1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 ** 15 ** $Id: expr.c,v 1.230 2005/09/23 21:11:54 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 #include <ctype.h> 19 20 /* 21 ** Return the 'affinity' of the expression pExpr if any. 22 ** 23 ** If pExpr is a column, a reference to a column via an 'AS' alias, 24 ** or a sub-select with a column as the return value, then the 25 ** affinity of that column is returned. Otherwise, 0x00 is returned, 26 ** indicating no affinity for the expression. 27 ** 28 ** i.e. the WHERE clause expresssions in the following statements all 29 ** have an affinity: 30 ** 31 ** CREATE TABLE t1(a); 32 ** SELECT * FROM t1 WHERE a; 33 ** SELECT a AS b FROM t1 WHERE b; 34 ** SELECT * FROM t1 WHERE (select a from t1); 35 */ 36 char sqlite3ExprAffinity(Expr *pExpr){ 37 int op = pExpr->op; 38 if( op==TK_AS ){ 39 return sqlite3ExprAffinity(pExpr->pLeft); 40 } 41 if( op==TK_SELECT ){ 42 return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); 43 } 44 #ifndef SQLITE_OMIT_CAST 45 if( op==TK_CAST ){ 46 return sqlite3AffinityType(&pExpr->token); 47 } 48 #endif 49 return pExpr->affinity; 50 } 51 52 /* 53 ** Return the default collation sequence for the expression pExpr. If 54 ** there is no default collation type, return 0. 55 */ 56 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 57 CollSeq *pColl = 0; 58 if( pExpr ){ 59 pColl = pExpr->pColl; 60 if( (pExpr->op==TK_AS || pExpr->op==TK_CAST) && !pColl ){ 61 return sqlite3ExprCollSeq(pParse, pExpr->pLeft); 62 } 63 } 64 if( sqlite3CheckCollSeq(pParse, pColl) ){ 65 pColl = 0; 66 } 67 return pColl; 68 } 69 70 /* 71 ** pExpr is an operand of a comparison operator. aff2 is the 72 ** type affinity of the other operand. This routine returns the 73 ** type affinity that should be used for the comparison operator. 74 */ 75 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 76 char aff1 = sqlite3ExprAffinity(pExpr); 77 if( aff1 && aff2 ){ 78 /* Both sides of the comparison are columns. If one has numeric or 79 ** integer affinity, use that. Otherwise use no affinity. 80 */ 81 if( aff1==SQLITE_AFF_INTEGER || aff2==SQLITE_AFF_INTEGER ){ 82 return SQLITE_AFF_INTEGER; 83 }else if( aff1==SQLITE_AFF_NUMERIC || aff2==SQLITE_AFF_NUMERIC ){ 84 return SQLITE_AFF_NUMERIC; 85 }else{ 86 return SQLITE_AFF_NONE; 87 } 88 }else if( !aff1 && !aff2 ){ 89 /* Neither side of the comparison is a column. Compare the 90 ** results directly. 91 */ 92 /* return SQLITE_AFF_NUMERIC; // Ticket #805 */ 93 return SQLITE_AFF_NONE; 94 }else{ 95 /* One side is a column, the other is not. Use the columns affinity. */ 96 assert( aff1==0 || aff2==0 ); 97 return (aff1 + aff2); 98 } 99 } 100 101 /* 102 ** pExpr is a comparison operator. Return the type affinity that should 103 ** be applied to both operands prior to doing the comparison. 104 */ 105 static char comparisonAffinity(Expr *pExpr){ 106 char aff; 107 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 108 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 109 pExpr->op==TK_NE ); 110 assert( pExpr->pLeft ); 111 aff = sqlite3ExprAffinity(pExpr->pLeft); 112 if( pExpr->pRight ){ 113 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 114 } 115 else if( pExpr->pSelect ){ 116 aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); 117 } 118 else if( !aff ){ 119 aff = SQLITE_AFF_NUMERIC; 120 } 121 return aff; 122 } 123 124 /* 125 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 126 ** idx_affinity is the affinity of an indexed column. Return true 127 ** if the index with affinity idx_affinity may be used to implement 128 ** the comparison in pExpr. 129 */ 130 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 131 char aff = comparisonAffinity(pExpr); 132 return 133 (aff==SQLITE_AFF_NONE) || 134 (aff==SQLITE_AFF_NUMERIC && idx_affinity==SQLITE_AFF_INTEGER) || 135 (aff==SQLITE_AFF_INTEGER && idx_affinity==SQLITE_AFF_NUMERIC) || 136 (aff==idx_affinity); 137 } 138 139 /* 140 ** Return the P1 value that should be used for a binary comparison 141 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 142 ** If jumpIfNull is true, then set the low byte of the returned 143 ** P1 value to tell the opcode to jump if either expression 144 ** evaluates to NULL. 145 */ 146 static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 147 char aff = sqlite3ExprAffinity(pExpr2); 148 return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0); 149 } 150 151 /* 152 ** Return a pointer to the collation sequence that should be used by 153 ** a binary comparison operator comparing pLeft and pRight. 154 ** 155 ** If the left hand expression has a collating sequence type, then it is 156 ** used. Otherwise the collation sequence for the right hand expression 157 ** is used, or the default (BINARY) if neither expression has a collating 158 ** type. 159 */ 160 static CollSeq* binaryCompareCollSeq(Parse *pParse, Expr *pLeft, Expr *pRight){ 161 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pLeft); 162 if( !pColl ){ 163 pColl = sqlite3ExprCollSeq(pParse, pRight); 164 } 165 return pColl; 166 } 167 168 /* 169 ** Generate code for a comparison operator. 170 */ 171 static int codeCompare( 172 Parse *pParse, /* The parsing (and code generating) context */ 173 Expr *pLeft, /* The left operand */ 174 Expr *pRight, /* The right operand */ 175 int opcode, /* The comparison opcode */ 176 int dest, /* Jump here if true. */ 177 int jumpIfNull /* If true, jump if either operand is NULL */ 178 ){ 179 int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull); 180 CollSeq *p3 = binaryCompareCollSeq(pParse, pLeft, pRight); 181 return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ); 182 } 183 184 /* 185 ** Construct a new expression node and return a pointer to it. Memory 186 ** for this node is obtained from sqliteMalloc(). The calling function 187 ** is responsible for making sure the node eventually gets freed. 188 */ 189 Expr *sqlite3Expr(int op, Expr *pLeft, Expr *pRight, const Token *pToken){ 190 Expr *pNew; 191 pNew = sqliteMalloc( sizeof(Expr) ); 192 if( pNew==0 ){ 193 /* When malloc fails, delete pLeft and pRight. Expressions passed to 194 ** this function must always be allocated with sqlite3Expr() for this 195 ** reason. 196 */ 197 sqlite3ExprDelete(pLeft); 198 sqlite3ExprDelete(pRight); 199 return 0; 200 } 201 pNew->op = op; 202 pNew->pLeft = pLeft; 203 pNew->pRight = pRight; 204 pNew->iAgg = -1; 205 if( pToken ){ 206 assert( pToken->dyn==0 ); 207 pNew->span = pNew->token = *pToken; 208 }else if( pLeft && pRight ){ 209 sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); 210 } 211 return pNew; 212 } 213 214 /* 215 ** When doing a nested parse, you can include terms in an expression 216 ** that look like this: #0 #1 #2 ... These terms refer to elements 217 ** on the stack. "#0" means the top of the stack. 218 ** "#1" means the next down on the stack. And so forth. 219 ** 220 ** This routine is called by the parser to deal with on of those terms. 221 ** It immediately generates code to store the value in a memory location. 222 ** The returns an expression that will code to extract the value from 223 ** that memory location as needed. 224 */ 225 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ 226 Vdbe *v = pParse->pVdbe; 227 Expr *p; 228 int depth; 229 if( pParse->nested==0 ){ 230 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); 231 return 0; 232 } 233 if( v==0 ) return 0; 234 p = sqlite3Expr(TK_REGISTER, 0, 0, pToken); 235 if( p==0 ){ 236 return 0; /* Malloc failed */ 237 } 238 depth = atoi(&pToken->z[1]); 239 p->iTable = pParse->nMem++; 240 sqlite3VdbeAddOp(v, OP_Dup, depth, 0); 241 sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1); 242 return p; 243 } 244 245 /* 246 ** Join two expressions using an AND operator. If either expression is 247 ** NULL, then just return the other expression. 248 */ 249 Expr *sqlite3ExprAnd(Expr *pLeft, Expr *pRight){ 250 if( pLeft==0 ){ 251 return pRight; 252 }else if( pRight==0 ){ 253 return pLeft; 254 }else{ 255 return sqlite3Expr(TK_AND, pLeft, pRight, 0); 256 } 257 } 258 259 /* 260 ** Set the Expr.span field of the given expression to span all 261 ** text between the two given tokens. 262 */ 263 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ 264 assert( pRight!=0 ); 265 assert( pLeft!=0 ); 266 if( !sqlite3_malloc_failed && pRight->z && pLeft->z ){ 267 assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 ); 268 if( pLeft->dyn==0 && pRight->dyn==0 ){ 269 pExpr->span.z = pLeft->z; 270 pExpr->span.n = pRight->n + (pRight->z - pLeft->z); 271 }else{ 272 pExpr->span.z = 0; 273 } 274 } 275 } 276 277 /* 278 ** Construct a new expression node for a function with multiple 279 ** arguments. 