xref: /sqlite-3.40.0/src/expr.c (revision 7894b854)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(Expr *pExpr){
46   int op;
47   pExpr = sqlite3ExprSkipCollate(pExpr);
48   if( pExpr->flags & EP_Generic ) return 0;
49   op = pExpr->op;
50   if( op==TK_SELECT ){
51     assert( pExpr->flags&EP_xIsSelect );
52     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
53   }
54   if( op==TK_REGISTER ) op = pExpr->op2;
55 #ifndef SQLITE_OMIT_CAST
56   if( op==TK_CAST ){
57     assert( !ExprHasProperty(pExpr, EP_IntValue) );
58     return sqlite3AffinityType(pExpr->u.zToken, 0);
59   }
60 #endif
61   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){
62     return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn);
63   }
64   if( op==TK_SELECT_COLUMN ){
65     assert( pExpr->pLeft->flags&EP_xIsSelect );
66     return sqlite3ExprAffinity(
67         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
68     );
69   }
70   return pExpr->affinity;
71 }
72 
73 /*
74 ** Set the collating sequence for expression pExpr to be the collating
75 ** sequence named by pToken.   Return a pointer to a new Expr node that
76 ** implements the COLLATE operator.
77 **
78 ** If a memory allocation error occurs, that fact is recorded in pParse->db
79 ** and the pExpr parameter is returned unchanged.
80 */
81 Expr *sqlite3ExprAddCollateToken(
82   Parse *pParse,           /* Parsing context */
83   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
84   const Token *pCollName,  /* Name of collating sequence */
85   int dequote              /* True to dequote pCollName */
86 ){
87   if( pCollName->n>0 ){
88     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
89     if( pNew ){
90       pNew->pLeft = pExpr;
91       pNew->flags |= EP_Collate|EP_Skip;
92       pExpr = pNew;
93     }
94   }
95   return pExpr;
96 }
97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
98   Token s;
99   assert( zC!=0 );
100   sqlite3TokenInit(&s, (char*)zC);
101   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
102 }
103 
104 /*
105 ** Skip over any TK_COLLATE operators and any unlikely()
106 ** or likelihood() function at the root of an expression.
107 */
108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
109   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
110     if( ExprHasProperty(pExpr, EP_Unlikely) ){
111       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
112       assert( pExpr->x.pList->nExpr>0 );
113       assert( pExpr->op==TK_FUNCTION );
114       pExpr = pExpr->x.pList->a[0].pExpr;
115     }else{
116       assert( pExpr->op==TK_COLLATE );
117       pExpr = pExpr->pLeft;
118     }
119   }
120   return pExpr;
121 }
122 
123 /*
124 ** Return the collation sequence for the expression pExpr. If
125 ** there is no defined collating sequence, return NULL.
126 **
127 ** See also: sqlite3ExprNNCollSeq()
128 **
129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
130 ** default collation if pExpr has no defined collation.
131 **
132 ** The collating sequence might be determined by a COLLATE operator
133 ** or by the presence of a column with a defined collating sequence.
134 ** COLLATE operators take first precedence.  Left operands take
135 ** precedence over right operands.
136 */
137 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
138   sqlite3 *db = pParse->db;
139   CollSeq *pColl = 0;
140   Expr *p = pExpr;
141   while( p ){
142     int op = p->op;
143     if( p->flags & EP_Generic ) break;
144     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
145           || op==TK_REGISTER || op==TK_TRIGGER)
146      && p->pTab!=0
147     ){
148       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
149       ** a TK_COLUMN but was previously evaluated and cached in a register */
150       int j = p->iColumn;
151       if( j>=0 ){
152         const char *zColl = p->pTab->aCol[j].zColl;
153         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
154       }
155       break;
156     }
157     if( op==TK_CAST || op==TK_UPLUS ){
158       p = p->pLeft;
159       continue;
160     }
161     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
162       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
163       break;
164     }
165     if( p->flags & EP_Collate ){
166       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
167         p = p->pLeft;
168       }else{
169         Expr *pNext  = p->pRight;
170         /* The Expr.x union is never used at the same time as Expr.pRight */
171         assert( p->x.pList==0 || p->pRight==0 );
172         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
173         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
174         ** least one EP_Collate. Thus the following two ALWAYS. */
175         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
176           int i;
177           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
178             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
179               pNext = p->x.pList->a[i].pExpr;
180               break;
181             }
182           }
183         }
184         p = pNext;
185       }
186     }else{
187       break;
188     }
189   }
190   if( sqlite3CheckCollSeq(pParse, pColl) ){
191     pColl = 0;
192   }
193   return pColl;
194 }
195 
196 /*
197 ** Return the collation sequence for the expression pExpr. If
198 ** there is no defined collating sequence, return a pointer to the
199 ** defautl collation sequence.
200 **
201 ** See also: sqlite3ExprCollSeq()
202 **
203 ** The sqlite3ExprCollSeq() routine works the same except that it
204 ** returns NULL if there is no defined collation.
205 */
206 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){
207   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
208   if( p==0 ) p = pParse->db->pDfltColl;
209   assert( p!=0 );
210   return p;
211 }
212 
213 /*
214 ** Return TRUE if the two expressions have equivalent collating sequences.
215 */
216 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){
217   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
218   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
219   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
220 }
221 
222 /*
223 ** pExpr is an operand of a comparison operator.  aff2 is the
224 ** type affinity of the other operand.  This routine returns the
225 ** type affinity that should be used for the comparison operator.
226 */
227 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
228   char aff1 = sqlite3ExprAffinity(pExpr);
229   if( aff1 && aff2 ){
230     /* Both sides of the comparison are columns. If one has numeric
231     ** affinity, use that. Otherwise use no affinity.
232     */
233     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
234       return SQLITE_AFF_NUMERIC;
235     }else{
236       return SQLITE_AFF_BLOB;
237     }
238   }else if( !aff1 && !aff2 ){
239     /* Neither side of the comparison is a column.  Compare the
240     ** results directly.
241     */
242     return SQLITE_AFF_BLOB;
243   }else{
244     /* One side is a column, the other is not. Use the columns affinity. */
245     assert( aff1==0 || aff2==0 );
246     return (aff1 + aff2);
247   }
248 }
249 
250 /*
251 ** pExpr is a comparison operator.  Return the type affinity that should
252 ** be applied to both operands prior to doing the comparison.
253 */
254 static char comparisonAffinity(Expr *pExpr){
255   char aff;
256   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
257           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
258           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
259   assert( pExpr->pLeft );
260   aff = sqlite3ExprAffinity(pExpr->pLeft);
261   if( pExpr->pRight ){
262     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
263   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
264     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
265   }else if( aff==0 ){
266     aff = SQLITE_AFF_BLOB;
267   }
268   return aff;
269 }
270 
271 /*
272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
273 ** idx_affinity is the affinity of an indexed column. Return true
274 ** if the index with affinity idx_affinity may be used to implement
275 ** the comparison in pExpr.
276 */
277 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
278   char aff = comparisonAffinity(pExpr);
279   switch( aff ){
280     case SQLITE_AFF_BLOB:
281       return 1;
282     case SQLITE_AFF_TEXT:
283       return idx_affinity==SQLITE_AFF_TEXT;
284     default:
285       return sqlite3IsNumericAffinity(idx_affinity);
286   }
287 }
288 
289 /*
290 ** Return the P5 value that should be used for a binary comparison
291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
292 */
293 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
294   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
295   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
296   return aff;
297 }
298 
299 /*
300 ** Return a pointer to the collation sequence that should be used by
301 ** a binary comparison operator comparing pLeft and pRight.
302 **
303 ** If the left hand expression has a collating sequence type, then it is
304 ** used. Otherwise the collation sequence for the right hand expression
305 ** is used, or the default (BINARY) if neither expression has a collating
306 ** type.
307 **
308 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
309 ** it is not considered.
310 */
311 CollSeq *sqlite3BinaryCompareCollSeq(
312   Parse *pParse,
313   Expr *pLeft,
314   Expr *pRight
315 ){
316   CollSeq *pColl;
317   assert( pLeft );
318   if( pLeft->flags & EP_Collate ){
319     pColl = sqlite3ExprCollSeq(pParse, pLeft);
320   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
321     pColl = sqlite3ExprCollSeq(pParse, pRight);
322   }else{
323     pColl = sqlite3ExprCollSeq(pParse, pLeft);
324     if( !pColl ){
325       pColl = sqlite3ExprCollSeq(pParse, pRight);
326     }
327   }
328   return pColl;
329 }
330 
331 /*
332 ** Generate code for a comparison operator.
333 */
334 static int codeCompare(
335   Parse *pParse,    /* The parsing (and code generating) context */
336   Expr *pLeft,      /* The left operand */
337   Expr *pRight,     /* The right operand */
338   int opcode,       /* The comparison opcode */
339   int in1, int in2, /* Register holding operands */
340   int dest,         /* Jump here if true.  */
341   int jumpIfNull    /* If true, jump if either operand is NULL */
342 ){
343   int p5;
344   int addr;
345   CollSeq *p4;
346 
347   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
348   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
349   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
350                            (void*)p4, P4_COLLSEQ);
351   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
352   return addr;
353 }
354 
355 /*
356 ** Return true if expression pExpr is a vector, or false otherwise.
357 **
358 ** A vector is defined as any expression that results in two or more
359 ** columns of result.  Every TK_VECTOR node is an vector because the
360 ** parser will not generate a TK_VECTOR with fewer than two entries.
361 ** But a TK_SELECT might be either a vector or a scalar. It is only
362 ** considered a vector if it has two or more result columns.
363 */
364 int sqlite3ExprIsVector(Expr *pExpr){
365   return sqlite3ExprVectorSize(pExpr)>1;
366 }
367 
368 /*
369 ** If the expression passed as the only argument is of type TK_VECTOR
370 ** return the number of expressions in the vector. Or, if the expression
371 ** is a sub-select, return the number of columns in the sub-select. For
372 ** any other type of expression, return 1.
373 */
374 int sqlite3ExprVectorSize(Expr *pExpr){
375   u8 op = pExpr->op;
376   if( op==TK_REGISTER ) op = pExpr->op2;
377   if( op==TK_VECTOR ){
378     return pExpr->x.pList->nExpr;
379   }else if( op==TK_SELECT ){
380     return pExpr->x.pSelect->pEList->nExpr;
381   }else{
382     return 1;
383   }
384 }
385 
386 /*
387 ** Return a pointer to a subexpression of pVector that is the i-th
388 ** column of the vector (numbered starting with 0).  The caller must
389 ** ensure that i is within range.
390 **
391 ** If pVector is really a scalar (and "scalar" here includes subqueries
392 ** that return a single column!) then return pVector unmodified.
393 **
394 ** pVector retains ownership of the returned subexpression.
395 **
396 ** If the vector is a (SELECT ...) then the expression returned is
397 ** just the expression for the i-th term of the result set, and may
398 ** not be ready for evaluation because the table cursor has not yet
399 ** been positioned.
400 */
401 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
402   assert( i<sqlite3ExprVectorSize(pVector) );
403   if( sqlite3ExprIsVector(pVector) ){
404     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
405     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
406       return pVector->x.pSelect->pEList->a[i].pExpr;
407     }else{
408       return pVector->x.pList->a[i].pExpr;
409     }
410   }
411   return pVector;
412 }
413 
414 /*
415 ** Compute and return a new Expr object which when passed to
416 ** sqlite3ExprCode() will generate all necessary code to compute
417 ** the iField-th column of the vector expression pVector.
418 **
419 ** It is ok for pVector to be a scalar (as long as iField==0).
420 ** In that case, this routine works like sqlite3ExprDup().
421 **
422 ** The caller owns the returned Expr object and is responsible for
423 ** ensuring that the returned value eventually gets freed.
424 **
425 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
426 ** then the returned object will reference pVector and so pVector must remain
427 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
428 ** or a scalar expression, then it can be deleted as soon as this routine
429 ** returns.
430 **
431 ** A trick to cause a TK_SELECT pVector to be deleted together with
432 ** the returned Expr object is to attach the pVector to the pRight field
433 ** of the returned TK_SELECT_COLUMN Expr object.
434 */
435 Expr *sqlite3ExprForVectorField(
436   Parse *pParse,       /* Parsing context */
437   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
438   int iField           /* Which column of the vector to return */
439 ){
440   Expr *pRet;
441   if( pVector->op==TK_SELECT ){
442     assert( pVector->flags & EP_xIsSelect );
443     /* The TK_SELECT_COLUMN Expr node:
444     **
445     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
446     ** pRight:          not used.  But recursively deleted.
447     ** iColumn:         Index of a column in pVector
448     ** iTable:          0 or the number of columns on the LHS of an assignment
449     ** pLeft->iTable:   First in an array of register holding result, or 0
450     **                  if the result is not yet computed.
451     **
452     ** sqlite3ExprDelete() specifically skips the recursive delete of
453     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
454     ** can be attached to pRight to cause this node to take ownership of
455     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
456     ** with the same pLeft pointer to the pVector, but only one of them
457     ** will own the pVector.
458     */
459     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
460     if( pRet ){
461       pRet->iColumn = iField;
462       pRet->pLeft = pVector;
463     }
464     assert( pRet==0 || pRet->iTable==0 );
465   }else{
466     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
467     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
468   }
469   return pRet;
470 }
471 
472 /*
473 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
474 ** it. Return the register in which the result is stored (or, if the
475 ** sub-select returns more than one column, the first in an array
476 ** of registers in which the result is stored).
477 **
478 ** If pExpr is not a TK_SELECT expression, return 0.
479 */
480 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
481   int reg = 0;
482 #ifndef SQLITE_OMIT_SUBQUERY
483   if( pExpr->op==TK_SELECT ){
484     reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
485   }
486 #endif
487   return reg;
488 }
489 
490 /*
491 ** Argument pVector points to a vector expression - either a TK_VECTOR
492 ** or TK_SELECT that returns more than one column. This function returns
493 ** the register number of a register that contains the value of
494 ** element iField of the vector.
495 **
496 ** If pVector is a TK_SELECT expression, then code for it must have
497 ** already been generated using the exprCodeSubselect() routine. In this
498 ** case parameter regSelect should be the first in an array of registers
499 ** containing the results of the sub-select.
500 **
501 ** If pVector is of type TK_VECTOR, then code for the requested field
502 ** is generated. In this case (*pRegFree) may be set to the number of
503 ** a temporary register to be freed by the caller before returning.
504 **
505 ** Before returning, output parameter (*ppExpr) is set to point to the
506 ** Expr object corresponding to element iElem of the vector.
507 */
508 static int exprVectorRegister(
509   Parse *pParse,                  /* Parse context */
510   Expr *pVector,                  /* Vector to extract element from */
511   int iField,                     /* Field to extract from pVector */
512   int regSelect,                  /* First in array of registers */
513   Expr **ppExpr,                  /* OUT: Expression element */
514   int *pRegFree                   /* OUT: Temp register to free */
515 ){
516   u8 op = pVector->op;
517   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
518   if( op==TK_REGISTER ){
519     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
520     return pVector->iTable+iField;
521   }
522   if( op==TK_SELECT ){
523     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
524      return regSelect+iField;
525   }
526   *ppExpr = pVector->x.pList->a[iField].pExpr;
527   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
528 }
529 
530 /*
531 ** Expression pExpr is a comparison between two vector values. Compute
532 ** the result of the comparison (1, 0, or NULL) and write that
533 ** result into register dest.
534 **
535 ** The caller must satisfy the following preconditions:
536 **
537 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
538 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
539 **    otherwise:                op==pExpr->op and p5==0
540 */
541 static void codeVectorCompare(
542   Parse *pParse,        /* Code generator context */
543   Expr *pExpr,          /* The comparison operation */
544   int dest,             /* Write results into this register */
545   u8 op,                /* Comparison operator */
546   u8 p5                 /* SQLITE_NULLEQ or zero */
547 ){
548   Vdbe *v = pParse->pVdbe;
549   Expr *pLeft = pExpr->pLeft;
550   Expr *pRight = pExpr->pRight;
551   int nLeft = sqlite3ExprVectorSize(pLeft);
552   int i;
553   int regLeft = 0;
554   int regRight = 0;
555   u8 opx = op;
556   int addrDone = sqlite3VdbeMakeLabel(v);
557 
558   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
559     sqlite3ErrorMsg(pParse, "row value misused");
560     return;
561   }
562   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
563        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
564        || pExpr->op==TK_LT || pExpr->op==TK_GT
565        || pExpr->op==TK_LE || pExpr->op==TK_GE
566   );
567   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
568             || (pExpr->op==TK_ISNOT && op==TK_NE) );
569   assert( p5==0 || pExpr->op!=op );
570   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
571 
572   p5 |= SQLITE_STOREP2;
573   if( opx==TK_LE ) opx = TK_LT;
574   if( opx==TK_GE ) opx = TK_GT;
575 
576   regLeft = exprCodeSubselect(pParse, pLeft);
577   regRight = exprCodeSubselect(pParse, pRight);
578 
579   for(i=0; 1 /*Loop exits by "break"*/; i++){
580     int regFree1 = 0, regFree2 = 0;
581     Expr *pL, *pR;
582     int r1, r2;
583     assert( i>=0 && i<nLeft );
584     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
585     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
586     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5);
587     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
588     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
589     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
590     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
591     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
592     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
593     sqlite3ReleaseTempReg(pParse, regFree1);
594     sqlite3ReleaseTempReg(pParse, regFree2);
595     if( i==nLeft-1 ){
596       break;
597     }
598     if( opx==TK_EQ ){
599       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
600       p5 |= SQLITE_KEEPNULL;
601     }else if( opx==TK_NE ){
602       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
603       p5 |= SQLITE_KEEPNULL;
604     }else{
605       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
606       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
607       VdbeCoverageIf(v, op==TK_LT);
608       VdbeCoverageIf(v, op==TK_GT);
609       VdbeCoverageIf(v, op==TK_LE);
610       VdbeCoverageIf(v, op==TK_GE);
611       if( i==nLeft-2 ) opx = op;
612     }
613   }
614   sqlite3VdbeResolveLabel(v, addrDone);
615 }
616 
617 #if SQLITE_MAX_EXPR_DEPTH>0
618 /*
619 ** Check that argument nHeight is less than or equal to the maximum
620 ** expression depth allowed. If it is not, leave an error message in
621 ** pParse.
622 */
623 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
624   int rc = SQLITE_OK;
625   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
626   if( nHeight>mxHeight ){
627     sqlite3ErrorMsg(pParse,
628        "Expression tree is too large (maximum depth %d)", mxHeight
629     );
630     rc = SQLITE_ERROR;
631   }
632   return rc;
633 }
634 
635 /* The following three functions, heightOfExpr(), heightOfExprList()
636 ** and heightOfSelect(), are used to determine the maximum height
637 ** of any expression tree referenced by the structure passed as the
638 ** first argument.
639 **
640 ** If this maximum height is greater than the current value pointed
641 ** to by pnHeight, the second parameter, then set *pnHeight to that
642 ** value.
643 */
644 static void heightOfExpr(Expr *p, int *pnHeight){
645   if( p ){
646     if( p->nHeight>*pnHeight ){
647       *pnHeight = p->nHeight;
648     }
649   }
650 }
651 static void heightOfExprList(ExprList *p, int *pnHeight){
652   if( p ){
653     int i;
654     for(i=0; i<p->nExpr; i++){
655       heightOfExpr(p->a[i].pExpr, pnHeight);
656     }
657   }
658 }
659 static void heightOfSelect(Select *pSelect, int *pnHeight){
660   Select *p;
661   for(p=pSelect; p; p=p->pPrior){
662     heightOfExpr(p->pWhere, pnHeight);
663     heightOfExpr(p->pHaving, pnHeight);
664     heightOfExpr(p->pLimit, pnHeight);
665     heightOfExprList(p->pEList, pnHeight);
666     heightOfExprList(p->pGroupBy, pnHeight);
667     heightOfExprList(p->pOrderBy, pnHeight);
668   }
669 }
670 
671 /*
672 ** Set the Expr.nHeight variable in the structure passed as an
673 ** argument. An expression with no children, Expr.pList or
674 ** Expr.pSelect member has a height of 1. Any other expression
675 ** has a height equal to the maximum height of any other
676 ** referenced Expr plus one.
677 **
678 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
679 ** if appropriate.
680 */
681 static void exprSetHeight(Expr *p){
682   int nHeight = 0;
683   heightOfExpr(p->pLeft, &nHeight);
684   heightOfExpr(p->pRight, &nHeight);
685   if( ExprHasProperty(p, EP_xIsSelect) ){
686     heightOfSelect(p->x.pSelect, &nHeight);
687   }else if( p->x.pList ){
688     heightOfExprList(p->x.pList, &nHeight);
689     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
690   }
691   p->nHeight = nHeight + 1;
692 }
693 
694 /*
695 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
696 ** the height is greater than the maximum allowed expression depth,
697 ** leave an error in pParse.
698 **
699 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
700 ** Expr.flags.
701 */
702 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
703   if( pParse->nErr ) return;
704   exprSetHeight(p);
705   sqlite3ExprCheckHeight(pParse, p->nHeight);
706 }
707 
708 /*
709 ** Return the maximum height of any expression tree referenced
710 ** by the select statement passed as an argument.
