xref: /sqlite-3.40.0/src/expr.c (revision 70cdf382)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(Expr *pExpr){
46   int op;
47   pExpr = sqlite3ExprSkipCollate(pExpr);
48   if( pExpr->flags & EP_Generic ) return 0;
49   op = pExpr->op;
50   if( op==TK_SELECT ){
51     assert( pExpr->flags&EP_xIsSelect );
52     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
53   }
54   if( op==TK_REGISTER ) op = pExpr->op2;
55 #ifndef SQLITE_OMIT_CAST
56   if( op==TK_CAST ){
57     assert( !ExprHasProperty(pExpr, EP_IntValue) );
58     return sqlite3AffinityType(pExpr->u.zToken, 0);
59   }
60 #endif
61   if( op==TK_AGG_COLUMN || op==TK_COLUMN ){
62     return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn);
63   }
64   if( op==TK_SELECT_COLUMN ){
65     assert( pExpr->pLeft->flags&EP_xIsSelect );
66     return sqlite3ExprAffinity(
67         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
68     );
69   }
70   return pExpr->affinity;
71 }
72 
73 /*
74 ** Set the collating sequence for expression pExpr to be the collating
75 ** sequence named by pToken.   Return a pointer to a new Expr node that
76 ** implements the COLLATE operator.
77 **
78 ** If a memory allocation error occurs, that fact is recorded in pParse->db
79 ** and the pExpr parameter is returned unchanged.
80 */
81 Expr *sqlite3ExprAddCollateToken(
82   Parse *pParse,           /* Parsing context */
83   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
84   const Token *pCollName,  /* Name of collating sequence */
85   int dequote              /* True to dequote pCollName */
86 ){
87   if( pCollName->n>0 ){
88     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
89     if( pNew ){
90       pNew->pLeft = pExpr;
91       pNew->flags |= EP_Collate|EP_Skip;
92       pExpr = pNew;
93     }
94   }
95   return pExpr;
96 }
97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
98   Token s;
99   assert( zC!=0 );
100   sqlite3TokenInit(&s, (char*)zC);
101   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
102 }
103 
104 /*
105 ** Skip over any TK_COLLATE operators and any unlikely()
106 ** or likelihood() function at the root of an expression.
107 */
108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
109   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
110     if( ExprHasProperty(pExpr, EP_Unlikely) ){
111       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
112       assert( pExpr->x.pList->nExpr>0 );
113       assert( pExpr->op==TK_FUNCTION );
114       pExpr = pExpr->x.pList->a[0].pExpr;
115     }else{
116       assert( pExpr->op==TK_COLLATE );
117       pExpr = pExpr->pLeft;
118     }
119   }
120   return pExpr;
121 }
122 
123 /*
124 ** Return the collation sequence for the expression pExpr. If
125 ** there is no defined collating sequence, return NULL.
126 **
127 ** The collating sequence might be determined by a COLLATE operator
128 ** or by the presence of a column with a defined collating sequence.
129 ** COLLATE operators take first precedence.  Left operands take
130 ** precedence over right operands.
131 */
132 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
133   sqlite3 *db = pParse->db;
134   CollSeq *pColl = 0;
135   Expr *p = pExpr;
136   while( p ){
137     int op = p->op;
138     if( p->flags & EP_Generic ) break;
139     if( op==TK_CAST || op==TK_UPLUS ){
140       p = p->pLeft;
141       continue;
142     }
143     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
144       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
145       break;
146     }
147     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
148           || op==TK_REGISTER || op==TK_TRIGGER)
149      && p->pTab!=0
150     ){
151       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
152       ** a TK_COLUMN but was previously evaluated and cached in a register */
153       int j = p->iColumn;
154       if( j>=0 ){
155         const char *zColl = p->pTab->aCol[j].zColl;
156         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
157       }
158       break;
159     }
160     if( p->flags & EP_Collate ){
161       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
162         p = p->pLeft;
163       }else{
164         Expr *pNext  = p->pRight;
165         /* The Expr.x union is never used at the same time as Expr.pRight */
166         assert( p->x.pList==0 || p->pRight==0 );
167         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
168         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
169         ** least one EP_Collate. Thus the following two ALWAYS. */
170         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
171           int i;
172           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
173             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
174               pNext = p->x.pList->a[i].pExpr;
175               break;
176             }
177           }
178         }
179         p = pNext;
180       }
181     }else{
182       break;
183     }
184   }
185   if( sqlite3CheckCollSeq(pParse, pColl) ){
186     pColl = 0;
187   }
188   return pColl;
189 }
190 
191 /*
192 ** pExpr is an operand of a comparison operator.  aff2 is the
193 ** type affinity of the other operand.  This routine returns the
194 ** type affinity that should be used for the comparison operator.
195 */
196 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
197   char aff1 = sqlite3ExprAffinity(pExpr);
198   if( aff1 && aff2 ){
199     /* Both sides of the comparison are columns. If one has numeric
200     ** affinity, use that. Otherwise use no affinity.
201     */
202     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
203       return SQLITE_AFF_NUMERIC;
204     }else{
205       return SQLITE_AFF_BLOB;
206     }
207   }else if( !aff1 && !aff2 ){
208     /* Neither side of the comparison is a column.  Compare the
209     ** results directly.
210     */
211     return SQLITE_AFF_BLOB;
212   }else{
213     /* One side is a column, the other is not. Use the columns affinity. */
214     assert( aff1==0 || aff2==0 );
215     return (aff1 + aff2);
216   }
217 }
218 
219 /*
220 ** pExpr is a comparison operator.  Return the type affinity that should
221 ** be applied to both operands prior to doing the comparison.
222 */
223 static char comparisonAffinity(Expr *pExpr){
224   char aff;
225   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
226           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
227           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
228   assert( pExpr->pLeft );
229   aff = sqlite3ExprAffinity(pExpr->pLeft);
230   if( pExpr->pRight ){
231     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
232   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
233     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
234   }else if( aff==0 ){
235     aff = SQLITE_AFF_BLOB;
236   }
237   return aff;
238 }
239 
240 /*
241 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
242 ** idx_affinity is the affinity of an indexed column. Return true
243 ** if the index with affinity idx_affinity may be used to implement
244 ** the comparison in pExpr.
245 */
246 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
247   char aff = comparisonAffinity(pExpr);
248   switch( aff ){
249     case SQLITE_AFF_BLOB:
250       return 1;
251     case SQLITE_AFF_TEXT:
252       return idx_affinity==SQLITE_AFF_TEXT;
253     default:
254       return sqlite3IsNumericAffinity(idx_affinity);
255   }
256 }
257 
258 /*
259 ** Return the P5 value that should be used for a binary comparison
260 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
261 */
262 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
263   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
264   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
265   return aff;
266 }
267 
268 /*
269 ** Return a pointer to the collation sequence that should be used by
270 ** a binary comparison operator comparing pLeft and pRight.
271 **
272 ** If the left hand expression has a collating sequence type, then it is
273 ** used. Otherwise the collation sequence for the right hand expression
274 ** is used, or the default (BINARY) if neither expression has a collating
275 ** type.
276 **
277 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
278 ** it is not considered.
279 */
280 CollSeq *sqlite3BinaryCompareCollSeq(
281   Parse *pParse,
282   Expr *pLeft,
283   Expr *pRight
284 ){
285   CollSeq *pColl;
286   assert( pLeft );
287   if( pLeft->flags & EP_Collate ){
288     pColl = sqlite3ExprCollSeq(pParse, pLeft);
289   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
290     pColl = sqlite3ExprCollSeq(pParse, pRight);
291   }else{
292     pColl = sqlite3ExprCollSeq(pParse, pLeft);
293     if( !pColl ){
294       pColl = sqlite3ExprCollSeq(pParse, pRight);
295     }
296   }
297   return pColl;
298 }
299 
300 /*
301 ** Generate code for a comparison operator.
302 */
303 static int codeCompare(
304   Parse *pParse,    /* The parsing (and code generating) context */
305   Expr *pLeft,      /* The left operand */
306   Expr *pRight,     /* The right operand */
307   int opcode,       /* The comparison opcode */
308   int in1, int in2, /* Register holding operands */
309   int dest,         /* Jump here if true.  */
310   int jumpIfNull    /* If true, jump if either operand is NULL */
311 ){
312   int p5;
313   int addr;
314   CollSeq *p4;
315 
316   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
317   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
318   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
319                            (void*)p4, P4_COLLSEQ);
320   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
321   return addr;
322 }
323 
324 /*
325 ** Return true if expression pExpr is a vector, or false otherwise.
326 **
327 ** A vector is defined as any expression that results in two or more
328 ** columns of result.  Every TK_VECTOR node is an vector because the
329 ** parser will not generate a TK_VECTOR with fewer than two entries.
330 ** But a TK_SELECT might be either a vector or a scalar. It is only
331 ** considered a vector if it has two or more result columns.
332 */
333 int sqlite3ExprIsVector(Expr *pExpr){
334   return sqlite3ExprVectorSize(pExpr)>1;
335 }
336 
337 /*
338 ** If the expression passed as the only argument is of type TK_VECTOR
339 ** return the number of expressions in the vector. Or, if the expression
340 ** is a sub-select, return the number of columns in the sub-select. For
341 ** any other type of expression, return 1.
342 */
343 int sqlite3ExprVectorSize(Expr *pExpr){
344   u8 op = pExpr->op;
345   if( op==TK_REGISTER ) op = pExpr->op2;
346   if( op==TK_VECTOR ){
347     return pExpr->x.pList->nExpr;
348   }else if( op==TK_SELECT ){
349     return pExpr->x.pSelect->pEList->nExpr;
350   }else{
351     return 1;
352   }
353 }
354 
355 #ifndef SQLITE_OMIT_SUBQUERY
356 /*
357 ** Return a pointer to a subexpression of pVector that is the i-th
358 ** column of the vector (numbered starting with 0).  The caller must
359 ** ensure that i is within range.
360 **
361 ** If pVector is really a scalar (and "scalar" here includes subqueries
362 ** that return a single column!) then return pVector unmodified.
363 **
364 ** pVector retains ownership of the returned subexpression.
365 **
366 ** If the vector is a (SELECT ...) then the expression returned is
367 ** just the expression for the i-th term of the result set, and may
368 ** not be ready for evaluation because the table cursor has not yet
369 ** been positioned.
370 */
371 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
372   assert( i<sqlite3ExprVectorSize(pVector) );
373   if( sqlite3ExprIsVector(pVector) ){
374     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
375     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
376       return pVector->x.pSelect->pEList->a[i].pExpr;
377     }else{
378       return pVector->x.pList->a[i].pExpr;
379     }
380   }
381   return pVector;
382 }
383 #endif /* !defined(SQLITE_OMIT_SUBQUERY) */
384 
385 #ifndef SQLITE_OMIT_SUBQUERY
386 /*
387 ** Compute and return a new Expr object which when passed to
388 ** sqlite3ExprCode() will generate all necessary code to compute
389 ** the iField-th column of the vector expression pVector.
390 **
391 ** It is ok for pVector to be a scalar (as long as iField==0).
392 ** In that case, this routine works like sqlite3ExprDup().
393 **
394 ** The caller owns the returned Expr object and is responsible for
395 ** ensuring that the returned value eventually gets freed.
396 **
397 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
398 ** then the returned object will reference pVector and so pVector must remain
399 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
400 ** or a scalar expression, then it can be deleted as soon as this routine
401 ** returns.
402 **
403 ** A trick to cause a TK_SELECT pVector to be deleted together with
404 ** the returned Expr object is to attach the pVector to the pRight field
405 ** of the returned TK_SELECT_COLUMN Expr object.
406 */
407 Expr *sqlite3ExprForVectorField(
408   Parse *pParse,       /* Parsing context */
409   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
410   int iField           /* Which column of the vector to return */
411 ){
412   Expr *pRet;
413   if( pVector->op==TK_SELECT ){
414     assert( pVector->flags & EP_xIsSelect );
415     /* The TK_SELECT_COLUMN Expr node:
416     **
417     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
418     ** pRight:          not used.  But recursively deleted.
419     ** iColumn:         Index of a column in pVector
420     ** iTable:          0 or the number of columns on the LHS of an assignment
421     ** pLeft->iTable:   First in an array of register holding result, or 0
422     **                  if the result is not yet computed.
423     **
424     ** sqlite3ExprDelete() specifically skips the recursive delete of
425     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
426     ** can be attached to pRight to cause this node to take ownership of
427     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
428     ** with the same pLeft pointer to the pVector, but only one of them
429     ** will own the pVector.
430     */
431     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
432     if( pRet ){
433       pRet->iColumn = iField;
434       pRet->pLeft = pVector;
435     }
436     assert( pRet==0 || pRet->iTable==0 );
437   }else{
438     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
439     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
440   }
441   return pRet;
442 }
443 #endif /* !define(SQLITE_OMIT_SUBQUERY) */
444 
445 /*
446 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
447 ** it. Return the register in which the result is stored (or, if the
448 ** sub-select returns more than one column, the first in an array
449 ** of registers in which the result is stored).
450 **
451 ** If pExpr is not a TK_SELECT expression, return 0.
452 */
453 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
454   int reg = 0;
455 #ifndef SQLITE_OMIT_SUBQUERY
456   if( pExpr->op==TK_SELECT ){
457     reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
458   }
459 #endif
460   return reg;
461 }
462 
463 /*
464 ** Argument pVector points to a vector expression - either a TK_VECTOR
465 ** or TK_SELECT that returns more than one column. This function returns
466 ** the register number of a register that contains the value of
467 ** element iField of the vector.
468 **
469 ** If pVector is a TK_SELECT expression, then code for it must have
470 ** already been generated using the exprCodeSubselect() routine. In this
471 ** case parameter regSelect should be the first in an array of registers
472 ** containing the results of the sub-select.
473 **
474 ** If pVector is of type TK_VECTOR, then code for the requested field
475 ** is generated. In this case (*pRegFree) may be set to the number of
476 ** a temporary register to be freed by the caller before returning.
477 **
478 ** Before returning, output parameter (*ppExpr) is set to point to the
479 ** Expr object corresponding to element iElem of the vector.
480 */
481 static int exprVectorRegister(
482   Parse *pParse,                  /* Parse context */
483   Expr *pVector,                  /* Vector to extract element from */
484   int iField,                     /* Field to extract from pVector */
485   int regSelect,                  /* First in array of registers */
486   Expr **ppExpr,                  /* OUT: Expression element */
487   int *pRegFree                   /* OUT: Temp register to free */
488 ){
489   u8 op = pVector->op;
490   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
491   if( op==TK_REGISTER ){
492     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
493     return pVector->iTable+iField;
494   }
495   if( op==TK_SELECT ){
496     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
497      return regSelect+iField;
498   }
499   *ppExpr = pVector->x.pList->a[iField].pExpr;
500   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
501 }
502 
503 /*
504 ** Expression pExpr is a comparison between two vector values. Compute
505 ** the result of the comparison (1, 0, or NULL) and write that
506 ** result into register dest.
507 **
508 ** The caller must satisfy the following preconditions:
509 **
510 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
511 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
512 **    otherwise:                op==pExpr->op and p5==0
513 */
514 static void codeVectorCompare(
515   Parse *pParse,        /* Code generator context */
516   Expr *pExpr,          /* The comparison operation */
517   int dest,             /* Write results into this register */
518   u8 op,                /* Comparison operator */
519   u8 p5                 /* SQLITE_NULLEQ or zero */
520 ){
521   Vdbe *v = pParse->pVdbe;
522   Expr *pLeft = pExpr->pLeft;
523   Expr *pRight = pExpr->pRight;
524   int nLeft = sqlite3ExprVectorSize(pLeft);
525   int i;
526   int regLeft = 0;
527   int regRight = 0;
528   u8 opx = op;
529   int addrDone = sqlite3VdbeMakeLabel(v);
530 
531   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
532     sqlite3ErrorMsg(pParse, "row value misused");
533     return;
534   }
535   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
536        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
537        || pExpr->op==TK_LT || pExpr->op==TK_GT
538        || pExpr->op==TK_LE || pExpr->op==TK_GE
539   );
540   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
541             || (pExpr->op==TK_ISNOT && op==TK_NE) );
542   assert( p5==0 || pExpr->op!=op );
543   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
544 
545   p5 |= SQLITE_STOREP2;
546   if( opx==TK_LE ) opx = TK_LT;
547   if( opx==TK_GE ) opx = TK_GT;
548 
549   regLeft = exprCodeSubselect(pParse, pLeft);
550   regRight = exprCodeSubselect(pParse, pRight);
551 
552   for(i=0; 1 /*Loop exits by "break"*/; i++){
553     int regFree1 = 0, regFree2 = 0;
554     Expr *pL, *pR;
555     int r1, r2;
556     assert( i>=0 && i<nLeft );
557     if( i>0 ) sqlite3ExprCachePush(pParse);
558     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
559     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
560     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5);
561     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
562     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
563     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
564     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
565     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
566     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
567     sqlite3ReleaseTempReg(pParse, regFree1);
568     sqlite3ReleaseTempReg(pParse, regFree2);
569     if( i>0 ) sqlite3ExprCachePop(pParse);
570     if( i==nLeft-1 ){
571       break;
572     }
573     if( opx==TK_EQ ){
574       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
575       p5 |= SQLITE_KEEPNULL;
576     }else if( opx==TK_NE ){
577       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
578       p5 |= SQLITE_KEEPNULL;
579     }else{
580       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
581       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
582       VdbeCoverageIf(v, op==TK_LT);
583       VdbeCoverageIf(v, op==TK_GT);
584       VdbeCoverageIf(v, op==TK_LE);
585       VdbeCoverageIf(v, op==TK_GE);
586       if( i==nLeft-2 ) opx = op;
587     }
588   }
589   sqlite3VdbeResolveLabel(v, addrDone);
590 }
591 
592 #if SQLITE_MAX_EXPR_DEPTH>0
593 /*
594 ** Check that argument nHeight is less than or equal to the maximum
595 ** expression depth allowed. If it is not, leave an error message in
596 ** pParse.
597 */
598 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
599   int rc = SQLITE_OK;
600   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
601   if( nHeight>mxHeight ){
602     sqlite3ErrorMsg(pParse,
603        "Expression tree is too large (maximum depth %d)", mxHeight
604     );
605     rc = SQLITE_ERROR;
606   }
607   return rc;
608 }
609 
610 /* The following three functions, heightOfExpr(), heightOfExprList()
611 ** and heightOfSelect(), are used to determine the maximum height
612 ** of any expression tree referenced by the structure passed as the
613 ** first argument.
614 **
615 ** If this maximum height is greater than the current value pointed
616 ** to by pnHeight, the second parameter, then set *pnHeight to that
617 ** value.
618 */
619 static void heightOfExpr(Expr *p, int *pnHeight){
620   if( p ){
621     if( p->nHeight>*pnHeight ){
622       *pnHeight = p->nHeight;
623     }
624   }
625 }
626 static void heightOfExprList(ExprList *p, int *pnHeight){
627   if( p ){
628     int i;
629     for(i=0; i<p->nExpr; i++){
630       heightOfExpr(p->a[i].pExpr, pnHeight);
631     }
632   }
633 }
634 static void heightOfSelect(Select *p, int *pnHeight){
635   if( p ){
636     heightOfExpr(p->pWhere, pnHeight);
637     heightOfExpr(p->pHaving, pnHeight);
638     heightOfExpr(p->pLimit, pnHeight);
639     heightOfExpr(p->pOffset, pnHeight);
640     heightOfExprList(p->pEList, pnHeight);
641     heightOfExprList(p->pGroupBy, pnHeight);
642     heightOfExprList(p->pOrderBy, pnHeight);
643     heightOfSelect(p->pPrior, pnHeight);
644   }
645 }
646 
647 /*
648 ** Set the Expr.nHeight variable in the structure passed as an
649 ** argument. An expression with no children, Expr.pList or
650 ** Expr.pSelect member has a height of 1. Any other expression
651 ** has a height equal to the maximum height of any other
652 ** referenced Expr plus one.
653 **
654 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
655 ** if appropriate.
