1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){ 25 if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER; 26 return pTab->aCol[iCol].affinity; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_REGISTER ) op = pExpr->op2; 56 if( op==TK_COLUMN || op==TK_AGG_COLUMN ){ 57 assert( ExprUseYTab(pExpr) ); 58 if( pExpr->y.pTab ){ 59 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 60 } 61 } 62 if( op==TK_SELECT ){ 63 assert( ExprUseXSelect(pExpr) ); 64 assert( pExpr->x.pSelect!=0 ); 65 assert( pExpr->x.pSelect->pEList!=0 ); 66 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 67 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 68 } 69 #ifndef SQLITE_OMIT_CAST 70 if( op==TK_CAST ){ 71 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 72 return sqlite3AffinityType(pExpr->u.zToken, 0); 73 } 74 #endif 75 if( op==TK_SELECT_COLUMN ){ 76 assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) ); 77 assert( pExpr->iColumn < pExpr->iTable ); 78 assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); 79 return sqlite3ExprAffinity( 80 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 81 ); 82 } 83 if( op==TK_VECTOR ){ 84 assert( ExprUseXList(pExpr) ); 85 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 86 } 87 return pExpr->affExpr; 88 } 89 90 /* 91 ** Set the collating sequence for expression pExpr to be the collating 92 ** sequence named by pToken. Return a pointer to a new Expr node that 93 ** implements the COLLATE operator. 94 ** 95 ** If a memory allocation error occurs, that fact is recorded in pParse->db 96 ** and the pExpr parameter is returned unchanged. 97 */ 98 Expr *sqlite3ExprAddCollateToken( 99 const Parse *pParse, /* Parsing context */ 100 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 101 const Token *pCollName, /* Name of collating sequence */ 102 int dequote /* True to dequote pCollName */ 103 ){ 104 if( pCollName->n>0 ){ 105 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 106 if( pNew ){ 107 pNew->pLeft = pExpr; 108 pNew->flags |= EP_Collate|EP_Skip; 109 pExpr = pNew; 110 } 111 } 112 return pExpr; 113 } 114 Expr *sqlite3ExprAddCollateString( 115 const Parse *pParse, /* Parsing context */ 116 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 117 const char *zC /* The collating sequence name */ 118 ){ 119 Token s; 120 assert( zC!=0 ); 121 sqlite3TokenInit(&s, (char*)zC); 122 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 123 } 124 125 /* 126 ** Skip over any TK_COLLATE operators. 127 */ 128 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 129 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 130 assert( pExpr->op==TK_COLLATE ); 131 pExpr = pExpr->pLeft; 132 } 133 return pExpr; 134 } 135 136 /* 137 ** Skip over any TK_COLLATE operators and/or any unlikely() 138 ** or likelihood() or likely() functions at the root of an 139 ** expression. 140 */ 141 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 142 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 143 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 144 assert( ExprUseXList(pExpr) ); 145 assert( pExpr->x.pList->nExpr>0 ); 146 assert( pExpr->op==TK_FUNCTION ); 147 pExpr = pExpr->x.pList->a[0].pExpr; 148 }else{ 149 assert( pExpr->op==TK_COLLATE ); 150 pExpr = pExpr->pLeft; 151 } 152 } 153 return pExpr; 154 } 155 156 /* 157 ** Return the collation sequence for the expression pExpr. If 158 ** there is no defined collating sequence, return NULL. 159 ** 160 ** See also: sqlite3ExprNNCollSeq() 161 ** 162 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 163 ** default collation if pExpr has no defined collation. 164 ** 165 ** The collating sequence might be determined by a COLLATE operator 166 ** or by the presence of a column with a defined collating sequence. 167 ** COLLATE operators take first precedence. Left operands take 168 ** precedence over right operands. 169 */ 170 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 171 sqlite3 *db = pParse->db; 172 CollSeq *pColl = 0; 173 const Expr *p = pExpr; 174 while( p ){ 175 int op = p->op; 176 if( op==TK_REGISTER ) op = p->op2; 177 if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){ 178 assert( ExprUseYTab(p) ); 179 if( p->y.pTab!=0 ){ 180 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 181 ** a TK_COLUMN but was previously evaluated and cached in a register */ 182 int j = p->iColumn; 183 if( j>=0 ){ 184 const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]); 185 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 186 } 187 break; 188 } 189 } 190 if( op==TK_CAST || op==TK_UPLUS ){ 191 p = p->pLeft; 192 continue; 193 } 194 if( op==TK_VECTOR ){ 195 assert( ExprUseXList(p) ); 196 p = p->x.pList->a[0].pExpr; 197 continue; 198 } 199 if( op==TK_COLLATE ){ 200 assert( !ExprHasProperty(p, EP_IntValue) ); 201 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 202 break; 203 } 204 if( p->flags & EP_Collate ){ 205 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 206 p = p->pLeft; 207 }else{ 208 Expr *pNext = p->pRight; 209 /* The Expr.x union is never used at the same time as Expr.pRight */ 210 assert( ExprUseXList(p) ); 211 assert( p->x.pList==0 || p->pRight==0 ); 212 if( p->x.pList!=0 && !db->mallocFailed ){ 213 int i; 214 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 215 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 216 pNext = p->x.pList->a[i].pExpr; 217 break; 218 } 219 } 220 } 221 p = pNext; 222 } 223 }else{ 224 break; 225 } 226 } 227 if( sqlite3CheckCollSeq(pParse, pColl) ){ 228 pColl = 0; 229 } 230 return pColl; 231 } 232 233 /* 234 ** Return the collation sequence for the expression pExpr. If 235 ** there is no defined collating sequence, return a pointer to the 236 ** defautl collation sequence. 237 ** 238 ** See also: sqlite3ExprCollSeq() 239 ** 240 ** The sqlite3ExprCollSeq() routine works the same except that it 241 ** returns NULL if there is no defined collation. 242 */ 243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 244 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 245 if( p==0 ) p = pParse->db->pDfltColl; 246 assert( p!=0 ); 247 return p; 248 } 249 250 /* 251 ** Return TRUE if the two expressions have equivalent collating sequences. 252 */ 253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 254 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 255 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 256 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 257 } 258 259 /* 260 ** pExpr is an operand of a comparison operator. aff2 is the 261 ** type affinity of the other operand. This routine returns the 262 ** type affinity that should be used for the comparison operator. 263 */ 264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 265 char aff1 = sqlite3ExprAffinity(pExpr); 266 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 267 /* Both sides of the comparison are columns. If one has numeric 268 ** affinity, use that. Otherwise use no affinity. 269 */ 270 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 271 return SQLITE_AFF_NUMERIC; 272 }else{ 273 return SQLITE_AFF_BLOB; 274 } 275 }else{ 276 /* One side is a column, the other is not. Use the columns affinity. */ 277 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 278 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 279 } 280 } 281 282 /* 283 ** pExpr is a comparison operator. Return the type affinity that should 284 ** be applied to both operands prior to doing the comparison. 285 */ 286 static char comparisonAffinity(const Expr *pExpr){ 287 char aff; 288 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 289 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 290 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 291 assert( pExpr->pLeft ); 292 aff = sqlite3ExprAffinity(pExpr->pLeft); 293 if( pExpr->pRight ){ 294 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 295 }else if( ExprUseXSelect(pExpr) ){ 296 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 297 }else if( aff==0 ){ 298 aff = SQLITE_AFF_BLOB; 299 } 300 return aff; 301 } 302 303 /* 304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 305 ** idx_affinity is the affinity of an indexed column. Return true 306 ** if the index with affinity idx_affinity may be used to implement 307 ** the comparison in pExpr. 308 */ 309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 310 char aff = comparisonAffinity(pExpr); 311 if( aff<SQLITE_AFF_TEXT ){ 312 return 1; 313 } 314 if( aff==SQLITE_AFF_TEXT ){ 315 return idx_affinity==SQLITE_AFF_TEXT; 316 } 317 return sqlite3IsNumericAffinity(idx_affinity); 318 } 319 320 /* 321 ** Return the P5 value that should be used for a binary comparison 322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 323 */ 324 static u8 binaryCompareP5( 325 const Expr *pExpr1, /* Left operand */ 326 const Expr *pExpr2, /* Right operand */ 327 int jumpIfNull /* Extra flags added to P5 */ 328 ){ 329 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 330 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 331 return aff; 332 } 333 334 /* 335 ** Return a pointer to the collation sequence that should be used by 336 ** a binary comparison operator comparing pLeft and pRight. 337 ** 338 ** If the left hand expression has a collating sequence type, then it is 339 ** used. Otherwise the collation sequence for the right hand expression 340 ** is used, or the default (BINARY) if neither expression has a collating 341 ** type. 342 ** 343 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 344 ** it is not considered. 345 */ 346 CollSeq *sqlite3BinaryCompareCollSeq( 347 Parse *pParse, 348 const Expr *pLeft, 349 const Expr *pRight 350 ){ 351 CollSeq *pColl; 352 assert( pLeft ); 353 if( pLeft->flags & EP_Collate ){ 354 pColl = sqlite3ExprCollSeq(pParse, pLeft); 355 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 356 pColl = sqlite3ExprCollSeq(pParse, pRight); 357 }else{ 358 pColl = sqlite3ExprCollSeq(pParse, pLeft); 359 if( !pColl ){ 360 pColl = sqlite3ExprCollSeq(pParse, pRight); 361 } 362 } 363 return pColl; 364 } 365 366 /* Expresssion p is a comparison operator. Return a collation sequence 367 ** appropriate for the comparison operator. 368 ** 369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 370 ** However, if the OP_Commuted flag is set, then the order of the operands 371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 372 ** correct collating sequence is found. 373 */ 374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 375 if( ExprHasProperty(p, EP_Commuted) ){ 376 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 377 }else{ 378 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 379 } 380 } 381 382 /* 383 ** Generate code for a comparison operator. 384 */ 385 static int codeCompare( 386 Parse *pParse, /* The parsing (and code generating) context */ 387 Expr *pLeft, /* The left operand */ 388 Expr *pRight, /* The right operand */ 389 int opcode, /* The comparison opcode */ 390 int in1, int in2, /* Register holding operands */ 391 int dest, /* Jump here if true. */ 392 int jumpIfNull, /* If true, jump if either operand is NULL */ 393 int isCommuted /* The comparison has been commuted */ 394 ){ 395 int p5; 396 int addr; 397 CollSeq *p4; 398 399 if( pParse->nErr ) return 0; 400 if( isCommuted ){ 401 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 402 }else{ 403 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 404 } 405 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 406 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 407 (void*)p4, P4_COLLSEQ); 408 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 409 return addr; 410 } 411 412 /* 413 ** Return true if expression pExpr is a vector, or false otherwise. 414 ** 415 ** A vector is defined as any expression that results in two or more 416 ** columns of result. Every TK_VECTOR node is an vector because the 417 ** parser will not generate a TK_VECTOR with fewer than two entries. 418 ** But a TK_SELECT might be either a vector or a scalar. It is only 419 ** considered a vector if it has two or more result columns. 420 */ 421 int sqlite3ExprIsVector(const Expr *pExpr){ 422 return sqlite3ExprVectorSize(pExpr)>1; 423 } 424 425 /* 426 ** If the expression passed as the only argument is of type TK_VECTOR 427 ** return the number of expressions in the vector. Or, if the expression 428 ** is a sub-select, return the number of columns in the sub-select. For 429 ** any other type of expression, return 1. 430 */ 431 int sqlite3ExprVectorSize(const Expr *pExpr){ 432 u8 op = pExpr->op; 433 if( op==TK_REGISTER ) op = pExpr->op2; 434 if( op==TK_VECTOR ){ 435 assert( ExprUseXList(pExpr) ); 436 return pExpr->x.pList->nExpr; 437 }else if( op==TK_SELECT ){ 438 assert( ExprUseXSelect(pExpr) ); 439 return pExpr->x.pSelect->pEList->nExpr; 440 }else{ 441 return 1; 442 } 443 } 444 445 /* 446 ** Return a pointer to a subexpression of pVector that is the i-th 447 ** column of the vector (numbered starting with 0). The caller must 448 ** ensure that i is within range. 449 ** 450 ** If pVector is really a scalar (and "scalar" here includes subqueries 451 ** that return a single column!) then return pVector unmodified. 452 ** 453 ** pVector retains ownership of the returned subexpression. 454 ** 455 ** If the vector is a (SELECT ...) then the expression returned is 456 ** just the expression for the i-th term of the result set, and may 457 ** not be ready for evaluation because the table cursor has not yet 458 ** been positioned. 459 */ 460 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 461 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR ); 462 if( sqlite3ExprIsVector(pVector) ){ 463 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 464 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 465 assert( ExprUseXSelect(pVector) ); 466 return pVector->x.pSelect->pEList->a[i].pExpr; 467 }else{ 468 assert( ExprUseXList(pVector) ); 469 return pVector->x.pList->a[i].pExpr; 470 } 471 } 472 return pVector; 473 } 474 475 /* 476 ** Compute and return a new Expr object which when passed to 477 ** sqlite3ExprCode() will generate all necessary code to compute 478 ** the iField-th column of the vector expression pVector. 479 ** 480 ** It is ok for pVector to be a scalar (as long as iField==0). 481 ** In that case, this routine works like sqlite3ExprDup(). 482 ** 483 ** The caller owns the returned Expr object and is responsible for 484 ** ensuring that the returned value eventually gets freed. 485 ** 486 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 487 ** then the returned object will reference pVector and so pVector must remain 488 ** valid for the life of the returned object. If pVector is a TK_VECTOR 489 ** or a scalar expression, then it can be deleted as soon as this routine 490 ** returns. 491 ** 492 ** A trick to cause a TK_SELECT pVector to be deleted together with 493 ** the returned Expr object is to attach the pVector to the pRight field 494 ** of the returned TK_SELECT_COLUMN Expr object. 495 */ 496 Expr *sqlite3ExprForVectorField( 497 Parse *pParse, /* Parsing context */ 498 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 499 int iField, /* Which column of the vector to return */ 500 int nField /* Total number of columns in the vector */ 501 ){ 502 Expr *pRet; 503 if( pVector->op==TK_SELECT ){ 504 assert( ExprUseXSelect(pVector) ); 505 /* The TK_SELECT_COLUMN Expr node: 506 ** 507 ** pLeft: pVector containing TK_SELECT. Not deleted. 508 ** pRight: not used. But recursively deleted. 509 ** iColumn: Index of a column in pVector 510 ** iTable: 0 or the number of columns on the LHS of an assignment 511 ** pLeft->iTable: First in an array of register holding result, or 0 512 ** if the result is not yet computed. 513 ** 514 ** sqlite3ExprDelete() specifically skips the recursive delete of 515 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 516 ** can be attached to pRight to cause this node to take ownership of 517 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 518 ** with the same pLeft pointer to the pVector, but only one of them 519 ** will own the pVector. 520 */ 521 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 522 if( pRet ){ 523 pRet->iTable = nField; 524 pRet->iColumn = iField; 525 pRet->pLeft = pVector; 526 } 527 }else{ 528 if( pVector->op==TK_VECTOR ){ 529 Expr **ppVector; 530 assert( ExprUseXList(pVector) ); 531 ppVector = &pVector->x.pList->a[iField].pExpr; 532 pVector = *ppVector; 533 if( IN_RENAME_OBJECT ){ 534 /* This must be a vector UPDATE inside a trigger */ 535 *ppVector = 0; 536 return pVector; 537 } 538 } 539 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 540 } 541 return pRet; 542 } 543 544 /* 545 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 546 ** it. Return the register in which the result is stored (or, if the 547 ** sub-select returns more than one column, the first in an array 548 ** of registers in which the result is stored). 549 ** 550 ** If pExpr is not a TK_SELECT expression, return 0. 551 */ 552 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 553 int reg = 0; 554 #ifndef SQLITE_OMIT_SUBQUERY 555 if( pExpr->op==TK_SELECT ){ 556 reg = sqlite3CodeSubselect(pParse, pExpr); 557 } 558 #endif 559 return reg; 560 } 561 562 /* 563 ** Argument pVector points to a vector expression - either a TK_VECTOR 564 ** or TK_SELECT that returns more than one column. This function returns 565 ** the register number of a register that contains the value of 566 ** element iField of the vector. 567 ** 568 ** If pVector is a TK_SELECT expression, then code for it must have 569 ** already been generated using the exprCodeSubselect() routine. In this 570 ** case parameter regSelect should be the first in an array of registers 571 ** containing the results of the sub-select. 572 ** 573 ** If pVector is of type TK_VECTOR, then code for the requested field 574 ** is generated. In this case (*pRegFree) may be set to the number of 575 ** a temporary register to be freed by the caller before returning. 576 ** 577 ** Before returning, output parameter (*ppExpr) is set to point to the 578 ** Expr object corresponding to element iElem of the vector. 579 */ 580 static int exprVectorRegister( 581 Parse *pParse, /* Parse context */ 582 Expr *pVector, /* Vector to extract element from */ 583 int iField, /* Field to extract from pVector */ 584 int regSelect, /* First in array of registers */ 585 Expr **ppExpr, /* OUT: Expression element */ 586 int *pRegFree /* OUT: Temp register to free */ 587 ){ 588 u8 op = pVector->op; 589 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); 590 if( op==TK_REGISTER ){ 591 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 592 return pVector->iTable+iField; 593 } 594 if( op==TK_SELECT ){ 595 assert( ExprUseXSelect(pVector) ); 596 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 597 return regSelect+iField; 598 } 599 if( op==TK_VECTOR ){ 600 assert( ExprUseXList(pVector) ); 601 *ppExpr = pVector->x.pList->a[iField].pExpr; 602 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 603 } 604 return 0; 605 } 606 607 /* 608 ** Expression pExpr is a comparison between two vector values. Compute 609 ** the result of the comparison (1, 0, or NULL) and write that 610 ** result into register dest. 611 ** 612 ** The caller must satisfy the following preconditions: 613 ** 614 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 615 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 616 ** otherwise: op==pExpr->op and p5==0 617 */ 618 static void codeVectorCompare( 619 Parse *pParse, /* Code generator context */ 620 Expr *pExpr, /* The comparison operation */ 621 int dest, /* Write results into this register */ 622 u8 op, /* Comparison operator */ 623 u8 p5 /* SQLITE_NULLEQ or zero */ 624 ){ 625 Vdbe *v = pParse->pVdbe; 626 Expr *pLeft = pExpr->pLeft; 627 Expr *pRight = pExpr->pRight; 628 int nLeft = sqlite3ExprVectorSize(pLeft); 629 int i; 630 int regLeft = 0; 631 int regRight = 0; 632 u8 opx = op; 633 int addrCmp = 0; 634 int addrDone = sqlite3VdbeMakeLabel(pParse); 635 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 636 637 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 638 if( pParse->nErr ) return; 639 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 640 sqlite3ErrorMsg(pParse, "row value misused"); 641 return; 642 } 643 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 644 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 645 || pExpr->op==TK_LT || pExpr->op==TK_GT 646 || pExpr->op==TK_LE || pExpr->op==TK_GE 647 ); 648 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 649 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 650 assert( p5==0 || pExpr->op!=op ); 651 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 652 653 if( op==TK_LE ) opx = TK_LT; 654 if( op==TK_GE ) opx = TK_GT; 655 if( op==TK_NE ) opx = TK_EQ; 656 657 regLeft = exprCodeSubselect(pParse, pLeft); 658 regRight = exprCodeSubselect(pParse, pRight); 659 660 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 661 for(i=0; 1 /*Loop exits by "break"*/; i++){ 662 int regFree1 = 0, regFree2 = 0; 663 Expr *pL = 0, *pR = 0; 664 int r1, r2; 665 assert( i>=0 && i<nLeft ); 666 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 667 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 668 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 669 addrCmp = sqlite3VdbeCurrentAddr(v); 670 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 671 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 672 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 673 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 674 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 675 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 676 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 677 sqlite3ReleaseTempReg(pParse, regFree1); 678 sqlite3ReleaseTempReg(pParse, regFree2); 679 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 680 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 681 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 682 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 683 } 684 if( p5==SQLITE_NULLEQ ){ 685 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 686 }else{ 687 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 688 } 689 if( i==nLeft-1 ){ 690 break; 691 } 692 if( opx==TK_EQ ){ 693 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 694 }else{ 695 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 696 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 697 if( i==nLeft-2 ) opx = op; 698 } 699 } 700 sqlite3VdbeJumpHere(v, addrCmp); 701 sqlite3VdbeResolveLabel(v, addrDone); 702 if( op==TK_NE ){ 703 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 704 } 705 } 706 707 #if SQLITE_MAX_EXPR_DEPTH>0 708 /* 709 ** Check that argument nHeight is less than or equal to the maximum 710 ** expression depth allowed. If it is not, leave an error message in 711 ** pParse. 712 */ 713 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 714 int rc = SQLITE_OK; 715 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 716 if( nHeight>mxHeight ){ 717 sqlite3ErrorMsg(pParse, 718 "Expression tree is too large (maximum depth %d)", mxHeight 719 ); 720 rc = SQLITE_ERROR; 721 } 722 return rc; 723 } 724 725 /* The following three functions, heightOfExpr(), heightOfExprList() 726 ** and heightOfSelect(), are used to determine the maximum height 727 ** of any expression tree referenced by the structure passed as the 728 ** first argument. 729 ** 730 ** If this maximum height is greater than the current value pointed 731 ** to by pnHeight, the second parameter, then set *pnHeight to that 732 ** value. 733 */ 734 static void heightOfExpr(const Expr *p, int *pnHeight){ 735 if( p ){ 736 if( p->nHeight>*pnHeight ){ 737 *pnHeight = p->nHeight; 738 } 739 } 740 } 741 static void heightOfExprList(const ExprList *p, int *pnHeight){ 742 if( p ){ 743 int i; 744 for(i=0; i<p->nExpr; i++){ 745 heightOfExpr(p->a[i].pExpr, pnHeight); 746 } 747 } 748 } 749 static void heightOfSelect(const Select *pSelect, int *pnHeight){ 750 const Select *p; 751 for(p=pSelect; p; p=p->pPrior){ 752 heightOfExpr(p->pWhere, pnHeight); 753 heightOfExpr(p->pHaving, pnHeight); 754 heightOfExpr(p->pLimit, pnHeight); 755 heightOfExprList(p->pEList, pnHeight); 756 heightOfExprList(p->pGroupBy, pnHeight); 757 heightOfExprList(p->pOrderBy, pnHeight); 758 } 759 } 760 761 /* 762 ** Set the Expr.nHeight variable in the structure passed as an 763 ** argument. An expression with no children, Expr.pList or 764 ** Expr.pSelect member has a height of 1. Any other expression 765 ** has a height equal to the maximum height of any other 766 ** referenced Expr plus one. 767 ** 768 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 769 ** if appropriate. 770 */ 771 static void exprSetHeight(Expr *p){ 772 int nHeight = 0; 773 heightOfExpr(p->pLeft, &nHeight); 774 heightOfExpr(p->pRight, &nHeight); 775 if( ExprUseXSelect(p) ){ 776 heightOfSelect(p->x.pSelect, &nHeight); 777 }else if( p->x.pList ){ 778 heightOfExprList(p->x.pList, &nHeight); 779 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 780 } 781 p->nHeight = nHeight + 1; 782 } 783 784 /* 785 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 786 ** the height is greater than the maximum allowed expression depth, 787 ** leave an error in pParse. 788 ** 789 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 790 ** Expr.flags. 791 */ 792 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 793 if( pParse->nErr ) return; 794 exprSetHeight(p); 795 sqlite3ExprCheckHeight(pParse, p->nHeight); 796 } 797 798 /* 799 ** Return the maximum height of any expression tree referenced 800 ** by the select statement passed as an argument. 801 */ 802 int sqlite3SelectExprHeight(const Select *p){ 803 int nHeight = 0; 804 heightOfSelect(p, &nHeight); 805 return nHeight; 806 } 807 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 808 /* 809 ** Propagate all EP_Propagate flags from the Expr.x.pList into 810 ** Expr.flags. 811 */ 812 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 813 if( pParse->nErr ) return; 814 if( p && ExprUseXList(p) && p->x.pList ){ 815 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 816 } 817 } 818 #define exprSetHeight(y) 819 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 820 821 /* 822 ** This routine is the core allocator for Expr nodes. 823 ** 824 ** Construct a new expression node and return a pointer to it. Memory 825 ** for this node and for the pToken argument is a single allocation 826 ** obtained from sqlite3DbMalloc(). The calling function 827 ** is responsible for making sure the node eventually gets freed. 828 ** 829 ** If dequote is true, then the token (if it exists) is dequoted. 830 ** If dequote is false, no dequoting is performed. The deQuote 831 ** parameter is ignored if pToken is NULL or if the token does not 832 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 833 ** then the EP_DblQuoted flag is set on the expression node. 834 ** 835 ** Special case: If op==TK_INTEGER and pToken points to a string that 836 ** can be translated into a 32-bit integer, then the token is not 837 ** stored in u.zToken. Instead, the integer values is written 838 ** into u.iValue and the EP_IntValue flag is set. No extra storage 839 ** is allocated to hold the integer text and the dequote flag is ignored. 