711 */
712 int sqlite3SelectExprHeight(Select *p){
713   int nHeight = 0;
714   heightOfSelect(p, &nHeight);
715   return nHeight;
716 }
717 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
718 /*
719 ** Propagate all EP_Propagate flags from the Expr.x.pList into
720 ** Expr.flags.
721 */
722 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
723   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
724     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
725   }
726 }
727 #define exprSetHeight(y)
728 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
729 
730 /*
731 ** This routine is the core allocator for Expr nodes.
732 **
733 ** Construct a new expression node and return a pointer to it.  Memory
734 ** for this node and for the pToken argument is a single allocation
735 ** obtained from sqlite3DbMalloc().  The calling function
736 ** is responsible for making sure the node eventually gets freed.
737 **
738 ** If dequote is true, then the token (if it exists) is dequoted.
739 ** If dequote is false, no dequoting is performed.  The deQuote
740 ** parameter is ignored if pToken is NULL or if the token does not
741 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
742 ** then the EP_DblQuoted flag is set on the expression node.
743 **
744 ** Special case:  If op==TK_INTEGER and pToken points to a string that
745 ** can be translated into a 32-bit integer, then the token is not
746 ** stored in u.zToken.  Instead, the integer values is written
747 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
748 ** is allocated to hold the integer text and the dequote flag is ignored.
749 */
750 Expr *sqlite3ExprAlloc(
751   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
752   int op,                 /* Expression opcode */
753   const Token *pToken,    /* Token argument.  Might be NULL */
754   int dequote             /* True to dequote */
755 ){
756   Expr *pNew;
757   int nExtra = 0;
758   int iValue = 0;
759 
760   assert( db!=0 );
761   if( pToken ){
762     if( op!=TK_INTEGER || pToken->z==0
763           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
764       nExtra = pToken->n+1;
765       assert( iValue>=0 );
766     }
767   }
768   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
769   if( pNew ){
770     memset(pNew, 0, sizeof(Expr));
771     pNew->op = (u8)op;
772     pNew->iAgg = -1;
773     if( pToken ){
774       if( nExtra==0 ){
775         pNew->flags |= EP_IntValue|EP_Leaf;
776         pNew->u.iValue = iValue;
777       }else{
778         pNew->u.zToken = (char*)&pNew[1];
779         assert( pToken->z!=0 || pToken->n==0 );
780         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
781         pNew->u.zToken[pToken->n] = 0;
782         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
783           if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted;
784           sqlite3Dequote(pNew->u.zToken);
785         }
786       }
787     }
788 #if SQLITE_MAX_EXPR_DEPTH>0
789     pNew->nHeight = 1;
790 #endif
791   }
792   return pNew;
793 }
794 
795 /*
796 ** Allocate a new expression node from a zero-terminated token that has
797 ** already been dequoted.
798 */
799 Expr *sqlite3Expr(
800   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
801   int op,                 /* Expression opcode */
802   const char *zToken      /* Token argument.  Might be NULL */
803 ){
804   Token x;
805   x.z = zToken;
806   x.n = sqlite3Strlen30(zToken);
807   return sqlite3ExprAlloc(db, op, &x, 0);
808 }
809 
810 /*
811 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
812 **
813 ** If pRoot==NULL that means that a memory allocation error has occurred.
814 ** In that case, delete the subtrees pLeft and pRight.
815 */
816 void sqlite3ExprAttachSubtrees(
817   sqlite3 *db,
818   Expr *pRoot,
819   Expr *pLeft,
820   Expr *pRight
821 ){
822   if( pRoot==0 ){
823     assert( db->mallocFailed );
824     sqlite3ExprDelete(db, pLeft);
825     sqlite3ExprDelete(db, pRight);
826   }else{
827     if( pRight ){
828       pRoot->pRight = pRight;
829       pRoot->flags |= EP_Propagate & pRight->flags;
830     }
831     if( pLeft ){
832       pRoot->pLeft = pLeft;
833       pRoot->flags |= EP_Propagate & pLeft->flags;
834     }
835     exprSetHeight(pRoot);
836   }
837 }
838 
839 /*
840 ** Allocate an Expr node which joins as many as two subtrees.
841 **
842 ** One or both of the subtrees can be NULL.  Return a pointer to the new
843 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
844 ** free the subtrees and return NULL.
845 */
846 Expr *sqlite3PExpr(
847   Parse *pParse,          /* Parsing context */
848   int op,                 /* Expression opcode */
849   Expr *pLeft,            /* Left operand */
850   Expr *pRight            /* Right operand */
851 ){
852   Expr *p;
853   if( op==TK_AND && pParse->nErr==0 ){
854     /* Take advantage of short-circuit false optimization for AND */
855     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
856   }else{
857     p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
858     if( p ){
859       memset(p, 0, sizeof(Expr));
860       p->op = op & TKFLG_MASK;
861       p->iAgg = -1;
862     }
863     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
864   }
865   if( p ) {
866     sqlite3ExprCheckHeight(pParse, p->nHeight);
867   }
868   return p;
869 }
870 
871 /*
872 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
873 ** do a memory allocation failure) then delete the pSelect object.
874 */
875 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
876   if( pExpr ){
877     pExpr->x.pSelect = pSelect;
878     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
879     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
880   }else{
881     assert( pParse->db->mallocFailed );
882     sqlite3SelectDelete(pParse->db, pSelect);
883   }
884 }
885 
886 
887 /*
888 ** If the expression is always either TRUE or FALSE (respectively),
889 ** then return 1.  If one cannot determine the truth value of the
890 ** expression at compile-time return 0.
891 **
892 ** This is an optimization.  If is OK to return 0 here even if
893 ** the expression really is always false or false (a false negative).
894 ** But it is a bug to return 1 if the expression might have different
895 ** boolean values in different circumstances (a false positive.)
896 **
897 ** Note that if the expression is part of conditional for a
898 ** LEFT JOIN, then we cannot determine at compile-time whether or not
899 ** is it true or false, so always return 0.
900 */
901 static int exprAlwaysTrue(Expr *p){
902   int v = 0;
903   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
904   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
905   return v!=0;
906 }
907 static int exprAlwaysFalse(Expr *p){
908   int v = 0;
909   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
910   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
911   return v==0;
912 }
913 
914 /*
915 ** Join two expressions using an AND operator.  If either expression is
916 ** NULL, then just return the other expression.
917 **
918 ** If one side or the other of the AND is known to be false, then instead
919 ** of returning an AND expression, just return a constant expression with
920 ** a value of false.
921 */
922 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
923   if( pLeft==0 ){
924     return pRight;
925   }else if( pRight==0 ){
926     return pLeft;
927   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
928     sqlite3ExprDelete(db, pLeft);
929     sqlite3ExprDelete(db, pRight);
930     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
931   }else{
932     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
933     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
934     return pNew;
935   }
936 }
937 
938 /*
939 ** Construct a new expression node for a function with multiple
940 ** arguments.
941 */
942 Expr *sqlite3ExprFunction(
943   Parse *pParse,        /* Parsing context */
944   ExprList *pList,      /* Argument list */
945   Token *pToken,        /* Name of the function */
946   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
947 ){
948   Expr *pNew;
949   sqlite3 *db = pParse->db;
950   assert( pToken );
951   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
952   if( pNew==0 ){
953     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
954     return 0;
955   }
956   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
957     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
958   }
959   pNew->x.pList = pList;
960   ExprSetProperty(pNew, EP_HasFunc);
961   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
962   sqlite3ExprSetHeightAndFlags(pParse, pNew);
963   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
964   return pNew;
965 }
966 
967 /*
968 ** Assign a variable number to an expression that encodes a wildcard
969 ** in the original SQL statement.
970 **
971 ** Wildcards consisting of a single "?" are assigned the next sequential
972 ** variable number.
973 **
974 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
975 ** sure "nnn" is not too big to avoid a denial of service attack when
976 ** the SQL statement comes from an external source.
977 **
978 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
979 ** as the previous instance of the same wildcard.  Or if this is the first
980 ** instance of the wildcard, the next sequential variable number is
981 ** assigned.
982 */
983 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
984   sqlite3 *db = pParse->db;
985   const char *z;
986   ynVar x;
987 
988   if( pExpr==0 ) return;
989   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
990   z = pExpr->u.zToken;
991   assert( z!=0 );
992   assert( z[0]!=0 );
993   assert( n==(u32)sqlite3Strlen30(z) );
994   if( z[1]==0 ){
995     /* Wildcard of the form "?".  Assign the next variable number */
996     assert( z[0]=='?' );
997     x = (ynVar)(++pParse->nVar);
998   }else{
999     int doAdd = 0;
1000     if( z[0]=='?' ){
1001       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1002       ** use it as the variable number */
1003       i64 i;
1004       int bOk;
1005       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1006         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1007         bOk = 1;
1008       }else{
1009         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1010       }
1011       testcase( i==0 );
1012       testcase( i==1 );
1013       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1014       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1015       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1016         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1017             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1018         return;
1019       }
1020       x = (ynVar)i;
1021       if( x>pParse->nVar ){
1022         pParse->nVar = (int)x;
1023         doAdd = 1;
1024       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1025         doAdd = 1;
1026       }
1027     }else{
1028       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1029       ** number as the prior appearance of the same name, or if the name
1030       ** has never appeared before, reuse the same variable number
1031       */
1032       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1033       if( x==0 ){
1034         x = (ynVar)(++pParse->nVar);
1035         doAdd = 1;
1036       }
1037     }
1038     if( doAdd ){
1039       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1040     }
1041   }
1042   pExpr->iColumn = x;
1043   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1044     sqlite3ErrorMsg(pParse, "too many SQL variables");
1045   }
1046 }
1047 
1048 /*
1049 ** Recursively delete an expression tree.
1050 */
1051 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1052   assert( p!=0 );
1053   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1054   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1055 #ifdef SQLITE_DEBUG
1056   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1057     assert( p->pLeft==0 );
1058     assert( p->pRight==0 );
1059     assert( p->x.pSelect==0 );
1060   }
1061 #endif
1062   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1063     /* The Expr.x union is never used at the same time as Expr.pRight */
1064     assert( p->x.pList==0 || p->pRight==0 );
1065     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1066     if( p->pRight ){
1067       sqlite3ExprDeleteNN(db, p->pRight);
1068     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1069       sqlite3SelectDelete(db, p->x.pSelect);
1070     }else{
1071       sqlite3ExprListDelete(db, p->x.pList);
1072     }
1073     if( !ExprHasProperty(p, EP_Reduced) ){
1074       sqlite3WindowDelete(db, p->pWin);
1075     }
1076   }
1077   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1078   if( !ExprHasProperty(p, EP_Static) ){
1079     sqlite3DbFreeNN(db, p);
1080   }
1081 }
1082 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1083   if( p ) sqlite3ExprDeleteNN(db, p);
1084 }
1085 
1086 /*
1087 ** Return the number of bytes allocated for the expression structure
1088 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1089 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1090 */
1091 static int exprStructSize(Expr *p){
1092   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1093   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1094   return EXPR_FULLSIZE;
1095 }
1096 
1097 /*
1098 ** The dupedExpr*Size() routines each return the number of bytes required
1099 ** to store a copy of an expression or expression tree.  They differ in
1100 ** how much of the tree is measured.
1101 **
1102 **     dupedExprStructSize()     Size of only the Expr structure
1103 **     dupedExprNodeSize()       Size of Expr + space for token
1104 **     dupedExprSize()           Expr + token + subtree components
1105 **
1106 ***************************************************************************
1107 **
1108 ** The dupedExprStructSize() function returns two values OR-ed together:
1109 ** (1) the space required for a copy of the Expr structure only and
1110 ** (2) the EP_xxx flags that indicate what the structure size should be.
1111 ** The return values is always one of:
1112 **
1113 **      EXPR_FULLSIZE
1114 **      EXPR_REDUCEDSIZE   | EP_Reduced
1115 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1116 **
1117 ** The size of the structure can be found by masking the return value
1118 ** of this routine with 0xfff.  The flags can be found by masking the
1119 ** return value with EP_Reduced|EP_TokenOnly.
1120 **
1121 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1122 ** (unreduced) Expr objects as they or originally constructed by the parser.
1123 ** During expression analysis, extra information is computed and moved into
1124 ** later parts of the Expr object and that extra information might get chopped
1125 ** off if the expression is reduced.  Note also that it does not work to
1126 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1127 ** to reduce a pristine expression tree from the parser.  The implementation
1128 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1129 ** to enforce this constraint.
1130 */
1131 static int dupedExprStructSize(Expr *p, int flags){
1132   int nSize;
1133   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1134   assert( EXPR_FULLSIZE<=0xfff );
1135   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1136   if( 0==flags || p->op==TK_SELECT_COLUMN
1137 #ifndef SQLITE_OMIT_WINDOWFUNC
1138    || p->pWin
1139 #endif
1140   ){
1141     nSize = EXPR_FULLSIZE;
1142   }else{
1143     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1144     assert( !ExprHasProperty(p, EP_FromJoin) );
1145     assert( !ExprHasProperty(p, EP_MemToken) );
1146     assert( !ExprHasProperty(p, EP_NoReduce) );
1147     if( p->pLeft || p->x.pList ){
1148       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1149     }else{
1150       assert( p->pRight==0 );
1151       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1152     }
1153   }
1154   return nSize;
1155 }
1156 
1157 /*
1158 ** This function returns the space in bytes required to store the copy
1159 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1160 ** string is defined.)
1161 */
1162 static int dupedExprNodeSize(Expr *p, int flags){
1163   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1164   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1165     nByte += sqlite3Strlen30(p->u.zToken)+1;
1166   }
1167   return ROUND8(nByte);
1168 }
1169 
1170 /*
1171 ** Return the number of bytes required to create a duplicate of the
1172 ** expression passed as the first argument. The second argument is a
1173 ** mask containing EXPRDUP_XXX flags.
1174 **
1175 ** The value returned includes space to create a copy of the Expr struct
1176 ** itself and the buffer referred to by Expr.u.zToken, if any.
1177 **
1178 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1179 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1180 ** and Expr.pRight variables (but not for any structures pointed to or
1181 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1182 */
1183 static int dupedExprSize(Expr *p, int flags){
1184   int nByte = 0;
1185   if( p ){
1186     nByte = dupedExprNodeSize(p, flags);
1187     if( flags&EXPRDUP_REDUCE ){
1188       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1189     }
1190   }
1191   return nByte;
1192 }
1193 
1194 /*
1195 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1196 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1197 ** to store the copy of expression p, the copies of p->u.zToken
1198 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1199 ** if any. Before returning, *pzBuffer is set to the first byte past the
1200 ** portion of the buffer copied into by this function.
1201 */
1202 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1203   Expr *pNew;           /* Value to return */
1204   u8 *zAlloc;           /* Memory space from which to build Expr object */
1205   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1206 
1207   assert( db!=0 );
1208   assert( p );
1209   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1210   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1211 
1212   /* Figure out where to write the new Expr structure. */
1213   if( pzBuffer ){
1214     zAlloc = *pzBuffer;
1215     staticFlag = EP_Static;
1216   }else{
1217     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1218     staticFlag = 0;
1219   }
1220   pNew = (Expr *)zAlloc;
1221 
1222   if( pNew ){
1223     /* Set nNewSize to the size allocated for the structure pointed to
1224     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1225     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1226     ** by the copy of the p->u.zToken string (if any).
1227     */
1228     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1229     const int nNewSize = nStructSize & 0xfff;
1230     int nToken;
1231     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1232       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1233     }else{
1234       nToken = 0;
1235     }
1236     if( dupFlags ){
1237       assert( ExprHasProperty(p, EP_Reduced)==0 );
1238       memcpy(zAlloc, p, nNewSize);
1239     }else{
1240       u32 nSize = (u32)exprStructSize(p);
1241       memcpy(zAlloc, p, nSize);
1242       if( nSize<EXPR_FULLSIZE ){
1243         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1244       }
1245     }
1246 
1247     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1248     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1249     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1250     pNew->flags |= staticFlag;
1251 
1252     /* Copy the p->u.zToken string, if any. */
1253     if( nToken ){
1254       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1255       memcpy(zToken, p->u.zToken, nToken);
1256     }
1257 
1258     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1259       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1260       if( ExprHasProperty(p, EP_xIsSelect) ){
1261         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1262       }else{
1263         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1264       }
1265     }
1266 
1267     /* Fill in pNew->pLeft and pNew->pRight. */
1268     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
1269       zAlloc += dupedExprNodeSize(p, dupFlags);
1270       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1271         pNew->pLeft = p->pLeft ?
1272                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1273         pNew->pRight = p->pRight ?
1274                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1275       }
1276       if( pzBuffer ){
1277         *pzBuffer = zAlloc;
1278       }
1279     }else{
1280 #ifndef SQLITE_OMIT_WINDOWFUNC
1281       if( ExprHasProperty(p, EP_Reduced|EP_TokenOnly) ){
1282         pNew->pWin = 0;
1283       }else{
1284         pNew->pWin = sqlite3WindowDup(db, pNew, p->pWin);
1285       }
1286 #endif /* SQLITE_OMIT_WINDOWFUNC */
1287       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1288         if( pNew->op==TK_SELECT_COLUMN ){
1289           pNew->pLeft = p->pLeft;
1290           assert( p->iColumn==0 || p->pRight==0 );
1291           assert( p->pRight==0  || p->pRight==p->pLeft );
1292         }else{
1293           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1294         }
1295         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1296       }
1297     }
1298   }
1299   return pNew;
1300 }
1301 
1302 /*
1303 ** Create and return a deep copy of the object passed as the second
1304 ** argument. If an OOM condition is encountered, NULL is returned
1305 ** and the db->mallocFailed flag set.
1306 */
1307 #ifndef SQLITE_OMIT_CTE
1308 static With *withDup(sqlite3 *db, With *p){
1309   With *pRet = 0;
1310   if( p ){
1311     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1312     pRet = sqlite3DbMallocZero(db, nByte);
1313     if( pRet ){
1314       int i;
1315       pRet->nCte = p->nCte;
1316       for(i=0; i<p->nCte; i++){
1317         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1318         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1319         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1320       }
1321     }
1322   }
1323   return pRet;
1324 }
1325 #else
1326 # define withDup(x,y) 0
1327 #endif
1328 
1329 /*
1330 ** The following group of routines make deep copies of expressions,
1331 ** expression lists, ID lists, and select statements.  The copies can
1332 ** be deleted (by being passed to their respective ...Delete() routines)
1333 ** without effecting the originals.
1334 **
1335 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1336 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1337 ** by subsequent calls to sqlite*ListAppend() routines.
1338 **
1339 ** Any tables that the SrcList might point to are not duplicated.
1340 **
1341 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1342 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1343 ** truncated version of the usual Expr structure that will be stored as
1344 ** part of the in-memory representation of the database schema.
1345 */
1346 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1347   assert( flags==0 || flags==EXPRDUP_REDUCE );
1348   return p ? exprDup(db, p, flags, 0) : 0;
1349 }
1350 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1351   ExprList *pNew;
1352   struct ExprList_item *pItem, *pOldItem;
1353   int i;
1354   Expr *pPriorSelectCol = 0;
1355   assert( db!=0 );
1356   if( p==0 ) return 0;
1357   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1358   if( pNew==0 ) return 0;
1359   pNew->nExpr = p->nExpr;
1360   pItem = pNew->a;
1361   pOldItem = p->a;
1362   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1363     Expr *pOldExpr = pOldItem->pExpr;
1364     Expr *pNewExpr;
1365     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1366     if( pOldExpr
1367      && pOldExpr->op==TK_SELECT_COLUMN
1368      && (pNewExpr = pItem->pExpr)!=0
1369     ){
1370       assert( pNewExpr->iColumn==0 || i>0 );
1371       if( pNewExpr->iColumn==0 ){
1372         assert( pOldExpr->pLeft==pOldExpr->pRight );
1373         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1374       }else{
1375         assert( i>0 );
1376         assert( pItem[-1].pExpr!=0 );
1377         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1378         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1379         pNewExpr->pLeft = pPriorSelectCol;
1380       }
1381     }
1382     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1383     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1384     pItem->sortOrder = pOldItem->sortOrder;
1385     pItem->done = 0;
1386     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1387     pItem->bSorterRef = pOldItem->bSorterRef;
1388     pItem->u = pOldItem->u;
1389   }
1390   return pNew;
1391 }
1392 
1393 /*
1394 ** If cursors, triggers, views and subqueries are all omitted from
1395 ** the build, then none of the following routines, except for
1396 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1397 ** called with a NULL argument.
