1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 pExpr = sqlite3ExprSkipCollate(pExpr); 48 if( pExpr->flags & EP_Generic ) return 0; 49 op = pExpr->op; 50 if( op==TK_SELECT ){ 51 assert( pExpr->flags&EP_xIsSelect ); 52 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 53 } 54 if( op==TK_REGISTER ) op = pExpr->op2; 55 #ifndef SQLITE_OMIT_CAST 56 if( op==TK_CAST ){ 57 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 58 return sqlite3AffinityType(pExpr->u.zToken, 0); 59 } 60 #endif 61 if( op==TK_AGG_COLUMN || op==TK_COLUMN ){ 62 return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn); 63 } 64 if( op==TK_SELECT_COLUMN ){ 65 assert( pExpr->pLeft->flags&EP_xIsSelect ); 66 return sqlite3ExprAffinity( 67 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 68 ); 69 } 70 return pExpr->affinity; 71 } 72 73 /* 74 ** Set the collating sequence for expression pExpr to be the collating 75 ** sequence named by pToken. Return a pointer to a new Expr node that 76 ** implements the COLLATE operator. 77 ** 78 ** If a memory allocation error occurs, that fact is recorded in pParse->db 79 ** and the pExpr parameter is returned unchanged. 80 */ 81 Expr *sqlite3ExprAddCollateToken( 82 Parse *pParse, /* Parsing context */ 83 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 84 const Token *pCollName, /* Name of collating sequence */ 85 int dequote /* True to dequote pCollName */ 86 ){ 87 if( pCollName->n>0 ){ 88 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 89 if( pNew ){ 90 pNew->pLeft = pExpr; 91 pNew->flags |= EP_Collate|EP_Skip; 92 pExpr = pNew; 93 } 94 } 95 return pExpr; 96 } 97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 98 Token s; 99 assert( zC!=0 ); 100 sqlite3TokenInit(&s, (char*)zC); 101 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 102 } 103 104 /* 105 ** Skip over any TK_COLLATE operators and any unlikely() 106 ** or likelihood() function at the root of an expression. 107 */ 108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 109 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 110 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 111 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 112 assert( pExpr->x.pList->nExpr>0 ); 113 assert( pExpr->op==TK_FUNCTION ); 114 pExpr = pExpr->x.pList->a[0].pExpr; 115 }else{ 116 assert( pExpr->op==TK_COLLATE ); 117 pExpr = pExpr->pLeft; 118 } 119 } 120 return pExpr; 121 } 122 123 /* 124 ** Return the collation sequence for the expression pExpr. If 125 ** there is no defined collating sequence, return NULL. 126 ** 127 ** The collating sequence might be determined by a COLLATE operator 128 ** or by the presence of a column with a defined collating sequence. 129 ** COLLATE operators take first precedence. Left operands take 130 ** precedence over right operands. 131 */ 132 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 133 sqlite3 *db = pParse->db; 134 CollSeq *pColl = 0; 135 Expr *p = pExpr; 136 while( p ){ 137 int op = p->op; 138 if( p->flags & EP_Generic ) break; 139 if( op==TK_CAST || op==TK_UPLUS ){ 140 p = p->pLeft; 141 continue; 142 } 143 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 144 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 145 break; 146 } 147 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 148 || op==TK_REGISTER || op==TK_TRIGGER) 149 && p->pTab!=0 150 ){ 151 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 152 ** a TK_COLUMN but was previously evaluated and cached in a register */ 153 int j = p->iColumn; 154 if( j>=0 ){ 155 const char *zColl = p->pTab->aCol[j].zColl; 156 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 157 } 158 break; 159 } 160 if( p->flags & EP_Collate ){ 161 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 162 p = p->pLeft; 163 }else{ 164 Expr *pNext = p->pRight; 165 /* The Expr.x union is never used at the same time as Expr.pRight */ 166 assert( p->x.pList==0 || p->pRight==0 ); 167 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 168 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 169 ** least one EP_Collate. Thus the following two ALWAYS. */ 170 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 171 int i; 172 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 173 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 174 pNext = p->x.pList->a[i].pExpr; 175 break; 176 } 177 } 178 } 179 p = pNext; 180 } 181 }else{ 182 break; 183 } 184 } 185 if( sqlite3CheckCollSeq(pParse, pColl) ){ 186 pColl = 0; 187 } 188 return pColl; 189 } 190 191 /* 192 ** pExpr is an operand of a comparison operator. aff2 is the 193 ** type affinity of the other operand. This routine returns the 194 ** type affinity that should be used for the comparison operator. 195 */ 196 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 197 char aff1 = sqlite3ExprAffinity(pExpr); 198 if( aff1 && aff2 ){ 199 /* Both sides of the comparison are columns. If one has numeric 200 ** affinity, use that. Otherwise use no affinity. 201 */ 202 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 203 return SQLITE_AFF_NUMERIC; 204 }else{ 205 return SQLITE_AFF_BLOB; 206 } 207 }else if( !aff1 && !aff2 ){ 208 /* Neither side of the comparison is a column. Compare the 209 ** results directly. 210 */ 211 return SQLITE_AFF_BLOB; 212 }else{ 213 /* One side is a column, the other is not. Use the columns affinity. */ 214 assert( aff1==0 || aff2==0 ); 215 return (aff1 + aff2); 216 } 217 } 218 219 /* 220 ** pExpr is a comparison operator. Return the type affinity that should 221 ** be applied to both operands prior to doing the comparison. 222 */ 223 static char comparisonAffinity(Expr *pExpr){ 224 char aff; 225 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 226 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 227 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 228 assert( pExpr->pLeft ); 229 aff = sqlite3ExprAffinity(pExpr->pLeft); 230 if( pExpr->pRight ){ 231 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 232 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 233 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 234 }else if( NEVER(aff==0) ){ 235 aff = SQLITE_AFF_BLOB; 236 } 237 return aff; 238 } 239 240 /* 241 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 242 ** idx_affinity is the affinity of an indexed column. Return true 243 ** if the index with affinity idx_affinity may be used to implement 244 ** the comparison in pExpr. 245 */ 246 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 247 char aff = comparisonAffinity(pExpr); 248 switch( aff ){ 249 case SQLITE_AFF_BLOB: 250 return 1; 251 case SQLITE_AFF_TEXT: 252 return idx_affinity==SQLITE_AFF_TEXT; 253 default: 254 return sqlite3IsNumericAffinity(idx_affinity); 255 } 256 } 257 258 /* 259 ** Return the P5 value that should be used for a binary comparison 260 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 261 */ 262 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 263 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 264 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 265 return aff; 266 } 267 268 /* 269 ** Return a pointer to the collation sequence that should be used by 270 ** a binary comparison operator comparing pLeft and pRight. 271 ** 272 ** If the left hand expression has a collating sequence type, then it is 273 ** used. Otherwise the collation sequence for the right hand expression 274 ** is used, or the default (BINARY) if neither expression has a collating 275 ** type. 276 ** 277 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 278 ** it is not considered. 279 */ 280 CollSeq *sqlite3BinaryCompareCollSeq( 281 Parse *pParse, 282 Expr *pLeft, 283 Expr *pRight 284 ){ 285 CollSeq *pColl; 286 assert( pLeft ); 287 if( pLeft->flags & EP_Collate ){ 288 pColl = sqlite3ExprCollSeq(pParse, pLeft); 289 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 290 pColl = sqlite3ExprCollSeq(pParse, pRight); 291 }else{ 292 pColl = sqlite3ExprCollSeq(pParse, pLeft); 293 if( !pColl ){ 294 pColl = sqlite3ExprCollSeq(pParse, pRight); 295 } 296 } 297 return pColl; 298 } 299 300 /* 301 ** Generate code for a comparison operator. 302 */ 303 static int codeCompare( 304 Parse *pParse, /* The parsing (and code generating) context */ 305 Expr *pLeft, /* The left operand */ 306 Expr *pRight, /* The right operand */ 307 int opcode, /* The comparison opcode */ 308 int in1, int in2, /* Register holding operands */ 309 int dest, /* Jump here if true. */ 310 int jumpIfNull /* If true, jump if either operand is NULL */ 311 ){ 312 int p5; 313 int addr; 314 CollSeq *p4; 315 316 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 317 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 318 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 319 (void*)p4, P4_COLLSEQ); 320 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 321 return addr; 322 } 323 324 /* 325 ** Return true if expression pExpr is a vector, or false otherwise. 326 ** 327 ** A vector is defined as any expression that results in two or more 328 ** columns of result. Every TK_VECTOR node is an vector because the 329 ** parser will not generate a TK_VECTOR with fewer than two entries. 330 ** But a TK_SELECT might be either a vector or a scalar. It is only 331 ** considered a vector if it has two or more result columns. 332 */ 333 int sqlite3ExprIsVector(Expr *pExpr){ 334 return sqlite3ExprVectorSize(pExpr)>1; 335 } 336 337 /* 338 ** If the expression passed as the only argument is of type TK_VECTOR 339 ** return the number of expressions in the vector. Or, if the expression 340 ** is a sub-select, return the number of columns in the sub-select. For 341 ** any other type of expression, return 1. 342 */ 343 int sqlite3ExprVectorSize(Expr *pExpr){ 344 u8 op = pExpr->op; 345 if( op==TK_REGISTER ) op = pExpr->op2; 346 if( op==TK_VECTOR ){ 347 return pExpr->x.pList->nExpr; 348 }else if( op==TK_SELECT ){ 349 return pExpr->x.pSelect->pEList->nExpr; 350 }else{ 351 return 1; 352 } 353 } 354 355 #ifndef SQLITE_OMIT_SUBQUERY 356 /* 357 ** Return a pointer to a subexpression of pVector that is the i-th 358 ** column of the vector (numbered starting with 0). The caller must 359 ** ensure that i is within range. 360 ** 361 ** If pVector is really a scalar (and "scalar" here includes subqueries 362 ** that return a single column!) then return pVector unmodified. 363 ** 364 ** pVector retains ownership of the returned subexpression. 365 ** 366 ** If the vector is a (SELECT ...) then the expression returned is 367 ** just the expression for the i-th term of the result set, and may 368 ** not be ready for evaluation because the table cursor has not yet 369 ** been positioned. 370 */ 371 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 372 assert( i<sqlite3ExprVectorSize(pVector) ); 373 if( sqlite3ExprIsVector(pVector) ){ 374 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 375 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 376 return pVector->x.pSelect->pEList->a[i].pExpr; 377 }else{ 378 return pVector->x.pList->a[i].pExpr; 379 } 380 } 381 return pVector; 382 } 383 #endif /* !defined(SQLITE_OMIT_SUBQUERY) */ 384 385 #ifndef SQLITE_OMIT_SUBQUERY 386 /* 387 ** Compute and return a new Expr object which when passed to 388 ** sqlite3ExprCode() will generate all necessary code to compute 389 ** the iField-th column of the vector expression pVector. 390 ** 391 ** It is ok for pVector to be a scalar (as long as iField==0). 392 ** In that case, this routine works like sqlite3ExprDup(). 393 ** 394 ** The caller owns the returned Expr object and is responsible for 395 ** ensuring that the returned value eventually gets freed. 396 ** 397 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 398 ** then the returned object will reference pVector and so pVector must remain 399 ** valid for the life of the returned object. If pVector is a TK_VECTOR 400 ** or a scalar expression, then it can be deleted as soon as this routine 401 ** returns. 402 ** 403 ** A trick to cause a TK_SELECT pVector to be deleted together with 404 ** the returned Expr object is to attach the pVector to the pRight field 405 ** of the returned TK_SELECT_COLUMN Expr object. 406 */ 407 Expr *sqlite3ExprForVectorField( 408 Parse *pParse, /* Parsing context */ 409 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 410 int iField /* Which column of the vector to return */ 411 ){ 412 Expr *pRet; 413 if( pVector->op==TK_SELECT ){ 414 assert( pVector->flags & EP_xIsSelect ); 415 /* The TK_SELECT_COLUMN Expr node: 416 ** 417 ** pLeft: pVector containing TK_SELECT. Not deleted. 418 ** pRight: not used. But recursively deleted. 419 ** iColumn: Index of a column in pVector 420 ** iTable: 0 or the number of columns on the LHS of an assignment 421 ** pLeft->iTable: First in an array of register holding result, or 0 422 ** if the result is not yet computed. 423 ** 424 ** sqlite3ExprDelete() specifically skips the recursive delete of 425 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 426 ** can be attached to pRight to cause this node to take ownership of 427 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 428 ** with the same pLeft pointer to the pVector, but only one of them 429 ** will own the pVector. 430 */ 431 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 432 if( pRet ){ 433 pRet->iColumn = iField; 434 pRet->pLeft = pVector; 435 } 436 assert( pRet==0 || pRet->iTable==0 ); 437 }else{ 438 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 439 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 440 } 441 return pRet; 442 } 443 #endif /* !define(SQLITE_OMIT_SUBQUERY) */ 444 445 /* 446 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 447 ** it. Return the register in which the result is stored (or, if the 448 ** sub-select returns more than one column, the first in an array 449 ** of registers in which the result is stored). 450 ** 451 ** If pExpr is not a TK_SELECT expression, return 0. 452 */ 453 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 454 int reg = 0; 455 #ifndef SQLITE_OMIT_SUBQUERY 456 if( pExpr->op==TK_SELECT ){ 457 reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 458 } 459 #endif 460 return reg; 461 } 462 463 /* 464 ** Argument pVector points to a vector expression - either a TK_VECTOR 465 ** or TK_SELECT that returns more than one column. This function returns 466 ** the register number of a register that contains the value of 467 ** element iField of the vector. 468 ** 469 ** If pVector is a TK_SELECT expression, then code for it must have 470 ** already been generated using the exprCodeSubselect() routine. In this 471 ** case parameter regSelect should be the first in an array of registers 472 ** containing the results of the sub-select. 473 ** 474 ** If pVector is of type TK_VECTOR, then code for the requested field 475 ** is generated. In this case (*pRegFree) may be set to the number of 476 ** a temporary register to be freed by the caller before returning. 477 ** 478 ** Before returning, output parameter (*ppExpr) is set to point to the 479 ** Expr object corresponding to element iElem of the vector. 480 */ 481 static int exprVectorRegister( 482 Parse *pParse, /* Parse context */ 483 Expr *pVector, /* Vector to extract element from */ 484 int iField, /* Field to extract from pVector */ 485 int regSelect, /* First in array of registers */ 486 Expr **ppExpr, /* OUT: Expression element */ 487 int *pRegFree /* OUT: Temp register to free */ 488 ){ 489 u8 op = pVector->op; 490 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 491 if( op==TK_REGISTER ){ 492 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 493 return pVector->iTable+iField; 494 } 495 if( op==TK_SELECT ){ 496 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 497 return regSelect+iField; 498 } 499 *ppExpr = pVector->x.pList->a[iField].pExpr; 500 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 501 } 502 503 /* 504 ** Expression pExpr is a comparison between two vector values. Compute 505 ** the result of the comparison (1, 0, or NULL) and write that 506 ** result into register dest. 507 ** 508 ** The caller must satisfy the following preconditions: 509 ** 510 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 511 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 512 ** otherwise: op==pExpr->op and p5==0 513 */ 514 static void codeVectorCompare( 515 Parse *pParse, /* Code generator context */ 516 Expr *pExpr, /* The comparison operation */ 517 int dest, /* Write results into this register */ 518 u8 op, /* Comparison operator */ 519 u8 p5 /* SQLITE_NULLEQ or zero */ 520 ){ 521 Vdbe *v = pParse->pVdbe; 522 Expr *pLeft = pExpr->pLeft; 523 Expr *pRight = pExpr->pRight; 524 int nLeft = sqlite3ExprVectorSize(pLeft); 525 int i; 526 int regLeft = 0; 527 int regRight = 0; 528 u8 opx = op; 529 int addrDone = sqlite3VdbeMakeLabel(v); 530 531 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 532 sqlite3ErrorMsg(pParse, "row value misused"); 533 return; 534 } 535 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 536 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 537 || pExpr->op==TK_LT || pExpr->op==TK_GT 538 || pExpr->op==TK_LE || pExpr->op==TK_GE 539 ); 540 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 541 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 542 assert( p5==0 || pExpr->op!=op ); 543 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 544 545 p5 |= SQLITE_STOREP2; 546 if( opx==TK_LE ) opx = TK_LT; 547 if( opx==TK_GE ) opx = TK_GT; 548 549 regLeft = exprCodeSubselect(pParse, pLeft); 550 regRight = exprCodeSubselect(pParse, pRight); 551 552 for(i=0; 1 /*Loop exits by "break"*/; i++){ 553 int regFree1 = 0, regFree2 = 0; 554 Expr *pL, *pR; 555 int r1, r2; 556 assert( i>=0 && i<nLeft ); 557 if( i>0 ) sqlite3ExprCachePush(pParse); 558 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 559 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 560 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); 561 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 562 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 563 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 564 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 565 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 566 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 567 sqlite3ReleaseTempReg(pParse, regFree1); 568 sqlite3ReleaseTempReg(pParse, regFree2); 569 if( i>0 ) sqlite3ExprCachePop(pParse); 570 if( i==nLeft-1 ){ 571 break; 572 } 573 if( opx==TK_EQ ){ 574 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 575 p5 |= SQLITE_KEEPNULL; 576 }else if( opx==TK_NE ){ 577 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 578 p5 |= SQLITE_KEEPNULL; 579 }else{ 580 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 581 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 582 VdbeCoverageIf(v, op==TK_LT); 583 VdbeCoverageIf(v, op==TK_GT); 584 VdbeCoverageIf(v, op==TK_LE); 585 VdbeCoverageIf(v, op==TK_GE); 586 if( i==nLeft-2 ) opx = op; 587 } 588 } 589 sqlite3VdbeResolveLabel(v, addrDone); 590 } 591 592 #if SQLITE_MAX_EXPR_DEPTH>0 593 /* 594 ** Check that argument nHeight is less than or equal to the maximum 595 ** expression depth allowed. If it is not, leave an error message in 596 ** pParse. 597 */ 598 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 599 int rc = SQLITE_OK; 600 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 601 if( nHeight>mxHeight ){ 602 sqlite3ErrorMsg(pParse, 603 "Expression tree is too large (maximum depth %d)", mxHeight 604 ); 605 rc = SQLITE_ERROR; 606 } 607 return rc; 608 } 609 610 /* The following three functions, heightOfExpr(), heightOfExprList() 611 ** and heightOfSelect(), are used to determine the maximum height 612 ** of any expression tree referenced by the structure passed as the 613 ** first argument. 614 ** 615 ** If this maximum height is greater than the current value pointed 616 ** to by pnHeight, the second parameter, then set *pnHeight to that 617 ** value. 618 */ 619 static void heightOfExpr(Expr *p, int *pnHeight){ 620 if( p ){ 621 if( p->nHeight>*pnHeight ){ 622 *pnHeight = p->nHeight; 623 } 624 } 625 } 626 static void heightOfExprList(ExprList *p, int *pnHeight){ 627 if( p ){ 628 int i; 629 for(i=0; i<p->nExpr; i++){ 630 heightOfExpr(p->a[i].pExpr, pnHeight); 631 } 632 } 633 } 634 static void heightOfSelect(Select *p, int *pnHeight){ 635 if( p ){ 636 heightOfExpr(p->pWhere, pnHeight); 637 heightOfExpr(p->pHaving, pnHeight); 638 heightOfExpr(p->pLimit, pnHeight); 639 heightOfExpr(p->pOffset, pnHeight); 640 heightOfExprList(p->pEList, pnHeight); 641 heightOfExprList(p->pGroupBy, pnHeight); 642 heightOfExprList(p->pOrderBy, pnHeight); 643 heightOfSelect(p->pPrior, pnHeight); 644 } 645 } 646 647 /* 648 ** Set the Expr.nHeight variable in the structure passed as an 649 ** argument. An expression with no children, Expr.pList or 650 ** Expr.pSelect member has a height of 1. Any other expression 651 ** has a height equal to the maximum height of any other 652 ** referenced Expr plus one. 653 ** 654 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 655 ** if appropriate. 656 */ 657 static void exprSetHeight(Expr *p){ 658 int nHeight = 0; 659 heightOfExpr(p->pLeft, &nHeight); 660 heightOfExpr(p->pRight, &nHeight); 661 if( ExprHasProperty(p, EP_xIsSelect) ){ 662 heightOfSelect(p->x.pSelect, &nHeight); 663 }else if( p->x.pList ){ 664 heightOfExprList(p->x.pList, &nHeight); 665 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 666 } 667 p->nHeight = nHeight + 1; 668 } 669 670 /* 671 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 672 ** the height is greater than the maximum allowed expression depth, 673 ** leave an error in pParse. 674 ** 675 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 676 ** Expr.flags. 677 */ 678 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 679 if( pParse->nErr ) return; 680 exprSetHeight(p); 681 sqlite3ExprCheckHeight(pParse, p->nHeight); 682 } 683 684 /* 685 ** Return the maximum height of any expression tree referenced 686 ** by the select statement passed as an argument. 