1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expresssions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op = pExpr->op; 35 if( op==TK_SELECT ){ 36 assert( pExpr->flags&EP_xIsSelect ); 37 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 38 } 39 #ifndef SQLITE_OMIT_CAST 40 if( op==TK_CAST ){ 41 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 42 return sqlite3AffinityType(pExpr->u.zToken); 43 } 44 #endif 45 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 46 && pExpr->pTab!=0 47 ){ 48 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 49 ** a TK_COLUMN but was previously evaluated and cached in a register */ 50 int j = pExpr->iColumn; 51 if( j<0 ) return SQLITE_AFF_INTEGER; 52 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 53 return pExpr->pTab->aCol[j].affinity; 54 } 55 return pExpr->affinity; 56 } 57 58 /* 59 ** Set the collating sequence for expression pExpr to be the collating 60 ** sequence named by pToken. Return a pointer to the revised expression. 61 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 62 ** flag. An explicit collating sequence will override implicit 63 ** collating sequences. 64 */ 65 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){ 66 char *zColl = 0; /* Dequoted name of collation sequence */ 67 CollSeq *pColl; 68 sqlite3 *db = pParse->db; 69 zColl = sqlite3NameFromToken(db, pCollName); 70 if( pExpr && zColl ){ 71 pColl = sqlite3LocateCollSeq(pParse, zColl); 72 if( pColl ){ 73 pExpr->pColl = pColl; 74 pExpr->flags |= EP_ExpCollate; 75 } 76 } 77 sqlite3DbFree(db, zColl); 78 return pExpr; 79 } 80 81 /* 82 ** Return the default collation sequence for the expression pExpr. If 83 ** there is no default collation type, return 0. 84 */ 85 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 86 CollSeq *pColl = 0; 87 Expr *p = pExpr; 88 while( ALWAYS(p) ){ 89 int op; 90 pColl = p->pColl; 91 if( pColl ) break; 92 op = p->op; 93 if( p->pTab!=0 && ( 94 op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER 95 )){ 96 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 97 ** a TK_COLUMN but was previously evaluated and cached in a register */ 98 const char *zColl; 99 int j = p->iColumn; 100 if( j>=0 ){ 101 sqlite3 *db = pParse->db; 102 zColl = p->pTab->aCol[j].zColl; 103 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 104 pExpr->pColl = pColl; 105 } 106 break; 107 } 108 if( op!=TK_CAST && op!=TK_UPLUS ){ 109 break; 110 } 111 p = p->pLeft; 112 } 113 if( sqlite3CheckCollSeq(pParse, pColl) ){ 114 pColl = 0; 115 } 116 return pColl; 117 } 118 119 /* 120 ** pExpr is an operand of a comparison operator. aff2 is the 121 ** type affinity of the other operand. This routine returns the 122 ** type affinity that should be used for the comparison operator. 123 */ 124 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 125 char aff1 = sqlite3ExprAffinity(pExpr); 126 if( aff1 && aff2 ){ 127 /* Both sides of the comparison are columns. If one has numeric 128 ** affinity, use that. Otherwise use no affinity. 129 */ 130 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 131 return SQLITE_AFF_NUMERIC; 132 }else{ 133 return SQLITE_AFF_NONE; 134 } 135 }else if( !aff1 && !aff2 ){ 136 /* Neither side of the comparison is a column. Compare the 137 ** results directly. 138 */ 139 return SQLITE_AFF_NONE; 140 }else{ 141 /* One side is a column, the other is not. Use the columns affinity. */ 142 assert( aff1==0 || aff2==0 ); 143 return (aff1 + aff2); 144 } 145 } 146 147 /* 148 ** pExpr is a comparison operator. Return the type affinity that should 149 ** be applied to both operands prior to doing the comparison. 150 */ 151 static char comparisonAffinity(Expr *pExpr){ 152 char aff; 153 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 154 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 155 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 156 assert( pExpr->pLeft ); 157 aff = sqlite3ExprAffinity(pExpr->pLeft); 158 if( pExpr->pRight ){ 159 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 160 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 161 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 162 }else if( !aff ){ 163 aff = SQLITE_AFF_NONE; 164 } 165 return aff; 166 } 167 168 /* 169 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 170 ** idx_affinity is the affinity of an indexed column. Return true 171 ** if the index with affinity idx_affinity may be used to implement 172 ** the comparison in pExpr. 173 */ 174 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 175 char aff = comparisonAffinity(pExpr); 176 switch( aff ){ 177 case SQLITE_AFF_NONE: 178 return 1; 179 case SQLITE_AFF_TEXT: 180 return idx_affinity==SQLITE_AFF_TEXT; 181 default: 182 return sqlite3IsNumericAffinity(idx_affinity); 183 } 184 } 185 186 /* 187 ** Return the P5 value that should be used for a binary comparison 188 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 189 */ 190 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 191 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 192 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 193 return aff; 194 } 195 196 /* 197 ** Return a pointer to the collation sequence that should be used by 198 ** a binary comparison operator comparing pLeft and pRight. 199 ** 200 ** If the left hand expression has a collating sequence type, then it is 201 ** used. Otherwise the collation sequence for the right hand expression 202 ** is used, or the default (BINARY) if neither expression has a collating 203 ** type. 204 ** 205 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 206 ** it is not considered. 207 */ 208 CollSeq *sqlite3BinaryCompareCollSeq( 209 Parse *pParse, 210 Expr *pLeft, 211 Expr *pRight 212 ){ 213 CollSeq *pColl; 214 assert( pLeft ); 215 if( pLeft->flags & EP_ExpCollate ){ 216 assert( pLeft->pColl ); 217 pColl = pLeft->pColl; 218 }else if( pRight && pRight->flags & EP_ExpCollate ){ 219 assert( pRight->pColl ); 220 pColl = pRight->pColl; 221 }else{ 222 pColl = sqlite3ExprCollSeq(pParse, pLeft); 223 if( !pColl ){ 224 pColl = sqlite3ExprCollSeq(pParse, pRight); 225 } 226 } 227 return pColl; 228 } 229 230 /* 231 ** Generate the operands for a comparison operation. Before 232 ** generating the code for each operand, set the EP_AnyAff 233 ** flag on the expression so that it will be able to used a 234 ** cached column value that has previously undergone an 235 ** affinity change. 236 */ 237 static void codeCompareOperands( 238 Parse *pParse, /* Parsing and code generating context */ 239 Expr *pLeft, /* The left operand */ 240 int *pRegLeft, /* Register where left operand is stored */ 241 int *pFreeLeft, /* Free this register when done */ 242 Expr *pRight, /* The right operand */ 243 int *pRegRight, /* Register where right operand is stored */ 244 int *pFreeRight /* Write temp register for right operand there */ 245 ){ 246 while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft; 247 pLeft->flags |= EP_AnyAff; 248 *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft); 249 while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft; 250 pRight->flags |= EP_AnyAff; 251 *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight); 252 } 253 254 /* 255 ** Generate code for a comparison operator. 256 */ 257 static int codeCompare( 258 Parse *pParse, /* The parsing (and code generating) context */ 259 Expr *pLeft, /* The left operand */ 260 Expr *pRight, /* The right operand */ 261 int opcode, /* The comparison opcode */ 262 int in1, int in2, /* Register holding operands */ 263 int dest, /* Jump here if true. */ 264 int jumpIfNull /* If true, jump if either operand is NULL */ 265 ){ 266 int p5; 267 int addr; 268 CollSeq *p4; 269 270 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 271 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 272 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 273 (void*)p4, P4_COLLSEQ); 274 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 275 if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){ 276 sqlite3ExprCacheAffinityChange(pParse, in1, 1); 277 sqlite3ExprCacheAffinityChange(pParse, in2, 1); 278 } 279 return addr; 280 } 281 282 #if SQLITE_MAX_EXPR_DEPTH>0 283 /* 284 ** Check that argument nHeight is less than or equal to the maximum 285 ** expression depth allowed. If it is not, leave an error message in 286 ** pParse. 287 */ 288 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 289 int rc = SQLITE_OK; 290 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 291 if( nHeight>mxHeight ){ 292 sqlite3ErrorMsg(pParse, 293 "Expression tree is too large (maximum depth %d)", mxHeight 294 ); 295 rc = SQLITE_ERROR; 296 } 297 return rc; 298 } 299 300 /* The following three functions, heightOfExpr(), heightOfExprList() 301 ** and heightOfSelect(), are used to determine the maximum height 302 ** of any expression tree referenced by the structure passed as the 303 ** first argument. 304 ** 305 ** If this maximum height is greater than the current value pointed 306 ** to by pnHeight, the second parameter, then set *pnHeight to that 307 ** value. 308 */ 309 static void heightOfExpr(Expr *p, int *pnHeight){ 310 if( p ){ 311 if( p->nHeight>*pnHeight ){ 312 *pnHeight = p->nHeight; 313 } 314 } 315 } 316 static void heightOfExprList(ExprList *p, int *pnHeight){ 317 if( p ){ 318 int i; 319 for(i=0; i<p->nExpr; i++){ 320 heightOfExpr(p->a[i].pExpr, pnHeight); 321 } 322 } 323 } 324 static void heightOfSelect(Select *p, int *pnHeight){ 325 if( p ){ 326 heightOfExpr(p->pWhere, pnHeight); 327 heightOfExpr(p->pHaving, pnHeight); 328 heightOfExpr(p->pLimit, pnHeight); 329 heightOfExpr(p->pOffset, pnHeight); 330 heightOfExprList(p->pEList, pnHeight); 331 heightOfExprList(p->pGroupBy, pnHeight); 332 heightOfExprList(p->pOrderBy, pnHeight); 333 heightOfSelect(p->pPrior, pnHeight); 334 } 335 } 336 337 /* 338 ** Set the Expr.nHeight variable in the structure passed as an 339 ** argument. An expression with no children, Expr.pList or 340 ** Expr.pSelect member has a height of 1. Any other expression 341 ** has a height equal to the maximum height of any other 342 ** referenced Expr plus one. 343 */ 344 static void exprSetHeight(Expr *p){ 345 int nHeight = 0; 346 heightOfExpr(p->pLeft, &nHeight); 347 heightOfExpr(p->pRight, &nHeight); 348 if( ExprHasProperty(p, EP_xIsSelect) ){ 349 heightOfSelect(p->x.pSelect, &nHeight); 350 }else{ 351 heightOfExprList(p->x.pList, &nHeight); 352 } 353 p->nHeight = nHeight + 1; 354 } 355 356 /* 357 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 358 ** the height is greater than the maximum allowed expression depth, 359 ** leave an error in pParse. 360 */ 361 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 362 exprSetHeight(p); 363 sqlite3ExprCheckHeight(pParse, p->nHeight); 364 } 365 366 /* 367 ** Return the maximum height of any expression tree referenced 368 ** by the select statement passed as an argument. 369 */ 370 int sqlite3SelectExprHeight(Select *p){ 371 int nHeight = 0; 372 heightOfSelect(p, &nHeight); 373 return nHeight; 374 } 375 #else 376 #define exprSetHeight(y) 377 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 378 379 /* 380 ** This routine is the core allocator for Expr nodes. 381 ** 382 ** Construct a new expression node and return a pointer to it. Memory 383 ** for this node and for the pToken argument is a single allocation 384 ** obtained from sqlite3DbMalloc(). The calling function 385 ** is responsible for making sure the node eventually gets freed. 386 ** 387 ** If dequote is true, then the token (if it exists) is dequoted. 388 ** If dequote is false, no dequoting is performance. The deQuote 389 ** parameter is ignored if pToken is NULL or if the token does not 390 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 391 ** then the EP_DblQuoted flag is set on the expression node. 392 ** 393 ** Special case: If op==TK_INTEGER and pToken points to a string that 394 ** can be translated into a 32-bit integer, then the token is not 395 ** stored in u.zToken. Instead, the integer values is written 396 ** into u.iValue and the EP_IntValue flag is set. No extra storage 397 ** is allocated to hold the integer text and the dequote flag is ignored. 398 */ 399 Expr *sqlite3ExprAlloc( 400 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 401 int op, /* Expression opcode */ 402 const Token *pToken, /* Token argument. Might be NULL */ 403 int dequote /* True to dequote */ 404 ){ 405 Expr *pNew; 406 int nExtra = 0; 407 int iValue = 0; 408 409 if( pToken ){ 410 if( op!=TK_INTEGER || pToken->z==0 411 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 412 nExtra = pToken->n+1; 413 } 414 } 415 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 416 if( pNew ){ 417 pNew->op = (u8)op; 418 pNew->iAgg = -1; 419 if( pToken ){ 420 if( nExtra==0 ){ 421 pNew->flags |= EP_IntValue; 422 pNew->u.iValue = iValue; 423 }else{ 424 int c; 425 pNew->u.zToken = (char*)&pNew[1]; 426 memcpy(pNew->u.zToken, pToken->z, pToken->n); 427 pNew->u.zToken[pToken->n] = 0; 428 if( dequote && nExtra>=3 429 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 430 sqlite3Dequote(pNew->u.zToken); 431 if( c=='"' ) pNew->flags |= EP_DblQuoted; 432 } 433 } 434 } 435 #if SQLITE_MAX_EXPR_DEPTH>0 436 pNew->nHeight = 1; 437 #endif 438 } 439 return pNew; 440 } 441 442 /* 443 ** Allocate a new expression node from a zero-terminated token that has 444 ** already been dequoted. 445 */ 446 Expr *sqlite3Expr( 447 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 448 int op, /* Expression opcode */ 449 const char *zToken /* Token argument. Might be NULL */ 450 ){ 451 Token x; 452 x.z = zToken; 453 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 454 return sqlite3ExprAlloc(db, op, &x, 0); 455 } 456 457 /* 458 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 459 ** 460 ** If pRoot==NULL that means that a memory allocation error has occurred. 461 ** In that case, delete the subtrees pLeft and pRight. 462 */ 463 void sqlite3ExprAttachSubtrees( 464 sqlite3 *db, 465 Expr *pRoot, 466 Expr *pLeft, 467 Expr *pRight 468 ){ 469 if( pRoot==0 ){ 470 assert( db->mallocFailed ); 471 sqlite3ExprDelete(db, pLeft); 472 sqlite3ExprDelete(db, pRight); 473 }else{ 474 if( pRight ){ 475 pRoot->pRight = pRight; 476 if( pRight->flags & EP_ExpCollate ){ 477 pRoot->flags |= EP_ExpCollate; 478 pRoot->pColl = pRight->pColl; 479 } 480 } 481 if( pLeft ){ 482 pRoot->pLeft = pLeft; 483 if( pLeft->flags & EP_ExpCollate ){ 484 pRoot->flags |= EP_ExpCollate; 485 pRoot->pColl = pLeft->pColl; 486 } 487 } 488 exprSetHeight(pRoot); 489 } 490 } 491 492 /* 493 ** Allocate a Expr node which joins as many as two subtrees. 494 ** 495 ** One or both of the subtrees can be NULL. Return a pointer to the new 496 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 497 ** free the subtrees and return NULL. 498 */ 499 Expr *sqlite3PExpr( 500 Parse *pParse, /* Parsing context */ 501 int op, /* Expression opcode */ 502 Expr *pLeft, /* Left operand */ 503 Expr *pRight, /* Right operand */ 504 const Token *pToken /* Argument token */ 505 ){ 506 Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 507 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 508 return p; 509 } 510 511 /* 512 ** Join two expressions using an AND operator. If either expression is 513 ** NULL, then just return the other expression. 514 */ 515 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 516 if( pLeft==0 ){ 517 return pRight; 518 }else if( pRight==0 ){ 519 return pLeft; 520 }else{ 521 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 522 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 523 return pNew; 524 } 525 } 526 527 /* 528 ** Construct a new expression node for a function with multiple 529 ** arguments. 