1398 */
1399 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1400  || !defined(SQLITE_OMIT_SUBQUERY)
1401 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1402   SrcList *pNew;
1403   int i;
1404   int nByte;
1405   assert( db!=0 );
1406   if( p==0 ) return 0;
1407   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1408   pNew = sqlite3DbMallocRawNN(db, nByte );
1409   if( pNew==0 ) return 0;
1410   pNew->nSrc = pNew->nAlloc = p->nSrc;
1411   for(i=0; i<p->nSrc; i++){
1412     struct SrcList_item *pNewItem = &pNew->a[i];
1413     struct SrcList_item *pOldItem = &p->a[i];
1414     Table *pTab;
1415     pNewItem->pSchema = pOldItem->pSchema;
1416     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1417     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1418     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1419     pNewItem->fg = pOldItem->fg;
1420     pNewItem->iCursor = pOldItem->iCursor;
1421     pNewItem->addrFillSub = pOldItem->addrFillSub;
1422     pNewItem->regReturn = pOldItem->regReturn;
1423     if( pNewItem->fg.isIndexedBy ){
1424       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1425     }
1426     pNewItem->pIBIndex = pOldItem->pIBIndex;
1427     if( pNewItem->fg.isTabFunc ){
1428       pNewItem->u1.pFuncArg =
1429           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1430     }
1431     pTab = pNewItem->pTab = pOldItem->pTab;
1432     if( pTab ){
1433       pTab->nTabRef++;
1434     }
1435     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1436     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1437     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1438     pNewItem->colUsed = pOldItem->colUsed;
1439   }
1440   return pNew;
1441 }
1442 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1443   IdList *pNew;
1444   int i;
1445   assert( db!=0 );
1446   if( p==0 ) return 0;
1447   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1448   if( pNew==0 ) return 0;
1449   pNew->nId = p->nId;
1450   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1451   if( pNew->a==0 ){
1452     sqlite3DbFreeNN(db, pNew);
1453     return 0;
1454   }
1455   /* Note that because the size of the allocation for p->a[] is not
1456   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1457   ** on the duplicate created by this function. */
1458   for(i=0; i<p->nId; i++){
1459     struct IdList_item *pNewItem = &pNew->a[i];
1460     struct IdList_item *pOldItem = &p->a[i];
1461     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1462     pNewItem->idx = pOldItem->idx;
1463   }
1464   return pNew;
1465 }
1466 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1467   Select *pRet = 0;
1468   Select *pNext = 0;
1469   Select **pp = &pRet;
1470   Select *p;
1471 
1472   assert( db!=0 );
1473   for(p=pDup; p; p=p->pPrior){
1474     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1475     if( pNew==0 ) break;
1476     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1477     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1478     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1479     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1480     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1481     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1482     pNew->op = p->op;
1483     pNew->pNext = pNext;
1484     pNew->pPrior = 0;
1485     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1486     pNew->iLimit = 0;
1487     pNew->iOffset = 0;
1488     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1489     pNew->addrOpenEphm[0] = -1;
1490     pNew->addrOpenEphm[1] = -1;
1491     pNew->nSelectRow = p->nSelectRow;
1492     pNew->pWith = withDup(db, p->pWith);
1493 #ifndef SQLITE_OMIT_WINDOWFUNC
1494     pNew->pWin = 0;
1495     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1496 #endif
1497     pNew->selId = p->selId;
1498     *pp = pNew;
1499     pp = &pNew->pPrior;
1500     pNext = pNew;
1501   }
1502 
1503   return pRet;
1504 }
1505 #else
1506 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1507   assert( p==0 );
1508   return 0;
1509 }
1510 #endif
1511 
1512 
1513 /*
1514 ** Add a new element to the end of an expression list.  If pList is
1515 ** initially NULL, then create a new expression list.
1516 **
1517 ** The pList argument must be either NULL or a pointer to an ExprList
1518 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1519 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1520 ** Reason:  This routine assumes that the number of slots in pList->a[]
1521 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1522 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1523 **
1524 ** If a memory allocation error occurs, the entire list is freed and
1525 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1526 ** that the new entry was successfully appended.
1527 */
1528 ExprList *sqlite3ExprListAppend(
1529   Parse *pParse,          /* Parsing context */
1530   ExprList *pList,        /* List to which to append. Might be NULL */
1531   Expr *pExpr             /* Expression to be appended. Might be NULL */
1532 ){
1533   struct ExprList_item *pItem;
1534   sqlite3 *db = pParse->db;
1535   assert( db!=0 );
1536   if( pList==0 ){
1537     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1538     if( pList==0 ){
1539       goto no_mem;
1540     }
1541     pList->nExpr = 0;
1542   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1543     ExprList *pNew;
1544     pNew = sqlite3DbRealloc(db, pList,
1545              sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0]));
1546     if( pNew==0 ){
1547       goto no_mem;
1548     }
1549     pList = pNew;
1550   }
1551   pItem = &pList->a[pList->nExpr++];
1552   assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) );
1553   assert( offsetof(struct ExprList_item,pExpr)==0 );
1554   memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName));
1555   pItem->pExpr = pExpr;
1556   return pList;
1557 
1558 no_mem:
1559   /* Avoid leaking memory if malloc has failed. */
1560   sqlite3ExprDelete(db, pExpr);
1561   sqlite3ExprListDelete(db, pList);
1562   return 0;
1563 }
1564 
1565 /*
1566 ** pColumns and pExpr form a vector assignment which is part of the SET
1567 ** clause of an UPDATE statement.  Like this:
1568 **
1569 **        (a,b,c) = (expr1,expr2,expr3)
1570 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1571 **
1572 ** For each term of the vector assignment, append new entries to the
1573 ** expression list pList.  In the case of a subquery on the RHS, append
1574 ** TK_SELECT_COLUMN expressions.
1575 */
1576 ExprList *sqlite3ExprListAppendVector(
1577   Parse *pParse,         /* Parsing context */
1578   ExprList *pList,       /* List to which to append. Might be NULL */
1579   IdList *pColumns,      /* List of names of LHS of the assignment */
1580   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1581 ){
1582   sqlite3 *db = pParse->db;
1583   int n;
1584   int i;
1585   int iFirst = pList ? pList->nExpr : 0;
1586   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1587   ** exit prior to this routine being invoked */
1588   if( NEVER(pColumns==0) ) goto vector_append_error;
1589   if( pExpr==0 ) goto vector_append_error;
1590 
1591   /* If the RHS is a vector, then we can immediately check to see that
1592   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1593   ** wildcards ("*") in the result set of the SELECT must be expanded before
1594   ** we can do the size check, so defer the size check until code generation.
1595   */
1596   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1597     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1598                     pColumns->nId, n);
1599     goto vector_append_error;
1600   }
1601 
1602   for(i=0; i<pColumns->nId; i++){
1603     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1604     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1605     if( pList ){
1606       assert( pList->nExpr==iFirst+i+1 );
1607       pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1608       pColumns->a[i].zName = 0;
1609     }
1610   }
1611 
1612   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1613     Expr *pFirst = pList->a[iFirst].pExpr;
1614     assert( pFirst!=0 );
1615     assert( pFirst->op==TK_SELECT_COLUMN );
1616 
1617     /* Store the SELECT statement in pRight so it will be deleted when
1618     ** sqlite3ExprListDelete() is called */
1619     pFirst->pRight = pExpr;
1620     pExpr = 0;
1621 
1622     /* Remember the size of the LHS in iTable so that we can check that
1623     ** the RHS and LHS sizes match during code generation. */
1624     pFirst->iTable = pColumns->nId;
1625   }
1626 
1627 vector_append_error:
1628   sqlite3ExprDelete(db, pExpr);
1629   sqlite3IdListDelete(db, pColumns);
1630   return pList;
1631 }
1632 
1633 /*
1634 ** Set the sort order for the last element on the given ExprList.
1635 */
1636 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1637   if( p==0 ) return;
1638   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1639   assert( p->nExpr>0 );
1640   if( iSortOrder<0 ){
1641     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1642     return;
1643   }
1644   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1645 }
1646 
1647 /*
1648 ** Set the ExprList.a[].zName element of the most recently added item
1649 ** on the expression list.
1650 **
1651 ** pList might be NULL following an OOM error.  But pName should never be
1652 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1653 ** is set.
1654 */
1655 void sqlite3ExprListSetName(
1656   Parse *pParse,          /* Parsing context */
1657   ExprList *pList,        /* List to which to add the span. */
1658   Token *pName,           /* Name to be added */
1659   int dequote             /* True to cause the name to be dequoted */
1660 ){
1661   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1662   if( pList ){
1663     struct ExprList_item *pItem;
1664     assert( pList->nExpr>0 );
1665     pItem = &pList->a[pList->nExpr-1];
1666     assert( pItem->zName==0 );
1667     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1668     if( dequote ) sqlite3Dequote(pItem->zName);
1669   }
1670 }
1671 
1672 /*
1673 ** Set the ExprList.a[].zSpan element of the most recently added item
1674 ** on the expression list.
1675 **
1676 ** pList might be NULL following an OOM error.  But pSpan should never be
1677 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1678 ** is set.
1679 */
1680 void sqlite3ExprListSetSpan(
1681   Parse *pParse,          /* Parsing context */
1682   ExprList *pList,        /* List to which to add the span. */
1683   const char *zStart,     /* Start of the span */
1684   const char *zEnd        /* End of the span */
1685 ){
1686   sqlite3 *db = pParse->db;
1687   assert( pList!=0 || db->mallocFailed!=0 );
1688   if( pList ){
1689     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1690     assert( pList->nExpr>0 );
1691     sqlite3DbFree(db, pItem->zSpan);
1692     pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd);
1693   }
1694 }
1695 
1696 /*
1697 ** If the expression list pEList contains more than iLimit elements,
1698 ** leave an error message in pParse.
1699 */
1700 void sqlite3ExprListCheckLength(
1701   Parse *pParse,
1702   ExprList *pEList,
1703   const char *zObject
1704 ){
1705   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1706   testcase( pEList && pEList->nExpr==mx );
1707   testcase( pEList && pEList->nExpr==mx+1 );
1708   if( pEList && pEList->nExpr>mx ){
1709     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1710   }
1711 }
1712 
1713 /*
1714 ** Delete an entire expression list.
1715 */
1716 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1717   int i = pList->nExpr;
1718   struct ExprList_item *pItem =  pList->a;
1719   assert( pList->nExpr>0 );
1720   do{
1721     sqlite3ExprDelete(db, pItem->pExpr);
1722     sqlite3DbFree(db, pItem->zName);
1723     sqlite3DbFree(db, pItem->zSpan);
1724     pItem++;
1725   }while( --i>0 );
1726   sqlite3DbFreeNN(db, pList);
1727 }
1728 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1729   if( pList ) exprListDeleteNN(db, pList);
1730 }
1731 
1732 /*
1733 ** Return the bitwise-OR of all Expr.flags fields in the given
1734 ** ExprList.
1735 */
1736 u32 sqlite3ExprListFlags(const ExprList *pList){
1737   int i;
1738   u32 m = 0;
1739   assert( pList!=0 );
1740   for(i=0; i<pList->nExpr; i++){
1741      Expr *pExpr = pList->a[i].pExpr;
1742      assert( pExpr!=0 );
1743      m |= pExpr->flags;
1744   }
1745   return m;
1746 }
1747 
1748 /*
1749 ** This is a SELECT-node callback for the expression walker that
1750 ** always "fails".  By "fail" in this case, we mean set
1751 ** pWalker->eCode to zero and abort.
1752 **
1753 ** This callback is used by multiple expression walkers.
1754 */
1755 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1756   UNUSED_PARAMETER(NotUsed);
1757   pWalker->eCode = 0;
1758   return WRC_Abort;
1759 }
1760 
1761 /*
1762 ** If the input expression is an ID with the name "true" or "false"
1763 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1764 ** the conversion happened, and zero if the expression is unaltered.
1765 */
1766 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1767   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1768   if( sqlite3StrICmp(pExpr->u.zToken, "true")==0
1769    || sqlite3StrICmp(pExpr->u.zToken, "false")==0
1770   ){
1771     pExpr->op = TK_TRUEFALSE;
1772     return 1;
1773   }
1774   return 0;
1775 }
1776 
1777 /*
1778 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
1779 ** and 0 if it is FALSE.
1780 */
1781 int sqlite3ExprTruthValue(const Expr *pExpr){
1782   assert( pExpr->op==TK_TRUEFALSE );
1783   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1784        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1785   return pExpr->u.zToken[4]==0;
1786 }
1787 
1788 
1789 /*
1790 ** These routines are Walker callbacks used to check expressions to
1791 ** see if they are "constant" for some definition of constant.  The
1792 ** Walker.eCode value determines the type of "constant" we are looking
1793 ** for.
1794 **
1795 ** These callback routines are used to implement the following:
1796 **
1797 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1798 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1799 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1800 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1801 **
1802 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1803 ** is found to not be a constant.
1804 **
1805 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1806 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1807 ** an existing schema and 4 when processing a new statement.  A bound
1808 ** parameter raises an error for new statements, but is silently converted
1809 ** to NULL for existing schemas.  This allows sqlite_master tables that
1810 ** contain a bound parameter because they were generated by older versions
1811 ** of SQLite to be parsed by newer versions of SQLite without raising a
1812 ** malformed schema error.
1813 */
1814 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1815 
1816   /* If pWalker->eCode is 2 then any term of the expression that comes from
1817   ** the ON or USING clauses of a left join disqualifies the expression
1818   ** from being considered constant. */
1819   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1820     pWalker->eCode = 0;
1821     return WRC_Abort;
1822   }
1823 
1824   switch( pExpr->op ){
1825     /* Consider functions to be constant if all their arguments are constant
1826     ** and either pWalker->eCode==4 or 5 or the function has the
1827     ** SQLITE_FUNC_CONST flag. */
1828     case TK_FUNCTION:
1829       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1830         return WRC_Continue;
1831       }else{
1832         pWalker->eCode = 0;
1833         return WRC_Abort;
1834       }
1835     case TK_ID:
1836       /* Convert "true" or "false" in a DEFAULT clause into the
1837       ** appropriate TK_TRUEFALSE operator */
1838       if( sqlite3ExprIdToTrueFalse(pExpr) ){
1839         return WRC_Prune;
1840       }
1841       /* Fall thru */
1842     case TK_COLUMN:
1843     case TK_AGG_FUNCTION:
1844     case TK_AGG_COLUMN:
1845       testcase( pExpr->op==TK_ID );
1846       testcase( pExpr->op==TK_COLUMN );
1847       testcase( pExpr->op==TK_AGG_FUNCTION );
1848       testcase( pExpr->op==TK_AGG_COLUMN );
1849       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
1850         return WRC_Continue;
1851       }
1852       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1853         return WRC_Continue;
1854       }
1855       /* Fall through */
1856     case TK_IF_NULL_ROW:
1857     case TK_REGISTER:
1858       testcase( pExpr->op==TK_REGISTER );
1859       testcase( pExpr->op==TK_IF_NULL_ROW );
1860       pWalker->eCode = 0;
1861       return WRC_Abort;
1862     case TK_VARIABLE:
1863       if( pWalker->eCode==5 ){
1864         /* Silently convert bound parameters that appear inside of CREATE
1865         ** statements into a NULL when parsing the CREATE statement text out
1866         ** of the sqlite_master table */
1867         pExpr->op = TK_NULL;
1868       }else if( pWalker->eCode==4 ){
1869         /* A bound parameter in a CREATE statement that originates from
1870         ** sqlite3_prepare() causes an error */
1871         pWalker->eCode = 0;
1872         return WRC_Abort;
1873       }
1874       /* Fall through */
1875     default:
1876       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
1877       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
1878       return WRC_Continue;
1879   }
1880 }
1881 static int exprIsConst(Expr *p, int initFlag, int iCur){
1882   Walker w;
1883   w.eCode = initFlag;
1884   w.xExprCallback = exprNodeIsConstant;
1885   w.xSelectCallback = sqlite3SelectWalkFail;
1886 #ifdef SQLITE_DEBUG
1887   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1888 #endif
1889   w.u.iCur = iCur;
1890   sqlite3WalkExpr(&w, p);
1891   return w.eCode;
1892 }
1893 
1894 /*
1895 ** Walk an expression tree.  Return non-zero if the expression is constant
1896 ** and 0 if it involves variables or function calls.
1897 **
1898 ** For the purposes of this function, a double-quoted string (ex: "abc")
1899 ** is considered a variable but a single-quoted string (ex: 'abc') is
1900 ** a constant.
1901 */
1902 int sqlite3ExprIsConstant(Expr *p){
1903   return exprIsConst(p, 1, 0);
1904 }
1905 
1906 /*
1907 ** Walk an expression tree.  Return non-zero if
1908 **
1909 **   (1) the expression is constant, and
1910 **   (2) the expression does originate in the ON or USING clause
1911 **       of a LEFT JOIN, and
1912 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
1913 **       operands created by the constant propagation optimization.
1914 **
1915 ** When this routine returns true, it indicates that the expression
1916 ** can be added to the pParse->pConstExpr list and evaluated once when
1917 ** the prepared statement starts up.  See sqlite3ExprCodeAtInit().
1918 */
1919 int sqlite3ExprIsConstantNotJoin(Expr *p){
1920   return exprIsConst(p, 2, 0);
1921 }
1922 
1923 /*
1924 ** Walk an expression tree.  Return non-zero if the expression is constant
1925 ** for any single row of the table with cursor iCur.  In other words, the
1926 ** expression must not refer to any non-deterministic function nor any
1927 ** table other than iCur.
1928 */
1929 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1930   return exprIsConst(p, 3, iCur);
1931 }
1932 
1933 
1934 /*
1935 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
1936 */
1937 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
1938   ExprList *pGroupBy = pWalker->u.pGroupBy;
1939   int i;
1940 
1941   /* Check if pExpr is identical to any GROUP BY term. If so, consider
1942   ** it constant.  */
1943   for(i=0; i<pGroupBy->nExpr; i++){
1944     Expr *p = pGroupBy->a[i].pExpr;
1945     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
1946       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
1947       if( sqlite3IsBinary(pColl) ){
1948         return WRC_Prune;
1949       }
1950     }
1951   }
1952 
1953   /* Check if pExpr is a sub-select. If so, consider it variable. */
1954   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1955     pWalker->eCode = 0;
1956     return WRC_Abort;
1957   }
1958 
1959   return exprNodeIsConstant(pWalker, pExpr);
1960 }
1961 
1962 /*
1963 ** Walk the expression tree passed as the first argument. Return non-zero
1964 ** if the expression consists entirely of constants or copies of terms
1965 ** in pGroupBy that sort with the BINARY collation sequence.
1966 **
1967 ** This routine is used to determine if a term of the HAVING clause can
1968 ** be promoted into the WHERE clause.  In order for such a promotion to work,
1969 ** the value of the HAVING clause term must be the same for all members of
1970 ** a "group".  The requirement that the GROUP BY term must be BINARY
1971 ** assumes that no other collating sequence will have a finer-grained
1972 ** grouping than binary.  In other words (A=B COLLATE binary) implies
1973 ** A=B in every other collating sequence.  The requirement that the
1974 ** GROUP BY be BINARY is stricter than necessary.  It would also work
1975 ** to promote HAVING clauses that use the same alternative collating
1976 ** sequence as the GROUP BY term, but that is much harder to check,
1977 ** alternative collating sequences are uncommon, and this is only an
1978 ** optimization, so we take the easy way out and simply require the
1979 ** GROUP BY to use the BINARY collating sequence.
1980 */
1981 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
1982   Walker w;
1983   w.eCode = 1;
1984   w.xExprCallback = exprNodeIsConstantOrGroupBy;
1985   w.xSelectCallback = 0;
1986   w.u.pGroupBy = pGroupBy;
1987   w.pParse = pParse;
1988   sqlite3WalkExpr(&w, p);
1989   return w.eCode;
1990 }
1991 
1992 /*
1993 ** Walk an expression tree.  Return non-zero if the expression is constant
1994 ** or a function call with constant arguments.  Return and 0 if there
1995 ** are any variables.
1996 **
1997 ** For the purposes of this function, a double-quoted string (ex: "abc")
1998 ** is considered a variable but a single-quoted string (ex: 'abc') is
1999 ** a constant.
2000 */
2001 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2002   assert( isInit==0 || isInit==1 );
2003   return exprIsConst(p, 4+isInit, 0);
2004 }
2005 
2006 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2007 /*
2008 ** Walk an expression tree.  Return 1 if the expression contains a
2009 ** subquery of some kind.  Return 0 if there are no subqueries.
2010 */
2011 int sqlite3ExprContainsSubquery(Expr *p){
2012   Walker w;
2013   w.eCode = 1;
2014   w.xExprCallback = sqlite3ExprWalkNoop;
2015   w.xSelectCallback = sqlite3SelectWalkFail;
2016 #ifdef SQLITE_DEBUG
2017   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2018 #endif
2019   sqlite3WalkExpr(&w, p);
2020   return w.eCode==0;
2021 }
2022 #endif
2023 
2024 /*
2025 ** If the expression p codes a constant integer that is small enough
2026 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2027 ** in *pValue.  If the expression is not an integer or if it is too big
2028 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2029 */
2030 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2031   int rc = 0;
2032   if( p==0 ) return 0;  /* Can only happen following on OOM */
2033 
2034   /* If an expression is an integer literal that fits in a signed 32-bit
2035   ** integer, then the EP_IntValue flag will have already been set */
2036   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2037            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2038 
2039   if( p->flags & EP_IntValue ){
2040     *pValue = p->u.iValue;
2041     return 1;
2042   }
2043   switch( p->op ){
2044     case TK_UPLUS: {
2045       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2046       break;
2047     }
2048     case TK_UMINUS: {
2049       int v;
2050       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2051         assert( v!=(-2147483647-1) );
2052         *pValue = -v;
2053         rc = 1;
2054       }
2055       break;
2056     }
2057     default: break;
2058   }
2059   return rc;
2060 }
2061 
2062 /*
2063 ** Return FALSE if there is no chance that the expression can be NULL.
