xref: /sqlite-3.40.0/src/expr.c (revision 666d34c7)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(Expr *pExpr){
46   int op;
47   pExpr = sqlite3ExprSkipCollate(pExpr);
48   if( pExpr->flags & EP_Generic ) return 0;
49   op = pExpr->op;
50   if( op==TK_SELECT ){
51     assert( pExpr->flags&EP_xIsSelect );
52     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
53   }
54   if( op==TK_REGISTER ) op = pExpr->op2;
55 #ifndef SQLITE_OMIT_CAST
56   if( op==TK_CAST ){
57     assert( !ExprHasProperty(pExpr, EP_IntValue) );
58     return sqlite3AffinityType(pExpr->u.zToken, 0);
59   }
60 #endif
61   if( op==TK_AGG_COLUMN || op==TK_COLUMN ){
62     return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn);
63   }
64   if( op==TK_SELECT_COLUMN ){
65     assert( pExpr->pLeft->flags&EP_xIsSelect );
66     return sqlite3ExprAffinity(
67         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
68     );
69   }
70   return pExpr->affinity;
71 }
72 
73 /*
74 ** Set the collating sequence for expression pExpr to be the collating
75 ** sequence named by pToken.   Return a pointer to a new Expr node that
76 ** implements the COLLATE operator.
77 **
78 ** If a memory allocation error occurs, that fact is recorded in pParse->db
79 ** and the pExpr parameter is returned unchanged.
80 */
81 Expr *sqlite3ExprAddCollateToken(
82   Parse *pParse,           /* Parsing context */
83   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
84   const Token *pCollName,  /* Name of collating sequence */
85   int dequote              /* True to dequote pCollName */
86 ){
87   if( pCollName->n>0 ){
88     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
89     if( pNew ){
90       pNew->pLeft = pExpr;
91       pNew->flags |= EP_Collate|EP_Skip;
92       pExpr = pNew;
93     }
94   }
95   return pExpr;
96 }
97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
98   Token s;
99   assert( zC!=0 );
100   sqlite3TokenInit(&s, (char*)zC);
101   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
102 }
103 
104 /*
105 ** Skip over any TK_COLLATE operators and any unlikely()
106 ** or likelihood() function at the root of an expression.
107 */
108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
109   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
110     if( ExprHasProperty(pExpr, EP_Unlikely) ){
111       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
112       assert( pExpr->x.pList->nExpr>0 );
113       assert( pExpr->op==TK_FUNCTION );
114       pExpr = pExpr->x.pList->a[0].pExpr;
115     }else{
116       assert( pExpr->op==TK_COLLATE );
117       pExpr = pExpr->pLeft;
118     }
119   }
120   return pExpr;
121 }
122 
123 /*
124 ** Return the collation sequence for the expression pExpr. If
125 ** there is no defined collating sequence, return NULL.
126 **
127 ** The collating sequence might be determined by a COLLATE operator
128 ** or by the presence of a column with a defined collating sequence.
129 ** COLLATE operators take first precedence.  Left operands take
130 ** precedence over right operands.
131 */
132 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
133   sqlite3 *db = pParse->db;
134   CollSeq *pColl = 0;
135   Expr *p = pExpr;
136   while( p ){
137     int op = p->op;
138     if( p->flags & EP_Generic ) break;
139     if( op==TK_CAST || op==TK_UPLUS ){
140       p = p->pLeft;
141       continue;
142     }
143     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
144       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
145       break;
146     }
147     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
148           || op==TK_REGISTER || op==TK_TRIGGER)
149      && p->pTab!=0
150     ){
151       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
152       ** a TK_COLUMN but was previously evaluated and cached in a register */
153       int j = p->iColumn;
154       if( j>=0 ){
155         const char *zColl = p->pTab->aCol[j].zColl;
156         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
157       }
158       break;
159     }
160     if( p->flags & EP_Collate ){
161       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
162         p = p->pLeft;
163       }else{
164         Expr *pNext  = p->pRight;
165         /* The Expr.x union is never used at the same time as Expr.pRight */
166         assert( p->x.pList==0 || p->pRight==0 );
167         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
168         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
169         ** least one EP_Collate. Thus the following two ALWAYS. */
170         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
171           int i;
172           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
173             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
174               pNext = p->x.pList->a[i].pExpr;
175               break;
176             }
177           }
178         }
179         p = pNext;
180       }
181     }else{
182       break;
183     }
184   }
185   if( sqlite3CheckCollSeq(pParse, pColl) ){
186     pColl = 0;
187   }
188   return pColl;
189 }
190 
191 /*
192 ** pExpr is an operand of a comparison operator.  aff2 is the
193 ** type affinity of the other operand.  This routine returns the
194 ** type affinity that should be used for the comparison operator.
195 */
196 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
197   char aff1 = sqlite3ExprAffinity(pExpr);
198   if( aff1 && aff2 ){
199     /* Both sides of the comparison are columns. If one has numeric
200     ** affinity, use that. Otherwise use no affinity.
201     */
202     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
203       return SQLITE_AFF_NUMERIC;
204     }else{
205       return SQLITE_AFF_BLOB;
206     }
207   }else if( !aff1 && !aff2 ){
208     /* Neither side of the comparison is a column.  Compare the
209     ** results directly.
210     */
211     return SQLITE_AFF_BLOB;
212   }else{
213     /* One side is a column, the other is not. Use the columns affinity. */
214     assert( aff1==0 || aff2==0 );
215     return (aff1 + aff2);
216   }
217 }
218 
219 /*
220 ** pExpr is a comparison operator.  Return the type affinity that should
221 ** be applied to both operands prior to doing the comparison.
222 */
223 static char comparisonAffinity(Expr *pExpr){
224   char aff;
225   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
226           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
227           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
228   assert( pExpr->pLeft );
229   aff = sqlite3ExprAffinity(pExpr->pLeft);
230   if( pExpr->pRight ){
231     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
232   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
233     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
234   }else if( NEVER(aff==0) ){
235     aff = SQLITE_AFF_BLOB;
236   }
237   return aff;
238 }
239 
240 /*
241 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
242 ** idx_affinity is the affinity of an indexed column. Return true
243 ** if the index with affinity idx_affinity may be used to implement
244 ** the comparison in pExpr.
245 */
246 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
247   char aff = comparisonAffinity(pExpr);
248   switch( aff ){
249     case SQLITE_AFF_BLOB:
250       return 1;
251     case SQLITE_AFF_TEXT:
252       return idx_affinity==SQLITE_AFF_TEXT;
253     default:
254       return sqlite3IsNumericAffinity(idx_affinity);
255   }
256 }
257 
258 /*
259 ** Return the P5 value that should be used for a binary comparison
260 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
261 */
262 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
263   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
264   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
265   return aff;
266 }
267 
268 /*
269 ** Return a pointer to the collation sequence that should be used by
270 ** a binary comparison operator comparing pLeft and pRight.
271 **
272 ** If the left hand expression has a collating sequence type, then it is
273 ** used. Otherwise the collation sequence for the right hand expression
274 ** is used, or the default (BINARY) if neither expression has a collating
275 ** type.
276 **
277 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
278 ** it is not considered.
279 */
280 CollSeq *sqlite3BinaryCompareCollSeq(
281   Parse *pParse,
282   Expr *pLeft,
283   Expr *pRight
284 ){
285   CollSeq *pColl;
286   assert( pLeft );
287   if( pLeft->flags & EP_Collate ){
288     pColl = sqlite3ExprCollSeq(pParse, pLeft);
289   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
290     pColl = sqlite3ExprCollSeq(pParse, pRight);
291   }else{
292     pColl = sqlite3ExprCollSeq(pParse, pLeft);
293     if( !pColl ){
294       pColl = sqlite3ExprCollSeq(pParse, pRight);
295     }
296   }
297   return pColl;
298 }
299 
300 /*
301 ** Generate code for a comparison operator.
302 */
303 static int codeCompare(
304   Parse *pParse,    /* The parsing (and code generating) context */
305   Expr *pLeft,      /* The left operand */
306   Expr *pRight,     /* The right operand */
307   int opcode,       /* The comparison opcode */
308   int in1, int in2, /* Register holding operands */
309   int dest,         /* Jump here if true.  */
310   int jumpIfNull    /* If true, jump if either operand is NULL */
311 ){
312   int p5;
313   int addr;
314   CollSeq *p4;
315 
316   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
317   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
318   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
319                            (void*)p4, P4_COLLSEQ);
320   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
321   return addr;
322 }
323 
324 /*
325 ** Return true if expression pExpr is a vector, or false otherwise.
326 **
327 ** A vector is defined as any expression that results in two or more
328 ** columns of result.  Every TK_VECTOR node is an vector because the
329 ** parser will not generate a TK_VECTOR with fewer than two entries.
330 ** But a TK_SELECT might be either a vector or a scalar. It is only
331 ** considered a vector if it has two or more result columns.
332 */
333 int sqlite3ExprIsVector(Expr *pExpr){
334   return sqlite3ExprVectorSize(pExpr)>1;
335 }
336 
337 /*
338 ** If the expression passed as the only argument is of type TK_VECTOR
339 ** return the number of expressions in the vector. Or, if the expression
340 ** is a sub-select, return the number of columns in the sub-select. For
341 ** any other type of expression, return 1.
342 */
343 int sqlite3ExprVectorSize(Expr *pExpr){
344   u8 op = pExpr->op;
345   if( op==TK_REGISTER ) op = pExpr->op2;
346   if( op==TK_VECTOR ){
347     return pExpr->x.pList->nExpr;
348   }else if( op==TK_SELECT ){
349     return pExpr->x.pSelect->pEList->nExpr;
350   }else{
351     return 1;
352   }
353 }
354 
355 #ifndef SQLITE_OMIT_SUBQUERY
356 /*
357 ** Return a pointer to a subexpression of pVector that is the i-th
358 ** column of the vector (numbered starting with 0).  The caller must
359 ** ensure that i is within range.
360 **
361 ** If pVector is really a scalar (and "scalar" here includes subqueries
362 ** that return a single column!) then return pVector unmodified.
363 **
364 ** pVector retains ownership of the returned subexpression.
365 **
366 ** If the vector is a (SELECT ...) then the expression returned is
367 ** just the expression for the i-th term of the result set, and may
368 ** not be ready for evaluation because the table cursor has not yet
369 ** been positioned.
370 */
371 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
372   assert( i<sqlite3ExprVectorSize(pVector) );
373   if( sqlite3ExprIsVector(pVector) ){
374     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
375     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
376       return pVector->x.pSelect->pEList->a[i].pExpr;
377     }else{
378       return pVector->x.pList->a[i].pExpr;
379     }
380   }
381   return pVector;
382 }
383 #endif /* !defined(SQLITE_OMIT_SUBQUERY) */
384 
385 #ifndef SQLITE_OMIT_SUBQUERY
386 /*
387 ** Compute and return a new Expr object which when passed to
388 ** sqlite3ExprCode() will generate all necessary code to compute
389 ** the iField-th column of the vector expression pVector.