687 */ 688 int sqlite3SelectExprHeight(Select *p){ 689 int nHeight = 0; 690 heightOfSelect(p, &nHeight); 691 return nHeight; 692 } 693 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 694 /* 695 ** Propagate all EP_Propagate flags from the Expr.x.pList into 696 ** Expr.flags. 697 */ 698 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 699 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 700 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 701 } 702 } 703 #define exprSetHeight(y) 704 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 705 706 /* 707 ** This routine is the core allocator for Expr nodes. 708 ** 709 ** Construct a new expression node and return a pointer to it. Memory 710 ** for this node and for the pToken argument is a single allocation 711 ** obtained from sqlite3DbMalloc(). The calling function 712 ** is responsible for making sure the node eventually gets freed. 713 ** 714 ** If dequote is true, then the token (if it exists) is dequoted. 715 ** If dequote is false, no dequoting is performed. The deQuote 716 ** parameter is ignored if pToken is NULL or if the token does not 717 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 718 ** then the EP_DblQuoted flag is set on the expression node. 719 ** 720 ** Special case: If op==TK_INTEGER and pToken points to a string that 721 ** can be translated into a 32-bit integer, then the token is not 722 ** stored in u.zToken. Instead, the integer values is written 723 ** into u.iValue and the EP_IntValue flag is set. No extra storage 724 ** is allocated to hold the integer text and the dequote flag is ignored. 725 */ 726 Expr *sqlite3ExprAlloc( 727 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 728 int op, /* Expression opcode */ 729 const Token *pToken, /* Token argument. Might be NULL */ 730 int dequote /* True to dequote */ 731 ){ 732 Expr *pNew; 733 int nExtra = 0; 734 int iValue = 0; 735 736 assert( db!=0 ); 737 if( pToken ){ 738 if( op!=TK_INTEGER || pToken->z==0 739 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 740 nExtra = pToken->n+1; 741 assert( iValue>=0 ); 742 } 743 } 744 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 745 if( pNew ){ 746 memset(pNew, 0, sizeof(Expr)); 747 pNew->op = (u8)op; 748 pNew->iAgg = -1; 749 if( pToken ){ 750 if( nExtra==0 ){ 751 pNew->flags |= EP_IntValue; 752 pNew->u.iValue = iValue; 753 }else{ 754 pNew->u.zToken = (char*)&pNew[1]; 755 assert( pToken->z!=0 || pToken->n==0 ); 756 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 757 pNew->u.zToken[pToken->n] = 0; 758 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 759 if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted; 760 sqlite3Dequote(pNew->u.zToken); 761 } 762 } 763 } 764 #if SQLITE_MAX_EXPR_DEPTH>0 765 pNew->nHeight = 1; 766 #endif 767 } 768 return pNew; 769 } 770 771 /* 772 ** Allocate a new expression node from a zero-terminated token that has 773 ** already been dequoted. 774 */ 775 Expr *sqlite3Expr( 776 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 777 int op, /* Expression opcode */ 778 const char *zToken /* Token argument. Might be NULL */ 779 ){ 780 Token x; 781 x.z = zToken; 782 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 783 return sqlite3ExprAlloc(db, op, &x, 0); 784 } 785 786 /* 787 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 788 ** 789 ** If pRoot==NULL that means that a memory allocation error has occurred. 790 ** In that case, delete the subtrees pLeft and pRight. 791 */ 792 void sqlite3ExprAttachSubtrees( 793 sqlite3 *db, 794 Expr *pRoot, 795 Expr *pLeft, 796 Expr *pRight 797 ){ 798 if( pRoot==0 ){ 799 assert( db->mallocFailed ); 800 sqlite3ExprDelete(db, pLeft); 801 sqlite3ExprDelete(db, pRight); 802 }else{ 803 if( pRight ){ 804 pRoot->pRight = pRight; 805 pRoot->flags |= EP_Propagate & pRight->flags; 806 } 807 if( pLeft ){ 808 pRoot->pLeft = pLeft; 809 pRoot->flags |= EP_Propagate & pLeft->flags; 810 } 811 exprSetHeight(pRoot); 812 } 813 } 814 815 /* 816 ** Allocate an Expr node which joins as many as two subtrees. 817 ** 818 ** One or both of the subtrees can be NULL. Return a pointer to the new 819 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 820 ** free the subtrees and return NULL. 821 */ 822 Expr *sqlite3PExpr( 823 Parse *pParse, /* Parsing context */ 824 int op, /* Expression opcode */ 825 Expr *pLeft, /* Left operand */ 826 Expr *pRight /* Right operand */ 827 ){ 828 Expr *p; 829 if( op==TK_AND && pParse->nErr==0 ){ 830 /* Take advantage of short-circuit false optimization for AND */ 831 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 832 }else{ 833 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 834 if( p ){ 835 memset(p, 0, sizeof(Expr)); 836 p->op = op & TKFLG_MASK; 837 p->iAgg = -1; 838 } 839 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 840 } 841 if( p ) { 842 sqlite3ExprCheckHeight(pParse, p->nHeight); 843 } 844 return p; 845 } 846 847 /* 848 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 849 ** do a memory allocation failure) then delete the pSelect object. 850 */ 851 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 852 if( pExpr ){ 853 pExpr->x.pSelect = pSelect; 854 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 855 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 856 }else{ 857 assert( pParse->db->mallocFailed ); 858 sqlite3SelectDelete(pParse->db, pSelect); 859 } 860 } 861 862 863 /* 864 ** If the expression is always either TRUE or FALSE (respectively), 865 ** then return 1. If one cannot determine the truth value of the 866 ** expression at compile-time return 0. 867 ** 868 ** This is an optimization. If is OK to return 0 here even if 869 ** the expression really is always false or false (a false negative). 870 ** But it is a bug to return 1 if the expression might have different 871 ** boolean values in different circumstances (a false positive.) 872 ** 873 ** Note that if the expression is part of conditional for a 874 ** LEFT JOIN, then we cannot determine at compile-time whether or not 875 ** is it true or false, so always return 0. 876 */ 877 static int exprAlwaysTrue(Expr *p){ 878 int v = 0; 879 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 880 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 881 return v!=0; 882 } 883 static int exprAlwaysFalse(Expr *p){ 884 int v = 0; 885 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 886 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 887 return v==0; 888 } 889 890 /* 891 ** Join two expressions using an AND operator. If either expression is 892 ** NULL, then just return the other expression. 893 ** 894 ** If one side or the other of the AND is known to be false, then instead 895 ** of returning an AND expression, just return a constant expression with 896 ** a value of false. 897 */ 898 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 899 if( pLeft==0 ){ 900 return pRight; 901 }else if( pRight==0 ){ 902 return pLeft; 903 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 904 sqlite3ExprDelete(db, pLeft); 905 sqlite3ExprDelete(db, pRight); 906 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 907 }else{ 908 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 909 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 910 return pNew; 911 } 912 } 913 914 /* 915 ** Construct a new expression node for a function with multiple 916 ** arguments. 917 */ 918 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 919 Expr *pNew; 920 sqlite3 *db = pParse->db; 921 assert( pToken ); 922 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 923 if( pNew==0 ){ 924 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 925 return 0; 926 } 927 pNew->x.pList = pList; 928 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 929 sqlite3ExprSetHeightAndFlags(pParse, pNew); 930 return pNew; 931 } 932 933 /* 934 ** Assign a variable number to an expression that encodes a wildcard 935 ** in the original SQL statement. 936 ** 937 ** Wildcards consisting of a single "?" are assigned the next sequential 938 ** variable number. 939 ** 940 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 941 ** sure "nnn" is not too big to avoid a denial of service attack when 942 ** the SQL statement comes from an external source. 943 ** 944 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 945 ** as the previous instance of the same wildcard. Or if this is the first 946 ** instance of the wildcard, the next sequential variable number is 947 ** assigned. 948 */ 949 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 950 sqlite3 *db = pParse->db; 951 const char *z; 952 ynVar x; 953 954 if( pExpr==0 ) return; 955 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 956 z = pExpr->u.zToken; 957 assert( z!=0 ); 958 assert( z[0]!=0 ); 959 assert( n==sqlite3Strlen30(z) ); 960 if( z[1]==0 ){ 961 /* Wildcard of the form "?". Assign the next variable number */ 962 assert( z[0]=='?' ); 963 x = (ynVar)(++pParse->nVar); 964 }else{ 965 int doAdd = 0; 966 if( z[0]=='?' ){ 967 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 968 ** use it as the variable number */ 969 i64 i; 970 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 971 x = (ynVar)i; 972 testcase( i==0 ); 973 testcase( i==1 ); 974 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 975 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 976 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 977 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 978 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 979 return; 980 } 981 if( x>pParse->nVar ){ 982 pParse->nVar = (int)x; 983 doAdd = 1; 984 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 985 doAdd = 1; 986 } 987 }else{ 988 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 989 ** number as the prior appearance of the same name, or if the name 990 ** has never appeared before, reuse the same variable number 991 */ 992 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 993 if( x==0 ){ 994 x = (ynVar)(++pParse->nVar); 995 doAdd = 1; 996 } 997 } 998 if( doAdd ){ 999 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1000 } 1001 } 1002 pExpr->iColumn = x; 1003 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1004 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1005 } 1006 } 1007 1008 /* 1009 ** Recursively delete an expression tree. 1010 */ 1011 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1012 assert( p!=0 ); 1013 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1014 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1015 #ifdef SQLITE_DEBUG 1016 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1017 assert( p->pLeft==0 ); 1018 assert( p->pRight==0 ); 1019 assert( p->x.pSelect==0 ); 1020 } 1021 #endif 1022 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1023 /* The Expr.x union is never used at the same time as Expr.pRight */ 1024 assert( p->x.pList==0 || p->pRight==0 ); 1025 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1026 sqlite3ExprDelete(db, p->pRight); 1027 if( ExprHasProperty(p, EP_xIsSelect) ){ 1028 sqlite3SelectDelete(db, p->x.pSelect); 1029 }else{ 1030 sqlite3ExprListDelete(db, p->x.pList); 1031 } 1032 } 1033 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1034 if( !ExprHasProperty(p, EP_Static) ){ 1035 sqlite3DbFree(db, p); 1036 } 1037 } 1038 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1039 if( p ) sqlite3ExprDeleteNN(db, p); 1040 } 1041 1042 /* 1043 ** Return the number of bytes allocated for the expression structure 1044 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1045 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1046 */ 1047 static int exprStructSize(Expr *p){ 1048 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1049 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1050 return EXPR_FULLSIZE; 1051 } 1052 1053 /* 1054 ** The dupedExpr*Size() routines each return the number of bytes required 1055 ** to store a copy of an expression or expression tree. They differ in 1056 ** how much of the tree is measured. 1057 ** 1058 ** dupedExprStructSize() Size of only the Expr structure 1059 ** dupedExprNodeSize() Size of Expr + space for token 1060 ** dupedExprSize() Expr + token + subtree components 1061 ** 1062 *************************************************************************** 1063 ** 1064 ** The dupedExprStructSize() function returns two values OR-ed together: 1065 ** (1) the space required for a copy of the Expr structure only and 1066 ** (2) the EP_xxx flags that indicate what the structure size should be. 1067 ** The return values is always one of: 1068 ** 1069 ** EXPR_FULLSIZE 1070 ** EXPR_REDUCEDSIZE | EP_Reduced 1071 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1072 ** 1073 ** The size of the structure can be found by masking the return value 1074 ** of this routine with 0xfff. The flags can be found by masking the 1075 ** return value with EP_Reduced|EP_TokenOnly. 1076 ** 1077 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1078 ** (unreduced) Expr objects as they or originally constructed by the parser. 1079 ** During expression analysis, extra information is computed and moved into 1080 ** later parts of teh Expr object and that extra information might get chopped 1081 ** off if the expression is reduced. Note also that it does not work to 1082 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1083 ** to reduce a pristine expression tree from the parser. The implementation 1084 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1085 ** to enforce this constraint. 1086 */ 1087 static int dupedExprStructSize(Expr *p, int flags){ 1088 int nSize; 1089 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1090 assert( EXPR_FULLSIZE<=0xfff ); 1091 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1092 if( 0==flags || p->op==TK_SELECT_COLUMN ){ 1093 nSize = EXPR_FULLSIZE; 1094 }else{ 1095 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1096 assert( !ExprHasProperty(p, EP_FromJoin) ); 1097 assert( !ExprHasProperty(p, EP_MemToken) ); 1098 assert( !ExprHasProperty(p, EP_NoReduce) ); 1099 if( p->pLeft || p->x.pList ){ 1100 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1101 }else{ 1102 assert( p->pRight==0 ); 1103 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1104 } 1105 } 1106 return nSize; 1107 } 1108 1109 /* 1110 ** This function returns the space in bytes required to store the copy 1111 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1112 ** string is defined.) 1113 */ 1114 static int dupedExprNodeSize(Expr *p, int flags){ 1115 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1116 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1117 nByte += sqlite3Strlen30(p->u.zToken)+1; 1118 } 1119 return ROUND8(nByte); 1120 } 1121 1122 /* 1123 ** Return the number of bytes required to create a duplicate of the 1124 ** expression passed as the first argument. The second argument is a 1125 ** mask containing EXPRDUP_XXX flags. 1126 ** 1127 ** The value returned includes space to create a copy of the Expr struct 1128 ** itself and the buffer referred to by Expr.u.zToken, if any. 1129 ** 1130 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1131 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1132 ** and Expr.pRight variables (but not for any structures pointed to or 1133 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1134 */ 1135 static int dupedExprSize(Expr *p, int flags){ 1136 int nByte = 0; 1137 if( p ){ 1138 nByte = dupedExprNodeSize(p, flags); 1139 if( flags&EXPRDUP_REDUCE ){ 1140 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1141 } 1142 } 1143 return nByte; 1144 } 1145 1146 /* 1147 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1148 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1149 ** to store the copy of expression p, the copies of p->u.zToken 1150 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1151 ** if any. Before returning, *pzBuffer is set to the first byte past the 1152 ** portion of the buffer copied into by this function. 1153 */ 1154 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1155 Expr *pNew; /* Value to return */ 1156 u8 *zAlloc; /* Memory space from which to build Expr object */ 1157 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1158 1159 assert( db!=0 ); 1160 assert( p ); 1161 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1162 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1163 1164 /* Figure out where to write the new Expr structure. */ 1165 if( pzBuffer ){ 1166 zAlloc = *pzBuffer; 1167 staticFlag = EP_Static; 1168 }else{ 1169 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1170 staticFlag = 0; 1171 } 1172 pNew = (Expr *)zAlloc; 1173 1174 if( pNew ){ 1175 /* Set nNewSize to the size allocated for the structure pointed to 1176 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1177 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1178 ** by the copy of the p->u.zToken string (if any). 1179 */ 1180 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1181 const int nNewSize = nStructSize & 0xfff; 1182 int nToken; 1183 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1184 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1185 }else{ 1186 nToken = 0; 1187 } 1188 if( dupFlags ){ 1189 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1190 memcpy(zAlloc, p, nNewSize); 1191 }else{ 1192 u32 nSize = (u32)exprStructSize(p); 1193 memcpy(zAlloc, p, nSize); 1194 if( nSize<EXPR_FULLSIZE ){ 1195 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1196 } 1197 } 1198 1199 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1200 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1201 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1202 pNew->flags |= staticFlag; 1203 1204 /* Copy the p->u.zToken string, if any. */ 1205 if( nToken ){ 1206 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1207 memcpy(zToken, p->u.zToken, nToken); 1208 } 1209 1210 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1211 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1212 if( ExprHasProperty(p, EP_xIsSelect) ){ 1213 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1214 }else{ 1215 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1216 } 1217 } 1218 1219 /* Fill in pNew->pLeft and pNew->pRight. */ 1220 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 1221 zAlloc += dupedExprNodeSize(p, dupFlags); 1222 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1223 pNew->pLeft = p->pLeft ? 1224 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1225 pNew->pRight = p->pRight ? 1226 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1227 } 1228 if( pzBuffer ){ 1229 *pzBuffer = zAlloc; 1230 } 1231 }else{ 1232 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1233 if( pNew->op==TK_SELECT_COLUMN ){ 1234 pNew->pLeft = p->pLeft; 1235 assert( p->iColumn==0 || p->pRight==0 ); 1236 assert( p->pRight==0 || p->pRight==p->pLeft ); 1237 }else{ 1238 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1239 } 1240 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1241 } 1242 } 1243 } 1244 return pNew; 1245 } 1246 1247 /* 1248 ** Create and return a deep copy of the object passed as the second 1249 ** argument. If an OOM condition is encountered, NULL is returned 1250 ** and the db->mallocFailed flag set. 1251 */ 1252 #ifndef SQLITE_OMIT_CTE 1253 static With *withDup(sqlite3 *db, With *p){ 1254 With *pRet = 0; 1255 if( p ){ 1256 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1257 pRet = sqlite3DbMallocZero(db, nByte); 1258 if( pRet ){ 1259 int i; 1260 pRet->nCte = p->nCte; 1261 for(i=0; i<p->nCte; i++){ 1262 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1263 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1264 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1265 } 1266 } 1267 } 1268 return pRet; 1269 } 1270 #else 1271 # define withDup(x,y) 0 1272 #endif 1273 1274 /* 1275 ** The following group of routines make deep copies of expressions, 1276 ** expression lists, ID lists, and select statements. The copies can 1277 ** be deleted (by being passed to their respective ...Delete() routines) 1278 ** without effecting the originals. 1279 ** 1280 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1281 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1282 ** by subsequent calls to sqlite*ListAppend() routines. 1283 ** 1284 ** Any tables that the SrcList might point to are not duplicated. 1285 ** 1286 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1287 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1288 ** truncated version of the usual Expr structure that will be stored as 1289 ** part of the in-memory representation of the database schema. 1290 */ 1291 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1292 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1293 return p ? exprDup(db, p, flags, 0) : 0; 1294 } 1295 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1296 ExprList *pNew; 1297 struct ExprList_item *pItem, *pOldItem; 1298 int i; 1299 Expr *pPriorSelectCol = 0; 1300 assert( db!=0 ); 1301 if( p==0 ) return 0; 1302 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1303 if( pNew==0 ) return 0; 1304 pNew->nExpr = i = p->nExpr; 1305 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 1306 pNew->a = pItem = sqlite3DbMallocRawNN(db, i*sizeof(p->a[0]) ); 1307 if( pItem==0 ){ 1308 sqlite3DbFree(db, pNew); 1309 return 0; 1310 } 1311 pOldItem = p->a; 1312 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1313 Expr *pOldExpr = pOldItem->pExpr; 1314 Expr *pNewExpr; 1315 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1316 if( pOldExpr 1317 && pOldExpr->op==TK_SELECT_COLUMN 1318 && (pNewExpr = pItem->pExpr)!=0 1319 ){ 1320 assert( pNewExpr->iColumn==0 || i>0 ); 1321 if( pNewExpr->iColumn==0 ){ 1322 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1323 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1324 }else{ 1325 assert( i>0 ); 1326 assert( pItem[-1].pExpr!