840 */ 841 Expr *sqlite3ExprAlloc( 842 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 843 int op, /* Expression opcode */ 844 const Token *pToken, /* Token argument. Might be NULL */ 845 int dequote /* True to dequote */ 846 ){ 847 Expr *pNew; 848 int nExtra = 0; 849 int iValue = 0; 850 851 assert( db!=0 ); 852 if( pToken ){ 853 if( op!=TK_INTEGER || pToken->z==0 854 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 855 nExtra = pToken->n+1; 856 assert( iValue>=0 ); 857 } 858 } 859 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 860 if( pNew ){ 861 memset(pNew, 0, sizeof(Expr)); 862 pNew->op = (u8)op; 863 pNew->iAgg = -1; 864 if( pToken ){ 865 if( nExtra==0 ){ 866 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 867 pNew->u.iValue = iValue; 868 }else{ 869 pNew->u.zToken = (char*)&pNew[1]; 870 assert( pToken->z!=0 || pToken->n==0 ); 871 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 872 pNew->u.zToken[pToken->n] = 0; 873 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 874 sqlite3DequoteExpr(pNew); 875 } 876 } 877 } 878 #if SQLITE_MAX_EXPR_DEPTH>0 879 pNew->nHeight = 1; 880 #endif 881 } 882 return pNew; 883 } 884 885 /* 886 ** Allocate a new expression node from a zero-terminated token that has 887 ** already been dequoted. 888 */ 889 Expr *sqlite3Expr( 890 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 891 int op, /* Expression opcode */ 892 const char *zToken /* Token argument. Might be NULL */ 893 ){ 894 Token x; 895 x.z = zToken; 896 x.n = sqlite3Strlen30(zToken); 897 return sqlite3ExprAlloc(db, op, &x, 0); 898 } 899 900 /* 901 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 902 ** 903 ** If pRoot==NULL that means that a memory allocation error has occurred. 904 ** In that case, delete the subtrees pLeft and pRight. 905 */ 906 void sqlite3ExprAttachSubtrees( 907 sqlite3 *db, 908 Expr *pRoot, 909 Expr *pLeft, 910 Expr *pRight 911 ){ 912 if( pRoot==0 ){ 913 assert( db->mallocFailed ); 914 sqlite3ExprDelete(db, pLeft); 915 sqlite3ExprDelete(db, pRight); 916 }else{ 917 if( pRight ){ 918 pRoot->pRight = pRight; 919 pRoot->flags |= EP_Propagate & pRight->flags; 920 } 921 if( pLeft ){ 922 pRoot->pLeft = pLeft; 923 pRoot->flags |= EP_Propagate & pLeft->flags; 924 } 925 exprSetHeight(pRoot); 926 } 927 } 928 929 /* 930 ** Allocate an Expr node which joins as many as two subtrees. 931 ** 932 ** One or both of the subtrees can be NULL. Return a pointer to the new 933 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 934 ** free the subtrees and return NULL. 935 */ 936 Expr *sqlite3PExpr( 937 Parse *pParse, /* Parsing context */ 938 int op, /* Expression opcode */ 939 Expr *pLeft, /* Left operand */ 940 Expr *pRight /* Right operand */ 941 ){ 942 Expr *p; 943 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 944 if( p ){ 945 memset(p, 0, sizeof(Expr)); 946 p->op = op & 0xff; 947 p->iAgg = -1; 948 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 949 sqlite3ExprCheckHeight(pParse, p->nHeight); 950 }else{ 951 sqlite3ExprDelete(pParse->db, pLeft); 952 sqlite3ExprDelete(pParse->db, pRight); 953 } 954 return p; 955 } 956 957 /* 958 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 959 ** do a memory allocation failure) then delete the pSelect object. 960 */ 961 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 962 if( pExpr ){ 963 pExpr->x.pSelect = pSelect; 964 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 965 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 966 }else{ 967 assert( pParse->db->mallocFailed ); 968 sqlite3SelectDelete(pParse->db, pSelect); 969 } 970 } 971 972 /* 973 ** Expression list pEList is a list of vector values. This function 974 ** converts the contents of pEList to a VALUES(...) Select statement 975 ** returning 1 row for each element of the list. For example, the 976 ** expression list: 977 ** 978 ** ( (1,2), (3,4) (5,6) ) 979 ** 980 ** is translated to the equivalent of: 981 ** 982 ** VALUES(1,2), (3,4), (5,6) 983 ** 984 ** Each of the vector values in pEList must contain exactly nElem terms. 985 ** If a list element that is not a vector or does not contain nElem terms, 986 ** an error message is left in pParse. 987 ** 988 ** This is used as part of processing IN(...) expressions with a list 989 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))". 990 */ 991 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){ 992 int ii; 993 Select *pRet = 0; 994 assert( nElem>1 ); 995 for(ii=0; ii<pEList->nExpr; ii++){ 996 Select *pSel; 997 Expr *pExpr = pEList->a[ii].pExpr; 998 int nExprElem; 999 if( pExpr->op==TK_VECTOR ){ 1000 assert( ExprUseXList(pExpr) ); 1001 nExprElem = pExpr->x.pList->nExpr; 1002 }else{ 1003 nExprElem = 1; 1004 } 1005 if( nExprElem!=nElem ){ 1006 sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d", 1007 nExprElem, nExprElem>1?"s":"", nElem 1008 ); 1009 break; 1010 } 1011 assert( ExprUseXList(pExpr) ); 1012 pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0); 1013 pExpr->x.pList = 0; 1014 if( pSel ){ 1015 if( pRet ){ 1016 pSel->op = TK_ALL; 1017 pSel->pPrior = pRet; 1018 } 1019 pRet = pSel; 1020 } 1021 } 1022 1023 if( pRet && pRet->pPrior ){ 1024 pRet->selFlags |= SF_MultiValue; 1025 } 1026 sqlite3ExprListDelete(pParse->db, pEList); 1027 return pRet; 1028 } 1029 1030 /* 1031 ** Join two expressions using an AND operator. If either expression is 1032 ** NULL, then just return the other expression. 1033 ** 1034 ** If one side or the other of the AND is known to be false, then instead 1035 ** of returning an AND expression, just return a constant expression with 1036 ** a value of false. 1037 */ 1038 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 1039 sqlite3 *db = pParse->db; 1040 if( pLeft==0 ){ 1041 return pRight; 1042 }else if( pRight==0 ){ 1043 return pLeft; 1044 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 1045 && !IN_RENAME_OBJECT 1046 ){ 1047 sqlite3ExprDeferredDelete(pParse, pLeft); 1048 sqlite3ExprDeferredDelete(pParse, pRight); 1049 return sqlite3Expr(db, TK_INTEGER, "0"); 1050 }else{ 1051 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 1052 } 1053 } 1054 1055 /* 1056 ** Construct a new expression node for a function with multiple 1057 ** arguments. 1058 */ 1059 Expr *sqlite3ExprFunction( 1060 Parse *pParse, /* Parsing context */ 1061 ExprList *pList, /* Argument list */ 1062 const Token *pToken, /* Name of the function */ 1063 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 1064 ){ 1065 Expr *pNew; 1066 sqlite3 *db = pParse->db; 1067 assert( pToken ); 1068 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 1069 if( pNew==0 ){ 1070 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 1071 return 0; 1072 } 1073 if( pList 1074 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] 1075 && !pParse->nested 1076 ){ 1077 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 1078 } 1079 pNew->x.pList = pList; 1080 ExprSetProperty(pNew, EP_HasFunc); 1081 assert( ExprUseXList(pNew) ); 1082 sqlite3ExprSetHeightAndFlags(pParse, pNew); 1083 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 1084 return pNew; 1085 } 1086 1087 /* 1088 ** Check to see if a function is usable according to current access 1089 ** rules: 1090 ** 1091 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1092 ** 1093 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1094 ** top-level SQL 1095 ** 1096 ** If the function is not usable, create an error. 1097 */ 1098 void sqlite3ExprFunctionUsable( 1099 Parse *pParse, /* Parsing and code generating context */ 1100 const Expr *pExpr, /* The function invocation */ 1101 const FuncDef *pDef /* The function being invoked */ 1102 ){ 1103 assert( !IN_RENAME_OBJECT ); 1104 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1105 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1106 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1107 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1108 ){ 1109 /* Functions prohibited in triggers and views if: 1110 ** (1) tagged with SQLITE_DIRECTONLY 1111 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1112 ** is tagged with SQLITE_FUNC_UNSAFE) and 1113 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1114 ** that the schema is possibly tainted). 1115 */ 1116 sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName); 1117 } 1118 } 1119 } 1120 1121 /* 1122 ** Assign a variable number to an expression that encodes a wildcard 1123 ** in the original SQL statement. 1124 ** 1125 ** Wildcards consisting of a single "?" are assigned the next sequential 1126 ** variable number. 1127 ** 1128 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1129 ** sure "nnn" is not too big to avoid a denial of service attack when 1130 ** the SQL statement comes from an external source. 1131 ** 1132 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1133 ** as the previous instance of the same wildcard. Or if this is the first 1134 ** instance of the wildcard, the next sequential variable number is 1135 ** assigned. 1136 */ 1137 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1138 sqlite3 *db = pParse->db; 1139 const char *z; 1140 ynVar x; 1141 1142 if( pExpr==0 ) return; 1143 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1144 z = pExpr->u.zToken; 1145 assert( z!=0 ); 1146 assert( z[0]!=0 ); 1147 assert( n==(u32)sqlite3Strlen30(z) ); 1148 if( z[1]==0 ){ 1149 /* Wildcard of the form "?". Assign the next variable number */ 1150 assert( z[0]=='?' ); 1151 x = (ynVar)(++pParse->nVar); 1152 }else{ 1153 int doAdd = 0; 1154 if( z[0]=='?' ){ 1155 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1156 ** use it as the variable number */ 1157 i64 i; 1158 int bOk; 1159 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1160 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1161 bOk = 1; 1162 }else{ 1163 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1164 } 1165 testcase( i==0 ); 1166 testcase( i==1 ); 1167 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1168 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1169 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1170 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1171 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1172 return; 1173 } 1174 x = (ynVar)i; 1175 if( x>pParse->nVar ){ 1176 pParse->nVar = (int)x; 1177 doAdd = 1; 1178 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1179 doAdd = 1; 1180 } 1181 }else{ 1182 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1183 ** number as the prior appearance of the same name, or if the name 1184 ** has never appeared before, reuse the same variable number 1185 */ 1186 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1187 if( x==0 ){ 1188 x = (ynVar)(++pParse->nVar); 1189 doAdd = 1; 1190 } 1191 } 1192 if( doAdd ){ 1193 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1194 } 1195 } 1196 pExpr->iColumn = x; 1197 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1198 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1199 } 1200 } 1201 1202 /* 1203 ** Recursively delete an expression tree. 1204 */ 1205 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1206 assert( p!=0 ); 1207 assert( !ExprUseUValue(p) || p->u.iValue>=0 ); 1208 assert( !ExprUseYWin(p) || !ExprUseYSub(p) ); 1209 assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed ); 1210 assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) ); 1211 #ifdef SQLITE_DEBUG 1212 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1213 assert( p->pLeft==0 ); 1214 assert( p->pRight==0 ); 1215 assert( !ExprUseXSelect(p) || p->x.pSelect==0 ); 1216 assert( !ExprUseXList(p) || p->x.pList==0 ); 1217 } 1218 #endif 1219 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1220 /* The Expr.x union is never used at the same time as Expr.pRight */ 1221 assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 ); 1222 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1223 if( p->pRight ){ 1224 assert( !ExprHasProperty(p, EP_WinFunc) ); 1225 sqlite3ExprDeleteNN(db, p->pRight); 1226 }else if( ExprUseXSelect(p) ){ 1227 assert( !ExprHasProperty(p, EP_WinFunc) ); 1228 sqlite3SelectDelete(db, p->x.pSelect); 1229 }else{ 1230 sqlite3ExprListDelete(db, p->x.pList); 1231 #ifndef SQLITE_OMIT_WINDOWFUNC 1232 if( ExprHasProperty(p, EP_WinFunc) ){ 1233 sqlite3WindowDelete(db, p->y.pWin); 1234 } 1235 #endif 1236 } 1237 } 1238 if( ExprHasProperty(p, EP_MemToken) ){ 1239 assert( !ExprHasProperty(p, EP_IntValue) ); 1240 sqlite3DbFree(db, p->u.zToken); 1241 } 1242 if( !ExprHasProperty(p, EP_Static) ){ 1243 sqlite3DbFreeNN(db, p); 1244 } 1245 } 1246 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1247 if( p ) sqlite3ExprDeleteNN(db, p); 1248 } 1249 1250 1251 /* 1252 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 1253 ** This is similar to sqlite3ExprDelete() except that the delete is 1254 ** deferred untilthe pParse is deleted. 1255 ** 1256 ** The pExpr might be deleted immediately on an OOM error. 1257 ** 1258 ** The deferred delete is (currently) implemented by adding the 1259 ** pExpr to the pParse->pConstExpr list with a register number of 0. 1260 */ 1261 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 1262 pParse->pConstExpr = 1263 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 1264 } 1265 1266 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1267 ** expression. 1268 */ 1269 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1270 if( p ){ 1271 if( IN_RENAME_OBJECT ){ 1272 sqlite3RenameExprUnmap(pParse, p); 1273 } 1274 sqlite3ExprDeleteNN(pParse->db, p); 1275 } 1276 } 1277 1278 /* 1279 ** Return the number of bytes allocated for the expression structure 1280 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1281 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1282 */ 1283 static int exprStructSize(const Expr *p){ 1284 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1285 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1286 return EXPR_FULLSIZE; 1287 } 1288 1289 /* 1290 ** The dupedExpr*Size() routines each return the number of bytes required 1291 ** to store a copy of an expression or expression tree. They differ in 1292 ** how much of the tree is measured. 1293 ** 1294 ** dupedExprStructSize() Size of only the Expr structure 1295 ** dupedExprNodeSize() Size of Expr + space for token 1296 ** dupedExprSize() Expr + token + subtree components 1297 ** 1298 *************************************************************************** 1299 ** 1300 ** The dupedExprStructSize() function returns two values OR-ed together: 1301 ** (1) the space required for a copy of the Expr structure only and 1302 ** (2) the EP_xxx flags that indicate what the structure size should be. 1303 ** The return values is always one of: 1304 ** 1305 ** EXPR_FULLSIZE 1306 ** EXPR_REDUCEDSIZE | EP_Reduced 1307 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1308 ** 1309 ** The size of the structure can be found by masking the return value 1310 ** of this routine with 0xfff. The flags can be found by masking the 1311 ** return value with EP_Reduced|EP_TokenOnly. 1312 ** 1313 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1314 ** (unreduced) Expr objects as they or originally constructed by the parser. 1315 ** During expression analysis, extra information is computed and moved into 1316 ** later parts of the Expr object and that extra information might get chopped 1317 ** off if the expression is reduced. Note also that it does not work to 1318 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1319 ** to reduce a pristine expression tree from the parser. The implementation 1320 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1321 ** to enforce this constraint. 1322 */ 1323 static int dupedExprStructSize(const Expr *p, int flags){ 1324 int nSize; 1325 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1326 assert( EXPR_FULLSIZE<=0xfff ); 1327 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1328 if( 0==flags || p->op==TK_SELECT_COLUMN 1329 #ifndef SQLITE_OMIT_WINDOWFUNC 1330 || ExprHasProperty(p, EP_WinFunc) 1331 #endif 1332 ){ 1333 nSize = EXPR_FULLSIZE; 1334 }else{ 1335 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1336 assert( !ExprHasProperty(p, EP_FromJoin) ); 1337 assert( !ExprHasProperty(p, EP_MemToken) ); 1338 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1339 if( p->pLeft || p->x.pList ){ 1340 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1341 }else{ 1342 assert( p->pRight==0 ); 1343 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1344 } 1345 } 1346 return nSize; 1347 } 1348 1349 /* 1350 ** This function returns the space in bytes required to store the copy 1351 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1352 ** string is defined.) 1353 */ 1354 static int dupedExprNodeSize(const Expr *p, int flags){ 1355 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1356 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1357 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1358 } 1359 return ROUND8(nByte); 1360 } 1361 1362 /* 1363 ** Return the number of bytes required to create a duplicate of the 1364 ** expression passed as the first argument. The second argument is a 1365 ** mask containing EXPRDUP_XXX flags. 1366 ** 1367 ** The value returned includes space to create a copy of the Expr struct 1368 ** itself and the buffer referred to by Expr.u.zToken, if any. 1369 ** 1370 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1371 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1372 ** and Expr.pRight variables (but not for any structures pointed to or 1373 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1374 */ 1375 static int dupedExprSize(const Expr *p, int flags){ 1376 int nByte = 0; 1377 if( p ){ 1378 nByte = dupedExprNodeSize(p, flags); 1379 if( flags&EXPRDUP_REDUCE ){ 1380 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1381 } 1382 } 1383 return nByte; 1384 } 1385 1386 /* 1387 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1388 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1389 ** to store the copy of expression p, the copies of p->u.zToken 1390 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1391 ** if any. Before returning, *pzBuffer is set to the first byte past the 1392 ** portion of the buffer copied into by this function. 1393 */ 1394 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){ 1395 Expr *pNew; /* Value to return */ 1396 u8 *zAlloc; /* Memory space from which to build Expr object */ 1397 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1398 1399 assert( db!=0 ); 1400 assert( p ); 1401 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1402 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1403 1404 /* Figure out where to write the new Expr structure. */ 1405 if( pzBuffer ){ 1406 zAlloc = *pzBuffer; 1407 staticFlag = EP_Static; 1408 assert( zAlloc!=0 ); 1409 }else{ 1410 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1411 staticFlag = 0; 1412 } 1413 pNew = (Expr *)zAlloc; 1414 1415 if( pNew ){ 1416 /* Set nNewSize to the size allocated for the structure pointed to 1417 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1418 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1419 ** by the copy of the p->u.zToken string (if any). 1420 */ 1421 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1422 const int nNewSize = nStructSize & 0xfff; 1423 int nToken; 1424 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1425 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1426 }else{ 1427 nToken = 0; 1428 } 1429 if( dupFlags ){ 1430 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1431 memcpy(zAlloc, p, nNewSize); 1432 }else{ 1433 u32 nSize = (u32)exprStructSize(p); 1434 memcpy(zAlloc, p, nSize); 1435 if( nSize<EXPR_FULLSIZE ){ 1436 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1437 } 1438 } 1439 1440 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1441 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1442 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1443 pNew->flags |= staticFlag; 1444 ExprClearVVAProperties(pNew); 1445 if( dupFlags ){ 1446 ExprSetVVAProperty(pNew, EP_Immutable); 1447 } 1448 1449 /* Copy the p->u.zToken string, if any. */ 1450 if( nToken ){ 1451 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1452 memcpy(zToken, p->u.zToken, nToken); 1453 } 1454 1455 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1456 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1457 if( ExprUseXSelect(p) ){ 1458 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1459 }else{ 1460 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1461 } 1462 } 1463 1464 /* Fill in pNew->pLeft and pNew->pRight. */ 1465 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1466 zAlloc += dupedExprNodeSize(p, dupFlags); 1467 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1468 pNew->pLeft = p->pLeft ? 1469 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1470 pNew->pRight = p->pRight ? 1471 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1472 } 1473 #ifndef SQLITE_OMIT_WINDOWFUNC 1474 if( ExprHasProperty(p, EP_WinFunc) ){ 1475 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1476 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1477 } 1478 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1479 if( pzBuffer ){ 1480 *pzBuffer = zAlloc; 1481 } 1482 }else{ 1483 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1484 if( pNew->op==TK_SELECT_COLUMN ){ 1485 pNew->pLeft = p->pLeft; 1486 assert( p->pRight==0 || p->pRight==p->pLeft 1487 || ExprHasProperty(p->pLeft, EP_Subquery) ); 1488 }else{ 1489 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1490 } 1491 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1492 } 1493 } 1494 } 1495 return pNew; 1496 } 1497 1498 /* 1499 ** Create and return a deep copy of the object passed as the second 1500 ** argument. If an OOM condition is encountered, NULL is returned 1501 ** and the db->mallocFailed flag set. 1502 */ 1503 #ifndef SQLITE_OMIT_CTE 1504 With *sqlite3WithDup(sqlite3 *db, With *p){ 1505 With *pRet = 0; 1506 if( p ){ 1507 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1508 pRet = sqlite3DbMallocZero(db, nByte); 1509 if( pRet ){ 1510 int i; 1511 pRet->nCte = p->nCte; 1512 for(i=0; i<p->nCte; i++){ 1513 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1514 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1515 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1516 } 1517 } 1518 } 1519 return pRet; 1520 } 1521 #else 1522 # define sqlite3WithDup(x,y) 0 1523 #endif 1524 1525 #ifndef SQLITE_OMIT_WINDOWFUNC 1526 /* 1527 ** The gatherSelectWindows() procedure and its helper routine 1528 ** gatherSelectWindowsCallback() are used to scan all the expressions 1529 ** an a newly duplicated SELECT statement and gather all of the Window 1530 ** objects found there, assembling them onto the linked list at Select->pWin. 1531 */ 1532 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1533 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1534 Select *pSelect = pWalker->u.pSelect; 1535 Window *pWin = pExpr->y.pWin; 1536 assert( pWin ); 1537 assert( IsWindowFunc(pExpr) ); 1538 assert( pWin->ppThis==0 ); 1539 sqlite3WindowLink(pSelect, pWin); 1540 } 1541 return WRC_Continue; 1542 } 1543 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1544 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1545 } 1546 static void gatherSelectWindows(Select *p){ 1547 Walker w; 1548 w.xExprCallback = gatherSelectWindowsCallback; 1549 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1550 w.xSelectCallback2 = 0; 1551 w.pParse = 0; 1552 w.u.pSelect = p; 1553 sqlite3WalkSelect(&w, p); 1554 } 1555 #endif 1556 1557 1558 /* 1559 ** The following group of routines make deep copies of expressions, 1560 ** expression lists, ID lists, and select statements. The copies can 1561 ** be deleted (by being passed to their respective ...Delete() routines) 1562 ** without effecting the originals. 1563 ** 1564 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1565 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1566 ** by subsequent calls to sqlite*ListAppend() routines. 1567 ** 1568 ** Any tables that the SrcList might point to are not duplicated. 1569 ** 1570 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1571 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1572 ** truncated version of the usual Expr structure that will be stored as 1573 ** part of the in-memory representation of the database schema. 1574 */ 1575 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){ 1576 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1577 return p ? exprDup(db, p, flags, 0) : 0; 1578 } 1579 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){ 1580 ExprList *pNew; 1581 struct ExprList_item *pItem; 1582 const struct ExprList_item *pOldItem; 1583 int i; 1584 Expr *pPriorSelectColOld = 0; 1585 Expr *pPriorSelectColNew = 0; 1586 assert( db!=0 ); 1587 if( p==0 ) return 0; 1588 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1589 if( pNew==0 ) return 0; 1590 pNew->nExpr = p->nExpr; 1591 pNew->nAlloc = p->nAlloc; 1592 pItem = pNew->a; 1593 pOldItem = p->a; 1594 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1595 Expr *pOldExpr = pOldItem->pExpr; 1596 Expr *pNewExpr; 1597 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1598 if( pOldExpr 1599 && pOldExpr->op==TK_SELECT_COLUMN 1600 && (pNewExpr = pItem->pExpr)!=0 1601 ){ 1602 if( pNewExpr->pRight ){ 1603 pPriorSelectColOld = pOldExpr->pRight; 1604 pPriorSelectColNew = pNewExpr->pRight; 1605 pNewExpr->pLeft = pNewExpr->pRight; 1606 }else{ 1607 if( pOldExpr->pLeft!=pPriorSelectColOld ){ 1608 pPriorSelectColOld = pOldExpr->pLeft; 1609 pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags); 1610 pNewExpr->pRight = pPriorSelectColNew; 1611 } 1612 pNewExpr->pLeft = pPriorSelectColNew; 1613 } 1614 } 1615 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1616 pItem->sortFlags = pOldItem->sortFlags; 1617 pItem->eEName = pOldItem->eEName; 1618 pItem->done = 0; 1619 pItem->bNulls = pOldItem->bNulls; 1620 pItem->bSorterRef = pOldItem->bSorterRef; 1621 pItem->u = pOldItem->u; 1622 } 1623 return pNew; 1624 } 1625 1626 /* 1627 ** If cursors, triggers, views and subqueries are all omitted from 1628 ** the build, then none of the following routines, except for 1629 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1630 ** called with a NULL argument. 1631 */ 1632 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1633 || !defined(SQLITE_OMIT_SUBQUERY) 1634 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){ 1635 SrcList *pNew; 1636 int i; 1637 int nByte; 1638 assert( db!=0 ); 1639 if( p==0 ) return 0; 1640 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1641 pNew = sqlite3DbMallocRawNN(db, nByte ); 1642 if( pNew==0 ) return 0; 1643 pNew->nSrc = pNew->nAlloc = p->nSrc; 1644 for(i=0; i<p->nSrc; i++){ 1645 SrcItem *pNewItem = &pNew->a[i]; 1646 const SrcItem *pOldItem = &p->a[i]; 1647 Table *pTab; 1648 pNewItem->pSchema = pOldItem->pSchema; 1649 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1650 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1651 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1652 pNewItem->fg = pOldItem->fg; 1653 pNewItem->iCursor = pOldItem->iCursor; 1654 pNewItem->addrFillSub = pOldItem->addrFillSub; 1655 pNewItem->regReturn = pOldItem->regReturn; 1656 if( pNewItem->fg.isIndexedBy ){ 1657 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1658 } 1659 pNewItem->u2 = pOldItem->u2; 1660 if( pNewItem->fg.isCte ){ 1661 pNewItem->u2.pCteUse->nUse++; 1662 } 1663 if( pNewItem->fg.isTabFunc ){ 1664 pNewItem->u1.pFuncArg = 1665 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1666 } 1667 pTab = pNewItem->pTab = pOldItem->pTab; 1668 if( pTab ){ 1669 pTab->nTabRef++; 1670 } 1671 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1672 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1673 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1674 pNewItem->colUsed = pOldItem->colUsed; 1675 } 1676 return pNew; 1677 } 1678 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){ 1679 IdList *pNew; 1680 int i; 1681 assert( db!