1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 pExpr = sqlite3ExprSkipCollate(pExpr); 48 if( pExpr->flags & EP_Generic ) return 0; 49 op = pExpr->op; 50 if( op==TK_SELECT ){ 51 assert( pExpr->flags&EP_xIsSelect ); 52 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 53 } 54 if( op==TK_REGISTER ) op = pExpr->op2; 55 #ifndef SQLITE_OMIT_CAST 56 if( op==TK_CAST ){ 57 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 58 return sqlite3AffinityType(pExpr->u.zToken, 0); 59 } 60 #endif 61 if( op==TK_AGG_COLUMN || op==TK_COLUMN ){ 62 return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn); 63 } 64 if( op==TK_SELECT_COLUMN ){ 65 assert( pExpr->pLeft->flags&EP_xIsSelect ); 66 return sqlite3ExprAffinity( 67 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 68 ); 69 } 70 return pExpr->affinity; 71 } 72 73 /* 74 ** Set the collating sequence for expression pExpr to be the collating 75 ** sequence named by pToken. Return a pointer to a new Expr node that 76 ** implements the COLLATE operator. 77 ** 78 ** If a memory allocation error occurs, that fact is recorded in pParse->db 79 ** and the pExpr parameter is returned unchanged. 80 */ 81 Expr *sqlite3ExprAddCollateToken( 82 Parse *pParse, /* Parsing context */ 83 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 84 const Token *pCollName, /* Name of collating sequence */ 85 int dequote /* True to dequote pCollName */ 86 ){ 87 if( pCollName->n>0 ){ 88 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 89 if( pNew ){ 90 pNew->pLeft = pExpr; 91 pNew->flags |= EP_Collate|EP_Skip; 92 pExpr = pNew; 93 } 94 } 95 return pExpr; 96 } 97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 98 Token s; 99 assert( zC!=0 ); 100 sqlite3TokenInit(&s, (char*)zC); 101 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 102 } 103 104 /* 105 ** Skip over any TK_COLLATE operators and any unlikely() 106 ** or likelihood() function at the root of an expression. 107 */ 108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 109 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 110 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 111 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 112 assert( pExpr->x.pList->nExpr>0 ); 113 assert( pExpr->op==TK_FUNCTION ); 114 pExpr = pExpr->x.pList->a[0].pExpr; 115 }else{ 116 assert( pExpr->op==TK_COLLATE ); 117 pExpr = pExpr->pLeft; 118 } 119 } 120 return pExpr; 121 } 122 123 /* 124 ** Return the collation sequence for the expression pExpr. If 125 ** there is no defined collating sequence, return NULL. 126 ** 127 ** The collating sequence might be determined by a COLLATE operator 128 ** or by the presence of a column with a defined collating sequence. 129 ** COLLATE operators take first precedence. Left operands take 130 ** precedence over right operands. 131 */ 132 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 133 sqlite3 *db = pParse->db; 134 CollSeq *pColl = 0; 135 Expr *p = pExpr; 136 while( p ){ 137 int op = p->op; 138 if( p->flags & EP_Generic ) break; 139 if( op==TK_CAST || op==TK_UPLUS ){ 140 p = p->pLeft; 141 continue; 142 } 143 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 144 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 145 break; 146 } 147 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 148 || op==TK_REGISTER || op==TK_TRIGGER) 149 && p->pTab!=0 150 ){ 151 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 152 ** a TK_COLUMN but was previously evaluated and cached in a register */ 153 int j = p->iColumn; 154 if( j>=0 ){ 155 const char *zColl = p->pTab->aCol[j].zColl; 156 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 157 } 158 break; 159 } 160 if( p->flags & EP_Collate ){ 161 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 162 p = p->pLeft; 163 }else{ 164 Expr *pNext = p->pRight; 165 /* The Expr.x union is never used at the same time as Expr.pRight */ 166 assert( p->x.pList==0 || p->pRight==0 ); 167 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 168 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 169 ** least one EP_Collate. Thus the following two ALWAYS. */ 170 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 171 int i; 172 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 173 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 174 pNext = p->x.pList->a[i].pExpr; 175 break; 176 } 177 } 178 } 179 p = pNext; 180 } 181 }else{ 182 break; 183 } 184 } 185 if( sqlite3CheckCollSeq(pParse, pColl) ){ 186 pColl = 0; 187 } 188 return pColl; 189 } 190 191 /* 192 ** pExpr is an operand of a comparison operator. aff2 is the 193 ** type affinity of the other operand. This routine returns the 194 ** type affinity that should be used for the comparison operator. 195 */ 196 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 197 char aff1 = sqlite3ExprAffinity(pExpr); 198 if( aff1 && aff2 ){ 199 /* Both sides of the comparison are columns. If one has numeric 200 ** affinity, use that. Otherwise use no affinity. 201 */ 202 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 203 return SQLITE_AFF_NUMERIC; 204 }else{ 205 return SQLITE_AFF_BLOB; 206 } 207 }else if( !aff1 && !aff2 ){ 208 /* Neither side of the comparison is a column. Compare the 209 ** results directly. 210 */ 211 return SQLITE_AFF_BLOB; 212 }else{ 213 /* One side is a column, the other is not. Use the columns affinity. */ 214 assert( aff1==0 || aff2==0 ); 215 return (aff1 + aff2); 216 } 217 } 218 219 /* 220 ** pExpr is a comparison operator. Return the type affinity that should 221 ** be applied to both operands prior to doing the comparison. 222 */ 223 static char comparisonAffinity(Expr *pExpr){ 224 char aff; 225 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 226 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 227 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 228 assert( pExpr->pLeft ); 229 aff = sqlite3ExprAffinity(pExpr->pLeft); 230 if( pExpr->pRight ){ 231 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 232 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 233 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 234 }else if( aff==0 ){ 235 aff = SQLITE_AFF_BLOB; 236 } 237 return aff; 238 } 239 240 /* 241 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 242 ** idx_affinity is the affinity of an indexed column. Return true 243 ** if the index with affinity idx_affinity may be used to implement 244 ** the comparison in pExpr. 245 */ 246 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 247 char aff = comparisonAffinity(pExpr); 248 switch( aff ){ 249 case SQLITE_AFF_BLOB: 250 return 1; 251 case SQLITE_AFF_TEXT: 252 return idx_affinity==SQLITE_AFF_TEXT; 253 default: 254 return sqlite3IsNumericAffinity(idx_affinity); 255 } 256 } 257 258 /* 259 ** Return the P5 value that should be used for a binary comparison 260 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 261 */ 262 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 263 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 264 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 265 return aff; 266 } 267 268 /* 269 ** Return a pointer to the collation sequence that should be used by 270 ** a binary comparison operator comparing pLeft and pRight. 271 ** 272 ** If the left hand expression has a collating sequence type, then it is 273 ** used. Otherwise the collation sequence for the right hand expression 274 ** is used, or the default (BINARY) if neither expression has a collating 275 ** type. 276 ** 277 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 278 ** it is not considered. 279 */ 280 CollSeq *sqlite3BinaryCompareCollSeq( 281 Parse *pParse, 282 Expr *pLeft, 283 Expr *pRight 284 ){ 285 CollSeq *pColl; 286 assert( pLeft ); 287 if( pLeft->flags & EP_Collate ){ 288 pColl = sqlite3ExprCollSeq(pParse, pLeft); 289 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 290 pColl = sqlite3ExprCollSeq(pParse, pRight); 291 }else{ 292 pColl = sqlite3ExprCollSeq(pParse, pLeft); 293 if( !pColl ){ 294 pColl = sqlite3ExprCollSeq(pParse, pRight); 295 } 296 } 297 return pColl; 298 } 299 300 /* 301 ** Generate code for a comparison operator. 302 */ 303 static int codeCompare( 304 Parse *pParse, /* The parsing (and code generating) context */ 305 Expr *pLeft, /* The left operand */ 306 Expr *pRight, /* The right operand */ 307 int opcode, /* The comparison opcode */ 308 int in1, int in2, /* Register holding operands */ 309 int dest, /* Jump here if true. */ 310 int jumpIfNull /* If true, jump if either operand is NULL */ 311 ){ 312 int p5; 313 int addr; 314 CollSeq *p4; 315 316 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 317 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 318 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 319 (void*)p4, P4_COLLSEQ); 320 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 321 return addr; 322 } 323 324 /* 325 ** Return true if expression pExpr is a vector, or false otherwise. 326 ** 327 ** A vector is defined as any expression that results in two or more 328 ** columns of result. Every TK_VECTOR node is an vector because the 329 ** parser will not generate a TK_VECTOR with fewer than two entries. 330 ** But a TK_SELECT might be either a vector or a scalar. It is only 331 ** considered a vector if it has two or more result columns. 332 */ 333 int sqlite3ExprIsVector(Expr *pExpr){ 334 return sqlite3ExprVectorSize(pExpr)>1; 335 } 336 337 /* 338 ** If the expression passed as the only argument is of type TK_VECTOR 339 ** return the number of expressions in the vector. Or, if the expression 340 ** is a sub-select, return the number of columns in the sub-select. For 341 ** any other type of expression, return 1. 342 */ 343 int sqlite3ExprVectorSize(Expr *pExpr){ 344 u8 op = pExpr->op; 345 if( op==TK_REGISTER ) op = pExpr->op2; 346 if( op==TK_VECTOR ){ 347 return pExpr->x.pList->nExpr; 348 }else if( op==TK_SELECT ){ 349 return pExpr->x.pSelect->pEList->nExpr; 350 }else{ 351 return 1; 352 } 353 } 354 355 #ifndef SQLITE_OMIT_SUBQUERY 356 /* 357 ** Return a pointer to a subexpression of pVector that is the i-th 358 ** column of the vector (numbered starting with 0). The caller must 359 ** ensure that i is within range. 360 ** 361 ** If pVector is really a scalar (and "scalar" here includes subqueries 362 ** that return a single column!) then return pVector unmodified. 363 ** 364 ** pVector retains ownership of the returned subexpression. 365 ** 366 ** If the vector is a (SELECT ...) then the expression returned is 367 ** just the expression for the i-th term of the result set, and may 368 ** not be ready for evaluation because the table cursor has not yet 369 ** been positioned. 370 */ 371 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 372 assert( i<sqlite3ExprVectorSize(pVector) ); 373 if( sqlite3ExprIsVector(pVector) ){ 374 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 375 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 376 return pVector->x.pSelect->pEList->a[i].pExpr; 377 }else{ 378 return pVector->x.pList->a[i].pExpr; 379 } 380 } 381 return pVector; 382 } 383 #endif /* !defined(SQLITE_OMIT_SUBQUERY) */ 384 385 #ifndef SQLITE_OMIT_SUBQUERY 386 /* 387 ** Compute and return a new Expr object which when passed to 388 ** sqlite3ExprCode() will generate all necessary code to compute 389 ** the iField-th column of the vector expression pVector. 390 ** 391 ** It is ok for pVector to be a scalar (as long as iField==0). 392 ** In that case, this routine works like sqlite3ExprDup(). 393 ** 394 ** The caller owns the returned Expr object and is responsible for 395 ** ensuring that the returned value eventually gets freed. 396 ** 397 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 398 ** then the returned object will reference pVector and so pVector must remain 399 ** valid for the life of the returned object. If pVector is a TK_VECTOR 400 ** or a scalar expression, then it can be deleted as soon as this routine 401 ** returns. 402 ** 403 ** A trick to cause a TK_SELECT pVector to be deleted together with 404 ** the returned Expr object is to attach the pVector to the pRight field 405 ** of the returned TK_SELECT_COLUMN Expr object. 406 */ 407 Expr *sqlite3ExprForVectorField( 408 Parse *pParse, /* Parsing context */ 409 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 410 int iField /* Which column of the vector to return */ 411 ){ 412 Expr *pRet; 413 if( pVector->op==TK_SELECT ){ 414 assert( pVector->flags & EP_xIsSelect ); 415 /* The TK_SELECT_COLUMN Expr node: 416 ** 417 ** pLeft: pVector containing TK_SELECT. Not deleted. 418 ** pRight: not used. But recursively deleted. 419 ** iColumn: Index of a column in pVector 420 ** iTable: 0 or the number of columns on the LHS of an assignment 421 ** pLeft->iTable: First in an array of register holding result, or 0 422 ** if the result is not yet computed. 423 ** 424 ** sqlite3ExprDelete() specifically skips the recursive delete of 425 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 426 ** can be attached to pRight to cause this node to take ownership of 427 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 428 ** with the same pLeft pointer to the pVector, but only one of them 429 ** will own the pVector. 430 */ 431 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 432 if( pRet ){ 433 pRet->iColumn = iField; 434 pRet->pLeft = pVector; 435 } 436 assert( pRet==0 || pRet->iTable==0 ); 437 }else{ 438 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 439 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 440 } 441 return pRet; 442 } 443 #endif /* !define(SQLITE_OMIT_SUBQUERY) */ 444 445 /* 446 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 447 ** it. Return the register in which the result is stored (or, if the 448 ** sub-select returns more than one column, the first in an array 449 ** of registers in which the result is stored). 450 ** 451 ** If pExpr is not a TK_SELECT expression, return 0. 452 */ 453 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 454 int reg = 0; 455 #ifndef SQLITE_OMIT_SUBQUERY 456 if( pExpr->op==TK_SELECT ){ 457 reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 458 } 459 #endif 460 return reg; 461 } 462 463 /* 464 ** Argument pVector points to a vector expression - either a TK_VECTOR 465 ** or TK_SELECT that returns more than one column. This function returns 466 ** the register number of a register that contains the value of 467 ** element iField of the vector. 468 ** 469 ** If pVector is a TK_SELECT expression, then code for it must have 470 ** already been generated using the exprCodeSubselect() routine. In this 471 ** case parameter regSelect should be the first in an array of registers 472 ** containing the results of the sub-select. 473 ** 474 ** If pVector is of type TK_VECTOR, then code for the requested field 475 ** is generated. In this case (*pRegFree) may be set to the number of 476 ** a temporary register to be freed by the caller before returning. 477 ** 478 ** Before returning, output parameter (*ppExpr) is set to point to the 479 ** Expr object corresponding to element iElem of the vector. 480 */ 481 static int exprVectorRegister( 482 Parse *pParse, /* Parse context */ 483 Expr *pVector, /* Vector to extract element from */ 484 int iField, /* Field to extract from pVector */ 485 int regSelect, /* First in array of registers */ 486 Expr **ppExpr, /* OUT: Expression element */ 487 int *pRegFree /* OUT: Temp register to free */ 488 ){ 489 u8 op = pVector->op; 490 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 491 if( op==TK_REGISTER ){ 492 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 493 return pVector->iTable+iField; 494 } 495 if( op==TK_SELECT ){ 496 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 497 return regSelect+iField; 498 } 499 *ppExpr = pVector->x.pList->a[iField].pExpr; 500 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 501 } 502 503 /* 504 ** Expression pExpr is a comparison between two vector values. Compute 505 ** the result of the comparison (1, 0, or NULL) and write that 506 ** result into register dest. 507 ** 508 ** The caller must satisfy the following preconditions: 509 ** 510 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 511 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 512 ** otherwise: op==pExpr->op and p5==0 513 */ 514 static void codeVectorCompare( 515 Parse *pParse, /* Code generator context */ 516 Expr *pExpr, /* The comparison operation */ 517 int dest, /* Write results into this register */ 518 u8 op, /* Comparison operator */ 519 u8 p5 /* SQLITE_NULLEQ or zero */ 520 ){ 521 Vdbe *v = pParse->pVdbe; 522 Expr *pLeft = pExpr->pLeft; 523 Expr *pRight = pExpr->pRight; 524 int nLeft = sqlite3ExprVectorSize(pLeft); 525 int i; 526 int regLeft = 0; 527 int regRight = 0; 528 u8 opx = op; 529 int addrDone = sqlite3VdbeMakeLabel(v); 530 531 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 532 sqlite3ErrorMsg(pParse, "row value misused"); 533 return; 534 } 535 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 536 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 537 || pExpr->op==TK_LT || pExpr->op==TK_GT 538 || pExpr->op==TK_LE || pExpr->op==TK_GE 539 ); 540 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 541 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 542 assert( p5==0 || pExpr->op!=op ); 543 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 544 545 p5 |= SQLITE_STOREP2; 546 if( opx==TK_LE ) opx = TK_LT; 547 if( opx==TK_GE ) opx = TK_GT; 548 549 regLeft = exprCodeSubselect(pParse, pLeft); 550 regRight = exprCodeSubselect(pParse, pRight); 551 552 for(i=0; 1 /*Loop exits by "break"*/; i++){ 553 int regFree1 = 0, regFree2 = 0; 554 Expr *pL, *pR; 555 int r1, r2; 556 assert( i>=0 && i<nLeft ); 557 if( i>0 ) sqlite3ExprCachePush(pParse); 558 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 559 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 560 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); 561 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 562 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 563 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 564 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 565 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 566 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 567 sqlite3ReleaseTempReg(pParse, regFree1); 568 sqlite3ReleaseTempReg(pParse, regFree2); 569 if( i>0 ) sqlite3ExprCachePop(pParse); 570 if( i==nLeft-1 ){ 571 break; 572 } 573 if( opx==TK_EQ ){ 574 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 575 p5 |= SQLITE_KEEPNULL; 576 }else if( opx==TK_NE ){ 577 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 578 p5 |= SQLITE_KEEPNULL; 579 }else{ 580 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 581 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 582 VdbeCoverageIf(v, op==TK_LT); 583 VdbeCoverageIf(v, op==TK_GT); 584 VdbeCoverageIf(v, op==TK_LE); 585 VdbeCoverageIf(v, op==TK_GE); 586 if( i==nLeft-2 ) opx = op; 587 } 588 } 589 sqlite3VdbeResolveLabel(v, addrDone); 590 } 591 592 #if SQLITE_MAX_EXPR_DEPTH>0 593 /* 594 ** Check that argument nHeight is less than or equal to the maximum 595 ** expression depth allowed. If it is not, leave an error message in 596 ** pParse. 597 */ 598 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 599 int rc = SQLITE_OK; 600 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 601 if( nHeight>mxHeight ){ 602 sqlite3ErrorMsg(pParse, 603 "Expression tree is too large (maximum depth %d)", mxHeight 604 ); 605 rc = SQLITE_ERROR; 606 } 607 return rc; 608 } 609 610 /* The following three functions, heightOfExpr(), heightOfExprList() 611 ** and heightOfSelect(), are used to determine the maximum height 612 ** of any expression tree referenced by the structure passed as the 613 ** first argument. 614 ** 615 ** If this maximum height is greater than the current value pointed 616 ** to by pnHeight, the second parameter, then set *pnHeight to that 617 ** value. 618 */ 619 static void heightOfExpr(Expr *p, int *pnHeight){ 620 if( p ){ 621 if( p->nHeight>*pnHeight ){ 622 *pnHeight = p->nHeight; 623 } 624 } 625 } 626 static void heightOfExprList(ExprList *p, int *pnHeight){ 627 if( p ){ 628 int i; 629 for(i=0; i<p->nExpr; i++){ 630 heightOfExpr(p->a[i].pExpr, pnHeight); 631 } 632 } 633 } 634 static void heightOfSelect(Select *p, int *pnHeight){ 635 if( p ){ 636 heightOfExpr(p->pWhere, pnHeight); 637 heightOfExpr(p->pHaving, pnHeight); 638 heightOfExpr(p->pLimit, pnHeight); 639 heightOfExpr(p->pOffset, pnHeight); 640 heightOfExprList(p->pEList, pnHeight); 641 heightOfExprList(p->pGroupBy, pnHeight); 642 heightOfExprList(p->pOrderBy, pnHeight); 643 heightOfSelect(p->pPrior, pnHeight); 644 } 645 } 646 647 /* 648 ** Set the Expr.nHeight variable in the structure passed as an 649 ** argument. An expression with no children, Expr.pList or 650 ** Expr.pSelect member has a height of 1. Any other expression 651 ** has a height equal to the maximum height of any other 652 ** referenced Expr plus one. 653 ** 654 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 655 ** if appropriate. 656 */ 657 static void exprSetHeight(Expr *p){ 658 int nHeight = 0; 659 heightOfExpr(p->pLeft, &nHeight); 660 heightOfExpr(p->pRight, &nHeight); 661 if( ExprHasProperty(p, EP_xIsSelect) ){ 662 heightOfSelect(p->x.pSelect, &nHeight); 663 }else if( p->x.pList ){ 664 heightOfExprList(p->x.pList, &nHeight); 665 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 666 } 667 p->nHeight = nHeight + 1; 668 } 669 670 /* 671 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 672 ** the height is greater than the maximum allowed expression depth, 673 ** leave an error in pParse. 674 ** 675 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 676 ** Expr.flags. 677 */ 678 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 679 if( pParse->nErr ) return; 680 exprSetHeight(p); 681 sqlite3ExprCheckHeight(pParse, p->nHeight); 682 } 683 684 /* 685 ** Return the maximum height of any expression tree referenced 686 ** by the select statement passed as an argument. 