530 */ 531 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 532 Expr *pNew; 533 sqlite3 *db = pParse->db; 534 assert( pToken ); 535 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 536 if( pNew==0 ){ 537 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 538 return 0; 539 } 540 pNew->x.pList = pList; 541 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 542 sqlite3ExprSetHeight(pParse, pNew); 543 return pNew; 544 } 545 546 /* 547 ** Assign a variable number to an expression that encodes a wildcard 548 ** in the original SQL statement. 549 ** 550 ** Wildcards consisting of a single "?" are assigned the next sequential 551 ** variable number. 552 ** 553 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 554 ** sure "nnn" is not too be to avoid a denial of service attack when 555 ** the SQL statement comes from an external source. 556 ** 557 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 558 ** as the previous instance of the same wildcard. Or if this is the first 559 ** instance of the wildcard, the next sequenial variable number is 560 ** assigned. 561 */ 562 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 563 sqlite3 *db = pParse->db; 564 const char *z; 565 566 if( pExpr==0 ) return; 567 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 568 z = pExpr->u.zToken; 569 assert( z!=0 ); 570 assert( z[0]!=0 ); 571 if( z[1]==0 ){ 572 /* Wildcard of the form "?". Assign the next variable number */ 573 assert( z[0]=='?' ); 574 pExpr->iColumn = (ynVar)(++pParse->nVar); 575 }else if( z[0]=='?' ){ 576 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 577 ** use it as the variable number */ 578 int i = atoi((char*)&z[1]); 579 pExpr->iColumn = (ynVar)i; 580 testcase( i==0 ); 581 testcase( i==1 ); 582 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 583 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 584 if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 585 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 586 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 587 } 588 if( i>pParse->nVar ){ 589 pParse->nVar = i; 590 } 591 }else{ 592 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 593 ** number as the prior appearance of the same name, or if the name 594 ** has never appeared before, reuse the same variable number 595 */ 596 int i; 597 u32 n; 598 n = sqlite3Strlen30(z); 599 for(i=0; i<pParse->nVarExpr; i++){ 600 Expr *pE = pParse->apVarExpr[i]; 601 assert( pE!=0 ); 602 if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){ 603 pExpr->iColumn = pE->iColumn; 604 break; 605 } 606 } 607 if( i>=pParse->nVarExpr ){ 608 pExpr->iColumn = (ynVar)(++pParse->nVar); 609 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ 610 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; 611 pParse->apVarExpr = 612 sqlite3DbReallocOrFree( 613 db, 614 pParse->apVarExpr, 615 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) 616 ); 617 } 618 if( !db->mallocFailed ){ 619 assert( pParse->apVarExpr!=0 ); 620 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; 621 } 622 } 623 } 624 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 625 sqlite3ErrorMsg(pParse, "too many SQL variables"); 626 } 627 } 628 629 /* 630 ** Recursively delete an expression tree. 631 */ 632 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 633 if( p==0 ) return; 634 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 635 sqlite3ExprDelete(db, p->pLeft); 636 sqlite3ExprDelete(db, p->pRight); 637 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ 638 sqlite3DbFree(db, p->u.zToken); 639 } 640 if( ExprHasProperty(p, EP_xIsSelect) ){ 641 sqlite3SelectDelete(db, p->x.pSelect); 642 }else{ 643 sqlite3ExprListDelete(db, p->x.pList); 644 } 645 } 646 if( !ExprHasProperty(p, EP_Static) ){ 647 sqlite3DbFree(db, p); 648 } 649 } 650 651 /* 652 ** Return the number of bytes allocated for the expression structure 653 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 654 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 655 */ 656 static int exprStructSize(Expr *p){ 657 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 658 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 659 return EXPR_FULLSIZE; 660 } 661 662 /* 663 ** The dupedExpr*Size() routines each return the number of bytes required 664 ** to store a copy of an expression or expression tree. They differ in 665 ** how much of the tree is measured. 666 ** 667 ** dupedExprStructSize() Size of only the Expr structure 668 ** dupedExprNodeSize() Size of Expr + space for token 669 ** dupedExprSize() Expr + token + subtree components 670 ** 671 *************************************************************************** 672 ** 673 ** The dupedExprStructSize() function returns two values OR-ed together: 674 ** (1) the space required for a copy of the Expr structure only and 675 ** (2) the EP_xxx flags that indicate what the structure size should be. 676 ** The return values is always one of: 677 ** 678 ** EXPR_FULLSIZE 679 ** EXPR_REDUCEDSIZE | EP_Reduced 680 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 681 ** 682 ** The size of the structure can be found by masking the return value 683 ** of this routine with 0xfff. The flags can be found by masking the 684 ** return value with EP_Reduced|EP_TokenOnly. 685 ** 686 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 687 ** (unreduced) Expr objects as they or originally constructed by the parser. 688 ** During expression analysis, extra information is computed and moved into 689 ** later parts of teh Expr object and that extra information might get chopped 690 ** off if the expression is reduced. Note also that it does not work to 691 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal 692 ** to reduce a pristine expression tree from the parser. The implementation 693 ** of dupedExprStructSize() contain multiple assert() statements that attempt 694 ** to enforce this constraint. 695 */ 696 static int dupedExprStructSize(Expr *p, int flags){ 697 int nSize; 698 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 699 if( 0==(flags&EXPRDUP_REDUCE) ){ 700 nSize = EXPR_FULLSIZE; 701 }else{ 702 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 703 assert( !ExprHasProperty(p, EP_FromJoin) ); 704 assert( (p->flags2 & EP2_MallocedToken)==0 ); 705 assert( (p->flags2 & EP2_Irreducible)==0 ); 706 if( p->pLeft || p->pRight || p->pColl || p->x.pList ){ 707 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 708 }else{ 709 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 710 } 711 } 712 return nSize; 713 } 714 715 /* 716 ** This function returns the space in bytes required to store the copy 717 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 718 ** string is defined.) 719 */ 720 static int dupedExprNodeSize(Expr *p, int flags){ 721 int nByte = dupedExprStructSize(p, flags) & 0xfff; 722 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 723 nByte += sqlite3Strlen30(p->u.zToken)+1; 724 } 725 return ROUND8(nByte); 726 } 727 728 /* 729 ** Return the number of bytes required to create a duplicate of the 730 ** expression passed as the first argument. The second argument is a 731 ** mask containing EXPRDUP_XXX flags. 732 ** 733 ** The value returned includes space to create a copy of the Expr struct 734 ** itself and the buffer referred to by Expr.u.zToken, if any. 735 ** 736 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 737 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 738 ** and Expr.pRight variables (but not for any structures pointed to or 739 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 740 */ 741 static int dupedExprSize(Expr *p, int flags){ 742 int nByte = 0; 743 if( p ){ 744 nByte = dupedExprNodeSize(p, flags); 745 if( flags&EXPRDUP_REDUCE ){ 746 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 747 } 748 } 749 return nByte; 750 } 751 752 /* 753 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 754 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 755 ** to store the copy of expression p, the copies of p->u.zToken 756 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 757 ** if any. Before returning, *pzBuffer is set to the first byte passed the 758 ** portion of the buffer copied into by this function. 759 */ 760 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 761 Expr *pNew = 0; /* Value to return */ 762 if( p ){ 763 const int isReduced = (flags&EXPRDUP_REDUCE); 764 u8 *zAlloc; 765 u32 staticFlag = 0; 766 767 assert( pzBuffer==0 || isReduced ); 768 769 /* Figure out where to write the new Expr structure. */ 770 if( pzBuffer ){ 771 zAlloc = *pzBuffer; 772 staticFlag = EP_Static; 773 }else{ 774 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 775 } 776 pNew = (Expr *)zAlloc; 777 778 if( pNew ){ 779 /* Set nNewSize to the size allocated for the structure pointed to 780 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 781 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 782 ** by the copy of the p->u.zToken string (if any). 783 */ 784 const unsigned nStructSize = dupedExprStructSize(p, flags); 785 const int nNewSize = nStructSize & 0xfff; 786 int nToken; 787 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 788 nToken = sqlite3Strlen30(p->u.zToken) + 1; 789 }else{ 790 nToken = 0; 791 } 792 if( isReduced ){ 793 assert( ExprHasProperty(p, EP_Reduced)==0 ); 794 memcpy(zAlloc, p, nNewSize); 795 }else{ 796 int nSize = exprStructSize(p); 797 memcpy(zAlloc, p, nSize); 798 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 799 } 800 801 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 802 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 803 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 804 pNew->flags |= staticFlag; 805 806 /* Copy the p->u.zToken string, if any. */ 807 if( nToken ){ 808 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 809 memcpy(zToken, p->u.zToken, nToken); 810 } 811 812 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 813 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 814 if( ExprHasProperty(p, EP_xIsSelect) ){ 815 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 816 }else{ 817 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 818 } 819 } 820 821 /* Fill in pNew->pLeft and pNew->pRight. */ 822 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 823 zAlloc += dupedExprNodeSize(p, flags); 824 if( ExprHasProperty(pNew, EP_Reduced) ){ 825 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 826 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 827 } 828 if( pzBuffer ){ 829 *pzBuffer = zAlloc; 830 } 831 }else{ 832 pNew->flags2 = 0; 833 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 834 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 835 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 836 } 837 } 838 839 } 840 } 841 return pNew; 842 } 843 844 /* 845 ** The following group of routines make deep copies of expressions, 846 ** expression lists, ID lists, and select statements. The copies can 847 ** be deleted (by being passed to their respective ...Delete() routines) 848 ** without effecting the originals. 849 ** 850 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 851 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 852 ** by subsequent calls to sqlite*ListAppend() routines. 853 ** 854 ** Any tables that the SrcList might point to are not duplicated. 855 ** 856 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 857 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 858 ** truncated version of the usual Expr structure that will be stored as 859 ** part of the in-memory representation of the database schema. 860 */ 861 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 862 return exprDup(db, p, flags, 0); 863 } 864 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 865 ExprList *pNew; 866 struct ExprList_item *pItem, *pOldItem; 867 int i; 868 if( p==0 ) return 0; 869 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 870 if( pNew==0 ) return 0; 871 pNew->iECursor = 0; 872 pNew->nExpr = pNew->nAlloc = p->nExpr; 873 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); 874 if( pItem==0 ){ 875 sqlite3DbFree(db, pNew); 876 return 0; 877 } 878 pOldItem = p->a; 879 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 880 Expr *pOldExpr = pOldItem->pExpr; 881 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 882 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 883 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 884 pItem->sortOrder = pOldItem->sortOrder; 885 pItem->done = 0; 886 pItem->iCol = pOldItem->iCol; 887 pItem->iAlias = pOldItem->iAlias; 888 } 889 return pNew; 890 } 891 892 /* 893 ** If cursors, triggers, views and subqueries are all omitted from 894 ** the build, then none of the following routines, except for 895 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 896 ** called with a NULL argument. 897 */ 898 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 899 || !defined(SQLITE_OMIT_SUBQUERY) 900 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 901 SrcList *pNew; 902 int i; 903 int nByte; 904 if( p==0 ) return 0; 905 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 906 pNew = sqlite3DbMallocRaw(db, nByte ); 907 if( pNew==0 ) return 0; 908 pNew->nSrc = pNew->nAlloc = p->nSrc; 909 for(i=0; i<p->nSrc; i++){ 910 struct SrcList_item *pNewItem = &pNew->a[i]; 911 struct SrcList_item *pOldItem = &p->a[i]; 912 Table *pTab; 913 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 914 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 915 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 916 pNewItem->jointype = pOldItem->jointype; 917 pNewItem->iCursor = pOldItem->iCursor; 918 pNewItem->isPopulated = pOldItem->isPopulated; 919 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 920 pNewItem->notIndexed = pOldItem->notIndexed; 921 pNewItem->pIndex = pOldItem->pIndex; 922 pTab = pNewItem->pTab = pOldItem->pTab; 923 if( pTab ){ 924 pTab->nRef++; 925 } 926 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 927 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 928 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 929 pNewItem->colUsed = pOldItem->colUsed; 930 } 931 return pNew; 932 } 933 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 934 IdList *pNew; 935 int i; 936 if( p==0 ) return 0; 937 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 938 if( pNew==0 ) return 0; 939 pNew->nId = pNew->nAlloc = p->nId; 940 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 941 if( pNew->a==0 ){ 942 sqlite3DbFree(db, pNew); 943 return 0; 944 } 945 for(i=0; i<p->nId; i++){ 946 struct IdList_item *pNewItem = &pNew->a[i]; 947 struct IdList_item *pOldItem = &p->a[i]; 948 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 949 pNewItem->idx = pOldItem->idx; 950 } 951 return pNew; 952 } 953 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 954 Select *pNew; 955 if( p==0 ) return 0; 956 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 957 if( pNew==0 ) return 0; 958 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 959 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 960 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 961 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 962 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 963 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 964 pNew->op = p->op; 965 pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags); 966 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 967 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 968 pNew->iLimit = 0; 969 pNew->iOffset = 0; 970 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 971 pNew->pRightmost = 0; 972 pNew->addrOpenEphm[0] = -1; 973 pNew->addrOpenEphm[1] = -1; 974 pNew->addrOpenEphm[2] = -1; 975 return pNew; 976 } 977 #else 978 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 979 assert( p==0 ); 980 return 0; 981 } 982 #endif 983 984 985 /* 986 ** Add a new element to the end of an expression list. If pList is 987 ** initially NULL, then create a new expression list. 988 ** 989 ** If a memory allocation error occurs, the entire list is freed and 990 ** NULL is returned. If non-NULL is returned, then it is guaranteed 991 ** that the new entry was successfully appended. 