1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip) ){ 48 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_IF_NULL_ROW ); 49 pExpr = pExpr->pLeft; 50 assert( pExpr!=0 ); 51 } 52 op = pExpr->op; 53 if( op==TK_SELECT ){ 54 assert( pExpr->flags&EP_xIsSelect ); 55 if( ALWAYS(pExpr->x.pSelect) 56 && pExpr->x.pSelect->pEList 57 && ALWAYS(pExpr->x.pSelect->pEList->a[0].pExpr) 58 ){ 59 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 60 } 61 } 62 if( op==TK_REGISTER ) op = pExpr->op2; 63 #ifndef SQLITE_OMIT_CAST 64 if( op==TK_CAST ){ 65 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 66 return sqlite3AffinityType(pExpr->u.zToken, 0); 67 } 68 #endif 69 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ 70 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 71 } 72 if( op==TK_SELECT_COLUMN ){ 73 assert( pExpr->pLeft->flags&EP_xIsSelect ); 74 return sqlite3ExprAffinity( 75 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 76 ); 77 } 78 if( op==TK_VECTOR ){ 79 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 80 } 81 return pExpr->affExpr; 82 } 83 84 /* 85 ** Set the collating sequence for expression pExpr to be the collating 86 ** sequence named by pToken. Return a pointer to a new Expr node that 87 ** implements the COLLATE operator. 88 ** 89 ** If a memory allocation error occurs, that fact is recorded in pParse->db 90 ** and the pExpr parameter is returned unchanged. 91 */ 92 Expr *sqlite3ExprAddCollateToken( 93 Parse *pParse, /* Parsing context */ 94 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 95 const Token *pCollName, /* Name of collating sequence */ 96 int dequote /* True to dequote pCollName */ 97 ){ 98 if( pCollName->n>0 ){ 99 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 100 if( pNew ){ 101 pNew->pLeft = pExpr; 102 pNew->flags |= EP_Collate|EP_Skip; 103 pExpr = pNew; 104 } 105 } 106 return pExpr; 107 } 108 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 109 Token s; 110 assert( zC!=0 ); 111 sqlite3TokenInit(&s, (char*)zC); 112 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 113 } 114 115 /* 116 ** Skip over any TK_COLLATE operators. 117 */ 118 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 119 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 120 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_IF_NULL_ROW ); 121 pExpr = pExpr->pLeft; 122 } 123 return pExpr; 124 } 125 126 /* 127 ** Skip over any TK_COLLATE operators and/or any unlikely() 128 ** or likelihood() or likely() functions at the root of an 129 ** expression. 130 */ 131 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 132 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 133 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 134 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 135 assert( pExpr->x.pList->nExpr>0 ); 136 assert( pExpr->op==TK_FUNCTION ); 137 pExpr = pExpr->x.pList->a[0].pExpr; 138 }else{ 139 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_IF_NULL_ROW ); 140 pExpr = pExpr->pLeft; 141 } 142 } 143 return pExpr; 144 } 145 146 /* 147 ** Return the collation sequence for the expression pExpr. If 148 ** there is no defined collating sequence, return NULL. 149 ** 150 ** See also: sqlite3ExprNNCollSeq() 151 ** 152 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 153 ** default collation if pExpr has no defined collation. 154 ** 155 ** The collating sequence might be determined by a COLLATE operator 156 ** or by the presence of a column with a defined collating sequence. 157 ** COLLATE operators take first precedence. Left operands take 158 ** precedence over right operands. 159 */ 160 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 161 sqlite3 *db = pParse->db; 162 CollSeq *pColl = 0; 163 const Expr *p = pExpr; 164 while( p ){ 165 int op = p->op; 166 if( op==TK_REGISTER ) op = p->op2; 167 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 168 && p->y.pTab!=0 169 ){ 170 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 171 ** a TK_COLUMN but was previously evaluated and cached in a register */ 172 int j = p->iColumn; 173 if( j>=0 ){ 174 const char *zColl = p->y.pTab->aCol[j].zColl; 175 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 176 } 177 break; 178 } 179 if( op==TK_CAST || op==TK_UPLUS ){ 180 p = p->pLeft; 181 continue; 182 } 183 if( op==TK_VECTOR ){ 184 p = p->x.pList->a[0].pExpr; 185 continue; 186 } 187 if( op==TK_COLLATE ){ 188 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 189 break; 190 } 191 if( p->flags & EP_Collate ){ 192 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 193 p = p->pLeft; 194 }else{ 195 Expr *pNext = p->pRight; 196 /* The Expr.x union is never used at the same time as Expr.pRight */ 197 assert( p->x.pList==0 || p->pRight==0 ); 198 if( p->x.pList!=0 199 && !db->mallocFailed 200 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 201 ){ 202 int i; 203 for(i=0; i<p->x.pList->nExpr; i++){ 204 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 205 pNext = p->x.pList->a[i].pExpr; 206 break; 207 } 208 } 209 } 210 p = pNext; 211 } 212 }else{ 213 break; 214 } 215 } 216 if( sqlite3CheckCollSeq(pParse, pColl) ){ 217 pColl = 0; 218 } 219 return pColl; 220 } 221 222 /* 223 ** Return the collation sequence for the expression pExpr. If 224 ** there is no defined collating sequence, return a pointer to the 225 ** defautl collation sequence. 226 ** 227 ** See also: sqlite3ExprCollSeq() 228 ** 229 ** The sqlite3ExprCollSeq() routine works the same except that it 230 ** returns NULL if there is no defined collation. 231 */ 232 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 233 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 234 if( p==0 ) p = pParse->db->pDfltColl; 235 assert( p!=0 ); 236 return p; 237 } 238 239 /* 240 ** Return TRUE if the two expressions have equivalent collating sequences. 241 */ 242 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 243 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 244 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 245 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 246 } 247 248 /* 249 ** pExpr is an operand of a comparison operator. aff2 is the 250 ** type affinity of the other operand. This routine returns the 251 ** type affinity that should be used for the comparison operator. 252 */ 253 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 254 char aff1 = sqlite3ExprAffinity(pExpr); 255 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 256 /* Both sides of the comparison are columns. If one has numeric 257 ** affinity, use that. Otherwise use no affinity. 258 */ 259 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 260 return SQLITE_AFF_NUMERIC; 261 }else{ 262 return SQLITE_AFF_BLOB; 263 } 264 }else{ 265 /* One side is a column, the other is not. Use the columns affinity. */ 266 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 267 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 268 } 269 } 270 271 /* 272 ** pExpr is a comparison operator. Return the type affinity that should 273 ** be applied to both operands prior to doing the comparison. 274 */ 275 static char comparisonAffinity(const Expr *pExpr){ 276 char aff; 277 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 278 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 279 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 280 assert( pExpr->pLeft ); 281 aff = sqlite3ExprAffinity(pExpr->pLeft); 282 if( pExpr->pRight ){ 283 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 284 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 285 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 286 }else if( aff==0 ){ 287 aff = SQLITE_AFF_BLOB; 288 } 289 return aff; 290 } 291 292 /* 293 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 294 ** idx_affinity is the affinity of an indexed column. Return true 295 ** if the index with affinity idx_affinity may be used to implement 296 ** the comparison in pExpr. 297 */ 298 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 299 char aff = comparisonAffinity(pExpr); 300 if( aff<SQLITE_AFF_TEXT ){ 301 return 1; 302 } 303 if( aff==SQLITE_AFF_TEXT ){ 304 return idx_affinity==SQLITE_AFF_TEXT; 305 } 306 return sqlite3IsNumericAffinity(idx_affinity); 307 } 308 309 /* 310 ** Return the P5 value that should be used for a binary comparison 311 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 312 */ 313 static u8 binaryCompareP5( 314 const Expr *pExpr1, /* Left operand */ 315 const Expr *pExpr2, /* Right operand */ 316 int jumpIfNull /* Extra flags added to P5 */ 317 ){ 318 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 319 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 320 return aff; 321 } 322 323 /* 324 ** Return a pointer to the collation sequence that should be used by 325 ** a binary comparison operator comparing pLeft and pRight. 326 ** 327 ** If the left hand expression has a collating sequence type, then it is 328 ** used. Otherwise the collation sequence for the right hand expression 329 ** is used, or the default (BINARY) if neither expression has a collating 330 ** type. 331 ** 332 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 333 ** it is not considered. 334 */ 335 CollSeq *sqlite3BinaryCompareCollSeq( 336 Parse *pParse, 337 const Expr *pLeft, 338 const Expr *pRight 339 ){ 340 CollSeq *pColl; 341 assert( pLeft ); 342 if( pLeft->flags & EP_Collate ){ 343 pColl = sqlite3ExprCollSeq(pParse, pLeft); 344 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 345 pColl = sqlite3ExprCollSeq(pParse, pRight); 346 }else{ 347 pColl = sqlite3ExprCollSeq(pParse, pLeft); 348 if( !pColl ){ 349 pColl = sqlite3ExprCollSeq(pParse, pRight); 350 } 351 } 352 return pColl; 353 } 354 355 /* Expresssion p is a comparison operator. Return a collation sequence 356 ** appropriate for the comparison operator. 357 ** 358 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 359 ** However, if the OP_Commuted flag is set, then the order of the operands 360 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 361 ** correct collating sequence is found. 362 */ 363 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 364 if( ExprHasProperty(p, EP_Commuted) ){ 365 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 366 }else{ 367 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 368 } 369 } 370 371 /* 372 ** Generate code for a comparison operator. 373 */ 374 static int codeCompare( 375 Parse *pParse, /* The parsing (and code generating) context */ 376 Expr *pLeft, /* The left operand */ 377 Expr *pRight, /* The right operand */ 378 int opcode, /* The comparison opcode */ 379 int in1, int in2, /* Register holding operands */ 380 int dest, /* Jump here if true. */ 381 int jumpIfNull, /* If true, jump if either operand is NULL */ 382 int isCommuted /* The comparison has been commuted */ 383 ){ 384 int p5; 385 int addr; 386 CollSeq *p4; 387 388 if( pParse->nErr ) return 0; 389 if( isCommuted ){ 390 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 391 }else{ 392 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 393 } 394 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 395 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 396 (void*)p4, P4_COLLSEQ); 397 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 398 return addr; 399 } 400 401 /* 402 ** Return true if expression pExpr is a vector, or false otherwise. 403 ** 404 ** A vector is defined as any expression that results in two or more 405 ** columns of result. Every TK_VECTOR node is an vector because the 406 ** parser will not generate a TK_VECTOR with fewer than two entries. 407 ** But a TK_SELECT might be either a vector or a scalar. It is only 408 ** considered a vector if it has two or more result columns. 409 */ 410 int sqlite3ExprIsVector(Expr *pExpr){ 411 return sqlite3ExprVectorSize(pExpr)>1; 412 } 413 414 /* 415 ** If the expression passed as the only argument is of type TK_VECTOR 416 ** return the number of expressions in the vector. Or, if the expression 417 ** is a sub-select, return the number of columns in the sub-select. For 418 ** any other type of expression, return 1. 419 */ 420 int sqlite3ExprVectorSize(Expr *pExpr){ 421 u8 op = pExpr->op; 422 if( op==TK_REGISTER ) op = pExpr->op2; 423 if( op==TK_VECTOR ){ 424 return pExpr->x.pList->nExpr; 425 }else if( op==TK_SELECT ){ 426 return pExpr->x.pSelect->pEList->nExpr; 427 }else{ 428 return 1; 429 } 430 } 431 432 /* 433 ** Return a pointer to a subexpression of pVector that is the i-th 434 ** column of the vector (numbered starting with 0). The caller must 435 ** ensure that i is within range. 436 ** 437 ** If pVector is really a scalar (and "scalar" here includes subqueries 438 ** that return a single column!) then return pVector unmodified. 439 ** 440 ** pVector retains ownership of the returned subexpression. 441 ** 442 ** If the vector is a (SELECT ...) then the expression returned is 443 ** just the expression for the i-th term of the result set, and may 444 ** not be ready for evaluation because the table cursor has not yet 445 ** been positioned. 446 */ 447 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 448 assert( i<sqlite3ExprVectorSize(pVector) ); 449 if( sqlite3ExprIsVector(pVector) ){ 450 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 451 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 452 return pVector->x.pSelect->pEList->a[i].pExpr; 453 }else{ 454 return pVector->x.pList->a[i].pExpr; 455 } 456 } 457 return pVector; 458 } 459 460 /* 461 ** Compute and return a new Expr object which when passed to 462 ** sqlite3ExprCode() will generate all necessary code to compute 463 ** the iField-th column of the vector expression pVector. 464 ** 465 ** It is ok for pVector to be a scalar (as long as iField==0). 466 ** In that case, this routine works like sqlite3ExprDup(). 467 ** 468 ** The caller owns the returned Expr object and is responsible for 469 ** ensuring that the returned value eventually gets freed. 470 ** 471 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 472 ** then the returned object will reference pVector and so pVector must remain 473 ** valid for the life of the returned object. If pVector is a TK_VECTOR 474 ** or a scalar expression, then it can be deleted as soon as this routine 475 ** returns. 476 ** 477 ** A trick to cause a TK_SELECT pVector to be deleted together with 478 ** the returned Expr object is to attach the pVector to the pRight field 479 ** of the returned TK_SELECT_COLUMN Expr object. 480 */ 481 Expr *sqlite3ExprForVectorField( 482 Parse *pParse, /* Parsing context */ 483 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 484 int iField /* Which column of the vector to return */ 485 ){ 486 Expr *pRet; 487 if( pVector->op==TK_SELECT ){ 488 assert( pVector->flags & EP_xIsSelect ); 489 /* The TK_SELECT_COLUMN Expr node: 490 ** 491 ** pLeft: pVector containing TK_SELECT. Not deleted. 492 ** pRight: not used. But recursively deleted. 493 ** iColumn: Index of a column in pVector 494 ** iTable: 0 or the number of columns on the LHS of an assignment 495 ** pLeft->iTable: First in an array of register holding result, or 0 496 ** if the result is not yet computed. 497 ** 498 ** sqlite3ExprDelete() specifically skips the recursive delete of 499 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 500 ** can be attached to pRight to cause this node to take ownership of 501 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 502 ** with the same pLeft pointer to the pVector, but only one of them 503 ** will own the pVector. 504 */ 505 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 506 if( pRet ){ 507 pRet->iColumn = iField; 508 pRet->pLeft = pVector; 509 } 510 assert( pRet==0 || pRet->iTable==0 ); 511 }else{ 512 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 513 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 514 sqlite3RenameTokenRemap(pParse, pRet, pVector); 515 } 516 return pRet; 517 } 518 519 /* 520 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 521 ** it. Return the register in which the result is stored (or, if the 522 ** sub-select returns more than one column, the first in an array 523 ** of registers in which the result is stored). 524 ** 525 ** If pExpr is not a TK_SELECT expression, return 0. 526 */ 527 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 528 int reg = 0; 529 #ifndef SQLITE_OMIT_SUBQUERY 530 if( pExpr->op==TK_SELECT ){ 531 reg = sqlite3CodeSubselect(pParse, pExpr); 532 } 533 #endif 534 return reg; 535 } 536 537 /* 538 ** Argument pVector points to a vector expression - either a TK_VECTOR 539 ** or TK_SELECT that returns more than one column. This function returns 540 ** the register number of a register that contains the value of 541 ** element iField of the vector. 542 ** 543 ** If pVector is a TK_SELECT expression, then code for it must have 544 ** already been generated using the exprCodeSubselect() routine. In this 545 ** case parameter regSelect should be the first in an array of registers 546 ** containing the results of the sub-select. 547 ** 548 ** If pVector is of type TK_VECTOR, then code for the requested field 549 ** is generated. In this case (*pRegFree) may be set to the number of 550 ** a temporary register to be freed by the caller before returning. 551 ** 552 ** Before returning, output parameter (*ppExpr) is set to point to the 553 ** Expr object corresponding to element iElem of the vector. 554 */ 555 static int exprVectorRegister( 556 Parse *pParse, /* Parse context */ 557 Expr *pVector, /* Vector to extract element from */ 558 int iField, /* Field to extract from pVector */ 559 int regSelect, /* First in array of registers */ 560 Expr **ppExpr, /* OUT: Expression element */ 561 int *pRegFree /* OUT: Temp register to free */ 562 ){ 563 u8 op = pVector->op; 564 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 565 if( op==TK_REGISTER ){ 566 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 567 return pVector->iTable+iField; 568 } 569 if( op==TK_SELECT ){ 570 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 571 return regSelect+iField; 572 } 573 *ppExpr = pVector->x.pList->a[iField].pExpr; 574 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 575 } 576 577 /* 578 ** Expression pExpr is a comparison between two vector values. Compute 579 ** the result of the comparison (1, 0, or NULL) and write that 580 ** result into register dest. 581 ** 582 ** The caller must satisfy the following preconditions: 583 ** 584 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 585 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 586 ** otherwise: op==pExpr->op and p5==0 587 */ 588 static void codeVectorCompare( 589 Parse *pParse, /* Code generator context */ 590 Expr *pExpr, /* The comparison operation */ 591 int dest, /* Write results into this register */ 592 u8 op, /* Comparison operator */ 593 u8 p5 /* SQLITE_NULLEQ or zero */ 594 ){ 595 Vdbe *v = pParse->pVdbe; 596 Expr *pLeft = pExpr->pLeft; 597 Expr *pRight = pExpr->pRight; 598 int nLeft = sqlite3ExprVectorSize(pLeft); 599 int i; 600 int regLeft = 0; 601 int regRight = 0; 602 u8 opx = op; 603 int addrDone = sqlite3VdbeMakeLabel(pParse); 604 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 605 606 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 607 if( pParse->nErr ) return; 608 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 609 sqlite3ErrorMsg(pParse, "row value misused"); 610 return; 611 } 612 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 613 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 614 || pExpr->op==TK_LT || pExpr->op==TK_GT 615 || pExpr->op==TK_LE || pExpr->op==TK_GE 616 ); 617 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 618 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 619 assert( p5==0 || pExpr->op!=op ); 620 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 621 622 p5 |= SQLITE_STOREP2; 623 if( opx==TK_LE ) opx = TK_LT; 624 if( opx==TK_GE ) opx = TK_GT; 625 626 regLeft = exprCodeSubselect(pParse, pLeft); 627 regRight = exprCodeSubselect(pParse, pRight); 628 629 for(i=0; 1 /*Loop exits by "break"*/; i++){ 630 int regFree1 = 0, regFree2 = 0; 631 Expr *pL, *pR; 632 int r1, r2; 633 assert( i>=0 && i<nLeft ); 634 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 635 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 636 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted); 637 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 638 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 639 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 640 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 641 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 642 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 643 sqlite3ReleaseTempReg(pParse, regFree1); 644 sqlite3ReleaseTempReg(pParse, regFree2); 645 if( i==nLeft-1 ){ 646 break; 647 } 648 if( opx==TK_EQ ){ 649 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 650 p5 |= SQLITE_KEEPNULL; 651 }else if( opx==TK_NE ){ 652 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 653 p5 |= SQLITE_KEEPNULL; 654 }else{ 655 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 656 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 657 VdbeCoverageIf(v, op==TK_LT); 658 VdbeCoverageIf(v, op==TK_GT); 659 VdbeCoverageIf(v, op==TK_LE); 660 VdbeCoverageIf(v, op==TK_GE); 661 if( i==nLeft-2 ) opx = op; 662 } 663 } 664 sqlite3VdbeResolveLabel(v, addrDone); 665 } 666 667 #if SQLITE_MAX_EXPR_DEPTH>0 668 /* 669 ** Check that argument nHeight is less than or equal to the maximum 670 ** expression depth allowed. If it is not, leave an error message in 671 ** pParse. 672 */ 673 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 674 int rc = SQLITE_OK; 675 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 676 if( nHeight>mxHeight ){ 677 sqlite3ErrorMsg(pParse, 678 "Expression tree is too large (maximum depth %d)", mxHeight 679 ); 680 rc = SQLITE_ERROR; 681 } 682 return rc; 683 } 684 685 /* The following three functions, heightOfExpr(), heightOfExprList() 686 ** and heightOfSelect(), are used to determine the maximum height 687 ** of any expression tree referenced by the structure passed as the 688 ** first argument. 689 ** 690 ** If this maximum height is greater than the current value pointed 691 ** to by pnHeight, the second parameter, then set *pnHeight to that 692 ** value. 693 */ 694 static void heightOfExpr(Expr *p, int *pnHeight){ 695 if( p ){ 696 if( p->nHeight>*pnHeight ){ 697 *pnHeight = p->nHeight; 698 } 699 } 700 } 701 static void heightOfExprList(ExprList *p, int *pnHeight){ 702 if( p ){ 703 int i; 704 for(i=0; i<p->nExpr; i++){ 705 heightOfExpr(p->a[i].pExpr, pnHeight); 706 } 707 } 708 } 709 static void heightOfSelect(Select *pSelect, int *pnHeight){ 710 Select *p; 711 for(p=pSelect; p; p=p->pPrior){ 712 heightOfExpr(p->pWhere, pnHeight); 713 heightOfExpr(p->pHaving, pnHeight); 714 heightOfExpr(p->pLimit, pnHeight); 715 heightOfExprList(p->pEList, pnHeight); 716 heightOfExprList(p->pGroupBy, pnHeight); 717 heightOfExprList(p->pOrderBy, pnHeight); 718 } 719 } 720 721 /* 722 ** Set the Expr.nHeight variable in the structure passed as an 723 ** argument. An expression with no children, Expr.pList or 724 ** Expr.pSelect member has a height of 1. Any other expression 725 ** has a height equal to the maximum height of any other 726 ** referenced Expr plus one. 727 ** 728 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 729 ** if appropriate. 730 */ 731 static void exprSetHeight(Expr *p){ 732 int nHeight = 0; 733 heightOfExpr(p->pLeft, &nHeight); 734 heightOfExpr(p->pRight, &nHeight); 735 if( ExprHasProperty(p, EP_xIsSelect) ){ 736 heightOfSelect(p->x.pSelect, &nHeight); 737 }else if( p->x.pList ){ 738 heightOfExprList(p->x.pList, &nHeight); 739 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 740 } 741 p->nHeight = nHeight + 1; 742 } 743 744 /* 745 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 746 ** the height is greater than the maximum allowed expression depth, 747 ** leave an error in pParse. 748 ** 749 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 750 ** Expr.flags. 751 */ 752 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 753 if( pParse->nErr ) return; 754 exprSetHeight(p); 755 sqlite3ExprCheckHeight(pParse, p->nHeight); 756 } 757 758 /* 759 ** Return the maximum height of any expression tree referenced 760 ** by the select statement passed as an argument. 761 */ 762 int sqlite3SelectExprHeight(Select *p){ 763 int nHeight = 0; 764 heightOfSelect(p, &nHeight); 765 return nHeight; 766 } 767 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 768 /* 769 ** Propagate all EP_Propagate flags from the Expr.x.pList into 770 ** Expr.flags. 771 */ 772 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 773 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 774 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 775 } 776 } 777 #define exprSetHeight(y) 778 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 779 780 /* 781 ** This routine is the core allocator for Expr nodes. 782 ** 783 ** Construct a new expression node and return a pointer to it. Memory 784 ** for this node and for the pToken argument is a single allocation 785 ** obtained from sqlite3DbMalloc(). The calling function 786 ** is responsible for making sure the node eventually gets freed. 787 ** 788 ** If dequote is true, then the token (if it exists) is dequoted. 789 ** If dequote is false, no dequoting is performed. The deQuote 790 ** parameter is ignored if pToken is NULL or if the token does not 791 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 792 ** then the EP_DblQuoted flag is set on the expression node. 793 ** 794 ** Special case: If op==TK_INTEGER and pToken points to a string that 795 ** can be translated into a 32-bit integer, then the token is not 796 ** stored in u.zToken. Instead, the integer values is written 797 ** into u.iValue and the EP_IntValue flag is set. No extra storage 798 ** is allocated to hold the integer text and the dequote flag is ignored. 799 */ 800 Expr *sqlite3ExprAlloc( 801 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 802 int op, /* Expression opcode */ 803 const Token *pToken, /* Token argument. Might be NULL */ 804 int dequote /* True to dequote */ 805 ){ 806 Expr *pNew; 807 int nExtra = 0; 808 int iValue = 0; 809 810 assert( db!=0 ); 811 if( pToken ){ 812 if( op!