=0 ); 1327 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1328 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1329 pNewExpr->pLeft = pPriorSelectCol; 1330 } 1331 } 1332 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1333 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1334 pItem->sortOrder = pOldItem->sortOrder; 1335 pItem->done = 0; 1336 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1337 pItem->u = pOldItem->u; 1338 } 1339 return pNew; 1340 } 1341 1342 /* 1343 ** If cursors, triggers, views and subqueries are all omitted from 1344 ** the build, then none of the following routines, except for 1345 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1346 ** called with a NULL argument. 1347 */ 1348 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1349 || !defined(SQLITE_OMIT_SUBQUERY) 1350 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1351 SrcList *pNew; 1352 int i; 1353 int nByte; 1354 assert( db!=0 ); 1355 if( p==0 ) return 0; 1356 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1357 pNew = sqlite3DbMallocRawNN(db, nByte ); 1358 if( pNew==0 ) return 0; 1359 pNew->nSrc = pNew->nAlloc = p->nSrc; 1360 for(i=0; i<p->nSrc; i++){ 1361 struct SrcList_item *pNewItem = &pNew->a[i]; 1362 struct SrcList_item *pOldItem = &p->a[i]; 1363 Table *pTab; 1364 pNewItem->pSchema = pOldItem->pSchema; 1365 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1366 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1367 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1368 pNewItem->fg = pOldItem->fg; 1369 pNewItem->iCursor = pOldItem->iCursor; 1370 pNewItem->addrFillSub = pOldItem->addrFillSub; 1371 pNewItem->regReturn = pOldItem->regReturn; 1372 if( pNewItem->fg.isIndexedBy ){ 1373 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1374 } 1375 pNewItem->pIBIndex = pOldItem->pIBIndex; 1376 if( pNewItem->fg.isTabFunc ){ 1377 pNewItem->u1.pFuncArg = 1378 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1379 } 1380 pTab = pNewItem->pTab = pOldItem->pTab; 1381 if( pTab ){ 1382 pTab->nTabRef++; 1383 } 1384 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1385 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1386 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1387 pNewItem->colUsed = pOldItem->colUsed; 1388 } 1389 return pNew; 1390 } 1391 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1392 IdList *pNew; 1393 int i; 1394 assert( db!=0 ); 1395 if( p==0 ) return 0; 1396 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1397 if( pNew==0 ) return 0; 1398 pNew->nId = p->nId; 1399 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1400 if( pNew->a==0 ){ 1401 sqlite3DbFree(db, pNew); 1402 return 0; 1403 } 1404 /* Note that because the size of the allocation for p->a[] is not 1405 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1406 ** on the duplicate created by this function. */ 1407 for(i=0; i<p->nId; i++){ 1408 struct IdList_item *pNewItem = &pNew->a[i]; 1409 struct IdList_item *pOldItem = &p->a[i]; 1410 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1411 pNewItem->idx = pOldItem->idx; 1412 } 1413 return pNew; 1414 } 1415 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1416 Select *pNew, *pPrior; 1417 assert( db!=0 ); 1418 if( p==0 ) return 0; 1419 pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1420 if( pNew==0 ) return 0; 1421 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1422 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1423 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1424 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1425 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1426 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1427 pNew->op = p->op; 1428 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1429 if( pPrior ) pPrior->pNext = pNew; 1430 pNew->pNext = 0; 1431 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1432 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1433 pNew->iLimit = 0; 1434 pNew->iOffset = 0; 1435 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1436 pNew->addrOpenEphm[0] = -1; 1437 pNew->addrOpenEphm[1] = -1; 1438 pNew->nSelectRow = p->nSelectRow; 1439 pNew->pWith = withDup(db, p->pWith); 1440 sqlite3SelectSetName(pNew, p->zSelName); 1441 return pNew; 1442 } 1443 #else 1444 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1445 assert( p==0 ); 1446 return 0; 1447 } 1448 #endif 1449 1450 1451 /* 1452 ** Add a new element to the end of an expression list. If pList is 1453 ** initially NULL, then create a new expression list. 1454 ** 1455 ** If a memory allocation error occurs, the entire list is freed and 1456 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1457 ** that the new entry was successfully appended. 1458 */ 1459 ExprList *sqlite3ExprListAppend( 1460 Parse *pParse, /* Parsing context */ 1461 ExprList *pList, /* List to which to append. Might be NULL */ 1462 Expr *pExpr /* Expression to be appended. Might be NULL */ 1463 ){ 1464 sqlite3 *db = pParse->db; 1465 assert( db!=0 ); 1466 if( pList==0 ){ 1467 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1468 if( pList==0 ){ 1469 goto no_mem; 1470 } 1471 pList->nExpr = 0; 1472 pList->a = sqlite3DbMallocRawNN(db, sizeof(pList->a[0])); 1473 if( pList->a==0 ) goto no_mem; 1474 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1475 struct ExprList_item *a; 1476 assert( pList->nExpr>0 ); 1477 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1478 if( a==0 ){ 1479 goto no_mem; 1480 } 1481 pList->a = a; 1482 } 1483 assert( pList->a!=0 ); 1484 if( 1 ){ 1485 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1486 memset(pItem, 0, sizeof(*pItem)); 1487 pItem->pExpr = pExpr; 1488 } 1489 return pList; 1490 1491 no_mem: 1492 /* Avoid leaking memory if malloc has failed. */ 1493 sqlite3ExprDelete(db, pExpr); 1494 sqlite3ExprListDelete(db, pList); 1495 return 0; 1496 } 1497 1498 /* 1499 ** pColumns and pExpr form a vector assignment which is part of the SET 1500 ** clause of an UPDATE statement. Like this: 1501 ** 1502 ** (a,b,c) = (expr1,expr2,expr3) 1503 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1504 ** 1505 ** For each term of the vector assignment, append new entries to the 1506 ** expression list pList. In the case of a subquery on the RHS, append 1507 ** TK_SELECT_COLUMN expressions. 1508 */ 1509 ExprList *sqlite3ExprListAppendVector( 1510 Parse *pParse, /* Parsing context */ 1511 ExprList *pList, /* List to which to append. Might be NULL */ 1512 IdList *pColumns, /* List of names of LHS of the assignment */ 1513 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1514 ){ 1515 sqlite3 *db = pParse->db; 1516 int n; 1517 int i; 1518 int iFirst = pList ? pList->nExpr : 0; 1519 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1520 ** exit prior to this routine being invoked */ 1521 if( NEVER(pColumns==0) ) goto vector_append_error; 1522 if( pExpr==0 ) goto vector_append_error; 1523 1524 /* If the RHS is a vector, then we can immediately check to see that 1525 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1526 ** wildcards ("*") in the result set of the SELECT must be expanded before 1527 ** we can do the size check, so defer the size check until code generation. 1528 */ 1529 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1530 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1531 pColumns->nId, n); 1532 goto vector_append_error; 1533 } 1534 1535 for(i=0; i<pColumns->nId; i++){ 1536 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1537 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1538 if( pList ){ 1539 assert( pList->nExpr==iFirst+i+1 ); 1540 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1541 pColumns->a[i].zName = 0; 1542 } 1543 } 1544 1545 if( pExpr->op==TK_SELECT ){ 1546 if( pList && pList->a[iFirst].pExpr ){ 1547 Expr *pFirst = pList->a[iFirst].pExpr; 1548 assert( pFirst->op==TK_SELECT_COLUMN ); 1549 1550 /* Store the SELECT statement in pRight so it will be deleted when 1551 ** sqlite3ExprListDelete() is called */ 1552 pFirst->pRight = pExpr; 1553 pExpr = 0; 1554 1555 /* Remember the size of the LHS in iTable so that we can check that 1556 ** the RHS and LHS sizes match during code generation. */ 1557 pFirst->iTable = pColumns->nId; 1558 } 1559 } 1560 1561 vector_append_error: 1562 sqlite3ExprDelete(db, pExpr); 1563 sqlite3IdListDelete(db, pColumns); 1564 return pList; 1565 } 1566 1567 /* 1568 ** Set the sort order for the last element on the given ExprList. 1569 */ 1570 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1571 if( p==0 ) return; 1572 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1573 assert( p->nExpr>0 ); 1574 if( iSortOrder<0 ){ 1575 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1576 return; 1577 } 1578 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1579 } 1580 1581 /* 1582 ** Set the ExprList.a[].zName element of the most recently added item 1583 ** on the expression list. 1584 ** 1585 ** pList might be NULL following an OOM error. But pName should never be 1586 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1587 ** is set. 1588 */ 1589 void sqlite3ExprListSetName( 1590 Parse *pParse, /* Parsing context */ 1591 ExprList *pList, /* List to which to add the span. */ 1592 Token *pName, /* Name to be added */ 1593 int dequote /* True to cause the name to be dequoted */ 1594 ){ 1595 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1596 if( pList ){ 1597 struct ExprList_item *pItem; 1598 assert( pList->nExpr>0 ); 1599 pItem = &pList->a[pList->nExpr-1]; 1600 assert( pItem->zName==0 ); 1601 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1602 if( dequote ) sqlite3Dequote(pItem->zName); 1603 } 1604 } 1605 1606 /* 1607 ** Set the ExprList.a[].zSpan element of the most recently added item 1608 ** on the expression list. 1609 ** 1610 ** pList might be NULL following an OOM error. But pSpan should never be 1611 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1612 ** is set. 1613 */ 1614 void sqlite3ExprListSetSpan( 1615 Parse *pParse, /* Parsing context */ 1616 ExprList *pList, /* List to which to add the span. */ 1617 ExprSpan *pSpan /* The span to be added */ 1618 ){ 1619 sqlite3 *db = pParse->db; 1620 assert( pList!=0 || db->mallocFailed!=0 ); 1621 if( pList ){ 1622 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1623 assert( pList->nExpr>0 ); 1624 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1625 sqlite3DbFree(db, pItem->zSpan); 1626 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1627 (int)(pSpan->zEnd - pSpan->zStart)); 1628 } 1629 } 1630 1631 /* 1632 ** If the expression list pEList contains more than iLimit elements, 1633 ** leave an error message in pParse. 1634 */ 1635 void sqlite3ExprListCheckLength( 1636 Parse *pParse, 1637 ExprList *pEList, 1638 const char *zObject 1639 ){ 1640 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1641 testcase( pEList && pEList->nExpr==mx ); 1642 testcase( pEList && pEList->nExpr==mx+1 ); 1643 if( pEList && pEList->nExpr>mx ){ 1644 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1645 } 1646 } 1647 1648 /* 1649 ** Delete an entire expression list. 1650 */ 1651 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1652 int i; 1653 struct ExprList_item *pItem; 1654 assert( pList->a!=0 || pList->nExpr==0 ); 1655 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1656 sqlite3ExprDelete(db, pItem->pExpr); 1657 sqlite3DbFree(db, pItem->zName); 1658 sqlite3DbFree(db, pItem->zSpan); 1659 } 1660 sqlite3DbFree(db, pList->a); 1661 sqlite3DbFree(db, pList); 1662 } 1663 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1664 if( pList ) exprListDeleteNN(db, pList); 1665 } 1666 1667 /* 1668 ** Return the bitwise-OR of all Expr.flags fields in the given 1669 ** ExprList. 1670 */ 1671 u32 sqlite3ExprListFlags(const ExprList *pList){ 1672 int i; 1673 u32 m = 0; 1674 if( pList ){ 1675 for(i=0; i<pList->nExpr; i++){ 1676 Expr *pExpr = pList->a[i].pExpr; 1677 assert( pExpr!=0 ); 1678 m |= pExpr->flags; 1679 } 1680 } 1681 return m; 1682 } 1683 1684 /* 1685 ** These routines are Walker callbacks used to check expressions to 1686 ** see if they are "constant" for some definition of constant. The 1687 ** Walker.eCode value determines the type of "constant" we are looking 1688 ** for. 1689 ** 1690 ** These callback routines are used to implement the following: 1691 ** 1692 ** sqlite3ExprIsConstant() pWalker->eCode==1 1693 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1694 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1695 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1696 ** 1697 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1698 ** is found to not be a constant. 1699 ** 1700 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1701 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1702 ** an existing schema and 4 when processing a new statement. A bound 1703 ** parameter raises an error for new statements, but is silently converted 1704 ** to NULL for existing schemas. This allows sqlite_master tables that 1705 ** contain a bound parameter because they were generated by older versions 1706 ** of SQLite to be parsed by newer versions of SQLite without raising a 1707 ** malformed schema error. 1708 */ 1709 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1710 1711 /* If pWalker->eCode is 2 then any term of the expression that comes from 1712 ** the ON or USING clauses of a left join disqualifies the expression 1713 ** from being considered constant. */ 1714 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1715 pWalker->eCode = 0; 1716 return WRC_Abort; 1717 } 1718 1719 switch( pExpr->op ){ 1720 /* Consider functions to be constant if all their arguments are constant 1721 ** and either pWalker->eCode==4 or 5 or the function has the 1722 ** SQLITE_FUNC_CONST flag. */ 1723 case TK_FUNCTION: 1724 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1725 return WRC_Continue; 1726 }else{ 1727 pWalker->eCode = 0; 1728 return WRC_Abort; 1729 } 1730 case TK_ID: 1731 case TK_COLUMN: 1732 case TK_AGG_FUNCTION: 1733 case TK_AGG_COLUMN: 1734 testcase( pExpr->op==TK_ID ); 1735 testcase( pExpr->op==TK_COLUMN ); 1736 testcase( pExpr->op==TK_AGG_FUNCTION ); 1737 testcase( pExpr->op==TK_AGG_COLUMN ); 1738 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1739 return WRC_Continue; 1740 }else{ 1741 pWalker->eCode = 0; 1742 return WRC_Abort; 1743 } 1744 case TK_VARIABLE: 1745 if( pWalker->eCode==5 ){ 1746 /* Silently convert bound parameters that appear inside of CREATE 1747 ** statements into a NULL when parsing the CREATE statement text out 1748 ** of the sqlite_master table */ 1749 pExpr->op = TK_NULL; 1750 }else if( pWalker->eCode==4 ){ 1751 /* A bound parameter in a CREATE statement that originates from 1752 ** sqlite3_prepare() causes an error */ 1753 pWalker->eCode = 0; 1754 return WRC_Abort; 1755 } 1756 /* Fall through */ 1757 default: 1758 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1759 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1760 return WRC_Continue; 1761 } 1762 } 1763 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1764 UNUSED_PARAMETER(NotUsed); 1765 pWalker->eCode = 0; 1766 return WRC_Abort; 1767 } 1768 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1769 Walker w; 1770 memset(&w, 0, sizeof(w)); 1771 w.eCode = initFlag; 1772 w.xExprCallback = exprNodeIsConstant; 1773 w.xSelectCallback = selectNodeIsConstant; 1774 w.u.iCur = iCur; 1775 sqlite3WalkExpr(&w, p); 1776 return w.eCode; 1777 } 1778 1779 /* 1780 ** Walk an expression tree. Return non-zero if the expression is constant 1781 ** and 0 if it involves variables or function calls. 1782 ** 1783 ** For the purposes of this function, a double-quoted string (ex: "abc") 1784 ** is considered a variable but a single-quoted string (ex: 'abc') is 1785 ** a constant. 1786 */ 1787 int sqlite3ExprIsConstant(Expr *p){ 1788 return exprIsConst(p, 1, 0); 1789 } 1790 1791 /* 1792 ** Walk an expression tree. Return non-zero if the expression is constant 1793 ** that does no originate from the ON or USING clauses of a join. 1794 ** Return 0 if it involves variables or function calls or terms from 1795 ** an ON or USING clause. 1796 */ 1797 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1798 return exprIsConst(p, 2, 0); 1799 } 1800 1801 /* 1802 ** Walk an expression tree. Return non-zero if the expression is constant 1803 ** for any single row of the table with cursor iCur. In other words, the 1804 ** expression must not refer to any non-deterministic function nor any 1805 ** table other than iCur. 1806 */ 1807 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1808 return exprIsConst(p, 3, iCur); 1809 } 1810 1811 /* 1812 ** Walk an expression tree. Return non-zero if the expression is constant 1813 ** or a function call with constant arguments. Return and 0 if there 1814 ** are any variables. 1815 ** 1816 ** For the purposes of this function, a double-quoted string (ex: "abc") 1817 ** is considered a variable but a single-quoted string (ex: 'abc') is 1818 ** a constant. 1819 */ 1820 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1821 assert( isInit==0 || isInit==1 ); 1822 return exprIsConst(p, 4+isInit, 0); 1823 } 1824 1825 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1826 /* 1827 ** Walk an expression tree. Return 1 if the expression contains a 1828 ** subquery of some kind. Return 0 if there are no subqueries. 1829 */ 1830 int sqlite3ExprContainsSubquery(Expr *p){ 1831 Walker w; 1832 memset(&w, 0, sizeof(w)); 1833 w.eCode = 1; 1834 w.xExprCallback = sqlite3ExprWalkNoop; 1835 w.xSelectCallback = selectNodeIsConstant; 1836 sqlite3WalkExpr(&w, p); 1837 return w.eCode==0; 1838 } 1839 #endif 1840 1841 /* 1842 ** If the expression p codes a constant integer that is small enough 1843 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1844 ** in *pValue. If the expression is not an integer or if it is too big 1845 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1846 */ 1847 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1848 int rc = 0; 1849 1850 /* If an expression is an integer literal that fits in a signed 32-bit 1851 ** integer, then the EP_IntValue flag will have already been set */ 1852 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1853 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1854 1855 if( p->flags & EP_IntValue ){ 1856 *pValue = p->u.iValue; 1857 return 1; 1858 } 1859 switch( p->op ){ 1860 case TK_UPLUS: { 1861 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1862 break; 1863 } 1864 case TK_UMINUS: { 1865 int v; 1866 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1867 assert( v!=(-2147483647-1) ); 1868 *pValue = -v; 1869 rc = 1; 1870 } 1871 break; 1872 } 1873 default: break; 1874 } 1875 return rc; 1876 } 1877 1878 /* 1879 ** Return FALSE if there is no chance that the expression can be NULL. 1880 ** 1881 ** If the expression might be NULL or if the expression is too complex 1882 ** to tell return TRUE. 1883 ** 1884 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1885 ** when we know that a value cannot be NULL. Hence, a false positive 1886 ** (returning TRUE when in fact the expression can never be NULL) might 1887 ** be a small performance hit but is otherwise harmless. On the other 1888 ** hand, a false negative (returning FALSE when the result could be NULL) 1889 ** will likely result in an incorrect answer. So when in doubt, return 1890 ** TRUE. 1891 */ 1892 int sqlite3ExprCanBeNull(const Expr *p){ 1893 u8 op; 1894 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1895 op = p->op; 1896 if( op==TK_REGISTER ) op = p->op2; 1897 switch( op ){ 1898 case TK_INTEGER: 1899 case TK_STRING: 1900 case TK_FLOAT: 1901 case TK_BLOB: 1902 return 0; 1903 case TK_COLUMN: 1904 assert( p->pTab!=0 ); 1905 return ExprHasProperty(p, EP_CanBeNull) || 1906 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 1907 default: 1908 return 1; 1909 } 1910 } 1911 1912 /* 1913 ** Return TRUE if the given expression is a constant which would be 1914 ** unchanged by OP_Affinity with the affinity given in the second 1915 ** argument. 1916 ** 1917 ** This routine is used to determine if the OP_Affinity operation 1918 ** can be omitted. When in doubt return FALSE. A false negative 1919 ** is harmless. A false positive, however, can result in the wrong 1920 ** answer. 1921 */ 1922 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1923 u8 op; 1924 if( aff==SQLITE_AFF_BLOB ) return 1; 1925 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1926 op = p->op; 1927 if( op==TK_REGISTER ) op = p->op2; 1928 switch( op ){ 1929 case TK_INTEGER: { 1930 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1931 } 1932 case TK_FLOAT: { 1933 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1934 } 1935 case TK_STRING: { 1936 return aff==SQLITE_AFF_TEXT; 1937 } 1938 case TK_BLOB: { 1939 return 1; 1940 } 1941 case TK_COLUMN: { 1942 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1943 return p->iColumn<0 1944 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1945 } 1946 default: { 1947 return 0; 1948 } 1949 } 1950 } 1951 1952 /* 1953 ** Return TRUE if the given string is a row-id column name. 1954 */ 1955 int sqlite3IsRowid(const char *z){ 1956 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1957 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1958 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1959 return 0; 1960 } 1961 1962 /* 1963 ** pX is the RHS of an IN operator. If pX is a SELECT statement 1964 ** that can be simplified to a direct table access, then return 1965 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 1966 ** or if the SELECT statement needs to be manifested into a transient 1967 ** table, then return NULL. 1968 */ 1969 #ifndef SQLITE_OMIT_SUBQUERY 1970 static Select *isCandidateForInOpt(Expr *pX){ 1971 Select *p; 1972 SrcList *pSrc; 1973 ExprList *pEList; 1974 Table *pTab; 1975 int i; 1976 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 1977 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 1978 p = pX->x.pSelect; 1979 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1980 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1981 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1982 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1983 return 0; /* No DISTINCT keyword and no aggregate functions */ 1984 } 1985 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1986 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1987 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1988 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1989 pSrc = p->pSrc; 1990 assert( pSrc!