992 */ 993 ExprList *sqlite3ExprListAppend( 994 Parse *pParse, /* Parsing context */ 995 ExprList *pList, /* List to which to append. Might be NULL */ 996 Expr *pExpr /* Expression to be appended. Might be NULL */ 997 ){ 998 sqlite3 *db = pParse->db; 999 if( pList==0 ){ 1000 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1001 if( pList==0 ){ 1002 goto no_mem; 1003 } 1004 assert( pList->nAlloc==0 ); 1005 } 1006 if( pList->nAlloc<=pList->nExpr ){ 1007 struct ExprList_item *a; 1008 int n = pList->nAlloc*2 + 4; 1009 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); 1010 if( a==0 ){ 1011 goto no_mem; 1012 } 1013 pList->a = a; 1014 pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]); 1015 } 1016 assert( pList->a!=0 ); 1017 if( 1 ){ 1018 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1019 memset(pItem, 0, sizeof(*pItem)); 1020 pItem->pExpr = pExpr; 1021 } 1022 return pList; 1023 1024 no_mem: 1025 /* Avoid leaking memory if malloc has failed. */ 1026 sqlite3ExprDelete(db, pExpr); 1027 sqlite3ExprListDelete(db, pList); 1028 return 0; 1029 } 1030 1031 /* 1032 ** Set the ExprList.a[].zName element of the most recently added item 1033 ** on the expression list. 1034 ** 1035 ** pList might be NULL following an OOM error. But pName should never be 1036 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1037 ** is set. 1038 */ 1039 void sqlite3ExprListSetName( 1040 Parse *pParse, /* Parsing context */ 1041 ExprList *pList, /* List to which to add the span. */ 1042 Token *pName, /* Name to be added */ 1043 int dequote /* True to cause the name to be dequoted */ 1044 ){ 1045 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1046 if( pList ){ 1047 struct ExprList_item *pItem; 1048 assert( pList->nExpr>0 ); 1049 pItem = &pList->a[pList->nExpr-1]; 1050 assert( pItem->zName==0 ); 1051 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1052 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1053 } 1054 } 1055 1056 /* 1057 ** Set the ExprList.a[].zSpan element of the most recently added item 1058 ** on the expression list. 1059 ** 1060 ** pList might be NULL following an OOM error. But pSpan should never be 1061 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1062 ** is set. 1063 */ 1064 void sqlite3ExprListSetSpan( 1065 Parse *pParse, /* Parsing context */ 1066 ExprList *pList, /* List to which to add the span. */ 1067 ExprSpan *pSpan /* The span to be added */ 1068 ){ 1069 sqlite3 *db = pParse->db; 1070 assert( pList!=0 || db->mallocFailed!=0 ); 1071 if( pList ){ 1072 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1073 assert( pList->nExpr>0 ); 1074 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1075 sqlite3DbFree(db, pItem->zSpan); 1076 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1077 (int)(pSpan->zEnd - pSpan->zStart)); 1078 } 1079 } 1080 1081 /* 1082 ** If the expression list pEList contains more than iLimit elements, 1083 ** leave an error message in pParse. 1084 */ 1085 void sqlite3ExprListCheckLength( 1086 Parse *pParse, 1087 ExprList *pEList, 1088 const char *zObject 1089 ){ 1090 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1091 testcase( pEList && pEList->nExpr==mx ); 1092 testcase( pEList && pEList->nExpr==mx+1 ); 1093 if( pEList && pEList->nExpr>mx ){ 1094 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1095 } 1096 } 1097 1098 /* 1099 ** Delete an entire expression list. 1100 */ 1101 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1102 int i; 1103 struct ExprList_item *pItem; 1104 if( pList==0 ) return; 1105 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 1106 assert( pList->nExpr<=pList->nAlloc ); 1107 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1108 sqlite3ExprDelete(db, pItem->pExpr); 1109 sqlite3DbFree(db, pItem->zName); 1110 sqlite3DbFree(db, pItem->zSpan); 1111 } 1112 sqlite3DbFree(db, pList->a); 1113 sqlite3DbFree(db, pList); 1114 } 1115 1116 /* 1117 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1118 ** to an integer. These routines are checking an expression to see 1119 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1120 ** not constant. 1121 ** 1122 ** These callback routines are used to implement the following: 1123 ** 1124 ** sqlite3ExprIsConstant() 1125 ** sqlite3ExprIsConstantNotJoin() 1126 ** sqlite3ExprIsConstantOrFunction() 1127 ** 1128 */ 1129 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1130 1131 /* If pWalker->u.i is 3 then any term of the expression that comes from 1132 ** the ON or USING clauses of a join disqualifies the expression 1133 ** from being considered constant. */ 1134 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 1135 pWalker->u.i = 0; 1136 return WRC_Abort; 1137 } 1138 1139 switch( pExpr->op ){ 1140 /* Consider functions to be constant if all their arguments are constant 1141 ** and pWalker->u.i==2 */ 1142 case TK_FUNCTION: 1143 if( pWalker->u.i==2 ) return 0; 1144 /* Fall through */ 1145 case TK_ID: 1146 case TK_COLUMN: 1147 case TK_AGG_FUNCTION: 1148 case TK_AGG_COLUMN: 1149 testcase( pExpr->op==TK_ID ); 1150 testcase( pExpr->op==TK_COLUMN ); 1151 testcase( pExpr->op==TK_AGG_FUNCTION ); 1152 testcase( pExpr->op==TK_AGG_COLUMN ); 1153 pWalker->u.i = 0; 1154 return WRC_Abort; 1155 default: 1156 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1157 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1158 return WRC_Continue; 1159 } 1160 } 1161 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1162 UNUSED_PARAMETER(NotUsed); 1163 pWalker->u.i = 0; 1164 return WRC_Abort; 1165 } 1166 static int exprIsConst(Expr *p, int initFlag){ 1167 Walker w; 1168 w.u.i = initFlag; 1169 w.xExprCallback = exprNodeIsConstant; 1170 w.xSelectCallback = selectNodeIsConstant; 1171 sqlite3WalkExpr(&w, p); 1172 return w.u.i; 1173 } 1174 1175 /* 1176 ** Walk an expression tree. Return 1 if the expression is constant 1177 ** and 0 if it involves variables or function calls. 1178 ** 1179 ** For the purposes of this function, a double-quoted string (ex: "abc") 1180 ** is considered a variable but a single-quoted string (ex: 'abc') is 1181 ** a constant. 1182 */ 1183 int sqlite3ExprIsConstant(Expr *p){ 1184 return exprIsConst(p, 1); 1185 } 1186 1187 /* 1188 ** Walk an expression tree. Return 1 if the expression is constant 1189 ** that does no originate from the ON or USING clauses of a join. 1190 ** Return 0 if it involves variables or function calls or terms from 1191 ** an ON or USING clause. 1192 */ 1193 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1194 return exprIsConst(p, 3); 1195 } 1196 1197 /* 1198 ** Walk an expression tree. Return 1 if the expression is constant 1199 ** or a function call with constant arguments. Return and 0 if there 1200 ** are any variables. 1201 ** 1202 ** For the purposes of this function, a double-quoted string (ex: "abc") 1203 ** is considered a variable but a single-quoted string (ex: 'abc') is 1204 ** a constant. 1205 */ 1206 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1207 return exprIsConst(p, 2); 1208 } 1209 1210 /* 1211 ** If the expression p codes a constant integer that is small enough 1212 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1213 ** in *pValue. If the expression is not an integer or if it is too big 1214 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1215 */ 1216 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1217 int rc = 0; 1218 if( p->flags & EP_IntValue ){ 1219 *pValue = p->u.iValue; 1220 return 1; 1221 } 1222 switch( p->op ){ 1223 case TK_INTEGER: { 1224 rc = sqlite3GetInt32(p->u.zToken, pValue); 1225 assert( rc==0 ); 1226 break; 1227 } 1228 case TK_UPLUS: { 1229 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1230 break; 1231 } 1232 case TK_UMINUS: { 1233 int v; 1234 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1235 *pValue = -v; 1236 rc = 1; 1237 } 1238 break; 1239 } 1240 default: break; 1241 } 1242 if( rc ){ 1243 assert( ExprHasAnyProperty(p, EP_Reduced|EP_TokenOnly) 1244 || (p->flags2 & EP2_MallocedToken)==0 ); 1245 p->op = TK_INTEGER; 1246 p->flags |= EP_IntValue; 1247 p->u.iValue = *pValue; 1248 } 1249 return rc; 1250 } 1251 1252 /* 1253 ** Return FALSE if there is no chance that the expression can be NULL. 1254 ** 1255 ** If the expression might be NULL or if the expression is too complex 1256 ** to tell return TRUE. 1257 ** 1258 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1259 ** when we know that a value cannot be NULL. Hence, a false positive 1260 ** (returning TRUE when in fact the expression can never be NULL) might 1261 ** be a small performance hit but is otherwise harmless. On the other 1262 ** hand, a false negative (returning FALSE when the result could be NULL) 1263 ** will likely result in an incorrect answer. So when in doubt, return 1264 ** TRUE. 1265 */ 1266 int sqlite3ExprCanBeNull(const Expr *p){ 1267 u8 op; 1268 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1269 op = p->op; 1270 if( op==TK_REGISTER ) op = p->op2; 1271 switch( op ){ 1272 case TK_INTEGER: 1273 case TK_STRING: 1274 case TK_FLOAT: 1275 case TK_BLOB: 1276 return 0; 1277 default: 1278 return 1; 1279 } 1280 } 1281 1282 /* 1283 ** Generate an OP_IsNull instruction that tests register iReg and jumps 1284 ** to location iDest if the value in iReg is NULL. The value in iReg 1285 ** was computed by pExpr. If we can look at pExpr at compile-time and 1286 ** determine that it can never generate a NULL, then the OP_IsNull operation 1287 ** can be omitted. 1288 */ 1289 void sqlite3ExprCodeIsNullJump( 1290 Vdbe *v, /* The VDBE under construction */ 1291 const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */ 1292 int iReg, /* Test the value in this register for NULL */ 1293 int iDest /* Jump here if the value is null */ 1294 ){ 1295 if( sqlite3ExprCanBeNull(pExpr) ){ 1296 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest); 1297 } 1298 } 1299 1300 /* 1301 ** Return TRUE if the given expression is a constant which would be 1302 ** unchanged by OP_Affinity with the affinity given in the second 1303 ** argument. 1304 ** 1305 ** This routine is used to determine if the OP_Affinity operation 1306 ** can be omitted. When in doubt return FALSE. A false negative 1307 ** is harmless. A false positive, however, can result in the wrong 1308 ** answer. 1309 */ 1310 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1311 u8 op; 1312 if( aff==SQLITE_AFF_NONE ) return 1; 1313 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1314 op = p->op; 1315 if( op==TK_REGISTER ) op = p->op2; 1316 switch( op ){ 1317 case TK_INTEGER: { 1318 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1319 } 1320 case TK_FLOAT: { 1321 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1322 } 1323 case TK_STRING: { 1324 return aff==SQLITE_AFF_TEXT; 1325 } 1326 case TK_BLOB: { 1327 return 1; 1328 } 1329 case TK_COLUMN: { 1330 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1331 return p->iColumn<0 1332 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1333 } 1334 default: { 1335 return 0; 1336 } 1337 } 1338 } 1339 1340 /* 1341 ** Return TRUE if the given string is a row-id column name. 1342 */ 1343 int sqlite3IsRowid(const char *z){ 1344 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1345 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1346 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1347 return 0; 1348 } 1349 1350 /* 1351 ** Return true if we are able to the IN operator optimization on a 1352 ** query of the form 1353 ** 1354 ** x IN (SELECT ...) 1355 ** 1356 ** Where the SELECT... clause is as specified by the parameter to this 1357 ** routine. 1358 ** 1359 ** The Select object passed in has already been preprocessed and no 1360 ** errors have been found. 1361 */ 1362 #ifndef SQLITE_OMIT_SUBQUERY 1363 static int isCandidateForInOpt(Select *p){ 1364 SrcList *pSrc; 1365 ExprList *pEList; 1366 Table *pTab; 1367 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1368 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1369 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1370 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1371 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1372 return 0; /* No DISTINCT keyword and no aggregate functions */ 1373 } 1374 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1375 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1376 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1377 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1378 pSrc = p->pSrc; 1379 assert( pSrc!=0 ); 1380 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1381 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1382 pTab = pSrc->a[0].pTab; 1383 if( NEVER(pTab==0) ) return 0; 1384 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1385 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1386 pEList = p->pEList; 1387 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1388 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1389 return 1; 1390 } 1391 #endif /* SQLITE_OMIT_SUBQUERY */ 1392 1393 /* 1394 ** This function is used by the implementation of the IN (...) operator. 1395 ** It's job is to find or create a b-tree structure that may be used 1396 ** either to test for membership of the (...) set or to iterate through 1397 ** its members, skipping duplicates. 1398 ** 1399 ** The index of the cursor opened on the b-tree (database table, database index 1400 ** or ephermal table) is stored in pX->iTable before this function returns. 1401 ** The returned value of this function indicates the b-tree type, as follows: 1402 ** 1403 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1404 ** IN_INDEX_INDEX - The cursor was opened on a database index. 1405 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1406 ** populated epheremal table. 1407 ** 1408 ** An existing b-tree may only be used if the SELECT is of the simple 1409 ** form: 1410 ** 1411 ** SELECT <column> FROM <table> 1412 ** 1413 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate 1414 ** through the set members, skipping any duplicates. In this case an 1415 ** epheremal table must be used unless the selected <column> is guaranteed 1416 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1417 ** has a UNIQUE constraint or UNIQUE index. 1418 ** 1419 ** If the prNotFound parameter is not 0, then the b-tree will be used 1420 ** for fast set membership tests. In this case an epheremal table must 1421 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1422 ** be found with <column> as its left-most column. 1423 ** 1424 ** When the b-tree is being used for membership tests, the calling function 1425 ** needs to know whether or not the structure contains an SQL NULL 1426 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1427 ** If there is any chance that the (...) might contain a NULL value at 1428 ** runtime, then a register is allocated and the register number written 1429 ** to *prNotFound. If there is no chance that the (...) contains a 1430 ** NULL value, then *prNotFound is left unchanged. 