2064 **
2065 ** If the expression might be NULL or if the expression is too complex
2066 ** to tell return TRUE.
2067 **
2068 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2069 ** when we know that a value cannot be NULL.  Hence, a false positive
2070 ** (returning TRUE when in fact the expression can never be NULL) might
2071 ** be a small performance hit but is otherwise harmless.  On the other
2072 ** hand, a false negative (returning FALSE when the result could be NULL)
2073 ** will likely result in an incorrect answer.  So when in doubt, return
2074 ** TRUE.
2075 */
2076 int sqlite3ExprCanBeNull(const Expr *p){
2077   u8 op;
2078   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2079   op = p->op;
2080   if( op==TK_REGISTER ) op = p->op2;
2081   switch( op ){
2082     case TK_INTEGER:
2083     case TK_STRING:
2084     case TK_FLOAT:
2085     case TK_BLOB:
2086       return 0;
2087     case TK_COLUMN:
2088       return ExprHasProperty(p, EP_CanBeNull) ||
2089              p->pTab==0 ||  /* Reference to column of index on expression */
2090              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
2091     default:
2092       return 1;
2093   }
2094 }
2095 
2096 /*
2097 ** Return TRUE if the given expression is a constant which would be
2098 ** unchanged by OP_Affinity with the affinity given in the second
2099 ** argument.
2100 **
2101 ** This routine is used to determine if the OP_Affinity operation
2102 ** can be omitted.  When in doubt return FALSE.  A false negative
2103 ** is harmless.  A false positive, however, can result in the wrong
2104 ** answer.
2105 */
2106 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2107   u8 op;
2108   if( aff==SQLITE_AFF_BLOB ) return 1;
2109   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2110   op = p->op;
2111   if( op==TK_REGISTER ) op = p->op2;
2112   switch( op ){
2113     case TK_INTEGER: {
2114       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
2115     }
2116     case TK_FLOAT: {
2117       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
2118     }
2119     case TK_STRING: {
2120       return aff==SQLITE_AFF_TEXT;
2121     }
2122     case TK_BLOB: {
2123       return 1;
2124     }
2125     case TK_COLUMN: {
2126       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2127       return p->iColumn<0
2128           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
2129     }
2130     default: {
2131       return 0;
2132     }
2133   }
2134 }
2135 
2136 /*
2137 ** Return TRUE if the given string is a row-id column name.
2138 */
2139 int sqlite3IsRowid(const char *z){
2140   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2141   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2142   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2143   return 0;
2144 }
2145 
2146 /*
2147 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2148 ** that can be simplified to a direct table access, then return
2149 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2150 ** or if the SELECT statement needs to be manifested into a transient
2151 ** table, then return NULL.
2152 */
2153 #ifndef SQLITE_OMIT_SUBQUERY
2154 static Select *isCandidateForInOpt(Expr *pX){
2155   Select *p;
2156   SrcList *pSrc;
2157   ExprList *pEList;
2158   Table *pTab;
2159   int i;
2160   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2161   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2162   p = pX->x.pSelect;
2163   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2164   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2165     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2166     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2167     return 0; /* No DISTINCT keyword and no aggregate functions */
2168   }
2169   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2170   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2171   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2172   pSrc = p->pSrc;
2173   assert( pSrc!=0 );
2174   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2175   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2176   pTab = pSrc->a[0].pTab;
2177   assert( pTab!=0 );
2178   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2179   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2180   pEList = p->pEList;
2181   assert( pEList!=0 );
2182   /* All SELECT results must be columns. */
2183   for(i=0; i<pEList->nExpr; i++){
2184     Expr *pRes = pEList->a[i].pExpr;
2185     if( pRes->op!=TK_COLUMN ) return 0;
2186     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2187   }
2188   return p;
2189 }
2190 #endif /* SQLITE_OMIT_SUBQUERY */
2191 
2192 #ifndef SQLITE_OMIT_SUBQUERY
2193 /*
2194 ** Generate code that checks the left-most column of index table iCur to see if
2195 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2196 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2197 ** to be set to NULL if iCur contains one or more NULL values.
2198 */
2199 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2200   int addr1;
2201   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2202   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2203   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2204   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2205   VdbeComment((v, "first_entry_in(%d)", iCur));
2206   sqlite3VdbeJumpHere(v, addr1);
2207 }
2208 #endif
2209 
2210 
2211 #ifndef SQLITE_OMIT_SUBQUERY
2212 /*
2213 ** The argument is an IN operator with a list (not a subquery) on the
2214 ** right-hand side.  Return TRUE if that list is constant.
2215 */
2216 static int sqlite3InRhsIsConstant(Expr *pIn){
2217   Expr *pLHS;
2218   int res;
2219   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2220   pLHS = pIn->pLeft;
2221   pIn->pLeft = 0;
2222   res = sqlite3ExprIsConstant(pIn);
2223   pIn->pLeft = pLHS;
2224   return res;
2225 }
2226 #endif
2227 
2228 /*
2229 ** This function is used by the implementation of the IN (...) operator.
2230 ** The pX parameter is the expression on the RHS of the IN operator, which
2231 ** might be either a list of expressions or a subquery.
2232 **
2233 ** The job of this routine is to find or create a b-tree object that can
2234 ** be used either to test for membership in the RHS set or to iterate through
2235 ** all members of the RHS set, skipping duplicates.
2236 **
2237 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2238 ** and pX->iTable is set to the index of that cursor.
2239 **
2240 ** The returned value of this function indicates the b-tree type, as follows:
2241 **
2242 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2243 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2244 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2245 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2246 **                         populated epheremal table.
2247 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2248 **                         implemented as a sequence of comparisons.
2249 **
2250 ** An existing b-tree might be used if the RHS expression pX is a simple
2251 ** subquery such as:
2252 **
2253 **     SELECT <column1>, <column2>... FROM <table>
2254 **
2255 ** If the RHS of the IN operator is a list or a more complex subquery, then
2256 ** an ephemeral table might need to be generated from the RHS and then
2257 ** pX->iTable made to point to the ephemeral table instead of an
2258 ** existing table.
2259 **
2260 ** The inFlags parameter must contain, at a minimum, one of the bits
2261 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2262 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2263 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2264 ** be used to loop over all values of the RHS of the IN operator.
2265 **
2266 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2267 ** through the set members) then the b-tree must not contain duplicates.
2268 ** An epheremal table will be created unless the selected columns are guaranteed
2269 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2270 ** a UNIQUE constraint or index.
2271 **
2272 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2273 ** for fast set membership tests) then an epheremal table must
2274 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2275 ** index can be found with the specified <columns> as its left-most.
2276 **
2277 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2278 ** if the RHS of the IN operator is a list (not a subquery) then this
2279 ** routine might decide that creating an ephemeral b-tree for membership
2280 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2281 ** calling routine should implement the IN operator using a sequence
2282 ** of Eq or Ne comparison operations.
2283 **
2284 ** When the b-tree is being used for membership tests, the calling function
2285 ** might need to know whether or not the RHS side of the IN operator
2286 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2287 ** if there is any chance that the (...) might contain a NULL value at
2288 ** runtime, then a register is allocated and the register number written
2289 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2290 ** NULL value, then *prRhsHasNull is left unchanged.
2291 **
2292 ** If a register is allocated and its location stored in *prRhsHasNull, then
2293 ** the value in that register will be NULL if the b-tree contains one or more
2294 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2295 ** NULL values.
2296 **
2297 ** If the aiMap parameter is not NULL, it must point to an array containing
2298 ** one element for each column returned by the SELECT statement on the RHS
2299 ** of the IN(...) operator. The i'th entry of the array is populated with the
2300 ** offset of the index column that matches the i'th column returned by the
2301 ** SELECT. For example, if the expression and selected index are:
2302 **
2303 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2304 **   CREATE INDEX i1 ON t1(b, c, a);
2305 **
2306 ** then aiMap[] is populated with {2, 0, 1}.
2307 */
2308 #ifndef SQLITE_OMIT_SUBQUERY
2309 int sqlite3FindInIndex(
2310   Parse *pParse,             /* Parsing context */
2311   Expr *pX,                  /* The right-hand side (RHS) of the IN operator */
2312   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2313   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2314   int *aiMap                 /* Mapping from Index fields to RHS fields */
2315 ){
2316   Select *p;                            /* SELECT to the right of IN operator */
2317   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2318   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2319   int mustBeUnique;                     /* True if RHS must be unique */
2320   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2321 
2322   assert( pX->op==TK_IN );
2323   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2324 
2325   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2326   ** whether or not the SELECT result contains NULL values, check whether
2327   ** or not NULL is actually possible (it may not be, for example, due
2328   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2329   ** set prRhsHasNull to 0 before continuing.  */
2330   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2331     int i;
2332     ExprList *pEList = pX->x.pSelect->pEList;
2333     for(i=0; i<pEList->nExpr; i++){
2334       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2335     }
2336     if( i==pEList->nExpr ){
2337       prRhsHasNull = 0;
2338     }
2339   }
2340 
2341   /* Check to see if an existing table or index can be used to
2342   ** satisfy the query.  This is preferable to generating a new
2343   ** ephemeral table.  */
2344   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2345     sqlite3 *db = pParse->db;              /* Database connection */
2346     Table *pTab;                           /* Table <table>. */
2347     i16 iDb;                               /* Database idx for pTab */
2348     ExprList *pEList = p->pEList;
2349     int nExpr = pEList->nExpr;
2350 
2351     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2352     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2353     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2354     pTab = p->pSrc->a[0].pTab;
2355 
2356     /* Code an OP_Transaction and OP_TableLock for <table>. */
2357     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2358     sqlite3CodeVerifySchema(pParse, iDb);
2359     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2360 
2361     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2362     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2363       /* The "x IN (SELECT rowid FROM table)" case */
2364       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2365       VdbeCoverage(v);
2366 
2367       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2368       eType = IN_INDEX_ROWID;
2369       ExplainQueryPlan((pParse, 0,
2370             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2371       sqlite3VdbeJumpHere(v, iAddr);
2372     }else{
2373       Index *pIdx;                         /* Iterator variable */
2374       int affinity_ok = 1;
2375       int i;
2376 
2377       /* Check that the affinity that will be used to perform each
2378       ** comparison is the same as the affinity of each column in table
2379       ** on the RHS of the IN operator.  If it not, it is not possible to
2380       ** use any index of the RHS table.  */
2381       for(i=0; i<nExpr && affinity_ok; i++){
2382         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2383         int iCol = pEList->a[i].pExpr->iColumn;
2384         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2385         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2386         testcase( cmpaff==SQLITE_AFF_BLOB );
2387         testcase( cmpaff==SQLITE_AFF_TEXT );
2388         switch( cmpaff ){
2389           case SQLITE_AFF_BLOB:
2390             break;
2391           case SQLITE_AFF_TEXT:
2392             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2393             ** other has no affinity and the other side is TEXT.  Hence,
2394             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2395             ** and for the term on the LHS of the IN to have no affinity. */
2396             assert( idxaff==SQLITE_AFF_TEXT );
2397             break;
2398           default:
2399             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2400         }
2401       }
2402 
2403       if( affinity_ok ){
2404         /* Search for an existing index that will work for this IN operator */
2405         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2406           Bitmask colUsed;      /* Columns of the index used */
2407           Bitmask mCol;         /* Mask for the current column */
2408           if( pIdx->nColumn<nExpr ) continue;
2409           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2410           ** BITMASK(nExpr) without overflowing */
2411           testcase( pIdx->nColumn==BMS-2 );
2412           testcase( pIdx->nColumn==BMS-1 );
2413           if( pIdx->nColumn>=BMS-1 ) continue;
2414           if( mustBeUnique ){
2415             if( pIdx->nKeyCol>nExpr
2416              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2417             ){
2418               continue;  /* This index is not unique over the IN RHS columns */
2419             }
2420           }
2421 
2422           colUsed = 0;   /* Columns of index used so far */
2423           for(i=0; i<nExpr; i++){
2424             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2425             Expr *pRhs = pEList->a[i].pExpr;
2426             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2427             int j;
2428 
2429             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2430             for(j=0; j<nExpr; j++){
2431               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2432               assert( pIdx->azColl[j] );
2433               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2434                 continue;
2435               }
2436               break;
2437             }
2438             if( j==nExpr ) break;
2439             mCol = MASKBIT(j);
2440             if( mCol & colUsed ) break; /* Each column used only once */
2441             colUsed |= mCol;
2442             if( aiMap ) aiMap[i] = j;
2443           }
2444 
2445           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2446           if( colUsed==(MASKBIT(nExpr)-1) ){
2447             /* If we reach this point, that means the index pIdx is usable */
2448             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2449             ExplainQueryPlan((pParse, 0,
2450                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2451             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2452             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2453             VdbeComment((v, "%s", pIdx->zName));
2454             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2455             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2456 
2457             if( prRhsHasNull ){
2458 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2459               i64 mask = (1<<nExpr)-1;
2460               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2461                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2462 #endif
2463               *prRhsHasNull = ++pParse->nMem;
2464               if( nExpr==1 ){
2465                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2466               }
2467             }
2468             sqlite3VdbeJumpHere(v, iAddr);
2469           }
2470         } /* End loop over indexes */
2471       } /* End if( affinity_ok ) */
2472     } /* End if not an rowid index */
2473   } /* End attempt to optimize using an index */
2474 
2475   /* If no preexisting index is available for the IN clause
2476   ** and IN_INDEX_NOOP is an allowed reply
2477   ** and the RHS of the IN operator is a list, not a subquery
2478   ** and the RHS is not constant or has two or fewer terms,
2479   ** then it is not worth creating an ephemeral table to evaluate
2480   ** the IN operator so return IN_INDEX_NOOP.
2481   */
2482   if( eType==0
2483    && (inFlags & IN_INDEX_NOOP_OK)
2484    && !ExprHasProperty(pX, EP_xIsSelect)
2485    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2486   ){
2487     eType = IN_INDEX_NOOP;
2488   }
2489 
2490   if( eType==0 ){
2491     /* Could not find an existing table or index to use as the RHS b-tree.
2492     ** We will have to generate an ephemeral table to do the job.
2493     */
2494     u32 savedNQueryLoop = pParse->nQueryLoop;
2495     int rMayHaveNull = 0;
2496     eType = IN_INDEX_EPH;
2497     if( inFlags & IN_INDEX_LOOP ){
2498       pParse->nQueryLoop = 0;
2499       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
2500         eType = IN_INDEX_ROWID;
2501       }
2502     }else if( prRhsHasNull ){
2503       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2504     }
2505     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
2506     pParse->nQueryLoop = savedNQueryLoop;
2507   }else{
2508     pX->iTable = iTab;
2509   }
2510 
2511   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2512     int i, n;
2513     n = sqlite3ExprVectorSize(pX->pLeft);
2514     for(i=0; i<n; i++) aiMap[i] = i;
2515   }
2516   return eType;
2517 }
2518 #endif
2519 
2520 #ifndef SQLITE_OMIT_SUBQUERY
2521 /*
2522 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2523 ** function allocates and returns a nul-terminated string containing
2524 ** the affinities to be used for each column of the comparison.
2525 **
2526 ** It is the responsibility of the caller to ensure that the returned
2527 ** string is eventually freed using sqlite3DbFree().
2528 */
2529 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2530   Expr *pLeft = pExpr->pLeft;
2531   int nVal = sqlite3ExprVectorSize(pLeft);
2532   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2533   char *zRet;
2534 
2535   assert( pExpr->op==TK_IN );
2536   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2537   if( zRet ){
2538     int i;
2539     for(i=0; i<nVal; i++){
2540       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2541       char a = sqlite3ExprAffinity(pA);
2542       if( pSelect ){
2543         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2544       }else{
2545         zRet[i] = a;
2546       }
2547     }
2548     zRet[nVal] = '\0';
2549   }
2550   return zRet;
2551 }
2552 #endif
2553 
2554 #ifndef SQLITE_OMIT_SUBQUERY
2555 /*
2556 ** Load the Parse object passed as the first argument with an error
2557 ** message of the form:
2558 **
2559 **   "sub-select returns N columns - expected M"
2560 */
2561 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2562   const char *zFmt = "sub-select returns %d columns - expected %d";
2563   sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2564 }
2565 #endif
2566 
2567 /*
2568 ** Expression pExpr is a vector that has been used in a context where
2569 ** it is not permitted. If pExpr is a sub-select vector, this routine
2570 ** loads the Parse object with a message of the form:
2571 **
2572 **   "sub-select returns N columns - expected 1"
2573 **
2574 ** Or, if it is a regular scalar vector:
2575 **
2576 **   "row value misused"
2577 */
2578 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2579 #ifndef SQLITE_OMIT_SUBQUERY
2580   if( pExpr->flags & EP_xIsSelect ){
2581     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2582   }else
2583 #endif
2584   {
2585     sqlite3ErrorMsg(pParse, "row value misused");
2586   }
2587 }
2588 
2589 /*
2590 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
2591 ** or IN operators.  Examples:
2592 **
2593 **     (SELECT a FROM b)          -- subquery
2594 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
2595 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2596 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2597 **
2598 ** The pExpr parameter describes the expression that contains the IN
2599 ** operator or subquery.
2600 **
2601 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
2602 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
2603 ** to some integer key column of a table B-Tree. In this case, use an
2604 ** intkey B-Tree to store the set of IN(...) values instead of the usual
2605 ** (slower) variable length keys B-Tree.
2606 **
2607 ** If rMayHaveNull is non-zero, that means that the operation is an IN
2608 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
2609 ** All this routine does is initialize the register given by rMayHaveNull
2610 ** to NULL.  Calling routines will take care of changing this register
2611 ** value to non-NULL if the RHS is NULL-free.
2612 **
2613 ** For a SELECT or EXISTS operator, return the register that holds the
2614 ** result.  For a multi-column SELECT, the result is stored in a contiguous
2615 ** array of registers and the return value is the register of the left-most
2616 ** result column.  Return 0 for IN operators or if an error occurs.
2617 */
2618 #ifndef SQLITE_OMIT_SUBQUERY
2619 int sqlite3CodeSubselect(
2620   Parse *pParse,          /* Parsing context */
2621   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
2622   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
2623   int isRowid             /* If true, LHS of IN operator is a rowid */
2624 ){
2625   int jmpIfDynamic = -1;                      /* One-time test address */
2626   int rReg = 0;                           /* Register storing resulting */
2627   Vdbe *v = sqlite3GetVdbe(pParse);
2628   if( NEVER(v==0) ) return 0;
2629 
2630   /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it
2631   ** is encountered if any of the following is true:
2632   **
2633   **    *  The right-hand side is a correlated subquery
2634   **    *  The right-hand side is an expression list containing variables
2635   **    *  We are inside a trigger
2636   **
2637   ** If all of the above are false, then we can run this code just once
2638   ** save the results, and reuse the same result on subsequent invocations.
2639   */
2640   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2641     jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2642   }
2643 
2644   switch( pExpr->op ){
2645     case TK_IN: {
2646       int addr;                   /* Address of OP_OpenEphemeral instruction */
2647       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
2648       KeyInfo *pKeyInfo = 0;      /* Key information */
2649       int nVal;                   /* Size of vector pLeft */
2650 
2651       nVal = sqlite3ExprVectorSize(pLeft);
2652       assert( !isRowid || nVal==1 );
2653 
2654       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
2655       ** expression it is handled the same way.  An ephemeral table is
2656       ** filled with index keys representing the results from the
2657       ** SELECT or the <exprlist>.
2658       **
2659       ** If the 'x' expression is a column value, or the SELECT...
2660       ** statement returns a column value, then the affinity of that
2661       ** column is used to build the index keys. If both 'x' and the
2662       ** SELECT... statement are columns, then numeric affinity is used
2663       ** if either column has NUMERIC or INTEGER affinity. If neither
2664       ** 'x' nor the SELECT... statement are columns, then numeric affinity
2665       ** is used.
2666       */
2667       pExpr->iTable = pParse->nTab++;
2668       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral,
2669           pExpr->iTable, (isRowid?0:nVal));
2670       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2671 
2672       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2673         /* Case 1:     expr IN (SELECT ...)
2674         **
2675         ** Generate code to write the results of the select into the temporary
2676         ** table allocated and opened above.
2677         */
2678         Select *pSelect = pExpr->x.pSelect;
2679         ExprList *pEList = pSelect->pEList;
2680 
2681         ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY",
2682             jmpIfDynamic>=0?"":"CORRELATED "
2683         ));
2684         assert( !isRowid );
2685         /* If the LHS and RHS of the IN operator do not match, that
2686         ** error will have been caught long before we reach this point. */
2687         if( ALWAYS(pEList->nExpr==nVal) ){
2688           SelectDest dest;
2689           int i;
2690           sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
2691           dest.zAffSdst = exprINAffinity(pParse, pExpr);
2692           pSelect->iLimit = 0;
2693           testcase( pSelect->selFlags & SF_Distinct );
2694           testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2695           if( sqlite3Select(pParse, pSelect, &dest) ){
2696             sqlite3DbFree(pParse->db, dest.zAffSdst);
2697             sqlite3KeyInfoUnref(pKeyInfo);
2698             return 0;
2699           }
2700           sqlite3DbFree(pParse->db, dest.zAffSdst);
2701           assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2702           assert( pEList!=0 );
2703           assert( pEList->nExpr>0 );
2704           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2705           for(i=0; i<nVal; i++){
2706             Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2707             pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2708                 pParse, p, pEList->a[i].pExpr
2709             );
2710           }
2711         }
2712       }else if( ALWAYS(pExpr->x.pList!=0) ){
2713         /* Case 2:     expr IN (exprlist)
2714         **
2715         ** For each expression, build an index key from the evaluation and
2716         ** store it in the temporary table. If <expr> is a column, then use
2717         ** that columns affinity when building index keys. If <expr> is not
2718         ** a column, use numeric affinity.