656 */
657 static void exprSetHeight(Expr *p){
658   int nHeight = 0;
659   heightOfExpr(p->pLeft, &nHeight);
660   heightOfExpr(p->pRight, &nHeight);
661   if( ExprHasProperty(p, EP_xIsSelect) ){
662     heightOfSelect(p->x.pSelect, &nHeight);
663   }else if( p->x.pList ){
664     heightOfExprList(p->x.pList, &nHeight);
665     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
666   }
667   p->nHeight = nHeight + 1;
668 }
669 
670 /*
671 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
672 ** the height is greater than the maximum allowed expression depth,
673 ** leave an error in pParse.
674 **
675 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
676 ** Expr.flags.
677 */
678 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
679   if( pParse->nErr ) return;
680   exprSetHeight(p);
681   sqlite3ExprCheckHeight(pParse, p->nHeight);
682 }
683 
684 /*
685 ** Return the maximum height of any expression tree referenced
686 ** by the select statement passed as an argument.
687 */
688 int sqlite3SelectExprHeight(Select *p){
689   int nHeight = 0;
690   heightOfSelect(p, &nHeight);
691   return nHeight;
692 }
693 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
694 /*
695 ** Propagate all EP_Propagate flags from the Expr.x.pList into
696 ** Expr.flags.
697 */
698 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
699   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
700     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
701   }
702 }
703 #define exprSetHeight(y)
704 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
705 
706 /*
707 ** This routine is the core allocator for Expr nodes.
708 **
709 ** Construct a new expression node and return a pointer to it.  Memory
710 ** for this node and for the pToken argument is a single allocation
711 ** obtained from sqlite3DbMalloc().  The calling function
712 ** is responsible for making sure the node eventually gets freed.
713 **
714 ** If dequote is true, then the token (if it exists) is dequoted.
715 ** If dequote is false, no dequoting is performed.  The deQuote
716 ** parameter is ignored if pToken is NULL or if the token does not
717 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
718 ** then the EP_DblQuoted flag is set on the expression node.
719 **
720 ** Special case:  If op==TK_INTEGER and pToken points to a string that
721 ** can be translated into a 32-bit integer, then the token is not
722 ** stored in u.zToken.  Instead, the integer values is written
723 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
724 ** is allocated to hold the integer text and the dequote flag is ignored.
725 */
726 Expr *sqlite3ExprAlloc(
727   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
728   int op,                 /* Expression opcode */
729   const Token *pToken,    /* Token argument.  Might be NULL */
730   int dequote             /* True to dequote */
731 ){
732   Expr *pNew;
733   int nExtra = 0;
734   int iValue = 0;
735 
736   assert( db!=0 );
737   if( pToken ){
738     if( op!=TK_INTEGER || pToken->z==0
739           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
740       nExtra = pToken->n+1;
741       assert( iValue>=0 );
742     }
743   }
744   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
745   if( pNew ){
746     memset(pNew, 0, sizeof(Expr));
747     pNew->op = (u8)op;
748     pNew->iAgg = -1;
749     if( pToken ){
750       if( nExtra==0 ){
751         pNew->flags |= EP_IntValue;
752         pNew->u.iValue = iValue;
753       }else{
754         pNew->u.zToken = (char*)&pNew[1];
755         assert( pToken->z!=0 || pToken->n==0 );
756         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
757         pNew->u.zToken[pToken->n] = 0;
758         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
759           if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted;
760           sqlite3Dequote(pNew->u.zToken);
761         }
762       }
763     }
764 #if SQLITE_MAX_EXPR_DEPTH>0
765     pNew->nHeight = 1;
766 #endif
767   }
768   return pNew;
769 }
770 
771 /*
772 ** Allocate a new expression node from a zero-terminated token that has
773 ** already been dequoted.
774 */
775 Expr *sqlite3Expr(
776   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
777   int op,                 /* Expression opcode */
778   const char *zToken      /* Token argument.  Might be NULL */
779 ){
780   Token x;
781   x.z = zToken;
782   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
783   return sqlite3ExprAlloc(db, op, &x, 0);
784 }
785 
786 /*
787 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
788 **
789 ** If pRoot==NULL that means that a memory allocation error has occurred.
790 ** In that case, delete the subtrees pLeft and pRight.
791 */
792 void sqlite3ExprAttachSubtrees(
793   sqlite3 *db,
794   Expr *pRoot,
795   Expr *pLeft,
796   Expr *pRight
797 ){
798   if( pRoot==0 ){
799     assert( db->mallocFailed );
800     sqlite3ExprDelete(db, pLeft);
801     sqlite3ExprDelete(db, pRight);
802   }else{
803     if( pRight ){
804       pRoot->pRight = pRight;
805       pRoot->flags |= EP_Propagate & pRight->flags;
806     }
807     if( pLeft ){
808       pRoot->pLeft = pLeft;
809       pRoot->flags |= EP_Propagate & pLeft->flags;
810     }
811     exprSetHeight(pRoot);
812   }
813 }
814 
815 /*
816 ** Allocate an Expr node which joins as many as two subtrees.
817 **
818 ** One or both of the subtrees can be NULL.  Return a pointer to the new
819 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
820 ** free the subtrees and return NULL.
821 */
822 Expr *sqlite3PExpr(
823   Parse *pParse,          /* Parsing context */
824   int op,                 /* Expression opcode */
825   Expr *pLeft,            /* Left operand */
826   Expr *pRight            /* Right operand */
827 ){
828   Expr *p;
829   if( op==TK_AND && pParse->nErr==0 ){
830     /* Take advantage of short-circuit false optimization for AND */
831     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
832   }else{
833     p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
834     if( p ){
835       memset(p, 0, sizeof(Expr));
836       p->op = op & TKFLG_MASK;
837       p->iAgg = -1;
838     }
839     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
840   }
841   if( p ) {
842     sqlite3ExprCheckHeight(pParse, p->nHeight);
843   }
844   return p;
845 }
846 
847 /*
848 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
849 ** do a memory allocation failure) then delete the pSelect object.
850 */
851 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
852   if( pExpr ){
853     pExpr->x.pSelect = pSelect;
854     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
855     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
856   }else{
857     assert( pParse->db->mallocFailed );
858     sqlite3SelectDelete(pParse->db, pSelect);
859   }
860 }
861 
862 
863 /*
864 ** If the expression is always either TRUE or FALSE (respectively),
865 ** then return 1.  If one cannot determine the truth value of the
866 ** expression at compile-time return 0.
867 **
868 ** This is an optimization.  If is OK to return 0 here even if
869 ** the expression really is always false or false (a false negative).
870 ** But it is a bug to return 1 if the expression might have different
871 ** boolean values in different circumstances (a false positive.)
872 **
873 ** Note that if the expression is part of conditional for a
874 ** LEFT JOIN, then we cannot determine at compile-time whether or not
875 ** is it true or false, so always return 0.
876 */
877 static int exprAlwaysTrue(Expr *p){
878   int v = 0;
879   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
880   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
881   return v!=0;
882 }
883 static int exprAlwaysFalse(Expr *p){
884   int v = 0;
885   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
886   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
887   return v==0;
888 }
889 
890 /*
891 ** Join two expressions using an AND operator.  If either expression is
892 ** NULL, then just return the other expression.
893 **
894 ** If one side or the other of the AND is known to be false, then instead
895 ** of returning an AND expression, just return a constant expression with
896 ** a value of false.
897 */
898 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
899   if( pLeft==0 ){
900     return pRight;
901   }else if( pRight==0 ){
902     return pLeft;
903   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
904     sqlite3ExprDelete(db, pLeft);
905     sqlite3ExprDelete(db, pRight);
906     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
907   }else{
908     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
909     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
910     return pNew;
911   }
912 }
913 
914 /*
915 ** Construct a new expression node for a function with multiple
916 ** arguments.
917 */
918 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
919   Expr *pNew;
920   sqlite3 *db = pParse->db;
921   assert( pToken );
922   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
923   if( pNew==0 ){
924     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
925     return 0;
926   }
927   pNew->x.pList = pList;
928   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
929   sqlite3ExprSetHeightAndFlags(pParse, pNew);
930   return pNew;
931 }
932 
933 /*
934 ** Assign a variable number to an expression that encodes a wildcard
935 ** in the original SQL statement.
936 **
937 ** Wildcards consisting of a single "?" are assigned the next sequential
938 ** variable number.
939 **
940 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
941 ** sure "nnn" is not too big to avoid a denial of service attack when
942 ** the SQL statement comes from an external source.
943 **
944 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
945 ** as the previous instance of the same wildcard.  Or if this is the first
946 ** instance of the wildcard, the next sequential variable number is
947 ** assigned.
948 */
949 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
950   sqlite3 *db = pParse->db;
951   const char *z;
952   ynVar x;
953 
954   if( pExpr==0 ) return;
955   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
956   z = pExpr->u.zToken;
957   assert( z!=0 );
958   assert( z[0]!=0 );
959   assert( n==sqlite3Strlen30(z) );
960   if( z[1]==0 ){
961     /* Wildcard of the form "?".  Assign the next variable number */
962     assert( z[0]=='?' );
963     x = (ynVar)(++pParse->nVar);
964   }else{
965     int doAdd = 0;
966     if( z[0]=='?' ){
967       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
968       ** use it as the variable number */
969       i64 i;
970       int bOk;
971       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
972         i = z[1]-'0';  /* The common case of ?N for a single digit N */
973         bOk = 1;
974       }else{
975         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
976       }
977       testcase( i==0 );
978       testcase( i==1 );
979       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
980       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
981       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
982         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
983             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
984         return;
985       }
986       x = (ynVar)i;
987       if( x>pParse->nVar ){
988         pParse->nVar = (int)x;
989         doAdd = 1;
990       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
991         doAdd = 1;
992       }
993     }else{
994       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
995       ** number as the prior appearance of the same name, or if the name
996       ** has never appeared before, reuse the same variable number
997       */
998       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
999       if( x==0 ){
1000         x = (ynVar)(++pParse->nVar);
1001         doAdd = 1;
1002       }
1003     }
1004     if( doAdd ){
1005       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1006     }
1007   }
1008   pExpr->iColumn = x;
1009   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1010     sqlite3ErrorMsg(pParse, "too many SQL variables");
1011   }
1012 }
1013 
1014 /*
1015 ** Recursively delete an expression tree.
1016 */
1017 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1018   assert( p!=0 );
1019   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1020   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1021 #ifdef SQLITE_DEBUG
1022   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1023     assert( p->pLeft==0 );
1024     assert( p->pRight==0 );
1025     assert( p->x.pSelect==0 );
1026   }
1027 #endif
1028   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1029     /* The Expr.x union is never used at the same time as Expr.pRight */
1030     assert( p->x.pList==0 || p->pRight==0 );
1031     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1032     sqlite3ExprDelete(db, p->pRight);
1033     if( ExprHasProperty(p, EP_xIsSelect) ){
1034       sqlite3SelectDelete(db, p->x.pSelect);
1035     }else{
1036       sqlite3ExprListDelete(db, p->x.pList);
1037     }
1038   }
1039   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1040   if( !ExprHasProperty(p, EP_Static) ){
1041     sqlite3DbFree(db, p);
1042   }
1043 }
1044 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1045   if( p ) sqlite3ExprDeleteNN(db, p);
1046 }
1047 
1048 /*
1049 ** Return the number of bytes allocated for the expression structure
1050 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1051 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1052 */
1053 static int exprStructSize(Expr *p){
1054   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1055   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1056   return EXPR_FULLSIZE;
1057 }
1058 
1059 /*
1060 ** The dupedExpr*Size() routines each return the number of bytes required
1061 ** to store a copy of an expression or expression tree.  They differ in
1062 ** how much of the tree is measured.
1063 **
1064 **     dupedExprStructSize()     Size of only the Expr structure
1065 **     dupedExprNodeSize()       Size of Expr + space for token
1066 **     dupedExprSize()           Expr + token + subtree components
1067 **
1068 ***************************************************************************
1069 **
1070 ** The dupedExprStructSize() function returns two values OR-ed together:
1071 ** (1) the space required for a copy of the Expr structure only and
1072 ** (2) the EP_xxx flags that indicate what the structure size should be.
1073 ** The return values is always one of:
1074 **
1075 **      EXPR_FULLSIZE
1076 **      EXPR_REDUCEDSIZE   | EP_Reduced
1077 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1078 **
1079 ** The size of the structure can be found by masking the return value
1080 ** of this routine with 0xfff.  The flags can be found by masking the
1081 ** return value with EP_Reduced|EP_TokenOnly.
1082 **
1083 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1084 ** (unreduced) Expr objects as they or originally constructed by the parser.
1085 ** During expression analysis, extra information is computed and moved into
1086 ** later parts of teh Expr object and that extra information might get chopped
1087 ** off if the expression is reduced.  Note also that it does not work to
1088 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1089 ** to reduce a pristine expression tree from the parser.  The implementation
1090 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1091 ** to enforce this constraint.
1092 */
1093 static int dupedExprStructSize(Expr *p, int flags){
1094   int nSize;
1095   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1096   assert( EXPR_FULLSIZE<=0xfff );
1097   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1098   if( 0==flags || p->op==TK_SELECT_COLUMN ){
1099     nSize = EXPR_FULLSIZE;
1100   }else{
1101     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1102     assert( !ExprHasProperty(p, EP_FromJoin) );
1103     assert( !ExprHasProperty(p, EP_MemToken) );
1104     assert( !ExprHasProperty(p, EP_NoReduce) );
1105     if( p->pLeft || p->x.pList ){
1106       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1107     }else{
1108       assert( p->pRight==0 );
1109       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1110     }
1111   }
1112   return nSize;
1113 }
1114 
1115 /*
1116 ** This function returns the space in bytes required to store the copy
1117 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1118 ** string is defined.)
1119 */
1120 static int dupedExprNodeSize(Expr *p, int flags){
1121   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1122   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1123     nByte += sqlite3Strlen30(p->u.zToken)+1;
1124   }
1125   return ROUND8(nByte);
1126 }
1127 
1128 /*
1129 ** Return the number of bytes required to create a duplicate of the
1130 ** expression passed as the first argument. The second argument is a
1131 ** mask containing EXPRDUP_XXX flags.
1132 **
1133 ** The value returned includes space to create a copy of the Expr struct
1134 ** itself and the buffer referred to by Expr.u.zToken, if any.
1135 **
1136 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1137 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1138 ** and Expr.pRight variables (but not for any structures pointed to or
1139 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1140 */
1141 static int dupedExprSize(Expr *p, int flags){
1142   int nByte = 0;
1143   if( p ){
1144     nByte = dupedExprNodeSize(p, flags);
1145     if( flags&EXPRDUP_REDUCE ){
1146       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1147     }
1148   }
1149   return nByte;
1150 }
1151 
1152 /*
1153 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1154 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1155 ** to store the copy of expression p, the copies of p->u.zToken
1156 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1157 ** if any. Before returning, *pzBuffer is set to the first byte past the
1158 ** portion of the buffer copied into by this function.
1159 */
1160 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1161   Expr *pNew;           /* Value to return */
1162   u8 *zAlloc;           /* Memory space from which to build Expr object */
1163   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1164 
1165   assert( db!=0 );
1166   assert( p );
1167   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1168   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1169 
1170   /* Figure out where to write the new Expr structure. */
1171   if( pzBuffer ){
1172     zAlloc = *pzBuffer;
1173     staticFlag = EP_Static;
1174   }else{
1175     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1176     staticFlag = 0;
1177   }
1178   pNew = (Expr *)zAlloc;
1179 
1180   if( pNew ){
1181     /* Set nNewSize to the size allocated for the structure pointed to
1182     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1183     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1184     ** by the copy of the p->u.zToken string (if any).
1185     */
1186     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1187     const int nNewSize = nStructSize & 0xfff;
1188     int nToken;
1189     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1190       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1191     }else{
1192       nToken = 0;
1193     }
1194     if( dupFlags ){
1195       assert( ExprHasProperty(p, EP_Reduced)==0 );
1196       memcpy(zAlloc, p, nNewSize);
1197     }else{
1198       u32 nSize = (u32)exprStructSize(p);
1199       memcpy(zAlloc, p, nSize);
1200       if( nSize<EXPR_FULLSIZE ){
1201         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1202       }
1203     }
1204 
1205     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1206     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1207     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1208     pNew->flags |= staticFlag;
1209 
1210     /* Copy the p->u.zToken string, if any. */
1211     if( nToken ){
1212       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1213       memcpy(zToken, p->u.zToken, nToken);
1214     }
1215 
1216     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1217       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1218       if( ExprHasProperty(p, EP_xIsSelect) ){
1219         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1220       }else{
1221         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1222       }
1223     }
1224 
1225     /* Fill in pNew->pLeft and pNew->pRight. */
1226     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
1227       zAlloc += dupedExprNodeSize(p, dupFlags);
1228       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1229         pNew->pLeft = p->pLeft ?
1230                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1231         pNew->pRight = p->pRight ?
1232                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1233       }
1234       if( pzBuffer ){
1235         *pzBuffer = zAlloc;
1236       }
1237     }else{
1238       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1239         if( pNew->op==TK_SELECT_COLUMN ){
1240           pNew->pLeft = p->pLeft;
1241           assert( p->iColumn==0 || p->pRight==0 );
1242           assert( p->pRight==0  || p->pRight==p->pLeft );
1243         }else{
1244           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1245         }
1246         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1247       }
1248     }
1249   }
1250   return pNew;
1251 }
1252 
1253 /*
1254 ** Create and return a deep copy of the object passed as the second
1255 ** argument. If an OOM condition is encountered, NULL is returned
1256 ** and the db->mallocFailed flag set.
1257 */
1258 #ifndef SQLITE_OMIT_CTE
1259 static With *withDup(sqlite3 *db, With *p){
1260   With *pRet = 0;
1261   if( p ){
1262     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1263     pRet = sqlite3DbMallocZero(db, nByte);
1264     if( pRet ){
1265       int i;
1266       pRet->nCte = p->nCte;
1267       for(i=0; i<p->nCte; i++){
1268         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1269         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1270         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1271       }
1272     }
1273   }
1274   return pRet;
1275 }
1276 #else
1277 # define withDup(x,y) 0
1278 #endif
1279 
1280 /*
1281 ** The following group of routines make deep copies of expressions,
1282 ** expression lists, ID lists, and select statements.  The copies can
1283 ** be deleted (by being passed to their respective ...Delete() routines)
1284 ** without effecting the originals.
1285 **
1286 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1287 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1288 ** by subsequent calls to sqlite*ListAppend() routines.
1289 **
1290 ** Any tables that the SrcList might point to are not duplicated.
1291 **
1292 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1293 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1294 ** truncated version of the usual Expr structure that will be stored as
1295 ** part of the in-memory representation of the database schema.
1296 */
1297 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1298   assert( flags==0 || flags==EXPRDUP_REDUCE );
1299   return p ? exprDup(db, p, flags, 0) : 0;
1300 }
1301 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1302   ExprList *pNew;
1303   struct ExprList_item *pItem, *pOldItem;
1304   int i;
1305   Expr *pPriorSelectCol = 0;
1306   assert( db!=0 );
1307   if( p==0 ) return 0;
1308   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1309   if( pNew==0 ) return 0;
1310   pNew->nExpr = i = p->nExpr;
1311   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
1312   pNew->a = pItem = sqlite3DbMallocRawNN(db,  i*sizeof(p->a[0]) );
1313   if( pItem==0 ){
1314     sqlite3DbFree(db, pNew);
1315     return 0;
1316   }
1317   pOldItem = p->a;
1318   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1319     Expr *pOldExpr = pOldItem->pExpr;
1320     Expr *pNewExpr;
1321     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1322     if( pOldExpr
1323      && pOldExpr->op==TK_SELECT_COLUMN
1324      && (pNewExpr = pItem->pExpr)!=0
1325     ){
1326       assert( pNewExpr->iColumn==0 || i>0 );
1327       if( pNewExpr->iColumn==0 ){
1328         assert( pOldExpr->pLeft==pOldExpr->pRight );
1329         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1330       }else{
1331         assert( i>0 );
1332         assert( pItem[-1].pExpr!=0 );
1333         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1334         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1335         pNewExpr->pLeft = pPriorSelectCol;
1336       }
1337     }
1338     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1339     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1340     pItem->sortOrder = pOldItem->sortOrder;
1341     pItem->done = 0;
1342     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1343     pItem->u = pOldItem->u;
1344   }
1345   return pNew;
1346 }
1347 
1348 /*
1349 ** If cursors, triggers, views and subqueries are all omitted from
1350 ** the build, then none of the following routines, except for
1351 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1352 ** called with a NULL argument.