390 **
391 ** It is ok for pVector to be a scalar (as long as iField==0).
392 ** In that case, this routine works like sqlite3ExprDup().
393 **
394 ** The caller owns the returned Expr object and is responsible for
395 ** ensuring that the returned value eventually gets freed.
396 **
397 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
398 ** then the returned object will reference pVector and so pVector must remain
399 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
400 ** or a scalar expression, then it can be deleted as soon as this routine
401 ** returns.
402 **
403 ** A trick to cause a TK_SELECT pVector to be deleted together with
404 ** the returned Expr object is to attach the pVector to the pRight field
405 ** of the returned TK_SELECT_COLUMN Expr object.
406 */
407 Expr *sqlite3ExprForVectorField(
408   Parse *pParse,       /* Parsing context */
409   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
410   int iField           /* Which column of the vector to return */
411 ){
412   Expr *pRet;
413   if( pVector->op==TK_SELECT ){
414     assert( pVector->flags & EP_xIsSelect );
415     /* The TK_SELECT_COLUMN Expr node:
416     **
417     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
418     ** pRight:          not used.  But recursively deleted.
419     ** iColumn:         Index of a column in pVector
420     ** iTable:          0 or the number of columns on the LHS of an assignment
421     ** pLeft->iTable:   First in an array of register holding result, or 0
422     **                  if the result is not yet computed.
423     **
424     ** sqlite3ExprDelete() specifically skips the recursive delete of
425     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
426     ** can be attached to pRight to cause this node to take ownership of
427     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
428     ** with the same pLeft pointer to the pVector, but only one of them
429     ** will own the pVector.
430     */
431     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
432     if( pRet ){
433       pRet->iColumn = iField;
434       pRet->pLeft = pVector;
435     }
436     assert( pRet==0 || pRet->iTable==0 );
437   }else{
438     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
439     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
440   }
441   return pRet;
442 }
443 #endif /* !define(SQLITE_OMIT_SUBQUERY) */
444 
445 /*
446 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
447 ** it. Return the register in which the result is stored (or, if the
448 ** sub-select returns more than one column, the first in an array
449 ** of registers in which the result is stored).
450 **
451 ** If pExpr is not a TK_SELECT expression, return 0.
452 */
453 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
454   int reg = 0;
455 #ifndef SQLITE_OMIT_SUBQUERY
456   if( pExpr->op==TK_SELECT ){
457     reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
458   }
459 #endif
460   return reg;
461 }
462 
463 /*
464 ** Argument pVector points to a vector expression - either a TK_VECTOR
465 ** or TK_SELECT that returns more than one column. This function returns
466 ** the register number of a register that contains the value of
467 ** element iField of the vector.
468 **
469 ** If pVector is a TK_SELECT expression, then code for it must have
470 ** already been generated using the exprCodeSubselect() routine. In this
471 ** case parameter regSelect should be the first in an array of registers
472 ** containing the results of the sub-select.
473 **
474 ** If pVector is of type TK_VECTOR, then code for the requested field
475 ** is generated. In this case (*pRegFree) may be set to the number of
476 ** a temporary register to be freed by the caller before returning.
477 **
478 ** Before returning, output parameter (*ppExpr) is set to point to the
479 ** Expr object corresponding to element iElem of the vector.
480 */
481 static int exprVectorRegister(
482   Parse *pParse,                  /* Parse context */
483   Expr *pVector,                  /* Vector to extract element from */
484   int iField,                     /* Field to extract from pVector */
485   int regSelect,                  /* First in array of registers */
486   Expr **ppExpr,                  /* OUT: Expression element */
487   int *pRegFree                   /* OUT: Temp register to free */
488 ){
489   u8 op = pVector->op;
490   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
491   if( op==TK_REGISTER ){
492     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
493     return pVector->iTable+iField;
494   }
495   if( op==TK_SELECT ){
496     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
497      return regSelect+iField;
498   }
499   *ppExpr = pVector->x.pList->a[iField].pExpr;
500   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
501 }
502 
503 /*
504 ** Expression pExpr is a comparison between two vector values. Compute
505 ** the result of the comparison (1, 0, or NULL) and write that
506 ** result into register dest.
507 **
508 ** The caller must satisfy the following preconditions:
509 **
510 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
511 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
512 **    otherwise:                op==pExpr->op and p5==0
513 */
514 static void codeVectorCompare(
515   Parse *pParse,        /* Code generator context */
516   Expr *pExpr,          /* The comparison operation */
517   int dest,             /* Write results into this register */
518   u8 op,                /* Comparison operator */
519   u8 p5                 /* SQLITE_NULLEQ or zero */
520 ){
521   Vdbe *v = pParse->pVdbe;
522   Expr *pLeft = pExpr->pLeft;
523   Expr *pRight = pExpr->pRight;
524   int nLeft = sqlite3ExprVectorSize(pLeft);
525   int i;
526   int regLeft = 0;
527   int regRight = 0;
528   u8 opx = op;
529   int addrDone = sqlite3VdbeMakeLabel(v);
530 
531   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
532     sqlite3ErrorMsg(pParse, "row value misused");
533     return;
534   }
535   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
536        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
537        || pExpr->op==TK_LT || pExpr->op==TK_GT
538        || pExpr->op==TK_LE || pExpr->op==TK_GE
539   );
540   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
541             || (pExpr->op==TK_ISNOT && op==TK_NE) );
542   assert( p5==0 || pExpr->op!=op );
543   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
544 
545   p5 |= SQLITE_STOREP2;
546   if( opx==TK_LE ) opx = TK_LT;
547   if( opx==TK_GE ) opx = TK_GT;
548 
549   regLeft = exprCodeSubselect(pParse, pLeft);
550   regRight = exprCodeSubselect(pParse, pRight);
551 
552   for(i=0; 1 /*Loop exits by "break"*/; i++){
553     int regFree1 = 0, regFree2 = 0;
554     Expr *pL, *pR;
555     int r1, r2;
556     assert( i>=0 && i<nLeft );
557     if( i>0 ) sqlite3ExprCachePush(pParse);
558     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
559     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
560     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5);
561     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
562     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
563     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
564     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
565     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
566     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
567     sqlite3ReleaseTempReg(pParse, regFree1);
568     sqlite3ReleaseTempReg(pParse, regFree2);
569     if( i>0 ) sqlite3ExprCachePop(pParse);
570     if( i==nLeft-1 ){
571       break;
572     }
573     if( opx==TK_EQ ){
574       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
575       p5 |= SQLITE_KEEPNULL;
576     }else if( opx==TK_NE ){
577       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
578       p5 |= SQLITE_KEEPNULL;
579     }else{
580       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
581       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
582       VdbeCoverageIf(v, op==TK_LT);
583       VdbeCoverageIf(v, op==TK_GT);
584       VdbeCoverageIf(v, op==TK_LE);
585       VdbeCoverageIf(v, op==TK_GE);
586       if( i==nLeft-2 ) opx = op;
587     }
588   }
589   sqlite3VdbeResolveLabel(v, addrDone);
590 }
591 
592 #if SQLITE_MAX_EXPR_DEPTH>0
593 /*
594 ** Check that argument nHeight is less than or equal to the maximum
595 ** expression depth allowed. If it is not, leave an error message in
596 ** pParse.
597 */
598 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
599   int rc = SQLITE_OK;
600   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
601   if( nHeight>mxHeight ){
602     sqlite3ErrorMsg(pParse,
603        "Expression tree is too large (maximum depth %d)", mxHeight
604     );
605     rc = SQLITE_ERROR;
606   }
607   return rc;
608 }
609 
610 /* The following three functions, heightOfExpr(), heightOfExprList()
611 ** and heightOfSelect(), are used to determine the maximum height
612 ** of any expression tree referenced by the structure passed as the
613 ** first argument.
614 **
615 ** If this maximum height is greater than the current value pointed
616 ** to by pnHeight, the second parameter, then set *pnHeight to that
617 ** value.
618 */
619 static void heightOfExpr(Expr *p, int *pnHeight){
620   if( p ){
621     if( p->nHeight>*pnHeight ){
622       *pnHeight = p->nHeight;
623     }
624   }
625 }
626 static void heightOfExprList(ExprList *p, int *pnHeight){
627   if( p ){
628     int i;
629     for(i=0; i<p->nExpr; i++){
630       heightOfExpr(p->a[i].pExpr, pnHeight);
631     }
632   }
633 }
634 static void heightOfSelect(Select *p, int *pnHeight){
635   if( p ){
636     heightOfExpr(p->pWhere, pnHeight);
637     heightOfExpr(p->pHaving, pnHeight);
638     heightOfExpr(p->pLimit, pnHeight);
639     heightOfExpr(p->pOffset, pnHeight);
640     heightOfExprList(p->pEList, pnHeight);
641     heightOfExprList(p->pGroupBy, pnHeight);
642     heightOfExprList(p->pOrderBy, pnHeight);
643     heightOfSelect(p->pPrior, pnHeight);
644   }
645 }
646 
647 /*
648 ** Set the Expr.nHeight variable in the structure passed as an
649 ** argument. An expression with no children, Expr.pList or
650 ** Expr.pSelect member has a height of 1. Any other expression
651 ** has a height equal to the maximum height of any other
652 ** referenced Expr plus one.
653 **
654 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
655 ** if appropriate.
656 */
657 static void exprSetHeight(Expr *p){
658   int nHeight = 0;
659   heightOfExpr(p->pLeft, &nHeight);
660   heightOfExpr(p->pRight, &nHeight);
661   if( ExprHasProperty(p, EP_xIsSelect) ){
662     heightOfSelect(p->x.pSelect, &nHeight);
663   }else if( p->x.pList ){
664     heightOfExprList(p->x.pList, &nHeight);
665     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
666   }
667   p->nHeight = nHeight + 1;
668 }
669 
670 /*
671 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
672 ** the height is greater than the maximum allowed expression depth,
673 ** leave an error in pParse.
674 **
675 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
676 ** Expr.flags.
677 */
678 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
679   if( pParse->nErr ) return;
680   exprSetHeight(p);
681   sqlite3ExprCheckHeight(pParse, p->nHeight);
682 }
683 
684 /*
685 ** Return the maximum height of any expression tree referenced
686 ** by the select statement passed as an argument.
687 */
688 int sqlite3SelectExprHeight(Select *p){
689   int nHeight = 0;
690   heightOfSelect(p, &nHeight);
691   return nHeight;
692 }
693 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
694 /*
695 ** Propagate all EP_Propagate flags from the Expr.x.pList into
696 ** Expr.flags.
697 */
698 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
699   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
700     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
701   }
702 }
703 #define exprSetHeight(y)
704 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
705 
706 /*
707 ** This routine is the core allocator for Expr nodes.
708 **
709 ** Construct a new expression node and return a pointer to it.  Memory
710 ** for this node and for the pToken argument is a single allocation
711 ** obtained from sqlite3DbMalloc().  The calling function
712 ** is responsible for making sure the node eventually gets freed.
713 **
714 ** If dequote is true, then the token (if it exists) is dequoted.