687 */ 688 int sqlite3SelectExprHeight(Select *p){ 689 int nHeight = 0; 690 heightOfSelect(p, &nHeight); 691 return nHeight; 692 } 693 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 694 /* 695 ** Propagate all EP_Propagate flags from the Expr.x.pList into 696 ** Expr.flags. 697 */ 698 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 699 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 700 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 701 } 702 } 703 #define exprSetHeight(y) 704 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 705 706 /* 707 ** This routine is the core allocator for Expr nodes. 708 ** 709 ** Construct a new expression node and return a pointer to it. Memory 710 ** for this node and for the pToken argument is a single allocation 711 ** obtained from sqlite3DbMalloc(). The calling function 712 ** is responsible for making sure the node eventually gets freed. 713 ** 714 ** If dequote is true, then the token (if it exists) is dequoted. 715 ** If dequote is false, no dequoting is performed. The deQuote 716 ** parameter is ignored if pToken is NULL or if the token does not 717 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 718 ** then the EP_DblQuoted flag is set on the expression node. 719 ** 720 ** Special case: If op==TK_INTEGER and pToken points to a string that 721 ** can be translated into a 32-bit integer, then the token is not 722 ** stored in u.zToken. Instead, the integer values is written 723 ** into u.iValue and the EP_IntValue flag is set. No extra storage 724 ** is allocated to hold the integer text and the dequote flag is ignored. 725 */ 726 Expr *sqlite3ExprAlloc( 727 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 728 int op, /* Expression opcode */ 729 const Token *pToken, /* Token argument. Might be NULL */ 730 int dequote /* True to dequote */ 731 ){ 732 Expr *pNew; 733 int nExtra = 0; 734 int iValue = 0; 735 736 assert( db!=0 ); 737 if( pToken ){ 738 if( op!=TK_INTEGER || pToken->z==0 739 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 740 nExtra = pToken->n+1; 741 assert( iValue>=0 ); 742 } 743 } 744 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 745 if( pNew ){ 746 memset(pNew, 0, sizeof(Expr)); 747 pNew->op = (u8)op; 748 pNew->iAgg = -1; 749 if( pToken ){ 750 if( nExtra==0 ){ 751 pNew->flags |= EP_IntValue; 752 pNew->u.iValue = iValue; 753 }else{ 754 pNew->u.zToken = (char*)&pNew[1]; 755 assert( pToken->z!=0 || pToken->n==0 ); 756 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 757 pNew->u.zToken[pToken->n] = 0; 758 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 759 if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted; 760 sqlite3Dequote(pNew->u.zToken); 761 } 762 } 763 } 764 #if SQLITE_MAX_EXPR_DEPTH>0 765 pNew->nHeight = 1; 766 #endif 767 } 768 return pNew; 769 } 770 771 /* 772 ** Allocate a new expression node from a zero-terminated token that has 773 ** already been dequoted. 774 */ 775 Expr *sqlite3Expr( 776 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 777 int op, /* Expression opcode */ 778 const char *zToken /* Token argument. Might be NULL */ 779 ){ 780 Token x; 781 x.z = zToken; 782 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 783 return sqlite3ExprAlloc(db, op, &x, 0); 784 } 785 786 /* 787 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 788 ** 789 ** If pRoot==NULL that means that a memory allocation error has occurred. 790 ** In that case, delete the subtrees pLeft and pRight. 791 */ 792 void sqlite3ExprAttachSubtrees( 793 sqlite3 *db, 794 Expr *pRoot, 795 Expr *pLeft, 796 Expr *pRight 797 ){ 798 if( pRoot==0 ){ 799 assert( db->mallocFailed ); 800 sqlite3ExprDelete(db, pLeft); 801 sqlite3ExprDelete(db, pRight); 802 }else{ 803 if( pRight ){ 804 pRoot->pRight = pRight; 805 pRoot->flags |= EP_Propagate & pRight->flags; 806 } 807 if( pLeft ){ 808 pRoot->pLeft = pLeft; 809 pRoot->flags |= EP_Propagate & pLeft->flags; 810 } 811 exprSetHeight(pRoot); 812 } 813 } 814 815 /* 816 ** Allocate an Expr node which joins as many as two subtrees. 817 ** 818 ** One or both of the subtrees can be NULL. Return a pointer to the new 819 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 820 ** free the subtrees and return NULL. 821 */ 822 Expr *sqlite3PExpr( 823 Parse *pParse, /* Parsing context */ 824 int op, /* Expression opcode */ 825 Expr *pLeft, /* Left operand */ 826 Expr *pRight /* Right operand */ 827 ){ 828 Expr *p; 829 if( op==TK_AND && pParse->nErr==0 ){ 830 /* Take advantage of short-circuit false optimization for AND */ 831 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 832 }else{ 833 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 834 if( p ){ 835 memset(p, 0, sizeof(Expr)); 836 p->op = op & TKFLG_MASK; 837 p->iAgg = -1; 838 } 839 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 840 } 841 if( p ) { 842 sqlite3ExprCheckHeight(pParse, p->nHeight); 843 } 844 return p; 845 } 846 847 /* 848 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 849 ** do a memory allocation failure) then delete the pSelect object. 850 */ 851 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 852 if( pExpr ){ 853 pExpr->x.pSelect = pSelect; 854 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 855 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 856 }else{ 857 assert( pParse->db->mallocFailed ); 858 sqlite3SelectDelete(pParse->db, pSelect); 859 } 860 } 861 862 863 /* 864 ** If the expression is always either TRUE or FALSE (respectively), 865 ** then return 1. If one cannot determine the truth value of the 866 ** expression at compile-time return 0. 867 ** 868 ** This is an optimization. If is OK to return 0 here even if 869 ** the expression really is always false or false (a false negative). 870 ** But it is a bug to return 1 if the expression might have different 871 ** boolean values in different circumstances (a false positive.) 872 ** 873 ** Note that if the expression is part of conditional for a 874 ** LEFT JOIN, then we cannot determine at compile-time whether or not 875 ** is it true or false, so always return 0. 876 */ 877 static int exprAlwaysTrue(Expr *p){ 878 int v = 0; 879 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 880 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 881 return v!=0; 882 } 883 static int exprAlwaysFalse(Expr *p){ 884 int v = 0; 885 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 886 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 887 return v==0; 888 } 889 890 /* 891 ** Join two expressions using an AND operator. If either expression is 892 ** NULL, then just return the other expression. 893 ** 894 ** If one side or the other of the AND is known to be false, then instead 895 ** of returning an AND expression, just return a constant expression with 896 ** a value of false. 897 */ 898 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 899 if( pLeft==0 ){ 900 return pRight; 901 }else if( pRight==0 ){ 902 return pLeft; 903 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 904 sqlite3ExprDelete(db, pLeft); 905 sqlite3ExprDelete(db, pRight); 906 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 907 }else{ 908 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 909 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 910 return pNew; 911 } 912 } 913 914 /* 915 ** Construct a new expression node for a function with multiple 916 ** arguments. 917 */ 918 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 919 Expr *pNew; 920 sqlite3 *db = pParse->db; 921 assert( pToken ); 922 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 923 if( pNew==0 ){ 924 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 925 return 0; 926 } 927 pNew->x.pList = pList; 928 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 929 sqlite3ExprSetHeightAndFlags(pParse, pNew); 930 return pNew; 931 } 932 933 /* 934 ** Assign a variable number to an expression that encodes a wildcard 935 ** in the original SQL statement. 936 ** 937 ** Wildcards consisting of a single "?" are assigned the next sequential 938 ** variable number. 939 ** 940 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 941 ** sure "nnn" is not too big to avoid a denial of service attack when 942 ** the SQL statement comes from an external source. 943 ** 944 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 945 ** as the previous instance of the same wildcard. Or if this is the first 946 ** instance of the wildcard, the next sequential variable number is 947 ** assigned. 948 */ 949 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 950 sqlite3 *db = pParse->db; 951 const char *z; 952 ynVar x; 953 954 if( pExpr==0 ) return; 955 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 956 z = pExpr->u.zToken; 957 assert( z!=0 ); 958 assert( z[0]!=0 ); 959 assert( n==sqlite3Strlen30(z) ); 960 if( z[1]==0 ){ 961 /* Wildcard of the form "?". Assign the next variable number */ 962 assert( z[0]=='?' ); 963 x = (ynVar)(++pParse->nVar); 964 }else{ 965 int doAdd = 0; 966 if( z[0]=='?' ){ 967 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 968 ** use it as the variable number */ 969 i64 i; 970 int bOk; 971 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 972 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 973 bOk = 1; 974 }else{ 975 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 976 } 977 testcase( i==0 ); 978 testcase( i==1 ); 979 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 980 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 981 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 982 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 983 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 984 return; 985 } 986 x = (ynVar)i; 987 if( x>pParse->nVar ){ 988 pParse->nVar = (int)x; 989 doAdd = 1; 990 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 991 doAdd = 1; 992 } 993 }else{ 994 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 995 ** number as the prior appearance of the same name, or if the name 996 ** has never appeared before, reuse the same variable number 997 */ 998 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 999 if( x==0 ){ 1000 x = (ynVar)(++pParse->nVar); 1001 doAdd = 1; 1002 } 1003 } 1004 if( doAdd ){ 1005 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1006 } 1007 } 1008 pExpr->iColumn = x; 1009 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1010 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1011 } 1012 } 1013 1014 /* 1015 ** Recursively delete an expression tree. 1016 */ 1017 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1018 assert( p!=0 ); 1019 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1020 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1021 #ifdef SQLITE_DEBUG 1022 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1023 assert( p->pLeft==0 ); 1024 assert( p->pRight==0 ); 1025 assert( p->x.pSelect==0 ); 1026 } 1027 #endif 1028 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1029 /* The Expr.x union is never used at the same time as Expr.pRight */ 1030 assert( p->x.pList==0 || p->pRight==0 ); 1031 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1032 sqlite3ExprDelete(db, p->pRight); 1033 if( ExprHasProperty(p, EP_xIsSelect) ){ 1034 sqlite3SelectDelete(db, p->x.pSelect); 1035 }else{ 1036 sqlite3ExprListDelete(db, p->x.pList); 1037 } 1038 } 1039 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1040 if( !ExprHasProperty(p, EP_Static) ){ 1041 sqlite3DbFree(db, p); 1042 } 1043 } 1044 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1045 if( p ) sqlite3ExprDeleteNN(db, p); 1046 } 1047 1048 /* 1049 ** Return the number of bytes allocated for the expression structure 1050 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1051 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1052 */ 1053 static int exprStructSize(Expr *p){ 1054 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1055 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1056 return EXPR_FULLSIZE; 1057 } 1058 1059 /* 1060 ** The dupedExpr*Size() routines each return the number of bytes required 1061 ** to store a copy of an expression or expression tree. They differ in 1062 ** how much of the tree is measured. 1063 ** 1064 ** dupedExprStructSize() Size of only the Expr structure 1065 ** dupedExprNodeSize() Size of Expr + space for token 1066 ** dupedExprSize() Expr + token + subtree components 1067 ** 1068 *************************************************************************** 1069 ** 1070 ** The dupedExprStructSize() function returns two values OR-ed together: 1071 ** (1) the space required for a copy of the Expr structure only and 1072 ** (2) the EP_xxx flags that indicate what the structure size should be. 1073 ** The return values is always one of: 1074 ** 1075 ** EXPR_FULLSIZE 1076 ** EXPR_REDUCEDSIZE | EP_Reduced 1077 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1078 ** 1079 ** The size of the structure can be found by masking the return value 1080 ** of this routine with 0xfff. The flags can be found by masking the 1081 ** return value with EP_Reduced|EP_TokenOnly. 1082 ** 1083 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1084 ** (unreduced) Expr objects as they or originally constructed by the parser. 1085 ** During expression analysis, extra information is computed and moved into 1086 ** later parts of teh Expr object and that extra information might get chopped 1087 ** off if the expression is reduced. Note also that it does not work to 1088 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1089 ** to reduce a pristine expression tree from the parser. The implementation 1090 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1091 ** to enforce this constraint. 1092 */ 1093 static int dupedExprStructSize(Expr *p, int flags){ 1094 int nSize; 1095 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1096 assert( EXPR_FULLSIZE<=0xfff ); 1097 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1098 if( 0==flags || p->op==TK_SELECT_COLUMN ){ 1099 nSize = EXPR_FULLSIZE; 1100 }else{ 1101 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1102 assert( !ExprHasProperty(p, EP_FromJoin) ); 1103 assert( !ExprHasProperty(p, EP_MemToken) ); 1104 assert( !ExprHasProperty(p, EP_NoReduce) ); 1105 if( p->pLeft || p->x.pList ){ 1106 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1107 }else{ 1108 assert( p->pRight==0 ); 1109 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1110 } 1111 } 1112 return nSize; 1113 } 1114 1115 /* 1116 ** This function returns the space in bytes required to store the copy 1117 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1118 ** string is defined.) 1119 */ 1120 static int dupedExprNodeSize(Expr *p, int flags){ 1121 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1122 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1123 nByte += sqlite3Strlen30(p->u.zToken)+1; 1124 } 1125 return ROUND8(nByte); 1126 } 1127 1128 /* 1129 ** Return the number of bytes required to create a duplicate of the 1130 ** expression passed as the first argument. The second argument is a 1131 ** mask containing EXPRDUP_XXX flags. 1132 ** 1133 ** The value returned includes space to create a copy of the Expr struct 1134 ** itself and the buffer referred to by Expr.u.zToken, if any. 1135 ** 1136 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1137 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1138 ** and Expr.pRight variables (but not for any structures pointed to or 1139 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1140 */ 1141 static int dupedExprSize(Expr *p, int flags){ 1142 int nByte = 0; 1143 if( p ){ 1144 nByte = dupedExprNodeSize(p, flags); 1145 if( flags&EXPRDUP_REDUCE ){ 1146 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1147 } 1148 } 1149 return nByte; 1150 } 1151 1152 /* 1153 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1154 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1155 ** to store the copy of expression p, the copies of p->u.zToken 1156 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1157 ** if any. Before returning, *pzBuffer is set to the first byte past the 1158 ** portion of the buffer copied into by this function. 1159 */ 1160 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1161 Expr *pNew; /* Value to return */ 1162 u8 *zAlloc; /* Memory space from which to build Expr object */ 1163 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1164 1165 assert( db!=0 ); 1166 assert( p ); 1167 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1168 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1169 1170 /* Figure out where to write the new Expr structure. */ 1171 if( pzBuffer ){ 1172 zAlloc = *pzBuffer; 1173 staticFlag = EP_Static; 1174 }else{ 1175 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1176 staticFlag = 0; 1177 } 1178 pNew = (Expr *)zAlloc; 1179 1180 if( pNew ){ 1181 /* Set nNewSize to the size allocated for the structure pointed to 1182 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1183 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1184 ** by the copy of the p->u.zToken string (if any). 1185 */ 1186 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1187 const int nNewSize = nStructSize & 0xfff; 1188 int nToken; 1189 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1190 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1191 }else{ 1192 nToken = 0; 1193 } 1194 if( dupFlags ){ 1195 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1196 memcpy(zAlloc, p, nNewSize); 1197 }else{ 1198 u32 nSize = (u32)exprStructSize(p); 1199 memcpy(zAlloc, p, nSize); 1200 if( nSize<EXPR_FULLSIZE ){ 1201 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1202 } 1203 } 1204 1205 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1206 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1207 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1208 pNew->flags |= staticFlag; 1209 1210 /* Copy the p->u.zToken string, if any. */ 1211 if( nToken ){ 1212 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1213 memcpy(zToken, p->u.zToken, nToken); 1214 } 1215 1216 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1217 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1218 if( ExprHasProperty(p, EP_xIsSelect) ){ 1219 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1220 }else{ 1221 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1222 } 1223 } 1224 1225 /* Fill in pNew->pLeft and pNew->pRight. */ 1226 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 1227 zAlloc += dupedExprNodeSize(p, dupFlags); 1228 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1229 pNew->pLeft = p->pLeft ? 1230 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1231 pNew->pRight = p->pRight ? 1232 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1233 } 1234 if( pzBuffer ){ 1235 *pzBuffer = zAlloc; 1236 } 1237 }else{ 1238 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1239 if( pNew->op==TK_SELECT_COLUMN ){ 1240 pNew->pLeft = p->pLeft; 1241 assert( p->iColumn==0 || p->pRight==0 ); 1242 assert( p->pRight==0 || p->pRight==p->pLeft ); 1243 }else{ 1244 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1245 } 1246 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1247 } 1248 } 1249 } 1250 return pNew; 1251 } 1252 1253 /* 1254 ** Create and return a deep copy of the object passed as the second 1255 ** argument. If an OOM condition is encountered, NULL is returned 1256 ** and the db->mallocFailed flag set. 1257 */ 1258 #ifndef SQLITE_OMIT_CTE 1259 static With *withDup(sqlite3 *db, With *p){ 1260 With *pRet = 0; 1261 if( p ){ 1262 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1263 pRet = sqlite3DbMallocZero(db, nByte); 1264 if( pRet ){ 1265 int i; 1266 pRet->nCte = p->nCte; 1267 for(i=0; i<p->nCte; i++){ 1268 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1269 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1270 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1271 } 1272 } 1273 } 1274 return pRet; 1275 } 1276 #else 1277 # define withDup(x,y) 0 1278 #endif 1279 1280 /* 1281 ** The following group of routines make deep copies of expressions, 1282 ** expression lists, ID lists, and select statements. The copies can 1283 ** be deleted (by being passed to their respective ...Delete() routines) 1284 ** without effecting the originals. 1285 ** 1286 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1287 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1288 ** by subsequent calls to sqlite*ListAppend() routines. 1289 ** 1290 ** Any tables that the SrcList might point to are not duplicated. 1291 ** 1292 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1293 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1294 ** truncated version of the usual Expr structure that will be stored as 1295 ** part of the in-memory representation of the database schema. 1296 */ 1297 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1298 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1299 return p ? exprDup(db, p, flags, 0) : 0; 1300 } 1301 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1302 ExprList *pNew; 1303 struct ExprList_item *pItem, *pOldItem; 1304 int i; 1305 Expr *pPriorSelectCol = 0; 1306 assert( db!=0 ); 1307 if( p==0 ) return 0; 1308 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1309 if( pNew==0 ) return 0; 1310 pNew->nExpr = i = p->nExpr; 1311 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 1312 pNew->a = pItem = sqlite3DbMallocRawNN(db, i*sizeof(p->a[0]) ); 1313 if( pItem==0 ){ 1314 sqlite3DbFree(db, pNew); 1315 return 0; 1316 } 1317 pOldItem = p->a; 1318 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1319 Expr *pOldExpr = pOldItem->pExpr; 1320 Expr *pNewExpr; 1321 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1322 if( pOldExpr 1323 && pOldExpr->op==TK_SELECT_COLUMN 1324 && (pNewExpr = pItem->pExpr)!=0 1325 ){ 1326 assert( pNewExpr->iColumn==0 || i>0 ); 1327 if( pNewExpr->iColumn==0 ){ 1328 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1329 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1330 }else{ 1331 assert( i>0 ); 1332 assert( pItem[-1].pExpr!