=TK_INTEGER || pToken->z==0 813 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 814 nExtra = pToken->n+1; 815 assert( iValue>=0 ); 816 } 817 } 818 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 819 if( pNew ){ 820 memset(pNew, 0, sizeof(Expr)); 821 pNew->op = (u8)op; 822 pNew->iAgg = -1; 823 if( pToken ){ 824 if( nExtra==0 ){ 825 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 826 pNew->u.iValue = iValue; 827 }else{ 828 pNew->u.zToken = (char*)&pNew[1]; 829 assert( pToken->z!=0 || pToken->n==0 ); 830 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 831 pNew->u.zToken[pToken->n] = 0; 832 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 833 sqlite3DequoteExpr(pNew); 834 } 835 } 836 } 837 #if SQLITE_MAX_EXPR_DEPTH>0 838 pNew->nHeight = 1; 839 #endif 840 } 841 return pNew; 842 } 843 844 /* 845 ** Allocate a new expression node from a zero-terminated token that has 846 ** already been dequoted. 847 */ 848 Expr *sqlite3Expr( 849 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 850 int op, /* Expression opcode */ 851 const char *zToken /* Token argument. Might be NULL */ 852 ){ 853 Token x; 854 x.z = zToken; 855 x.n = sqlite3Strlen30(zToken); 856 return sqlite3ExprAlloc(db, op, &x, 0); 857 } 858 859 /* 860 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 861 ** 862 ** If pRoot==NULL that means that a memory allocation error has occurred. 863 ** In that case, delete the subtrees pLeft and pRight. 864 */ 865 void sqlite3ExprAttachSubtrees( 866 sqlite3 *db, 867 Expr *pRoot, 868 Expr *pLeft, 869 Expr *pRight 870 ){ 871 if( pRoot==0 ){ 872 assert( db->mallocFailed ); 873 sqlite3ExprDelete(db, pLeft); 874 sqlite3ExprDelete(db, pRight); 875 }else{ 876 if( pRight ){ 877 pRoot->pRight = pRight; 878 pRoot->flags |= EP_Propagate & pRight->flags; 879 } 880 if( pLeft ){ 881 pRoot->pLeft = pLeft; 882 pRoot->flags |= EP_Propagate & pLeft->flags; 883 } 884 exprSetHeight(pRoot); 885 } 886 } 887 888 /* 889 ** Allocate an Expr node which joins as many as two subtrees. 890 ** 891 ** One or both of the subtrees can be NULL. Return a pointer to the new 892 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 893 ** free the subtrees and return NULL. 894 */ 895 Expr *sqlite3PExpr( 896 Parse *pParse, /* Parsing context */ 897 int op, /* Expression opcode */ 898 Expr *pLeft, /* Left operand */ 899 Expr *pRight /* Right operand */ 900 ){ 901 Expr *p; 902 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 903 if( p ){ 904 memset(p, 0, sizeof(Expr)); 905 p->op = op & 0xff; 906 p->iAgg = -1; 907 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 908 sqlite3ExprCheckHeight(pParse, p->nHeight); 909 }else{ 910 sqlite3ExprDelete(pParse->db, pLeft); 911 sqlite3ExprDelete(pParse->db, pRight); 912 } 913 return p; 914 } 915 916 /* 917 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 918 ** do a memory allocation failure) then delete the pSelect object. 919 */ 920 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 921 if( pExpr ){ 922 pExpr->x.pSelect = pSelect; 923 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 924 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 925 }else{ 926 assert( pParse->db->mallocFailed ); 927 sqlite3SelectDelete(pParse->db, pSelect); 928 } 929 } 930 931 932 /* 933 ** Join two expressions using an AND operator. If either expression is 934 ** NULL, then just return the other expression. 935 ** 936 ** If one side or the other of the AND is known to be false, then instead 937 ** of returning an AND expression, just return a constant expression with 938 ** a value of false. 939 */ 940 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 941 sqlite3 *db = pParse->db; 942 if( pLeft==0 ){ 943 return pRight; 944 }else if( pRight==0 ){ 945 return pLeft; 946 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 947 && !IN_RENAME_OBJECT 948 ){ 949 sqlite3ExprDelete(db, pLeft); 950 sqlite3ExprDelete(db, pRight); 951 return sqlite3Expr(db, TK_INTEGER, "0"); 952 }else{ 953 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 954 } 955 } 956 957 /* 958 ** Construct a new expression node for a function with multiple 959 ** arguments. 960 */ 961 Expr *sqlite3ExprFunction( 962 Parse *pParse, /* Parsing context */ 963 ExprList *pList, /* Argument list */ 964 Token *pToken, /* Name of the function */ 965 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 966 ){ 967 Expr *pNew; 968 sqlite3 *db = pParse->db; 969 assert( pToken ); 970 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 971 if( pNew==0 ){ 972 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 973 return 0; 974 } 975 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 976 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 977 } 978 pNew->x.pList = pList; 979 ExprSetProperty(pNew, EP_HasFunc); 980 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 981 sqlite3ExprSetHeightAndFlags(pParse, pNew); 982 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 983 return pNew; 984 } 985 986 /* 987 ** Check to see if a function is usable according to current access 988 ** rules: 989 ** 990 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 991 ** 992 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 993 ** top-level SQL 994 ** 995 ** If the function is not usable, create an error. 996 */ 997 void sqlite3ExprFunctionUsable( 998 Parse *pParse, /* Parsing and code generating context */ 999 Expr *pExpr, /* The function invocation */ 1000 FuncDef *pDef /* The function being invoked */ 1001 ){ 1002 assert( !IN_RENAME_OBJECT ); 1003 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1004 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1005 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1006 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1007 ){ 1008 /* Functions prohibited in triggers and views if: 1009 ** (1) tagged with SQLITE_DIRECTONLY 1010 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1011 ** is tagged with SQLITE_FUNC_UNSAFE) and 1012 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1013 ** that the schema is possibly tainted). 1014 */ 1015 sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName); 1016 } 1017 } 1018 } 1019 1020 /* 1021 ** Assign a variable number to an expression that encodes a wildcard 1022 ** in the original SQL statement. 1023 ** 1024 ** Wildcards consisting of a single "?" are assigned the next sequential 1025 ** variable number. 1026 ** 1027 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1028 ** sure "nnn" is not too big to avoid a denial of service attack when 1029 ** the SQL statement comes from an external source. 1030 ** 1031 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1032 ** as the previous instance of the same wildcard. Or if this is the first 1033 ** instance of the wildcard, the next sequential variable number is 1034 ** assigned. 1035 */ 1036 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1037 sqlite3 *db = pParse->db; 1038 const char *z; 1039 ynVar x; 1040 1041 if( pExpr==0 ) return; 1042 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1043 z = pExpr->u.zToken; 1044 assert( z!=0 ); 1045 assert( z[0]!=0 ); 1046 assert( n==(u32)sqlite3Strlen30(z) ); 1047 if( z[1]==0 ){ 1048 /* Wildcard of the form "?". Assign the next variable number */ 1049 assert( z[0]=='?' ); 1050 x = (ynVar)(++pParse->nVar); 1051 }else{ 1052 int doAdd = 0; 1053 if( z[0]=='?' ){ 1054 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1055 ** use it as the variable number */ 1056 i64 i; 1057 int bOk; 1058 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1059 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1060 bOk = 1; 1061 }else{ 1062 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1063 } 1064 testcase( i==0 ); 1065 testcase( i==1 ); 1066 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1067 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1068 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1069 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1070 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1071 return; 1072 } 1073 x = (ynVar)i; 1074 if( x>pParse->nVar ){ 1075 pParse->nVar = (int)x; 1076 doAdd = 1; 1077 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1078 doAdd = 1; 1079 } 1080 }else{ 1081 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1082 ** number as the prior appearance of the same name, or if the name 1083 ** has never appeared before, reuse the same variable number 1084 */ 1085 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1086 if( x==0 ){ 1087 x = (ynVar)(++pParse->nVar); 1088 doAdd = 1; 1089 } 1090 } 1091 if( doAdd ){ 1092 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1093 } 1094 } 1095 pExpr->iColumn = x; 1096 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1097 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1098 } 1099 } 1100 1101 /* 1102 ** Recursively delete an expression tree. 1103 */ 1104 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1105 assert( p!=0 ); 1106 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1107 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1108 1109 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1110 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1111 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1112 #ifdef SQLITE_DEBUG 1113 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1114 assert( p->pLeft==0 ); 1115 assert( p->pRight==0 ); 1116 assert( p->x.pSelect==0 ); 1117 } 1118 #endif 1119 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1120 /* The Expr.x union is never used at the same time as Expr.pRight */ 1121 assert( p->x.pList==0 || p->pRight==0 ); 1122 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1123 if( p->pRight ){ 1124 assert( !ExprHasProperty(p, EP_WinFunc) ); 1125 sqlite3ExprDeleteNN(db, p->pRight); 1126 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1127 assert( !ExprHasProperty(p, EP_WinFunc) ); 1128 sqlite3SelectDelete(db, p->x.pSelect); 1129 }else{ 1130 sqlite3ExprListDelete(db, p->x.pList); 1131 #ifndef SQLITE_OMIT_WINDOWFUNC 1132 if( ExprHasProperty(p, EP_WinFunc) ){ 1133 sqlite3WindowDelete(db, p->y.pWin); 1134 } 1135 #endif 1136 } 1137 } 1138 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1139 if( !ExprHasProperty(p, EP_Static) ){ 1140 sqlite3DbFreeNN(db, p); 1141 } 1142 } 1143 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1144 if( p ) sqlite3ExprDeleteNN(db, p); 1145 } 1146 1147 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1148 ** expression. 1149 */ 1150 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1151 if( p ){ 1152 if( IN_RENAME_OBJECT ){ 1153 sqlite3RenameExprUnmap(pParse, p); 1154 } 1155 sqlite3ExprDeleteNN(pParse->db, p); 1156 } 1157 } 1158 1159 /* 1160 ** Return the number of bytes allocated for the expression structure 1161 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1162 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1163 */ 1164 static int exprStructSize(Expr *p){ 1165 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1166 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1167 return EXPR_FULLSIZE; 1168 } 1169 1170 /* 1171 ** The dupedExpr*Size() routines each return the number of bytes required 1172 ** to store a copy of an expression or expression tree. They differ in 1173 ** how much of the tree is measured. 1174 ** 1175 ** dupedExprStructSize() Size of only the Expr structure 1176 ** dupedExprNodeSize() Size of Expr + space for token 1177 ** dupedExprSize() Expr + token + subtree components 1178 ** 1179 *************************************************************************** 1180 ** 1181 ** The dupedExprStructSize() function returns two values OR-ed together: 1182 ** (1) the space required for a copy of the Expr structure only and 1183 ** (2) the EP_xxx flags that indicate what the structure size should be. 1184 ** The return values is always one of: 1185 ** 1186 ** EXPR_FULLSIZE 1187 ** EXPR_REDUCEDSIZE | EP_Reduced 1188 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1189 ** 1190 ** The size of the structure can be found by masking the return value 1191 ** of this routine with 0xfff. The flags can be found by masking the 1192 ** return value with EP_Reduced|EP_TokenOnly. 1193 ** 1194 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1195 ** (unreduced) Expr objects as they or originally constructed by the parser. 1196 ** During expression analysis, extra information is computed and moved into 1197 ** later parts of the Expr object and that extra information might get chopped 1198 ** off if the expression is reduced. Note also that it does not work to 1199 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1200 ** to reduce a pristine expression tree from the parser. The implementation 1201 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1202 ** to enforce this constraint. 1203 */ 1204 static int dupedExprStructSize(Expr *p, int flags){ 1205 int nSize; 1206 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1207 assert( EXPR_FULLSIZE<=0xfff ); 1208 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1209 if( 0==flags || p->op==TK_SELECT_COLUMN 1210 #ifndef SQLITE_OMIT_WINDOWFUNC 1211 || ExprHasProperty(p, EP_WinFunc) 1212 #endif 1213 ){ 1214 nSize = EXPR_FULLSIZE; 1215 }else{ 1216 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1217 assert( !ExprHasProperty(p, EP_FromJoin) ); 1218 assert( !ExprHasProperty(p, EP_MemToken) ); 1219 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1220 if( p->pLeft || p->x.pList ){ 1221 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1222 }else{ 1223 assert( p->pRight==0 ); 1224 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1225 } 1226 } 1227 return nSize; 1228 } 1229 1230 /* 1231 ** This function returns the space in bytes required to store the copy 1232 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1233 ** string is defined.) 1234 */ 1235 static int dupedExprNodeSize(Expr *p, int flags){ 1236 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1237 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1238 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1239 } 1240 return ROUND8(nByte); 1241 } 1242 1243 /* 1244 ** Return the number of bytes required to create a duplicate of the 1245 ** expression passed as the first argument. The second argument is a 1246 ** mask containing EXPRDUP_XXX flags. 1247 ** 1248 ** The value returned includes space to create a copy of the Expr struct 1249 ** itself and the buffer referred to by Expr.u.zToken, if any. 1250 ** 1251 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1252 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1253 ** and Expr.pRight variables (but not for any structures pointed to or 1254 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1255 */ 1256 static int dupedExprSize(Expr *p, int flags){ 1257 int nByte = 0; 1258 if( p ){ 1259 nByte = dupedExprNodeSize(p, flags); 1260 if( flags&EXPRDUP_REDUCE ){ 1261 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1262 } 1263 } 1264 return nByte; 1265 } 1266 1267 /* 1268 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1269 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1270 ** to store the copy of expression p, the copies of p->u.zToken 1271 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1272 ** if any. Before returning, *pzBuffer is set to the first byte past the 1273 ** portion of the buffer copied into by this function. 1274 */ 1275 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1276 Expr *pNew; /* Value to return */ 1277 u8 *zAlloc; /* Memory space from which to build Expr object */ 1278 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1279 1280 assert( db!=0 ); 1281 assert( p ); 1282 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1283 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1284 1285 /* Figure out where to write the new Expr structure. */ 1286 if( pzBuffer ){ 1287 zAlloc = *pzBuffer; 1288 staticFlag = EP_Static; 1289 }else{ 1290 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1291 staticFlag = 0; 1292 } 1293 pNew = (Expr *)zAlloc; 1294 1295 if( pNew ){ 1296 /* Set nNewSize to the size allocated for the structure pointed to 1297 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1298 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1299 ** by the copy of the p->u.zToken string (if any). 1300 */ 1301 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1302 const int nNewSize = nStructSize & 0xfff; 1303 int nToken; 1304 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1305 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1306 }else{ 1307 nToken = 0; 1308 } 1309 if( dupFlags ){ 1310 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1311 memcpy(zAlloc, p, nNewSize); 1312 }else{ 1313 u32 nSize = (u32)exprStructSize(p); 1314 memcpy(zAlloc, p, nSize); 1315 if( nSize<EXPR_FULLSIZE ){ 1316 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1317 } 1318 } 1319 1320 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1321 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1322 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1323 pNew->flags |= staticFlag; 1324 ExprClearVVAProperties(pNew); 1325 if( dupFlags ){ 1326 ExprSetVVAProperty(pNew, EP_Immutable); 1327 } 1328 1329 /* Copy the p->u.zToken string, if any. */ 1330 if( nToken ){ 1331 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1332 memcpy(zToken, p->u.zToken, nToken); 1333 } 1334 1335 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1336 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1337 if( ExprHasProperty(p, EP_xIsSelect) ){ 1338 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1339 }else{ 1340 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1341 } 1342 } 1343 1344 /* Fill in pNew->pLeft and pNew->pRight. */ 1345 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1346 zAlloc += dupedExprNodeSize(p, dupFlags); 1347 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1348 pNew->pLeft = p->pLeft ? 1349 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1350 pNew->pRight = p->pRight ? 1351 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1352 } 1353 #ifndef SQLITE_OMIT_WINDOWFUNC 1354 if( ExprHasProperty(p, EP_WinFunc) ){ 1355 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1356 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1357 } 1358 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1359 if( pzBuffer ){ 1360 *pzBuffer = zAlloc; 1361 } 1362 }else{ 1363 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1364 if( pNew->op==TK_SELECT_COLUMN ){ 1365 pNew->pLeft = p->pLeft; 1366 assert( p->iColumn==0 || p->pRight==0 ); 1367 assert( p->pRight==0 || p->pRight==p->pLeft ); 1368 }else{ 1369 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1370 } 1371 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1372 } 1373 } 1374 } 1375 return pNew; 1376 } 1377 1378 /* 1379 ** Create and return a deep copy of the object passed as the second 1380 ** argument. If an OOM condition is encountered, NULL is returned 1381 ** and the db->mallocFailed flag set. 1382 */ 1383 #ifndef SQLITE_OMIT_CTE 1384 static With *withDup(sqlite3 *db, With *p){ 1385 With *pRet = 0; 1386 if( p ){ 1387 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1388 pRet = sqlite3DbMallocZero(db, nByte); 1389 if( pRet ){ 1390 int i; 1391 pRet->nCte = p->nCte; 1392 for(i=0; i<p->nCte; i++){ 1393 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1394 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1395 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1396 } 1397 } 1398 } 1399 return pRet; 1400 } 1401 #else 1402 # define withDup(x,y) 0 1403 #endif 1404 1405 #ifndef SQLITE_OMIT_WINDOWFUNC 1406 /* 1407 ** The gatherSelectWindows() procedure and its helper routine 1408 ** gatherSelectWindowsCallback() are used to scan all the expressions 1409 ** an a newly duplicated SELECT statement and gather all of the Window 1410 ** objects found there, assembling them onto the linked list at Select->pWin. 1411 */ 1412 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1413 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1414 Select *pSelect = pWalker->u.pSelect; 1415 Window *pWin = pExpr->y.pWin; 1416 assert( pWin ); 1417 assert( IsWindowFunc(pExpr) ); 1418 assert( pWin->ppThis==0 ); 1419 sqlite3WindowLink(pSelect, pWin); 1420 } 1421 return WRC_Continue; 1422 } 1423 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1424 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1425 } 1426 static void gatherSelectWindows(Select *p){ 1427 Walker w; 1428 w.xExprCallback = gatherSelectWindowsCallback; 1429 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1430 w.xSelectCallback2 = 0; 1431 w.pParse = 0; 1432 w.u.pSelect = p; 1433 sqlite3WalkSelect(&w, p); 1434 } 1435 #endif 1436 1437 1438 /* 1439 ** The following group of routines make deep copies of expressions, 1440 ** expression lists, ID lists, and select statements. The copies can 1441 ** be deleted (by being passed to their respective ...Delete() routines) 1442 ** without effecting the originals. 1443 ** 1444 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1445 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1446 ** by subsequent calls to sqlite*ListAppend() routines. 1447 ** 1448 ** Any tables that the SrcList might point to are not duplicated. 1449 ** 1450 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1451 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1452 ** truncated version of the usual Expr structure that will be stored as 1453 ** part of the in-memory representation of the database schema. 1454 */ 1455 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1456 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1457 return p ? exprDup(db, p, flags, 0) : 0; 1458 } 1459 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1460 ExprList *pNew; 1461 struct ExprList_item *pItem, *pOldItem; 1462 int i; 1463 Expr *pPriorSelectCol = 0; 1464 assert( db!=0 ); 1465 if( p==0 ) return 0; 1466 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1467 if( pNew==0 ) return 0; 1468 pNew->nExpr = p->nExpr; 1469 pItem = pNew->a; 1470 pOldItem = p->a; 1471 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1472 Expr *pOldExpr = pOldItem->pExpr; 1473 Expr *pNewExpr; 1474 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1475 if( pOldExpr 1476 && pOldExpr->op==TK_SELECT_COLUMN 1477 && (pNewExpr = pItem->pExpr)!=0 1478 ){ 1479 assert( pNewExpr->iColumn==0 || i>0 ); 1480 if( pNewExpr->iColumn==0 ){ 1481 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1482 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1483 }else{ 1484 assert( i>0 ); 1485 assert( pItem[-1].pExpr!=0 ); 1486 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1487 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1488 pNewExpr->pLeft = pPriorSelectCol; 1489 } 1490 } 1491 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1492 pItem->sortFlags = pOldItem->sortFlags; 1493 pItem->eEName = pOldItem->eEName; 1494 pItem->done = 0; 1495 pItem->bNulls = pOldItem->bNulls; 1496 pItem->bSorterRef = pOldItem->bSorterRef; 1497 pItem->u = pOldItem->u; 1498 } 1499 return pNew; 1500 } 1501 1502 /* 1503 ** If cursors, triggers, views and subqueries are all omitted from 1504 ** the build, then none of the following routines, except for 1505 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1506 ** called with a NULL argument. 1507 */ 1508 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1509 || !defined(SQLITE_OMIT_SUBQUERY) 1510 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1511 SrcList *pNew; 1512 int i; 1513 int nByte; 1514 assert( db!=0 ); 1515 if( p==0 ) return 0; 1516 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1517 pNew = sqlite3DbMallocRawNN(db, nByte ); 1518 if( pNew==0 ) return 0; 1519 pNew->nSrc = pNew->nAlloc = p->nSrc; 1520 for(i=0; i<p->nSrc; i++){ 1521 struct SrcList_item *pNewItem = &pNew->a[i]; 1522 struct SrcList_item *pOldItem = &p->a[i]; 1523 Table *pTab; 1524 pNewItem->pSchema = pOldItem->pSchema; 1525 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1526 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1527 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1528 pNewItem->fg = pOldItem->fg; 1529 pNewItem->iCursor = pOldItem->iCursor; 1530 pNewItem->addrFillSub = pOldItem->addrFillSub; 1531 pNewItem->regReturn = pOldItem->regReturn; 1532 if( pNewItem->fg.isIndexedBy ){ 1533 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1534 } 1535 pNewItem->pIBIndex = pOldItem->pIBIndex; 1536 if( pNewItem->fg.isTabFunc ){ 1537 pNewItem->u1.pFuncArg = 1538 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1539 } 1540 pTab = pNewItem->pTab = pOldItem->pTab; 1541 if( pTab ){ 1542 pTab->nTabRef++; 1543 } 1544 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1545 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1546 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1547 pNewItem->colUsed = pOldItem->colUsed; 1548 } 1549 return pNew; 1550 } 1551 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1552 IdList *pNew; 1553 int i; 1554 assert( db!=0 ); 1555 if( p==0 ) return 0; 1556 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1557 if( pNew==0 ) return 0; 1558 pNew->nId = p->nId; 1559 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1560 if( pNew->a==0 ){ 1561 sqlite3DbFreeNN(db, pNew); 1562 return 0; 1563 } 1564 /* Note that because the size of the allocation for p->a[] is not 1565 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1566 ** on the duplicate created by this function. */ 1567 for(i=0; i<p->nId; i++){ 1568 struct IdList_item *pNewItem = &pNew->a[i]; 1569 struct IdList_item *pOldItem = &p->a[i]; 1570 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1571 pNewItem->idx = pOldItem->idx; 1572 } 1573 return pNew; 1574 } 1575 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1576 Select *pRet = 0; 1577 Select *pNext = 0; 1578 Select **pp = &pRet; 1579 Select *p; 1580 1581 assert( db!