715 ** If dequote is false, no dequoting is performed.  The deQuote
716 ** parameter is ignored if pToken is NULL or if the token does not
717 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
718 ** then the EP_DblQuoted flag is set on the expression node.
719 **
720 ** Special case:  If op==TK_INTEGER and pToken points to a string that
721 ** can be translated into a 32-bit integer, then the token is not
722 ** stored in u.zToken.  Instead, the integer values is written
723 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
724 ** is allocated to hold the integer text and the dequote flag is ignored.
725 */
726 Expr *sqlite3ExprAlloc(
727   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
728   int op,                 /* Expression opcode */
729   const Token *pToken,    /* Token argument.  Might be NULL */
730   int dequote             /* True to dequote */
731 ){
732   Expr *pNew;
733   int nExtra = 0;
734   int iValue = 0;
735 
736   assert( db!=0 );
737   if( pToken ){
738     if( op!=TK_INTEGER || pToken->z==0
739           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
740       nExtra = pToken->n+1;
741       assert( iValue>=0 );
742     }
743   }
744   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
745   if( pNew ){
746     memset(pNew, 0, sizeof(Expr));
747     pNew->op = (u8)op;
748     pNew->iAgg = -1;
749     if( pToken ){
750       if( nExtra==0 ){
751         pNew->flags |= EP_IntValue;
752         pNew->u.iValue = iValue;
753       }else{
754         pNew->u.zToken = (char*)&pNew[1];
755         assert( pToken->z!=0 || pToken->n==0 );
756         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
757         pNew->u.zToken[pToken->n] = 0;
758         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
759           if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted;
760           sqlite3Dequote(pNew->u.zToken);
761         }
762       }
763     }
764 #if SQLITE_MAX_EXPR_DEPTH>0
765     pNew->nHeight = 1;
766 #endif
767   }
768   return pNew;
769 }
770 
771 /*
772 ** Allocate a new expression node from a zero-terminated token that has
773 ** already been dequoted.
774 */
775 Expr *sqlite3Expr(
776   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
777   int op,                 /* Expression opcode */
778   const char *zToken      /* Token argument.  Might be NULL */
779 ){
780   Token x;
781   x.z = zToken;
782   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
783   return sqlite3ExprAlloc(db, op, &x, 0);
784 }
785 
786 /*
787 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
788 **
789 ** If pRoot==NULL that means that a memory allocation error has occurred.
790 ** In that case, delete the subtrees pLeft and pRight.
791 */
792 void sqlite3ExprAttachSubtrees(
793   sqlite3 *db,
794   Expr *pRoot,
795   Expr *pLeft,
796   Expr *pRight
797 ){
798   if( pRoot==0 ){
799     assert( db->mallocFailed );
800     sqlite3ExprDelete(db, pLeft);
801     sqlite3ExprDelete(db, pRight);
802   }else{
803     if( pRight ){
804       pRoot->pRight = pRight;
805       pRoot->flags |= EP_Propagate & pRight->flags;
806     }
807     if( pLeft ){
808       pRoot->pLeft = pLeft;
809       pRoot->flags |= EP_Propagate & pLeft->flags;
810     }
811     exprSetHeight(pRoot);
812   }
813 }
814 
815 /*
816 ** Allocate an Expr node which joins as many as two subtrees.
817 **
818 ** One or both of the subtrees can be NULL.  Return a pointer to the new
819 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
820 ** free the subtrees and return NULL.
821 */
822 Expr *sqlite3PExpr(
823   Parse *pParse,          /* Parsing context */
824   int op,                 /* Expression opcode */
825   Expr *pLeft,            /* Left operand */
826   Expr *pRight            /* Right operand */
827 ){
828   Expr *p;
829   if( op==TK_AND && pParse->nErr==0 ){
830     /* Take advantage of short-circuit false optimization for AND */
831     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
832   }else{
833     p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
834     if( p ){
835       memset(p, 0, sizeof(Expr));
836       p->op = op & TKFLG_MASK;
837       p->iAgg = -1;
838     }
839     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
840   }
841   if( p ) {
842     sqlite3ExprCheckHeight(pParse, p->nHeight);
843   }
844   return p;
845 }
846 
847 /*
848 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
849 ** do a memory allocation failure) then delete the pSelect object.
850 */
851 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
852   if( pExpr ){
853     pExpr->x.pSelect = pSelect;
854     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
855     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
856   }else{
857     assert( pParse->db->mallocFailed );
858     sqlite3SelectDelete(pParse->db, pSelect);
859   }
860 }
861 
862 
863 /*
864 ** If the expression is always either TRUE or FALSE (respectively),
865 ** then return 1.  If one cannot determine the truth value of the
866 ** expression at compile-time return 0.
867 **
868 ** This is an optimization.  If is OK to return 0 here even if
869 ** the expression really is always false or false (a false negative).
870 ** But it is a bug to return 1 if the expression might have different
871 ** boolean values in different circumstances (a false positive.)
872 **
873 ** Note that if the expression is part of conditional for a
874 ** LEFT JOIN, then we cannot determine at compile-time whether or not
875 ** is it true or false, so always return 0.
876 */
877 static int exprAlwaysTrue(Expr *p){
878   int v = 0;
879   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
880   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
881   return v!=0;
882 }
883 static int exprAlwaysFalse(Expr *p){
884   int v = 0;
885   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
886   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
887   return v==0;
888 }
889 
890 /*
891 ** Join two expressions using an AND operator.  If either expression is
892 ** NULL, then just return the other expression.
893 **
894 ** If one side or the other of the AND is known to be false, then instead
895 ** of returning an AND expression, just return a constant expression with
896 ** a value of false.
897 */
898 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
899   if( pLeft==0 ){
900     return pRight;
901   }else if( pRight==0 ){
902     return pLeft;
903   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
904     sqlite3ExprDelete(db, pLeft);
905     sqlite3ExprDelete(db, pRight);
906     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
907   }else{
908     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
909     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
910     return pNew;
911   }
912 }
913 
914 /*
915 ** Construct a new expression node for a function with multiple
916 ** arguments.
917 */
918 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
919   Expr *pNew;
920   sqlite3 *db = pParse->db;
921   assert( pToken );
922   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
923   if( pNew==0 ){
924     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
925     return 0;
926   }
927   pNew->x.pList = pList;
928   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
929   sqlite3ExprSetHeightAndFlags(pParse, pNew);
930   return pNew;
931 }
932 
933 /*
934 ** Assign a variable number to an expression that encodes a wildcard
935 ** in the original SQL statement.
936 **
937 ** Wildcards consisting of a single "?" are assigned the next sequential
938 ** variable number.
939 **
940 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
941 ** sure "nnn" is not too big to avoid a denial of service attack when
942 ** the SQL statement comes from an external source.
943 **
944 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
945 ** as the previous instance of the same wildcard.  Or if this is the first
946 ** instance of the wildcard, the next sequential variable number is
947 ** assigned.
948 */
949 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
950   sqlite3 *db = pParse->db;
951   const char *z;
952   ynVar x;
953 
954   if( pExpr==0 ) return;
955   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
956   z = pExpr->u.zToken;
957   assert( z!=0 );
958   assert( z[0]!=0 );
959   assert( n==sqlite3Strlen30(z) );
960   if( z[1]==0 ){
961     /* Wildcard of the form "?".  Assign the next variable number */
962     assert( z[0]=='?' );
963     x = (ynVar)(++pParse->nVar);
964   }else{
965     int doAdd = 0;
966     if( z[0]=='?' ){
967       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
968       ** use it as the variable number */
969       i64 i;
970       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
971       x = (ynVar)i;
972       testcase( i==0 );
973       testcase( i==1 );
974       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
975       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
976       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
977         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
978             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
979         return;
980       }
981       if( x>pParse->nVar ){
982         pParse->nVar = (int)x;
983         doAdd = 1;
984       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
985         doAdd = 1;
986       }
987     }else{
988       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
989       ** number as the prior appearance of the same name, or if the name
990       ** has never appeared before, reuse the same variable number
991       */
992       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
993       if( x==0 ){
994         x = (ynVar)(++pParse->nVar);
995         doAdd = 1;
996       }
997     }
998     if( doAdd ){
999       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1000     }
1001   }
1002   pExpr->iColumn = x;
1003   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1004     sqlite3ErrorMsg(pParse, "too many SQL variables");
1005   }
1006 }
1007 
1008 /*
1009 ** Recursively delete an expression tree.
1010 */
1011 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1012   assert( p!=0 );
1013   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1014   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1015 #ifdef SQLITE_DEBUG
1016   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1017     assert( p->pLeft==0 );
1018     assert( p->pRight==0 );
1019     assert( p->x.pSelect==0 );
1020   }
1021 #endif
1022   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1023     /* The Expr.x union is never used at the same time as Expr.pRight */
1024     assert( p->x.pList==0 || p->pRight==0 );
1025     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1026     sqlite3ExprDelete(db, p->pRight);
1027     if( ExprHasProperty(p, EP_xIsSelect) ){
1028       sqlite3SelectDelete(db, p->x.pSelect);
1029     }else{
1030       sqlite3ExprListDelete(db, p->x.pList);
1031     }
1032   }
1033   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1034   if( !ExprHasProperty(p, EP_Static) ){
1035     sqlite3DbFree(db, p);
1036   }
1037 }
1038 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1039   if( p ) sqlite3ExprDeleteNN(db, p);
1040 }
1041 
1042 /*
1043 ** Return the number of bytes allocated for the expression structure
1044 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1045 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1046 */
1047 static int exprStructSize(Expr *p){
1048   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1049   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1050   return EXPR_FULLSIZE;
1051 }
1052 
1053 /*
1054 ** The dupedExpr*Size() routines each return the number of bytes required
1055 ** to store a copy of an expression or expression tree.  They differ in
1056 ** how much of the tree is measured.
1057 **
1058 **     dupedExprStructSize()     Size of only the Expr structure
1059 **     dupedExprNodeSize()       Size of Expr + space for token
1060 **     dupedExprSize()           Expr + token + subtree components
1061 **
1062 ***************************************************************************
1063 **
1064 ** The dupedExprStructSize() function returns two values OR-ed together:
1065 ** (1) the space required for a copy of the Expr structure only and
1066 ** (2) the EP_xxx flags that indicate what the structure size should be.
1067 ** The return values is always one of:
1068 **
1069 **      EXPR_FULLSIZE
1070 **      EXPR_REDUCEDSIZE   | EP_Reduced
1071 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1072 **
1073 ** The size of the structure can be found by masking the return value
1074 ** of this routine with 0xfff.  The flags can be found by masking the
1075 ** return value with EP_Reduced|EP_TokenOnly.
1076 **
1077 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1078 ** (unreduced) Expr objects as they or originally constructed by the parser.
1079 ** During expression analysis, extra information is computed and moved into
1080 ** later parts of teh Expr object and that extra information might get chopped
1081 ** off if the expression is reduced.  Note also that it does not work to
1082 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1083 ** to reduce a pristine expression tree from the parser.  The implementation
1084 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1085 ** to enforce this constraint.