=0 ); 1991 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1992 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1993 pTab = pSrc->a[0].pTab; 1994 assert( pTab!=0 ); 1995 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1996 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1997 pEList = p->pEList; 1998 assert( pEList!=0 ); 1999 /* All SELECT results must be columns. */ 2000 for(i=0; i<pEList->nExpr; i++){ 2001 Expr *pRes = pEList->a[i].pExpr; 2002 if( pRes->op!=TK_COLUMN ) return 0; 2003 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2004 } 2005 return p; 2006 } 2007 #endif /* SQLITE_OMIT_SUBQUERY */ 2008 2009 #ifndef SQLITE_OMIT_SUBQUERY 2010 /* 2011 ** Generate code that checks the left-most column of index table iCur to see if 2012 ** it contains any NULL entries. Cause the register at regHasNull to be set 2013 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2014 ** to be set to NULL if iCur contains one or more NULL values. 2015 */ 2016 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2017 int addr1; 2018 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2019 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2020 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2021 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2022 VdbeComment((v, "first_entry_in(%d)", iCur)); 2023 sqlite3VdbeJumpHere(v, addr1); 2024 } 2025 #endif 2026 2027 2028 #ifndef SQLITE_OMIT_SUBQUERY 2029 /* 2030 ** The argument is an IN operator with a list (not a subquery) on the 2031 ** right-hand side. Return TRUE if that list is constant. 2032 */ 2033 static int sqlite3InRhsIsConstant(Expr *pIn){ 2034 Expr *pLHS; 2035 int res; 2036 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2037 pLHS = pIn->pLeft; 2038 pIn->pLeft = 0; 2039 res = sqlite3ExprIsConstant(pIn); 2040 pIn->pLeft = pLHS; 2041 return res; 2042 } 2043 #endif 2044 2045 /* 2046 ** This function is used by the implementation of the IN (...) operator. 2047 ** The pX parameter is the expression on the RHS of the IN operator, which 2048 ** might be either a list of expressions or a subquery. 2049 ** 2050 ** The job of this routine is to find or create a b-tree object that can 2051 ** be used either to test for membership in the RHS set or to iterate through 2052 ** all members of the RHS set, skipping duplicates. 2053 ** 2054 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2055 ** and pX->iTable is set to the index of that cursor. 2056 ** 2057 ** The returned value of this function indicates the b-tree type, as follows: 2058 ** 2059 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2060 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2061 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2062 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2063 ** populated epheremal table. 2064 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2065 ** implemented as a sequence of comparisons. 2066 ** 2067 ** An existing b-tree might be used if the RHS expression pX is a simple 2068 ** subquery such as: 2069 ** 2070 ** SELECT <column1>, <column2>... FROM <table> 2071 ** 2072 ** If the RHS of the IN operator is a list or a more complex subquery, then 2073 ** an ephemeral table might need to be generated from the RHS and then 2074 ** pX->iTable made to point to the ephemeral table instead of an 2075 ** existing table. 2076 ** 2077 ** The inFlags parameter must contain exactly one of the bits 2078 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 2079 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 2080 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 2081 ** IN index will be used to loop over all values of the RHS of the 2082 ** IN operator. 2083 ** 2084 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2085 ** through the set members) then the b-tree must not contain duplicates. 2086 ** An epheremal table must be used unless the selected columns are guaranteed 2087 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2088 ** a UNIQUE constraint or index. 2089 ** 2090 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2091 ** for fast set membership tests) then an epheremal table must 2092 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2093 ** index can be found with the specified <columns> as its left-most. 2094 ** 2095 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2096 ** if the RHS of the IN operator is a list (not a subquery) then this 2097 ** routine might decide that creating an ephemeral b-tree for membership 2098 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2099 ** calling routine should implement the IN operator using a sequence 2100 ** of Eq or Ne comparison operations. 2101 ** 2102 ** When the b-tree is being used for membership tests, the calling function 2103 ** might need to know whether or not the RHS side of the IN operator 2104 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2105 ** if there is any chance that the (...) might contain a NULL value at 2106 ** runtime, then a register is allocated and the register number written 2107 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2108 ** NULL value, then *prRhsHasNull is left unchanged. 2109 ** 2110 ** If a register is allocated and its location stored in *prRhsHasNull, then 2111 ** the value in that register will be NULL if the b-tree contains one or more 2112 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2113 ** NULL values. 2114 ** 2115 ** If the aiMap parameter is not NULL, it must point to an array containing 2116 ** one element for each column returned by the SELECT statement on the RHS 2117 ** of the IN(...) operator. The i'th entry of the array is populated with the 2118 ** offset of the index column that matches the i'th column returned by the 2119 ** SELECT. For example, if the expression and selected index are: 2120 ** 2121 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2122 ** CREATE INDEX i1 ON t1(b, c, a); 2123 ** 2124 ** then aiMap[] is populated with {2, 0, 1}. 2125 */ 2126 #ifndef SQLITE_OMIT_SUBQUERY 2127 int sqlite3FindInIndex( 2128 Parse *pParse, /* Parsing context */ 2129 Expr *pX, /* The right-hand side (RHS) of the IN operator */ 2130 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2131 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2132 int *aiMap /* Mapping from Index fields to RHS fields */ 2133 ){ 2134 Select *p; /* SELECT to the right of IN operator */ 2135 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2136 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2137 int mustBeUnique; /* True if RHS must be unique */ 2138 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2139 2140 assert( pX->op==TK_IN ); 2141 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2142 2143 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2144 ** whether or not the SELECT result contains NULL values, check whether 2145 ** or not NULL is actually possible (it may not be, for example, due 2146 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2147 ** set prRhsHasNull to 0 before continuing. */ 2148 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2149 int i; 2150 ExprList *pEList = pX->x.pSelect->pEList; 2151 for(i=0; i<pEList->nExpr; i++){ 2152 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2153 } 2154 if( i==pEList->nExpr ){ 2155 prRhsHasNull = 0; 2156 } 2157 } 2158 2159 /* Check to see if an existing table or index can be used to 2160 ** satisfy the query. This is preferable to generating a new 2161 ** ephemeral table. */ 2162 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2163 sqlite3 *db = pParse->db; /* Database connection */ 2164 Table *pTab; /* Table <table>. */ 2165 i16 iDb; /* Database idx for pTab */ 2166 ExprList *pEList = p->pEList; 2167 int nExpr = pEList->nExpr; 2168 2169 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2170 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2171 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2172 pTab = p->pSrc->a[0].pTab; 2173 2174 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2175 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2176 sqlite3CodeVerifySchema(pParse, iDb); 2177 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2178 2179 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2180 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2181 /* The "x IN (SELECT rowid FROM table)" case */ 2182 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2183 VdbeCoverage(v); 2184 2185 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2186 eType = IN_INDEX_ROWID; 2187 2188 sqlite3VdbeJumpHere(v, iAddr); 2189 }else{ 2190 Index *pIdx; /* Iterator variable */ 2191 int affinity_ok = 1; 2192 int i; 2193 2194 /* Check that the affinity that will be used to perform each 2195 ** comparison is the same as the affinity of each column in table 2196 ** on the RHS of the IN operator. If it not, it is not possible to 2197 ** use any index of the RHS table. */ 2198 for(i=0; i<nExpr && affinity_ok; i++){ 2199 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2200 int iCol = pEList->a[i].pExpr->iColumn; 2201 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2202 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2203 testcase( cmpaff==SQLITE_AFF_BLOB ); 2204 testcase( cmpaff==SQLITE_AFF_TEXT ); 2205 switch( cmpaff ){ 2206 case SQLITE_AFF_BLOB: 2207 break; 2208 case SQLITE_AFF_TEXT: 2209 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2210 ** other has no affinity and the other side is TEXT. Hence, 2211 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2212 ** and for the term on the LHS of the IN to have no affinity. */ 2213 assert( idxaff==SQLITE_AFF_TEXT ); 2214 break; 2215 default: 2216 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2217 } 2218 } 2219 2220 if( affinity_ok ){ 2221 /* Search for an existing index that will work for this IN operator */ 2222 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2223 Bitmask colUsed; /* Columns of the index used */ 2224 Bitmask mCol; /* Mask for the current column */ 2225 if( pIdx->nColumn<nExpr ) continue; 2226 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2227 ** BITMASK(nExpr) without overflowing */ 2228 testcase( pIdx->nColumn==BMS-2 ); 2229 testcase( pIdx->nColumn==BMS-1 ); 2230 if( pIdx->nColumn>=BMS-1 ) continue; 2231 if( mustBeUnique ){ 2232 if( pIdx->nKeyCol>nExpr 2233 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2234 ){ 2235 continue; /* This index is not unique over the IN RHS columns */ 2236 } 2237 } 2238 2239 colUsed = 0; /* Columns of index used so far */ 2240 for(i=0; i<nExpr; i++){ 2241 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2242 Expr *pRhs = pEList->a[i].pExpr; 2243 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2244 int j; 2245 2246 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2247 for(j=0; j<nExpr; j++){ 2248 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2249 assert( pIdx->azColl[j] ); 2250 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2251 continue; 2252 } 2253 break; 2254 } 2255 if( j==nExpr ) break; 2256 mCol = MASKBIT(j); 2257 if( mCol & colUsed ) break; /* Each column used only once */ 2258 colUsed |= mCol; 2259 if( aiMap ) aiMap[i] = j; 2260 } 2261 2262 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2263 if( colUsed==(MASKBIT(nExpr)-1) ){ 2264 /* If we reach this point, that means the index pIdx is usable */ 2265 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2266 #ifndef SQLITE_OMIT_EXPLAIN 2267 sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0, 2268 sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName), 2269 P4_DYNAMIC); 2270 #endif 2271 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2272 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2273 VdbeComment((v, "%s", pIdx->zName)); 2274 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2275 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2276 2277 if( prRhsHasNull ){ 2278 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2279 i64 mask = (1<<nExpr)-1; 2280 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2281 iTab, 0, 0, (u8*)&mask, P4_INT64); 2282 #endif 2283 *prRhsHasNull = ++pParse->nMem; 2284 if( nExpr==1 ){ 2285 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2286 } 2287 } 2288 sqlite3VdbeJumpHere(v, iAddr); 2289 } 2290 } /* End loop over indexes */ 2291 } /* End if( affinity_ok ) */ 2292 } /* End if not an rowid index */ 2293 } /* End attempt to optimize using an index */ 2294 2295 /* If no preexisting index is available for the IN clause 2296 ** and IN_INDEX_NOOP is an allowed reply 2297 ** and the RHS of the IN operator is a list, not a subquery 2298 ** and the RHS is not constant or has two or fewer terms, 2299 ** then it is not worth creating an ephemeral table to evaluate 2300 ** the IN operator so return IN_INDEX_NOOP. 2301 */ 2302 if( eType==0 2303 && (inFlags & IN_INDEX_NOOP_OK) 2304 && !ExprHasProperty(pX, EP_xIsSelect) 2305 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2306 ){ 2307 eType = IN_INDEX_NOOP; 2308 } 2309 2310 if( eType==0 ){ 2311 /* Could not find an existing table or index to use as the RHS b-tree. 2312 ** We will have to generate an ephemeral table to do the job. 2313 */ 2314 u32 savedNQueryLoop = pParse->nQueryLoop; 2315 int rMayHaveNull = 0; 2316 eType = IN_INDEX_EPH; 2317 if( inFlags & IN_INDEX_LOOP ){ 2318 pParse->nQueryLoop = 0; 2319 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 2320 eType = IN_INDEX_ROWID; 2321 } 2322 }else if( prRhsHasNull ){ 2323 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2324 } 2325 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 2326 pParse->nQueryLoop = savedNQueryLoop; 2327 }else{ 2328 pX->iTable = iTab; 2329 } 2330 2331 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2332 int i, n; 2333 n = sqlite3ExprVectorSize(pX->pLeft); 2334 for(i=0; i<n; i++) aiMap[i] = i; 2335 } 2336 return eType; 2337 } 2338 #endif 2339 2340 #ifndef SQLITE_OMIT_SUBQUERY 2341 /* 2342 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2343 ** function allocates and returns a nul-terminated string containing 2344 ** the affinities to be used for each column of the comparison. 2345 ** 2346 ** It is the responsibility of the caller to ensure that the returned 2347 ** string is eventually freed using sqlite3DbFree(). 2348 */ 2349 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2350 Expr *pLeft = pExpr->pLeft; 2351 int nVal = sqlite3ExprVectorSize(pLeft); 2352 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2353 char *zRet; 2354 2355 assert( pExpr->op==TK_IN ); 2356 zRet = sqlite3DbMallocZero(pParse->db, nVal+1); 2357 if( zRet ){ 2358 int i; 2359 for(i=0; i<nVal; i++){ 2360 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2361 char a = sqlite3ExprAffinity(pA); 2362 if( pSelect ){ 2363 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2364 }else{ 2365 zRet[i] = a; 2366 } 2367 } 2368 zRet[nVal] = '\0'; 2369 } 2370 return zRet; 2371 } 2372 #endif 2373 2374 #ifndef SQLITE_OMIT_SUBQUERY 2375 /* 2376 ** Load the Parse object passed as the first argument with an error 2377 ** message of the form: 2378 ** 2379 ** "sub-select returns N columns - expected M" 2380 */ 2381 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2382 const char *zFmt = "sub-select returns %d columns - expected %d"; 2383 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2384 } 2385 #endif 2386 2387 /* 2388 ** Expression pExpr is a vector that has been used in a context where 2389 ** it is not permitted. If pExpr is a sub-select vector, this routine 2390 ** loads the Parse object with a message of the form: 2391 ** 2392 ** "sub-select returns N columns - expected 1" 2393 ** 2394 ** Or, if it is a regular scalar vector: 2395 ** 2396 ** "row value misused" 2397 */ 2398 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2399 #ifndef SQLITE_OMIT_SUBQUERY 2400 if( pExpr->flags & EP_xIsSelect ){ 2401 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2402 }else 2403 #endif 2404 { 2405 sqlite3ErrorMsg(pParse, "row value misused"); 2406 } 2407 } 2408 2409 /* 2410 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 2411 ** or IN operators. Examples: 2412 ** 2413 ** (SELECT a FROM b) -- subquery 2414 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2415 ** x IN (4,5,11) -- IN operator with list on right-hand side 2416 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2417 ** 2418 ** The pExpr parameter describes the expression that contains the IN 2419 ** operator or subquery. 2420 ** 2421 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 2422 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 2423 ** to some integer key column of a table B-Tree. In this case, use an 2424 ** intkey B-Tree to store the set of IN(...) values instead of the usual 2425 ** (slower) variable length keys B-Tree. 2426 ** 2427 ** If rMayHaveNull is non-zero, that means that the operation is an IN 2428 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 2429 ** All this routine does is initialize the register given by rMayHaveNull 2430 ** to NULL. Calling routines will take care of changing this register 2431 ** value to non-NULL if the RHS is NULL-free. 2432 ** 2433 ** For a SELECT or EXISTS operator, return the register that holds the 2434 ** result. For a multi-column SELECT, the result is stored in a contiguous 2435 ** array of registers and the return value is the register of the left-most 2436 ** result column. Return 0 for IN operators or if an error occurs. 2437 */ 2438 #ifndef SQLITE_OMIT_SUBQUERY 2439 int sqlite3CodeSubselect( 2440 Parse *pParse, /* Parsing context */ 2441 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 2442 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 2443 int isRowid /* If true, LHS of IN operator is a rowid */ 2444 ){ 2445 int jmpIfDynamic = -1; /* One-time test address */ 2446 int rReg = 0; /* Register storing resulting */ 2447 Vdbe *v = sqlite3GetVdbe(pParse); 2448 if( NEVER(v==0) ) return 0; 2449 sqlite3ExprCachePush(pParse); 2450 2451 /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it 2452 ** is encountered if any of the following is true: 2453 ** 2454 ** * The right-hand side is a correlated subquery 2455 ** * The right-hand side is an expression list containing variables 2456 ** * We are inside a trigger 2457 ** 2458 ** If all of the above are false, then we can run this code just once 2459 ** save the results, and reuse the same result on subsequent invocations. 2460 */ 2461 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2462 jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2463 } 2464 2465 #ifndef SQLITE_OMIT_EXPLAIN 2466 if( pParse->explain==2 ){ 2467 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d", 2468 jmpIfDynamic>=0?"":"CORRELATED ", 2469 pExpr->op==TK_IN?"LIST":"SCALAR", 2470 pParse->iNextSelectId 2471 ); 2472 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 2473 } 2474 #endif 2475 2476 switch( pExpr->op ){ 2477 case TK_IN: { 2478 int addr; /* Address of OP_OpenEphemeral instruction */ 2479 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 2480 KeyInfo *pKeyInfo = 0; /* Key information */ 2481 int nVal; /* Size of vector pLeft */ 2482 2483 nVal = sqlite3ExprVectorSize(pLeft); 2484 assert( !isRowid || nVal==1 ); 2485 2486 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 2487 ** expression it is handled the same way. An ephemeral table is 2488 ** filled with index keys representing the results from the 2489 ** SELECT or the <exprlist>. 2490 ** 2491 ** If the 'x' expression is a column value, or the SELECT... 2492 ** statement returns a column value, then the affinity of that 2493 ** column is used to build the index keys. If both 'x' and the 2494 ** SELECT... statement are columns, then numeric affinity is used 2495 ** if either column has NUMERIC or INTEGER affinity. If neither 2496 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2497 ** is used. 2498 */ 2499 pExpr->iTable = pParse->nTab++; 2500 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, 2501 pExpr->iTable, (isRowid?0:nVal)); 2502 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2503 2504 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2505 /* Case 1: expr IN (SELECT ...) 2506 ** 2507 ** Generate code to write the results of the select into the temporary 2508 ** table allocated and opened above. 2509 */ 2510 Select *pSelect = pExpr->x.pSelect; 2511 ExprList *pEList = pSelect->pEList; 2512 2513 assert( !isRowid ); 2514 /* If the LHS and RHS of the IN operator do not match, that 2515 ** error will have been caught long before we reach this point. */ 2516 if( ALWAYS(pEList->nExpr==nVal) ){ 2517 SelectDest dest; 2518 int i; 2519 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 2520 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2521 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 2522 pSelect->iLimit = 0; 2523 testcase( pSelect->selFlags & SF_Distinct ); 2524 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2525 if( sqlite3Select(pParse, pSelect, &dest) ){ 2526 sqlite3DbFree(pParse->db, dest.zAffSdst); 2527 sqlite3KeyInfoUnref(pKeyInfo); 2528 return 0; 2529 } 2530 sqlite3DbFree(pParse->db, dest.zAffSdst); 2531 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2532 assert( pEList!=0 ); 2533 assert( pEList->nExpr>0 ); 2534 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2535 for(i=0; i<nVal; i++){ 2536 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2537 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2538 pParse, p, pEList->a[i].pExpr 2539 ); 2540 } 2541 } 2542 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2543 /* Case 2: expr IN (exprlist) 2544 ** 2545 ** For each expression, build an index key from the evaluation and 2546 ** store it in the temporary table. If <expr> is a column, then use 2547 ** that columns affinity when building index keys. If <expr> is not 2548 ** a column, use numeric affinity. 