1353 */
1354 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1355  || !defined(SQLITE_OMIT_SUBQUERY)
1356 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1357   SrcList *pNew;
1358   int i;
1359   int nByte;
1360   assert( db!=0 );
1361   if( p==0 ) return 0;
1362   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1363   pNew = sqlite3DbMallocRawNN(db, nByte );
1364   if( pNew==0 ) return 0;
1365   pNew->nSrc = pNew->nAlloc = p->nSrc;
1366   for(i=0; i<p->nSrc; i++){
1367     struct SrcList_item *pNewItem = &pNew->a[i];
1368     struct SrcList_item *pOldItem = &p->a[i];
1369     Table *pTab;
1370     pNewItem->pSchema = pOldItem->pSchema;
1371     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1372     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1373     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1374     pNewItem->fg = pOldItem->fg;
1375     pNewItem->iCursor = pOldItem->iCursor;
1376     pNewItem->addrFillSub = pOldItem->addrFillSub;
1377     pNewItem->regReturn = pOldItem->regReturn;
1378     if( pNewItem->fg.isIndexedBy ){
1379       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1380     }
1381     pNewItem->pIBIndex = pOldItem->pIBIndex;
1382     if( pNewItem->fg.isTabFunc ){
1383       pNewItem->u1.pFuncArg =
1384           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1385     }
1386     pTab = pNewItem->pTab = pOldItem->pTab;
1387     if( pTab ){
1388       pTab->nTabRef++;
1389     }
1390     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1391     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1392     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1393     pNewItem->colUsed = pOldItem->colUsed;
1394   }
1395   return pNew;
1396 }
1397 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1398   IdList *pNew;
1399   int i;
1400   assert( db!=0 );
1401   if( p==0 ) return 0;
1402   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1403   if( pNew==0 ) return 0;
1404   pNew->nId = p->nId;
1405   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1406   if( pNew->a==0 ){
1407     sqlite3DbFree(db, pNew);
1408     return 0;
1409   }
1410   /* Note that because the size of the allocation for p->a[] is not
1411   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1412   ** on the duplicate created by this function. */
1413   for(i=0; i<p->nId; i++){
1414     struct IdList_item *pNewItem = &pNew->a[i];
1415     struct IdList_item *pOldItem = &p->a[i];
1416     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1417     pNewItem->idx = pOldItem->idx;
1418   }
1419   return pNew;
1420 }
1421 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1422   Select *pRet = 0;
1423   Select *pNext = 0;
1424   Select **pp = &pRet;
1425   Select *p;
1426 
1427   assert( db!=0 );
1428   for(p=pDup; p; p=p->pPrior){
1429     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1430     if( pNew==0 ) break;
1431     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1432     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1433     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1434     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1435     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1436     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1437     pNew->op = p->op;
1438     pNew->pNext = pNext;
1439     pNew->pPrior = 0;
1440     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1441     pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1442     pNew->iLimit = 0;
1443     pNew->iOffset = 0;
1444     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1445     pNew->addrOpenEphm[0] = -1;
1446     pNew->addrOpenEphm[1] = -1;
1447     pNew->nSelectRow = p->nSelectRow;
1448     pNew->pWith = withDup(db, p->pWith);
1449     sqlite3SelectSetName(pNew, p->zSelName);
1450     *pp = pNew;
1451     pp = &pNew->pPrior;
1452     pNext = pNew;
1453   }
1454 
1455   return pRet;
1456 }
1457 #else
1458 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1459   assert( p==0 );
1460   return 0;
1461 }
1462 #endif
1463 
1464 
1465 /*
1466 ** Add a new element to the end of an expression list.  If pList is
1467 ** initially NULL, then create a new expression list.
1468 **
1469 ** If a memory allocation error occurs, the entire list is freed and
1470 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1471 ** that the new entry was successfully appended.
1472 */
1473 ExprList *sqlite3ExprListAppend(
1474   Parse *pParse,          /* Parsing context */
1475   ExprList *pList,        /* List to which to append. Might be NULL */
1476   Expr *pExpr             /* Expression to be appended. Might be NULL */
1477 ){
1478   sqlite3 *db = pParse->db;
1479   assert( db!=0 );
1480   if( pList==0 ){
1481     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1482     if( pList==0 ){
1483       goto no_mem;
1484     }
1485     pList->nExpr = 0;
1486     pList->a = sqlite3DbMallocRawNN(db, sizeof(pList->a[0]));
1487     if( pList->a==0 ) goto no_mem;
1488   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1489     struct ExprList_item *a;
1490     assert( pList->nExpr>0 );
1491     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1492     if( a==0 ){
1493       goto no_mem;
1494     }
1495     pList->a = a;
1496   }
1497   assert( pList->a!=0 );
1498   if( 1 ){
1499     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1500     memset(pItem, 0, sizeof(*pItem));
1501     pItem->pExpr = pExpr;
1502   }
1503   return pList;
1504 
1505 no_mem:
1506   /* Avoid leaking memory if malloc has failed. */
1507   sqlite3ExprDelete(db, pExpr);
1508   sqlite3ExprListDelete(db, pList);
1509   return 0;
1510 }
1511 
1512 /*
1513 ** pColumns and pExpr form a vector assignment which is part of the SET
1514 ** clause of an UPDATE statement.  Like this:
1515 **
1516 **        (a,b,c) = (expr1,expr2,expr3)
1517 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1518 **
1519 ** For each term of the vector assignment, append new entries to the
1520 ** expression list pList.  In the case of a subquery on the RHS, append
1521 ** TK_SELECT_COLUMN expressions.
1522 */
1523 ExprList *sqlite3ExprListAppendVector(
1524   Parse *pParse,         /* Parsing context */
1525   ExprList *pList,       /* List to which to append. Might be NULL */
1526   IdList *pColumns,      /* List of names of LHS of the assignment */
1527   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1528 ){
1529   sqlite3 *db = pParse->db;
1530   int n;
1531   int i;
1532   int iFirst = pList ? pList->nExpr : 0;
1533   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1534   ** exit prior to this routine being invoked */
1535   if( NEVER(pColumns==0) ) goto vector_append_error;
1536   if( pExpr==0 ) goto vector_append_error;
1537 
1538   /* If the RHS is a vector, then we can immediately check to see that
1539   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1540   ** wildcards ("*") in the result set of the SELECT must be expanded before
1541   ** we can do the size check, so defer the size check until code generation.
1542   */
1543   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1544     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1545                     pColumns->nId, n);
1546     goto vector_append_error;
1547   }
1548 
1549   for(i=0; i<pColumns->nId; i++){
1550     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1551     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1552     if( pList ){
1553       assert( pList->nExpr==iFirst+i+1 );
1554       pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1555       pColumns->a[i].zName = 0;
1556     }
1557   }
1558 
1559   if( pExpr->op==TK_SELECT ){
1560     if( pList && pList->a[iFirst].pExpr ){
1561       Expr *pFirst = pList->a[iFirst].pExpr;
1562       assert( pFirst->op==TK_SELECT_COLUMN );
1563 
1564       /* Store the SELECT statement in pRight so it will be deleted when
1565       ** sqlite3ExprListDelete() is called */
1566       pFirst->pRight = pExpr;
1567       pExpr = 0;
1568 
1569       /* Remember the size of the LHS in iTable so that we can check that
1570       ** the RHS and LHS sizes match during code generation. */
1571       pFirst->iTable = pColumns->nId;
1572     }
1573   }
1574 
1575 vector_append_error:
1576   sqlite3ExprDelete(db, pExpr);
1577   sqlite3IdListDelete(db, pColumns);
1578   return pList;
1579 }
1580 
1581 /*
1582 ** Set the sort order for the last element on the given ExprList.
1583 */
1584 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1585   if( p==0 ) return;
1586   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1587   assert( p->nExpr>0 );
1588   if( iSortOrder<0 ){
1589     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1590     return;
1591   }
1592   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1593 }
1594 
1595 /*
1596 ** Set the ExprList.a[].zName element of the most recently added item
1597 ** on the expression list.
1598 **
1599 ** pList might be NULL following an OOM error.  But pName should never be
1600 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1601 ** is set.
1602 */
1603 void sqlite3ExprListSetName(
1604   Parse *pParse,          /* Parsing context */
1605   ExprList *pList,        /* List to which to add the span. */
1606   Token *pName,           /* Name to be added */
1607   int dequote             /* True to cause the name to be dequoted */
1608 ){
1609   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1610   if( pList ){
1611     struct ExprList_item *pItem;
1612     assert( pList->nExpr>0 );
1613     pItem = &pList->a[pList->nExpr-1];
1614     assert( pItem->zName==0 );
1615     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1616     if( dequote ) sqlite3Dequote(pItem->zName);
1617   }
1618 }
1619 
1620 /*
1621 ** Set the ExprList.a[].zSpan element of the most recently added item
1622 ** on the expression list.
1623 **
1624 ** pList might be NULL following an OOM error.  But pSpan should never be
1625 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1626 ** is set.
1627 */
1628 void sqlite3ExprListSetSpan(
1629   Parse *pParse,          /* Parsing context */
1630   ExprList *pList,        /* List to which to add the span. */
1631   ExprSpan *pSpan         /* The span to be added */
1632 ){
1633   sqlite3 *db = pParse->db;
1634   assert( pList!=0 || db->mallocFailed!=0 );
1635   if( pList ){
1636     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1637     assert( pList->nExpr>0 );
1638     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1639     sqlite3DbFree(db, pItem->zSpan);
1640     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1641                                     (int)(pSpan->zEnd - pSpan->zStart));
1642   }
1643 }
1644 
1645 /*
1646 ** If the expression list pEList contains more than iLimit elements,
1647 ** leave an error message in pParse.
1648 */
1649 void sqlite3ExprListCheckLength(
1650   Parse *pParse,
1651   ExprList *pEList,
1652   const char *zObject
1653 ){
1654   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1655   testcase( pEList && pEList->nExpr==mx );
1656   testcase( pEList && pEList->nExpr==mx+1 );
1657   if( pEList && pEList->nExpr>mx ){
1658     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1659   }
1660 }
1661 
1662 /*
1663 ** Delete an entire expression list.
1664 */
1665 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1666   int i;
1667   struct ExprList_item *pItem;
1668   assert( pList->a!=0 || pList->nExpr==0 );
1669   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1670     sqlite3ExprDelete(db, pItem->pExpr);
1671     sqlite3DbFree(db, pItem->zName);
1672     sqlite3DbFree(db, pItem->zSpan);
1673   }
1674   sqlite3DbFree(db, pList->a);
1675   sqlite3DbFree(db, pList);
1676 }
1677 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1678   if( pList ) exprListDeleteNN(db, pList);
1679 }
1680 
1681 /*
1682 ** Return the bitwise-OR of all Expr.flags fields in the given
1683 ** ExprList.
1684 */
1685 u32 sqlite3ExprListFlags(const ExprList *pList){
1686   int i;
1687   u32 m = 0;
1688   if( pList ){
1689     for(i=0; i<pList->nExpr; i++){
1690        Expr *pExpr = pList->a[i].pExpr;
1691        assert( pExpr!=0 );
1692        m |= pExpr->flags;
1693     }
1694   }
1695   return m;
1696 }
1697 
1698 /*
1699 ** These routines are Walker callbacks used to check expressions to
1700 ** see if they are "constant" for some definition of constant.  The
1701 ** Walker.eCode value determines the type of "constant" we are looking
1702 ** for.
1703 **
1704 ** These callback routines are used to implement the following:
1705 **
1706 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1707 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1708 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1709 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1710 **
1711 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1712 ** is found to not be a constant.
1713 **
1714 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1715 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1716 ** an existing schema and 4 when processing a new statement.  A bound
1717 ** parameter raises an error for new statements, but is silently converted
1718 ** to NULL for existing schemas.  This allows sqlite_master tables that
1719 ** contain a bound parameter because they were generated by older versions
1720 ** of SQLite to be parsed by newer versions of SQLite without raising a
1721 ** malformed schema error.
1722 */
1723 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1724 
1725   /* If pWalker->eCode is 2 then any term of the expression that comes from
1726   ** the ON or USING clauses of a left join disqualifies the expression
1727   ** from being considered constant. */
1728   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1729     pWalker->eCode = 0;
1730     return WRC_Abort;
1731   }
1732 
1733   switch( pExpr->op ){
1734     /* Consider functions to be constant if all their arguments are constant
1735     ** and either pWalker->eCode==4 or 5 or the function has the
1736     ** SQLITE_FUNC_CONST flag. */
1737     case TK_FUNCTION:
1738       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1739         return WRC_Continue;
1740       }else{
1741         pWalker->eCode = 0;
1742         return WRC_Abort;
1743       }
1744     case TK_ID:
1745     case TK_COLUMN:
1746     case TK_AGG_FUNCTION:
1747     case TK_AGG_COLUMN:
1748       testcase( pExpr->op==TK_ID );
1749       testcase( pExpr->op==TK_COLUMN );
1750       testcase( pExpr->op==TK_AGG_FUNCTION );
1751       testcase( pExpr->op==TK_AGG_COLUMN );
1752       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1753         return WRC_Continue;
1754       }else{
1755         pWalker->eCode = 0;
1756         return WRC_Abort;
1757       }
1758     case TK_VARIABLE:
1759       if( pWalker->eCode==5 ){
1760         /* Silently convert bound parameters that appear inside of CREATE
1761         ** statements into a NULL when parsing the CREATE statement text out
1762         ** of the sqlite_master table */
1763         pExpr->op = TK_NULL;
1764       }else if( pWalker->eCode==4 ){
1765         /* A bound parameter in a CREATE statement that originates from
1766         ** sqlite3_prepare() causes an error */
1767         pWalker->eCode = 0;
1768         return WRC_Abort;
1769       }
1770       /* Fall through */
1771     default:
1772       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1773       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1774       return WRC_Continue;
1775   }
1776 }
1777 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1778   UNUSED_PARAMETER(NotUsed);
1779   pWalker->eCode = 0;
1780   return WRC_Abort;
1781 }
1782 static int exprIsConst(Expr *p, int initFlag, int iCur){
1783   Walker w;
1784   memset(&w, 0, sizeof(w));
1785   w.eCode = initFlag;
1786   w.xExprCallback = exprNodeIsConstant;
1787   w.xSelectCallback = selectNodeIsConstant;
1788   w.u.iCur = iCur;
1789   sqlite3WalkExpr(&w, p);
1790   return w.eCode;
1791 }
1792 
1793 /*
1794 ** Walk an expression tree.  Return non-zero if the expression is constant
1795 ** and 0 if it involves variables or function calls.
1796 **
1797 ** For the purposes of this function, a double-quoted string (ex: "abc")
1798 ** is considered a variable but a single-quoted string (ex: 'abc') is
1799 ** a constant.
1800 */
1801 int sqlite3ExprIsConstant(Expr *p){
1802   return exprIsConst(p, 1, 0);
1803 }
1804 
1805 /*
1806 ** Walk an expression tree.  Return non-zero if the expression is constant
1807 ** that does no originate from the ON or USING clauses of a join.
1808 ** Return 0 if it involves variables or function calls or terms from
1809 ** an ON or USING clause.
1810 */
1811 int sqlite3ExprIsConstantNotJoin(Expr *p){
1812   return exprIsConst(p, 2, 0);
1813 }
1814 
1815 /*
1816 ** Walk an expression tree.  Return non-zero if the expression is constant
1817 ** for any single row of the table with cursor iCur.  In other words, the
1818 ** expression must not refer to any non-deterministic function nor any
1819 ** table other than iCur.
1820 */
1821 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1822   return exprIsConst(p, 3, iCur);
1823 }
1824 
1825 /*
1826 ** Walk an expression tree.  Return non-zero if the expression is constant
1827 ** or a function call with constant arguments.  Return and 0 if there
1828 ** are any variables.
1829 **
1830 ** For the purposes of this function, a double-quoted string (ex: "abc")
1831 ** is considered a variable but a single-quoted string (ex: 'abc') is
1832 ** a constant.
1833 */
1834 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1835   assert( isInit==0 || isInit==1 );
1836   return exprIsConst(p, 4+isInit, 0);
1837 }
1838 
1839 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1840 /*
1841 ** Walk an expression tree.  Return 1 if the expression contains a
1842 ** subquery of some kind.  Return 0 if there are no subqueries.
1843 */
1844 int sqlite3ExprContainsSubquery(Expr *p){
1845   Walker w;
1846   memset(&w, 0, sizeof(w));
1847   w.eCode = 1;
1848   w.xExprCallback = sqlite3ExprWalkNoop;
1849   w.xSelectCallback = selectNodeIsConstant;
1850   sqlite3WalkExpr(&w, p);
1851   return w.eCode==0;
1852 }
1853 #endif
1854 
1855 /*
1856 ** If the expression p codes a constant integer that is small enough
1857 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1858 ** in *pValue.  If the expression is not an integer or if it is too big
1859 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1860 */
1861 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1862   int rc = 0;
1863 
1864   /* If an expression is an integer literal that fits in a signed 32-bit
1865   ** integer, then the EP_IntValue flag will have already been set */
1866   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1867            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1868 
1869   if( p->flags & EP_IntValue ){
1870     *pValue = p->u.iValue;
1871     return 1;
1872   }
1873   switch( p->op ){
1874     case TK_UPLUS: {
1875       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1876       break;
1877     }
1878     case TK_UMINUS: {
1879       int v;
1880       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1881         assert( v!=(-2147483647-1) );
1882         *pValue = -v;
1883         rc = 1;
1884       }
1885       break;
1886     }
1887     default: break;
1888   }
1889   return rc;
1890 }
1891 
1892 /*
1893 ** Return FALSE if there is no chance that the expression can be NULL.
1894 **
1895 ** If the expression might be NULL or if the expression is too complex
1896 ** to tell return TRUE.
1897 **
1898 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1899 ** when we know that a value cannot be NULL.  Hence, a false positive
1900 ** (returning TRUE when in fact the expression can never be NULL) might
1901 ** be a small performance hit but is otherwise harmless.  On the other
1902 ** hand, a false negative (returning FALSE when the result could be NULL)
1903 ** will likely result in an incorrect answer.  So when in doubt, return
1904 ** TRUE.
1905 */
1906 int sqlite3ExprCanBeNull(const Expr *p){
1907   u8 op;
1908   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1909   op = p->op;
1910   if( op==TK_REGISTER ) op = p->op2;
1911   switch( op ){
1912     case TK_INTEGER:
1913     case TK_STRING:
1914     case TK_FLOAT:
1915     case TK_BLOB:
1916       return 0;
1917     case TK_COLUMN:
1918       assert( p->pTab!=0 );
1919       return ExprHasProperty(p, EP_CanBeNull) ||
1920              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
1921     default:
1922       return 1;
1923   }
1924 }
1925 
1926 /*
1927 ** Return TRUE if the given expression is a constant which would be
1928 ** unchanged by OP_Affinity with the affinity given in the second
1929 ** argument.
1930 **
1931 ** This routine is used to determine if the OP_Affinity operation
1932 ** can be omitted.  When in doubt return FALSE.  A false negative
1933 ** is harmless.  A false positive, however, can result in the wrong
1934 ** answer.
1935 */
1936 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1937   u8 op;
1938   if( aff==SQLITE_AFF_BLOB ) return 1;
1939   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1940   op = p->op;
1941   if( op==TK_REGISTER ) op = p->op2;
1942   switch( op ){
1943     case TK_INTEGER: {
1944       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1945     }
1946     case TK_FLOAT: {
1947       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1948     }
1949     case TK_STRING: {
1950       return aff==SQLITE_AFF_TEXT;
1951     }
1952     case TK_BLOB: {
1953       return 1;
1954     }
1955     case TK_COLUMN: {
1956       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1957       return p->iColumn<0
1958           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1959     }
1960     default: {
1961       return 0;
1962     }
1963   }
1964 }
1965 
1966 /*
1967 ** Return TRUE if the given string is a row-id column name.
1968 */
1969 int sqlite3IsRowid(const char *z){
1970   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1971   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1972   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1973   return 0;
1974 }
1975 
1976 /*
1977 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
1978 ** that can be simplified to a direct table access, then return
1979 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
1980 ** or if the SELECT statement needs to be manifested into a transient
1981 ** table, then return NULL.