1086 */
1087 static int dupedExprStructSize(Expr *p, int flags){
1088   int nSize;
1089   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1090   assert( EXPR_FULLSIZE<=0xfff );
1091   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1092   if( 0==flags || p->op==TK_SELECT_COLUMN ){
1093     nSize = EXPR_FULLSIZE;
1094   }else{
1095     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1096     assert( !ExprHasProperty(p, EP_FromJoin) );
1097     assert( !ExprHasProperty(p, EP_MemToken) );
1098     assert( !ExprHasProperty(p, EP_NoReduce) );
1099     if( p->pLeft || p->x.pList ){
1100       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1101     }else{
1102       assert( p->pRight==0 );
1103       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1104     }
1105   }
1106   return nSize;
1107 }
1108 
1109 /*
1110 ** This function returns the space in bytes required to store the copy
1111 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1112 ** string is defined.)
1113 */
1114 static int dupedExprNodeSize(Expr *p, int flags){
1115   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1116   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1117     nByte += sqlite3Strlen30(p->u.zToken)+1;
1118   }
1119   return ROUND8(nByte);
1120 }
1121 
1122 /*
1123 ** Return the number of bytes required to create a duplicate of the
1124 ** expression passed as the first argument. The second argument is a
1125 ** mask containing EXPRDUP_XXX flags.
1126 **
1127 ** The value returned includes space to create a copy of the Expr struct
1128 ** itself and the buffer referred to by Expr.u.zToken, if any.
1129 **
1130 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1131 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1132 ** and Expr.pRight variables (but not for any structures pointed to or
1133 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1134 */
1135 static int dupedExprSize(Expr *p, int flags){
1136   int nByte = 0;
1137   if( p ){
1138     nByte = dupedExprNodeSize(p, flags);
1139     if( flags&EXPRDUP_REDUCE ){
1140       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1141     }
1142   }
1143   return nByte;
1144 }
1145 
1146 /*
1147 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1148 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1149 ** to store the copy of expression p, the copies of p->u.zToken
1150 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1151 ** if any. Before returning, *pzBuffer is set to the first byte past the
1152 ** portion of the buffer copied into by this function.
1153 */
1154 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1155   Expr *pNew;           /* Value to return */
1156   u8 *zAlloc;           /* Memory space from which to build Expr object */
1157   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1158 
1159   assert( db!=0 );
1160   assert( p );
1161   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1162   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1163 
1164   /* Figure out where to write the new Expr structure. */
1165   if( pzBuffer ){
1166     zAlloc = *pzBuffer;
1167     staticFlag = EP_Static;
1168   }else{
1169     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1170     staticFlag = 0;
1171   }
1172   pNew = (Expr *)zAlloc;
1173 
1174   if( pNew ){
1175     /* Set nNewSize to the size allocated for the structure pointed to
1176     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1177     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1178     ** by the copy of the p->u.zToken string (if any).
1179     */
1180     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1181     const int nNewSize = nStructSize & 0xfff;
1182     int nToken;
1183     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1184       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1185     }else{
1186       nToken = 0;
1187     }
1188     if( dupFlags ){
1189       assert( ExprHasProperty(p, EP_Reduced)==0 );
1190       memcpy(zAlloc, p, nNewSize);
1191     }else{
1192       u32 nSize = (u32)exprStructSize(p);
1193       memcpy(zAlloc, p, nSize);
1194       if( nSize<EXPR_FULLSIZE ){
1195         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1196       }
1197     }
1198 
1199     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1200     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1201     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1202     pNew->flags |= staticFlag;
1203 
1204     /* Copy the p->u.zToken string, if any. */
1205     if( nToken ){
1206       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1207       memcpy(zToken, p->u.zToken, nToken);
1208     }
1209 
1210     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1211       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1212       if( ExprHasProperty(p, EP_xIsSelect) ){
1213         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1214       }else{
1215         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1216       }
1217     }
1218 
1219     /* Fill in pNew->pLeft and pNew->pRight. */
1220     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
1221       zAlloc += dupedExprNodeSize(p, dupFlags);
1222       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1223         pNew->pLeft = p->pLeft ?
1224                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1225         pNew->pRight = p->pRight ?
1226                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1227       }
1228       if( pzBuffer ){
1229         *pzBuffer = zAlloc;
1230       }
1231     }else{
1232       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1233         if( pNew->op==TK_SELECT_COLUMN ){
1234           pNew->pLeft = p->pLeft;
1235           assert( p->iColumn==0 || p->pRight==0 );
1236           assert( p->pRight==0  || p->pRight==p->pLeft );
1237         }else{
1238           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1239         }
1240         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1241       }
1242     }
1243   }
1244   return pNew;
1245 }
1246 
1247 /*
1248 ** Create and return a deep copy of the object passed as the second
1249 ** argument. If an OOM condition is encountered, NULL is returned
1250 ** and the db->mallocFailed flag set.
1251 */
1252 #ifndef SQLITE_OMIT_CTE
1253 static With *withDup(sqlite3 *db, With *p){
1254   With *pRet = 0;
1255   if( p ){
1256     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1257     pRet = sqlite3DbMallocZero(db, nByte);
1258     if( pRet ){
1259       int i;
1260       pRet->nCte = p->nCte;
1261       for(i=0; i<p->nCte; i++){
1262         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1263         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1264         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1265       }
1266     }
1267   }
1268   return pRet;
1269 }
1270 #else
1271 # define withDup(x,y) 0
1272 #endif
1273 
1274 /*
1275 ** The following group of routines make deep copies of expressions,
1276 ** expression lists, ID lists, and select statements.  The copies can
1277 ** be deleted (by being passed to their respective ...Delete() routines)
1278 ** without effecting the originals.
1279 **
1280 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1281 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1282 ** by subsequent calls to sqlite*ListAppend() routines.
1283 **
1284 ** Any tables that the SrcList might point to are not duplicated.
1285 **
1286 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1287 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1288 ** truncated version of the usual Expr structure that will be stored as
1289 ** part of the in-memory representation of the database schema.
1290 */
1291 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1292   assert( flags==0 || flags==EXPRDUP_REDUCE );
1293   return p ? exprDup(db, p, flags, 0) : 0;
1294 }
1295 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1296   ExprList *pNew;
1297   struct ExprList_item *pItem, *pOldItem;
1298   int i;
1299   Expr *pPriorSelectCol = 0;
1300   assert( db!=0 );
1301   if( p==0 ) return 0;
1302   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1303   if( pNew==0 ) return 0;
1304   pNew->nExpr = i = p->nExpr;
1305   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
1306   pNew->a = pItem = sqlite3DbMallocRawNN(db,  i*sizeof(p->a[0]) );
1307   if( pItem==0 ){
1308     sqlite3DbFree(db, pNew);
1309     return 0;
1310   }
1311   pOldItem = p->a;
1312   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1313     Expr *pOldExpr = pOldItem->pExpr;
1314     Expr *pNewExpr;
1315     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1316     if( pOldExpr
1317      && pOldExpr->op==TK_SELECT_COLUMN
1318      && (pNewExpr = pItem->pExpr)!=0
1319     ){
1320       assert( pNewExpr->iColumn==0 || i>0 );
1321       if( pNewExpr->iColumn==0 ){
1322         assert( pOldExpr->pLeft==pOldExpr->pRight );
1323         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1324       }else{
1325         assert( i>0 );
1326         assert( pItem[-1].pExpr!=0 );
1327         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1328         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1329         pNewExpr->pLeft = pPriorSelectCol;
1330       }
1331     }
1332     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1333     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1334     pItem->sortOrder = pOldItem->sortOrder;
1335     pItem->done = 0;
1336     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1337     pItem->u = pOldItem->u;
1338   }
1339   return pNew;
1340 }
1341 
1342 /*
1343 ** If cursors, triggers, views and subqueries are all omitted from
1344 ** the build, then none of the following routines, except for
1345 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1346 ** called with a NULL argument.
1347 */
1348 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1349  || !defined(SQLITE_OMIT_SUBQUERY)
1350 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1351   SrcList *pNew;
1352   int i;
1353   int nByte;
1354   assert( db!=0 );
1355   if( p==0 ) return 0;
1356   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1357   pNew = sqlite3DbMallocRawNN(db, nByte );
1358   if( pNew==0 ) return 0;
1359   pNew->nSrc = pNew->nAlloc = p->nSrc;
1360   for(i=0; i<p->nSrc; i++){
1361     struct SrcList_item *pNewItem = &pNew->a[i];
1362     struct SrcList_item *pOldItem = &p->a[i];
1363     Table *pTab;
1364     pNewItem->pSchema = pOldItem->pSchema;
1365     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1366     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1367     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1368     pNewItem->fg = pOldItem->fg;
1369     pNewItem->iCursor = pOldItem->iCursor;
1370     pNewItem->addrFillSub = pOldItem->addrFillSub;
1371     pNewItem->regReturn = pOldItem->regReturn;
1372     if( pNewItem->fg.isIndexedBy ){
1373       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1374     }
1375     pNewItem->pIBIndex = pOldItem->pIBIndex;
1376     if( pNewItem->fg.isTabFunc ){
1377       pNewItem->u1.pFuncArg =
1378           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1379     }
1380     pTab = pNewItem->pTab = pOldItem->pTab;
1381     if( pTab ){
1382       pTab->nTabRef++;
1383     }
1384     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1385     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1386     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1387     pNewItem->colUsed = pOldItem->colUsed;
1388   }
1389   return pNew;
1390 }
1391 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1392   IdList *pNew;
1393   int i;
1394   assert( db!=0 );
1395   if( p==0 ) return 0;
1396   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1397   if( pNew==0 ) return 0;
1398   pNew->nId = p->nId;
1399   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1400   if( pNew->a==0 ){
1401     sqlite3DbFree(db, pNew);
1402     return 0;
1403   }
1404   /* Note that because the size of the allocation for p->a[] is not
1405   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1406   ** on the duplicate created by this function. */
1407   for(i=0; i<p->nId; i++){
1408     struct IdList_item *pNewItem = &pNew->a[i];
1409     struct IdList_item *pOldItem = &p->a[i];
1410     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1411     pNewItem->idx = pOldItem->idx;
1412   }
1413   return pNew;
1414 }
1415 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1416   Select *pNew, *pPrior;
1417   assert( db!=0 );
1418   if( p==0 ) return 0;
1419   pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1420   if( pNew==0 ) return 0;
1421   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1422   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1423   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1424   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1425   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1426   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1427   pNew->op = p->op;
1428   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1429   if( pPrior ) pPrior->pNext = pNew;
1430   pNew->pNext = 0;
1431   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1432   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1433   pNew->iLimit = 0;
1434   pNew->iOffset = 0;
1435   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1436   pNew->addrOpenEphm[0] = -1;
1437   pNew->addrOpenEphm[1] = -1;
1438   pNew->nSelectRow = p->nSelectRow;
1439   pNew->pWith = withDup(db, p->pWith);
1440   sqlite3SelectSetName(pNew, p->zSelName);
1441   return pNew;
1442 }
1443 #else
1444 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1445   assert( p==0 );
1446   return 0;
1447 }
1448 #endif
1449 
1450 
1451 /*
1452 ** Add a new element to the end of an expression list.  If pList is
1453 ** initially NULL, then create a new expression list.