=0 ); 1582 for(p=pDup; p; p=p->pPrior){ 1583 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1584 if( pNew==0 ) break; 1585 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1586 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1587 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1588 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1589 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1590 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1591 pNew->op = p->op; 1592 pNew->pNext = pNext; 1593 pNew->pPrior = 0; 1594 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1595 pNew->iLimit = 0; 1596 pNew->iOffset = 0; 1597 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1598 pNew->addrOpenEphm[0] = -1; 1599 pNew->addrOpenEphm[1] = -1; 1600 pNew->nSelectRow = p->nSelectRow; 1601 pNew->pWith = withDup(db, p->pWith); 1602 #ifndef SQLITE_OMIT_WINDOWFUNC 1603 pNew->pWin = 0; 1604 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1605 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1606 #endif 1607 pNew->selId = p->selId; 1608 *pp = pNew; 1609 pp = &pNew->pPrior; 1610 pNext = pNew; 1611 } 1612 1613 return pRet; 1614 } 1615 #else 1616 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1617 assert( p==0 ); 1618 return 0; 1619 } 1620 #endif 1621 1622 1623 /* 1624 ** Add a new element to the end of an expression list. If pList is 1625 ** initially NULL, then create a new expression list. 1626 ** 1627 ** The pList argument must be either NULL or a pointer to an ExprList 1628 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1629 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1630 ** Reason: This routine assumes that the number of slots in pList->a[] 1631 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1632 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1633 ** 1634 ** If a memory allocation error occurs, the entire list is freed and 1635 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1636 ** that the new entry was successfully appended. 1637 */ 1638 ExprList *sqlite3ExprListAppend( 1639 Parse *pParse, /* Parsing context */ 1640 ExprList *pList, /* List to which to append. Might be NULL */ 1641 Expr *pExpr /* Expression to be appended. Might be NULL */ 1642 ){ 1643 struct ExprList_item *pItem; 1644 sqlite3 *db = pParse->db; 1645 assert( db!=0 ); 1646 if( pList==0 ){ 1647 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1648 if( pList==0 ){ 1649 goto no_mem; 1650 } 1651 pList->nExpr = 0; 1652 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1653 ExprList *pNew; 1654 pNew = sqlite3DbRealloc(db, pList, 1655 sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0])); 1656 if( pNew==0 ){ 1657 goto no_mem; 1658 } 1659 pList = pNew; 1660 } 1661 pItem = &pList->a[pList->nExpr++]; 1662 assert( offsetof(struct ExprList_item,zEName)==sizeof(pItem->pExpr) ); 1663 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1664 memset(&pItem->zEName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zEName)); 1665 pItem->pExpr = pExpr; 1666 return pList; 1667 1668 no_mem: 1669 /* Avoid leaking memory if malloc has failed. */ 1670 sqlite3ExprDelete(db, pExpr); 1671 sqlite3ExprListDelete(db, pList); 1672 return 0; 1673 } 1674 1675 /* 1676 ** pColumns and pExpr form a vector assignment which is part of the SET 1677 ** clause of an UPDATE statement. Like this: 1678 ** 1679 ** (a,b,c) = (expr1,expr2,expr3) 1680 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1681 ** 1682 ** For each term of the vector assignment, append new entries to the 1683 ** expression list pList. In the case of a subquery on the RHS, append 1684 ** TK_SELECT_COLUMN expressions. 1685 */ 1686 ExprList *sqlite3ExprListAppendVector( 1687 Parse *pParse, /* Parsing context */ 1688 ExprList *pList, /* List to which to append. Might be NULL */ 1689 IdList *pColumns, /* List of names of LHS of the assignment */ 1690 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1691 ){ 1692 sqlite3 *db = pParse->db; 1693 int n; 1694 int i; 1695 int iFirst = pList ? pList->nExpr : 0; 1696 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1697 ** exit prior to this routine being invoked */ 1698 if( NEVER(pColumns==0) ) goto vector_append_error; 1699 if( pExpr==0 ) goto vector_append_error; 1700 1701 /* If the RHS is a vector, then we can immediately check to see that 1702 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1703 ** wildcards ("*") in the result set of the SELECT must be expanded before 1704 ** we can do the size check, so defer the size check until code generation. 1705 */ 1706 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1707 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1708 pColumns->nId, n); 1709 goto vector_append_error; 1710 } 1711 1712 for(i=0; i<pColumns->nId; i++){ 1713 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1714 assert( pSubExpr!=0 || db->mallocFailed ); 1715 assert( pSubExpr==0 || pSubExpr->iTable==0 ); 1716 if( pSubExpr==0 ) continue; 1717 pSubExpr->iTable = pColumns->nId; 1718 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1719 if( pList ){ 1720 assert( pList->nExpr==iFirst+i+1 ); 1721 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1722 pColumns->a[i].zName = 0; 1723 } 1724 } 1725 1726 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1727 Expr *pFirst = pList->a[iFirst].pExpr; 1728 assert( pFirst!=0 ); 1729 assert( pFirst->op==TK_SELECT_COLUMN ); 1730 1731 /* Store the SELECT statement in pRight so it will be deleted when 1732 ** sqlite3ExprListDelete() is called */ 1733 pFirst->pRight = pExpr; 1734 pExpr = 0; 1735 1736 /* Remember the size of the LHS in iTable so that we can check that 1737 ** the RHS and LHS sizes match during code generation. */ 1738 pFirst->iTable = pColumns->nId; 1739 } 1740 1741 vector_append_error: 1742 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1743 sqlite3IdListDelete(db, pColumns); 1744 return pList; 1745 } 1746 1747 /* 1748 ** Set the sort order for the last element on the given ExprList. 1749 */ 1750 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1751 struct ExprList_item *pItem; 1752 if( p==0 ) return; 1753 assert( p->nExpr>0 ); 1754 1755 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1756 assert( iSortOrder==SQLITE_SO_UNDEFINED 1757 || iSortOrder==SQLITE_SO_ASC 1758 || iSortOrder==SQLITE_SO_DESC 1759 ); 1760 assert( eNulls==SQLITE_SO_UNDEFINED 1761 || eNulls==SQLITE_SO_ASC 1762 || eNulls==SQLITE_SO_DESC 1763 ); 1764 1765 pItem = &p->a[p->nExpr-1]; 1766 assert( pItem->bNulls==0 ); 1767 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1768 iSortOrder = SQLITE_SO_ASC; 1769 } 1770 pItem->sortFlags = (u8)iSortOrder; 1771 1772 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1773 pItem->bNulls = 1; 1774 if( iSortOrder!=eNulls ){ 1775 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1776 } 1777 } 1778 } 1779 1780 /* 1781 ** Set the ExprList.a[].zEName element of the most recently added item 1782 ** on the expression list. 1783 ** 1784 ** pList might be NULL following an OOM error. But pName should never be 1785 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1786 ** is set. 1787 */ 1788 void sqlite3ExprListSetName( 1789 Parse *pParse, /* Parsing context */ 1790 ExprList *pList, /* List to which to add the span. */ 1791 Token *pName, /* Name to be added */ 1792 int dequote /* True to cause the name to be dequoted */ 1793 ){ 1794 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1795 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1796 if( pList ){ 1797 struct ExprList_item *pItem; 1798 assert( pList->nExpr>0 ); 1799 pItem = &pList->a[pList->nExpr-1]; 1800 assert( pItem->zEName==0 ); 1801 assert( pItem->eEName==ENAME_NAME ); 1802 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1803 if( dequote ){ 1804 /* If dequote==0, then pName->z does not point to part of a DDL 1805 ** statement handled by the parser. And so no token need be added 1806 ** to the token-map. */ 1807 sqlite3Dequote(pItem->zEName); 1808 if( IN_RENAME_OBJECT ){ 1809 sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName); 1810 } 1811 } 1812 } 1813 } 1814 1815 /* 1816 ** Set the ExprList.a[].zSpan element of the most recently added item 1817 ** on the expression list. 1818 ** 1819 ** pList might be NULL following an OOM error. But pSpan should never be 1820 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1821 ** is set. 1822 */ 1823 void sqlite3ExprListSetSpan( 1824 Parse *pParse, /* Parsing context */ 1825 ExprList *pList, /* List to which to add the span. */ 1826 const char *zStart, /* Start of the span */ 1827 const char *zEnd /* End of the span */ 1828 ){ 1829 sqlite3 *db = pParse->db; 1830 assert( pList!=0 || db->mallocFailed!=0 ); 1831 if( pList ){ 1832 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1833 assert( pList->nExpr>0 ); 1834 if( pItem->zEName==0 ){ 1835 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1836 pItem->eEName = ENAME_SPAN; 1837 } 1838 } 1839 } 1840 1841 /* 1842 ** If the expression list pEList contains more than iLimit elements, 1843 ** leave an error message in pParse. 1844 */ 1845 void sqlite3ExprListCheckLength( 1846 Parse *pParse, 1847 ExprList *pEList, 1848 const char *zObject 1849 ){ 1850 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1851 testcase( pEList && pEList->nExpr==mx ); 1852 testcase( pEList && pEList->nExpr==mx+1 ); 1853 if( pEList && pEList->nExpr>mx ){ 1854 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1855 } 1856 } 1857 1858 /* 1859 ** Delete an entire expression list. 1860 */ 1861 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1862 int i = pList->nExpr; 1863 struct ExprList_item *pItem = pList->a; 1864 assert( pList->nExpr>0 ); 1865 do{ 1866 sqlite3ExprDelete(db, pItem->pExpr); 1867 sqlite3DbFree(db, pItem->zEName); 1868 pItem++; 1869 }while( --i>0 ); 1870 sqlite3DbFreeNN(db, pList); 1871 } 1872 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1873 if( pList ) exprListDeleteNN(db, pList); 1874 } 1875 1876 /* 1877 ** Return the bitwise-OR of all Expr.flags fields in the given 1878 ** ExprList. 1879 */ 1880 u32 sqlite3ExprListFlags(const ExprList *pList){ 1881 int i; 1882 u32 m = 0; 1883 assert( pList!=0 ); 1884 for(i=0; i<pList->nExpr; i++){ 1885 Expr *pExpr = pList->a[i].pExpr; 1886 assert( pExpr!=0 ); 1887 m |= pExpr->flags; 1888 } 1889 return m; 1890 } 1891 1892 /* 1893 ** This is a SELECT-node callback for the expression walker that 1894 ** always "fails". By "fail" in this case, we mean set 1895 ** pWalker->eCode to zero and abort. 1896 ** 1897 ** This callback is used by multiple expression walkers. 1898 */ 1899 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1900 UNUSED_PARAMETER(NotUsed); 1901 pWalker->eCode = 0; 1902 return WRC_Abort; 1903 } 1904 1905 /* 1906 ** Check the input string to see if it is "true" or "false" (in any case). 1907 ** 1908 ** If the string is.... Return 1909 ** "true" EP_IsTrue 1910 ** "false" EP_IsFalse 1911 ** anything else 0 1912 */ 1913 u32 sqlite3IsTrueOrFalse(const char *zIn){ 1914 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 1915 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 1916 return 0; 1917 } 1918 1919 1920 /* 1921 ** If the input expression is an ID with the name "true" or "false" 1922 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1923 ** the conversion happened, and zero if the expression is unaltered. 1924 */ 1925 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1926 u32 v; 1927 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1928 if( !ExprHasProperty(pExpr, EP_Quoted) 1929 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 1930 ){ 1931 pExpr->op = TK_TRUEFALSE; 1932 ExprSetProperty(pExpr, v); 1933 return 1; 1934 } 1935 return 0; 1936 } 1937 1938 /* 1939 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1940 ** and 0 if it is FALSE. 1941 */ 1942 int sqlite3ExprTruthValue(const Expr *pExpr){ 1943 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 1944 assert( pExpr->op==TK_TRUEFALSE ); 1945 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1946 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1947 return pExpr->u.zToken[4]==0; 1948 } 1949 1950 /* 1951 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 1952 ** terms that are always true or false. Return the simplified expression. 1953 ** Or return the original expression if no simplification is possible. 1954 ** 1955 ** Examples: 1956 ** 1957 ** (x<10) AND true => (x<10) 1958 ** (x<10) AND false => false 1959 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 1960 ** (x<10) AND (y=22 OR true) => (x<10) 1961 ** (y=22) OR true => true 1962 */ 1963 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 1964 assert( pExpr!=0 ); 1965 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 1966 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 1967 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 1968 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 1969 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 1970 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 1971 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 1972 } 1973 } 1974 return pExpr; 1975 } 1976 1977 1978 /* 1979 ** These routines are Walker callbacks used to check expressions to 1980 ** see if they are "constant" for some definition of constant. The 1981 ** Walker.eCode value determines the type of "constant" we are looking 1982 ** for. 1983 ** 1984 ** These callback routines are used to implement the following: 1985 ** 1986 ** sqlite3ExprIsConstant() pWalker->eCode==1 1987 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1988 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1989 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1990 ** 1991 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1992 ** is found to not be a constant. 1993 ** 1994 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 1995 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 1996 ** when parsing an existing schema out of the sqlite_master table and 4 1997 ** when processing a new CREATE TABLE statement. A bound parameter raises 1998 ** an error for new statements, but is silently converted 1999 ** to NULL for existing schemas. This allows sqlite_master tables that 2000 ** contain a bound parameter because they were generated by older versions 2001 ** of SQLite to be parsed by newer versions of SQLite without raising a 2002 ** malformed schema error. 2003 */ 2004 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2005 2006 /* If pWalker->eCode is 2 then any term of the expression that comes from 2007 ** the ON or USING clauses of a left join disqualifies the expression 2008 ** from being considered constant. */ 2009 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2010 pWalker->eCode = 0; 2011 return WRC_Abort; 2012 } 2013 2014 switch( pExpr->op ){ 2015 /* Consider functions to be constant if all their arguments are constant 2016 ** and either pWalker->eCode==4 or 5 or the function has the 2017 ** SQLITE_FUNC_CONST flag. */ 2018 case TK_FUNCTION: 2019 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2020 && !ExprHasProperty(pExpr, EP_WinFunc) 2021 ){ 2022 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2023 return WRC_Continue; 2024 }else{ 2025 pWalker->eCode = 0; 2026 return WRC_Abort; 2027 } 2028 case TK_ID: 2029 /* Convert "true" or "false" in a DEFAULT clause into the 2030 ** appropriate TK_TRUEFALSE operator */ 2031 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2032 return WRC_Prune; 2033 } 2034 /* Fall thru */ 2035 case TK_COLUMN: 2036 case TK_AGG_FUNCTION: 2037 case TK_AGG_COLUMN: 2038 testcase( pExpr->op==TK_ID ); 2039 testcase( pExpr->op==TK_COLUMN ); 2040 testcase( pExpr->op==TK_AGG_FUNCTION ); 2041 testcase( pExpr->op==TK_AGG_COLUMN ); 2042 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2043 return WRC_Continue; 2044 } 2045 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2046 return WRC_Continue; 2047 } 2048 /* Fall through */ 2049 case TK_IF_NULL_ROW: 2050 case TK_REGISTER: 2051 case TK_DOT: 2052 testcase( pExpr->op==TK_REGISTER ); 2053 testcase( pExpr->op==TK_IF_NULL_ROW ); 2054 testcase( pExpr->op==TK_DOT ); 2055 pWalker->eCode = 0; 2056 return WRC_Abort; 2057 case TK_VARIABLE: 2058 if( pWalker->eCode==5 ){ 2059 /* Silently convert bound parameters that appear inside of CREATE 2060 ** statements into a NULL when parsing the CREATE statement text out 2061 ** of the sqlite_master table */ 2062 pExpr->op = TK_NULL; 2063 }else if( pWalker->eCode==4 ){ 2064 /* A bound parameter in a CREATE statement that originates from 2065 ** sqlite3_prepare() causes an error */ 2066 pWalker->eCode = 0; 2067 return WRC_Abort; 2068 } 2069 /* Fall through */ 2070 default: 2071 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2072 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2073 return WRC_Continue; 2074 } 2075 } 2076 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2077 Walker w; 2078 w.eCode = initFlag; 2079 w.xExprCallback = exprNodeIsConstant; 2080 w.xSelectCallback = sqlite3SelectWalkFail; 2081 #ifdef SQLITE_DEBUG 2082 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2083 #endif 2084 w.u.iCur = iCur; 2085 sqlite3WalkExpr(&w, p); 2086 return w.eCode; 2087 } 2088 2089 /* 2090 ** Walk an expression tree. Return non-zero if the expression is constant 2091 ** and 0 if it involves variables or function calls. 2092 ** 2093 ** For the purposes of this function, a double-quoted string (ex: "abc") 2094 ** is considered a variable but a single-quoted string (ex: 'abc') is 2095 ** a constant. 2096 */ 2097 int sqlite3ExprIsConstant(Expr *p){ 2098 return exprIsConst(p, 1, 0); 2099 } 2100 2101 /* 2102 ** Walk an expression tree. Return non-zero if 2103 ** 2104 ** (1) the expression is constant, and 2105 ** (2) the expression does originate in the ON or USING clause 2106 ** of a LEFT JOIN, and 2107 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2108 ** operands created by the constant propagation optimization. 2109 ** 2110 ** When this routine returns true, it indicates that the expression 2111 ** can be added to the pParse->pConstExpr list and evaluated once when 2112 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2113 */ 2114 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2115 return exprIsConst(p, 2, 0); 2116 } 2117 2118 /* 2119 ** Walk an expression tree. Return non-zero if the expression is constant 2120 ** for any single row of the table with cursor iCur. In other words, the 2121 ** expression must not refer to any non-deterministic function nor any 2122 ** table other than iCur. 2123 */ 2124 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2125 return exprIsConst(p, 3, iCur); 2126 } 2127 2128 2129 /* 2130 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2131 */ 2132 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2133 ExprList *pGroupBy = pWalker->u.pGroupBy; 2134 int i; 2135 2136 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2137 ** it constant. */ 2138 for(i=0; i<pGroupBy->nExpr; i++){ 2139 Expr *p = pGroupBy->a[i].pExpr; 2140 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2141 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2142 if( sqlite3IsBinary(pColl) ){ 2143 return WRC_Prune; 2144 } 2145 } 2146 } 2147 2148 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2149 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2150 pWalker->eCode = 0; 2151 return WRC_Abort; 2152 } 2153 2154 return exprNodeIsConstant(pWalker, pExpr); 2155 } 2156 2157 /* 2158 ** Walk the expression tree passed as the first argument. Return non-zero 2159 ** if the expression consists entirely of constants or copies of terms 2160 ** in pGroupBy that sort with the BINARY collation sequence. 2161 ** 2162 ** This routine is used to determine if a term of the HAVING clause can 2163 ** be promoted into the WHERE clause. In order for such a promotion to work, 2164 ** the value of the HAVING clause term must be the same for all members of 2165 ** a "group". The requirement that the GROUP BY term must be BINARY 2166 ** assumes that no other collating sequence will have a finer-grained 2167 ** grouping than binary. In other words (A=B COLLATE binary) implies 2168 ** A=B in every other collating sequence. The requirement that the 2169 ** GROUP BY be BINARY is stricter than necessary. It would also work 2170 ** to promote HAVING clauses that use the same alternative collating 2171 ** sequence as the GROUP BY term, but that is much harder to check, 2172 ** alternative collating sequences are uncommon, and this is only an 2173 ** optimization, so we take the easy way out and simply require the 2174 ** GROUP BY to use the BINARY collating sequence. 2175 */ 2176 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2177 Walker w; 2178 w.eCode = 1; 2179 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2180 w.xSelectCallback = 0; 2181 w.u.pGroupBy = pGroupBy; 2182 w.pParse = pParse; 2183 sqlite3WalkExpr(&w, p); 2184 return w.eCode; 2185 } 2186 2187 /* 2188 ** Walk an expression tree for the DEFAULT field of a column definition 2189 ** in a CREATE TABLE statement. Return non-zero if the expression is 2190 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2191 ** the expression is constant or a function call with constant arguments. 2192 ** Return and 0 if there are any variables. 2193 ** 2194 ** isInit is true when parsing from sqlite_master. isInit is false when 2195 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2196 ** (such as ? or $abc) in the expression are converted into NULL. When 2197 ** isInit is false, parameters raise an error. Parameters should not be 2198 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2199 ** allowed it, so we need to support it when reading sqlite_master for 2200 ** backwards compatibility. 2201 ** 2202 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2203 ** 2204 ** For the purposes of this function, a double-quoted string (ex: "abc") 2205 ** is considered a variable but a single-quoted string (ex: 'abc') is 2206 ** a constant. 2207 */ 2208 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2209 assert( isInit==0 || isInit==1 ); 2210 return exprIsConst(p, 4+isInit, 0); 2211 } 2212 2213 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2214 /* 2215 ** Walk an expression tree. Return 1 if the expression contains a 2216 ** subquery of some kind. Return 0 if there are no subqueries. 2217 */ 2218 int sqlite3ExprContainsSubquery(Expr *p){ 2219 Walker w; 2220 w.eCode = 1; 2221 w.xExprCallback = sqlite3ExprWalkNoop; 2222 w.xSelectCallback = sqlite3SelectWalkFail; 2223 #ifdef SQLITE_DEBUG 2224 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2225 #endif 2226 sqlite3WalkExpr(&w, p); 2227 return w.eCode==0; 2228 } 2229 #endif 2230 2231 /* 2232 ** If the expression p codes a constant integer that is small enough 2233 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2234 ** in *pValue. If the expression is not an integer or if it is too big 2235 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2236 */ 2237 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2238 int rc = 0; 2239 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2240 2241 /* If an expression is an integer literal that fits in a signed 32-bit 2242 ** integer, then the EP_IntValue flag will have already been set */ 2243 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2244 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2245 2246 if( p->flags & EP_IntValue ){ 2247 *pValue = p->u.iValue; 2248 return 1; 2249 } 2250 switch( p->op ){ 2251 case TK_UPLUS: { 2252 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2253 break; 2254 } 2255 case TK_UMINUS: { 2256 int v; 2257 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2258 assert( v!=(-2147483647-1) ); 2259 *pValue = -v; 2260 rc = 1; 2261 } 2262 break; 2263 } 2264 default: break; 2265 } 2266 return rc; 2267 } 2268 2269 /* 2270 ** Return FALSE if there is no chance that the expression can be NULL. 2271 ** 2272 ** If the expression might be NULL or if the expression is too complex 2273 ** to tell return TRUE. 2274 ** 2275 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2276 ** when we know that a value cannot be NULL. Hence, a false positive 2277 ** (returning TRUE when in fact the expression can never be NULL) might 2278 ** be a small performance hit but is otherwise harmless. On the other 2279 ** hand, a false negative (returning FALSE when the result could be NULL) 2280 ** will likely result in an incorrect answer. So when in doubt, return 2281 ** TRUE. 2282 */ 2283 int sqlite3ExprCanBeNull(const Expr *p){ 2284 u8 op; 2285 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2286 p = p->pLeft; 2287 } 2288 op = p->op; 2289 if( op==TK_REGISTER ) op = p->op2; 2290 switch( op ){ 2291 case TK_INTEGER: 2292 case TK_STRING: 2293 case TK_FLOAT: 2294 case TK_BLOB: 2295 return 0; 2296 case TK_COLUMN: 2297 return ExprHasProperty(p, EP_CanBeNull) || 2298 p->y.pTab==0 || /* Reference to column of index on expression */ 2299 (p->iColumn>=0 2300 && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ 2301 && p->y.pTab->aCol[p->iColumn].notNull==0); 2302 default: 2303 return 1; 2304 } 2305 } 2306 2307 /* 2308 ** Return TRUE if the given expression is a constant which would be 2309 ** unchanged by OP_Affinity with the affinity given in the second 2310 ** argument. 2311 ** 2312 ** This routine is used to determine if the OP_Affinity operation 2313 ** can be omitted. When in doubt return FALSE. A false negative 2314 ** is harmless. A false positive, however, can result in the wrong 2315 ** answer. 2316 */ 2317 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2318 u8 op; 2319 int unaryMinus = 0; 2320 if( aff==SQLITE_AFF_BLOB ) return 1; 2321 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2322 if( p->op==TK_UMINUS ) unaryMinus = 1; 2323 p = p->pLeft; 2324 } 2325 op = p->op; 2326 if( op==TK_REGISTER ) op = p->op2; 2327 switch( op ){ 2328 case TK_INTEGER: { 2329 return aff>=SQLITE_AFF_NUMERIC; 2330 } 2331 case TK_FLOAT: { 2332 return aff>=SQLITE_AFF_NUMERIC; 2333 } 2334 case TK_STRING: { 2335 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2336 } 2337 case TK_BLOB: { 2338 return !unaryMinus; 2339 } 2340 case TK_COLUMN: { 2341 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2342 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2343 } 2344 default: { 2345 return 0; 2346 } 2347 } 2348 } 2349 2350 /* 2351 ** Return TRUE if the given string is a row-id column name. 2352 */ 2353 int sqlite3IsRowid(const char *z){ 2354 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2355 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2356 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2357 return 0; 2358 } 2359 2360 /* 2361 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2362 ** that can be simplified to a direct table access, then return 2363 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2364 ** or if the SELECT statement needs to be manifested into a transient 2365 ** table, then return NULL. 2366 */ 2367 #ifndef SQLITE_OMIT_SUBQUERY 2368 static Select *isCandidateForInOpt(Expr *pX){ 2369 Select *p; 2370 SrcList *pSrc; 2371 ExprList *pEList; 2372 Table *pTab; 2373 int i; 2374 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2375 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2376 p = pX->x.pSelect; 2377 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2378 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2379 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2380 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2381 return 0; /* No DISTINCT keyword and no aggregate functions */ 2382 } 2383 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2384 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2385 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2386 pSrc = p->pSrc; 2387 assert( pSrc!