2549 */ 2550 char affinity; /* Affinity of the LHS of the IN */ 2551 int i; 2552 ExprList *pList = pExpr->x.pList; 2553 struct ExprList_item *pItem; 2554 int r1, r2, r3; 2555 2556 affinity = sqlite3ExprAffinity(pLeft); 2557 if( !affinity ){ 2558 affinity = SQLITE_AFF_BLOB; 2559 } 2560 if( pKeyInfo ){ 2561 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2562 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2563 } 2564 2565 /* Loop through each expression in <exprlist>. */ 2566 r1 = sqlite3GetTempReg(pParse); 2567 r2 = sqlite3GetTempReg(pParse); 2568 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 2569 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2570 Expr *pE2 = pItem->pExpr; 2571 int iValToIns; 2572 2573 /* If the expression is not constant then we will need to 2574 ** disable the test that was generated above that makes sure 2575 ** this code only executes once. Because for a non-constant 2576 ** expression we need to rerun this code each time. 2577 */ 2578 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 2579 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 2580 jmpIfDynamic = -1; 2581 } 2582 2583 /* Evaluate the expression and insert it into the temp table */ 2584 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 2585 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 2586 }else{ 2587 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2588 if( isRowid ){ 2589 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2590 sqlite3VdbeCurrentAddr(v)+2); 2591 VdbeCoverage(v); 2592 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 2593 }else{ 2594 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2595 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 2596 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1); 2597 } 2598 } 2599 } 2600 sqlite3ReleaseTempReg(pParse, r1); 2601 sqlite3ReleaseTempReg(pParse, r2); 2602 } 2603 if( pKeyInfo ){ 2604 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2605 } 2606 break; 2607 } 2608 2609 case TK_EXISTS: 2610 case TK_SELECT: 2611 default: { 2612 /* Case 3: (SELECT ... FROM ...) 2613 ** or: EXISTS(SELECT ... FROM ...) 2614 ** 2615 ** For a SELECT, generate code to put the values for all columns of 2616 ** the first row into an array of registers and return the index of 2617 ** the first register. 2618 ** 2619 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2620 ** into a register and return that register number. 2621 ** 2622 ** In both cases, the query is augmented with "LIMIT 1". Any 2623 ** preexisting limit is discarded in place of the new LIMIT 1. 2624 */ 2625 Select *pSel; /* SELECT statement to encode */ 2626 SelectDest dest; /* How to deal with SELECT result */ 2627 int nReg; /* Registers to allocate */ 2628 2629 testcase( pExpr->op==TK_EXISTS ); 2630 testcase( pExpr->op==TK_SELECT ); 2631 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2632 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2633 2634 pSel = pExpr->x.pSelect; 2635 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2636 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2637 pParse->nMem += nReg; 2638 if( pExpr->op==TK_SELECT ){ 2639 dest.eDest = SRT_Mem; 2640 dest.iSdst = dest.iSDParm; 2641 dest.nSdst = nReg; 2642 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2643 VdbeComment((v, "Init subquery result")); 2644 }else{ 2645 dest.eDest = SRT_Exists; 2646 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2647 VdbeComment((v, "Init EXISTS result")); 2648 } 2649 sqlite3ExprDelete(pParse->db, pSel->pLimit); 2650 pSel->pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER, 2651 &sqlite3IntTokens[1], 0); 2652 pSel->iLimit = 0; 2653 pSel->selFlags &= ~SF_MultiValue; 2654 if( sqlite3Select(pParse, pSel, &dest) ){ 2655 return 0; 2656 } 2657 rReg = dest.iSDParm; 2658 ExprSetVVAProperty(pExpr, EP_NoReduce); 2659 break; 2660 } 2661 } 2662 2663 if( rHasNullFlag ){ 2664 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2665 } 2666 2667 if( jmpIfDynamic>=0 ){ 2668 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2669 } 2670 sqlite3ExprCachePop(pParse); 2671 2672 return rReg; 2673 } 2674 #endif /* SQLITE_OMIT_SUBQUERY */ 2675 2676 #ifndef SQLITE_OMIT_SUBQUERY 2677 /* 2678 ** Expr pIn is an IN(...) expression. This function checks that the 2679 ** sub-select on the RHS of the IN() operator has the same number of 2680 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 2681 ** a sub-query, that the LHS is a vector of size 1. 2682 */ 2683 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 2684 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 2685 if( (pIn->flags & EP_xIsSelect) ){ 2686 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 2687 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 2688 return 1; 2689 } 2690 }else if( nVector!=1 ){ 2691 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 2692 return 1; 2693 } 2694 return 0; 2695 } 2696 #endif 2697 2698 #ifndef SQLITE_OMIT_SUBQUERY 2699 /* 2700 ** Generate code for an IN expression. 2701 ** 2702 ** x IN (SELECT ...) 2703 ** x IN (value, value, ...) 2704 ** 2705 ** The left-hand side (LHS) is a scalar or vector expression. The 2706 ** right-hand side (RHS) is an array of zero or more scalar values, or a 2707 ** subquery. If the RHS is a subquery, the number of result columns must 2708 ** match the number of columns in the vector on the LHS. If the RHS is 2709 ** a list of values, the LHS must be a scalar. 2710 ** 2711 ** The IN operator is true if the LHS value is contained within the RHS. 2712 ** The result is false if the LHS is definitely not in the RHS. The 2713 ** result is NULL if the presence of the LHS in the RHS cannot be 2714 ** determined due to NULLs. 2715 ** 2716 ** This routine generates code that jumps to destIfFalse if the LHS is not 2717 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2718 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2719 ** within the RHS then fall through. 2720 ** 2721 ** See the separate in-operator.md documentation file in the canonical 2722 ** SQLite source tree for additional information. 2723 */ 2724 static void sqlite3ExprCodeIN( 2725 Parse *pParse, /* Parsing and code generating context */ 2726 Expr *pExpr, /* The IN expression */ 2727 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2728 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2729 ){ 2730 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2731 int eType; /* Type of the RHS */ 2732 int rLhs; /* Register(s) holding the LHS values */ 2733 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 2734 Vdbe *v; /* Statement under construction */ 2735 int *aiMap = 0; /* Map from vector field to index column */ 2736 char *zAff = 0; /* Affinity string for comparisons */ 2737 int nVector; /* Size of vectors for this IN operator */ 2738 int iDummy; /* Dummy parameter to exprCodeVector() */ 2739 Expr *pLeft; /* The LHS of the IN operator */ 2740 int i; /* loop counter */ 2741 int destStep2; /* Where to jump when NULLs seen in step 2 */ 2742 int destStep6 = 0; /* Start of code for Step 6 */ 2743 int addrTruthOp; /* Address of opcode that determines the IN is true */ 2744 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 2745 int addrTop; /* Top of the step-6 loop */ 2746 2747 pLeft = pExpr->pLeft; 2748 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 2749 zAff = exprINAffinity(pParse, pExpr); 2750 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 2751 aiMap = (int*)sqlite3DbMallocZero( 2752 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 2753 ); 2754 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 2755 2756 /* Attempt to compute the RHS. After this step, if anything other than 2757 ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable 2758 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 2759 ** the RHS has not yet been coded. */ 2760 v = pParse->pVdbe; 2761 assert( v!=0 ); /* OOM detected prior to this routine */ 2762 VdbeNoopComment((v, "begin IN expr")); 2763 eType = sqlite3FindInIndex(pParse, pExpr, 2764 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2765 destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap); 2766 2767 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 2768 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 2769 ); 2770 #ifdef SQLITE_DEBUG 2771 /* Confirm that aiMap[] contains nVector integer values between 0 and 2772 ** nVector-1. */ 2773 for(i=0; i<nVector; i++){ 2774 int j, cnt; 2775 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 2776 assert( cnt==1 ); 2777 } 2778 #endif 2779 2780 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 2781 ** vector, then it is stored in an array of nVector registers starting 2782 ** at r1. 2783 ** 2784 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 2785 ** so that the fields are in the same order as an existing index. The 2786 ** aiMap[] array contains a mapping from the original LHS field order to 2787 ** the field order that matches the RHS index. 2788 */ 2789 sqlite3ExprCachePush(pParse); 2790 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 2791 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 2792 if( i==nVector ){ 2793 /* LHS fields are not reordered */ 2794 rLhs = rLhsOrig; 2795 }else{ 2796 /* Need to reorder the LHS fields according to aiMap */ 2797 rLhs = sqlite3GetTempRange(pParse, nVector); 2798 for(i=0; i<nVector; i++){ 2799 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 2800 } 2801 } 2802 2803 /* If sqlite3FindInIndex() did not find or create an index that is 2804 ** suitable for evaluating the IN operator, then evaluate using a 2805 ** sequence of comparisons. 2806 ** 2807 ** This is step (1) in the in-operator.md optimized algorithm. 2808 */ 2809 if( eType==IN_INDEX_NOOP ){ 2810 ExprList *pList = pExpr->x.pList; 2811 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2812 int labelOk = sqlite3VdbeMakeLabel(v); 2813 int r2, regToFree; 2814 int regCkNull = 0; 2815 int ii; 2816 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2817 if( destIfNull!=destIfFalse ){ 2818 regCkNull = sqlite3GetTempReg(pParse); 2819 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 2820 } 2821 for(ii=0; ii<pList->nExpr; ii++){ 2822 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2823 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2824 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2825 } 2826 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2827 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 2828 (void*)pColl, P4_COLLSEQ); 2829 VdbeCoverageIf(v, ii<pList->nExpr-1); 2830 VdbeCoverageIf(v, ii==pList->nExpr-1); 2831 sqlite3VdbeChangeP5(v, zAff[0]); 2832 }else{ 2833 assert( destIfNull==destIfFalse ); 2834 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 2835 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2836 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 2837 } 2838 sqlite3ReleaseTempReg(pParse, regToFree); 2839 } 2840 if( regCkNull ){ 2841 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2842 sqlite3VdbeGoto(v, destIfFalse); 2843 } 2844 sqlite3VdbeResolveLabel(v, labelOk); 2845 sqlite3ReleaseTempReg(pParse, regCkNull); 2846 goto sqlite3ExprCodeIN_finished; 2847 } 2848 2849 /* Step 2: Check to see if the LHS contains any NULL columns. If the 2850 ** LHS does contain NULLs then the result must be either FALSE or NULL. 2851 ** We will then skip the binary search of the RHS. 2852 */ 2853 if( destIfNull==destIfFalse ){ 2854 destStep2 = destIfFalse; 2855 }else{ 2856 destStep2 = destStep6 = sqlite3VdbeMakeLabel(v); 2857 } 2858 for(i=0; i<nVector; i++){ 2859 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 2860 if( sqlite3ExprCanBeNull(p) ){ 2861 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 2862 VdbeCoverage(v); 2863 } 2864 } 2865 2866 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 2867 ** of the RHS using the LHS as a probe. If found, the result is 2868 ** true. 2869 */ 2870 if( eType==IN_INDEX_ROWID ){ 2871 /* In this case, the RHS is the ROWID of table b-tree and so we also 2872 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 2873 ** into a single opcode. */ 2874 sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs); 2875 VdbeCoverage(v); 2876 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 2877 }else{ 2878 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 2879 if( destIfFalse==destIfNull ){ 2880 /* Combine Step 3 and Step 5 into a single opcode */ 2881 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, 2882 rLhs, nVector); VdbeCoverage(v); 2883 goto sqlite3ExprCodeIN_finished; 2884 } 2885 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 2886 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, 2887 rLhs, nVector); VdbeCoverage(v); 2888 } 2889 2890 /* Step 4. If the RHS is known to be non-NULL and we did not find 2891 ** an match on the search above, then the result must be FALSE. 2892 */ 2893 if( rRhsHasNull && nVector==1 ){ 2894 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 2895 VdbeCoverage(v); 2896 } 2897 2898 /* Step 5. If we do not care about the difference between NULL and 2899 ** FALSE, then just return false. 2900 */ 2901 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 2902 2903 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 2904 ** If any comparison is NULL, then the result is NULL. If all 2905 ** comparisons are FALSE then the final result is FALSE. 2906 ** 2907 ** For a scalar LHS, it is sufficient to check just the first row 2908 ** of the RHS. 2909 */ 2910 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 2911 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2912 VdbeCoverage(v); 2913 if( nVector>1 ){ 2914 destNotNull = sqlite3VdbeMakeLabel(v); 2915 }else{ 2916 /* For nVector==1, combine steps 6 and 7 by immediately returning 2917 ** FALSE if the first comparison is not NULL */ 2918 destNotNull = destIfFalse; 2919 } 2920 for(i=0; i<nVector; i++){ 2921 Expr *p; 2922 CollSeq *pColl; 2923 int r3 = sqlite3GetTempReg(pParse); 2924 p = sqlite3VectorFieldSubexpr(pLeft, i); 2925 pColl = sqlite3ExprCollSeq(pParse, p); 2926 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3); 2927 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 2928 (void*)pColl, P4_COLLSEQ); 2929 VdbeCoverage(v); 2930 sqlite3ReleaseTempReg(pParse, r3); 2931 } 2932 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 2933 if( nVector>1 ){ 2934 sqlite3VdbeResolveLabel(v, destNotNull); 2935 sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1); 2936 VdbeCoverage(v); 2937 2938 /* Step 7: If we reach this point, we know that the result must 2939 ** be false. */ 2940 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 2941 } 2942 2943 /* Jumps here in order to return true. */ 2944 sqlite3VdbeJumpHere(v, addrTruthOp); 2945 2946 sqlite3ExprCodeIN_finished: 2947 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 2948 sqlite3ExprCachePop(pParse); 2949 VdbeComment((v, "end IN expr")); 2950 sqlite3ExprCodeIN_oom_error: 2951 sqlite3DbFree(pParse->db, aiMap); 2952 sqlite3DbFree(pParse->db, zAff); 2953 } 2954 #endif /* SQLITE_OMIT_SUBQUERY */ 2955 2956 #ifndef SQLITE_OMIT_FLOATING_POINT 2957 /* 2958 ** Generate an instruction that will put the floating point 2959 ** value described by z[0..n-1] into register iMem. 2960 ** 2961 ** The z[] string will probably not be zero-terminated. But the 2962 ** z[n] character is guaranteed to be something that does not look 2963 ** like the continuation of the number. 2964 */ 2965 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2966 if( ALWAYS(z!=0) ){ 2967 double value; 2968 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2969 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2970 if( negateFlag ) value = -value; 2971 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 2972 } 2973 } 2974 #endif 2975 2976 2977 /* 2978 ** Generate an instruction that will put the integer describe by 2979 ** text z[0..n-1] into register iMem. 2980 ** 2981 ** Expr.u.zToken is always UTF8 and zero-terminated. 2982 */ 2983 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2984 Vdbe *v = pParse->pVdbe; 2985 if( pExpr->flags & EP_IntValue ){ 2986 int i = pExpr->u.iValue; 2987 assert( i>=0 ); 2988 if( negFlag ) i = -i; 2989 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2990 }else{ 2991 int c; 2992 i64 value; 2993 const char *z = pExpr->u.zToken; 2994 assert( z!=0 ); 2995 c = sqlite3DecOrHexToI64(z, &value); 2996 if( c==1 || (c==2 && !negFlag) || (negFlag && value==SMALLEST_INT64)){ 2997 #ifdef SQLITE_OMIT_FLOATING_POINT 2998 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2999 #else 3000 #ifndef SQLITE_OMIT_HEX_INTEGER 3001 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3002 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3003 }else 3004 #endif 3005 { 3006 codeReal(v, z, negFlag, iMem); 3007 } 3008 #endif 3009 }else{ 3010 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 3011 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3012 } 3013 } 3014 } 3015 3016 /* 3017 ** Erase column-cache entry number i 3018 */ 3019 static void cacheEntryClear(Parse *pParse, int i){ 3020 if( pParse->aColCache[i].tempReg ){ 3021 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3022 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3023 } 3024 } 3025 pParse->nColCache--; 3026 if( i<pParse->nColCache ){ 3027 pParse->aColCache[i] = pParse->aColCache[pParse->nColCache]; 3028 } 3029 } 3030 3031 3032 /* 3033 ** Record in the column cache that a particular column from a 3034 ** particular table is stored in a particular register. 3035 */ 3036 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 3037 int i; 3038 int minLru; 3039 int idxLru; 3040 struct yColCache *p; 3041 3042 /* Unless an error has occurred, register numbers are always positive. */ 3043 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 3044 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 3045 3046 /* The SQLITE_ColumnCache flag disables the column cache. This is used 3047 ** for testing only - to verify that SQLite always gets the same answer 3048 ** with and without the column cache. 3049 */ 3050 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 3051 3052 /* First replace any existing entry. 3053 ** 3054 ** Actually, the way the column cache is currently used, we are guaranteed 3055 ** that the object will never already be in cache. Verify this guarantee. 3056 */ 3057 #ifndef NDEBUG 3058 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3059 assert( p->iTable!=iTab || p->iColumn!=iCol ); 3060 } 3061 #endif 3062 3063 /* If the cache is already full, delete the least recently used entry */ 3064 if( pParse->nColCache>=SQLITE_N_COLCACHE ){ 3065 minLru = 0x7fffffff; 3066 idxLru = -1; 3067 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 3068 if( p->lru<minLru ){ 3069 idxLru = i; 3070 minLru = p->lru; 3071 } 3072 } 3073 p = &pParse->aColCache[idxLru]; 3074 }else{ 3075 p = &pParse->aColCache[pParse->nColCache++]; 3076 } 3077 3078 /* Add the new entry to the end of the cache */ 3079 p->iLevel = pParse->iCacheLevel; 3080 p->iTable = iTab; 3081 p->iColumn = iCol; 3082 p->iReg = iReg; 3083 p->tempReg = 0; 3084 p->lru = pParse->iCacheCnt++; 3085 } 3086 3087 /* 3088 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 3089 ** Purge the range of registers from the column cache. 3090 */ 3091 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 3092 int i = 0; 3093 while( i<pParse->nColCache ){ 3094 struct yColCache *p = &pParse->aColCache[i]; 3095 if( p->iReg >= iReg && p->iReg < iReg+nReg ){ 3096 cacheEntryClear(pParse, i); 3097 }else{ 3098 i++; 3099 } 3100 } 3101 } 3102 3103 /* 3104 ** Remember the current column cache context. Any new entries added 3105 ** added to the column cache after this call are removed when the 3106 ** corresponding pop occurs. 3107 */ 3108 void sqlite3ExprCachePush(Parse *pParse){ 3109 pParse->iCacheLevel++; 3110 #ifdef SQLITE_DEBUG 3111 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3112 printf("PUSH to %d\n", pParse->iCacheLevel); 3113 } 3114 #endif 3115 } 3116 3117 /* 3118 ** Remove from the column cache any entries that were added since the 3119 ** the previous sqlite3ExprCachePush operation. In other words, restore 3120 ** the cache to the state it was in prior the most recent Push. 3121 */ 3122 void sqlite3ExprCachePop(Parse *pParse){ 3123 int i = 0; 3124 assert( pParse->iCacheLevel>=1 ); 3125 pParse->iCacheLevel--; 3126 #ifdef SQLITE_DEBUG 3127 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3128 printf("POP to %d\n", pParse->iCacheLevel); 3129 } 3130 #endif 3131 while( i<pParse->nColCache ){ 3132 if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){ 3133 cacheEntryClear(pParse, i); 3134 }else{ 3135 i++; 3136 } 3137 } 3138 } 3139 3140 /* 3141 ** When a cached column is reused, make sure that its register is 3142 ** no longer available as a temp register. ticket #3879: that same 3143 ** register might be in the cache in multiple places, so be sure to 3144 ** get them all. 3145 */ 3146 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 3147 int i; 3148 struct yColCache *p; 3149 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3150 if( p->iReg==iReg ){ 3151 p->tempReg = 0; 3152 } 3153 } 3154 } 3155 3156 /* Generate code that will load into register regOut a value that is 3157 ** appropriate for the iIdxCol-th column of index pIdx. 3158 */ 3159 void sqlite3ExprCodeLoadIndexColumn( 3160 Parse *pParse, /* The parsing context */ 3161 Index *pIdx, /* The index whose column is to be loaded */ 3162 int iTabCur, /* Cursor pointing to a table row */ 3163 int iIdxCol, /* The column of the index to be loaded */ 3164 int regOut /* Store the index column value in this register */ 3165 ){ 3166 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3167 if( iTabCol==XN_EXPR ){ 3168 assert( pIdx->aColExpr ); 3169 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3170 pParse->iSelfTab = iTabCur; 3171 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3172 }else{ 3173 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3174 iTabCol, regOut); 3175 } 3176 } 3177 3178 /* 3179 ** Generate code to extract the value of the iCol-th column of a table. 