1431 ** 1432 ** If a register is allocated and its location stored in *prNotFound, then 1433 ** its initial value is NULL. If the (...) does not remain constant 1434 ** for the duration of the query (i.e. the SELECT within the (...) 1435 ** is a correlated subquery) then the value of the allocated register is 1436 ** reset to NULL each time the subquery is rerun. This allows the 1437 ** caller to use vdbe code equivalent to the following: 1438 ** 1439 ** if( register==NULL ){ 1440 ** has_null = <test if data structure contains null> 1441 ** register = 1 1442 ** } 1443 ** 1444 ** in order to avoid running the <test if data structure contains null> 1445 ** test more often than is necessary. 1446 */ 1447 #ifndef SQLITE_OMIT_SUBQUERY 1448 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1449 Select *p; /* SELECT to the right of IN operator */ 1450 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1451 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1452 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ 1453 1454 assert( pX->op==TK_IN ); 1455 1456 /* Check to see if an existing table or index can be used to 1457 ** satisfy the query. This is preferable to generating a new 1458 ** ephemeral table. 1459 */ 1460 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1461 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1462 sqlite3 *db = pParse->db; /* Database connection */ 1463 Expr *pExpr = p->pEList->a[0].pExpr; /* Expression <column> */ 1464 int iCol = pExpr->iColumn; /* Index of column <column> */ 1465 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1466 Table *pTab = p->pSrc->a[0].pTab; /* Table <table>. */ 1467 int iDb; /* Database idx for pTab */ 1468 1469 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */ 1470 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1471 sqlite3CodeVerifySchema(pParse, iDb); 1472 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1473 1474 /* This function is only called from two places. In both cases the vdbe 1475 ** has already been allocated. So assume sqlite3GetVdbe() is always 1476 ** successful here. 1477 */ 1478 assert(v); 1479 if( iCol<0 ){ 1480 int iMem = ++pParse->nMem; 1481 int iAddr; 1482 1483 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1484 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1485 1486 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1487 eType = IN_INDEX_ROWID; 1488 1489 sqlite3VdbeJumpHere(v, iAddr); 1490 }else{ 1491 Index *pIdx; /* Iterator variable */ 1492 1493 /* The collation sequence used by the comparison. If an index is to 1494 ** be used in place of a temp-table, it must be ordered according 1495 ** to this collation sequence. */ 1496 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1497 1498 /* Check that the affinity that will be used to perform the 1499 ** comparison is the same as the affinity of the column. If 1500 ** it is not, it is not possible to use any index. 1501 */ 1502 char aff = comparisonAffinity(pX); 1503 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); 1504 1505 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1506 if( (pIdx->aiColumn[0]==iCol) 1507 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1508 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1509 ){ 1510 int iMem = ++pParse->nMem; 1511 int iAddr; 1512 char *pKey; 1513 1514 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); 1515 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1516 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1517 1518 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, 1519 pKey,P4_KEYINFO_HANDOFF); 1520 VdbeComment((v, "%s", pIdx->zName)); 1521 eType = IN_INDEX_INDEX; 1522 1523 sqlite3VdbeJumpHere(v, iAddr); 1524 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1525 *prNotFound = ++pParse->nMem; 1526 } 1527 } 1528 } 1529 } 1530 } 1531 1532 if( eType==0 ){ 1533 /* Could not found an existing table or index to use as the RHS b-tree. 1534 ** We will have to generate an ephemeral table to do the job. 1535 */ 1536 int rMayHaveNull = 0; 1537 eType = IN_INDEX_EPH; 1538 if( prNotFound ){ 1539 *prNotFound = rMayHaveNull = ++pParse->nMem; 1540 }else if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ 1541 eType = IN_INDEX_ROWID; 1542 } 1543 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1544 }else{ 1545 pX->iTable = iTab; 1546 } 1547 return eType; 1548 } 1549 #endif 1550 1551 /* 1552 ** Generate code for scalar subqueries used as an expression 1553 ** and IN operators. Examples: 1554 ** 1555 ** (SELECT a FROM b) -- subquery 1556 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1557 ** x IN (4,5,11) -- IN operator with list on right-hand side 1558 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1559 ** 1560 ** The pExpr parameter describes the expression that contains the IN 1561 ** operator or subquery. 1562 ** 1563 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1564 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1565 ** to some integer key column of a table B-Tree. In this case, use an 1566 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1567 ** (slower) variable length keys B-Tree. 1568 ** 1569 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1570 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1571 ** Furthermore, the IN is in a WHERE clause and that we really want 1572 ** to iterate over the RHS of the IN operator in order to quickly locate 1573 ** all corresponding LHS elements. All this routine does is initialize 1574 ** the register given by rMayHaveNull to NULL. Calling routines will take 1575 ** care of changing this register value to non-NULL if the RHS is NULL-free. 1576 ** 1577 ** If rMayHaveNull is zero, that means that the subquery is being used 1578 ** for membership testing only. There is no need to initialize any 1579 ** registers to indicate the presense or absence of NULLs on the RHS. 1580 ** 1581 ** For a SELECT or EXISTS operator, return the register that holds the 1582 ** result. For IN operators or if an error occurs, the return value is 0. 1583 */ 1584 #ifndef SQLITE_OMIT_SUBQUERY 1585 int sqlite3CodeSubselect( 1586 Parse *pParse, /* Parsing context */ 1587 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1588 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ 1589 int isRowid /* If true, LHS of IN operator is a rowid */ 1590 ){ 1591 int testAddr = 0; /* One-time test address */ 1592 int rReg = 0; /* Register storing resulting */ 1593 Vdbe *v = sqlite3GetVdbe(pParse); 1594 if( NEVER(v==0) ) return 0; 1595 sqlite3ExprCachePush(pParse); 1596 1597 /* This code must be run in its entirety every time it is encountered 1598 ** if any of the following is true: 1599 ** 1600 ** * The right-hand side is a correlated subquery 1601 ** * The right-hand side is an expression list containing variables 1602 ** * We are inside a trigger 1603 ** 1604 ** If all of the above are false, then we can run this code just once 1605 ** save the results, and reuse the same result on subsequent invocations. 1606 */ 1607 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){ 1608 int mem = ++pParse->nMem; 1609 sqlite3VdbeAddOp1(v, OP_If, mem); 1610 testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem); 1611 assert( testAddr>0 || pParse->db->mallocFailed ); 1612 } 1613 1614 switch( pExpr->op ){ 1615 case TK_IN: { 1616 char affinity; 1617 KeyInfo keyInfo; 1618 int addr; /* Address of OP_OpenEphemeral instruction */ 1619 Expr *pLeft = pExpr->pLeft; 1620 1621 if( rMayHaveNull ){ 1622 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1623 } 1624 1625 affinity = sqlite3ExprAffinity(pLeft); 1626 1627 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1628 ** expression it is handled the same way. An ephemeral table is 1629 ** filled with single-field index keys representing the results 1630 ** from the SELECT or the <exprlist>. 1631 ** 1632 ** If the 'x' expression is a column value, or the SELECT... 1633 ** statement returns a column value, then the affinity of that 1634 ** column is used to build the index keys. If both 'x' and the 1635 ** SELECT... statement are columns, then numeric affinity is used 1636 ** if either column has NUMERIC or INTEGER affinity. If neither 1637 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1638 ** is used. 1639 */ 1640 pExpr->iTable = pParse->nTab++; 1641 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1642 memset(&keyInfo, 0, sizeof(keyInfo)); 1643 keyInfo.nField = 1; 1644 1645 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1646 /* Case 1: expr IN (SELECT ...) 1647 ** 1648 ** Generate code to write the results of the select into the temporary 1649 ** table allocated and opened above. 1650 */ 1651 SelectDest dest; 1652 ExprList *pEList; 1653 1654 assert( !isRowid ); 1655 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1656 dest.affinity = (u8)affinity; 1657 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1658 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1659 return 0; 1660 } 1661 pEList = pExpr->x.pSelect->pEList; 1662 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 1663 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1664 pEList->a[0].pExpr); 1665 } 1666 }else if( pExpr->x.pList!=0 ){ 1667 /* Case 2: expr IN (exprlist) 1668 ** 1669 ** For each expression, build an index key from the evaluation and 1670 ** store it in the temporary table. If <expr> is a column, then use 1671 ** that columns affinity when building index keys. If <expr> is not 1672 ** a column, use numeric affinity. 1673 */ 1674 int i; 1675 ExprList *pList = pExpr->x.pList; 1676 struct ExprList_item *pItem; 1677 int r1, r2, r3; 1678 1679 if( !affinity ){ 1680 affinity = SQLITE_AFF_NONE; 1681 } 1682 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1683 1684 /* Loop through each expression in <exprlist>. */ 1685 r1 = sqlite3GetTempReg(pParse); 1686 r2 = sqlite3GetTempReg(pParse); 1687 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1688 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1689 Expr *pE2 = pItem->pExpr; 1690 int iValToIns; 1691 1692 /* If the expression is not constant then we will need to 1693 ** disable the test that was generated above that makes sure 1694 ** this code only executes once. Because for a non-constant 1695 ** expression we need to rerun this code each time. 1696 */ 1697 if( testAddr && !sqlite3ExprIsConstant(pE2) ){ 1698 sqlite3VdbeChangeToNoop(v, testAddr-1, 2); 1699 testAddr = 0; 1700 } 1701 1702 /* Evaluate the expression and insert it into the temp table */ 1703 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1704 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1705 }else{ 1706 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1707 if( isRowid ){ 1708 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1709 sqlite3VdbeCurrentAddr(v)+2); 1710 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1711 }else{ 1712 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1713 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1714 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1715 } 1716 } 1717 } 1718 sqlite3ReleaseTempReg(pParse, r1); 1719 sqlite3ReleaseTempReg(pParse, r2); 1720 } 1721 if( !isRowid ){ 1722 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); 1723 } 1724 break; 1725 } 1726 1727 case TK_EXISTS: 1728 case TK_SELECT: 1729 default: { 1730 /* If this has to be a scalar SELECT. Generate code to put the 1731 ** value of this select in a memory cell and record the number 1732 ** of the memory cell in iColumn. If this is an EXISTS, write 1733 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1734 ** and record that memory cell in iColumn. 1735 */ 1736 static const Token one = { "1", 1 }; /* Token for literal value 1 */ 1737 Select *pSel; /* SELECT statement to encode */ 1738 SelectDest dest; /* How to deal with SELECt result */ 1739 1740 testcase( pExpr->op==TK_EXISTS ); 1741 testcase( pExpr->op==TK_SELECT ); 1742 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1743 1744 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1745 pSel = pExpr->x.pSelect; 1746 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1747 if( pExpr->op==TK_SELECT ){ 1748 dest.eDest = SRT_Mem; 1749 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm); 1750 VdbeComment((v, "Init subquery result")); 1751 }else{ 1752 dest.eDest = SRT_Exists; 1753 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm); 1754 VdbeComment((v, "Init EXISTS result")); 1755 } 1756 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1757 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); 1758 if( sqlite3Select(pParse, pSel, &dest) ){ 1759 return 0; 1760 } 1761 rReg = dest.iParm; 1762 ExprSetIrreducible(pExpr); 1763 break; 1764 } 1765 } 1766 1767 if( testAddr ){ 1768 sqlite3VdbeJumpHere(v, testAddr-1); 1769 } 1770 sqlite3ExprCachePop(pParse, 1); 1771 1772 return rReg; 1773 } 1774 #endif /* SQLITE_OMIT_SUBQUERY */ 1775 1776 #ifndef SQLITE_OMIT_SUBQUERY 1777 /* 1778 ** Generate code for an IN expression. 1779 ** 1780 ** x IN (SELECT ...) 1781 ** x IN (value, value, ...) 1782 ** 1783 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 1784 ** is an array of zero or more values. The expression is true if the LHS is 1785 ** contained within the RHS. The value of the expression is unknown (NULL) 1786 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 1787 ** RHS contains one or more NULL values. 1788 ** 1789 ** This routine generates code will jump to destIfFalse if the LHS is not 1790 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 1791 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 1792 ** within the RHS then fall through. 1793 */ 1794 static void sqlite3ExprCodeIN( 1795 Parse *pParse, /* Parsing and code generating context */ 1796 Expr *pExpr, /* The IN expression */ 1797 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 1798 int destIfNull /* Jump here if the results are unknown due to NULLs */ 1799 ){ 1800 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 1801 char affinity; /* Comparison affinity to use */ 1802 int eType; /* Type of the RHS */ 1803 int r1; /* Temporary use register */ 1804 Vdbe *v; /* Statement under construction */ 1805 1806 /* Compute the RHS. After this step, the table with cursor 1807 ** pExpr->iTable will contains the values that make up the RHS. 1808 */ 1809 v = pParse->pVdbe; 1810 assert( v!=0 ); /* OOM detected prior to this routine */ 1811 VdbeNoopComment((v, "begin IN expr")); 1812 eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull); 1813 1814 /* Figure out the affinity to use to create a key from the results 1815 ** of the expression. affinityStr stores a static string suitable for 1816 ** P4 of OP_MakeRecord. 1817 */ 1818 affinity = comparisonAffinity(pExpr); 1819 1820 /* Code the LHS, the <expr> from "<expr> IN (...)". 1821 */ 1822 sqlite3ExprCachePush(pParse); 1823 r1 = sqlite3GetTempReg(pParse); 1824 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 1825 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); 1826 1827 1828 if( eType==IN_INDEX_ROWID ){ 1829 /* In this case, the RHS is the ROWID of table b-tree 1830 */ 1831 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); 1832 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 1833 }else{ 1834 /* In this case, the RHS is an index b-tree. 1835 */ 1836 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 1837 1838 /* If the set membership test fails, then the result of the 1839 ** "x IN (...)" expression must be either 0 or NULL. If the set 1840 ** contains no NULL values, then the result is 0. If the set 1841 ** contains one or more NULL values, then the result of the 1842 ** expression is also NULL. 1843 */ 1844 if( rRhsHasNull==0 || destIfFalse==destIfNull ){ 1845 /* This branch runs if it is known at compile time that the RHS 1846 ** cannot contain NULL values. This happens as the result 1847 ** of a "NOT NULL" constraint in the database schema. 