2719         */
2720         char affinity;            /* Affinity of the LHS of the IN */
2721         int i;
2722         ExprList *pList = pExpr->x.pList;
2723         struct ExprList_item *pItem;
2724         int r1, r2, r3;
2725         affinity = sqlite3ExprAffinity(pLeft);
2726         if( !affinity ){
2727           affinity = SQLITE_AFF_BLOB;
2728         }
2729         if( pKeyInfo ){
2730           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2731           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2732         }
2733 
2734         /* Loop through each expression in <exprlist>. */
2735         r1 = sqlite3GetTempReg(pParse);
2736         r2 = sqlite3GetTempReg(pParse);
2737         if( isRowid ) sqlite3VdbeAddOp4(v, OP_Blob, 0, r2, 0, "", P4_STATIC);
2738         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2739           Expr *pE2 = pItem->pExpr;
2740           int iValToIns;
2741 
2742           /* If the expression is not constant then we will need to
2743           ** disable the test that was generated above that makes sure
2744           ** this code only executes once.  Because for a non-constant
2745           ** expression we need to rerun this code each time.
2746           */
2747           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
2748             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
2749             jmpIfDynamic = -1;
2750           }
2751 
2752           /* Evaluate the expression and insert it into the temp table */
2753           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2754             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2755           }else{
2756             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2757             if( isRowid ){
2758               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2759                                 sqlite3VdbeCurrentAddr(v)+2);
2760               VdbeCoverage(v);
2761               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2762             }else{
2763               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2764               sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1);
2765             }
2766           }
2767         }
2768         sqlite3ReleaseTempReg(pParse, r1);
2769         sqlite3ReleaseTempReg(pParse, r2);
2770       }
2771       if( pKeyInfo ){
2772         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2773       }
2774       break;
2775     }
2776 
2777     case TK_EXISTS:
2778     case TK_SELECT:
2779     default: {
2780       /* Case 3:    (SELECT ... FROM ...)
2781       **     or:    EXISTS(SELECT ... FROM ...)
2782       **
2783       ** For a SELECT, generate code to put the values for all columns of
2784       ** the first row into an array of registers and return the index of
2785       ** the first register.
2786       **
2787       ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2788       ** into a register and return that register number.
2789       **
2790       ** In both cases, the query is augmented with "LIMIT 1".  Any
2791       ** preexisting limit is discarded in place of the new LIMIT 1.
2792       */
2793       Select *pSel;                         /* SELECT statement to encode */
2794       SelectDest dest;                      /* How to deal with SELECT result */
2795       int nReg;                             /* Registers to allocate */
2796       Expr *pLimit;                         /* New limit expression */
2797 
2798       testcase( pExpr->op==TK_EXISTS );
2799       testcase( pExpr->op==TK_SELECT );
2800       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2801       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2802 
2803       pSel = pExpr->x.pSelect;
2804       ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY",
2805             jmpIfDynamic>=0?"":"CORRELATED "));
2806       nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2807       sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2808       pParse->nMem += nReg;
2809       if( pExpr->op==TK_SELECT ){
2810         dest.eDest = SRT_Mem;
2811         dest.iSdst = dest.iSDParm;
2812         dest.nSdst = nReg;
2813         sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2814         VdbeComment((v, "Init subquery result"));
2815       }else{
2816         dest.eDest = SRT_Exists;
2817         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2818         VdbeComment((v, "Init EXISTS result"));
2819       }
2820       pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0);
2821       if( pSel->pLimit ){
2822         sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft);
2823         pSel->pLimit->pLeft = pLimit;
2824       }else{
2825         pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
2826       }
2827       pSel->iLimit = 0;
2828       if( sqlite3Select(pParse, pSel, &dest) ){
2829         return 0;
2830       }
2831       rReg = dest.iSDParm;
2832       ExprSetVVAProperty(pExpr, EP_NoReduce);
2833       break;
2834     }
2835   }
2836 
2837   if( rHasNullFlag ){
2838     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2839   }
2840 
2841   if( jmpIfDynamic>=0 ){
2842     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2843   }
2844 
2845   return rReg;
2846 }
2847 #endif /* SQLITE_OMIT_SUBQUERY */
2848 
2849 #ifndef SQLITE_OMIT_SUBQUERY
2850 /*
2851 ** Expr pIn is an IN(...) expression. This function checks that the
2852 ** sub-select on the RHS of the IN() operator has the same number of
2853 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
2854 ** a sub-query, that the LHS is a vector of size 1.
2855 */
2856 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
2857   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
2858   if( (pIn->flags & EP_xIsSelect) ){
2859     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
2860       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
2861       return 1;
2862     }
2863   }else if( nVector!=1 ){
2864     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
2865     return 1;
2866   }
2867   return 0;
2868 }
2869 #endif
2870 
2871 #ifndef SQLITE_OMIT_SUBQUERY
2872 /*
2873 ** Generate code for an IN expression.
2874 **
2875 **      x IN (SELECT ...)
2876 **      x IN (value, value, ...)
2877 **
2878 ** The left-hand side (LHS) is a scalar or vector expression.  The
2879 ** right-hand side (RHS) is an array of zero or more scalar values, or a
2880 ** subquery.  If the RHS is a subquery, the number of result columns must
2881 ** match the number of columns in the vector on the LHS.  If the RHS is
2882 ** a list of values, the LHS must be a scalar.
2883 **
2884 ** The IN operator is true if the LHS value is contained within the RHS.
2885 ** The result is false if the LHS is definitely not in the RHS.  The
2886 ** result is NULL if the presence of the LHS in the RHS cannot be
2887 ** determined due to NULLs.
2888 **
2889 ** This routine generates code that jumps to destIfFalse if the LHS is not
2890 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2891 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2892 ** within the RHS then fall through.
2893 **
2894 ** See the separate in-operator.md documentation file in the canonical
2895 ** SQLite source tree for additional information.
2896 */
2897 static void sqlite3ExprCodeIN(
2898   Parse *pParse,        /* Parsing and code generating context */
2899   Expr *pExpr,          /* The IN expression */
2900   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2901   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2902 ){
2903   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2904   int eType;            /* Type of the RHS */
2905   int rLhs;             /* Register(s) holding the LHS values */
2906   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
2907   Vdbe *v;              /* Statement under construction */
2908   int *aiMap = 0;       /* Map from vector field to index column */
2909   char *zAff = 0;       /* Affinity string for comparisons */
2910   int nVector;          /* Size of vectors for this IN operator */
2911   int iDummy;           /* Dummy parameter to exprCodeVector() */
2912   Expr *pLeft;          /* The LHS of the IN operator */
2913   int i;                /* loop counter */
2914   int destStep2;        /* Where to jump when NULLs seen in step 2 */
2915   int destStep6 = 0;    /* Start of code for Step 6 */
2916   int addrTruthOp;      /* Address of opcode that determines the IN is true */
2917   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
2918   int addrTop;          /* Top of the step-6 loop */
2919 
2920   pLeft = pExpr->pLeft;
2921   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
2922   zAff = exprINAffinity(pParse, pExpr);
2923   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
2924   aiMap = (int*)sqlite3DbMallocZero(
2925       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
2926   );
2927   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
2928 
2929   /* Attempt to compute the RHS. After this step, if anything other than
2930   ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable
2931   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
2932   ** the RHS has not yet been coded.  */
2933   v = pParse->pVdbe;
2934   assert( v!=0 );       /* OOM detected prior to this routine */
2935   VdbeNoopComment((v, "begin IN expr"));
2936   eType = sqlite3FindInIndex(pParse, pExpr,
2937                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2938                              destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap);
2939 
2940   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
2941        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
2942   );
2943 #ifdef SQLITE_DEBUG
2944   /* Confirm that aiMap[] contains nVector integer values between 0 and
2945   ** nVector-1. */
2946   for(i=0; i<nVector; i++){
2947     int j, cnt;
2948     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
2949     assert( cnt==1 );
2950   }
2951 #endif
2952 
2953   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
2954   ** vector, then it is stored in an array of nVector registers starting
2955   ** at r1.
2956   **
2957   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
2958   ** so that the fields are in the same order as an existing index.   The
2959   ** aiMap[] array contains a mapping from the original LHS field order to
2960   ** the field order that matches the RHS index.
2961   */
2962   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
2963   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
2964   if( i==nVector ){
2965     /* LHS fields are not reordered */
2966     rLhs = rLhsOrig;
2967   }else{
2968     /* Need to reorder the LHS fields according to aiMap */
2969     rLhs = sqlite3GetTempRange(pParse, nVector);
2970     for(i=0; i<nVector; i++){
2971       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
2972     }
2973   }
2974 
2975   /* If sqlite3FindInIndex() did not find or create an index that is
2976   ** suitable for evaluating the IN operator, then evaluate using a
2977   ** sequence of comparisons.
2978   **
2979   ** This is step (1) in the in-operator.md optimized algorithm.
2980   */
2981   if( eType==IN_INDEX_NOOP ){
2982     ExprList *pList = pExpr->x.pList;
2983     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2984     int labelOk = sqlite3VdbeMakeLabel(v);
2985     int r2, regToFree;
2986     int regCkNull = 0;
2987     int ii;
2988     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2989     if( destIfNull!=destIfFalse ){
2990       regCkNull = sqlite3GetTempReg(pParse);
2991       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
2992     }
2993     for(ii=0; ii<pList->nExpr; ii++){
2994       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2995       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2996         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2997       }
2998       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2999         sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
3000                           (void*)pColl, P4_COLLSEQ);
3001         VdbeCoverageIf(v, ii<pList->nExpr-1);
3002         VdbeCoverageIf(v, ii==pList->nExpr-1);
3003         sqlite3VdbeChangeP5(v, zAff[0]);
3004       }else{
3005         assert( destIfNull==destIfFalse );
3006         sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
3007                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
3008         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3009       }
3010       sqlite3ReleaseTempReg(pParse, regToFree);
3011     }
3012     if( regCkNull ){
3013       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3014       sqlite3VdbeGoto(v, destIfFalse);
3015     }
3016     sqlite3VdbeResolveLabel(v, labelOk);
3017     sqlite3ReleaseTempReg(pParse, regCkNull);
3018     goto sqlite3ExprCodeIN_finished;
3019   }
3020 
3021   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3022   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3023   ** We will then skip the binary search of the RHS.
3024   */
3025   if( destIfNull==destIfFalse ){
3026     destStep2 = destIfFalse;
3027   }else{
3028     destStep2 = destStep6 = sqlite3VdbeMakeLabel(v);
3029   }
3030   for(i=0; i<nVector; i++){
3031     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3032     if( sqlite3ExprCanBeNull(p) ){
3033       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3034       VdbeCoverage(v);
3035     }
3036   }
3037 
3038   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3039   ** of the RHS using the LHS as a probe.  If found, the result is
3040   ** true.
3041   */
3042   if( eType==IN_INDEX_ROWID ){
3043     /* In this case, the RHS is the ROWID of table b-tree and so we also
3044     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3045     ** into a single opcode. */
3046     sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs);
3047     VdbeCoverage(v);
3048     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3049   }else{
3050     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3051     if( destIfFalse==destIfNull ){
3052       /* Combine Step 3 and Step 5 into a single opcode */
3053       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse,
3054                            rLhs, nVector); VdbeCoverage(v);
3055       goto sqlite3ExprCodeIN_finished;
3056     }
3057     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3058     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0,
3059                                       rLhs, nVector); VdbeCoverage(v);
3060   }
3061 
3062   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3063   ** an match on the search above, then the result must be FALSE.
3064   */
3065   if( rRhsHasNull && nVector==1 ){
3066     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3067     VdbeCoverage(v);
3068   }
3069 
3070   /* Step 5.  If we do not care about the difference between NULL and
3071   ** FALSE, then just return false.
3072   */
3073   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3074 
3075   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3076   ** If any comparison is NULL, then the result is NULL.  If all
3077   ** comparisons are FALSE then the final result is FALSE.
3078   **
3079   ** For a scalar LHS, it is sufficient to check just the first row
3080   ** of the RHS.
3081   */
3082   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3083   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
3084   VdbeCoverage(v);
3085   if( nVector>1 ){
3086     destNotNull = sqlite3VdbeMakeLabel(v);
3087   }else{
3088     /* For nVector==1, combine steps 6 and 7 by immediately returning
3089     ** FALSE if the first comparison is not NULL */
3090     destNotNull = destIfFalse;
3091   }
3092   for(i=0; i<nVector; i++){
3093     Expr *p;
3094     CollSeq *pColl;
3095     int r3 = sqlite3GetTempReg(pParse);
3096     p = sqlite3VectorFieldSubexpr(pLeft, i);
3097     pColl = sqlite3ExprCollSeq(pParse, p);
3098     sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3);
3099     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3100                       (void*)pColl, P4_COLLSEQ);
3101     VdbeCoverage(v);
3102     sqlite3ReleaseTempReg(pParse, r3);
3103   }
3104   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3105   if( nVector>1 ){
3106     sqlite3VdbeResolveLabel(v, destNotNull);
3107     sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1);
3108     VdbeCoverage(v);
3109 
3110     /* Step 7:  If we reach this point, we know that the result must
3111     ** be false. */
3112     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3113   }
3114 
3115   /* Jumps here in order to return true. */
3116   sqlite3VdbeJumpHere(v, addrTruthOp);
3117 
3118 sqlite3ExprCodeIN_finished:
3119   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3120   VdbeComment((v, "end IN expr"));
3121 sqlite3ExprCodeIN_oom_error:
3122   sqlite3DbFree(pParse->db, aiMap);
3123   sqlite3DbFree(pParse->db, zAff);
3124 }
3125 #endif /* SQLITE_OMIT_SUBQUERY */
3126 
3127 #ifndef SQLITE_OMIT_FLOATING_POINT
3128 /*
3129 ** Generate an instruction that will put the floating point
3130 ** value described by z[0..n-1] into register iMem.
3131 **
3132 ** The z[] string will probably not be zero-terminated.  But the
3133 ** z[n] character is guaranteed to be something that does not look
3134 ** like the continuation of the number.
3135 */
3136 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3137   if( ALWAYS(z!=0) ){
3138     double value;
3139     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3140     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3141     if( negateFlag ) value = -value;
3142     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3143   }
3144 }
3145 #endif
3146 
3147 
3148 /*
3149 ** Generate an instruction that will put the integer describe by
3150 ** text z[0..n-1] into register iMem.
3151 **
3152 ** Expr.u.zToken is always UTF8 and zero-terminated.
3153 */
3154 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3155   Vdbe *v = pParse->pVdbe;
3156   if( pExpr->flags & EP_IntValue ){
3157     int i = pExpr->u.iValue;
3158     assert( i>=0 );
3159     if( negFlag ) i = -i;
3160     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3161   }else{
3162     int c;
3163     i64 value;
3164     const char *z = pExpr->u.zToken;
3165     assert( z!=0 );
3166     c = sqlite3DecOrHexToI64(z, &value);
3167     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3168 #ifdef SQLITE_OMIT_FLOATING_POINT
3169       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3170 #else
3171 #ifndef SQLITE_OMIT_HEX_INTEGER
3172       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3173         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3174       }else
3175 #endif
3176       {
3177         codeReal(v, z, negFlag, iMem);
3178       }
3179 #endif
3180     }else{
3181       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3182       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3183     }
3184   }
3185 }
3186 
3187 
3188 /* Generate code that will load into register regOut a value that is
3189 ** appropriate for the iIdxCol-th column of index pIdx.
3190 */
3191 void sqlite3ExprCodeLoadIndexColumn(
3192   Parse *pParse,  /* The parsing context */
3193   Index *pIdx,    /* The index whose column is to be loaded */
3194   int iTabCur,    /* Cursor pointing to a table row */
3195   int iIdxCol,    /* The column of the index to be loaded */
3196   int regOut      /* Store the index column value in this register */
3197 ){
3198   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3199   if( iTabCol==XN_EXPR ){
3200     assert( pIdx->aColExpr );
3201     assert( pIdx->aColExpr->nExpr>iIdxCol );
3202     pParse->iSelfTab = iTabCur + 1;
3203     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3204     pParse->iSelfTab = 0;
3205   }else{
3206     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3207                                     iTabCol, regOut);
3208   }
3209 }
3210 
3211 /*
3212 ** Generate code to extract the value of the iCol-th column of a table.
3213 */
3214 void sqlite3ExprCodeGetColumnOfTable(
3215   Vdbe *v,        /* The VDBE under construction */
3216   Table *pTab,    /* The table containing the value */
3217   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3218   int iCol,       /* Index of the column to extract */
3219   int regOut      /* Extract the value into this register */
3220 ){
3221   if( pTab==0 ){
3222     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3223     return;
3224   }
3225   if( iCol<0 || iCol==pTab->iPKey ){
3226     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3227   }else{
3228     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
3229     int x = iCol;
3230     if( !HasRowid(pTab) && !IsVirtual(pTab) ){
3231       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3232     }
3233     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3234   }
3235   if( iCol>=0 ){
3236     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3237   }
3238 }
3239 
3240 /*
3241 ** Generate code that will extract the iColumn-th column from
3242 ** table pTab and store the column value in register iReg.
3243 **
3244 ** There must be an open cursor to pTab in iTable when this routine
3245 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3246 */
3247 int sqlite3ExprCodeGetColumn(
3248   Parse *pParse,   /* Parsing and code generating context */
3249   Table *pTab,     /* Description of the table we are reading from */
3250   int iColumn,     /* Index of the table column */
3251   int iTable,      /* The cursor pointing to the table */
3252   int iReg,        /* Store results here */
3253   u8 p5            /* P5 value for OP_Column + FLAGS */
3254 ){
3255   Vdbe *v = pParse->pVdbe;
3256   assert( v!=0 );
3257   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
3258   if( p5 ){
3259     sqlite3VdbeChangeP5(v, p5);
3260   }
3261   return iReg;
3262 }
3263 
3264 /*
3265 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3266 ** over to iTo..iTo+nReg-1.
3267 */
3268 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3269   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
3270   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3271 }
3272 
3273 /*
3274 ** Convert a scalar expression node to a TK_REGISTER referencing
3275 ** register iReg.  The caller must ensure that iReg already contains
3276 ** the correct value for the expression.
3277 */
3278 static void exprToRegister(Expr *p, int iReg){
3279   p->op2 = p->op;
3280   p->op = TK_REGISTER;
3281   p->iTable = iReg;
3282   ExprClearProperty(p, EP_Skip);
3283 }
3284 
3285 /*
3286 ** Evaluate an expression (either a vector or a scalar expression) and store
3287 ** the result in continguous temporary registers.  Return the index of
3288 ** the first register used to store the result.
3289 **
3290 ** If the returned result register is a temporary scalar, then also write
3291 ** that register number into *piFreeable.  If the returned result register
3292 ** is not a temporary or if the expression is a vector set *piFreeable
3293 ** to 0.
3294 */
3295 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3296   int iResult;
3297   int nResult = sqlite3ExprVectorSize(p);
3298   if( nResult==1 ){
3299     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3300   }else{
3301     *piFreeable = 0;
3302     if( p->op==TK_SELECT ){
3303 #if SQLITE_OMIT_SUBQUERY
3304       iResult = 0;
3305 #else
3306       iResult = sqlite3CodeSubselect(pParse, p, 0, 0);
3307 #endif
3308     }else{
3309       int i;
3310       iResult = pParse->nMem+1;
3311       pParse->nMem += nResult;
3312       for(i=0; i<nResult; i++){
3313         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3314       }
3315     }
3316   }
3317   return iResult;
3318 }
3319 
3320 
3321 /*
3322 ** Generate code into the current Vdbe to evaluate the given
3323 ** expression.  Attempt to store the results in register "target".
3324 ** Return the register where results are stored.
3325 **
3326 ** With this routine, there is no guarantee that results will
3327 ** be stored in target.  The result might be stored in some other
3328 ** register if it is convenient to do so.  The calling function
3329 ** must check the return code and move the results to the desired
3330 ** register.