=0 ); 2388 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2389 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2390 pTab = pSrc->a[0].pTab; 2391 assert( pTab!=0 ); 2392 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2393 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2394 pEList = p->pEList; 2395 assert( pEList!=0 ); 2396 /* All SELECT results must be columns. */ 2397 for(i=0; i<pEList->nExpr; i++){ 2398 Expr *pRes = pEList->a[i].pExpr; 2399 if( pRes->op!=TK_COLUMN ) return 0; 2400 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2401 } 2402 return p; 2403 } 2404 #endif /* SQLITE_OMIT_SUBQUERY */ 2405 2406 #ifndef SQLITE_OMIT_SUBQUERY 2407 /* 2408 ** Generate code that checks the left-most column of index table iCur to see if 2409 ** it contains any NULL entries. Cause the register at regHasNull to be set 2410 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2411 ** to be set to NULL if iCur contains one or more NULL values. 2412 */ 2413 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2414 int addr1; 2415 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2416 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2417 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2418 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2419 VdbeComment((v, "first_entry_in(%d)", iCur)); 2420 sqlite3VdbeJumpHere(v, addr1); 2421 } 2422 #endif 2423 2424 2425 #ifndef SQLITE_OMIT_SUBQUERY 2426 /* 2427 ** The argument is an IN operator with a list (not a subquery) on the 2428 ** right-hand side. Return TRUE if that list is constant. 2429 */ 2430 static int sqlite3InRhsIsConstant(Expr *pIn){ 2431 Expr *pLHS; 2432 int res; 2433 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2434 pLHS = pIn->pLeft; 2435 pIn->pLeft = 0; 2436 res = sqlite3ExprIsConstant(pIn); 2437 pIn->pLeft = pLHS; 2438 return res; 2439 } 2440 #endif 2441 2442 /* 2443 ** This function is used by the implementation of the IN (...) operator. 2444 ** The pX parameter is the expression on the RHS of the IN operator, which 2445 ** might be either a list of expressions or a subquery. 2446 ** 2447 ** The job of this routine is to find or create a b-tree object that can 2448 ** be used either to test for membership in the RHS set or to iterate through 2449 ** all members of the RHS set, skipping duplicates. 2450 ** 2451 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2452 ** and pX->iTable is set to the index of that cursor. 2453 ** 2454 ** The returned value of this function indicates the b-tree type, as follows: 2455 ** 2456 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2457 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2458 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2459 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2460 ** populated epheremal table. 2461 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2462 ** implemented as a sequence of comparisons. 2463 ** 2464 ** An existing b-tree might be used if the RHS expression pX is a simple 2465 ** subquery such as: 2466 ** 2467 ** SELECT <column1>, <column2>... FROM <table> 2468 ** 2469 ** If the RHS of the IN operator is a list or a more complex subquery, then 2470 ** an ephemeral table might need to be generated from the RHS and then 2471 ** pX->iTable made to point to the ephemeral table instead of an 2472 ** existing table. 2473 ** 2474 ** The inFlags parameter must contain, at a minimum, one of the bits 2475 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2476 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2477 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2478 ** be used to loop over all values of the RHS of the IN operator. 2479 ** 2480 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2481 ** through the set members) then the b-tree must not contain duplicates. 2482 ** An epheremal table will be created unless the selected columns are guaranteed 2483 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2484 ** a UNIQUE constraint or index. 2485 ** 2486 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2487 ** for fast set membership tests) then an epheremal table must 2488 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2489 ** index can be found with the specified <columns> as its left-most. 2490 ** 2491 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2492 ** if the RHS of the IN operator is a list (not a subquery) then this 2493 ** routine might decide that creating an ephemeral b-tree for membership 2494 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2495 ** calling routine should implement the IN operator using a sequence 2496 ** of Eq or Ne comparison operations. 2497 ** 2498 ** When the b-tree is being used for membership tests, the calling function 2499 ** might need to know whether or not the RHS side of the IN operator 2500 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2501 ** if there is any chance that the (...) might contain a NULL value at 2502 ** runtime, then a register is allocated and the register number written 2503 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2504 ** NULL value, then *prRhsHasNull is left unchanged. 2505 ** 2506 ** If a register is allocated and its location stored in *prRhsHasNull, then 2507 ** the value in that register will be NULL if the b-tree contains one or more 2508 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2509 ** NULL values. 2510 ** 2511 ** If the aiMap parameter is not NULL, it must point to an array containing 2512 ** one element for each column returned by the SELECT statement on the RHS 2513 ** of the IN(...) operator. The i'th entry of the array is populated with the 2514 ** offset of the index column that matches the i'th column returned by the 2515 ** SELECT. For example, if the expression and selected index are: 2516 ** 2517 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2518 ** CREATE INDEX i1 ON t1(b, c, a); 2519 ** 2520 ** then aiMap[] is populated with {2, 0, 1}. 2521 */ 2522 #ifndef SQLITE_OMIT_SUBQUERY 2523 int sqlite3FindInIndex( 2524 Parse *pParse, /* Parsing context */ 2525 Expr *pX, /* The IN expression */ 2526 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2527 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2528 int *aiMap, /* Mapping from Index fields to RHS fields */ 2529 int *piTab /* OUT: index to use */ 2530 ){ 2531 Select *p; /* SELECT to the right of IN operator */ 2532 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2533 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2534 int mustBeUnique; /* True if RHS must be unique */ 2535 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2536 2537 assert( pX->op==TK_IN ); 2538 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2539 2540 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2541 ** whether or not the SELECT result contains NULL values, check whether 2542 ** or not NULL is actually possible (it may not be, for example, due 2543 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2544 ** set prRhsHasNull to 0 before continuing. */ 2545 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2546 int i; 2547 ExprList *pEList = pX->x.pSelect->pEList; 2548 for(i=0; i<pEList->nExpr; i++){ 2549 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2550 } 2551 if( i==pEList->nExpr ){ 2552 prRhsHasNull = 0; 2553 } 2554 } 2555 2556 /* Check to see if an existing table or index can be used to 2557 ** satisfy the query. This is preferable to generating a new 2558 ** ephemeral table. */ 2559 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2560 sqlite3 *db = pParse->db; /* Database connection */ 2561 Table *pTab; /* Table <table>. */ 2562 int iDb; /* Database idx for pTab */ 2563 ExprList *pEList = p->pEList; 2564 int nExpr = pEList->nExpr; 2565 2566 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2567 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2568 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2569 pTab = p->pSrc->a[0].pTab; 2570 2571 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2572 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2573 assert( iDb>=0 && iDb<SQLITE_MAX_ATTACHED ); 2574 sqlite3CodeVerifySchema(pParse, iDb); 2575 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2576 2577 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2578 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2579 /* The "x IN (SELECT rowid FROM table)" case */ 2580 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2581 VdbeCoverage(v); 2582 2583 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2584 eType = IN_INDEX_ROWID; 2585 ExplainQueryPlan((pParse, 0, 2586 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2587 sqlite3VdbeJumpHere(v, iAddr); 2588 }else{ 2589 Index *pIdx; /* Iterator variable */ 2590 int affinity_ok = 1; 2591 int i; 2592 2593 /* Check that the affinity that will be used to perform each 2594 ** comparison is the same as the affinity of each column in table 2595 ** on the RHS of the IN operator. If it not, it is not possible to 2596 ** use any index of the RHS table. */ 2597 for(i=0; i<nExpr && affinity_ok; i++){ 2598 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2599 int iCol = pEList->a[i].pExpr->iColumn; 2600 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2601 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2602 testcase( cmpaff==SQLITE_AFF_BLOB ); 2603 testcase( cmpaff==SQLITE_AFF_TEXT ); 2604 switch( cmpaff ){ 2605 case SQLITE_AFF_BLOB: 2606 break; 2607 case SQLITE_AFF_TEXT: 2608 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2609 ** other has no affinity and the other side is TEXT. Hence, 2610 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2611 ** and for the term on the LHS of the IN to have no affinity. */ 2612 assert( idxaff==SQLITE_AFF_TEXT ); 2613 break; 2614 default: 2615 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2616 } 2617 } 2618 2619 if( affinity_ok ){ 2620 /* Search for an existing index that will work for this IN operator */ 2621 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2622 Bitmask colUsed; /* Columns of the index used */ 2623 Bitmask mCol; /* Mask for the current column */ 2624 if( pIdx->nColumn<nExpr ) continue; 2625 if( pIdx->pPartIdxWhere!=0 ) continue; 2626 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2627 ** BITMASK(nExpr) without overflowing */ 2628 testcase( pIdx->nColumn==BMS-2 ); 2629 testcase( pIdx->nColumn==BMS-1 ); 2630 if( pIdx->nColumn>=BMS-1 ) continue; 2631 if( mustBeUnique ){ 2632 if( pIdx->nKeyCol>nExpr 2633 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2634 ){ 2635 continue; /* This index is not unique over the IN RHS columns */ 2636 } 2637 } 2638 2639 colUsed = 0; /* Columns of index used so far */ 2640 for(i=0; i<nExpr; i++){ 2641 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2642 Expr *pRhs = pEList->a[i].pExpr; 2643 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2644 int j; 2645 2646 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2647 for(j=0; j<nExpr; j++){ 2648 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2649 assert( pIdx->azColl[j] ); 2650 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2651 continue; 2652 } 2653 break; 2654 } 2655 if( j==nExpr ) break; 2656 mCol = MASKBIT(j); 2657 if( mCol & colUsed ) break; /* Each column used only once */ 2658 colUsed |= mCol; 2659 if( aiMap ) aiMap[i] = j; 2660 } 2661 2662 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2663 if( colUsed==(MASKBIT(nExpr)-1) ){ 2664 /* If we reach this point, that means the index pIdx is usable */ 2665 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2666 ExplainQueryPlan((pParse, 0, 2667 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2668 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2669 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2670 VdbeComment((v, "%s", pIdx->zName)); 2671 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2672 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2673 2674 if( prRhsHasNull ){ 2675 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2676 i64 mask = (1<<nExpr)-1; 2677 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2678 iTab, 0, 0, (u8*)&mask, P4_INT64); 2679 #endif 2680 *prRhsHasNull = ++pParse->nMem; 2681 if( nExpr==1 ){ 2682 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2683 } 2684 } 2685 sqlite3VdbeJumpHere(v, iAddr); 2686 } 2687 } /* End loop over indexes */ 2688 } /* End if( affinity_ok ) */ 2689 } /* End if not an rowid index */ 2690 } /* End attempt to optimize using an index */ 2691 2692 /* If no preexisting index is available for the IN clause 2693 ** and IN_INDEX_NOOP is an allowed reply 2694 ** and the RHS of the IN operator is a list, not a subquery 2695 ** and the RHS is not constant or has two or fewer terms, 2696 ** then it is not worth creating an ephemeral table to evaluate 2697 ** the IN operator so return IN_INDEX_NOOP. 2698 */ 2699 if( eType==0 2700 && (inFlags & IN_INDEX_NOOP_OK) 2701 && !ExprHasProperty(pX, EP_xIsSelect) 2702 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2703 ){ 2704 eType = IN_INDEX_NOOP; 2705 } 2706 2707 if( eType==0 ){ 2708 /* Could not find an existing table or index to use as the RHS b-tree. 2709 ** We will have to generate an ephemeral table to do the job. 2710 */ 2711 u32 savedNQueryLoop = pParse->nQueryLoop; 2712 int rMayHaveNull = 0; 2713 eType = IN_INDEX_EPH; 2714 if( inFlags & IN_INDEX_LOOP ){ 2715 pParse->nQueryLoop = 0; 2716 }else if( prRhsHasNull ){ 2717 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2718 } 2719 assert( pX->op==TK_IN ); 2720 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2721 if( rMayHaveNull ){ 2722 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2723 } 2724 pParse->nQueryLoop = savedNQueryLoop; 2725 } 2726 2727 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2728 int i, n; 2729 n = sqlite3ExprVectorSize(pX->pLeft); 2730 for(i=0; i<n; i++) aiMap[i] = i; 2731 } 2732 *piTab = iTab; 2733 return eType; 2734 } 2735 #endif 2736 2737 #ifndef SQLITE_OMIT_SUBQUERY 2738 /* 2739 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2740 ** function allocates and returns a nul-terminated string containing 2741 ** the affinities to be used for each column of the comparison. 2742 ** 2743 ** It is the responsibility of the caller to ensure that the returned 2744 ** string is eventually freed using sqlite3DbFree(). 2745 */ 2746 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2747 Expr *pLeft = pExpr->pLeft; 2748 int nVal = sqlite3ExprVectorSize(pLeft); 2749 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2750 char *zRet; 2751 2752 assert( pExpr->op==TK_IN ); 2753 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2754 if( zRet ){ 2755 int i; 2756 for(i=0; i<nVal; i++){ 2757 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2758 char a = sqlite3ExprAffinity(pA); 2759 if( pSelect ){ 2760 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2761 }else{ 2762 zRet[i] = a; 2763 } 2764 } 2765 zRet[nVal] = '\0'; 2766 } 2767 return zRet; 2768 } 2769 #endif 2770 2771 #ifndef SQLITE_OMIT_SUBQUERY 2772 /* 2773 ** Load the Parse object passed as the first argument with an error 2774 ** message of the form: 2775 ** 2776 ** "sub-select returns N columns - expected M" 2777 */ 2778 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2779 if( pParse->nErr==0 ){ 2780 const char *zFmt = "sub-select returns %d columns - expected %d"; 2781 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2782 } 2783 } 2784 #endif 2785 2786 /* 2787 ** Expression pExpr is a vector that has been used in a context where 2788 ** it is not permitted. If pExpr is a sub-select vector, this routine 2789 ** loads the Parse object with a message of the form: 2790 ** 2791 ** "sub-select returns N columns - expected 1" 2792 ** 2793 ** Or, if it is a regular scalar vector: 2794 ** 2795 ** "row value misused" 2796 */ 2797 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2798 #ifndef SQLITE_OMIT_SUBQUERY 2799 if( pExpr->flags & EP_xIsSelect ){ 2800 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2801 }else 2802 #endif 2803 { 2804 sqlite3ErrorMsg(pParse, "row value misused"); 2805 } 2806 } 2807 2808 #ifndef SQLITE_OMIT_SUBQUERY 2809 /* 2810 ** Generate code that will construct an ephemeral table containing all terms 2811 ** in the RHS of an IN operator. The IN operator can be in either of two 2812 ** forms: 2813 ** 2814 ** x IN (4,5,11) -- IN operator with list on right-hand side 2815 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2816 ** 2817 ** The pExpr parameter is the IN operator. The cursor number for the 2818 ** constructed ephermeral table is returned. The first time the ephemeral 2819 ** table is computed, the cursor number is also stored in pExpr->iTable, 2820 ** however the cursor number returned might not be the same, as it might 2821 ** have been duplicated using OP_OpenDup. 2822 ** 2823 ** If the LHS expression ("x" in the examples) is a column value, or 2824 ** the SELECT statement returns a column value, then the affinity of that 2825 ** column is used to build the index keys. If both 'x' and the 2826 ** SELECT... statement are columns, then numeric affinity is used 2827 ** if either column has NUMERIC or INTEGER affinity. If neither 2828 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2829 ** is used. 2830 */ 2831 void sqlite3CodeRhsOfIN( 2832 Parse *pParse, /* Parsing context */ 2833 Expr *pExpr, /* The IN operator */ 2834 int iTab /* Use this cursor number */ 2835 ){ 2836 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2837 int addr; /* Address of OP_OpenEphemeral instruction */ 2838 Expr *pLeft; /* the LHS of the IN operator */ 2839 KeyInfo *pKeyInfo = 0; /* Key information */ 2840 int nVal; /* Size of vector pLeft */ 2841 Vdbe *v; /* The prepared statement under construction */ 2842 2843 v = pParse->pVdbe; 2844 assert( v!=0 ); 2845 2846 /* The evaluation of the IN must be repeated every time it 2847 ** is encountered if any of the following is true: 2848 ** 2849 ** * The right-hand side is a correlated subquery 2850 ** * The right-hand side is an expression list containing variables 2851 ** * We are inside a trigger 2852 ** 2853 ** If all of the above are false, then we can compute the RHS just once 2854 ** and reuse it many names. 2855 */ 2856 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2857 /* Reuse of the RHS is allowed */ 2858 /* If this routine has already been coded, but the previous code 2859 ** might not have been invoked yet, so invoke it now as a subroutine. 2860 */ 2861 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2862 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2863 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2864 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2865 pExpr->x.pSelect->selId)); 2866 } 2867 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2868 pExpr->y.sub.iAddr); 2869 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2870 sqlite3VdbeJumpHere(v, addrOnce); 2871 return; 2872 } 2873 2874 /* Begin coding the subroutine */ 2875 ExprSetProperty(pExpr, EP_Subrtn); 2876 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 2877 pExpr->y.sub.regReturn = ++pParse->nMem; 2878 pExpr->y.sub.iAddr = 2879 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2880 VdbeComment((v, "return address")); 2881 2882 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2883 } 2884 2885 /* Check to see if this is a vector IN operator */ 2886 pLeft = pExpr->pLeft; 2887 nVal = sqlite3ExprVectorSize(pLeft); 2888 2889 /* Construct the ephemeral table that will contain the content of 2890 ** RHS of the IN operator. 2891 */ 2892 pExpr->iTable = iTab; 2893 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2894 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2895 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2896 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2897 }else{ 2898 VdbeComment((v, "RHS of IN operator")); 2899 } 2900 #endif 2901 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2902 2903 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2904 /* Case 1: expr IN (SELECT ...) 2905 ** 2906 ** Generate code to write the results of the select into the temporary 2907 ** table allocated and opened above. 2908 */ 2909 Select *pSelect = pExpr->x.pSelect; 2910 ExprList *pEList = pSelect->pEList; 2911 2912 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2913 addrOnce?"":"CORRELATED ", pSelect->selId 2914 )); 2915 /* If the LHS and RHS of the IN operator do not match, that 2916 ** error will have been caught long before we reach this point. */ 2917 if( ALWAYS(pEList->nExpr==nVal) ){ 2918 SelectDest dest; 2919 int i; 2920 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2921 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2922 pSelect->iLimit = 0; 2923 testcase( pSelect->selFlags & SF_Distinct ); 2924 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2925 if( sqlite3Select(pParse, pSelect, &dest) ){ 2926 sqlite3DbFree(pParse->db, dest.zAffSdst); 2927 sqlite3KeyInfoUnref(pKeyInfo); 2928 return; 2929 } 2930 sqlite3DbFree(pParse->db, dest.zAffSdst); 2931 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2932 assert( pEList!=0 ); 2933 assert( pEList->nExpr>0 ); 2934 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2935 for(i=0; i<nVal; i++){ 2936 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2937 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2938 pParse, p, pEList->a[i].pExpr 2939 ); 2940 } 2941 } 2942 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2943 /* Case 2: expr IN (exprlist) 2944 ** 2945 ** For each expression, build an index key from the evaluation and 2946 ** store it in the temporary table. If <expr> is a column, then use 2947 ** that columns affinity when building index keys. If <expr> is not 2948 ** a column, use numeric affinity. 2949 */ 2950 char affinity; /* Affinity of the LHS of the IN */ 2951 int i; 2952 ExprList *pList = pExpr->x.pList; 2953 struct ExprList_item *pItem; 2954 int r1, r2; 2955 affinity = sqlite3ExprAffinity(pLeft); 2956 if( affinity<=SQLITE_AFF_NONE ){ 2957 affinity = SQLITE_AFF_BLOB; 2958 }else if( affinity==SQLITE_AFF_REAL ){ 2959 affinity = SQLITE_AFF_NUMERIC; 2960 } 2961 if( pKeyInfo ){ 2962 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2963 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2964 } 2965 2966 /* Loop through each expression in <exprlist>. */ 2967 r1 = sqlite3GetTempReg(pParse); 2968 r2 = sqlite3GetTempReg(pParse); 2969 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2970 Expr *pE2 = pItem->pExpr; 2971 2972 /* If the expression is not constant then we will need to 2973 ** disable the test that was generated above that makes sure 2974 ** this code only executes once. Because for a non-constant 2975 ** expression we need to rerun this code each time. 2976 */ 2977 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 2978 sqlite3VdbeChangeToNoop(v, addrOnce); 2979 ExprClearProperty(pExpr, EP_Subrtn); 2980 addrOnce = 0; 2981 } 2982 2983 /* Evaluate the expression and insert it into the temp table */ 2984 sqlite3ExprCode(pParse, pE2, r1); 2985 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 2986 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 2987 } 2988 sqlite3ReleaseTempReg(pParse, r1); 2989 sqlite3ReleaseTempReg(pParse, r2); 2990 } 2991 if( pKeyInfo ){ 2992 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2993 } 2994 if( addrOnce ){ 2995 sqlite3VdbeJumpHere(v, addrOnce); 2996 /* Subroutine return */ 2997 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2998 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2999 sqlite3ClearTempRegCache(pParse); 3000 } 3001 } 3002 #endif /* SQLITE_OMIT_SUBQUERY */ 3003 3004 /* 3005 ** Generate code for scalar subqueries used as a subquery expression 3006 ** or EXISTS operator: 3007 ** 3008 ** (SELECT a FROM b) -- subquery 3009 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3010 ** 3011 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3012 ** 3013 ** Return the register that holds the result. For a multi-column SELECT, 3014 ** the result is stored in a contiguous array of registers and the 3015 ** return value is the register of the left-most result column. 3016 ** Return 0 if an error occurs. 3017 */ 3018 #ifndef SQLITE_OMIT_SUBQUERY 3019 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3020 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3021 int rReg = 0; /* Register storing resulting */ 3022 Select *pSel; /* SELECT statement to encode */ 3023 SelectDest dest; /* How to deal with SELECT result */ 3024 int nReg; /* Registers to allocate */ 3025 Expr *pLimit; /* New limit expression */ 3026 3027 Vdbe *v = pParse->pVdbe; 3028 assert( v!=0 ); 3029 testcase( pExpr->op==TK_EXISTS ); 3030 testcase( pExpr->op==TK_SELECT ); 3031 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3032 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 3033 pSel = pExpr->x.pSelect; 3034 3035 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3036 ** is encountered if any of the following is true: 3037 ** 3038 ** * The right-hand side is a correlated subquery 3039 ** * The right-hand side is an expression list containing variables 3040 ** * We are inside a trigger 3041 ** 3042 ** If all of the above are false, then we can run this code just once 3043 ** save the results, and reuse the same result on subsequent invocations. 