=0 ); 1682 if( p==0 ) return 0; 1683 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1684 if( pNew==0 ) return 0; 1685 pNew->nId = p->nId; 1686 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1687 if( pNew->a==0 ){ 1688 sqlite3DbFreeNN(db, pNew); 1689 return 0; 1690 } 1691 /* Note that because the size of the allocation for p->a[] is not 1692 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1693 ** on the duplicate created by this function. */ 1694 for(i=0; i<p->nId; i++){ 1695 struct IdList_item *pNewItem = &pNew->a[i]; 1696 struct IdList_item *pOldItem = &p->a[i]; 1697 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1698 pNewItem->idx = pOldItem->idx; 1699 } 1700 return pNew; 1701 } 1702 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){ 1703 Select *pRet = 0; 1704 Select *pNext = 0; 1705 Select **pp = &pRet; 1706 const Select *p; 1707 1708 assert( db!=0 ); 1709 for(p=pDup; p; p=p->pPrior){ 1710 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1711 if( pNew==0 ) break; 1712 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1713 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1714 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1715 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1716 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1717 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1718 pNew->op = p->op; 1719 pNew->pNext = pNext; 1720 pNew->pPrior = 0; 1721 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1722 pNew->iLimit = 0; 1723 pNew->iOffset = 0; 1724 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1725 pNew->addrOpenEphm[0] = -1; 1726 pNew->addrOpenEphm[1] = -1; 1727 pNew->nSelectRow = p->nSelectRow; 1728 pNew->pWith = sqlite3WithDup(db, p->pWith); 1729 #ifndef SQLITE_OMIT_WINDOWFUNC 1730 pNew->pWin = 0; 1731 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1732 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1733 #endif 1734 pNew->selId = p->selId; 1735 if( db->mallocFailed ){ 1736 /* Any prior OOM might have left the Select object incomplete. 1737 ** Delete the whole thing rather than allow an incomplete Select 1738 ** to be used by the code generator. */ 1739 pNew->pNext = 0; 1740 sqlite3SelectDelete(db, pNew); 1741 break; 1742 } 1743 *pp = pNew; 1744 pp = &pNew->pPrior; 1745 pNext = pNew; 1746 } 1747 1748 return pRet; 1749 } 1750 #else 1751 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){ 1752 assert( p==0 ); 1753 return 0; 1754 } 1755 #endif 1756 1757 1758 /* 1759 ** Add a new element to the end of an expression list. If pList is 1760 ** initially NULL, then create a new expression list. 1761 ** 1762 ** The pList argument must be either NULL or a pointer to an ExprList 1763 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1764 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1765 ** Reason: This routine assumes that the number of slots in pList->a[] 1766 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1767 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1768 ** 1769 ** If a memory allocation error occurs, the entire list is freed and 1770 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1771 ** that the new entry was successfully appended. 1772 */ 1773 static const struct ExprList_item zeroItem = {0}; 1774 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 1775 sqlite3 *db, /* Database handle. Used for memory allocation */ 1776 Expr *pExpr /* Expression to be appended. Might be NULL */ 1777 ){ 1778 struct ExprList_item *pItem; 1779 ExprList *pList; 1780 1781 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 1782 if( pList==0 ){ 1783 sqlite3ExprDelete(db, pExpr); 1784 return 0; 1785 } 1786 pList->nAlloc = 4; 1787 pList->nExpr = 1; 1788 pItem = &pList->a[0]; 1789 *pItem = zeroItem; 1790 pItem->pExpr = pExpr; 1791 return pList; 1792 } 1793 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 1794 sqlite3 *db, /* Database handle. Used for memory allocation */ 1795 ExprList *pList, /* List to which to append. Might be NULL */ 1796 Expr *pExpr /* Expression to be appended. Might be NULL */ 1797 ){ 1798 struct ExprList_item *pItem; 1799 ExprList *pNew; 1800 pList->nAlloc *= 2; 1801 pNew = sqlite3DbRealloc(db, pList, 1802 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 1803 if( pNew==0 ){ 1804 sqlite3ExprListDelete(db, pList); 1805 sqlite3ExprDelete(db, pExpr); 1806 return 0; 1807 }else{ 1808 pList = pNew; 1809 } 1810 pItem = &pList->a[pList->nExpr++]; 1811 *pItem = zeroItem; 1812 pItem->pExpr = pExpr; 1813 return pList; 1814 } 1815 ExprList *sqlite3ExprListAppend( 1816 Parse *pParse, /* Parsing context */ 1817 ExprList *pList, /* List to which to append. Might be NULL */ 1818 Expr *pExpr /* Expression to be appended. Might be NULL */ 1819 ){ 1820 struct ExprList_item *pItem; 1821 if( pList==0 ){ 1822 return sqlite3ExprListAppendNew(pParse->db,pExpr); 1823 } 1824 if( pList->nAlloc<pList->nExpr+1 ){ 1825 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 1826 } 1827 pItem = &pList->a[pList->nExpr++]; 1828 *pItem = zeroItem; 1829 pItem->pExpr = pExpr; 1830 return pList; 1831 } 1832 1833 /* 1834 ** pColumns and pExpr form a vector assignment which is part of the SET 1835 ** clause of an UPDATE statement. Like this: 1836 ** 1837 ** (a,b,c) = (expr1,expr2,expr3) 1838 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1839 ** 1840 ** For each term of the vector assignment, append new entries to the 1841 ** expression list pList. In the case of a subquery on the RHS, append 1842 ** TK_SELECT_COLUMN expressions. 1843 */ 1844 ExprList *sqlite3ExprListAppendVector( 1845 Parse *pParse, /* Parsing context */ 1846 ExprList *pList, /* List to which to append. Might be NULL */ 1847 IdList *pColumns, /* List of names of LHS of the assignment */ 1848 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1849 ){ 1850 sqlite3 *db = pParse->db; 1851 int n; 1852 int i; 1853 int iFirst = pList ? pList->nExpr : 0; 1854 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1855 ** exit prior to this routine being invoked */ 1856 if( NEVER(pColumns==0) ) goto vector_append_error; 1857 if( pExpr==0 ) goto vector_append_error; 1858 1859 /* If the RHS is a vector, then we can immediately check to see that 1860 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1861 ** wildcards ("*") in the result set of the SELECT must be expanded before 1862 ** we can do the size check, so defer the size check until code generation. 1863 */ 1864 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1865 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1866 pColumns->nId, n); 1867 goto vector_append_error; 1868 } 1869 1870 for(i=0; i<pColumns->nId; i++){ 1871 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId); 1872 assert( pSubExpr!=0 || db->mallocFailed ); 1873 if( pSubExpr==0 ) continue; 1874 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1875 if( pList ){ 1876 assert( pList->nExpr==iFirst+i+1 ); 1877 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1878 pColumns->a[i].zName = 0; 1879 } 1880 } 1881 1882 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1883 Expr *pFirst = pList->a[iFirst].pExpr; 1884 assert( pFirst!=0 ); 1885 assert( pFirst->op==TK_SELECT_COLUMN ); 1886 1887 /* Store the SELECT statement in pRight so it will be deleted when 1888 ** sqlite3ExprListDelete() is called */ 1889 pFirst->pRight = pExpr; 1890 pExpr = 0; 1891 1892 /* Remember the size of the LHS in iTable so that we can check that 1893 ** the RHS and LHS sizes match during code generation. */ 1894 pFirst->iTable = pColumns->nId; 1895 } 1896 1897 vector_append_error: 1898 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1899 sqlite3IdListDelete(db, pColumns); 1900 return pList; 1901 } 1902 1903 /* 1904 ** Set the sort order for the last element on the given ExprList. 1905 */ 1906 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1907 struct ExprList_item *pItem; 1908 if( p==0 ) return; 1909 assert( p->nExpr>0 ); 1910 1911 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1912 assert( iSortOrder==SQLITE_SO_UNDEFINED 1913 || iSortOrder==SQLITE_SO_ASC 1914 || iSortOrder==SQLITE_SO_DESC 1915 ); 1916 assert( eNulls==SQLITE_SO_UNDEFINED 1917 || eNulls==SQLITE_SO_ASC 1918 || eNulls==SQLITE_SO_DESC 1919 ); 1920 1921 pItem = &p->a[p->nExpr-1]; 1922 assert( pItem->bNulls==0 ); 1923 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1924 iSortOrder = SQLITE_SO_ASC; 1925 } 1926 pItem->sortFlags = (u8)iSortOrder; 1927 1928 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1929 pItem->bNulls = 1; 1930 if( iSortOrder!=eNulls ){ 1931 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1932 } 1933 } 1934 } 1935 1936 /* 1937 ** Set the ExprList.a[].zEName element of the most recently added item 1938 ** on the expression list. 1939 ** 1940 ** pList might be NULL following an OOM error. But pName should never be 1941 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1942 ** is set. 1943 */ 1944 void sqlite3ExprListSetName( 1945 Parse *pParse, /* Parsing context */ 1946 ExprList *pList, /* List to which to add the span. */ 1947 const Token *pName, /* Name to be added */ 1948 int dequote /* True to cause the name to be dequoted */ 1949 ){ 1950 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1951 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1952 if( pList ){ 1953 struct ExprList_item *pItem; 1954 assert( pList->nExpr>0 ); 1955 pItem = &pList->a[pList->nExpr-1]; 1956 assert( pItem->zEName==0 ); 1957 assert( pItem->eEName==ENAME_NAME ); 1958 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1959 if( dequote ){ 1960 /* If dequote==0, then pName->z does not point to part of a DDL 1961 ** statement handled by the parser. And so no token need be added 1962 ** to the token-map. */ 1963 sqlite3Dequote(pItem->zEName); 1964 if( IN_RENAME_OBJECT ){ 1965 sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName); 1966 } 1967 } 1968 } 1969 } 1970 1971 /* 1972 ** Set the ExprList.a[].zSpan element of the most recently added item 1973 ** on the expression list. 1974 ** 1975 ** pList might be NULL following an OOM error. But pSpan should never be 1976 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1977 ** is set. 1978 */ 1979 void sqlite3ExprListSetSpan( 1980 Parse *pParse, /* Parsing context */ 1981 ExprList *pList, /* List to which to add the span. */ 1982 const char *zStart, /* Start of the span */ 1983 const char *zEnd /* End of the span */ 1984 ){ 1985 sqlite3 *db = pParse->db; 1986 assert( pList!=0 || db->mallocFailed!=0 ); 1987 if( pList ){ 1988 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1989 assert( pList->nExpr>0 ); 1990 if( pItem->zEName==0 ){ 1991 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1992 pItem->eEName = ENAME_SPAN; 1993 } 1994 } 1995 } 1996 1997 /* 1998 ** If the expression list pEList contains more than iLimit elements, 1999 ** leave an error message in pParse. 2000 */ 2001 void sqlite3ExprListCheckLength( 2002 Parse *pParse, 2003 ExprList *pEList, 2004 const char *zObject 2005 ){ 2006 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 2007 testcase( pEList && pEList->nExpr==mx ); 2008 testcase( pEList && pEList->nExpr==mx+1 ); 2009 if( pEList && pEList->nExpr>mx ){ 2010 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 2011 } 2012 } 2013 2014 /* 2015 ** Delete an entire expression list. 2016 */ 2017 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 2018 int i = pList->nExpr; 2019 struct ExprList_item *pItem = pList->a; 2020 assert( pList->nExpr>0 ); 2021 do{ 2022 sqlite3ExprDelete(db, pItem->pExpr); 2023 sqlite3DbFree(db, pItem->zEName); 2024 pItem++; 2025 }while( --i>0 ); 2026 sqlite3DbFreeNN(db, pList); 2027 } 2028 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 2029 if( pList ) exprListDeleteNN(db, pList); 2030 } 2031 2032 /* 2033 ** Return the bitwise-OR of all Expr.flags fields in the given 2034 ** ExprList. 2035 */ 2036 u32 sqlite3ExprListFlags(const ExprList *pList){ 2037 int i; 2038 u32 m = 0; 2039 assert( pList!=0 ); 2040 for(i=0; i<pList->nExpr; i++){ 2041 Expr *pExpr = pList->a[i].pExpr; 2042 assert( pExpr!=0 ); 2043 m |= pExpr->flags; 2044 } 2045 return m; 2046 } 2047 2048 /* 2049 ** This is a SELECT-node callback for the expression walker that 2050 ** always "fails". By "fail" in this case, we mean set 2051 ** pWalker->eCode to zero and abort. 2052 ** 2053 ** This callback is used by multiple expression walkers. 2054 */ 2055 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 2056 UNUSED_PARAMETER(NotUsed); 2057 pWalker->eCode = 0; 2058 return WRC_Abort; 2059 } 2060 2061 /* 2062 ** Check the input string to see if it is "true" or "false" (in any case). 2063 ** 2064 ** If the string is.... Return 2065 ** "true" EP_IsTrue 2066 ** "false" EP_IsFalse 2067 ** anything else 0 2068 */ 2069 u32 sqlite3IsTrueOrFalse(const char *zIn){ 2070 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 2071 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 2072 return 0; 2073 } 2074 2075 2076 /* 2077 ** If the input expression is an ID with the name "true" or "false" 2078 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 2079 ** the conversion happened, and zero if the expression is unaltered. 2080 */ 2081 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 2082 u32 v; 2083 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 2084 if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue) 2085 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 2086 ){ 2087 pExpr->op = TK_TRUEFALSE; 2088 ExprSetProperty(pExpr, v); 2089 return 1; 2090 } 2091 return 0; 2092 } 2093 2094 /* 2095 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 2096 ** and 0 if it is FALSE. 2097 */ 2098 int sqlite3ExprTruthValue(const Expr *pExpr){ 2099 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 2100 assert( pExpr->op==TK_TRUEFALSE ); 2101 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2102 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 2103 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 2104 return pExpr->u.zToken[4]==0; 2105 } 2106 2107 /* 2108 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 2109 ** terms that are always true or false. Return the simplified expression. 2110 ** Or return the original expression if no simplification is possible. 2111 ** 2112 ** Examples: 2113 ** 2114 ** (x<10) AND true => (x<10) 2115 ** (x<10) AND false => false 2116 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 2117 ** (x<10) AND (y=22 OR true) => (x<10) 2118 ** (y=22) OR true => true 2119 */ 2120 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 2121 assert( pExpr!=0 ); 2122 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 2123 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 2124 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 2125 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 2126 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 2127 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 2128 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 2129 } 2130 } 2131 return pExpr; 2132 } 2133 2134 2135 /* 2136 ** These routines are Walker callbacks used to check expressions to 2137 ** see if they are "constant" for some definition of constant. The 2138 ** Walker.eCode value determines the type of "constant" we are looking 2139 ** for. 2140 ** 2141 ** These callback routines are used to implement the following: 2142 ** 2143 ** sqlite3ExprIsConstant() pWalker->eCode==1 2144 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2145 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2146 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2147 ** 2148 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2149 ** is found to not be a constant. 2150 ** 2151 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2152 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2153 ** when parsing an existing schema out of the sqlite_schema table and 4 2154 ** when processing a new CREATE TABLE statement. A bound parameter raises 2155 ** an error for new statements, but is silently converted 2156 ** to NULL for existing schemas. This allows sqlite_schema tables that 2157 ** contain a bound parameter because they were generated by older versions 2158 ** of SQLite to be parsed by newer versions of SQLite without raising a 2159 ** malformed schema error. 2160 */ 2161 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2162 2163 /* If pWalker->eCode is 2 then any term of the expression that comes from 2164 ** the ON or USING clauses of a left join disqualifies the expression 2165 ** from being considered constant. */ 2166 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2167 pWalker->eCode = 0; 2168 return WRC_Abort; 2169 } 2170 2171 switch( pExpr->op ){ 2172 /* Consider functions to be constant if all their arguments are constant 2173 ** and either pWalker->eCode==4 or 5 or the function has the 2174 ** SQLITE_FUNC_CONST flag. */ 2175 case TK_FUNCTION: 2176 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2177 && !ExprHasProperty(pExpr, EP_WinFunc) 2178 ){ 2179 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2180 return WRC_Continue; 2181 }else{ 2182 pWalker->eCode = 0; 2183 return WRC_Abort; 2184 } 2185 case TK_ID: 2186 /* Convert "true" or "false" in a DEFAULT clause into the 2187 ** appropriate TK_TRUEFALSE operator */ 2188 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2189 return WRC_Prune; 2190 } 2191 /* no break */ deliberate_fall_through 2192 case TK_COLUMN: 2193 case TK_AGG_FUNCTION: 2194 case TK_AGG_COLUMN: 2195 testcase( pExpr->op==TK_ID ); 2196 testcase( pExpr->op==TK_COLUMN ); 2197 testcase( pExpr->op==TK_AGG_FUNCTION ); 2198 testcase( pExpr->op==TK_AGG_COLUMN ); 2199 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2200 return WRC_Continue; 2201 } 2202 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2203 return WRC_Continue; 2204 } 2205 /* no break */ deliberate_fall_through 2206 case TK_IF_NULL_ROW: 2207 case TK_REGISTER: 2208 case TK_DOT: 2209 testcase( pExpr->op==TK_REGISTER ); 2210 testcase( pExpr->op==TK_IF_NULL_ROW ); 2211 testcase( pExpr->op==TK_DOT ); 2212 pWalker->eCode = 0; 2213 return WRC_Abort; 2214 case TK_VARIABLE: 2215 if( pWalker->eCode==5 ){ 2216 /* Silently convert bound parameters that appear inside of CREATE 2217 ** statements into a NULL when parsing the CREATE statement text out 2218 ** of the sqlite_schema table */ 2219 pExpr->op = TK_NULL; 2220 }else if( pWalker->eCode==4 ){ 2221 /* A bound parameter in a CREATE statement that originates from 2222 ** sqlite3_prepare() causes an error */ 2223 pWalker->eCode = 0; 2224 return WRC_Abort; 2225 } 2226 /* no break */ deliberate_fall_through 2227 default: 2228 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2229 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2230 return WRC_Continue; 2231 } 2232 } 2233 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2234 Walker w; 2235 w.eCode = initFlag; 2236 w.xExprCallback = exprNodeIsConstant; 2237 w.xSelectCallback = sqlite3SelectWalkFail; 2238 #ifdef SQLITE_DEBUG 2239 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2240 #endif 2241 w.u.iCur = iCur; 2242 sqlite3WalkExpr(&w, p); 2243 return w.eCode; 2244 } 2245 2246 /* 2247 ** Walk an expression tree. Return non-zero if the expression is constant 2248 ** and 0 if it involves variables or function calls. 2249 ** 2250 ** For the purposes of this function, a double-quoted string (ex: "abc") 2251 ** is considered a variable but a single-quoted string (ex: 'abc') is 2252 ** a constant. 2253 */ 2254 int sqlite3ExprIsConstant(Expr *p){ 2255 return exprIsConst(p, 1, 0); 2256 } 2257 2258 /* 2259 ** Walk an expression tree. Return non-zero if 2260 ** 2261 ** (1) the expression is constant, and 2262 ** (2) the expression does originate in the ON or USING clause 2263 ** of a LEFT JOIN, and 2264 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2265 ** operands created by the constant propagation optimization. 2266 ** 2267 ** When this routine returns true, it indicates that the expression 2268 ** can be added to the pParse->pConstExpr list and evaluated once when 2269 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2270 */ 2271 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2272 return exprIsConst(p, 2, 0); 2273 } 2274 2275 /* 2276 ** Walk an expression tree. Return non-zero if the expression is constant 2277 ** for any single row of the table with cursor iCur. In other words, the 2278 ** expression must not refer to any non-deterministic function nor any 2279 ** table other than iCur. 2280 */ 2281 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2282 return exprIsConst(p, 3, iCur); 2283 } 2284 2285 2286 /* 2287 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2288 */ 2289 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2290 ExprList *pGroupBy = pWalker->u.pGroupBy; 2291 int i; 2292 2293 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2294 ** it constant. */ 2295 for(i=0; i<pGroupBy->nExpr; i++){ 2296 Expr *p = pGroupBy->a[i].pExpr; 2297 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2298 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2299 if( sqlite3IsBinary(pColl) ){ 2300 return WRC_Prune; 2301 } 2302 } 2303 } 2304 2305 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2306 if( ExprUseXSelect(pExpr) ){ 2307 pWalker->eCode = 0; 2308 return WRC_Abort; 2309 } 2310 2311 return exprNodeIsConstant(pWalker, pExpr); 2312 } 2313 2314 /* 2315 ** Walk the expression tree passed as the first argument. Return non-zero 2316 ** if the expression consists entirely of constants or copies of terms 2317 ** in pGroupBy that sort with the BINARY collation sequence. 2318 ** 2319 ** This routine is used to determine if a term of the HAVING clause can 2320 ** be promoted into the WHERE clause. In order for such a promotion to work, 2321 ** the value of the HAVING clause term must be the same for all members of 2322 ** a "group". The requirement that the GROUP BY term must be BINARY 2323 ** assumes that no other collating sequence will have a finer-grained 2324 ** grouping than binary. In other words (A=B COLLATE binary) implies 2325 ** A=B in every other collating sequence. The requirement that the 2326 ** GROUP BY be BINARY is stricter than necessary. It would also work 2327 ** to promote HAVING clauses that use the same alternative collating 2328 ** sequence as the GROUP BY term, but that is much harder to check, 2329 ** alternative collating sequences are uncommon, and this is only an 2330 ** optimization, so we take the easy way out and simply require the 2331 ** GROUP BY to use the BINARY collating sequence. 2332 */ 2333 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2334 Walker w; 2335 w.eCode = 1; 2336 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2337 w.xSelectCallback = 0; 2338 w.u.pGroupBy = pGroupBy; 2339 w.pParse = pParse; 2340 sqlite3WalkExpr(&w, p); 2341 return w.eCode; 2342 } 2343 2344 /* 2345 ** Walk an expression tree for the DEFAULT field of a column definition 2346 ** in a CREATE TABLE statement. Return non-zero if the expression is 2347 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2348 ** the expression is constant or a function call with constant arguments. 2349 ** Return and 0 if there are any variables. 2350 ** 2351 ** isInit is true when parsing from sqlite_schema. isInit is false when 2352 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2353 ** (such as ? or $abc) in the expression are converted into NULL. When 2354 ** isInit is false, parameters raise an error. Parameters should not be 2355 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2356 ** allowed it, so we need to support it when reading sqlite_schema for 2357 ** backwards compatibility. 2358 ** 2359 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2360 ** 2361 ** For the purposes of this function, a double-quoted string (ex: "abc") 2362 ** is considered a variable but a single-quoted string (ex: 'abc') is 2363 ** a constant. 2364 */ 2365 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2366 assert( isInit==0 || isInit==1 ); 2367 return exprIsConst(p, 4+isInit, 0); 2368 } 2369 2370 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2371 /* 2372 ** Walk an expression tree. Return 1 if the expression contains a 2373 ** subquery of some kind. Return 0 if there are no subqueries. 2374 */ 2375 int sqlite3ExprContainsSubquery(Expr *p){ 2376 Walker w; 2377 w.eCode = 1; 2378 w.xExprCallback = sqlite3ExprWalkNoop; 2379 w.xSelectCallback = sqlite3SelectWalkFail; 2380 #ifdef SQLITE_DEBUG 2381 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2382 #endif 2383 sqlite3WalkExpr(&w, p); 2384 return w.eCode==0; 2385 } 2386 #endif 2387 2388 /* 2389 ** If the expression p codes a constant integer that is small enough 2390 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2391 ** in *pValue. If the expression is not an integer or if it is too big 2392 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2393 */ 2394 int sqlite3ExprIsInteger(const Expr *p, int *pValue){ 2395 int rc = 0; 2396 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2397 2398 /* If an expression is an integer literal that fits in a signed 32-bit 2399 ** integer, then the EP_IntValue flag will have already been set */ 2400 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2401 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2402 2403 if( p->flags & EP_IntValue ){ 2404 *pValue = p->u.iValue; 2405 return 1; 2406 } 2407 switch( p->op ){ 2408 case TK_UPLUS: { 2409 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2410 break; 2411 } 2412 case TK_UMINUS: { 2413 int v = 0; 2414 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2415 assert( ((unsigned int)v)!=0x80000000 ); 2416 *pValue = -v; 2417 rc = 1; 2418 } 2419 break; 2420 } 2421 default: break; 2422 } 2423 return rc; 2424 } 2425 2426 /* 2427 ** Return FALSE if there is no chance that the expression can be NULL. 2428 ** 2429 ** If the expression might be NULL or if the expression is too complex 2430 ** to tell return TRUE. 2431 ** 2432 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2433 ** when we know that a value cannot be NULL. Hence, a false positive 2434 ** (returning TRUE when in fact the expression can never be NULL) might 2435 ** be a small performance hit but is otherwise harmless. On the other 2436 ** hand, a false negative (returning FALSE when the result could be NULL) 2437 ** will likely result in an incorrect answer. So when in doubt, return 2438 ** TRUE. 2439 */ 2440 int sqlite3ExprCanBeNull(const Expr *p){ 2441 u8 op; 2442 assert( p!=0 ); 2443 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2444 p = p->pLeft; 2445 assert( p!