3331 */
3332 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3333   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3334   int op;                   /* The opcode being coded */
3335   int inReg = target;       /* Results stored in register inReg */
3336   int regFree1 = 0;         /* If non-zero free this temporary register */
3337   int regFree2 = 0;         /* If non-zero free this temporary register */
3338   int r1, r2;               /* Various register numbers */
3339   Expr tempX;               /* Temporary expression node */
3340   int p5 = 0;
3341 
3342   assert( target>0 && target<=pParse->nMem );
3343   if( v==0 ){
3344     assert( pParse->db->mallocFailed );
3345     return 0;
3346   }
3347 
3348 expr_code_doover:
3349   if( pExpr==0 ){
3350     op = TK_NULL;
3351   }else{
3352     op = pExpr->op;
3353   }
3354   switch( op ){
3355     case TK_AGG_COLUMN: {
3356       AggInfo *pAggInfo = pExpr->pAggInfo;
3357       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3358       if( !pAggInfo->directMode ){
3359         assert( pCol->iMem>0 );
3360         return pCol->iMem;
3361       }else if( pAggInfo->useSortingIdx ){
3362         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3363                               pCol->iSorterColumn, target);
3364         return target;
3365       }
3366       /* Otherwise, fall thru into the TK_COLUMN case */
3367     }
3368     case TK_COLUMN: {
3369       int iTab = pExpr->iTable;
3370       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3371         /* This COLUMN expression is really a constant due to WHERE clause
3372         ** constraints, and that constant is coded by the pExpr->pLeft
3373         ** expresssion.  However, make sure the constant has the correct
3374         ** datatype by applying the Affinity of the table column to the
3375         ** constant.
3376         */
3377         int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3378         int aff = sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn);
3379         if( aff!=SQLITE_AFF_BLOB ){
3380           static const char zAff[] = "B\000C\000D\000E";
3381           assert( SQLITE_AFF_BLOB=='A' );
3382           assert( SQLITE_AFF_TEXT=='B' );
3383           if( iReg!=target ){
3384             sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target);
3385             iReg = target;
3386           }
3387           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3388                             &zAff[(aff-'B')*2], P4_STATIC);
3389         }
3390         return iReg;
3391       }
3392       if( iTab<0 ){
3393         if( pParse->iSelfTab<0 ){
3394           /* Generating CHECK constraints or inserting into partial index */
3395           return pExpr->iColumn - pParse->iSelfTab;
3396         }else{
3397           /* Coding an expression that is part of an index where column names
3398           ** in the index refer to the table to which the index belongs */
3399           iTab = pParse->iSelfTab - 1;
3400         }
3401       }
3402       return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
3403                                pExpr->iColumn, iTab, target,
3404                                pExpr->op2);
3405     }
3406     case TK_INTEGER: {
3407       codeInteger(pParse, pExpr, 0, target);
3408       return target;
3409     }
3410     case TK_TRUEFALSE: {
3411       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3412       return target;
3413     }
3414 #ifndef SQLITE_OMIT_FLOATING_POINT
3415     case TK_FLOAT: {
3416       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3417       codeReal(v, pExpr->u.zToken, 0, target);
3418       return target;
3419     }
3420 #endif
3421     case TK_STRING: {
3422       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3423       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3424       return target;
3425     }
3426     case TK_NULL: {
3427       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3428       return target;
3429     }
3430 #ifndef SQLITE_OMIT_BLOB_LITERAL
3431     case TK_BLOB: {
3432       int n;
3433       const char *z;
3434       char *zBlob;
3435       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3436       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3437       assert( pExpr->u.zToken[1]=='\'' );
3438       z = &pExpr->u.zToken[2];
3439       n = sqlite3Strlen30(z) - 1;
3440       assert( z[n]=='\'' );
3441       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3442       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3443       return target;
3444     }
3445 #endif
3446     case TK_VARIABLE: {
3447       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3448       assert( pExpr->u.zToken!=0 );
3449       assert( pExpr->u.zToken[0]!=0 );
3450       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3451       if( pExpr->u.zToken[1]!=0 ){
3452         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3453         assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 );
3454         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3455         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3456       }
3457       return target;
3458     }
3459     case TK_REGISTER: {
3460       return pExpr->iTable;
3461     }
3462 #ifndef SQLITE_OMIT_CAST
3463     case TK_CAST: {
3464       /* Expressions of the form:   CAST(pLeft AS token) */
3465       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3466       if( inReg!=target ){
3467         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3468         inReg = target;
3469       }
3470       sqlite3VdbeAddOp2(v, OP_Cast, target,
3471                         sqlite3AffinityType(pExpr->u.zToken, 0));
3472       return inReg;
3473     }
3474 #endif /* SQLITE_OMIT_CAST */
3475     case TK_IS:
3476     case TK_ISNOT:
3477       op = (op==TK_IS) ? TK_EQ : TK_NE;
3478       p5 = SQLITE_NULLEQ;
3479       /* fall-through */
3480     case TK_LT:
3481     case TK_LE:
3482     case TK_GT:
3483     case TK_GE:
3484     case TK_NE:
3485     case TK_EQ: {
3486       Expr *pLeft = pExpr->pLeft;
3487       if( sqlite3ExprIsVector(pLeft) ){
3488         codeVectorCompare(pParse, pExpr, target, op, p5);
3489       }else{
3490         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3491         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3492         codeCompare(pParse, pLeft, pExpr->pRight, op,
3493             r1, r2, inReg, SQLITE_STOREP2 | p5);
3494         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3495         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3496         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3497         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3498         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3499         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3500         testcase( regFree1==0 );
3501         testcase( regFree2==0 );
3502       }
3503       break;
3504     }
3505     case TK_AND:
3506     case TK_OR:
3507     case TK_PLUS:
3508     case TK_STAR:
3509     case TK_MINUS:
3510     case TK_REM:
3511     case TK_BITAND:
3512     case TK_BITOR:
3513     case TK_SLASH:
3514     case TK_LSHIFT:
3515     case TK_RSHIFT:
3516     case TK_CONCAT: {
3517       assert( TK_AND==OP_And );            testcase( op==TK_AND );
3518       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
3519       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
3520       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
3521       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
3522       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
3523       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
3524       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
3525       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
3526       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
3527       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
3528       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3529       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3530       sqlite3VdbeAddOp3(v, op, r2, r1, target);
3531       testcase( regFree1==0 );
3532       testcase( regFree2==0 );
3533       break;
3534     }
3535     case TK_UMINUS: {
3536       Expr *pLeft = pExpr->pLeft;
3537       assert( pLeft );
3538       if( pLeft->op==TK_INTEGER ){
3539         codeInteger(pParse, pLeft, 1, target);
3540         return target;
3541 #ifndef SQLITE_OMIT_FLOATING_POINT
3542       }else if( pLeft->op==TK_FLOAT ){
3543         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3544         codeReal(v, pLeft->u.zToken, 1, target);
3545         return target;
3546 #endif
3547       }else{
3548         tempX.op = TK_INTEGER;
3549         tempX.flags = EP_IntValue|EP_TokenOnly;
3550         tempX.u.iValue = 0;
3551         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3552         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3553         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3554         testcase( regFree2==0 );
3555       }
3556       break;
3557     }
3558     case TK_BITNOT:
3559     case TK_NOT: {
3560       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
3561       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
3562       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3563       testcase( regFree1==0 );
3564       sqlite3VdbeAddOp2(v, op, r1, inReg);
3565       break;
3566     }
3567     case TK_TRUTH: {
3568       int isTrue;    /* IS TRUE or IS NOT TRUE */
3569       int bNormal;   /* IS TRUE or IS FALSE */
3570       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3571       testcase( regFree1==0 );
3572       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
3573       bNormal = pExpr->op2==TK_IS;
3574       testcase( isTrue && bNormal);
3575       testcase( !isTrue && bNormal);
3576       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
3577       break;
3578     }
3579     case TK_ISNULL:
3580     case TK_NOTNULL: {
3581       int addr;
3582       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3583       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3584       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3585       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3586       testcase( regFree1==0 );
3587       addr = sqlite3VdbeAddOp1(v, op, r1);
3588       VdbeCoverageIf(v, op==TK_ISNULL);
3589       VdbeCoverageIf(v, op==TK_NOTNULL);
3590       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3591       sqlite3VdbeJumpHere(v, addr);
3592       break;
3593     }
3594     case TK_AGG_FUNCTION: {
3595       AggInfo *pInfo = pExpr->pAggInfo;
3596       if( pInfo==0 ){
3597         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3598         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3599       }else{
3600         return pInfo->aFunc[pExpr->iAgg].iMem;
3601       }
3602       break;
3603     }
3604     case TK_FUNCTION: {
3605       ExprList *pFarg;       /* List of function arguments */
3606       int nFarg;             /* Number of function arguments */
3607       FuncDef *pDef;         /* The function definition object */
3608       const char *zId;       /* The function name */
3609       u32 constMask = 0;     /* Mask of function arguments that are constant */
3610       int i;                 /* Loop counter */
3611       sqlite3 *db = pParse->db;  /* The database connection */
3612       u8 enc = ENC(db);      /* The text encoding used by this database */
3613       CollSeq *pColl = 0;    /* A collating sequence */
3614 
3615 #ifndef SQLITE_OMIT_WINDOWFUNC
3616       if( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) && pExpr->pWin ){
3617         return pExpr->pWin->regResult;
3618       }
3619 #endif
3620 
3621       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
3622         /* SQL functions can be expensive. So try to move constant functions
3623         ** out of the inner loop, even if that means an extra OP_Copy. */
3624         return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
3625       }
3626       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3627       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3628         pFarg = 0;
3629       }else{
3630         pFarg = pExpr->x.pList;
3631       }
3632       nFarg = pFarg ? pFarg->nExpr : 0;
3633       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3634       zId = pExpr->u.zToken;
3635       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3636 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3637       if( pDef==0 && pParse->explain ){
3638         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3639       }
3640 #endif
3641       if( pDef==0 || pDef->xFinalize!=0 ){
3642         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3643         break;
3644       }
3645 
3646       /* Attempt a direct implementation of the built-in COALESCE() and
3647       ** IFNULL() functions.  This avoids unnecessary evaluation of
3648       ** arguments past the first non-NULL argument.
3649       */
3650       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3651         int endCoalesce = sqlite3VdbeMakeLabel(v);
3652         assert( nFarg>=2 );
3653         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3654         for(i=1; i<nFarg; i++){
3655           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3656           VdbeCoverage(v);
3657           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3658         }
3659         sqlite3VdbeResolveLabel(v, endCoalesce);
3660         break;
3661       }
3662 
3663       /* The UNLIKELY() function is a no-op.  The result is the value
3664       ** of the first argument.
3665       */
3666       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3667         assert( nFarg>=1 );
3668         return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3669       }
3670 
3671 #ifdef SQLITE_DEBUG
3672       /* The AFFINITY() function evaluates to a string that describes
3673       ** the type affinity of the argument.  This is used for testing of
3674       ** the SQLite type logic.
3675       */
3676       if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
3677         const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3678         char aff;
3679         assert( nFarg==1 );
3680         aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3681         sqlite3VdbeLoadString(v, target,
3682                               aff ? azAff[aff-SQLITE_AFF_BLOB] : "none");
3683         return target;
3684       }
3685 #endif
3686 
3687       for(i=0; i<nFarg; i++){
3688         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3689           testcase( i==31 );
3690           constMask |= MASKBIT32(i);
3691         }
3692         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
3693           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
3694         }
3695       }
3696       if( pFarg ){
3697         if( constMask ){
3698           r1 = pParse->nMem+1;
3699           pParse->nMem += nFarg;
3700         }else{
3701           r1 = sqlite3GetTempRange(pParse, nFarg);
3702         }
3703 
3704         /* For length() and typeof() functions with a column argument,
3705         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3706         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3707         ** loading.
3708         */
3709         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3710           u8 exprOp;
3711           assert( nFarg==1 );
3712           assert( pFarg->a[0].pExpr!=0 );
3713           exprOp = pFarg->a[0].pExpr->op;
3714           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3715             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3716             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3717             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3718             pFarg->a[0].pExpr->op2 =
3719                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3720           }
3721         }
3722 
3723         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3724                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3725       }else{
3726         r1 = 0;
3727       }
3728 #ifndef SQLITE_OMIT_VIRTUALTABLE
3729       /* Possibly overload the function if the first argument is
3730       ** a virtual table column.
3731       **
3732       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3733       ** second argument, not the first, as the argument to test to
3734       ** see if it is a column in a virtual table.  This is done because
3735       ** the left operand of infix functions (the operand we want to
3736       ** control overloading) ends up as the second argument to the
3737       ** function.  The expression "A glob B" is equivalent to
3738       ** "glob(B,A).  We want to use the A in "A glob B" to test
3739       ** for function overloading.  But we use the B term in "glob(B,A)".
3740       */
3741       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
3742         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3743       }else if( nFarg>0 ){
3744         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3745       }
3746 #endif
3747       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3748         if( !pColl ) pColl = db->pDfltColl;
3749         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3750       }
3751 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
3752       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
3753         Expr *pArg = pFarg->a[0].pExpr;
3754         if( pArg->op==TK_COLUMN ){
3755           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
3756         }else{
3757           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3758         }
3759       }else
3760 #endif
3761       {
3762         sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0,
3763                           constMask, r1, target, (char*)pDef, P4_FUNCDEF);
3764         sqlite3VdbeChangeP5(v, (u8)nFarg);
3765       }
3766       if( nFarg && constMask==0 ){
3767         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3768       }
3769       return target;
3770     }
3771 #ifndef SQLITE_OMIT_SUBQUERY
3772     case TK_EXISTS:
3773     case TK_SELECT: {
3774       int nCol;
3775       testcase( op==TK_EXISTS );
3776       testcase( op==TK_SELECT );
3777       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
3778         sqlite3SubselectError(pParse, nCol, 1);
3779       }else{
3780         return sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3781       }
3782       break;
3783     }
3784     case TK_SELECT_COLUMN: {
3785       int n;
3786       if( pExpr->pLeft->iTable==0 ){
3787         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0);
3788       }
3789       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
3790       if( pExpr->iTable
3791        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
3792       ){
3793         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
3794                                 pExpr->iTable, n);
3795       }
3796       return pExpr->pLeft->iTable + pExpr->iColumn;
3797     }
3798     case TK_IN: {
3799       int destIfFalse = sqlite3VdbeMakeLabel(v);
3800       int destIfNull = sqlite3VdbeMakeLabel(v);
3801       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3802       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3803       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3804       sqlite3VdbeResolveLabel(v, destIfFalse);
3805       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3806       sqlite3VdbeResolveLabel(v, destIfNull);
3807       return target;
3808     }
3809 #endif /* SQLITE_OMIT_SUBQUERY */
3810 
3811 
3812     /*
3813     **    x BETWEEN y AND z
3814     **
3815     ** This is equivalent to
3816     **
3817     **    x>=y AND x<=z
3818     **
3819     ** X is stored in pExpr->pLeft.
3820     ** Y is stored in pExpr->pList->a[0].pExpr.
3821     ** Z is stored in pExpr->pList->a[1].pExpr.
3822     */
3823     case TK_BETWEEN: {
3824       exprCodeBetween(pParse, pExpr, target, 0, 0);
3825       return target;
3826     }
3827     case TK_SPAN:
3828     case TK_COLLATE:
3829     case TK_UPLUS: {
3830       pExpr = pExpr->pLeft;
3831       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
3832     }
3833 
3834     case TK_TRIGGER: {
3835       /* If the opcode is TK_TRIGGER, then the expression is a reference
3836       ** to a column in the new.* or old.* pseudo-tables available to
3837       ** trigger programs. In this case Expr.iTable is set to 1 for the
3838       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3839       ** is set to the column of the pseudo-table to read, or to -1 to
3840       ** read the rowid field.
3841       **
3842       ** The expression is implemented using an OP_Param opcode. The p1
3843       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3844       ** to reference another column of the old.* pseudo-table, where
3845       ** i is the index of the column. For a new.rowid reference, p1 is
3846       ** set to (n+1), where n is the number of columns in each pseudo-table.
3847       ** For a reference to any other column in the new.* pseudo-table, p1
3848       ** is set to (n+2+i), where n and i are as defined previously. For
3849       ** example, if the table on which triggers are being fired is
3850       ** declared as:
3851       **
3852       **   CREATE TABLE t1(a, b);
3853       **
3854       ** Then p1 is interpreted as follows:
3855       **
3856       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3857       **   p1==1   ->    old.a         p1==4   ->    new.a
3858       **   p1==2   ->    old.b         p1==5   ->    new.b
3859       */
3860       Table *pTab = pExpr->pTab;
3861       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3862 
3863       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3864       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3865       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3866       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3867 
3868       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3869       VdbeComment((v, "r[%d]=%s.%s", target,
3870         (pExpr->iTable ? "new" : "old"),
3871         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName)
3872       ));
3873 
3874 #ifndef SQLITE_OMIT_FLOATING_POINT
3875       /* If the column has REAL affinity, it may currently be stored as an
3876       ** integer. Use OP_RealAffinity to make sure it is really real.
3877       **
3878       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3879       ** floating point when extracting it from the record.  */
3880       if( pExpr->iColumn>=0
3881        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3882       ){
3883         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3884       }
3885 #endif
3886       break;
3887     }
3888 
3889     case TK_VECTOR: {
3890       sqlite3ErrorMsg(pParse, "row value misused");
3891       break;
3892     }
3893 
3894     case TK_IF_NULL_ROW: {
3895       int addrINR;
3896       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
3897       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3898       sqlite3VdbeJumpHere(v, addrINR);
3899       sqlite3VdbeChangeP3(v, addrINR, inReg);
3900       break;
3901     }
3902 
3903     /*
3904     ** Form A:
3905     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3906     **
3907     ** Form B:
3908     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3909     **
3910     ** Form A is can be transformed into the equivalent form B as follows:
3911     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3912     **        WHEN x=eN THEN rN ELSE y END
3913     **
3914     ** X (if it exists) is in pExpr->pLeft.
3915     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3916     ** odd.  The Y is also optional.  If the number of elements in x.pList
3917     ** is even, then Y is omitted and the "otherwise" result is NULL.
3918     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3919     **
3920     ** The result of the expression is the Ri for the first matching Ei,
3921     ** or if there is no matching Ei, the ELSE term Y, or if there is
3922     ** no ELSE term, NULL.
3923     */
3924     default: assert( op==TK_CASE ); {
3925       int endLabel;                     /* GOTO label for end of CASE stmt */
3926       int nextCase;                     /* GOTO label for next WHEN clause */
3927       int nExpr;                        /* 2x number of WHEN terms */
3928       int i;                            /* Loop counter */
3929       ExprList *pEList;                 /* List of WHEN terms */
3930       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3931       Expr opCompare;                   /* The X==Ei expression */
3932       Expr *pX;                         /* The X expression */
3933       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3934 
3935       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3936       assert(pExpr->x.pList->nExpr > 0);
3937       pEList = pExpr->x.pList;
3938       aListelem = pEList->a;
3939       nExpr = pEList->nExpr;
3940       endLabel = sqlite3VdbeMakeLabel(v);
3941       if( (pX = pExpr->pLeft)!=0 ){
3942         tempX = *pX;
3943         testcase( pX->op==TK_COLUMN );
3944         exprToRegister(&tempX, exprCodeVector(pParse, &tempX, &regFree1));
3945         testcase( regFree1==0 );
3946         memset(&opCompare, 0, sizeof(opCompare));
3947         opCompare.op = TK_EQ;
3948         opCompare.pLeft = &tempX;
3949         pTest = &opCompare;
3950         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3951         ** The value in regFree1 might get SCopy-ed into the file result.
3952         ** So make sure that the regFree1 register is not reused for other
3953         ** purposes and possibly overwritten.  */
3954         regFree1 = 0;
3955       }
3956       for(i=0; i<nExpr-1; i=i+2){
3957         if( pX ){
3958           assert( pTest!=0 );
3959           opCompare.pRight = aListelem[i].pExpr;
3960         }else{
3961           pTest = aListelem[i].pExpr;
3962         }
3963         nextCase = sqlite3VdbeMakeLabel(v);
3964         testcase( pTest->op==TK_COLUMN );
3965         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3966         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3967         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3968         sqlite3VdbeGoto(v, endLabel);
3969         sqlite3VdbeResolveLabel(v, nextCase);
3970       }
3971       if( (nExpr&1)!=0 ){
3972         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3973       }else{
3974         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3975       }
3976       sqlite3VdbeResolveLabel(v, endLabel);
3977       break;
3978     }
3979 #ifndef SQLITE_OMIT_TRIGGER
3980     case TK_RAISE: {
3981       assert( pExpr->affinity==OE_Rollback
3982            || pExpr->affinity==OE_Abort
3983            || pExpr->affinity==OE_Fail
3984            || pExpr->affinity==OE_Ignore
3985       );
3986       if( !pParse->pTriggerTab ){
3987         sqlite3ErrorMsg(pParse,
3988                        "RAISE() may only be used within a trigger-program");
3989         return 0;
3990       }
3991       if( pExpr->affinity==OE_Abort ){
3992         sqlite3MayAbort(pParse);
3993       }
3994       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3995       if( pExpr->affinity==OE_Ignore ){
3996         sqlite3VdbeAddOp4(
3997             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3998         VdbeCoverage(v);
3999       }else{
4000         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4001                               pExpr->affinity, pExpr->u.zToken, 0, 0);
4002       }
4003 
4004       break;
4005     }
4006 #endif
4007   }
4008   sqlite3ReleaseTempReg(pParse, regFree1);
4009   sqlite3ReleaseTempReg(pParse, regFree2);
4010   return inReg;
4011 }
4012 
4013 /*
4014 ** Factor out the code of the given expression to initialization time.