=0 ); 1333 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1334 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1335 pNewExpr->pLeft = pPriorSelectCol; 1336 } 1337 } 1338 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1339 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1340 pItem->sortOrder = pOldItem->sortOrder; 1341 pItem->done = 0; 1342 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1343 pItem->u = pOldItem->u; 1344 } 1345 return pNew; 1346 } 1347 1348 /* 1349 ** If cursors, triggers, views and subqueries are all omitted from 1350 ** the build, then none of the following routines, except for 1351 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1352 ** called with a NULL argument. 1353 */ 1354 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1355 || !defined(SQLITE_OMIT_SUBQUERY) 1356 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1357 SrcList *pNew; 1358 int i; 1359 int nByte; 1360 assert( db!=0 ); 1361 if( p==0 ) return 0; 1362 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1363 pNew = sqlite3DbMallocRawNN(db, nByte ); 1364 if( pNew==0 ) return 0; 1365 pNew->nSrc = pNew->nAlloc = p->nSrc; 1366 for(i=0; i<p->nSrc; i++){ 1367 struct SrcList_item *pNewItem = &pNew->a[i]; 1368 struct SrcList_item *pOldItem = &p->a[i]; 1369 Table *pTab; 1370 pNewItem->pSchema = pOldItem->pSchema; 1371 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1372 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1373 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1374 pNewItem->fg = pOldItem->fg; 1375 pNewItem->iCursor = pOldItem->iCursor; 1376 pNewItem->addrFillSub = pOldItem->addrFillSub; 1377 pNewItem->regReturn = pOldItem->regReturn; 1378 if( pNewItem->fg.isIndexedBy ){ 1379 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1380 } 1381 pNewItem->pIBIndex = pOldItem->pIBIndex; 1382 if( pNewItem->fg.isTabFunc ){ 1383 pNewItem->u1.pFuncArg = 1384 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1385 } 1386 pTab = pNewItem->pTab = pOldItem->pTab; 1387 if( pTab ){ 1388 pTab->nTabRef++; 1389 } 1390 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1391 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1392 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1393 pNewItem->colUsed = pOldItem->colUsed; 1394 } 1395 return pNew; 1396 } 1397 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1398 IdList *pNew; 1399 int i; 1400 assert( db!=0 ); 1401 if( p==0 ) return 0; 1402 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1403 if( pNew==0 ) return 0; 1404 pNew->nId = p->nId; 1405 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1406 if( pNew->a==0 ){ 1407 sqlite3DbFree(db, pNew); 1408 return 0; 1409 } 1410 /* Note that because the size of the allocation for p->a[] is not 1411 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1412 ** on the duplicate created by this function. */ 1413 for(i=0; i<p->nId; i++){ 1414 struct IdList_item *pNewItem = &pNew->a[i]; 1415 struct IdList_item *pOldItem = &p->a[i]; 1416 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1417 pNewItem->idx = pOldItem->idx; 1418 } 1419 return pNew; 1420 } 1421 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1422 Select *pRet = 0; 1423 Select *pNext = 0; 1424 Select **pp = &pRet; 1425 Select *p; 1426 1427 assert( db!=0 ); 1428 for(p=pDup; p; p=p->pPrior){ 1429 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1430 if( pNew==0 ) break; 1431 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1432 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1433 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1434 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1435 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1436 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1437 pNew->op = p->op; 1438 pNew->pNext = pNext; 1439 pNew->pPrior = 0; 1440 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1441 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1442 pNew->iLimit = 0; 1443 pNew->iOffset = 0; 1444 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1445 pNew->addrOpenEphm[0] = -1; 1446 pNew->addrOpenEphm[1] = -1; 1447 pNew->nSelectRow = p->nSelectRow; 1448 pNew->pWith = withDup(db, p->pWith); 1449 sqlite3SelectSetName(pNew, p->zSelName); 1450 *pp = pNew; 1451 pp = &pNew->pPrior; 1452 pNext = pNew; 1453 } 1454 1455 return pRet; 1456 } 1457 #else 1458 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1459 assert( p==0 ); 1460 return 0; 1461 } 1462 #endif 1463 1464 1465 /* 1466 ** Add a new element to the end of an expression list. If pList is 1467 ** initially NULL, then create a new expression list. 1468 ** 1469 ** If a memory allocation error occurs, the entire list is freed and 1470 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1471 ** that the new entry was successfully appended. 1472 */ 1473 ExprList *sqlite3ExprListAppend( 1474 Parse *pParse, /* Parsing context */ 1475 ExprList *pList, /* List to which to append. Might be NULL */ 1476 Expr *pExpr /* Expression to be appended. Might be NULL */ 1477 ){ 1478 sqlite3 *db = pParse->db; 1479 assert( db!=0 ); 1480 if( pList==0 ){ 1481 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1482 if( pList==0 ){ 1483 goto no_mem; 1484 } 1485 pList->nExpr = 0; 1486 pList->a = sqlite3DbMallocRawNN(db, sizeof(pList->a[0])); 1487 if( pList->a==0 ) goto no_mem; 1488 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1489 struct ExprList_item *a; 1490 assert( pList->nExpr>0 ); 1491 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1492 if( a==0 ){ 1493 goto no_mem; 1494 } 1495 pList->a = a; 1496 } 1497 assert( pList->a!=0 ); 1498 if( 1 ){ 1499 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1500 memset(pItem, 0, sizeof(*pItem)); 1501 pItem->pExpr = pExpr; 1502 } 1503 return pList; 1504 1505 no_mem: 1506 /* Avoid leaking memory if malloc has failed. */ 1507 sqlite3ExprDelete(db, pExpr); 1508 sqlite3ExprListDelete(db, pList); 1509 return 0; 1510 } 1511 1512 /* 1513 ** pColumns and pExpr form a vector assignment which is part of the SET 1514 ** clause of an UPDATE statement. Like this: 1515 ** 1516 ** (a,b,c) = (expr1,expr2,expr3) 1517 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1518 ** 1519 ** For each term of the vector assignment, append new entries to the 1520 ** expression list pList. In the case of a subquery on the RHS, append 1521 ** TK_SELECT_COLUMN expressions. 1522 */ 1523 ExprList *sqlite3ExprListAppendVector( 1524 Parse *pParse, /* Parsing context */ 1525 ExprList *pList, /* List to which to append. Might be NULL */ 1526 IdList *pColumns, /* List of names of LHS of the assignment */ 1527 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1528 ){ 1529 sqlite3 *db = pParse->db; 1530 int n; 1531 int i; 1532 int iFirst = pList ? pList->nExpr : 0; 1533 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1534 ** exit prior to this routine being invoked */ 1535 if( NEVER(pColumns==0) ) goto vector_append_error; 1536 if( pExpr==0 ) goto vector_append_error; 1537 1538 /* If the RHS is a vector, then we can immediately check to see that 1539 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1540 ** wildcards ("*") in the result set of the SELECT must be expanded before 1541 ** we can do the size check, so defer the size check until code generation. 1542 */ 1543 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1544 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1545 pColumns->nId, n); 1546 goto vector_append_error; 1547 } 1548 1549 for(i=0; i<pColumns->nId; i++){ 1550 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1551 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1552 if( pList ){ 1553 assert( pList->nExpr==iFirst+i+1 ); 1554 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1555 pColumns->a[i].zName = 0; 1556 } 1557 } 1558 1559 if( pExpr->op==TK_SELECT ){ 1560 if( pList && pList->a[iFirst].pExpr ){ 1561 Expr *pFirst = pList->a[iFirst].pExpr; 1562 assert( pFirst->op==TK_SELECT_COLUMN ); 1563 1564 /* Store the SELECT statement in pRight so it will be deleted when 1565 ** sqlite3ExprListDelete() is called */ 1566 pFirst->pRight = pExpr; 1567 pExpr = 0; 1568 1569 /* Remember the size of the LHS in iTable so that we can check that 1570 ** the RHS and LHS sizes match during code generation. */ 1571 pFirst->iTable = pColumns->nId; 1572 } 1573 } 1574 1575 vector_append_error: 1576 sqlite3ExprDelete(db, pExpr); 1577 sqlite3IdListDelete(db, pColumns); 1578 return pList; 1579 } 1580 1581 /* 1582 ** Set the sort order for the last element on the given ExprList. 1583 */ 1584 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1585 if( p==0 ) return; 1586 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1587 assert( p->nExpr>0 ); 1588 if( iSortOrder<0 ){ 1589 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1590 return; 1591 } 1592 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1593 } 1594 1595 /* 1596 ** Set the ExprList.a[].zName element of the most recently added item 1597 ** on the expression list. 1598 ** 1599 ** pList might be NULL following an OOM error. But pName should never be 1600 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1601 ** is set. 1602 */ 1603 void sqlite3ExprListSetName( 1604 Parse *pParse, /* Parsing context */ 1605 ExprList *pList, /* List to which to add the span. */ 1606 Token *pName, /* Name to be added */ 1607 int dequote /* True to cause the name to be dequoted */ 1608 ){ 1609 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1610 if( pList ){ 1611 struct ExprList_item *pItem; 1612 assert( pList->nExpr>0 ); 1613 pItem = &pList->a[pList->nExpr-1]; 1614 assert( pItem->zName==0 ); 1615 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1616 if( dequote ) sqlite3Dequote(pItem->zName); 1617 } 1618 } 1619 1620 /* 1621 ** Set the ExprList.a[].zSpan element of the most recently added item 1622 ** on the expression list. 1623 ** 1624 ** pList might be NULL following an OOM error. But pSpan should never be 1625 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1626 ** is set. 1627 */ 1628 void sqlite3ExprListSetSpan( 1629 Parse *pParse, /* Parsing context */ 1630 ExprList *pList, /* List to which to add the span. */ 1631 ExprSpan *pSpan /* The span to be added */ 1632 ){ 1633 sqlite3 *db = pParse->db; 1634 assert( pList!=0 || db->mallocFailed!=0 ); 1635 if( pList ){ 1636 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1637 assert( pList->nExpr>0 ); 1638 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1639 sqlite3DbFree(db, pItem->zSpan); 1640 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1641 (int)(pSpan->zEnd - pSpan->zStart)); 1642 } 1643 } 1644 1645 /* 1646 ** If the expression list pEList contains more than iLimit elements, 1647 ** leave an error message in pParse. 1648 */ 1649 void sqlite3ExprListCheckLength( 1650 Parse *pParse, 1651 ExprList *pEList, 1652 const char *zObject 1653 ){ 1654 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1655 testcase( pEList && pEList->nExpr==mx ); 1656 testcase( pEList && pEList->nExpr==mx+1 ); 1657 if( pEList && pEList->nExpr>mx ){ 1658 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1659 } 1660 } 1661 1662 /* 1663 ** Delete an entire expression list. 1664 */ 1665 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1666 int i; 1667 struct ExprList_item *pItem; 1668 assert( pList->a!=0 || pList->nExpr==0 ); 1669 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1670 sqlite3ExprDelete(db, pItem->pExpr); 1671 sqlite3DbFree(db, pItem->zName); 1672 sqlite3DbFree(db, pItem->zSpan); 1673 } 1674 sqlite3DbFree(db, pList->a); 1675 sqlite3DbFree(db, pList); 1676 } 1677 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1678 if( pList ) exprListDeleteNN(db, pList); 1679 } 1680 1681 /* 1682 ** Return the bitwise-OR of all Expr.flags fields in the given 1683 ** ExprList. 1684 */ 1685 u32 sqlite3ExprListFlags(const ExprList *pList){ 1686 int i; 1687 u32 m = 0; 1688 if( pList ){ 1689 for(i=0; i<pList->nExpr; i++){ 1690 Expr *pExpr = pList->a[i].pExpr; 1691 assert( pExpr!=0 ); 1692 m |= pExpr->flags; 1693 } 1694 } 1695 return m; 1696 } 1697 1698 /* 1699 ** These routines are Walker callbacks used to check expressions to 1700 ** see if they are "constant" for some definition of constant. The 1701 ** Walker.eCode value determines the type of "constant" we are looking 1702 ** for. 1703 ** 1704 ** These callback routines are used to implement the following: 1705 ** 1706 ** sqlite3ExprIsConstant() pWalker->eCode==1 1707 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1708 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1709 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1710 ** 1711 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1712 ** is found to not be a constant. 1713 ** 1714 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1715 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1716 ** an existing schema and 4 when processing a new statement. A bound 1717 ** parameter raises an error for new statements, but is silently converted 1718 ** to NULL for existing schemas. This allows sqlite_master tables that 1719 ** contain a bound parameter because they were generated by older versions 1720 ** of SQLite to be parsed by newer versions of SQLite without raising a 1721 ** malformed schema error. 1722 */ 1723 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1724 1725 /* If pWalker->eCode is 2 then any term of the expression that comes from 1726 ** the ON or USING clauses of a left join disqualifies the expression 1727 ** from being considered constant. */ 1728 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1729 pWalker->eCode = 0; 1730 return WRC_Abort; 1731 } 1732 1733 switch( pExpr->op ){ 1734 /* Consider functions to be constant if all their arguments are constant 1735 ** and either pWalker->eCode==4 or 5 or the function has the 1736 ** SQLITE_FUNC_CONST flag. */ 1737 case TK_FUNCTION: 1738 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1739 return WRC_Continue; 1740 }else{ 1741 pWalker->eCode = 0; 1742 return WRC_Abort; 1743 } 1744 case TK_ID: 1745 case TK_COLUMN: 1746 case TK_AGG_FUNCTION: 1747 case TK_AGG_COLUMN: 1748 testcase( pExpr->op==TK_ID ); 1749 testcase( pExpr->op==TK_COLUMN ); 1750 testcase( pExpr->op==TK_AGG_FUNCTION ); 1751 testcase( pExpr->op==TK_AGG_COLUMN ); 1752 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1753 return WRC_Continue; 1754 }else{ 1755 pWalker->eCode = 0; 1756 return WRC_Abort; 1757 } 1758 case TK_VARIABLE: 1759 if( pWalker->eCode==5 ){ 1760 /* Silently convert bound parameters that appear inside of CREATE 1761 ** statements into a NULL when parsing the CREATE statement text out 1762 ** of the sqlite_master table */ 1763 pExpr->op = TK_NULL; 1764 }else if( pWalker->eCode==4 ){ 1765 /* A bound parameter in a CREATE statement that originates from 1766 ** sqlite3_prepare() causes an error */ 1767 pWalker->eCode = 0; 1768 return WRC_Abort; 1769 } 1770 /* Fall through */ 1771 default: 1772 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1773 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1774 return WRC_Continue; 1775 } 1776 } 1777 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1778 UNUSED_PARAMETER(NotUsed); 1779 pWalker->eCode = 0; 1780 return WRC_Abort; 1781 } 1782 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1783 Walker w; 1784 memset(&w, 0, sizeof(w)); 1785 w.eCode = initFlag; 1786 w.xExprCallback = exprNodeIsConstant; 1787 w.xSelectCallback = selectNodeIsConstant; 1788 w.u.iCur = iCur; 1789 sqlite3WalkExpr(&w, p); 1790 return w.eCode; 1791 } 1792 1793 /* 1794 ** Walk an expression tree. Return non-zero if the expression is constant 1795 ** and 0 if it involves variables or function calls. 1796 ** 1797 ** For the purposes of this function, a double-quoted string (ex: "abc") 1798 ** is considered a variable but a single-quoted string (ex: 'abc') is 1799 ** a constant. 1800 */ 1801 int sqlite3ExprIsConstant(Expr *p){ 1802 return exprIsConst(p, 1, 0); 1803 } 1804 1805 /* 1806 ** Walk an expression tree. Return non-zero if the expression is constant 1807 ** that does no originate from the ON or USING clauses of a join. 1808 ** Return 0 if it involves variables or function calls or terms from 1809 ** an ON or USING clause. 1810 */ 1811 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1812 return exprIsConst(p, 2, 0); 1813 } 1814 1815 /* 1816 ** Walk an expression tree. Return non-zero if the expression is constant 1817 ** for any single row of the table with cursor iCur. In other words, the 1818 ** expression must not refer to any non-deterministic function nor any 1819 ** table other than iCur. 1820 */ 1821 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1822 return exprIsConst(p, 3, iCur); 1823 } 1824 1825 /* 1826 ** Walk an expression tree. Return non-zero if the expression is constant 1827 ** or a function call with constant arguments. Return and 0 if there 1828 ** are any variables. 1829 ** 1830 ** For the purposes of this function, a double-quoted string (ex: "abc") 1831 ** is considered a variable but a single-quoted string (ex: 'abc') is 1832 ** a constant. 1833 */ 1834 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1835 assert( isInit==0 || isInit==1 ); 1836 return exprIsConst(p, 4+isInit, 0); 1837 } 1838 1839 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1840 /* 1841 ** Walk an expression tree. Return 1 if the expression contains a 1842 ** subquery of some kind. Return 0 if there are no subqueries. 1843 */ 1844 int sqlite3ExprContainsSubquery(Expr *p){ 1845 Walker w; 1846 memset(&w, 0, sizeof(w)); 1847 w.eCode = 1; 1848 w.xExprCallback = sqlite3ExprWalkNoop; 1849 w.xSelectCallback = selectNodeIsConstant; 1850 sqlite3WalkExpr(&w, p); 1851 return w.eCode==0; 1852 } 1853 #endif 1854 1855 /* 1856 ** If the expression p codes a constant integer that is small enough 1857 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1858 ** in *pValue. If the expression is not an integer or if it is too big 1859 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1860 */ 1861 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1862 int rc = 0; 1863 1864 /* If an expression is an integer literal that fits in a signed 32-bit 1865 ** integer, then the EP_IntValue flag will have already been set */ 1866 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1867 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1868 1869 if( p->flags & EP_IntValue ){ 1870 *pValue = p->u.iValue; 1871 return 1; 1872 } 1873 switch( p->op ){ 1874 case TK_UPLUS: { 1875 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1876 break; 1877 } 1878 case TK_UMINUS: { 1879 int v; 1880 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1881 assert( v!=(-2147483647-1) ); 1882 *pValue = -v; 1883 rc = 1; 1884 } 1885 break; 1886 } 1887 default: break; 1888 } 1889 return rc; 1890 } 1891 1892 /* 1893 ** Return FALSE if there is no chance that the expression can be NULL. 1894 ** 1895 ** If the expression might be NULL or if the expression is too complex 1896 ** to tell return TRUE. 1897 ** 1898 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1899 ** when we know that a value cannot be NULL. Hence, a false positive 1900 ** (returning TRUE when in fact the expression can never be NULL) might 1901 ** be a small performance hit but is otherwise harmless. On the other 1902 ** hand, a false negative (returning FALSE when the result could be NULL) 1903 ** will likely result in an incorrect answer. So when in doubt, return 1904 ** TRUE. 1905 */ 1906 int sqlite3ExprCanBeNull(const Expr *p){ 1907 u8 op; 1908 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1909 op = p->op; 1910 if( op==TK_REGISTER ) op = p->op2; 1911 switch( op ){ 1912 case TK_INTEGER: 1913 case TK_STRING: 1914 case TK_FLOAT: 1915 case TK_BLOB: 1916 return 0; 1917 case TK_COLUMN: 1918 assert( p->pTab!=0 ); 1919 return ExprHasProperty(p, EP_CanBeNull) || 1920 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 1921 default: 1922 return 1; 1923 } 1924 } 1925 1926 /* 1927 ** Return TRUE if the given expression is a constant which would be 1928 ** unchanged by OP_Affinity with the affinity given in the second 1929 ** argument. 1930 ** 1931 ** This routine is used to determine if the OP_Affinity operation 1932 ** can be omitted. When in doubt return FALSE. A false negative 1933 ** is harmless. A false positive, however, can result in the wrong 1934 ** answer. 1935 */ 1936 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1937 u8 op; 1938 if( aff==SQLITE_AFF_BLOB ) return 1; 1939 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1940 op = p->op; 1941 if( op==TK_REGISTER ) op = p->op2; 1942 switch( op ){ 1943 case TK_INTEGER: { 1944 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1945 } 1946 case TK_FLOAT: { 1947 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1948 } 1949 case TK_STRING: { 1950 return aff==SQLITE_AFF_TEXT; 1951 } 1952 case TK_BLOB: { 1953 return 1; 1954 } 1955 case TK_COLUMN: { 1956 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1957 return p->iColumn<0 1958 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1959 } 1960 default: { 1961 return 0; 1962 } 1963 } 1964 } 1965 1966 /* 1967 ** Return TRUE if the given string is a row-id column name. 1968 */ 1969 int sqlite3IsRowid(const char *z){ 1970 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1971 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1972 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1973 return 0; 1974 } 1975 1976 /* 1977 ** pX is the RHS of an IN operator. If pX is a SELECT statement 1978 ** that can be simplified to a direct table access, then return 1979 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 1980 ** or if the SELECT statement needs to be manifested into a transient 1981 ** table, then return NULL. 1982 */ 1983 #ifndef SQLITE_OMIT_SUBQUERY 1984 static Select *isCandidateForInOpt(Expr *pX){ 1985 Select *p; 1986 SrcList *pSrc; 1987 ExprList *pEList; 1988 Table *pTab; 1989 int i; 1990 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 1991 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 1992 p = pX->x.pSelect; 1993 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1994 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1995 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1996 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1997 return 0; /* No DISTINCT keyword and no aggregate functions */ 1998 } 1999 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2000 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2001 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 2002 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2003 pSrc = p->pSrc; 2004 assert( pSrc!