1454 **
1455 ** If a memory allocation error occurs, the entire list is freed and
1456 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1457 ** that the new entry was successfully appended.
1458 */
1459 ExprList *sqlite3ExprListAppend(
1460   Parse *pParse,          /* Parsing context */
1461   ExprList *pList,        /* List to which to append. Might be NULL */
1462   Expr *pExpr             /* Expression to be appended. Might be NULL */
1463 ){
1464   sqlite3 *db = pParse->db;
1465   assert( db!=0 );
1466   if( pList==0 ){
1467     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1468     if( pList==0 ){
1469       goto no_mem;
1470     }
1471     pList->nExpr = 0;
1472     pList->a = sqlite3DbMallocRawNN(db, sizeof(pList->a[0]));
1473     if( pList->a==0 ) goto no_mem;
1474   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1475     struct ExprList_item *a;
1476     assert( pList->nExpr>0 );
1477     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1478     if( a==0 ){
1479       goto no_mem;
1480     }
1481     pList->a = a;
1482   }
1483   assert( pList->a!=0 );
1484   if( 1 ){
1485     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1486     memset(pItem, 0, sizeof(*pItem));
1487     pItem->pExpr = pExpr;
1488   }
1489   return pList;
1490 
1491 no_mem:
1492   /* Avoid leaking memory if malloc has failed. */
1493   sqlite3ExprDelete(db, pExpr);
1494   sqlite3ExprListDelete(db, pList);
1495   return 0;
1496 }
1497 
1498 /*
1499 ** pColumns and pExpr form a vector assignment which is part of the SET
1500 ** clause of an UPDATE statement.  Like this:
1501 **
1502 **        (a,b,c) = (expr1,expr2,expr3)
1503 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1504 **
1505 ** For each term of the vector assignment, append new entries to the
1506 ** expression list pList.  In the case of a subquery on the RHS, append
1507 ** TK_SELECT_COLUMN expressions.
1508 */
1509 ExprList *sqlite3ExprListAppendVector(
1510   Parse *pParse,         /* Parsing context */
1511   ExprList *pList,       /* List to which to append. Might be NULL */
1512   IdList *pColumns,      /* List of names of LHS of the assignment */
1513   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1514 ){
1515   sqlite3 *db = pParse->db;
1516   int n;
1517   int i;
1518   int iFirst = pList ? pList->nExpr : 0;
1519   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1520   ** exit prior to this routine being invoked */
1521   if( NEVER(pColumns==0) ) goto vector_append_error;
1522   if( pExpr==0 ) goto vector_append_error;
1523 
1524   /* If the RHS is a vector, then we can immediately check to see that
1525   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1526   ** wildcards ("*") in the result set of the SELECT must be expanded before
1527   ** we can do the size check, so defer the size check until code generation.
1528   */
1529   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1530     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1531                     pColumns->nId, n);
1532     goto vector_append_error;
1533   }
1534 
1535   for(i=0; i<pColumns->nId; i++){
1536     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1537     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1538     if( pList ){
1539       assert( pList->nExpr==iFirst+i+1 );
1540       pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1541       pColumns->a[i].zName = 0;
1542     }
1543   }
1544 
1545   if( pExpr->op==TK_SELECT ){
1546     if( pList && pList->a[iFirst].pExpr ){
1547       Expr *pFirst = pList->a[iFirst].pExpr;
1548       assert( pFirst->op==TK_SELECT_COLUMN );
1549 
1550       /* Store the SELECT statement in pRight so it will be deleted when
1551       ** sqlite3ExprListDelete() is called */
1552       pFirst->pRight = pExpr;
1553       pExpr = 0;
1554 
1555       /* Remember the size of the LHS in iTable so that we can check that
1556       ** the RHS and LHS sizes match during code generation. */
1557       pFirst->iTable = pColumns->nId;
1558     }
1559   }
1560 
1561 vector_append_error:
1562   sqlite3ExprDelete(db, pExpr);
1563   sqlite3IdListDelete(db, pColumns);
1564   return pList;
1565 }
1566 
1567 /*
1568 ** Set the sort order for the last element on the given ExprList.
1569 */
1570 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1571   if( p==0 ) return;
1572   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1573   assert( p->nExpr>0 );
1574   if( iSortOrder<0 ){
1575     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1576     return;
1577   }
1578   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1579 }
1580 
1581 /*
1582 ** Set the ExprList.a[].zName element of the most recently added item
1583 ** on the expression list.
1584 **
1585 ** pList might be NULL following an OOM error.  But pName should never be
1586 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1587 ** is set.
1588 */
1589 void sqlite3ExprListSetName(
1590   Parse *pParse,          /* Parsing context */
1591   ExprList *pList,        /* List to which to add the span. */
1592   Token *pName,           /* Name to be added */
1593   int dequote             /* True to cause the name to be dequoted */
1594 ){
1595   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1596   if( pList ){
1597     struct ExprList_item *pItem;
1598     assert( pList->nExpr>0 );
1599     pItem = &pList->a[pList->nExpr-1];
1600     assert( pItem->zName==0 );
1601     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1602     if( dequote ) sqlite3Dequote(pItem->zName);
1603   }
1604 }
1605 
1606 /*
1607 ** Set the ExprList.a[].zSpan element of the most recently added item
1608 ** on the expression list.
1609 **
1610 ** pList might be NULL following an OOM error.  But pSpan should never be
1611 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1612 ** is set.
1613 */
1614 void sqlite3ExprListSetSpan(
1615   Parse *pParse,          /* Parsing context */
1616   ExprList *pList,        /* List to which to add the span. */
1617   ExprSpan *pSpan         /* The span to be added */
1618 ){
1619   sqlite3 *db = pParse->db;
1620   assert( pList!=0 || db->mallocFailed!=0 );
1621   if( pList ){
1622     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1623     assert( pList->nExpr>0 );
1624     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1625     sqlite3DbFree(db, pItem->zSpan);
1626     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1627                                     (int)(pSpan->zEnd - pSpan->zStart));
1628   }
1629 }
1630 
1631 /*
1632 ** If the expression list pEList contains more than iLimit elements,
1633 ** leave an error message in pParse.
1634 */
1635 void sqlite3ExprListCheckLength(
1636   Parse *pParse,
1637   ExprList *pEList,
1638   const char *zObject
1639 ){
1640   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1641   testcase( pEList && pEList->nExpr==mx );
1642   testcase( pEList && pEList->nExpr==mx+1 );
1643   if( pEList && pEList->nExpr>mx ){
1644     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1645   }
1646 }
1647 
1648 /*
1649 ** Delete an entire expression list.
1650 */
1651 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1652   int i;
1653   struct ExprList_item *pItem;
1654   assert( pList->a!=0 || pList->nExpr==0 );
1655   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1656     sqlite3ExprDelete(db, pItem->pExpr);
1657     sqlite3DbFree(db, pItem->zName);
1658     sqlite3DbFree(db, pItem->zSpan);
1659   }
1660   sqlite3DbFree(db, pList->a);
1661   sqlite3DbFree(db, pList);
1662 }
1663 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1664   if( pList ) exprListDeleteNN(db, pList);
1665 }
1666 
1667 /*
1668 ** Return the bitwise-OR of all Expr.flags fields in the given
1669 ** ExprList.
1670 */
1671 u32 sqlite3ExprListFlags(const ExprList *pList){
1672   int i;
1673   u32 m = 0;
1674   if( pList ){
1675     for(i=0; i<pList->nExpr; i++){
1676        Expr *pExpr = pList->a[i].pExpr;
1677        assert( pExpr!=0 );
1678        m |= pExpr->flags;
1679     }
1680   }
1681   return m;
1682 }
1683 
1684 /*
1685 ** These routines are Walker callbacks used to check expressions to
1686 ** see if they are "constant" for some definition of constant.  The
1687 ** Walker.eCode value determines the type of "constant" we are looking
1688 ** for.
1689 **
1690 ** These callback routines are used to implement the following:
1691 **
1692 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1693 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1694 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1695 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1696 **
1697 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1698 ** is found to not be a constant.
1699 **
1700 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1701 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1702 ** an existing schema and 4 when processing a new statement.  A bound
1703 ** parameter raises an error for new statements, but is silently converted
1704 ** to NULL for existing schemas.  This allows sqlite_master tables that
1705 ** contain a bound parameter because they were generated by older versions
1706 ** of SQLite to be parsed by newer versions of SQLite without raising a
1707 ** malformed schema error.
1708 */
1709 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1710 
1711   /* If pWalker->eCode is 2 then any term of the expression that comes from
1712   ** the ON or USING clauses of a left join disqualifies the expression
1713   ** from being considered constant. */
1714   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1715     pWalker->eCode = 0;
1716     return WRC_Abort;
1717   }
1718 
1719   switch( pExpr->op ){
1720     /* Consider functions to be constant if all their arguments are constant
1721     ** and either pWalker->eCode==4 or 5 or the function has the
1722     ** SQLITE_FUNC_CONST flag. */
1723     case TK_FUNCTION:
1724       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1725         return WRC_Continue;
1726       }else{
1727         pWalker->eCode = 0;
1728         return WRC_Abort;
1729       }
1730     case TK_ID:
1731     case TK_COLUMN:
1732     case TK_AGG_FUNCTION:
1733     case TK_AGG_COLUMN:
1734       testcase( pExpr->op==TK_ID );
1735       testcase( pExpr->op==TK_COLUMN );
1736       testcase( pExpr->op==TK_AGG_FUNCTION );
1737       testcase( pExpr->op==TK_AGG_COLUMN );
1738       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1739         return WRC_Continue;
1740       }else{
1741         pWalker->eCode = 0;
1742         return WRC_Abort;
1743       }
1744     case TK_VARIABLE:
1745       if( pWalker->eCode==5 ){
1746         /* Silently convert bound parameters that appear inside of CREATE
1747         ** statements into a NULL when parsing the CREATE statement text out
1748         ** of the sqlite_master table */
1749         pExpr->op = TK_NULL;
1750       }else if( pWalker->eCode==4 ){
1751         /* A bound parameter in a CREATE statement that originates from
1752         ** sqlite3_prepare() causes an error */
1753         pWalker->eCode = 0;
1754         return WRC_Abort;
1755       }
1756       /* Fall through */
1757     default:
1758       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1759       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1760       return WRC_Continue;
1761   }
1762 }
1763 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1764   UNUSED_PARAMETER(NotUsed);
1765   pWalker->eCode = 0;
1766   return WRC_Abort;
1767 }
1768 static int exprIsConst(Expr *p, int initFlag, int iCur){
1769   Walker w;
1770   memset(&w, 0, sizeof(w));
1771   w.eCode = initFlag;
1772   w.xExprCallback = exprNodeIsConstant;
1773   w.xSelectCallback = selectNodeIsConstant;
1774   w.u.iCur = iCur;
1775   sqlite3WalkExpr(&w, p);
1776   return w.eCode;
1777 }
1778 
1779 /*
1780 ** Walk an expression tree.  Return non-zero if the expression is constant
1781 ** and 0 if it involves variables or function calls.