=0 ); 2446 } 2447 op = p->op; 2448 if( op==TK_REGISTER ) op = p->op2; 2449 switch( op ){ 2450 case TK_INTEGER: 2451 case TK_STRING: 2452 case TK_FLOAT: 2453 case TK_BLOB: 2454 return 0; 2455 case TK_COLUMN: 2456 assert( ExprUseYTab(p) ); 2457 return ExprHasProperty(p, EP_CanBeNull) || 2458 p->y.pTab==0 || /* Reference to column of index on expression */ 2459 (p->iColumn>=0 2460 && p->y.pTab->aCol!=0 /* Possible due to prior error */ 2461 && p->y.pTab->aCol[p->iColumn].notNull==0); 2462 default: 2463 return 1; 2464 } 2465 } 2466 2467 /* 2468 ** Return TRUE if the given expression is a constant which would be 2469 ** unchanged by OP_Affinity with the affinity given in the second 2470 ** argument. 2471 ** 2472 ** This routine is used to determine if the OP_Affinity operation 2473 ** can be omitted. When in doubt return FALSE. A false negative 2474 ** is harmless. A false positive, however, can result in the wrong 2475 ** answer. 2476 */ 2477 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2478 u8 op; 2479 int unaryMinus = 0; 2480 if( aff==SQLITE_AFF_BLOB ) return 1; 2481 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2482 if( p->op==TK_UMINUS ) unaryMinus = 1; 2483 p = p->pLeft; 2484 } 2485 op = p->op; 2486 if( op==TK_REGISTER ) op = p->op2; 2487 switch( op ){ 2488 case TK_INTEGER: { 2489 return aff>=SQLITE_AFF_NUMERIC; 2490 } 2491 case TK_FLOAT: { 2492 return aff>=SQLITE_AFF_NUMERIC; 2493 } 2494 case TK_STRING: { 2495 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2496 } 2497 case TK_BLOB: { 2498 return !unaryMinus; 2499 } 2500 case TK_COLUMN: { 2501 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2502 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2503 } 2504 default: { 2505 return 0; 2506 } 2507 } 2508 } 2509 2510 /* 2511 ** Return TRUE if the given string is a row-id column name. 2512 */ 2513 int sqlite3IsRowid(const char *z){ 2514 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2515 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2516 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2517 return 0; 2518 } 2519 2520 /* 2521 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2522 ** that can be simplified to a direct table access, then return 2523 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2524 ** or if the SELECT statement needs to be manifested into a transient 2525 ** table, then return NULL. 2526 */ 2527 #ifndef SQLITE_OMIT_SUBQUERY 2528 static Select *isCandidateForInOpt(const Expr *pX){ 2529 Select *p; 2530 SrcList *pSrc; 2531 ExprList *pEList; 2532 Table *pTab; 2533 int i; 2534 if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */ 2535 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2536 p = pX->x.pSelect; 2537 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2538 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2539 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2540 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2541 return 0; /* No DISTINCT keyword and no aggregate functions */ 2542 } 2543 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2544 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2545 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2546 pSrc = p->pSrc; 2547 assert( pSrc!=0 ); 2548 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2549 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2550 pTab = pSrc->a[0].pTab; 2551 assert( pTab!=0 ); 2552 assert( !IsView(pTab) ); /* FROM clause is not a view */ 2553 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2554 pEList = p->pEList; 2555 assert( pEList!=0 ); 2556 /* All SELECT results must be columns. */ 2557 for(i=0; i<pEList->nExpr; i++){ 2558 Expr *pRes = pEList->a[i].pExpr; 2559 if( pRes->op!=TK_COLUMN ) return 0; 2560 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2561 } 2562 return p; 2563 } 2564 #endif /* SQLITE_OMIT_SUBQUERY */ 2565 2566 #ifndef SQLITE_OMIT_SUBQUERY 2567 /* 2568 ** Generate code that checks the left-most column of index table iCur to see if 2569 ** it contains any NULL entries. Cause the register at regHasNull to be set 2570 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2571 ** to be set to NULL if iCur contains one or more NULL values. 2572 */ 2573 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2574 int addr1; 2575 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2576 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2577 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2578 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2579 VdbeComment((v, "first_entry_in(%d)", iCur)); 2580 sqlite3VdbeJumpHere(v, addr1); 2581 } 2582 #endif 2583 2584 2585 #ifndef SQLITE_OMIT_SUBQUERY 2586 /* 2587 ** The argument is an IN operator with a list (not a subquery) on the 2588 ** right-hand side. Return TRUE if that list is constant. 2589 */ 2590 static int sqlite3InRhsIsConstant(Expr *pIn){ 2591 Expr *pLHS; 2592 int res; 2593 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2594 pLHS = pIn->pLeft; 2595 pIn->pLeft = 0; 2596 res = sqlite3ExprIsConstant(pIn); 2597 pIn->pLeft = pLHS; 2598 return res; 2599 } 2600 #endif 2601 2602 /* 2603 ** This function is used by the implementation of the IN (...) operator. 2604 ** The pX parameter is the expression on the RHS of the IN operator, which 2605 ** might be either a list of expressions or a subquery. 2606 ** 2607 ** The job of this routine is to find or create a b-tree object that can 2608 ** be used either to test for membership in the RHS set or to iterate through 2609 ** all members of the RHS set, skipping duplicates. 2610 ** 2611 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2612 ** and pX->iTable is set to the index of that cursor. 2613 ** 2614 ** The returned value of this function indicates the b-tree type, as follows: 2615 ** 2616 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2617 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2618 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2619 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2620 ** populated epheremal table. 2621 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2622 ** implemented as a sequence of comparisons. 2623 ** 2624 ** An existing b-tree might be used if the RHS expression pX is a simple 2625 ** subquery such as: 2626 ** 2627 ** SELECT <column1>, <column2>... FROM <table> 2628 ** 2629 ** If the RHS of the IN operator is a list or a more complex subquery, then 2630 ** an ephemeral table might need to be generated from the RHS and then 2631 ** pX->iTable made to point to the ephemeral table instead of an 2632 ** existing table. 2633 ** 2634 ** The inFlags parameter must contain, at a minimum, one of the bits 2635 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2636 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2637 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2638 ** be used to loop over all values of the RHS of the IN operator. 2639 ** 2640 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2641 ** through the set members) then the b-tree must not contain duplicates. 2642 ** An epheremal table will be created unless the selected columns are guaranteed 2643 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2644 ** a UNIQUE constraint or index. 2645 ** 2646 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2647 ** for fast set membership tests) then an epheremal table must 2648 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2649 ** index can be found with the specified <columns> as its left-most. 2650 ** 2651 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2652 ** if the RHS of the IN operator is a list (not a subquery) then this 2653 ** routine might decide that creating an ephemeral b-tree for membership 2654 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2655 ** calling routine should implement the IN operator using a sequence 2656 ** of Eq or Ne comparison operations. 2657 ** 2658 ** When the b-tree is being used for membership tests, the calling function 2659 ** might need to know whether or not the RHS side of the IN operator 2660 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2661 ** if there is any chance that the (...) might contain a NULL value at 2662 ** runtime, then a register is allocated and the register number written 2663 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2664 ** NULL value, then *prRhsHasNull is left unchanged. 2665 ** 2666 ** If a register is allocated and its location stored in *prRhsHasNull, then 2667 ** the value in that register will be NULL if the b-tree contains one or more 2668 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2669 ** NULL values. 2670 ** 2671 ** If the aiMap parameter is not NULL, it must point to an array containing 2672 ** one element for each column returned by the SELECT statement on the RHS 2673 ** of the IN(...) operator. The i'th entry of the array is populated with the 2674 ** offset of the index column that matches the i'th column returned by the 2675 ** SELECT. For example, if the expression and selected index are: 2676 ** 2677 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2678 ** CREATE INDEX i1 ON t1(b, c, a); 2679 ** 2680 ** then aiMap[] is populated with {2, 0, 1}. 2681 */ 2682 #ifndef SQLITE_OMIT_SUBQUERY 2683 int sqlite3FindInIndex( 2684 Parse *pParse, /* Parsing context */ 2685 Expr *pX, /* The IN expression */ 2686 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2687 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2688 int *aiMap, /* Mapping from Index fields to RHS fields */ 2689 int *piTab /* OUT: index to use */ 2690 ){ 2691 Select *p; /* SELECT to the right of IN operator */ 2692 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2693 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2694 int mustBeUnique; /* True if RHS must be unique */ 2695 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2696 2697 assert( pX->op==TK_IN ); 2698 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2699 2700 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2701 ** whether or not the SELECT result contains NULL values, check whether 2702 ** or not NULL is actually possible (it may not be, for example, due 2703 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2704 ** set prRhsHasNull to 0 before continuing. */ 2705 if( prRhsHasNull && ExprUseXSelect(pX) ){ 2706 int i; 2707 ExprList *pEList = pX->x.pSelect->pEList; 2708 for(i=0; i<pEList->nExpr; i++){ 2709 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2710 } 2711 if( i==pEList->nExpr ){ 2712 prRhsHasNull = 0; 2713 } 2714 } 2715 2716 /* Check to see if an existing table or index can be used to 2717 ** satisfy the query. This is preferable to generating a new 2718 ** ephemeral table. */ 2719 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2720 sqlite3 *db = pParse->db; /* Database connection */ 2721 Table *pTab; /* Table <table>. */ 2722 int iDb; /* Database idx for pTab */ 2723 ExprList *pEList = p->pEList; 2724 int nExpr = pEList->nExpr; 2725 2726 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2727 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2728 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2729 pTab = p->pSrc->a[0].pTab; 2730 2731 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2732 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2733 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 2734 sqlite3CodeVerifySchema(pParse, iDb); 2735 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2736 2737 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2738 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2739 /* The "x IN (SELECT rowid FROM table)" case */ 2740 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2741 VdbeCoverage(v); 2742 2743 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2744 eType = IN_INDEX_ROWID; 2745 ExplainQueryPlan((pParse, 0, 2746 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2747 sqlite3VdbeJumpHere(v, iAddr); 2748 }else{ 2749 Index *pIdx; /* Iterator variable */ 2750 int affinity_ok = 1; 2751 int i; 2752 2753 /* Check that the affinity that will be used to perform each 2754 ** comparison is the same as the affinity of each column in table 2755 ** on the RHS of the IN operator. If it not, it is not possible to 2756 ** use any index of the RHS table. */ 2757 for(i=0; i<nExpr && affinity_ok; i++){ 2758 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2759 int iCol = pEList->a[i].pExpr->iColumn; 2760 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2761 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2762 testcase( cmpaff==SQLITE_AFF_BLOB ); 2763 testcase( cmpaff==SQLITE_AFF_TEXT ); 2764 switch( cmpaff ){ 2765 case SQLITE_AFF_BLOB: 2766 break; 2767 case SQLITE_AFF_TEXT: 2768 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2769 ** other has no affinity and the other side is TEXT. Hence, 2770 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2771 ** and for the term on the LHS of the IN to have no affinity. */ 2772 assert( idxaff==SQLITE_AFF_TEXT ); 2773 break; 2774 default: 2775 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2776 } 2777 } 2778 2779 if( affinity_ok ){ 2780 /* Search for an existing index that will work for this IN operator */ 2781 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2782 Bitmask colUsed; /* Columns of the index used */ 2783 Bitmask mCol; /* Mask for the current column */ 2784 if( pIdx->nColumn<nExpr ) continue; 2785 if( pIdx->pPartIdxWhere!=0 ) continue; 2786 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2787 ** BITMASK(nExpr) without overflowing */ 2788 testcase( pIdx->nColumn==BMS-2 ); 2789 testcase( pIdx->nColumn==BMS-1 ); 2790 if( pIdx->nColumn>=BMS-1 ) continue; 2791 if( mustBeUnique ){ 2792 if( pIdx->nKeyCol>nExpr 2793 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2794 ){ 2795 continue; /* This index is not unique over the IN RHS columns */ 2796 } 2797 } 2798 2799 colUsed = 0; /* Columns of index used so far */ 2800 for(i=0; i<nExpr; i++){ 2801 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2802 Expr *pRhs = pEList->a[i].pExpr; 2803 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2804 int j; 2805 2806 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2807 for(j=0; j<nExpr; j++){ 2808 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2809 assert( pIdx->azColl[j] ); 2810 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2811 continue; 2812 } 2813 break; 2814 } 2815 if( j==nExpr ) break; 2816 mCol = MASKBIT(j); 2817 if( mCol & colUsed ) break; /* Each column used only once */ 2818 colUsed |= mCol; 2819 if( aiMap ) aiMap[i] = j; 2820 } 2821 2822 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2823 if( colUsed==(MASKBIT(nExpr)-1) ){ 2824 /* If we reach this point, that means the index pIdx is usable */ 2825 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2826 ExplainQueryPlan((pParse, 0, 2827 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2828 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2829 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2830 VdbeComment((v, "%s", pIdx->zName)); 2831 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2832 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2833 2834 if( prRhsHasNull ){ 2835 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2836 i64 mask = (1<<nExpr)-1; 2837 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2838 iTab, 0, 0, (u8*)&mask, P4_INT64); 2839 #endif 2840 *prRhsHasNull = ++pParse->nMem; 2841 if( nExpr==1 ){ 2842 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2843 } 2844 } 2845 sqlite3VdbeJumpHere(v, iAddr); 2846 } 2847 } /* End loop over indexes */ 2848 } /* End if( affinity_ok ) */ 2849 } /* End if not an rowid index */ 2850 } /* End attempt to optimize using an index */ 2851 2852 /* If no preexisting index is available for the IN clause 2853 ** and IN_INDEX_NOOP is an allowed reply 2854 ** and the RHS of the IN operator is a list, not a subquery 2855 ** and the RHS is not constant or has two or fewer terms, 2856 ** then it is not worth creating an ephemeral table to evaluate 2857 ** the IN operator so return IN_INDEX_NOOP. 2858 */ 2859 if( eType==0 2860 && (inFlags & IN_INDEX_NOOP_OK) 2861 && ExprUseXList(pX) 2862 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2863 ){ 2864 eType = IN_INDEX_NOOP; 2865 } 2866 2867 if( eType==0 ){ 2868 /* Could not find an existing table or index to use as the RHS b-tree. 2869 ** We will have to generate an ephemeral table to do the job. 2870 */ 2871 u32 savedNQueryLoop = pParse->nQueryLoop; 2872 int rMayHaveNull = 0; 2873 eType = IN_INDEX_EPH; 2874 if( inFlags & IN_INDEX_LOOP ){ 2875 pParse->nQueryLoop = 0; 2876 }else if( prRhsHasNull ){ 2877 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2878 } 2879 assert( pX->op==TK_IN ); 2880 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2881 if( rMayHaveNull ){ 2882 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2883 } 2884 pParse->nQueryLoop = savedNQueryLoop; 2885 } 2886 2887 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2888 int i, n; 2889 n = sqlite3ExprVectorSize(pX->pLeft); 2890 for(i=0; i<n; i++) aiMap[i] = i; 2891 } 2892 *piTab = iTab; 2893 return eType; 2894 } 2895 #endif 2896 2897 #ifndef SQLITE_OMIT_SUBQUERY 2898 /* 2899 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2900 ** function allocates and returns a nul-terminated string containing 2901 ** the affinities to be used for each column of the comparison. 2902 ** 2903 ** It is the responsibility of the caller to ensure that the returned 2904 ** string is eventually freed using sqlite3DbFree(). 2905 */ 2906 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){ 2907 Expr *pLeft = pExpr->pLeft; 2908 int nVal = sqlite3ExprVectorSize(pLeft); 2909 Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0; 2910 char *zRet; 2911 2912 assert( pExpr->op==TK_IN ); 2913 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2914 if( zRet ){ 2915 int i; 2916 for(i=0; i<nVal; i++){ 2917 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2918 char a = sqlite3ExprAffinity(pA); 2919 if( pSelect ){ 2920 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2921 }else{ 2922 zRet[i] = a; 2923 } 2924 } 2925 zRet[nVal] = '\0'; 2926 } 2927 return zRet; 2928 } 2929 #endif 2930 2931 #ifndef SQLITE_OMIT_SUBQUERY 2932 /* 2933 ** Load the Parse object passed as the first argument with an error 2934 ** message of the form: 2935 ** 2936 ** "sub-select returns N columns - expected M" 2937 */ 2938 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2939 if( pParse->nErr==0 ){ 2940 const char *zFmt = "sub-select returns %d columns - expected %d"; 2941 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2942 } 2943 } 2944 #endif 2945 2946 /* 2947 ** Expression pExpr is a vector that has been used in a context where 2948 ** it is not permitted. If pExpr is a sub-select vector, this routine 2949 ** loads the Parse object with a message of the form: 2950 ** 2951 ** "sub-select returns N columns - expected 1" 2952 ** 2953 ** Or, if it is a regular scalar vector: 2954 ** 2955 ** "row value misused" 2956 */ 2957 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2958 #ifndef SQLITE_OMIT_SUBQUERY 2959 if( ExprUseXSelect(pExpr) ){ 2960 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2961 }else 2962 #endif 2963 { 2964 sqlite3ErrorMsg(pParse, "row value misused"); 2965 } 2966 } 2967 2968 #ifndef SQLITE_OMIT_SUBQUERY 2969 /* 2970 ** Generate code that will construct an ephemeral table containing all terms 2971 ** in the RHS of an IN operator. The IN operator can be in either of two 2972 ** forms: 2973 ** 2974 ** x IN (4,5,11) -- IN operator with list on right-hand side 2975 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2976 ** 2977 ** The pExpr parameter is the IN operator. The cursor number for the 2978 ** constructed ephermeral table is returned. The first time the ephemeral 2979 ** table is computed, the cursor number is also stored in pExpr->iTable, 2980 ** however the cursor number returned might not be the same, as it might 2981 ** have been duplicated using OP_OpenDup. 2982 ** 2983 ** If the LHS expression ("x" in the examples) is a column value, or 2984 ** the SELECT statement returns a column value, then the affinity of that 2985 ** column is used to build the index keys. If both 'x' and the 2986 ** SELECT... statement are columns, then numeric affinity is used 2987 ** if either column has NUMERIC or INTEGER affinity. If neither 2988 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2989 ** is used. 2990 */ 2991 void sqlite3CodeRhsOfIN( 2992 Parse *pParse, /* Parsing context */ 2993 Expr *pExpr, /* The IN operator */ 2994 int iTab /* Use this cursor number */ 2995 ){ 2996 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2997 int addr; /* Address of OP_OpenEphemeral instruction */ 2998 Expr *pLeft; /* the LHS of the IN operator */ 2999 KeyInfo *pKeyInfo = 0; /* Key information */ 3000 int nVal; /* Size of vector pLeft */ 3001 Vdbe *v; /* The prepared statement under construction */ 3002 3003 v = pParse->pVdbe; 3004 assert( v!=0 ); 3005 3006 /* The evaluation of the IN must be repeated every time it 3007 ** is encountered if any of the following is true: 3008 ** 3009 ** * The right-hand side is a correlated subquery 3010 ** * The right-hand side is an expression list containing variables 3011 ** * We are inside a trigger 3012 ** 3013 ** If all of the above are false, then we can compute the RHS just once 3014 ** and reuse it many names. 3015 */ 3016 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 3017 /* Reuse of the RHS is allowed */ 3018 /* If this routine has already been coded, but the previous code 3019 ** might not have been invoked yet, so invoke it now as a subroutine. 3020 */ 3021 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3022 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3023 if( ExprUseXSelect(pExpr) ){ 3024 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 3025 pExpr->x.pSelect->selId)); 3026 } 3027 assert( ExprUseYSub(pExpr) ); 3028 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3029 pExpr->y.sub.iAddr); 3030 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 3031 sqlite3VdbeJumpHere(v, addrOnce); 3032 return; 3033 } 3034 3035 /* Begin coding the subroutine */ 3036 assert( !ExprUseYWin(pExpr) ); 3037 ExprSetProperty(pExpr, EP_Subrtn); 3038 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3039 pExpr->y.sub.regReturn = ++pParse->nMem; 3040 pExpr->y.sub.iAddr = 3041 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3042 VdbeComment((v, "return address")); 3043 3044 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3045 } 3046 3047 /* Check to see if this is a vector IN operator */ 3048 pLeft = pExpr->pLeft; 3049 nVal = sqlite3ExprVectorSize(pLeft); 3050 3051 /* Construct the ephemeral table that will contain the content of 3052 ** RHS of the IN operator. 3053 */ 3054 pExpr->iTable = iTab; 3055 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 3056 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 3057 if( ExprUseXSelect(pExpr) ){ 3058 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 3059 }else{ 3060 VdbeComment((v, "RHS of IN operator")); 3061 } 3062 #endif 3063 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 3064 3065 if( ExprUseXSelect(pExpr) ){ 3066 /* Case 1: expr IN (SELECT ...) 3067 ** 3068 ** Generate code to write the results of the select into the temporary 3069 ** table allocated and opened above. 3070 */ 3071 Select *pSelect = pExpr->x.pSelect; 3072 ExprList *pEList = pSelect->pEList; 3073 3074 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 3075 addrOnce?"":"CORRELATED ", pSelect->selId 3076 )); 3077 /* If the LHS and RHS of the IN operator do not match, that 3078 ** error will have been caught long before we reach this point. */ 3079 if( ALWAYS(pEList->nExpr==nVal) ){ 3080 Select *pCopy; 3081 SelectDest dest; 3082 int i; 3083 int rc; 3084 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 3085 dest.zAffSdst = exprINAffinity(pParse, pExpr); 3086 pSelect->iLimit = 0; 3087 testcase( pSelect->selFlags & SF_Distinct ); 3088 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 3089 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); 3090 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); 3091 sqlite3SelectDelete(pParse->db, pCopy); 3092 sqlite3DbFree(pParse->db, dest.zAffSdst); 3093 if( rc ){ 3094 sqlite3KeyInfoUnref(pKeyInfo); 3095 return; 3096 } 3097 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 3098 assert( pEList!=0 ); 3099 assert( pEList->nExpr>0 ); 3100 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3101 for(i=0; i<nVal; i++){ 3102 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 3103 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 3104 pParse, p, pEList->a[i].pExpr 3105 ); 3106 } 3107 } 3108 }else if( ALWAYS(pExpr->x.pList!=0) ){ 3109 /* Case 2: expr IN (exprlist) 3110 ** 3111 ** For each expression, build an index key from the evaluation and 3112 ** store it in the temporary table. If <expr> is a column, then use 3113 ** that columns affinity when building index keys. If <expr> is not 3114 ** a column, use numeric affinity. 3115 */ 3116 char affinity; /* Affinity of the LHS of the IN */ 3117 int i; 3118 ExprList *pList = pExpr->x.pList; 3119 struct ExprList_item *pItem; 3120 int r1, r2; 3121 affinity = sqlite3ExprAffinity(pLeft); 3122 if( affinity<=SQLITE_AFF_NONE ){ 3123 affinity = SQLITE_AFF_BLOB; 3124 }else if( affinity==SQLITE_AFF_REAL ){ 3125 affinity = SQLITE_AFF_NUMERIC; 3126 } 3127 if( pKeyInfo ){ 3128 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3129 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3130 } 3131 3132 /* Loop through each expression in <exprlist>. */ 3133 r1 = sqlite3GetTempReg(pParse); 3134 r2 = sqlite3GetTempReg(pParse); 3135 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 3136 Expr *pE2 = pItem->pExpr; 3137 3138 /* If the expression is not constant then we will need to 3139 ** disable the test that was generated above that makes sure 3140 ** this code only executes once. Because for a non-constant 3141 ** expression we need to rerun this code each time. 3142 */ 3143 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 3144 sqlite3VdbeChangeToNoop(v, addrOnce); 3145 ExprClearProperty(pExpr, EP_Subrtn); 3146 addrOnce = 0; 3147 } 3148 3149 /* Evaluate the expression and insert it into the temp table */ 3150 sqlite3ExprCode(pParse, pE2, r1); 3151 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3152 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3153 } 3154 sqlite3ReleaseTempReg(pParse, r1); 3155 sqlite3ReleaseTempReg(pParse, r2); 3156 } 3157 if( pKeyInfo ){ 3158 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3159 } 3160 if( addrOnce ){ 3161 sqlite3VdbeJumpHere(v, addrOnce); 3162 /* Subroutine return */ 3163 assert( ExprUseYSub(pExpr) ); 3164 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3165 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3166 sqlite3ClearTempRegCache(pParse); 3167 } 3168 } 3169 #endif /* SQLITE_OMIT_SUBQUERY */ 3170 3171 /* 3172 ** Generate code for scalar subqueries used as a subquery expression 3173 ** or EXISTS operator: 3174 ** 3175 ** (SELECT a FROM b) -- subquery 3176 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3177 ** 3178 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3179 ** 3180 ** Return the register that holds the result. For a multi-column SELECT, 3181 ** the result is stored in a contiguous array of registers and the 3182 ** return value is the register of the left-most result column. 