );
1780     if( pItem->zEName==0 ){
1781       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
1782       pItem->eEName = ENAME_SPAN;
1783     }
1784   }
1785 }
1786 
1787 /*
1788 ** If the expression list pEList contains more than iLimit elements,
1789 ** leave an error message in pParse.
1790 */
1791 void sqlite3ExprListCheckLength(
1792   Parse *pParse,
1793   ExprList *pEList,
1794   const char *zObject
1795 ){
1796   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1797   testcase( pEList && pEList->nExpr==mx );
1798   testcase( pEList && pEList->nExpr==mx+1 );
1799   if( pEList && pEList->nExpr>mx ){
1800     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1801   }
1802 }
1803 
1804 /*
1805 ** Delete an entire expression list.
1806 */
1807 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1808   int i = pList->nExpr;
1809   struct ExprList_item *pItem =  pList->a;
1810   assert( pList->nExpr>0 );
1811   do{
1812     sqlite3ExprDelete(db, pItem->pExpr);
1813     sqlite3DbFree(db, pItem->zEName);
1814     pItem++;
1815   }while( --i>0 );
1816   sqlite3DbFreeNN(db, pList);
1817 }
1818 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1819   if( pList ) exprListDeleteNN(db, pList);
1820 }
1821 
1822 /*
1823 ** Return the bitwise-OR of all Expr.flags fields in the given
1824 ** ExprList.
1825 */
1826 u32 sqlite3ExprListFlags(const ExprList *pList){
1827   int i;
1828   u32 m = 0;
1829   assert( pList!=0 );
1830   for(i=0; i<pList->nExpr; i++){
1831      Expr *pExpr = pList->a[i].pExpr;
1832      assert( pExpr!=0 );
1833      m |= pExpr->flags;
1834   }
1835   return m;
1836 }
1837 
1838 /*
1839 ** This is a SELECT-node callback for the expression walker that
1840 ** always "fails".  By "fail" in this case, we mean set
1841 ** pWalker->eCode to zero and abort.
1842 **
1843 ** This callback is used by multiple expression walkers.
1844 */
1845 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1846   UNUSED_PARAMETER(NotUsed);
1847   pWalker->eCode = 0;
1848   return WRC_Abort;
1849 }
1850 
1851 /*
1852 ** Check the input string to see if it is "true" or "false" (in any case).
1853 **
1854 **       If the string is....           Return
1855 **         "true"                         EP_IsTrue
1856 **         "false"                        EP_IsFalse
1857 **         anything else                  0
1858 */
1859 u32 sqlite3IsTrueOrFalse(const char *zIn){
1860   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
1861   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
1862   return 0;
1863 }
1864 
1865 
1866 /*
1867 ** If the input expression is an ID with the name "true" or "false"
1868 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1869 ** the conversion happened, and zero if the expression is unaltered.
1870 */
1871 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1872   u32 v;
1873   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1874   if( !ExprHasProperty(pExpr, EP_Quoted)
1875    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
1876   ){
1877     pExpr->op = TK_TRUEFALSE;
1878     ExprSetProperty(pExpr, v);
1879     return 1;
1880   }
1881   return 0;
1882 }
1883 
1884 /*
1885 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
1886 ** and 0 if it is FALSE.
1887 */
1888 int sqlite3ExprTruthValue(const Expr *pExpr){
1889   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
1890   assert( pExpr->op==TK_TRUEFALSE );
1891   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1892        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1893   return pExpr->u.zToken[4]==0;
1894 }
1895 
1896 /*
1897 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
1898 ** terms that are always true or false.  Return the simplified expression.
1899 ** Or return the original expression if no simplification is possible.
1900 **
1901 ** Examples:
1902 **
1903 **     (x<10) AND true                =>   (x<10)
1904 **     (x<10) AND false               =>   false
1905 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
1906 **     (x<10) AND (y=22 OR true)      =>   (x<10)
1907 **     (y=22) OR true                 =>   true
1908 */
1909 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
1910   assert( pExpr!=0 );
1911   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
1912     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
1913     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
1914     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
1915       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
1916     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
1917       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
1918     }
1919   }
1920   return pExpr;
1921 }
1922 
1923 
1924 /*
1925 ** These routines are Walker callbacks used to check expressions to
1926 ** see if they are "constant" for some definition of constant.  The
1927 ** Walker.eCode value determines the type of "constant" we are looking
1928 ** for.
1929 **
1930 ** These callback routines are used to implement the following:
1931 **
1932 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1933 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1934 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1935 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1936 **
1937 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1938 ** is found to not be a constant.
1939 **
1940 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1941 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1942 ** an existing schema and 4 when processing a new statement.  A bound
1943 ** parameter raises an error for new statements, but is silently converted
1944 ** to NULL for existing schemas.  This allows sqlite_master tables that
1945 ** contain a bound parameter because they were generated by older versions
1946 ** of SQLite to be parsed by newer versions of SQLite without raising a
1947 ** malformed schema error.
1948 */
1949 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1950 
1951   /* If pWalker->eCode is 2 then any term of the expression that comes from
1952   ** the ON or USING clauses of a left join disqualifies the expression
1953   ** from being considered constant. */
1954   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1955     pWalker->eCode = 0;
1956     return WRC_Abort;
1957   }
1958 
1959   switch( pExpr->op ){
1960     /* Consider functions to be constant if all their arguments are constant
1961     ** and either pWalker->eCode==4 or 5 or the function has the
1962     ** SQLITE_FUNC_CONST flag. */
1963     case TK_FUNCTION:
1964       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
1965        && !ExprHasProperty(pExpr, EP_WinFunc)
1966       ){
1967         return WRC_Continue;
1968       }else{
1969         pWalker->eCode = 0;
1970         return WRC_Abort;
1971       }
1972     case TK_ID:
1973       /* Convert "true" or "false" in a DEFAULT clause into the
1974       ** appropriate TK_TRUEFALSE operator */
1975       if( sqlite3ExprIdToTrueFalse(pExpr) ){
1976         return WRC_Prune;
1977       }
1978       /* Fall thru */
1979     case TK_COLUMN:
1980     case TK_AGG_FUNCTION:
1981     case TK_AGG_COLUMN:
1982       testcase( pExpr->op==TK_ID );
1983       testcase( pExpr->op==TK_COLUMN );
1984       testcase( pExpr->op==TK_AGG_FUNCTION );
1985       testcase( pExpr->op==TK_AGG_COLUMN );
1986       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
1987         return WRC_Continue;
1988       }
1989       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1990         return WRC_Continue;
1991       }
1992       /* Fall through */
1993     case TK_IF_NULL_ROW:
1994     case TK_REGISTER:
1995       testcase( pExpr->op==TK_REGISTER );
1996       testcase( pExpr->op==TK_IF_NULL_ROW );
1997       pWalker->eCode = 0;
1998       return WRC_Abort;
1999     case TK_VARIABLE:
2000       if( pWalker->eCode==5 ){
2001         /* Silently convert bound parameters that appear inside of CREATE
2002         ** statements into a NULL when parsing the CREATE statement text out
2003         ** of the sqlite_master table */
2004         pExpr->op = TK_NULL;
2005       }else if( pWalker->eCode==4 ){
2006         /* A bound parameter in a CREATE statement that originates from
2007         ** sqlite3_prepare() causes an error */
2008         pWalker->eCode = 0;
2009         return WRC_Abort;
2010       }
2011       /* Fall through */
2012     default:
2013       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2014       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2015       return WRC_Continue;
2016   }
2017 }
2018 static int exprIsConst(Expr *p, int initFlag, int iCur){
2019   Walker w;
2020   w.eCode = initFlag;
2021   w.xExprCallback = exprNodeIsConstant;
2022   w.xSelectCallback = sqlite3SelectWalkFail;
2023 #ifdef SQLITE_DEBUG
2024   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2025 #endif
2026   w.u.iCur = iCur;
2027   sqlite3WalkExpr(&w, p);
2028   return w.eCode;
2029 }
2030 
2031 /*
2032 ** Walk an expression tree.  Return non-zero if the expression is constant
2033 ** and 0 if it involves variables or function calls.
2034 **
2035 ** For the purposes of this function, a double-quoted string (ex: "abc")
2036 ** is considered a variable but a single-quoted string (ex: 'abc') is
2037 ** a constant.
2038 */
2039 int sqlite3ExprIsConstant(Expr *p){
2040   return exprIsConst(p, 1, 0);
2041 }
2042 
2043 /*
2044 ** Walk an expression tree.  Return non-zero if
2045 **
2046 **   (1) the expression is constant, and
2047 **   (2) the expression does originate in the ON or USING clause
2048 **       of a LEFT JOIN, and
2049 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2050 **       operands created by the constant propagation optimization.
2051 **
2052 ** When this routine returns true, it indicates that the expression
2053 ** can be added to the pParse->pConstExpr list and evaluated once when
2054 ** the prepared statement starts up.  See sqlite3ExprCodeAtInit().
2055 */
2056 int sqlite3ExprIsConstantNotJoin(Expr *p){
2057   return exprIsConst(p, 2, 0);
2058 }
2059 
2060 /*
2061 ** Walk an expression tree.  Return non-zero if the expression is constant
2062 ** for any single row of the table with cursor iCur.  In other words, the
2063 ** expression must not refer to any non-deterministic function nor any
2064 ** table other than iCur.
2065 */
2066 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2067   return exprIsConst(p, 3, iCur);
2068 }
2069 
2070 
2071 /*
2072 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2073 */
2074 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2075   ExprList *pGroupBy = pWalker->u.pGroupBy;
2076   int i;
2077 
2078   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2079   ** it constant.  */
2080   for(i=0; i<pGroupBy->nExpr; i++){
2081     Expr *p = pGroupBy->a[i].pExpr;
2082     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2083       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2084       if( sqlite3IsBinary(pColl) ){
2085         return WRC_Prune;
2086       }
2087     }
2088   }
2089 
2090   /* Check if pExpr is a sub-select. If so, consider it variable. */
2091   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2092     pWalker->eCode = 0;
2093     return WRC_Abort;
2094   }
2095 
2096   return exprNodeIsConstant(pWalker, pExpr);
2097 }
2098 
2099 /*
2100 ** Walk the expression tree passed as the first argument. Return non-zero
2101 ** if the expression consists entirely of constants or copies of terms
2102 ** in pGroupBy that sort with the BINARY collation sequence.
2103 **
2104 ** This routine is used to determine if a term of the HAVING clause can
2105 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2106 ** the value of the HAVING clause term must be the same for all members of
2107 ** a "group".  The requirement that the GROUP BY term must be BINARY
2108 ** assumes that no other collating sequence will have a finer-grained
2109 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2110 ** A=B in every other collating sequence.  The requirement that the
2111 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2112 ** to promote HAVING clauses that use the same alternative collating
2113 ** sequence as the GROUP BY term, but that is much harder to check,
2114 ** alternative collating sequences are uncommon, and this is only an
2115 ** optimization, so we take the easy way out and simply require the
2116 ** GROUP BY to use the BINARY collating sequence.
2117 */
2118 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2119   Walker w;
2120   w.eCode = 1;
2121   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2122   w.xSelectCallback = 0;
2123   w.u.pGroupBy = pGroupBy;
2124   w.pParse = pParse;
2125   sqlite3WalkExpr(&w, p);
2126   return w.eCode;
2127 }
2128 
2129 /*
2130 ** Walk an expression tree.  Return non-zero if the expression is constant
2131 ** or a function call with constant arguments.  Return and 0 if there
2132 ** are any variables.
2133 **
2134 ** For the purposes of this function, a double-quoted string (ex: "abc")
2135 ** is considered a variable but a single-quoted string (ex: 'abc') is
2136 ** a constant.
2137 */
2138 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2139   assert( isInit==0 || isInit==1 );
2140   return exprIsConst(p, 4+isInit, 0);
2141 }
2142 
2143 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2144 /*
2145 ** Walk an expression tree.  Return 1 if the expression contains a
2146 ** subquery of some kind.  Return 0 if there are no subqueries.
2147 */
2148 int sqlite3ExprContainsSubquery(Expr *p){
2149   Walker w;
2150   w.eCode = 1;
2151   w.xExprCallback = sqlite3ExprWalkNoop;
2152   w.xSelectCallback = sqlite3SelectWalkFail;
2153 #ifdef SQLITE_DEBUG
2154   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2155 #endif
2156   sqlite3WalkExpr(&w, p);
2157   return w.eCode==0;
2158 }
2159 #endif
2160 
2161 /*
2162 ** If the expression p codes a constant integer that is small enough
2163 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2164 ** in *pValue.  If the expression is not an integer or if it is too big
2165 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2166 */
2167 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2168   int rc = 0;
2169   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2170 
2171   /* If an expression is an integer literal that fits in a signed 32-bit
2172   ** integer, then the EP_IntValue flag will have already been set */
2173   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2174            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2175 
2176   if( p->flags & EP_IntValue ){
2177     *pValue = p->u.iValue;
2178     return 1;
2179   }
2180   switch( p->op ){
2181     case TK_UPLUS: {
2182       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2183       break;
2184     }
2185     case TK_UMINUS: {
2186       int v;
2187       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2188         assert( v!=(-2147483647-1) );
2189         *pValue = -v;
2190         rc = 1;
2191       }
2192       break;
2193     }
2194     default: break;
2195   }
2196   return rc;
2197 }
2198 
2199 /*
2200 ** Return FALSE if there is no chance that the expression can be NULL.
2201 **
2202 ** If the expression might be NULL or if the expression is too complex
2203 ** to tell return TRUE.
2204 **
2205 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2206 ** when we know that a value cannot be NULL.  Hence, a false positive
2207 ** (returning TRUE when in fact the expression can never be NULL) might
2208 ** be a small performance hit but is otherwise harmless.  On the other
2209 ** hand, a false negative (returning FALSE when the result could be NULL)
2210 ** will likely result in an incorrect answer.  So when in doubt, return
2211 ** TRUE.
2212 */
2213 int sqlite3ExprCanBeNull(const Expr *p){
2214   u8 op;
2215   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2216     p = p->pLeft;
2217   }
2218   op = p->op;
2219   if( op==TK_REGISTER ) op = p->op2;
2220   switch( op ){
2221     case TK_INTEGER:
2222     case TK_STRING:
2223     case TK_FLOAT:
2224     case TK_BLOB:
2225       return 0;
2226     case TK_COLUMN:
2227       return ExprHasProperty(p, EP_CanBeNull) ||
2228              p->y.pTab==0 ||  /* Reference to column of index on expression */
2229              (p->iColumn>=0
2230               && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */
2231               && p->y.pTab->aCol[p->iColumn].notNull==0);
2232     default:
2233       return 1;
2234   }
2235 }
2236 
2237 /*
2238 ** Return TRUE if the given expression is a constant which would be
2239 ** unchanged by OP_Affinity with the affinity given in the second
2240 ** argument.
2241 **
2242 ** This routine is used to determine if the OP_Affinity operation
2243 ** can be omitted.  When in doubt return FALSE.  A false negative
2244 ** is harmless.  A false positive, however, can result in the wrong
2245 ** answer.
2246 */
2247 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2248   u8 op;
2249   int unaryMinus = 0;
2250   if( aff==SQLITE_AFF_BLOB ) return 1;
2251   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2252     if( p->op==TK_UMINUS ) unaryMinus = 1;
2253     p = p->pLeft;
2254   }
2255   op = p->op;
2256   if( op==TK_REGISTER ) op = p->op2;
2257   switch( op ){
2258     case TK_INTEGER: {
2259       return aff>=SQLITE_AFF_NUMERIC;
2260     }
2261     case TK_FLOAT: {
2262       return aff>=SQLITE_AFF_NUMERIC;
2263     }
2264     case TK_STRING: {
2265       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2266     }
2267     case TK_BLOB: {
2268       return !unaryMinus;
2269     }
2270     case TK_COLUMN: {
2271       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2272       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2273     }
2274     default: {
2275       return 0;
2276     }
2277   }
2278 }
2279 
2280 /*
2281 ** Return TRUE if the given string is a row-id column name.
2282 */
2283 int sqlite3IsRowid(const char *z){
2284   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2285   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2286   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2287   return 0;
2288 }
2289 
2290 /*
2291 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2292 ** that can be simplified to a direct table access, then return
2293 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2294 ** or if the SELECT statement needs to be manifested into a transient
2295 ** table, then return NULL.