1982 */
1983 #ifndef SQLITE_OMIT_SUBQUERY
1984 static Select *isCandidateForInOpt(Expr *pX){
1985   Select *p;
1986   SrcList *pSrc;
1987   ExprList *pEList;
1988   Table *pTab;
1989   int i;
1990   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
1991   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
1992   p = pX->x.pSelect;
1993   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1994   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1995     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1996     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1997     return 0; /* No DISTINCT keyword and no aggregate functions */
1998   }
1999   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2000   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2001   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
2002   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2003   pSrc = p->pSrc;
2004   assert( pSrc!=0 );
2005   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2006   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2007   pTab = pSrc->a[0].pTab;
2008   assert( pTab!=0 );
2009   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2010   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2011   pEList = p->pEList;
2012   assert( pEList!=0 );
2013   /* All SELECT results must be columns. */
2014   for(i=0; i<pEList->nExpr; i++){
2015     Expr *pRes = pEList->a[i].pExpr;
2016     if( pRes->op!=TK_COLUMN ) return 0;
2017     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2018   }
2019   return p;
2020 }
2021 #endif /* SQLITE_OMIT_SUBQUERY */
2022 
2023 #ifndef SQLITE_OMIT_SUBQUERY
2024 /*
2025 ** Generate code that checks the left-most column of index table iCur to see if
2026 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2027 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2028 ** to be set to NULL if iCur contains one or more NULL values.
2029 */
2030 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2031   int addr1;
2032   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2033   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2034   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2035   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2036   VdbeComment((v, "first_entry_in(%d)", iCur));
2037   sqlite3VdbeJumpHere(v, addr1);
2038 }
2039 #endif
2040 
2041 
2042 #ifndef SQLITE_OMIT_SUBQUERY
2043 /*
2044 ** The argument is an IN operator with a list (not a subquery) on the
2045 ** right-hand side.  Return TRUE if that list is constant.
2046 */
2047 static int sqlite3InRhsIsConstant(Expr *pIn){
2048   Expr *pLHS;
2049   int res;
2050   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2051   pLHS = pIn->pLeft;
2052   pIn->pLeft = 0;
2053   res = sqlite3ExprIsConstant(pIn);
2054   pIn->pLeft = pLHS;
2055   return res;
2056 }
2057 #endif
2058 
2059 /*
2060 ** This function is used by the implementation of the IN (...) operator.
2061 ** The pX parameter is the expression on the RHS of the IN operator, which
2062 ** might be either a list of expressions or a subquery.
2063 **
2064 ** The job of this routine is to find or create a b-tree object that can
2065 ** be used either to test for membership in the RHS set or to iterate through
2066 ** all members of the RHS set, skipping duplicates.
2067 **
2068 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2069 ** and pX->iTable is set to the index of that cursor.
2070 **
2071 ** The returned value of this function indicates the b-tree type, as follows:
2072 **
2073 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2074 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2075 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2076 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2077 **                         populated epheremal table.
2078 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2079 **                         implemented as a sequence of comparisons.
2080 **
2081 ** An existing b-tree might be used if the RHS expression pX is a simple
2082 ** subquery such as:
2083 **
2084 **     SELECT <column1>, <column2>... FROM <table>
2085 **
2086 ** If the RHS of the IN operator is a list or a more complex subquery, then
2087 ** an ephemeral table might need to be generated from the RHS and then
2088 ** pX->iTable made to point to the ephemeral table instead of an
2089 ** existing table.
2090 **
2091 ** The inFlags parameter must contain exactly one of the bits
2092 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
2093 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
2094 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
2095 ** IN index will be used to loop over all values of the RHS of the
2096 ** IN operator.
2097 **
2098 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2099 ** through the set members) then the b-tree must not contain duplicates.
2100 ** An epheremal table must be used unless the selected columns are guaranteed
2101 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2102 ** a UNIQUE constraint or index.
2103 **
2104 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2105 ** for fast set membership tests) then an epheremal table must
2106 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2107 ** index can be found with the specified <columns> as its left-most.
2108 **
2109 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2110 ** if the RHS of the IN operator is a list (not a subquery) then this
2111 ** routine might decide that creating an ephemeral b-tree for membership
2112 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2113 ** calling routine should implement the IN operator using a sequence
2114 ** of Eq or Ne comparison operations.
2115 **
2116 ** When the b-tree is being used for membership tests, the calling function
2117 ** might need to know whether or not the RHS side of the IN operator
2118 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2119 ** if there is any chance that the (...) might contain a NULL value at
2120 ** runtime, then a register is allocated and the register number written
2121 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2122 ** NULL value, then *prRhsHasNull is left unchanged.
2123 **
2124 ** If a register is allocated and its location stored in *prRhsHasNull, then
2125 ** the value in that register will be NULL if the b-tree contains one or more
2126 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2127 ** NULL values.
2128 **
2129 ** If the aiMap parameter is not NULL, it must point to an array containing
2130 ** one element for each column returned by the SELECT statement on the RHS
2131 ** of the IN(...) operator. The i'th entry of the array is populated with the
2132 ** offset of the index column that matches the i'th column returned by the
2133 ** SELECT. For example, if the expression and selected index are:
2134 **
2135 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2136 **   CREATE INDEX i1 ON t1(b, c, a);
2137 **
2138 ** then aiMap[] is populated with {2, 0, 1}.
2139 */
2140 #ifndef SQLITE_OMIT_SUBQUERY
2141 int sqlite3FindInIndex(
2142   Parse *pParse,             /* Parsing context */
2143   Expr *pX,                  /* The right-hand side (RHS) of the IN operator */
2144   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2145   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2146   int *aiMap                 /* Mapping from Index fields to RHS fields */
2147 ){
2148   Select *p;                            /* SELECT to the right of IN operator */
2149   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2150   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2151   int mustBeUnique;                     /* True if RHS must be unique */
2152   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2153 
2154   assert( pX->op==TK_IN );
2155   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2156 
2157   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2158   ** whether or not the SELECT result contains NULL values, check whether
2159   ** or not NULL is actually possible (it may not be, for example, due
2160   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2161   ** set prRhsHasNull to 0 before continuing.  */
2162   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2163     int i;
2164     ExprList *pEList = pX->x.pSelect->pEList;
2165     for(i=0; i<pEList->nExpr; i++){
2166       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2167     }
2168     if( i==pEList->nExpr ){
2169       prRhsHasNull = 0;
2170     }
2171   }
2172 
2173   /* Check to see if an existing table or index can be used to
2174   ** satisfy the query.  This is preferable to generating a new
2175   ** ephemeral table.  */
2176   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2177     sqlite3 *db = pParse->db;              /* Database connection */
2178     Table *pTab;                           /* Table <table>. */
2179     i16 iDb;                               /* Database idx for pTab */
2180     ExprList *pEList = p->pEList;
2181     int nExpr = pEList->nExpr;
2182 
2183     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2184     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2185     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2186     pTab = p->pSrc->a[0].pTab;
2187 
2188     /* Code an OP_Transaction and OP_TableLock for <table>. */
2189     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2190     sqlite3CodeVerifySchema(pParse, iDb);
2191     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2192 
2193     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2194     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2195       /* The "x IN (SELECT rowid FROM table)" case */
2196       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2197       VdbeCoverage(v);
2198 
2199       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2200       eType = IN_INDEX_ROWID;
2201 
2202       sqlite3VdbeJumpHere(v, iAddr);
2203     }else{
2204       Index *pIdx;                         /* Iterator variable */
2205       int affinity_ok = 1;
2206       int i;
2207 
2208       /* Check that the affinity that will be used to perform each
2209       ** comparison is the same as the affinity of each column in table
2210       ** on the RHS of the IN operator.  If it not, it is not possible to
2211       ** use any index of the RHS table.  */
2212       for(i=0; i<nExpr && affinity_ok; i++){
2213         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2214         int iCol = pEList->a[i].pExpr->iColumn;
2215         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2216         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2217         testcase( cmpaff==SQLITE_AFF_BLOB );
2218         testcase( cmpaff==SQLITE_AFF_TEXT );
2219         switch( cmpaff ){
2220           case SQLITE_AFF_BLOB:
2221             break;
2222           case SQLITE_AFF_TEXT:
2223             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2224             ** other has no affinity and the other side is TEXT.  Hence,
2225             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2226             ** and for the term on the LHS of the IN to have no affinity. */
2227             assert( idxaff==SQLITE_AFF_TEXT );
2228             break;
2229           default:
2230             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2231         }
2232       }
2233 
2234       if( affinity_ok ){
2235         /* Search for an existing index that will work for this IN operator */
2236         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2237           Bitmask colUsed;      /* Columns of the index used */
2238           Bitmask mCol;         /* Mask for the current column */
2239           if( pIdx->nColumn<nExpr ) continue;
2240           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2241           ** BITMASK(nExpr) without overflowing */
2242           testcase( pIdx->nColumn==BMS-2 );
2243           testcase( pIdx->nColumn==BMS-1 );
2244           if( pIdx->nColumn>=BMS-1 ) continue;
2245           if( mustBeUnique ){
2246             if( pIdx->nKeyCol>nExpr
2247              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2248             ){
2249               continue;  /* This index is not unique over the IN RHS columns */
2250             }
2251           }
2252 
2253           colUsed = 0;   /* Columns of index used so far */
2254           for(i=0; i<nExpr; i++){
2255             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2256             Expr *pRhs = pEList->a[i].pExpr;
2257             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2258             int j;
2259 
2260             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2261             for(j=0; j<nExpr; j++){
2262               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2263               assert( pIdx->azColl[j] );
2264               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2265                 continue;
2266               }
2267               break;
2268             }
2269             if( j==nExpr ) break;
2270             mCol = MASKBIT(j);
2271             if( mCol & colUsed ) break; /* Each column used only once */
2272             colUsed |= mCol;
2273             if( aiMap ) aiMap[i] = j;
2274           }
2275 
2276           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2277           if( colUsed==(MASKBIT(nExpr)-1) ){
2278             /* If we reach this point, that means the index pIdx is usable */
2279             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2280 #ifndef SQLITE_OMIT_EXPLAIN
2281             sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0,
2282               sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName),
2283               P4_DYNAMIC);
2284 #endif
2285             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2286             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2287             VdbeComment((v, "%s", pIdx->zName));
2288             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2289             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2290 
2291             if( prRhsHasNull ){
2292 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2293               i64 mask = (1<<nExpr)-1;
2294               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2295                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2296 #endif
2297               *prRhsHasNull = ++pParse->nMem;
2298               if( nExpr==1 ){
2299                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2300               }
2301             }
2302             sqlite3VdbeJumpHere(v, iAddr);
2303           }
2304         } /* End loop over indexes */
2305       } /* End if( affinity_ok ) */
2306     } /* End if not an rowid index */
2307   } /* End attempt to optimize using an index */
2308 
2309   /* If no preexisting index is available for the IN clause
2310   ** and IN_INDEX_NOOP is an allowed reply
2311   ** and the RHS of the IN operator is a list, not a subquery
2312   ** and the RHS is not constant or has two or fewer terms,
2313   ** then it is not worth creating an ephemeral table to evaluate
2314   ** the IN operator so return IN_INDEX_NOOP.
2315   */
2316   if( eType==0
2317    && (inFlags & IN_INDEX_NOOP_OK)
2318    && !ExprHasProperty(pX, EP_xIsSelect)
2319    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2320   ){
2321     eType = IN_INDEX_NOOP;
2322   }
2323 
2324   if( eType==0 ){
2325     /* Could not find an existing table or index to use as the RHS b-tree.
2326     ** We will have to generate an ephemeral table to do the job.
2327     */
2328     u32 savedNQueryLoop = pParse->nQueryLoop;
2329     int rMayHaveNull = 0;
2330     eType = IN_INDEX_EPH;
2331     if( inFlags & IN_INDEX_LOOP ){
2332       pParse->nQueryLoop = 0;
2333       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
2334         eType = IN_INDEX_ROWID;
2335       }
2336     }else if( prRhsHasNull ){
2337       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2338     }
2339     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
2340     pParse->nQueryLoop = savedNQueryLoop;
2341   }else{
2342     pX->iTable = iTab;
2343   }
2344 
2345   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2346     int i, n;
2347     n = sqlite3ExprVectorSize(pX->pLeft);
2348     for(i=0; i<n; i++) aiMap[i] = i;
2349   }
2350   return eType;
2351 }
2352 #endif
2353 
2354 #ifndef SQLITE_OMIT_SUBQUERY
2355 /*
2356 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2357 ** function allocates and returns a nul-terminated string containing
2358 ** the affinities to be used for each column of the comparison.
2359 **
2360 ** It is the responsibility of the caller to ensure that the returned
2361 ** string is eventually freed using sqlite3DbFree().
2362 */
2363 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2364   Expr *pLeft = pExpr->pLeft;
2365   int nVal = sqlite3ExprVectorSize(pLeft);
2366   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2367   char *zRet;
2368 
2369   assert( pExpr->op==TK_IN );
2370   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2371   if( zRet ){
2372     int i;
2373     for(i=0; i<nVal; i++){
2374       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2375       char a = sqlite3ExprAffinity(pA);
2376       if( pSelect ){
2377         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2378       }else{
2379         zRet[i] = a;
2380       }
2381     }
2382     zRet[nVal] = '\0';
2383   }
2384   return zRet;
2385 }
2386 #endif
2387 
2388 #ifndef SQLITE_OMIT_SUBQUERY
2389 /*
2390 ** Load the Parse object passed as the first argument with an error
2391 ** message of the form:
2392 **
2393 **   "sub-select returns N columns - expected M"
2394 */
2395 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2396   const char *zFmt = "sub-select returns %d columns - expected %d";
2397   sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2398 }
2399 #endif
2400 
2401 /*
2402 ** Expression pExpr is a vector that has been used in a context where
2403 ** it is not permitted. If pExpr is a sub-select vector, this routine
2404 ** loads the Parse object with a message of the form:
2405 **
2406 **   "sub-select returns N columns - expected 1"
2407 **
2408 ** Or, if it is a regular scalar vector:
2409 **
2410 **   "row value misused"
2411 */
2412 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2413 #ifndef SQLITE_OMIT_SUBQUERY
2414   if( pExpr->flags & EP_xIsSelect ){
2415     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2416   }else
2417 #endif
2418   {
2419     sqlite3ErrorMsg(pParse, "row value misused");
2420   }
2421 }
2422 
2423 /*
2424 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
2425 ** or IN operators.  Examples:
2426 **
2427 **     (SELECT a FROM b)          -- subquery
2428 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
2429 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2430 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2431 **
2432 ** The pExpr parameter describes the expression that contains the IN
2433 ** operator or subquery.
2434 **
2435 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
2436 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
2437 ** to some integer key column of a table B-Tree. In this case, use an
2438 ** intkey B-Tree to store the set of IN(...) values instead of the usual
2439 ** (slower) variable length keys B-Tree.
2440 **
2441 ** If rMayHaveNull is non-zero, that means that the operation is an IN
2442 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
2443 ** All this routine does is initialize the register given by rMayHaveNull
2444 ** to NULL.  Calling routines will take care of changing this register
2445 ** value to non-NULL if the RHS is NULL-free.
2446 **
2447 ** For a SELECT or EXISTS operator, return the register that holds the
2448 ** result.  For a multi-column SELECT, the result is stored in a contiguous
2449 ** array of registers and the return value is the register of the left-most
2450 ** result column.  Return 0 for IN operators or if an error occurs.
2451 */
2452 #ifndef SQLITE_OMIT_SUBQUERY
2453 int sqlite3CodeSubselect(
2454   Parse *pParse,          /* Parsing context */
2455   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
2456   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
2457   int isRowid             /* If true, LHS of IN operator is a rowid */
2458 ){
2459   int jmpIfDynamic = -1;                      /* One-time test address */
2460   int rReg = 0;                           /* Register storing resulting */
2461   Vdbe *v = sqlite3GetVdbe(pParse);
2462   if( NEVER(v==0) ) return 0;
2463   sqlite3ExprCachePush(pParse);
2464 
2465   /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it
2466   ** is encountered if any of the following is true:
2467   **
2468   **    *  The right-hand side is a correlated subquery
2469   **    *  The right-hand side is an expression list containing variables
2470   **    *  We are inside a trigger
2471   **
2472   ** If all of the above are false, then we can run this code just once
2473   ** save the results, and reuse the same result on subsequent invocations.
2474   */
2475   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2476     jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2477   }
2478 
2479 #ifndef SQLITE_OMIT_EXPLAIN
2480   if( pParse->explain==2 ){
2481     char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d",
2482         jmpIfDynamic>=0?"":"CORRELATED ",
2483         pExpr->op==TK_IN?"LIST":"SCALAR",
2484         pParse->iNextSelectId
2485     );
2486     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
2487   }
2488 #endif
2489 
2490   switch( pExpr->op ){
2491     case TK_IN: {
2492       int addr;                   /* Address of OP_OpenEphemeral instruction */
2493       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
2494       KeyInfo *pKeyInfo = 0;      /* Key information */
2495       int nVal;                   /* Size of vector pLeft */
2496 
2497       nVal = sqlite3ExprVectorSize(pLeft);
2498       assert( !isRowid || nVal==1 );
2499 
2500       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
2501       ** expression it is handled the same way.  An ephemeral table is
2502       ** filled with index keys representing the results from the
2503       ** SELECT or the <exprlist>.
2504       **
2505       ** If the 'x' expression is a column value, or the SELECT...
2506       ** statement returns a column value, then the affinity of that
2507       ** column is used to build the index keys. If both 'x' and the
2508       ** SELECT... statement are columns, then numeric affinity is used
2509       ** if either column has NUMERIC or INTEGER affinity. If neither
2510       ** 'x' nor the SELECT... statement are columns, then numeric affinity
2511       ** is used.
2512       */
2513       pExpr->iTable = pParse->nTab++;
2514       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral,
2515           pExpr->iTable, (isRowid?0:nVal));
2516       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2517 
2518       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2519         /* Case 1:     expr IN (SELECT ...)
2520         **
2521         ** Generate code to write the results of the select into the temporary
2522         ** table allocated and opened above.
2523         */
2524         Select *pSelect = pExpr->x.pSelect;
2525         ExprList *pEList = pSelect->pEList;
2526 
2527         assert( !isRowid );
2528         /* If the LHS and RHS of the IN operator do not match, that
2529         ** error will have been caught long before we reach this point. */
2530         if( ALWAYS(pEList->nExpr==nVal) ){
2531           SelectDest dest;
2532           int i;
2533           sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
2534           dest.zAffSdst = exprINAffinity(pParse, pExpr);
2535           assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
2536           pSelect->iLimit = 0;
2537           testcase( pSelect->selFlags & SF_Distinct );
2538           testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2539           if( sqlite3Select(pParse, pSelect, &dest) ){
2540             sqlite3DbFree(pParse->db, dest.zAffSdst);
2541             sqlite3KeyInfoUnref(pKeyInfo);
2542             return 0;
2543           }
2544           sqlite3DbFree(pParse->db, dest.zAffSdst);
2545           assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2546           assert( pEList!=0 );
2547           assert( pEList->nExpr>0 );
2548           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2549           for(i=0; i<nVal; i++){
2550             Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2551             pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2552                 pParse, p, pEList->a[i].pExpr
2553             );
2554           }
2555         }
2556       }else if( ALWAYS(pExpr->x.pList!=0) ){
2557         /* Case 2:     expr IN (exprlist)
2558         **
2559         ** For each expression, build an index key from the evaluation and
2560         ** store it in the temporary table. If <expr> is a column, then use
2561         ** that columns affinity when building index keys. If <expr> is not
2562         ** a column, use numeric affinity.
2563         */
2564         char affinity;            /* Affinity of the LHS of the IN */
2565         int i;
2566         ExprList *pList = pExpr->x.pList;
2567         struct ExprList_item *pItem;
2568         int r1, r2, r3;
2569 
2570         affinity = sqlite3ExprAffinity(pLeft);
2571         if( !affinity ){
2572           affinity = SQLITE_AFF_BLOB;
2573         }
2574         if( pKeyInfo ){
2575           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2576           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2577         }
2578 
2579         /* Loop through each expression in <exprlist>. */
2580         r1 = sqlite3GetTempReg(pParse);
2581         r2 = sqlite3GetTempReg(pParse);
2582         if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
2583         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2584           Expr *pE2 = pItem->pExpr;
2585           int iValToIns;
2586 
2587           /* If the expression is not constant then we will need to
2588           ** disable the test that was generated above that makes sure
2589           ** this code only executes once.  Because for a non-constant
2590           ** expression we need to rerun this code each time.