1782 **
1783 ** For the purposes of this function, a double-quoted string (ex: "abc")
1784 ** is considered a variable but a single-quoted string (ex: 'abc') is
1785 ** a constant.
1786 */
1787 int sqlite3ExprIsConstant(Expr *p){
1788   return exprIsConst(p, 1, 0);
1789 }
1790 
1791 /*
1792 ** Walk an expression tree.  Return non-zero if the expression is constant
1793 ** that does no originate from the ON or USING clauses of a join.
1794 ** Return 0 if it involves variables or function calls or terms from
1795 ** an ON or USING clause.
1796 */
1797 int sqlite3ExprIsConstantNotJoin(Expr *p){
1798   return exprIsConst(p, 2, 0);
1799 }
1800 
1801 /*
1802 ** Walk an expression tree.  Return non-zero if the expression is constant
1803 ** for any single row of the table with cursor iCur.  In other words, the
1804 ** expression must not refer to any non-deterministic function nor any
1805 ** table other than iCur.
1806 */
1807 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1808   return exprIsConst(p, 3, iCur);
1809 }
1810 
1811 /*
1812 ** Walk an expression tree.  Return non-zero if the expression is constant
1813 ** or a function call with constant arguments.  Return and 0 if there
1814 ** are any variables.
1815 **
1816 ** For the purposes of this function, a double-quoted string (ex: "abc")
1817 ** is considered a variable but a single-quoted string (ex: 'abc') is
1818 ** a constant.
1819 */
1820 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1821   assert( isInit==0 || isInit==1 );
1822   return exprIsConst(p, 4+isInit, 0);
1823 }
1824 
1825 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1826 /*
1827 ** Walk an expression tree.  Return 1 if the expression contains a
1828 ** subquery of some kind.  Return 0 if there are no subqueries.
1829 */
1830 int sqlite3ExprContainsSubquery(Expr *p){
1831   Walker w;
1832   memset(&w, 0, sizeof(w));
1833   w.eCode = 1;
1834   w.xExprCallback = sqlite3ExprWalkNoop;
1835   w.xSelectCallback = selectNodeIsConstant;
1836   sqlite3WalkExpr(&w, p);
1837   return w.eCode==0;
1838 }
1839 #endif
1840 
1841 /*
1842 ** If the expression p codes a constant integer that is small enough
1843 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1844 ** in *pValue.  If the expression is not an integer or if it is too big
1845 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1846 */
1847 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1848   int rc = 0;
1849 
1850   /* If an expression is an integer literal that fits in a signed 32-bit
1851   ** integer, then the EP_IntValue flag will have already been set */
1852   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1853            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1854 
1855   if( p->flags & EP_IntValue ){
1856     *pValue = p->u.iValue;
1857     return 1;
1858   }
1859   switch( p->op ){
1860     case TK_UPLUS: {
1861       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1862       break;
1863     }
1864     case TK_UMINUS: {
1865       int v;
1866       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1867         assert( v!=(-2147483647-1) );
1868         *pValue = -v;
1869         rc = 1;
1870       }
1871       break;
1872     }
1873     default: break;
1874   }
1875   return rc;
1876 }
1877 
1878 /*
1879 ** Return FALSE if there is no chance that the expression can be NULL.
1880 **
1881 ** If the expression might be NULL or if the expression is too complex
1882 ** to tell return TRUE.
1883 **
1884 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1885 ** when we know that a value cannot be NULL.  Hence, a false positive
1886 ** (returning TRUE when in fact the expression can never be NULL) might
1887 ** be a small performance hit but is otherwise harmless.  On the other
1888 ** hand, a false negative (returning FALSE when the result could be NULL)
1889 ** will likely result in an incorrect answer.  So when in doubt, return
1890 ** TRUE.
1891 */
1892 int sqlite3ExprCanBeNull(const Expr *p){
1893   u8 op;
1894   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1895   op = p->op;
1896   if( op==TK_REGISTER ) op = p->op2;
1897   switch( op ){
1898     case TK_INTEGER:
1899     case TK_STRING:
1900     case TK_FLOAT:
1901     case TK_BLOB:
1902       return 0;
1903     case TK_COLUMN:
1904       assert( p->pTab!=0 );
1905       return ExprHasProperty(p, EP_CanBeNull) ||
1906              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
1907     default:
1908       return 1;
1909   }
1910 }
1911 
1912 /*
1913 ** Return TRUE if the given expression is a constant which would be
1914 ** unchanged by OP_Affinity with the affinity given in the second
1915 ** argument.
1916 **
1917 ** This routine is used to determine if the OP_Affinity operation
1918 ** can be omitted.  When in doubt return FALSE.  A false negative
1919 ** is harmless.  A false positive, however, can result in the wrong
1920 ** answer.
1921 */
1922 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1923   u8 op;
1924   if( aff==SQLITE_AFF_BLOB ) return 1;
1925   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1926   op = p->op;
1927   if( op==TK_REGISTER ) op = p->op2;
1928   switch( op ){
1929     case TK_INTEGER: {
1930       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1931     }
1932     case TK_FLOAT: {
1933       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1934     }
1935     case TK_STRING: {
1936       return aff==SQLITE_AFF_TEXT;
1937     }
1938     case TK_BLOB: {
1939       return 1;
1940     }
1941     case TK_COLUMN: {
1942       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1943       return p->iColumn<0
1944           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1945     }
1946     default: {
1947       return 0;
1948     }
1949   }
1950 }
1951 
1952 /*
1953 ** Return TRUE if the given string is a row-id column name.
1954 */
1955 int sqlite3IsRowid(const char *z){
1956   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1957   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1958   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1959   return 0;
1960 }
1961 
1962 /*
1963 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
1964 ** that can be simplified to a direct table access, then return
1965 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
1966 ** or if the SELECT statement needs to be manifested into a transient
1967 ** table, then return NULL.
1968 */
1969 #ifndef SQLITE_OMIT_SUBQUERY
1970 static Select *isCandidateForInOpt(Expr *pX){
1971   Select *p;
1972   SrcList *pSrc;
1973   ExprList *pEList;
1974   Table *pTab;
1975   int i;
1976   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
1977   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
1978   p = pX->x.pSelect;
1979   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1980   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1981     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1982     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1983     return 0; /* No DISTINCT keyword and no aggregate functions */
1984   }
1985   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1986   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1987   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1988   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1989   pSrc = p->pSrc;
1990   assert( pSrc!=0 );
1991   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1992   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1993   pTab = pSrc->a[0].pTab;
1994   assert( pTab!=0 );
1995   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1996   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1997   pEList = p->pEList;
1998   assert( pEList!=0 );
1999   /* All SELECT results must be columns. */
2000   for(i=0; i<pEList->nExpr; i++){
2001     Expr *pRes = pEList->a[i].pExpr;
2002     if( pRes->op!=TK_COLUMN ) return 0;
2003     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2004   }
2005   return p;
2006 }
2007 #endif /* SQLITE_OMIT_SUBQUERY */
2008 
2009 #ifndef SQLITE_OMIT_SUBQUERY
2010 /*
2011 ** Generate code that checks the left-most column of index table iCur to see if
2012 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2013 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2014 ** to be set to NULL if iCur contains one or more NULL values.
2015 */
2016 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2017   int addr1;
2018   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2019   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2020   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2021   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2022   VdbeComment((v, "first_entry_in(%d)", iCur));
2023   sqlite3VdbeJumpHere(v, addr1);
2024 }
2025 #endif
2026 
2027 
2028 #ifndef SQLITE_OMIT_SUBQUERY
2029 /*
2030 ** The argument is an IN operator with a list (not a subquery) on the
2031 ** right-hand side.  Return TRUE if that list is constant.
2032 */
2033 static int sqlite3InRhsIsConstant(Expr *pIn){
2034   Expr *pLHS;
2035   int res;
2036   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2037   pLHS = pIn->pLeft;
2038   pIn->pLeft = 0;
2039   res = sqlite3ExprIsConstant(pIn);
2040   pIn->pLeft = pLHS;
2041   return res;
2042 }
2043 #endif
2044 
2045 /*
2046 ** This function is used by the implementation of the IN (...) operator.
2047 ** The pX parameter is the expression on the RHS of the IN operator, which
2048 ** might be either a list of expressions or a subquery.
2049 **
2050 ** The job of this routine is to find or create a b-tree object that can
2051 ** be used either to test for membership in the RHS set or to iterate through
2052 ** all members of the RHS set, skipping duplicates.
2053 **
2054 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2055 ** and pX->iTable is set to the index of that cursor.
2056 **
2057 ** The returned value of this function indicates the b-tree type, as follows:
2058 **
2059 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2060 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2061 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2062 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2063 **                         populated epheremal table.
2064 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2065 **                         implemented as a sequence of comparisons.
2066 **
2067 ** An existing b-tree might be used if the RHS expression pX is a simple
2068 ** subquery such as:
2069 **
2070 **     SELECT <column1>, <column2>... FROM <table>
2071 **
2072 ** If the RHS of the IN operator is a list or a more complex subquery, then
2073 ** an ephemeral table might need to be generated from the RHS and then
2074 ** pX->iTable made to point to the ephemeral table instead of an
2075 ** existing table.
2076 **
2077 ** The inFlags parameter must contain exactly one of the bits
2078 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
2079 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
2080 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
2081 ** IN index will be used to loop over all values of the RHS of the
2082 ** IN operator.
2083 **
2084 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2085 ** through the set members) then the b-tree must not contain duplicates.
2086 ** An epheremal table must be used unless the selected columns are guaranteed
2087 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2088 ** a UNIQUE constraint or index.
2089 **
2090 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2091 ** for fast set membership tests) then an epheremal table must
2092 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2093 ** index can be found with the specified <columns> as its left-most.
2094 **
2095 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2096 ** if the RHS of the IN operator is a list (not a subquery) then this
2097 ** routine might decide that creating an ephemeral b-tree for membership
2098 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2099 ** calling routine should implement the IN operator using a sequence
2100 ** of Eq or Ne comparison operations.
2101 **
2102 ** When the b-tree is being used for membership tests, the calling function
2103 ** might need to know whether or not the RHS side of the IN operator
2104 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2105 ** if there is any chance that the (...) might contain a NULL value at
2106 ** runtime, then a register is allocated and the register number written
2107 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2108 ** NULL value, then *prRhsHasNull is left unchanged.
2109 **
2110 ** If a register is allocated and its location stored in *prRhsHasNull, then
2111 ** the value in that register will be NULL if the b-tree contains one or more
2112 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2113 ** NULL values.