280 */ 281 Expr *sqlite3ExprFunction(ExprList *pList, Token *pToken){ 282 Expr *pNew; 283 pNew = sqliteMalloc( sizeof(Expr) ); 284 if( pNew==0 ){ 285 sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */ 286 return 0; 287 } 288 pNew->op = TK_FUNCTION; 289 pNew->pList = pList; 290 if( pToken ){ 291 assert( pToken->dyn==0 ); 292 pNew->token = *pToken; 293 }else{ 294 pNew->token.z = 0; 295 } 296 pNew->span = pNew->token; 297 return pNew; 298 } 299 300 /* 301 ** Assign a variable number to an expression that encodes a wildcard 302 ** in the original SQL statement. 303 ** 304 ** Wildcards consisting of a single "?" are assigned the next sequential 305 ** variable number. 306 ** 307 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 308 ** sure "nnn" is not too be to avoid a denial of service attack when 309 ** the SQL statement comes from an external source. 310 ** 311 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number 312 ** as the previous instance of the same wildcard. Or if this is the first 313 ** instance of the wildcard, the next sequenial variable number is 314 ** assigned. 315 */ 316 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 317 Token *pToken; 318 if( pExpr==0 ) return; 319 pToken = &pExpr->token; 320 assert( pToken->n>=1 ); 321 assert( pToken->z!=0 ); 322 assert( pToken->z[0]!=0 ); 323 if( pToken->n==1 ){ 324 /* Wildcard of the form "?". Assign the next variable number */ 325 pExpr->iTable = ++pParse->nVar; 326 }else if( pToken->z[0]=='?' ){ 327 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 328 ** use it as the variable number */ 329 int i; 330 pExpr->iTable = i = atoi(&pToken->z[1]); 331 if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){ 332 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 333 SQLITE_MAX_VARIABLE_NUMBER); 334 } 335 if( i>pParse->nVar ){ 336 pParse->nVar = i; 337 } 338 }else{ 339 /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable 340 ** number as the prior appearance of the same name, or if the name 341 ** has never appeared before, reuse the same variable number 342 */ 343 int i, n; 344 n = pToken->n; 345 for(i=0; i<pParse->nVarExpr; i++){ 346 Expr *pE; 347 if( (pE = pParse->apVarExpr[i])!=0 348 && pE->token.n==n 349 && memcmp(pE->token.z, pToken->z, n)==0 ){ 350 pExpr->iTable = pE->iTable; 351 break; 352 } 353 } 354 if( i>=pParse->nVarExpr ){ 355 pExpr->iTable = ++pParse->nVar; 356 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ 357 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; 358 sqlite3ReallocOrFree((void**)&pParse->apVarExpr, 359 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) ); 360 } 361 if( !sqlite3_malloc_failed ){ 362 assert( pParse->apVarExpr!=0 ); 363 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; 364 } 365 } 366 } 367 } 368 369 /* 370 ** Recursively delete an expression tree. 371 */ 372 void sqlite3ExprDelete(Expr *p){ 373 if( p==0 ) return; 374 if( p->span.dyn ) sqliteFree((char*)p->span.z); 375 if( p->token.dyn ) sqliteFree((char*)p->token.z); 376 sqlite3ExprDelete(p->pLeft); 377 sqlite3ExprDelete(p->pRight); 378 sqlite3ExprListDelete(p->pList); 379 sqlite3SelectDelete(p->pSelect); 380 sqliteFree(p); 381 } 382 383 /* 384 ** The Expr.token field might be a string literal that is quoted. 385 ** If so, remove the quotation marks. 386 */ 387 void sqlite3DequoteExpr(Expr *p){ 388 if( ExprHasAnyProperty(p, EP_Dequoted) ){ 389 return; 390 } 391 ExprSetProperty(p, EP_Dequoted); 392 if( p->token.dyn==0 ){ 393 sqlite3TokenCopy(&p->token, &p->token); 394 } 395 sqlite3Dequote((char*)p->token.z); 396 } 397 398 399 /* 400 ** The following group of routines make deep copies of expressions, 401 ** expression lists, ID lists, and select statements. The copies can 402 ** be deleted (by being passed to their respective ...Delete() routines) 403 ** without effecting the originals. 404 ** 405 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 406 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 407 ** by subsequent calls to sqlite*ListAppend() routines. 408 ** 409 ** Any tables that the SrcList might point to are not duplicated. 410 */ 411 Expr *sqlite3ExprDup(Expr *p){ 412 Expr *pNew; 413 if( p==0 ) return 0; 414 pNew = sqliteMallocRaw( sizeof(*p) ); 415 if( pNew==0 ) return 0; 416 memcpy(pNew, p, sizeof(*pNew)); 417 if( p->token.z!=0 ){ 418 pNew->token.z = sqliteStrNDup(p->token.z, p->token.n); 419 pNew->token.dyn = 1; 420 }else{ 421 assert( pNew->token.z==0 ); 422 } 423 pNew->span.z = 0; 424 pNew->pLeft = sqlite3ExprDup(p->pLeft); 425 pNew->pRight = sqlite3ExprDup(p->pRight); 426 pNew->pList = sqlite3ExprListDup(p->pList); 427 pNew->pSelect = sqlite3SelectDup(p->pSelect); 428 pNew->pTab = p->pTab; 429 return pNew; 430 } 431 void sqlite3TokenCopy(Token *pTo, Token *pFrom){ 432 if( pTo->dyn ) sqliteFree((char*)pTo->z); 433 if( pFrom->z ){ 434 pTo->n = pFrom->n; 435 pTo->z = sqliteStrNDup(pFrom->z, pFrom->n); 436 pTo->dyn = 1; 437 }else{ 438 pTo->z = 0; 439 } 440 } 441 ExprList *sqlite3ExprListDup(ExprList *p){ 442 ExprList *pNew; 443 struct ExprList_item *pItem, *pOldItem; 444 int i; 445 if( p==0 ) return 0; 446 pNew = sqliteMalloc( sizeof(*pNew) ); 447 if( pNew==0 ) return 0; 448 pNew->nExpr = pNew->nAlloc = p->nExpr; 449 pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) ); 450 if( pItem==0 ){ 451 sqliteFree(pNew); 452 return 0; 453 } 454 pOldItem = p->a; 455 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 456 Expr *pNewExpr, *pOldExpr; 457 pItem->pExpr = pNewExpr = sqlite3ExprDup(pOldExpr = pOldItem->pExpr); 458 if( pOldExpr->span.z!=0 && pNewExpr ){ 459 /* Always make a copy of the span for top-level expressions in the 460 ** expression list. The logic in SELECT processing that determines 461 ** the names of columns in the result set needs this information */ 462 sqlite3TokenCopy(&pNewExpr->span, &pOldExpr->span); 463 } 464 assert( pNewExpr==0 || pNewExpr->span.z!=0 465 || pOldExpr->span.z==0 || sqlite3_malloc_failed ); 466 pItem->zName = sqliteStrDup(pOldItem->zName); 467 pItem->sortOrder = pOldItem->sortOrder; 468 pItem->isAgg = pOldItem->isAgg; 469 pItem->done = 0; 470 } 471 return pNew; 472 } 473 474 /* 475 ** If cursors, triggers, views and subqueries are all omitted from 476 ** the build, then none of the following routines, except for 477 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 478 ** called with a NULL argument. 479 */ 480 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 481 || !defined(SQLITE_OMIT_SUBQUERY) 482 SrcList *sqlite3SrcListDup(SrcList *p){ 483 SrcList *pNew; 484 int i; 485 int nByte; 486 if( p==0 ) return 0; 487 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 488 pNew = sqliteMallocRaw( nByte ); 489 if( pNew==0 ) return 0; 490 pNew->nSrc = pNew->nAlloc = p->nSrc; 491 for(i=0; i<p->nSrc; i++){ 492 struct SrcList_item *pNewItem = &pNew->a[i]; 493 struct SrcList_item *pOldItem = &p->a[i]; 494 Table *pTab; 495 pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase); 496 pNewItem->zName = sqliteStrDup(pOldItem->zName); 497 pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias); 498 pNewItem->jointype = pOldItem->jointype; 499 pNewItem->iCursor = pOldItem->iCursor; 500 pTab = pNewItem->pTab = pOldItem->pTab; 501 if( pTab ){ 502 pTab->nRef++; 503 } 504 pNewItem->pSelect = sqlite3SelectDup(pOldItem->pSelect); 505 pNewItem->pOn = sqlite3ExprDup(pOldItem->pOn); 506 pNewItem->pUsing = sqlite3IdListDup(pOldItem->pUsing); 507 pNewItem->colUsed = pOldItem->colUsed; 508 } 509 return pNew; 510 } 511 IdList *sqlite3IdListDup(IdList *p){ 512 IdList *pNew; 513 int i; 514 if( p==0 ) return 0; 515 pNew = sqliteMallocRaw( sizeof(*pNew) ); 516 if( pNew==0 ) return 0; 517 pNew->nId = pNew->nAlloc = p->nId; 518 pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) ); 519 if( pNew->a==0 ){ 520 sqliteFree(pNew); 521 return 0; 522 } 523 for(i=0; i<p->nId; i++){ 524 struct IdList_item *pNewItem = &pNew->a[i]; 525 struct IdList_item *pOldItem = &p->a[i]; 526 pNewItem->zName = sqliteStrDup(pOldItem->zName); 527 pNewItem->idx = pOldItem->idx; 528 } 529 return pNew; 530 } 531 Select *sqlite3SelectDup(Select *p){ 532 Select *pNew; 533 if( p==0 ) return 0; 534 pNew = sqliteMallocRaw( sizeof(*p) ); 535 if( pNew==0 ) return 0; 536 pNew->isDistinct = p->isDistinct; 537 pNew->pEList = sqlite3ExprListDup(p->pEList); 538 pNew->pSrc = sqlite3SrcListDup(p->pSrc); 539 pNew->pWhere = sqlite3ExprDup(p->pWhere); 540 pNew->pGroupBy = sqlite3ExprListDup(p->pGroupBy); 541 pNew->pHaving = sqlite3ExprDup(p->pHaving); 542 pNew->pOrderBy = sqlite3ExprListDup(p->pOrderBy); 543 pNew->op = p->op; 544 pNew->pPrior = sqlite3SelectDup(p->pPrior); 545 pNew->pLimit = sqlite3ExprDup(p->pLimit); 546 pNew->pOffset = sqlite3ExprDup(p->pOffset); 547 pNew->iLimit = -1; 548 pNew->iOffset = -1; 549 pNew->isResolved = p->isResolved; 550 pNew->isAgg = p->isAgg; 551 pNew->usesVirt = 0; 552 pNew->disallowOrderBy = 0; 553 pNew->pRightmost = 0; 554 pNew->addrOpenVirt[0] = -1; 555 pNew->addrOpenVirt[1] = -1; 556 pNew->addrOpenVirt[2] = -1; 557 return pNew; 558 } 559 #else 560 Select *sqlite3SelectDup(Select *p){ 561 assert( p==0 ); 562 return 0; 563 } 564 #endif 565 566 567 /* 568 ** Add a new element to the end of an expression list. If pList is 569 ** initially NULL, then create a new expression list. 570 */ 571 ExprList *sqlite3ExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){ 572 if( pList==0 ){ 573 pList = sqliteMalloc( sizeof(ExprList) ); 574 if( pList==0 ){ 575 goto no_mem; 576 } 577 assert( pList->nAlloc==0 ); 578 } 579 if( pList->nAlloc<=pList->nExpr ){ 580 struct ExprList_item *a; 581 int n = pList->nAlloc*2 + 4; 582 a = sqliteRealloc(pList->a, n*sizeof(pList->a[0])); 583 if( a==0 ){ 584 goto no_mem; 585 } 586 pList->a = a; 587 pList->nAlloc = n; 588 } 589 assert( pList->a!