1848 ** 1849 ** Also run this branch if NULL is equivalent to FALSE 1850 ** for this particular IN operator. 1851 */ 1852 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 1853 1854 }else{ 1855 /* In this branch, the RHS of the IN might contain a NULL and 1856 ** the presence of a NULL on the RHS makes a difference in the 1857 ** outcome. 1858 */ 1859 int j1, j2, j3; 1860 1861 /* First check to see if the LHS is contained in the RHS. If so, 1862 ** then the presence of NULLs in the RHS does not matter, so jump 1863 ** over all of the code that follows. 1864 */ 1865 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 1866 1867 /* Here we begin generating code that runs if the LHS is not 1868 ** contained within the RHS. Generate additional code that 1869 ** tests the RHS for NULLs. If the RHS contains a NULL then 1870 ** jump to destIfNull. If there are no NULLs in the RHS then 1871 ** jump to destIfFalse. 1872 */ 1873 j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull); 1874 j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); 1875 sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull); 1876 sqlite3VdbeJumpHere(v, j3); 1877 sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1); 1878 sqlite3VdbeJumpHere(v, j2); 1879 1880 /* Jump to the appropriate target depending on whether or not 1881 ** the RHS contains a NULL 1882 */ 1883 sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); 1884 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 1885 1886 /* The OP_Found at the top of this branch jumps here when true, 1887 ** causing the overall IN expression evaluation to fall through. 1888 */ 1889 sqlite3VdbeJumpHere(v, j1); 1890 } 1891 } 1892 sqlite3ReleaseTempReg(pParse, r1); 1893 sqlite3ExprCachePop(pParse, 1); 1894 VdbeComment((v, "end IN expr")); 1895 } 1896 #endif /* SQLITE_OMIT_SUBQUERY */ 1897 1898 /* 1899 ** Duplicate an 8-byte value 1900 */ 1901 static char *dup8bytes(Vdbe *v, const char *in){ 1902 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 1903 if( out ){ 1904 memcpy(out, in, 8); 1905 } 1906 return out; 1907 } 1908 1909 /* 1910 ** Generate an instruction that will put the floating point 1911 ** value described by z[0..n-1] into register iMem. 1912 ** 1913 ** The z[] string will probably not be zero-terminated. But the 1914 ** z[n] character is guaranteed to be something that does not look 1915 ** like the continuation of the number. 1916 */ 1917 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 1918 if( ALWAYS(z!=0) ){ 1919 double value; 1920 char *zV; 1921 sqlite3AtoF(z, &value); 1922 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 1923 if( negateFlag ) value = -value; 1924 zV = dup8bytes(v, (char*)&value); 1925 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 1926 } 1927 } 1928 1929 1930 /* 1931 ** Generate an instruction that will put the integer describe by 1932 ** text z[0..n-1] into register iMem. 1933 ** 1934 ** The z[] string will probably not be zero-terminated. But the 1935 ** z[n] character is guaranteed to be something that does not look 1936 ** like the continuation of the number. 1937 */ 1938 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){ 1939 if( pExpr->flags & EP_IntValue ){ 1940 int i = pExpr->u.iValue; 1941 if( negFlag ) i = -i; 1942 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 1943 }else{ 1944 const char *z = pExpr->u.zToken; 1945 assert( z!=0 ); 1946 if( sqlite3FitsIn64Bits(z, negFlag) ){ 1947 i64 value; 1948 char *zV; 1949 sqlite3Atoi64(z, &value); 1950 if( negFlag ) value = -value; 1951 zV = dup8bytes(v, (char*)&value); 1952 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 1953 }else{ 1954 codeReal(v, z, negFlag, iMem); 1955 } 1956 } 1957 } 1958 1959 /* 1960 ** Clear a cache entry. 1961 */ 1962 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 1963 if( p->tempReg ){ 1964 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 1965 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 1966 } 1967 p->tempReg = 0; 1968 } 1969 } 1970 1971 1972 /* 1973 ** Record in the column cache that a particular column from a 1974 ** particular table is stored in a particular register. 1975 */ 1976 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 1977 int i; 1978 int minLru; 1979 int idxLru; 1980 struct yColCache *p; 1981 1982 assert( iReg>0 ); /* Register numbers are always positive */ 1983 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 1984 1985 /* First replace any existing entry */ 1986 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1987 if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){ 1988 cacheEntryClear(pParse, p); 1989 p->iLevel = pParse->iCacheLevel; 1990 p->iReg = iReg; 1991 p->affChange = 0; 1992 p->lru = pParse->iCacheCnt++; 1993 return; 1994 } 1995 } 1996 1997 /* Find an empty slot and replace it */ 1998 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 1999 if( p->iReg==0 ){ 2000 p->iLevel = pParse->iCacheLevel; 2001 p->iTable = iTab; 2002 p->iColumn = iCol; 2003 p->iReg = iReg; 2004 p->affChange = 0; 2005 p->tempReg = 0; 2006 p->lru = pParse->iCacheCnt++; 2007 return; 2008 } 2009 } 2010 2011 /* Replace the last recently used */ 2012 minLru = 0x7fffffff; 2013 idxLru = -1; 2014 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2015 if( p->lru<minLru ){ 2016 idxLru = i; 2017 minLru = p->lru; 2018 } 2019 } 2020 if( ALWAYS(idxLru>=0) ){ 2021 p = &pParse->aColCache[idxLru]; 2022 p->iLevel = pParse->iCacheLevel; 2023 p->iTable = iTab; 2024 p->iColumn = iCol; 2025 p->iReg = iReg; 2026 p->affChange = 0; 2027 p->tempReg = 0; 2028 p->lru = pParse->iCacheCnt++; 2029 return; 2030 } 2031 } 2032 2033 /* 2034 ** Indicate that a register is being overwritten. Purge the register 2035 ** from the column cache. 2036 */ 2037 void sqlite3ExprCacheRemove(Parse *pParse, int iReg){ 2038 int i; 2039 struct yColCache *p; 2040 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2041 if( p->iReg==iReg ){ 2042 cacheEntryClear(pParse, p); 2043 p->iReg = 0; 2044 } 2045 } 2046 } 2047 2048 /* 2049 ** Remember the current column cache context. Any new entries added 2050 ** added to the column cache after this call are removed when the 2051 ** corresponding pop occurs. 2052 */ 2053 void sqlite3ExprCachePush(Parse *pParse){ 2054 pParse->iCacheLevel++; 2055 } 2056 2057 /* 2058 ** Remove from the column cache any entries that were added since the 2059 ** the previous N Push operations. In other words, restore the cache 2060 ** to the state it was in N Pushes ago. 2061 */ 2062 void sqlite3ExprCachePop(Parse *pParse, int N){ 2063 int i; 2064 struct yColCache *p; 2065 assert( N>0 ); 2066 assert( pParse->iCacheLevel>=N ); 2067 pParse->iCacheLevel -= N; 2068 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2069 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2070 cacheEntryClear(pParse, p); 2071 p->iReg = 0; 2072 } 2073 } 2074 } 2075 2076 /* 2077 ** When a cached column is reused, make sure that its register is 2078 ** no longer available as a temp register. ticket #3879: that same 2079 ** register might be in the cache in multiple places, so be sure to 2080 ** get them all. 2081 */ 2082 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2083 int i; 2084 struct yColCache *p; 2085 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2086 if( p->iReg==iReg ){ 2087 p->tempReg = 0; 2088 } 2089 } 2090 } 2091 2092 /* 2093 ** Generate code that will extract the iColumn-th column from 2094 ** table pTab and store the column value in a register. An effort 2095 ** is made to store the column value in register iReg, but this is 2096 ** not guaranteed. The location of the column value is returned. 2097 ** 2098 ** There must be an open cursor to pTab in iTable when this routine 2099 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2100 ** 2101 ** This routine might attempt to reuse the value of the column that 2102 ** has already been loaded into a register. The value will always 2103 ** be used if it has not undergone any affinity changes. But if 2104 ** an affinity change has occurred, then the cached value will only be 2105 ** used if allowAffChng is true. 2106 */ 2107 int sqlite3ExprCodeGetColumn( 2108 Parse *pParse, /* Parsing and code generating context */ 2109 Table *pTab, /* Description of the table we are reading from */ 2110 int iColumn, /* Index of the table column */ 2111 int iTable, /* The cursor pointing to the table */ 2112 int iReg, /* Store results here */ 2113 int allowAffChng /* True if prior affinity changes are OK */ 2114 ){ 2115 Vdbe *v = pParse->pVdbe; 2116 int i; 2117 struct yColCache *p; 2118 2119 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2120 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn 2121 && (!p->affChange || allowAffChng) ){ 2122 p->lru = pParse->iCacheCnt++; 2123 sqlite3ExprCachePinRegister(pParse, p->iReg); 2124 return p->iReg; 2125 } 2126 } 2127 assert( v!=0 ); 2128 if( iColumn<0 ){ 2129 sqlite3VdbeAddOp2(v, OP_Rowid, iTable, iReg); 2130 }else if( ALWAYS(pTab!=0) ){ 2131 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2132 sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg); 2133 sqlite3ColumnDefault(v, pTab, iColumn, iReg); 2134 } 2135 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2136 return iReg; 2137 } 2138 2139 /* 2140 ** Clear all column cache entries. 2141 */ 2142 void sqlite3ExprCacheClear(Parse *pParse){ 2143 int i; 2144 struct yColCache *p; 2145 2146 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2147 if( p->iReg ){ 2148 cacheEntryClear(pParse, p); 2149 p->iReg = 0; 2150 } 2151 } 2152 } 2153 2154 /* 2155 ** Record the fact that an affinity change has occurred on iCount 2156 ** registers starting with iStart. 2157 */ 2158 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2159 int iEnd = iStart + iCount - 1; 2160 int i; 2161 struct yColCache *p; 2162 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2163 int r = p->iReg; 2164 if( r>=iStart && r<=iEnd ){ 2165 p->affChange = 1; 2166 } 2167 } 2168 } 2169 2170 /* 2171 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2172 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2173 */ 2174 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2175 int i; 2176 struct yColCache *p; 2177 if( NEVER(iFrom==iTo) ) return; 2178 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2179 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2180 int x = p->iReg; 2181 if( x>=iFrom && x<iFrom+nReg ){ 2182 p->iReg += iTo-iFrom; 2183 } 2184 } 2185 } 2186 2187 /* 2188 ** Generate code to copy content from registers iFrom...iFrom+nReg-1 2189 ** over to iTo..iTo+nReg-1. 2190 */ 2191 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){ 2192 int i; 2193 if( NEVER(iFrom==iTo) ) return; 2194 for(i=0; i<nReg; i++){ 2195 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i); 2196 } 2197 } 2198 2199 /* 2200 ** Return true if any register in the range iFrom..iTo (inclusive) 2201 ** is used as part of the column cache. 2202 */ 2203 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2204 int i; 2205 struct yColCache *p; 2206 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2207 int r = p->iReg; 2208 if( r>=iFrom && r<=iTo ) return 1; 2209 } 2210 return 0; 2211 } 2212 2213 /* 2214 ** If the last instruction coded is an ephemeral copy of any of 2215 ** the registers in the nReg registers beginning with iReg, then 2216 ** convert the last instruction from OP_SCopy to OP_Copy. 2217 */ 2218 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){ 2219 VdbeOp *pOp; 2220 Vdbe *v; 2221 2222 assert( pParse->db->mallocFailed==0 ); 2223 v = pParse->pVdbe; 2224 assert( v!=0 ); 2225 pOp = sqlite3VdbeGetOp(v, -1); 2226 assert( pOp!=0 ); 2227 if( pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){ 2228 pOp->opcode = OP_Copy; 2229 } 2230 } 2231 2232 /* 2233 ** Generate code to store the value of the iAlias-th alias in register 2234 ** target. The first time this is called, pExpr is evaluated to compute 2235 ** the value of the alias. The value is stored in an auxiliary register 2236 ** and the number of that register is returned. On subsequent calls, 2237 ** the register number is returned without generating any code. 2238 ** 2239 ** Note that in order for this to work, code must be generated in the 2240 ** same order that it is executed. 2241 ** 2242 ** Aliases are numbered starting with 1. So iAlias is in the range 2243 ** of 1 to pParse->nAlias inclusive. 2244 ** 2245 ** pParse->aAlias[iAlias-1] records the register number where the value 2246 ** of the iAlias-th alias is stored. If zero, that means that the 2247 ** alias has not yet been computed. 2248 */ 2249 static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){ 2250 #if 0 2251 sqlite3 *db = pParse->db; 2252 int iReg; 2253 if( pParse->nAliasAlloc<pParse->nAlias ){ 2254 pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias, 2255 sizeof(pParse->aAlias[0])*pParse->nAlias ); 2256 testcase( db->mallocFailed && pParse->nAliasAlloc>0 ); 2257 if( db->mallocFailed ) return 0; 2258 memset(&pParse->aAlias[pParse->nAliasAlloc], 0, 2259 (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0])); 2260 pParse->nAliasAlloc = pParse->nAlias; 2261 } 2262 assert( iAlias>0 && iAlias<=pParse->nAlias ); 2263 iReg = pParse->aAlias[iAlias-1]; 2264 if( iReg==0 ){ 2265 if( pParse->iCacheLevel>0 ){ 2266 iReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2267 }else{ 2268 iReg = ++pParse->nMem; 2269 sqlite3ExprCode(pParse, pExpr, iReg); 2270 pParse->aAlias[iAlias-1] = iReg; 2271 } 2272 } 2273 return iReg; 2274 #else 2275 UNUSED_PARAMETER(iAlias); 2276 return sqlite3ExprCodeTarget(pParse, pExpr, target); 2277 #endif 2278 } 2279 2280 /* 2281 ** Generate code into the current Vdbe to evaluate the given 2282 ** expression. Attempt to store the results in register "target". 2283 ** Return the register where results are stored. 2284 ** 2285 ** With this routine, there is no guarantee that results will 2286 ** be stored in target. The result might be stored in some other 2287 ** register if it is convenient to do so. The calling function 2288 ** must check the return code and move the results to the desired 2289 ** register. 2290 */ 2291 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2292 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2293 int op; /* The opcode being coded */ 2294 int inReg = target; /* Results stored in register inReg */ 2295 int regFree1 = 0; /* If non-zero free this temporary register */ 2296 int regFree2 = 0; /* If non-zero free this temporary register */ 2297 int r1, r2, r3, r4; /* Various register numbers */ 2298 sqlite3 *db = pParse->db; /* The database connection */ 2299 2300 assert( target>0 && target<=pParse->nMem ); 2301 if( v==0 ){ 2302 assert( pParse->db->mallocFailed ); 2303 return 0; 2304 } 2305 2306 if( pExpr==0 ){ 2307 op = TK_NULL; 2308 }else{ 2309 op = pExpr->op; 2310 } 2311 switch( op ){ 2312 case TK_AGG_COLUMN: { 2313 AggInfo *pAggInfo = pExpr->pAggInfo; 2314 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2315 if( !pAggInfo->directMode ){ 2316 assert( pCol->iMem>0 ); 2317 inReg = pCol->iMem; 2318 break; 2319 }else if( pAggInfo->useSortingIdx ){ 2320 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx, 2321 pCol->iSorterColumn, target); 2322 break; 2323 } 2324 /* Otherwise, fall thru into the TK_COLUMN case */ 2325 } 2326 case TK_COLUMN: { 2327 if( pExpr->iTable<0 ){ 2328 /* This only happens when coding check constraints */ 2329 assert( pParse->ckBase>0 ); 2330 inReg = pExpr->iColumn + pParse->ckBase; 2331 }else{ 2332 testcase( (pExpr->flags & EP_AnyAff)!