3044 */ 3045 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3046 /* If this routine has already been coded, then invoke it as a 3047 ** subroutine. */ 3048 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3049 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3050 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3051 pExpr->y.sub.iAddr); 3052 return pExpr->iTable; 3053 } 3054 3055 /* Begin coding the subroutine */ 3056 ExprSetProperty(pExpr, EP_Subrtn); 3057 pExpr->y.sub.regReturn = ++pParse->nMem; 3058 pExpr->y.sub.iAddr = 3059 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3060 VdbeComment((v, "return address")); 3061 3062 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3063 } 3064 3065 /* For a SELECT, generate code to put the values for all columns of 3066 ** the first row into an array of registers and return the index of 3067 ** the first register. 3068 ** 3069 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3070 ** into a register and return that register number. 3071 ** 3072 ** In both cases, the query is augmented with "LIMIT 1". Any 3073 ** preexisting limit is discarded in place of the new LIMIT 1. 3074 */ 3075 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3076 addrOnce?"":"CORRELATED ", pSel->selId)); 3077 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3078 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3079 pParse->nMem += nReg; 3080 if( pExpr->op==TK_SELECT ){ 3081 dest.eDest = SRT_Mem; 3082 dest.iSdst = dest.iSDParm; 3083 dest.nSdst = nReg; 3084 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3085 VdbeComment((v, "Init subquery result")); 3086 }else{ 3087 dest.eDest = SRT_Exists; 3088 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3089 VdbeComment((v, "Init EXISTS result")); 3090 } 3091 if( pSel->pLimit ){ 3092 /* The subquery already has a limit. If the pre-existing limit is X 3093 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3094 sqlite3 *db = pParse->db; 3095 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3096 if( pLimit ){ 3097 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3098 pLimit = sqlite3PExpr(pParse, TK_NE, 3099 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3100 } 3101 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3102 pSel->pLimit->pLeft = pLimit; 3103 }else{ 3104 /* If there is no pre-existing limit add a limit of 1 */ 3105 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3106 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3107 } 3108 pSel->iLimit = 0; 3109 if( sqlite3Select(pParse, pSel, &dest) ){ 3110 return 0; 3111 } 3112 pExpr->iTable = rReg = dest.iSDParm; 3113 ExprSetVVAProperty(pExpr, EP_NoReduce); 3114 if( addrOnce ){ 3115 sqlite3VdbeJumpHere(v, addrOnce); 3116 3117 /* Subroutine return */ 3118 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3119 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3120 sqlite3ClearTempRegCache(pParse); 3121 } 3122 3123 return rReg; 3124 } 3125 #endif /* SQLITE_OMIT_SUBQUERY */ 3126 3127 #ifndef SQLITE_OMIT_SUBQUERY 3128 /* 3129 ** Expr pIn is an IN(...) expression. This function checks that the 3130 ** sub-select on the RHS of the IN() operator has the same number of 3131 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3132 ** a sub-query, that the LHS is a vector of size 1. 3133 */ 3134 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3135 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3136 if( (pIn->flags & EP_xIsSelect) ){ 3137 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3138 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3139 return 1; 3140 } 3141 }else if( nVector!=1 ){ 3142 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3143 return 1; 3144 } 3145 return 0; 3146 } 3147 #endif 3148 3149 #ifndef SQLITE_OMIT_SUBQUERY 3150 /* 3151 ** Generate code for an IN expression. 3152 ** 3153 ** x IN (SELECT ...) 3154 ** x IN (value, value, ...) 3155 ** 3156 ** The left-hand side (LHS) is a scalar or vector expression. The 3157 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3158 ** subquery. If the RHS is a subquery, the number of result columns must 3159 ** match the number of columns in the vector on the LHS. If the RHS is 3160 ** a list of values, the LHS must be a scalar. 3161 ** 3162 ** The IN operator is true if the LHS value is contained within the RHS. 3163 ** The result is false if the LHS is definitely not in the RHS. The 3164 ** result is NULL if the presence of the LHS in the RHS cannot be 3165 ** determined due to NULLs. 3166 ** 3167 ** This routine generates code that jumps to destIfFalse if the LHS is not 3168 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3169 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3170 ** within the RHS then fall through. 3171 ** 3172 ** See the separate in-operator.md documentation file in the canonical 3173 ** SQLite source tree for additional information. 3174 */ 3175 static void sqlite3ExprCodeIN( 3176 Parse *pParse, /* Parsing and code generating context */ 3177 Expr *pExpr, /* The IN expression */ 3178 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3179 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3180 ){ 3181 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3182 int eType; /* Type of the RHS */ 3183 int rLhs; /* Register(s) holding the LHS values */ 3184 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3185 Vdbe *v; /* Statement under construction */ 3186 int *aiMap = 0; /* Map from vector field to index column */ 3187 char *zAff = 0; /* Affinity string for comparisons */ 3188 int nVector; /* Size of vectors for this IN operator */ 3189 int iDummy; /* Dummy parameter to exprCodeVector() */ 3190 Expr *pLeft; /* The LHS of the IN operator */ 3191 int i; /* loop counter */ 3192 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3193 int destStep6 = 0; /* Start of code for Step 6 */ 3194 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3195 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3196 int addrTop; /* Top of the step-6 loop */ 3197 int iTab = 0; /* Index to use */ 3198 u8 okConstFactor = pParse->okConstFactor; 3199 3200 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3201 pLeft = pExpr->pLeft; 3202 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3203 zAff = exprINAffinity(pParse, pExpr); 3204 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3205 aiMap = (int*)sqlite3DbMallocZero( 3206 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3207 ); 3208 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3209 3210 /* Attempt to compute the RHS. After this step, if anything other than 3211 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3212 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3213 ** the RHS has not yet been coded. */ 3214 v = pParse->pVdbe; 3215 assert( v!=0 ); /* OOM detected prior to this routine */ 3216 VdbeNoopComment((v, "begin IN expr")); 3217 eType = sqlite3FindInIndex(pParse, pExpr, 3218 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3219 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3220 aiMap, &iTab); 3221 3222 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3223 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3224 ); 3225 #ifdef SQLITE_DEBUG 3226 /* Confirm that aiMap[] contains nVector integer values between 0 and 3227 ** nVector-1. */ 3228 for(i=0; i<nVector; i++){ 3229 int j, cnt; 3230 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3231 assert( cnt==1 ); 3232 } 3233 #endif 3234 3235 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3236 ** vector, then it is stored in an array of nVector registers starting 3237 ** at r1. 3238 ** 3239 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3240 ** so that the fields are in the same order as an existing index. The 3241 ** aiMap[] array contains a mapping from the original LHS field order to 3242 ** the field order that matches the RHS index. 3243 ** 3244 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3245 ** even if it is constant, as OP_Affinity may be used on the register 3246 ** by code generated below. */ 3247 assert( pParse->okConstFactor==okConstFactor ); 3248 pParse->okConstFactor = 0; 3249 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3250 pParse->okConstFactor = okConstFactor; 3251 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3252 if( i==nVector ){ 3253 /* LHS fields are not reordered */ 3254 rLhs = rLhsOrig; 3255 }else{ 3256 /* Need to reorder the LHS fields according to aiMap */ 3257 rLhs = sqlite3GetTempRange(pParse, nVector); 3258 for(i=0; i<nVector; i++){ 3259 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3260 } 3261 } 3262 3263 /* If sqlite3FindInIndex() did not find or create an index that is 3264 ** suitable for evaluating the IN operator, then evaluate using a 3265 ** sequence of comparisons. 3266 ** 3267 ** This is step (1) in the in-operator.md optimized algorithm. 3268 */ 3269 if( eType==IN_INDEX_NOOP ){ 3270 ExprList *pList = pExpr->x.pList; 3271 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3272 int labelOk = sqlite3VdbeMakeLabel(pParse); 3273 int r2, regToFree; 3274 int regCkNull = 0; 3275 int ii; 3276 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3277 if( destIfNull!=destIfFalse ){ 3278 regCkNull = sqlite3GetTempReg(pParse); 3279 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3280 } 3281 for(ii=0; ii<pList->nExpr; ii++){ 3282 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3283 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3284 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3285 } 3286 sqlite3ReleaseTempReg(pParse, regToFree); 3287 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3288 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3289 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3290 (void*)pColl, P4_COLLSEQ); 3291 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3292 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3293 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3294 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3295 sqlite3VdbeChangeP5(v, zAff[0]); 3296 }else{ 3297 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3298 assert( destIfNull==destIfFalse ); 3299 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3300 (void*)pColl, P4_COLLSEQ); 3301 VdbeCoverageIf(v, op==OP_Ne); 3302 VdbeCoverageIf(v, op==OP_IsNull); 3303 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3304 } 3305 } 3306 if( regCkNull ){ 3307 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3308 sqlite3VdbeGoto(v, destIfFalse); 3309 } 3310 sqlite3VdbeResolveLabel(v, labelOk); 3311 sqlite3ReleaseTempReg(pParse, regCkNull); 3312 goto sqlite3ExprCodeIN_finished; 3313 } 3314 3315 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3316 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3317 ** We will then skip the binary search of the RHS. 3318 */ 3319 if( destIfNull==destIfFalse ){ 3320 destStep2 = destIfFalse; 3321 }else{ 3322 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3323 } 3324 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3325 for(i=0; i<nVector; i++){ 3326 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3327 if( sqlite3ExprCanBeNull(p) ){ 3328 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3329 VdbeCoverage(v); 3330 } 3331 } 3332 3333 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3334 ** of the RHS using the LHS as a probe. If found, the result is 3335 ** true. 3336 */ 3337 if( eType==IN_INDEX_ROWID ){ 3338 /* In this case, the RHS is the ROWID of table b-tree and so we also 3339 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3340 ** into a single opcode. */ 3341 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3342 VdbeCoverage(v); 3343 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3344 }else{ 3345 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3346 if( destIfFalse==destIfNull ){ 3347 /* Combine Step 3 and Step 5 into a single opcode */ 3348 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3349 rLhs, nVector); VdbeCoverage(v); 3350 goto sqlite3ExprCodeIN_finished; 3351 } 3352 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3353 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3354 rLhs, nVector); VdbeCoverage(v); 3355 } 3356 3357 /* Step 4. If the RHS is known to be non-NULL and we did not find 3358 ** an match on the search above, then the result must be FALSE. 3359 */ 3360 if( rRhsHasNull && nVector==1 ){ 3361 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3362 VdbeCoverage(v); 3363 } 3364 3365 /* Step 5. If we do not care about the difference between NULL and 3366 ** FALSE, then just return false. 3367 */ 3368 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3369 3370 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3371 ** If any comparison is NULL, then the result is NULL. If all 3372 ** comparisons are FALSE then the final result is FALSE. 3373 ** 3374 ** For a scalar LHS, it is sufficient to check just the first row 3375 ** of the RHS. 3376 */ 3377 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3378 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3379 VdbeCoverage(v); 3380 if( nVector>1 ){ 3381 destNotNull = sqlite3VdbeMakeLabel(pParse); 3382 }else{ 3383 /* For nVector==1, combine steps 6 and 7 by immediately returning 3384 ** FALSE if the first comparison is not NULL */ 3385 destNotNull = destIfFalse; 3386 } 3387 for(i=0; i<nVector; i++){ 3388 Expr *p; 3389 CollSeq *pColl; 3390 int r3 = sqlite3GetTempReg(pParse); 3391 p = sqlite3VectorFieldSubexpr(pLeft, i); 3392 pColl = sqlite3ExprCollSeq(pParse, p); 3393 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3394 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3395 (void*)pColl, P4_COLLSEQ); 3396 VdbeCoverage(v); 3397 sqlite3ReleaseTempReg(pParse, r3); 3398 } 3399 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3400 if( nVector>1 ){ 3401 sqlite3VdbeResolveLabel(v, destNotNull); 3402 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3403 VdbeCoverage(v); 3404 3405 /* Step 7: If we reach this point, we know that the result must 3406 ** be false. */ 3407 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3408 } 3409 3410 /* Jumps here in order to return true. */ 3411 sqlite3VdbeJumpHere(v, addrTruthOp); 3412 3413 sqlite3ExprCodeIN_finished: 3414 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3415 VdbeComment((v, "end IN expr")); 3416 sqlite3ExprCodeIN_oom_error: 3417 sqlite3DbFree(pParse->db, aiMap); 3418 sqlite3DbFree(pParse->db, zAff); 3419 } 3420 #endif /* SQLITE_OMIT_SUBQUERY */ 3421 3422 #ifndef SQLITE_OMIT_FLOATING_POINT 3423 /* 3424 ** Generate an instruction that will put the floating point 3425 ** value described by z[0..n-1] into register iMem. 3426 ** 3427 ** The z[] string will probably not be zero-terminated. But the 3428 ** z[n] character is guaranteed to be something that does not look 3429 ** like the continuation of the number. 3430 */ 3431 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3432 if( ALWAYS(z!=0) ){ 3433 double value; 3434 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3435 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3436 if( negateFlag ) value = -value; 3437 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3438 } 3439 } 3440 #endif 3441 3442 3443 /* 3444 ** Generate an instruction that will put the integer describe by 3445 ** text z[0..n-1] into register iMem. 3446 ** 3447 ** Expr.u.zToken is always UTF8 and zero-terminated. 3448 */ 3449 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3450 Vdbe *v = pParse->pVdbe; 3451 if( pExpr->flags & EP_IntValue ){ 3452 int i = pExpr->u.iValue; 3453 assert( i>=0 ); 3454 if( negFlag ) i = -i; 3455 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3456 }else{ 3457 int c; 3458 i64 value; 3459 const char *z = pExpr->u.zToken; 3460 assert( z!=0 ); 3461 c = sqlite3DecOrHexToI64(z, &value); 3462 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3463 #ifdef SQLITE_OMIT_FLOATING_POINT 3464 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3465 #else 3466 #ifndef SQLITE_OMIT_HEX_INTEGER 3467 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3468 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3469 }else 3470 #endif 3471 { 3472 codeReal(v, z, negFlag, iMem); 3473 } 3474 #endif 3475 }else{ 3476 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3477 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3478 } 3479 } 3480 } 3481 3482 3483 /* Generate code that will load into register regOut a value that is 3484 ** appropriate for the iIdxCol-th column of index pIdx. 3485 */ 3486 void sqlite3ExprCodeLoadIndexColumn( 3487 Parse *pParse, /* The parsing context */ 3488 Index *pIdx, /* The index whose column is to be loaded */ 3489 int iTabCur, /* Cursor pointing to a table row */ 3490 int iIdxCol, /* The column of the index to be loaded */ 3491 int regOut /* Store the index column value in this register */ 3492 ){ 3493 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3494 if( iTabCol==XN_EXPR ){ 3495 assert( pIdx->aColExpr ); 3496 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3497 pParse->iSelfTab = iTabCur + 1; 3498 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3499 pParse->iSelfTab = 0; 3500 }else{ 3501 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3502 iTabCol, regOut); 3503 } 3504 } 3505 3506 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3507 /* 3508 ** Generate code that will compute the value of generated column pCol 3509 ** and store the result in register regOut 3510 */ 3511 void sqlite3ExprCodeGeneratedColumn( 3512 Parse *pParse, 3513 Column *pCol, 3514 int regOut 3515 ){ 3516 int iAddr; 3517 Vdbe *v = pParse->pVdbe; 3518 assert( v!=0 ); 3519 assert( pParse->iSelfTab!=0 ); 3520 if( pParse->iSelfTab>0 ){ 3521 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3522 }else{ 3523 iAddr = 0; 3524 } 3525 sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut); 3526 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3527 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3528 } 3529 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3530 } 3531 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3532 3533 /* 3534 ** Generate code to extract the value of the iCol-th column of a table. 3535 */ 3536 void sqlite3ExprCodeGetColumnOfTable( 3537 Vdbe *v, /* Parsing context */ 3538 Table *pTab, /* The table containing the value */ 3539 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3540 int iCol, /* Index of the column to extract */ 3541 int regOut /* Extract the value into this register */ 3542 ){ 3543 Column *pCol; 3544 assert( v!=0 ); 3545 if( pTab==0 ){ 3546 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3547 return; 3548 } 3549 if( iCol<0 || iCol==pTab->iPKey ){ 3550 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3551 }else{ 3552 int op; 3553 int x; 3554 if( IsVirtual(pTab) ){ 3555 op = OP_VColumn; 3556 x = iCol; 3557 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3558 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3559 Parse *pParse = sqlite3VdbeParser(v); 3560 if( pCol->colFlags & COLFLAG_BUSY ){ 3561 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName); 3562 }else{ 3563 int savedSelfTab = pParse->iSelfTab; 3564 pCol->colFlags |= COLFLAG_BUSY; 3565 pParse->iSelfTab = iTabCur+1; 3566 sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut); 3567 pParse->iSelfTab = savedSelfTab; 3568 pCol->colFlags &= ~COLFLAG_BUSY; 3569 } 3570 return; 3571 #endif 3572 }else if( !HasRowid(pTab) ){ 3573 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3574 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3575 op = OP_Column; 3576 }else{ 3577 x = sqlite3TableColumnToStorage(pTab,iCol); 3578 testcase( x!=iCol ); 3579 op = OP_Column; 3580 } 3581 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3582 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3583 } 3584 } 3585 3586 /* 3587 ** Generate code that will extract the iColumn-th column from 3588 ** table pTab and store the column value in register iReg. 3589 ** 3590 ** There must be an open cursor to pTab in iTable when this routine 3591 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3592 */ 3593 int sqlite3ExprCodeGetColumn( 3594 Parse *pParse, /* Parsing and code generating context */ 3595 Table *pTab, /* Description of the table we are reading from */ 3596 int iColumn, /* Index of the table column */ 3597 int iTable, /* The cursor pointing to the table */ 3598 int iReg, /* Store results here */ 3599 u8 p5 /* P5 value for OP_Column + FLAGS */ 3600 ){ 3601 assert( pParse->pVdbe!=0 ); 3602 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3603 if( p5 ){ 3604 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3605 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3606 } 3607 return iReg; 3608 } 3609 3610 /* 3611 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3612 ** over to iTo..iTo+nReg-1. 3613 */ 3614 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3615 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3616 } 3617 3618 /* 3619 ** Convert a scalar expression node to a TK_REGISTER referencing 3620 ** register iReg. The caller must ensure that iReg already contains 3621 ** the correct value for the expression. 3622 */ 3623 static void exprToRegister(Expr *pExpr, int iReg){ 3624 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3625 p->op2 = p->op; 3626 p->op = TK_REGISTER; 3627 p->iTable = iReg; 3628 ExprClearProperty(p, EP_Skip); 3629 } 3630 3631 /* 3632 ** Evaluate an expression (either a vector or a scalar expression) and store 3633 ** the result in continguous temporary registers. Return the index of 3634 ** the first register used to store the result. 3635 ** 3636 ** If the returned result register is a temporary scalar, then also write 3637 ** that register number into *piFreeable. If the returned result register 3638 ** is not a temporary or if the expression is a vector set *piFreeable 3639 ** to 0. 3640 */ 3641 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3642 int iResult; 3643 int nResult = sqlite3ExprVectorSize(p); 3644 if( nResult==1 ){ 3645 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3646 }else{ 3647 *piFreeable = 0; 3648 if( p->op==TK_SELECT ){ 3649 #if SQLITE_OMIT_SUBQUERY 3650 iResult = 0; 3651 #else 3652 iResult = sqlite3CodeSubselect(pParse, p); 3653 #endif 3654 }else{ 3655 int i; 3656 iResult = pParse->nMem+1; 3657 pParse->nMem += nResult; 3658 for(i=0; i<nResult; i++){ 3659 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3660 } 3661 } 3662 } 3663 return iResult; 3664 } 3665 3666 /* 3667 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3668 ** so that a subsequent copy will not be merged into this one. 3669 */ 3670 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3671 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3672 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3673 } 3674 } 3675 3676 /* 3677 ** Generate code to implement special SQL functions that are implemented 3678 ** in-line rather than by using the usual callbacks. 3679 */ 3680 static int exprCodeInlineFunction( 3681 Parse *pParse, /* Parsing context */ 3682 ExprList *pFarg, /* List of function arguments */ 3683 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3684 int target /* Store function result in this register */ 3685 ){ 3686 int nFarg; 3687 Vdbe *v = pParse->pVdbe; 3688 assert( v!=0 ); 3689 assert( pFarg!=0 ); 3690 nFarg = pFarg->nExpr; 3691 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3692 switch( iFuncId ){ 3693 case INLINEFUNC_coalesce: { 3694 /* Attempt a direct implementation of the built-in COALESCE() and 3695 ** IFNULL() functions. This avoids unnecessary evaluation of 3696 ** arguments past the first non-NULL argument. 3697 */ 3698 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3699 int i; 3700 assert( nFarg>=2 ); 3701 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3702 for(i=1; i<nFarg; i++){ 3703 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3704 VdbeCoverage(v); 3705 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3706 } 3707 setDoNotMergeFlagOnCopy(v); 3708 sqlite3VdbeResolveLabel(v, endCoalesce); 3709 break; 3710 } 3711 case INLINEFUNC_iif: { 3712 Expr caseExpr; 3713 memset(&caseExpr, 0, sizeof(caseExpr)); 3714 caseExpr.op = TK_CASE; 3715 caseExpr.x.pList = pFarg; 3716 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3717 } 3718 3719 default: { 3720 /* The UNLIKELY() function is a no-op. The result is the value 3721 ** of the first argument. 3722 */ 3723 assert( nFarg==1 || nFarg==2 ); 3724 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3725 break; 3726 } 3727 3728 /*********************************************************************** 3729 ** Test-only SQL functions that are only usable if enabled 3730 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3731 */ 3732 case INLINEFUNC_expr_compare: { 3733 /* Compare two expressions using sqlite3ExprCompare() */ 3734 assert( nFarg==2 ); 3735 sqlite3VdbeAddOp2(v, OP_Integer, 3736 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3737 target); 3738 break; 3739 } 3740 3741 case INLINEFUNC_expr_implies_expr: { 3742 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3743 assert( nFarg==2 ); 3744 sqlite3VdbeAddOp2(v, OP_Integer, 3745 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3746 target); 3747 break; 3748 } 3749 3750 case INLINEFUNC_implies_nonnull_row: { 3751 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3752 Expr *pA1; 3753 assert( nFarg==2 ); 3754 pA1 = pFarg->a[1].pExpr; 3755 if( pA1->op==TK_COLUMN ){ 3756 sqlite3VdbeAddOp2(v, OP_Integer, 3757 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3758 target); 3759 }else{ 3760 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3761 } 3762 break; 3763 } 3764 3765 #ifdef SQLITE_DEBUG 3766 case INLINEFUNC_affinity: { 3767 /* The AFFINITY() function evaluates to a string that describes 3768 ** the type affinity of the argument. This is used for testing of 3769 ** the SQLite type logic. 