=0 ); 590 if( pExpr || pName ){ 591 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 592 memset(pItem, 0, sizeof(*pItem)); 593 pItem->zName = sqlite3NameFromToken(pName); 594 pItem->pExpr = pExpr; 595 } 596 return pList; 597 598 no_mem: 599 /* Avoid leaking memory if malloc has failed. */ 600 sqlite3ExprDelete(pExpr); 601 sqlite3ExprListDelete(pList); 602 return 0; 603 } 604 605 /* 606 ** Delete an entire expression list. 607 */ 608 void sqlite3ExprListDelete(ExprList *pList){ 609 int i; 610 struct ExprList_item *pItem; 611 if( pList==0 ) return; 612 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 613 assert( pList->nExpr<=pList->nAlloc ); 614 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 615 sqlite3ExprDelete(pItem->pExpr); 616 sqliteFree(pItem->zName); 617 } 618 sqliteFree(pList->a); 619 sqliteFree(pList); 620 } 621 622 /* 623 ** Walk an expression tree. Call xFunc for each node visited. 624 ** 625 ** The return value from xFunc determines whether the tree walk continues. 626 ** 0 means continue walking the tree. 1 means do not walk children 627 ** of the current node but continue with siblings. 2 means abandon 628 ** the tree walk completely. 629 ** 630 ** The return value from this routine is 1 to abandon the tree walk 631 ** and 0 to continue. 632 ** 633 ** NOTICE: This routine does *not* descend into subqueries. 634 */ 635 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); 636 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ 637 int rc; 638 if( pExpr==0 ) return 0; 639 rc = (*xFunc)(pArg, pExpr); 640 if( rc==0 ){ 641 if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; 642 if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; 643 if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; 644 } 645 return rc>1; 646 } 647 648 /* 649 ** Call walkExprTree() for every expression in list p. 650 */ 651 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ 652 int i; 653 struct ExprList_item *pItem; 654 if( !p ) return 0; 655 for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ 656 if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; 657 } 658 return 0; 659 } 660 661 /* 662 ** Call walkExprTree() for every expression in Select p, not including 663 ** expressions that are part of sub-selects in any FROM clause or the LIMIT 664 ** or OFFSET expressions.. 665 */ 666 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ 667 walkExprList(p->pEList, xFunc, pArg); 668 walkExprTree(p->pWhere, xFunc, pArg); 669 walkExprList(p->pGroupBy, xFunc, pArg); 670 walkExprTree(p->pHaving, xFunc, pArg); 671 walkExprList(p->pOrderBy, xFunc, pArg); 672 return 0; 673 } 674 675 676 /* 677 ** This routine is designed as an xFunc for walkExprTree(). 678 ** 679 ** pArg is really a pointer to an integer. If we can tell by looking 680 ** at pExpr that the expression that contains pExpr is not a constant 681 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk. 682 ** If pExpr does does not disqualify the expression from being a constant 683 ** then do nothing. 684 ** 685 ** After walking the whole tree, if no nodes are found that disqualify 686 ** the expression as constant, then we assume the whole expression 687 ** is constant. See sqlite3ExprIsConstant() for additional information. 688 */ 689 static int exprNodeIsConstant(void *pArg, Expr *pExpr){ 690 switch( pExpr->op ){ 691 /* Consider functions to be constant if all their arguments are constant 692 ** and *pArg==2 */ 693 case TK_FUNCTION: 694 if( *((int*)pArg)==2 ) return 0; 695 /* Fall through */ 696 case TK_ID: 697 case TK_COLUMN: 698 case TK_DOT: 699 case TK_AGG_FUNCTION: 700 case TK_AGG_COLUMN: 701 #ifndef SQLITE_OMIT_SUBQUERY 702 case TK_SELECT: 703 case TK_EXISTS: 704 #endif 705 *((int*)pArg) = 0; 706 return 2; 707 case TK_IN: 708 if( pExpr->pSelect ){ 709 *((int*)pArg) = 0; 710 return 2; 711 } 712 default: 713 return 0; 714 } 715 } 716 717 /* 718 ** Walk an expression tree. Return 1 if the expression is constant 719 ** and 0 if it involves variables or function calls. 720 ** 721 ** For the purposes of this function, a double-quoted string (ex: "abc") 722 ** is considered a variable but a single-quoted string (ex: 'abc') is 723 ** a constant. 724 */ 725 int sqlite3ExprIsConstant(Expr *p){ 726 int isConst = 1; 727 walkExprTree(p, exprNodeIsConstant, &isConst); 728 return isConst; 729 } 730 731 /* 732 ** Walk an expression tree. Return 1 if the expression is constant 733 ** or a function call with constant arguments. Return and 0 if there 734 ** are any variables. 735 ** 736 ** For the purposes of this function, a double-quoted string (ex: "abc") 737 ** is considered a variable but a single-quoted string (ex: 'abc') is 738 ** a constant. 739 */ 740 int sqlite3ExprIsConstantOrFunction(Expr *p){ 741 int isConst = 2; 742 walkExprTree(p, exprNodeIsConstant, &isConst); 743 return isConst!=0; 744 } 745 746 /* 747 ** If the expression p codes a constant integer that is small enough 748 ** to fit in a 32-bit integer, return 1 and put the value of the integer 749 ** in *pValue. If the expression is not an integer or if it is too big 750 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 751 */ 752 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 753 switch( p->op ){ 754 case TK_INTEGER: { 755 if( sqlite3GetInt32(p->token.z, pValue) ){ 756 return 1; 757 } 758 break; 759 } 760 case TK_UPLUS: { 761 return sqlite3ExprIsInteger(p->pLeft, pValue); 762 } 763 case TK_UMINUS: { 764 int v; 765 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 766 *pValue = -v; 767 return 1; 768 } 769 break; 770 } 771 default: break; 772 } 773 return 0; 774 } 775 776 /* 777 ** Return TRUE if the given string is a row-id column name. 778 */ 779 int sqlite3IsRowid(const char *z){ 780 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 781 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 782 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 783 return 0; 784 } 785 786 /* 787 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up 788 ** that name in the set of source tables in pSrcList and make the pExpr 789 ** expression node refer back to that source column. The following changes 790 ** are made to pExpr: 791 ** 792 ** pExpr->iDb Set the index in db->aDb[] of the database holding 793 ** the table. 794 ** pExpr->iTable Set to the cursor number for the table obtained 795 ** from pSrcList. 796 ** pExpr->iColumn Set to the column number within the table. 797 ** pExpr->op Set to TK_COLUMN. 798 ** pExpr->pLeft Any expression this points to is deleted 799 ** pExpr->pRight Any expression this points to is deleted. 800 ** 801 ** The pDbToken is the name of the database (the "X"). This value may be 802 ** NULL meaning that name is of the form Y.Z or Z. Any available database 803 ** can be used. The pTableToken is the name of the table (the "Y"). This 804 ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it 805 ** means that the form of the name is Z and that columns from any table 806 ** can be used. 807 ** 808 ** If the name cannot be resolved unambiguously, leave an error message 809 ** in pParse and return non-zero. Return zero on success. 810 */ 811 static int lookupName( 812 Parse *pParse, /* The parsing context */ 813 Token *pDbToken, /* Name of the database containing table, or NULL */ 814 Token *pTableToken, /* Name of table containing column, or NULL */ 815 Token *pColumnToken, /* Name of the column. */ 816 NameContext *pNC, /* The name context used to resolve the name */ 817 Expr *pExpr /* Make this EXPR node point to the selected column */ 818 ){ 819 char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ 820 char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ 821 char *zCol = 0; /* Name of the column. The "Z" */ 822 int i, j; /* Loop counters */ 823 int cnt = 0; /* Number of matching column names */ 824 int cntTab = 0; /* Number of matching table names */ 825 sqlite3 *db = pParse->db; /* The database */ 826 struct SrcList_item *pItem; /* Use for looping over pSrcList items */ 827 struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ 828 NameContext *pTopNC = pNC; /* First namecontext in the list */ 829 830 assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ 831 zDb = sqlite3NameFromToken(pDbToken); 832 zTab = sqlite3NameFromToken(pTableToken); 833 zCol = sqlite3NameFromToken(pColumnToken); 834 if( sqlite3_malloc_failed ){ 835 goto lookupname_end; 836 } 837 838 pExpr->iTable = -1; 839 while( pNC && cnt==0 ){ 840 SrcList *pSrcList = pNC->pSrcList; 841 ExprList *pEList = pNC->pEList; 842 843 /* assert( zTab==0 || pEList==0 ); */ 844 if( pSrcList ){ 845 for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ 846 Table *pTab = pItem->pTab; 847 Column *pCol; 848 849 if( pTab==0 ) continue; 850 assert( pTab->nCol>0 ); 851 if( zTab ){ 852 if( pItem->zAlias ){ 853 char *zTabName = pItem->zAlias; 854 if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 855 }else{ 856 char *zTabName = pTab->zName; 857 if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 858 if( zDb!