=0 ); 2333 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2334 pExpr->iColumn, pExpr->iTable, target, 2335 pExpr->flags & EP_AnyAff); 2336 } 2337 break; 2338 } 2339 case TK_INTEGER: { 2340 codeInteger(v, pExpr, 0, target); 2341 break; 2342 } 2343 case TK_FLOAT: { 2344 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2345 codeReal(v, pExpr->u.zToken, 0, target); 2346 break; 2347 } 2348 case TK_STRING: { 2349 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2350 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2351 break; 2352 } 2353 case TK_NULL: { 2354 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2355 break; 2356 } 2357 #ifndef SQLITE_OMIT_BLOB_LITERAL 2358 case TK_BLOB: { 2359 int n; 2360 const char *z; 2361 char *zBlob; 2362 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2363 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2364 assert( pExpr->u.zToken[1]=='\'' ); 2365 z = &pExpr->u.zToken[2]; 2366 n = sqlite3Strlen30(z) - 1; 2367 assert( z[n]=='\'' ); 2368 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2369 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2370 break; 2371 } 2372 #endif 2373 case TK_VARIABLE: { 2374 VdbeOp *pOp; 2375 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2376 assert( pExpr->u.zToken!=0 ); 2377 assert( pExpr->u.zToken[0]!=0 ); 2378 if( pExpr->u.zToken[1]==0 2379 && (pOp = sqlite3VdbeGetOp(v, -1))->opcode==OP_Variable 2380 && pOp->p1+pOp->p3==pExpr->iColumn 2381 && pOp->p2+pOp->p3==target 2382 && pOp->p4.z==0 2383 ){ 2384 /* If the previous instruction was a copy of the previous unnamed 2385 ** parameter into the previous register, then simply increment the 2386 ** repeat count on the prior instruction rather than making a new 2387 ** instruction. 2388 */ 2389 pOp->p3++; 2390 }else{ 2391 sqlite3VdbeAddOp3(v, OP_Variable, pExpr->iColumn, target, 1); 2392 if( pExpr->u.zToken[1]!=0 ){ 2393 sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, 0); 2394 } 2395 } 2396 break; 2397 } 2398 case TK_REGISTER: { 2399 inReg = pExpr->iTable; 2400 break; 2401 } 2402 case TK_AS: { 2403 inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target); 2404 break; 2405 } 2406 #ifndef SQLITE_OMIT_CAST 2407 case TK_CAST: { 2408 /* Expressions of the form: CAST(pLeft AS token) */ 2409 int aff, to_op; 2410 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2411 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2412 aff = sqlite3AffinityType(pExpr->u.zToken); 2413 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2414 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2415 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2416 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2417 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2418 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2419 testcase( to_op==OP_ToText ); 2420 testcase( to_op==OP_ToBlob ); 2421 testcase( to_op==OP_ToNumeric ); 2422 testcase( to_op==OP_ToInt ); 2423 testcase( to_op==OP_ToReal ); 2424 if( inReg!=target ){ 2425 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2426 inReg = target; 2427 } 2428 sqlite3VdbeAddOp1(v, to_op, inReg); 2429 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2430 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2431 break; 2432 } 2433 #endif /* SQLITE_OMIT_CAST */ 2434 case TK_LT: 2435 case TK_LE: 2436 case TK_GT: 2437 case TK_GE: 2438 case TK_NE: 2439 case TK_EQ: { 2440 assert( TK_LT==OP_Lt ); 2441 assert( TK_LE==OP_Le ); 2442 assert( TK_GT==OP_Gt ); 2443 assert( TK_GE==OP_Ge ); 2444 assert( TK_EQ==OP_Eq ); 2445 assert( TK_NE==OP_Ne ); 2446 testcase( op==TK_LT ); 2447 testcase( op==TK_LE ); 2448 testcase( op==TK_GT ); 2449 testcase( op==TK_GE ); 2450 testcase( op==TK_EQ ); 2451 testcase( op==TK_NE ); 2452 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 2453 pExpr->pRight, &r2, ®Free2); 2454 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2455 r1, r2, inReg, SQLITE_STOREP2); 2456 testcase( regFree1==0 ); 2457 testcase( regFree2==0 ); 2458 break; 2459 } 2460 case TK_IS: 2461 case TK_ISNOT: { 2462 testcase( op==TK_IS ); 2463 testcase( op==TK_ISNOT ); 2464 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 2465 pExpr->pRight, &r2, ®Free2); 2466 op = (op==TK_IS) ? TK_EQ : TK_NE; 2467 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2468 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2469 testcase( regFree1==0 ); 2470 testcase( regFree2==0 ); 2471 break; 2472 } 2473 case TK_AND: 2474 case TK_OR: 2475 case TK_PLUS: 2476 case TK_STAR: 2477 case TK_MINUS: 2478 case TK_REM: 2479 case TK_BITAND: 2480 case TK_BITOR: 2481 case TK_SLASH: 2482 case TK_LSHIFT: 2483 case TK_RSHIFT: 2484 case TK_CONCAT: { 2485 assert( TK_AND==OP_And ); 2486 assert( TK_OR==OP_Or ); 2487 assert( TK_PLUS==OP_Add ); 2488 assert( TK_MINUS==OP_Subtract ); 2489 assert( TK_REM==OP_Remainder ); 2490 assert( TK_BITAND==OP_BitAnd ); 2491 assert( TK_BITOR==OP_BitOr ); 2492 assert( TK_SLASH==OP_Divide ); 2493 assert( TK_LSHIFT==OP_ShiftLeft ); 2494 assert( TK_RSHIFT==OP_ShiftRight ); 2495 assert( TK_CONCAT==OP_Concat ); 2496 testcase( op==TK_AND ); 2497 testcase( op==TK_OR ); 2498 testcase( op==TK_PLUS ); 2499 testcase( op==TK_MINUS ); 2500 testcase( op==TK_REM ); 2501 testcase( op==TK_BITAND ); 2502 testcase( op==TK_BITOR ); 2503 testcase( op==TK_SLASH ); 2504 testcase( op==TK_LSHIFT ); 2505 testcase( op==TK_RSHIFT ); 2506 testcase( op==TK_CONCAT ); 2507 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2508 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2509 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2510 testcase( regFree1==0 ); 2511 testcase( regFree2==0 ); 2512 break; 2513 } 2514 case TK_UMINUS: { 2515 Expr *pLeft = pExpr->pLeft; 2516 assert( pLeft ); 2517 if( pLeft->op==TK_FLOAT ){ 2518 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2519 codeReal(v, pLeft->u.zToken, 1, target); 2520 }else if( pLeft->op==TK_INTEGER ){ 2521 codeInteger(v, pLeft, 1, target); 2522 }else{ 2523 regFree1 = r1 = sqlite3GetTempReg(pParse); 2524 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); 2525 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2526 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2527 testcase( regFree2==0 ); 2528 } 2529 inReg = target; 2530 break; 2531 } 2532 case TK_BITNOT: 2533 case TK_NOT: { 2534 assert( TK_BITNOT==OP_BitNot ); 2535 assert( TK_NOT==OP_Not ); 2536 testcase( op==TK_BITNOT ); 2537 testcase( op==TK_NOT ); 2538 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2539 testcase( regFree1==0 ); 2540 inReg = target; 2541 sqlite3VdbeAddOp2(v, op, r1, inReg); 2542 break; 2543 } 2544 case TK_ISNULL: 2545 case TK_NOTNULL: { 2546 int addr; 2547 assert( TK_ISNULL==OP_IsNull ); 2548 assert( TK_NOTNULL==OP_NotNull ); 2549 testcase( op==TK_ISNULL ); 2550 testcase( op==TK_NOTNULL ); 2551 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2552 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2553 testcase( regFree1==0 ); 2554 addr = sqlite3VdbeAddOp1(v, op, r1); 2555 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2556 sqlite3VdbeJumpHere(v, addr); 2557 break; 2558 } 2559 case TK_AGG_FUNCTION: { 2560 AggInfo *pInfo = pExpr->pAggInfo; 2561 if( pInfo==0 ){ 2562 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2563 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2564 }else{ 2565 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2566 } 2567 break; 2568 } 2569 case TK_CONST_FUNC: 2570 case TK_FUNCTION: { 2571 ExprList *pFarg; /* List of function arguments */ 2572 int nFarg; /* Number of function arguments */ 2573 FuncDef *pDef; /* The function definition object */ 2574 int nId; /* Length of the function name in bytes */ 2575 const char *zId; /* The function name */ 2576 int constMask = 0; /* Mask of function arguments that are constant */ 2577 int i; /* Loop counter */ 2578 u8 enc = ENC(db); /* The text encoding used by this database */ 2579 CollSeq *pColl = 0; /* A collating sequence */ 2580 2581 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2582 testcase( op==TK_CONST_FUNC ); 2583 testcase( op==TK_FUNCTION ); 2584 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 2585 pFarg = 0; 2586 }else{ 2587 pFarg = pExpr->x.pList; 2588 } 2589 nFarg = pFarg ? pFarg->nExpr : 0; 2590 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2591 zId = pExpr->u.zToken; 2592 nId = sqlite3Strlen30(zId); 2593 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2594 if( pDef==0 ){ 2595 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2596 break; 2597 } 2598 2599 /* Attempt a direct implementation of the built-in COALESCE() and 2600 ** IFNULL() functions. This avoids unnecessary evalation of 2601 ** arguments past the first non-NULL argument. 2602 */ 2603 if( pDef->flags & SQLITE_FUNC_COALESCE ){ 2604 int endCoalesce = sqlite3VdbeMakeLabel(v); 2605 assert( nFarg>=2 ); 2606 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2607 for(i=1; i<nFarg; i++){ 2608 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2609 sqlite3ExprCacheRemove(pParse, target); 2610 sqlite3ExprCachePush(pParse); 2611 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2612 sqlite3ExprCachePop(pParse, 1); 2613 } 2614 sqlite3VdbeResolveLabel(v, endCoalesce); 2615 break; 2616 } 2617 2618 2619 if( pFarg ){ 2620 r1 = sqlite3GetTempRange(pParse, nFarg); 2621 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2622 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); 2623 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ 2624 }else{ 2625 r1 = 0; 2626 } 2627 #ifndef SQLITE_OMIT_VIRTUALTABLE 2628 /* Possibly overload the function if the first argument is 2629 ** a virtual table column. 2630 ** 2631 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2632 ** second argument, not the first, as the argument to test to 2633 ** see if it is a column in a virtual table. This is done because 2634 ** the left operand of infix functions (the operand we want to 2635 ** control overloading) ends up as the second argument to the 2636 ** function. The expression "A glob B" is equivalent to 2637 ** "glob(B,A). We want to use the A in "A glob B" to test 2638 ** for function overloading. But we use the B term in "glob(B,A)". 2639 */ 2640 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2641 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2642 }else if( nFarg>0 ){ 2643 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2644 } 2645 #endif 2646 for(i=0; i<nFarg; i++){ 2647 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2648 constMask |= (1<<i); 2649 } 2650 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2651 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2652 } 2653 } 2654 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){ 2655 if( !pColl ) pColl = db->pDfltColl; 2656 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2657 } 2658 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2659 (char*)pDef, P4_FUNCDEF); 2660 sqlite3VdbeChangeP5(v, (u8)nFarg); 2661 if( nFarg ){ 2662 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2663 } 2664 sqlite3ExprCacheAffinityChange(pParse, r1, nFarg); 2665 break; 2666 } 2667 #ifndef SQLITE_OMIT_SUBQUERY 2668 case TK_EXISTS: 2669 case TK_SELECT: { 2670 testcase( op==TK_EXISTS ); 2671 testcase( op==TK_SELECT ); 2672 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2673 break; 2674 } 2675 case TK_IN: { 2676 int destIfFalse = sqlite3VdbeMakeLabel(v); 2677 int destIfNull = sqlite3VdbeMakeLabel(v); 2678 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2679 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2680 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2681 sqlite3VdbeResolveLabel(v, destIfFalse); 2682 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2683 sqlite3VdbeResolveLabel(v, destIfNull); 2684 break; 2685 } 2686 #endif /* SQLITE_OMIT_SUBQUERY */ 2687 2688 2689 /* 2690 ** x BETWEEN y AND z 2691 ** 2692 ** This is equivalent to 2693 ** 2694 ** x>=y AND x<=z 2695 ** 2696 ** X is stored in pExpr->pLeft. 2697 ** Y is stored in pExpr->pList->a[0].pExpr. 2698 ** Z is stored in pExpr->pList->a[1].pExpr. 2699 */ 2700 case TK_BETWEEN: { 2701 Expr *pLeft = pExpr->pLeft; 2702 struct ExprList_item *pLItem = pExpr->x.pList->a; 2703 Expr *pRight = pLItem->pExpr; 2704 2705 codeCompareOperands(pParse, pLeft, &r1, ®Free1, 2706 pRight, &r2, ®Free2); 2707 testcase( regFree1==0 ); 2708 testcase( regFree2==0 ); 2709 r3 = sqlite3GetTempReg(pParse); 2710 r4 = sqlite3GetTempReg(pParse); 2711 codeCompare(pParse, pLeft, pRight, OP_Ge, 2712 r1, r2, r3, SQLITE_STOREP2); 2713 pLItem++; 2714 pRight = pLItem->pExpr; 2715 sqlite3ReleaseTempReg(pParse, regFree2); 2716 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2717 testcase( regFree2==0 ); 2718 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2719 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2720 sqlite3ReleaseTempReg(pParse, r3); 2721 sqlite3ReleaseTempReg(pParse, r4); 2722 break; 2723 } 2724 case TK_UPLUS: { 2725 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2726 break; 2727 } 2728 2729 case TK_TRIGGER: { 2730 /* If the opcode is TK_TRIGGER, then the expression is a reference 2731 ** to a column in the new.* or old.* pseudo-tables available to 2732 ** trigger programs. In this case Expr.iTable is set to 1 for the 2733 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 2734 ** is set to the column of the pseudo-table to read, or to -1 to 2735 ** read the rowid field. 2736 ** 2737 ** The expression is implemented using an OP_Param opcode. The p1 2738 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 2739 ** to reference another column of the old.* pseudo-table, where 2740 ** i is the index of the column. For a new.rowid reference, p1 is 2741 ** set to (n+1), where n is the number of columns in each pseudo-table. 2742 ** For a reference to any other column in the new.* pseudo-table, p1 2743 ** is set to (n+2+i), where n and i are as defined previously. For 2744 ** example, if the table on which triggers are being fired is 2745 ** declared as: 2746 ** 2747 ** CREATE TABLE t1(a, b); 2748 ** 2749 ** Then p1 is interpreted as follows: 2750 ** 2751 ** p1==0 -> old.rowid p1==3 -> new.rowid 2752 ** p1==1 -> old.a p1==4 -> new.a 2753 ** p1==2 -> old.b p1==5 -> new.b 2754 */ 2755 Table *pTab = pExpr->pTab; 2756 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 2757 2758 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 2759 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 2760 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 2761 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 2762 2763 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 2764 VdbeComment((v, "%s.%s -> $%d", 2765 (pExpr->iTable ? "new" : "old"), 2766 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 2767 target 2768 )); 2769 2770 /* If the column has REAL affinity, it may currently be stored as an 2771 ** integer. Use OP_RealAffinity to make sure it is really real. */ 2772 if( pExpr->iColumn>=0 2773 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 2774 ){ 2775 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 2776 } 2777 break; 2778 } 2779 2780 2781 /* 2782 ** Form A: 2783 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2784 ** 2785 ** Form B: 2786 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2787 ** 2788 ** Form A is can be transformed into the equivalent form B as follows: 2789 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2790 ** WHEN x=eN THEN rN ELSE y END 2791 ** 2792 ** X (if it exists) is in pExpr->pLeft. 