2591           */
2592           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
2593             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
2594             jmpIfDynamic = -1;
2595           }
2596 
2597           /* Evaluate the expression and insert it into the temp table */
2598           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2599             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2600           }else{
2601             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2602             if( isRowid ){
2603               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2604                                 sqlite3VdbeCurrentAddr(v)+2);
2605               VdbeCoverage(v);
2606               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2607             }else{
2608               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2609               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
2610               sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1);
2611             }
2612           }
2613         }
2614         sqlite3ReleaseTempReg(pParse, r1);
2615         sqlite3ReleaseTempReg(pParse, r2);
2616       }
2617       if( pKeyInfo ){
2618         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2619       }
2620       break;
2621     }
2622 
2623     case TK_EXISTS:
2624     case TK_SELECT:
2625     default: {
2626       /* Case 3:    (SELECT ... FROM ...)
2627       **     or:    EXISTS(SELECT ... FROM ...)
2628       **
2629       ** For a SELECT, generate code to put the values for all columns of
2630       ** the first row into an array of registers and return the index of
2631       ** the first register.
2632       **
2633       ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2634       ** into a register and return that register number.
2635       **
2636       ** In both cases, the query is augmented with "LIMIT 1".  Any
2637       ** preexisting limit is discarded in place of the new LIMIT 1.
2638       */
2639       Select *pSel;                         /* SELECT statement to encode */
2640       SelectDest dest;                      /* How to deal with SELECT result */
2641       int nReg;                             /* Registers to allocate */
2642 
2643       testcase( pExpr->op==TK_EXISTS );
2644       testcase( pExpr->op==TK_SELECT );
2645       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2646       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2647 
2648       pSel = pExpr->x.pSelect;
2649       nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2650       sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2651       pParse->nMem += nReg;
2652       if( pExpr->op==TK_SELECT ){
2653         dest.eDest = SRT_Mem;
2654         dest.iSdst = dest.iSDParm;
2655         dest.nSdst = nReg;
2656         sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2657         VdbeComment((v, "Init subquery result"));
2658       }else{
2659         dest.eDest = SRT_Exists;
2660         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2661         VdbeComment((v, "Init EXISTS result"));
2662       }
2663       sqlite3ExprDelete(pParse->db, pSel->pLimit);
2664       pSel->pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,
2665                                   &sqlite3IntTokens[1], 0);
2666       pSel->iLimit = 0;
2667       pSel->selFlags &= ~SF_MultiValue;
2668       if( sqlite3Select(pParse, pSel, &dest) ){
2669         return 0;
2670       }
2671       rReg = dest.iSDParm;
2672       ExprSetVVAProperty(pExpr, EP_NoReduce);
2673       break;
2674     }
2675   }
2676 
2677   if( rHasNullFlag ){
2678     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2679   }
2680 
2681   if( jmpIfDynamic>=0 ){
2682     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2683   }
2684   sqlite3ExprCachePop(pParse);
2685 
2686   return rReg;
2687 }
2688 #endif /* SQLITE_OMIT_SUBQUERY */
2689 
2690 #ifndef SQLITE_OMIT_SUBQUERY
2691 /*
2692 ** Expr pIn is an IN(...) expression. This function checks that the
2693 ** sub-select on the RHS of the IN() operator has the same number of
2694 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
2695 ** a sub-query, that the LHS is a vector of size 1.
2696 */
2697 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
2698   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
2699   if( (pIn->flags & EP_xIsSelect) ){
2700     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
2701       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
2702       return 1;
2703     }
2704   }else if( nVector!=1 ){
2705     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
2706     return 1;
2707   }
2708   return 0;
2709 }
2710 #endif
2711 
2712 #ifndef SQLITE_OMIT_SUBQUERY
2713 /*
2714 ** Generate code for an IN expression.
2715 **
2716 **      x IN (SELECT ...)
2717 **      x IN (value, value, ...)
2718 **
2719 ** The left-hand side (LHS) is a scalar or vector expression.  The
2720 ** right-hand side (RHS) is an array of zero or more scalar values, or a
2721 ** subquery.  If the RHS is a subquery, the number of result columns must
2722 ** match the number of columns in the vector on the LHS.  If the RHS is
2723 ** a list of values, the LHS must be a scalar.
2724 **
2725 ** The IN operator is true if the LHS value is contained within the RHS.
2726 ** The result is false if the LHS is definitely not in the RHS.  The
2727 ** result is NULL if the presence of the LHS in the RHS cannot be
2728 ** determined due to NULLs.
2729 **
2730 ** This routine generates code that jumps to destIfFalse if the LHS is not
2731 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2732 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2733 ** within the RHS then fall through.
2734 **
2735 ** See the separate in-operator.md documentation file in the canonical
2736 ** SQLite source tree for additional information.
2737 */
2738 static void sqlite3ExprCodeIN(
2739   Parse *pParse,        /* Parsing and code generating context */
2740   Expr *pExpr,          /* The IN expression */
2741   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2742   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2743 ){
2744   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2745   int eType;            /* Type of the RHS */
2746   int rLhs;             /* Register(s) holding the LHS values */
2747   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
2748   Vdbe *v;              /* Statement under construction */
2749   int *aiMap = 0;       /* Map from vector field to index column */
2750   char *zAff = 0;       /* Affinity string for comparisons */
2751   int nVector;          /* Size of vectors for this IN operator */
2752   int iDummy;           /* Dummy parameter to exprCodeVector() */
2753   Expr *pLeft;          /* The LHS of the IN operator */
2754   int i;                /* loop counter */
2755   int destStep2;        /* Where to jump when NULLs seen in step 2 */
2756   int destStep6 = 0;    /* Start of code for Step 6 */
2757   int addrTruthOp;      /* Address of opcode that determines the IN is true */
2758   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
2759   int addrTop;          /* Top of the step-6 loop */
2760 
2761   pLeft = pExpr->pLeft;
2762   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
2763   zAff = exprINAffinity(pParse, pExpr);
2764   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
2765   aiMap = (int*)sqlite3DbMallocZero(
2766       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
2767   );
2768   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
2769 
2770   /* Attempt to compute the RHS. After this step, if anything other than
2771   ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable
2772   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
2773   ** the RHS has not yet been coded.  */
2774   v = pParse->pVdbe;
2775   assert( v!=0 );       /* OOM detected prior to this routine */
2776   VdbeNoopComment((v, "begin IN expr"));
2777   eType = sqlite3FindInIndex(pParse, pExpr,
2778                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2779                              destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap);
2780 
2781   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
2782        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
2783   );
2784 #ifdef SQLITE_DEBUG
2785   /* Confirm that aiMap[] contains nVector integer values between 0 and
2786   ** nVector-1. */
2787   for(i=0; i<nVector; i++){
2788     int j, cnt;
2789     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
2790     assert( cnt==1 );
2791   }
2792 #endif
2793 
2794   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
2795   ** vector, then it is stored in an array of nVector registers starting
2796   ** at r1.
2797   **
2798   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
2799   ** so that the fields are in the same order as an existing index.   The
2800   ** aiMap[] array contains a mapping from the original LHS field order to
2801   ** the field order that matches the RHS index.
2802   */
2803   sqlite3ExprCachePush(pParse);
2804   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
2805   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
2806   if( i==nVector ){
2807     /* LHS fields are not reordered */
2808     rLhs = rLhsOrig;
2809   }else{
2810     /* Need to reorder the LHS fields according to aiMap */
2811     rLhs = sqlite3GetTempRange(pParse, nVector);
2812     for(i=0; i<nVector; i++){
2813       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
2814     }
2815   }
2816 
2817   /* If sqlite3FindInIndex() did not find or create an index that is
2818   ** suitable for evaluating the IN operator, then evaluate using a
2819   ** sequence of comparisons.
2820   **
2821   ** This is step (1) in the in-operator.md optimized algorithm.
2822   */
2823   if( eType==IN_INDEX_NOOP ){
2824     ExprList *pList = pExpr->x.pList;
2825     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2826     int labelOk = sqlite3VdbeMakeLabel(v);
2827     int r2, regToFree;
2828     int regCkNull = 0;
2829     int ii;
2830     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2831     if( destIfNull!=destIfFalse ){
2832       regCkNull = sqlite3GetTempReg(pParse);
2833       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
2834     }
2835     for(ii=0; ii<pList->nExpr; ii++){
2836       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2837       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2838         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2839       }
2840       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2841         sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
2842                           (void*)pColl, P4_COLLSEQ);
2843         VdbeCoverageIf(v, ii<pList->nExpr-1);
2844         VdbeCoverageIf(v, ii==pList->nExpr-1);
2845         sqlite3VdbeChangeP5(v, zAff[0]);
2846       }else{
2847         assert( destIfNull==destIfFalse );
2848         sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
2849                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2850         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
2851       }
2852       sqlite3ReleaseTempReg(pParse, regToFree);
2853     }
2854     if( regCkNull ){
2855       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2856       sqlite3VdbeGoto(v, destIfFalse);
2857     }
2858     sqlite3VdbeResolveLabel(v, labelOk);
2859     sqlite3ReleaseTempReg(pParse, regCkNull);
2860     goto sqlite3ExprCodeIN_finished;
2861   }
2862 
2863   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
2864   ** LHS does contain NULLs then the result must be either FALSE or NULL.
2865   ** We will then skip the binary search of the RHS.
2866   */
2867   if( destIfNull==destIfFalse ){
2868     destStep2 = destIfFalse;
2869   }else{
2870     destStep2 = destStep6 = sqlite3VdbeMakeLabel(v);
2871   }
2872   for(i=0; i<nVector; i++){
2873     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
2874     if( sqlite3ExprCanBeNull(p) ){
2875       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
2876       VdbeCoverage(v);
2877     }
2878   }
2879 
2880   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
2881   ** of the RHS using the LHS as a probe.  If found, the result is
2882   ** true.
2883   */
2884   if( eType==IN_INDEX_ROWID ){
2885     /* In this case, the RHS is the ROWID of table b-tree and so we also
2886     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
2887     ** into a single opcode. */
2888     sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs);
2889     VdbeCoverage(v);
2890     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
2891   }else{
2892     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
2893     if( destIfFalse==destIfNull ){
2894       /* Combine Step 3 and Step 5 into a single opcode */
2895       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse,
2896                            rLhs, nVector); VdbeCoverage(v);
2897       goto sqlite3ExprCodeIN_finished;
2898     }
2899     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
2900     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0,
2901                                       rLhs, nVector); VdbeCoverage(v);
2902   }
2903 
2904   /* Step 4.  If the RHS is known to be non-NULL and we did not find
2905   ** an match on the search above, then the result must be FALSE.
2906   */
2907   if( rRhsHasNull && nVector==1 ){
2908     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
2909     VdbeCoverage(v);
2910   }
2911 
2912   /* Step 5.  If we do not care about the difference between NULL and
2913   ** FALSE, then just return false.
2914   */
2915   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
2916 
2917   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
2918   ** If any comparison is NULL, then the result is NULL.  If all
2919   ** comparisons are FALSE then the final result is FALSE.
2920   **
2921   ** For a scalar LHS, it is sufficient to check just the first row
2922   ** of the RHS.
2923   */
2924   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
2925   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2926   VdbeCoverage(v);
2927   if( nVector>1 ){
2928     destNotNull = sqlite3VdbeMakeLabel(v);
2929   }else{
2930     /* For nVector==1, combine steps 6 and 7 by immediately returning
2931     ** FALSE if the first comparison is not NULL */
2932     destNotNull = destIfFalse;
2933   }
2934   for(i=0; i<nVector; i++){
2935     Expr *p;
2936     CollSeq *pColl;
2937     int r3 = sqlite3GetTempReg(pParse);
2938     p = sqlite3VectorFieldSubexpr(pLeft, i);
2939     pColl = sqlite3ExprCollSeq(pParse, p);
2940     sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3);
2941     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
2942                       (void*)pColl, P4_COLLSEQ);
2943     VdbeCoverage(v);
2944     sqlite3ReleaseTempReg(pParse, r3);
2945   }
2946   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
2947   if( nVector>1 ){
2948     sqlite3VdbeResolveLabel(v, destNotNull);
2949     sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1);
2950     VdbeCoverage(v);
2951 
2952     /* Step 7:  If we reach this point, we know that the result must
2953     ** be false. */
2954     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2955   }
2956 
2957   /* Jumps here in order to return true. */
2958   sqlite3VdbeJumpHere(v, addrTruthOp);
2959 
2960 sqlite3ExprCodeIN_finished:
2961   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
2962   sqlite3ExprCachePop(pParse);
2963   VdbeComment((v, "end IN expr"));
2964 sqlite3ExprCodeIN_oom_error:
2965   sqlite3DbFree(pParse->db, aiMap);
2966   sqlite3DbFree(pParse->db, zAff);
2967 }
2968 #endif /* SQLITE_OMIT_SUBQUERY */
2969 
2970 #ifndef SQLITE_OMIT_FLOATING_POINT
2971 /*
2972 ** Generate an instruction that will put the floating point
2973 ** value described by z[0..n-1] into register iMem.
2974 **
2975 ** The z[] string will probably not be zero-terminated.  But the
2976 ** z[n] character is guaranteed to be something that does not look
2977 ** like the continuation of the number.
2978 */
2979 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2980   if( ALWAYS(z!=0) ){
2981     double value;
2982     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2983     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2984     if( negateFlag ) value = -value;
2985     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
2986   }
2987 }
2988 #endif
2989 
2990 
2991 /*
2992 ** Generate an instruction that will put the integer describe by
2993 ** text z[0..n-1] into register iMem.
2994 **
2995 ** Expr.u.zToken is always UTF8 and zero-terminated.
2996 */
2997 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2998   Vdbe *v = pParse->pVdbe;
2999   if( pExpr->flags & EP_IntValue ){
3000     int i = pExpr->u.iValue;
3001     assert( i>=0 );
3002     if( negFlag ) i = -i;
3003     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3004   }else{
3005     int c;
3006     i64 value;
3007     const char *z = pExpr->u.zToken;
3008     assert( z!=0 );
3009     c = sqlite3DecOrHexToI64(z, &value);
3010     if( c==1 || (c==2 && !negFlag) || (negFlag && value==SMALLEST_INT64)){
3011 #ifdef SQLITE_OMIT_FLOATING_POINT
3012       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3013 #else
3014 #ifndef SQLITE_OMIT_HEX_INTEGER
3015       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3016         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3017       }else
3018 #endif
3019       {
3020         codeReal(v, z, negFlag, iMem);
3021       }
3022 #endif
3023     }else{
3024       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
3025       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3026     }
3027   }
3028 }
3029 
3030 /*
3031 ** Erase column-cache entry number i
3032 */
3033 static void cacheEntryClear(Parse *pParse, int i){
3034   if( pParse->aColCache[i].tempReg ){
3035     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3036       pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3037     }
3038   }
3039   pParse->nColCache--;
3040   if( i<pParse->nColCache ){
3041     pParse->aColCache[i] = pParse->aColCache[pParse->nColCache];
3042   }
3043 }
3044 
3045 
3046 /*
3047 ** Record in the column cache that a particular column from a
3048 ** particular table is stored in a particular register.
3049 */
3050 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
3051   int i;
3052   int minLru;
3053   int idxLru;
3054   struct yColCache *p;
3055 
3056   /* Unless an error has occurred, register numbers are always positive. */
3057   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
3058   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
3059 
3060   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
3061   ** for testing only - to verify that SQLite always gets the same answer
3062   ** with and without the column cache.
3063   */
3064   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
3065 
3066   /* First replace any existing entry.
3067   **
3068   ** Actually, the way the column cache is currently used, we are guaranteed
3069   ** that the object will never already be in cache.  Verify this guarantee.
3070   */
3071 #ifndef NDEBUG
3072   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3073     assert( p->iTable!=iTab || p->iColumn!=iCol );
3074   }
3075 #endif
3076 
3077   /* If the cache is already full, delete the least recently used entry */
3078   if( pParse->nColCache>=SQLITE_N_COLCACHE ){
3079     minLru = 0x7fffffff;
3080     idxLru = -1;
3081     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3082       if( p->lru<minLru ){
3083         idxLru = i;
3084         minLru = p->lru;
3085       }
3086     }
3087     p = &pParse->aColCache[idxLru];
3088   }else{
3089     p = &pParse->aColCache[pParse->nColCache++];
3090   }
3091 
3092   /* Add the new entry to the end of the cache */
3093   p->iLevel = pParse->iCacheLevel;
3094   p->iTable = iTab;
3095   p->iColumn = iCol;
3096   p->iReg = iReg;
3097   p->tempReg = 0;
3098   p->lru = pParse->iCacheCnt++;
3099 }
3100 
3101 /*
3102 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
3103 ** Purge the range of registers from the column cache.
3104 */
3105 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
3106   int i = 0;
3107   while( i<pParse->nColCache ){
3108     struct yColCache *p = &pParse->aColCache[i];
3109     if( p->iReg >= iReg && p->iReg < iReg+nReg ){
3110       cacheEntryClear(pParse, i);
3111     }else{
3112       i++;
3113     }
3114   }
3115 }
3116 
3117 /*
3118 ** Remember the current column cache context.  Any new entries added
3119 ** added to the column cache after this call are removed when the
3120 ** corresponding pop occurs.
3121 */
3122 void sqlite3ExprCachePush(Parse *pParse){
3123   pParse->iCacheLevel++;
3124 #ifdef SQLITE_DEBUG
3125   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3126     printf("PUSH to %d\n", pParse->iCacheLevel);
3127   }
3128 #endif
3129 }
3130 
3131 /*
3132 ** Remove from the column cache any entries that were added since the
3133 ** the previous sqlite3ExprCachePush operation.  In other words, restore
3134 ** the cache to the state it was in prior the most recent Push.
3135 */
3136 void sqlite3ExprCachePop(Parse *pParse){
3137   int i = 0;
3138   assert( pParse->iCacheLevel>=1 );
3139   pParse->iCacheLevel--;
3140 #ifdef SQLITE_DEBUG
3141   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3142     printf("POP  to %d\n", pParse->iCacheLevel);
3143   }
3144 #endif
3145   while( i<pParse->nColCache ){
3146     if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){
3147       cacheEntryClear(pParse, i);
3148     }else{
3149       i++;
3150     }
3151   }
3152 }
3153 
3154 /*
3155 ** When a cached column is reused, make sure that its register is
3156 ** no longer available as a temp register.  ticket #3879:  that same
3157 ** register might be in the cache in multiple places, so be sure to
3158 ** get them all.
3159 */
3160 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
3161   int i;
3162   struct yColCache *p;
3163   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3164     if( p->iReg==iReg ){
3165       p->tempReg = 0;
3166     }
3167   }
3168 }
3169 
3170 /* Generate code that will load into register regOut a value that is
3171 ** appropriate for the iIdxCol-th column of index pIdx.
3172 */
3173 void sqlite3ExprCodeLoadIndexColumn(
3174   Parse *pParse,  /* The parsing context */
3175   Index *pIdx,    /* The index whose column is to be loaded */
3176   int iTabCur,    /* Cursor pointing to a table row */
3177   int iIdxCol,    /* The column of the index to be loaded */
3178   int regOut      /* Store the index column value in this register */
3179 ){
3180   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3181   if( iTabCol==XN_EXPR ){
3182     assert( pIdx->aColExpr );
3183     assert( pIdx->aColExpr->nExpr>iIdxCol );
3184     pParse->iSelfTab = iTabCur;
3185     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3186   }else{
3187     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3188                                     iTabCol, regOut);
3189   }
3190 }
3191 
3192 /*
3193 ** Generate code to extract the value of the iCol-th column of a table.
3194 */
3195 void sqlite3ExprCodeGetColumnOfTable(
3196   Vdbe *v,        /* The VDBE under construction */
3197   Table *pTab,    /* The table containing the value */
3198   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3199   int iCol,       /* Index of the column to extract */
3200   int regOut      /* Extract the value into this register */
3201 ){
3202   if( iCol<0 || iCol==pTab->iPKey ){
3203     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3204   }else{
3205     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
3206     int x = iCol;
3207     if( !HasRowid(pTab) && !IsVirtual(pTab) ){
3208       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3209     }
3210     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3211   }
3212   if( iCol>=0 ){
3213     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3214   }
3215 }
3216 
3217 /*
3218 ** Generate code that will extract the iColumn-th column from
3219 ** table pTab and store the column value in a register.