=0 && sqlite3StrICmp(db->aDb[pTab->iDb].zName, zDb)!=0 ){ 859 continue; 860 } 861 } 862 } 863 if( 0==(cntTab++) ){ 864 pExpr->iTable = pItem->iCursor; 865 pExpr->iDb = pTab->iDb; 866 pMatch = pItem; 867 } 868 for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ 869 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 870 IdList *pUsing; 871 cnt++; 872 pExpr->iTable = pItem->iCursor; 873 pMatch = pItem; 874 pExpr->iDb = pTab->iDb; 875 /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ 876 pExpr->iColumn = j==pTab->iPKey ? -1 : j; 877 pExpr->affinity = pTab->aCol[j].affinity; 878 pExpr->pColl = pTab->aCol[j].pColl; 879 if( pItem->jointype & JT_NATURAL ){ 880 /* If this match occurred in the left table of a natural join, 881 ** then skip the right table to avoid a duplicate match */ 882 pItem++; 883 i++; 884 } 885 if( (pUsing = pItem->pUsing)!=0 ){ 886 /* If this match occurs on a column that is in the USING clause 887 ** of a join, skip the search of the right table of the join 888 ** to avoid a duplicate match there. */ 889 int k; 890 for(k=0; k<pUsing->nId; k++){ 891 if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ 892 pItem++; 893 i++; 894 break; 895 } 896 } 897 } 898 break; 899 } 900 } 901 } 902 } 903 904 #ifndef SQLITE_OMIT_TRIGGER 905 /* If we have not already resolved the name, then maybe 906 ** it is a new.* or old.* trigger argument reference 907 */ 908 if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ 909 TriggerStack *pTriggerStack = pParse->trigStack; 910 Table *pTab = 0; 911 if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ 912 pExpr->iTable = pTriggerStack->newIdx; 913 assert( pTriggerStack->pTab ); 914 pTab = pTriggerStack->pTab; 915 }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ 916 pExpr->iTable = pTriggerStack->oldIdx; 917 assert( pTriggerStack->pTab ); 918 pTab = pTriggerStack->pTab; 919 } 920 921 if( pTab ){ 922 int j; 923 Column *pCol = pTab->aCol; 924 925 pExpr->iDb = pTab->iDb; 926 cntTab++; 927 for(j=0; j < pTab->nCol; j++, pCol++) { 928 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 929 cnt++; 930 pExpr->iColumn = j==pTab->iPKey ? -1 : j; 931 pExpr->affinity = pTab->aCol[j].affinity; 932 pExpr->pColl = pTab->aCol[j].pColl; 933 pExpr->pTab = pTab; 934 break; 935 } 936 } 937 } 938 } 939 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ 940 941 /* 942 ** Perhaps the name is a reference to the ROWID 943 */ 944 if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ 945 cnt = 1; 946 pExpr->iColumn = -1; 947 pExpr->affinity = SQLITE_AFF_INTEGER; 948 } 949 950 /* 951 ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z 952 ** might refer to an result-set alias. This happens, for example, when 953 ** we are resolving names in the WHERE clause of the following command: 954 ** 955 ** SELECT a+b AS x FROM table WHERE x<10; 956 ** 957 ** In cases like this, replace pExpr with a copy of the expression that 958 ** forms the result set entry ("a+b" in the example) and return immediately. 959 ** Note that the expression in the result set should have already been 960 ** resolved by the time the WHERE clause is resolved. 961 */ 962 if( cnt==0 && pEList!=0 && zTab==0 ){ 963 for(j=0; j<pEList->nExpr; j++){ 964 char *zAs = pEList->a[j].zName; 965 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ 966 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 967 pExpr->op = TK_AS; 968 pExpr->iColumn = j; 969 pExpr->pLeft = sqlite3ExprDup(pEList->a[j].pExpr); 970 cnt = 1; 971 assert( zTab==0 && zDb==0 ); 972 goto lookupname_end_2; 973 } 974 } 975 } 976 977 /* Advance to the next name context. The loop will exit when either 978 ** we have a match (cnt>0) or when we run out of name contexts. 979 */ 980 if( cnt==0 ){ 981 pNC = pNC->pNext; 982 } 983 } 984 985 /* 986 ** If X and Y are NULL (in other words if only the column name Z is 987 ** supplied) and the value of Z is enclosed in double-quotes, then 988 ** Z is a string literal if it doesn't match any column names. In that 989 ** case, we need to return right away and not make any changes to 990 ** pExpr. 991 ** 992 ** Because no reference was made to outer contexts, the pNC->nRef 993 ** fields are not changed in any context. 994 */ 995 if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ 996 sqliteFree(zCol); 997 return 0; 998 } 999 1000 /* 1001 ** cnt==0 means there was not match. cnt>1 means there were two or 1002 ** more matches. Either way, we have an error. 1003 */ 1004 if( cnt!=1 ){ 1005 char *z = 0; 1006 char *zErr; 1007 zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s"; 1008 if( zDb ){ 1009 sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, 0); 1010 }else if( zTab ){ 1011 sqlite3SetString(&z, zTab, ".", zCol, 0); 1012 }else{ 1013 z = sqliteStrDup(zCol); 1014 } 1015 sqlite3ErrorMsg(pParse, zErr, z); 1016 sqliteFree(z); 1017 pTopNC->nErr++; 1018 } 1019 1020 /* If a column from a table in pSrcList is referenced, then record 1021 ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes 1022 ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the 1023 ** column number is greater than the number of bits in the bitmask 1024 ** then set the high-order bit of the bitmask. 1025 */ 1026 if( pExpr->iColumn>=0 && pMatch!=0 ){ 1027 int n = pExpr->iColumn; 1028 if( n>=sizeof(Bitmask)*8 ){ 1029 n = sizeof(Bitmask)*8-1; 1030 } 1031 assert( pMatch->iCursor==pExpr->iTable ); 1032 pMatch->colUsed |= 1<<n; 1033 } 1034 1035 lookupname_end: 1036 /* Clean up and return 1037 */ 1038 sqliteFree(zDb); 1039 sqliteFree(zTab); 1040 sqlite3ExprDelete(pExpr->pLeft); 1041 pExpr->pLeft = 0; 1042 sqlite3ExprDelete(pExpr->pRight); 1043 pExpr->pRight = 0; 1044 pExpr->op = TK_COLUMN; 1045 lookupname_end_2: 1046 sqliteFree(zCol); 1047 if( cnt==1 ){ 1048 assert( pNC!=0 ); 1049 sqlite3AuthRead(pParse, pExpr, pNC->pSrcList); 1050 if( pMatch && !pMatch->pSelect ){ 1051 pExpr->pTab = pMatch->pTab; 1052 } 1053 /* Increment the nRef value on all name contexts from TopNC up to 1054 ** the point where the name matched. */ 1055 for(;;){ 1056 assert( pTopNC!=0 ); 1057 pTopNC->nRef++; 1058 if( pTopNC==pNC ) break; 1059 pTopNC = pTopNC->pNext; 1060 } 1061 return 0; 1062 } else { 1063 return 1; 1064 } 1065 } 1066 1067 /* 1068 ** This routine is designed as an xFunc for walkExprTree(). 1069 ** 1070 ** Resolve symbolic names into TK_COLUMN operators for the current 1071 ** node in the expression tree. Return 0 to continue the search down 1072 ** the tree or 2 to abort the tree walk. 1073 ** 1074 ** This routine also does error checking and name resolution for 1075 ** function names. The operator for aggregate functions is changed 1076 ** to TK_AGG_FUNCTION. 1077 */ 1078 static int nameResolverStep(void *pArg, Expr *pExpr){ 1079 NameContext *pNC = (NameContext*)pArg; 1080 SrcList *pSrcList; 1081 Parse *pParse; 1082 1083 if( pExpr==0 ) return 1; 1084 assert( pNC!=0 ); 1085 pSrcList = pNC->pSrcList; 1086 pParse = pNC->pParse; 1087 1088 if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; 1089 ExprSetProperty(pExpr, EP_Resolved); 1090 #ifndef NDEBUG 1091 if( pSrcList ){ 1092 int i; 1093 for(i=0; i<pSrcList->nSrc; i++){ 1094 assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); 1095 } 1096 } 1097 #endif 1098 switch( pExpr->op ){ 1099 /* Double-quoted strings (ex: "abc") are used as identifiers if 1100 ** possible. Otherwise they remain as strings. Single-quoted 1101 ** strings (ex: 'abc') are always string literals. 1102 */ 1103 case TK_STRING: { 1104 if( pExpr->token.z[0]=='\'' ) break; 1105 /* Fall thru into the TK_ID case if this is a double-quoted string */ 1106 } 1107 /* A lone identifier is the name of a column. 