3183 ** Return 0 if an error occurs. 3184 */ 3185 #ifndef SQLITE_OMIT_SUBQUERY 3186 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3187 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3188 int rReg = 0; /* Register storing resulting */ 3189 Select *pSel; /* SELECT statement to encode */ 3190 SelectDest dest; /* How to deal with SELECT result */ 3191 int nReg; /* Registers to allocate */ 3192 Expr *pLimit; /* New limit expression */ 3193 3194 Vdbe *v = pParse->pVdbe; 3195 assert( v!=0 ); 3196 if( pParse->nErr ) return 0; 3197 testcase( pExpr->op==TK_EXISTS ); 3198 testcase( pExpr->op==TK_SELECT ); 3199 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3200 assert( ExprUseXSelect(pExpr) ); 3201 pSel = pExpr->x.pSelect; 3202 3203 /* If this routine has already been coded, then invoke it as a 3204 ** subroutine. */ 3205 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3206 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3207 assert( ExprUseYSub(pExpr) ); 3208 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3209 pExpr->y.sub.iAddr); 3210 return pExpr->iTable; 3211 } 3212 3213 /* Begin coding the subroutine */ 3214 assert( !ExprUseYWin(pExpr) ); 3215 assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) ); 3216 ExprSetProperty(pExpr, EP_Subrtn); 3217 pExpr->y.sub.regReturn = ++pParse->nMem; 3218 pExpr->y.sub.iAddr = 3219 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3220 VdbeComment((v, "return address")); 3221 3222 3223 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3224 ** is encountered if any of the following is true: 3225 ** 3226 ** * The right-hand side is a correlated subquery 3227 ** * The right-hand side is an expression list containing variables 3228 ** * We are inside a trigger 3229 ** 3230 ** If all of the above are false, then we can run this code just once 3231 ** save the results, and reuse the same result on subsequent invocations. 3232 */ 3233 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3234 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3235 } 3236 3237 /* For a SELECT, generate code to put the values for all columns of 3238 ** the first row into an array of registers and return the index of 3239 ** the first register. 3240 ** 3241 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3242 ** into a register and return that register number. 3243 ** 3244 ** In both cases, the query is augmented with "LIMIT 1". Any 3245 ** preexisting limit is discarded in place of the new LIMIT 1. 3246 */ 3247 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3248 addrOnce?"":"CORRELATED ", pSel->selId)); 3249 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3250 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3251 pParse->nMem += nReg; 3252 if( pExpr->op==TK_SELECT ){ 3253 dest.eDest = SRT_Mem; 3254 dest.iSdst = dest.iSDParm; 3255 dest.nSdst = nReg; 3256 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3257 VdbeComment((v, "Init subquery result")); 3258 }else{ 3259 dest.eDest = SRT_Exists; 3260 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3261 VdbeComment((v, "Init EXISTS result")); 3262 } 3263 if( pSel->pLimit ){ 3264 /* The subquery already has a limit. If the pre-existing limit is X 3265 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3266 sqlite3 *db = pParse->db; 3267 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3268 if( pLimit ){ 3269 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3270 pLimit = sqlite3PExpr(pParse, TK_NE, 3271 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3272 } 3273 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3274 pSel->pLimit->pLeft = pLimit; 3275 }else{ 3276 /* If there is no pre-existing limit add a limit of 1 */ 3277 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3278 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3279 } 3280 pSel->iLimit = 0; 3281 if( sqlite3Select(pParse, pSel, &dest) ){ 3282 pExpr->op2 = pExpr->op; 3283 pExpr->op = TK_ERROR; 3284 return 0; 3285 } 3286 pExpr->iTable = rReg = dest.iSDParm; 3287 ExprSetVVAProperty(pExpr, EP_NoReduce); 3288 if( addrOnce ){ 3289 sqlite3VdbeJumpHere(v, addrOnce); 3290 } 3291 3292 /* Subroutine return */ 3293 assert( ExprUseYSub(pExpr) ); 3294 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3295 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3296 sqlite3ClearTempRegCache(pParse); 3297 return rReg; 3298 } 3299 #endif /* SQLITE_OMIT_SUBQUERY */ 3300 3301 #ifndef SQLITE_OMIT_SUBQUERY 3302 /* 3303 ** Expr pIn is an IN(...) expression. This function checks that the 3304 ** sub-select on the RHS of the IN() operator has the same number of 3305 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3306 ** a sub-query, that the LHS is a vector of size 1. 3307 */ 3308 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3309 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3310 if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){ 3311 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3312 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3313 return 1; 3314 } 3315 }else if( nVector!=1 ){ 3316 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3317 return 1; 3318 } 3319 return 0; 3320 } 3321 #endif 3322 3323 #ifndef SQLITE_OMIT_SUBQUERY 3324 /* 3325 ** Generate code for an IN expression. 3326 ** 3327 ** x IN (SELECT ...) 3328 ** x IN (value, value, ...) 3329 ** 3330 ** The left-hand side (LHS) is a scalar or vector expression. The 3331 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3332 ** subquery. If the RHS is a subquery, the number of result columns must 3333 ** match the number of columns in the vector on the LHS. If the RHS is 3334 ** a list of values, the LHS must be a scalar. 3335 ** 3336 ** The IN operator is true if the LHS value is contained within the RHS. 3337 ** The result is false if the LHS is definitely not in the RHS. The 3338 ** result is NULL if the presence of the LHS in the RHS cannot be 3339 ** determined due to NULLs. 3340 ** 3341 ** This routine generates code that jumps to destIfFalse if the LHS is not 3342 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3343 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3344 ** within the RHS then fall through. 3345 ** 3346 ** See the separate in-operator.md documentation file in the canonical 3347 ** SQLite source tree for additional information. 3348 */ 3349 static void sqlite3ExprCodeIN( 3350 Parse *pParse, /* Parsing and code generating context */ 3351 Expr *pExpr, /* The IN expression */ 3352 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3353 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3354 ){ 3355 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3356 int eType; /* Type of the RHS */ 3357 int rLhs; /* Register(s) holding the LHS values */ 3358 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3359 Vdbe *v; /* Statement under construction */ 3360 int *aiMap = 0; /* Map from vector field to index column */ 3361 char *zAff = 0; /* Affinity string for comparisons */ 3362 int nVector; /* Size of vectors for this IN operator */ 3363 int iDummy; /* Dummy parameter to exprCodeVector() */ 3364 Expr *pLeft; /* The LHS of the IN operator */ 3365 int i; /* loop counter */ 3366 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3367 int destStep6 = 0; /* Start of code for Step 6 */ 3368 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3369 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3370 int addrTop; /* Top of the step-6 loop */ 3371 int iTab = 0; /* Index to use */ 3372 u8 okConstFactor = pParse->okConstFactor; 3373 3374 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3375 pLeft = pExpr->pLeft; 3376 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3377 zAff = exprINAffinity(pParse, pExpr); 3378 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3379 aiMap = (int*)sqlite3DbMallocZero( 3380 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3381 ); 3382 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3383 3384 /* Attempt to compute the RHS. After this step, if anything other than 3385 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3386 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3387 ** the RHS has not yet been coded. */ 3388 v = pParse->pVdbe; 3389 assert( v!=0 ); /* OOM detected prior to this routine */ 3390 VdbeNoopComment((v, "begin IN expr")); 3391 eType = sqlite3FindInIndex(pParse, pExpr, 3392 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3393 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3394 aiMap, &iTab); 3395 3396 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3397 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3398 ); 3399 #ifdef SQLITE_DEBUG 3400 /* Confirm that aiMap[] contains nVector integer values between 0 and 3401 ** nVector-1. */ 3402 for(i=0; i<nVector; i++){ 3403 int j, cnt; 3404 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3405 assert( cnt==1 ); 3406 } 3407 #endif 3408 3409 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3410 ** vector, then it is stored in an array of nVector registers starting 3411 ** at r1. 3412 ** 3413 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3414 ** so that the fields are in the same order as an existing index. The 3415 ** aiMap[] array contains a mapping from the original LHS field order to 3416 ** the field order that matches the RHS index. 3417 ** 3418 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3419 ** even if it is constant, as OP_Affinity may be used on the register 3420 ** by code generated below. */ 3421 assert( pParse->okConstFactor==okConstFactor ); 3422 pParse->okConstFactor = 0; 3423 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3424 pParse->okConstFactor = okConstFactor; 3425 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3426 if( i==nVector ){ 3427 /* LHS fields are not reordered */ 3428 rLhs = rLhsOrig; 3429 }else{ 3430 /* Need to reorder the LHS fields according to aiMap */ 3431 rLhs = sqlite3GetTempRange(pParse, nVector); 3432 for(i=0; i<nVector; i++){ 3433 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3434 } 3435 } 3436 3437 /* If sqlite3FindInIndex() did not find or create an index that is 3438 ** suitable for evaluating the IN operator, then evaluate using a 3439 ** sequence of comparisons. 3440 ** 3441 ** This is step (1) in the in-operator.md optimized algorithm. 3442 */ 3443 if( eType==IN_INDEX_NOOP ){ 3444 ExprList *pList; 3445 CollSeq *pColl; 3446 int labelOk = sqlite3VdbeMakeLabel(pParse); 3447 int r2, regToFree; 3448 int regCkNull = 0; 3449 int ii; 3450 assert( ExprUseXList(pExpr) ); 3451 pList = pExpr->x.pList; 3452 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3453 if( destIfNull!=destIfFalse ){ 3454 regCkNull = sqlite3GetTempReg(pParse); 3455 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3456 } 3457 for(ii=0; ii<pList->nExpr; ii++){ 3458 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3459 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3460 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3461 } 3462 sqlite3ReleaseTempReg(pParse, regToFree); 3463 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3464 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3465 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3466 (void*)pColl, P4_COLLSEQ); 3467 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3468 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3469 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3470 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3471 sqlite3VdbeChangeP5(v, zAff[0]); 3472 }else{ 3473 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3474 assert( destIfNull==destIfFalse ); 3475 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3476 (void*)pColl, P4_COLLSEQ); 3477 VdbeCoverageIf(v, op==OP_Ne); 3478 VdbeCoverageIf(v, op==OP_IsNull); 3479 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3480 } 3481 } 3482 if( regCkNull ){ 3483 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3484 sqlite3VdbeGoto(v, destIfFalse); 3485 } 3486 sqlite3VdbeResolveLabel(v, labelOk); 3487 sqlite3ReleaseTempReg(pParse, regCkNull); 3488 goto sqlite3ExprCodeIN_finished; 3489 } 3490 3491 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3492 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3493 ** We will then skip the binary search of the RHS. 3494 */ 3495 if( destIfNull==destIfFalse ){ 3496 destStep2 = destIfFalse; 3497 }else{ 3498 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3499 } 3500 // if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3501 for(i=0; i<nVector; i++){ 3502 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3503 if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error; 3504 if( sqlite3ExprCanBeNull(p) ){ 3505 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3506 VdbeCoverage(v); 3507 } 3508 } 3509 3510 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3511 ** of the RHS using the LHS as a probe. If found, the result is 3512 ** true. 3513 */ 3514 if( eType==IN_INDEX_ROWID ){ 3515 /* In this case, the RHS is the ROWID of table b-tree and so we also 3516 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3517 ** into a single opcode. */ 3518 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3519 VdbeCoverage(v); 3520 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3521 }else{ 3522 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3523 if( destIfFalse==destIfNull ){ 3524 /* Combine Step 3 and Step 5 into a single opcode */ 3525 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3526 rLhs, nVector); VdbeCoverage(v); 3527 goto sqlite3ExprCodeIN_finished; 3528 } 3529 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3530 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3531 rLhs, nVector); VdbeCoverage(v); 3532 } 3533 3534 /* Step 4. If the RHS is known to be non-NULL and we did not find 3535 ** an match on the search above, then the result must be FALSE. 3536 */ 3537 if( rRhsHasNull && nVector==1 ){ 3538 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3539 VdbeCoverage(v); 3540 } 3541 3542 /* Step 5. If we do not care about the difference between NULL and 3543 ** FALSE, then just return false. 3544 */ 3545 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3546 3547 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3548 ** If any comparison is NULL, then the result is NULL. If all 3549 ** comparisons are FALSE then the final result is FALSE. 3550 ** 3551 ** For a scalar LHS, it is sufficient to check just the first row 3552 ** of the RHS. 3553 */ 3554 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3555 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3556 VdbeCoverage(v); 3557 if( nVector>1 ){ 3558 destNotNull = sqlite3VdbeMakeLabel(pParse); 3559 }else{ 3560 /* For nVector==1, combine steps 6 and 7 by immediately returning 3561 ** FALSE if the first comparison is not NULL */ 3562 destNotNull = destIfFalse; 3563 } 3564 for(i=0; i<nVector; i++){ 3565 Expr *p; 3566 CollSeq *pColl; 3567 int r3 = sqlite3GetTempReg(pParse); 3568 p = sqlite3VectorFieldSubexpr(pLeft, i); 3569 pColl = sqlite3ExprCollSeq(pParse, p); 3570 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3571 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3572 (void*)pColl, P4_COLLSEQ); 3573 VdbeCoverage(v); 3574 sqlite3ReleaseTempReg(pParse, r3); 3575 } 3576 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3577 if( nVector>1 ){ 3578 sqlite3VdbeResolveLabel(v, destNotNull); 3579 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3580 VdbeCoverage(v); 3581 3582 /* Step 7: If we reach this point, we know that the result must 3583 ** be false. */ 3584 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3585 } 3586 3587 /* Jumps here in order to return true. */ 3588 sqlite3VdbeJumpHere(v, addrTruthOp); 3589 3590 sqlite3ExprCodeIN_finished: 3591 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3592 VdbeComment((v, "end IN expr")); 3593 sqlite3ExprCodeIN_oom_error: 3594 sqlite3DbFree(pParse->db, aiMap); 3595 sqlite3DbFree(pParse->db, zAff); 3596 } 3597 #endif /* SQLITE_OMIT_SUBQUERY */ 3598 3599 #ifndef SQLITE_OMIT_FLOATING_POINT 3600 /* 3601 ** Generate an instruction that will put the floating point 3602 ** value described by z[0..n-1] into register iMem. 3603 ** 3604 ** The z[] string will probably not be zero-terminated. But the 3605 ** z[n] character is guaranteed to be something that does not look 3606 ** like the continuation of the number. 3607 */ 3608 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3609 if( ALWAYS(z!=0) ){ 3610 double value; 3611 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3612 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3613 if( negateFlag ) value = -value; 3614 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3615 } 3616 } 3617 #endif 3618 3619 3620 /* 3621 ** Generate an instruction that will put the integer describe by 3622 ** text z[0..n-1] into register iMem. 3623 ** 3624 ** Expr.u.zToken is always UTF8 and zero-terminated. 3625 */ 3626 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3627 Vdbe *v = pParse->pVdbe; 3628 if( pExpr->flags & EP_IntValue ){ 3629 int i = pExpr->u.iValue; 3630 assert( i>=0 ); 3631 if( negFlag ) i = -i; 3632 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3633 }else{ 3634 int c; 3635 i64 value; 3636 const char *z = pExpr->u.zToken; 3637 assert( z!=0 ); 3638 c = sqlite3DecOrHexToI64(z, &value); 3639 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3640 #ifdef SQLITE_OMIT_FLOATING_POINT 3641 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3642 #else 3643 #ifndef SQLITE_OMIT_HEX_INTEGER 3644 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3645 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3646 }else 3647 #endif 3648 { 3649 codeReal(v, z, negFlag, iMem); 3650 } 3651 #endif 3652 }else{ 3653 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3654 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3655 } 3656 } 3657 } 3658 3659 3660 /* Generate code that will load into register regOut a value that is 3661 ** appropriate for the iIdxCol-th column of index pIdx. 3662 */ 3663 void sqlite3ExprCodeLoadIndexColumn( 3664 Parse *pParse, /* The parsing context */ 3665 Index *pIdx, /* The index whose column is to be loaded */ 3666 int iTabCur, /* Cursor pointing to a table row */ 3667 int iIdxCol, /* The column of the index to be loaded */ 3668 int regOut /* Store the index column value in this register */ 3669 ){ 3670 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3671 if( iTabCol==XN_EXPR ){ 3672 assert( pIdx->aColExpr ); 3673 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3674 pParse->iSelfTab = iTabCur + 1; 3675 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3676 pParse->iSelfTab = 0; 3677 }else{ 3678 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3679 iTabCol, regOut); 3680 } 3681 } 3682 3683 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3684 /* 3685 ** Generate code that will compute the value of generated column pCol 3686 ** and store the result in register regOut 3687 */ 3688 void sqlite3ExprCodeGeneratedColumn( 3689 Parse *pParse, /* Parsing context */ 3690 Table *pTab, /* Table containing the generated column */ 3691 Column *pCol, /* The generated column */ 3692 int regOut /* Put the result in this register */ 3693 ){ 3694 int iAddr; 3695 Vdbe *v = pParse->pVdbe; 3696 assert( v!=0 ); 3697 assert( pParse->iSelfTab!=0 ); 3698 if( pParse->iSelfTab>0 ){ 3699 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3700 }else{ 3701 iAddr = 0; 3702 } 3703 sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut); 3704 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3705 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3706 } 3707 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3708 } 3709 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3710 3711 /* 3712 ** Generate code to extract the value of the iCol-th column of a table. 3713 */ 3714 void sqlite3ExprCodeGetColumnOfTable( 3715 Vdbe *v, /* Parsing context */ 3716 Table *pTab, /* The table containing the value */ 3717 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3718 int iCol, /* Index of the column to extract */ 3719 int regOut /* Extract the value into this register */ 3720 ){ 3721 Column *pCol; 3722 assert( v!=0 ); 3723 if( pTab==0 ){ 3724 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3725 return; 3726 } 3727 if( iCol<0 || iCol==pTab->iPKey ){ 3728 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3729 }else{ 3730 int op; 3731 int x; 3732 if( IsVirtual(pTab) ){ 3733 op = OP_VColumn; 3734 x = iCol; 3735 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3736 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3737 Parse *pParse = sqlite3VdbeParser(v); 3738 if( pCol->colFlags & COLFLAG_BUSY ){ 3739 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3740 pCol->zCnName); 3741 }else{ 3742 int savedSelfTab = pParse->iSelfTab; 3743 pCol->colFlags |= COLFLAG_BUSY; 3744 pParse->iSelfTab = iTabCur+1; 3745 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut); 3746 pParse->iSelfTab = savedSelfTab; 3747 pCol->colFlags &= ~COLFLAG_BUSY; 3748 } 3749 return; 3750 #endif 3751 }else if( !HasRowid(pTab) ){ 3752 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3753 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3754 op = OP_Column; 3755 }else{ 3756 x = sqlite3TableColumnToStorage(pTab,iCol); 3757 testcase( x!=iCol ); 3758 op = OP_Column; 3759 } 3760 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3761 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3762 } 3763 } 3764 3765 /* 3766 ** Generate code that will extract the iColumn-th column from 3767 ** table pTab and store the column value in register iReg. 3768 ** 3769 ** There must be an open cursor to pTab in iTable when this routine 3770 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3771 */ 3772 int sqlite3ExprCodeGetColumn( 3773 Parse *pParse, /* Parsing and code generating context */ 3774 Table *pTab, /* Description of the table we are reading from */ 3775 int iColumn, /* Index of the table column */ 3776 int iTable, /* The cursor pointing to the table */ 3777 int iReg, /* Store results here */ 3778 u8 p5 /* P5 value for OP_Column + FLAGS */ 3779 ){ 3780 assert( pParse->pVdbe!=0 ); 3781 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3782 if( p5 ){ 3783 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3784 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3785 } 3786 return iReg; 3787 } 3788 3789 /* 3790 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3791 ** over to iTo..iTo+nReg-1. 3792 */ 3793 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3794 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3795 } 3796 3797 /* 3798 ** Convert a scalar expression node to a TK_REGISTER referencing 3799 ** register iReg. The caller must ensure that iReg already contains 3800 ** the correct value for the expression. 3801 */ 3802 static void exprToRegister(Expr *pExpr, int iReg){ 3803 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3804 if( NEVER(p==0) ) return; 3805 p->op2 = p->op; 3806 p->op = TK_REGISTER; 3807 p->iTable = iReg; 3808 ExprClearProperty(p, EP_Skip); 3809 } 3810 3811 /* 3812 ** Evaluate an expression (either a vector or a scalar expression) and store 3813 ** the result in continguous temporary registers. Return the index of 3814 ** the first register used to store the result. 3815 ** 3816 ** If the returned result register is a temporary scalar, then also write 3817 ** that register number into *piFreeable. If the returned result register 3818 ** is not a temporary or if the expression is a vector set *piFreeable 3819 ** to 0. 3820 */ 3821 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3822 int iResult; 3823 int nResult = sqlite3ExprVectorSize(p); 3824 if( nResult==1 ){ 3825 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3826 }else{ 3827 *piFreeable = 0; 3828 if( p->op==TK_SELECT ){ 3829 #if SQLITE_OMIT_SUBQUERY 3830 iResult = 0; 3831 #else 3832 iResult = sqlite3CodeSubselect(pParse, p); 3833 #endif 3834 }else{ 3835 int i; 3836 iResult = pParse->nMem+1; 3837 pParse->nMem += nResult; 3838 assert( ExprUseXList(p) ); 3839 for(i=0; i<nResult; i++){ 3840 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3841 } 3842 } 3843 } 3844 return iResult; 3845 } 3846 3847 /* 3848 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3849 ** so that a subsequent copy will not be merged into this one. 3850 */ 3851 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3852 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3853 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3854 } 3855 } 3856 3857 /* 3858 ** Generate code to implement special SQL functions that are implemented 3859 ** in-line rather than by using the usual callbacks. 3860 */ 3861 static int exprCodeInlineFunction( 3862 Parse *pParse, /* Parsing context */ 3863 ExprList *pFarg, /* List of function arguments */ 3864 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3865 int target /* Store function result in this register */ 3866 ){ 3867 int nFarg; 3868 Vdbe *v = pParse->pVdbe; 3869 assert( v!=0 ); 3870 assert( pFarg!=0 ); 3871 nFarg = pFarg->nExpr; 3872 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3873 switch( iFuncId ){ 3874 case INLINEFUNC_coalesce: { 3875 /* Attempt a direct implementation of the built-in COALESCE() and 3876 ** IFNULL() functions. This avoids unnecessary evaluation of 3877 ** arguments past the first non-NULL argument. 3878 */ 3879 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3880 int i; 3881 assert( nFarg>=2 ); 3882 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3883 for(i=1; i<nFarg; i++){ 3884 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3885 VdbeCoverage(v); 3886 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3887 } 3888 setDoNotMergeFlagOnCopy(v); 3889 sqlite3VdbeResolveLabel(v, endCoalesce); 3890 break; 3891 } 3892 case INLINEFUNC_iif: { 3893 Expr caseExpr; 3894 memset(&caseExpr, 0, sizeof(caseExpr)); 3895 caseExpr.op = TK_CASE; 3896 caseExpr.x.pList = pFarg; 3897 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3898 } 3899 3900 default: { 3901 /* The UNLIKELY() function is a no-op. The result is the value 3902 ** of the first argument. 3903 */ 3904 assert( nFarg==1 || nFarg==2 ); 3905 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3906 break; 3907 } 3908 3909 /*********************************************************************** 3910 ** Test-only SQL functions that are only usable if enabled 3911 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3912 */ 3913 #if !defined(SQLITE_UNTESTABLE) 3914 case INLINEFUNC_expr_compare: { 3915 /* Compare two expressions using sqlite3ExprCompare() */ 3916 assert( nFarg==2 ); 3917 sqlite3VdbeAddOp2(v, OP_Integer, 3918 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3919 target); 3920 break; 3921 } 3922 3923 case INLINEFUNC_expr_implies_expr: { 3924 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3925 assert( nFarg==2 ); 3926 sqlite3VdbeAddOp2(v, OP_Integer, 3927 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3928 target); 3929 break; 3930 } 3931 3932 case INLINEFUNC_implies_nonnull_row: { 3933 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3934 Expr *pA1; 3935 assert( nFarg==2 ); 3936 pA1 = pFarg->a[1].pExpr; 3937 if( pA1->op==TK_COLUMN ){ 3938 sqlite3VdbeAddOp2(v, OP_Integer, 3939 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3940 target); 3941 }else{ 3942 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3943 } 3944 break; 3945 } 3946 3947 case INLINEFUNC_affinity: { 3948 /* The AFFINITY() function evaluates to a string that describes 3949 ** the type affinity of the argument. This is used for testing of 3950 ** the SQLite type logic. 