=0 ); 2005 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2006 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2007 pTab = pSrc->a[0].pTab; 2008 assert( pTab!=0 ); 2009 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2010 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2011 pEList = p->pEList; 2012 assert( pEList!=0 ); 2013 /* All SELECT results must be columns. */ 2014 for(i=0; i<pEList->nExpr; i++){ 2015 Expr *pRes = pEList->a[i].pExpr; 2016 if( pRes->op!=TK_COLUMN ) return 0; 2017 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2018 } 2019 return p; 2020 } 2021 #endif /* SQLITE_OMIT_SUBQUERY */ 2022 2023 #ifndef SQLITE_OMIT_SUBQUERY 2024 /* 2025 ** Generate code that checks the left-most column of index table iCur to see if 2026 ** it contains any NULL entries. Cause the register at regHasNull to be set 2027 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2028 ** to be set to NULL if iCur contains one or more NULL values. 2029 */ 2030 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2031 int addr1; 2032 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2033 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2034 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2035 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2036 VdbeComment((v, "first_entry_in(%d)", iCur)); 2037 sqlite3VdbeJumpHere(v, addr1); 2038 } 2039 #endif 2040 2041 2042 #ifndef SQLITE_OMIT_SUBQUERY 2043 /* 2044 ** The argument is an IN operator with a list (not a subquery) on the 2045 ** right-hand side. Return TRUE if that list is constant. 2046 */ 2047 static int sqlite3InRhsIsConstant(Expr *pIn){ 2048 Expr *pLHS; 2049 int res; 2050 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2051 pLHS = pIn->pLeft; 2052 pIn->pLeft = 0; 2053 res = sqlite3ExprIsConstant(pIn); 2054 pIn->pLeft = pLHS; 2055 return res; 2056 } 2057 #endif 2058 2059 /* 2060 ** This function is used by the implementation of the IN (...) operator. 2061 ** The pX parameter is the expression on the RHS of the IN operator, which 2062 ** might be either a list of expressions or a subquery. 2063 ** 2064 ** The job of this routine is to find or create a b-tree object that can 2065 ** be used either to test for membership in the RHS set or to iterate through 2066 ** all members of the RHS set, skipping duplicates. 2067 ** 2068 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2069 ** and pX->iTable is set to the index of that cursor. 2070 ** 2071 ** The returned value of this function indicates the b-tree type, as follows: 2072 ** 2073 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2074 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2075 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2076 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2077 ** populated epheremal table. 2078 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2079 ** implemented as a sequence of comparisons. 2080 ** 2081 ** An existing b-tree might be used if the RHS expression pX is a simple 2082 ** subquery such as: 2083 ** 2084 ** SELECT <column1>, <column2>... FROM <table> 2085 ** 2086 ** If the RHS of the IN operator is a list or a more complex subquery, then 2087 ** an ephemeral table might need to be generated from the RHS and then 2088 ** pX->iTable made to point to the ephemeral table instead of an 2089 ** existing table. 2090 ** 2091 ** The inFlags parameter must contain exactly one of the bits 2092 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 2093 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 2094 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 2095 ** IN index will be used to loop over all values of the RHS of the 2096 ** IN operator. 2097 ** 2098 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2099 ** through the set members) then the b-tree must not contain duplicates. 2100 ** An epheremal table must be used unless the selected columns are guaranteed 2101 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2102 ** a UNIQUE constraint or index. 2103 ** 2104 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2105 ** for fast set membership tests) then an epheremal table must 2106 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2107 ** index can be found with the specified <columns> as its left-most. 2108 ** 2109 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2110 ** if the RHS of the IN operator is a list (not a subquery) then this 2111 ** routine might decide that creating an ephemeral b-tree for membership 2112 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2113 ** calling routine should implement the IN operator using a sequence 2114 ** of Eq or Ne comparison operations. 2115 ** 2116 ** When the b-tree is being used for membership tests, the calling function 2117 ** might need to know whether or not the RHS side of the IN operator 2118 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2119 ** if there is any chance that the (...) might contain a NULL value at 2120 ** runtime, then a register is allocated and the register number written 2121 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2122 ** NULL value, then *prRhsHasNull is left unchanged. 2123 ** 2124 ** If a register is allocated and its location stored in *prRhsHasNull, then 2125 ** the value in that register will be NULL if the b-tree contains one or more 2126 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2127 ** NULL values. 2128 ** 2129 ** If the aiMap parameter is not NULL, it must point to an array containing 2130 ** one element for each column returned by the SELECT statement on the RHS 2131 ** of the IN(...) operator. The i'th entry of the array is populated with the 2132 ** offset of the index column that matches the i'th column returned by the 2133 ** SELECT. For example, if the expression and selected index are: 2134 ** 2135 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2136 ** CREATE INDEX i1 ON t1(b, c, a); 2137 ** 2138 ** then aiMap[] is populated with {2, 0, 1}. 2139 */ 2140 #ifndef SQLITE_OMIT_SUBQUERY 2141 int sqlite3FindInIndex( 2142 Parse *pParse, /* Parsing context */ 2143 Expr *pX, /* The right-hand side (RHS) of the IN operator */ 2144 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2145 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2146 int *aiMap /* Mapping from Index fields to RHS fields */ 2147 ){ 2148 Select *p; /* SELECT to the right of IN operator */ 2149 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2150 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2151 int mustBeUnique; /* True if RHS must be unique */ 2152 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2153 2154 assert( pX->op==TK_IN ); 2155 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2156 2157 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2158 ** whether or not the SELECT result contains NULL values, check whether 2159 ** or not NULL is actually possible (it may not be, for example, due 2160 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2161 ** set prRhsHasNull to 0 before continuing. */ 2162 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2163 int i; 2164 ExprList *pEList = pX->x.pSelect->pEList; 2165 for(i=0; i<pEList->nExpr; i++){ 2166 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2167 } 2168 if( i==pEList->nExpr ){ 2169 prRhsHasNull = 0; 2170 } 2171 } 2172 2173 /* Check to see if an existing table or index can be used to 2174 ** satisfy the query. This is preferable to generating a new 2175 ** ephemeral table. */ 2176 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2177 sqlite3 *db = pParse->db; /* Database connection */ 2178 Table *pTab; /* Table <table>. */ 2179 i16 iDb; /* Database idx for pTab */ 2180 ExprList *pEList = p->pEList; 2181 int nExpr = pEList->nExpr; 2182 2183 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2184 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2185 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2186 pTab = p->pSrc->a[0].pTab; 2187 2188 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2189 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2190 sqlite3CodeVerifySchema(pParse, iDb); 2191 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2192 2193 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2194 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2195 /* The "x IN (SELECT rowid FROM table)" case */ 2196 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2197 VdbeCoverage(v); 2198 2199 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2200 eType = IN_INDEX_ROWID; 2201 2202 sqlite3VdbeJumpHere(v, iAddr); 2203 }else{ 2204 Index *pIdx; /* Iterator variable */ 2205 int affinity_ok = 1; 2206 int i; 2207 2208 /* Check that the affinity that will be used to perform each 2209 ** comparison is the same as the affinity of each column in table 2210 ** on the RHS of the IN operator. If it not, it is not possible to 2211 ** use any index of the RHS table. */ 2212 for(i=0; i<nExpr && affinity_ok; i++){ 2213 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2214 int iCol = pEList->a[i].pExpr->iColumn; 2215 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2216 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2217 testcase( cmpaff==SQLITE_AFF_BLOB ); 2218 testcase( cmpaff==SQLITE_AFF_TEXT ); 2219 switch( cmpaff ){ 2220 case SQLITE_AFF_BLOB: 2221 break; 2222 case SQLITE_AFF_TEXT: 2223 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2224 ** other has no affinity and the other side is TEXT. Hence, 2225 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2226 ** and for the term on the LHS of the IN to have no affinity. */ 2227 assert( idxaff==SQLITE_AFF_TEXT ); 2228 break; 2229 default: 2230 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2231 } 2232 } 2233 2234 if( affinity_ok ){ 2235 /* Search for an existing index that will work for this IN operator */ 2236 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2237 Bitmask colUsed; /* Columns of the index used */ 2238 Bitmask mCol; /* Mask for the current column */ 2239 if( pIdx->nColumn<nExpr ) continue; 2240 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2241 ** BITMASK(nExpr) without overflowing */ 2242 testcase( pIdx->nColumn==BMS-2 ); 2243 testcase( pIdx->nColumn==BMS-1 ); 2244 if( pIdx->nColumn>=BMS-1 ) continue; 2245 if( mustBeUnique ){ 2246 if( pIdx->nKeyCol>nExpr 2247 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2248 ){ 2249 continue; /* This index is not unique over the IN RHS columns */ 2250 } 2251 } 2252 2253 colUsed = 0; /* Columns of index used so far */ 2254 for(i=0; i<nExpr; i++){ 2255 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2256 Expr *pRhs = pEList->a[i].pExpr; 2257 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2258 int j; 2259 2260 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2261 for(j=0; j<nExpr; j++){ 2262 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2263 assert( pIdx->azColl[j] ); 2264 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2265 continue; 2266 } 2267 break; 2268 } 2269 if( j==nExpr ) break; 2270 mCol = MASKBIT(j); 2271 if( mCol & colUsed ) break; /* Each column used only once */ 2272 colUsed |= mCol; 2273 if( aiMap ) aiMap[i] = j; 2274 } 2275 2276 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2277 if( colUsed==(MASKBIT(nExpr)-1) ){ 2278 /* If we reach this point, that means the index pIdx is usable */ 2279 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2280 #ifndef SQLITE_OMIT_EXPLAIN 2281 sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0, 2282 sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName), 2283 P4_DYNAMIC); 2284 #endif 2285 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2286 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2287 VdbeComment((v, "%s", pIdx->zName)); 2288 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2289 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2290 2291 if( prRhsHasNull ){ 2292 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2293 i64 mask = (1<<nExpr)-1; 2294 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2295 iTab, 0, 0, (u8*)&mask, P4_INT64); 2296 #endif 2297 *prRhsHasNull = ++pParse->nMem; 2298 if( nExpr==1 ){ 2299 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2300 } 2301 } 2302 sqlite3VdbeJumpHere(v, iAddr); 2303 } 2304 } /* End loop over indexes */ 2305 } /* End if( affinity_ok ) */ 2306 } /* End if not an rowid index */ 2307 } /* End attempt to optimize using an index */ 2308 2309 /* If no preexisting index is available for the IN clause 2310 ** and IN_INDEX_NOOP is an allowed reply 2311 ** and the RHS of the IN operator is a list, not a subquery 2312 ** and the RHS is not constant or has two or fewer terms, 2313 ** then it is not worth creating an ephemeral table to evaluate 2314 ** the IN operator so return IN_INDEX_NOOP. 2315 */ 2316 if( eType==0 2317 && (inFlags & IN_INDEX_NOOP_OK) 2318 && !ExprHasProperty(pX, EP_xIsSelect) 2319 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2320 ){ 2321 eType = IN_INDEX_NOOP; 2322 } 2323 2324 if( eType==0 ){ 2325 /* Could not find an existing table or index to use as the RHS b-tree. 2326 ** We will have to generate an ephemeral table to do the job. 2327 */ 2328 u32 savedNQueryLoop = pParse->nQueryLoop; 2329 int rMayHaveNull = 0; 2330 eType = IN_INDEX_EPH; 2331 if( inFlags & IN_INDEX_LOOP ){ 2332 pParse->nQueryLoop = 0; 2333 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 2334 eType = IN_INDEX_ROWID; 2335 } 2336 }else if( prRhsHasNull ){ 2337 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2338 } 2339 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 2340 pParse->nQueryLoop = savedNQueryLoop; 2341 }else{ 2342 pX->iTable = iTab; 2343 } 2344 2345 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2346 int i, n; 2347 n = sqlite3ExprVectorSize(pX->pLeft); 2348 for(i=0; i<n; i++) aiMap[i] = i; 2349 } 2350 return eType; 2351 } 2352 #endif 2353 2354 #ifndef SQLITE_OMIT_SUBQUERY 2355 /* 2356 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2357 ** function allocates and returns a nul-terminated string containing 2358 ** the affinities to be used for each column of the comparison. 2359 ** 2360 ** It is the responsibility of the caller to ensure that the returned 2361 ** string is eventually freed using sqlite3DbFree(). 2362 */ 2363 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2364 Expr *pLeft = pExpr->pLeft; 2365 int nVal = sqlite3ExprVectorSize(pLeft); 2366 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2367 char *zRet; 2368 2369 assert( pExpr->op==TK_IN ); 2370 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2371 if( zRet ){ 2372 int i; 2373 for(i=0; i<nVal; i++){ 2374 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2375 char a = sqlite3ExprAffinity(pA); 2376 if( pSelect ){ 2377 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2378 }else{ 2379 zRet[i] = a; 2380 } 2381 } 2382 zRet[nVal] = '\0'; 2383 } 2384 return zRet; 2385 } 2386 #endif 2387 2388 #ifndef SQLITE_OMIT_SUBQUERY 2389 /* 2390 ** Load the Parse object passed as the first argument with an error 2391 ** message of the form: 2392 ** 2393 ** "sub-select returns N columns - expected M" 2394 */ 2395 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2396 const char *zFmt = "sub-select returns %d columns - expected %d"; 2397 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2398 } 2399 #endif 2400 2401 /* 2402 ** Expression pExpr is a vector that has been used in a context where 2403 ** it is not permitted. If pExpr is a sub-select vector, this routine 2404 ** loads the Parse object with a message of the form: 2405 ** 2406 ** "sub-select returns N columns - expected 1" 2407 ** 2408 ** Or, if it is a regular scalar vector: 2409 ** 2410 ** "row value misused" 2411 */ 2412 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2413 #ifndef SQLITE_OMIT_SUBQUERY 2414 if( pExpr->flags & EP_xIsSelect ){ 2415 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2416 }else 2417 #endif 2418 { 2419 sqlite3ErrorMsg(pParse, "row value misused"); 2420 } 2421 } 2422 2423 /* 2424 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 2425 ** or IN operators. Examples: 2426 ** 2427 ** (SELECT a FROM b) -- subquery 2428 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2429 ** x IN (4,5,11) -- IN operator with list on right-hand side 2430 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2431 ** 2432 ** The pExpr parameter describes the expression that contains the IN 2433 ** operator or subquery. 2434 ** 2435 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 2436 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 2437 ** to some integer key column of a table B-Tree. In this case, use an 2438 ** intkey B-Tree to store the set of IN(...) values instead of the usual 2439 ** (slower) variable length keys B-Tree. 2440 ** 2441 ** If rMayHaveNull is non-zero, that means that the operation is an IN 2442 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 2443 ** All this routine does is initialize the register given by rMayHaveNull 2444 ** to NULL. Calling routines will take care of changing this register 2445 ** value to non-NULL if the RHS is NULL-free. 2446 ** 2447 ** For a SELECT or EXISTS operator, return the register that holds the 2448 ** result. For a multi-column SELECT, the result is stored in a contiguous 2449 ** array of registers and the return value is the register of the left-most 2450 ** result column. Return 0 for IN operators or if an error occurs. 2451 */ 2452 #ifndef SQLITE_OMIT_SUBQUERY 2453 int sqlite3CodeSubselect( 2454 Parse *pParse, /* Parsing context */ 2455 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 2456 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 2457 int isRowid /* If true, LHS of IN operator is a rowid */ 2458 ){ 2459 int jmpIfDynamic = -1; /* One-time test address */ 2460 int rReg = 0; /* Register storing resulting */ 2461 Vdbe *v = sqlite3GetVdbe(pParse); 2462 if( NEVER(v==0) ) return 0; 2463 sqlite3ExprCachePush(pParse); 2464 2465 /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it 2466 ** is encountered if any of the following is true: 2467 ** 2468 ** * The right-hand side is a correlated subquery 2469 ** * The right-hand side is an expression list containing variables 2470 ** * We are inside a trigger 2471 ** 2472 ** If all of the above are false, then we can run this code just once 2473 ** save the results, and reuse the same result on subsequent invocations. 2474 */ 2475 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2476 jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2477 } 2478 2479 #ifndef SQLITE_OMIT_EXPLAIN 2480 if( pParse->explain==2 ){ 2481 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d", 2482 jmpIfDynamic>=0?"":"CORRELATED ", 2483 pExpr->op==TK_IN?"LIST":"SCALAR", 2484 pParse->iNextSelectId 2485 ); 2486 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 2487 } 2488 #endif 2489 2490 switch( pExpr->op ){ 2491 case TK_IN: { 2492 int addr; /* Address of OP_OpenEphemeral instruction */ 2493 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 2494 KeyInfo *pKeyInfo = 0; /* Key information */ 2495 int nVal; /* Size of vector pLeft */ 2496 2497 nVal = sqlite3ExprVectorSize(pLeft); 2498 assert( !isRowid || nVal==1 ); 2499 2500 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 2501 ** expression it is handled the same way. An ephemeral table is 2502 ** filled with index keys representing the results from the 2503 ** SELECT or the <exprlist>. 2504 ** 2505 ** If the 'x' expression is a column value, or the SELECT... 2506 ** statement returns a column value, then the affinity of that 2507 ** column is used to build the index keys. If both 'x' and the 2508 ** SELECT... statement are columns, then numeric affinity is used 2509 ** if either column has NUMERIC or INTEGER affinity. If neither 2510 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2511 ** is used. 2512 */ 2513 pExpr->iTable = pParse->nTab++; 2514 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, 2515 pExpr->iTable, (isRowid?0:nVal)); 2516 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2517 2518 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2519 /* Case 1: expr IN (SELECT ...) 2520 ** 2521 ** Generate code to write the results of the select into the temporary 2522 ** table allocated and opened above. 2523 */ 2524 Select *pSelect = pExpr->x.pSelect; 2525 ExprList *pEList = pSelect->pEList; 2526 2527 assert( !isRowid ); 2528 /* If the LHS and RHS of the IN operator do not match, that 2529 ** error will have been caught long before we reach this point. */ 2530 if( ALWAYS(pEList->nExpr==nVal) ){ 2531 SelectDest dest; 2532 int i; 2533 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 2534 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2535 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 2536 pSelect->iLimit = 0; 2537 testcase( pSelect->selFlags & SF_Distinct ); 2538 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2539 if( sqlite3Select(pParse, pSelect, &dest) ){ 2540 sqlite3DbFree(pParse->db, dest.zAffSdst); 2541 sqlite3KeyInfoUnref(pKeyInfo); 2542 return 0; 2543 } 2544 sqlite3DbFree(pParse->db, dest.zAffSdst); 2545 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2546 assert( pEList!=0 ); 2547 assert( pEList->nExpr>0 ); 2548 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2549 for(i=0; i<nVal; i++){ 2550 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2551 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2552 pParse, p, pEList->a[i].pExpr 2553 ); 2554 } 2555 } 2556 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2557 /* Case 2: expr IN (exprlist) 2558 ** 2559 ** For each expression, build an index key from the evaluation and 2560 ** store it in the temporary table. If <expr> is a column, then use 2561 ** that columns affinity when building index keys. If <expr> is not 2562 ** a column, use numeric affinity. 