1108 */ 1109 case TK_ID: { 1110 lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); 1111 return 1; 1112 } 1113 1114 /* A table name and column name: ID.ID 1115 ** Or a database, table and column: ID.ID.ID 1116 */ 1117 case TK_DOT: { 1118 Token *pColumn; 1119 Token *pTable; 1120 Token *pDb; 1121 Expr *pRight; 1122 1123 /* if( pSrcList==0 ) break; */ 1124 pRight = pExpr->pRight; 1125 if( pRight->op==TK_ID ){ 1126 pDb = 0; 1127 pTable = &pExpr->pLeft->token; 1128 pColumn = &pRight->token; 1129 }else{ 1130 assert( pRight->op==TK_DOT ); 1131 pDb = &pExpr->pLeft->token; 1132 pTable = &pRight->pLeft->token; 1133 pColumn = &pRight->pRight->token; 1134 } 1135 lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); 1136 return 1; 1137 } 1138 1139 /* Resolve function names 1140 */ 1141 case TK_CONST_FUNC: 1142 case TK_FUNCTION: { 1143 ExprList *pList = pExpr->pList; /* The argument list */ 1144 int n = pList ? pList->nExpr : 0; /* Number of arguments */ 1145 int no_such_func = 0; /* True if no such function exists */ 1146 int wrong_num_args = 0; /* True if wrong number of arguments */ 1147 int is_agg = 0; /* True if is an aggregate function */ 1148 int i; 1149 int nId; /* Number of characters in function name */ 1150 const char *zId; /* The function name. */ 1151 FuncDef *pDef; /* Information about the function */ 1152 int enc = pParse->db->enc; /* The database encoding */ 1153 1154 zId = pExpr->token.z; 1155 nId = pExpr->token.n; 1156 pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); 1157 if( pDef==0 ){ 1158 pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); 1159 if( pDef==0 ){ 1160 no_such_func = 1; 1161 }else{ 1162 wrong_num_args = 1; 1163 } 1164 }else{ 1165 is_agg = pDef->xFunc==0; 1166 } 1167 if( is_agg && !pNC->allowAgg ){ 1168 sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); 1169 pNC->nErr++; 1170 is_agg = 0; 1171 }else if( no_such_func ){ 1172 sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); 1173 pNC->nErr++; 1174 }else if( wrong_num_args ){ 1175 sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", 1176 nId, zId); 1177 pNC->nErr++; 1178 } 1179 if( is_agg ){ 1180 pExpr->op = TK_AGG_FUNCTION; 1181 pNC->hasAgg = 1; 1182 } 1183 if( is_agg ) pNC->allowAgg = 0; 1184 for(i=0; pNC->nErr==0 && i<n; i++){ 1185 walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC); 1186 } 1187 if( is_agg ) pNC->allowAgg = 1; 1188 /* FIX ME: Compute pExpr->affinity based on the expected return 1189 ** type of the function 1190 */ 1191 return is_agg; 1192 } 1193 #ifndef SQLITE_OMIT_SUBQUERY 1194 case TK_SELECT: 1195 case TK_EXISTS: 1196 #endif 1197 case TK_IN: { 1198 if( pExpr->pSelect ){ 1199 int nRef = pNC->nRef; 1200 sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); 1201 assert( pNC->nRef>=nRef ); 1202 if( nRef!=pNC->nRef ){ 1203 ExprSetProperty(pExpr, EP_VarSelect); 1204 } 1205 } 1206 } 1207 } 1208 return 0; 1209 } 1210 1211 /* 1212 ** This routine walks an expression tree and resolves references to 1213 ** table columns. Nodes of the form ID.ID or ID resolve into an 1214 ** index to the table in the table list and a column offset. The 1215 ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable 1216 ** value is changed to the index of the referenced table in pTabList 1217 ** plus the "base" value. The base value will ultimately become the 1218 ** VDBE cursor number for a cursor that is pointing into the referenced 1219 ** table. The Expr.iColumn value is changed to the index of the column 1220 ** of the referenced table. The Expr.iColumn value for the special 1221 ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an 1222 ** alias for ROWID. 1223 ** 1224 ** Also resolve function names and check the functions for proper 1225 ** usage. Make sure all function names are recognized and all functions 1226 ** have the correct number of arguments. Leave an error message 1227 ** in pParse->zErrMsg if anything is amiss. Return the number of errors. 1228 ** 1229 ** If the expression contains aggregate functions then set the EP_Agg 1230 ** property on the expression. 1231 */ 1232 int sqlite3ExprResolveNames( 1233 NameContext *pNC, /* Namespace to resolve expressions in. */ 1234 Expr *pExpr /* The expression to be analyzed. */ 1235 ){ 1236 int savedHasAgg; 1237 if( pExpr==0 ) return 0; 1238 savedHasAgg = pNC->hasAgg; 1239 pNC->hasAgg = 0; 1240 walkExprTree(pExpr, nameResolverStep, pNC); 1241 if( pNC->nErr>0 ){ 1242 ExprSetProperty(pExpr, EP_Error); 1243 } 1244 if( pNC->hasAgg ){ 1245 ExprSetProperty(pExpr, EP_Agg); 1246 }else if( savedHasAgg ){ 1247 pNC->hasAgg = 1; 1248 } 1249 return ExprHasProperty(pExpr, EP_Error); 1250 } 1251 1252 /* 1253 ** A pointer instance of this structure is used to pass information 1254 ** through walkExprTree into codeSubqueryStep(). 1255 */ 1256 typedef struct QueryCoder QueryCoder; 1257 struct QueryCoder { 1258 Parse *pParse; /* The parsing context */ 1259 NameContext *pNC; /* Namespace of first enclosing query */ 1260 }; 1261 1262 1263 /* 1264 ** Generate code for subqueries and IN operators. 1265 ** 1266 ** IN operators comes in two forms: 1267 ** 1268 ** expr IN (exprlist) 1269 ** and 1270 ** expr IN (SELECT ...) 1271 ** 1272 ** The first form is handled by creating a set holding the list 1273 ** of allowed values. The second form causes the SELECT to generate 1274 ** a temporary table. 1275 */ 1276 #ifndef SQLITE_OMIT_SUBQUERY 1277 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 1278 int testAddr = 0; /* One-time test address */ 1279 Vdbe *v = sqlite3GetVdbe(pParse); 1280 if( v==0 ) return; 1281 1282 /* This code must be run in its entirety every time it is encountered 1283 ** if any of the following is true: 1284 ** 1285 ** * The right-hand side is a correlated subquery 1286 ** * The right-hand side is an expression list containing variables 1287 ** * We are inside a trigger 1288 ** 1289 ** If all of the above are false, then we can run this code just once 1290 ** save the results, and reuse the same result on subsequent invocations. 1291 */ 1292 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ 1293 int mem = pParse->nMem++; 1294 sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0); 1295 testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0); 1296 assert( testAddr>0 || sqlite3_malloc_failed ); 1297 sqlite3VdbeAddOp(v, OP_MemInt, 1, mem); 1298 } 1299 1300 switch( pExpr->op ){ 1301 case TK_IN: { 1302 char affinity; 1303 KeyInfo keyInfo; 1304 int addr; /* Address of OP_OpenVirtual instruction */ 1305 1306 affinity = sqlite3ExprAffinity(pExpr->pLeft); 1307 1308 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1309 ** expression it is handled the same way. A virtual table is 1310 ** filled with single-field index keys representing the results 1311 ** from the SELECT or the <exprlist>. 1312 ** 1313 ** If the 'x' expression is a column value, or the SELECT... 1314 ** statement returns a column value, then the affinity of that 1315 ** column is used to build the index keys. If both 'x' and the 1316 ** SELECT... statement are columns, then numeric affinity is used 1317 ** if either column has NUMERIC or INTEGER affinity. If neither 1318 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1319 ** is used. 1320 */ 1321 pExpr->iTable = pParse->nTab++; 1322 addr = sqlite3VdbeAddOp(v, OP_OpenVirtual, pExpr->iTable, 0); 1323 memset(&keyInfo, 0, sizeof(keyInfo)); 1324 keyInfo.nField = 1; 1325 sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1); 1326 1327 if( pExpr->pSelect ){ 1328 /* Case 1: expr IN (SELECT ...) 1329 ** 1330 ** Generate code to write the results of the select into the temporary 1331 ** table allocated and opened above. 1332 */ 1333 int iParm = pExpr->iTable + (((int)affinity)<<16); 1334 ExprList *pEList; 1335 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1336 sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0); 1337 pEList = pExpr->pSelect->pEList; 1338 if( pEList && pEList->nExpr>0 ){ 1339 keyInfo.aColl[0] = binaryCompareCollSeq(pParse, pExpr->pLeft, 1340 pEList->a[0].pExpr); 1341 } 1342 }else if( pExpr->pList ){ 1343 /* Case 2: expr IN (exprlist) 1344 ** 1345 ** For each expression, build an index key from the evaluation and 1346 ** store it in the temporary table. If <expr> is a column, then use 1347 ** that columns affinity when building index keys. If <expr> is not 1348 ** a column, use numeric affinity. 1349 */ 1350 int i; 1351 ExprList *pList = pExpr->pList; 1352 struct ExprList_item *pItem; 1353 1354 if( !affinity ){ 1355 affinity = SQLITE_AFF_NUMERIC; 1356 } 1357 keyInfo.aColl[0] = pExpr->pLeft->pColl; 1358 1359 /* Loop through each expression in <exprlist>. */ 1360 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1361 Expr *pE2 = pItem->pExpr; 1362 1363 /* If the expression is not constant then we will need to 1364 ** disable the test that was generated above that makes sure 1365 ** this code only executes once. Because for a non-constant 1366 ** expression we need to rerun this code each time. 1367 */ 1368 if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){ 1369 VdbeOp *aOp = sqlite3VdbeGetOp(v, testAddr-1); 1370 int i; 1371 for(i=0; i<3; i++){ 1372 aOp[i].opcode = OP_Noop; 1373 } 1374 testAddr = 0; 1375 } 1376 1377 /* Evaluate the expression and insert it into the temp table */ 1378 sqlite3ExprCode(pParse, pE2); 1379 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); 1380 sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0); 1381 } 1382 } 1383 sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO); 1384 break; 1385 } 1386 1387 case TK_EXISTS: 1388 case TK_SELECT: { 1389 /* This has to be a scalar SELECT. Generate code to put the 1390 ** value of this select in a memory cell and record the number 1391 ** of the memory cell in iColumn. 