3951 */ 3952 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3953 char aff; 3954 assert( nFarg==1 ); 3955 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3956 sqlite3VdbeLoadString(v, target, 3957 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3958 break; 3959 } 3960 #endif /* !defined(SQLITE_UNTESTABLE) */ 3961 } 3962 return target; 3963 } 3964 3965 3966 /* 3967 ** Generate code into the current Vdbe to evaluate the given 3968 ** expression. Attempt to store the results in register "target". 3969 ** Return the register where results are stored. 3970 ** 3971 ** With this routine, there is no guarantee that results will 3972 ** be stored in target. The result might be stored in some other 3973 ** register if it is convenient to do so. The calling function 3974 ** must check the return code and move the results to the desired 3975 ** register. 3976 */ 3977 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3978 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3979 int op; /* The opcode being coded */ 3980 int inReg = target; /* Results stored in register inReg */ 3981 int regFree1 = 0; /* If non-zero free this temporary register */ 3982 int regFree2 = 0; /* If non-zero free this temporary register */ 3983 int r1, r2; /* Various register numbers */ 3984 Expr tempX; /* Temporary expression node */ 3985 int p5 = 0; 3986 3987 assert( target>0 && target<=pParse->nMem ); 3988 assert( v!=0 ); 3989 3990 expr_code_doover: 3991 if( pExpr==0 ){ 3992 op = TK_NULL; 3993 }else{ 3994 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3995 op = pExpr->op; 3996 } 3997 switch( op ){ 3998 case TK_AGG_COLUMN: { 3999 AggInfo *pAggInfo = pExpr->pAggInfo; 4000 struct AggInfo_col *pCol; 4001 assert( pAggInfo!=0 ); 4002 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 4003 pCol = &pAggInfo->aCol[pExpr->iAgg]; 4004 if( !pAggInfo->directMode ){ 4005 assert( pCol->iMem>0 ); 4006 return pCol->iMem; 4007 }else if( pAggInfo->useSortingIdx ){ 4008 Table *pTab = pCol->pTab; 4009 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 4010 pCol->iSorterColumn, target); 4011 if( pCol->iColumn<0 ){ 4012 VdbeComment((v,"%s.rowid",pTab->zName)); 4013 }else{ 4014 VdbeComment((v,"%s.%s", 4015 pTab->zName, pTab->aCol[pCol->iColumn].zCnName)); 4016 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 4017 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4018 } 4019 } 4020 return target; 4021 } 4022 /* Otherwise, fall thru into the TK_COLUMN case */ 4023 /* no break */ deliberate_fall_through 4024 } 4025 case TK_COLUMN: { 4026 int iTab = pExpr->iTable; 4027 int iReg; 4028 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 4029 /* This COLUMN expression is really a constant due to WHERE clause 4030 ** constraints, and that constant is coded by the pExpr->pLeft 4031 ** expresssion. However, make sure the constant has the correct 4032 ** datatype by applying the Affinity of the table column to the 4033 ** constant. 4034 */ 4035 int aff; 4036 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 4037 assert( ExprUseYTab(pExpr) ); 4038 if( pExpr->y.pTab ){ 4039 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 4040 }else{ 4041 aff = pExpr->affExpr; 4042 } 4043 if( aff>SQLITE_AFF_BLOB ){ 4044 static const char zAff[] = "B\000C\000D\000E"; 4045 assert( SQLITE_AFF_BLOB=='A' ); 4046 assert( SQLITE_AFF_TEXT=='B' ); 4047 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 4048 &zAff[(aff-'B')*2], P4_STATIC); 4049 } 4050 return iReg; 4051 } 4052 if( iTab<0 ){ 4053 if( pParse->iSelfTab<0 ){ 4054 /* Other columns in the same row for CHECK constraints or 4055 ** generated columns or for inserting into partial index. 4056 ** The row is unpacked into registers beginning at 4057 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 4058 ** immediately prior to the first column. 4059 */ 4060 Column *pCol; 4061 Table *pTab; 4062 int iSrc; 4063 int iCol = pExpr->iColumn; 4064 assert( ExprUseYTab(pExpr) ); 4065 pTab = pExpr->y.pTab; 4066 assert( pTab!=0 ); 4067 assert( iCol>=XN_ROWID ); 4068 assert( iCol<pTab->nCol ); 4069 if( iCol<0 ){ 4070 return -1-pParse->iSelfTab; 4071 } 4072 pCol = pTab->aCol + iCol; 4073 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 4074 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 4075 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 4076 if( pCol->colFlags & COLFLAG_GENERATED ){ 4077 if( pCol->colFlags & COLFLAG_BUSY ){ 4078 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 4079 pCol->zCnName); 4080 return 0; 4081 } 4082 pCol->colFlags |= COLFLAG_BUSY; 4083 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 4084 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc); 4085 } 4086 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 4087 return iSrc; 4088 }else 4089 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 4090 if( pCol->affinity==SQLITE_AFF_REAL ){ 4091 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 4092 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4093 return target; 4094 }else{ 4095 return iSrc; 4096 } 4097 }else{ 4098 /* Coding an expression that is part of an index where column names 4099 ** in the index refer to the table to which the index belongs */ 4100 iTab = pParse->iSelfTab - 1; 4101 } 4102 } 4103 assert( ExprUseYTab(pExpr) ); 4104 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 4105 pExpr->iColumn, iTab, target, 4106 pExpr->op2); 4107 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 4108 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 4109 } 4110 return iReg; 4111 } 4112 case TK_INTEGER: { 4113 codeInteger(pParse, pExpr, 0, target); 4114 return target; 4115 } 4116 case TK_TRUEFALSE: { 4117 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 4118 return target; 4119 } 4120 #ifndef SQLITE_OMIT_FLOATING_POINT 4121 case TK_FLOAT: { 4122 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4123 codeReal(v, pExpr->u.zToken, 0, target); 4124 return target; 4125 } 4126 #endif 4127 case TK_STRING: { 4128 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4129 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 4130 return target; 4131 } 4132 default: { 4133 /* Make NULL the default case so that if a bug causes an illegal 4134 ** Expr node to be passed into this function, it will be handled 4135 ** sanely and not crash. But keep the assert() to bring the problem 4136 ** to the attention of the developers. */ 4137 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); 4138 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4139 return target; 4140 } 4141 #ifndef SQLITE_OMIT_BLOB_LITERAL 4142 case TK_BLOB: { 4143 int n; 4144 const char *z; 4145 char *zBlob; 4146 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4147 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 4148 assert( pExpr->u.zToken[1]=='\'' ); 4149 z = &pExpr->u.zToken[2]; 4150 n = sqlite3Strlen30(z) - 1; 4151 assert( z[n]=='\'' ); 4152 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 4153 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 4154 return target; 4155 } 4156 #endif 4157 case TK_VARIABLE: { 4158 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4159 assert( pExpr->u.zToken!=0 ); 4160 assert( pExpr->u.zToken[0]!=0 ); 4161 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 4162 if( pExpr->u.zToken[1]!=0 ){ 4163 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 4164 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 4165 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 4166 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 4167 } 4168 return target; 4169 } 4170 case TK_REGISTER: { 4171 return pExpr->iTable; 4172 } 4173 #ifndef SQLITE_OMIT_CAST 4174 case TK_CAST: { 4175 /* Expressions of the form: CAST(pLeft AS token) */ 4176 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4177 if( inReg!=target ){ 4178 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4179 inReg = target; 4180 } 4181 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4182 sqlite3VdbeAddOp2(v, OP_Cast, target, 4183 sqlite3AffinityType(pExpr->u.zToken, 0)); 4184 return inReg; 4185 } 4186 #endif /* SQLITE_OMIT_CAST */ 4187 case TK_IS: 4188 case TK_ISNOT: 4189 op = (op==TK_IS) ? TK_EQ : TK_NE; 4190 p5 = SQLITE_NULLEQ; 4191 /* fall-through */ 4192 case TK_LT: 4193 case TK_LE: 4194 case TK_GT: 4195 case TK_GE: 4196 case TK_NE: 4197 case TK_EQ: { 4198 Expr *pLeft = pExpr->pLeft; 4199 if( sqlite3ExprIsVector(pLeft) ){ 4200 codeVectorCompare(pParse, pExpr, target, op, p5); 4201 }else{ 4202 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4203 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4204 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 4205 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 4206 sqlite3VdbeCurrentAddr(v)+2, p5, 4207 ExprHasProperty(pExpr,EP_Commuted)); 4208 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4209 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4210 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4211 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4212 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4213 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4214 if( p5==SQLITE_NULLEQ ){ 4215 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 4216 }else{ 4217 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 4218 } 4219 testcase( regFree1==0 ); 4220 testcase( regFree2==0 ); 4221 } 4222 break; 4223 } 4224 case TK_AND: 4225 case TK_OR: 4226 case TK_PLUS: 4227 case TK_STAR: 4228 case TK_MINUS: 4229 case TK_REM: 4230 case TK_BITAND: 4231 case TK_BITOR: 4232 case TK_SLASH: 4233 case TK_LSHIFT: 4234 case TK_RSHIFT: 4235 case TK_CONCAT: { 4236 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4237 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4238 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4239 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4240 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4241 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4242 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4243 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4244 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4245 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4246 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4247 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4248 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4249 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4250 testcase( regFree1==0 ); 4251 testcase( regFree2==0 ); 4252 break; 4253 } 4254 case TK_UMINUS: { 4255 Expr *pLeft = pExpr->pLeft; 4256 assert( pLeft ); 4257 if( pLeft->op==TK_INTEGER ){ 4258 codeInteger(pParse, pLeft, 1, target); 4259 return target; 4260 #ifndef SQLITE_OMIT_FLOATING_POINT 4261 }else if( pLeft->op==TK_FLOAT ){ 4262 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4263 codeReal(v, pLeft->u.zToken, 1, target); 4264 return target; 4265 #endif 4266 }else{ 4267 tempX.op = TK_INTEGER; 4268 tempX.flags = EP_IntValue|EP_TokenOnly; 4269 tempX.u.iValue = 0; 4270 ExprClearVVAProperties(&tempX); 4271 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4272 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4273 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4274 testcase( regFree2==0 ); 4275 } 4276 break; 4277 } 4278 case TK_BITNOT: 4279 case TK_NOT: { 4280 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4281 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4282 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4283 testcase( regFree1==0 ); 4284 sqlite3VdbeAddOp2(v, op, r1, inReg); 4285 break; 4286 } 4287 case TK_TRUTH: { 4288 int isTrue; /* IS TRUE or IS NOT TRUE */ 4289 int bNormal; /* IS TRUE or IS FALSE */ 4290 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4291 testcase( regFree1==0 ); 4292 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4293 bNormal = pExpr->op2==TK_IS; 4294 testcase( isTrue && bNormal); 4295 testcase( !isTrue && bNormal); 4296 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4297 break; 4298 } 4299 case TK_ISNULL: 4300 case TK_NOTNULL: { 4301 int addr; 4302 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4303 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4304 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4305 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4306 testcase( regFree1==0 ); 4307 addr = sqlite3VdbeAddOp1(v, op, r1); 4308 VdbeCoverageIf(v, op==TK_ISNULL); 4309 VdbeCoverageIf(v, op==TK_NOTNULL); 4310 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4311 sqlite3VdbeJumpHere(v, addr); 4312 break; 4313 } 4314 case TK_AGG_FUNCTION: { 4315 AggInfo *pInfo = pExpr->pAggInfo; 4316 if( pInfo==0 4317 || NEVER(pExpr->iAgg<0) 4318 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4319 ){ 4320 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4321 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 4322 }else{ 4323 return pInfo->aFunc[pExpr->iAgg].iMem; 4324 } 4325 break; 4326 } 4327 case TK_FUNCTION: { 4328 ExprList *pFarg; /* List of function arguments */ 4329 int nFarg; /* Number of function arguments */ 4330 FuncDef *pDef; /* The function definition object */ 4331 const char *zId; /* The function name */ 4332 u32 constMask = 0; /* Mask of function arguments that are constant */ 4333 int i; /* Loop counter */ 4334 sqlite3 *db = pParse->db; /* The database connection */ 4335 u8 enc = ENC(db); /* The text encoding used by this database */ 4336 CollSeq *pColl = 0; /* A collating sequence */ 4337 4338 #ifndef SQLITE_OMIT_WINDOWFUNC 4339 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4340 return pExpr->y.pWin->regResult; 4341 } 4342 #endif 4343 4344 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4345 /* SQL functions can be expensive. So try to avoid running them 4346 ** multiple times if we know they always give the same result */ 4347 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4348 } 4349 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4350 assert( ExprUseXList(pExpr) ); 4351 pFarg = pExpr->x.pList; 4352 nFarg = pFarg ? pFarg->nExpr : 0; 4353 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4354 zId = pExpr->u.zToken; 4355 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4356 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4357 if( pDef==0 && pParse->explain ){ 4358 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4359 } 4360 #endif 4361 if( pDef==0 || pDef->xFinalize!=0 ){ 4362 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 4363 break; 4364 } 4365 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4366 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4367 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4368 return exprCodeInlineFunction(pParse, pFarg, 4369 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4370 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4371 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4372 } 4373 4374 for(i=0; i<nFarg; i++){ 4375 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4376 testcase( i==31 ); 4377 constMask |= MASKBIT32(i); 4378 } 4379 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4380 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4381 } 4382 } 4383 if( pFarg ){ 4384 if( constMask ){ 4385 r1 = pParse->nMem+1; 4386 pParse->nMem += nFarg; 4387 }else{ 4388 r1 = sqlite3GetTempRange(pParse, nFarg); 4389 } 4390 4391 /* For length() and typeof() functions with a column argument, 4392 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4393 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4394 ** loading. 4395 */ 4396 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4397 u8 exprOp; 4398 assert( nFarg==1 ); 4399 assert( pFarg->a[0].pExpr!=0 ); 4400 exprOp = pFarg->a[0].pExpr->op; 4401 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4402 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4403 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4404 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4405 pFarg->a[0].pExpr->op2 = 4406 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4407 } 4408 } 4409 4410 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4411 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4412 }else{ 4413 r1 = 0; 4414 } 4415 #ifndef SQLITE_OMIT_VIRTUALTABLE 4416 /* Possibly overload the function if the first argument is 4417 ** a virtual table column. 4418 ** 4419 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4420 ** second argument, not the first, as the argument to test to 4421 ** see if it is a column in a virtual table. This is done because 4422 ** the left operand of infix functions (the operand we want to 4423 ** control overloading) ends up as the second argument to the 4424 ** function. The expression "A glob B" is equivalent to 4425 ** "glob(B,A). We want to use the A in "A glob B" to test 4426 ** for function overloading. But we use the B term in "glob(B,A)". 4427 */ 4428 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4429 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4430 }else if( nFarg>0 ){ 4431 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4432 } 4433 #endif 4434 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4435 if( !pColl ) pColl = db->pDfltColl; 4436 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4437 } 4438 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4439 if( (pDef->funcFlags & SQLITE_FUNC_OFFSET)!=0 && ALWAYS(pFarg!=0) ){ 4440 Expr *pArg = pFarg->a[0].pExpr; 4441 if( pArg->op==TK_COLUMN ){ 4442 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4443 }else{ 4444 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4445 } 4446 }else 4447 #endif 4448 { 4449 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4450 pDef, pExpr->op2); 4451 } 4452 if( nFarg ){ 4453 if( constMask==0 ){ 4454 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4455 }else{ 4456 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4457 } 4458 } 4459 return target; 4460 } 4461 #ifndef SQLITE_OMIT_SUBQUERY 4462 case TK_EXISTS: 4463 case TK_SELECT: { 4464 int nCol; 4465 testcase( op==TK_EXISTS ); 4466 testcase( op==TK_SELECT ); 4467 if( pParse->db->mallocFailed ){ 4468 return 0; 4469 }else if( op==TK_SELECT 4470 && ALWAYS( ExprUseXSelect(pExpr) ) 4471 && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 4472 ){ 4473 sqlite3SubselectError(pParse, nCol, 1); 4474 }else{ 4475 return sqlite3CodeSubselect(pParse, pExpr); 4476 } 4477 break; 4478 } 4479 case TK_SELECT_COLUMN: { 4480 int n; 4481 if( pExpr->pLeft->iTable==0 ){ 4482 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4483 } 4484 assert( pExpr->pLeft->op==TK_SELECT || pExpr->pLeft->op==TK_ERROR ); 4485 n = sqlite3ExprVectorSize(pExpr->pLeft); 4486 if( pExpr->iTable!=n ){ 4487 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4488 pExpr->iTable, n); 4489 } 4490 return pExpr->pLeft->iTable + pExpr->iColumn; 4491 } 4492 case TK_IN: { 4493 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4494 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4495 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4496 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4497 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4498 sqlite3VdbeResolveLabel(v, destIfFalse); 4499 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4500 sqlite3VdbeResolveLabel(v, destIfNull); 4501 return target; 4502 } 4503 #endif /* SQLITE_OMIT_SUBQUERY */ 4504 4505 4506 /* 4507 ** x BETWEEN y AND z 4508 ** 4509 ** This is equivalent to 4510 ** 4511 ** x>=y AND x<=z 4512 ** 4513 ** X is stored in pExpr->pLeft. 4514 ** Y is stored in pExpr->pList->a[0].pExpr. 4515 ** Z is stored in pExpr->pList->a[1].pExpr. 4516 */ 4517 case TK_BETWEEN: { 4518 exprCodeBetween(pParse, pExpr, target, 0, 0); 4519 return target; 4520 } 4521 case TK_SPAN: 4522 case TK_COLLATE: 4523 case TK_UPLUS: { 4524 pExpr = pExpr->pLeft; 4525 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4526 } 4527 4528 case TK_TRIGGER: { 4529 /* If the opcode is TK_TRIGGER, then the expression is a reference 4530 ** to a column in the new.* or old.* pseudo-tables available to 4531 ** trigger programs. In this case Expr.iTable is set to 1 for the 4532 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4533 ** is set to the column of the pseudo-table to read, or to -1 to 4534 ** read the rowid field. 4535 ** 4536 ** The expression is implemented using an OP_Param opcode. The p1 4537 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4538 ** to reference another column of the old.* pseudo-table, where 4539 ** i is the index of the column. For a new.rowid reference, p1 is 4540 ** set to (n+1), where n is the number of columns in each pseudo-table. 4541 ** For a reference to any other column in the new.* pseudo-table, p1 4542 ** is set to (n+2+i), where n and i are as defined previously. For 4543 ** example, if the table on which triggers are being fired is 4544 ** declared as: 4545 ** 4546 ** CREATE TABLE t1(a, b); 4547 ** 4548 ** Then p1 is interpreted as follows: 4549 ** 4550 ** p1==0 -> old.rowid p1==3 -> new.rowid 4551 ** p1==1 -> old.a p1==4 -> new.a 4552 ** p1==2 -> old.b p1==5 -> new.b 4553 */ 4554 Table *pTab; 4555 int iCol; 4556 int p1; 4557 4558 assert( ExprUseYTab(pExpr) ); 4559 pTab = pExpr->y.pTab; 4560 iCol = pExpr->iColumn; 4561 p1 = pExpr->iTable * (pTab->nCol+1) + 1 4562 + sqlite3TableColumnToStorage(pTab, iCol); 4563 4564 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4565 assert( iCol>=-1 && iCol<pTab->nCol ); 4566 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4567 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4568 4569 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4570 VdbeComment((v, "r[%d]=%s.%s", target, 4571 (pExpr->iTable ? "new" : "old"), 4572 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName) 4573 )); 4574 4575 #ifndef SQLITE_OMIT_FLOATING_POINT 4576 /* If the column has REAL affinity, it may currently be stored as an 4577 ** integer. Use OP_RealAffinity to make sure it is really real. 4578 ** 4579 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4580 ** floating point when extracting it from the record. */ 4581 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4582 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4583 } 4584 #endif 4585 break; 4586 } 4587 4588 case TK_VECTOR: { 4589 sqlite3ErrorMsg(pParse, "row value misused"); 4590 break; 4591 } 4592 4593 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4594 ** that derive from the right-hand table of a LEFT JOIN. The 4595 ** Expr.iTable value is the table number for the right-hand table. 4596 ** The expression is only evaluated if that table is not currently 4597 ** on a LEFT JOIN NULL row. 4598 */ 4599 case TK_IF_NULL_ROW: { 4600 int addrINR; 4601 u8 okConstFactor = pParse->okConstFactor; 4602 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4603 /* Temporarily disable factoring of constant expressions, since 4604 ** even though expressions may appear to be constant, they are not 4605 ** really constant because they originate from the right-hand side 4606 ** of a LEFT JOIN. */ 4607 pParse->okConstFactor = 0; 4608 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4609 pParse->okConstFactor = okConstFactor; 4610 sqlite3VdbeJumpHere(v, addrINR); 4611 sqlite3VdbeChangeP3(v, addrINR, inReg); 4612 break; 4613 } 4614 4615 /* 4616 ** Form A: 4617 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4618 ** 4619 ** Form B: 4620 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4621 ** 4622 ** Form A is can be transformed into the equivalent form B as follows: 4623 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4624 ** WHEN x=eN THEN rN ELSE y END 4625 ** 4626 ** X (if it exists) is in pExpr->pLeft. 4627 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4628 ** odd. The Y is also optional. If the number of elements in x.pList 4629 ** is even, then Y is omitted and the "otherwise" result is NULL. 4630 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4631 ** 4632 ** The result of the expression is the Ri for the first matching Ei, 4633 ** or if there is no matching Ei, the ELSE term Y, or if there is 4634 ** no ELSE term, NULL. 4635 */ 4636 case TK_CASE: { 4637 int endLabel; /* GOTO label for end of CASE stmt */ 4638 int nextCase; /* GOTO label for next WHEN clause */ 4639 int nExpr; /* 2x number of WHEN terms */ 4640 int i; /* Loop counter */ 4641 ExprList *pEList; /* List of WHEN terms */ 4642 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4643 Expr opCompare; /* The X==Ei expression */ 4644 Expr *pX; /* The X expression */ 4645 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4646 Expr *pDel = 0; 4647 sqlite3 *db = pParse->db; 4648 4649 assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 ); 4650 assert(pExpr->x.pList->nExpr > 0); 4651 pEList = pExpr->x.pList; 4652 aListelem = pEList->a; 4653 nExpr = pEList->nExpr; 4654 endLabel = sqlite3VdbeMakeLabel(pParse); 4655 if( (pX = pExpr->pLeft)!=0 ){ 4656 pDel = sqlite3ExprDup(db, pX, 0); 4657 if( db->mallocFailed ){ 4658 sqlite3ExprDelete(db, pDel); 4659 break; 4660 } 4661 testcase( pX->op==TK_COLUMN ); 4662 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4663 testcase( regFree1==0 ); 4664 memset(&opCompare, 0, sizeof(opCompare)); 4665 opCompare.op = TK_EQ; 4666 opCompare.pLeft = pDel; 4667 pTest = &opCompare; 4668 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4669 ** The value in regFree1 might get SCopy-ed into the file result. 4670 ** So make sure that the regFree1 register is not reused for other 4671 ** purposes and possibly overwritten. */ 4672 regFree1 = 0; 4673 } 4674 for(i=0; i<nExpr-1; i=i+2){ 4675 if( pX ){ 4676 assert( pTest!=0 ); 4677 opCompare.pRight = aListelem[i].pExpr; 4678 }else{ 4679 pTest = aListelem[i].pExpr; 4680 } 4681 nextCase = sqlite3VdbeMakeLabel(pParse); 4682 testcase( pTest->op==TK_COLUMN ); 4683 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4684 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4685 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4686 sqlite3VdbeGoto(v, endLabel); 4687 sqlite3VdbeResolveLabel(v, nextCase); 4688 } 4689 if( (nExpr&1)!