2563 */ 2564 char affinity; /* Affinity of the LHS of the IN */ 2565 int i; 2566 ExprList *pList = pExpr->x.pList; 2567 struct ExprList_item *pItem; 2568 int r1, r2, r3; 2569 2570 affinity = sqlite3ExprAffinity(pLeft); 2571 if( !affinity ){ 2572 affinity = SQLITE_AFF_BLOB; 2573 } 2574 if( pKeyInfo ){ 2575 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2576 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2577 } 2578 2579 /* Loop through each expression in <exprlist>. */ 2580 r1 = sqlite3GetTempReg(pParse); 2581 r2 = sqlite3GetTempReg(pParse); 2582 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 2583 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2584 Expr *pE2 = pItem->pExpr; 2585 int iValToIns; 2586 2587 /* If the expression is not constant then we will need to 2588 ** disable the test that was generated above that makes sure 2589 ** this code only executes once. Because for a non-constant 2590 ** expression we need to rerun this code each time. 2591 */ 2592 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 2593 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 2594 jmpIfDynamic = -1; 2595 } 2596 2597 /* Evaluate the expression and insert it into the temp table */ 2598 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 2599 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 2600 }else{ 2601 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2602 if( isRowid ){ 2603 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2604 sqlite3VdbeCurrentAddr(v)+2); 2605 VdbeCoverage(v); 2606 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 2607 }else{ 2608 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2609 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 2610 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1); 2611 } 2612 } 2613 } 2614 sqlite3ReleaseTempReg(pParse, r1); 2615 sqlite3ReleaseTempReg(pParse, r2); 2616 } 2617 if( pKeyInfo ){ 2618 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2619 } 2620 break; 2621 } 2622 2623 case TK_EXISTS: 2624 case TK_SELECT: 2625 default: { 2626 /* Case 3: (SELECT ... FROM ...) 2627 ** or: EXISTS(SELECT ... FROM ...) 2628 ** 2629 ** For a SELECT, generate code to put the values for all columns of 2630 ** the first row into an array of registers and return the index of 2631 ** the first register. 2632 ** 2633 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2634 ** into a register and return that register number. 2635 ** 2636 ** In both cases, the query is augmented with "LIMIT 1". Any 2637 ** preexisting limit is discarded in place of the new LIMIT 1. 2638 */ 2639 Select *pSel; /* SELECT statement to encode */ 2640 SelectDest dest; /* How to deal with SELECT result */ 2641 int nReg; /* Registers to allocate */ 2642 2643 testcase( pExpr->op==TK_EXISTS ); 2644 testcase( pExpr->op==TK_SELECT ); 2645 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2646 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2647 2648 pSel = pExpr->x.pSelect; 2649 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2650 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2651 pParse->nMem += nReg; 2652 if( pExpr->op==TK_SELECT ){ 2653 dest.eDest = SRT_Mem; 2654 dest.iSdst = dest.iSDParm; 2655 dest.nSdst = nReg; 2656 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2657 VdbeComment((v, "Init subquery result")); 2658 }else{ 2659 dest.eDest = SRT_Exists; 2660 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2661 VdbeComment((v, "Init EXISTS result")); 2662 } 2663 sqlite3ExprDelete(pParse->db, pSel->pLimit); 2664 pSel->pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER, 2665 &sqlite3IntTokens[1], 0); 2666 pSel->iLimit = 0; 2667 pSel->selFlags &= ~SF_MultiValue; 2668 if( sqlite3Select(pParse, pSel, &dest) ){ 2669 return 0; 2670 } 2671 rReg = dest.iSDParm; 2672 ExprSetVVAProperty(pExpr, EP_NoReduce); 2673 break; 2674 } 2675 } 2676 2677 if( rHasNullFlag ){ 2678 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2679 } 2680 2681 if( jmpIfDynamic>=0 ){ 2682 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2683 } 2684 sqlite3ExprCachePop(pParse); 2685 2686 return rReg; 2687 } 2688 #endif /* SQLITE_OMIT_SUBQUERY */ 2689 2690 #ifndef SQLITE_OMIT_SUBQUERY 2691 /* 2692 ** Expr pIn is an IN(...) expression. This function checks that the 2693 ** sub-select on the RHS of the IN() operator has the same number of 2694 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 2695 ** a sub-query, that the LHS is a vector of size 1. 2696 */ 2697 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 2698 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 2699 if( (pIn->flags & EP_xIsSelect) ){ 2700 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 2701 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 2702 return 1; 2703 } 2704 }else if( nVector!=1 ){ 2705 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 2706 return 1; 2707 } 2708 return 0; 2709 } 2710 #endif 2711 2712 #ifndef SQLITE_OMIT_SUBQUERY 2713 /* 2714 ** Generate code for an IN expression. 2715 ** 2716 ** x IN (SELECT ...) 2717 ** x IN (value, value, ...) 2718 ** 2719 ** The left-hand side (LHS) is a scalar or vector expression. The 2720 ** right-hand side (RHS) is an array of zero or more scalar values, or a 2721 ** subquery. If the RHS is a subquery, the number of result columns must 2722 ** match the number of columns in the vector on the LHS. If the RHS is 2723 ** a list of values, the LHS must be a scalar. 2724 ** 2725 ** The IN operator is true if the LHS value is contained within the RHS. 2726 ** The result is false if the LHS is definitely not in the RHS. The 2727 ** result is NULL if the presence of the LHS in the RHS cannot be 2728 ** determined due to NULLs. 2729 ** 2730 ** This routine generates code that jumps to destIfFalse if the LHS is not 2731 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2732 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2733 ** within the RHS then fall through. 2734 ** 2735 ** See the separate in-operator.md documentation file in the canonical 2736 ** SQLite source tree for additional information. 2737 */ 2738 static void sqlite3ExprCodeIN( 2739 Parse *pParse, /* Parsing and code generating context */ 2740 Expr *pExpr, /* The IN expression */ 2741 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2742 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2743 ){ 2744 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2745 int eType; /* Type of the RHS */ 2746 int rLhs; /* Register(s) holding the LHS values */ 2747 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 2748 Vdbe *v; /* Statement under construction */ 2749 int *aiMap = 0; /* Map from vector field to index column */ 2750 char *zAff = 0; /* Affinity string for comparisons */ 2751 int nVector; /* Size of vectors for this IN operator */ 2752 int iDummy; /* Dummy parameter to exprCodeVector() */ 2753 Expr *pLeft; /* The LHS of the IN operator */ 2754 int i; /* loop counter */ 2755 int destStep2; /* Where to jump when NULLs seen in step 2 */ 2756 int destStep6 = 0; /* Start of code for Step 6 */ 2757 int addrTruthOp; /* Address of opcode that determines the IN is true */ 2758 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 2759 int addrTop; /* Top of the step-6 loop */ 2760 2761 pLeft = pExpr->pLeft; 2762 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 2763 zAff = exprINAffinity(pParse, pExpr); 2764 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 2765 aiMap = (int*)sqlite3DbMallocZero( 2766 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 2767 ); 2768 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 2769 2770 /* Attempt to compute the RHS. After this step, if anything other than 2771 ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable 2772 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 2773 ** the RHS has not yet been coded. */ 2774 v = pParse->pVdbe; 2775 assert( v!=0 ); /* OOM detected prior to this routine */ 2776 VdbeNoopComment((v, "begin IN expr")); 2777 eType = sqlite3FindInIndex(pParse, pExpr, 2778 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2779 destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap); 2780 2781 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 2782 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 2783 ); 2784 #ifdef SQLITE_DEBUG 2785 /* Confirm that aiMap[] contains nVector integer values between 0 and 2786 ** nVector-1. */ 2787 for(i=0; i<nVector; i++){ 2788 int j, cnt; 2789 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 2790 assert( cnt==1 ); 2791 } 2792 #endif 2793 2794 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 2795 ** vector, then it is stored in an array of nVector registers starting 2796 ** at r1. 2797 ** 2798 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 2799 ** so that the fields are in the same order as an existing index. The 2800 ** aiMap[] array contains a mapping from the original LHS field order to 2801 ** the field order that matches the RHS index. 2802 */ 2803 sqlite3ExprCachePush(pParse); 2804 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 2805 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 2806 if( i==nVector ){ 2807 /* LHS fields are not reordered */ 2808 rLhs = rLhsOrig; 2809 }else{ 2810 /* Need to reorder the LHS fields according to aiMap */ 2811 rLhs = sqlite3GetTempRange(pParse, nVector); 2812 for(i=0; i<nVector; i++){ 2813 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 2814 } 2815 } 2816 2817 /* If sqlite3FindInIndex() did not find or create an index that is 2818 ** suitable for evaluating the IN operator, then evaluate using a 2819 ** sequence of comparisons. 2820 ** 2821 ** This is step (1) in the in-operator.md optimized algorithm. 2822 */ 2823 if( eType==IN_INDEX_NOOP ){ 2824 ExprList *pList = pExpr->x.pList; 2825 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2826 int labelOk = sqlite3VdbeMakeLabel(v); 2827 int r2, regToFree; 2828 int regCkNull = 0; 2829 int ii; 2830 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2831 if( destIfNull!=destIfFalse ){ 2832 regCkNull = sqlite3GetTempReg(pParse); 2833 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 2834 } 2835 for(ii=0; ii<pList->nExpr; ii++){ 2836 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2837 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2838 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2839 } 2840 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2841 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 2842 (void*)pColl, P4_COLLSEQ); 2843 VdbeCoverageIf(v, ii<pList->nExpr-1); 2844 VdbeCoverageIf(v, ii==pList->nExpr-1); 2845 sqlite3VdbeChangeP5(v, zAff[0]); 2846 }else{ 2847 assert( destIfNull==destIfFalse ); 2848 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 2849 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2850 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 2851 } 2852 sqlite3ReleaseTempReg(pParse, regToFree); 2853 } 2854 if( regCkNull ){ 2855 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2856 sqlite3VdbeGoto(v, destIfFalse); 2857 } 2858 sqlite3VdbeResolveLabel(v, labelOk); 2859 sqlite3ReleaseTempReg(pParse, regCkNull); 2860 goto sqlite3ExprCodeIN_finished; 2861 } 2862 2863 /* Step 2: Check to see if the LHS contains any NULL columns. If the 2864 ** LHS does contain NULLs then the result must be either FALSE or NULL. 2865 ** We will then skip the binary search of the RHS. 2866 */ 2867 if( destIfNull==destIfFalse ){ 2868 destStep2 = destIfFalse; 2869 }else{ 2870 destStep2 = destStep6 = sqlite3VdbeMakeLabel(v); 2871 } 2872 for(i=0; i<nVector; i++){ 2873 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 2874 if( sqlite3ExprCanBeNull(p) ){ 2875 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 2876 VdbeCoverage(v); 2877 } 2878 } 2879 2880 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 2881 ** of the RHS using the LHS as a probe. If found, the result is 2882 ** true. 2883 */ 2884 if( eType==IN_INDEX_ROWID ){ 2885 /* In this case, the RHS is the ROWID of table b-tree and so we also 2886 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 2887 ** into a single opcode. */ 2888 sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs); 2889 VdbeCoverage(v); 2890 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 2891 }else{ 2892 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 2893 if( destIfFalse==destIfNull ){ 2894 /* Combine Step 3 and Step 5 into a single opcode */ 2895 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, 2896 rLhs, nVector); VdbeCoverage(v); 2897 goto sqlite3ExprCodeIN_finished; 2898 } 2899 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 2900 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, 2901 rLhs, nVector); VdbeCoverage(v); 2902 } 2903 2904 /* Step 4. If the RHS is known to be non-NULL and we did not find 2905 ** an match on the search above, then the result must be FALSE. 2906 */ 2907 if( rRhsHasNull && nVector==1 ){ 2908 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 2909 VdbeCoverage(v); 2910 } 2911 2912 /* Step 5. If we do not care about the difference between NULL and 2913 ** FALSE, then just return false. 2914 */ 2915 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 2916 2917 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 2918 ** If any comparison is NULL, then the result is NULL. If all 2919 ** comparisons are FALSE then the final result is FALSE. 2920 ** 2921 ** For a scalar LHS, it is sufficient to check just the first row 2922 ** of the RHS. 2923 */ 2924 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 2925 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2926 VdbeCoverage(v); 2927 if( nVector>1 ){ 2928 destNotNull = sqlite3VdbeMakeLabel(v); 2929 }else{ 2930 /* For nVector==1, combine steps 6 and 7 by immediately returning 2931 ** FALSE if the first comparison is not NULL */ 2932 destNotNull = destIfFalse; 2933 } 2934 for(i=0; i<nVector; i++){ 2935 Expr *p; 2936 CollSeq *pColl; 2937 int r3 = sqlite3GetTempReg(pParse); 2938 p = sqlite3VectorFieldSubexpr(pLeft, i); 2939 pColl = sqlite3ExprCollSeq(pParse, p); 2940 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3); 2941 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 2942 (void*)pColl, P4_COLLSEQ); 2943 VdbeCoverage(v); 2944 sqlite3ReleaseTempReg(pParse, r3); 2945 } 2946 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 2947 if( nVector>1 ){ 2948 sqlite3VdbeResolveLabel(v, destNotNull); 2949 sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1); 2950 VdbeCoverage(v); 2951 2952 /* Step 7: If we reach this point, we know that the result must 2953 ** be false. */ 2954 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 2955 } 2956 2957 /* Jumps here in order to return true. */ 2958 sqlite3VdbeJumpHere(v, addrTruthOp); 2959 2960 sqlite3ExprCodeIN_finished: 2961 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 2962 sqlite3ExprCachePop(pParse); 2963 VdbeComment((v, "end IN expr")); 2964 sqlite3ExprCodeIN_oom_error: 2965 sqlite3DbFree(pParse->db, aiMap); 2966 sqlite3DbFree(pParse->db, zAff); 2967 } 2968 #endif /* SQLITE_OMIT_SUBQUERY */ 2969 2970 #ifndef SQLITE_OMIT_FLOATING_POINT 2971 /* 2972 ** Generate an instruction that will put the floating point 2973 ** value described by z[0..n-1] into register iMem. 2974 ** 2975 ** The z[] string will probably not be zero-terminated. But the 2976 ** z[n] character is guaranteed to be something that does not look 2977 ** like the continuation of the number. 2978 */ 2979 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2980 if( ALWAYS(z!=0) ){ 2981 double value; 2982 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2983 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2984 if( negateFlag ) value = -value; 2985 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 2986 } 2987 } 2988 #endif 2989 2990 2991 /* 2992 ** Generate an instruction that will put the integer describe by 2993 ** text z[0..n-1] into register iMem. 2994 ** 2995 ** Expr.u.zToken is always UTF8 and zero-terminated. 2996 */ 2997 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2998 Vdbe *v = pParse->pVdbe; 2999 if( pExpr->flags & EP_IntValue ){ 3000 int i = pExpr->u.iValue; 3001 assert( i>=0 ); 3002 if( negFlag ) i = -i; 3003 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3004 }else{ 3005 int c; 3006 i64 value; 3007 const char *z = pExpr->u.zToken; 3008 assert( z!=0 ); 3009 c = sqlite3DecOrHexToI64(z, &value); 3010 if( c==1 || (c==2 && !negFlag) || (negFlag && value==SMALLEST_INT64)){ 3011 #ifdef SQLITE_OMIT_FLOATING_POINT 3012 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3013 #else 3014 #ifndef SQLITE_OMIT_HEX_INTEGER 3015 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3016 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3017 }else 3018 #endif 3019 { 3020 codeReal(v, z, negFlag, iMem); 3021 } 3022 #endif 3023 }else{ 3024 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 3025 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3026 } 3027 } 3028 } 3029 3030 /* 3031 ** Erase column-cache entry number i 3032 */ 3033 static void cacheEntryClear(Parse *pParse, int i){ 3034 if( pParse->aColCache[i].tempReg ){ 3035 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3036 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3037 } 3038 } 3039 pParse->nColCache--; 3040 if( i<pParse->nColCache ){ 3041 pParse->aColCache[i] = pParse->aColCache[pParse->nColCache]; 3042 } 3043 } 3044 3045 3046 /* 3047 ** Record in the column cache that a particular column from a 3048 ** particular table is stored in a particular register. 3049 */ 3050 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 3051 int i; 3052 int minLru; 3053 int idxLru; 3054 struct yColCache *p; 3055 3056 /* Unless an error has occurred, register numbers are always positive. */ 3057 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 3058 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 3059 3060 /* The SQLITE_ColumnCache flag disables the column cache. This is used 3061 ** for testing only - to verify that SQLite always gets the same answer 3062 ** with and without the column cache. 3063 */ 3064 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 3065 3066 /* First replace any existing entry. 3067 ** 3068 ** Actually, the way the column cache is currently used, we are guaranteed 3069 ** that the object will never already be in cache. Verify this guarantee. 3070 */ 3071 #ifndef NDEBUG 3072 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3073 assert( p->iTable!=iTab || p->iColumn!=iCol ); 3074 } 3075 #endif 3076 3077 /* If the cache is already full, delete the least recently used entry */ 3078 if( pParse->nColCache>=SQLITE_N_COLCACHE ){ 3079 minLru = 0x7fffffff; 3080 idxLru = -1; 3081 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 3082 if( p->lru<minLru ){ 3083 idxLru = i; 3084 minLru = p->lru; 3085 } 3086 } 3087 p = &pParse->aColCache[idxLru]; 3088 }else{ 3089 p = &pParse->aColCache[pParse->nColCache++]; 3090 } 3091 3092 /* Add the new entry to the end of the cache */ 3093 p->iLevel = pParse->iCacheLevel; 3094 p->iTable = iTab; 3095 p->iColumn = iCol; 3096 p->iReg = iReg; 3097 p->tempReg = 0; 3098 p->lru = pParse->iCacheCnt++; 3099 } 3100 3101 /* 3102 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 3103 ** Purge the range of registers from the column cache. 3104 */ 3105 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 3106 int i = 0; 3107 while( i<pParse->nColCache ){ 3108 struct yColCache *p = &pParse->aColCache[i]; 3109 if( p->iReg >= iReg && p->iReg < iReg+nReg ){ 3110 cacheEntryClear(pParse, i); 3111 }else{ 3112 i++; 3113 } 3114 } 3115 } 3116 3117 /* 3118 ** Remember the current column cache context. Any new entries added 3119 ** added to the column cache after this call are removed when the 3120 ** corresponding pop occurs. 3121 */ 3122 void sqlite3ExprCachePush(Parse *pParse){ 3123 pParse->iCacheLevel++; 3124 #ifdef SQLITE_DEBUG 3125 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3126 printf("PUSH to %d\n", pParse->iCacheLevel); 3127 } 3128 #endif 3129 } 3130 3131 /* 3132 ** Remove from the column cache any entries that were added since the 3133 ** the previous sqlite3ExprCachePush operation. In other words, restore 3134 ** the cache to the state it was in prior the most recent Push. 3135 */ 3136 void sqlite3ExprCachePop(Parse *pParse){ 3137 int i = 0; 3138 assert( pParse->iCacheLevel>=1 ); 3139 pParse->iCacheLevel--; 3140 #ifdef SQLITE_DEBUG 3141 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3142 printf("POP to %d\n", pParse->iCacheLevel); 3143 } 3144 #endif 3145 while( i<pParse->nColCache ){ 3146 if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){ 3147 cacheEntryClear(pParse, i); 3148 }else{ 3149 i++; 3150 } 3151 } 3152 } 3153 3154 /* 3155 ** When a cached column is reused, make sure that its register is 3156 ** no longer available as a temp register. ticket #3879: that same 3157 ** register might be in the cache in multiple places, so be sure to 3158 ** get them all. 3159 */ 3160 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 3161 int i; 3162 struct yColCache *p; 3163 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3164 if( p->iReg==iReg ){ 3165 p->tempReg = 0; 3166 } 3167 } 3168 } 3169 3170 /* Generate code that will load into register regOut a value that is 3171 ** appropriate for the iIdxCol-th column of index pIdx. 3172 */ 3173 void sqlite3ExprCodeLoadIndexColumn( 3174 Parse *pParse, /* The parsing context */ 3175 Index *pIdx, /* The index whose column is to be loaded */ 3176 int iTabCur, /* Cursor pointing to a table row */ 3177 int iIdxCol, /* The column of the index to be loaded */ 3178 int regOut /* Store the index column value in this register */ 3179 ){ 3180 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3181 if( iTabCol==XN_EXPR ){ 3182 assert( pIdx->aColExpr ); 3183 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3184 pParse->iSelfTab = iTabCur; 3185 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3186 }else{ 3187 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3188 iTabCol, regOut); 3189 } 3190 } 3191 3192 /* 3193 ** Generate code to extract the value of the iCol-th column of a table. 