1392 */ 1393 int sop; 1394 Select *pSel; 1395 1396 pExpr->iColumn = pParse->nMem++; 1397 pSel = pExpr->pSelect; 1398 if( pExpr->op==TK_SELECT ){ 1399 sop = SRT_Mem; 1400 }else{ 1401 static const Token one = { "1", 0, 1 }; 1402 sop = SRT_Exists; 1403 sqlite3ExprListDelete(pSel->pEList); 1404 pSel->pEList = sqlite3ExprListAppend(0, 1405 sqlite3Expr(TK_INTEGER, 0, 0, &one), 0); 1406 } 1407 sqlite3Select(pParse, pSel, sop, pExpr->iColumn, 0, 0, 0, 0); 1408 break; 1409 } 1410 } 1411 1412 if( testAddr ){ 1413 sqlite3VdbeJumpHere(v, testAddr); 1414 } 1415 return; 1416 } 1417 #endif /* SQLITE_OMIT_SUBQUERY */ 1418 1419 /* 1420 ** Generate an instruction that will put the integer describe by 1421 ** text z[0..n-1] on the stack. 1422 */ 1423 static void codeInteger(Vdbe *v, const char *z, int n){ 1424 int i; 1425 if( sqlite3GetInt32(z, &i) ){ 1426 sqlite3VdbeAddOp(v, OP_Integer, i, 0); 1427 }else if( sqlite3FitsIn64Bits(z) ){ 1428 sqlite3VdbeOp3(v, OP_Int64, 0, 0, z, n); 1429 }else{ 1430 sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n); 1431 } 1432 } 1433 1434 /* 1435 ** Generate code into the current Vdbe to evaluate the given 1436 ** expression and leave the result on the top of stack. 1437 ** 1438 ** This code depends on the fact that certain token values (ex: TK_EQ) 1439 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 1440 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 1441 ** the make process cause these values to align. Assert()s in the code 1442 ** below verify that the numbers are aligned correctly. 1443 */ 1444 void sqlite3ExprCode(Parse *pParse, Expr *pExpr){ 1445 Vdbe *v = pParse->pVdbe; 1446 int op; 1447 if( v==0 ) return; 1448 if( pExpr==0 ){ 1449 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1450 return; 1451 } 1452 op = pExpr->op; 1453 switch( op ){ 1454 case TK_AGG_COLUMN: { 1455 AggInfo *pAggInfo = pExpr->pAggInfo; 1456 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 1457 if( !pAggInfo->directMode ){ 1458 sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0); 1459 break; 1460 }else if( pAggInfo->useSortingIdx ){ 1461 sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx, 1462 pCol->iSorterColumn); 1463 break; 1464 } 1465 /* Otherwise, fall thru into the TK_COLUMN case */ 1466 } 1467 case TK_COLUMN: { 1468 if( pExpr->iColumn>=0 ){ 1469 sqlite3VdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn); 1470 sqlite3ColumnDefault(v, pExpr->pTab, pExpr->iColumn); 1471 }else{ 1472 sqlite3VdbeAddOp(v, OP_Rowid, pExpr->iTable, 0); 1473 } 1474 break; 1475 } 1476 case TK_INTEGER: { 1477 codeInteger(v, pExpr->token.z, pExpr->token.n); 1478 break; 1479 } 1480 case TK_FLOAT: 1481 case TK_STRING: { 1482 assert( TK_FLOAT==OP_Real ); 1483 assert( TK_STRING==OP_String8 ); 1484 sqlite3DequoteExpr(pExpr); 1485 sqlite3VdbeOp3(v, op, 0, 0, pExpr->token.z, pExpr->token.n); 1486 break; 1487 } 1488 case TK_NULL: { 1489 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1490 break; 1491 } 1492 #ifndef SQLITE_OMIT_BLOB_LITERAL 1493 case TK_BLOB: { 1494 int n; 1495 const char *z; 1496 assert( TK_BLOB==OP_HexBlob ); 1497 n = pExpr->token.n - 3; 1498 z = pExpr->token.z + 2; 1499 assert( n>=0 ); 1500 if( n==0 ){ 1501 z = ""; 1502 } 1503 sqlite3VdbeOp3(v, op, 0, 0, z, n); 1504 break; 1505 } 1506 #endif 1507 case TK_VARIABLE: { 1508 sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0); 1509 if( pExpr->token.n>1 ){ 1510 sqlite3VdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n); 1511 } 1512 break; 1513 } 1514 case TK_REGISTER: { 1515 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0); 1516 break; 1517 } 1518 #ifndef SQLITE_OMIT_CAST 1519 case TK_CAST: { 1520 /* Expressions of the form: CAST(pLeft AS token) */ 1521 int aff, op; 1522 sqlite3ExprCode(pParse, pExpr->pLeft); 1523 aff = sqlite3AffinityType(&pExpr->token); 1524 switch( aff ){ 1525 case SQLITE_AFF_INTEGER: op = OP_ToInt; break; 1526 case SQLITE_AFF_NUMERIC: op = OP_ToNumeric; break; 1527 case SQLITE_AFF_TEXT: op = OP_ToText; break; 1528 case SQLITE_AFF_NONE: op = OP_ToBlob; break; 1529 } 1530 sqlite3VdbeAddOp(v, op, 0, 0); 1531 break; 1532 } 1533 #endif /* SQLITE_OMIT_CAST */ 1534 case TK_LT: 1535 case TK_LE: 1536 case TK_GT: 1537 case TK_GE: 1538 case TK_NE: 1539 case TK_EQ: { 1540 assert( TK_LT==OP_Lt ); 1541 assert( TK_LE==OP_Le ); 1542 assert( TK_GT==OP_Gt ); 1543 assert( TK_GE==OP_Ge ); 1544 assert( TK_EQ==OP_Eq ); 1545 assert( TK_NE==OP_Ne ); 1546 sqlite3ExprCode(pParse, pExpr->pLeft); 1547 sqlite3ExprCode(pParse, pExpr->pRight); 1548 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0); 1549 break; 1550 } 1551 case TK_AND: 1552 case TK_OR: 1553 case TK_PLUS: 1554 case TK_STAR: 1555 case TK_MINUS: 1556 case TK_REM: 1557 case TK_BITAND: 1558 case TK_BITOR: 1559 case TK_SLASH: 1560 case TK_LSHIFT: 1561 case TK_RSHIFT: 1562 case TK_CONCAT: { 1563 assert( TK_AND==OP_And ); 1564 assert( TK_OR==OP_Or ); 1565 assert( TK_PLUS==OP_Add ); 1566 assert( TK_MINUS==OP_Subtract ); 1567 assert( TK_REM==OP_Remainder ); 1568 assert( TK_BITAND==OP_BitAnd ); 1569 assert( TK_BITOR==OP_BitOr ); 1570 assert( TK_SLASH==OP_Divide ); 1571 assert( TK_LSHIFT==OP_ShiftLeft ); 1572 assert( TK_RSHIFT==OP_ShiftRight ); 1573 assert( TK_CONCAT==OP_Concat ); 1574 sqlite3ExprCode(pParse, pExpr->pLeft); 1575 sqlite3ExprCode(pParse, pExpr->pRight); 1576 sqlite3VdbeAddOp(v, op, 0, 0); 1577 break; 1578 } 1579 case TK_UMINUS: { 1580 Expr *pLeft = pExpr->pLeft; 1581 assert( pLeft ); 1582 if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ 1583 Token *p = &pLeft->token; 1584 char *z = sqliteMalloc( p->n + 2 ); 1585 sprintf(z, "-%.*s", p->n, p->z); 1586 if( pLeft->op==TK_FLOAT ){ 1587 sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1); 1588 }else{ 1589 codeInteger(v, z, p->n+1); 1590 } 1591 sqliteFree(z); 1592 break; 1593 } 1594 /* Fall through into TK_NOT */ 1595 } 1596 case TK_BITNOT: 1597 case TK_NOT: { 1598 assert( TK_BITNOT==OP_BitNot ); 1599 assert( TK_NOT==OP_Not ); 1600 sqlite3ExprCode(pParse, pExpr->pLeft); 1601 sqlite3VdbeAddOp(v, op, 0, 0); 1602 break; 1603 } 1604 case TK_ISNULL: 1605 case TK_NOTNULL: { 1606 int dest; 1607 assert( TK_ISNULL==OP_IsNull ); 1608 assert( TK_NOTNULL==OP_NotNull ); 1609 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 1610 sqlite3ExprCode(pParse, pExpr->pLeft); 1611 dest = sqlite3VdbeCurrentAddr(v) + 2; 1612 sqlite3VdbeAddOp(v, op, 1, dest); 1613 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); 1614 break; 1615 } 1616 case TK_AGG_FUNCTION: { 1617 AggInfo *pInfo = pExpr->pAggInfo; 1618 sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0); 1619 break; 1620 } 1621 case TK_CONST_FUNC: 1622 case TK_FUNCTION: { 1623 ExprList *pList = pExpr->pList; 1624 int nExpr = pList ? pList->nExpr : 0; 1625 FuncDef *pDef; 1626 int nId; 1627 const char *zId; 1628 int constMask = 0; 1629 int i; 1630 u8 enc = pParse->db->enc; 1631 CollSeq *pColl = 0; 1632 zId = pExpr->token.z; 1633 nId = pExpr->token.n; 1634 pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); 1635 assert( pDef!=0 ); 1636 nExpr = sqlite3ExprCodeExprList(pParse, pList); 1637 for(i=0; i<nExpr && i<32; i++){ 1638 if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ 1639 constMask |= (1<<i); 1640 } 1641 if( pDef->needCollSeq && !pColl ){ 1642 pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); 1643 } 1644 } 1645 if( pDef->needCollSeq ){ 1646 if( !pColl ) pColl = pParse->db->pDfltColl; 1647 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); 1648 } 1649 sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF); 1650 break; 1651 } 1652 #ifndef SQLITE_OMIT_SUBQUERY 1653 case TK_EXISTS: 1654 case TK_SELECT: { 1655 sqlite3CodeSubselect(pParse, pExpr); 1656 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); 1657 VdbeComment((v, "# load subquery result")); 1658 break; 1659 } 1660 case TK_IN: { 1661 int addr; 1662 char affinity; 1663 sqlite3CodeSubselect(pParse, pExpr); 1664 1665 /* Figure out the affinity to use to create a key from the results 1666 ** of the expression. affinityStr stores a static string suitable for 1667 ** P3 of OP_MakeRecord. 