4015 **
4016 ** If regDest>=0 then the result is always stored in that register and the
4017 ** result is not reusable.  If regDest<0 then this routine is free to
4018 ** store the value whereever it wants.  The register where the expression
4019 ** is stored is returned.  When regDest<0, two identical expressions will
4020 ** code to the same register.
4021 */
4022 int sqlite3ExprCodeAtInit(
4023   Parse *pParse,    /* Parsing context */
4024   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4025   int regDest       /* Store the value in this register */
4026 ){
4027   ExprList *p;
4028   assert( ConstFactorOk(pParse) );
4029   p = pParse->pConstExpr;
4030   if( regDest<0 && p ){
4031     struct ExprList_item *pItem;
4032     int i;
4033     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4034       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4035         return pItem->u.iConstExprReg;
4036       }
4037     }
4038   }
4039   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4040   p = sqlite3ExprListAppend(pParse, p, pExpr);
4041   if( p ){
4042      struct ExprList_item *pItem = &p->a[p->nExpr-1];
4043      pItem->reusable = regDest<0;
4044      if( regDest<0 ) regDest = ++pParse->nMem;
4045      pItem->u.iConstExprReg = regDest;
4046   }
4047   pParse->pConstExpr = p;
4048   return regDest;
4049 }
4050 
4051 /*
4052 ** Generate code to evaluate an expression and store the results
4053 ** into a register.  Return the register number where the results
4054 ** are stored.
4055 **
4056 ** If the register is a temporary register that can be deallocated,
4057 ** then write its number into *pReg.  If the result register is not
4058 ** a temporary, then set *pReg to zero.
4059 **
4060 ** If pExpr is a constant, then this routine might generate this
4061 ** code to fill the register in the initialization section of the
4062 ** VDBE program, in order to factor it out of the evaluation loop.
4063 */
4064 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4065   int r2;
4066   pExpr = sqlite3ExprSkipCollate(pExpr);
4067   if( ConstFactorOk(pParse)
4068    && pExpr->op!=TK_REGISTER
4069    && sqlite3ExprIsConstantNotJoin(pExpr)
4070   ){
4071     *pReg  = 0;
4072     r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4073   }else{
4074     int r1 = sqlite3GetTempReg(pParse);
4075     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4076     if( r2==r1 ){
4077       *pReg = r1;
4078     }else{
4079       sqlite3ReleaseTempReg(pParse, r1);
4080       *pReg = 0;
4081     }
4082   }
4083   return r2;
4084 }
4085 
4086 /*
4087 ** Generate code that will evaluate expression pExpr and store the
4088 ** results in register target.  The results are guaranteed to appear
4089 ** in register target.
4090 */
4091 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4092   int inReg;
4093 
4094   assert( target>0 && target<=pParse->nMem );
4095   if( pExpr && pExpr->op==TK_REGISTER ){
4096     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
4097   }else{
4098     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4099     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4100     if( inReg!=target && pParse->pVdbe ){
4101       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4102     }
4103   }
4104 }
4105 
4106 /*
4107 ** Make a transient copy of expression pExpr and then code it using
4108 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4109 ** except that the input expression is guaranteed to be unchanged.
4110 */
4111 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4112   sqlite3 *db = pParse->db;
4113   pExpr = sqlite3ExprDup(db, pExpr, 0);
4114   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4115   sqlite3ExprDelete(db, pExpr);
4116 }
4117 
4118 /*
4119 ** Generate code that will evaluate expression pExpr and store the
4120 ** results in register target.  The results are guaranteed to appear
4121 ** in register target.  If the expression is constant, then this routine
4122 ** might choose to code the expression at initialization time.
4123 */
4124 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4125   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4126     sqlite3ExprCodeAtInit(pParse, pExpr, target);
4127   }else{
4128     sqlite3ExprCode(pParse, pExpr, target);
4129   }
4130 }
4131 
4132 /*
4133 ** Generate code that evaluates the given expression and puts the result
4134 ** in register target.
4135 **
4136 ** Also make a copy of the expression results into another "cache" register
4137 ** and modify the expression so that the next time it is evaluated,
4138 ** the result is a copy of the cache register.
4139 **
4140 ** This routine is used for expressions that are used multiple
4141 ** times.  They are evaluated once and the results of the expression
4142 ** are reused.
4143 */
4144 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
4145   Vdbe *v = pParse->pVdbe;
4146   int iMem;
4147 
4148   assert( target>0 );
4149   assert( pExpr->op!=TK_REGISTER );
4150   sqlite3ExprCode(pParse, pExpr, target);
4151   iMem = ++pParse->nMem;
4152   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
4153   exprToRegister(pExpr, iMem);
4154 }
4155 
4156 /*
4157 ** Generate code that pushes the value of every element of the given
4158 ** expression list into a sequence of registers beginning at target.
4159 **
4160 ** Return the number of elements evaluated.  The number returned will
4161 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4162 ** is defined.
4163 **
4164 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4165 ** filled using OP_SCopy.  OP_Copy must be used instead.
4166 **
4167 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4168 ** factored out into initialization code.
4169 **
4170 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4171 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4172 ** in registers at srcReg, and so the value can be copied from there.
4173 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4174 ** are simply omitted rather than being copied from srcReg.
4175 */
4176 int sqlite3ExprCodeExprList(
4177   Parse *pParse,     /* Parsing context */
4178   ExprList *pList,   /* The expression list to be coded */
4179   int target,        /* Where to write results */
4180   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4181   u8 flags           /* SQLITE_ECEL_* flags */
4182 ){
4183   struct ExprList_item *pItem;
4184   int i, j, n;
4185   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4186   Vdbe *v = pParse->pVdbe;
4187   assert( pList!=0 );
4188   assert( target>0 );
4189   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4190   n = pList->nExpr;
4191   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4192   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4193     Expr *pExpr = pItem->pExpr;
4194 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4195     if( pItem->bSorterRef ){
4196       i--;
4197       n--;
4198     }else
4199 #endif
4200     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4201       if( flags & SQLITE_ECEL_OMITREF ){
4202         i--;
4203         n--;
4204       }else{
4205         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4206       }
4207     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4208            && sqlite3ExprIsConstantNotJoin(pExpr)
4209     ){
4210       sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4211     }else{
4212       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4213       if( inReg!=target+i ){
4214         VdbeOp *pOp;
4215         if( copyOp==OP_Copy
4216          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4217          && pOp->p1+pOp->p3+1==inReg
4218          && pOp->p2+pOp->p3+1==target+i
4219         ){
4220           pOp->p3++;
4221         }else{
4222           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4223         }
4224       }
4225     }
4226   }
4227   return n;
4228 }
4229 
4230 /*
4231 ** Generate code for a BETWEEN operator.
4232 **
4233 **    x BETWEEN y AND z
4234 **
4235 ** The above is equivalent to
4236 **
4237 **    x>=y AND x<=z
4238 **
4239 ** Code it as such, taking care to do the common subexpression
4240 ** elimination of x.
4241 **
4242 ** The xJumpIf parameter determines details:
4243 **
4244 **    NULL:                   Store the boolean result in reg[dest]
4245 **    sqlite3ExprIfTrue:      Jump to dest if true
4246 **    sqlite3ExprIfFalse:     Jump to dest if false
4247 **
4248 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4249 */
4250 static void exprCodeBetween(
4251   Parse *pParse,    /* Parsing and code generating context */
4252   Expr *pExpr,      /* The BETWEEN expression */
4253   int dest,         /* Jump destination or storage location */
4254   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4255   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4256 ){
4257  Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4258   Expr compLeft;    /* The  x>=y  term */
4259   Expr compRight;   /* The  x<=z  term */
4260   Expr exprX;       /* The  x  subexpression */
4261   int regFree1 = 0; /* Temporary use register */
4262 
4263 
4264   memset(&compLeft, 0, sizeof(Expr));
4265   memset(&compRight, 0, sizeof(Expr));
4266   memset(&exprAnd, 0, sizeof(Expr));
4267 
4268   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4269   exprX = *pExpr->pLeft;
4270   exprAnd.op = TK_AND;
4271   exprAnd.pLeft = &compLeft;
4272   exprAnd.pRight = &compRight;
4273   compLeft.op = TK_GE;
4274   compLeft.pLeft = &exprX;
4275   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4276   compRight.op = TK_LE;
4277   compRight.pLeft = &exprX;
4278   compRight.pRight = pExpr->x.pList->a[1].pExpr;
4279   exprToRegister(&exprX, exprCodeVector(pParse, &exprX, &regFree1));
4280   if( xJump ){
4281     xJump(pParse, &exprAnd, dest, jumpIfNull);
4282   }else{
4283     /* Mark the expression is being from the ON or USING clause of a join
4284     ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4285     ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4286     ** for clarity, but we are out of bits in the Expr.flags field so we
4287     ** have to reuse the EP_FromJoin bit.  Bummer. */
4288     exprX.flags |= EP_FromJoin;
4289     sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4290   }
4291   sqlite3ReleaseTempReg(pParse, regFree1);
4292 
4293   /* Ensure adequate test coverage */
4294   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4295   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4296   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4297   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4298   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4299   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4300   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4301   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4302   testcase( xJump==0 );
4303 }
4304 
4305 /*
4306 ** Generate code for a boolean expression such that a jump is made
4307 ** to the label "dest" if the expression is true but execution
4308 ** continues straight thru if the expression is false.
4309 **
4310 ** If the expression evaluates to NULL (neither true nor false), then
4311 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4312 **
4313 ** This code depends on the fact that certain token values (ex: TK_EQ)
4314 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4315 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4316 ** the make process cause these values to align.  Assert()s in the code
4317 ** below verify that the numbers are aligned correctly.
4318 */
4319 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4320   Vdbe *v = pParse->pVdbe;
4321   int op = 0;
4322   int regFree1 = 0;
4323   int regFree2 = 0;
4324   int r1, r2;
4325 
4326   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4327   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4328   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4329   op = pExpr->op;
4330   switch( op ){
4331     case TK_AND: {
4332       int d2 = sqlite3VdbeMakeLabel(v);
4333       testcase( jumpIfNull==0 );
4334       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
4335       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4336       sqlite3VdbeResolveLabel(v, d2);
4337       break;
4338     }
4339     case TK_OR: {
4340       testcase( jumpIfNull==0 );
4341       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4342       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4343       break;
4344     }
4345     case TK_NOT: {
4346       testcase( jumpIfNull==0 );
4347       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4348       break;
4349     }
4350     case TK_TRUTH: {
4351       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4352       int isTrue;     /* IS TRUE or IS NOT TRUE */
4353       testcase( jumpIfNull==0 );
4354       isNot = pExpr->op2==TK_ISNOT;
4355       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4356       testcase( isTrue && isNot );
4357       testcase( !isTrue && isNot );
4358       if( isTrue ^ isNot ){
4359         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4360                           isNot ? SQLITE_JUMPIFNULL : 0);
4361       }else{
4362         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4363                            isNot ? SQLITE_JUMPIFNULL : 0);
4364       }
4365       break;
4366     }
4367     case TK_IS:
4368     case TK_ISNOT:
4369       testcase( op==TK_IS );
4370       testcase( op==TK_ISNOT );
4371       op = (op==TK_IS) ? TK_EQ : TK_NE;
4372       jumpIfNull = SQLITE_NULLEQ;
4373       /* Fall thru */
4374     case TK_LT:
4375     case TK_LE:
4376     case TK_GT:
4377     case TK_GE:
4378     case TK_NE:
4379     case TK_EQ: {
4380       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4381       testcase( jumpIfNull==0 );
4382       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4383       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4384       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4385                   r1, r2, dest, jumpIfNull);
4386       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4387       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4388       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4389       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4390       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4391       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4392       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4393       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4394       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4395       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4396       testcase( regFree1==0 );
4397       testcase( regFree2==0 );
4398       break;
4399     }
4400     case TK_ISNULL:
4401     case TK_NOTNULL: {
4402       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4403       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4404       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4405       sqlite3VdbeAddOp2(v, op, r1, dest);
4406       VdbeCoverageIf(v, op==TK_ISNULL);
4407       VdbeCoverageIf(v, op==TK_NOTNULL);
4408       testcase( regFree1==0 );
4409       break;
4410     }
4411     case TK_BETWEEN: {
4412       testcase( jumpIfNull==0 );
4413       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4414       break;
4415     }
4416 #ifndef SQLITE_OMIT_SUBQUERY
4417     case TK_IN: {
4418       int destIfFalse = sqlite3VdbeMakeLabel(v);
4419       int destIfNull = jumpIfNull ? dest : destIfFalse;
4420       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4421       sqlite3VdbeGoto(v, dest);
4422       sqlite3VdbeResolveLabel(v, destIfFalse);
4423       break;
4424     }
4425 #endif
4426     default: {
4427     default_expr:
4428       if( exprAlwaysTrue(pExpr) ){
4429         sqlite3VdbeGoto(v, dest);
4430       }else if( exprAlwaysFalse(pExpr) ){
4431         /* No-op */
4432       }else{
4433         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4434         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4435         VdbeCoverage(v);
4436         testcase( regFree1==0 );
4437         testcase( jumpIfNull==0 );
4438       }
4439       break;
4440     }
4441   }
4442   sqlite3ReleaseTempReg(pParse, regFree1);
4443   sqlite3ReleaseTempReg(pParse, regFree2);
4444 }
4445 
4446 /*
4447 ** Generate code for a boolean expression such that a jump is made
4448 ** to the label "dest" if the expression is false but execution
4449 ** continues straight thru if the expression is true.
4450 **
4451 ** If the expression evaluates to NULL (neither true nor false) then
4452 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4453 ** is 0.
4454 */
4455 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4456   Vdbe *v = pParse->pVdbe;
4457   int op = 0;
4458   int regFree1 = 0;
4459   int regFree2 = 0;
4460   int r1, r2;
4461 
4462   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4463   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4464   if( pExpr==0 )    return;
4465 
4466   /* The value of pExpr->op and op are related as follows:
4467   **
4468   **       pExpr->op            op
4469   **       ---------          ----------
4470   **       TK_ISNULL          OP_NotNull
4471   **       TK_NOTNULL         OP_IsNull
4472   **       TK_NE              OP_Eq
4473   **       TK_EQ              OP_Ne
4474   **       TK_GT              OP_Le
4475   **       TK_LE              OP_Gt
4476   **       TK_GE              OP_Lt
4477   **       TK_LT              OP_Ge
4478   **
4479   ** For other values of pExpr->op, op is undefined and unused.
4480   ** The value of TK_ and OP_ constants are arranged such that we
4481   ** can compute the mapping above using the following expression.
4482   ** Assert()s verify that the computation is correct.
4483   */
4484   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4485 
4486   /* Verify correct alignment of TK_ and OP_ constants
4487   */
4488   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4489   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4490   assert( pExpr->op!=TK_NE || op==OP_Eq );
4491   assert( pExpr->op!=TK_EQ || op==OP_Ne );
4492   assert( pExpr->op!=TK_LT || op==OP_Ge );
4493   assert( pExpr->op!=TK_LE || op==OP_Gt );
4494   assert( pExpr->op!=TK_GT || op==OP_Le );
4495   assert( pExpr->op!=TK_GE || op==OP_Lt );
4496 
4497   switch( pExpr->op ){
4498     case TK_AND: {
4499       testcase( jumpIfNull==0 );
4500       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4501       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4502       break;
4503     }
4504     case TK_OR: {
4505       int d2 = sqlite3VdbeMakeLabel(v);
4506       testcase( jumpIfNull==0 );
4507       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
4508       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4509       sqlite3VdbeResolveLabel(v, d2);
4510       break;
4511     }
4512     case TK_NOT: {
4513       testcase( jumpIfNull==0 );
4514       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4515       break;
4516     }
4517     case TK_TRUTH: {
4518       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
4519       int isTrue;  /* IS TRUE or IS NOT TRUE */
4520       testcase( jumpIfNull==0 );
4521       isNot = pExpr->op2==TK_ISNOT;
4522       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4523       testcase( isTrue && isNot );
4524       testcase( !isTrue && isNot );
4525       if( isTrue ^ isNot ){
4526         /* IS TRUE and IS NOT FALSE */
4527         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4528                            isNot ? 0 : SQLITE_JUMPIFNULL);
4529 
4530       }else{
4531         /* IS FALSE and IS NOT TRUE */
4532         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4533                           isNot ? 0 : SQLITE_JUMPIFNULL);
4534       }
4535       break;
4536     }
4537     case TK_IS:
4538     case TK_ISNOT:
4539       testcase( pExpr->op==TK_IS );
4540       testcase( pExpr->op==TK_ISNOT );
4541       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4542       jumpIfNull = SQLITE_NULLEQ;
4543       /* Fall thru */
4544     case TK_LT:
4545     case TK_LE:
4546     case TK_GT:
4547     case TK_GE:
4548     case TK_NE:
4549     case TK_EQ: {
4550       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4551       testcase( jumpIfNull==0 );
4552       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4553       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4554       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4555                   r1, r2, dest, jumpIfNull);
4556       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4557       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4558       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4559       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4560       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4561       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4562       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4563       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4564       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4565       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4566       testcase( regFree1==0 );
4567       testcase( regFree2==0 );
4568       break;
4569     }
4570     case TK_ISNULL:
4571     case TK_NOTNULL: {
4572       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4573       sqlite3VdbeAddOp2(v, op, r1, dest);
4574       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
4575       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
4576       testcase( regFree1==0 );
4577       break;
4578     }
4579     case TK_BETWEEN: {
4580       testcase( jumpIfNull==0 );
4581       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4582       break;
4583     }
4584 #ifndef SQLITE_OMIT_SUBQUERY
4585     case TK_IN: {
4586       if( jumpIfNull ){
4587         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4588       }else{
4589         int destIfNull = sqlite3VdbeMakeLabel(v);
4590         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4591         sqlite3VdbeResolveLabel(v, destIfNull);
4592       }
4593       break;
4594     }
4595 #endif
4596     default: {
4597     default_expr:
4598       if( exprAlwaysFalse(pExpr) ){
4599         sqlite3VdbeGoto(v, dest);
4600       }else if( exprAlwaysTrue(pExpr) ){
4601         /* no-op */
4602       }else{
4603         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4604         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4605         VdbeCoverage(v);
4606         testcase( regFree1==0 );
4607         testcase( jumpIfNull==0 );
4608       }
4609       break;
4610     }
4611   }
4612   sqlite3ReleaseTempReg(pParse, regFree1);
4613   sqlite3ReleaseTempReg(pParse, regFree2);
4614 }
4615 
4616 /*
4617 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4618 ** code generation, and that copy is deleted after code generation. This
4619 ** ensures that the original pExpr is unchanged.
4620 */
4621 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4622   sqlite3 *db = pParse->db;
4623   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4624   if( db->mallocFailed==0 ){
4625     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4626   }
4627   sqlite3ExprDelete(db, pCopy);
4628 }
4629 
4630 /*
4631 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
4632 ** type of expression.
4633 **
4634 ** If pExpr is a simple SQL value - an integer, real, string, blob
4635 ** or NULL value - then the VDBE currently being prepared is configured
4636 ** to re-prepare each time a new value is bound to variable pVar.
4637 **
4638 ** Additionally, if pExpr is a simple SQL value and the value is the
4639 ** same as that currently bound to variable pVar, non-zero is returned.
4640 ** Otherwise, if the values are not the same or if pExpr is not a simple
4641 ** SQL value, zero is returned.
4642 */
4643 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
4644   int res = 0;
4645   int iVar;
4646   sqlite3_value *pL, *pR = 0;
4647 
4648   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
4649   if( pR ){
4650     iVar = pVar->iColumn;
4651     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
4652     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
4653     if( pL ){
4654       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
4655         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
4656       }
4657       res =  0==sqlite3MemCompare(pL, pR, 0);
4658     }
4659     sqlite3ValueFree(pR);
4660     sqlite3ValueFree(pL);
4661   }
4662 
4663   return res;
4664 }
4665 
4666 /*
4667 ** Do a deep comparison of two expression trees.  Return 0 if the two
4668 ** expressions are completely identical.  Return 1 if they differ only
4669 ** by a COLLATE operator at the top level.  Return 2 if there are differences
4670 ** other than the top-level COLLATE operator.
4671 **
4672 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4673 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4674 **
4675 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
4676 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4677 **
4678 ** Sometimes this routine will return 2 even if the two expressions
4679 ** really are equivalent.  If we cannot prove that the expressions are
4680 ** identical, we return 2 just to be safe.  So if this routine
4681 ** returns 2, then you do not really know for certain if the two
4682 ** expressions are the same.  But if you get a 0 or 1 return, then you
4683 ** can be sure the expressions are the same.  In the places where
4684 ** this routine is used, it does not hurt to get an extra 2 - that
4685 ** just might result in some slightly slower code.  But returning
4686 ** an incorrect 0 or 1 could lead to a malfunction.
4687 **
4688 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
4689 ** pParse->pReprepare can be matched against literals in pB.  The
4690 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
4691 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
4692 ** Argument pParse should normally be NULL. If it is not NULL and pA or
4693 ** pB causes a return value of 2.