3194 */ 3195 void sqlite3ExprCodeGetColumnOfTable( 3196 Vdbe *v, /* The VDBE under construction */ 3197 Table *pTab, /* The table containing the value */ 3198 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3199 int iCol, /* Index of the column to extract */ 3200 int regOut /* Extract the value into this register */ 3201 ){ 3202 if( iCol<0 || iCol==pTab->iPKey ){ 3203 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3204 }else{ 3205 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 3206 int x = iCol; 3207 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ 3208 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3209 } 3210 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3211 } 3212 if( iCol>=0 ){ 3213 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3214 } 3215 } 3216 3217 /* 3218 ** Generate code that will extract the iColumn-th column from 3219 ** table pTab and store the column value in a register. 3220 ** 3221 ** An effort is made to store the column value in register iReg. This 3222 ** is not garanteeed for GetColumn() - the result can be stored in 3223 ** any register. But the result is guaranteed to land in register iReg 3224 ** for GetColumnToReg(). 3225 ** 3226 ** There must be an open cursor to pTab in iTable when this routine 3227 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3228 */ 3229 int sqlite3ExprCodeGetColumn( 3230 Parse *pParse, /* Parsing and code generating context */ 3231 Table *pTab, /* Description of the table we are reading from */ 3232 int iColumn, /* Index of the table column */ 3233 int iTable, /* The cursor pointing to the table */ 3234 int iReg, /* Store results here */ 3235 u8 p5 /* P5 value for OP_Column + FLAGS */ 3236 ){ 3237 Vdbe *v = pParse->pVdbe; 3238 int i; 3239 struct yColCache *p; 3240 3241 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3242 if( p->iTable==iTable && p->iColumn==iColumn ){ 3243 p->lru = pParse->iCacheCnt++; 3244 sqlite3ExprCachePinRegister(pParse, p->iReg); 3245 return p->iReg; 3246 } 3247 } 3248 assert( v!=0 ); 3249 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 3250 if( p5 ){ 3251 sqlite3VdbeChangeP5(v, p5); 3252 }else{ 3253 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 3254 } 3255 return iReg; 3256 } 3257 void sqlite3ExprCodeGetColumnToReg( 3258 Parse *pParse, /* Parsing and code generating context */ 3259 Table *pTab, /* Description of the table we are reading from */ 3260 int iColumn, /* Index of the table column */ 3261 int iTable, /* The cursor pointing to the table */ 3262 int iReg /* Store results here */ 3263 ){ 3264 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); 3265 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); 3266 } 3267 3268 3269 /* 3270 ** Clear all column cache entries. 3271 */ 3272 void sqlite3ExprCacheClear(Parse *pParse){ 3273 int i; 3274 3275 #ifdef SQLITE_DEBUG 3276 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3277 printf("CLEAR\n"); 3278 } 3279 #endif 3280 for(i=0; i<pParse->nColCache; i++){ 3281 if( pParse->aColCache[i].tempReg 3282 && pParse->nTempReg<ArraySize(pParse->aTempReg) 3283 ){ 3284 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3285 } 3286 } 3287 pParse->nColCache = 0; 3288 } 3289 3290 /* 3291 ** Record the fact that an affinity change has occurred on iCount 3292 ** registers starting with iStart. 3293 */ 3294 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 3295 sqlite3ExprCacheRemove(pParse, iStart, iCount); 3296 } 3297 3298 /* 3299 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3300 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 3301 */ 3302 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3303 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 3304 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3305 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 3306 } 3307 3308 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 3309 /* 3310 ** Return true if any register in the range iFrom..iTo (inclusive) 3311 ** is used as part of the column cache. 3312 ** 3313 ** This routine is used within assert() and testcase() macros only 3314 ** and does not appear in a normal build. 3315 */ 3316 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 3317 int i; 3318 struct yColCache *p; 3319 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3320 int r = p->iReg; 3321 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 3322 } 3323 return 0; 3324 } 3325 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 3326 3327 3328 /* 3329 ** Convert a scalar expression node to a TK_REGISTER referencing 3330 ** register iReg. The caller must ensure that iReg already contains 3331 ** the correct value for the expression. 3332 */ 3333 static void exprToRegister(Expr *p, int iReg){ 3334 p->op2 = p->op; 3335 p->op = TK_REGISTER; 3336 p->iTable = iReg; 3337 ExprClearProperty(p, EP_Skip); 3338 } 3339 3340 /* 3341 ** Evaluate an expression (either a vector or a scalar expression) and store 3342 ** the result in continguous temporary registers. Return the index of 3343 ** the first register used to store the result. 3344 ** 3345 ** If the returned result register is a temporary scalar, then also write 3346 ** that register number into *piFreeable. If the returned result register 3347 ** is not a temporary or if the expression is a vector set *piFreeable 3348 ** to 0. 3349 */ 3350 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3351 int iResult; 3352 int nResult = sqlite3ExprVectorSize(p); 3353 if( nResult==1 ){ 3354 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3355 }else{ 3356 *piFreeable = 0; 3357 if( p->op==TK_SELECT ){ 3358 iResult = sqlite3CodeSubselect(pParse, p, 0, 0); 3359 }else{ 3360 int i; 3361 iResult = pParse->nMem+1; 3362 pParse->nMem += nResult; 3363 for(i=0; i<nResult; i++){ 3364 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3365 } 3366 } 3367 } 3368 return iResult; 3369 } 3370 3371 3372 /* 3373 ** Generate code into the current Vdbe to evaluate the given 3374 ** expression. Attempt to store the results in register "target". 3375 ** Return the register where results are stored. 3376 ** 3377 ** With this routine, there is no guarantee that results will 3378 ** be stored in target. The result might be stored in some other 3379 ** register if it is convenient to do so. The calling function 3380 ** must check the return code and move the results to the desired 3381 ** register. 3382 */ 3383 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3384 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3385 int op; /* The opcode being coded */ 3386 int inReg = target; /* Results stored in register inReg */ 3387 int regFree1 = 0; /* If non-zero free this temporary register */ 3388 int regFree2 = 0; /* If non-zero free this temporary register */ 3389 int r1, r2; /* Various register numbers */ 3390 Expr tempX; /* Temporary expression node */ 3391 int p5 = 0; 3392 3393 assert( target>0 && target<=pParse->nMem ); 3394 if( v==0 ){ 3395 assert( pParse->db->mallocFailed ); 3396 return 0; 3397 } 3398 3399 if( pExpr==0 ){ 3400 op = TK_NULL; 3401 }else{ 3402 op = pExpr->op; 3403 } 3404 switch( op ){ 3405 case TK_AGG_COLUMN: { 3406 AggInfo *pAggInfo = pExpr->pAggInfo; 3407 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3408 if( !pAggInfo->directMode ){ 3409 assert( pCol->iMem>0 ); 3410 return pCol->iMem; 3411 }else if( pAggInfo->useSortingIdx ){ 3412 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3413 pCol->iSorterColumn, target); 3414 return target; 3415 } 3416 /* Otherwise, fall thru into the TK_COLUMN case */ 3417 } 3418 case TK_COLUMN: { 3419 int iTab = pExpr->iTable; 3420 if( iTab<0 ){ 3421 if( pParse->ckBase>0 ){ 3422 /* Generating CHECK constraints or inserting into partial index */ 3423 return pExpr->iColumn + pParse->ckBase; 3424 }else{ 3425 /* Coding an expression that is part of an index where column names 3426 ** in the index refer to the table to which the index belongs */ 3427 iTab = pParse->iSelfTab; 3428 } 3429 } 3430 return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 3431 pExpr->iColumn, iTab, target, 3432 pExpr->op2); 3433 } 3434 case TK_INTEGER: { 3435 codeInteger(pParse, pExpr, 0, target); 3436 return target; 3437 } 3438 #ifndef SQLITE_OMIT_FLOATING_POINT 3439 case TK_FLOAT: { 3440 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3441 codeReal(v, pExpr->u.zToken, 0, target); 3442 return target; 3443 } 3444 #endif 3445 case TK_STRING: { 3446 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3447 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3448 return target; 3449 } 3450 case TK_NULL: { 3451 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3452 return target; 3453 } 3454 #ifndef SQLITE_OMIT_BLOB_LITERAL 3455 case TK_BLOB: { 3456 int n; 3457 const char *z; 3458 char *zBlob; 3459 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3460 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3461 assert( pExpr->u.zToken[1]=='\'' ); 3462 z = &pExpr->u.zToken[2]; 3463 n = sqlite3Strlen30(z) - 1; 3464 assert( z[n]=='\'' ); 3465 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3466 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3467 return target; 3468 } 3469 #endif 3470 case TK_VARIABLE: { 3471 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3472 assert( pExpr->u.zToken!=0 ); 3473 assert( pExpr->u.zToken[0]!=0 ); 3474 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3475 if( pExpr->u.zToken[1]!=0 ){ 3476 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3477 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); 3478 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3479 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3480 } 3481 return target; 3482 } 3483 case TK_REGISTER: { 3484 return pExpr->iTable; 3485 } 3486 #ifndef SQLITE_OMIT_CAST 3487 case TK_CAST: { 3488 /* Expressions of the form: CAST(pLeft AS token) */ 3489 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3490 if( inReg!=target ){ 3491 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3492 inReg = target; 3493 } 3494 sqlite3VdbeAddOp2(v, OP_Cast, target, 3495 sqlite3AffinityType(pExpr->u.zToken, 0)); 3496 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 3497 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 3498 return inReg; 3499 } 3500 #endif /* SQLITE_OMIT_CAST */ 3501 case TK_IS: 3502 case TK_ISNOT: 3503 op = (op==TK_IS) ? TK_EQ : TK_NE; 3504 p5 = SQLITE_NULLEQ; 3505 /* fall-through */ 3506 case TK_LT: 3507 case TK_LE: 3508 case TK_GT: 3509 case TK_GE: 3510 case TK_NE: 3511 case TK_EQ: { 3512 Expr *pLeft = pExpr->pLeft; 3513 if( sqlite3ExprIsVector(pLeft) ){ 3514 codeVectorCompare(pParse, pExpr, target, op, p5); 3515 }else{ 3516 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3517 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3518 codeCompare(pParse, pLeft, pExpr->pRight, op, 3519 r1, r2, inReg, SQLITE_STOREP2 | p5); 3520 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3521 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3522 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3523 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3524 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3525 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3526 testcase( regFree1==0 ); 3527 testcase( regFree2==0 ); 3528 } 3529 break; 3530 } 3531 case TK_AND: 3532 case TK_OR: 3533 case TK_PLUS: 3534 case TK_STAR: 3535 case TK_MINUS: 3536 case TK_REM: 3537 case TK_BITAND: 3538 case TK_BITOR: 3539 case TK_SLASH: 3540 case TK_LSHIFT: 3541 case TK_RSHIFT: 3542 case TK_CONCAT: { 3543 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3544 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3545 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3546 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3547 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3548 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3549 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3550 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3551 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3552 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3553 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3554 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3555 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3556 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3557 testcase( regFree1==0 ); 3558 testcase( regFree2==0 ); 3559 break; 3560 } 3561 case TK_UMINUS: { 3562 Expr *pLeft = pExpr->pLeft; 3563 assert( pLeft ); 3564 if( pLeft->op==TK_INTEGER ){ 3565 codeInteger(pParse, pLeft, 1, target); 3566 return target; 3567 #ifndef SQLITE_OMIT_FLOATING_POINT 3568 }else if( pLeft->op==TK_FLOAT ){ 3569 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3570 codeReal(v, pLeft->u.zToken, 1, target); 3571 return target; 3572 #endif 3573 }else{ 3574 tempX.op = TK_INTEGER; 3575 tempX.flags = EP_IntValue|EP_TokenOnly; 3576 tempX.u.iValue = 0; 3577 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3578 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3579 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3580 testcase( regFree2==0 ); 3581 } 3582 break; 3583 } 3584 case TK_BITNOT: 3585 case TK_NOT: { 3586 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3587 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3588 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3589 testcase( regFree1==0 ); 3590 sqlite3VdbeAddOp2(v, op, r1, inReg); 3591 break; 3592 } 3593 case TK_ISNULL: 3594 case TK_NOTNULL: { 3595 int addr; 3596 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3597 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3598 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3599 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3600 testcase( regFree1==0 ); 3601 addr = sqlite3VdbeAddOp1(v, op, r1); 3602 VdbeCoverageIf(v, op==TK_ISNULL); 3603 VdbeCoverageIf(v, op==TK_NOTNULL); 3604 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3605 sqlite3VdbeJumpHere(v, addr); 3606 break; 3607 } 3608 case TK_AGG_FUNCTION: { 3609 AggInfo *pInfo = pExpr->pAggInfo; 3610 if( pInfo==0 ){ 3611 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3612 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3613 }else{ 3614 return pInfo->aFunc[pExpr->iAgg].iMem; 3615 } 3616 break; 3617 } 3618 case TK_FUNCTION: { 3619 ExprList *pFarg; /* List of function arguments */ 3620 int nFarg; /* Number of function arguments */ 3621 FuncDef *pDef; /* The function definition object */ 3622 const char *zId; /* The function name */ 3623 u32 constMask = 0; /* Mask of function arguments that are constant */ 3624 int i; /* Loop counter */ 3625 sqlite3 *db = pParse->db; /* The database connection */ 3626 u8 enc = ENC(db); /* The text encoding used by this database */ 3627 CollSeq *pColl = 0; /* A collating sequence */ 3628 3629 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3630 /* SQL functions can be expensive. So try to move constant functions 3631 ** out of the inner loop, even if that means an extra OP_Copy. */ 3632 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3633 } 3634 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3635 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3636 pFarg = 0; 3637 }else{ 3638 pFarg = pExpr->x.pList; 3639 } 3640 nFarg = pFarg ? pFarg->nExpr : 0; 3641 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3642 zId = pExpr->u.zToken; 3643 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3644 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3645 if( pDef==0 && pParse->explain ){ 3646 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3647 } 3648 #endif 3649 if( pDef==0 || pDef->xFinalize!=0 ){ 3650 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3651 break; 3652 } 3653 3654 /* Attempt a direct implementation of the built-in COALESCE() and 3655 ** IFNULL() functions. This avoids unnecessary evaluation of 3656 ** arguments past the first non-NULL argument. 3657 */ 3658 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3659 int endCoalesce = sqlite3VdbeMakeLabel(v); 3660 assert( nFarg>=2 ); 3661 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3662 for(i=1; i<nFarg; i++){ 3663 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3664 VdbeCoverage(v); 3665 sqlite3ExprCacheRemove(pParse, target, 1); 3666 sqlite3ExprCachePush(pParse); 3667 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3668 sqlite3ExprCachePop(pParse); 3669 } 3670 sqlite3VdbeResolveLabel(v, endCoalesce); 3671 break; 3672 } 3673 3674 /* The UNLIKELY() function is a no-op. The result is the value 3675 ** of the first argument. 3676 */ 3677 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3678 assert( nFarg>=1 ); 3679 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3680 } 3681 3682 #ifdef SQLITE_DEBUG 3683 /* The AFFINITY() function evaluates to a string that describes 3684 ** the type affinity of the argument. This is used for testing of 3685 ** the SQLite type logic. 3686 */ 3687 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3688 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3689 char aff; 3690 assert( nFarg==1 ); 3691 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3692 sqlite3VdbeLoadString(v, target, 3693 aff ? azAff[aff-SQLITE_AFF_BLOB] : "none"); 3694 return target; 3695 } 3696 #endif 3697 3698 for(i=0; i<nFarg; i++){ 3699 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3700 testcase( i==31 ); 3701 constMask |= MASKBIT32(i); 3702 } 3703 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3704 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3705 } 3706 } 3707 if( pFarg ){ 3708 if( constMask ){ 3709 r1 = pParse->nMem+1; 3710 pParse->nMem += nFarg; 3711 }else{ 3712 r1 = sqlite3GetTempRange(pParse, nFarg); 3713 } 3714 3715 /* For length() and typeof() functions with a column argument, 3716 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3717 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3718 ** loading. 3719 */ 3720 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3721 u8 exprOp; 3722 assert( nFarg==1 ); 3723 assert( pFarg->a[0].pExpr!=0 ); 3724 exprOp = pFarg->a[0].pExpr->op; 3725 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3726 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3727 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3728 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3729 pFarg->a[0].pExpr->op2 = 3730 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3731 } 3732 } 3733 3734 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 3735 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3736 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3737 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 3738 }else{ 3739 r1 = 0; 3740 } 3741 #ifndef SQLITE_OMIT_VIRTUALTABLE 3742 /* Possibly overload the function if the first argument is 3743 ** a virtual table column. 3744 ** 3745 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3746 ** second argument, not the first, as the argument to test to 3747 ** see if it is a column in a virtual table. This is done because 3748 ** the left operand of infix functions (the operand we want to 3749 ** control overloading) ends up as the second argument to the 3750 ** function. The expression "A glob B" is equivalent to 3751 ** "glob(B,A). We want to use the A in "A glob B" to test 3752 ** for function overloading. But we use the B term in "glob(B,A)". 3753 */ 3754 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 3755 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3756 }else if( nFarg>0 ){ 3757 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3758 } 3759 #endif 3760 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3761 if( !pColl ) pColl = db->pDfltColl; 3762 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3763 } 3764 sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target, 3765 (char*)pDef, P4_FUNCDEF); 3766 sqlite3VdbeChangeP5(v, (u8)nFarg); 3767 if( nFarg && constMask==0 ){ 3768 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3769 } 3770 return target; 3771 } 3772 #ifndef SQLITE_OMIT_SUBQUERY 3773 case TK_EXISTS: 3774 case TK_SELECT: { 3775 int nCol; 3776 testcase( op==TK_EXISTS ); 3777 testcase( op==TK_SELECT ); 3778 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 3779 sqlite3SubselectError(pParse, nCol, 1); 3780 }else{ 3781 return sqlite3CodeSubselect(pParse, pExpr, 0, 0); 3782 } 3783 break; 3784 } 3785 case TK_SELECT_COLUMN: { 3786 int n; 3787 if( pExpr->pLeft->iTable==0 ){ 3788 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0); 3789 } 3790 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 3791 if( pExpr->iTable 3792 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 3793 ){ 3794 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 3795 pExpr->iTable, n); 3796 } 3797 return pExpr->pLeft->iTable + pExpr->iColumn; 3798 } 3799 case TK_IN: { 3800 int destIfFalse = sqlite3VdbeMakeLabel(v); 3801 int destIfNull = sqlite3VdbeMakeLabel(v); 3802 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3803 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3804 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3805 sqlite3VdbeResolveLabel(v, destIfFalse); 3806 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3807 sqlite3VdbeResolveLabel(v, destIfNull); 3808 return target; 3809 } 3810 #endif /* SQLITE_OMIT_SUBQUERY */ 3811 3812 3813 /* 3814 ** x BETWEEN y AND z 3815 ** 3816 ** This is equivalent to 3817 ** 3818 ** x>=y AND x<=z 3819 ** 3820 ** X is stored in pExpr->pLeft. 3821 ** Y is stored in pExpr->pList->a[0].pExpr. 3822 ** Z is stored in pExpr->pList->a[1].pExpr. 3823 */ 3824 case TK_BETWEEN: { 3825 exprCodeBetween(pParse, pExpr, target, 0, 0); 3826 return target; 3827 } 3828 case TK_SPAN: 3829 case TK_COLLATE: 3830 case TK_UPLUS: { 3831 return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3832 } 3833 3834 case TK_TRIGGER: { 3835 /* If the opcode is TK_TRIGGER, then the expression is a reference 3836 ** to a column in the new.* or old.