2793 ** Y is in pExpr->pRight. The Y is also optional. If there is no 2794 ** ELSE clause and no other term matches, then the result of the 2795 ** exprssion is NULL. 2796 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2797 ** 2798 ** The result of the expression is the Ri for the first matching Ei, 2799 ** or if there is no matching Ei, the ELSE term Y, or if there is 2800 ** no ELSE term, NULL. 2801 */ 2802 default: assert( op==TK_CASE ); { 2803 int endLabel; /* GOTO label for end of CASE stmt */ 2804 int nextCase; /* GOTO label for next WHEN clause */ 2805 int nExpr; /* 2x number of WHEN terms */ 2806 int i; /* Loop counter */ 2807 ExprList *pEList; /* List of WHEN terms */ 2808 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2809 Expr opCompare; /* The X==Ei expression */ 2810 Expr cacheX; /* Cached expression X */ 2811 Expr *pX; /* The X expression */ 2812 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 2813 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 2814 2815 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 2816 assert((pExpr->x.pList->nExpr % 2) == 0); 2817 assert(pExpr->x.pList->nExpr > 0); 2818 pEList = pExpr->x.pList; 2819 aListelem = pEList->a; 2820 nExpr = pEList->nExpr; 2821 endLabel = sqlite3VdbeMakeLabel(v); 2822 if( (pX = pExpr->pLeft)!=0 ){ 2823 cacheX = *pX; 2824 testcase( pX->op==TK_COLUMN ); 2825 testcase( pX->op==TK_REGISTER ); 2826 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); 2827 testcase( regFree1==0 ); 2828 cacheX.op = TK_REGISTER; 2829 opCompare.op = TK_EQ; 2830 opCompare.pLeft = &cacheX; 2831 pTest = &opCompare; 2832 } 2833 for(i=0; i<nExpr; i=i+2){ 2834 sqlite3ExprCachePush(pParse); 2835 if( pX ){ 2836 assert( pTest!=0 ); 2837 opCompare.pRight = aListelem[i].pExpr; 2838 }else{ 2839 pTest = aListelem[i].pExpr; 2840 } 2841 nextCase = sqlite3VdbeMakeLabel(v); 2842 testcase( pTest->op==TK_COLUMN ); 2843 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2844 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2845 testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); 2846 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2847 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2848 sqlite3ExprCachePop(pParse, 1); 2849 sqlite3VdbeResolveLabel(v, nextCase); 2850 } 2851 if( pExpr->pRight ){ 2852 sqlite3ExprCachePush(pParse); 2853 sqlite3ExprCode(pParse, pExpr->pRight, target); 2854 sqlite3ExprCachePop(pParse, 1); 2855 }else{ 2856 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2857 } 2858 assert( db->mallocFailed || pParse->nErr>0 2859 || pParse->iCacheLevel==iCacheLevel ); 2860 sqlite3VdbeResolveLabel(v, endLabel); 2861 break; 2862 } 2863 #ifndef SQLITE_OMIT_TRIGGER 2864 case TK_RAISE: { 2865 assert( pExpr->affinity==OE_Rollback 2866 || pExpr->affinity==OE_Abort 2867 || pExpr->affinity==OE_Fail 2868 || pExpr->affinity==OE_Ignore 2869 ); 2870 if( !pParse->pTriggerTab ){ 2871 sqlite3ErrorMsg(pParse, 2872 "RAISE() may only be used within a trigger-program"); 2873 return 0; 2874 } 2875 if( pExpr->affinity==OE_Abort ){ 2876 sqlite3MayAbort(pParse); 2877 } 2878 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2879 if( pExpr->affinity==OE_Ignore ){ 2880 sqlite3VdbeAddOp4( 2881 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 2882 }else{ 2883 sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0); 2884 } 2885 2886 break; 2887 } 2888 #endif 2889 } 2890 sqlite3ReleaseTempReg(pParse, regFree1); 2891 sqlite3ReleaseTempReg(pParse, regFree2); 2892 return inReg; 2893 } 2894 2895 /* 2896 ** Generate code to evaluate an expression and store the results 2897 ** into a register. Return the register number where the results 2898 ** are stored. 2899 ** 2900 ** If the register is a temporary register that can be deallocated, 2901 ** then write its number into *pReg. If the result register is not 2902 ** a temporary, then set *pReg to zero. 2903 */ 2904 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 2905 int r1 = sqlite3GetTempReg(pParse); 2906 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2907 if( r2==r1 ){ 2908 *pReg = r1; 2909 }else{ 2910 sqlite3ReleaseTempReg(pParse, r1); 2911 *pReg = 0; 2912 } 2913 return r2; 2914 } 2915 2916 /* 2917 ** Generate code that will evaluate expression pExpr and store the 2918 ** results in register target. The results are guaranteed to appear 2919 ** in register target. 2920 */ 2921 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 2922 int inReg; 2923 2924 assert( target>0 && target<=pParse->nMem ); 2925 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2926 assert( pParse->pVdbe || pParse->db->mallocFailed ); 2927 if( inReg!=target && pParse->pVdbe ){ 2928 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 2929 } 2930 return target; 2931 } 2932 2933 /* 2934 ** Generate code that evalutes the given expression and puts the result 2935 ** in register target. 2936 ** 2937 ** Also make a copy of the expression results into another "cache" register 2938 ** and modify the expression so that the next time it is evaluated, 2939 ** the result is a copy of the cache register. 2940 ** 2941 ** This routine is used for expressions that are used multiple 2942 ** times. They are evaluated once and the results of the expression 2943 ** are reused. 2944 */ 2945 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 2946 Vdbe *v = pParse->pVdbe; 2947 int inReg; 2948 inReg = sqlite3ExprCode(pParse, pExpr, target); 2949 assert( target>0 ); 2950 /* This routine is called for terms to INSERT or UPDATE. And the only 2951 ** other place where expressions can be converted into TK_REGISTER is 2952 ** in WHERE clause processing. So as currently implemented, there is 2953 ** no way for a TK_REGISTER to exist here. But it seems prudent to 2954 ** keep the ALWAYS() in case the conditions above change with future 2955 ** modifications or enhancements. */ 2956 if( ALWAYS(pExpr->op!=TK_REGISTER) ){ 2957 int iMem; 2958 iMem = ++pParse->nMem; 2959 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 2960 pExpr->iTable = iMem; 2961 pExpr->op2 = pExpr->op; 2962 pExpr->op = TK_REGISTER; 2963 } 2964 return inReg; 2965 } 2966 2967 /* 2968 ** Return TRUE if pExpr is an constant expression that is appropriate 2969 ** for factoring out of a loop. Appropriate expressions are: 2970 ** 2971 ** * Any expression that evaluates to two or more opcodes. 2972 ** 2973 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 2974 ** or OP_Variable that does not need to be placed in a 2975 ** specific register. 2976 ** 2977 ** There is no point in factoring out single-instruction constant 2978 ** expressions that need to be placed in a particular register. 2979 ** We could factor them out, but then we would end up adding an 2980 ** OP_SCopy instruction to move the value into the correct register 2981 ** later. We might as well just use the original instruction and 2982 ** avoid the OP_SCopy. 2983 */ 2984 static int isAppropriateForFactoring(Expr *p){ 2985 if( !sqlite3ExprIsConstantNotJoin(p) ){ 2986 return 0; /* Only constant expressions are appropriate for factoring */ 2987 } 2988 if( (p->flags & EP_FixedDest)==0 ){ 2989 return 1; /* Any constant without a fixed destination is appropriate */ 2990 } 2991 while( p->op==TK_UPLUS ) p = p->pLeft; 2992 switch( p->op ){ 2993 #ifndef SQLITE_OMIT_BLOB_LITERAL 2994 case TK_BLOB: 2995 #endif 2996 case TK_VARIABLE: 2997 case TK_INTEGER: 2998 case TK_FLOAT: 2999 case TK_NULL: 3000 case TK_STRING: { 3001 testcase( p->op==TK_BLOB ); 3002 testcase( p->op==TK_VARIABLE ); 3003 testcase( p->op==TK_INTEGER ); 3004 testcase( p->op==TK_FLOAT ); 3005 testcase( p->op==TK_NULL ); 3006 testcase( p->op==TK_STRING ); 3007 /* Single-instruction constants with a fixed destination are 3008 ** better done in-line. If we factor them, they will just end 3009 ** up generating an OP_SCopy to move the value to the destination 3010 ** register. */ 3011 return 0; 3012 } 3013 case TK_UMINUS: { 3014 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ 3015 return 0; 3016 } 3017 break; 3018 } 3019 default: { 3020 break; 3021 } 3022 } 3023 return 1; 3024 } 3025 3026 /* 3027 ** If pExpr is a constant expression that is appropriate for 3028 ** factoring out of a loop, then evaluate the expression 3029 ** into a register and convert the expression into a TK_REGISTER 3030 ** expression. 3031 */ 3032 static int evalConstExpr(Walker *pWalker, Expr *pExpr){ 3033 Parse *pParse = pWalker->pParse; 3034 switch( pExpr->op ){ 3035 case TK_IN: 3036 case TK_REGISTER: { 3037 return WRC_Prune; 3038 } 3039 case TK_FUNCTION: 3040 case TK_AGG_FUNCTION: 3041 case TK_CONST_FUNC: { 3042 /* The arguments to a function have a fixed destination. 3043 ** Mark them this way to avoid generated unneeded OP_SCopy 3044 ** instructions. 3045 */ 3046 ExprList *pList = pExpr->x.pList; 3047 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3048 if( pList ){ 3049 int i = pList->nExpr; 3050 struct ExprList_item *pItem = pList->a; 3051 for(; i>0; i--, pItem++){ 3052 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest; 3053 } 3054 } 3055 break; 3056 } 3057 } 3058 if( isAppropriateForFactoring(pExpr) ){ 3059 int r1 = ++pParse->nMem; 3060 int r2; 3061 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3062 if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1); 3063 pExpr->op2 = pExpr->op; 3064 pExpr->op = TK_REGISTER; 3065 pExpr->iTable = r2; 3066 return WRC_Prune; 3067 } 3068 return WRC_Continue; 3069 } 3070 3071 /* 3072 ** Preevaluate constant subexpressions within pExpr and store the 3073 ** results in registers. Modify pExpr so that the constant subexpresions 3074 ** are TK_REGISTER opcodes that refer to the precomputed values. 3075 */ 3076 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ 3077 Walker w; 3078 w.xExprCallback = evalConstExpr; 3079 w.xSelectCallback = 0; 3080 w.pParse = pParse; 3081 sqlite3WalkExpr(&w, pExpr); 3082 } 3083 3084 3085 /* 3086 ** Generate code that pushes the value of every element of the given 3087 ** expression list into a sequence of registers beginning at target. 3088 ** 3089 ** Return the number of elements evaluated. 3090 */ 3091 int sqlite3ExprCodeExprList( 3092 Parse *pParse, /* Parsing context */ 3093 ExprList *pList, /* The expression list to be coded */ 3094 int target, /* Where to write results */ 3095 int doHardCopy /* Make a hard copy of every element */ 3096 ){ 3097 struct ExprList_item *pItem; 3098 int i, n; 3099 assert( pList!=0 ); 3100 assert( target>0 ); 3101 n = pList->nExpr; 3102 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3103 if( pItem->iAlias ){ 3104 int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target+i); 3105 Vdbe *v = sqlite3GetVdbe(pParse); 3106 if( iReg!=target+i ){ 3107 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i); 3108 } 3109 }else{ 3110 sqlite3ExprCode(pParse, pItem->pExpr, target+i); 3111 } 3112 if( doHardCopy && !pParse->db->mallocFailed ){ 3113 sqlite3ExprHardCopy(pParse, target, n); 3114 } 3115 } 3116 return n; 3117 } 3118 3119 /* 3120 ** Generate code for a BETWEEN operator. 3121 ** 3122 ** x BETWEEN y AND z 3123 ** 3124 ** The above is equivalent to 3125 ** 3126 ** x>=y AND x<=z 3127 ** 3128 ** Code it as such, taking care to do the common subexpression 3129 ** elementation of x. 3130 */ 3131 static void exprCodeBetween( 3132 Parse *pParse, /* Parsing and code generating context */ 3133 Expr *pExpr, /* The BETWEEN expression */ 3134 int dest, /* Jump here if the jump is taken */ 3135 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3136 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3137 ){ 3138 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3139 Expr compLeft; /* The x>=y term */ 3140 Expr compRight; /* The x<=z term */ 3141 Expr exprX; /* The x subexpression */ 3142 int regFree1 = 0; /* Temporary use register */ 3143 3144 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3145 exprX = *pExpr->pLeft; 3146 exprAnd.op = TK_AND; 3147 exprAnd.pLeft = &compLeft; 3148 exprAnd.pRight = &compRight; 3149 compLeft.op = TK_GE; 3150 compLeft.pLeft = &exprX; 3151 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3152 compRight.op = TK_LE; 3153 compRight.pLeft = &exprX; 3154 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3155 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3156 exprX.op = TK_REGISTER; 3157 if( jumpIfTrue ){ 3158 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3159 }else{ 3160 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3161 } 3162 sqlite3ReleaseTempReg(pParse, regFree1); 3163 3164 /* Ensure adequate test coverage */ 3165 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3166 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3167 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3168 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3169 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3170 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3171 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3172 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3173 } 3174 3175 /* 3176 ** Generate code for a boolean expression such that a jump is made 3177 ** to the label "dest" if the expression is true but execution 3178 ** continues straight thru if the expression is false. 3179 ** 3180 ** If the expression evaluates to NULL (neither true nor false), then 3181 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3182 ** 3183 ** This code depends on the fact that certain token values (ex: TK_EQ) 3184 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3185 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3186 ** the make process cause these values to align. Assert()s in the code 3187 ** below verify that the numbers are aligned correctly. 3188 */ 3189 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3190 Vdbe *v = pParse->pVdbe; 3191 int op = 0; 3192 int regFree1 = 0; 3193 int regFree2 = 0; 3194 int r1, r2; 3195 3196 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3197 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3198 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3199 op = pExpr->op; 3200 switch( op ){ 3201 case TK_AND: { 3202 int d2 = sqlite3VdbeMakeLabel(v); 3203 testcase( jumpIfNull==0 ); 3204 sqlite3ExprCachePush(pParse); 3205 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3206 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3207 sqlite3VdbeResolveLabel(v, d2); 3208 sqlite3ExprCachePop(pParse, 1); 3209 break; 3210 } 3211 case TK_OR: { 3212 testcase( jumpIfNull==0 ); 3213 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3214 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3215 break; 3216 } 3217 case TK_NOT: { 3218 testcase( jumpIfNull==0 ); 3219 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3220 break; 3221 } 3222 case TK_LT: 3223 case TK_LE: 3224 case TK_GT: 3225 case TK_GE: 3226 case TK_NE: 3227 case TK_EQ: { 3228 assert( TK_LT==OP_Lt ); 3229 assert( TK_LE==OP_Le ); 3230 assert( TK_GT==OP_Gt ); 3231 assert( TK_GE==OP_Ge ); 3232 assert( TK_EQ==OP_Eq ); 3233 assert( TK_NE==OP_Ne ); 3234 testcase( op==TK_LT ); 3235 testcase( op==TK_LE ); 3236 testcase( op==TK_GT ); 3237 testcase( op==TK_GE ); 3238 testcase( op==TK_EQ ); 3239 testcase( op==TK_NE ); 3240 testcase( jumpIfNull==0 ); 3241 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 3242 pExpr->pRight, &r2, ®Free2); 3243 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3244 r1, r2, dest, jumpIfNull); 3245 testcase( regFree1==0 ); 3246 testcase( regFree2==0 ); 3247 break; 3248 } 3249 case TK_IS: 3250 case TK_ISNOT: { 3251 testcase( op==TK_IS ); 3252 testcase( op==TK_ISNOT ); 3253 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 3254 pExpr->pRight, &r2, ®Free2); 3255 op = (op==TK_IS) ? TK_EQ : TK_NE; 3256 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3257 r1, r2, dest, SQLITE_NULLEQ); 3258 testcase( regFree1==0 ); 3259 testcase( regFree2==0 ); 3260 break; 3261 } 3262 case TK_ISNULL: 3263 case TK_NOTNULL: { 3264 assert( TK_ISNULL==OP_IsNull ); 3265 assert( TK_NOTNULL==OP_NotNull ); 3266 testcase( op==TK_ISNULL ); 3267 testcase( op==TK_NOTNULL ); 3268 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3269 sqlite3VdbeAddOp2(v, op, r1, dest); 3270 testcase( regFree1==0 ); 3271 break; 3272 } 3273 case TK_BETWEEN: { 3274 testcase( jumpIfNull==0 ); 3275 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3276 break; 3277 } 3278 case TK_IN: { 3279 int destIfFalse = sqlite3VdbeMakeLabel(v); 3280 int destIfNull = jumpIfNull ? dest : destIfFalse; 3281 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3282 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3283 sqlite3VdbeResolveLabel(v, destIfFalse); 3284 break; 3285 } 3286 default: { 3287 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3288 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3289 testcase( regFree1==0 ); 3290 testcase( jumpIfNull==0 ); 3291 break; 3292 } 3293 } 3294 sqlite3ReleaseTempReg(pParse, regFree1); 3295 sqlite3ReleaseTempReg(pParse, regFree2); 3296 } 3297 3298 /* 3299 ** Generate code for a boolean expression such that a jump is made 3300 ** to the label "dest" if the expression is false but execution 3301 ** continues straight thru if the expression is true. 3302 ** 3303 ** If the expression evaluates to NULL (neither true nor false) then 3304 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3305 ** is 0. 