=0 ){ 4690 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4691 }else{ 4692 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4693 } 4694 sqlite3ExprDelete(db, pDel); 4695 setDoNotMergeFlagOnCopy(v); 4696 sqlite3VdbeResolveLabel(v, endLabel); 4697 break; 4698 } 4699 #ifndef SQLITE_OMIT_TRIGGER 4700 case TK_RAISE: { 4701 assert( pExpr->affExpr==OE_Rollback 4702 || pExpr->affExpr==OE_Abort 4703 || pExpr->affExpr==OE_Fail 4704 || pExpr->affExpr==OE_Ignore 4705 ); 4706 if( !pParse->pTriggerTab && !pParse->nested ){ 4707 sqlite3ErrorMsg(pParse, 4708 "RAISE() may only be used within a trigger-program"); 4709 return 0; 4710 } 4711 if( pExpr->affExpr==OE_Abort ){ 4712 sqlite3MayAbort(pParse); 4713 } 4714 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4715 if( pExpr->affExpr==OE_Ignore ){ 4716 sqlite3VdbeAddOp4( 4717 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4718 VdbeCoverage(v); 4719 }else{ 4720 sqlite3HaltConstraint(pParse, 4721 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4722 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4723 } 4724 4725 break; 4726 } 4727 #endif 4728 } 4729 sqlite3ReleaseTempReg(pParse, regFree1); 4730 sqlite3ReleaseTempReg(pParse, regFree2); 4731 return inReg; 4732 } 4733 4734 /* 4735 ** Generate code that will evaluate expression pExpr just one time 4736 ** per prepared statement execution. 4737 ** 4738 ** If the expression uses functions (that might throw an exception) then 4739 ** guard them with an OP_Once opcode to ensure that the code is only executed 4740 ** once. If no functions are involved, then factor the code out and put it at 4741 ** the end of the prepared statement in the initialization section. 4742 ** 4743 ** If regDest>=0 then the result is always stored in that register and the 4744 ** result is not reusable. If regDest<0 then this routine is free to 4745 ** store the value whereever it wants. The register where the expression 4746 ** is stored is returned. When regDest<0, two identical expressions might 4747 ** code to the same register, if they do not contain function calls and hence 4748 ** are factored out into the initialization section at the end of the 4749 ** prepared statement. 4750 */ 4751 int sqlite3ExprCodeRunJustOnce( 4752 Parse *pParse, /* Parsing context */ 4753 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4754 int regDest /* Store the value in this register */ 4755 ){ 4756 ExprList *p; 4757 assert( ConstFactorOk(pParse) ); 4758 p = pParse->pConstExpr; 4759 if( regDest<0 && p ){ 4760 struct ExprList_item *pItem; 4761 int i; 4762 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4763 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4764 return pItem->u.iConstExprReg; 4765 } 4766 } 4767 } 4768 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4769 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4770 Vdbe *v = pParse->pVdbe; 4771 int addr; 4772 assert( v ); 4773 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4774 pParse->okConstFactor = 0; 4775 if( !pParse->db->mallocFailed ){ 4776 if( regDest<0 ) regDest = ++pParse->nMem; 4777 sqlite3ExprCode(pParse, pExpr, regDest); 4778 } 4779 pParse->okConstFactor = 1; 4780 sqlite3ExprDelete(pParse->db, pExpr); 4781 sqlite3VdbeJumpHere(v, addr); 4782 }else{ 4783 p = sqlite3ExprListAppend(pParse, p, pExpr); 4784 if( p ){ 4785 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4786 pItem->reusable = regDest<0; 4787 if( regDest<0 ) regDest = ++pParse->nMem; 4788 pItem->u.iConstExprReg = regDest; 4789 } 4790 pParse->pConstExpr = p; 4791 } 4792 return regDest; 4793 } 4794 4795 /* 4796 ** Generate code to evaluate an expression and store the results 4797 ** into a register. Return the register number where the results 4798 ** are stored. 4799 ** 4800 ** If the register is a temporary register that can be deallocated, 4801 ** then write its number into *pReg. If the result register is not 4802 ** a temporary, then set *pReg to zero. 4803 ** 4804 ** If pExpr is a constant, then this routine might generate this 4805 ** code to fill the register in the initialization section of the 4806 ** VDBE program, in order to factor it out of the evaluation loop. 4807 */ 4808 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4809 int r2; 4810 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4811 if( ConstFactorOk(pParse) 4812 && ALWAYS(pExpr!=0) 4813 && pExpr->op!=TK_REGISTER 4814 && sqlite3ExprIsConstantNotJoin(pExpr) 4815 ){ 4816 *pReg = 0; 4817 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4818 }else{ 4819 int r1 = sqlite3GetTempReg(pParse); 4820 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4821 if( r2==r1 ){ 4822 *pReg = r1; 4823 }else{ 4824 sqlite3ReleaseTempReg(pParse, r1); 4825 *pReg = 0; 4826 } 4827 } 4828 return r2; 4829 } 4830 4831 /* 4832 ** Generate code that will evaluate expression pExpr and store the 4833 ** results in register target. The results are guaranteed to appear 4834 ** in register target. 4835 */ 4836 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4837 int inReg; 4838 4839 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4840 assert( target>0 && target<=pParse->nMem ); 4841 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4842 if( pParse->pVdbe==0 ) return; 4843 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4844 if( inReg!=target ){ 4845 u8 op; 4846 if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){ 4847 op = OP_Copy; 4848 }else{ 4849 op = OP_SCopy; 4850 } 4851 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4852 } 4853 } 4854 4855 /* 4856 ** Make a transient copy of expression pExpr and then code it using 4857 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4858 ** except that the input expression is guaranteed to be unchanged. 4859 */ 4860 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4861 sqlite3 *db = pParse->db; 4862 pExpr = sqlite3ExprDup(db, pExpr, 0); 4863 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4864 sqlite3ExprDelete(db, pExpr); 4865 } 4866 4867 /* 4868 ** Generate code that will evaluate expression pExpr and store the 4869 ** results in register target. The results are guaranteed to appear 4870 ** in register target. If the expression is constant, then this routine 4871 ** might choose to code the expression at initialization time. 4872 */ 4873 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4874 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4875 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4876 }else{ 4877 sqlite3ExprCodeCopy(pParse, pExpr, target); 4878 } 4879 } 4880 4881 /* 4882 ** Generate code that pushes the value of every element of the given 4883 ** expression list into a sequence of registers beginning at target. 4884 ** 4885 ** Return the number of elements evaluated. The number returned will 4886 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4887 ** is defined. 4888 ** 4889 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4890 ** filled using OP_SCopy. OP_Copy must be used instead. 4891 ** 4892 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4893 ** factored out into initialization code. 4894 ** 4895 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4896 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4897 ** in registers at srcReg, and so the value can be copied from there. 4898 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4899 ** are simply omitted rather than being copied from srcReg. 4900 */ 4901 int sqlite3ExprCodeExprList( 4902 Parse *pParse, /* Parsing context */ 4903 ExprList *pList, /* The expression list to be coded */ 4904 int target, /* Where to write results */ 4905 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4906 u8 flags /* SQLITE_ECEL_* flags */ 4907 ){ 4908 struct ExprList_item *pItem; 4909 int i, j, n; 4910 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4911 Vdbe *v = pParse->pVdbe; 4912 assert( pList!=0 ); 4913 assert( target>0 ); 4914 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4915 n = pList->nExpr; 4916 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4917 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4918 Expr *pExpr = pItem->pExpr; 4919 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4920 if( pItem->bSorterRef ){ 4921 i--; 4922 n--; 4923 }else 4924 #endif 4925 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4926 if( flags & SQLITE_ECEL_OMITREF ){ 4927 i--; 4928 n--; 4929 }else{ 4930 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4931 } 4932 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4933 && sqlite3ExprIsConstantNotJoin(pExpr) 4934 ){ 4935 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4936 }else{ 4937 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4938 if( inReg!=target+i ){ 4939 VdbeOp *pOp; 4940 if( copyOp==OP_Copy 4941 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4942 && pOp->p1+pOp->p3+1==inReg 4943 && pOp->p2+pOp->p3+1==target+i 4944 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4945 ){ 4946 pOp->p3++; 4947 }else{ 4948 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4949 } 4950 } 4951 } 4952 } 4953 return n; 4954 } 4955 4956 /* 4957 ** Generate code for a BETWEEN operator. 4958 ** 4959 ** x BETWEEN y AND z 4960 ** 4961 ** The above is equivalent to 4962 ** 4963 ** x>=y AND x<=z 4964 ** 4965 ** Code it as such, taking care to do the common subexpression 4966 ** elimination of x. 4967 ** 4968 ** The xJumpIf parameter determines details: 4969 ** 4970 ** NULL: Store the boolean result in reg[dest] 4971 ** sqlite3ExprIfTrue: Jump to dest if true 4972 ** sqlite3ExprIfFalse: Jump to dest if false 4973 ** 4974 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4975 */ 4976 static void exprCodeBetween( 4977 Parse *pParse, /* Parsing and code generating context */ 4978 Expr *pExpr, /* The BETWEEN expression */ 4979 int dest, /* Jump destination or storage location */ 4980 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4981 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4982 ){ 4983 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4984 Expr compLeft; /* The x>=y term */ 4985 Expr compRight; /* The x<=z term */ 4986 int regFree1 = 0; /* Temporary use register */ 4987 Expr *pDel = 0; 4988 sqlite3 *db = pParse->db; 4989 4990 memset(&compLeft, 0, sizeof(Expr)); 4991 memset(&compRight, 0, sizeof(Expr)); 4992 memset(&exprAnd, 0, sizeof(Expr)); 4993 4994 assert( ExprUseXList(pExpr) ); 4995 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4996 if( db->mallocFailed==0 ){ 4997 exprAnd.op = TK_AND; 4998 exprAnd.pLeft = &compLeft; 4999 exprAnd.pRight = &compRight; 5000 compLeft.op = TK_GE; 5001 compLeft.pLeft = pDel; 5002 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 5003 compRight.op = TK_LE; 5004 compRight.pLeft = pDel; 5005 compRight.pRight = pExpr->x.pList->a[1].pExpr; 5006 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 5007 if( xJump ){ 5008 xJump(pParse, &exprAnd, dest, jumpIfNull); 5009 }else{ 5010 /* Mark the expression is being from the ON or USING clause of a join 5011 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 5012 ** it into the Parse.pConstExpr list. We should use a new bit for this, 5013 ** for clarity, but we are out of bits in the Expr.flags field so we 5014 ** have to reuse the EP_FromJoin bit. Bummer. */ 5015 pDel->flags |= EP_FromJoin; 5016 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 5017 } 5018 sqlite3ReleaseTempReg(pParse, regFree1); 5019 } 5020 sqlite3ExprDelete(db, pDel); 5021 5022 /* Ensure adequate test coverage */ 5023 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 5024 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 5025 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 5026 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 5027 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 5028 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 5029 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 5030 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 5031 testcase( xJump==0 ); 5032 } 5033 5034 /* 5035 ** Generate code for a boolean expression such that a jump is made 5036 ** to the label "dest" if the expression is true but execution 5037 ** continues straight thru if the expression is false. 5038 ** 5039 ** If the expression evaluates to NULL (neither true nor false), then 5040 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 5041 ** 5042 ** This code depends on the fact that certain token values (ex: TK_EQ) 5043 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 5044 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 5045 ** the make process cause these values to align. Assert()s in the code 5046 ** below verify that the numbers are aligned correctly. 5047 */ 5048 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5049 Vdbe *v = pParse->pVdbe; 5050 int op = 0; 5051 int regFree1 = 0; 5052 int regFree2 = 0; 5053 int r1, r2; 5054 5055 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5056 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5057 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 5058 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 5059 op = pExpr->op; 5060 switch( op ){ 5061 case TK_AND: 5062 case TK_OR: { 5063 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5064 if( pAlt!=pExpr ){ 5065 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 5066 }else if( op==TK_AND ){ 5067 int d2 = sqlite3VdbeMakeLabel(pParse); 5068 testcase( jumpIfNull==0 ); 5069 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 5070 jumpIfNull^SQLITE_JUMPIFNULL); 5071 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5072 sqlite3VdbeResolveLabel(v, d2); 5073 }else{ 5074 testcase( jumpIfNull==0 ); 5075 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5076 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5077 } 5078 break; 5079 } 5080 case TK_NOT: { 5081 testcase( jumpIfNull==0 ); 5082 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5083 break; 5084 } 5085 case TK_TRUTH: { 5086 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5087 int isTrue; /* IS TRUE or IS NOT TRUE */ 5088 testcase( jumpIfNull==0 ); 5089 isNot = pExpr->op2==TK_ISNOT; 5090 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5091 testcase( isTrue && isNot ); 5092 testcase( !isTrue && isNot ); 5093 if( isTrue ^ isNot ){ 5094 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5095 isNot ? SQLITE_JUMPIFNULL : 0); 5096 }else{ 5097 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5098 isNot ? SQLITE_JUMPIFNULL : 0); 5099 } 5100 break; 5101 } 5102 case TK_IS: 5103 case TK_ISNOT: 5104 testcase( op==TK_IS ); 5105 testcase( op==TK_ISNOT ); 5106 op = (op==TK_IS) ? TK_EQ : TK_NE; 5107 jumpIfNull = SQLITE_NULLEQ; 5108 /* no break */ deliberate_fall_through 5109 case TK_LT: 5110 case TK_LE: 5111 case TK_GT: 5112 case TK_GE: 5113 case TK_NE: 5114 case TK_EQ: { 5115 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5116 testcase( jumpIfNull==0 ); 5117 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5118 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5119 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5120 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 5121 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5122 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5123 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5124 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5125 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5126 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5127 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5128 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5129 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5130 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5131 testcase( regFree1==0 ); 5132 testcase( regFree2==0 ); 5133 break; 5134 } 5135 case TK_ISNULL: 5136 case TK_NOTNULL: { 5137 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 5138 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 5139 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5140 sqlite3VdbeAddOp2(v, op, r1, dest); 5141 VdbeCoverageIf(v, op==TK_ISNULL); 5142 VdbeCoverageIf(v, op==TK_NOTNULL); 5143 testcase( regFree1==0 ); 5144 break; 5145 } 5146 case TK_BETWEEN: { 5147 testcase( jumpIfNull==0 ); 5148 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 5149 break; 5150 } 5151 #ifndef SQLITE_OMIT_SUBQUERY 5152 case TK_IN: { 5153 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 5154 int destIfNull = jumpIfNull ? dest : destIfFalse; 5155 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 5156 sqlite3VdbeGoto(v, dest); 5157 sqlite3VdbeResolveLabel(v, destIfFalse); 5158 break; 5159 } 5160 #endif 5161 default: { 5162 default_expr: 5163 if( ExprAlwaysTrue(pExpr) ){ 5164 sqlite3VdbeGoto(v, dest); 5165 }else if( ExprAlwaysFalse(pExpr) ){ 5166 /* No-op */ 5167 }else{ 5168 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5169 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 5170 VdbeCoverage(v); 5171 testcase( regFree1==0 ); 5172 testcase( jumpIfNull==0 ); 5173 } 5174 break; 5175 } 5176 } 5177 sqlite3ReleaseTempReg(pParse, regFree1); 5178 sqlite3ReleaseTempReg(pParse, regFree2); 5179 } 5180 5181 /* 5182 ** Generate code for a boolean expression such that a jump is made 5183 ** to the label "dest" if the expression is false but execution 5184 ** continues straight thru if the expression is true. 5185 ** 5186 ** If the expression evaluates to NULL (neither true nor false) then 5187 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5188 ** is 0. 5189 */ 5190 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5191 Vdbe *v = pParse->pVdbe; 5192 int op = 0; 5193 int regFree1 = 0; 5194 int regFree2 = 0; 5195 int r1, r2; 5196 5197 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5198 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5199 if( pExpr==0 ) return; 5200 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5201 5202 /* The value of pExpr->op and op are related as follows: 5203 ** 5204 ** pExpr->op op 5205 ** --------- ---------- 5206 ** TK_ISNULL OP_NotNull 5207 ** TK_NOTNULL OP_IsNull 5208 ** TK_NE OP_Eq 5209 ** TK_EQ OP_Ne 5210 ** TK_GT OP_Le 5211 ** TK_LE OP_Gt 5212 ** TK_GE OP_Lt 5213 ** TK_LT OP_Ge 5214 ** 5215 ** For other values of pExpr->op, op is undefined and unused. 5216 ** The value of TK_ and OP_ constants are arranged such that we 5217 ** can compute the mapping above using the following expression. 5218 ** Assert()s verify that the computation is correct. 5219 */ 5220 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5221 5222 /* Verify correct alignment of TK_ and OP_ constants 5223 */ 5224 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5225 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5226 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5227 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5228 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5229 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5230 assert( pExpr->op!=TK_GT || op==OP_Le ); 5231 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5232 5233 switch( pExpr->op ){ 5234 case TK_AND: 5235 case TK_OR: { 5236 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5237 if( pAlt!=pExpr ){ 5238 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5239 }else if( pExpr->op==TK_AND ){ 5240 testcase( jumpIfNull==0 ); 5241 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5242 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5243 }else{ 5244 int d2 = sqlite3VdbeMakeLabel(pParse); 5245 testcase( jumpIfNull==0 ); 5246 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5247 jumpIfNull^SQLITE_JUMPIFNULL); 5248 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5249 sqlite3VdbeResolveLabel(v, d2); 5250 } 5251 break; 5252 } 5253 case TK_NOT: { 5254 testcase( jumpIfNull==0 ); 5255 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5256 break; 5257 } 5258 case TK_TRUTH: { 5259 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5260 int isTrue; /* IS TRUE or IS NOT TRUE */ 5261 testcase( jumpIfNull==0 ); 5262 isNot = pExpr->op2==TK_ISNOT; 5263 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5264 testcase( isTrue && isNot ); 5265 testcase( !isTrue && isNot ); 5266 if( isTrue ^ isNot ){ 5267 /* IS TRUE and IS NOT FALSE */ 5268 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5269 isNot ? 0 : SQLITE_JUMPIFNULL); 5270 5271 }else{ 5272 /* IS FALSE and IS NOT TRUE */ 5273 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5274 isNot ? 0 : SQLITE_JUMPIFNULL); 5275 } 5276 break; 5277 } 5278 case TK_IS: 5279 case TK_ISNOT: 5280 testcase( pExpr->op==TK_IS ); 5281 testcase( pExpr->op==TK_ISNOT ); 5282 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5283 jumpIfNull = SQLITE_NULLEQ; 5284 /* no break */ deliberate_fall_through 5285 case TK_LT: 5286 case TK_LE: 5287 case TK_GT: 5288 case TK_GE: 5289 case TK_NE: 5290 case TK_EQ: { 5291 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5292 testcase( jumpIfNull==0 ); 5293 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5294 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5295 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5296 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5297 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5298 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5299 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5300 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5301 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5302 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5303 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5304 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5305 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5306 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5307 testcase( regFree1==0 ); 5308 testcase( regFree2==0 ); 5309 break; 5310 } 5311 case TK_ISNULL: 5312 case TK_NOTNULL: { 5313 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5314 sqlite3VdbeAddOp2(v, op, r1, dest); 5315 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5316 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5317 testcase( regFree1==0 ); 5318 break; 5319 } 5320 case TK_BETWEEN: { 5321 testcase( jumpIfNull==0 ); 5322 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5323 break; 5324 } 5325 #ifndef SQLITE_OMIT_SUBQUERY 5326 case TK_IN: { 5327 if( jumpIfNull ){ 5328 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5329 }else{ 5330 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5331 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5332 sqlite3VdbeResolveLabel(v, destIfNull); 5333 } 5334 break; 5335 } 5336 #endif 5337 default: { 5338 default_expr: 5339 if( ExprAlwaysFalse(pExpr) ){ 5340 sqlite3VdbeGoto(v, dest); 5341 }else if( ExprAlwaysTrue(pExpr) ){ 5342 /* no-op */ 5343 }else{ 5344 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5345 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5346 VdbeCoverage(v); 5347 testcase( regFree1==0 ); 5348 testcase( jumpIfNull==0 ); 5349 } 5350 break; 5351 } 5352 } 5353 sqlite3ReleaseTempReg(pParse, regFree1); 5354 sqlite3ReleaseTempReg(pParse, regFree2); 5355 } 5356 5357 /* 5358 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5359 ** code generation, and that copy is deleted after code generation. This 5360 ** ensures that the original pExpr is unchanged. 5361 */ 5362 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5363 sqlite3 *db = pParse->db; 5364 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5365 if( db->mallocFailed==0 ){ 5366 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5367 } 5368 sqlite3ExprDelete(db, pCopy); 5369 } 5370 5371 /* 5372 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5373 ** type of expression. 5374 ** 5375 ** If pExpr is a simple SQL value - an integer, real, string, blob 5376 ** or NULL value - then the VDBE currently being prepared is configured 5377 ** to re-prepare each time a new value is bound to variable pVar. 5378 ** 5379 ** Additionally, if pExpr is a simple SQL value and the value is the 5380 ** same as that currently bound to variable pVar, non-zero is returned. 5381 ** Otherwise, if the values are not the same or if pExpr is not a simple 5382 ** SQL value, zero is returned. 5383 */ 5384 static int exprCompareVariable( 5385 const Parse *pParse, 5386 const Expr *pVar, 5387 const Expr *pExpr 5388 ){ 5389 int res = 0; 5390 int iVar; 5391 sqlite3_value *pL, *pR = 0; 5392 5393 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5394 if( pR ){ 5395 iVar = pVar->iColumn; 5396 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5397 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5398 if( pL ){ 5399 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5400 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5401 } 5402 res = 0==sqlite3MemCompare(pL, pR, 0); 5403 } 5404 sqlite3ValueFree(pR); 5405 sqlite3ValueFree(pL); 5406 } 5407 5408 return res; 5409 } 5410 5411 /* 5412 ** Do a deep comparison of two expression trees. Return 0 if the two 5413 ** expressions are completely identical. Return 1 if they differ only 5414 ** by a COLLATE operator at the top level. Return 2 if there are differences 5415 ** other than the top-level COLLATE operator. 5416 ** 5417 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5418 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5419 ** 5420 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5421 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5422 ** 5423 ** Sometimes this routine will return 2 even if the two expressions 5424 ** really are equivalent. If we cannot prove that the expressions are 5425 ** identical, we return 2 just to be safe. So if this routine 5426 ** returns 2, then you do not really know for certain if the two 5427 ** expressions are the same. But if you get a 0 or 1 return, then you 5428 ** can be sure the expressions are the same. In the places where 5429 ** this routine is used, it does not hurt to get an extra 2 - that 5430 ** just might result in some slightly slower code. But returning 5431 ** an incorrect 0 or 1 could lead to a malfunction. 5432 ** 5433 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5434 ** pParse->pReprepare can be matched against literals in pB. The 5435 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5436 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5437 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5438 ** pB causes a return value of 2. 5439 */ 5440 int sqlite3ExprCompare( 5441 const Parse *pParse, 5442 const Expr *pA, 5443 const Expr *pB, 5444 int iTab 5445 ){ 5446 u32 combinedFlags; 5447 if( pA==0 || pB==0 ){ 5448 return pB==pA ? 0 : 2; 5449 } 5450 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5451 return 0; 5452 } 5453 combinedFlags = pA->flags | pB->flags; 5454 if( combinedFlags & EP_IntValue ){ 5455 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5456 return 0; 5457 } 5458 return 2; 5459 } 5460 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5461 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5462 return 1; 5463 } 5464 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5465 return 1; 5466 } 5467 return 2; 5468 } 5469 assert( !ExprHasProperty(pA, EP_IntValue) ); 5470 assert( !ExprHasProperty(pB, EP_IntValue) ); 5471 if( pA->u.zToken ){ 5472 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5473 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5474 #ifndef SQLITE_OMIT_WINDOWFUNC 5475 assert( pA->op==pB->op ); 5476 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5477 return 2; 5478 } 5479 if( ExprHasProperty(pA,EP_WinFunc) ){ 5480 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5481 return 2; 5482 } 5483 } 5484 #endif 5485 }else if( pA->op==TK_NULL ){ 5486 return 0; 5487 }else if( pA->op==TK_COLLATE ){ 5488 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5489 }else 5490 if( pB->u.zToken!