2296 */
2297 #ifndef SQLITE_OMIT_SUBQUERY
2298 static Select *isCandidateForInOpt(Expr *pX){
2299   Select *p;
2300   SrcList *pSrc;
2301   ExprList *pEList;
2302   Table *pTab;
2303   int i;
2304   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2305   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2306   p = pX->x.pSelect;
2307   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2308   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2309     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2310     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2311     return 0; /* No DISTINCT keyword and no aggregate functions */
2312   }
2313   if( p->pGroupBy ) return 0;            /* Has no GROUP BY clause */
2314   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2315   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2316   pSrc = p->pSrc;
2317   assert( pSrc!=0 );
2318   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2319   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2320   pTab = pSrc->a[0].pTab;
2321   assert( pTab!=0 );
2322   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2323   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2324   pEList = p->pEList;
2325   assert( pEList!=0 );
2326   /* All SELECT results must be columns. */
2327   for(i=0; i<pEList->nExpr; i++){
2328     Expr *pRes = pEList->a[i].pExpr;
2329     if( pRes->op!=TK_COLUMN ) return 0;
2330     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2331   }
2332   return p;
2333 }
2334 #endif /* SQLITE_OMIT_SUBQUERY */
2335 
2336 #ifndef SQLITE_OMIT_SUBQUERY
2337 /*
2338 ** Generate code that checks the left-most column of index table iCur to see if
2339 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2340 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2341 ** to be set to NULL if iCur contains one or more NULL values.
2342 */
2343 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2344   int addr1;
2345   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2346   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2347   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2348   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2349   VdbeComment((v, "first_entry_in(%d)", iCur));
2350   sqlite3VdbeJumpHere(v, addr1);
2351 }
2352 #endif
2353 
2354 
2355 #ifndef SQLITE_OMIT_SUBQUERY
2356 /*
2357 ** The argument is an IN operator with a list (not a subquery) on the
2358 ** right-hand side.  Return TRUE if that list is constant.
2359 */
2360 static int sqlite3InRhsIsConstant(Expr *pIn){
2361   Expr *pLHS;
2362   int res;
2363   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2364   pLHS = pIn->pLeft;
2365   pIn->pLeft = 0;
2366   res = sqlite3ExprIsConstant(pIn);
2367   pIn->pLeft = pLHS;
2368   return res;
2369 }
2370 #endif
2371 
2372 /*
2373 ** This function is used by the implementation of the IN (...) operator.
2374 ** The pX parameter is the expression on the RHS of the IN operator, which
2375 ** might be either a list of expressions or a subquery.
2376 **
2377 ** The job of this routine is to find or create a b-tree object that can
2378 ** be used either to test for membership in the RHS set or to iterate through
2379 ** all members of the RHS set, skipping duplicates.
2380 **
2381 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2382 ** and pX->iTable is set to the index of that cursor.
2383 **
2384 ** The returned value of this function indicates the b-tree type, as follows:
2385 **
2386 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2387 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2388 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2389 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2390 **                         populated epheremal table.
2391 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2392 **                         implemented as a sequence of comparisons.
2393 **
2394 ** An existing b-tree might be used if the RHS expression pX is a simple
2395 ** subquery such as:
2396 **
2397 **     SELECT <column1>, <column2>... FROM <table>
2398 **
2399 ** If the RHS of the IN operator is a list or a more complex subquery, then
2400 ** an ephemeral table might need to be generated from the RHS and then
2401 ** pX->iTable made to point to the ephemeral table instead of an
2402 ** existing table.
2403 **
2404 ** The inFlags parameter must contain, at a minimum, one of the bits
2405 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2406 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2407 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2408 ** be used to loop over all values of the RHS of the IN operator.
2409 **
2410 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2411 ** through the set members) then the b-tree must not contain duplicates.
2412 ** An epheremal table will be created unless the selected columns are guaranteed
2413 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2414 ** a UNIQUE constraint or index.
2415 **
2416 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2417 ** for fast set membership tests) then an epheremal table must
2418 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2419 ** index can be found with the specified <columns> as its left-most.
2420 **
2421 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2422 ** if the RHS of the IN operator is a list (not a subquery) then this
2423 ** routine might decide that creating an ephemeral b-tree for membership
2424 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2425 ** calling routine should implement the IN operator using a sequence
2426 ** of Eq or Ne comparison operations.
2427 **
2428 ** When the b-tree is being used for membership tests, the calling function
2429 ** might need to know whether or not the RHS side of the IN operator
2430 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2431 ** if there is any chance that the (...) might contain a NULL value at
2432 ** runtime, then a register is allocated and the register number written
2433 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2434 ** NULL value, then *prRhsHasNull is left unchanged.
2435 **
2436 ** If a register is allocated and its location stored in *prRhsHasNull, then
2437 ** the value in that register will be NULL if the b-tree contains one or more
2438 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2439 ** NULL values.
2440 **
2441 ** If the aiMap parameter is not NULL, it must point to an array containing
2442 ** one element for each column returned by the SELECT statement on the RHS
2443 ** of the IN(...) operator. The i'th entry of the array is populated with the
2444 ** offset of the index column that matches the i'th column returned by the
2445 ** SELECT. For example, if the expression and selected index are:
2446 **
2447 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2448 **   CREATE INDEX i1 ON t1(b, c, a);
2449 **
2450 ** then aiMap[] is populated with {2, 0, 1}.
2451 */
2452 #ifndef SQLITE_OMIT_SUBQUERY
2453 int sqlite3FindInIndex(
2454   Parse *pParse,             /* Parsing context */
2455   Expr *pX,                  /* The IN expression */
2456   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2457   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2458   int *aiMap,                /* Mapping from Index fields to RHS fields */
2459   int *piTab                 /* OUT: index to use */
2460 ){
2461   Select *p;                            /* SELECT to the right of IN operator */
2462   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2463   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2464   int mustBeUnique;                     /* True if RHS must be unique */
2465   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2466 
2467   assert( pX->op==TK_IN );
2468   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2469 
2470   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2471   ** whether or not the SELECT result contains NULL values, check whether
2472   ** or not NULL is actually possible (it may not be, for example, due
2473   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2474   ** set prRhsHasNull to 0 before continuing.  */
2475   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2476     int i;
2477     ExprList *pEList = pX->x.pSelect->pEList;
2478     for(i=0; i<pEList->nExpr; i++){
2479       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2480     }
2481     if( i==pEList->nExpr ){
2482       prRhsHasNull = 0;
2483     }
2484   }
2485 
2486   /* Check to see if an existing table or index can be used to
2487   ** satisfy the query.  This is preferable to generating a new
2488   ** ephemeral table.  */
2489   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2490     sqlite3 *db = pParse->db;              /* Database connection */
2491     Table *pTab;                           /* Table <table>. */
2492     i16 iDb;                               /* Database idx for pTab */
2493     ExprList *pEList = p->pEList;
2494     int nExpr = pEList->nExpr;
2495 
2496     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2497     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2498     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2499     pTab = p->pSrc->a[0].pTab;
2500 
2501     /* Code an OP_Transaction and OP_TableLock for <table>. */
2502     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2503     sqlite3CodeVerifySchema(pParse, iDb);
2504     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2505 
2506     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2507     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2508       /* The "x IN (SELECT rowid FROM table)" case */
2509       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2510       VdbeCoverage(v);
2511 
2512       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2513       eType = IN_INDEX_ROWID;
2514       ExplainQueryPlan((pParse, 0,
2515             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2516       sqlite3VdbeJumpHere(v, iAddr);
2517     }else{
2518       Index *pIdx;                         /* Iterator variable */
2519       int affinity_ok = 1;
2520       int i;
2521 
2522       /* Check that the affinity that will be used to perform each
2523       ** comparison is the same as the affinity of each column in table
2524       ** on the RHS of the IN operator.  If it not, it is not possible to
2525       ** use any index of the RHS table.  */
2526       for(i=0; i<nExpr && affinity_ok; i++){
2527         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2528         int iCol = pEList->a[i].pExpr->iColumn;
2529         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2530         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2531         testcase( cmpaff==SQLITE_AFF_BLOB );
2532         testcase( cmpaff==SQLITE_AFF_TEXT );
2533         switch( cmpaff ){
2534           case SQLITE_AFF_BLOB:
2535             break;
2536           case SQLITE_AFF_TEXT:
2537             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2538             ** other has no affinity and the other side is TEXT.  Hence,
2539             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2540             ** and for the term on the LHS of the IN to have no affinity. */
2541             assert( idxaff==SQLITE_AFF_TEXT );
2542             break;
2543           default:
2544             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2545         }
2546       }
2547 
2548       if( affinity_ok ){
2549         /* Search for an existing index that will work for this IN operator */
2550         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2551           Bitmask colUsed;      /* Columns of the index used */
2552           Bitmask mCol;         /* Mask for the current column */
2553           if( pIdx->nColumn<nExpr ) continue;
2554           if( pIdx->pPartIdxWhere!=0 ) continue;
2555           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2556           ** BITMASK(nExpr) without overflowing */
2557           testcase( pIdx->nColumn==BMS-2 );
2558           testcase( pIdx->nColumn==BMS-1 );
2559           if( pIdx->nColumn>=BMS-1 ) continue;
2560           if( mustBeUnique ){
2561             if( pIdx->nKeyCol>nExpr
2562              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2563             ){
2564               continue;  /* This index is not unique over the IN RHS columns */
2565             }
2566           }
2567 
2568           colUsed = 0;   /* Columns of index used so far */
2569           for(i=0; i<nExpr; i++){
2570             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2571             Expr *pRhs = pEList->a[i].pExpr;
2572             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2573             int j;
2574 
2575             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2576             for(j=0; j<nExpr; j++){
2577               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2578               assert( pIdx->azColl[j] );
2579               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2580                 continue;
2581               }
2582               break;
2583             }
2584             if( j==nExpr ) break;
2585             mCol = MASKBIT(j);
2586             if( mCol & colUsed ) break; /* Each column used only once */
2587             colUsed |= mCol;
2588             if( aiMap ) aiMap[i] = j;
2589           }
2590 
2591           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2592           if( colUsed==(MASKBIT(nExpr)-1) ){
2593             /* If we reach this point, that means the index pIdx is usable */
2594             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2595             ExplainQueryPlan((pParse, 0,
2596                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2597             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2598             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2599             VdbeComment((v, "%s", pIdx->zName));
2600             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2601             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2602 
2603             if( prRhsHasNull ){
2604 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2605               i64 mask = (1<<nExpr)-1;
2606               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2607                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2608 #endif
2609               *prRhsHasNull = ++pParse->nMem;
2610               if( nExpr==1 ){
2611                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2612               }
2613             }
2614             sqlite3VdbeJumpHere(v, iAddr);
2615           }
2616         } /* End loop over indexes */
2617       } /* End if( affinity_ok ) */
2618     } /* End if not an rowid index */
2619   } /* End attempt to optimize using an index */
2620 
2621   /* If no preexisting index is available for the IN clause
2622   ** and IN_INDEX_NOOP is an allowed reply
2623   ** and the RHS of the IN operator is a list, not a subquery
2624   ** and the RHS is not constant or has two or fewer terms,
2625   ** then it is not worth creating an ephemeral table to evaluate
2626   ** the IN operator so return IN_INDEX_NOOP.
2627   */
2628   if( eType==0
2629    && (inFlags & IN_INDEX_NOOP_OK)
2630    && !ExprHasProperty(pX, EP_xIsSelect)
2631    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2632   ){
2633     eType = IN_INDEX_NOOP;
2634   }
2635 
2636   if( eType==0 ){
2637     /* Could not find an existing table or index to use as the RHS b-tree.
2638     ** We will have to generate an ephemeral table to do the job.
2639     */
2640     u32 savedNQueryLoop = pParse->nQueryLoop;
2641     int rMayHaveNull = 0;
2642     eType = IN_INDEX_EPH;
2643     if( inFlags & IN_INDEX_LOOP ){
2644       pParse->nQueryLoop = 0;
2645     }else if( prRhsHasNull ){
2646       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2647     }
2648     assert( pX->op==TK_IN );
2649     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2650     if( rMayHaveNull ){
2651       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2652     }
2653     pParse->nQueryLoop = savedNQueryLoop;
2654   }
2655 
2656   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2657     int i, n;
2658     n = sqlite3ExprVectorSize(pX->pLeft);
2659     for(i=0; i<n; i++) aiMap[i] = i;
2660   }
2661   *piTab = iTab;
2662   return eType;
2663 }
2664 #endif
2665 
2666 #ifndef SQLITE_OMIT_SUBQUERY
2667 /*
2668 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2669 ** function allocates and returns a nul-terminated string containing
2670 ** the affinities to be used for each column of the comparison.
2671 **
2672 ** It is the responsibility of the caller to ensure that the returned
2673 ** string is eventually freed using sqlite3DbFree().
2674 */
2675 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2676   Expr *pLeft = pExpr->pLeft;
2677   int nVal = sqlite3ExprVectorSize(pLeft);
2678   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2679   char *zRet;
2680 
2681   assert( pExpr->op==TK_IN );
2682   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2683   if( zRet ){
2684     int i;
2685     for(i=0; i<nVal; i++){
2686       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2687       char a = sqlite3ExprAffinity(pA);
2688       if( pSelect ){
2689         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2690       }else{
2691         zRet[i] = a;
2692       }
2693     }
2694     zRet[nVal] = '\0';
2695   }
2696   return zRet;
2697 }
2698 #endif
2699 
2700 #ifndef SQLITE_OMIT_SUBQUERY
2701 /*
2702 ** Load the Parse object passed as the first argument with an error
2703 ** message of the form:
2704 **
2705 **   "sub-select returns N columns - expected M"
2706 */
2707 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2708   if( pParse->nErr==0 ){
2709     const char *zFmt = "sub-select returns %d columns - expected %d";
2710     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2711   }
2712 }
2713 #endif
2714 
2715 /*
2716 ** Expression pExpr is a vector that has been used in a context where
2717 ** it is not permitted. If pExpr is a sub-select vector, this routine
2718 ** loads the Parse object with a message of the form:
2719 **
2720 **   "sub-select returns N columns - expected 1"
2721 **
2722 ** Or, if it is a regular scalar vector:
2723 **
2724 **   "row value misused"
2725 */
2726 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2727 #ifndef SQLITE_OMIT_SUBQUERY
2728   if( pExpr->flags & EP_xIsSelect ){
2729     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2730   }else
2731 #endif
2732   {
2733     sqlite3ErrorMsg(pParse, "row value misused");
2734   }
2735 }
2736 
2737 #ifndef SQLITE_OMIT_SUBQUERY
2738 /*
2739 ** Generate code that will construct an ephemeral table containing all terms
2740 ** in the RHS of an IN operator.  The IN operator can be in either of two
2741 ** forms:
2742 **
2743 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2744 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2745 **
2746 ** The pExpr parameter is the IN operator.  The cursor number for the
2747 ** constructed ephermeral table is returned.  The first time the ephemeral
2748 ** table is computed, the cursor number is also stored in pExpr->iTable,
2749 ** however the cursor number returned might not be the same, as it might
2750 ** have been duplicated using OP_OpenDup.
2751 **
2752 ** If the LHS expression ("x" in the examples) is a column value, or
2753 ** the SELECT statement returns a column value, then the affinity of that
2754 ** column is used to build the index keys. If both 'x' and the
2755 ** SELECT... statement are columns, then numeric affinity is used
2756 ** if either column has NUMERIC or INTEGER affinity. If neither
2757 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2758 ** is used.
2759 */
2760 void sqlite3CodeRhsOfIN(
2761   Parse *pParse,          /* Parsing context */
2762   Expr *pExpr,            /* The IN operator */
2763   int iTab                /* Use this cursor number */
2764 ){
2765   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2766   int addr;                   /* Address of OP_OpenEphemeral instruction */
2767   Expr *pLeft;                /* the LHS of the IN operator */
2768   KeyInfo *pKeyInfo = 0;      /* Key information */
2769   int nVal;                   /* Size of vector pLeft */
2770   Vdbe *v;                    /* The prepared statement under construction */
2771 
2772   v = pParse->pVdbe;
2773   assert( v!=0 );
2774 
2775   /* The evaluation of the IN must be repeated every time it
2776   ** is encountered if any of the following is true:
2777   **
2778   **    *  The right-hand side is a correlated subquery
2779   **    *  The right-hand side is an expression list containing variables
2780   **    *  We are inside a trigger
2781   **
2782   ** If all of the above are false, then we can compute the RHS just once
2783   ** and reuse it many names.
2784   */
2785   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2786     /* Reuse of the RHS is allowed */
2787     /* If this routine has already been coded, but the previous code
2788     ** might not have been invoked yet, so invoke it now as a subroutine.