2114 **
2115 ** If the aiMap parameter is not NULL, it must point to an array containing
2116 ** one element for each column returned by the SELECT statement on the RHS
2117 ** of the IN(...) operator. The i'th entry of the array is populated with the
2118 ** offset of the index column that matches the i'th column returned by the
2119 ** SELECT. For example, if the expression and selected index are:
2120 **
2121 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2122 **   CREATE INDEX i1 ON t1(b, c, a);
2123 **
2124 ** then aiMap[] is populated with {2, 0, 1}.
2125 */
2126 #ifndef SQLITE_OMIT_SUBQUERY
2127 int sqlite3FindInIndex(
2128   Parse *pParse,             /* Parsing context */
2129   Expr *pX,                  /* The right-hand side (RHS) of the IN operator */
2130   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2131   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2132   int *aiMap                 /* Mapping from Index fields to RHS fields */
2133 ){
2134   Select *p;                            /* SELECT to the right of IN operator */
2135   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2136   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2137   int mustBeUnique;                     /* True if RHS must be unique */
2138   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2139 
2140   assert( pX->op==TK_IN );
2141   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2142 
2143   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2144   ** whether or not the SELECT result contains NULL values, check whether
2145   ** or not NULL is actually possible (it may not be, for example, due
2146   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2147   ** set prRhsHasNull to 0 before continuing.  */
2148   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2149     int i;
2150     ExprList *pEList = pX->x.pSelect->pEList;
2151     for(i=0; i<pEList->nExpr; i++){
2152       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2153     }
2154     if( i==pEList->nExpr ){
2155       prRhsHasNull = 0;
2156     }
2157   }
2158 
2159   /* Check to see if an existing table or index can be used to
2160   ** satisfy the query.  This is preferable to generating a new
2161   ** ephemeral table.  */
2162   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2163     sqlite3 *db = pParse->db;              /* Database connection */
2164     Table *pTab;                           /* Table <table>. */
2165     i16 iDb;                               /* Database idx for pTab */
2166     ExprList *pEList = p->pEList;
2167     int nExpr = pEList->nExpr;
2168 
2169     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2170     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2171     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2172     pTab = p->pSrc->a[0].pTab;
2173 
2174     /* Code an OP_Transaction and OP_TableLock for <table>. */
2175     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2176     sqlite3CodeVerifySchema(pParse, iDb);
2177     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2178 
2179     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2180     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2181       /* The "x IN (SELECT rowid FROM table)" case */
2182       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2183       VdbeCoverage(v);
2184 
2185       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2186       eType = IN_INDEX_ROWID;
2187 
2188       sqlite3VdbeJumpHere(v, iAddr);
2189     }else{
2190       Index *pIdx;                         /* Iterator variable */
2191       int affinity_ok = 1;
2192       int i;
2193 
2194       /* Check that the affinity that will be used to perform each
2195       ** comparison is the same as the affinity of each column in table
2196       ** on the RHS of the IN operator.  If it not, it is not possible to
2197       ** use any index of the RHS table.  */
2198       for(i=0; i<nExpr && affinity_ok; i++){
2199         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2200         int iCol = pEList->a[i].pExpr->iColumn;
2201         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2202         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2203         testcase( cmpaff==SQLITE_AFF_BLOB );
2204         testcase( cmpaff==SQLITE_AFF_TEXT );
2205         switch( cmpaff ){
2206           case SQLITE_AFF_BLOB:
2207             break;
2208           case SQLITE_AFF_TEXT:
2209             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2210             ** other has no affinity and the other side is TEXT.  Hence,
2211             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2212             ** and for the term on the LHS of the IN to have no affinity. */
2213             assert( idxaff==SQLITE_AFF_TEXT );
2214             break;
2215           default:
2216             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2217         }
2218       }
2219 
2220       if( affinity_ok ){
2221         /* Search for an existing index that will work for this IN operator */
2222         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2223           Bitmask colUsed;      /* Columns of the index used */
2224           Bitmask mCol;         /* Mask for the current column */
2225           if( pIdx->nColumn<nExpr ) continue;
2226           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2227           ** BITMASK(nExpr) without overflowing */
2228           testcase( pIdx->nColumn==BMS-2 );
2229           testcase( pIdx->nColumn==BMS-1 );
2230           if( pIdx->nColumn>=BMS-1 ) continue;
2231           if( mustBeUnique ){
2232             if( pIdx->nKeyCol>nExpr
2233              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2234             ){
2235               continue;  /* This index is not unique over the IN RHS columns */
2236             }
2237           }
2238 
2239           colUsed = 0;   /* Columns of index used so far */
2240           for(i=0; i<nExpr; i++){
2241             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2242             Expr *pRhs = pEList->a[i].pExpr;
2243             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2244             int j;
2245 
2246             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2247             for(j=0; j<nExpr; j++){
2248               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2249               assert( pIdx->azColl[j] );
2250               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2251                 continue;
2252               }
2253               break;
2254             }
2255             if( j==nExpr ) break;
2256             mCol = MASKBIT(j);
2257             if( mCol & colUsed ) break; /* Each column used only once */
2258             colUsed |= mCol;
2259             if( aiMap ) aiMap[i] = j;
2260           }
2261 
2262           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2263           if( colUsed==(MASKBIT(nExpr)-1) ){
2264             /* If we reach this point, that means the index pIdx is usable */
2265             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2266 #ifndef SQLITE_OMIT_EXPLAIN
2267             sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0,
2268               sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName),
2269               P4_DYNAMIC);
2270 #endif
2271             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2272             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2273             VdbeComment((v, "%s", pIdx->zName));
2274             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2275             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2276 
2277             if( prRhsHasNull ){
2278 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2279               i64 mask = (1<<nExpr)-1;
2280               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2281                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2282 #endif
2283               *prRhsHasNull = ++pParse->nMem;
2284               if( nExpr==1 ){
2285                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2286               }
2287             }
2288             sqlite3VdbeJumpHere(v, iAddr);
2289           }
2290         } /* End loop over indexes */
2291       } /* End if( affinity_ok ) */
2292     } /* End if not an rowid index */
2293   } /* End attempt to optimize using an index */
2294 
2295   /* If no preexisting index is available for the IN clause
2296   ** and IN_INDEX_NOOP is an allowed reply
2297   ** and the RHS of the IN operator is a list, not a subquery
2298   ** and the RHS is not constant or has two or fewer terms,
2299   ** then it is not worth creating an ephemeral table to evaluate
2300   ** the IN operator so return IN_INDEX_NOOP.
2301   */
2302   if( eType==0
2303    && (inFlags & IN_INDEX_NOOP_OK)
2304    && !ExprHasProperty(pX, EP_xIsSelect)
2305    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2306   ){
2307     eType = IN_INDEX_NOOP;
2308   }
2309 
2310   if( eType==0 ){
2311     /* Could not find an existing table or index to use as the RHS b-tree.
2312     ** We will have to generate an ephemeral table to do the job.
2313     */
2314     u32 savedNQueryLoop = pParse->nQueryLoop;
2315     int rMayHaveNull = 0;
2316     eType = IN_INDEX_EPH;
2317     if( inFlags & IN_INDEX_LOOP ){
2318       pParse->nQueryLoop = 0;
2319       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
2320         eType = IN_INDEX_ROWID;
2321       }
2322     }else if( prRhsHasNull ){
2323       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2324     }
2325     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
2326     pParse->nQueryLoop = savedNQueryLoop;
2327   }else{
2328     pX->iTable = iTab;
2329   }
2330 
2331   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2332     int i, n;
2333     n = sqlite3ExprVectorSize(pX->pLeft);
2334     for(i=0; i<n; i++) aiMap[i] = i;
2335   }
2336   return eType;
2337 }
2338 #endif
2339 
2340 #ifndef SQLITE_OMIT_SUBQUERY
2341 /*
2342 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2343 ** function allocates and returns a nul-terminated string containing
2344 ** the affinities to be used for each column of the comparison.
2345 **
2346 ** It is the responsibility of the caller to ensure that the returned
2347 ** string is eventually freed using sqlite3DbFree().
2348 */
2349 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2350   Expr *pLeft = pExpr->pLeft;
2351   int nVal = sqlite3ExprVectorSize(pLeft);
2352   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2353   char *zRet;
2354 
2355   assert( pExpr->op==TK_IN );
2356   zRet = sqlite3DbMallocZero(pParse->db, nVal+1);
2357   if( zRet ){
2358     int i;
2359     for(i=0; i<nVal; i++){
2360       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2361       char a = sqlite3ExprAffinity(pA);
2362       if( pSelect ){
2363         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2364       }else{
2365         zRet[i] = a;
2366       }
2367     }
2368     zRet[nVal] = '\0';
2369   }
2370   return zRet;
2371 }
2372 #endif
2373 
2374 #ifndef SQLITE_OMIT_SUBQUERY
2375 /*
2376 ** Load the Parse object passed as the first argument with an error
2377 ** message of the form:
2378 **
2379 **   "sub-select returns N columns - expected M"
2380 */
2381 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2382   const char *zFmt = "sub-select returns %d columns - expected %d";
2383   sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2384 }
2385 #endif
2386 
2387 /*
2388 ** Expression pExpr is a vector that has been used in a context where
2389 ** it is not permitted. If pExpr is a sub-select vector, this routine
2390 ** loads the Parse object with a message of the form:
2391 **
2392 **   "sub-select returns N columns - expected 1"
2393 **
2394 ** Or, if it is a regular scalar vector:
2395 **
2396 **   "row value misused"
2397 */
2398 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2399 #ifndef SQLITE_OMIT_SUBQUERY
2400   if( pExpr->flags & EP_xIsSelect ){
2401     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2402   }else
2403 #endif
2404   {
2405     sqlite3ErrorMsg(pParse, "row value misused");
2406   }
2407 }
2408 
2409 /*
2410 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
2411 ** or IN operators.  Examples:
2412 **
2413 **     (SELECT a FROM b)          -- subquery
2414 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
2415 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2416 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2417 **
2418 ** The pExpr parameter describes the expression that contains the IN
2419 ** operator or subquery.
2420 **
2421 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
2422 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
2423 ** to some integer key column of a table B-Tree. In this case, use an
2424 ** intkey B-Tree to store the set of IN(...) values instead of the usual
2425 ** (slower) variable length keys B-Tree.
2426 **
2427 ** If rMayHaveNull is non-zero, that means that the operation is an IN
2428 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
2429 ** All this routine does is initialize the register given by rMayHaveNull
2430 ** to NULL.  Calling routines will take care of changing this register
2431 ** value to non-NULL if the RHS is NULL-free.
2432 **
2433 ** For a SELECT or EXISTS operator, return the register that holds the
2434 ** result.  For a multi-column SELECT, the result is stored in a contiguous
2435 ** array of registers and the return value is the register of the left-most
2436 ** result column.  Return 0 for IN operators or if an error occurs.