3220 **
3221 ** An effort is made to store the column value in register iReg.  This
3222 ** is not garanteeed for GetColumn() - the result can be stored in
3223 ** any register.  But the result is guaranteed to land in register iReg
3224 ** for GetColumnToReg().
3225 **
3226 ** There must be an open cursor to pTab in iTable when this routine
3227 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3228 */
3229 int sqlite3ExprCodeGetColumn(
3230   Parse *pParse,   /* Parsing and code generating context */
3231   Table *pTab,     /* Description of the table we are reading from */
3232   int iColumn,     /* Index of the table column */
3233   int iTable,      /* The cursor pointing to the table */
3234   int iReg,        /* Store results here */
3235   u8 p5            /* P5 value for OP_Column + FLAGS */
3236 ){
3237   Vdbe *v = pParse->pVdbe;
3238   int i;
3239   struct yColCache *p;
3240 
3241   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3242     if( p->iTable==iTable && p->iColumn==iColumn ){
3243       p->lru = pParse->iCacheCnt++;
3244       sqlite3ExprCachePinRegister(pParse, p->iReg);
3245       return p->iReg;
3246     }
3247   }
3248   assert( v!=0 );
3249   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
3250   if( p5 ){
3251     sqlite3VdbeChangeP5(v, p5);
3252   }else{
3253     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
3254   }
3255   return iReg;
3256 }
3257 void sqlite3ExprCodeGetColumnToReg(
3258   Parse *pParse,   /* Parsing and code generating context */
3259   Table *pTab,     /* Description of the table we are reading from */
3260   int iColumn,     /* Index of the table column */
3261   int iTable,      /* The cursor pointing to the table */
3262   int iReg         /* Store results here */
3263 ){
3264   int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
3265   if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
3266 }
3267 
3268 
3269 /*
3270 ** Clear all column cache entries.
3271 */
3272 void sqlite3ExprCacheClear(Parse *pParse){
3273   int i;
3274 
3275 #ifdef SQLITE_DEBUG
3276   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3277     printf("CLEAR\n");
3278   }
3279 #endif
3280   for(i=0; i<pParse->nColCache; i++){
3281     if( pParse->aColCache[i].tempReg
3282      && pParse->nTempReg<ArraySize(pParse->aTempReg)
3283     ){
3284        pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3285     }
3286   }
3287   pParse->nColCache = 0;
3288 }
3289 
3290 /*
3291 ** Record the fact that an affinity change has occurred on iCount
3292 ** registers starting with iStart.
3293 */
3294 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
3295   sqlite3ExprCacheRemove(pParse, iStart, iCount);
3296 }
3297 
3298 /*
3299 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3300 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
3301 */
3302 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3303   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
3304   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3305   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
3306 }
3307 
3308 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
3309 /*
3310 ** Return true if any register in the range iFrom..iTo (inclusive)
3311 ** is used as part of the column cache.
3312 **
3313 ** This routine is used within assert() and testcase() macros only
3314 ** and does not appear in a normal build.
3315 */
3316 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
3317   int i;
3318   struct yColCache *p;
3319   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3320     int r = p->iReg;
3321     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
3322   }
3323   return 0;
3324 }
3325 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
3326 
3327 
3328 /*
3329 ** Convert a scalar expression node to a TK_REGISTER referencing
3330 ** register iReg.  The caller must ensure that iReg already contains
3331 ** the correct value for the expression.
3332 */
3333 static void exprToRegister(Expr *p, int iReg){
3334   p->op2 = p->op;
3335   p->op = TK_REGISTER;
3336   p->iTable = iReg;
3337   ExprClearProperty(p, EP_Skip);
3338 }
3339 
3340 /*
3341 ** Evaluate an expression (either a vector or a scalar expression) and store
3342 ** the result in continguous temporary registers.  Return the index of
3343 ** the first register used to store the result.
3344 **
3345 ** If the returned result register is a temporary scalar, then also write
3346 ** that register number into *piFreeable.  If the returned result register
3347 ** is not a temporary or if the expression is a vector set *piFreeable
3348 ** to 0.
3349 */
3350 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3351   int iResult;
3352   int nResult = sqlite3ExprVectorSize(p);
3353   if( nResult==1 ){
3354     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3355   }else{
3356     *piFreeable = 0;
3357     if( p->op==TK_SELECT ){
3358       iResult = sqlite3CodeSubselect(pParse, p, 0, 0);
3359     }else{
3360       int i;
3361       iResult = pParse->nMem+1;
3362       pParse->nMem += nResult;
3363       for(i=0; i<nResult; i++){
3364         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3365       }
3366     }
3367   }
3368   return iResult;
3369 }
3370 
3371 
3372 /*
3373 ** Generate code into the current Vdbe to evaluate the given
3374 ** expression.  Attempt to store the results in register "target".
3375 ** Return the register where results are stored.
3376 **
3377 ** With this routine, there is no guarantee that results will
3378 ** be stored in target.  The result might be stored in some other
3379 ** register if it is convenient to do so.  The calling function
3380 ** must check the return code and move the results to the desired
3381 ** register.
3382 */
3383 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3384   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3385   int op;                   /* The opcode being coded */
3386   int inReg = target;       /* Results stored in register inReg */
3387   int regFree1 = 0;         /* If non-zero free this temporary register */
3388   int regFree2 = 0;         /* If non-zero free this temporary register */
3389   int r1, r2;               /* Various register numbers */
3390   Expr tempX;               /* Temporary expression node */
3391   int p5 = 0;
3392 
3393   assert( target>0 && target<=pParse->nMem );
3394   if( v==0 ){
3395     assert( pParse->db->mallocFailed );
3396     return 0;
3397   }
3398 
3399   if( pExpr==0 ){
3400     op = TK_NULL;
3401   }else{
3402     op = pExpr->op;
3403   }
3404   switch( op ){
3405     case TK_AGG_COLUMN: {
3406       AggInfo *pAggInfo = pExpr->pAggInfo;
3407       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3408       if( !pAggInfo->directMode ){
3409         assert( pCol->iMem>0 );
3410         return pCol->iMem;
3411       }else if( pAggInfo->useSortingIdx ){
3412         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3413                               pCol->iSorterColumn, target);
3414         return target;
3415       }
3416       /* Otherwise, fall thru into the TK_COLUMN case */
3417     }
3418     case TK_COLUMN: {
3419       int iTab = pExpr->iTable;
3420       if( iTab<0 ){
3421         if( pParse->ckBase>0 ){
3422           /* Generating CHECK constraints or inserting into partial index */
3423           return pExpr->iColumn + pParse->ckBase;
3424         }else{
3425           /* Coding an expression that is part of an index where column names
3426           ** in the index refer to the table to which the index belongs */
3427           iTab = pParse->iSelfTab;
3428         }
3429       }
3430       return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
3431                                pExpr->iColumn, iTab, target,
3432                                pExpr->op2);
3433     }
3434     case TK_INTEGER: {
3435       codeInteger(pParse, pExpr, 0, target);
3436       return target;
3437     }
3438 #ifndef SQLITE_OMIT_FLOATING_POINT
3439     case TK_FLOAT: {
3440       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3441       codeReal(v, pExpr->u.zToken, 0, target);
3442       return target;
3443     }
3444 #endif
3445     case TK_STRING: {
3446       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3447       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3448       return target;
3449     }
3450     case TK_NULL: {
3451       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3452       return target;
3453     }
3454 #ifndef SQLITE_OMIT_BLOB_LITERAL
3455     case TK_BLOB: {
3456       int n;
3457       const char *z;
3458       char *zBlob;
3459       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3460       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3461       assert( pExpr->u.zToken[1]=='\'' );
3462       z = &pExpr->u.zToken[2];
3463       n = sqlite3Strlen30(z) - 1;
3464       assert( z[n]=='\'' );
3465       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3466       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3467       return target;
3468     }
3469 #endif
3470     case TK_VARIABLE: {
3471       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3472       assert( pExpr->u.zToken!=0 );
3473       assert( pExpr->u.zToken[0]!=0 );
3474       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3475       if( pExpr->u.zToken[1]!=0 ){
3476         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3477         assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 );
3478         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3479         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3480       }
3481       return target;
3482     }
3483     case TK_REGISTER: {
3484       return pExpr->iTable;
3485     }
3486 #ifndef SQLITE_OMIT_CAST
3487     case TK_CAST: {
3488       /* Expressions of the form:   CAST(pLeft AS token) */
3489       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3490       if( inReg!=target ){
3491         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3492         inReg = target;
3493       }
3494       sqlite3VdbeAddOp2(v, OP_Cast, target,
3495                         sqlite3AffinityType(pExpr->u.zToken, 0));
3496       testcase( usedAsColumnCache(pParse, inReg, inReg) );
3497       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
3498       return inReg;
3499     }
3500 #endif /* SQLITE_OMIT_CAST */
3501     case TK_IS:
3502     case TK_ISNOT:
3503       op = (op==TK_IS) ? TK_EQ : TK_NE;
3504       p5 = SQLITE_NULLEQ;
3505       /* fall-through */
3506     case TK_LT:
3507     case TK_LE:
3508     case TK_GT:
3509     case TK_GE:
3510     case TK_NE:
3511     case TK_EQ: {
3512       Expr *pLeft = pExpr->pLeft;
3513       if( sqlite3ExprIsVector(pLeft) ){
3514         codeVectorCompare(pParse, pExpr, target, op, p5);
3515       }else{
3516         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3517         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3518         codeCompare(pParse, pLeft, pExpr->pRight, op,
3519             r1, r2, inReg, SQLITE_STOREP2 | p5);
3520         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3521         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3522         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3523         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3524         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3525         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3526         testcase( regFree1==0 );
3527         testcase( regFree2==0 );
3528       }
3529       break;
3530     }
3531     case TK_AND:
3532     case TK_OR:
3533     case TK_PLUS:
3534     case TK_STAR:
3535     case TK_MINUS:
3536     case TK_REM:
3537     case TK_BITAND:
3538     case TK_BITOR:
3539     case TK_SLASH:
3540     case TK_LSHIFT:
3541     case TK_RSHIFT:
3542     case TK_CONCAT: {
3543       assert( TK_AND==OP_And );            testcase( op==TK_AND );
3544       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
3545       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
3546       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
3547       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
3548       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
3549       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
3550       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
3551       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
3552       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
3553       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
3554       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3555       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3556       sqlite3VdbeAddOp3(v, op, r2, r1, target);
3557       testcase( regFree1==0 );
3558       testcase( regFree2==0 );
3559       break;
3560     }
3561     case TK_UMINUS: {
3562       Expr *pLeft = pExpr->pLeft;
3563       assert( pLeft );
3564       if( pLeft->op==TK_INTEGER ){
3565         codeInteger(pParse, pLeft, 1, target);
3566         return target;
3567 #ifndef SQLITE_OMIT_FLOATING_POINT
3568       }else if( pLeft->op==TK_FLOAT ){
3569         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3570         codeReal(v, pLeft->u.zToken, 1, target);
3571         return target;
3572 #endif
3573       }else{
3574         tempX.op = TK_INTEGER;
3575         tempX.flags = EP_IntValue|EP_TokenOnly;
3576         tempX.u.iValue = 0;
3577         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3578         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3579         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3580         testcase( regFree2==0 );
3581       }
3582       break;
3583     }
3584     case TK_BITNOT:
3585     case TK_NOT: {
3586       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
3587       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
3588       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3589       testcase( regFree1==0 );
3590       sqlite3VdbeAddOp2(v, op, r1, inReg);
3591       break;
3592     }
3593     case TK_ISNULL:
3594     case TK_NOTNULL: {
3595       int addr;
3596       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3597       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3598       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3599       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3600       testcase( regFree1==0 );
3601       addr = sqlite3VdbeAddOp1(v, op, r1);
3602       VdbeCoverageIf(v, op==TK_ISNULL);
3603       VdbeCoverageIf(v, op==TK_NOTNULL);
3604       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3605       sqlite3VdbeJumpHere(v, addr);
3606       break;
3607     }
3608     case TK_AGG_FUNCTION: {
3609       AggInfo *pInfo = pExpr->pAggInfo;
3610       if( pInfo==0 ){
3611         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3612         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3613       }else{
3614         return pInfo->aFunc[pExpr->iAgg].iMem;
3615       }
3616       break;
3617     }
3618     case TK_FUNCTION: {
3619       ExprList *pFarg;       /* List of function arguments */
3620       int nFarg;             /* Number of function arguments */
3621       FuncDef *pDef;         /* The function definition object */
3622       const char *zId;       /* The function name */
3623       u32 constMask = 0;     /* Mask of function arguments that are constant */
3624       int i;                 /* Loop counter */
3625       sqlite3 *db = pParse->db;  /* The database connection */
3626       u8 enc = ENC(db);      /* The text encoding used by this database */
3627       CollSeq *pColl = 0;    /* A collating sequence */
3628 
3629       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
3630         /* SQL functions can be expensive. So try to move constant functions
3631         ** out of the inner loop, even if that means an extra OP_Copy. */
3632         return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
3633       }
3634       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3635       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3636         pFarg = 0;
3637       }else{
3638         pFarg = pExpr->x.pList;
3639       }
3640       nFarg = pFarg ? pFarg->nExpr : 0;
3641       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3642       zId = pExpr->u.zToken;
3643       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3644 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3645       if( pDef==0 && pParse->explain ){
3646         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3647       }
3648 #endif
3649       if( pDef==0 || pDef->xFinalize!=0 ){
3650         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3651         break;
3652       }
3653 
3654       /* Attempt a direct implementation of the built-in COALESCE() and
3655       ** IFNULL() functions.  This avoids unnecessary evaluation of
3656       ** arguments past the first non-NULL argument.
3657       */
3658       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3659         int endCoalesce = sqlite3VdbeMakeLabel(v);
3660         assert( nFarg>=2 );
3661         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3662         for(i=1; i<nFarg; i++){
3663           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3664           VdbeCoverage(v);
3665           sqlite3ExprCacheRemove(pParse, target, 1);
3666           sqlite3ExprCachePush(pParse);
3667           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3668           sqlite3ExprCachePop(pParse);
3669         }
3670         sqlite3VdbeResolveLabel(v, endCoalesce);
3671         break;
3672       }
3673 
3674       /* The UNLIKELY() function is a no-op.  The result is the value
3675       ** of the first argument.
3676       */
3677       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3678         assert( nFarg>=1 );
3679         return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3680       }
3681 
3682 #ifdef SQLITE_DEBUG
3683       /* The AFFINITY() function evaluates to a string that describes
3684       ** the type affinity of the argument.  This is used for testing of
3685       ** the SQLite type logic.
3686       */
3687       if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
3688         const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3689         char aff;
3690         assert( nFarg==1 );
3691         aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3692         sqlite3VdbeLoadString(v, target,
3693                               aff ? azAff[aff-SQLITE_AFF_BLOB] : "none");
3694         return target;
3695       }
3696 #endif
3697 
3698       for(i=0; i<nFarg; i++){
3699         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3700           testcase( i==31 );
3701           constMask |= MASKBIT32(i);
3702         }
3703         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
3704           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
3705         }
3706       }
3707       if( pFarg ){
3708         if( constMask ){
3709           r1 = pParse->nMem+1;
3710           pParse->nMem += nFarg;
3711         }else{
3712           r1 = sqlite3GetTempRange(pParse, nFarg);
3713         }
3714 
3715         /* For length() and typeof() functions with a column argument,
3716         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3717         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3718         ** loading.
3719         */
3720         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3721           u8 exprOp;
3722           assert( nFarg==1 );
3723           assert( pFarg->a[0].pExpr!=0 );
3724           exprOp = pFarg->a[0].pExpr->op;
3725           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3726             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3727             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3728             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3729             pFarg->a[0].pExpr->op2 =
3730                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3731           }
3732         }
3733 
3734         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
3735         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3736                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3737         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
3738       }else{
3739         r1 = 0;
3740       }
3741 #ifndef SQLITE_OMIT_VIRTUALTABLE
3742       /* Possibly overload the function if the first argument is
3743       ** a virtual table column.
3744       **
3745       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3746       ** second argument, not the first, as the argument to test to
3747       ** see if it is a column in a virtual table.  This is done because
3748       ** the left operand of infix functions (the operand we want to
3749       ** control overloading) ends up as the second argument to the
3750       ** function.  The expression "A glob B" is equivalent to
3751       ** "glob(B,A).  We want to use the A in "A glob B" to test
3752       ** for function overloading.  But we use the B term in "glob(B,A)".
3753       */
3754       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
3755         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3756       }else if( nFarg>0 ){
3757         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3758       }
3759 #endif
3760       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3761         if( !pColl ) pColl = db->pDfltColl;
3762         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3763       }
3764       sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target,
3765                         (char*)pDef, P4_FUNCDEF);
3766       sqlite3VdbeChangeP5(v, (u8)nFarg);
3767       if( nFarg && constMask==0 ){
3768         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3769       }
3770       return target;
3771     }
3772 #ifndef SQLITE_OMIT_SUBQUERY
3773     case TK_EXISTS:
3774     case TK_SELECT: {
3775       int nCol;
3776       testcase( op==TK_EXISTS );
3777       testcase( op==TK_SELECT );
3778       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
3779         sqlite3SubselectError(pParse, nCol, 1);
3780       }else{
3781         return sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3782       }
3783       break;
3784     }
3785     case TK_SELECT_COLUMN: {
3786       int n;
3787       if( pExpr->pLeft->iTable==0 ){
3788         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0);
3789       }
3790       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
3791       if( pExpr->iTable
3792        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
3793       ){
3794         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
3795                                 pExpr->iTable, n);
3796       }
3797       return pExpr->pLeft->iTable + pExpr->iColumn;
3798     }
3799     case TK_IN: {
3800       int destIfFalse = sqlite3VdbeMakeLabel(v);
3801       int destIfNull = sqlite3VdbeMakeLabel(v);
3802       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3803       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3804       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3805       sqlite3VdbeResolveLabel(v, destIfFalse);
3806       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3807       sqlite3VdbeResolveLabel(v, destIfNull);
3808       return target;
3809     }
3810 #endif /* SQLITE_OMIT_SUBQUERY */
3811 
3812 
3813     /*
3814     **    x BETWEEN y AND z
3815     **
3816     ** This is equivalent to
3817     **
3818     **    x>=y AND x<=z
3819     **
3820     ** X is stored in pExpr->pLeft.
3821     ** Y is stored in pExpr->pList->a[0].pExpr.
3822     ** Z is stored in pExpr->pList->a[1].pExpr.
3823     */
3824     case TK_BETWEEN: {
3825       exprCodeBetween(pParse, pExpr, target, 0, 0);
3826       return target;
3827     }
3828     case TK_SPAN:
3829     case TK_COLLATE:
3830     case TK_UPLUS: {
3831       return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3832     }
3833 
3834     case TK_TRIGGER: {
3835       /* If the opcode is TK_TRIGGER, then the expression is a reference
3836       ** to a column in the new.* or old.* pseudo-tables available to
3837       ** trigger programs. In this case Expr.iTable is set to 1 for the
3838       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3839       ** is set to the column of the pseudo-table to read, or to -1 to
3840       ** read the rowid field.
3841       **
3842       ** The expression is implemented using an OP_Param opcode. The p1
3843       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3844       ** to reference another column of the old.* pseudo-table, where
3845       ** i is the index of the column. For a new.rowid reference, p1 is
3846       ** set to (n+1), where n is the number of columns in each pseudo-table.
3847       ** For a reference to any other column in the new.* pseudo-table, p1
3848       ** is set to (n+2+i), where n and i are as defined previously. For
3849       ** example, if the table on which triggers are being fired is
3850       ** declared as:
3851       **
3852       **   CREATE TABLE t1(a, b);
3853       **
3854       ** Then p1 is interpreted as follows:
3855       **
3856       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3857       **   p1==1   ->    old.a         p1==4   ->    new.a
3858       **   p1==2   ->    old.b         p1==5   ->    new.b
3859       */
3860       Table *pTab = pExpr->pTab;
3861       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3862 
3863       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3864       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3865       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3866       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3867 
3868       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3869       VdbeComment((v, "%s.%s -> $%d",
3870         (pExpr->iTable ? "new" : "old"),
3871         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3872         target
3873       ));
3874 
3875 #ifndef SQLITE_OMIT_FLOATING_POINT
3876       /* If the column has REAL affinity, it may currently be stored as an
3877       ** integer. Use OP_RealAffinity to make sure it is really real.