2789     */
2790     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2791       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2792       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2793         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
2794               pExpr->x.pSelect->selId));
2795       }
2796       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2797                         pExpr->y.sub.iAddr);
2798       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
2799       sqlite3VdbeJumpHere(v, addrOnce);
2800       return;
2801     }
2802 
2803     /* Begin coding the subroutine */
2804     ExprSetProperty(pExpr, EP_Subrtn);
2805     pExpr->y.sub.regReturn = ++pParse->nMem;
2806     pExpr->y.sub.iAddr =
2807       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2808     VdbeComment((v, "return address"));
2809 
2810     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2811   }
2812 
2813   /* Check to see if this is a vector IN operator */
2814   pLeft = pExpr->pLeft;
2815   nVal = sqlite3ExprVectorSize(pLeft);
2816 
2817   /* Construct the ephemeral table that will contain the content of
2818   ** RHS of the IN operator.
2819   */
2820   pExpr->iTable = iTab;
2821   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
2822 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2823   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2824     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
2825   }else{
2826     VdbeComment((v, "RHS of IN operator"));
2827   }
2828 #endif
2829   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2830 
2831   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2832     /* Case 1:     expr IN (SELECT ...)
2833     **
2834     ** Generate code to write the results of the select into the temporary
2835     ** table allocated and opened above.
2836     */
2837     Select *pSelect = pExpr->x.pSelect;
2838     ExprList *pEList = pSelect->pEList;
2839 
2840     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
2841         addrOnce?"":"CORRELATED ", pSelect->selId
2842     ));
2843     /* If the LHS and RHS of the IN operator do not match, that
2844     ** error will have been caught long before we reach this point. */
2845     if( ALWAYS(pEList->nExpr==nVal) ){
2846       SelectDest dest;
2847       int i;
2848       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
2849       dest.zAffSdst = exprINAffinity(pParse, pExpr);
2850       pSelect->iLimit = 0;
2851       testcase( pSelect->selFlags & SF_Distinct );
2852       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2853       if( sqlite3Select(pParse, pSelect, &dest) ){
2854         sqlite3DbFree(pParse->db, dest.zAffSdst);
2855         sqlite3KeyInfoUnref(pKeyInfo);
2856         return;
2857       }
2858       sqlite3DbFree(pParse->db, dest.zAffSdst);
2859       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2860       assert( pEList!=0 );
2861       assert( pEList->nExpr>0 );
2862       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2863       for(i=0; i<nVal; i++){
2864         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2865         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2866             pParse, p, pEList->a[i].pExpr
2867         );
2868       }
2869     }
2870   }else if( ALWAYS(pExpr->x.pList!=0) ){
2871     /* Case 2:     expr IN (exprlist)
2872     **
2873     ** For each expression, build an index key from the evaluation and
2874     ** store it in the temporary table. If <expr> is a column, then use
2875     ** that columns affinity when building index keys. If <expr> is not
2876     ** a column, use numeric affinity.
2877     */
2878     char affinity;            /* Affinity of the LHS of the IN */
2879     int i;
2880     ExprList *pList = pExpr->x.pList;
2881     struct ExprList_item *pItem;
2882     int r1, r2;
2883     affinity = sqlite3ExprAffinity(pLeft);
2884     if( affinity<=SQLITE_AFF_NONE ){
2885       affinity = SQLITE_AFF_BLOB;
2886     }
2887     if( pKeyInfo ){
2888       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2889       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2890     }
2891 
2892     /* Loop through each expression in <exprlist>. */
2893     r1 = sqlite3GetTempReg(pParse);
2894     r2 = sqlite3GetTempReg(pParse);
2895     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2896       Expr *pE2 = pItem->pExpr;
2897 
2898       /* If the expression is not constant then we will need to
2899       ** disable the test that was generated above that makes sure
2900       ** this code only executes once.  Because for a non-constant
2901       ** expression we need to rerun this code each time.
2902       */
2903       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
2904         sqlite3VdbeChangeToNoop(v, addrOnce);
2905         ExprClearProperty(pExpr, EP_Subrtn);
2906         addrOnce = 0;
2907       }
2908 
2909       /* Evaluate the expression and insert it into the temp table */
2910       sqlite3ExprCode(pParse, pE2, r1);
2911       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
2912       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
2913     }
2914     sqlite3ReleaseTempReg(pParse, r1);
2915     sqlite3ReleaseTempReg(pParse, r2);
2916   }
2917   if( pKeyInfo ){
2918     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2919   }
2920   if( addrOnce ){
2921     sqlite3VdbeJumpHere(v, addrOnce);
2922     /* Subroutine return */
2923     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
2924     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
2925     sqlite3ClearTempRegCache(pParse);
2926   }
2927 }
2928 #endif /* SQLITE_OMIT_SUBQUERY */
2929 
2930 /*
2931 ** Generate code for scalar subqueries used as a subquery expression
2932 ** or EXISTS operator:
2933 **
2934 **     (SELECT a FROM b)          -- subquery
2935 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
2936 **
2937 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
2938 **
2939 ** Return the register that holds the result.  For a multi-column SELECT,
2940 ** the result is stored in a contiguous array of registers and the
2941 ** return value is the register of the left-most result column.
2942 ** Return 0 if an error occurs.
2943 */
2944 #ifndef SQLITE_OMIT_SUBQUERY
2945 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
2946   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
2947   int rReg = 0;               /* Register storing resulting */
2948   Select *pSel;               /* SELECT statement to encode */
2949   SelectDest dest;            /* How to deal with SELECT result */
2950   int nReg;                   /* Registers to allocate */
2951   Expr *pLimit;               /* New limit expression */
2952 
2953   Vdbe *v = pParse->pVdbe;
2954   assert( v!=0 );
2955   testcase( pExpr->op==TK_EXISTS );
2956   testcase( pExpr->op==TK_SELECT );
2957   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2958   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2959   pSel = pExpr->x.pSelect;
2960 
2961   /* The evaluation of the EXISTS/SELECT must be repeated every time it
2962   ** is encountered if any of the following is true:
2963   **
2964   **    *  The right-hand side is a correlated subquery
2965   **    *  The right-hand side is an expression list containing variables
2966   **    *  We are inside a trigger
2967   **
2968   ** If all of the above are false, then we can run this code just once
2969   ** save the results, and reuse the same result on subsequent invocations.
2970   */
2971   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2972     /* If this routine has already been coded, then invoke it as a
2973     ** subroutine. */
2974     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2975       ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
2976       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2977                         pExpr->y.sub.iAddr);
2978       return pExpr->iTable;
2979     }
2980 
2981     /* Begin coding the subroutine */
2982     ExprSetProperty(pExpr, EP_Subrtn);
2983     pExpr->y.sub.regReturn = ++pParse->nMem;
2984     pExpr->y.sub.iAddr =
2985       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2986     VdbeComment((v, "return address"));
2987 
2988     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2989   }
2990 
2991   /* For a SELECT, generate code to put the values for all columns of
2992   ** the first row into an array of registers and return the index of
2993   ** the first register.
2994   **
2995   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2996   ** into a register and return that register number.
2997   **
2998   ** In both cases, the query is augmented with "LIMIT 1".  Any
2999   ** preexisting limit is discarded in place of the new LIMIT 1.
3000   */
3001   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3002         addrOnce?"":"CORRELATED ", pSel->selId));
3003   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3004   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3005   pParse->nMem += nReg;
3006   if( pExpr->op==TK_SELECT ){
3007     dest.eDest = SRT_Mem;
3008     dest.iSdst = dest.iSDParm;
3009     dest.nSdst = nReg;
3010     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3011     VdbeComment((v, "Init subquery result"));
3012   }else{
3013     dest.eDest = SRT_Exists;
3014     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3015     VdbeComment((v, "Init EXISTS result"));
3016   }
3017   if( pSel->pLimit ){
3018     /* The subquery already has a limit.  If the pre-existing limit is X
3019     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3020     sqlite3 *db = pParse->db;
3021     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3022     if( pLimit ){
3023       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3024       pLimit = sqlite3PExpr(pParse, TK_NE,
3025                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3026     }
3027     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3028     pSel->pLimit->pLeft = pLimit;
3029   }else{
3030     /* If there is no pre-existing limit add a limit of 1 */
3031     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3032     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3033   }
3034   pSel->iLimit = 0;
3035   if( sqlite3Select(pParse, pSel, &dest) ){
3036     return 0;
3037   }
3038   pExpr->iTable = rReg = dest.iSDParm;
3039   ExprSetVVAProperty(pExpr, EP_NoReduce);
3040   if( addrOnce ){
3041     sqlite3VdbeJumpHere(v, addrOnce);
3042 
3043     /* Subroutine return */
3044     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3045     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3046     sqlite3ClearTempRegCache(pParse);
3047   }
3048 
3049   return rReg;
3050 }
3051 #endif /* SQLITE_OMIT_SUBQUERY */
3052 
3053 #ifndef SQLITE_OMIT_SUBQUERY
3054 /*
3055 ** Expr pIn is an IN(...) expression. This function checks that the
3056 ** sub-select on the RHS of the IN() operator has the same number of
3057 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3058 ** a sub-query, that the LHS is a vector of size 1.
3059 */
3060 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3061   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3062   if( (pIn->flags & EP_xIsSelect) ){
3063     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3064       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3065       return 1;
3066     }
3067   }else if( nVector!=1 ){
3068     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3069     return 1;
3070   }
3071   return 0;
3072 }
3073 #endif
3074 
3075 #ifndef SQLITE_OMIT_SUBQUERY
3076 /*
3077 ** Generate code for an IN expression.
3078 **
3079 **      x IN (SELECT ...)
3080 **      x IN (value, value, ...)
3081 **
3082 ** The left-hand side (LHS) is a scalar or vector expression.  The
3083 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3084 ** subquery.  If the RHS is a subquery, the number of result columns must
3085 ** match the number of columns in the vector on the LHS.  If the RHS is
3086 ** a list of values, the LHS must be a scalar.
3087 **
3088 ** The IN operator is true if the LHS value is contained within the RHS.
3089 ** The result is false if the LHS is definitely not in the RHS.  The
3090 ** result is NULL if the presence of the LHS in the RHS cannot be
3091 ** determined due to NULLs.
3092 **
3093 ** This routine generates code that jumps to destIfFalse if the LHS is not
3094 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3095 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3096 ** within the RHS then fall through.
3097 **
3098 ** See the separate in-operator.md documentation file in the canonical
3099 ** SQLite source tree for additional information.
3100 */
3101 static void sqlite3ExprCodeIN(
3102   Parse *pParse,        /* Parsing and code generating context */
3103   Expr *pExpr,          /* The IN expression */
3104   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3105   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3106 ){
3107   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3108   int eType;            /* Type of the RHS */
3109   int rLhs;             /* Register(s) holding the LHS values */
3110   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3111   Vdbe *v;              /* Statement under construction */
3112   int *aiMap = 0;       /* Map from vector field to index column */
3113   char *zAff = 0;       /* Affinity string for comparisons */
3114   int nVector;          /* Size of vectors for this IN operator */
3115   int iDummy;           /* Dummy parameter to exprCodeVector() */
3116   Expr *pLeft;          /* The LHS of the IN operator */
3117   int i;                /* loop counter */
3118   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3119   int destStep6 = 0;    /* Start of code for Step 6 */
3120   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3121   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3122   int addrTop;          /* Top of the step-6 loop */
3123   int iTab = 0;         /* Index to use */
3124 
3125   pLeft = pExpr->pLeft;
3126   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3127   zAff = exprINAffinity(pParse, pExpr);
3128   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3129   aiMap = (int*)sqlite3DbMallocZero(
3130       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3131   );
3132   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3133 
3134   /* Attempt to compute the RHS. After this step, if anything other than
3135   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3136   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3137   ** the RHS has not yet been coded.  */
3138   v = pParse->pVdbe;
3139   assert( v!=0 );       /* OOM detected prior to this routine */
3140   VdbeNoopComment((v, "begin IN expr"));
3141   eType = sqlite3FindInIndex(pParse, pExpr,
3142                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3143                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3144                              aiMap, &iTab);
3145 
3146   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3147        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3148   );
3149 #ifdef SQLITE_DEBUG
3150   /* Confirm that aiMap[] contains nVector integer values between 0 and
3151   ** nVector-1. */
3152   for(i=0; i<nVector; i++){
3153     int j, cnt;
3154     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3155     assert( cnt==1 );
3156   }
3157 #endif
3158 
3159   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3160   ** vector, then it is stored in an array of nVector registers starting
3161   ** at r1.
3162   **
3163   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3164   ** so that the fields are in the same order as an existing index.   The
3165   ** aiMap[] array contains a mapping from the original LHS field order to
3166   ** the field order that matches the RHS index.
3167   */
3168   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3169   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3170   if( i==nVector ){
3171     /* LHS fields are not reordered */
3172     rLhs = rLhsOrig;
3173   }else{
3174     /* Need to reorder the LHS fields according to aiMap */
3175     rLhs = sqlite3GetTempRange(pParse, nVector);
3176     for(i=0; i<nVector; i++){
3177       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3178     }
3179   }
3180 
3181   /* If sqlite3FindInIndex() did not find or create an index that is
3182   ** suitable for evaluating the IN operator, then evaluate using a
3183   ** sequence of comparisons.
3184   **
3185   ** This is step (1) in the in-operator.md optimized algorithm.
3186   */
3187   if( eType==IN_INDEX_NOOP ){
3188     ExprList *pList = pExpr->x.pList;
3189     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3190     int labelOk = sqlite3VdbeMakeLabel(pParse);
3191     int r2, regToFree;
3192     int regCkNull = 0;
3193     int ii;
3194     int bLhsReal;  /* True if the LHS of the IN has REAL affinity */
3195     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3196     if( destIfNull!=destIfFalse ){
3197       regCkNull = sqlite3GetTempReg(pParse);
3198       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3199     }
3200     bLhsReal = sqlite3ExprAffinity(pExpr->pLeft)==SQLITE_AFF_REAL;
3201     for(ii=0; ii<pList->nExpr; ii++){
3202       if( bLhsReal ){
3203         r2 = regToFree = sqlite3GetTempReg(pParse);
3204         sqlite3ExprCode(pParse, pList->a[ii].pExpr, r2);
3205         sqlite3VdbeAddOp4(v, OP_Affinity, r2, 1, 0, "E", P4_STATIC);
3206       }else{
3207         r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3208       }
3209       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3210         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3211       }
3212       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3213         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3214         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3215                           (void*)pColl, P4_COLLSEQ);
3216         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3217         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3218         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3219         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3220         sqlite3VdbeChangeP5(v, zAff[0]);
3221       }else{
3222         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3223         assert( destIfNull==destIfFalse );
3224         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3225                           (void*)pColl, P4_COLLSEQ);
3226         VdbeCoverageIf(v, op==OP_Ne);
3227         VdbeCoverageIf(v, op==OP_IsNull);
3228         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3229       }
3230       sqlite3ReleaseTempReg(pParse, regToFree);
3231     }
3232     if( regCkNull ){
3233       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3234       sqlite3VdbeGoto(v, destIfFalse);
3235     }
3236     sqlite3VdbeResolveLabel(v, labelOk);
3237     sqlite3ReleaseTempReg(pParse, regCkNull);
3238     goto sqlite3ExprCodeIN_finished;
3239   }
3240 
3241   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3242   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3243   ** We will then skip the binary search of the RHS.
3244   */
3245   if( destIfNull==destIfFalse ){
3246     destStep2 = destIfFalse;
3247   }else{
3248     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3249   }
3250   if( pParse->nErr ) goto sqlite3ExprCodeIN_finished;
3251   for(i=0; i<nVector; i++){
3252     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3253     if( sqlite3ExprCanBeNull(p) ){
3254       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3255       VdbeCoverage(v);
3256     }
3257   }
3258 
3259   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3260   ** of the RHS using the LHS as a probe.  If found, the result is
3261   ** true.
3262   */
3263   if( eType==IN_INDEX_ROWID ){
3264     /* In this case, the RHS is the ROWID of table b-tree and so we also
3265     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3266     ** into a single opcode. */
3267     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3268     VdbeCoverage(v);
3269     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3270   }else{
3271     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3272     if( destIfFalse==destIfNull ){
3273       /* Combine Step 3 and Step 5 into a single opcode */
3274       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3275                            rLhs, nVector); VdbeCoverage(v);
3276       goto sqlite3ExprCodeIN_finished;
3277     }
3278     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3279     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3280                                       rLhs, nVector); VdbeCoverage(v);
3281   }
3282 
3283   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3284   ** an match on the search above, then the result must be FALSE.