=0 5491 && pA->op!=TK_COLUMN 5492 && pA->op!=TK_AGG_COLUMN 5493 && strcmp(pA->u.zToken,pB->u.zToken)!=0 5494 ){ 5495 return 2; 5496 } 5497 } 5498 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5499 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5500 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5501 if( combinedFlags & EP_xIsSelect ) return 2; 5502 if( (combinedFlags & EP_FixedCol)==0 5503 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5504 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5505 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5506 if( pA->op!=TK_STRING 5507 && pA->op!=TK_TRUEFALSE 5508 && ALWAYS((combinedFlags & EP_Reduced)==0) 5509 ){ 5510 if( pA->iColumn!=pB->iColumn ) return 2; 5511 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5512 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5513 return 2; 5514 } 5515 } 5516 } 5517 return 0; 5518 } 5519 5520 /* 5521 ** Compare two ExprList objects. Return 0 if they are identical, 1 5522 ** if they are certainly different, or 2 if it is not possible to 5523 ** determine if they are identical or not. 5524 ** 5525 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5526 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5527 ** 5528 ** This routine might return non-zero for equivalent ExprLists. The 5529 ** only consequence will be disabled optimizations. But this routine 5530 ** must never return 0 if the two ExprList objects are different, or 5531 ** a malfunction will result. 5532 ** 5533 ** Two NULL pointers are considered to be the same. But a NULL pointer 5534 ** always differs from a non-NULL pointer. 5535 */ 5536 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){ 5537 int i; 5538 if( pA==0 && pB==0 ) return 0; 5539 if( pA==0 || pB==0 ) return 1; 5540 if( pA->nExpr!=pB->nExpr ) return 1; 5541 for(i=0; i<pA->nExpr; i++){ 5542 int res; 5543 Expr *pExprA = pA->a[i].pExpr; 5544 Expr *pExprB = pB->a[i].pExpr; 5545 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5546 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5547 } 5548 return 0; 5549 } 5550 5551 /* 5552 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5553 ** are ignored. 5554 */ 5555 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){ 5556 return sqlite3ExprCompare(0, 5557 sqlite3ExprSkipCollateAndLikely(pA), 5558 sqlite3ExprSkipCollateAndLikely(pB), 5559 iTab); 5560 } 5561 5562 /* 5563 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5564 ** 5565 ** Or if seenNot is true, return non-zero if Expr p can only be 5566 ** non-NULL if pNN is not NULL 5567 */ 5568 static int exprImpliesNotNull( 5569 const Parse *pParse,/* Parsing context */ 5570 const Expr *p, /* The expression to be checked */ 5571 const Expr *pNN, /* The expression that is NOT NULL */ 5572 int iTab, /* Table being evaluated */ 5573 int seenNot /* Return true only if p can be any non-NULL value */ 5574 ){ 5575 assert( p ); 5576 assert( pNN ); 5577 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5578 return pNN->op!=TK_NULL; 5579 } 5580 switch( p->op ){ 5581 case TK_IN: { 5582 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5583 assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5584 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5585 } 5586 case TK_BETWEEN: { 5587 ExprList *pList; 5588 assert( ExprUseXList(p) ); 5589 pList = p->x.pList; 5590 assert( pList!=0 ); 5591 assert( pList->nExpr==2 ); 5592 if( seenNot ) return 0; 5593 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5594 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5595 ){ 5596 return 1; 5597 } 5598 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5599 } 5600 case TK_EQ: 5601 case TK_NE: 5602 case TK_LT: 5603 case TK_LE: 5604 case TK_GT: 5605 case TK_GE: 5606 case TK_PLUS: 5607 case TK_MINUS: 5608 case TK_BITOR: 5609 case TK_LSHIFT: 5610 case TK_RSHIFT: 5611 case TK_CONCAT: 5612 seenNot = 1; 5613 /* no break */ deliberate_fall_through 5614 case TK_STAR: 5615 case TK_REM: 5616 case TK_BITAND: 5617 case TK_SLASH: { 5618 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5619 /* no break */ deliberate_fall_through 5620 } 5621 case TK_SPAN: 5622 case TK_COLLATE: 5623 case TK_UPLUS: 5624 case TK_UMINUS: { 5625 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5626 } 5627 case TK_TRUTH: { 5628 if( seenNot ) return 0; 5629 if( p->op2!=TK_IS ) return 0; 5630 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5631 } 5632 case TK_BITNOT: 5633 case TK_NOT: { 5634 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5635 } 5636 } 5637 return 0; 5638 } 5639 5640 /* 5641 ** Return true if we can prove the pE2 will always be true if pE1 is 5642 ** true. Return false if we cannot complete the proof or if pE2 might 5643 ** be false. Examples: 5644 ** 5645 ** pE1: x==5 pE2: x==5 Result: true 5646 ** pE1: x>0 pE2: x==5 Result: false 5647 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5648 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5649 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5650 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5651 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5652 ** 5653 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5654 ** Expr.iTable<0 then assume a table number given by iTab. 5655 ** 5656 ** If pParse is not NULL, then the values of bound variables in pE1 are 5657 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5658 ** modified to record which bound variables are referenced. If pParse 5659 ** is NULL, then false will be returned if pE1 contains any bound variables. 5660 ** 5661 ** When in doubt, return false. Returning true might give a performance 5662 ** improvement. Returning false might cause a performance reduction, but 5663 ** it will always give the correct answer and is hence always safe. 5664 */ 5665 int sqlite3ExprImpliesExpr( 5666 const Parse *pParse, 5667 const Expr *pE1, 5668 const Expr *pE2, 5669 int iTab 5670 ){ 5671 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5672 return 1; 5673 } 5674 if( pE2->op==TK_OR 5675 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5676 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5677 ){ 5678 return 1; 5679 } 5680 if( pE2->op==TK_NOTNULL 5681 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5682 ){ 5683 return 1; 5684 } 5685 return 0; 5686 } 5687 5688 /* 5689 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5690 ** If the expression node requires that the table at pWalker->iCur 5691 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5692 ** 5693 ** This routine controls an optimization. False positives (setting 5694 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5695 ** (never setting pWalker->eCode) is a harmless missed optimization. 5696 */ 5697 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5698 testcase( pExpr->op==TK_AGG_COLUMN ); 5699 testcase( pExpr->op==TK_AGG_FUNCTION ); 5700 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5701 switch( pExpr->op ){ 5702 case TK_ISNOT: 5703 case TK_ISNULL: 5704 case TK_NOTNULL: 5705 case TK_IS: 5706 case TK_OR: 5707 case TK_VECTOR: 5708 case TK_CASE: 5709 case TK_IN: 5710 case TK_FUNCTION: 5711 case TK_TRUTH: 5712 testcase( pExpr->op==TK_ISNOT ); 5713 testcase( pExpr->op==TK_ISNULL ); 5714 testcase( pExpr->op==TK_NOTNULL ); 5715 testcase( pExpr->op==TK_IS ); 5716 testcase( pExpr->op==TK_OR ); 5717 testcase( pExpr->op==TK_VECTOR ); 5718 testcase( pExpr->op==TK_CASE ); 5719 testcase( pExpr->op==TK_IN ); 5720 testcase( pExpr->op==TK_FUNCTION ); 5721 testcase( pExpr->op==TK_TRUTH ); 5722 return WRC_Prune; 5723 case TK_COLUMN: 5724 if( pWalker->u.iCur==pExpr->iTable ){ 5725 pWalker->eCode = 1; 5726 return WRC_Abort; 5727 } 5728 return WRC_Prune; 5729 5730 case TK_AND: 5731 if( pWalker->eCode==0 ){ 5732 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5733 if( pWalker->eCode ){ 5734 pWalker->eCode = 0; 5735 sqlite3WalkExpr(pWalker, pExpr->pRight); 5736 } 5737 } 5738 return WRC_Prune; 5739 5740 case TK_BETWEEN: 5741 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5742 assert( pWalker->eCode ); 5743 return WRC_Abort; 5744 } 5745 return WRC_Prune; 5746 5747 /* Virtual tables are allowed to use constraints like x=NULL. So 5748 ** a term of the form x=y does not prove that y is not null if x 5749 ** is the column of a virtual table */ 5750 case TK_EQ: 5751 case TK_NE: 5752 case TK_LT: 5753 case TK_LE: 5754 case TK_GT: 5755 case TK_GE: { 5756 Expr *pLeft = pExpr->pLeft; 5757 Expr *pRight = pExpr->pRight; 5758 testcase( pExpr->op==TK_EQ ); 5759 testcase( pExpr->op==TK_NE ); 5760 testcase( pExpr->op==TK_LT ); 5761 testcase( pExpr->op==TK_LE ); 5762 testcase( pExpr->op==TK_GT ); 5763 testcase( pExpr->op==TK_GE ); 5764 /* The y.pTab=0 assignment in wherecode.c always happens after the 5765 ** impliesNotNullRow() test */ 5766 assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) ); 5767 assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) ); 5768 if( (pLeft->op==TK_COLUMN 5769 && pLeft->y.pTab!=0 5770 && IsVirtual(pLeft->y.pTab)) 5771 || (pRight->op==TK_COLUMN 5772 && pRight->y.pTab!=0 5773 && IsVirtual(pRight->y.pTab)) 5774 ){ 5775 return WRC_Prune; 5776 } 5777 /* no break */ deliberate_fall_through 5778 } 5779 default: 5780 return WRC_Continue; 5781 } 5782 } 5783 5784 /* 5785 ** Return true (non-zero) if expression p can only be true if at least 5786 ** one column of table iTab is non-null. In other words, return true 5787 ** if expression p will always be NULL or false if every column of iTab 5788 ** is NULL. 5789 ** 5790 ** False negatives are acceptable. In other words, it is ok to return 5791 ** zero even if expression p will never be true of every column of iTab 5792 ** is NULL. A false negative is merely a missed optimization opportunity. 5793 ** 5794 ** False positives are not allowed, however. A false positive may result 5795 ** in an incorrect answer. 5796 ** 5797 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5798 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5799 ** 5800 ** This routine is used to check if a LEFT JOIN can be converted into 5801 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5802 ** clause requires that some column of the right table of the LEFT JOIN 5803 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5804 ** ordinary join. 5805 */ 5806 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5807 Walker w; 5808 p = sqlite3ExprSkipCollateAndLikely(p); 5809 if( p==0 ) return 0; 5810 if( p->op==TK_NOTNULL ){ 5811 p = p->pLeft; 5812 }else{ 5813 while( p->op==TK_AND ){ 5814 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5815 p = p->pRight; 5816 } 5817 } 5818 w.xExprCallback = impliesNotNullRow; 5819 w.xSelectCallback = 0; 5820 w.xSelectCallback2 = 0; 5821 w.eCode = 0; 5822 w.u.iCur = iTab; 5823 sqlite3WalkExpr(&w, p); 5824 return w.eCode; 5825 } 5826 5827 /* 5828 ** An instance of the following structure is used by the tree walker 5829 ** to determine if an expression can be evaluated by reference to the 5830 ** index only, without having to do a search for the corresponding 5831 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5832 ** is the cursor for the table. 5833 */ 5834 struct IdxCover { 5835 Index *pIdx; /* The index to be tested for coverage */ 5836 int iCur; /* Cursor number for the table corresponding to the index */ 5837 }; 5838 5839 /* 5840 ** Check to see if there are references to columns in table 5841 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5842 ** pWalker->u.pIdxCover->pIdx. 5843 */ 5844 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5845 if( pExpr->op==TK_COLUMN 5846 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5847 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5848 ){ 5849 pWalker->eCode = 1; 5850 return WRC_Abort; 5851 } 5852 return WRC_Continue; 5853 } 5854 5855 /* 5856 ** Determine if an index pIdx on table with cursor iCur contains will 5857 ** the expression pExpr. Return true if the index does cover the 5858 ** expression and false if the pExpr expression references table columns 5859 ** that are not found in the index pIdx. 5860 ** 5861 ** An index covering an expression means that the expression can be 5862 ** evaluated using only the index and without having to lookup the 5863 ** corresponding table entry. 5864 */ 5865 int sqlite3ExprCoveredByIndex( 5866 Expr *pExpr, /* The index to be tested */ 5867 int iCur, /* The cursor number for the corresponding table */ 5868 Index *pIdx /* The index that might be used for coverage */ 5869 ){ 5870 Walker w; 5871 struct IdxCover xcov; 5872 memset(&w, 0, sizeof(w)); 5873 xcov.iCur = iCur; 5874 xcov.pIdx = pIdx; 5875 w.xExprCallback = exprIdxCover; 5876 w.u.pIdxCover = &xcov; 5877 sqlite3WalkExpr(&w, pExpr); 5878 return !w.eCode; 5879 } 5880 5881 5882 /* Structure used to pass information throught the Walker in order to 5883 ** implement sqlite3ReferencesSrcList(). 5884 */ 5885 struct RefSrcList { 5886 sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */ 5887 SrcList *pRef; /* Looking for references to these tables */ 5888 i64 nExclude; /* Number of tables to exclude from the search */ 5889 int *aiExclude; /* Cursor IDs for tables to exclude from the search */ 5890 }; 5891 5892 /* 5893 ** Walker SELECT callbacks for sqlite3ReferencesSrcList(). 5894 ** 5895 ** When entering a new subquery on the pExpr argument, add all FROM clause 5896 ** entries for that subquery to the exclude list. 5897 ** 5898 ** When leaving the subquery, remove those entries from the exclude list. 5899 */ 5900 static int selectRefEnter(Walker *pWalker, Select *pSelect){ 5901 struct RefSrcList *p = pWalker->u.pRefSrcList; 5902 SrcList *pSrc = pSelect->pSrc; 5903 i64 i, j; 5904 int *piNew; 5905 if( pSrc->nSrc==0 ) return WRC_Continue; 5906 j = p->nExclude; 5907 p->nExclude += pSrc->nSrc; 5908 piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int)); 5909 if( piNew==0 ){ 5910 p->nExclude = 0; 5911 return WRC_Abort; 5912 }else{ 5913 p->aiExclude = piNew; 5914 } 5915 for(i=0; i<pSrc->nSrc; i++, j++){ 5916 p->aiExclude[j] = pSrc->a[i].iCursor; 5917 } 5918 return WRC_Continue; 5919 } 5920 static void selectRefLeave(Walker *pWalker, Select *pSelect){ 5921 struct RefSrcList *p = pWalker->u.pRefSrcList; 5922 SrcList *pSrc = pSelect->pSrc; 5923 if( p->nExclude ){ 5924 assert( p->nExclude>=pSrc->nSrc ); 5925 p->nExclude -= pSrc->nSrc; 5926 } 5927 } 5928 5929 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList(). 5930 ** 5931 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any 5932 ** of the tables shown in RefSrcList.pRef. 5933 ** 5934 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a 5935 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude. 5936 */ 5937 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){ 5938 if( pExpr->op==TK_COLUMN 5939 || pExpr->op==TK_AGG_COLUMN 5940 ){ 5941 int i; 5942 struct RefSrcList *p = pWalker->u.pRefSrcList; 5943 SrcList *pSrc = p->pRef; 5944 int nSrc = pSrc ? pSrc->nSrc : 0; 5945 for(i=0; i<nSrc; i++){ 5946 if( pExpr->iTable==pSrc->a[i].iCursor ){ 5947 pWalker->eCode |= 1; 5948 return WRC_Continue; 5949 } 5950 } 5951 for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){} 5952 if( i>=p->nExclude ){ 5953 pWalker->eCode |= 2; 5954 } 5955 } 5956 return WRC_Continue; 5957 } 5958 5959 /* 5960 ** Check to see if pExpr references any tables in pSrcList. 5961 ** Possible return values: 5962 ** 5963 ** 1 pExpr does references a table in pSrcList. 5964 ** 5965 ** 0 pExpr references some table that is not defined in either 5966 ** pSrcList or in subqueries of pExpr itself. 5967 ** 5968 ** -1 pExpr only references no tables at all, or it only 5969 ** references tables defined in subqueries of pExpr itself. 5970 ** 5971 ** As currently used, pExpr is always an aggregate function call. That 5972 ** fact is exploited for efficiency. 5973 */ 5974 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){ 5975 Walker w; 5976 struct RefSrcList x; 5977 memset(&w, 0, sizeof(w)); 5978 memset(&x, 0, sizeof(x)); 5979 w.xExprCallback = exprRefToSrcList; 5980 w.xSelectCallback = selectRefEnter; 5981 w.xSelectCallback2 = selectRefLeave; 5982 w.u.pRefSrcList = &x; 5983 x.db = pParse->db; 5984 x.pRef = pSrcList; 5985 assert( pExpr->op==TK_AGG_FUNCTION ); 5986 assert( ExprUseXList(pExpr) ); 5987 sqlite3WalkExprList(&w, pExpr->x.pList); 5988 #ifndef SQLITE_OMIT_WINDOWFUNC 5989 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5990 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5991 } 5992 #endif 5993 sqlite3DbFree(pParse->db, x.aiExclude); 5994 if( w.eCode & 0x01 ){ 5995 return 1; 5996 }else if( w.eCode ){ 5997 return 0; 5998 }else{ 5999 return -1; 6000 } 6001 } 6002 6003 /* 6004 ** This is a Walker expression node callback. 6005 ** 6006 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 6007 ** object that is referenced does not refer directly to the Expr. If 6008 ** it does, make a copy. This is done because the pExpr argument is 6009 ** subject to change. 6010 ** 6011 ** The copy is stored on pParse->pConstExpr with a register number of 0. 6012 ** This will cause the expression to be deleted automatically when the 6013 ** Parse object is destroyed, but the zero register number means that it 6014 ** will not generate any code in the preamble. 6015 */ 6016 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 6017 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 6018 && pExpr->pAggInfo!=0 6019 ){ 6020 AggInfo *pAggInfo = pExpr->pAggInfo; 6021 int iAgg = pExpr->iAgg; 6022 Parse *pParse = pWalker->pParse; 6023 sqlite3 *db = pParse->db; 6024 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 6025 if( pExpr->op==TK_AGG_COLUMN ){ 6026 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 6027 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 6028 pExpr = sqlite3ExprDup(db, pExpr, 0); 6029 if( pExpr ){ 6030 pAggInfo->aCol[iAgg].pCExpr = pExpr; 6031 sqlite3ExprDeferredDelete(pParse, pExpr); 6032 } 6033 } 6034 }else{ 6035 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 6036 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 6037 pExpr = sqlite3ExprDup(db, pExpr, 0); 6038 if( pExpr ){ 6039 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 6040 sqlite3ExprDeferredDelete(pParse, pExpr); 6041 } 6042 } 6043 } 6044 } 6045 return WRC_Continue; 6046 } 6047 6048 /* 6049 ** Initialize a Walker object so that will persist AggInfo entries referenced 6050 ** by the tree that is walked. 6051 */ 6052 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 6053 memset(pWalker, 0, sizeof(*pWalker)); 6054 pWalker->pParse = pParse; 6055 pWalker->xExprCallback = agginfoPersistExprCb; 6056 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 6057 } 6058 6059 /* 6060 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 6061 ** the new element. Return a negative number if malloc fails. 6062 */ 6063 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 6064 int i; 6065 pInfo->aCol = sqlite3ArrayAllocate( 6066 db, 6067 pInfo->aCol, 6068 sizeof(pInfo->aCol[0]), 6069 &pInfo->nColumn, 6070 &i 6071 ); 6072 return i; 6073 } 6074 6075 /* 6076 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 6077 ** the new element. Return a negative number if malloc fails. 6078 */ 6079 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 6080 int i; 6081 pInfo->aFunc = sqlite3ArrayAllocate( 6082 db, 6083 pInfo->aFunc, 6084 sizeof(pInfo->aFunc[0]), 6085 &pInfo->nFunc, 6086 &i 6087 ); 6088 return i; 6089 } 6090 6091 /* 6092 ** This is the xExprCallback for a tree walker. It is used to 6093 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 6094 ** for additional information. 6095 */ 6096 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 6097 int i; 6098 NameContext *pNC = pWalker->u.pNC; 6099 Parse *pParse = pNC->pParse; 6100 SrcList *pSrcList = pNC->pSrcList; 6101 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 6102 6103 assert( pNC->ncFlags & NC_UAggInfo ); 6104 switch( pExpr->op ){ 6105 case TK_AGG_COLUMN: 6106 case TK_COLUMN: { 6107 testcase( pExpr->op==TK_AGG_COLUMN ); 6108 testcase( pExpr->op==TK_COLUMN ); 6109 /* Check to see if the column is in one of the tables in the FROM 6110 ** clause of the aggregate query */ 6111 if( ALWAYS(pSrcList!=0) ){ 6112 SrcItem *pItem = pSrcList->a; 6113 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 6114 struct AggInfo_col *pCol; 6115 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6116 if( pExpr->iTable==pItem->iCursor ){ 6117 /* If we reach this point, it means that pExpr refers to a table 6118 ** that is in the FROM clause of the aggregate query. 6119 ** 6120 ** Make an entry for the column in pAggInfo->aCol[] if there 6121 ** is not an entry there already. 6122 */ 6123 int k; 6124 pCol = pAggInfo->aCol; 6125 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 6126 if( pCol->iTable==pExpr->iTable && 6127 pCol->iColumn==pExpr->iColumn ){ 6128 break; 6129 } 6130 } 6131 if( (k>=pAggInfo->nColumn) 6132 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 6133 ){ 6134 pCol = &pAggInfo->aCol[k]; 6135 assert( ExprUseYTab(pExpr) ); 6136 pCol->pTab = pExpr->y.pTab; 6137 pCol->iTable = pExpr->iTable; 6138 pCol->iColumn = pExpr->iColumn; 6139 pCol->iMem = ++pParse->nMem; 6140 pCol->iSorterColumn = -1; 6141 pCol->pCExpr = pExpr; 6142 if( pAggInfo->pGroupBy ){ 6143 int j, n; 6144 ExprList *pGB = pAggInfo->pGroupBy; 6145 struct ExprList_item *pTerm = pGB->a; 6146 n = pGB->nExpr; 6147 for(j=0; j<n; j++, pTerm++){ 6148 Expr *pE = pTerm->pExpr; 6149 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 6150 pE->iColumn==pExpr->iColumn ){ 6151 pCol->iSorterColumn = j; 6152 break; 6153 } 6154 } 6155 } 6156 if( pCol->iSorterColumn<0 ){ 6157 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 6158 } 6159 } 6160 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 6161 ** because it was there before or because we just created it). 6162 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 6163 ** pAggInfo->aCol[] entry. 6164 */ 6165 ExprSetVVAProperty(pExpr, EP_NoReduce); 6166 pExpr->pAggInfo = pAggInfo; 6167 pExpr->op = TK_AGG_COLUMN; 6168 pExpr->iAgg = (i16)k; 6169 break; 6170 } /* endif pExpr->iTable==pItem->iCursor */ 6171 } /* end loop over pSrcList */ 6172 } 6173 return WRC_Prune; 6174 } 6175 case TK_AGG_FUNCTION: { 6176 if( (pNC->ncFlags & NC_InAggFunc)==0 6177 && pWalker->walkerDepth==pExpr->op2 6178 ){ 6179 /* Check to see if pExpr is a duplicate of another aggregate 6180 ** function that is already in the pAggInfo structure 6181 */ 6182 struct AggInfo_func *pItem = pAggInfo->aFunc; 6183 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 6184 if( pItem->pFExpr==pExpr ) break; 6185 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 6186 break; 6187 } 6188 } 6189 if( i>=pAggInfo->nFunc ){ 6190 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 6191 */ 6192 u8 enc = ENC(pParse->db); 6193 i = addAggInfoFunc(pParse->db, pAggInfo); 6194 if( i>=0 ){ 6195 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6196 pItem = &pAggInfo->aFunc[i]; 6197 pItem->pFExpr = pExpr; 6198 pItem->iMem = ++pParse->nMem; 6199 assert( ExprUseUToken(pExpr) ); 6200 pItem->pFunc = sqlite3FindFunction(pParse->db, 6201 pExpr->u.zToken, 6202 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 6203 if( pExpr->flags & EP_Distinct ){ 6204 pItem->iDistinct = pParse->nTab++; 6205 }else{ 6206 pItem->iDistinct = -1; 6207 } 6208 } 6209 } 6210 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 6211 */ 6212 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6213 ExprSetVVAProperty(pExpr, EP_NoReduce); 6214 pExpr->iAgg = (i16)i; 6215 pExpr->pAggInfo = pAggInfo; 6216 return WRC_Prune; 6217 }else{ 6218 return WRC_Continue; 6219 } 6220 } 6221 } 6222 return WRC_Continue; 6223 } 6224 6225 /* 6226 ** Analyze the pExpr expression looking for aggregate functions and 6227 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 6228 ** points to. Additional entries are made on the AggInfo object as 6229 ** necessary. 6230 ** 6231 ** This routine should only be called after the expression has been 6232 ** analyzed by sqlite3ResolveExprNames(). 6233 */ 6234 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 6235 Walker w; 6236 w.xExprCallback = analyzeAggregate; 6237 w.xSelectCallback = sqlite3WalkerDepthIncrease; 6238 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 6239 w.walkerDepth = 0; 6240 w.u.pNC = pNC; 6241 w.pParse = 0; 6242 assert( pNC->pSrcList!=0 ); 6243 sqlite3WalkExpr(&w, pExpr); 6244 } 6245 6246 /* 6247 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6248 ** expression list. Return the number of errors. 6249 ** 6250 ** If an error is found, the analysis is cut short. 6251 */ 6252 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6253 struct ExprList_item *pItem; 6254 int i; 6255 if( pList ){ 6256 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6257 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6258 } 6259 } 6260 } 6261 6262 /* 6263 ** Allocate a single new register for use to hold some intermediate result. 6264 */ 6265 int sqlite3GetTempReg(Parse *pParse){ 6266 if( pParse->nTempReg==0 ){ 6267 return ++pParse->nMem; 6268 } 6269 return pParse->aTempReg[--pParse->nTempReg]; 6270 } 6271 6272 /* 6273 ** Deallocate a register, making available for reuse for some other 6274 ** purpose. 6275 */ 6276 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6277 if( iReg ){ 6278 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6279 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6280 pParse->aTempReg[pParse->nTempReg++] = iReg; 6281 } 6282 } 6283 } 6284 6285 /* 6286 ** Allocate or deallocate a block of nReg consecutive registers. 6287 */ 6288 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6289 int i, n; 6290 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6291 i = pParse->iRangeReg; 6292 n = pParse->nRangeReg; 6293 if( nReg<=n ){ 6294 pParse->iRangeReg += nReg; 6295 pParse->nRangeReg -= nReg; 6296 }else{ 6297 i = pParse->nMem+1; 6298 pParse->nMem += nReg; 6299 } 6300 return i; 6301 } 6302 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6303 if( nReg==1 ){ 6304 sqlite3ReleaseTempReg(pParse, iReg); 6305 return; 6306 } 6307 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6308 if( nReg>pParse->nRangeReg ){ 6309 pParse->nRangeReg = nReg; 6310 pParse->iRangeReg = iReg; 6311 } 6312 } 6313 6314 /* 6315 ** Mark all temporary registers as being unavailable for reuse. 6316 ** 6317 ** Always invoke this procedure after coding a subroutine or co-routine 6318 ** that might be invoked from other parts of the code, to ensure that 6319 ** the sub/co-routine does not use registers in common with the code that 6320 ** invokes the sub/co-routine. 6321 */ 6322 void sqlite3ClearTempRegCache(Parse *pParse){ 6323 pParse->nTempReg = 0; 6324 pParse->nRangeReg = 0; 6325 } 6326 6327 /* 6328 ** Validate that no temporary register falls within the range of 6329 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6330 ** statements. 6331 */ 6332 #ifdef SQLITE_DEBUG 6333 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6334 int i; 6335 if( pParse->nRangeReg>0 6336 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6337 && pParse->iRangeReg <= iLast 6338 ){ 6339 return 0; 6340 } 6341 for(i=0; i<pParse->nTempReg; i++){ 6342 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6343 return 0; 6344 } 6345 } 6346 return 1; 6347 } 6348 #endif /* SQLITE_DEBUG */ 6349