3306 */ 3307 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3308 Vdbe *v = pParse->pVdbe; 3309 int op = 0; 3310 int regFree1 = 0; 3311 int regFree2 = 0; 3312 int r1, r2; 3313 3314 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3315 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3316 if( pExpr==0 ) return; 3317 3318 /* The value of pExpr->op and op are related as follows: 3319 ** 3320 ** pExpr->op op 3321 ** --------- ---------- 3322 ** TK_ISNULL OP_NotNull 3323 ** TK_NOTNULL OP_IsNull 3324 ** TK_NE OP_Eq 3325 ** TK_EQ OP_Ne 3326 ** TK_GT OP_Le 3327 ** TK_LE OP_Gt 3328 ** TK_GE OP_Lt 3329 ** TK_LT OP_Ge 3330 ** 3331 ** For other values of pExpr->op, op is undefined and unused. 3332 ** The value of TK_ and OP_ constants are arranged such that we 3333 ** can compute the mapping above using the following expression. 3334 ** Assert()s verify that the computation is correct. 3335 */ 3336 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3337 3338 /* Verify correct alignment of TK_ and OP_ constants 3339 */ 3340 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3341 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3342 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3343 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3344 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3345 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3346 assert( pExpr->op!=TK_GT || op==OP_Le ); 3347 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3348 3349 switch( pExpr->op ){ 3350 case TK_AND: { 3351 testcase( jumpIfNull==0 ); 3352 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3353 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3354 break; 3355 } 3356 case TK_OR: { 3357 int d2 = sqlite3VdbeMakeLabel(v); 3358 testcase( jumpIfNull==0 ); 3359 sqlite3ExprCachePush(pParse); 3360 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3361 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3362 sqlite3VdbeResolveLabel(v, d2); 3363 sqlite3ExprCachePop(pParse, 1); 3364 break; 3365 } 3366 case TK_NOT: { 3367 testcase( jumpIfNull==0 ); 3368 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3369 break; 3370 } 3371 case TK_LT: 3372 case TK_LE: 3373 case TK_GT: 3374 case TK_GE: 3375 case TK_NE: 3376 case TK_EQ: { 3377 testcase( op==TK_LT ); 3378 testcase( op==TK_LE ); 3379 testcase( op==TK_GT ); 3380 testcase( op==TK_GE ); 3381 testcase( op==TK_EQ ); 3382 testcase( op==TK_NE ); 3383 testcase( jumpIfNull==0 ); 3384 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 3385 pExpr->pRight, &r2, ®Free2); 3386 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3387 r1, r2, dest, jumpIfNull); 3388 testcase( regFree1==0 ); 3389 testcase( regFree2==0 ); 3390 break; 3391 } 3392 case TK_IS: 3393 case TK_ISNOT: { 3394 testcase( pExpr->op==TK_IS ); 3395 testcase( pExpr->op==TK_ISNOT ); 3396 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 3397 pExpr->pRight, &r2, ®Free2); 3398 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3399 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3400 r1, r2, dest, SQLITE_NULLEQ); 3401 testcase( regFree1==0 ); 3402 testcase( regFree2==0 ); 3403 break; 3404 } 3405 case TK_ISNULL: 3406 case TK_NOTNULL: { 3407 testcase( op==TK_ISNULL ); 3408 testcase( op==TK_NOTNULL ); 3409 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3410 sqlite3VdbeAddOp2(v, op, r1, dest); 3411 testcase( regFree1==0 ); 3412 break; 3413 } 3414 case TK_BETWEEN: { 3415 testcase( jumpIfNull==0 ); 3416 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3417 break; 3418 } 3419 case TK_IN: { 3420 if( jumpIfNull ){ 3421 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3422 }else{ 3423 int destIfNull = sqlite3VdbeMakeLabel(v); 3424 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3425 sqlite3VdbeResolveLabel(v, destIfNull); 3426 } 3427 break; 3428 } 3429 default: { 3430 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3431 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3432 testcase( regFree1==0 ); 3433 testcase( jumpIfNull==0 ); 3434 break; 3435 } 3436 } 3437 sqlite3ReleaseTempReg(pParse, regFree1); 3438 sqlite3ReleaseTempReg(pParse, regFree2); 3439 } 3440 3441 /* 3442 ** Do a deep comparison of two expression trees. Return TRUE (non-zero) 3443 ** if they are identical and return FALSE if they differ in any way. 3444 ** 3445 ** Sometimes this routine will return FALSE even if the two expressions 3446 ** really are equivalent. If we cannot prove that the expressions are 3447 ** identical, we return FALSE just to be safe. So if this routine 3448 ** returns false, then you do not really know for certain if the two 3449 ** expressions are the same. But if you get a TRUE return, then you 3450 ** can be sure the expressions are the same. In the places where 3451 ** this routine is used, it does not hurt to get an extra FALSE - that 3452 ** just might result in some slightly slower code. But returning 3453 ** an incorrect TRUE could lead to a malfunction. 3454 */ 3455 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 3456 int i; 3457 if( pA==0||pB==0 ){ 3458 return pB==pA; 3459 } 3460 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); 3461 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); 3462 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ 3463 return 0; 3464 } 3465 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; 3466 if( pA->op!=pB->op ) return 0; 3467 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; 3468 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; 3469 3470 if( pA->x.pList && pB->x.pList ){ 3471 if( pA->x.pList->nExpr!=pB->x.pList->nExpr ) return 0; 3472 for(i=0; i<pA->x.pList->nExpr; i++){ 3473 Expr *pExprA = pA->x.pList->a[i].pExpr; 3474 Expr *pExprB = pB->x.pList->a[i].pExpr; 3475 if( !sqlite3ExprCompare(pExprA, pExprB) ) return 0; 3476 } 3477 }else if( pA->x.pList || pB->x.pList ){ 3478 return 0; 3479 } 3480 3481 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; 3482 if( ExprHasProperty(pA, EP_IntValue) ){ 3483 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){ 3484 return 0; 3485 } 3486 }else if( pA->op!=TK_COLUMN && pA->u.zToken ){ 3487 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 0; 3488 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3489 return 0; 3490 } 3491 } 3492 return 1; 3493 } 3494 3495 3496 /* 3497 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3498 ** the new element. Return a negative number if malloc fails. 3499 */ 3500 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3501 int i; 3502 pInfo->aCol = sqlite3ArrayAllocate( 3503 db, 3504 pInfo->aCol, 3505 sizeof(pInfo->aCol[0]), 3506 3, 3507 &pInfo->nColumn, 3508 &pInfo->nColumnAlloc, 3509 &i 3510 ); 3511 return i; 3512 } 3513 3514 /* 3515 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3516 ** the new element. Return a negative number if malloc fails. 3517 */ 3518 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3519 int i; 3520 pInfo->aFunc = sqlite3ArrayAllocate( 3521 db, 3522 pInfo->aFunc, 3523 sizeof(pInfo->aFunc[0]), 3524 3, 3525 &pInfo->nFunc, 3526 &pInfo->nFuncAlloc, 3527 &i 3528 ); 3529 return i; 3530 } 3531 3532 /* 3533 ** This is the xExprCallback for a tree walker. It is used to 3534 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3535 ** for additional information. 3536 */ 3537 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 3538 int i; 3539 NameContext *pNC = pWalker->u.pNC; 3540 Parse *pParse = pNC->pParse; 3541 SrcList *pSrcList = pNC->pSrcList; 3542 AggInfo *pAggInfo = pNC->pAggInfo; 3543 3544 switch( pExpr->op ){ 3545 case TK_AGG_COLUMN: 3546 case TK_COLUMN: { 3547 testcase( pExpr->op==TK_AGG_COLUMN ); 3548 testcase( pExpr->op==TK_COLUMN ); 3549 /* Check to see if the column is in one of the tables in the FROM 3550 ** clause of the aggregate query */ 3551 if( ALWAYS(pSrcList!=0) ){ 3552 struct SrcList_item *pItem = pSrcList->a; 3553 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3554 struct AggInfo_col *pCol; 3555 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3556 if( pExpr->iTable==pItem->iCursor ){ 3557 /* If we reach this point, it means that pExpr refers to a table 3558 ** that is in the FROM clause of the aggregate query. 3559 ** 3560 ** Make an entry for the column in pAggInfo->aCol[] if there 3561 ** is not an entry there already. 3562 */ 3563 int k; 3564 pCol = pAggInfo->aCol; 3565 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 3566 if( pCol->iTable==pExpr->iTable && 3567 pCol->iColumn==pExpr->iColumn ){ 3568 break; 3569 } 3570 } 3571 if( (k>=pAggInfo->nColumn) 3572 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 3573 ){ 3574 pCol = &pAggInfo->aCol[k]; 3575 pCol->pTab = pExpr->pTab; 3576 pCol->iTable = pExpr->iTable; 3577 pCol->iColumn = pExpr->iColumn; 3578 pCol->iMem = ++pParse->nMem; 3579 pCol->iSorterColumn = -1; 3580 pCol->pExpr = pExpr; 3581 if( pAggInfo->pGroupBy ){ 3582 int j, n; 3583 ExprList *pGB = pAggInfo->pGroupBy; 3584 struct ExprList_item *pTerm = pGB->a; 3585 n = pGB->nExpr; 3586 for(j=0; j<n; j++, pTerm++){ 3587 Expr *pE = pTerm->pExpr; 3588 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 3589 pE->iColumn==pExpr->iColumn ){ 3590 pCol->iSorterColumn = j; 3591 break; 3592 } 3593 } 3594 } 3595 if( pCol->iSorterColumn<0 ){ 3596 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 3597 } 3598 } 3599 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 3600 ** because it was there before or because we just created it). 3601 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 3602 ** pAggInfo->aCol[] entry. 3603 */ 3604 ExprSetIrreducible(pExpr); 3605 pExpr->pAggInfo = pAggInfo; 3606 pExpr->op = TK_AGG_COLUMN; 3607 pExpr->iAgg = (i16)k; 3608 break; 3609 } /* endif pExpr->iTable==pItem->iCursor */ 3610 } /* end loop over pSrcList */ 3611 } 3612 return WRC_Prune; 3613 } 3614 case TK_AGG_FUNCTION: { 3615 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 3616 ** to be ignored */ 3617 if( pNC->nDepth==0 ){ 3618 /* Check to see if pExpr is a duplicate of another aggregate 3619 ** function that is already in the pAggInfo structure 3620 */ 3621 struct AggInfo_func *pItem = pAggInfo->aFunc; 3622 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 3623 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ 3624 break; 3625 } 3626 } 3627 if( i>=pAggInfo->nFunc ){ 3628 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 3629 */ 3630 u8 enc = ENC(pParse->db); 3631 i = addAggInfoFunc(pParse->db, pAggInfo); 3632 if( i>=0 ){ 3633 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3634 pItem = &pAggInfo->aFunc[i]; 3635 pItem->pExpr = pExpr; 3636 pItem->iMem = ++pParse->nMem; 3637 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3638 pItem->pFunc = sqlite3FindFunction(pParse->db, 3639 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 3640 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 3641 if( pExpr->flags & EP_Distinct ){ 3642 pItem->iDistinct = pParse->nTab++; 3643 }else{ 3644 pItem->iDistinct = -1; 3645 } 3646 } 3647 } 3648 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 3649 */ 3650 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3651 ExprSetIrreducible(pExpr); 3652 pExpr->iAgg = (i16)i; 3653 pExpr->pAggInfo = pAggInfo; 3654 return WRC_Prune; 3655 } 3656 } 3657 } 3658 return WRC_Continue; 3659 } 3660 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 3661 NameContext *pNC = pWalker->u.pNC; 3662 if( pNC->nDepth==0 ){ 3663 pNC->nDepth++; 3664 sqlite3WalkSelect(pWalker, pSelect); 3665 pNC->nDepth--; 3666 return WRC_Prune; 3667 }else{ 3668 return WRC_Continue; 3669 } 3670 } 3671 3672 /* 3673 ** Analyze the given expression looking for aggregate functions and 3674 ** for variables that need to be added to the pParse->aAgg[] array. 3675 ** Make additional entries to the pParse->aAgg[] array as necessary. 3676 ** 3677 ** This routine should only be called after the expression has been 3678 ** analyzed by sqlite3ResolveExprNames(). 3679 */ 3680 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 3681 Walker w; 3682 w.xExprCallback = analyzeAggregate; 3683 w.xSelectCallback = analyzeAggregatesInSelect; 3684 w.u.pNC = pNC; 3685 assert( pNC->pSrcList!=0 ); 3686 sqlite3WalkExpr(&w, pExpr); 3687 } 3688 3689 /* 3690 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 3691 ** expression list. Return the number of errors. 3692 ** 3693 ** If an error is found, the analysis is cut short. 3694 */ 3695 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 3696 struct ExprList_item *pItem; 3697 int i; 3698 if( pList ){ 3699 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 3700 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 3701 } 3702 } 3703 } 3704 3705 /* 3706 ** Allocate a single new register for use to hold some intermediate result. 3707 */ 3708 int sqlite3GetTempReg(Parse *pParse){ 3709 if( pParse->nTempReg==0 ){ 3710 return ++pParse->nMem; 3711 } 3712 return pParse->aTempReg[--pParse->nTempReg]; 3713 } 3714 3715 /* 3716 ** Deallocate a register, making available for reuse for some other 3717 ** purpose. 3718 ** 3719 ** If a register is currently being used by the column cache, then 3720 ** the dallocation is deferred until the column cache line that uses 3721 ** the register becomes stale. 3722 */ 3723 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 3724 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3725 int i; 3726 struct yColCache *p; 3727 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 3728 if( p->iReg==iReg ){ 3729 p->tempReg = 1; 3730 return; 3731 } 3732 } 3733 pParse->aTempReg[pParse->nTempReg++] = iReg; 3734 } 3735 } 3736 3737 /* 3738 ** Allocate or deallocate a block of nReg consecutive registers 3739 */ 3740 int sqlite3GetTempRange(Parse *pParse, int nReg){ 3741 int i, n; 3742 i = pParse->iRangeReg; 3743 n = pParse->nRangeReg; 3744 if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){ 3745 pParse->iRangeReg += nReg; 3746 pParse->nRangeReg -= nReg; 3747 }else{ 3748 i = pParse->nMem+1; 3749 pParse->nMem += nReg; 3750 } 3751 return i; 3752 } 3753 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 3754 if( nReg>pParse->nRangeReg ){ 3755 pParse->nRangeReg = nReg; 3756 pParse->iRangeReg = iReg; 3757 } 3758 } 3759