3180 */ 3181 void sqlite3ExprCodeGetColumnOfTable( 3182 Vdbe *v, /* The VDBE under construction */ 3183 Table *pTab, /* The table containing the value */ 3184 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3185 int iCol, /* Index of the column to extract */ 3186 int regOut /* Extract the value into this register */ 3187 ){ 3188 if( iCol<0 || iCol==pTab->iPKey ){ 3189 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3190 }else{ 3191 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 3192 int x = iCol; 3193 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ 3194 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3195 } 3196 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3197 } 3198 if( iCol>=0 ){ 3199 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3200 } 3201 } 3202 3203 /* 3204 ** Generate code that will extract the iColumn-th column from 3205 ** table pTab and store the column value in a register. 3206 ** 3207 ** An effort is made to store the column value in register iReg. This 3208 ** is not garanteeed for GetColumn() - the result can be stored in 3209 ** any register. But the result is guaranteed to land in register iReg 3210 ** for GetColumnToReg(). 3211 ** 3212 ** There must be an open cursor to pTab in iTable when this routine 3213 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3214 */ 3215 int sqlite3ExprCodeGetColumn( 3216 Parse *pParse, /* Parsing and code generating context */ 3217 Table *pTab, /* Description of the table we are reading from */ 3218 int iColumn, /* Index of the table column */ 3219 int iTable, /* The cursor pointing to the table */ 3220 int iReg, /* Store results here */ 3221 u8 p5 /* P5 value for OP_Column + FLAGS */ 3222 ){ 3223 Vdbe *v = pParse->pVdbe; 3224 int i; 3225 struct yColCache *p; 3226 3227 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3228 if( p->iTable==iTable && p->iColumn==iColumn ){ 3229 p->lru = pParse->iCacheCnt++; 3230 sqlite3ExprCachePinRegister(pParse, p->iReg); 3231 return p->iReg; 3232 } 3233 } 3234 assert( v!=0 ); 3235 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 3236 if( p5 ){ 3237 sqlite3VdbeChangeP5(v, p5); 3238 }else{ 3239 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 3240 } 3241 return iReg; 3242 } 3243 void sqlite3ExprCodeGetColumnToReg( 3244 Parse *pParse, /* Parsing and code generating context */ 3245 Table *pTab, /* Description of the table we are reading from */ 3246 int iColumn, /* Index of the table column */ 3247 int iTable, /* The cursor pointing to the table */ 3248 int iReg /* Store results here */ 3249 ){ 3250 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); 3251 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); 3252 } 3253 3254 3255 /* 3256 ** Clear all column cache entries. 3257 */ 3258 void sqlite3ExprCacheClear(Parse *pParse){ 3259 int i; 3260 3261 #if SQLITE_DEBUG 3262 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3263 printf("CLEAR\n"); 3264 } 3265 #endif 3266 for(i=0; i<pParse->nColCache; i++){ 3267 if( pParse->aColCache[i].tempReg 3268 && pParse->nTempReg<ArraySize(pParse->aTempReg) 3269 ){ 3270 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3271 } 3272 } 3273 pParse->nColCache = 0; 3274 } 3275 3276 /* 3277 ** Record the fact that an affinity change has occurred on iCount 3278 ** registers starting with iStart. 3279 */ 3280 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 3281 sqlite3ExprCacheRemove(pParse, iStart, iCount); 3282 } 3283 3284 /* 3285 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3286 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 3287 */ 3288 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3289 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 3290 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3291 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 3292 } 3293 3294 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 3295 /* 3296 ** Return true if any register in the range iFrom..iTo (inclusive) 3297 ** is used as part of the column cache. 3298 ** 3299 ** This routine is used within assert() and testcase() macros only 3300 ** and does not appear in a normal build. 3301 */ 3302 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 3303 int i; 3304 struct yColCache *p; 3305 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3306 int r = p->iReg; 3307 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 3308 } 3309 return 0; 3310 } 3311 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 3312 3313 3314 /* 3315 ** Convert a scalar expression node to a TK_REGISTER referencing 3316 ** register iReg. The caller must ensure that iReg already contains 3317 ** the correct value for the expression. 3318 */ 3319 static void exprToRegister(Expr *p, int iReg){ 3320 p->op2 = p->op; 3321 p->op = TK_REGISTER; 3322 p->iTable = iReg; 3323 ExprClearProperty(p, EP_Skip); 3324 } 3325 3326 /* 3327 ** Evaluate an expression (either a vector or a scalar expression) and store 3328 ** the result in continguous temporary registers. Return the index of 3329 ** the first register used to store the result. 3330 ** 3331 ** If the returned result register is a temporary scalar, then also write 3332 ** that register number into *piFreeable. If the returned result register 3333 ** is not a temporary or if the expression is a vector set *piFreeable 3334 ** to 0. 3335 */ 3336 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3337 int iResult; 3338 int nResult = sqlite3ExprVectorSize(p); 3339 if( nResult==1 ){ 3340 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3341 }else{ 3342 *piFreeable = 0; 3343 if( p->op==TK_SELECT ){ 3344 iResult = sqlite3CodeSubselect(pParse, p, 0, 0); 3345 }else{ 3346 int i; 3347 iResult = pParse->nMem+1; 3348 pParse->nMem += nResult; 3349 for(i=0; i<nResult; i++){ 3350 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3351 } 3352 } 3353 } 3354 return iResult; 3355 } 3356 3357 3358 /* 3359 ** Generate code into the current Vdbe to evaluate the given 3360 ** expression. Attempt to store the results in register "target". 3361 ** Return the register where results are stored. 3362 ** 3363 ** With this routine, there is no guarantee that results will 3364 ** be stored in target. The result might be stored in some other 3365 ** register if it is convenient to do so. The calling function 3366 ** must check the return code and move the results to the desired 3367 ** register. 3368 */ 3369 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3370 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3371 int op; /* The opcode being coded */ 3372 int inReg = target; /* Results stored in register inReg */ 3373 int regFree1 = 0; /* If non-zero free this temporary register */ 3374 int regFree2 = 0; /* If non-zero free this temporary register */ 3375 int r1, r2; /* Various register numbers */ 3376 Expr tempX; /* Temporary expression node */ 3377 int p5 = 0; 3378 3379 assert( target>0 && target<=pParse->nMem ); 3380 if( v==0 ){ 3381 assert( pParse->db->mallocFailed ); 3382 return 0; 3383 } 3384 3385 if( pExpr==0 ){ 3386 op = TK_NULL; 3387 }else{ 3388 op = pExpr->op; 3389 } 3390 switch( op ){ 3391 case TK_AGG_COLUMN: { 3392 AggInfo *pAggInfo = pExpr->pAggInfo; 3393 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3394 if( !pAggInfo->directMode ){ 3395 assert( pCol->iMem>0 ); 3396 return pCol->iMem; 3397 }else if( pAggInfo->useSortingIdx ){ 3398 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3399 pCol->iSorterColumn, target); 3400 return target; 3401 } 3402 /* Otherwise, fall thru into the TK_COLUMN case */ 3403 } 3404 case TK_COLUMN: { 3405 int iTab = pExpr->iTable; 3406 if( iTab<0 ){ 3407 if( pParse->ckBase>0 ){ 3408 /* Generating CHECK constraints or inserting into partial index */ 3409 return pExpr->iColumn + pParse->ckBase; 3410 }else{ 3411 /* Coding an expression that is part of an index where column names 3412 ** in the index refer to the table to which the index belongs */ 3413 iTab = pParse->iSelfTab; 3414 } 3415 } 3416 return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 3417 pExpr->iColumn, iTab, target, 3418 pExpr->op2); 3419 } 3420 case TK_INTEGER: { 3421 codeInteger(pParse, pExpr, 0, target); 3422 return target; 3423 } 3424 #ifndef SQLITE_OMIT_FLOATING_POINT 3425 case TK_FLOAT: { 3426 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3427 codeReal(v, pExpr->u.zToken, 0, target); 3428 return target; 3429 } 3430 #endif 3431 case TK_STRING: { 3432 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3433 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3434 return target; 3435 } 3436 case TK_NULL: { 3437 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3438 return target; 3439 } 3440 #ifndef SQLITE_OMIT_BLOB_LITERAL 3441 case TK_BLOB: { 3442 int n; 3443 const char *z; 3444 char *zBlob; 3445 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3446 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3447 assert( pExpr->u.zToken[1]=='\'' ); 3448 z = &pExpr->u.zToken[2]; 3449 n = sqlite3Strlen30(z) - 1; 3450 assert( z[n]=='\'' ); 3451 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3452 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3453 return target; 3454 } 3455 #endif 3456 case TK_VARIABLE: { 3457 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3458 assert( pExpr->u.zToken!=0 ); 3459 assert( pExpr->u.zToken[0]!=0 ); 3460 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3461 if( pExpr->u.zToken[1]!=0 ){ 3462 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3463 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); 3464 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3465 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3466 } 3467 return target; 3468 } 3469 case TK_REGISTER: { 3470 return pExpr->iTable; 3471 } 3472 #ifndef SQLITE_OMIT_CAST 3473 case TK_CAST: { 3474 /* Expressions of the form: CAST(pLeft AS token) */ 3475 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3476 if( inReg!=target ){ 3477 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3478 inReg = target; 3479 } 3480 sqlite3VdbeAddOp2(v, OP_Cast, target, 3481 sqlite3AffinityType(pExpr->u.zToken, 0)); 3482 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 3483 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 3484 return inReg; 3485 } 3486 #endif /* SQLITE_OMIT_CAST */ 3487 case TK_IS: 3488 case TK_ISNOT: 3489 op = (op==TK_IS) ? TK_EQ : TK_NE; 3490 p5 = SQLITE_NULLEQ; 3491 /* fall-through */ 3492 case TK_LT: 3493 case TK_LE: 3494 case TK_GT: 3495 case TK_GE: 3496 case TK_NE: 3497 case TK_EQ: { 3498 Expr *pLeft = pExpr->pLeft; 3499 if( sqlite3ExprIsVector(pLeft) ){ 3500 codeVectorCompare(pParse, pExpr, target, op, p5); 3501 }else{ 3502 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3503 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3504 codeCompare(pParse, pLeft, pExpr->pRight, op, 3505 r1, r2, inReg, SQLITE_STOREP2 | p5); 3506 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3507 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3508 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3509 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3510 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3511 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3512 testcase( regFree1==0 ); 3513 testcase( regFree2==0 ); 3514 } 3515 break; 3516 } 3517 case TK_AND: 3518 case TK_OR: 3519 case TK_PLUS: 3520 case TK_STAR: 3521 case TK_MINUS: 3522 case TK_REM: 3523 case TK_BITAND: 3524 case TK_BITOR: 3525 case TK_SLASH: 3526 case TK_LSHIFT: 3527 case TK_RSHIFT: 3528 case TK_CONCAT: { 3529 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3530 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3531 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3532 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3533 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3534 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3535 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3536 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3537 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3538 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3539 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3540 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3541 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3542 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3543 testcase( regFree1==0 ); 3544 testcase( regFree2==0 ); 3545 break; 3546 } 3547 case TK_UMINUS: { 3548 Expr *pLeft = pExpr->pLeft; 3549 assert( pLeft ); 3550 if( pLeft->op==TK_INTEGER ){ 3551 codeInteger(pParse, pLeft, 1, target); 3552 return target; 3553 #ifndef SQLITE_OMIT_FLOATING_POINT 3554 }else if( pLeft->op==TK_FLOAT ){ 3555 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3556 codeReal(v, pLeft->u.zToken, 1, target); 3557 return target; 3558 #endif 3559 }else{ 3560 tempX.op = TK_INTEGER; 3561 tempX.flags = EP_IntValue|EP_TokenOnly; 3562 tempX.u.iValue = 0; 3563 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3564 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3565 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3566 testcase( regFree2==0 ); 3567 } 3568 break; 3569 } 3570 case TK_BITNOT: 3571 case TK_NOT: { 3572 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3573 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3574 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3575 testcase( regFree1==0 ); 3576 sqlite3VdbeAddOp2(v, op, r1, inReg); 3577 break; 3578 } 3579 case TK_ISNULL: 3580 case TK_NOTNULL: { 3581 int addr; 3582 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3583 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3584 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3585 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3586 testcase( regFree1==0 ); 3587 addr = sqlite3VdbeAddOp1(v, op, r1); 3588 VdbeCoverageIf(v, op==TK_ISNULL); 3589 VdbeCoverageIf(v, op==TK_NOTNULL); 3590 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3591 sqlite3VdbeJumpHere(v, addr); 3592 break; 3593 } 3594 case TK_AGG_FUNCTION: { 3595 AggInfo *pInfo = pExpr->pAggInfo; 3596 if( pInfo==0 ){ 3597 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3598 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3599 }else{ 3600 return pInfo->aFunc[pExpr->iAgg].iMem; 3601 } 3602 break; 3603 } 3604 case TK_FUNCTION: { 3605 ExprList *pFarg; /* List of function arguments */ 3606 int nFarg; /* Number of function arguments */ 3607 FuncDef *pDef; /* The function definition object */ 3608 const char *zId; /* The function name */ 3609 u32 constMask = 0; /* Mask of function arguments that are constant */ 3610 int i; /* Loop counter */ 3611 sqlite3 *db = pParse->db; /* The database connection */ 3612 u8 enc = ENC(db); /* The text encoding used by this database */ 3613 CollSeq *pColl = 0; /* A collating sequence */ 3614 3615 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3616 /* SQL functions can be expensive. So try to move constant functions 3617 ** out of the inner loop, even if that means an extra OP_Copy. */ 3618 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3619 } 3620 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3621 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3622 pFarg = 0; 3623 }else{ 3624 pFarg = pExpr->x.pList; 3625 } 3626 nFarg = pFarg ? pFarg->nExpr : 0; 3627 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3628 zId = pExpr->u.zToken; 3629 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3630 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3631 if( pDef==0 && pParse->explain ){ 3632 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3633 } 3634 #endif 3635 if( pDef==0 || pDef->xFinalize!=0 ){ 3636 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3637 break; 3638 } 3639 3640 /* Attempt a direct implementation of the built-in COALESCE() and 3641 ** IFNULL() functions. This avoids unnecessary evaluation of 3642 ** arguments past the first non-NULL argument. 3643 */ 3644 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3645 int endCoalesce = sqlite3VdbeMakeLabel(v); 3646 assert( nFarg>=2 ); 3647 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3648 for(i=1; i<nFarg; i++){ 3649 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3650 VdbeCoverage(v); 3651 sqlite3ExprCacheRemove(pParse, target, 1); 3652 sqlite3ExprCachePush(pParse); 3653 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3654 sqlite3ExprCachePop(pParse); 3655 } 3656 sqlite3VdbeResolveLabel(v, endCoalesce); 3657 break; 3658 } 3659 3660 /* The UNLIKELY() function is a no-op. The result is the value 3661 ** of the first argument. 3662 */ 3663 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3664 assert( nFarg>=1 ); 3665 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3666 } 3667 3668 #ifdef SQLITE_DEBUG 3669 /* The AFFINITY() function evaluates to a string that describes 3670 ** the type affinity of the argument. This is used for testing of 3671 ** the SQLite type logic. 3672 */ 3673 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3674 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3675 char aff; 3676 assert( nFarg==1 ); 3677 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3678 sqlite3VdbeLoadString(v, target, 3679 aff ? azAff[aff-SQLITE_AFF_BLOB] : "none"); 3680 return target; 3681 } 3682 #endif 3683 3684 for(i=0; i<nFarg; i++){ 3685 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3686 testcase( i==31 ); 3687 constMask |= MASKBIT32(i); 3688 } 3689 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3690 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3691 } 3692 } 3693 if( pFarg ){ 3694 if( constMask ){ 3695 r1 = pParse->nMem+1; 3696 pParse->nMem += nFarg; 3697 }else{ 3698 r1 = sqlite3GetTempRange(pParse, nFarg); 3699 } 3700 3701 /* For length() and typeof() functions with a column argument, 3702 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3703 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3704 ** loading. 3705 */ 3706 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3707 u8 exprOp; 3708 assert( nFarg==1 ); 3709 assert( pFarg->a[0].pExpr!=0 ); 3710 exprOp = pFarg->a[0].pExpr->op; 3711 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3712 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3713 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3714 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3715 pFarg->a[0].pExpr->op2 = 3716 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3717 } 3718 } 3719 3720 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 3721 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3722 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3723 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 3724 }else{ 3725 r1 = 0; 3726 } 3727 #ifndef SQLITE_OMIT_VIRTUALTABLE 3728 /* Possibly overload the function if the first argument is 3729 ** a virtual table column. 3730 ** 3731 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3732 ** second argument, not the first, as the argument to test to 3733 ** see if it is a column in a virtual table. This is done because 3734 ** the left operand of infix functions (the operand we want to 3735 ** control overloading) ends up as the second argument to the 3736 ** function. The expression "A glob B" is equivalent to 3737 ** "glob(B,A). We want to use the A in "A glob B" to test 3738 ** for function overloading. But we use the B term in "glob(B,A)". 3739 */ 3740 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 3741 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3742 }else if( nFarg>0 ){ 3743 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3744 } 3745 #endif 3746 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3747 if( !pColl ) pColl = db->pDfltColl; 3748 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3749 } 3750 sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target, 3751 (char*)pDef, P4_FUNCDEF); 3752 sqlite3VdbeChangeP5(v, (u8)nFarg); 3753 if( nFarg && constMask==0 ){ 3754 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3755 } 3756 return target; 3757 } 3758 #ifndef SQLITE_OMIT_SUBQUERY 3759 case TK_EXISTS: 3760 case TK_SELECT: { 3761 int nCol; 3762 testcase( op==TK_EXISTS ); 3763 testcase( op==TK_SELECT ); 3764 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 3765 sqlite3SubselectError(pParse, nCol, 1); 3766 }else{ 3767 return sqlite3CodeSubselect(pParse, pExpr, 0, 0); 3768 } 3769 break; 3770 } 3771 case TK_SELECT_COLUMN: { 3772 int n; 3773 if( pExpr->pLeft->iTable==0 ){ 3774 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0); 3775 } 3776 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 3777 if( pExpr->iTable 3778 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 3779 ){ 3780 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 3781 pExpr->iTable, n); 3782 } 3783 return pExpr->pLeft->iTable + pExpr->iColumn; 3784 } 3785 case TK_IN: { 3786 int destIfFalse = sqlite3VdbeMakeLabel(v); 3787 int destIfNull = sqlite3VdbeMakeLabel(v); 3788 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3789 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3790 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3791 sqlite3VdbeResolveLabel(v, destIfFalse); 3792 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3793 sqlite3VdbeResolveLabel(v, destIfNull); 3794 return target; 3795 } 3796 #endif /* SQLITE_OMIT_SUBQUERY */ 3797 3798 3799 /* 3800 ** x BETWEEN y AND z 3801 ** 3802 ** This is equivalent to 3803 ** 3804 ** x>=y AND x<=z 3805 ** 3806 ** X is stored in pExpr->pLeft. 3807 ** Y is stored in pExpr->pList->a[0].pExpr. 3808 ** Z is stored in pExpr->pList->a[1].pExpr. 3809 */ 3810 case TK_BETWEEN: { 3811 exprCodeBetween(pParse, pExpr, target, 0, 0); 3812 return target; 3813 } 3814 case TK_SPAN: 3815 case TK_COLLATE: 3816 case TK_UPLUS: { 3817 return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3818 } 3819 3820 case TK_TRIGGER: { 3821 /* If the opcode is TK_TRIGGER, then the expression is a reference 3822 ** to a column in the new.