3878       **
3879       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3880       ** floating point when extracting it from the record.  */
3881       if( pExpr->iColumn>=0
3882        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3883       ){
3884         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3885       }
3886 #endif
3887       break;
3888     }
3889 
3890     case TK_VECTOR: {
3891       sqlite3ErrorMsg(pParse, "row value misused");
3892       break;
3893     }
3894 
3895     /*
3896     ** Form A:
3897     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3898     **
3899     ** Form B:
3900     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3901     **
3902     ** Form A is can be transformed into the equivalent form B as follows:
3903     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3904     **        WHEN x=eN THEN rN ELSE y END
3905     **
3906     ** X (if it exists) is in pExpr->pLeft.
3907     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3908     ** odd.  The Y is also optional.  If the number of elements in x.pList
3909     ** is even, then Y is omitted and the "otherwise" result is NULL.
3910     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3911     **
3912     ** The result of the expression is the Ri for the first matching Ei,
3913     ** or if there is no matching Ei, the ELSE term Y, or if there is
3914     ** no ELSE term, NULL.
3915     */
3916     default: assert( op==TK_CASE ); {
3917       int endLabel;                     /* GOTO label for end of CASE stmt */
3918       int nextCase;                     /* GOTO label for next WHEN clause */
3919       int nExpr;                        /* 2x number of WHEN terms */
3920       int i;                            /* Loop counter */
3921       ExprList *pEList;                 /* List of WHEN terms */
3922       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3923       Expr opCompare;                   /* The X==Ei expression */
3924       Expr *pX;                         /* The X expression */
3925       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3926       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
3927 
3928       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3929       assert(pExpr->x.pList->nExpr > 0);
3930       pEList = pExpr->x.pList;
3931       aListelem = pEList->a;
3932       nExpr = pEList->nExpr;
3933       endLabel = sqlite3VdbeMakeLabel(v);
3934       if( (pX = pExpr->pLeft)!=0 ){
3935         tempX = *pX;
3936         testcase( pX->op==TK_COLUMN );
3937         exprToRegister(&tempX, exprCodeVector(pParse, &tempX, &regFree1));
3938         testcase( regFree1==0 );
3939         memset(&opCompare, 0, sizeof(opCompare));
3940         opCompare.op = TK_EQ;
3941         opCompare.pLeft = &tempX;
3942         pTest = &opCompare;
3943         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3944         ** The value in regFree1 might get SCopy-ed into the file result.
3945         ** So make sure that the regFree1 register is not reused for other
3946         ** purposes and possibly overwritten.  */
3947         regFree1 = 0;
3948       }
3949       for(i=0; i<nExpr-1; i=i+2){
3950         sqlite3ExprCachePush(pParse);
3951         if( pX ){
3952           assert( pTest!=0 );
3953           opCompare.pRight = aListelem[i].pExpr;
3954         }else{
3955           pTest = aListelem[i].pExpr;
3956         }
3957         nextCase = sqlite3VdbeMakeLabel(v);
3958         testcase( pTest->op==TK_COLUMN );
3959         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3960         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3961         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3962         sqlite3VdbeGoto(v, endLabel);
3963         sqlite3ExprCachePop(pParse);
3964         sqlite3VdbeResolveLabel(v, nextCase);
3965       }
3966       if( (nExpr&1)!=0 ){
3967         sqlite3ExprCachePush(pParse);
3968         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3969         sqlite3ExprCachePop(pParse);
3970       }else{
3971         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3972       }
3973       assert( pParse->db->mallocFailed || pParse->nErr>0
3974            || pParse->iCacheLevel==iCacheLevel );
3975       sqlite3VdbeResolveLabel(v, endLabel);
3976       break;
3977     }
3978 #ifndef SQLITE_OMIT_TRIGGER
3979     case TK_RAISE: {
3980       assert( pExpr->affinity==OE_Rollback
3981            || pExpr->affinity==OE_Abort
3982            || pExpr->affinity==OE_Fail
3983            || pExpr->affinity==OE_Ignore
3984       );
3985       if( !pParse->pTriggerTab ){
3986         sqlite3ErrorMsg(pParse,
3987                        "RAISE() may only be used within a trigger-program");
3988         return 0;
3989       }
3990       if( pExpr->affinity==OE_Abort ){
3991         sqlite3MayAbort(pParse);
3992       }
3993       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3994       if( pExpr->affinity==OE_Ignore ){
3995         sqlite3VdbeAddOp4(
3996             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3997         VdbeCoverage(v);
3998       }else{
3999         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4000                               pExpr->affinity, pExpr->u.zToken, 0, 0);
4001       }
4002 
4003       break;
4004     }
4005 #endif
4006   }
4007   sqlite3ReleaseTempReg(pParse, regFree1);
4008   sqlite3ReleaseTempReg(pParse, regFree2);
4009   return inReg;
4010 }
4011 
4012 /*
4013 ** Factor out the code of the given expression to initialization time.
4014 **
4015 ** If regDest>=0 then the result is always stored in that register and the
4016 ** result is not reusable.  If regDest<0 then this routine is free to
4017 ** store the value whereever it wants.  The register where the expression
4018 ** is stored is returned.  When regDest<0, two identical expressions will
4019 ** code to the same register.
4020 */
4021 int sqlite3ExprCodeAtInit(
4022   Parse *pParse,    /* Parsing context */
4023   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4024   int regDest       /* Store the value in this register */
4025 ){
4026   ExprList *p;
4027   assert( ConstFactorOk(pParse) );
4028   p = pParse->pConstExpr;
4029   if( regDest<0 && p ){
4030     struct ExprList_item *pItem;
4031     int i;
4032     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4033       if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
4034         return pItem->u.iConstExprReg;
4035       }
4036     }
4037   }
4038   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4039   p = sqlite3ExprListAppend(pParse, p, pExpr);
4040   if( p ){
4041      struct ExprList_item *pItem = &p->a[p->nExpr-1];
4042      pItem->reusable = regDest<0;
4043      if( regDest<0 ) regDest = ++pParse->nMem;
4044      pItem->u.iConstExprReg = regDest;
4045   }
4046   pParse->pConstExpr = p;
4047   return regDest;
4048 }
4049 
4050 /*
4051 ** Generate code to evaluate an expression and store the results
4052 ** into a register.  Return the register number where the results
4053 ** are stored.
4054 **
4055 ** If the register is a temporary register that can be deallocated,
4056 ** then write its number into *pReg.  If the result register is not
4057 ** a temporary, then set *pReg to zero.
4058 **
4059 ** If pExpr is a constant, then this routine might generate this
4060 ** code to fill the register in the initialization section of the
4061 ** VDBE program, in order to factor it out of the evaluation loop.
4062 */
4063 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4064   int r2;
4065   pExpr = sqlite3ExprSkipCollate(pExpr);
4066   if( ConstFactorOk(pParse)
4067    && pExpr->op!=TK_REGISTER
4068    && sqlite3ExprIsConstantNotJoin(pExpr)
4069   ){
4070     *pReg  = 0;
4071     r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4072   }else{
4073     int r1 = sqlite3GetTempReg(pParse);
4074     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4075     if( r2==r1 ){
4076       *pReg = r1;
4077     }else{
4078       sqlite3ReleaseTempReg(pParse, r1);
4079       *pReg = 0;
4080     }
4081   }
4082   return r2;
4083 }
4084 
4085 /*
4086 ** Generate code that will evaluate expression pExpr and store the
4087 ** results in register target.  The results are guaranteed to appear
4088 ** in register target.
4089 */
4090 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4091   int inReg;
4092 
4093   assert( target>0 && target<=pParse->nMem );
4094   if( pExpr && pExpr->op==TK_REGISTER ){
4095     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
4096   }else{
4097     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4098     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4099     if( inReg!=target && pParse->pVdbe ){
4100       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4101     }
4102   }
4103 }
4104 
4105 /*
4106 ** Make a transient copy of expression pExpr and then code it using
4107 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4108 ** except that the input expression is guaranteed to be unchanged.
4109 */
4110 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4111   sqlite3 *db = pParse->db;
4112   pExpr = sqlite3ExprDup(db, pExpr, 0);
4113   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4114   sqlite3ExprDelete(db, pExpr);
4115 }
4116 
4117 /*
4118 ** Generate code that will evaluate expression pExpr and store the
4119 ** results in register target.  The results are guaranteed to appear
4120 ** in register target.  If the expression is constant, then this routine
4121 ** might choose to code the expression at initialization time.
4122 */
4123 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4124   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
4125     sqlite3ExprCodeAtInit(pParse, pExpr, target);
4126   }else{
4127     sqlite3ExprCode(pParse, pExpr, target);
4128   }
4129 }
4130 
4131 /*
4132 ** Generate code that evaluates the given expression and puts the result
4133 ** in register target.
4134 **
4135 ** Also make a copy of the expression results into another "cache" register
4136 ** and modify the expression so that the next time it is evaluated,
4137 ** the result is a copy of the cache register.
4138 **
4139 ** This routine is used for expressions that are used multiple
4140 ** times.  They are evaluated once and the results of the expression
4141 ** are reused.
4142 */
4143 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
4144   Vdbe *v = pParse->pVdbe;
4145   int iMem;
4146 
4147   assert( target>0 );
4148   assert( pExpr->op!=TK_REGISTER );
4149   sqlite3ExprCode(pParse, pExpr, target);
4150   iMem = ++pParse->nMem;
4151   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
4152   exprToRegister(pExpr, iMem);
4153 }
4154 
4155 /*
4156 ** Generate code that pushes the value of every element of the given
4157 ** expression list into a sequence of registers beginning at target.
4158 **
4159 ** Return the number of elements evaluated.
4160 **
4161 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4162 ** filled using OP_SCopy.  OP_Copy must be used instead.
4163 **
4164 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4165 ** factored out into initialization code.
4166 **
4167 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4168 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4169 ** in registers at srcReg, and so the value can be copied from there.
4170 */
4171 int sqlite3ExprCodeExprList(
4172   Parse *pParse,     /* Parsing context */
4173   ExprList *pList,   /* The expression list to be coded */
4174   int target,        /* Where to write results */
4175   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4176   u8 flags           /* SQLITE_ECEL_* flags */
4177 ){
4178   struct ExprList_item *pItem;
4179   int i, j, n;
4180   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4181   Vdbe *v = pParse->pVdbe;
4182   assert( pList!=0 );
4183   assert( target>0 );
4184   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4185   n = pList->nExpr;
4186   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4187   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4188     Expr *pExpr = pItem->pExpr;
4189     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4190       if( flags & SQLITE_ECEL_OMITREF ){
4191         i--;
4192         n--;
4193       }else{
4194         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4195       }
4196     }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
4197       sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4198     }else{
4199       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4200       if( inReg!=target+i ){
4201         VdbeOp *pOp;
4202         if( copyOp==OP_Copy
4203          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4204          && pOp->p1+pOp->p3+1==inReg
4205          && pOp->p2+pOp->p3+1==target+i
4206         ){
4207           pOp->p3++;
4208         }else{
4209           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4210         }
4211       }
4212     }
4213   }
4214   return n;
4215 }
4216 
4217 /*
4218 ** Generate code for a BETWEEN operator.
4219 **
4220 **    x BETWEEN y AND z
4221 **
4222 ** The above is equivalent to
4223 **
4224 **    x>=y AND x<=z
4225 **
4226 ** Code it as such, taking care to do the common subexpression
4227 ** elimination of x.
4228 **
4229 ** The xJumpIf parameter determines details:
4230 **
4231 **    NULL:                   Store the boolean result in reg[dest]
4232 **    sqlite3ExprIfTrue:      Jump to dest if true
4233 **    sqlite3ExprIfFalse:     Jump to dest if false
4234 **
4235 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4236 */
4237 static void exprCodeBetween(
4238   Parse *pParse,    /* Parsing and code generating context */
4239   Expr *pExpr,      /* The BETWEEN expression */
4240   int dest,         /* Jump destination or storage location */
4241   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4242   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4243 ){
4244  Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4245   Expr compLeft;    /* The  x>=y  term */
4246   Expr compRight;   /* The  x<=z  term */
4247   Expr exprX;       /* The  x  subexpression */
4248   int regFree1 = 0; /* Temporary use register */
4249 
4250 
4251   memset(&compLeft, 0, sizeof(Expr));
4252   memset(&compRight, 0, sizeof(Expr));
4253   memset(&exprAnd, 0, sizeof(Expr));
4254 
4255   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4256   exprX = *pExpr->pLeft;
4257   exprAnd.op = TK_AND;
4258   exprAnd.pLeft = &compLeft;
4259   exprAnd.pRight = &compRight;
4260   compLeft.op = TK_GE;
4261   compLeft.pLeft = &exprX;
4262   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4263   compRight.op = TK_LE;
4264   compRight.pLeft = &exprX;
4265   compRight.pRight = pExpr->x.pList->a[1].pExpr;
4266   exprToRegister(&exprX, exprCodeVector(pParse, &exprX, &regFree1));
4267   if( xJump ){
4268     xJump(pParse, &exprAnd, dest, jumpIfNull);
4269   }else{
4270     /* Mark the expression is being from the ON or USING clause of a join
4271     ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4272     ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4273     ** for clarity, but we are out of bits in the Expr.flags field so we
4274     ** have to reuse the EP_FromJoin bit.  Bummer. */
4275     exprX.flags |= EP_FromJoin;
4276     sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4277   }
4278   sqlite3ReleaseTempReg(pParse, regFree1);
4279 
4280   /* Ensure adequate test coverage */
4281   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4282   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4283   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4284   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4285   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4286   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4287   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4288   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4289   testcase( xJump==0 );
4290 }
4291 
4292 /*
4293 ** Generate code for a boolean expression such that a jump is made
4294 ** to the label "dest" if the expression is true but execution
4295 ** continues straight thru if the expression is false.
4296 **
4297 ** If the expression evaluates to NULL (neither true nor false), then
4298 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4299 **
4300 ** This code depends on the fact that certain token values (ex: TK_EQ)
4301 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4302 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4303 ** the make process cause these values to align.  Assert()s in the code
4304 ** below verify that the numbers are aligned correctly.
4305 */
4306 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4307   Vdbe *v = pParse->pVdbe;
4308   int op = 0;
4309   int regFree1 = 0;
4310   int regFree2 = 0;
4311   int r1, r2;
4312 
4313   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4314   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4315   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4316   op = pExpr->op;
4317   switch( op ){
4318     case TK_AND: {
4319       int d2 = sqlite3VdbeMakeLabel(v);
4320       testcase( jumpIfNull==0 );
4321       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
4322       sqlite3ExprCachePush(pParse);
4323       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4324       sqlite3VdbeResolveLabel(v, d2);
4325       sqlite3ExprCachePop(pParse);
4326       break;
4327     }
4328     case TK_OR: {
4329       testcase( jumpIfNull==0 );
4330       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4331       sqlite3ExprCachePush(pParse);
4332       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4333       sqlite3ExprCachePop(pParse);
4334       break;
4335     }
4336     case TK_NOT: {
4337       testcase( jumpIfNull==0 );
4338       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4339       break;
4340     }
4341     case TK_IS:
4342     case TK_ISNOT:
4343       testcase( op==TK_IS );
4344       testcase( op==TK_ISNOT );
4345       op = (op==TK_IS) ? TK_EQ : TK_NE;
4346       jumpIfNull = SQLITE_NULLEQ;
4347       /* Fall thru */
4348     case TK_LT:
4349     case TK_LE:
4350     case TK_GT:
4351     case TK_GE:
4352     case TK_NE:
4353     case TK_EQ: {
4354       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4355       testcase( jumpIfNull==0 );
4356       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4357       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4358       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4359                   r1, r2, dest, jumpIfNull);
4360       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4361       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4362       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4363       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4364       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4365       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4366       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4367       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4368       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4369       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4370       testcase( regFree1==0 );
4371       testcase( regFree2==0 );
4372       break;
4373     }
4374     case TK_ISNULL:
4375     case TK_NOTNULL: {
4376       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4377       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4378       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4379       sqlite3VdbeAddOp2(v, op, r1, dest);
4380       VdbeCoverageIf(v, op==TK_ISNULL);
4381       VdbeCoverageIf(v, op==TK_NOTNULL);
4382       testcase( regFree1==0 );
4383       break;
4384     }
4385     case TK_BETWEEN: {
4386       testcase( jumpIfNull==0 );
4387       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4388       break;
4389     }
4390 #ifndef SQLITE_OMIT_SUBQUERY
4391     case TK_IN: {
4392       int destIfFalse = sqlite3VdbeMakeLabel(v);
4393       int destIfNull = jumpIfNull ? dest : destIfFalse;
4394       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4395       sqlite3VdbeGoto(v, dest);
4396       sqlite3VdbeResolveLabel(v, destIfFalse);
4397       break;
4398     }
4399 #endif
4400     default: {
4401     default_expr:
4402       if( exprAlwaysTrue(pExpr) ){
4403         sqlite3VdbeGoto(v, dest);
4404       }else if( exprAlwaysFalse(pExpr) ){
4405         /* No-op */
4406       }else{
4407         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4408         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4409         VdbeCoverage(v);
4410         testcase( regFree1==0 );
4411         testcase( jumpIfNull==0 );
4412       }
4413       break;
4414     }
4415   }
4416   sqlite3ReleaseTempReg(pParse, regFree1);
4417   sqlite3ReleaseTempReg(pParse, regFree2);
4418 }
4419 
4420 /*
4421 ** Generate code for a boolean expression such that a jump is made
4422 ** to the label "dest" if the expression is false but execution
4423 ** continues straight thru if the expression is true.
4424 **
4425 ** If the expression evaluates to NULL (neither true nor false) then
4426 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4427 ** is 0.
4428 */
4429 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4430   Vdbe *v = pParse->pVdbe;
4431   int op = 0;
4432   int regFree1 = 0;
4433   int regFree2 = 0;
4434   int r1, r2;
4435 
4436   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4437   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4438   if( pExpr==0 )    return;
4439 
4440   /* The value of pExpr->op and op are related as follows:
4441   **
4442   **       pExpr->op            op
4443   **       ---------          ----------
4444   **       TK_ISNULL          OP_NotNull
4445   **       TK_NOTNULL         OP_IsNull
4446   **       TK_NE              OP_Eq
4447   **       TK_EQ              OP_Ne
4448   **       TK_GT              OP_Le
4449   **       TK_LE              OP_Gt
4450   **       TK_GE              OP_Lt
4451   **       TK_LT              OP_Ge
4452   **
4453   ** For other values of pExpr->op, op is undefined and unused.
4454   ** The value of TK_ and OP_ constants are arranged such that we
4455   ** can compute the mapping above using the following expression.
4456   ** Assert()s verify that the computation is correct.