1668 */ 1669 affinity = comparisonAffinity(pExpr); 1670 1671 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 1672 1673 /* Code the <expr> from "<expr> IN (...)". The temporary table 1674 ** pExpr->iTable contains the values that make up the (...) set. 1675 */ 1676 sqlite3ExprCode(pParse, pExpr->pLeft); 1677 addr = sqlite3VdbeCurrentAddr(v); 1678 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4); /* addr + 0 */ 1679 sqlite3VdbeAddOp(v, OP_Pop, 2, 0); 1680 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1681 sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7); 1682 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); /* addr + 4 */ 1683 sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7); 1684 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */ 1685 1686 break; 1687 } 1688 #endif 1689 case TK_BETWEEN: { 1690 Expr *pLeft = pExpr->pLeft; 1691 struct ExprList_item *pLItem = pExpr->pList->a; 1692 Expr *pRight = pLItem->pExpr; 1693 sqlite3ExprCode(pParse, pLeft); 1694 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 1695 sqlite3ExprCode(pParse, pRight); 1696 codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0); 1697 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 1698 pLItem++; 1699 pRight = pLItem->pExpr; 1700 sqlite3ExprCode(pParse, pRight); 1701 codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0); 1702 sqlite3VdbeAddOp(v, OP_And, 0, 0); 1703 break; 1704 } 1705 case TK_UPLUS: 1706 case TK_AS: { 1707 sqlite3ExprCode(pParse, pExpr->pLeft); 1708 break; 1709 } 1710 case TK_CASE: { 1711 int expr_end_label; 1712 int jumpInst; 1713 int nExpr; 1714 int i; 1715 ExprList *pEList; 1716 struct ExprList_item *aListelem; 1717 1718 assert(pExpr->pList); 1719 assert((pExpr->pList->nExpr % 2) == 0); 1720 assert(pExpr->pList->nExpr > 0); 1721 pEList = pExpr->pList; 1722 aListelem = pEList->a; 1723 nExpr = pEList->nExpr; 1724 expr_end_label = sqlite3VdbeMakeLabel(v); 1725 if( pExpr->pLeft ){ 1726 sqlite3ExprCode(pParse, pExpr->pLeft); 1727 } 1728 for(i=0; i<nExpr; i=i+2){ 1729 sqlite3ExprCode(pParse, aListelem[i].pExpr); 1730 if( pExpr->pLeft ){ 1731 sqlite3VdbeAddOp(v, OP_Dup, 1, 1); 1732 jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr, 1733 OP_Ne, 0, 1); 1734 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1735 }else{ 1736 jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0); 1737 } 1738 sqlite3ExprCode(pParse, aListelem[i+1].pExpr); 1739 sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label); 1740 sqlite3VdbeJumpHere(v, jumpInst); 1741 } 1742 if( pExpr->pLeft ){ 1743 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1744 } 1745 if( pExpr->pRight ){ 1746 sqlite3ExprCode(pParse, pExpr->pRight); 1747 }else{ 1748 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1749 } 1750 sqlite3VdbeResolveLabel(v, expr_end_label); 1751 break; 1752 } 1753 #ifndef SQLITE_OMIT_TRIGGER 1754 case TK_RAISE: { 1755 if( !pParse->trigStack ){ 1756 sqlite3ErrorMsg(pParse, 1757 "RAISE() may only be used within a trigger-program"); 1758 return; 1759 } 1760 if( pExpr->iColumn!=OE_Ignore ){ 1761 assert( pExpr->iColumn==OE_Rollback || 1762 pExpr->iColumn == OE_Abort || 1763 pExpr->iColumn == OE_Fail ); 1764 sqlite3DequoteExpr(pExpr); 1765 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 1766 pExpr->token.z, pExpr->token.n); 1767 } else { 1768 assert( pExpr->iColumn == OE_Ignore ); 1769 sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0); 1770 sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump); 1771 VdbeComment((v, "# raise(IGNORE)")); 1772 } 1773 } 1774 #endif 1775 break; 1776 } 1777 } 1778 1779 #ifndef SQLITE_OMIT_TRIGGER 1780 /* 1781 ** Generate code that evalutes the given expression and leaves the result 1782 ** on the stack. See also sqlite3ExprCode(). 1783 ** 1784 ** This routine might also cache the result and modify the pExpr tree 1785 ** so that it will make use of the cached result on subsequent evaluations 1786 ** rather than evaluate the whole expression again. Trivial expressions are 1787 ** not cached. If the expression is cached, its result is stored in a 1788 ** memory location. 1789 */ 1790 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){ 1791 Vdbe *v = pParse->pVdbe; 1792 int iMem; 1793 int addr1, addr2; 1794 if( v==0 ) return; 1795 addr1 = sqlite3VdbeCurrentAddr(v); 1796 sqlite3ExprCode(pParse, pExpr); 1797 addr2 = sqlite3VdbeCurrentAddr(v); 1798 if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){ 1799 iMem = pExpr->iTable = pParse->nMem++; 1800 sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); 1801 pExpr->op = TK_REGISTER; 1802 } 1803 } 1804 #endif 1805 1806 /* 1807 ** Generate code that pushes the value of every element of the given 1808 ** expression list onto the stack. 1809 ** 1810 ** Return the number of elements pushed onto the stack. 1811 */ 1812 int sqlite3ExprCodeExprList( 1813 Parse *pParse, /* Parsing context */ 1814 ExprList *pList /* The expression list to be coded */ 1815 ){ 1816 struct ExprList_item *pItem; 1817 int i, n; 1818 if( pList==0 ) return 0; 1819 n = pList->nExpr; 1820 for(pItem=pList->a, i=n; i>0; i--, pItem++){ 1821 sqlite3ExprCode(pParse, pItem->pExpr); 1822 } 1823 return n; 1824 } 1825 1826 /* 1827 ** Generate code for a boolean expression such that a jump is made 1828 ** to the label "dest" if the expression is true but execution 1829 ** continues straight thru if the expression is false. 1830 ** 1831 ** If the expression evaluates to NULL (neither true nor false), then 1832 ** take the jump if the jumpIfNull flag is true. 1833 ** 1834 ** This code depends on the fact that certain token values (ex: TK_EQ) 1835 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 1836 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 1837 ** the make process cause these values to align. Assert()s in the code 1838 ** below verify that the numbers are aligned correctly. 1839 */ 1840 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 1841 Vdbe *v = pParse->pVdbe; 1842 int op = 0; 1843 if( v==0 || pExpr==0 ) return; 1844 op = pExpr->op; 1845 switch( op ){ 1846 case TK_AND: { 1847 int d2 = sqlite3VdbeMakeLabel(v); 1848 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull); 1849 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 1850 sqlite3VdbeResolveLabel(v, d2); 1851 break; 1852 } 1853 case TK_OR: { 1854 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 1855 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 1856 break; 1857 } 1858 case TK_NOT: { 1859 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 1860 break; 1861 } 1862 case TK_LT: 1863 case TK_LE: 1864 case TK_GT: 1865 case TK_GE: 1866 case TK_NE: 1867 case TK_EQ: { 1868 assert( TK_LT==OP_Lt ); 1869 assert( TK_LE==OP_Le ); 1870 assert( TK_GT==OP_Gt ); 1871 assert( TK_GE==OP_Ge ); 1872 assert( TK_EQ==OP_Eq ); 1873 assert( TK_NE==OP_Ne ); 1874 sqlite3ExprCode(pParse, pExpr->pLeft); 1875 sqlite3ExprCode(pParse, pExpr->pRight); 1876 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); 1877 break; 1878 } 1879 case TK_ISNULL: 1880 case TK_NOTNULL: { 1881 assert( TK_ISNULL==OP_IsNull ); 1882 assert( TK_NOTNULL==OP_NotNull ); 1883 sqlite3ExprCode(pParse, pExpr->pLeft); 1884 sqlite3VdbeAddOp(v, op, 1, dest); 1885 break; 1886 } 1887 case TK_BETWEEN: { 1888 /* The expression "x BETWEEN y AND z" is implemented as: 1889 ** 1890 ** 1 IF (x < y) GOTO 3 1891 ** 2 IF (x <= z) GOTO <dest> 1892 ** 3 ... 1893 */ 1894 int addr; 1895 Expr *pLeft = pExpr->pLeft; 1896 Expr *pRight = pExpr->pList->a[0].pExpr; 1897 sqlite3ExprCode(pParse, pLeft); 1898 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 1899 sqlite3ExprCode(pParse, pRight); 1900 addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull); 1901 1902 pRight = pExpr->pList->a[1].pExpr; 1903 sqlite3ExprCode(pParse, pRight); 1904 codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull); 1905 1906 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 1907 sqlite3VdbeJumpHere(v, addr); 1908 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1909 break; 1910 } 1911 default: { 1912 sqlite3ExprCode(pParse, pExpr); 1913 sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest); 1914 break; 1915 } 1916 } 1917 } 1918 1919 /* 1920 ** Generate code for a boolean expression such that a jump is made 1921 ** to the label "dest" if the expression is false but execution 1922 ** continues straight thru if the expression is true. 1923 ** 1924 ** If the expression evaluates to NULL (neither true nor false) then 1925 ** jump if jumpIfNull is true or fall through if jumpIfNull is false. 1926 */ 1927 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 1928 Vdbe *v = pParse->pVdbe; 1929 int op = 0; 1930 if( v==0 || pExpr==0 ) return; 1931 1932 /* The value of pExpr->op and op are related as follows: 1933 ** 1934 ** pExpr->op op 1935 ** --------- ---------- 1936 ** TK_ISNULL OP_NotNull 1937 ** TK_NOTNULL OP_IsNull 1938 ** TK_NE OP_Eq 1939 ** TK_EQ OP_Ne 1940 ** TK_GT OP_Le 1941 ** TK_LE OP_Gt 1942 ** TK_GE OP_Lt 1943 ** TK_LT OP_Ge 1944 ** 1945 ** For other values of pExpr->op, op is undefined and unused. 1946 ** The value of TK_ and OP_ constants are arranged such that we 1947 ** can compute the mapping above using the following expression. 1948 ** Assert()s verify that the computation is correct. 1949 */ 1950 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 1951 1952 /* Verify correct alignment of TK_ and OP_ constants 1953 */ 1954 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 1955 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 1956 assert( pExpr->op!=TK_NE || op==OP_Eq ); 1957 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 1958 assert( pExpr->op!=TK_LT || op==OP_Ge ); 1959 assert( pExpr->op!=TK_LE || op==OP_Gt ); 1960 assert( pExpr->op!=TK_GT || op==OP_Le ); 1961 assert( pExpr->op!