* or old.* pseudo-tables available to 3823 ** trigger programs. In this case Expr.iTable is set to 1 for the 3824 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3825 ** is set to the column of the pseudo-table to read, or to -1 to 3826 ** read the rowid field. 3827 ** 3828 ** The expression is implemented using an OP_Param opcode. The p1 3829 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3830 ** to reference another column of the old.* pseudo-table, where 3831 ** i is the index of the column. For a new.rowid reference, p1 is 3832 ** set to (n+1), where n is the number of columns in each pseudo-table. 3833 ** For a reference to any other column in the new.* pseudo-table, p1 3834 ** is set to (n+2+i), where n and i are as defined previously. For 3835 ** example, if the table on which triggers are being fired is 3836 ** declared as: 3837 ** 3838 ** CREATE TABLE t1(a, b); 3839 ** 3840 ** Then p1 is interpreted as follows: 3841 ** 3842 ** p1==0 -> old.rowid p1==3 -> new.rowid 3843 ** p1==1 -> old.a p1==4 -> new.a 3844 ** p1==2 -> old.b p1==5 -> new.b 3845 */ 3846 Table *pTab = pExpr->pTab; 3847 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3848 3849 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3850 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3851 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3852 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3853 3854 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3855 VdbeComment((v, "%s.%s -> $%d", 3856 (pExpr->iTable ? "new" : "old"), 3857 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3858 target 3859 )); 3860 3861 #ifndef SQLITE_OMIT_FLOATING_POINT 3862 /* If the column has REAL affinity, it may currently be stored as an 3863 ** integer. Use OP_RealAffinity to make sure it is really real. 3864 ** 3865 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3866 ** floating point when extracting it from the record. */ 3867 if( pExpr->iColumn>=0 3868 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3869 ){ 3870 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3871 } 3872 #endif 3873 break; 3874 } 3875 3876 case TK_VECTOR: { 3877 sqlite3ErrorMsg(pParse, "row value misused"); 3878 break; 3879 } 3880 3881 /* 3882 ** Form A: 3883 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3884 ** 3885 ** Form B: 3886 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3887 ** 3888 ** Form A is can be transformed into the equivalent form B as follows: 3889 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3890 ** WHEN x=eN THEN rN ELSE y END 3891 ** 3892 ** X (if it exists) is in pExpr->pLeft. 3893 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3894 ** odd. The Y is also optional. If the number of elements in x.pList 3895 ** is even, then Y is omitted and the "otherwise" result is NULL. 3896 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3897 ** 3898 ** The result of the expression is the Ri for the first matching Ei, 3899 ** or if there is no matching Ei, the ELSE term Y, or if there is 3900 ** no ELSE term, NULL. 3901 */ 3902 default: assert( op==TK_CASE ); { 3903 int endLabel; /* GOTO label for end of CASE stmt */ 3904 int nextCase; /* GOTO label for next WHEN clause */ 3905 int nExpr; /* 2x number of WHEN terms */ 3906 int i; /* Loop counter */ 3907 ExprList *pEList; /* List of WHEN terms */ 3908 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3909 Expr opCompare; /* The X==Ei expression */ 3910 Expr *pX; /* The X expression */ 3911 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 3912 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 3913 3914 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 3915 assert(pExpr->x.pList->nExpr > 0); 3916 pEList = pExpr->x.pList; 3917 aListelem = pEList->a; 3918 nExpr = pEList->nExpr; 3919 endLabel = sqlite3VdbeMakeLabel(v); 3920 if( (pX = pExpr->pLeft)!=0 ){ 3921 tempX = *pX; 3922 testcase( pX->op==TK_COLUMN ); 3923 exprToRegister(&tempX, exprCodeVector(pParse, &tempX, ®Free1)); 3924 testcase( regFree1==0 ); 3925 memset(&opCompare, 0, sizeof(opCompare)); 3926 opCompare.op = TK_EQ; 3927 opCompare.pLeft = &tempX; 3928 pTest = &opCompare; 3929 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 3930 ** The value in regFree1 might get SCopy-ed into the file result. 3931 ** So make sure that the regFree1 register is not reused for other 3932 ** purposes and possibly overwritten. */ 3933 regFree1 = 0; 3934 } 3935 for(i=0; i<nExpr-1; i=i+2){ 3936 sqlite3ExprCachePush(pParse); 3937 if( pX ){ 3938 assert( pTest!=0 ); 3939 opCompare.pRight = aListelem[i].pExpr; 3940 }else{ 3941 pTest = aListelem[i].pExpr; 3942 } 3943 nextCase = sqlite3VdbeMakeLabel(v); 3944 testcase( pTest->op==TK_COLUMN ); 3945 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 3946 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 3947 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 3948 sqlite3VdbeGoto(v, endLabel); 3949 sqlite3ExprCachePop(pParse); 3950 sqlite3VdbeResolveLabel(v, nextCase); 3951 } 3952 if( (nExpr&1)!=0 ){ 3953 sqlite3ExprCachePush(pParse); 3954 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3955 sqlite3ExprCachePop(pParse); 3956 }else{ 3957 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3958 } 3959 assert( pParse->db->mallocFailed || pParse->nErr>0 3960 || pParse->iCacheLevel==iCacheLevel ); 3961 sqlite3VdbeResolveLabel(v, endLabel); 3962 break; 3963 } 3964 #ifndef SQLITE_OMIT_TRIGGER 3965 case TK_RAISE: { 3966 assert( pExpr->affinity==OE_Rollback 3967 || pExpr->affinity==OE_Abort 3968 || pExpr->affinity==OE_Fail 3969 || pExpr->affinity==OE_Ignore 3970 ); 3971 if( !pParse->pTriggerTab ){ 3972 sqlite3ErrorMsg(pParse, 3973 "RAISE() may only be used within a trigger-program"); 3974 return 0; 3975 } 3976 if( pExpr->affinity==OE_Abort ){ 3977 sqlite3MayAbort(pParse); 3978 } 3979 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3980 if( pExpr->affinity==OE_Ignore ){ 3981 sqlite3VdbeAddOp4( 3982 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 3983 VdbeCoverage(v); 3984 }else{ 3985 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 3986 pExpr->affinity, pExpr->u.zToken, 0, 0); 3987 } 3988 3989 break; 3990 } 3991 #endif 3992 } 3993 sqlite3ReleaseTempReg(pParse, regFree1); 3994 sqlite3ReleaseTempReg(pParse, regFree2); 3995 return inReg; 3996 } 3997 3998 /* 3999 ** Factor out the code of the given expression to initialization time. 4000 ** 4001 ** If regDest>=0 then the result is always stored in that register and the 4002 ** result is not reusable. If regDest<0 then this routine is free to 4003 ** store the value whereever it wants. The register where the expression 4004 ** is stored is returned. When regDest<0, two identical expressions will 4005 ** code to the same register. 4006 */ 4007 int sqlite3ExprCodeAtInit( 4008 Parse *pParse, /* Parsing context */ 4009 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4010 int regDest /* Store the value in this register */ 4011 ){ 4012 ExprList *p; 4013 assert( ConstFactorOk(pParse) ); 4014 p = pParse->pConstExpr; 4015 if( regDest<0 && p ){ 4016 struct ExprList_item *pItem; 4017 int i; 4018 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4019 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 4020 return pItem->u.iConstExprReg; 4021 } 4022 } 4023 } 4024 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4025 p = sqlite3ExprListAppend(pParse, p, pExpr); 4026 if( p ){ 4027 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4028 pItem->reusable = regDest<0; 4029 if( regDest<0 ) regDest = ++pParse->nMem; 4030 pItem->u.iConstExprReg = regDest; 4031 } 4032 pParse->pConstExpr = p; 4033 return regDest; 4034 } 4035 4036 /* 4037 ** Generate code to evaluate an expression and store the results 4038 ** into a register. Return the register number where the results 4039 ** are stored. 4040 ** 4041 ** If the register is a temporary register that can be deallocated, 4042 ** then write its number into *pReg. If the result register is not 4043 ** a temporary, then set *pReg to zero. 4044 ** 4045 ** If pExpr is a constant, then this routine might generate this 4046 ** code to fill the register in the initialization section of the 4047 ** VDBE program, in order to factor it out of the evaluation loop. 4048 */ 4049 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4050 int r2; 4051 pExpr = sqlite3ExprSkipCollate(pExpr); 4052 if( ConstFactorOk(pParse) 4053 && pExpr->op!=TK_REGISTER 4054 && sqlite3ExprIsConstantNotJoin(pExpr) 4055 ){ 4056 *pReg = 0; 4057 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4058 }else{ 4059 int r1 = sqlite3GetTempReg(pParse); 4060 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4061 if( r2==r1 ){ 4062 *pReg = r1; 4063 }else{ 4064 sqlite3ReleaseTempReg(pParse, r1); 4065 *pReg = 0; 4066 } 4067 } 4068 return r2; 4069 } 4070 4071 /* 4072 ** Generate code that will evaluate expression pExpr and store the 4073 ** results in register target. The results are guaranteed to appear 4074 ** in register target. 4075 */ 4076 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4077 int inReg; 4078 4079 assert( target>0 && target<=pParse->nMem ); 4080 if( pExpr && pExpr->op==TK_REGISTER ){ 4081 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 4082 }else{ 4083 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4084 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4085 if( inReg!=target && pParse->pVdbe ){ 4086 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4087 } 4088 } 4089 } 4090 4091 /* 4092 ** Make a transient copy of expression pExpr and then code it using 4093 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4094 ** except that the input expression is guaranteed to be unchanged. 4095 */ 4096 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4097 sqlite3 *db = pParse->db; 4098 pExpr = sqlite3ExprDup(db, pExpr, 0); 4099 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4100 sqlite3ExprDelete(db, pExpr); 4101 } 4102 4103 /* 4104 ** Generate code that will evaluate expression pExpr and store the 4105 ** results in register target. The results are guaranteed to appear 4106 ** in register target. If the expression is constant, then this routine 4107 ** might choose to code the expression at initialization time. 4108 */ 4109 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4110 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 4111 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4112 }else{ 4113 sqlite3ExprCode(pParse, pExpr, target); 4114 } 4115 } 4116 4117 /* 4118 ** Generate code that evaluates the given expression and puts the result 4119 ** in register target. 4120 ** 4121 ** Also make a copy of the expression results into another "cache" register 4122 ** and modify the expression so that the next time it is evaluated, 4123 ** the result is a copy of the cache register. 4124 ** 4125 ** This routine is used for expressions that are used multiple 4126 ** times. They are evaluated once and the results of the expression 4127 ** are reused. 4128 */ 4129 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 4130 Vdbe *v = pParse->pVdbe; 4131 int iMem; 4132 4133 assert( target>0 ); 4134 assert( pExpr->op!=TK_REGISTER ); 4135 sqlite3ExprCode(pParse, pExpr, target); 4136 iMem = ++pParse->nMem; 4137 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 4138 exprToRegister(pExpr, iMem); 4139 } 4140 4141 /* 4142 ** Generate code that pushes the value of every element of the given 4143 ** expression list into a sequence of registers beginning at target. 4144 ** 4145 ** Return the number of elements evaluated. 4146 ** 4147 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4148 ** filled using OP_SCopy. OP_Copy must be used instead. 4149 ** 4150 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4151 ** factored out into initialization code. 4152 ** 4153 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4154 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4155 ** in registers at srcReg, and so the value can be copied from there. 4156 */ 4157 int sqlite3ExprCodeExprList( 4158 Parse *pParse, /* Parsing context */ 4159 ExprList *pList, /* The expression list to be coded */ 4160 int target, /* Where to write results */ 4161 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4162 u8 flags /* SQLITE_ECEL_* flags */ 4163 ){ 4164 struct ExprList_item *pItem; 4165 int i, j, n; 4166 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4167 Vdbe *v = pParse->pVdbe; 4168 assert( pList!=0 ); 4169 assert( target>0 ); 4170 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4171 n = pList->nExpr; 4172 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4173 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4174 Expr *pExpr = pItem->pExpr; 4175 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4176 if( flags & SQLITE_ECEL_OMITREF ){ 4177 i--; 4178 n--; 4179 }else{ 4180 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4181 } 4182 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 4183 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4184 }else{ 4185 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4186 if( inReg!=target+i ){ 4187 VdbeOp *pOp; 4188 if( copyOp==OP_Copy 4189 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4190 && pOp->p1+pOp->p3+1==inReg 4191 && pOp->p2+pOp->p3+1==target+i 4192 ){ 4193 pOp->p3++; 4194 }else{ 4195 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4196 } 4197 } 4198 } 4199 } 4200 return n; 4201 } 4202 4203 /* 4204 ** Generate code for a BETWEEN operator. 4205 ** 4206 ** x BETWEEN y AND z 4207 ** 4208 ** The above is equivalent to 4209 ** 4210 ** x>=y AND x<=z 4211 ** 4212 ** Code it as such, taking care to do the common subexpression 4213 ** elimination of x. 4214 ** 4215 ** The xJumpIf parameter determines details: 4216 ** 4217 ** NULL: Store the boolean result in reg[dest] 4218 ** sqlite3ExprIfTrue: Jump to dest if true 4219 ** sqlite3ExprIfFalse: Jump to dest if false 4220 ** 4221 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4222 */ 4223 static void exprCodeBetween( 4224 Parse *pParse, /* Parsing and code generating context */ 4225 Expr *pExpr, /* The BETWEEN expression */ 4226 int dest, /* Jump destination or storage location */ 4227 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4228 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4229 ){ 4230 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4231 Expr compLeft; /* The x>=y term */ 4232 Expr compRight; /* The x<=z term */ 4233 Expr exprX; /* The x subexpression */ 4234 int regFree1 = 0; /* Temporary use register */ 4235 4236 4237 memset(&compLeft, 0, sizeof(Expr)); 4238 memset(&compRight, 0, sizeof(Expr)); 4239 memset(&exprAnd, 0, sizeof(Expr)); 4240 4241 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4242 exprX = *pExpr->pLeft; 4243 exprAnd.op = TK_AND; 4244 exprAnd.pLeft = &compLeft; 4245 exprAnd.pRight = &compRight; 4246 compLeft.op = TK_GE; 4247 compLeft.pLeft = &exprX; 4248 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4249 compRight.op = TK_LE; 4250 compRight.pLeft = &exprX; 4251 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4252 exprToRegister(&exprX, exprCodeVector(pParse, &exprX, ®Free1)); 4253 if( xJump ){ 4254 xJump(pParse, &exprAnd, dest, jumpIfNull); 4255 }else{ 4256 /* Mark the expression is being from the ON or USING clause of a join 4257 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4258 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4259 ** for clarity, but we are out of bits in the Expr.flags field so we 4260 ** have to reuse the EP_FromJoin bit. Bummer. */ 4261 exprX.flags |= EP_FromJoin; 4262 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4263 } 4264 sqlite3ReleaseTempReg(pParse, regFree1); 4265 4266 /* Ensure adequate test coverage */ 4267 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4268 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4269 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4270 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4271 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4272 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4273 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4274 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4275 testcase( xJump==0 ); 4276 } 4277 4278 /* 4279 ** Generate code for a boolean expression such that a jump is made 4280 ** to the label "dest" if the expression is true but execution 4281 ** continues straight thru if the expression is false. 4282 ** 4283 ** If the expression evaluates to NULL (neither true nor false), then 4284 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4285 ** 4286 ** This code depends on the fact that certain token values (ex: TK_EQ) 4287 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4288 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4289 ** the make process cause these values to align. Assert()s in the code 4290 ** below verify that the numbers are aligned correctly. 4291 */ 4292 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4293 Vdbe *v = pParse->pVdbe; 4294 int op = 0; 4295 int regFree1 = 0; 4296 int regFree2 = 0; 4297 int r1, r2; 4298 4299 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4300 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4301 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4302 op = pExpr->op; 4303 switch( op ){ 4304 case TK_AND: { 4305 int d2 = sqlite3VdbeMakeLabel(v); 4306 testcase( jumpIfNull==0 ); 4307 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 4308 sqlite3ExprCachePush(pParse); 4309 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4310 sqlite3VdbeResolveLabel(v, d2); 4311 sqlite3ExprCachePop(pParse); 4312 break; 4313 } 4314 case TK_OR: { 4315 testcase( jumpIfNull==0 ); 4316 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4317 sqlite3ExprCachePush(pParse); 4318 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4319 sqlite3ExprCachePop(pParse); 4320 break; 4321 } 4322 case TK_NOT: { 4323 testcase( jumpIfNull==0 ); 4324 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4325 break; 4326 } 4327 case TK_IS: 4328 case TK_ISNOT: 4329 testcase( op==TK_IS ); 4330 testcase( op==TK_ISNOT ); 4331 op = (op==TK_IS) ? TK_EQ : TK_NE; 4332 jumpIfNull = SQLITE_NULLEQ; 4333 /* Fall thru */ 4334 case TK_LT: 4335 case TK_LE: 4336 case TK_GT: 4337 case TK_GE: 4338 case TK_NE: 4339 case TK_EQ: { 4340 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4341 testcase( jumpIfNull==0 ); 4342 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4343 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4344 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4345 r1, r2, dest, jumpIfNull); 4346 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4347 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4348 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4349 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4350 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4351 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4352 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4353 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4354 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4355 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4356 testcase( regFree1==0 ); 4357 testcase( regFree2==0 ); 4358 break; 4359 } 4360 case TK_ISNULL: 4361 case TK_NOTNULL: { 4362 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4363 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4364 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4365 sqlite3VdbeAddOp2(v, op, r1, dest); 4366 VdbeCoverageIf(v, op==TK_ISNULL); 4367 VdbeCoverageIf(v, op==TK_NOTNULL); 4368 testcase( regFree1==0 ); 4369 break; 4370 } 4371 case TK_BETWEEN: { 4372 testcase( jumpIfNull==0 ); 4373 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4374 break; 4375 } 4376 #ifndef SQLITE_OMIT_SUBQUERY 4377 case TK_IN: { 4378 int destIfFalse = sqlite3VdbeMakeLabel(v); 4379 int destIfNull = jumpIfNull ? dest : destIfFalse; 4380 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4381 sqlite3VdbeGoto(v, dest); 4382 sqlite3VdbeResolveLabel(v, destIfFalse); 4383 break; 4384 } 4385 #endif 4386 default: { 4387 default_expr: 4388 if( exprAlwaysTrue(pExpr) ){ 4389 sqlite3VdbeGoto(v, dest); 4390 }else if( exprAlwaysFalse(pExpr) ){ 4391 /* No-op */ 4392 }else{ 4393 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4394 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4395 VdbeCoverage(v); 4396 testcase( regFree1==0 ); 4397 testcase( jumpIfNull==0 ); 4398 } 4399 break; 4400 } 4401 } 4402 sqlite3ReleaseTempReg(pParse, regFree1); 4403 sqlite3ReleaseTempReg(pParse, regFree2); 4404 } 4405 4406 /* 4407 ** Generate code for a boolean expression such that a jump is made 4408 ** to the label "dest" if the expression is false but execution 4409 ** continues straight thru if the expression is true. 4410 ** 4411 ** If the expression evaluates to NULL (neither true nor false) then 4412 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4413 ** is 0. 4414 */ 4415 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4416 Vdbe *v = pParse->pVdbe; 4417 int op = 0; 4418 int regFree1 = 0; 4419 int regFree2 = 0; 4420 int r1, r2; 4421 4422 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4423 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4424 if( pExpr==0 ) return; 4425 4426 /* The value of pExpr->op and op are related as follows: 4427 ** 4428 ** pExpr->op op 4429 ** --------- ---------- 4430 ** TK_ISNULL OP_NotNull 4431 ** TK_NOTNULL OP_IsNull 4432 ** TK_NE OP_Eq 4433 ** TK_EQ OP_Ne 4434 ** TK_GT OP_Le 4435 ** TK_LE OP_Gt 4436 ** TK_GE OP_Lt 4437 ** TK_LT OP_Ge 4438 ** 4439 ** For other values of pExpr->op, op is undefined and unused. 4440 ** The value of TK_ and OP_ constants are arranged such that we 4441 ** can compute the mapping above using the following expression. 4442 ** Assert()s verify that the computation is correct. 