3285   */
3286   if( rRhsHasNull && nVector==1 ){
3287     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3288     VdbeCoverage(v);
3289   }
3290 
3291   /* Step 5.  If we do not care about the difference between NULL and
3292   ** FALSE, then just return false.
3293   */
3294   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3295 
3296   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3297   ** If any comparison is NULL, then the result is NULL.  If all
3298   ** comparisons are FALSE then the final result is FALSE.
3299   **
3300   ** For a scalar LHS, it is sufficient to check just the first row
3301   ** of the RHS.
3302   */
3303   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3304   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3305   VdbeCoverage(v);
3306   if( nVector>1 ){
3307     destNotNull = sqlite3VdbeMakeLabel(pParse);
3308   }else{
3309     /* For nVector==1, combine steps 6 and 7 by immediately returning
3310     ** FALSE if the first comparison is not NULL */
3311     destNotNull = destIfFalse;
3312   }
3313   for(i=0; i<nVector; i++){
3314     Expr *p;
3315     CollSeq *pColl;
3316     int r3 = sqlite3GetTempReg(pParse);
3317     p = sqlite3VectorFieldSubexpr(pLeft, i);
3318     pColl = sqlite3ExprCollSeq(pParse, p);
3319     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3320     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3321                       (void*)pColl, P4_COLLSEQ);
3322     VdbeCoverage(v);
3323     sqlite3ReleaseTempReg(pParse, r3);
3324   }
3325   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3326   if( nVector>1 ){
3327     sqlite3VdbeResolveLabel(v, destNotNull);
3328     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3329     VdbeCoverage(v);
3330 
3331     /* Step 7:  If we reach this point, we know that the result must
3332     ** be false. */
3333     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3334   }
3335 
3336   /* Jumps here in order to return true. */
3337   sqlite3VdbeJumpHere(v, addrTruthOp);
3338 
3339 sqlite3ExprCodeIN_finished:
3340   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3341   VdbeComment((v, "end IN expr"));
3342 sqlite3ExprCodeIN_oom_error:
3343   sqlite3DbFree(pParse->db, aiMap);
3344   sqlite3DbFree(pParse->db, zAff);
3345 }
3346 #endif /* SQLITE_OMIT_SUBQUERY */
3347 
3348 #ifndef SQLITE_OMIT_FLOATING_POINT
3349 /*
3350 ** Generate an instruction that will put the floating point
3351 ** value described by z[0..n-1] into register iMem.
3352 **
3353 ** The z[] string will probably not be zero-terminated.  But the
3354 ** z[n] character is guaranteed to be something that does not look
3355 ** like the continuation of the number.
3356 */
3357 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3358   if( ALWAYS(z!=0) ){
3359     double value;
3360     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3361     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3362     if( negateFlag ) value = -value;
3363     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3364   }
3365 }
3366 #endif
3367 
3368 
3369 /*
3370 ** Generate an instruction that will put the integer describe by
3371 ** text z[0..n-1] into register iMem.
3372 **
3373 ** Expr.u.zToken is always UTF8 and zero-terminated.
3374 */
3375 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3376   Vdbe *v = pParse->pVdbe;
3377   if( pExpr->flags & EP_IntValue ){
3378     int i = pExpr->u.iValue;
3379     assert( i>=0 );
3380     if( negFlag ) i = -i;
3381     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3382   }else{
3383     int c;
3384     i64 value;
3385     const char *z = pExpr->u.zToken;
3386     assert( z!=0 );
3387     c = sqlite3DecOrHexToI64(z, &value);
3388     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3389 #ifdef SQLITE_OMIT_FLOATING_POINT
3390       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3391 #else
3392 #ifndef SQLITE_OMIT_HEX_INTEGER
3393       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3394         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3395       }else
3396 #endif
3397       {
3398         codeReal(v, z, negFlag, iMem);
3399       }
3400 #endif
3401     }else{
3402       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3403       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3404     }
3405   }
3406 }
3407 
3408 
3409 /* Generate code that will load into register regOut a value that is
3410 ** appropriate for the iIdxCol-th column of index pIdx.
3411 */
3412 void sqlite3ExprCodeLoadIndexColumn(
3413   Parse *pParse,  /* The parsing context */
3414   Index *pIdx,    /* The index whose column is to be loaded */
3415   int iTabCur,    /* Cursor pointing to a table row */
3416   int iIdxCol,    /* The column of the index to be loaded */
3417   int regOut      /* Store the index column value in this register */
3418 ){
3419   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3420   if( iTabCol==XN_EXPR ){
3421     assert( pIdx->aColExpr );
3422     assert( pIdx->aColExpr->nExpr>iIdxCol );
3423     pParse->iSelfTab = iTabCur + 1;
3424     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3425     pParse->iSelfTab = 0;
3426   }else{
3427     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3428                                     iTabCol, regOut);
3429   }
3430 }
3431 
3432 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3433 /*
3434 ** Generate code that will compute the value of generated column pCol
3435 ** and store the result in register regOut
3436 */
3437 void sqlite3ExprCodeGeneratedColumn(
3438   Parse *pParse,
3439   Column *pCol,
3440   int regOut
3441 ){
3442   int iAddr;
3443   Vdbe *v = pParse->pVdbe;
3444   assert( v!=0 );
3445   assert( pParse->iSelfTab!=0 );
3446   if( pParse->iSelfTab>0 ){
3447     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3448   }else{
3449     iAddr = 0;
3450   }
3451   sqlite3ExprCode(pParse, pCol->pDflt, regOut);
3452   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3453     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3454   }
3455   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3456 }
3457 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3458 
3459 /*
3460 ** Generate code to extract the value of the iCol-th column of a table.
3461 */
3462 void sqlite3ExprCodeGetColumnOfTable(
3463   Vdbe *v,        /* Parsing context */
3464   Table *pTab,    /* The table containing the value */
3465   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3466   int iCol,       /* Index of the column to extract */
3467   int regOut      /* Extract the value into this register */
3468 ){
3469   Column *pCol;
3470   assert( v!=0 );
3471   if( pTab==0 ){
3472     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3473     return;
3474   }
3475   if( iCol<0 || iCol==pTab->iPKey ){
3476     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3477   }else{
3478     int op;
3479     int x;
3480     if( IsVirtual(pTab) ){
3481       op = OP_VColumn;
3482       x = iCol;
3483 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3484     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3485       Parse *pParse = sqlite3VdbeParser(v);
3486       if( pCol->colFlags & COLFLAG_BUSY ){
3487         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName);
3488       }else{
3489         int savedSelfTab = pParse->iSelfTab;
3490         pCol->colFlags |= COLFLAG_BUSY;
3491         pParse->iSelfTab = iTabCur+1;
3492         sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut);
3493         pParse->iSelfTab = savedSelfTab;
3494         pCol->colFlags &= ~COLFLAG_BUSY;
3495       }
3496       return;
3497 #endif
3498     }else if( !HasRowid(pTab) ){
3499       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3500       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3501       op = OP_Column;
3502     }else{
3503       x = sqlite3TableColumnToStorage(pTab,iCol);
3504       testcase( x!=iCol );
3505       op = OP_Column;
3506     }
3507     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3508     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3509   }
3510 }
3511 
3512 /*
3513 ** Generate code that will extract the iColumn-th column from
3514 ** table pTab and store the column value in register iReg.
3515 **
3516 ** There must be an open cursor to pTab in iTable when this routine
3517 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3518 */
3519 int sqlite3ExprCodeGetColumn(
3520   Parse *pParse,   /* Parsing and code generating context */
3521   Table *pTab,     /* Description of the table we are reading from */
3522   int iColumn,     /* Index of the table column */
3523   int iTable,      /* The cursor pointing to the table */
3524   int iReg,        /* Store results here */
3525   u8 p5            /* P5 value for OP_Column + FLAGS */
3526 ){
3527   assert( pParse->pVdbe!=0 );
3528   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3529   if( p5 ){
3530     VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3531     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3532   }
3533   return iReg;
3534 }
3535 
3536 /*
3537 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3538 ** over to iTo..iTo+nReg-1.
3539 */
3540 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3541   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3542 }
3543 
3544 /*
3545 ** Convert a scalar expression node to a TK_REGISTER referencing
3546 ** register iReg.  The caller must ensure that iReg already contains
3547 ** the correct value for the expression.
3548 */
3549 static void exprToRegister(Expr *pExpr, int iReg){
3550   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3551   p->op2 = p->op;
3552   p->op = TK_REGISTER;
3553   p->iTable = iReg;
3554   ExprClearProperty(p, EP_Skip);
3555 }
3556 
3557 /*
3558 ** Evaluate an expression (either a vector or a scalar expression) and store
3559 ** the result in continguous temporary registers.  Return the index of
3560 ** the first register used to store the result.
3561 **
3562 ** If the returned result register is a temporary scalar, then also write
3563 ** that register number into *piFreeable.  If the returned result register
3564 ** is not a temporary or if the expression is a vector set *piFreeable
3565 ** to 0.
3566 */
3567 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3568   int iResult;
3569   int nResult = sqlite3ExprVectorSize(p);
3570   if( nResult==1 ){
3571     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3572   }else{
3573     *piFreeable = 0;
3574     if( p->op==TK_SELECT ){
3575 #if SQLITE_OMIT_SUBQUERY
3576       iResult = 0;
3577 #else
3578       iResult = sqlite3CodeSubselect(pParse, p);
3579 #endif
3580     }else{
3581       int i;
3582       iResult = pParse->nMem+1;
3583       pParse->nMem += nResult;
3584       for(i=0; i<nResult; i++){
3585         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3586       }
3587     }
3588   }
3589   return iResult;
3590 }
3591 
3592 /*
3593 ** Generate code to implement special SQL functions that are implemented
3594 ** in-line rather than by using the usual callbacks.
3595 */
3596 static int exprCodeInlineFunction(
3597   Parse *pParse,        /* Parsing context */
3598   ExprList *pFarg,      /* List of function arguments */
3599   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3600   int target            /* Store function result in this register */
3601 ){
3602   int nFarg;
3603   Vdbe *v = pParse->pVdbe;
3604   assert( v!=0 );
3605   assert( pFarg!=0 );
3606   nFarg = pFarg->nExpr;
3607   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3608   switch( iFuncId ){
3609     case INLINEFUNC_coalesce: {
3610       /* Attempt a direct implementation of the built-in COALESCE() and
3611       ** IFNULL() functions.  This avoids unnecessary evaluation of
3612       ** arguments past the first non-NULL argument.
3613       */
3614       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3615       int i;
3616       assert( nFarg>=2 );
3617       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3618       for(i=1; i<nFarg; i++){
3619         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3620         VdbeCoverage(v);
3621         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3622       }
3623       if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
3624         sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3625       }
3626       sqlite3VdbeResolveLabel(v, endCoalesce);
3627       break;
3628     }
3629 
3630     default: {
3631       /* The UNLIKELY() function is a no-op.  The result is the value
3632       ** of the first argument.
3633       */
3634       assert( nFarg==1 || nFarg==2 );
3635       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3636       break;
3637     }
3638 
3639   /***********************************************************************
3640   ** Test-only SQL functions that are only usable if enabled
3641   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3642   */
3643     case INLINEFUNC_expr_compare: {
3644       /* Compare two expressions using sqlite3ExprCompare() */
3645       assert( nFarg==2 );
3646       sqlite3VdbeAddOp2(v, OP_Integer,
3647          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3648          target);
3649       break;
3650     }
3651 
3652     case INLINEFUNC_expr_implies_expr: {
3653       /* Compare two expressions using sqlite3ExprImpliesExpr() */
3654       assert( nFarg==2 );
3655       sqlite3VdbeAddOp2(v, OP_Integer,
3656          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3657          target);
3658       break;
3659     }
3660 
3661     case INLINEFUNC_implies_nonnull_row: {
3662       /* REsult of sqlite3ExprImpliesNonNullRow() */
3663       Expr *pA1;
3664       assert( nFarg==2 );
3665       pA1 = pFarg->a[1].pExpr;
3666       if( pA1->op==TK_COLUMN ){
3667         sqlite3VdbeAddOp2(v, OP_Integer,
3668            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
3669            target);
3670       }else{
3671         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3672       }
3673       break;
3674     }
3675 
3676 #ifdef SQLITE_DEBUG
3677     case INLINEFUNC_affinity: {
3678       /* The AFFINITY() function evaluates to a string that describes
3679       ** the type affinity of the argument.  This is used for testing of
3680       ** the SQLite type logic.
3681       */
3682       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3683       char aff;
3684       assert( nFarg==1 );
3685       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3686       sqlite3VdbeLoadString(v, target,
3687               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3688       break;
3689     }
3690 #endif
3691   }
3692   return target;
3693 }
3694 
3695 
3696 /*
3697 ** Generate code into the current Vdbe to evaluate the given
3698 ** expression.  Attempt to store the results in register "target".
3699 ** Return the register where results are stored.
3700 **
3701 ** With this routine, there is no guarantee that results will
3702 ** be stored in target.  The result might be stored in some other
3703 ** register if it is convenient to do so.  The calling function
3704 ** must check the return code and move the results to the desired
3705 ** register.
3706 */
3707 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3708   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3709   int op;                   /* The opcode being coded */
3710   int inReg = target;       /* Results stored in register inReg */
3711   int regFree1 = 0;         /* If non-zero free this temporary register */
3712   int regFree2 = 0;         /* If non-zero free this temporary register */
3713   int r1, r2;               /* Various register numbers */
3714   Expr tempX;               /* Temporary expression node */
3715   int p5 = 0;
3716 
3717   assert( target>0 && target<=pParse->nMem );
3718   if( v==0 ){
3719     assert( pParse->db->mallocFailed );
3720     return 0;
3721   }
3722 
3723 expr_code_doover:
3724   if( pExpr==0 ){
3725     op = TK_NULL;
3726   }else{
3727     op = pExpr->op;
3728   }
3729   switch( op ){
3730     case TK_AGG_COLUMN: {
3731       AggInfo *pAggInfo = pExpr->pAggInfo;
3732       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3733       if( !pAggInfo->directMode ){
3734         assert( pCol->iMem>0 );
3735         return pCol->iMem;
3736       }else if( pAggInfo->useSortingIdx ){
3737         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3738                               pCol->iSorterColumn, target);
3739         return target;
3740       }
3741       /* Otherwise, fall thru into the TK_COLUMN case */
3742     }
3743     case TK_COLUMN: {
3744       int iTab = pExpr->iTable;
3745       int iReg;
3746       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3747         /* This COLUMN expression is really a constant due to WHERE clause
3748         ** constraints, and that constant is coded by the pExpr->pLeft
3749         ** expresssion.  However, make sure the constant has the correct
3750         ** datatype by applying the Affinity of the table column to the
3751         ** constant.
3752         */
3753         int aff;
3754         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3755         if( pExpr->y.pTab ){
3756           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3757         }else{
3758           aff = pExpr->affExpr;
3759         }
3760         if( aff>SQLITE_AFF_BLOB ){
3761           static const char zAff[] = "B\000C\000D\000E";
3762           assert( SQLITE_AFF_BLOB=='A' );
3763           assert( SQLITE_AFF_TEXT=='B' );
3764           if( iReg!=target ){
3765             sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target);
3766             iReg = target;
3767           }
3768           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3769                             &zAff[(aff-'B')*2], P4_STATIC);
3770         }
3771         return iReg;
3772       }
3773       if( iTab<0 ){
3774         if( pParse->iSelfTab<0 ){
3775           /* Other columns in the same row for CHECK constraints or
3776           ** generated columns or for inserting into partial index.
3777           ** The row is unpacked into registers beginning at
3778           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
3779           ** immediately prior to the first column.