3770 */ 3771 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3772 char aff; 3773 assert( nFarg==1 ); 3774 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3775 sqlite3VdbeLoadString(v, target, 3776 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3777 break; 3778 } 3779 #endif 3780 } 3781 return target; 3782 } 3783 3784 3785 /* 3786 ** Generate code into the current Vdbe to evaluate the given 3787 ** expression. Attempt to store the results in register "target". 3788 ** Return the register where results are stored. 3789 ** 3790 ** With this routine, there is no guarantee that results will 3791 ** be stored in target. The result might be stored in some other 3792 ** register if it is convenient to do so. The calling function 3793 ** must check the return code and move the results to the desired 3794 ** register. 3795 */ 3796 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3797 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3798 int op; /* The opcode being coded */ 3799 int inReg = target; /* Results stored in register inReg */ 3800 int regFree1 = 0; /* If non-zero free this temporary register */ 3801 int regFree2 = 0; /* If non-zero free this temporary register */ 3802 int r1, r2; /* Various register numbers */ 3803 Expr tempX; /* Temporary expression node */ 3804 int p5 = 0; 3805 3806 assert( target>0 && target<=pParse->nMem ); 3807 assert( v!=0 ); 3808 3809 expr_code_doover: 3810 if( pExpr==0 ){ 3811 op = TK_NULL; 3812 }else{ 3813 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3814 op = pExpr->op; 3815 } 3816 switch( op ){ 3817 case TK_AGG_COLUMN: { 3818 AggInfo *pAggInfo = pExpr->pAggInfo; 3819 struct AggInfo_col *pCol; 3820 assert( pAggInfo!=0 ); 3821 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 3822 pCol = &pAggInfo->aCol[pExpr->iAgg]; 3823 if( !pAggInfo->directMode ){ 3824 assert( pCol->iMem>0 ); 3825 return pCol->iMem; 3826 }else if( pAggInfo->useSortingIdx ){ 3827 Table *pTab = pCol->pTab; 3828 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3829 pCol->iSorterColumn, target); 3830 if( pCol->iColumn<0 ){ 3831 VdbeComment((v,"%s.rowid",pTab->zName)); 3832 }else{ 3833 VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName)); 3834 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 3835 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3836 } 3837 } 3838 return target; 3839 } 3840 /* Otherwise, fall thru into the TK_COLUMN case */ 3841 } 3842 case TK_COLUMN: { 3843 int iTab = pExpr->iTable; 3844 int iReg; 3845 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3846 /* This COLUMN expression is really a constant due to WHERE clause 3847 ** constraints, and that constant is coded by the pExpr->pLeft 3848 ** expresssion. However, make sure the constant has the correct 3849 ** datatype by applying the Affinity of the table column to the 3850 ** constant. 3851 */ 3852 int aff; 3853 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3854 if( pExpr->y.pTab ){ 3855 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3856 }else{ 3857 aff = pExpr->affExpr; 3858 } 3859 if( aff>SQLITE_AFF_BLOB ){ 3860 static const char zAff[] = "B\000C\000D\000E"; 3861 assert( SQLITE_AFF_BLOB=='A' ); 3862 assert( SQLITE_AFF_TEXT=='B' ); 3863 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3864 &zAff[(aff-'B')*2], P4_STATIC); 3865 } 3866 return iReg; 3867 } 3868 if( iTab<0 ){ 3869 if( pParse->iSelfTab<0 ){ 3870 /* Other columns in the same row for CHECK constraints or 3871 ** generated columns or for inserting into partial index. 3872 ** The row is unpacked into registers beginning at 3873 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 3874 ** immediately prior to the first column. 3875 */ 3876 Column *pCol; 3877 Table *pTab = pExpr->y.pTab; 3878 int iSrc; 3879 int iCol = pExpr->iColumn; 3880 assert( pTab!=0 ); 3881 assert( iCol>=XN_ROWID ); 3882 assert( iCol<pTab->nCol ); 3883 if( iCol<0 ){ 3884 return -1-pParse->iSelfTab; 3885 } 3886 pCol = pTab->aCol + iCol; 3887 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 3888 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 3889 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3890 if( pCol->colFlags & COLFLAG_GENERATED ){ 3891 if( pCol->colFlags & COLFLAG_BUSY ){ 3892 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3893 pCol->zName); 3894 return 0; 3895 } 3896 pCol->colFlags |= COLFLAG_BUSY; 3897 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 3898 sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc); 3899 } 3900 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 3901 return iSrc; 3902 }else 3903 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3904 if( pCol->affinity==SQLITE_AFF_REAL ){ 3905 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 3906 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3907 return target; 3908 }else{ 3909 return iSrc; 3910 } 3911 }else{ 3912 /* Coding an expression that is part of an index where column names 3913 ** in the index refer to the table to which the index belongs */ 3914 iTab = pParse->iSelfTab - 1; 3915 } 3916 } 3917 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3918 pExpr->iColumn, iTab, target, 3919 pExpr->op2); 3920 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 3921 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 3922 } 3923 return iReg; 3924 } 3925 case TK_INTEGER: { 3926 codeInteger(pParse, pExpr, 0, target); 3927 return target; 3928 } 3929 case TK_TRUEFALSE: { 3930 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3931 return target; 3932 } 3933 #ifndef SQLITE_OMIT_FLOATING_POINT 3934 case TK_FLOAT: { 3935 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3936 codeReal(v, pExpr->u.zToken, 0, target); 3937 return target; 3938 } 3939 #endif 3940 case TK_STRING: { 3941 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3942 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3943 return target; 3944 } 3945 default: { 3946 /* Make NULL the default case so that if a bug causes an illegal 3947 ** Expr node to be passed into this function, it will be handled 3948 ** sanely and not crash. But keep the assert() to bring the problem 3949 ** to the attention of the developers. */ 3950 assert( op==TK_NULL ); 3951 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3952 return target; 3953 } 3954 #ifndef SQLITE_OMIT_BLOB_LITERAL 3955 case TK_BLOB: { 3956 int n; 3957 const char *z; 3958 char *zBlob; 3959 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3960 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3961 assert( pExpr->u.zToken[1]=='\'' ); 3962 z = &pExpr->u.zToken[2]; 3963 n = sqlite3Strlen30(z) - 1; 3964 assert( z[n]=='\'' ); 3965 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3966 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3967 return target; 3968 } 3969 #endif 3970 case TK_VARIABLE: { 3971 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3972 assert( pExpr->u.zToken!=0 ); 3973 assert( pExpr->u.zToken[0]!=0 ); 3974 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3975 if( pExpr->u.zToken[1]!=0 ){ 3976 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3977 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 3978 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3979 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3980 } 3981 return target; 3982 } 3983 case TK_REGISTER: { 3984 return pExpr->iTable; 3985 } 3986 #ifndef SQLITE_OMIT_CAST 3987 case TK_CAST: { 3988 /* Expressions of the form: CAST(pLeft AS token) */ 3989 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3990 if( inReg!=target ){ 3991 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3992 inReg = target; 3993 } 3994 sqlite3VdbeAddOp2(v, OP_Cast, target, 3995 sqlite3AffinityType(pExpr->u.zToken, 0)); 3996 return inReg; 3997 } 3998 #endif /* SQLITE_OMIT_CAST */ 3999 case TK_IS: 4000 case TK_ISNOT: 4001 op = (op==TK_IS) ? TK_EQ : TK_NE; 4002 p5 = SQLITE_NULLEQ; 4003 /* fall-through */ 4004 case TK_LT: 4005 case TK_LE: 4006 case TK_GT: 4007 case TK_GE: 4008 case TK_NE: 4009 case TK_EQ: { 4010 Expr *pLeft = pExpr->pLeft; 4011 if( sqlite3ExprIsVector(pLeft) ){ 4012 codeVectorCompare(pParse, pExpr, target, op, p5); 4013 }else{ 4014 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4015 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4016 codeCompare(pParse, pLeft, pExpr->pRight, op, 4017 r1, r2, inReg, SQLITE_STOREP2 | p5, 4018 ExprHasProperty(pExpr,EP_Commuted)); 4019 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4020 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4021 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4022 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4023 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4024 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4025 testcase( regFree1==0 ); 4026 testcase( regFree2==0 ); 4027 } 4028 break; 4029 } 4030 case TK_AND: 4031 case TK_OR: 4032 case TK_PLUS: 4033 case TK_STAR: 4034 case TK_MINUS: 4035 case TK_REM: 4036 case TK_BITAND: 4037 case TK_BITOR: 4038 case TK_SLASH: 4039 case TK_LSHIFT: 4040 case TK_RSHIFT: 4041 case TK_CONCAT: { 4042 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4043 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4044 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4045 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4046 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4047 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4048 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4049 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4050 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4051 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4052 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4053 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4054 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4055 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4056 testcase( regFree1==0 ); 4057 testcase( regFree2==0 ); 4058 break; 4059 } 4060 case TK_UMINUS: { 4061 Expr *pLeft = pExpr->pLeft; 4062 assert( pLeft ); 4063 if( pLeft->op==TK_INTEGER ){ 4064 codeInteger(pParse, pLeft, 1, target); 4065 return target; 4066 #ifndef SQLITE_OMIT_FLOATING_POINT 4067 }else if( pLeft->op==TK_FLOAT ){ 4068 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4069 codeReal(v, pLeft->u.zToken, 1, target); 4070 return target; 4071 #endif 4072 }else{ 4073 tempX.op = TK_INTEGER; 4074 tempX.flags = EP_IntValue|EP_TokenOnly; 4075 tempX.u.iValue = 0; 4076 ExprClearVVAProperties(&tempX); 4077 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4078 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4079 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4080 testcase( regFree2==0 ); 4081 } 4082 break; 4083 } 4084 case TK_BITNOT: 4085 case TK_NOT: { 4086 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4087 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4088 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4089 testcase( regFree1==0 ); 4090 sqlite3VdbeAddOp2(v, op, r1, inReg); 4091 break; 4092 } 4093 case TK_TRUTH: { 4094 int isTrue; /* IS TRUE or IS NOT TRUE */ 4095 int bNormal; /* IS TRUE or IS FALSE */ 4096 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4097 testcase( regFree1==0 ); 4098 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4099 bNormal = pExpr->op2==TK_IS; 4100 testcase( isTrue && bNormal); 4101 testcase( !isTrue && bNormal); 4102 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4103 break; 4104 } 4105 case TK_ISNULL: 4106 case TK_NOTNULL: { 4107 int addr; 4108 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4109 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4110 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4111 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4112 testcase( regFree1==0 ); 4113 addr = sqlite3VdbeAddOp1(v, op, r1); 4114 VdbeCoverageIf(v, op==TK_ISNULL); 4115 VdbeCoverageIf(v, op==TK_NOTNULL); 4116 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4117 sqlite3VdbeJumpHere(v, addr); 4118 break; 4119 } 4120 case TK_AGG_FUNCTION: { 4121 AggInfo *pInfo = pExpr->pAggInfo; 4122 if( pInfo==0 4123 || NEVER(pExpr->iAgg<0) 4124 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4125 ){ 4126 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4127 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 4128 }else{ 4129 return pInfo->aFunc[pExpr->iAgg].iMem; 4130 } 4131 break; 4132 } 4133 case TK_FUNCTION: { 4134 ExprList *pFarg; /* List of function arguments */ 4135 int nFarg; /* Number of function arguments */ 4136 FuncDef *pDef; /* The function definition object */ 4137 const char *zId; /* The function name */ 4138 u32 constMask = 0; /* Mask of function arguments that are constant */ 4139 int i; /* Loop counter */ 4140 sqlite3 *db = pParse->db; /* The database connection */ 4141 u8 enc = ENC(db); /* The text encoding used by this database */ 4142 CollSeq *pColl = 0; /* A collating sequence */ 4143 4144 #ifndef SQLITE_OMIT_WINDOWFUNC 4145 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4146 return pExpr->y.pWin->regResult; 4147 } 4148 #endif 4149 4150 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4151 /* SQL functions can be expensive. So try to avoid running them 4152 ** multiple times if we know they always give the same result */ 4153 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4154 } 4155 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4156 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4157 pFarg = pExpr->x.pList; 4158 nFarg = pFarg ? pFarg->nExpr : 0; 4159 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4160 zId = pExpr->u.zToken; 4161 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4162 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4163 if( pDef==0 && pParse->explain ){ 4164 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4165 } 4166 #endif 4167 if( pDef==0 || pDef->xFinalize!=0 ){ 4168 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 4169 break; 4170 } 4171 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4172 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4173 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4174 return exprCodeInlineFunction(pParse, pFarg, 4175 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4176 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4177 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4178 } 4179 4180 for(i=0; i<nFarg; i++){ 4181 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4182 testcase( i==31 ); 4183 constMask |= MASKBIT32(i); 4184 } 4185 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4186 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4187 } 4188 } 4189 if( pFarg ){ 4190 if( constMask ){ 4191 r1 = pParse->nMem+1; 4192 pParse->nMem += nFarg; 4193 }else{ 4194 r1 = sqlite3GetTempRange(pParse, nFarg); 4195 } 4196 4197 /* For length() and typeof() functions with a column argument, 4198 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4199 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4200 ** loading. 4201 */ 4202 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4203 u8 exprOp; 4204 assert( nFarg==1 ); 4205 assert( pFarg->a[0].pExpr!=0 ); 4206 exprOp = pFarg->a[0].pExpr->op; 4207 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4208 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4209 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4210 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4211 pFarg->a[0].pExpr->op2 = 4212 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4213 } 4214 } 4215 4216 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4217 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4218 }else{ 4219 r1 = 0; 4220 } 4221 #ifndef SQLITE_OMIT_VIRTUALTABLE 4222 /* Possibly overload the function if the first argument is 4223 ** a virtual table column. 4224 ** 4225 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4226 ** second argument, not the first, as the argument to test to 4227 ** see if it is a column in a virtual table. This is done because 4228 ** the left operand of infix functions (the operand we want to 4229 ** control overloading) ends up as the second argument to the 4230 ** function. The expression "A glob B" is equivalent to 4231 ** "glob(B,A). We want to use the A in "A glob B" to test 4232 ** for function overloading. But we use the B term in "glob(B,A)". 4233 */ 4234 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4235 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4236 }else if( nFarg>0 ){ 4237 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4238 } 4239 #endif 4240 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4241 if( !pColl ) pColl = db->pDfltColl; 4242 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4243 } 4244 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4245 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4246 Expr *pArg = pFarg->a[0].pExpr; 4247 if( pArg->op==TK_COLUMN ){ 4248 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4249 }else{ 4250 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4251 } 4252 }else 4253 #endif 4254 { 4255 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4256 pDef, pExpr->op2); 4257 } 4258 if( nFarg ){ 4259 if( constMask==0 ){ 4260 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4261 }else{ 4262 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4263 } 4264 } 4265 return target; 4266 } 4267 #ifndef SQLITE_OMIT_SUBQUERY 4268 case TK_EXISTS: 4269 case TK_SELECT: { 4270 int nCol; 4271 testcase( op==TK_EXISTS ); 4272 testcase( op==TK_SELECT ); 4273 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4274 sqlite3SubselectError(pParse, nCol, 1); 4275 }else{ 4276 return sqlite3CodeSubselect(pParse, pExpr); 4277 } 4278 break; 4279 } 4280 case TK_SELECT_COLUMN: { 4281 int n; 4282 if( pExpr->pLeft->iTable==0 ){ 4283 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4284 } 4285 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 4286 if( pExpr->iTable!=0 4287 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 4288 ){ 4289 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4290 pExpr->iTable, n); 4291 } 4292 return pExpr->pLeft->iTable + pExpr->iColumn; 4293 } 4294 case TK_IN: { 4295 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4296 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4297 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4298 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4299 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4300 sqlite3VdbeResolveLabel(v, destIfFalse); 4301 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4302 sqlite3VdbeResolveLabel(v, destIfNull); 4303 return target; 4304 } 4305 #endif /* SQLITE_OMIT_SUBQUERY */ 4306 4307 4308 /* 4309 ** x BETWEEN y AND z 4310 ** 4311 ** This is equivalent to 4312 ** 4313 ** x>=y AND x<=z 4314 ** 4315 ** X is stored in pExpr->pLeft. 4316 ** Y is stored in pExpr->pList->a[0].pExpr. 4317 ** Z is stored in pExpr->pList->a[1].pExpr. 4318 */ 4319 case TK_BETWEEN: { 4320 exprCodeBetween(pParse, pExpr, target, 0, 0); 4321 return target; 4322 } 4323 case TK_SPAN: 4324 case TK_COLLATE: 4325 case TK_UPLUS: { 4326 pExpr = pExpr->pLeft; 4327 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4328 } 4329 4330 case TK_TRIGGER: { 4331 /* If the opcode is TK_TRIGGER, then the expression is a reference 4332 ** to a column in the new.* or old.* pseudo-tables available to 4333 ** trigger programs. In this case Expr.iTable is set to 1 for the 4334 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4335 ** is set to the column of the pseudo-table to read, or to -1 to 4336 ** read the rowid field. 4337 ** 4338 ** The expression is implemented using an OP_Param opcode. The p1 4339 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4340 ** to reference another column of the old.* pseudo-table, where 4341 ** i is the index of the column. For a new.rowid reference, p1 is 4342 ** set to (n+1), where n is the number of columns in each pseudo-table. 4343 ** For a reference to any other column in the new.* pseudo-table, p1 4344 ** is set to (n+2+i), where n and i are as defined previously. For 4345 ** example, if the table on which triggers are being fired is 4346 ** declared as: 4347 ** 4348 ** CREATE TABLE t1(a, b); 4349 ** 4350 ** Then p1 is interpreted as follows: 4351 ** 4352 ** p1==0 -> old.rowid p1==3 -> new.rowid 4353 ** p1==1 -> old.a p1==4 -> new.a 4354 ** p1==2 -> old.b p1==5 -> new.b 4355 */ 4356 Table *pTab = pExpr->y.pTab; 4357 int iCol = pExpr->iColumn; 4358 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4359 + sqlite3TableColumnToStorage(pTab, iCol); 4360 4361 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4362 assert( iCol>=-1 && iCol<pTab->nCol ); 4363 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4364 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4365 4366 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4367 VdbeComment((v, "r[%d]=%s.%s", target, 4368 (pExpr->iTable ? "new" : "old"), 4369 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName) 4370 )); 4371 4372 #ifndef SQLITE_OMIT_FLOATING_POINT 4373 /* If the column has REAL affinity, it may currently be stored as an 4374 ** integer. Use OP_RealAffinity to make sure it is really real. 4375 ** 4376 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4377 ** floating point when extracting it from the record. */ 4378 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4379 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4380 } 4381 #endif 4382 break; 4383 } 4384 4385 case TK_VECTOR: { 4386 sqlite3ErrorMsg(pParse, "row value misused"); 4387 break; 4388 } 4389 4390 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4391 ** that derive from the right-hand table of a LEFT JOIN. The 4392 ** Expr.iTable value is the table number for the right-hand table. 4393 ** The expression is only evaluated if that table is not currently 4394 ** on a LEFT JOIN NULL row. 4395 */ 4396 case TK_IF_NULL_ROW: { 4397 int addrINR; 4398 u8 okConstFactor = pParse->okConstFactor; 4399 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4400 /* Temporarily disable factoring of constant expressions, since 4401 ** even though expressions may appear to be constant, they are not 4402 ** really constant because they originate from the right-hand side 4403 ** of a LEFT JOIN. */ 4404 pParse->okConstFactor = 0; 4405 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4406 pParse->okConstFactor = okConstFactor; 4407 sqlite3VdbeJumpHere(v, addrINR); 4408 sqlite3VdbeChangeP3(v, addrINR, inReg); 4409 break; 4410 } 4411 4412 /* 4413 ** Form A: 4414 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4415 ** 4416 ** Form B: 4417 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4418 ** 4419 ** Form A is can be transformed into the equivalent form B as follows: 4420 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4421 ** WHEN x=eN THEN rN ELSE y END 4422 ** 4423 ** X (if it exists) is in pExpr->pLeft. 4424 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4425 ** odd. The Y is also optional. If the number of elements in x.pList 4426 ** is even, then Y is omitted and the "otherwise" result is NULL. 4427 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4428 ** 4429 ** The result of the expression is the Ri for the first matching Ei, 4430 ** or if there is no matching Ei, the ELSE term Y, or if there is 4431 ** no ELSE term, NULL. 4432 */ 4433 case TK_CASE: { 4434 int endLabel; /* GOTO label for end of CASE stmt */ 4435 int nextCase; /* GOTO label for next WHEN clause */ 4436 int nExpr; /* 2x number of WHEN terms */ 4437 int i; /* Loop counter */ 4438 ExprList *pEList; /* List of WHEN terms */ 4439 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4440 Expr opCompare; /* The X==Ei expression */ 4441 Expr *pX; /* The X expression */ 4442 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4443 Expr *pDel = 0; 4444 sqlite3 *db = pParse->db; 4445 4446 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4447 assert(pExpr->x.pList->nExpr > 0); 4448 pEList = pExpr->x.pList; 4449 aListelem = pEList->a; 4450 nExpr = pEList->nExpr; 4451 endLabel = sqlite3VdbeMakeLabel(pParse); 4452 if( (pX = pExpr->pLeft)!=0 ){ 4453 pDel = sqlite3ExprDup(db, pX, 0); 4454 if( db->mallocFailed ){ 4455 sqlite3ExprDelete(db, pDel); 4456 break; 4457 } 4458 testcase( pX->op==TK_COLUMN ); 4459 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4460 testcase( regFree1==0 ); 4461 memset(&opCompare, 0, sizeof(opCompare)); 4462 opCompare.op = TK_EQ; 4463 opCompare.pLeft = pDel; 4464 pTest = &opCompare; 4465 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4466 ** The value in regFree1 might get SCopy-ed into the file result. 4467 ** So make sure that the regFree1 register is not reused for other 4468 ** purposes and possibly overwritten. */ 4469 regFree1 = 0; 4470 } 4471 for(i=0; i<nExpr-1; i=i+2){ 4472 if( pX ){ 4473 assert( pTest!=0 ); 4474 opCompare.pRight = aListelem[i].pExpr; 4475 }else{ 4476 pTest = aListelem[i].pExpr; 4477 } 4478 nextCase = sqlite3VdbeMakeLabel(pParse); 4479 testcase( pTest->op==TK_COLUMN ); 4480 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4481 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4482 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4483 sqlite3VdbeGoto(v, endLabel); 4484 sqlite3VdbeResolveLabel(v, nextCase); 4485 } 4486 if( (nExpr&1)!=0 ){ 4487 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4488 }else{ 4489 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4490 } 4491 sqlite3ExprDelete(db, pDel); 4492 setDoNotMergeFlagOnCopy(v); 4493 sqlite3VdbeResolveLabel(v, endLabel); 4494 break; 4495 } 4496 #ifndef SQLITE_OMIT_TRIGGER 4497 case TK_RAISE: { 4498 assert( pExpr->affExpr==OE_Rollback 4499 || pExpr->affExpr==OE_Abort 4500 || pExpr->affExpr==OE_Fail 4501 || pExpr->affExpr==OE_Ignore 4502 ); 4503 if( !pParse->pTriggerTab && !pParse->nested ){ 4504 sqlite3ErrorMsg(pParse, 4505 "RAISE() may only be used within a trigger-program"); 4506 return 0; 4507 } 4508 if( pExpr->affExpr==OE_Abort ){ 4509 sqlite3MayAbort(pParse); 4510 } 4511 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4512 if( pExpr->affExpr==OE_Ignore ){ 4513 sqlite3VdbeAddOp4( 4514 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4515 VdbeCoverage(v); 4516 }else{ 4517 sqlite3HaltConstraint(pParse, 4518 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4519 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4520 } 4521 4522 break; 4523 } 4524 #endif 4525 } 4526 sqlite3ReleaseTempReg(pParse, regFree1); 4527 sqlite3ReleaseTempReg(pParse, regFree2); 4528 return inReg; 4529 } 4530 4531 /* 4532 ** Generate code that will evaluate expression pExpr just one time 4533 ** per prepared statement execution. 