4443 */ 4444 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4445 4446 /* Verify correct alignment of TK_ and OP_ constants 4447 */ 4448 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4449 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4450 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4451 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4452 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4453 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4454 assert( pExpr->op!=TK_GT || op==OP_Le ); 4455 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4456 4457 switch( pExpr->op ){ 4458 case TK_AND: { 4459 testcase( jumpIfNull==0 ); 4460 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4461 sqlite3ExprCachePush(pParse); 4462 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4463 sqlite3ExprCachePop(pParse); 4464 break; 4465 } 4466 case TK_OR: { 4467 int d2 = sqlite3VdbeMakeLabel(v); 4468 testcase( jumpIfNull==0 ); 4469 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 4470 sqlite3ExprCachePush(pParse); 4471 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4472 sqlite3VdbeResolveLabel(v, d2); 4473 sqlite3ExprCachePop(pParse); 4474 break; 4475 } 4476 case TK_NOT: { 4477 testcase( jumpIfNull==0 ); 4478 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4479 break; 4480 } 4481 case TK_IS: 4482 case TK_ISNOT: 4483 testcase( pExpr->op==TK_IS ); 4484 testcase( pExpr->op==TK_ISNOT ); 4485 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4486 jumpIfNull = SQLITE_NULLEQ; 4487 /* Fall thru */ 4488 case TK_LT: 4489 case TK_LE: 4490 case TK_GT: 4491 case TK_GE: 4492 case TK_NE: 4493 case TK_EQ: { 4494 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4495 testcase( jumpIfNull==0 ); 4496 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4497 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4498 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4499 r1, r2, dest, jumpIfNull); 4500 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4501 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4502 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4503 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4504 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4505 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4506 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4507 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4508 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4509 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4510 testcase( regFree1==0 ); 4511 testcase( regFree2==0 ); 4512 break; 4513 } 4514 case TK_ISNULL: 4515 case TK_NOTNULL: { 4516 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4517 sqlite3VdbeAddOp2(v, op, r1, dest); 4518 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4519 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4520 testcase( regFree1==0 ); 4521 break; 4522 } 4523 case TK_BETWEEN: { 4524 testcase( jumpIfNull==0 ); 4525 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4526 break; 4527 } 4528 #ifndef SQLITE_OMIT_SUBQUERY 4529 case TK_IN: { 4530 if( jumpIfNull ){ 4531 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4532 }else{ 4533 int destIfNull = sqlite3VdbeMakeLabel(v); 4534 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4535 sqlite3VdbeResolveLabel(v, destIfNull); 4536 } 4537 break; 4538 } 4539 #endif 4540 default: { 4541 default_expr: 4542 if( exprAlwaysFalse(pExpr) ){ 4543 sqlite3VdbeGoto(v, dest); 4544 }else if( exprAlwaysTrue(pExpr) ){ 4545 /* no-op */ 4546 }else{ 4547 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4548 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4549 VdbeCoverage(v); 4550 testcase( regFree1==0 ); 4551 testcase( jumpIfNull==0 ); 4552 } 4553 break; 4554 } 4555 } 4556 sqlite3ReleaseTempReg(pParse, regFree1); 4557 sqlite3ReleaseTempReg(pParse, regFree2); 4558 } 4559 4560 /* 4561 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4562 ** code generation, and that copy is deleted after code generation. This 4563 ** ensures that the original pExpr is unchanged. 4564 */ 4565 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4566 sqlite3 *db = pParse->db; 4567 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4568 if( db->mallocFailed==0 ){ 4569 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4570 } 4571 sqlite3ExprDelete(db, pCopy); 4572 } 4573 4574 4575 /* 4576 ** Do a deep comparison of two expression trees. Return 0 if the two 4577 ** expressions are completely identical. Return 1 if they differ only 4578 ** by a COLLATE operator at the top level. Return 2 if there are differences 4579 ** other than the top-level COLLATE operator. 4580 ** 4581 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4582 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4583 ** 4584 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4585 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4586 ** 4587 ** Sometimes this routine will return 2 even if the two expressions 4588 ** really are equivalent. If we cannot prove that the expressions are 4589 ** identical, we return 2 just to be safe. So if this routine 4590 ** returns 2, then you do not really know for certain if the two 4591 ** expressions are the same. But if you get a 0 or 1 return, then you 4592 ** can be sure the expressions are the same. In the places where 4593 ** this routine is used, it does not hurt to get an extra 2 - that 4594 ** just might result in some slightly slower code. But returning 4595 ** an incorrect 0 or 1 could lead to a malfunction. 4596 */ 4597 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 4598 u32 combinedFlags; 4599 if( pA==0 || pB==0 ){ 4600 return pB==pA ? 0 : 2; 4601 } 4602 combinedFlags = pA->flags | pB->flags; 4603 if( combinedFlags & EP_IntValue ){ 4604 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 4605 return 0; 4606 } 4607 return 2; 4608 } 4609 if( pA->op!=pB->op ){ 4610 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 4611 return 1; 4612 } 4613 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 4614 return 1; 4615 } 4616 return 2; 4617 } 4618 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 4619 if( pA->op==TK_FUNCTION ){ 4620 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4621 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4622 return pA->op==TK_COLLATE ? 1 : 2; 4623 } 4624 } 4625 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4626 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 4627 if( combinedFlags & EP_xIsSelect ) return 2; 4628 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 4629 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 4630 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4631 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ 4632 if( pA->iColumn!=pB->iColumn ) return 2; 4633 if( pA->iTable!=pB->iTable 4634 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4635 } 4636 } 4637 return 0; 4638 } 4639 4640 /* 4641 ** Compare two ExprList objects. Return 0 if they are identical and 4642 ** non-zero if they differ in any way. 4643 ** 4644 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4645 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4646 ** 4647 ** This routine might return non-zero for equivalent ExprLists. The 4648 ** only consequence will be disabled optimizations. But this routine 4649 ** must never return 0 if the two ExprList objects are different, or 4650 ** a malfunction will result. 4651 ** 4652 ** Two NULL pointers are considered to be the same. But a NULL pointer 4653 ** always differs from a non-NULL pointer. 4654 */ 4655 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4656 int i; 4657 if( pA==0 && pB==0 ) return 0; 4658 if( pA==0 || pB==0 ) return 1; 4659 if( pA->nExpr!=pB->nExpr ) return 1; 4660 for(i=0; i<pA->nExpr; i++){ 4661 Expr *pExprA = pA->a[i].pExpr; 4662 Expr *pExprB = pB->a[i].pExpr; 4663 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 4664 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 4665 } 4666 return 0; 4667 } 4668 4669 /* 4670 ** Return true if we can prove the pE2 will always be true if pE1 is 4671 ** true. Return false if we cannot complete the proof or if pE2 might 4672 ** be false. Examples: 4673 ** 4674 ** pE1: x==5 pE2: x==5 Result: true 4675 ** pE1: x>0 pE2: x==5 Result: false 4676 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 4677 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 4678 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 4679 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 4680 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 4681 ** 4682 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 4683 ** Expr.iTable<0 then assume a table number given by iTab. 4684 ** 4685 ** When in doubt, return false. Returning true might give a performance 4686 ** improvement. Returning false might cause a performance reduction, but 4687 ** it will always give the correct answer and is hence always safe. 4688 */ 4689 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 4690 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 4691 return 1; 4692 } 4693 if( pE2->op==TK_OR 4694 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 4695 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 4696 ){ 4697 return 1; 4698 } 4699 if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){ 4700 Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft); 4701 testcase( pX!=pE1->pLeft ); 4702 if( sqlite3ExprCompare(pX, pE2->pLeft, iTab)==0 ) return 1; 4703 } 4704 return 0; 4705 } 4706 4707 /* 4708 ** An instance of the following structure is used by the tree walker 4709 ** to determine if an expression can be evaluated by reference to the 4710 ** index only, without having to do a search for the corresponding 4711 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 4712 ** is the cursor for the table. 4713 */ 4714 struct IdxCover { 4715 Index *pIdx; /* The index to be tested for coverage */ 4716 int iCur; /* Cursor number for the table corresponding to the index */ 4717 }; 4718 4719 /* 4720 ** Check to see if there are references to columns in table 4721 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 4722 ** pWalker->u.pIdxCover->pIdx. 4723 */ 4724 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 4725 if( pExpr->op==TK_COLUMN 4726 && pExpr->iTable==pWalker->u.pIdxCover->iCur 4727 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 4728 ){ 4729 pWalker->eCode = 1; 4730 return WRC_Abort; 4731 } 4732 return WRC_Continue; 4733 } 4734 4735 /* 4736 ** Determine if an index pIdx on table with cursor iCur contains will 4737 ** the expression pExpr. Return true if the index does cover the 4738 ** expression and false if the pExpr expression references table columns 4739 ** that are not found in the index pIdx. 4740 ** 4741 ** An index covering an expression means that the expression can be 4742 ** evaluated using only the index and without having to lookup the 4743 ** corresponding table entry. 4744 */ 4745 int sqlite3ExprCoveredByIndex( 4746 Expr *pExpr, /* The index to be tested */ 4747 int iCur, /* The cursor number for the corresponding table */ 4748 Index *pIdx /* The index that might be used for coverage */ 4749 ){ 4750 Walker w; 4751 struct IdxCover xcov; 4752 memset(&w, 0, sizeof(w)); 4753 xcov.iCur = iCur; 4754 xcov.pIdx = pIdx; 4755 w.xExprCallback = exprIdxCover; 4756 w.u.pIdxCover = &xcov; 4757 sqlite3WalkExpr(&w, pExpr); 4758 return !w.eCode; 4759 } 4760 4761 4762 /* 4763 ** An instance of the following structure is used by the tree walker 4764 ** to count references to table columns in the arguments of an 4765 ** aggregate function, in order to implement the 4766 ** sqlite3FunctionThisSrc() routine. 4767 */ 4768 struct SrcCount { 4769 SrcList *pSrc; /* One particular FROM clause in a nested query */ 4770 int nThis; /* Number of references to columns in pSrcList */ 4771 int nOther; /* Number of references to columns in other FROM clauses */ 4772 }; 4773 4774 /* 4775 ** Count the number of references to columns. 4776 */ 4777 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 4778 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 4779 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 4780 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 4781 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 4782 ** NEVER() will need to be removed. */ 4783 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 4784 int i; 4785 struct SrcCount *p = pWalker->u.pSrcCount; 4786 SrcList *pSrc = p->pSrc; 4787 int nSrc = pSrc ? pSrc->nSrc : 0; 4788 for(i=0; i<nSrc; i++){ 4789 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 4790 } 4791 if( i<nSrc ){ 4792 p->nThis++; 4793 }else{ 4794 p->nOther++; 4795 } 4796 } 4797 return WRC_Continue; 4798 } 4799 4800 /* 4801 ** Determine if any of the arguments to the pExpr Function reference 4802 ** pSrcList. Return true if they do. Also return true if the function 4803 ** has no arguments or has only constant arguments. Return false if pExpr 4804 ** references columns but not columns of tables found in pSrcList. 4805 */ 4806 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 4807 Walker w; 4808 struct SrcCount cnt; 4809 assert( pExpr->op==TK_AGG_FUNCTION ); 4810 memset(&w, 0, sizeof(w)); 4811 w.xExprCallback = exprSrcCount; 4812 w.u.pSrcCount = &cnt; 4813 cnt.pSrc = pSrcList; 4814 cnt.nThis = 0; 4815 cnt.nOther = 0; 4816 sqlite3WalkExprList(&w, pExpr->x.pList); 4817 return cnt.nThis>0 || cnt.nOther==0; 4818 } 4819 4820 /* 4821 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 4822 ** the new element. Return a negative number if malloc fails. 4823 */ 4824 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 4825 int i; 4826 pInfo->aCol = sqlite3ArrayAllocate( 4827 db, 4828 pInfo->aCol, 4829 sizeof(pInfo->aCol[0]), 4830 &pInfo->nColumn, 4831 &i 4832 ); 4833 return i; 4834 } 4835 4836 /* 4837 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 4838 ** the new element. Return a negative number if malloc fails. 4839 */ 4840 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 4841 int i; 4842 pInfo->aFunc = sqlite3ArrayAllocate( 4843 db, 4844 pInfo->aFunc, 4845 sizeof(pInfo->aFunc[0]), 4846 &pInfo->nFunc, 4847 &i 4848 ); 4849 return i; 4850 } 4851 4852 /* 4853 ** This is the xExprCallback for a tree walker. It is used to 4854 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 4855 ** for additional information. 4856 */ 4857 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 4858 int i; 4859 NameContext *pNC = pWalker->u.pNC; 4860 Parse *pParse = pNC->pParse; 4861 SrcList *pSrcList = pNC->pSrcList; 4862 AggInfo *pAggInfo = pNC->pAggInfo; 4863 4864 switch( pExpr->op ){ 4865 case TK_AGG_COLUMN: 4866 case TK_COLUMN: { 4867 testcase( pExpr->op==TK_AGG_COLUMN ); 4868 testcase( pExpr->op==TK_COLUMN ); 4869 /* Check to see if the column is in one of the tables in the FROM 4870 ** clause of the aggregate query */ 4871 if( ALWAYS(pSrcList!=0) ){ 4872 struct SrcList_item *pItem = pSrcList->a; 4873 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 4874 struct AggInfo_col *pCol; 4875 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4876 if( pExpr->iTable==pItem->iCursor ){ 4877 /* If we reach this point, it means that pExpr refers to a table 4878 ** that is in the FROM clause of the aggregate query. 4879 ** 4880 ** Make an entry for the column in pAggInfo->aCol[] if there 4881 ** is not an entry there already. 4882 */ 4883 int k; 4884 pCol = pAggInfo->aCol; 4885 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4886 if( pCol->iTable==pExpr->iTable && 4887 pCol->iColumn==pExpr->iColumn ){ 4888 break; 4889 } 4890 } 4891 if( (k>=pAggInfo->nColumn) 4892 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4893 ){ 4894 pCol = &pAggInfo->aCol[k]; 4895 pCol->pTab = pExpr->pTab; 4896 pCol->iTable = pExpr->iTable; 4897 pCol->iColumn = pExpr->iColumn; 4898 pCol->iMem = ++pParse->nMem; 4899 pCol->iSorterColumn = -1; 4900 pCol->pExpr = pExpr; 4901 if( pAggInfo->pGroupBy ){ 4902 int j, n; 4903 ExprList *pGB = pAggInfo->pGroupBy; 4904 struct ExprList_item *pTerm = pGB->a; 4905 n = pGB->nExpr; 4906 for(j=0; j<n; j++, pTerm++){ 4907 Expr *pE = pTerm->pExpr; 4908 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4909 pE->iColumn==pExpr->iColumn ){ 4910 pCol->iSorterColumn = j; 4911 break; 4912 } 4913 } 4914 } 4915 if( pCol->iSorterColumn<0 ){ 4916 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4917 } 4918 } 4919 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4920 ** because it was there before or because we just created it). 4921 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4922 ** pAggInfo->aCol[] entry. 4923 */ 4924 ExprSetVVAProperty(pExpr, EP_NoReduce); 4925 pExpr->pAggInfo = pAggInfo; 4926 pExpr->op = TK_AGG_COLUMN; 4927 pExpr->iAgg = (i16)k; 4928 break; 4929 } /* endif pExpr->iTable==pItem->iCursor */ 4930 } /* end loop over pSrcList */ 4931 } 4932 return WRC_Prune; 4933 } 4934 case TK_AGG_FUNCTION: { 4935 if( (pNC->ncFlags & NC_InAggFunc)==0 4936 && pWalker->walkerDepth==pExpr->op2 4937 ){ 4938 /* Check to see if pExpr is a duplicate of another aggregate 4939 ** function that is already in the pAggInfo structure 4940 */ 4941 struct AggInfo_func *pItem = pAggInfo->aFunc; 4942 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4943 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 4944 break; 4945 } 4946 } 4947 if( i>=pAggInfo->nFunc ){ 4948 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4949 */ 4950 u8 enc = ENC(pParse->db); 4951 i = addAggInfoFunc(pParse->db, pAggInfo); 4952 if( i>=0 ){ 4953 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4954 pItem = &pAggInfo->aFunc[i]; 4955 pItem->pExpr = pExpr; 4956 pItem->iMem = ++pParse->nMem; 4957 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4958 pItem->pFunc = sqlite3FindFunction(pParse->db, 4959 pExpr->u.zToken, 4960 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4961 if( pExpr->flags & EP_Distinct ){ 4962 pItem->iDistinct = pParse->nTab++; 4963 }else{ 4964 pItem->iDistinct = -1; 4965 } 4966 } 4967 } 4968 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4969 */ 4970 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4971 ExprSetVVAProperty(pExpr, EP_NoReduce); 4972 pExpr->iAgg = (i16)i; 4973 pExpr->pAggInfo = pAggInfo; 4974 return WRC_Prune; 4975 }else{ 4976 return WRC_Continue; 4977 } 4978 } 4979 } 4980 return WRC_Continue; 4981 } 4982 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4983 UNUSED_PARAMETER(pWalker); 4984 UNUSED_PARAMETER(pSelect); 4985 return WRC_Continue; 4986 } 4987 4988 /* 4989 ** Analyze the pExpr expression looking for aggregate functions and 4990 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4991 ** points to. Additional entries are made on the AggInfo object as 4992 ** necessary. 4993 ** 4994 ** This routine should only be called after the expression has been 4995 ** analyzed by sqlite3ResolveExprNames(). 4996 */ 4997 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4998 Walker w; 4999 memset(&w, 0, sizeof(w)); 5000 w.xExprCallback = analyzeAggregate; 5001 w.xSelectCallback = analyzeAggregatesInSelect; 5002 w.u.pNC = pNC; 5003 assert( pNC->pSrcList!=0 ); 5004 sqlite3WalkExpr(&w, pExpr); 5005 } 5006 5007 /* 5008 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5009 ** expression list. Return the number of errors. 5010 ** 5011 ** If an error is found, the analysis is cut short. 5012 */ 5013 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5014 struct ExprList_item *pItem; 5015 int i; 5016 if( pList ){ 5017 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5018 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5019 } 5020 } 5021 } 5022 5023 /* 5024 ** Allocate a single new register for use to hold some intermediate result. 5025 */ 5026 int sqlite3GetTempReg(Parse *pParse){ 5027 if( pParse->nTempReg==0 ){ 5028 return ++pParse->nMem; 5029 } 5030 return pParse->aTempReg[--pParse->nTempReg]; 5031 } 5032 5033 /* 5034 ** Deallocate a register, making available for reuse for some other 5035 ** purpose. 5036 ** 5037 ** If a register is currently being used by the column cache, then 5038 ** the deallocation is deferred until the column cache line that uses 5039 ** the register becomes stale. 5040 */ 5041 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5042 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5043 int i; 5044 struct yColCache *p; 5045 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 5046 if( p->iReg==iReg ){ 5047 p->tempReg = 1; 5048 return; 5049 } 5050 } 5051 pParse->aTempReg[pParse->nTempReg++] = iReg; 5052 } 5053 } 5054 5055 /* 5056 ** Allocate or deallocate a block of nReg consecutive registers. 5057 */ 5058 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5059 int i, n; 5060 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5061 i = pParse->iRangeReg; 5062 n = pParse->nRangeReg; 5063 if( nReg<=n ){ 5064 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 5065 pParse->iRangeReg += nReg; 5066 pParse->nRangeReg -= nReg; 5067 }else{ 5068 i = pParse->nMem+1; 5069 pParse->nMem += nReg; 5070 } 5071 return i; 5072 } 5073 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5074 if( nReg==1 ){ 5075 sqlite3ReleaseTempReg(pParse, iReg); 5076 return; 5077 } 5078 sqlite3ExprCacheRemove(pParse, iReg, nReg); 5079 if( nReg>pParse->nRangeReg ){ 5080 pParse->nRangeReg = nReg; 5081 pParse->iRangeReg = iReg; 5082 } 5083 } 5084 5085 /* 5086 ** Mark all temporary registers as being unavailable for reuse. 5087 */ 5088 void sqlite3ClearTempRegCache(Parse *pParse){ 5089 pParse->nTempReg = 0; 5090 pParse->nRangeReg = 0; 5091 } 5092 5093 /* 5094 ** Validate that no temporary register falls within the range of 5095 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5096 ** statements. 5097 */ 5098 #ifdef SQLITE_DEBUG 5099 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5100 int i; 5101 if( pParse->nRangeReg>0 5102 && pParse->iRangeReg+pParse->nRangeReg<iLast 5103 && pParse->iRangeReg>=iFirst 5104 ){ 5105 return 0; 5106 } 5107 for(i=0; i<pParse->nTempReg; i++){ 5108 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5109 return 0; 5110 } 5111 } 5112 return 1; 5113 } 5114 #endif /* SQLITE_DEBUG */ 5115