3780           */
3781           Column *pCol;
3782           Table *pTab = pExpr->y.pTab;
3783           int iSrc;
3784           int iCol = pExpr->iColumn;
3785           assert( pTab!=0 );
3786           assert( iCol>=XN_ROWID );
3787           assert( iCol<pTab->nCol );
3788           if( iCol<0 ){
3789             return -1-pParse->iSelfTab;
3790           }
3791           pCol = pTab->aCol + iCol;
3792           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
3793           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
3794 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3795           if( pCol->colFlags & COLFLAG_GENERATED ){
3796             if( pCol->colFlags & COLFLAG_BUSY ){
3797               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3798                               pCol->zName);
3799               return 0;
3800             }
3801             pCol->colFlags |= COLFLAG_BUSY;
3802             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
3803               sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc);
3804             }
3805             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
3806             return iSrc;
3807           }else
3808 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3809           if( pCol->affinity==SQLITE_AFF_REAL ){
3810             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
3811             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3812             return target;
3813           }else{
3814             return iSrc;
3815           }
3816         }else{
3817           /* Coding an expression that is part of an index where column names
3818           ** in the index refer to the table to which the index belongs */
3819           iTab = pParse->iSelfTab - 1;
3820         }
3821       }
3822       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
3823                                pExpr->iColumn, iTab, target,
3824                                pExpr->op2);
3825       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
3826         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
3827       }
3828       return iReg;
3829     }
3830     case TK_INTEGER: {
3831       codeInteger(pParse, pExpr, 0, target);
3832       return target;
3833     }
3834     case TK_TRUEFALSE: {
3835       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3836       return target;
3837     }
3838 #ifndef SQLITE_OMIT_FLOATING_POINT
3839     case TK_FLOAT: {
3840       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3841       codeReal(v, pExpr->u.zToken, 0, target);
3842       return target;
3843     }
3844 #endif
3845     case TK_STRING: {
3846       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3847       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3848       return target;
3849     }
3850     default: {
3851       /* Make NULL the default case so that if a bug causes an illegal
3852       ** Expr node to be passed into this function, it will be handled
3853       ** sanely and not crash.  But keep the assert() to bring the problem
3854       ** to the attention of the developers. */
3855       assert( op==TK_NULL );
3856       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3857       return target;
3858     }
3859 #ifndef SQLITE_OMIT_BLOB_LITERAL
3860     case TK_BLOB: {
3861       int n;
3862       const char *z;
3863       char *zBlob;
3864       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3865       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3866       assert( pExpr->u.zToken[1]=='\'' );
3867       z = &pExpr->u.zToken[2];
3868       n = sqlite3Strlen30(z) - 1;
3869       assert( z[n]=='\'' );
3870       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3871       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3872       return target;
3873     }
3874 #endif
3875     case TK_VARIABLE: {
3876       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3877       assert( pExpr->u.zToken!=0 );
3878       assert( pExpr->u.zToken[0]!=0 );
3879       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3880       if( pExpr->u.zToken[1]!=0 ){
3881         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3882         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
3883         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3884         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3885       }
3886       return target;
3887     }
3888     case TK_REGISTER: {
3889       return pExpr->iTable;
3890     }
3891 #ifndef SQLITE_OMIT_CAST
3892     case TK_CAST: {
3893       /* Expressions of the form:   CAST(pLeft AS token) */
3894       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3895       if( inReg!=target ){
3896         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3897         inReg = target;
3898       }
3899       sqlite3VdbeAddOp2(v, OP_Cast, target,
3900                         sqlite3AffinityType(pExpr->u.zToken, 0));
3901       return inReg;
3902     }
3903 #endif /* SQLITE_OMIT_CAST */
3904     case TK_IS:
3905     case TK_ISNOT:
3906       op = (op==TK_IS) ? TK_EQ : TK_NE;
3907       p5 = SQLITE_NULLEQ;
3908       /* fall-through */
3909     case TK_LT:
3910     case TK_LE:
3911     case TK_GT:
3912     case TK_GE:
3913     case TK_NE:
3914     case TK_EQ: {
3915       Expr *pLeft = pExpr->pLeft;
3916       if( sqlite3ExprIsVector(pLeft) ){
3917         codeVectorCompare(pParse, pExpr, target, op, p5);
3918       }else{
3919         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3920         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3921         codeCompare(pParse, pLeft, pExpr->pRight, op,
3922             r1, r2, inReg, SQLITE_STOREP2 | p5,
3923             ExprHasProperty(pExpr,EP_Commuted));
3924         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3925         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3926         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3927         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3928         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3929         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3930         testcase( regFree1==0 );
3931         testcase( regFree2==0 );
3932       }
3933       break;
3934     }
3935     case TK_AND:
3936     case TK_OR:
3937     case TK_PLUS:
3938     case TK_STAR:
3939     case TK_MINUS:
3940     case TK_REM:
3941     case TK_BITAND:
3942     case TK_BITOR:
3943     case TK_SLASH:
3944     case TK_LSHIFT:
3945     case TK_RSHIFT:
3946     case TK_CONCAT: {
3947       assert( TK_AND==OP_And );            testcase( op==TK_AND );
3948       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
3949       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
3950       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
3951       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
3952       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
3953       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
3954       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
3955       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
3956       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
3957       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
3958       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3959       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3960       sqlite3VdbeAddOp3(v, op, r2, r1, target);
3961       testcase( regFree1==0 );
3962       testcase( regFree2==0 );
3963       break;
3964     }
3965     case TK_UMINUS: {
3966       Expr *pLeft = pExpr->pLeft;
3967       assert( pLeft );
3968       if( pLeft->op==TK_INTEGER ){
3969         codeInteger(pParse, pLeft, 1, target);
3970         return target;
3971 #ifndef SQLITE_OMIT_FLOATING_POINT
3972       }else if( pLeft->op==TK_FLOAT ){
3973         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3974         codeReal(v, pLeft->u.zToken, 1, target);
3975         return target;
3976 #endif
3977       }else{
3978         tempX.op = TK_INTEGER;
3979         tempX.flags = EP_IntValue|EP_TokenOnly;
3980         tempX.u.iValue = 0;
3981         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3982         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3983         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3984         testcase( regFree2==0 );
3985       }
3986       break;
3987     }
3988     case TK_BITNOT:
3989     case TK_NOT: {
3990       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
3991       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
3992       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3993       testcase( regFree1==0 );
3994       sqlite3VdbeAddOp2(v, op, r1, inReg);
3995       break;
3996     }
3997     case TK_TRUTH: {
3998       int isTrue;    /* IS TRUE or IS NOT TRUE */
3999       int bNormal;   /* IS TRUE or IS FALSE */
4000       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4001       testcase( regFree1==0 );
4002       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4003       bNormal = pExpr->op2==TK_IS;
4004       testcase( isTrue && bNormal);
4005       testcase( !isTrue && bNormal);
4006       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4007       break;
4008     }
4009     case TK_ISNULL:
4010     case TK_NOTNULL: {
4011       int addr;
4012       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4013       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4014       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4015       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4016       testcase( regFree1==0 );
4017       addr = sqlite3VdbeAddOp1(v, op, r1);
4018       VdbeCoverageIf(v, op==TK_ISNULL);
4019       VdbeCoverageIf(v, op==TK_NOTNULL);
4020       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4021       sqlite3VdbeJumpHere(v, addr);
4022       break;
4023     }
4024     case TK_AGG_FUNCTION: {
4025       AggInfo *pInfo = pExpr->pAggInfo;
4026       if( pInfo==0 ){
4027         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4028         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
4029       }else{
4030         return pInfo->aFunc[pExpr->iAgg].iMem;
4031       }
4032       break;
4033     }
4034     case TK_FUNCTION: {
4035       ExprList *pFarg;       /* List of function arguments */
4036       int nFarg;             /* Number of function arguments */
4037       FuncDef *pDef;         /* The function definition object */
4038       const char *zId;       /* The function name */
4039       u32 constMask = 0;     /* Mask of function arguments that are constant */
4040       int i;                 /* Loop counter */
4041       sqlite3 *db = pParse->db;  /* The database connection */
4042       u8 enc = ENC(db);      /* The text encoding used by this database */
4043       CollSeq *pColl = 0;    /* A collating sequence */
4044 
4045 #ifndef SQLITE_OMIT_WINDOWFUNC
4046       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4047         return pExpr->y.pWin->regResult;
4048       }
4049 #endif
4050 
4051       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4052         /* SQL functions can be expensive. So try to move constant functions
4053         ** out of the inner loop, even if that means an extra OP_Copy. */
4054         return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4055       }
4056       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4057       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
4058         pFarg = 0;
4059       }else{
4060         pFarg = pExpr->x.pList;
4061       }
4062       nFarg = pFarg ? pFarg->nExpr : 0;
4063       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4064       zId = pExpr->u.zToken;
4065       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4066 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4067       if( pDef==0 && pParse->explain ){
4068         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4069       }
4070 #endif
4071       if( pDef==0 || pDef->xFinalize!=0 ){
4072         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
4073         break;
4074       }
4075       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4076         return exprCodeInlineFunction(pParse, pFarg,
4077              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4078       }
4079 
4080       for(i=0; i<nFarg; i++){
4081         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4082           testcase( i==31 );
4083           constMask |= MASKBIT32(i);
4084         }
4085         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4086           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4087         }
4088       }
4089       if( pFarg ){
4090         if( constMask ){
4091           r1 = pParse->nMem+1;
4092           pParse->nMem += nFarg;
4093         }else{
4094           r1 = sqlite3GetTempRange(pParse, nFarg);
4095         }
4096 
4097         /* For length() and typeof() functions with a column argument,
4098         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4099         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4100         ** loading.
4101         */
4102         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4103           u8 exprOp;
4104           assert( nFarg==1 );
4105           assert( pFarg->a[0].pExpr!=0 );
4106           exprOp = pFarg->a[0].pExpr->op;
4107           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4108             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4109             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4110             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4111             pFarg->a[0].pExpr->op2 =
4112                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4113           }
4114         }
4115 
4116         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4117                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4118       }else{
4119         r1 = 0;
4120       }
4121 #ifndef SQLITE_OMIT_VIRTUALTABLE
4122       /* Possibly overload the function if the first argument is
4123       ** a virtual table column.
4124       **
4125       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4126       ** second argument, not the first, as the argument to test to
4127       ** see if it is a column in a virtual table.  This is done because
4128       ** the left operand of infix functions (the operand we want to
4129       ** control overloading) ends up as the second argument to the
4130       ** function.  The expression "A glob B" is equivalent to
4131       ** "glob(B,A).  We want to use the A in "A glob B" to test
4132       ** for function overloading.  But we use the B term in "glob(B,A)".
4133       */
4134       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4135         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4136       }else if( nFarg>0 ){
4137         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4138       }
4139 #endif
4140       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4141         if( !pColl ) pColl = db->pDfltColl;
4142         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4143       }
4144 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4145       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
4146         Expr *pArg = pFarg->a[0].pExpr;
4147         if( pArg->op==TK_COLUMN ){
4148           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4149         }else{
4150           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4151         }
4152       }else
4153 #endif
4154       {
4155         sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4156                                    pDef, pExpr->op2);
4157       }
4158       if( nFarg ){
4159         if( constMask==0 ){
4160           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4161         }else{
4162           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4163         }
4164       }
4165       return target;
4166     }
4167 #ifndef SQLITE_OMIT_SUBQUERY
4168     case TK_EXISTS:
4169     case TK_SELECT: {
4170       int nCol;
4171       testcase( op==TK_EXISTS );
4172       testcase( op==TK_SELECT );
4173       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
4174         sqlite3SubselectError(pParse, nCol, 1);
4175       }else{
4176         return sqlite3CodeSubselect(pParse, pExpr);
4177       }
4178       break;
4179     }
4180     case TK_SELECT_COLUMN: {
4181       int n;
4182       if( pExpr->pLeft->iTable==0 ){
4183         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
4184       }
4185       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
4186       if( pExpr->iTable!=0
4187        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
4188       ){
4189         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4190                                 pExpr->iTable, n);
4191       }
4192       return pExpr->pLeft->iTable + pExpr->iColumn;
4193     }
4194     case TK_IN: {
4195       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4196       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4197       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4198       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4199       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4200       sqlite3VdbeResolveLabel(v, destIfFalse);
4201       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4202       sqlite3VdbeResolveLabel(v, destIfNull);
4203       return target;
4204     }
4205 #endif /* SQLITE_OMIT_SUBQUERY */
4206 
4207 
4208     /*
4209     **    x BETWEEN y AND z
4210     **
4211     ** This is equivalent to
4212     **
4213     **    x>=y AND x<=z
4214     **
4215     ** X is stored in pExpr->pLeft.
4216     ** Y is stored in pExpr->pList->a[0].pExpr.
4217     ** Z is stored in pExpr->pList->a[1].pExpr.
4218     */
4219     case TK_BETWEEN: {
4220       exprCodeBetween(pParse, pExpr, target, 0, 0);
4221       return target;
4222     }
4223     case TK_SPAN:
4224     case TK_COLLATE:
4225     case TK_UPLUS: {
4226       pExpr = pExpr->pLeft;
4227       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4228     }
4229 
4230     case TK_TRIGGER: {
4231       /* If the opcode is TK_TRIGGER, then the expression is a reference
4232       ** to a column in the new.* or old.* pseudo-tables available to
4233       ** trigger programs. In this case Expr.iTable is set to 1 for the
4234       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4235       ** is set to the column of the pseudo-table to read, or to -1 to
4236       ** read the rowid field.
4237       **
4238       ** The expression is implemented using an OP_Param opcode. The p1
4239       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4240       ** to reference another column of the old.* pseudo-table, where
4241       ** i is the index of the column. For a new.rowid reference, p1 is
4242       ** set to (n+1), where n is the number of columns in each pseudo-table.
4243       ** For a reference to any other column in the new.* pseudo-table, p1
4244       ** is set to (n+2+i), where n and i are as defined previously. For
4245       ** example, if the table on which triggers are being fired is
4246       ** declared as:
4247       **
4248       **   CREATE TABLE t1(a, b);
4249       **
4250       ** Then p1 is interpreted as follows:
4251       **
4252       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4253       **   p1==1   ->    old.a         p1==4   ->    new.a
4254       **   p1==2   ->    old.b         p1==5   ->    new.b
4255       */
4256       Table *pTab = pExpr->y.pTab;
4257       int iCol = pExpr->iColumn;
4258       int p1 = pExpr->iTable * (pTab->nCol+1) + 1
4259                      + sqlite3TableColumnToStorage(pTab, iCol);
4260 
4261       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4262       assert( iCol>=-1 && iCol<pTab->nCol );
4263       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4264       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4265 
4266       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4267       VdbeComment((v, "r[%d]=%s.%s", target,
4268         (pExpr->iTable ? "new" : "old"),
4269         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName)
4270       ));
4271 
4272 #ifndef SQLITE_OMIT_FLOATING_POINT
4273       /* If the column has REAL affinity, it may currently be stored as an
4274       ** integer. Use OP_RealAffinity to make sure it is really real.
4275       **
4276       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4277       ** floating point when extracting it from the record.  */
4278       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4279         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4280       }
4281 #endif
4282       break;
4283     }
4284 
4285     case TK_VECTOR: {
4286       sqlite3ErrorMsg(pParse, "row value misused");
4287       break;
4288     }
4289 
4290     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4291     ** that derive from the right-hand table of a LEFT JOIN.  The
4292     ** Expr.iTable value is the table number for the right-hand table.
4293     ** The expression is only evaluated if that table is not currently
4294     ** on a LEFT JOIN NULL row.
4295     */
4296     case TK_IF_NULL_ROW: {
4297       int addrINR;
4298       u8 okConstFactor = pParse->okConstFactor;
4299       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4300       /* Temporarily disable factoring of constant expressions, since
4301       ** even though expressions may appear to be constant, they are not
4302       ** really constant because they originate from the right-hand side
4303       ** of a LEFT JOIN. */
4304       pParse->okConstFactor = 0;
4305       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4306       pParse->okConstFactor = okConstFactor;
4307       sqlite3VdbeJumpHere(v, addrINR);
4308       sqlite3VdbeChangeP3(v, addrINR, inReg);
4309       break;
4310     }
4311 
4312     /*
4313     ** Form A:
4314     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4315     **
4316     ** Form B:
4317     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4318     **
4319     ** Form A is can be transformed into the equivalent form B as follows:
4320     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4321     **        WHEN x=eN THEN rN ELSE y END
4322     **
4323     ** X (if it exists) is in pExpr->pLeft.
4324     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4325     ** odd.  The Y is also optional.  If the number of elements in x.pList
4326     ** is even, then Y is omitted and the "otherwise" result is NULL.
4327     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4328     **
4329     ** The result of the expression is the Ri for the first matching Ei,
4330     ** or if there is no matching Ei, the ELSE term Y, or if there is
4331     ** no ELSE term, NULL.