* pseudo-tables available to 3837 ** trigger programs. In this case Expr.iTable is set to 1 for the 3838 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3839 ** is set to the column of the pseudo-table to read, or to -1 to 3840 ** read the rowid field. 3841 ** 3842 ** The expression is implemented using an OP_Param opcode. The p1 3843 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3844 ** to reference another column of the old.* pseudo-table, where 3845 ** i is the index of the column. For a new.rowid reference, p1 is 3846 ** set to (n+1), where n is the number of columns in each pseudo-table. 3847 ** For a reference to any other column in the new.* pseudo-table, p1 3848 ** is set to (n+2+i), where n and i are as defined previously. For 3849 ** example, if the table on which triggers are being fired is 3850 ** declared as: 3851 ** 3852 ** CREATE TABLE t1(a, b); 3853 ** 3854 ** Then p1 is interpreted as follows: 3855 ** 3856 ** p1==0 -> old.rowid p1==3 -> new.rowid 3857 ** p1==1 -> old.a p1==4 -> new.a 3858 ** p1==2 -> old.b p1==5 -> new.b 3859 */ 3860 Table *pTab = pExpr->pTab; 3861 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3862 3863 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3864 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3865 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3866 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3867 3868 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3869 VdbeComment((v, "%s.%s -> $%d", 3870 (pExpr->iTable ? "new" : "old"), 3871 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3872 target 3873 )); 3874 3875 #ifndef SQLITE_OMIT_FLOATING_POINT 3876 /* If the column has REAL affinity, it may currently be stored as an 3877 ** integer. Use OP_RealAffinity to make sure it is really real. 3878 ** 3879 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3880 ** floating point when extracting it from the record. */ 3881 if( pExpr->iColumn>=0 3882 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3883 ){ 3884 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3885 } 3886 #endif 3887 break; 3888 } 3889 3890 case TK_VECTOR: { 3891 sqlite3ErrorMsg(pParse, "row value misused"); 3892 break; 3893 } 3894 3895 /* 3896 ** Form A: 3897 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3898 ** 3899 ** Form B: 3900 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3901 ** 3902 ** Form A is can be transformed into the equivalent form B as follows: 3903 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3904 ** WHEN x=eN THEN rN ELSE y END 3905 ** 3906 ** X (if it exists) is in pExpr->pLeft. 3907 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3908 ** odd. The Y is also optional. If the number of elements in x.pList 3909 ** is even, then Y is omitted and the "otherwise" result is NULL. 3910 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3911 ** 3912 ** The result of the expression is the Ri for the first matching Ei, 3913 ** or if there is no matching Ei, the ELSE term Y, or if there is 3914 ** no ELSE term, NULL. 3915 */ 3916 default: assert( op==TK_CASE ); { 3917 int endLabel; /* GOTO label for end of CASE stmt */ 3918 int nextCase; /* GOTO label for next WHEN clause */ 3919 int nExpr; /* 2x number of WHEN terms */ 3920 int i; /* Loop counter */ 3921 ExprList *pEList; /* List of WHEN terms */ 3922 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3923 Expr opCompare; /* The X==Ei expression */ 3924 Expr *pX; /* The X expression */ 3925 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 3926 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 3927 3928 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 3929 assert(pExpr->x.pList->nExpr > 0); 3930 pEList = pExpr->x.pList; 3931 aListelem = pEList->a; 3932 nExpr = pEList->nExpr; 3933 endLabel = sqlite3VdbeMakeLabel(v); 3934 if( (pX = pExpr->pLeft)!=0 ){ 3935 tempX = *pX; 3936 testcase( pX->op==TK_COLUMN ); 3937 exprToRegister(&tempX, exprCodeVector(pParse, &tempX, ®Free1)); 3938 testcase( regFree1==0 ); 3939 memset(&opCompare, 0, sizeof(opCompare)); 3940 opCompare.op = TK_EQ; 3941 opCompare.pLeft = &tempX; 3942 pTest = &opCompare; 3943 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 3944 ** The value in regFree1 might get SCopy-ed into the file result. 3945 ** So make sure that the regFree1 register is not reused for other 3946 ** purposes and possibly overwritten. */ 3947 regFree1 = 0; 3948 } 3949 for(i=0; i<nExpr-1; i=i+2){ 3950 sqlite3ExprCachePush(pParse); 3951 if( pX ){ 3952 assert( pTest!=0 ); 3953 opCompare.pRight = aListelem[i].pExpr; 3954 }else{ 3955 pTest = aListelem[i].pExpr; 3956 } 3957 nextCase = sqlite3VdbeMakeLabel(v); 3958 testcase( pTest->op==TK_COLUMN ); 3959 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 3960 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 3961 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 3962 sqlite3VdbeGoto(v, endLabel); 3963 sqlite3ExprCachePop(pParse); 3964 sqlite3VdbeResolveLabel(v, nextCase); 3965 } 3966 if( (nExpr&1)!=0 ){ 3967 sqlite3ExprCachePush(pParse); 3968 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3969 sqlite3ExprCachePop(pParse); 3970 }else{ 3971 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3972 } 3973 assert( pParse->db->mallocFailed || pParse->nErr>0 3974 || pParse->iCacheLevel==iCacheLevel ); 3975 sqlite3VdbeResolveLabel(v, endLabel); 3976 break; 3977 } 3978 #ifndef SQLITE_OMIT_TRIGGER 3979 case TK_RAISE: { 3980 assert( pExpr->affinity==OE_Rollback 3981 || pExpr->affinity==OE_Abort 3982 || pExpr->affinity==OE_Fail 3983 || pExpr->affinity==OE_Ignore 3984 ); 3985 if( !pParse->pTriggerTab ){ 3986 sqlite3ErrorMsg(pParse, 3987 "RAISE() may only be used within a trigger-program"); 3988 return 0; 3989 } 3990 if( pExpr->affinity==OE_Abort ){ 3991 sqlite3MayAbort(pParse); 3992 } 3993 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3994 if( pExpr->affinity==OE_Ignore ){ 3995 sqlite3VdbeAddOp4( 3996 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 3997 VdbeCoverage(v); 3998 }else{ 3999 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4000 pExpr->affinity, pExpr->u.zToken, 0, 0); 4001 } 4002 4003 break; 4004 } 4005 #endif 4006 } 4007 sqlite3ReleaseTempReg(pParse, regFree1); 4008 sqlite3ReleaseTempReg(pParse, regFree2); 4009 return inReg; 4010 } 4011 4012 /* 4013 ** Factor out the code of the given expression to initialization time. 4014 ** 4015 ** If regDest>=0 then the result is always stored in that register and the 4016 ** result is not reusable. If regDest<0 then this routine is free to 4017 ** store the value whereever it wants. The register where the expression 4018 ** is stored is returned. When regDest<0, two identical expressions will 4019 ** code to the same register. 4020 */ 4021 int sqlite3ExprCodeAtInit( 4022 Parse *pParse, /* Parsing context */ 4023 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4024 int regDest /* Store the value in this register */ 4025 ){ 4026 ExprList *p; 4027 assert( ConstFactorOk(pParse) ); 4028 p = pParse->pConstExpr; 4029 if( regDest<0 && p ){ 4030 struct ExprList_item *pItem; 4031 int i; 4032 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4033 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 4034 return pItem->u.iConstExprReg; 4035 } 4036 } 4037 } 4038 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4039 p = sqlite3ExprListAppend(pParse, p, pExpr); 4040 if( p ){ 4041 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4042 pItem->reusable = regDest<0; 4043 if( regDest<0 ) regDest = ++pParse->nMem; 4044 pItem->u.iConstExprReg = regDest; 4045 } 4046 pParse->pConstExpr = p; 4047 return regDest; 4048 } 4049 4050 /* 4051 ** Generate code to evaluate an expression and store the results 4052 ** into a register. Return the register number where the results 4053 ** are stored. 4054 ** 4055 ** If the register is a temporary register that can be deallocated, 4056 ** then write its number into *pReg. If the result register is not 4057 ** a temporary, then set *pReg to zero. 4058 ** 4059 ** If pExpr is a constant, then this routine might generate this 4060 ** code to fill the register in the initialization section of the 4061 ** VDBE program, in order to factor it out of the evaluation loop. 4062 */ 4063 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4064 int r2; 4065 pExpr = sqlite3ExprSkipCollate(pExpr); 4066 if( ConstFactorOk(pParse) 4067 && pExpr->op!=TK_REGISTER 4068 && sqlite3ExprIsConstantNotJoin(pExpr) 4069 ){ 4070 *pReg = 0; 4071 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4072 }else{ 4073 int r1 = sqlite3GetTempReg(pParse); 4074 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4075 if( r2==r1 ){ 4076 *pReg = r1; 4077 }else{ 4078 sqlite3ReleaseTempReg(pParse, r1); 4079 *pReg = 0; 4080 } 4081 } 4082 return r2; 4083 } 4084 4085 /* 4086 ** Generate code that will evaluate expression pExpr and store the 4087 ** results in register target. The results are guaranteed to appear 4088 ** in register target. 4089 */ 4090 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4091 int inReg; 4092 4093 assert( target>0 && target<=pParse->nMem ); 4094 if( pExpr && pExpr->op==TK_REGISTER ){ 4095 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 4096 }else{ 4097 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4098 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4099 if( inReg!=target && pParse->pVdbe ){ 4100 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4101 } 4102 } 4103 } 4104 4105 /* 4106 ** Make a transient copy of expression pExpr and then code it using 4107 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4108 ** except that the input expression is guaranteed to be unchanged. 4109 */ 4110 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4111 sqlite3 *db = pParse->db; 4112 pExpr = sqlite3ExprDup(db, pExpr, 0); 4113 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4114 sqlite3ExprDelete(db, pExpr); 4115 } 4116 4117 /* 4118 ** Generate code that will evaluate expression pExpr and store the 4119 ** results in register target. The results are guaranteed to appear 4120 ** in register target. If the expression is constant, then this routine 4121 ** might choose to code the expression at initialization time. 4122 */ 4123 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4124 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 4125 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4126 }else{ 4127 sqlite3ExprCode(pParse, pExpr, target); 4128 } 4129 } 4130 4131 /* 4132 ** Generate code that evaluates the given expression and puts the result 4133 ** in register target. 4134 ** 4135 ** Also make a copy of the expression results into another "cache" register 4136 ** and modify the expression so that the next time it is evaluated, 4137 ** the result is a copy of the cache register. 4138 ** 4139 ** This routine is used for expressions that are used multiple 4140 ** times. They are evaluated once and the results of the expression 4141 ** are reused. 4142 */ 4143 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 4144 Vdbe *v = pParse->pVdbe; 4145 int iMem; 4146 4147 assert( target>0 ); 4148 assert( pExpr->op!=TK_REGISTER ); 4149 sqlite3ExprCode(pParse, pExpr, target); 4150 iMem = ++pParse->nMem; 4151 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 4152 exprToRegister(pExpr, iMem); 4153 } 4154 4155 /* 4156 ** Generate code that pushes the value of every element of the given 4157 ** expression list into a sequence of registers beginning at target. 4158 ** 4159 ** Return the number of elements evaluated. 4160 ** 4161 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4162 ** filled using OP_SCopy. OP_Copy must be used instead. 4163 ** 4164 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4165 ** factored out into initialization code. 4166 ** 4167 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4168 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4169 ** in registers at srcReg, and so the value can be copied from there. 4170 */ 4171 int sqlite3ExprCodeExprList( 4172 Parse *pParse, /* Parsing context */ 4173 ExprList *pList, /* The expression list to be coded */ 4174 int target, /* Where to write results */ 4175 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4176 u8 flags /* SQLITE_ECEL_* flags */ 4177 ){ 4178 struct ExprList_item *pItem; 4179 int i, j, n; 4180 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4181 Vdbe *v = pParse->pVdbe; 4182 assert( pList!=0 ); 4183 assert( target>0 ); 4184 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4185 n = pList->nExpr; 4186 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4187 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4188 Expr *pExpr = pItem->pExpr; 4189 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4190 if( flags & SQLITE_ECEL_OMITREF ){ 4191 i--; 4192 n--; 4193 }else{ 4194 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4195 } 4196 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 4197 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4198 }else{ 4199 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4200 if( inReg!=target+i ){ 4201 VdbeOp *pOp; 4202 if( copyOp==OP_Copy 4203 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4204 && pOp->p1+pOp->p3+1==inReg 4205 && pOp->p2+pOp->p3+1==target+i 4206 ){ 4207 pOp->p3++; 4208 }else{ 4209 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4210 } 4211 } 4212 } 4213 } 4214 return n; 4215 } 4216 4217 /* 4218 ** Generate code for a BETWEEN operator. 4219 ** 4220 ** x BETWEEN y AND z 4221 ** 4222 ** The above is equivalent to 4223 ** 4224 ** x>=y AND x<=z 4225 ** 4226 ** Code it as such, taking care to do the common subexpression 4227 ** elimination of x. 4228 ** 4229 ** The xJumpIf parameter determines details: 4230 ** 4231 ** NULL: Store the boolean result in reg[dest] 4232 ** sqlite3ExprIfTrue: Jump to dest if true 4233 ** sqlite3ExprIfFalse: Jump to dest if false 4234 ** 4235 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4236 */ 4237 static void exprCodeBetween( 4238 Parse *pParse, /* Parsing and code generating context */ 4239 Expr *pExpr, /* The BETWEEN expression */ 4240 int dest, /* Jump destination or storage location */ 4241 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4242 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4243 ){ 4244 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4245 Expr compLeft; /* The x>=y term */ 4246 Expr compRight; /* The x<=z term */ 4247 Expr exprX; /* The x subexpression */ 4248 int regFree1 = 0; /* Temporary use register */ 4249 4250 4251 memset(&compLeft, 0, sizeof(Expr)); 4252 memset(&compRight, 0, sizeof(Expr)); 4253 memset(&exprAnd, 0, sizeof(Expr)); 4254 4255 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4256 exprX = *pExpr->pLeft; 4257 exprAnd.op = TK_AND; 4258 exprAnd.pLeft = &compLeft; 4259 exprAnd.pRight = &compRight; 4260 compLeft.op = TK_GE; 4261 compLeft.pLeft = &exprX; 4262 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4263 compRight.op = TK_LE; 4264 compRight.pLeft = &exprX; 4265 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4266 exprToRegister(&exprX, exprCodeVector(pParse, &exprX, ®Free1)); 4267 if( xJump ){ 4268 xJump(pParse, &exprAnd, dest, jumpIfNull); 4269 }else{ 4270 /* Mark the expression is being from the ON or USING clause of a join 4271 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4272 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4273 ** for clarity, but we are out of bits in the Expr.flags field so we 4274 ** have to reuse the EP_FromJoin bit. Bummer. */ 4275 exprX.flags |= EP_FromJoin; 4276 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4277 } 4278 sqlite3ReleaseTempReg(pParse, regFree1); 4279 4280 /* Ensure adequate test coverage */ 4281 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4282 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4283 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4284 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4285 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4286 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4287 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4288 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4289 testcase( xJump==0 ); 4290 } 4291 4292 /* 4293 ** Generate code for a boolean expression such that a jump is made 4294 ** to the label "dest" if the expression is true but execution 4295 ** continues straight thru if the expression is false. 4296 ** 4297 ** If the expression evaluates to NULL (neither true nor false), then 4298 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4299 ** 4300 ** This code depends on the fact that certain token values (ex: TK_EQ) 4301 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4302 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4303 ** the make process cause these values to align. Assert()s in the code 4304 ** below verify that the numbers are aligned correctly. 4305 */ 4306 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4307 Vdbe *v = pParse->pVdbe; 4308 int op = 0; 4309 int regFree1 = 0; 4310 int regFree2 = 0; 4311 int r1, r2; 4312 4313 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4314 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4315 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4316 op = pExpr->op; 4317 switch( op ){ 4318 case TK_AND: { 4319 int d2 = sqlite3VdbeMakeLabel(v); 4320 testcase( jumpIfNull==0 ); 4321 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 4322 sqlite3ExprCachePush(pParse); 4323 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4324 sqlite3VdbeResolveLabel(v, d2); 4325 sqlite3ExprCachePop(pParse); 4326 break; 4327 } 4328 case TK_OR: { 4329 testcase( jumpIfNull==0 ); 4330 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4331 sqlite3ExprCachePush(pParse); 4332 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4333 sqlite3ExprCachePop(pParse); 4334 break; 4335 } 4336 case TK_NOT: { 4337 testcase( jumpIfNull==0 ); 4338 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4339 break; 4340 } 4341 case TK_IS: 4342 case TK_ISNOT: 4343 testcase( op==TK_IS ); 4344 testcase( op==TK_ISNOT ); 4345 op = (op==TK_IS) ? TK_EQ : TK_NE; 4346 jumpIfNull = SQLITE_NULLEQ; 4347 /* Fall thru */ 4348 case TK_LT: 4349 case TK_LE: 4350 case TK_GT: 4351 case TK_GE: 4352 case TK_NE: 4353 case TK_EQ: { 4354 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4355 testcase( jumpIfNull==0 ); 4356 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4357 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4358 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4359 r1, r2, dest, jumpIfNull); 4360 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4361 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4362 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4363 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4364 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4365 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4366 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4367 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4368 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4369 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4370 testcase( regFree1==0 ); 4371 testcase( regFree2==0 ); 4372 break; 4373 } 4374 case TK_ISNULL: 4375 case TK_NOTNULL: { 4376 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4377 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4378 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4379 sqlite3VdbeAddOp2(v, op, r1, dest); 4380 VdbeCoverageIf(v, op==TK_ISNULL); 4381 VdbeCoverageIf(v, op==TK_NOTNULL); 4382 testcase( regFree1==0 ); 4383 break; 4384 } 4385 case TK_BETWEEN: { 4386 testcase( jumpIfNull==0 ); 4387 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4388 break; 4389 } 4390 #ifndef SQLITE_OMIT_SUBQUERY 4391 case TK_IN: { 4392 int destIfFalse = sqlite3VdbeMakeLabel(v); 4393 int destIfNull = jumpIfNull ? dest : destIfFalse; 4394 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4395 sqlite3VdbeGoto(v, dest); 4396 sqlite3VdbeResolveLabel(v, destIfFalse); 4397 break; 4398 } 4399 #endif 4400 default: { 4401 default_expr: 4402 if( exprAlwaysTrue(pExpr) ){ 4403 sqlite3VdbeGoto(v, dest); 4404 }else if( exprAlwaysFalse(pExpr) ){ 4405 /* No-op */ 4406 }else{ 4407 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4408 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4409 VdbeCoverage(v); 4410 testcase( regFree1==0 ); 4411 testcase( jumpIfNull==0 ); 4412 } 4413 break; 4414 } 4415 } 4416 sqlite3ReleaseTempReg(pParse, regFree1); 4417 sqlite3ReleaseTempReg(pParse, regFree2); 4418 } 4419 4420 /* 4421 ** Generate code for a boolean expression such that a jump is made 4422 ** to the label "dest" if the expression is false but execution 4423 ** continues straight thru if the expression is true. 4424 ** 4425 ** If the expression evaluates to NULL (neither true nor false) then 4426 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4427 ** is 0. 4428 */ 4429 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4430 Vdbe *v = pParse->pVdbe; 4431 int op = 0; 4432 int regFree1 = 0; 4433 int regFree2 = 0; 4434 int r1, r2; 4435 4436 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4437 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4438 if( pExpr==0 ) return; 4439 4440 /* The value of pExpr->op and op are related as follows: 4441 ** 4442 ** pExpr->op op 4443 ** --------- ---------- 4444 ** TK_ISNULL OP_NotNull 4445 ** TK_NOTNULL OP_IsNull 4446 ** TK_NE OP_Eq 4447 ** TK_EQ OP_Ne 4448 ** TK_GT OP_Le 4449 ** TK_LE OP_Gt 4450 ** TK_GE OP_Lt 4451 ** TK_LT OP_Ge 4452 ** 4453 ** For other values of pExpr->op, op is undefined and unused. 4454 ** The value of TK_ and OP_ constants are arranged such that we 4455 ** can compute the mapping above using the following expression. 4456 ** Assert()s verify that the computation is correct. 4457 */ 4458 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4459 4460 /* Verify correct alignment of TK_ and OP_ constants 4461 */ 4462 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4463 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4464 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4465 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4466 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4467 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4468 assert( pExpr->op!