4457   */
4458   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4459 
4460   /* Verify correct alignment of TK_ and OP_ constants
4461   */
4462   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4463   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4464   assert( pExpr->op!=TK_NE || op==OP_Eq );
4465   assert( pExpr->op!=TK_EQ || op==OP_Ne );
4466   assert( pExpr->op!=TK_LT || op==OP_Ge );
4467   assert( pExpr->op!=TK_LE || op==OP_Gt );
4468   assert( pExpr->op!=TK_GT || op==OP_Le );
4469   assert( pExpr->op!=TK_GE || op==OP_Lt );
4470 
4471   switch( pExpr->op ){
4472     case TK_AND: {
4473       testcase( jumpIfNull==0 );
4474       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4475       sqlite3ExprCachePush(pParse);
4476       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4477       sqlite3ExprCachePop(pParse);
4478       break;
4479     }
4480     case TK_OR: {
4481       int d2 = sqlite3VdbeMakeLabel(v);
4482       testcase( jumpIfNull==0 );
4483       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
4484       sqlite3ExprCachePush(pParse);
4485       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4486       sqlite3VdbeResolveLabel(v, d2);
4487       sqlite3ExprCachePop(pParse);
4488       break;
4489     }
4490     case TK_NOT: {
4491       testcase( jumpIfNull==0 );
4492       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4493       break;
4494     }
4495     case TK_IS:
4496     case TK_ISNOT:
4497       testcase( pExpr->op==TK_IS );
4498       testcase( pExpr->op==TK_ISNOT );
4499       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4500       jumpIfNull = SQLITE_NULLEQ;
4501       /* Fall thru */
4502     case TK_LT:
4503     case TK_LE:
4504     case TK_GT:
4505     case TK_GE:
4506     case TK_NE:
4507     case TK_EQ: {
4508       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4509       testcase( jumpIfNull==0 );
4510       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4511       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4512       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4513                   r1, r2, dest, jumpIfNull);
4514       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4515       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4516       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4517       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4518       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4519       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4520       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4521       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4522       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4523       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4524       testcase( regFree1==0 );
4525       testcase( regFree2==0 );
4526       break;
4527     }
4528     case TK_ISNULL:
4529     case TK_NOTNULL: {
4530       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4531       sqlite3VdbeAddOp2(v, op, r1, dest);
4532       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
4533       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
4534       testcase( regFree1==0 );
4535       break;
4536     }
4537     case TK_BETWEEN: {
4538       testcase( jumpIfNull==0 );
4539       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4540       break;
4541     }
4542 #ifndef SQLITE_OMIT_SUBQUERY
4543     case TK_IN: {
4544       if( jumpIfNull ){
4545         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4546       }else{
4547         int destIfNull = sqlite3VdbeMakeLabel(v);
4548         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4549         sqlite3VdbeResolveLabel(v, destIfNull);
4550       }
4551       break;
4552     }
4553 #endif
4554     default: {
4555     default_expr:
4556       if( exprAlwaysFalse(pExpr) ){
4557         sqlite3VdbeGoto(v, dest);
4558       }else if( exprAlwaysTrue(pExpr) ){
4559         /* no-op */
4560       }else{
4561         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4562         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4563         VdbeCoverage(v);
4564         testcase( regFree1==0 );
4565         testcase( jumpIfNull==0 );
4566       }
4567       break;
4568     }
4569   }
4570   sqlite3ReleaseTempReg(pParse, regFree1);
4571   sqlite3ReleaseTempReg(pParse, regFree2);
4572 }
4573 
4574 /*
4575 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4576 ** code generation, and that copy is deleted after code generation. This
4577 ** ensures that the original pExpr is unchanged.
4578 */
4579 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4580   sqlite3 *db = pParse->db;
4581   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4582   if( db->mallocFailed==0 ){
4583     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4584   }
4585   sqlite3ExprDelete(db, pCopy);
4586 }
4587 
4588 
4589 /*
4590 ** Do a deep comparison of two expression trees.  Return 0 if the two
4591 ** expressions are completely identical.  Return 1 if they differ only
4592 ** by a COLLATE operator at the top level.  Return 2 if there are differences
4593 ** other than the top-level COLLATE operator.
4594 **
4595 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4596 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4597 **
4598 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
4599 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4600 **
4601 ** Sometimes this routine will return 2 even if the two expressions
4602 ** really are equivalent.  If we cannot prove that the expressions are
4603 ** identical, we return 2 just to be safe.  So if this routine
4604 ** returns 2, then you do not really know for certain if the two
4605 ** expressions are the same.  But if you get a 0 or 1 return, then you
4606 ** can be sure the expressions are the same.  In the places where
4607 ** this routine is used, it does not hurt to get an extra 2 - that
4608 ** just might result in some slightly slower code.  But returning
4609 ** an incorrect 0 or 1 could lead to a malfunction.
4610 */
4611 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
4612   u32 combinedFlags;
4613   if( pA==0 || pB==0 ){
4614     return pB==pA ? 0 : 2;
4615   }
4616   combinedFlags = pA->flags | pB->flags;
4617   if( combinedFlags & EP_IntValue ){
4618     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
4619       return 0;
4620     }
4621     return 2;
4622   }
4623   if( pA->op!=pB->op ){
4624     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
4625       return 1;
4626     }
4627     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
4628       return 1;
4629     }
4630     return 2;
4631   }
4632   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
4633     if( pA->op==TK_FUNCTION ){
4634       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4635     }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4636       return pA->op==TK_COLLATE ? 1 : 2;
4637     }
4638   }
4639   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4640   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
4641     if( combinedFlags & EP_xIsSelect ) return 2;
4642     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
4643     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
4644     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4645     if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){
4646       if( pA->iColumn!=pB->iColumn ) return 2;
4647       if( pA->iTable!=pB->iTable
4648        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4649     }
4650   }
4651   return 0;
4652 }
4653 
4654 /*
4655 ** Compare two ExprList objects.  Return 0 if they are identical and
4656 ** non-zero if they differ in any way.
4657 **
4658 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4659 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4660 **
4661 ** This routine might return non-zero for equivalent ExprLists.  The
4662 ** only consequence will be disabled optimizations.  But this routine
4663 ** must never return 0 if the two ExprList objects are different, or
4664 ** a malfunction will result.
4665 **
4666 ** Two NULL pointers are considered to be the same.  But a NULL pointer
4667 ** always differs from a non-NULL pointer.
4668 */
4669 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4670   int i;
4671   if( pA==0 && pB==0 ) return 0;
4672   if( pA==0 || pB==0 ) return 1;
4673   if( pA->nExpr!=pB->nExpr ) return 1;
4674   for(i=0; i<pA->nExpr; i++){
4675     Expr *pExprA = pA->a[i].pExpr;
4676     Expr *pExprB = pB->a[i].pExpr;
4677     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4678     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
4679   }
4680   return 0;
4681 }
4682 
4683 /*
4684 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
4685 ** are ignored.
4686 */
4687 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
4688   return sqlite3ExprCompare(
4689              sqlite3ExprSkipCollate(pA),
4690              sqlite3ExprSkipCollate(pB),
4691              iTab);
4692 }
4693 
4694 /*
4695 ** Return true if we can prove the pE2 will always be true if pE1 is
4696 ** true.  Return false if we cannot complete the proof or if pE2 might
4697 ** be false.  Examples:
4698 **
4699 **     pE1: x==5       pE2: x==5             Result: true
4700 **     pE1: x>0        pE2: x==5             Result: false
4701 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
4702 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
4703 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
4704 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
4705 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
4706 **
4707 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
4708 ** Expr.iTable<0 then assume a table number given by iTab.
4709 **
4710 ** When in doubt, return false.  Returning true might give a performance
4711 ** improvement.  Returning false might cause a performance reduction, but
4712 ** it will always give the correct answer and is hence always safe.
4713 */
4714 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
4715   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
4716     return 1;
4717   }
4718   if( pE2->op==TK_OR
4719    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
4720              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
4721   ){
4722     return 1;
4723   }
4724   if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){
4725     Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft);
4726     testcase( pX!=pE1->pLeft );
4727     if( sqlite3ExprCompare(pX, pE2->pLeft, iTab)==0 ) return 1;
4728   }
4729   return 0;
4730 }
4731 
4732 /*
4733 ** An instance of the following structure is used by the tree walker
4734 ** to determine if an expression can be evaluated by reference to the
4735 ** index only, without having to do a search for the corresponding
4736 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
4737 ** is the cursor for the table.
4738 */
4739 struct IdxCover {
4740   Index *pIdx;     /* The index to be tested for coverage */
4741   int iCur;        /* Cursor number for the table corresponding to the index */
4742 };
4743 
4744 /*
4745 ** Check to see if there are references to columns in table
4746 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
4747 ** pWalker->u.pIdxCover->pIdx.
4748 */
4749 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
4750   if( pExpr->op==TK_COLUMN
4751    && pExpr->iTable==pWalker->u.pIdxCover->iCur
4752    && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
4753   ){
4754     pWalker->eCode = 1;
4755     return WRC_Abort;
4756   }
4757   return WRC_Continue;
4758 }
4759 
4760 /*
4761 ** Determine if an index pIdx on table with cursor iCur contains will
4762 ** the expression pExpr.  Return true if the index does cover the
4763 ** expression and false if the pExpr expression references table columns
4764 ** that are not found in the index pIdx.
4765 **
4766 ** An index covering an expression means that the expression can be
4767 ** evaluated using only the index and without having to lookup the
4768 ** corresponding table entry.
4769 */
4770 int sqlite3ExprCoveredByIndex(
4771   Expr *pExpr,        /* The index to be tested */
4772   int iCur,           /* The cursor number for the corresponding table */
4773   Index *pIdx         /* The index that might be used for coverage */
4774 ){
4775   Walker w;
4776   struct IdxCover xcov;
4777   memset(&w, 0, sizeof(w));
4778   xcov.iCur = iCur;
4779   xcov.pIdx = pIdx;
4780   w.xExprCallback = exprIdxCover;
4781   w.u.pIdxCover = &xcov;
4782   sqlite3WalkExpr(&w, pExpr);
4783   return !w.eCode;
4784 }
4785 
4786 
4787 /*
4788 ** An instance of the following structure is used by the tree walker
4789 ** to count references to table columns in the arguments of an
4790 ** aggregate function, in order to implement the
4791 ** sqlite3FunctionThisSrc() routine.
4792 */
4793 struct SrcCount {
4794   SrcList *pSrc;   /* One particular FROM clause in a nested query */
4795   int nThis;       /* Number of references to columns in pSrcList */
4796   int nOther;      /* Number of references to columns in other FROM clauses */
4797 };
4798 
4799 /*
4800 ** Count the number of references to columns.
4801 */
4802 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
4803   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
4804   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
4805   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
4806   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
4807   ** NEVER() will need to be removed. */
4808   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
4809     int i;
4810     struct SrcCount *p = pWalker->u.pSrcCount;
4811     SrcList *pSrc = p->pSrc;
4812     int nSrc = pSrc ? pSrc->nSrc : 0;
4813     for(i=0; i<nSrc; i++){
4814       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
4815     }
4816     if( i<nSrc ){
4817       p->nThis++;
4818     }else{
4819       p->nOther++;
4820     }
4821   }
4822   return WRC_Continue;
4823 }
4824 
4825 /*
4826 ** Determine if any of the arguments to the pExpr Function reference
4827 ** pSrcList.  Return true if they do.  Also return true if the function
4828 ** has no arguments or has only constant arguments.  Return false if pExpr
4829 ** references columns but not columns of tables found in pSrcList.
4830 */
4831 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
4832   Walker w;
4833   struct SrcCount cnt;
4834   assert( pExpr->op==TK_AGG_FUNCTION );
4835   memset(&w, 0, sizeof(w));
4836   w.xExprCallback = exprSrcCount;
4837   w.u.pSrcCount = &cnt;
4838   cnt.pSrc = pSrcList;
4839   cnt.nThis = 0;
4840   cnt.nOther = 0;
4841   sqlite3WalkExprList(&w, pExpr->x.pList);
4842   return cnt.nThis>0 || cnt.nOther==0;
4843 }
4844 
4845 /*
4846 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
4847 ** the new element.  Return a negative number if malloc fails.
4848 */
4849 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
4850   int i;
4851   pInfo->aCol = sqlite3ArrayAllocate(
4852        db,
4853        pInfo->aCol,
4854        sizeof(pInfo->aCol[0]),
4855        &pInfo->nColumn,
4856        &i
4857   );
4858   return i;
4859 }
4860 
4861 /*
4862 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
4863 ** the new element.  Return a negative number if malloc fails.
4864 */
4865 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
4866   int i;
4867   pInfo->aFunc = sqlite3ArrayAllocate(
4868        db,
4869        pInfo->aFunc,
4870        sizeof(pInfo->aFunc[0]),
4871        &pInfo->nFunc,
4872        &i
4873   );
4874   return i;
4875 }
4876 
4877 /*
4878 ** This is the xExprCallback for a tree walker.  It is used to
4879 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
4880 ** for additional information.
4881 */
4882 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4883   int i;
4884   NameContext *pNC = pWalker->u.pNC;
4885   Parse *pParse = pNC->pParse;
4886   SrcList *pSrcList = pNC->pSrcList;
4887   AggInfo *pAggInfo = pNC->pAggInfo;
4888 
4889   switch( pExpr->op ){
4890     case TK_AGG_COLUMN:
4891     case TK_COLUMN: {
4892       testcase( pExpr->op==TK_AGG_COLUMN );
4893       testcase( pExpr->op==TK_COLUMN );
4894       /* Check to see if the column is in one of the tables in the FROM
4895       ** clause of the aggregate query */
4896       if( ALWAYS(pSrcList!=0) ){
4897         struct SrcList_item *pItem = pSrcList->a;
4898         for(i=0; i<pSrcList->nSrc; i++, pItem++){
4899           struct AggInfo_col *pCol;
4900           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4901           if( pExpr->iTable==pItem->iCursor ){
4902             /* If we reach this point, it means that pExpr refers to a table
4903             ** that is in the FROM clause of the aggregate query.
4904             **
4905             ** Make an entry for the column in pAggInfo->aCol[] if there
4906             ** is not an entry there already.
4907             */
4908             int k;
4909             pCol = pAggInfo->aCol;
4910             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4911               if( pCol->iTable==pExpr->iTable &&
4912                   pCol->iColumn==pExpr->iColumn ){
4913                 break;
4914               }
4915             }
4916             if( (k>=pAggInfo->nColumn)
4917              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4918             ){
4919               pCol = &pAggInfo->aCol[k];
4920               pCol->pTab = pExpr->pTab;
4921               pCol->iTable = pExpr->iTable;
4922               pCol->iColumn = pExpr->iColumn;
4923               pCol->iMem = ++pParse->nMem;
4924               pCol->iSorterColumn = -1;
4925               pCol->pExpr = pExpr;
4926               if( pAggInfo->pGroupBy ){
4927                 int j, n;
4928                 ExprList *pGB = pAggInfo->pGroupBy;
4929                 struct ExprList_item *pTerm = pGB->a;
4930                 n = pGB->nExpr;
4931                 for(j=0; j<n; j++, pTerm++){
4932                   Expr *pE = pTerm->pExpr;
4933                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4934                       pE->iColumn==pExpr->iColumn ){
4935                     pCol->iSorterColumn = j;
4936                     break;
4937                   }
4938                 }
4939               }
4940               if( pCol->iSorterColumn<0 ){
4941                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4942               }
4943             }
4944             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4945             ** because it was there before or because we just created it).
4946             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4947             ** pAggInfo->aCol[] entry.
4948             */
4949             ExprSetVVAProperty(pExpr, EP_NoReduce);
4950             pExpr->pAggInfo = pAggInfo;
4951             pExpr->op = TK_AGG_COLUMN;
4952             pExpr->iAgg = (i16)k;
4953             break;
4954           } /* endif pExpr->iTable==pItem->iCursor */
4955         } /* end loop over pSrcList */
4956       }
4957       return WRC_Prune;
4958     }
4959     case TK_AGG_FUNCTION: {
4960       if( (pNC->ncFlags & NC_InAggFunc)==0
4961        && pWalker->walkerDepth==pExpr->op2
4962       ){
4963         /* Check to see if pExpr is a duplicate of another aggregate
4964         ** function that is already in the pAggInfo structure
4965         */
4966         struct AggInfo_func *pItem = pAggInfo->aFunc;
4967         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4968           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4969             break;
4970           }
4971         }
4972         if( i>=pAggInfo->nFunc ){
4973           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4974           */
4975           u8 enc = ENC(pParse->db);
4976           i = addAggInfoFunc(pParse->db, pAggInfo);
4977           if( i>=0 ){
4978             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4979             pItem = &pAggInfo->aFunc[i];
4980             pItem->pExpr = pExpr;
4981             pItem->iMem = ++pParse->nMem;
4982             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4983             pItem->pFunc = sqlite3FindFunction(pParse->db,
4984                    pExpr->u.zToken,
4985                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4986             if( pExpr->flags & EP_Distinct ){
4987               pItem->iDistinct = pParse->nTab++;
4988             }else{
4989               pItem->iDistinct = -1;
4990             }
4991           }
4992         }
4993         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4994         */
4995         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4996         ExprSetVVAProperty(pExpr, EP_NoReduce);
4997         pExpr->iAgg = (i16)i;
4998         pExpr->pAggInfo = pAggInfo;
4999         return WRC_Prune;
5000       }else{
5001         return WRC_Continue;
5002       }
5003     }
5004   }
5005   return WRC_Continue;
5006 }
5007 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5008   UNUSED_PARAMETER(pWalker);
5009   UNUSED_PARAMETER(pSelect);
5010   return WRC_Continue;
5011 }
5012 
5013 /*
5014 ** Analyze the pExpr expression looking for aggregate functions and
5015 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5016 ** points to.  Additional entries are made on the AggInfo object as
5017 ** necessary.
5018 **
5019 ** This routine should only be called after the expression has been
5020 ** analyzed by sqlite3ResolveExprNames().
5021 */
5022 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5023   Walker w;
5024   memset(&w, 0, sizeof(w));
5025   w.xExprCallback = analyzeAggregate;
5026   w.xSelectCallback = analyzeAggregatesInSelect;
5027   w.u.pNC = pNC;
5028   assert( pNC->pSrcList!=0 );
5029   sqlite3WalkExpr(&w, pExpr);
5030 }
5031 
5032 /*
5033 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5034 ** expression list.  Return the number of errors.
5035 **
5036 ** If an error is found, the analysis is cut short.
5037 */
5038 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5039   struct ExprList_item *pItem;
5040   int i;
5041   if( pList ){
5042     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5043       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5044     }
5045   }
5046 }
5047 
5048 /*
5049 ** Allocate a single new register for use to hold some intermediate result.
5050 */
5051 int sqlite3GetTempReg(Parse *pParse){
5052   if( pParse->nTempReg==0 ){
5053     return ++pParse->nMem;
5054   }
5055   return pParse->aTempReg[--pParse->nTempReg];
5056 }
5057 
5058 /*
5059 ** Deallocate a register, making available for reuse for some other
5060 ** purpose.
5061 **
5062 ** If a register is currently being used by the column cache, then
5063 ** the deallocation is deferred until the column cache line that uses
5064 ** the register becomes stale.
5065 */
5066 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5067   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5068     int i;
5069     struct yColCache *p;
5070     for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
5071       if( p->iReg==iReg ){
5072         p->tempReg = 1;
5073         return;
5074       }
5075     }
5076     pParse->aTempReg[pParse->nTempReg++] = iReg;
5077   }
5078 }
5079 
5080 /*
5081 ** Allocate or deallocate a block of nReg consecutive registers.
5082 */
5083 int sqlite3GetTempRange(Parse *pParse, int nReg){
5084   int i, n;
5085   if( nReg==1 ) return sqlite3GetTempReg(pParse);
5086   i = pParse->iRangeReg;
5087   n = pParse->nRangeReg;
5088   if( nReg<=n ){
5089     assert( !usedAsColumnCache(pParse, i, i+n-1) );
5090     pParse->iRangeReg += nReg;
5091     pParse->nRangeReg -= nReg;
5092   }else{
5093     i = pParse->nMem+1;
5094     pParse->nMem += nReg;
5095   }
5096   return i;
5097 }
5098 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5099   if( nReg==1 ){
5100     sqlite3ReleaseTempReg(pParse, iReg);
5101     return;
5102   }
5103   sqlite3ExprCacheRemove(pParse, iReg, nReg);
5104   if( nReg>pParse->nRangeReg ){
5105     pParse->nRangeReg = nReg;
5106     pParse->iRangeReg = iReg;
5107   }
5108 }
5109 
5110 /*
5111 ** Mark all temporary registers as being unavailable for reuse.
5112 */
5113 void sqlite3ClearTempRegCache(Parse *pParse){
5114   pParse->nTempReg = 0;
5115   pParse->nRangeReg = 0;
5116 }
5117 
5118 /*
5119 ** Validate that no temporary register falls within the range of
5120 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5121 ** statements.
5122 */
5123 #ifdef SQLITE_DEBUG
5124 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5125   int i;
5126   if( pParse->nRangeReg>0
5127    && pParse->iRangeReg+pParse->nRangeReg<iLast
5128    && pParse->iRangeReg>=iFirst
5129   ){
5130      return 0;
5131   }
5132   for(i=0; i<pParse->nTempReg; i++){
5133     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5134       return 0;
5135     }
5136   }
5137   return 1;
5138 }
5139 #endif /* SQLITE_DEBUG */
5140