4534 ** 4535 ** If the expression uses functions (that might throw an exception) then 4536 ** guard them with an OP_Once opcode to ensure that the code is only executed 4537 ** once. If no functions are involved, then factor the code out and put it at 4538 ** the end of the prepared statement in the initialization section. 4539 ** 4540 ** If regDest>=0 then the result is always stored in that register and the 4541 ** result is not reusable. If regDest<0 then this routine is free to 4542 ** store the value whereever it wants. The register where the expression 4543 ** is stored is returned. When regDest<0, two identical expressions might 4544 ** code to the same register, if they do not contain function calls and hence 4545 ** are factored out into the initialization section at the end of the 4546 ** prepared statement. 4547 */ 4548 int sqlite3ExprCodeRunJustOnce( 4549 Parse *pParse, /* Parsing context */ 4550 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4551 int regDest /* Store the value in this register */ 4552 ){ 4553 ExprList *p; 4554 assert( ConstFactorOk(pParse) ); 4555 p = pParse->pConstExpr; 4556 if( regDest<0 && p ){ 4557 struct ExprList_item *pItem; 4558 int i; 4559 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4560 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4561 return pItem->u.iConstExprReg; 4562 } 4563 } 4564 } 4565 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4566 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4567 Vdbe *v = pParse->pVdbe; 4568 int addr; 4569 assert( v ); 4570 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4571 pParse->okConstFactor = 0; 4572 if( !pParse->db->mallocFailed ){ 4573 if( regDest<0 ) regDest = ++pParse->nMem; 4574 sqlite3ExprCode(pParse, pExpr, regDest); 4575 } 4576 pParse->okConstFactor = 1; 4577 sqlite3ExprDelete(pParse->db, pExpr); 4578 sqlite3VdbeJumpHere(v, addr); 4579 }else{ 4580 p = sqlite3ExprListAppend(pParse, p, pExpr); 4581 if( p ){ 4582 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4583 pItem->reusable = regDest<0; 4584 if( regDest<0 ) regDest = ++pParse->nMem; 4585 pItem->u.iConstExprReg = regDest; 4586 } 4587 pParse->pConstExpr = p; 4588 } 4589 return regDest; 4590 } 4591 4592 /* 4593 ** Generate code to evaluate an expression and store the results 4594 ** into a register. Return the register number where the results 4595 ** are stored. 4596 ** 4597 ** If the register is a temporary register that can be deallocated, 4598 ** then write its number into *pReg. If the result register is not 4599 ** a temporary, then set *pReg to zero. 4600 ** 4601 ** If pExpr is a constant, then this routine might generate this 4602 ** code to fill the register in the initialization section of the 4603 ** VDBE program, in order to factor it out of the evaluation loop. 4604 */ 4605 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4606 int r2; 4607 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4608 if( ConstFactorOk(pParse) 4609 && pExpr->op!=TK_REGISTER 4610 && sqlite3ExprIsConstantNotJoin(pExpr) 4611 ){ 4612 *pReg = 0; 4613 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4614 }else{ 4615 int r1 = sqlite3GetTempReg(pParse); 4616 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4617 if( r2==r1 ){ 4618 *pReg = r1; 4619 }else{ 4620 sqlite3ReleaseTempReg(pParse, r1); 4621 *pReg = 0; 4622 } 4623 } 4624 return r2; 4625 } 4626 4627 /* 4628 ** Generate code that will evaluate expression pExpr and store the 4629 ** results in register target. The results are guaranteed to appear 4630 ** in register target. 4631 */ 4632 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4633 int inReg; 4634 4635 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4636 assert( target>0 && target<=pParse->nMem ); 4637 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4638 if( pParse->pVdbe==0 ) return; 4639 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4640 if( inReg!=target ){ 4641 u8 op; 4642 if( ExprHasProperty(pExpr,EP_Subquery) ){ 4643 op = OP_Copy; 4644 }else{ 4645 op = OP_SCopy; 4646 } 4647 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4648 } 4649 } 4650 4651 /* 4652 ** Make a transient copy of expression pExpr and then code it using 4653 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4654 ** except that the input expression is guaranteed to be unchanged. 4655 */ 4656 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4657 sqlite3 *db = pParse->db; 4658 pExpr = sqlite3ExprDup(db, pExpr, 0); 4659 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4660 sqlite3ExprDelete(db, pExpr); 4661 } 4662 4663 /* 4664 ** Generate code that will evaluate expression pExpr and store the 4665 ** results in register target. The results are guaranteed to appear 4666 ** in register target. If the expression is constant, then this routine 4667 ** might choose to code the expression at initialization time. 4668 */ 4669 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4670 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4671 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4672 }else{ 4673 sqlite3ExprCodeCopy(pParse, pExpr, target); 4674 } 4675 } 4676 4677 /* 4678 ** Generate code that pushes the value of every element of the given 4679 ** expression list into a sequence of registers beginning at target. 4680 ** 4681 ** Return the number of elements evaluated. The number returned will 4682 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4683 ** is defined. 4684 ** 4685 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4686 ** filled using OP_SCopy. OP_Copy must be used instead. 4687 ** 4688 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4689 ** factored out into initialization code. 4690 ** 4691 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4692 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4693 ** in registers at srcReg, and so the value can be copied from there. 4694 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4695 ** are simply omitted rather than being copied from srcReg. 4696 */ 4697 int sqlite3ExprCodeExprList( 4698 Parse *pParse, /* Parsing context */ 4699 ExprList *pList, /* The expression list to be coded */ 4700 int target, /* Where to write results */ 4701 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4702 u8 flags /* SQLITE_ECEL_* flags */ 4703 ){ 4704 struct ExprList_item *pItem; 4705 int i, j, n; 4706 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4707 Vdbe *v = pParse->pVdbe; 4708 assert( pList!=0 ); 4709 assert( target>0 ); 4710 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4711 n = pList->nExpr; 4712 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4713 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4714 Expr *pExpr = pItem->pExpr; 4715 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4716 if( pItem->bSorterRef ){ 4717 i--; 4718 n--; 4719 }else 4720 #endif 4721 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4722 if( flags & SQLITE_ECEL_OMITREF ){ 4723 i--; 4724 n--; 4725 }else{ 4726 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4727 } 4728 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4729 && sqlite3ExprIsConstantNotJoin(pExpr) 4730 ){ 4731 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4732 }else{ 4733 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4734 if( inReg!=target+i ){ 4735 VdbeOp *pOp; 4736 if( copyOp==OP_Copy 4737 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4738 && pOp->p1+pOp->p3+1==inReg 4739 && pOp->p2+pOp->p3+1==target+i 4740 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4741 ){ 4742 pOp->p3++; 4743 }else{ 4744 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4745 } 4746 } 4747 } 4748 } 4749 return n; 4750 } 4751 4752 /* 4753 ** Generate code for a BETWEEN operator. 4754 ** 4755 ** x BETWEEN y AND z 4756 ** 4757 ** The above is equivalent to 4758 ** 4759 ** x>=y AND x<=z 4760 ** 4761 ** Code it as such, taking care to do the common subexpression 4762 ** elimination of x. 4763 ** 4764 ** The xJumpIf parameter determines details: 4765 ** 4766 ** NULL: Store the boolean result in reg[dest] 4767 ** sqlite3ExprIfTrue: Jump to dest if true 4768 ** sqlite3ExprIfFalse: Jump to dest if false 4769 ** 4770 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4771 */ 4772 static void exprCodeBetween( 4773 Parse *pParse, /* Parsing and code generating context */ 4774 Expr *pExpr, /* The BETWEEN expression */ 4775 int dest, /* Jump destination or storage location */ 4776 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4777 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4778 ){ 4779 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4780 Expr compLeft; /* The x>=y term */ 4781 Expr compRight; /* The x<=z term */ 4782 int regFree1 = 0; /* Temporary use register */ 4783 Expr *pDel = 0; 4784 sqlite3 *db = pParse->db; 4785 4786 memset(&compLeft, 0, sizeof(Expr)); 4787 memset(&compRight, 0, sizeof(Expr)); 4788 memset(&exprAnd, 0, sizeof(Expr)); 4789 4790 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4791 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4792 if( db->mallocFailed==0 ){ 4793 exprAnd.op = TK_AND; 4794 exprAnd.pLeft = &compLeft; 4795 exprAnd.pRight = &compRight; 4796 compLeft.op = TK_GE; 4797 compLeft.pLeft = pDel; 4798 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4799 compRight.op = TK_LE; 4800 compRight.pLeft = pDel; 4801 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4802 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4803 if( xJump ){ 4804 xJump(pParse, &exprAnd, dest, jumpIfNull); 4805 }else{ 4806 /* Mark the expression is being from the ON or USING clause of a join 4807 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4808 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4809 ** for clarity, but we are out of bits in the Expr.flags field so we 4810 ** have to reuse the EP_FromJoin bit. Bummer. */ 4811 pDel->flags |= EP_FromJoin; 4812 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4813 } 4814 sqlite3ReleaseTempReg(pParse, regFree1); 4815 } 4816 sqlite3ExprDelete(db, pDel); 4817 4818 /* Ensure adequate test coverage */ 4819 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4820 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4821 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4822 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4823 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4824 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4825 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4826 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4827 testcase( xJump==0 ); 4828 } 4829 4830 /* 4831 ** Generate code for a boolean expression such that a jump is made 4832 ** to the label "dest" if the expression is true but execution 4833 ** continues straight thru if the expression is false. 4834 ** 4835 ** If the expression evaluates to NULL (neither true nor false), then 4836 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4837 ** 4838 ** This code depends on the fact that certain token values (ex: TK_EQ) 4839 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4840 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4841 ** the make process cause these values to align. Assert()s in the code 4842 ** below verify that the numbers are aligned correctly. 4843 */ 4844 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4845 Vdbe *v = pParse->pVdbe; 4846 int op = 0; 4847 int regFree1 = 0; 4848 int regFree2 = 0; 4849 int r1, r2; 4850 4851 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4852 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4853 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4854 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 4855 op = pExpr->op; 4856 switch( op ){ 4857 case TK_AND: 4858 case TK_OR: { 4859 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4860 if( pAlt!=pExpr ){ 4861 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4862 }else if( op==TK_AND ){ 4863 int d2 = sqlite3VdbeMakeLabel(pParse); 4864 testcase( jumpIfNull==0 ); 4865 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4866 jumpIfNull^SQLITE_JUMPIFNULL); 4867 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4868 sqlite3VdbeResolveLabel(v, d2); 4869 }else{ 4870 testcase( jumpIfNull==0 ); 4871 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4872 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4873 } 4874 break; 4875 } 4876 case TK_NOT: { 4877 testcase( jumpIfNull==0 ); 4878 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4879 break; 4880 } 4881 case TK_TRUTH: { 4882 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4883 int isTrue; /* IS TRUE or IS NOT TRUE */ 4884 testcase( jumpIfNull==0 ); 4885 isNot = pExpr->op2==TK_ISNOT; 4886 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4887 testcase( isTrue && isNot ); 4888 testcase( !isTrue && isNot ); 4889 if( isTrue ^ isNot ){ 4890 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4891 isNot ? SQLITE_JUMPIFNULL : 0); 4892 }else{ 4893 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4894 isNot ? SQLITE_JUMPIFNULL : 0); 4895 } 4896 break; 4897 } 4898 case TK_IS: 4899 case TK_ISNOT: 4900 testcase( op==TK_IS ); 4901 testcase( op==TK_ISNOT ); 4902 op = (op==TK_IS) ? TK_EQ : TK_NE; 4903 jumpIfNull = SQLITE_NULLEQ; 4904 /* Fall thru */ 4905 case TK_LT: 4906 case TK_LE: 4907 case TK_GT: 4908 case TK_GE: 4909 case TK_NE: 4910 case TK_EQ: { 4911 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4912 testcase( jumpIfNull==0 ); 4913 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4914 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4915 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4916 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 4917 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4918 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4919 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4920 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4921 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4922 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4923 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4924 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4925 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4926 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4927 testcase( regFree1==0 ); 4928 testcase( regFree2==0 ); 4929 break; 4930 } 4931 case TK_ISNULL: 4932 case TK_NOTNULL: { 4933 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4934 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4935 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4936 sqlite3VdbeAddOp2(v, op, r1, dest); 4937 VdbeCoverageIf(v, op==TK_ISNULL); 4938 VdbeCoverageIf(v, op==TK_NOTNULL); 4939 testcase( regFree1==0 ); 4940 break; 4941 } 4942 case TK_BETWEEN: { 4943 testcase( jumpIfNull==0 ); 4944 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4945 break; 4946 } 4947 #ifndef SQLITE_OMIT_SUBQUERY 4948 case TK_IN: { 4949 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4950 int destIfNull = jumpIfNull ? dest : destIfFalse; 4951 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4952 sqlite3VdbeGoto(v, dest); 4953 sqlite3VdbeResolveLabel(v, destIfFalse); 4954 break; 4955 } 4956 #endif 4957 default: { 4958 default_expr: 4959 if( ExprAlwaysTrue(pExpr) ){ 4960 sqlite3VdbeGoto(v, dest); 4961 }else if( ExprAlwaysFalse(pExpr) ){ 4962 /* No-op */ 4963 }else{ 4964 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4965 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4966 VdbeCoverage(v); 4967 testcase( regFree1==0 ); 4968 testcase( jumpIfNull==0 ); 4969 } 4970 break; 4971 } 4972 } 4973 sqlite3ReleaseTempReg(pParse, regFree1); 4974 sqlite3ReleaseTempReg(pParse, regFree2); 4975 } 4976 4977 /* 4978 ** Generate code for a boolean expression such that a jump is made 4979 ** to the label "dest" if the expression is false but execution 4980 ** continues straight thru if the expression is true. 4981 ** 4982 ** If the expression evaluates to NULL (neither true nor false) then 4983 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4984 ** is 0. 4985 */ 4986 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4987 Vdbe *v = pParse->pVdbe; 4988 int op = 0; 4989 int regFree1 = 0; 4990 int regFree2 = 0; 4991 int r1, r2; 4992 4993 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4994 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4995 if( pExpr==0 ) return; 4996 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4997 4998 /* The value of pExpr->op and op are related as follows: 4999 ** 5000 ** pExpr->op op 5001 ** --------- ---------- 5002 ** TK_ISNULL OP_NotNull 5003 ** TK_NOTNULL OP_IsNull 5004 ** TK_NE OP_Eq 5005 ** TK_EQ OP_Ne 5006 ** TK_GT OP_Le 5007 ** TK_LE OP_Gt 5008 ** TK_GE OP_Lt 5009 ** TK_LT OP_Ge 5010 ** 5011 ** For other values of pExpr->op, op is undefined and unused. 5012 ** The value of TK_ and OP_ constants are arranged such that we 5013 ** can compute the mapping above using the following expression. 5014 ** Assert()s verify that the computation is correct. 5015 */ 5016 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5017 5018 /* Verify correct alignment of TK_ and OP_ constants 5019 */ 5020 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5021 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5022 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5023 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5024 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5025 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5026 assert( pExpr->op!=TK_GT || op==OP_Le ); 5027 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5028 5029 switch( pExpr->op ){ 5030 case TK_AND: 5031 case TK_OR: { 5032 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5033 if( pAlt!=pExpr ){ 5034 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5035 }else if( pExpr->op==TK_AND ){ 5036 testcase( jumpIfNull==0 ); 5037 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5038 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5039 }else{ 5040 int d2 = sqlite3VdbeMakeLabel(pParse); 5041 testcase( jumpIfNull==0 ); 5042 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5043 jumpIfNull^SQLITE_JUMPIFNULL); 5044 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5045 sqlite3VdbeResolveLabel(v, d2); 5046 } 5047 break; 5048 } 5049 case TK_NOT: { 5050 testcase( jumpIfNull==0 ); 5051 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5052 break; 5053 } 5054 case TK_TRUTH: { 5055 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5056 int isTrue; /* IS TRUE or IS NOT TRUE */ 5057 testcase( jumpIfNull==0 ); 5058 isNot = pExpr->op2==TK_ISNOT; 5059 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5060 testcase( isTrue && isNot ); 5061 testcase( !isTrue && isNot ); 5062 if( isTrue ^ isNot ){ 5063 /* IS TRUE and IS NOT FALSE */ 5064 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5065 isNot ? 0 : SQLITE_JUMPIFNULL); 5066 5067 }else{ 5068 /* IS FALSE and IS NOT TRUE */ 5069 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5070 isNot ? 0 : SQLITE_JUMPIFNULL); 5071 } 5072 break; 5073 } 5074 case TK_IS: 5075 case TK_ISNOT: 5076 testcase( pExpr->op==TK_IS ); 5077 testcase( pExpr->op==TK_ISNOT ); 5078 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5079 jumpIfNull = SQLITE_NULLEQ; 5080 /* Fall thru */ 5081 case TK_LT: 5082 case TK_LE: 5083 case TK_GT: 5084 case TK_GE: 5085 case TK_NE: 5086 case TK_EQ: { 5087 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5088 testcase( jumpIfNull==0 ); 5089 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5090 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5091 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5092 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5093 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5094 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5095 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5096 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5097 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5098 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5099 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5100 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5101 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5102 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5103 testcase( regFree1==0 ); 5104 testcase( regFree2==0 ); 5105 break; 5106 } 5107 case TK_ISNULL: 5108 case TK_NOTNULL: { 5109 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5110 sqlite3VdbeAddOp2(v, op, r1, dest); 5111 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5112 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5113 testcase( regFree1==0 ); 5114 break; 5115 } 5116 case TK_BETWEEN: { 5117 testcase( jumpIfNull==0 ); 5118 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5119 break; 5120 } 5121 #ifndef SQLITE_OMIT_SUBQUERY 5122 case TK_IN: { 5123 if( jumpIfNull ){ 5124 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5125 }else{ 5126 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5127 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5128 sqlite3VdbeResolveLabel(v, destIfNull); 5129 } 5130 break; 5131 } 5132 #endif 5133 default: { 5134 default_expr: 5135 if( ExprAlwaysFalse(pExpr) ){ 5136 sqlite3VdbeGoto(v, dest); 5137 }else if( ExprAlwaysTrue(pExpr) ){ 5138 /* no-op */ 5139 }else{ 5140 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5141 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5142 VdbeCoverage(v); 5143 testcase( regFree1==0 ); 5144 testcase( jumpIfNull==0 ); 5145 } 5146 break; 5147 } 5148 } 5149 sqlite3ReleaseTempReg(pParse, regFree1); 5150 sqlite3ReleaseTempReg(pParse, regFree2); 5151 } 5152 5153 /* 5154 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5155 ** code generation, and that copy is deleted after code generation. This 5156 ** ensures that the original pExpr is unchanged. 5157 */ 5158 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5159 sqlite3 *db = pParse->db; 5160 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5161 if( db->mallocFailed==0 ){ 5162 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5163 } 5164 sqlite3ExprDelete(db, pCopy); 5165 } 5166 5167 /* 5168 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5169 ** type of expression. 5170 ** 5171 ** If pExpr is a simple SQL value - an integer, real, string, blob 5172 ** or NULL value - then the VDBE currently being prepared is configured 5173 ** to re-prepare each time a new value is bound to variable pVar. 5174 ** 5175 ** Additionally, if pExpr is a simple SQL value and the value is the 5176 ** same as that currently bound to variable pVar, non-zero is returned. 5177 ** Otherwise, if the values are not the same or if pExpr is not a simple 5178 ** SQL value, zero is returned. 5179 */ 5180 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 5181 int res = 0; 5182 int iVar; 5183 sqlite3_value *pL, *pR = 0; 5184 5185 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5186 if( pR ){ 5187 iVar = pVar->iColumn; 5188 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5189 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5190 if( pL ){ 5191 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5192 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5193 } 5194 res = 0==sqlite3MemCompare(pL, pR, 0); 5195 } 5196 sqlite3ValueFree(pR); 5197 sqlite3ValueFree(pL); 5198 } 5199 5200 return res; 5201 } 5202 5203 /* 5204 ** Do a deep comparison of two expression trees. Return 0 if the two 5205 ** expressions are completely identical. Return 1 if they differ only 5206 ** by a COLLATE operator at the top level. Return 2 if there are differences 5207 ** other than the top-level COLLATE operator. 5208 ** 5209 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5210 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5211 ** 5212 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5213 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5214 ** 5215 ** Sometimes this routine will return 2 even if the two expressions 5216 ** really are equivalent. If we cannot prove that the expressions are 5217 ** identical, we return 2 just to be safe. So if this routine 5218 ** returns 2, then you do not really know for certain if the two 5219 ** expressions are the same. But if you get a 0 or 1 return, then you 5220 ** can be sure the expressions are the same. In the places where 5221 ** this routine is used, it does not hurt to get an extra 2 - that 5222 ** just might result in some slightly slower code. But returning 5223 ** an incorrect 0 or 1 could lead to a malfunction. 5224 ** 5225 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5226 ** pParse->pReprepare can be matched against literals in pB. The 5227 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5228 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5229 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5230 ** pB causes a return value of 2. 5231 */ 5232 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 5233 u32 combinedFlags; 5234 if( pA==0 || pB==0 ){ 5235 return pB==pA ? 0 : 2; 5236 } 5237 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5238 return 0; 5239 } 5240 combinedFlags = pA->flags | pB->flags; 5241 if( combinedFlags & EP_IntValue ){ 5242 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5243 return 0; 5244 } 5245 return 2; 5246 } 5247 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5248 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5249 return 1; 5250 } 5251 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5252 return 1; 5253 } 5254 return 2; 5255 } 5256 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5257 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5258 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5259 #ifndef SQLITE_OMIT_WINDOWFUNC 5260 assert( pA->op==pB->op ); 5261 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5262 return 2; 5263 } 5264 if( ExprHasProperty(pA,EP_WinFunc) ){ 5265 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5266 return 2; 5267 } 5268 } 5269 #endif 5270 }else if( pA->op==TK_NULL ){ 5271 return 0; 5272 }else if( pA->op==TK_COLLATE ){ 5273 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5274 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5275 return 2; 5276 } 5277 } 5278 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5279 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5280 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5281 if( combinedFlags & EP_xIsSelect ) return 2; 5282 if( (combinedFlags & EP_FixedCol)==0 5283 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5284 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5285 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5286 if( pA->op!