4332     */
4333     case TK_CASE: {
4334       int endLabel;                     /* GOTO label for end of CASE stmt */
4335       int nextCase;                     /* GOTO label for next WHEN clause */
4336       int nExpr;                        /* 2x number of WHEN terms */
4337       int i;                            /* Loop counter */
4338       ExprList *pEList;                 /* List of WHEN terms */
4339       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4340       Expr opCompare;                   /* The X==Ei expression */
4341       Expr *pX;                         /* The X expression */
4342       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4343       Expr *pDel = 0;
4344       sqlite3 *db = pParse->db;
4345 
4346       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4347       assert(pExpr->x.pList->nExpr > 0);
4348       pEList = pExpr->x.pList;
4349       aListelem = pEList->a;
4350       nExpr = pEList->nExpr;
4351       endLabel = sqlite3VdbeMakeLabel(pParse);
4352       if( (pX = pExpr->pLeft)!=0 ){
4353         pDel = sqlite3ExprDup(db, pX, 0);
4354         if( db->mallocFailed ){
4355           sqlite3ExprDelete(db, pDel);
4356           break;
4357         }
4358         testcase( pX->op==TK_COLUMN );
4359         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4360         testcase( regFree1==0 );
4361         memset(&opCompare, 0, sizeof(opCompare));
4362         opCompare.op = TK_EQ;
4363         opCompare.pLeft = pDel;
4364         pTest = &opCompare;
4365         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4366         ** The value in regFree1 might get SCopy-ed into the file result.
4367         ** So make sure that the regFree1 register is not reused for other
4368         ** purposes and possibly overwritten.  */
4369         regFree1 = 0;
4370       }
4371       for(i=0; i<nExpr-1; i=i+2){
4372         if( pX ){
4373           assert( pTest!=0 );
4374           opCompare.pRight = aListelem[i].pExpr;
4375         }else{
4376           pTest = aListelem[i].pExpr;
4377         }
4378         nextCase = sqlite3VdbeMakeLabel(pParse);
4379         testcase( pTest->op==TK_COLUMN );
4380         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4381         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4382         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4383         sqlite3VdbeGoto(v, endLabel);
4384         sqlite3VdbeResolveLabel(v, nextCase);
4385       }
4386       if( (nExpr&1)!=0 ){
4387         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4388       }else{
4389         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4390       }
4391       sqlite3ExprDelete(db, pDel);
4392       sqlite3VdbeResolveLabel(v, endLabel);
4393       break;
4394     }
4395 #ifndef SQLITE_OMIT_TRIGGER
4396     case TK_RAISE: {
4397       assert( pExpr->affExpr==OE_Rollback
4398            || pExpr->affExpr==OE_Abort
4399            || pExpr->affExpr==OE_Fail
4400            || pExpr->affExpr==OE_Ignore
4401       );
4402       if( !pParse->pTriggerTab ){
4403         sqlite3ErrorMsg(pParse,
4404                        "RAISE() may only be used within a trigger-program");
4405         return 0;
4406       }
4407       if( pExpr->affExpr==OE_Abort ){
4408         sqlite3MayAbort(pParse);
4409       }
4410       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4411       if( pExpr->affExpr==OE_Ignore ){
4412         sqlite3VdbeAddOp4(
4413             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4414         VdbeCoverage(v);
4415       }else{
4416         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4417                               pExpr->affExpr, pExpr->u.zToken, 0, 0);
4418       }
4419 
4420       break;
4421     }
4422 #endif
4423   }
4424   sqlite3ReleaseTempReg(pParse, regFree1);
4425   sqlite3ReleaseTempReg(pParse, regFree2);
4426   return inReg;
4427 }
4428 
4429 /*
4430 ** Factor out the code of the given expression to initialization time.
4431 **
4432 ** If regDest>=0 then the result is always stored in that register and the
4433 ** result is not reusable.  If regDest<0 then this routine is free to
4434 ** store the value whereever it wants.  The register where the expression
4435 ** is stored is returned.  When regDest<0, two identical expressions will
4436 ** code to the same register.
4437 */
4438 int sqlite3ExprCodeAtInit(
4439   Parse *pParse,    /* Parsing context */
4440   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4441   int regDest       /* Store the value in this register */
4442 ){
4443   ExprList *p;
4444   assert( ConstFactorOk(pParse) );
4445   p = pParse->pConstExpr;
4446   if( regDest<0 && p ){
4447     struct ExprList_item *pItem;
4448     int i;
4449     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4450       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4451         return pItem->u.iConstExprReg;
4452       }
4453     }
4454   }
4455   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4456   p = sqlite3ExprListAppend(pParse, p, pExpr);
4457   if( p ){
4458      struct ExprList_item *pItem = &p->a[p->nExpr-1];
4459      pItem->reusable = regDest<0;
4460      if( regDest<0 ) regDest = ++pParse->nMem;
4461      pItem->u.iConstExprReg = regDest;
4462   }
4463   pParse->pConstExpr = p;
4464   return regDest;
4465 }
4466 
4467 /*
4468 ** Generate code to evaluate an expression and store the results
4469 ** into a register.  Return the register number where the results
4470 ** are stored.
4471 **
4472 ** If the register is a temporary register that can be deallocated,
4473 ** then write its number into *pReg.  If the result register is not
4474 ** a temporary, then set *pReg to zero.
4475 **
4476 ** If pExpr is a constant, then this routine might generate this
4477 ** code to fill the register in the initialization section of the
4478 ** VDBE program, in order to factor it out of the evaluation loop.
4479 */
4480 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4481   int r2;
4482   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4483   if( ConstFactorOk(pParse)
4484    && pExpr->op!=TK_REGISTER
4485    && sqlite3ExprIsConstantNotJoin(pExpr)
4486   ){
4487     *pReg  = 0;
4488     r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4489   }else{
4490     int r1 = sqlite3GetTempReg(pParse);
4491     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4492     if( r2==r1 ){
4493       *pReg = r1;
4494     }else{
4495       sqlite3ReleaseTempReg(pParse, r1);
4496       *pReg = 0;
4497     }
4498   }
4499   return r2;
4500 }
4501 
4502 /*
4503 ** Generate code that will evaluate expression pExpr and store the
4504 ** results in register target.  The results are guaranteed to appear
4505 ** in register target.
4506 */
4507 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4508   int inReg;
4509 
4510   assert( target>0 && target<=pParse->nMem );
4511   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4512   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4513   if( inReg!=target && pParse->pVdbe ){
4514     u8 op;
4515     if( ExprHasProperty(pExpr,EP_Subquery) ){
4516       op = OP_Copy;
4517     }else{
4518       op = OP_SCopy;
4519     }
4520     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4521   }
4522 }
4523 
4524 /*
4525 ** Make a transient copy of expression pExpr and then code it using
4526 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4527 ** except that the input expression is guaranteed to be unchanged.
4528 */
4529 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4530   sqlite3 *db = pParse->db;
4531   pExpr = sqlite3ExprDup(db, pExpr, 0);
4532   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4533   sqlite3ExprDelete(db, pExpr);
4534 }
4535 
4536 /*
4537 ** Generate code that will evaluate expression pExpr and store the
4538 ** results in register target.  The results are guaranteed to appear
4539 ** in register target.  If the expression is constant, then this routine
4540 ** might choose to code the expression at initialization time.
4541 */
4542 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4543   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4544     sqlite3ExprCodeAtInit(pParse, pExpr, target);
4545   }else{
4546     sqlite3ExprCode(pParse, pExpr, target);
4547   }
4548 }
4549 
4550 /*
4551 ** Generate code that pushes the value of every element of the given
4552 ** expression list into a sequence of registers beginning at target.
4553 **
4554 ** Return the number of elements evaluated.  The number returned will
4555 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4556 ** is defined.
4557 **
4558 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4559 ** filled using OP_SCopy.  OP_Copy must be used instead.
4560 **
4561 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4562 ** factored out into initialization code.
4563 **
4564 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4565 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4566 ** in registers at srcReg, and so the value can be copied from there.
4567 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4568 ** are simply omitted rather than being copied from srcReg.
4569 */
4570 int sqlite3ExprCodeExprList(
4571   Parse *pParse,     /* Parsing context */
4572   ExprList *pList,   /* The expression list to be coded */
4573   int target,        /* Where to write results */
4574   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4575   u8 flags           /* SQLITE_ECEL_* flags */
4576 ){
4577   struct ExprList_item *pItem;
4578   int i, j, n;
4579   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4580   Vdbe *v = pParse->pVdbe;
4581   assert( pList!=0 );
4582   assert( target>0 );
4583   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4584   n = pList->nExpr;
4585   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4586   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4587     Expr *pExpr = pItem->pExpr;
4588 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4589     if( pItem->bSorterRef ){
4590       i--;
4591       n--;
4592     }else
4593 #endif
4594     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4595       if( flags & SQLITE_ECEL_OMITREF ){
4596         i--;
4597         n--;
4598       }else{
4599         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4600       }
4601     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4602            && sqlite3ExprIsConstantNotJoin(pExpr)
4603     ){
4604       sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4605     }else{
4606       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4607       if( inReg!=target+i ){
4608         VdbeOp *pOp;
4609         if( copyOp==OP_Copy
4610          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4611          && pOp->p1+pOp->p3+1==inReg
4612          && pOp->p2+pOp->p3+1==target+i
4613          && pOp->p5==0  /* The do-not-merge flag must be clear */
4614         ){
4615           pOp->p3++;
4616         }else{
4617           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4618         }
4619       }
4620     }
4621   }
4622   return n;
4623 }
4624 
4625 /*
4626 ** Generate code for a BETWEEN operator.
4627 **
4628 **    x BETWEEN y AND z
4629 **
4630 ** The above is equivalent to
4631 **
4632 **    x>=y AND x<=z
4633 **
4634 ** Code it as such, taking care to do the common subexpression
4635 ** elimination of x.
4636 **
4637 ** The xJumpIf parameter determines details:
4638 **
4639 **    NULL:                   Store the boolean result in reg[dest]
4640 **    sqlite3ExprIfTrue:      Jump to dest if true
4641 **    sqlite3ExprIfFalse:     Jump to dest if false
4642 **
4643 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4644 */
4645 static void exprCodeBetween(
4646   Parse *pParse,    /* Parsing and code generating context */
4647   Expr *pExpr,      /* The BETWEEN expression */
4648   int dest,         /* Jump destination or storage location */
4649   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4650   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4651 ){
4652   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4653   Expr compLeft;    /* The  x>=y  term */
4654   Expr compRight;   /* The  x<=z  term */
4655   int regFree1 = 0; /* Temporary use register */
4656   Expr *pDel = 0;
4657   sqlite3 *db = pParse->db;
4658 
4659   memset(&compLeft, 0, sizeof(Expr));
4660   memset(&compRight, 0, sizeof(Expr));
4661   memset(&exprAnd, 0, sizeof(Expr));
4662 
4663   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4664   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4665   if( db->mallocFailed==0 ){
4666     exprAnd.op = TK_AND;
4667     exprAnd.pLeft = &compLeft;
4668     exprAnd.pRight = &compRight;
4669     compLeft.op = TK_GE;
4670     compLeft.pLeft = pDel;
4671     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4672     compRight.op = TK_LE;
4673     compRight.pLeft = pDel;
4674     compRight.pRight = pExpr->x.pList->a[1].pExpr;
4675     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4676     if( xJump ){
4677       xJump(pParse, &exprAnd, dest, jumpIfNull);
4678     }else{
4679       /* Mark the expression is being from the ON or USING clause of a join
4680       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4681       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4682       ** for clarity, but we are out of bits in the Expr.flags field so we
4683       ** have to reuse the EP_FromJoin bit.  Bummer. */
4684       pDel->flags |= EP_FromJoin;
4685       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4686     }
4687     sqlite3ReleaseTempReg(pParse, regFree1);
4688   }
4689   sqlite3ExprDelete(db, pDel);
4690 
4691   /* Ensure adequate test coverage */
4692   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4693   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4694   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4695   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4696   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4697   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4698   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4699   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4700   testcase( xJump==0 );
4701 }
4702 
4703 /*
4704 ** Generate code for a boolean expression such that a jump is made
4705 ** to the label "dest" if the expression is true but execution
4706 ** continues straight thru if the expression is false.
4707 **
4708 ** If the expression evaluates to NULL (neither true nor false), then
4709 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4710 **
4711 ** This code depends on the fact that certain token values (ex: TK_EQ)
4712 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4713 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4714 ** the make process cause these values to align.  Assert()s in the code
4715 ** below verify that the numbers are aligned correctly.
4716 */
4717 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4718   Vdbe *v = pParse->pVdbe;
4719   int op = 0;
4720   int regFree1 = 0;
4721   int regFree2 = 0;
4722   int r1, r2;
4723 
4724   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4725   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4726   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4727   op = pExpr->op;
4728   switch( op ){
4729     case TK_AND:
4730     case TK_OR: {
4731       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4732       if( pAlt!=pExpr ){
4733         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
4734       }else if( op==TK_AND ){
4735         int d2 = sqlite3VdbeMakeLabel(pParse);
4736         testcase( jumpIfNull==0 );
4737         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
4738                            jumpIfNull^SQLITE_JUMPIFNULL);
4739         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4740         sqlite3VdbeResolveLabel(v, d2);
4741       }else{
4742         testcase( jumpIfNull==0 );
4743         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4744         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4745       }
4746       break;
4747     }
4748     case TK_NOT: {
4749       testcase( jumpIfNull==0 );
4750       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4751       break;
4752     }
4753     case TK_TRUTH: {
4754       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4755       int isTrue;     /* IS TRUE or IS NOT TRUE */
4756       testcase( jumpIfNull==0 );
4757       isNot = pExpr->op2==TK_ISNOT;
4758       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4759       testcase( isTrue && isNot );
4760       testcase( !isTrue && isNot );
4761       if( isTrue ^ isNot ){
4762         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4763                           isNot ? SQLITE_JUMPIFNULL : 0);
4764       }else{
4765         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4766                            isNot ? SQLITE_JUMPIFNULL : 0);
4767       }
4768       break;
4769     }
4770     case TK_IS:
4771     case TK_ISNOT:
4772       testcase( op==TK_IS );
4773       testcase( op==TK_ISNOT );
4774       op = (op==TK_IS) ? TK_EQ : TK_NE;
4775       jumpIfNull = SQLITE_NULLEQ;
4776       /* Fall thru */
4777     case TK_LT:
4778     case TK_LE:
4779     case TK_GT:
4780     case TK_GE:
4781     case TK_NE:
4782     case TK_EQ: {
4783       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4784       testcase( jumpIfNull==0 );
4785       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4786       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4787       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4788                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
4789       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4790       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4791       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4792       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4793       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4794       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4795       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4796       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4797       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4798       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4799       testcase( regFree1==0 );
4800       testcase( regFree2==0 );
4801       break;
4802     }
4803     case TK_ISNULL:
4804     case TK_NOTNULL: {
4805       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4806       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4807       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4808       sqlite3VdbeAddOp2(v, op, r1, dest);
4809       VdbeCoverageIf(v, op==TK_ISNULL);
4810       VdbeCoverageIf(v, op==TK_NOTNULL);
4811       testcase( regFree1==0 );
4812       break;
4813     }
4814     case TK_BETWEEN: {
4815       testcase( jumpIfNull==0 );
4816       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4817       break;
4818     }
4819 #ifndef SQLITE_OMIT_SUBQUERY
4820     case TK_IN: {
4821       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4822       int destIfNull = jumpIfNull ? dest : destIfFalse;
4823       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4824       sqlite3VdbeGoto(v, dest);
4825       sqlite3VdbeResolveLabel(v, destIfFalse);
4826       break;
4827     }
4828 #endif
4829     default: {
4830     default_expr:
4831       if( ExprAlwaysTrue(pExpr) ){
4832         sqlite3VdbeGoto(v, dest);
4833       }else if( ExprAlwaysFalse(pExpr) ){
4834         /* No-op */
4835       }else{
4836         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4837         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4838         VdbeCoverage(v);
4839         testcase( regFree1==0 );
4840         testcase( jumpIfNull==0 );
4841       }
4842       break;
4843     }
4844   }
4845   sqlite3ReleaseTempReg(pParse, regFree1);
4846   sqlite3ReleaseTempReg(pParse, regFree2);
4847 }
4848 
4849 /*
4850 ** Generate code for a boolean expression such that a jump is made
4851 ** to the label "dest" if the expression is false but execution
4852 ** continues straight thru if the expression is true.
4853 **
4854 ** If the expression evaluates to NULL (neither true nor false) then
4855 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4856 ** is 0.