=TK_GT || op==OP_Le ); 4469 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4470 4471 switch( pExpr->op ){ 4472 case TK_AND: { 4473 testcase( jumpIfNull==0 ); 4474 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4475 sqlite3ExprCachePush(pParse); 4476 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4477 sqlite3ExprCachePop(pParse); 4478 break; 4479 } 4480 case TK_OR: { 4481 int d2 = sqlite3VdbeMakeLabel(v); 4482 testcase( jumpIfNull==0 ); 4483 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 4484 sqlite3ExprCachePush(pParse); 4485 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4486 sqlite3VdbeResolveLabel(v, d2); 4487 sqlite3ExprCachePop(pParse); 4488 break; 4489 } 4490 case TK_NOT: { 4491 testcase( jumpIfNull==0 ); 4492 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4493 break; 4494 } 4495 case TK_IS: 4496 case TK_ISNOT: 4497 testcase( pExpr->op==TK_IS ); 4498 testcase( pExpr->op==TK_ISNOT ); 4499 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4500 jumpIfNull = SQLITE_NULLEQ; 4501 /* Fall thru */ 4502 case TK_LT: 4503 case TK_LE: 4504 case TK_GT: 4505 case TK_GE: 4506 case TK_NE: 4507 case TK_EQ: { 4508 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4509 testcase( jumpIfNull==0 ); 4510 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4511 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4512 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4513 r1, r2, dest, jumpIfNull); 4514 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4515 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4516 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4517 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4518 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4519 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4520 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4521 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4522 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4523 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4524 testcase( regFree1==0 ); 4525 testcase( regFree2==0 ); 4526 break; 4527 } 4528 case TK_ISNULL: 4529 case TK_NOTNULL: { 4530 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4531 sqlite3VdbeAddOp2(v, op, r1, dest); 4532 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4533 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4534 testcase( regFree1==0 ); 4535 break; 4536 } 4537 case TK_BETWEEN: { 4538 testcase( jumpIfNull==0 ); 4539 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4540 break; 4541 } 4542 #ifndef SQLITE_OMIT_SUBQUERY 4543 case TK_IN: { 4544 if( jumpIfNull ){ 4545 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4546 }else{ 4547 int destIfNull = sqlite3VdbeMakeLabel(v); 4548 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4549 sqlite3VdbeResolveLabel(v, destIfNull); 4550 } 4551 break; 4552 } 4553 #endif 4554 default: { 4555 default_expr: 4556 if( exprAlwaysFalse(pExpr) ){ 4557 sqlite3VdbeGoto(v, dest); 4558 }else if( exprAlwaysTrue(pExpr) ){ 4559 /* no-op */ 4560 }else{ 4561 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4562 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4563 VdbeCoverage(v); 4564 testcase( regFree1==0 ); 4565 testcase( jumpIfNull==0 ); 4566 } 4567 break; 4568 } 4569 } 4570 sqlite3ReleaseTempReg(pParse, regFree1); 4571 sqlite3ReleaseTempReg(pParse, regFree2); 4572 } 4573 4574 /* 4575 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4576 ** code generation, and that copy is deleted after code generation. This 4577 ** ensures that the original pExpr is unchanged. 4578 */ 4579 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4580 sqlite3 *db = pParse->db; 4581 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4582 if( db->mallocFailed==0 ){ 4583 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4584 } 4585 sqlite3ExprDelete(db, pCopy); 4586 } 4587 4588 4589 /* 4590 ** Do a deep comparison of two expression trees. Return 0 if the two 4591 ** expressions are completely identical. Return 1 if they differ only 4592 ** by a COLLATE operator at the top level. Return 2 if there are differences 4593 ** other than the top-level COLLATE operator. 4594 ** 4595 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4596 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4597 ** 4598 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4599 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4600 ** 4601 ** Sometimes this routine will return 2 even if the two expressions 4602 ** really are equivalent. If we cannot prove that the expressions are 4603 ** identical, we return 2 just to be safe. So if this routine 4604 ** returns 2, then you do not really know for certain if the two 4605 ** expressions are the same. But if you get a 0 or 1 return, then you 4606 ** can be sure the expressions are the same. In the places where 4607 ** this routine is used, it does not hurt to get an extra 2 - that 4608 ** just might result in some slightly slower code. But returning 4609 ** an incorrect 0 or 1 could lead to a malfunction. 4610 */ 4611 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 4612 u32 combinedFlags; 4613 if( pA==0 || pB==0 ){ 4614 return pB==pA ? 0 : 2; 4615 } 4616 combinedFlags = pA->flags | pB->flags; 4617 if( combinedFlags & EP_IntValue ){ 4618 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 4619 return 0; 4620 } 4621 return 2; 4622 } 4623 if( pA->op!=pB->op ){ 4624 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 4625 return 1; 4626 } 4627 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 4628 return 1; 4629 } 4630 return 2; 4631 } 4632 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 4633 if( pA->op==TK_FUNCTION ){ 4634 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4635 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4636 return pA->op==TK_COLLATE ? 1 : 2; 4637 } 4638 } 4639 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4640 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 4641 if( combinedFlags & EP_xIsSelect ) return 2; 4642 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 4643 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 4644 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4645 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ 4646 if( pA->iColumn!=pB->iColumn ) return 2; 4647 if( pA->iTable!=pB->iTable 4648 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4649 } 4650 } 4651 return 0; 4652 } 4653 4654 /* 4655 ** Compare two ExprList objects. Return 0 if they are identical and 4656 ** non-zero if they differ in any way. 4657 ** 4658 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4659 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4660 ** 4661 ** This routine might return non-zero for equivalent ExprLists. The 4662 ** only consequence will be disabled optimizations. But this routine 4663 ** must never return 0 if the two ExprList objects are different, or 4664 ** a malfunction will result. 4665 ** 4666 ** Two NULL pointers are considered to be the same. But a NULL pointer 4667 ** always differs from a non-NULL pointer. 4668 */ 4669 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4670 int i; 4671 if( pA==0 && pB==0 ) return 0; 4672 if( pA==0 || pB==0 ) return 1; 4673 if( pA->nExpr!=pB->nExpr ) return 1; 4674 for(i=0; i<pA->nExpr; i++){ 4675 Expr *pExprA = pA->a[i].pExpr; 4676 Expr *pExprB = pB->a[i].pExpr; 4677 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 4678 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 4679 } 4680 return 0; 4681 } 4682 4683 /* 4684 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 4685 ** are ignored. 4686 */ 4687 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 4688 return sqlite3ExprCompare( 4689 sqlite3ExprSkipCollate(pA), 4690 sqlite3ExprSkipCollate(pB), 4691 iTab); 4692 } 4693 4694 /* 4695 ** Return true if we can prove the pE2 will always be true if pE1 is 4696 ** true. Return false if we cannot complete the proof or if pE2 might 4697 ** be false. Examples: 4698 ** 4699 ** pE1: x==5 pE2: x==5 Result: true 4700 ** pE1: x>0 pE2: x==5 Result: false 4701 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 4702 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 4703 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 4704 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 4705 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 4706 ** 4707 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 4708 ** Expr.iTable<0 then assume a table number given by iTab. 4709 ** 4710 ** When in doubt, return false. Returning true might give a performance 4711 ** improvement. Returning false might cause a performance reduction, but 4712 ** it will always give the correct answer and is hence always safe. 4713 */ 4714 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 4715 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 4716 return 1; 4717 } 4718 if( pE2->op==TK_OR 4719 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 4720 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 4721 ){ 4722 return 1; 4723 } 4724 if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){ 4725 Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft); 4726 testcase( pX!=pE1->pLeft ); 4727 if( sqlite3ExprCompare(pX, pE2->pLeft, iTab)==0 ) return 1; 4728 } 4729 return 0; 4730 } 4731 4732 /* 4733 ** An instance of the following structure is used by the tree walker 4734 ** to determine if an expression can be evaluated by reference to the 4735 ** index only, without having to do a search for the corresponding 4736 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 4737 ** is the cursor for the table. 4738 */ 4739 struct IdxCover { 4740 Index *pIdx; /* The index to be tested for coverage */ 4741 int iCur; /* Cursor number for the table corresponding to the index */ 4742 }; 4743 4744 /* 4745 ** Check to see if there are references to columns in table 4746 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 4747 ** pWalker->u.pIdxCover->pIdx. 4748 */ 4749 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 4750 if( pExpr->op==TK_COLUMN 4751 && pExpr->iTable==pWalker->u.pIdxCover->iCur 4752 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 4753 ){ 4754 pWalker->eCode = 1; 4755 return WRC_Abort; 4756 } 4757 return WRC_Continue; 4758 } 4759 4760 /* 4761 ** Determine if an index pIdx on table with cursor iCur contains will 4762 ** the expression pExpr. Return true if the index does cover the 4763 ** expression and false if the pExpr expression references table columns 4764 ** that are not found in the index pIdx. 4765 ** 4766 ** An index covering an expression means that the expression can be 4767 ** evaluated using only the index and without having to lookup the 4768 ** corresponding table entry. 4769 */ 4770 int sqlite3ExprCoveredByIndex( 4771 Expr *pExpr, /* The index to be tested */ 4772 int iCur, /* The cursor number for the corresponding table */ 4773 Index *pIdx /* The index that might be used for coverage */ 4774 ){ 4775 Walker w; 4776 struct IdxCover xcov; 4777 memset(&w, 0, sizeof(w)); 4778 xcov.iCur = iCur; 4779 xcov.pIdx = pIdx; 4780 w.xExprCallback = exprIdxCover; 4781 w.u.pIdxCover = &xcov; 4782 sqlite3WalkExpr(&w, pExpr); 4783 return !w.eCode; 4784 } 4785 4786 4787 /* 4788 ** An instance of the following structure is used by the tree walker 4789 ** to count references to table columns in the arguments of an 4790 ** aggregate function, in order to implement the 4791 ** sqlite3FunctionThisSrc() routine. 4792 */ 4793 struct SrcCount { 4794 SrcList *pSrc; /* One particular FROM clause in a nested query */ 4795 int nThis; /* Number of references to columns in pSrcList */ 4796 int nOther; /* Number of references to columns in other FROM clauses */ 4797 }; 4798 4799 /* 4800 ** Count the number of references to columns. 4801 */ 4802 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 4803 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 4804 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 4805 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 4806 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 4807 ** NEVER() will need to be removed. */ 4808 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 4809 int i; 4810 struct SrcCount *p = pWalker->u.pSrcCount; 4811 SrcList *pSrc = p->pSrc; 4812 int nSrc = pSrc ? pSrc->nSrc : 0; 4813 for(i=0; i<nSrc; i++){ 4814 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 4815 } 4816 if( i<nSrc ){ 4817 p->nThis++; 4818 }else{ 4819 p->nOther++; 4820 } 4821 } 4822 return WRC_Continue; 4823 } 4824 4825 /* 4826 ** Determine if any of the arguments to the pExpr Function reference 4827 ** pSrcList. Return true if they do. Also return true if the function 4828 ** has no arguments or has only constant arguments. Return false if pExpr 4829 ** references columns but not columns of tables found in pSrcList. 4830 */ 4831 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 4832 Walker w; 4833 struct SrcCount cnt; 4834 assert( pExpr->op==TK_AGG_FUNCTION ); 4835 memset(&w, 0, sizeof(w)); 4836 w.xExprCallback = exprSrcCount; 4837 w.u.pSrcCount = &cnt; 4838 cnt.pSrc = pSrcList; 4839 cnt.nThis = 0; 4840 cnt.nOther = 0; 4841 sqlite3WalkExprList(&w, pExpr->x.pList); 4842 return cnt.nThis>0 || cnt.nOther==0; 4843 } 4844 4845 /* 4846 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 4847 ** the new element. Return a negative number if malloc fails. 4848 */ 4849 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 4850 int i; 4851 pInfo->aCol = sqlite3ArrayAllocate( 4852 db, 4853 pInfo->aCol, 4854 sizeof(pInfo->aCol[0]), 4855 &pInfo->nColumn, 4856 &i 4857 ); 4858 return i; 4859 } 4860 4861 /* 4862 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 4863 ** the new element. Return a negative number if malloc fails. 4864 */ 4865 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 4866 int i; 4867 pInfo->aFunc = sqlite3ArrayAllocate( 4868 db, 4869 pInfo->aFunc, 4870 sizeof(pInfo->aFunc[0]), 4871 &pInfo->nFunc, 4872 &i 4873 ); 4874 return i; 4875 } 4876 4877 /* 4878 ** This is the xExprCallback for a tree walker. It is used to 4879 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 4880 ** for additional information. 4881 */ 4882 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 4883 int i; 4884 NameContext *pNC = pWalker->u.pNC; 4885 Parse *pParse = pNC->pParse; 4886 SrcList *pSrcList = pNC->pSrcList; 4887 AggInfo *pAggInfo = pNC->pAggInfo; 4888 4889 switch( pExpr->op ){ 4890 case TK_AGG_COLUMN: 4891 case TK_COLUMN: { 4892 testcase( pExpr->op==TK_AGG_COLUMN ); 4893 testcase( pExpr->op==TK_COLUMN ); 4894 /* Check to see if the column is in one of the tables in the FROM 4895 ** clause of the aggregate query */ 4896 if( ALWAYS(pSrcList!=0) ){ 4897 struct SrcList_item *pItem = pSrcList->a; 4898 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 4899 struct AggInfo_col *pCol; 4900 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4901 if( pExpr->iTable==pItem->iCursor ){ 4902 /* If we reach this point, it means that pExpr refers to a table 4903 ** that is in the FROM clause of the aggregate query. 4904 ** 4905 ** Make an entry for the column in pAggInfo->aCol[] if there 4906 ** is not an entry there already. 4907 */ 4908 int k; 4909 pCol = pAggInfo->aCol; 4910 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4911 if( pCol->iTable==pExpr->iTable && 4912 pCol->iColumn==pExpr->iColumn ){ 4913 break; 4914 } 4915 } 4916 if( (k>=pAggInfo->nColumn) 4917 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4918 ){ 4919 pCol = &pAggInfo->aCol[k]; 4920 pCol->pTab = pExpr->pTab; 4921 pCol->iTable = pExpr->iTable; 4922 pCol->iColumn = pExpr->iColumn; 4923 pCol->iMem = ++pParse->nMem; 4924 pCol->iSorterColumn = -1; 4925 pCol->pExpr = pExpr; 4926 if( pAggInfo->pGroupBy ){ 4927 int j, n; 4928 ExprList *pGB = pAggInfo->pGroupBy; 4929 struct ExprList_item *pTerm = pGB->a; 4930 n = pGB->nExpr; 4931 for(j=0; j<n; j++, pTerm++){ 4932 Expr *pE = pTerm->pExpr; 4933 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4934 pE->iColumn==pExpr->iColumn ){ 4935 pCol->iSorterColumn = j; 4936 break; 4937 } 4938 } 4939 } 4940 if( pCol->iSorterColumn<0 ){ 4941 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4942 } 4943 } 4944 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4945 ** because it was there before or because we just created it). 4946 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4947 ** pAggInfo->aCol[] entry. 4948 */ 4949 ExprSetVVAProperty(pExpr, EP_NoReduce); 4950 pExpr->pAggInfo = pAggInfo; 4951 pExpr->op = TK_AGG_COLUMN; 4952 pExpr->iAgg = (i16)k; 4953 break; 4954 } /* endif pExpr->iTable==pItem->iCursor */ 4955 } /* end loop over pSrcList */ 4956 } 4957 return WRC_Prune; 4958 } 4959 case TK_AGG_FUNCTION: { 4960 if( (pNC->ncFlags & NC_InAggFunc)==0 4961 && pWalker->walkerDepth==pExpr->op2 4962 ){ 4963 /* Check to see if pExpr is a duplicate of another aggregate 4964 ** function that is already in the pAggInfo structure 4965 */ 4966 struct AggInfo_func *pItem = pAggInfo->aFunc; 4967 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4968 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 4969 break; 4970 } 4971 } 4972 if( i>=pAggInfo->nFunc ){ 4973 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4974 */ 4975 u8 enc = ENC(pParse->db); 4976 i = addAggInfoFunc(pParse->db, pAggInfo); 4977 if( i>=0 ){ 4978 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4979 pItem = &pAggInfo->aFunc[i]; 4980 pItem->pExpr = pExpr; 4981 pItem->iMem = ++pParse->nMem; 4982 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4983 pItem->pFunc = sqlite3FindFunction(pParse->db, 4984 pExpr->u.zToken, 4985 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4986 if( pExpr->flags & EP_Distinct ){ 4987 pItem->iDistinct = pParse->nTab++; 4988 }else{ 4989 pItem->iDistinct = -1; 4990 } 4991 } 4992 } 4993 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4994 */ 4995 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4996 ExprSetVVAProperty(pExpr, EP_NoReduce); 4997 pExpr->iAgg = (i16)i; 4998 pExpr->pAggInfo = pAggInfo; 4999 return WRC_Prune; 5000 }else{ 5001 return WRC_Continue; 5002 } 5003 } 5004 } 5005 return WRC_Continue; 5006 } 5007 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5008 UNUSED_PARAMETER(pWalker); 5009 UNUSED_PARAMETER(pSelect); 5010 return WRC_Continue; 5011 } 5012 5013 /* 5014 ** Analyze the pExpr expression looking for aggregate functions and 5015 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5016 ** points to. Additional entries are made on the AggInfo object as 5017 ** necessary. 5018 ** 5019 ** This routine should only be called after the expression has been 5020 ** analyzed by sqlite3ResolveExprNames(). 5021 */ 5022 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5023 Walker w; 5024 memset(&w, 0, sizeof(w)); 5025 w.xExprCallback = analyzeAggregate; 5026 w.xSelectCallback = analyzeAggregatesInSelect; 5027 w.u.pNC = pNC; 5028 assert( pNC->pSrcList!=0 ); 5029 sqlite3WalkExpr(&w, pExpr); 5030 } 5031 5032 /* 5033 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5034 ** expression list. Return the number of errors. 5035 ** 5036 ** If an error is found, the analysis is cut short. 5037 */ 5038 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5039 struct ExprList_item *pItem; 5040 int i; 5041 if( pList ){ 5042 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5043 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5044 } 5045 } 5046 } 5047 5048 /* 5049 ** Allocate a single new register for use to hold some intermediate result. 5050 */ 5051 int sqlite3GetTempReg(Parse *pParse){ 5052 if( pParse->nTempReg==0 ){ 5053 return ++pParse->nMem; 5054 } 5055 return pParse->aTempReg[--pParse->nTempReg]; 5056 } 5057 5058 /* 5059 ** Deallocate a register, making available for reuse for some other 5060 ** purpose. 5061 ** 5062 ** If a register is currently being used by the column cache, then 5063 ** the deallocation is deferred until the column cache line that uses 5064 ** the register becomes stale. 5065 */ 5066 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5067 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5068 int i; 5069 struct yColCache *p; 5070 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 5071 if( p->iReg==iReg ){ 5072 p->tempReg = 1; 5073 return; 5074 } 5075 } 5076 pParse->aTempReg[pParse->nTempReg++] = iReg; 5077 } 5078 } 5079 5080 /* 5081 ** Allocate or deallocate a block of nReg consecutive registers. 5082 */ 5083 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5084 int i, n; 5085 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5086 i = pParse->iRangeReg; 5087 n = pParse->nRangeReg; 5088 if( nReg<=n ){ 5089 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 5090 pParse->iRangeReg += nReg; 5091 pParse->nRangeReg -= nReg; 5092 }else{ 5093 i = pParse->nMem+1; 5094 pParse->nMem += nReg; 5095 } 5096 return i; 5097 } 5098 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5099 if( nReg==1 ){ 5100 sqlite3ReleaseTempReg(pParse, iReg); 5101 return; 5102 } 5103 sqlite3ExprCacheRemove(pParse, iReg, nReg); 5104 if( nReg>pParse->nRangeReg ){ 5105 pParse->nRangeReg = nReg; 5106 pParse->iRangeReg = iReg; 5107 } 5108 } 5109 5110 /* 5111 ** Mark all temporary registers as being unavailable for reuse. 5112 */ 5113 void sqlite3ClearTempRegCache(Parse *pParse){ 5114 pParse->nTempReg = 0; 5115 pParse->nRangeReg = 0; 5116 } 5117 5118 /* 5119 ** Validate that no temporary register falls within the range of 5120 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5121 ** statements. 5122 */ 5123 #ifdef SQLITE_DEBUG 5124 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5125 int i; 5126 if( pParse->nRangeReg>0 5127 && pParse->iRangeReg+pParse->nRangeReg<iLast 5128 && pParse->iRangeReg>=iFirst 5129 ){ 5130 return 0; 5131 } 5132 for(i=0; i<pParse->nTempReg; i++){ 5133 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5134 return 0; 5135 } 5136 } 5137 return 1; 5138 } 5139 #endif /* SQLITE_DEBUG */ 5140