4694 */
4695 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
4696   u32 combinedFlags;
4697   if( pA==0 || pB==0 ){
4698     return pB==pA ? 0 : 2;
4699   }
4700   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
4701     return 0;
4702   }
4703   combinedFlags = pA->flags | pB->flags;
4704   if( combinedFlags & EP_IntValue ){
4705     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
4706       return 0;
4707     }
4708     return 2;
4709   }
4710   if( pA->op!=pB->op ){
4711     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
4712       return 1;
4713     }
4714     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
4715       return 1;
4716     }
4717     return 2;
4718   }
4719   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
4720     if( pA->op==TK_FUNCTION ){
4721       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4722     }else if( pA->op==TK_COLLATE ){
4723       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4724     }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4725       return 2;
4726     }
4727   }
4728   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4729   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
4730     if( combinedFlags & EP_xIsSelect ) return 2;
4731     if( (combinedFlags & EP_FixedCol)==0
4732      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
4733     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
4734     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4735     assert( (combinedFlags & EP_Reduced)==0 );
4736     if( pA->op!=TK_STRING && pA->op!=TK_TRUEFALSE ){
4737       if( pA->iColumn!=pB->iColumn ) return 2;
4738       if( pA->iTable!=pB->iTable
4739        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4740     }
4741 #ifndef SQLITE_OMIT_WINDOWFUNC
4742     /* Justification for the assert():
4743     ** window functions have p->op==TK_FUNCTION but aggregate functions
4744     ** have p->op==TK_AGG_FUNCTION.  So any comparison between an aggregate
4745     ** function and a window function should have failed before reaching
4746     ** this point.  And, it is not possible to have a window function and
4747     ** a scalar function with the same name and number of arguments.  So
4748     ** if we reach this point, either A and B both window functions or
4749     ** neither are a window functions. */
4750     assert( (pA->pWin==0)==(pB->pWin==0) );
4751 
4752     if( pA->pWin!=0 ){
4753       if( sqlite3WindowCompare(pParse,pA->pWin,pB->pWin)!=0 ) return 2;
4754     }
4755 #endif
4756   }
4757   return 0;
4758 }
4759 
4760 /*
4761 ** Compare two ExprList objects.  Return 0 if they are identical and
4762 ** non-zero if they differ in any way.
4763 **
4764 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4765 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4766 **
4767 ** This routine might return non-zero for equivalent ExprLists.  The
4768 ** only consequence will be disabled optimizations.  But this routine
4769 ** must never return 0 if the two ExprList objects are different, or
4770 ** a malfunction will result.
4771 **
4772 ** Two NULL pointers are considered to be the same.  But a NULL pointer
4773 ** always differs from a non-NULL pointer.
4774 */
4775 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4776   int i;
4777   if( pA==0 && pB==0 ) return 0;
4778   if( pA==0 || pB==0 ) return 1;
4779   if( pA->nExpr!=pB->nExpr ) return 1;
4780   for(i=0; i<pA->nExpr; i++){
4781     Expr *pExprA = pA->a[i].pExpr;
4782     Expr *pExprB = pB->a[i].pExpr;
4783     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4784     if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1;
4785   }
4786   return 0;
4787 }
4788 
4789 /*
4790 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
4791 ** are ignored.
4792 */
4793 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
4794   return sqlite3ExprCompare(0,
4795              sqlite3ExprSkipCollate(pA),
4796              sqlite3ExprSkipCollate(pB),
4797              iTab);
4798 }
4799 
4800 /*
4801 ** Return true if we can prove the pE2 will always be true if pE1 is
4802 ** true.  Return false if we cannot complete the proof or if pE2 might
4803 ** be false.  Examples:
4804 **
4805 **     pE1: x==5       pE2: x==5             Result: true
4806 **     pE1: x>0        pE2: x==5             Result: false
4807 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
4808 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
4809 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
4810 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
4811 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
4812 **
4813 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
4814 ** Expr.iTable<0 then assume a table number given by iTab.
4815 **
4816 ** If pParse is not NULL, then the values of bound variables in pE1 are
4817 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
4818 ** modified to record which bound variables are referenced.  If pParse
4819 ** is NULL, then false will be returned if pE1 contains any bound variables.
4820 **
4821 ** When in doubt, return false.  Returning true might give a performance
4822 ** improvement.  Returning false might cause a performance reduction, but
4823 ** it will always give the correct answer and is hence always safe.
4824 */
4825 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
4826   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
4827     return 1;
4828   }
4829   if( pE2->op==TK_OR
4830    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
4831              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
4832   ){
4833     return 1;
4834   }
4835   if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){
4836     Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft);
4837     testcase( pX!=pE1->pLeft );
4838     if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1;
4839   }
4840   return 0;
4841 }
4842 
4843 /*
4844 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow().
4845 ** If the expression node requires that the table at pWalker->iCur
4846 ** have a non-NULL column, then set pWalker->eCode to 1 and abort.
4847 */
4848 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
4849   /* This routine is only called for WHERE clause expressions and so it
4850   ** cannot have any TK_AGG_COLUMN entries because those are only found
4851   ** in HAVING clauses.  We can get a TK_AGG_FUNCTION in a WHERE clause,
4852   ** but that is an illegal construct and the query will be rejected at
4853   ** a later stage of processing, so the TK_AGG_FUNCTION case does not
4854   ** need to be considered here. */
4855   assert( pExpr->op!=TK_AGG_COLUMN );
4856   testcase( pExpr->op==TK_AGG_FUNCTION );
4857 
4858   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
4859   switch( pExpr->op ){
4860     case TK_ISNOT:
4861     case TK_NOT:
4862     case TK_ISNULL:
4863     case TK_IS:
4864     case TK_OR:
4865     case TK_CASE:
4866     case TK_IN:
4867     case TK_FUNCTION:
4868       testcase( pExpr->op==TK_ISNOT );
4869       testcase( pExpr->op==TK_NOT );
4870       testcase( pExpr->op==TK_ISNULL );
4871       testcase( pExpr->op==TK_IS );
4872       testcase( pExpr->op==TK_OR );
4873       testcase( pExpr->op==TK_CASE );
4874       testcase( pExpr->op==TK_IN );
4875       testcase( pExpr->op==TK_FUNCTION );
4876       return WRC_Prune;
4877     case TK_COLUMN:
4878       if( pWalker->u.iCur==pExpr->iTable ){
4879         pWalker->eCode = 1;
4880         return WRC_Abort;
4881       }
4882       return WRC_Prune;
4883 
4884     /* Virtual tables are allowed to use constraints like x=NULL.  So
4885     ** a term of the form x=y does not prove that y is not null if x
4886     ** is the column of a virtual table */
4887     case TK_EQ:
4888     case TK_NE:
4889     case TK_LT:
4890     case TK_LE:
4891     case TK_GT:
4892     case TK_GE:
4893       testcase( pExpr->op==TK_EQ );
4894       testcase( pExpr->op==TK_NE );
4895       testcase( pExpr->op==TK_LT );
4896       testcase( pExpr->op==TK_LE );
4897       testcase( pExpr->op==TK_GT );
4898       testcase( pExpr->op==TK_GE );
4899       if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->pTab))
4900        || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->pTab))
4901       ){
4902        return WRC_Prune;
4903       }
4904     default:
4905       return WRC_Continue;
4906   }
4907 }
4908 
4909 /*
4910 ** Return true (non-zero) if expression p can only be true if at least
4911 ** one column of table iTab is non-null.  In other words, return true
4912 ** if expression p will always be NULL or false if every column of iTab
4913 ** is NULL.
4914 **
4915 ** False negatives are acceptable.  In other words, it is ok to return
4916 ** zero even if expression p will never be true of every column of iTab
4917 ** is NULL.  A false negative is merely a missed optimization opportunity.
4918 **
4919 ** False positives are not allowed, however.  A false positive may result
4920 ** in an incorrect answer.
4921 **
4922 ** Terms of p that are marked with EP_FromJoin (and hence that come from
4923 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
4924 **
4925 ** This routine is used to check if a LEFT JOIN can be converted into
4926 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
4927 ** clause requires that some column of the right table of the LEFT JOIN
4928 ** be non-NULL, then the LEFT JOIN can be safely converted into an
4929 ** ordinary join.
4930 */
4931 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
4932   Walker w;
4933   w.xExprCallback = impliesNotNullRow;
4934   w.xSelectCallback = 0;
4935   w.xSelectCallback2 = 0;
4936   w.eCode = 0;
4937   w.u.iCur = iTab;
4938   sqlite3WalkExpr(&w, p);
4939   return w.eCode;
4940 }
4941 
4942 /*
4943 ** An instance of the following structure is used by the tree walker
4944 ** to determine if an expression can be evaluated by reference to the
4945 ** index only, without having to do a search for the corresponding
4946 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
4947 ** is the cursor for the table.
4948 */
4949 struct IdxCover {
4950   Index *pIdx;     /* The index to be tested for coverage */
4951   int iCur;        /* Cursor number for the table corresponding to the index */
4952 };
4953 
4954 /*
4955 ** Check to see if there are references to columns in table
4956 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
4957 ** pWalker->u.pIdxCover->pIdx.
4958 */
4959 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
4960   if( pExpr->op==TK_COLUMN
4961    && pExpr->iTable==pWalker->u.pIdxCover->iCur
4962    && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
4963   ){
4964     pWalker->eCode = 1;
4965     return WRC_Abort;
4966   }
4967   return WRC_Continue;
4968 }
4969 
4970 /*
4971 ** Determine if an index pIdx on table with cursor iCur contains will
4972 ** the expression pExpr.  Return true if the index does cover the
4973 ** expression and false if the pExpr expression references table columns
4974 ** that are not found in the index pIdx.
4975 **
4976 ** An index covering an expression means that the expression can be
4977 ** evaluated using only the index and without having to lookup the
4978 ** corresponding table entry.
4979 */
4980 int sqlite3ExprCoveredByIndex(
4981   Expr *pExpr,        /* The index to be tested */
4982   int iCur,           /* The cursor number for the corresponding table */
4983   Index *pIdx         /* The index that might be used for coverage */
4984 ){
4985   Walker w;
4986   struct IdxCover xcov;
4987   memset(&w, 0, sizeof(w));
4988   xcov.iCur = iCur;
4989   xcov.pIdx = pIdx;
4990   w.xExprCallback = exprIdxCover;
4991   w.u.pIdxCover = &xcov;
4992   sqlite3WalkExpr(&w, pExpr);
4993   return !w.eCode;
4994 }
4995 
4996 
4997 /*
4998 ** An instance of the following structure is used by the tree walker
4999 ** to count references to table columns in the arguments of an
5000 ** aggregate function, in order to implement the
5001 ** sqlite3FunctionThisSrc() routine.
5002 */
5003 struct SrcCount {
5004   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5005   int nThis;       /* Number of references to columns in pSrcList */
5006   int nOther;      /* Number of references to columns in other FROM clauses */
5007 };
5008 
5009 /*
5010 ** Count the number of references to columns.
5011 */
5012 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5013   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
5014   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
5015   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
5016   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
5017   ** NEVER() will need to be removed. */
5018   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
5019     int i;
5020     struct SrcCount *p = pWalker->u.pSrcCount;
5021     SrcList *pSrc = p->pSrc;
5022     int nSrc = pSrc ? pSrc->nSrc : 0;
5023     for(i=0; i<nSrc; i++){
5024       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5025     }
5026     if( i<nSrc ){
5027       p->nThis++;
5028     }else{
5029       p->nOther++;
5030     }
5031   }
5032   return WRC_Continue;
5033 }
5034 
5035 /*
5036 ** Determine if any of the arguments to the pExpr Function reference
5037 ** pSrcList.  Return true if they do.  Also return true if the function
5038 ** has no arguments or has only constant arguments.  Return false if pExpr
5039 ** references columns but not columns of tables found in pSrcList.
5040 */
5041 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5042   Walker w;
5043   struct SrcCount cnt;
5044   assert( pExpr->op==TK_AGG_FUNCTION );
5045   w.xExprCallback = exprSrcCount;
5046   w.xSelectCallback = 0;
5047   w.u.pSrcCount = &cnt;
5048   cnt.pSrc = pSrcList;
5049   cnt.nThis = 0;
5050   cnt.nOther = 0;
5051   sqlite3WalkExprList(&w, pExpr->x.pList);
5052   return cnt.nThis>0 || cnt.nOther==0;
5053 }
5054 
5055 /*
5056 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5057 ** the new element.  Return a negative number if malloc fails.
5058 */
5059 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5060   int i;
5061   pInfo->aCol = sqlite3ArrayAllocate(
5062        db,
5063        pInfo->aCol,
5064        sizeof(pInfo->aCol[0]),
5065        &pInfo->nColumn,
5066        &i
5067   );
5068   return i;
5069 }
5070 
5071 /*
5072 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5073 ** the new element.  Return a negative number if malloc fails.
5074 */
5075 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5076   int i;
5077   pInfo->aFunc = sqlite3ArrayAllocate(
5078        db,
5079        pInfo->aFunc,
5080        sizeof(pInfo->aFunc[0]),
5081        &pInfo->nFunc,
5082        &i
5083   );
5084   return i;
5085 }
5086 
5087 /*
5088 ** This is the xExprCallback for a tree walker.  It is used to
5089 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5090 ** for additional information.
5091 */
5092 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5093   int i;
5094   NameContext *pNC = pWalker->u.pNC;
5095   Parse *pParse = pNC->pParse;
5096   SrcList *pSrcList = pNC->pSrcList;
5097   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5098 
5099   assert( pNC->ncFlags & NC_UAggInfo );
5100   switch( pExpr->op ){
5101     case TK_AGG_COLUMN:
5102     case TK_COLUMN: {
5103       testcase( pExpr->op==TK_AGG_COLUMN );
5104       testcase( pExpr->op==TK_COLUMN );
5105       /* Check to see if the column is in one of the tables in the FROM
5106       ** clause of the aggregate query */
5107       if( ALWAYS(pSrcList!=0) ){
5108         struct SrcList_item *pItem = pSrcList->a;
5109         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5110           struct AggInfo_col *pCol;
5111           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5112           if( pExpr->iTable==pItem->iCursor ){
5113             /* If we reach this point, it means that pExpr refers to a table
5114             ** that is in the FROM clause of the aggregate query.
5115             **
5116             ** Make an entry for the column in pAggInfo->aCol[] if there
5117             ** is not an entry there already.
5118             */
5119             int k;
5120             pCol = pAggInfo->aCol;
5121             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5122               if( pCol->iTable==pExpr->iTable &&
5123                   pCol->iColumn==pExpr->iColumn ){
5124                 break;
5125               }
5126             }
5127             if( (k>=pAggInfo->nColumn)
5128              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5129             ){
5130               pCol = &pAggInfo->aCol[k];
5131               pCol->pTab = pExpr->pTab;
5132               pCol->iTable = pExpr->iTable;
5133               pCol->iColumn = pExpr->iColumn;
5134               pCol->iMem = ++pParse->nMem;
5135               pCol->iSorterColumn = -1;
5136               pCol->pExpr = pExpr;
5137               if( pAggInfo->pGroupBy ){
5138                 int j, n;
5139                 ExprList *pGB = pAggInfo->pGroupBy;
5140                 struct ExprList_item *pTerm = pGB->a;
5141                 n = pGB->nExpr;
5142                 for(j=0; j<n; j++, pTerm++){
5143                   Expr *pE = pTerm->pExpr;
5144                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5145                       pE->iColumn==pExpr->iColumn ){
5146                     pCol->iSorterColumn = j;
5147                     break;
5148                   }
5149                 }
5150               }
5151               if( pCol->iSorterColumn<0 ){
5152                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5153               }
5154             }
5155             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5156             ** because it was there before or because we just created it).
5157             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5158             ** pAggInfo->aCol[] entry.
5159             */
5160             ExprSetVVAProperty(pExpr, EP_NoReduce);
5161             pExpr->pAggInfo = pAggInfo;
5162             pExpr->op = TK_AGG_COLUMN;
5163             pExpr->iAgg = (i16)k;
5164             break;
5165           } /* endif pExpr->iTable==pItem->iCursor */
5166         } /* end loop over pSrcList */
5167       }
5168       return WRC_Prune;
5169     }
5170     case TK_AGG_FUNCTION: {
5171       if( (pNC->ncFlags & NC_InAggFunc)==0
5172        && pWalker->walkerDepth==pExpr->op2
5173       ){
5174         /* Check to see if pExpr is a duplicate of another aggregate
5175         ** function that is already in the pAggInfo structure
5176         */
5177         struct AggInfo_func *pItem = pAggInfo->aFunc;
5178         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5179           if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5180             break;
5181           }
5182         }
5183         if( i>=pAggInfo->nFunc ){
5184           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5185           */
5186           u8 enc = ENC(pParse->db);
5187           i = addAggInfoFunc(pParse->db, pAggInfo);
5188           if( i>=0 ){
5189             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5190             pItem = &pAggInfo->aFunc[i];
5191             pItem->pExpr = pExpr;
5192             pItem->iMem = ++pParse->nMem;
5193             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5194             pItem->pFunc = sqlite3FindFunction(pParse->db,
5195                    pExpr->u.zToken,
5196                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5197             if( pExpr->flags & EP_Distinct ){
5198               pItem->iDistinct = pParse->nTab++;
5199             }else{
5200               pItem->iDistinct = -1;
5201             }
5202           }
5203         }
5204         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5205         */
5206         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5207         ExprSetVVAProperty(pExpr, EP_NoReduce);
5208         pExpr->iAgg = (i16)i;
5209         pExpr->pAggInfo = pAggInfo;
5210         return WRC_Prune;
5211       }else{
5212         return WRC_Continue;
5213       }
5214     }
5215   }
5216   return WRC_Continue;
5217 }
5218 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5219   UNUSED_PARAMETER(pSelect);
5220   pWalker->walkerDepth++;
5221   return WRC_Continue;
5222 }
5223 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5224   UNUSED_PARAMETER(pSelect);
5225   pWalker->walkerDepth--;
5226 }
5227 
5228 /*
5229 ** Analyze the pExpr expression looking for aggregate functions and
5230 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5231 ** points to.  Additional entries are made on the AggInfo object as
5232 ** necessary.
5233 **
5234 ** This routine should only be called after the expression has been
5235 ** analyzed by sqlite3ResolveExprNames().
5236 */
5237 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5238   Walker w;
5239   w.xExprCallback = analyzeAggregate;
5240   w.xSelectCallback = analyzeAggregatesInSelect;
5241   w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5242   w.walkerDepth = 0;
5243   w.u.pNC = pNC;
5244   assert( pNC->pSrcList!=0 );
5245   sqlite3WalkExpr(&w, pExpr);
5246 }
5247 
5248 /*
5249 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5250 ** expression list.  Return the number of errors.
5251 **
5252 ** If an error is found, the analysis is cut short.
5253 */
5254 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5255   struct ExprList_item *pItem;
5256   int i;
5257   if( pList ){
5258     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5259       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5260     }
5261   }
5262 }
5263 
5264 /*
5265 ** Allocate a single new register for use to hold some intermediate result.
5266 */
5267 int sqlite3GetTempReg(Parse *pParse){
5268   if( pParse->nTempReg==0 ){
5269     return ++pParse->nMem;
5270   }
5271   return pParse->aTempReg[--pParse->nTempReg];
5272 }
5273 
5274 /*
5275 ** Deallocate a register, making available for reuse for some other
5276 ** purpose.
5277 */
5278 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5279   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5280     pParse->aTempReg[pParse->nTempReg++] = iReg;
5281   }
5282 }
5283 
5284 /*
5285 ** Allocate or deallocate a block of nReg consecutive registers.
5286 */
5287 int sqlite3GetTempRange(Parse *pParse, int nReg){
5288   int i, n;
5289   if( nReg==1 ) return sqlite3GetTempReg(pParse);
5290   i = pParse->iRangeReg;
5291   n = pParse->nRangeReg;
5292   if( nReg<=n ){
5293     pParse->iRangeReg += nReg;
5294     pParse->nRangeReg -= nReg;
5295   }else{
5296     i = pParse->nMem+1;
5297     pParse->nMem += nReg;
5298   }
5299   return i;
5300 }
5301 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5302   if( nReg==1 ){
5303     sqlite3ReleaseTempReg(pParse, iReg);
5304     return;
5305   }
5306   if( nReg>pParse->nRangeReg ){
5307     pParse->nRangeReg = nReg;
5308     pParse->iRangeReg = iReg;
5309   }
5310 }
5311 
5312 /*
5313 ** Mark all temporary registers as being unavailable for reuse.
5314 */
5315 void sqlite3ClearTempRegCache(Parse *pParse){
5316   pParse->nTempReg = 0;
5317   pParse->nRangeReg = 0;
5318 }
5319 
5320 /*
5321 ** Validate that no temporary register falls within the range of
5322 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5323 ** statements.
5324 */
5325 #ifdef SQLITE_DEBUG
5326 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5327   int i;
5328   if( pParse->nRangeReg>0
5329    && pParse->iRangeReg+pParse->nRangeReg > iFirst
5330    && pParse->iRangeReg <= iLast
5331   ){
5332      return 0;
5333   }
5334   for(i=0; i<pParse->nTempReg; i++){
5335     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5336       return 0;
5337     }
5338   }
5339   return 1;
5340 }
5341 #endif /* SQLITE_DEBUG */
5342