=TK_STRING 5287 && pA->op!=TK_TRUEFALSE 5288 && ALWAYS((combinedFlags & EP_Reduced)==0) 5289 ){ 5290 if( pA->iColumn!=pB->iColumn ) return 2; 5291 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5292 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5293 return 2; 5294 } 5295 } 5296 } 5297 return 0; 5298 } 5299 5300 /* 5301 ** Compare two ExprList objects. Return 0 if they are identical, 1 5302 ** if they are certainly different, or 2 if it is not possible to 5303 ** determine if they are identical or not. 5304 ** 5305 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5306 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5307 ** 5308 ** This routine might return non-zero for equivalent ExprLists. The 5309 ** only consequence will be disabled optimizations. But this routine 5310 ** must never return 0 if the two ExprList objects are different, or 5311 ** a malfunction will result. 5312 ** 5313 ** Two NULL pointers are considered to be the same. But a NULL pointer 5314 ** always differs from a non-NULL pointer. 5315 */ 5316 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 5317 int i; 5318 if( pA==0 && pB==0 ) return 0; 5319 if( pA==0 || pB==0 ) return 1; 5320 if( pA->nExpr!=pB->nExpr ) return 1; 5321 for(i=0; i<pA->nExpr; i++){ 5322 int res; 5323 Expr *pExprA = pA->a[i].pExpr; 5324 Expr *pExprB = pB->a[i].pExpr; 5325 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5326 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5327 } 5328 return 0; 5329 } 5330 5331 /* 5332 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5333 ** are ignored. 5334 */ 5335 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 5336 return sqlite3ExprCompare(0, 5337 sqlite3ExprSkipCollateAndLikely(pA), 5338 sqlite3ExprSkipCollateAndLikely(pB), 5339 iTab); 5340 } 5341 5342 /* 5343 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5344 ** 5345 ** Or if seenNot is true, return non-zero if Expr p can only be 5346 ** non-NULL if pNN is not NULL 5347 */ 5348 static int exprImpliesNotNull( 5349 Parse *pParse, /* Parsing context */ 5350 Expr *p, /* The expression to be checked */ 5351 Expr *pNN, /* The expression that is NOT NULL */ 5352 int iTab, /* Table being evaluated */ 5353 int seenNot /* Return true only if p can be any non-NULL value */ 5354 ){ 5355 assert( p ); 5356 assert( pNN ); 5357 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5358 return pNN->op!=TK_NULL; 5359 } 5360 switch( p->op ){ 5361 case TK_IN: { 5362 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5363 assert( ExprHasProperty(p,EP_xIsSelect) 5364 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5365 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5366 } 5367 case TK_BETWEEN: { 5368 ExprList *pList = p->x.pList; 5369 assert( pList!=0 ); 5370 assert( pList->nExpr==2 ); 5371 if( seenNot ) return 0; 5372 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5373 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5374 ){ 5375 return 1; 5376 } 5377 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5378 } 5379 case TK_EQ: 5380 case TK_NE: 5381 case TK_LT: 5382 case TK_LE: 5383 case TK_GT: 5384 case TK_GE: 5385 case TK_PLUS: 5386 case TK_MINUS: 5387 case TK_BITOR: 5388 case TK_LSHIFT: 5389 case TK_RSHIFT: 5390 case TK_CONCAT: 5391 seenNot = 1; 5392 /* Fall thru */ 5393 case TK_STAR: 5394 case TK_REM: 5395 case TK_BITAND: 5396 case TK_SLASH: { 5397 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5398 /* Fall thru into the next case */ 5399 } 5400 case TK_SPAN: 5401 case TK_COLLATE: 5402 case TK_UPLUS: 5403 case TK_UMINUS: { 5404 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5405 } 5406 case TK_TRUTH: { 5407 if( seenNot ) return 0; 5408 if( p->op2!=TK_IS ) return 0; 5409 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5410 } 5411 case TK_BITNOT: 5412 case TK_NOT: { 5413 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5414 } 5415 } 5416 return 0; 5417 } 5418 5419 /* 5420 ** Return true if we can prove the pE2 will always be true if pE1 is 5421 ** true. Return false if we cannot complete the proof or if pE2 might 5422 ** be false. Examples: 5423 ** 5424 ** pE1: x==5 pE2: x==5 Result: true 5425 ** pE1: x>0 pE2: x==5 Result: false 5426 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5427 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5428 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5429 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5430 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5431 ** 5432 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5433 ** Expr.iTable<0 then assume a table number given by iTab. 5434 ** 5435 ** If pParse is not NULL, then the values of bound variables in pE1 are 5436 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5437 ** modified to record which bound variables are referenced. If pParse 5438 ** is NULL, then false will be returned if pE1 contains any bound variables. 5439 ** 5440 ** When in doubt, return false. Returning true might give a performance 5441 ** improvement. Returning false might cause a performance reduction, but 5442 ** it will always give the correct answer and is hence always safe. 5443 */ 5444 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5445 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5446 return 1; 5447 } 5448 if( pE2->op==TK_OR 5449 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5450 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5451 ){ 5452 return 1; 5453 } 5454 if( pE2->op==TK_NOTNULL 5455 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5456 ){ 5457 return 1; 5458 } 5459 return 0; 5460 } 5461 5462 /* 5463 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5464 ** If the expression node requires that the table at pWalker->iCur 5465 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5466 ** 5467 ** This routine controls an optimization. False positives (setting 5468 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5469 ** (never setting pWalker->eCode) is a harmless missed optimization. 5470 */ 5471 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5472 testcase( pExpr->op==TK_AGG_COLUMN ); 5473 testcase( pExpr->op==TK_AGG_FUNCTION ); 5474 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5475 switch( pExpr->op ){ 5476 case TK_ISNOT: 5477 case TK_ISNULL: 5478 case TK_NOTNULL: 5479 case TK_IS: 5480 case TK_OR: 5481 case TK_VECTOR: 5482 case TK_CASE: 5483 case TK_IN: 5484 case TK_FUNCTION: 5485 case TK_TRUTH: 5486 testcase( pExpr->op==TK_ISNOT ); 5487 testcase( pExpr->op==TK_ISNULL ); 5488 testcase( pExpr->op==TK_NOTNULL ); 5489 testcase( pExpr->op==TK_IS ); 5490 testcase( pExpr->op==TK_OR ); 5491 testcase( pExpr->op==TK_VECTOR ); 5492 testcase( pExpr->op==TK_CASE ); 5493 testcase( pExpr->op==TK_IN ); 5494 testcase( pExpr->op==TK_FUNCTION ); 5495 testcase( pExpr->op==TK_TRUTH ); 5496 return WRC_Prune; 5497 case TK_COLUMN: 5498 if( pWalker->u.iCur==pExpr->iTable ){ 5499 pWalker->eCode = 1; 5500 return WRC_Abort; 5501 } 5502 return WRC_Prune; 5503 5504 case TK_AND: 5505 if( pWalker->eCode==0 ){ 5506 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5507 if( pWalker->eCode ){ 5508 pWalker->eCode = 0; 5509 sqlite3WalkExpr(pWalker, pExpr->pRight); 5510 } 5511 } 5512 return WRC_Prune; 5513 5514 case TK_BETWEEN: 5515 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5516 assert( pWalker->eCode ); 5517 return WRC_Abort; 5518 } 5519 return WRC_Prune; 5520 5521 /* Virtual tables are allowed to use constraints like x=NULL. So 5522 ** a term of the form x=y does not prove that y is not null if x 5523 ** is the column of a virtual table */ 5524 case TK_EQ: 5525 case TK_NE: 5526 case TK_LT: 5527 case TK_LE: 5528 case TK_GT: 5529 case TK_GE: { 5530 Expr *pLeft = pExpr->pLeft; 5531 Expr *pRight = pExpr->pRight; 5532 testcase( pExpr->op==TK_EQ ); 5533 testcase( pExpr->op==TK_NE ); 5534 testcase( pExpr->op==TK_LT ); 5535 testcase( pExpr->op==TK_LE ); 5536 testcase( pExpr->op==TK_GT ); 5537 testcase( pExpr->op==TK_GE ); 5538 /* The y.pTab=0 assignment in wherecode.c always happens after the 5539 ** impliesNotNullRow() test */ 5540 if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0) 5541 && IsVirtual(pLeft->y.pTab)) 5542 || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0) 5543 && IsVirtual(pRight->y.pTab)) 5544 ){ 5545 return WRC_Prune; 5546 } 5547 } 5548 default: 5549 return WRC_Continue; 5550 } 5551 } 5552 5553 /* 5554 ** Return true (non-zero) if expression p can only be true if at least 5555 ** one column of table iTab is non-null. In other words, return true 5556 ** if expression p will always be NULL or false if every column of iTab 5557 ** is NULL. 5558 ** 5559 ** False negatives are acceptable. In other words, it is ok to return 5560 ** zero even if expression p will never be true of every column of iTab 5561 ** is NULL. A false negative is merely a missed optimization opportunity. 5562 ** 5563 ** False positives are not allowed, however. A false positive may result 5564 ** in an incorrect answer. 5565 ** 5566 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5567 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5568 ** 5569 ** This routine is used to check if a LEFT JOIN can be converted into 5570 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5571 ** clause requires that some column of the right table of the LEFT JOIN 5572 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5573 ** ordinary join. 5574 */ 5575 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5576 Walker w; 5577 p = sqlite3ExprSkipCollateAndLikely(p); 5578 if( p==0 ) return 0; 5579 if( p->op==TK_NOTNULL ){ 5580 p = p->pLeft; 5581 }else{ 5582 while( p->op==TK_AND ){ 5583 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5584 p = p->pRight; 5585 } 5586 } 5587 w.xExprCallback = impliesNotNullRow; 5588 w.xSelectCallback = 0; 5589 w.xSelectCallback2 = 0; 5590 w.eCode = 0; 5591 w.u.iCur = iTab; 5592 sqlite3WalkExpr(&w, p); 5593 return w.eCode; 5594 } 5595 5596 /* 5597 ** An instance of the following structure is used by the tree walker 5598 ** to determine if an expression can be evaluated by reference to the 5599 ** index only, without having to do a search for the corresponding 5600 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5601 ** is the cursor for the table. 5602 */ 5603 struct IdxCover { 5604 Index *pIdx; /* The index to be tested for coverage */ 5605 int iCur; /* Cursor number for the table corresponding to the index */ 5606 }; 5607 5608 /* 5609 ** Check to see if there are references to columns in table 5610 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5611 ** pWalker->u.pIdxCover->pIdx. 5612 */ 5613 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5614 if( pExpr->op==TK_COLUMN 5615 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5616 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5617 ){ 5618 pWalker->eCode = 1; 5619 return WRC_Abort; 5620 } 5621 return WRC_Continue; 5622 } 5623 5624 /* 5625 ** Determine if an index pIdx on table with cursor iCur contains will 5626 ** the expression pExpr. Return true if the index does cover the 5627 ** expression and false if the pExpr expression references table columns 5628 ** that are not found in the index pIdx. 5629 ** 5630 ** An index covering an expression means that the expression can be 5631 ** evaluated using only the index and without having to lookup the 5632 ** corresponding table entry. 5633 */ 5634 int sqlite3ExprCoveredByIndex( 5635 Expr *pExpr, /* The index to be tested */ 5636 int iCur, /* The cursor number for the corresponding table */ 5637 Index *pIdx /* The index that might be used for coverage */ 5638 ){ 5639 Walker w; 5640 struct IdxCover xcov; 5641 memset(&w, 0, sizeof(w)); 5642 xcov.iCur = iCur; 5643 xcov.pIdx = pIdx; 5644 w.xExprCallback = exprIdxCover; 5645 w.u.pIdxCover = &xcov; 5646 sqlite3WalkExpr(&w, pExpr); 5647 return !w.eCode; 5648 } 5649 5650 5651 /* 5652 ** An instance of the following structure is used by the tree walker 5653 ** to count references to table columns in the arguments of an 5654 ** aggregate function, in order to implement the 5655 ** sqlite3FunctionThisSrc() routine. 5656 */ 5657 struct SrcCount { 5658 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5659 int iSrcInner; /* Smallest cursor number in this context */ 5660 int nThis; /* Number of references to columns in pSrcList */ 5661 int nOther; /* Number of references to columns in other FROM clauses */ 5662 }; 5663 5664 /* 5665 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first 5666 ** SELECT with a FROM clause encountered during this iteration, set 5667 ** SrcCount.iSrcInner to the cursor number of the leftmost object in 5668 ** the FROM cause. 5669 */ 5670 static int selectSrcCount(Walker *pWalker, Select *pSel){ 5671 struct SrcCount *p = pWalker->u.pSrcCount; 5672 if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){ 5673 pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor; 5674 } 5675 return WRC_Continue; 5676 } 5677 5678 /* 5679 ** Count the number of references to columns. 5680 */ 5681 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5682 /* There was once a NEVER() on the second term on the grounds that 5683 ** sqlite3FunctionUsesThisSrc() was always called before 5684 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet 5685 ** been converted into TK_AGG_COLUMN. But this is no longer true due 5686 ** to window functions - sqlite3WindowRewrite() may now indirectly call 5687 ** FunctionUsesThisSrc() when creating a new sub-select. */ 5688 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 5689 int i; 5690 struct SrcCount *p = pWalker->u.pSrcCount; 5691 SrcList *pSrc = p->pSrc; 5692 int nSrc = pSrc ? pSrc->nSrc : 0; 5693 for(i=0; i<nSrc; i++){ 5694 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5695 } 5696 if( i<nSrc ){ 5697 p->nThis++; 5698 }else if( pExpr->iTable<p->iSrcInner ){ 5699 /* In a well-formed parse tree (no name resolution errors), 5700 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5701 ** outer context. Those are the only ones to count as "other" */ 5702 p->nOther++; 5703 } 5704 } 5705 return WRC_Continue; 5706 } 5707 5708 /* 5709 ** Determine if any of the arguments to the pExpr Function reference 5710 ** pSrcList. Return true if they do. Also return true if the function 5711 ** has no arguments or has only constant arguments. Return false if pExpr 5712 ** references columns but not columns of tables found in pSrcList. 5713 */ 5714 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5715 Walker w; 5716 struct SrcCount cnt; 5717 assert( pExpr->op==TK_AGG_FUNCTION ); 5718 memset(&w, 0, sizeof(w)); 5719 w.xExprCallback = exprSrcCount; 5720 w.xSelectCallback = selectSrcCount; 5721 w.u.pSrcCount = &cnt; 5722 cnt.pSrc = pSrcList; 5723 cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF; 5724 cnt.nThis = 0; 5725 cnt.nOther = 0; 5726 sqlite3WalkExprList(&w, pExpr->x.pList); 5727 #ifndef SQLITE_OMIT_WINDOWFUNC 5728 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5729 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5730 } 5731 #endif 5732 return cnt.nThis>0 || cnt.nOther==0; 5733 } 5734 5735 /* 5736 ** This is a Walker expression node callback. 5737 ** 5738 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 5739 ** object that is referenced does not refer directly to the Expr. If 5740 ** it does, make a copy. This is done because the pExpr argument is 5741 ** subject to change. 5742 ** 5743 ** The copy is stored on pParse->pConstExpr with a register number of 0. 5744 ** This will cause the expression to be deleted automatically when the 5745 ** Parse object is destroyed, but the zero register number means that it 5746 ** will not generate any code in the preamble. 5747 */ 5748 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 5749 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 5750 && pExpr->pAggInfo!=0 5751 ){ 5752 AggInfo *pAggInfo = pExpr->pAggInfo; 5753 int iAgg = pExpr->iAgg; 5754 Parse *pParse = pWalker->pParse; 5755 sqlite3 *db = pParse->db; 5756 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 5757 if( pExpr->op==TK_AGG_COLUMN ){ 5758 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 5759 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 5760 pExpr = sqlite3ExprDup(db, pExpr, 0); 5761 if( pExpr ){ 5762 pAggInfo->aCol[iAgg].pCExpr = pExpr; 5763 pParse->pConstExpr = 5764 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 5765 } 5766 } 5767 }else{ 5768 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 5769 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 5770 pExpr = sqlite3ExprDup(db, pExpr, 0); 5771 if( pExpr ){ 5772 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 5773 pParse->pConstExpr = 5774 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 5775 } 5776 } 5777 } 5778 } 5779 return WRC_Continue; 5780 } 5781 5782 /* 5783 ** Initialize a Walker object so that will persist AggInfo entries referenced 5784 ** by the tree that is walked. 5785 */ 5786 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 5787 memset(pWalker, 0, sizeof(*pWalker)); 5788 pWalker->pParse = pParse; 5789 pWalker->xExprCallback = agginfoPersistExprCb; 5790 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 5791 } 5792 5793 /* 5794 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5795 ** the new element. Return a negative number if malloc fails. 5796 */ 5797 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5798 int i; 5799 pInfo->aCol = sqlite3ArrayAllocate( 5800 db, 5801 pInfo->aCol, 5802 sizeof(pInfo->aCol[0]), 5803 &pInfo->nColumn, 5804 &i 5805 ); 5806 return i; 5807 } 5808 5809 /* 5810 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5811 ** the new element. Return a negative number if malloc fails. 5812 */ 5813 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5814 int i; 5815 pInfo->aFunc = sqlite3ArrayAllocate( 5816 db, 5817 pInfo->aFunc, 5818 sizeof(pInfo->aFunc[0]), 5819 &pInfo->nFunc, 5820 &i 5821 ); 5822 return i; 5823 } 5824 5825 /* 5826 ** This is the xExprCallback for a tree walker. It is used to 5827 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5828 ** for additional information. 5829 */ 5830 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5831 int i; 5832 NameContext *pNC = pWalker->u.pNC; 5833 Parse *pParse = pNC->pParse; 5834 SrcList *pSrcList = pNC->pSrcList; 5835 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5836 5837 assert( pNC->ncFlags & NC_UAggInfo ); 5838 switch( pExpr->op ){ 5839 case TK_AGG_COLUMN: 5840 case TK_COLUMN: { 5841 testcase( pExpr->op==TK_AGG_COLUMN ); 5842 testcase( pExpr->op==TK_COLUMN ); 5843 /* Check to see if the column is in one of the tables in the FROM 5844 ** clause of the aggregate query */ 5845 if( ALWAYS(pSrcList!=0) ){ 5846 struct SrcList_item *pItem = pSrcList->a; 5847 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5848 struct AggInfo_col *pCol; 5849 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5850 if( pExpr->iTable==pItem->iCursor ){ 5851 /* If we reach this point, it means that pExpr refers to a table 5852 ** that is in the FROM clause of the aggregate query. 5853 ** 5854 ** Make an entry for the column in pAggInfo->aCol[] if there 5855 ** is not an entry there already. 5856 */ 5857 int k; 5858 pCol = pAggInfo->aCol; 5859 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5860 if( pCol->iTable==pExpr->iTable && 5861 pCol->iColumn==pExpr->iColumn ){ 5862 break; 5863 } 5864 } 5865 if( (k>=pAggInfo->nColumn) 5866 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5867 ){ 5868 pCol = &pAggInfo->aCol[k]; 5869 pCol->pTab = pExpr->y.pTab; 5870 pCol->iTable = pExpr->iTable; 5871 pCol->iColumn = pExpr->iColumn; 5872 pCol->iMem = ++pParse->nMem; 5873 pCol->iSorterColumn = -1; 5874 pCol->pCExpr = pExpr; 5875 if( pAggInfo->pGroupBy ){ 5876 int j, n; 5877 ExprList *pGB = pAggInfo->pGroupBy; 5878 struct ExprList_item *pTerm = pGB->a; 5879 n = pGB->nExpr; 5880 for(j=0; j<n; j++, pTerm++){ 5881 Expr *pE = pTerm->pExpr; 5882 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5883 pE->iColumn==pExpr->iColumn ){ 5884 pCol->iSorterColumn = j; 5885 break; 5886 } 5887 } 5888 } 5889 if( pCol->iSorterColumn<0 ){ 5890 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5891 } 5892 } 5893 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5894 ** because it was there before or because we just created it). 5895 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5896 ** pAggInfo->aCol[] entry. 5897 */ 5898 ExprSetVVAProperty(pExpr, EP_NoReduce); 5899 pExpr->pAggInfo = pAggInfo; 5900 pExpr->op = TK_AGG_COLUMN; 5901 pExpr->iAgg = (i16)k; 5902 break; 5903 } /* endif pExpr->iTable==pItem->iCursor */ 5904 } /* end loop over pSrcList */ 5905 } 5906 return WRC_Prune; 5907 } 5908 case TK_AGG_FUNCTION: { 5909 if( (pNC->ncFlags & NC_InAggFunc)==0 5910 && pWalker->walkerDepth==pExpr->op2 5911 ){ 5912 /* Check to see if pExpr is a duplicate of another aggregate 5913 ** function that is already in the pAggInfo structure 5914 */ 5915 struct AggInfo_func *pItem = pAggInfo->aFunc; 5916 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5917 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 5918 break; 5919 } 5920 } 5921 if( i>=pAggInfo->nFunc ){ 5922 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5923 */ 5924 u8 enc = ENC(pParse->db); 5925 i = addAggInfoFunc(pParse->db, pAggInfo); 5926 if( i>=0 ){ 5927 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5928 pItem = &pAggInfo->aFunc[i]; 5929 pItem->pFExpr = pExpr; 5930 pItem->iMem = ++pParse->nMem; 5931 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5932 pItem->pFunc = sqlite3FindFunction(pParse->db, 5933 pExpr->u.zToken, 5934 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5935 if( pExpr->flags & EP_Distinct ){ 5936 pItem->iDistinct = pParse->nTab++; 5937 }else{ 5938 pItem->iDistinct = -1; 5939 } 5940 } 5941 } 5942 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5943 */ 5944 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5945 ExprSetVVAProperty(pExpr, EP_NoReduce); 5946 pExpr->iAgg = (i16)i; 5947 pExpr->pAggInfo = pAggInfo; 5948 return WRC_Prune; 5949 }else{ 5950 return WRC_Continue; 5951 } 5952 } 5953 } 5954 return WRC_Continue; 5955 } 5956 5957 /* 5958 ** Analyze the pExpr expression looking for aggregate functions and 5959 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5960 ** points to. Additional entries are made on the AggInfo object as 5961 ** necessary. 5962 ** 5963 ** This routine should only be called after the expression has been 5964 ** analyzed by sqlite3ResolveExprNames(). 5965 */ 5966 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5967 Walker w; 5968 w.xExprCallback = analyzeAggregate; 5969 w.xSelectCallback = sqlite3WalkerDepthIncrease; 5970 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 5971 w.walkerDepth = 0; 5972 w.u.pNC = pNC; 5973 w.pParse = 0; 5974 assert( pNC->pSrcList!=0 ); 5975 sqlite3WalkExpr(&w, pExpr); 5976 } 5977 5978 /* 5979 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5980 ** expression list. Return the number of errors. 5981 ** 5982 ** If an error is found, the analysis is cut short. 5983 */ 5984 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5985 struct ExprList_item *pItem; 5986 int i; 5987 if( pList ){ 5988 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5989 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5990 } 5991 } 5992 } 5993 5994 /* 5995 ** Allocate a single new register for use to hold some intermediate result. 5996 */ 5997 int sqlite3GetTempReg(Parse *pParse){ 5998 if( pParse->nTempReg==0 ){ 5999 return ++pParse->nMem; 6000 } 6001 return pParse->aTempReg[--pParse->nTempReg]; 6002 } 6003 6004 /* 6005 ** Deallocate a register, making available for reuse for some other 6006 ** purpose. 6007 */ 6008 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6009 if( iReg ){ 6010 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6011 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6012 pParse->aTempReg[pParse->nTempReg++] = iReg; 6013 } 6014 } 6015 } 6016 6017 /* 6018 ** Allocate or deallocate a block of nReg consecutive registers. 6019 */ 6020 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6021 int i, n; 6022 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6023 i = pParse->iRangeReg; 6024 n = pParse->nRangeReg; 6025 if( nReg<=n ){ 6026 pParse->iRangeReg += nReg; 6027 pParse->nRangeReg -= nReg; 6028 }else{ 6029 i = pParse->nMem+1; 6030 pParse->nMem += nReg; 6031 } 6032 return i; 6033 } 6034 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6035 if( nReg==1 ){ 6036 sqlite3ReleaseTempReg(pParse, iReg); 6037 return; 6038 } 6039 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6040 if( nReg>pParse->nRangeReg ){ 6041 pParse->nRangeReg = nReg; 6042 pParse->iRangeReg = iReg; 6043 } 6044 } 6045 6046 /* 6047 ** Mark all temporary registers as being unavailable for reuse. 6048 ** 6049 ** Always invoke this procedure after coding a subroutine or co-routine 6050 ** that might be invoked from other parts of the code, to ensure that 6051 ** the sub/co-routine does not use registers in common with the code that 6052 ** invokes the sub/co-routine. 6053 */ 6054 void sqlite3ClearTempRegCache(Parse *pParse){ 6055 pParse->nTempReg = 0; 6056 pParse->nRangeReg = 0; 6057 } 6058 6059 /* 6060 ** Validate that no temporary register falls within the range of 6061 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6062 ** statements. 6063 */ 6064 #ifdef SQLITE_DEBUG 6065 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6066 int i; 6067 if( pParse->nRangeReg>0 6068 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6069 && pParse->iRangeReg <= iLast 6070 ){ 6071 return 0; 6072 } 6073 for(i=0; i<pParse->nTempReg; i++){ 6074 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6075 return 0; 6076 } 6077 } 6078 return 1; 6079 } 6080 #endif /* SQLITE_DEBUG */ 6081