4857 */
4858 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4859   Vdbe *v = pParse->pVdbe;
4860   int op = 0;
4861   int regFree1 = 0;
4862   int regFree2 = 0;
4863   int r1, r2;
4864 
4865   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4866   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4867   if( pExpr==0 )    return;
4868 
4869   /* The value of pExpr->op and op are related as follows:
4870   **
4871   **       pExpr->op            op
4872   **       ---------          ----------
4873   **       TK_ISNULL          OP_NotNull
4874   **       TK_NOTNULL         OP_IsNull
4875   **       TK_NE              OP_Eq
4876   **       TK_EQ              OP_Ne
4877   **       TK_GT              OP_Le
4878   **       TK_LE              OP_Gt
4879   **       TK_GE              OP_Lt
4880   **       TK_LT              OP_Ge
4881   **
4882   ** For other values of pExpr->op, op is undefined and unused.
4883   ** The value of TK_ and OP_ constants are arranged such that we
4884   ** can compute the mapping above using the following expression.
4885   ** Assert()s verify that the computation is correct.
4886   */
4887   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4888 
4889   /* Verify correct alignment of TK_ and OP_ constants
4890   */
4891   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4892   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4893   assert( pExpr->op!=TK_NE || op==OP_Eq );
4894   assert( pExpr->op!=TK_EQ || op==OP_Ne );
4895   assert( pExpr->op!=TK_LT || op==OP_Ge );
4896   assert( pExpr->op!=TK_LE || op==OP_Gt );
4897   assert( pExpr->op!=TK_GT || op==OP_Le );
4898   assert( pExpr->op!=TK_GE || op==OP_Lt );
4899 
4900   switch( pExpr->op ){
4901     case TK_AND:
4902     case TK_OR: {
4903       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4904       if( pAlt!=pExpr ){
4905         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
4906       }else if( pExpr->op==TK_AND ){
4907         testcase( jumpIfNull==0 );
4908         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4909         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4910       }else{
4911         int d2 = sqlite3VdbeMakeLabel(pParse);
4912         testcase( jumpIfNull==0 );
4913         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
4914                           jumpIfNull^SQLITE_JUMPIFNULL);
4915         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4916         sqlite3VdbeResolveLabel(v, d2);
4917       }
4918       break;
4919     }
4920     case TK_NOT: {
4921       testcase( jumpIfNull==0 );
4922       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4923       break;
4924     }
4925     case TK_TRUTH: {
4926       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
4927       int isTrue;  /* IS TRUE or IS NOT TRUE */
4928       testcase( jumpIfNull==0 );
4929       isNot = pExpr->op2==TK_ISNOT;
4930       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4931       testcase( isTrue && isNot );
4932       testcase( !isTrue && isNot );
4933       if( isTrue ^ isNot ){
4934         /* IS TRUE and IS NOT FALSE */
4935         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4936                            isNot ? 0 : SQLITE_JUMPIFNULL);
4937 
4938       }else{
4939         /* IS FALSE and IS NOT TRUE */
4940         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4941                           isNot ? 0 : SQLITE_JUMPIFNULL);
4942       }
4943       break;
4944     }
4945     case TK_IS:
4946     case TK_ISNOT:
4947       testcase( pExpr->op==TK_IS );
4948       testcase( pExpr->op==TK_ISNOT );
4949       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4950       jumpIfNull = SQLITE_NULLEQ;
4951       /* Fall thru */
4952     case TK_LT:
4953     case TK_LE:
4954     case TK_GT:
4955     case TK_GE:
4956     case TK_NE:
4957     case TK_EQ: {
4958       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4959       testcase( jumpIfNull==0 );
4960       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4961       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4962       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4963                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
4964       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4965       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4966       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4967       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4968       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4969       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4970       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4971       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4972       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4973       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4974       testcase( regFree1==0 );
4975       testcase( regFree2==0 );
4976       break;
4977     }
4978     case TK_ISNULL:
4979     case TK_NOTNULL: {
4980       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4981       sqlite3VdbeAddOp2(v, op, r1, dest);
4982       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
4983       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
4984       testcase( regFree1==0 );
4985       break;
4986     }
4987     case TK_BETWEEN: {
4988       testcase( jumpIfNull==0 );
4989       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4990       break;
4991     }
4992 #ifndef SQLITE_OMIT_SUBQUERY
4993     case TK_IN: {
4994       if( jumpIfNull ){
4995         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4996       }else{
4997         int destIfNull = sqlite3VdbeMakeLabel(pParse);
4998         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4999         sqlite3VdbeResolveLabel(v, destIfNull);
5000       }
5001       break;
5002     }
5003 #endif
5004     default: {
5005     default_expr:
5006       if( ExprAlwaysFalse(pExpr) ){
5007         sqlite3VdbeGoto(v, dest);
5008       }else if( ExprAlwaysTrue(pExpr) ){
5009         /* no-op */
5010       }else{
5011         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5012         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5013         VdbeCoverage(v);
5014         testcase( regFree1==0 );
5015         testcase( jumpIfNull==0 );
5016       }
5017       break;
5018     }
5019   }
5020   sqlite3ReleaseTempReg(pParse, regFree1);
5021   sqlite3ReleaseTempReg(pParse, regFree2);
5022 }
5023 
5024 /*
5025 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5026 ** code generation, and that copy is deleted after code generation. This
5027 ** ensures that the original pExpr is unchanged.
5028 */
5029 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5030   sqlite3 *db = pParse->db;
5031   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5032   if( db->mallocFailed==0 ){
5033     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5034   }
5035   sqlite3ExprDelete(db, pCopy);
5036 }
5037 
5038 /*
5039 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5040 ** type of expression.
5041 **
5042 ** If pExpr is a simple SQL value - an integer, real, string, blob
5043 ** or NULL value - then the VDBE currently being prepared is configured
5044 ** to re-prepare each time a new value is bound to variable pVar.
5045 **
5046 ** Additionally, if pExpr is a simple SQL value and the value is the
5047 ** same as that currently bound to variable pVar, non-zero is returned.
5048 ** Otherwise, if the values are not the same or if pExpr is not a simple
5049 ** SQL value, zero is returned.
5050 */
5051 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
5052   int res = 0;
5053   int iVar;
5054   sqlite3_value *pL, *pR = 0;
5055 
5056   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5057   if( pR ){
5058     iVar = pVar->iColumn;
5059     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5060     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5061     if( pL ){
5062       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5063         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5064       }
5065       res =  0==sqlite3MemCompare(pL, pR, 0);
5066     }
5067     sqlite3ValueFree(pR);
5068     sqlite3ValueFree(pL);
5069   }
5070 
5071   return res;
5072 }
5073 
5074 /*
5075 ** Do a deep comparison of two expression trees.  Return 0 if the two
5076 ** expressions are completely identical.  Return 1 if they differ only
5077 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5078 ** other than the top-level COLLATE operator.
5079 **
5080 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5081 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5082 **
5083 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5084 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5085 **
5086 ** Sometimes this routine will return 2 even if the two expressions
5087 ** really are equivalent.  If we cannot prove that the expressions are
5088 ** identical, we return 2 just to be safe.  So if this routine
5089 ** returns 2, then you do not really know for certain if the two
5090 ** expressions are the same.  But if you get a 0 or 1 return, then you
5091 ** can be sure the expressions are the same.  In the places where
5092 ** this routine is used, it does not hurt to get an extra 2 - that
5093 ** just might result in some slightly slower code.  But returning
5094 ** an incorrect 0 or 1 could lead to a malfunction.
5095 **
5096 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5097 ** pParse->pReprepare can be matched against literals in pB.  The
5098 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5099 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5100 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5101 ** pB causes a return value of 2.
5102 */
5103 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
5104   u32 combinedFlags;
5105   if( pA==0 || pB==0 ){
5106     return pB==pA ? 0 : 2;
5107   }
5108   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5109     return 0;
5110   }
5111   combinedFlags = pA->flags | pB->flags;
5112   if( combinedFlags & EP_IntValue ){
5113     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5114       return 0;
5115     }
5116     return 2;
5117   }
5118   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5119     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5120       return 1;
5121     }
5122     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5123       return 1;
5124     }
5125     return 2;
5126   }
5127   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
5128     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5129       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5130 #ifndef SQLITE_OMIT_WINDOWFUNC
5131       assert( pA->op==pB->op );
5132       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5133         return 2;
5134       }
5135       if( ExprHasProperty(pA,EP_WinFunc) ){
5136         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5137           return 2;
5138         }
5139       }
5140 #endif
5141     }else if( pA->op==TK_NULL ){
5142       return 0;
5143     }else if( pA->op==TK_COLLATE ){
5144       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5145     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
5146       return 2;
5147     }
5148   }
5149   if( (pA->flags & (EP_Distinct|EP_Commuted))
5150      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5151   if( (combinedFlags & EP_TokenOnly)==0 ){
5152     if( combinedFlags & EP_xIsSelect ) return 2;
5153     if( (combinedFlags & EP_FixedCol)==0
5154      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5155     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5156     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5157     if( pA->op!=TK_STRING
5158      && pA->op!=TK_TRUEFALSE
5159      && (combinedFlags & EP_Reduced)==0
5160     ){
5161       if( pA->iColumn!=pB->iColumn ) return 2;
5162       if( pA->op2!=pB->op2 ){
5163         if( pA->op==TK_TRUTH ) return 2;
5164         if( pA->op==TK_FUNCTION && iTab<0 ){
5165           /* Ex: CREATE TABLE t1(a CHECK( a<julianday('now') ));
5166           **     INSERT INTO t1(a) VALUES(julianday('now')+10);
5167           ** Without this test, sqlite3ExprCodeAtInit() will run on the
5168           ** the julianday() of INSERT first, and remember that expression.
5169           ** Then sqlite3ExprCodeInit() will see the julianday() in the CHECK
5170           ** constraint as redundant, reusing the one from the INSERT, even
5171           ** though the julianday() in INSERT lacks the critical NC_IsCheck
5172           ** flag.  See ticket [830277d9db6c3ba1] (2019-10-30)
5173           */
5174           return 2;
5175         }
5176       }
5177       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5178         return 2;
5179       }
5180     }
5181   }
5182   return 0;
5183 }
5184 
5185 /*
5186 ** Compare two ExprList objects.  Return 0 if they are identical and
5187 ** non-zero if they differ in any way.
5188 **
5189 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5190 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5191 **
5192 ** This routine might return non-zero for equivalent ExprLists.  The
5193 ** only consequence will be disabled optimizations.  But this routine
5194 ** must never return 0 if the two ExprList objects are different, or
5195 ** a malfunction will result.
5196 **
5197 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5198 ** always differs from a non-NULL pointer.
5199 */
5200 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
5201   int i;
5202   if( pA==0 && pB==0 ) return 0;
5203   if( pA==0 || pB==0 ) return 1;
5204   if( pA->nExpr!=pB->nExpr ) return 1;
5205   for(i=0; i<pA->nExpr; i++){
5206     Expr *pExprA = pA->a[i].pExpr;
5207     Expr *pExprB = pB->a[i].pExpr;
5208     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
5209     if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1;
5210   }
5211   return 0;
5212 }
5213 
5214 /*
5215 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5216 ** are ignored.
5217 */
5218 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
5219   return sqlite3ExprCompare(0,
5220              sqlite3ExprSkipCollateAndLikely(pA),
5221              sqlite3ExprSkipCollateAndLikely(pB),
5222              iTab);
5223 }
5224 
5225 /*
5226 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5227 **
5228 ** Or if seenNot is true, return non-zero if Expr p can only be
5229 ** non-NULL if pNN is not NULL
5230 */
5231 static int exprImpliesNotNull(
5232   Parse *pParse,      /* Parsing context */
5233   Expr *p,            /* The expression to be checked */
5234   Expr *pNN,          /* The expression that is NOT NULL */
5235   int iTab,           /* Table being evaluated */
5236   int seenNot         /* Return true only if p can be any non-NULL value */
5237 ){
5238   assert( p );
5239   assert( pNN );
5240   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5241     return pNN->op!=TK_NULL;
5242   }
5243   switch( p->op ){
5244     case TK_IN: {
5245       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5246       assert( ExprHasProperty(p,EP_xIsSelect)
5247            || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5248       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5249     }
5250     case TK_BETWEEN: {
5251       ExprList *pList = p->x.pList;
5252       assert( pList!=0 );
5253       assert( pList->nExpr==2 );
5254       if( seenNot ) return 0;
5255       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5256        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5257       ){
5258         return 1;
5259       }
5260       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5261     }
5262     case TK_EQ:
5263     case TK_NE:
5264     case TK_LT:
5265     case TK_LE:
5266     case TK_GT:
5267     case TK_GE:
5268     case TK_PLUS:
5269     case TK_MINUS:
5270     case TK_BITOR:
5271     case TK_LSHIFT:
5272     case TK_RSHIFT:
5273     case TK_CONCAT:
5274       seenNot = 1;
5275       /* Fall thru */
5276     case TK_STAR:
5277     case TK_REM:
5278     case TK_BITAND:
5279     case TK_SLASH: {
5280       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5281       /* Fall thru into the next case */
5282     }
5283     case TK_SPAN:
5284     case TK_COLLATE:
5285     case TK_UPLUS:
5286     case TK_UMINUS: {
5287       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5288     }
5289     case TK_TRUTH: {
5290       if( seenNot ) return 0;
5291       if( p->op2!=TK_IS ) return 0;
5292       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5293     }
5294     case TK_BITNOT:
5295     case TK_NOT: {
5296       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5297     }
5298   }
5299   return 0;
5300 }
5301 
5302 /*
5303 ** Return true if we can prove the pE2 will always be true if pE1 is
5304 ** true.  Return false if we cannot complete the proof or if pE2 might
5305 ** be false.  Examples:
5306 **
5307 **     pE1: x==5       pE2: x==5             Result: true
5308 **     pE1: x>0        pE2: x==5             Result: false
5309 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5310 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5311 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5312 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5313 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5314 **
5315 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5316 ** Expr.iTable<0 then assume a table number given by iTab.
5317 **
5318 ** If pParse is not NULL, then the values of bound variables in pE1 are
5319 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5320 ** modified to record which bound variables are referenced.  If pParse
5321 ** is NULL, then false will be returned if pE1 contains any bound variables.
5322 **
5323 ** When in doubt, return false.  Returning true might give a performance
5324 ** improvement.  Returning false might cause a performance reduction, but
5325 ** it will always give the correct answer and is hence always safe.
5326 */
5327 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5328   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5329     return 1;
5330   }
5331   if( pE2->op==TK_OR
5332    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5333              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5334   ){
5335     return 1;
5336   }
5337   if( pE2->op==TK_NOTNULL
5338    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5339   ){
5340     return 1;
5341   }
5342   return 0;
5343 }
5344 
5345 /*
5346 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5347 ** If the expression node requires that the table at pWalker->iCur
5348 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5349 **
5350 ** This routine controls an optimization.  False positives (setting
5351 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5352 ** (never setting pWalker->eCode) is a harmless missed optimization.
5353 */
5354 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5355   testcase( pExpr->op==TK_AGG_COLUMN );
5356   testcase( pExpr->op==TK_AGG_FUNCTION );
5357   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5358   switch( pExpr->op ){
5359     case TK_ISNOT:
5360     case TK_ISNULL:
5361     case TK_NOTNULL:
5362     case TK_IS:
5363     case TK_OR:
5364     case TK_VECTOR:
5365     case TK_CASE:
5366     case TK_IN:
5367     case TK_FUNCTION:
5368     case TK_TRUTH:
5369       testcase( pExpr->op==TK_ISNOT );
5370       testcase( pExpr->op==TK_ISNULL );
5371       testcase( pExpr->op==TK_NOTNULL );
5372       testcase( pExpr->op==TK_IS );
5373       testcase( pExpr->op==TK_OR );
5374       testcase( pExpr->op==TK_VECTOR );
5375       testcase( pExpr->op==TK_CASE );
5376       testcase( pExpr->op==TK_IN );
5377       testcase( pExpr->op==TK_FUNCTION );
5378       testcase( pExpr->op==TK_TRUTH );
5379       return WRC_Prune;
5380     case TK_COLUMN:
5381       if( pWalker->u.iCur==pExpr->iTable ){
5382         pWalker->eCode = 1;
5383         return WRC_Abort;
5384       }
5385       return WRC_Prune;
5386 
5387     case TK_AND:
5388       if( pWalker->eCode==0 ){
5389         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5390         if( pWalker->eCode ){
5391           pWalker->eCode = 0;
5392           sqlite3WalkExpr(pWalker, pExpr->pRight);
5393         }
5394       }
5395       return WRC_Prune;
5396 
5397     case TK_BETWEEN:
5398       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5399         assert( pWalker->eCode );
5400         return WRC_Abort;
5401       }
5402       return WRC_Prune;
5403 
5404     /* Virtual tables are allowed to use constraints like x=NULL.  So
5405     ** a term of the form x=y does not prove that y is not null if x
5406     ** is the column of a virtual table */
5407     case TK_EQ:
5408     case TK_NE:
5409     case TK_LT:
5410     case TK_LE:
5411     case TK_GT:
5412     case TK_GE:
5413       testcase( pExpr->op==TK_EQ );
5414       testcase( pExpr->op==TK_NE );
5415       testcase( pExpr->op==TK_LT );
5416       testcase( pExpr->op==TK_LE );
5417       testcase( pExpr->op==TK_GT );
5418       testcase( pExpr->op==TK_GE );
5419       if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab))
5420        || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab))
5421       ){
5422        return WRC_Prune;
5423       }
5424 
5425     default:
5426       return WRC_Continue;
5427   }
5428 }
5429 
5430 /*
5431 ** Return true (non-zero) if expression p can only be true if at least
5432 ** one column of table iTab is non-null.  In other words, return true
5433 ** if expression p will always be NULL or false if every column of iTab
5434 ** is NULL.