=TK_GE || op==OP_Lt ); 1962 1963 switch( pExpr->op ){ 1964 case TK_AND: { 1965 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 1966 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 1967 break; 1968 } 1969 case TK_OR: { 1970 int d2 = sqlite3VdbeMakeLabel(v); 1971 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull); 1972 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 1973 sqlite3VdbeResolveLabel(v, d2); 1974 break; 1975 } 1976 case TK_NOT: { 1977 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 1978 break; 1979 } 1980 case TK_LT: 1981 case TK_LE: 1982 case TK_GT: 1983 case TK_GE: 1984 case TK_NE: 1985 case TK_EQ: { 1986 sqlite3ExprCode(pParse, pExpr->pLeft); 1987 sqlite3ExprCode(pParse, pExpr->pRight); 1988 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); 1989 break; 1990 } 1991 case TK_ISNULL: 1992 case TK_NOTNULL: { 1993 sqlite3ExprCode(pParse, pExpr->pLeft); 1994 sqlite3VdbeAddOp(v, op, 1, dest); 1995 break; 1996 } 1997 case TK_BETWEEN: { 1998 /* The expression is "x BETWEEN y AND z". It is implemented as: 1999 ** 2000 ** 1 IF (x >= y) GOTO 3 2001 ** 2 GOTO <dest> 2002 ** 3 IF (x > z) GOTO <dest> 2003 */ 2004 int addr; 2005 Expr *pLeft = pExpr->pLeft; 2006 Expr *pRight = pExpr->pList->a[0].pExpr; 2007 sqlite3ExprCode(pParse, pLeft); 2008 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 2009 sqlite3ExprCode(pParse, pRight); 2010 addr = sqlite3VdbeCurrentAddr(v); 2011 codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull); 2012 2013 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2014 sqlite3VdbeAddOp(v, OP_Goto, 0, dest); 2015 pRight = pExpr->pList->a[1].pExpr; 2016 sqlite3ExprCode(pParse, pRight); 2017 codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull); 2018 break; 2019 } 2020 default: { 2021 sqlite3ExprCode(pParse, pExpr); 2022 sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest); 2023 break; 2024 } 2025 } 2026 } 2027 2028 /* 2029 ** Do a deep comparison of two expression trees. Return TRUE (non-zero) 2030 ** if they are identical and return FALSE if they differ in any way. 2031 */ 2032 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 2033 int i; 2034 if( pA==0 ){ 2035 return pB==0; 2036 }else if( pB==0 ){ 2037 return 0; 2038 } 2039 if( pA->op!=pB->op ) return 0; 2040 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; 2041 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; 2042 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; 2043 if( pA->pList ){ 2044 if( pB->pList==0 ) return 0; 2045 if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; 2046 for(i=0; i<pA->pList->nExpr; i++){ 2047 if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ 2048 return 0; 2049 } 2050 } 2051 }else if( pB->pList ){ 2052 return 0; 2053 } 2054 if( pA->pSelect || pB->pSelect ) return 0; 2055 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; 2056 if( pA->token.z ){ 2057 if( pB->token.z==0 ) return 0; 2058 if( pB->token.n!=pA->token.n ) return 0; 2059 if( sqlite3StrNICmp(pA->token.z, pB->token.z, pB->token.n)!=0 ) return 0; 2060 } 2061 return 1; 2062 } 2063 2064 2065 /* 2066 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 2067 ** the new element. Return a negative number if malloc fails. 2068 */ 2069 static int addAggInfoColumn(AggInfo *pInfo){ 2070 int i; 2071 i = sqlite3ArrayAllocate((void**)&pInfo->aCol, sizeof(pInfo->aCol[0]), 3); 2072 if( i<0 ){ 2073 return -1; 2074 } 2075 return i; 2076 } 2077 2078 /* 2079 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 2080 ** the new element. Return a negative number if malloc fails. 2081 */ 2082 static int addAggInfoFunc(AggInfo *pInfo){ 2083 int i; 2084 i = sqlite3ArrayAllocate((void**)&pInfo->aFunc, sizeof(pInfo->aFunc[0]), 2); 2085 if( i<0 ){ 2086 return -1; 2087 } 2088 return i; 2089 } 2090 2091 /* 2092 ** This is an xFunc for walkExprTree() used to implement 2093 ** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 2094 ** for additional information. 2095 ** 2096 ** This routine analyzes the aggregate function at pExpr. 2097 */ 2098 static int analyzeAggregate(void *pArg, Expr *pExpr){ 2099 int i; 2100 NameContext *pNC = (NameContext *)pArg; 2101 Parse *pParse = pNC->pParse; 2102 SrcList *pSrcList = pNC->pSrcList; 2103 AggInfo *pAggInfo = pNC->pAggInfo; 2104 2105 2106 switch( pExpr->op ){ 2107 case TK_COLUMN: { 2108 /* Check to see if the column is in one of the tables in the FROM 2109 ** clause of the aggregate query */ 2110 if( pSrcList ){ 2111 struct SrcList_item *pItem = pSrcList->a; 2112 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 2113 struct AggInfo_col *pCol; 2114 if( pExpr->iTable==pItem->iCursor ){ 2115 /* If we reach this point, it means that pExpr refers to a table 2116 ** that is in the FROM clause of the aggregate query. 2117 ** 2118 ** Make an entry for the column in pAggInfo->aCol[] if there 2119 ** is not an entry there already. 2120 */ 2121 pCol = pAggInfo->aCol; 2122 for(i=0; i<pAggInfo->nColumn; i++, pCol++){ 2123 if( pCol->iTable==pExpr->iTable && 2124 pCol->iColumn==pExpr->iColumn ){ 2125 break; 2126 } 2127 } 2128 if( i>=pAggInfo->nColumn && (i = addAggInfoColumn(pAggInfo))>=0 ){ 2129 pCol = &pAggInfo->aCol[i]; 2130 pCol->iTable = pExpr->iTable; 2131 pCol->iColumn = pExpr->iColumn; 2132 pCol->iMem = pParse->nMem++; 2133 pCol->iSorterColumn = -1; 2134 pCol->pExpr = pExpr; 2135 if( pAggInfo->pGroupBy ){ 2136 int j, n; 2137 ExprList *pGB = pAggInfo->pGroupBy; 2138 struct ExprList_item *pTerm = pGB->a; 2139 n = pGB->nExpr; 2140 for(j=0; j<n; j++, pTerm++){ 2141 Expr *pE = pTerm->pExpr; 2142 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 2143 pE->iColumn==pExpr->iColumn ){ 2144 pCol->iSorterColumn = j; 2145 break; 2146 } 2147 } 2148 } 2149 if( pCol->iSorterColumn<0 ){ 2150 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 2151 } 2152 } 2153 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 2154 ** because it was there before or because we just created it). 2155 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 2156 ** pAggInfo->aCol[] entry. 2157 */ 2158 pExpr->pAggInfo = pAggInfo; 2159 pExpr->op = TK_AGG_COLUMN; 2160 pExpr->iAgg = i; 2161 break; 2162 } /* endif pExpr->iTable==pItem->iCursor */ 2163 } /* end loop over pSrcList */ 2164 } 2165 return 1; 2166 } 2167 case TK_AGG_FUNCTION: { 2168 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 2169 ** to be ignored */ 2170 if( pNC->nDepth==0 ){ 2171 /* Check to see if pExpr is a duplicate of another aggregate 2172 ** function that is already in the pAggInfo structure 2173 */ 2174 struct AggInfo_func *pItem = pAggInfo->aFunc; 2175 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 2176 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ 2177 break; 2178 } 2179 } 2180 if( i>=pAggInfo->nFunc ){ 2181 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 2182 */ 2183 u8 enc = pParse->db->enc; 2184 i = addAggInfoFunc(pAggInfo); 2185 if( i>=0 ){ 2186 pItem = &pAggInfo->aFunc[i]; 2187 pItem->pExpr = pExpr; 2188 pItem->iMem = pParse->nMem++; 2189 pItem->pFunc = sqlite3FindFunction(pParse->db, 2190 pExpr->token.z, pExpr->token.n, 2191 pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); 2192 if( pExpr->flags & EP_Distinct ){ 2193 pItem->iDistinct = pParse->nTab++; 2194 }else{ 2195 pItem->iDistinct = -1; 2196 } 2197 } 2198 } 2199 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 2200 */ 2201 pExpr->iAgg = i; 2202 pExpr->pAggInfo = pAggInfo; 2203 return 1; 2204 } 2205 } 2206 } 2207 2208 /* Recursively walk subqueries looking for TK_COLUMN nodes that need 2209 ** to be changed to TK_AGG_COLUMN. But increment nDepth so that 2210 ** TK_AGG_FUNCTION nodes in subqueries will be unchanged. 2211 */ 2212 if( pExpr->pSelect ){ 2213 pNC->nDepth++; 2214 walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); 2215 pNC->nDepth--; 2216 } 2217 return 0; 2218 } 2219 2220 /* 2221 ** Analyze the given expression looking for aggregate functions and 2222 ** for variables that need to be added to the pParse->aAgg[] array. 2223 ** Make additional entries to the pParse->aAgg[] array as necessary. 2224 ** 2225 ** This routine should only be called after the expression has been 2226 ** analyzed by sqlite3ExprResolveNames(). 2227 ** 2228 ** If errors are seen, leave an error message in zErrMsg and return 2229 ** the number of errors. 2230 */ 2231 int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 2232 int nErr = pNC->pParse->nErr; 2233 walkExprTree(pExpr, analyzeAggregate, pNC); 2234 return pNC->pParse->nErr - nErr; 2235 } 2236 2237 /* 2238 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 2239 ** expression list. Return the number of errors. 2240 ** 2241 ** If an error is found, the analysis is cut short. 2242 */ 2243 int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 2244 struct ExprList_item *pItem; 2245 int i; 2246 int nErr = 0; 2247 if( pList ){ 2248 for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){ 2249 nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 2250 } 2251 } 2252 return nErr; 2253 } 2254