5435 **
5436 ** False negatives are acceptable.  In other words, it is ok to return
5437 ** zero even if expression p will never be true of every column of iTab
5438 ** is NULL.  A false negative is merely a missed optimization opportunity.
5439 **
5440 ** False positives are not allowed, however.  A false positive may result
5441 ** in an incorrect answer.
5442 **
5443 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5444 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5445 **
5446 ** This routine is used to check if a LEFT JOIN can be converted into
5447 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5448 ** clause requires that some column of the right table of the LEFT JOIN
5449 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5450 ** ordinary join.
5451 */
5452 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5453   Walker w;
5454   p = sqlite3ExprSkipCollateAndLikely(p);
5455   if( p==0 ) return 0;
5456   if( p->op==TK_NOTNULL ){
5457     p = p->pLeft;
5458   }else{
5459     while( p->op==TK_AND ){
5460       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5461       p = p->pRight;
5462     }
5463   }
5464   w.xExprCallback = impliesNotNullRow;
5465   w.xSelectCallback = 0;
5466   w.xSelectCallback2 = 0;
5467   w.eCode = 0;
5468   w.u.iCur = iTab;
5469   sqlite3WalkExpr(&w, p);
5470   return w.eCode;
5471 }
5472 
5473 /*
5474 ** An instance of the following structure is used by the tree walker
5475 ** to determine if an expression can be evaluated by reference to the
5476 ** index only, without having to do a search for the corresponding
5477 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5478 ** is the cursor for the table.
5479 */
5480 struct IdxCover {
5481   Index *pIdx;     /* The index to be tested for coverage */
5482   int iCur;        /* Cursor number for the table corresponding to the index */
5483 };
5484 
5485 /*
5486 ** Check to see if there are references to columns in table
5487 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5488 ** pWalker->u.pIdxCover->pIdx.
5489 */
5490 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5491   if( pExpr->op==TK_COLUMN
5492    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5493    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5494   ){
5495     pWalker->eCode = 1;
5496     return WRC_Abort;
5497   }
5498   return WRC_Continue;
5499 }
5500 
5501 /*
5502 ** Determine if an index pIdx on table with cursor iCur contains will
5503 ** the expression pExpr.  Return true if the index does cover the
5504 ** expression and false if the pExpr expression references table columns
5505 ** that are not found in the index pIdx.
5506 **
5507 ** An index covering an expression means that the expression can be
5508 ** evaluated using only the index and without having to lookup the
5509 ** corresponding table entry.
5510 */
5511 int sqlite3ExprCoveredByIndex(
5512   Expr *pExpr,        /* The index to be tested */
5513   int iCur,           /* The cursor number for the corresponding table */
5514   Index *pIdx         /* The index that might be used for coverage */
5515 ){
5516   Walker w;
5517   struct IdxCover xcov;
5518   memset(&w, 0, sizeof(w));
5519   xcov.iCur = iCur;
5520   xcov.pIdx = pIdx;
5521   w.xExprCallback = exprIdxCover;
5522   w.u.pIdxCover = &xcov;
5523   sqlite3WalkExpr(&w, pExpr);
5524   return !w.eCode;
5525 }
5526 
5527 
5528 /*
5529 ** An instance of the following structure is used by the tree walker
5530 ** to count references to table columns in the arguments of an
5531 ** aggregate function, in order to implement the
5532 ** sqlite3FunctionThisSrc() routine.
5533 */
5534 struct SrcCount {
5535   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5536   int nThis;       /* Number of references to columns in pSrcList */
5537   int nOther;      /* Number of references to columns in other FROM clauses */
5538 };
5539 
5540 /*
5541 ** Count the number of references to columns.
5542 */
5543 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5544   /* There was once a NEVER() on the second term on the grounds that
5545   ** sqlite3FunctionUsesThisSrc() was always called before
5546   ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet
5547   ** been converted into TK_AGG_COLUMN. But this is no longer true due
5548   ** to window functions - sqlite3WindowRewrite() may now indirectly call
5549   ** FunctionUsesThisSrc() when creating a new sub-select. */
5550   if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){
5551     int i;
5552     struct SrcCount *p = pWalker->u.pSrcCount;
5553     SrcList *pSrc = p->pSrc;
5554     int nSrc = pSrc ? pSrc->nSrc : 0;
5555     for(i=0; i<nSrc; i++){
5556       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5557     }
5558     if( i<nSrc ){
5559       p->nThis++;
5560     }else if( nSrc==0 || pExpr->iTable<pSrc->a[0].iCursor ){
5561       /* In a well-formed parse tree (no name resolution errors),
5562       ** TK_COLUMN nodes with smaller Expr.iTable values are in an
5563       ** outer context.  Those are the only ones to count as "other" */
5564       p->nOther++;
5565     }
5566   }
5567   return WRC_Continue;
5568 }
5569 
5570 /*
5571 ** Determine if any of the arguments to the pExpr Function reference
5572 ** pSrcList.  Return true if they do.  Also return true if the function
5573 ** has no arguments or has only constant arguments.  Return false if pExpr
5574 ** references columns but not columns of tables found in pSrcList.
5575 */
5576 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5577   Walker w;
5578   struct SrcCount cnt;
5579   assert( pExpr->op==TK_AGG_FUNCTION );
5580   memset(&w, 0, sizeof(w));
5581   w.xExprCallback = exprSrcCount;
5582   w.xSelectCallback = sqlite3SelectWalkNoop;
5583   w.u.pSrcCount = &cnt;
5584   cnt.pSrc = pSrcList;
5585   cnt.nThis = 0;
5586   cnt.nOther = 0;
5587   sqlite3WalkExprList(&w, pExpr->x.pList);
5588 #ifndef SQLITE_OMIT_WINDOWFUNC
5589   if( ExprHasProperty(pExpr, EP_WinFunc) ){
5590     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
5591   }
5592 #endif
5593   return cnt.nThis>0 || cnt.nOther==0;
5594 }
5595 
5596 /*
5597 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5598 ** the new element.  Return a negative number if malloc fails.
5599 */
5600 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5601   int i;
5602   pInfo->aCol = sqlite3ArrayAllocate(
5603        db,
5604        pInfo->aCol,
5605        sizeof(pInfo->aCol[0]),
5606        &pInfo->nColumn,
5607        &i
5608   );
5609   return i;
5610 }
5611 
5612 /*
5613 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5614 ** the new element.  Return a negative number if malloc fails.
5615 */
5616 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5617   int i;
5618   pInfo->aFunc = sqlite3ArrayAllocate(
5619        db,
5620        pInfo->aFunc,
5621        sizeof(pInfo->aFunc[0]),
5622        &pInfo->nFunc,
5623        &i
5624   );
5625   return i;
5626 }
5627 
5628 /*
5629 ** This is the xExprCallback for a tree walker.  It is used to
5630 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5631 ** for additional information.
5632 */
5633 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5634   int i;
5635   NameContext *pNC = pWalker->u.pNC;
5636   Parse *pParse = pNC->pParse;
5637   SrcList *pSrcList = pNC->pSrcList;
5638   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5639 
5640   assert( pNC->ncFlags & NC_UAggInfo );
5641   switch( pExpr->op ){
5642     case TK_AGG_COLUMN:
5643     case TK_COLUMN: {
5644       testcase( pExpr->op==TK_AGG_COLUMN );
5645       testcase( pExpr->op==TK_COLUMN );
5646       /* Check to see if the column is in one of the tables in the FROM
5647       ** clause of the aggregate query */
5648       if( ALWAYS(pSrcList!=0) ){
5649         struct SrcList_item *pItem = pSrcList->a;
5650         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5651           struct AggInfo_col *pCol;
5652           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5653           if( pExpr->iTable==pItem->iCursor ){
5654             /* If we reach this point, it means that pExpr refers to a table
5655             ** that is in the FROM clause of the aggregate query.
5656             **
5657             ** Make an entry for the column in pAggInfo->aCol[] if there
5658             ** is not an entry there already.
5659             */
5660             int k;
5661             pCol = pAggInfo->aCol;
5662             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5663               if( pCol->iTable==pExpr->iTable &&
5664                   pCol->iColumn==pExpr->iColumn ){
5665                 break;
5666               }
5667             }
5668             if( (k>=pAggInfo->nColumn)
5669              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5670             ){
5671               pCol = &pAggInfo->aCol[k];
5672               pCol->pTab = pExpr->y.pTab;
5673               pCol->iTable = pExpr->iTable;
5674               pCol->iColumn = pExpr->iColumn;
5675               pCol->iMem = ++pParse->nMem;
5676               pCol->iSorterColumn = -1;
5677               pCol->pExpr = pExpr;
5678               if( pAggInfo->pGroupBy ){
5679                 int j, n;
5680                 ExprList *pGB = pAggInfo->pGroupBy;
5681                 struct ExprList_item *pTerm = pGB->a;
5682                 n = pGB->nExpr;
5683                 for(j=0; j<n; j++, pTerm++){
5684                   Expr *pE = pTerm->pExpr;
5685                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5686                       pE->iColumn==pExpr->iColumn ){
5687                     pCol->iSorterColumn = j;
5688                     break;
5689                   }
5690                 }
5691               }
5692               if( pCol->iSorterColumn<0 ){
5693                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5694               }
5695             }
5696             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5697             ** because it was there before or because we just created it).
5698             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5699             ** pAggInfo->aCol[] entry.
5700             */
5701             ExprSetVVAProperty(pExpr, EP_NoReduce);
5702             pExpr->pAggInfo = pAggInfo;
5703             pExpr->op = TK_AGG_COLUMN;
5704             pExpr->iAgg = (i16)k;
5705             break;
5706           } /* endif pExpr->iTable==pItem->iCursor */
5707         } /* end loop over pSrcList */
5708       }
5709       return WRC_Prune;
5710     }
5711     case TK_AGG_FUNCTION: {
5712       if( (pNC->ncFlags & NC_InAggFunc)==0
5713        && pWalker->walkerDepth==pExpr->op2
5714       ){
5715         /* Check to see if pExpr is a duplicate of another aggregate
5716         ** function that is already in the pAggInfo structure
5717         */
5718         struct AggInfo_func *pItem = pAggInfo->aFunc;
5719         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5720           if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5721             break;
5722           }
5723         }
5724         if( i>=pAggInfo->nFunc ){
5725           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5726           */
5727           u8 enc = ENC(pParse->db);
5728           i = addAggInfoFunc(pParse->db, pAggInfo);
5729           if( i>=0 ){
5730             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5731             pItem = &pAggInfo->aFunc[i];
5732             pItem->pExpr = pExpr;
5733             pItem->iMem = ++pParse->nMem;
5734             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5735             pItem->pFunc = sqlite3FindFunction(pParse->db,
5736                    pExpr->u.zToken,
5737                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5738             if( pExpr->flags & EP_Distinct ){
5739               pItem->iDistinct = pParse->nTab++;
5740             }else{
5741               pItem->iDistinct = -1;
5742             }
5743           }
5744         }
5745         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5746         */
5747         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5748         ExprSetVVAProperty(pExpr, EP_NoReduce);
5749         pExpr->iAgg = (i16)i;
5750         pExpr->pAggInfo = pAggInfo;
5751         return WRC_Prune;
5752       }else{
5753         return WRC_Continue;
5754       }
5755     }
5756   }
5757   return WRC_Continue;
5758 }
5759 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5760   UNUSED_PARAMETER(pSelect);
5761   pWalker->walkerDepth++;
5762   return WRC_Continue;
5763 }
5764 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5765   UNUSED_PARAMETER(pSelect);
5766   pWalker->walkerDepth--;
5767 }
5768 
5769 /*
5770 ** Analyze the pExpr expression looking for aggregate functions and
5771 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5772 ** points to.  Additional entries are made on the AggInfo object as
5773 ** necessary.
5774 **
5775 ** This routine should only be called after the expression has been
5776 ** analyzed by sqlite3ResolveExprNames().
5777 */
5778 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5779   Walker w;
5780   w.xExprCallback = analyzeAggregate;
5781   w.xSelectCallback = analyzeAggregatesInSelect;
5782   w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5783   w.walkerDepth = 0;
5784   w.u.pNC = pNC;
5785   w.pParse = 0;
5786   assert( pNC->pSrcList!=0 );
5787   sqlite3WalkExpr(&w, pExpr);
5788 }
5789 
5790 /*
5791 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5792 ** expression list.  Return the number of errors.
5793 **
5794 ** If an error is found, the analysis is cut short.
5795 */
5796 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5797   struct ExprList_item *pItem;
5798   int i;
5799   if( pList ){
5800     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5801       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5802     }
5803   }
5804 }
5805 
5806 /*
5807 ** Allocate a single new register for use to hold some intermediate result.
5808 */
5809 int sqlite3GetTempReg(Parse *pParse){
5810   if( pParse->nTempReg==0 ){
5811     return ++pParse->nMem;
5812   }
5813   return pParse->aTempReg[--pParse->nTempReg];
5814 }
5815 
5816 /*
5817 ** Deallocate a register, making available for reuse for some other
5818 ** purpose.
5819 */
5820 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5821   if( iReg ){
5822     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
5823     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5824       pParse->aTempReg[pParse->nTempReg++] = iReg;
5825     }
5826   }
5827 }
5828 
5829 /*
5830 ** Allocate or deallocate a block of nReg consecutive registers.
5831 */
5832 int sqlite3GetTempRange(Parse *pParse, int nReg){
5833   int i, n;
5834   if( nReg==1 ) return sqlite3GetTempReg(pParse);
5835   i = pParse->iRangeReg;
5836   n = pParse->nRangeReg;
5837   if( nReg<=n ){
5838     pParse->iRangeReg += nReg;
5839     pParse->nRangeReg -= nReg;
5840   }else{
5841     i = pParse->nMem+1;
5842     pParse->nMem += nReg;
5843   }
5844   return i;
5845 }
5846 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5847   if( nReg==1 ){
5848     sqlite3ReleaseTempReg(pParse, iReg);
5849     return;
5850   }
5851   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
5852   if( nReg>pParse->nRangeReg ){
5853     pParse->nRangeReg = nReg;
5854     pParse->iRangeReg = iReg;
5855   }
5856 }
5857 
5858 /*
5859 ** Mark all temporary registers as being unavailable for reuse.
5860 **
5861 ** Always invoke this procedure after coding a subroutine or co-routine
5862 ** that might be invoked from other parts of the code, to ensure that
5863 ** the sub/co-routine does not use registers in common with the code that
5864 ** invokes the sub/co-routine.
5865 */
5866 void sqlite3ClearTempRegCache(Parse *pParse){
5867   pParse->nTempReg = 0;
5868   pParse->nRangeReg = 0;
5869 }
5870 
5871 /*
5872 ** Validate that no temporary register falls within the range of
5873 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5874 ** statements.
5875 */
5876 #ifdef SQLITE_DEBUG
5877 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5878   int i;
5879   if( pParse->nRangeReg>0
5880    && pParse->iRangeReg+pParse->nRangeReg > iFirst
5881    && pParse->iRangeReg <= iLast
5882   ){
5883      return 0;
5884   }
5885   for(i=0; i<pParse->nTempReg; i++){
5886     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5887       return 0;
5888     }
5889   }
5890   return 1;
5891 }
5892 #endif /* SQLITE_DEBUG */
5893