2437 */
2438 #ifndef SQLITE_OMIT_SUBQUERY
2439 int sqlite3CodeSubselect(
2440   Parse *pParse,          /* Parsing context */
2441   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
2442   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
2443   int isRowid             /* If true, LHS of IN operator is a rowid */
2444 ){
2445   int jmpIfDynamic = -1;                      /* One-time test address */
2446   int rReg = 0;                           /* Register storing resulting */
2447   Vdbe *v = sqlite3GetVdbe(pParse);
2448   if( NEVER(v==0) ) return 0;
2449   sqlite3ExprCachePush(pParse);
2450 
2451   /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it
2452   ** is encountered if any of the following is true:
2453   **
2454   **    *  The right-hand side is a correlated subquery
2455   **    *  The right-hand side is an expression list containing variables
2456   **    *  We are inside a trigger
2457   **
2458   ** If all of the above are false, then we can run this code just once
2459   ** save the results, and reuse the same result on subsequent invocations.
2460   */
2461   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2462     jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2463   }
2464 
2465 #ifndef SQLITE_OMIT_EXPLAIN
2466   if( pParse->explain==2 ){
2467     char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d",
2468         jmpIfDynamic>=0?"":"CORRELATED ",
2469         pExpr->op==TK_IN?"LIST":"SCALAR",
2470         pParse->iNextSelectId
2471     );
2472     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
2473   }
2474 #endif
2475 
2476   switch( pExpr->op ){
2477     case TK_IN: {
2478       int addr;                   /* Address of OP_OpenEphemeral instruction */
2479       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
2480       KeyInfo *pKeyInfo = 0;      /* Key information */
2481       int nVal;                   /* Size of vector pLeft */
2482 
2483       nVal = sqlite3ExprVectorSize(pLeft);
2484       assert( !isRowid || nVal==1 );
2485 
2486       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
2487       ** expression it is handled the same way.  An ephemeral table is
2488       ** filled with index keys representing the results from the
2489       ** SELECT or the <exprlist>.
2490       **
2491       ** If the 'x' expression is a column value, or the SELECT...
2492       ** statement returns a column value, then the affinity of that
2493       ** column is used to build the index keys. If both 'x' and the
2494       ** SELECT... statement are columns, then numeric affinity is used
2495       ** if either column has NUMERIC or INTEGER affinity. If neither
2496       ** 'x' nor the SELECT... statement are columns, then numeric affinity
2497       ** is used.
2498       */
2499       pExpr->iTable = pParse->nTab++;
2500       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral,
2501           pExpr->iTable, (isRowid?0:nVal));
2502       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2503 
2504       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2505         /* Case 1:     expr IN (SELECT ...)
2506         **
2507         ** Generate code to write the results of the select into the temporary
2508         ** table allocated and opened above.
2509         */
2510         Select *pSelect = pExpr->x.pSelect;
2511         ExprList *pEList = pSelect->pEList;
2512 
2513         assert( !isRowid );
2514         /* If the LHS and RHS of the IN operator do not match, that
2515         ** error will have been caught long before we reach this point. */
2516         if( ALWAYS(pEList->nExpr==nVal) ){
2517           SelectDest dest;
2518           int i;
2519           sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
2520           dest.zAffSdst = exprINAffinity(pParse, pExpr);
2521           assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
2522           pSelect->iLimit = 0;
2523           testcase( pSelect->selFlags & SF_Distinct );
2524           testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2525           if( sqlite3Select(pParse, pSelect, &dest) ){
2526             sqlite3DbFree(pParse->db, dest.zAffSdst);
2527             sqlite3KeyInfoUnref(pKeyInfo);
2528             return 0;
2529           }
2530           sqlite3DbFree(pParse->db, dest.zAffSdst);
2531           assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2532           assert( pEList!=0 );
2533           assert( pEList->nExpr>0 );
2534           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2535           for(i=0; i<nVal; i++){
2536             Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2537             pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2538                 pParse, p, pEList->a[i].pExpr
2539             );
2540           }
2541         }
2542       }else if( ALWAYS(pExpr->x.pList!=0) ){
2543         /* Case 2:     expr IN (exprlist)
2544         **
2545         ** For each expression, build an index key from the evaluation and
2546         ** store it in the temporary table. If <expr> is a column, then use
2547         ** that columns affinity when building index keys. If <expr> is not
2548         ** a column, use numeric affinity.
2549         */
2550         char affinity;            /* Affinity of the LHS of the IN */
2551         int i;
2552         ExprList *pList = pExpr->x.pList;
2553         struct ExprList_item *pItem;
2554         int r1, r2, r3;
2555 
2556         affinity = sqlite3ExprAffinity(pLeft);
2557         if( !affinity ){
2558           affinity = SQLITE_AFF_BLOB;
2559         }
2560         if( pKeyInfo ){
2561           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2562           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2563         }
2564 
2565         /* Loop through each expression in <exprlist>. */
2566         r1 = sqlite3GetTempReg(pParse);
2567         r2 = sqlite3GetTempReg(pParse);
2568         if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
2569         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2570           Expr *pE2 = pItem->pExpr;
2571           int iValToIns;
2572 
2573           /* If the expression is not constant then we will need to
2574           ** disable the test that was generated above that makes sure
2575           ** this code only executes once.  Because for a non-constant
2576           ** expression we need to rerun this code each time.
2577           */
2578           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
2579             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
2580             jmpIfDynamic = -1;
2581           }
2582 
2583           /* Evaluate the expression and insert it into the temp table */
2584           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2585             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2586           }else{
2587             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2588             if( isRowid ){
2589               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2590                                 sqlite3VdbeCurrentAddr(v)+2);
2591               VdbeCoverage(v);
2592               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2593             }else{
2594               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2595               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
2596               sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1);
2597             }
2598           }
2599         }
2600         sqlite3ReleaseTempReg(pParse, r1);
2601         sqlite3ReleaseTempReg(pParse, r2);
2602       }
2603       if( pKeyInfo ){
2604         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2605       }
2606       break;
2607     }
2608 
2609     case TK_EXISTS:
2610     case TK_SELECT:
2611     default: {
2612       /* Case 3:    (SELECT ... FROM ...)
2613       **     or:    EXISTS(SELECT ... FROM ...)
2614       **
2615       ** For a SELECT, generate code to put the values for all columns of
2616       ** the first row into an array of registers and return the index of
2617       ** the first register.
2618       **
2619       ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2620       ** into a register and return that register number.
2621       **
2622       ** In both cases, the query is augmented with "LIMIT 1".  Any
2623       ** preexisting limit is discarded in place of the new LIMIT 1.
2624       */
2625       Select *pSel;                         /* SELECT statement to encode */
2626       SelectDest dest;                      /* How to deal with SELECT result */
2627       int nReg;                             /* Registers to allocate */
2628 
2629       testcase( pExpr->op==TK_EXISTS );
2630       testcase( pExpr->op==TK_SELECT );
2631       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2632       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2633 
2634       pSel = pExpr->x.pSelect;
2635       nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2636       sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2637       pParse->nMem += nReg;
2638       if( pExpr->op==TK_SELECT ){
2639         dest.eDest = SRT_Mem;
2640         dest.iSdst = dest.iSDParm;
2641         dest.nSdst = nReg;
2642         sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2643         VdbeComment((v, "Init subquery result"));
2644       }else{
2645         dest.eDest = SRT_Exists;
2646         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2647         VdbeComment((v, "Init EXISTS result"));
2648       }
2649       sqlite3ExprDelete(pParse->db, pSel->pLimit);
2650       pSel->pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,
2651                                   &sqlite3IntTokens[1], 0);
2652       pSel->iLimit = 0;
2653       pSel->selFlags &= ~SF_MultiValue;
2654       if( sqlite3Select(pParse, pSel, &dest) ){
2655         return 0;
2656       }
2657       rReg = dest.iSDParm;
2658       ExprSetVVAProperty(pExpr, EP_NoReduce);
2659       break;
2660     }
2661   }
2662 
2663   if( rHasNullFlag ){
2664     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2665   }
2666 
2667   if( jmpIfDynamic>=0 ){
2668     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2669   }
2670   sqlite3ExprCachePop(pParse);
2671 
2672   return rReg;
2673 }
2674 #endif /* SQLITE_OMIT_SUBQUERY */
2675 
2676 #ifndef SQLITE_OMIT_SUBQUERY
2677 /*
2678 ** Expr pIn is an IN(...) expression. This function checks that the
2679 ** sub-select on the RHS of the IN() operator has the same number of
2680 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
2681 ** a sub-query, that the LHS is a vector of size 1.
2682 */
2683 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
2684   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
2685   if( (pIn->flags & EP_xIsSelect) ){
2686     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
2687       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
2688       return 1;
2689     }
2690   }else if( nVector!=1 ){
2691     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
2692     return 1;
2693   }
2694   return 0;
2695 }
2696 #endif
2697 
2698 #ifndef SQLITE_OMIT_SUBQUERY
2699 /*
2700 ** Generate code for an IN expression.
2701 **
2702 **      x IN (SELECT ...)
2703 **      x IN (value, value, ...)
2704 **
2705 ** The left-hand side (LHS) is a scalar or vector expression.  The
2706 ** right-hand side (RHS) is an array of zero or more scalar values, or a
2707 ** subquery.  If the RHS is a subquery, the number of result columns must
2708 ** match the number of columns in the vector on the LHS.  If the RHS is
2709 ** a list of values, the LHS must be a scalar.
2710 **
2711 ** The IN operator is true if the LHS value is contained within the RHS.
2712 ** The result is false if the LHS is definitely not in the RHS.  The
2713 ** result is NULL if the presence of the LHS in the RHS cannot be
2714 ** determined due to NULLs.
2715 **
2716 ** This routine generates code that jumps to destIfFalse if the LHS is not
2717 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2718 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2719 ** within the RHS then fall through.
2720 **
2721 ** See the separate in-operator.md documentation file in the canonical
2722 ** SQLite source tree for additional information.
2723 */
2724 static void sqlite3ExprCodeIN(
2725   Parse *pParse,        /* Parsing and code generating context */
2726   Expr *pExpr,          /* The IN expression */
2727   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2728   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2729 ){
2730   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2731   int eType;            /* Type of the RHS */
2732   int rLhs;             /* Register(s) holding the LHS values */
2733   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
2734   Vdbe *v;              /* Statement under construction */
2735   int *aiMap = 0;       /* Map from vector field to index column */
2736   char *zAff = 0;       /* Affinity string for comparisons */
2737   int nVector;          /* Size of vectors for this IN operator */
2738   int iDummy;           /* Dummy parameter to exprCodeVector() */
2739   Expr *pLeft;          /* The LHS of the IN operator */
2740   int i;                /* loop counter */
2741   int destStep2;        /* Where to jump when NULLs seen in step 2 */
2742   int destStep6 = 0;    /* Start of code for Step 6 */
2743   int addrTruthOp;      /* Address of opcode that determines the IN is true */
2744   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
2745   int addrTop;          /* Top of the step-6 loop */
2746 
2747   pLeft = pExpr->pLeft;
2748   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
2749   zAff = exprINAffinity(pParse, pExpr);
2750   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
2751   aiMap = (int*)sqlite3DbMallocZero(
2752       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
2753   );
2754   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
2755 
2756   /* Attempt to compute the RHS. After this step, if anything other than
2757   ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable
2758   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
2759   ** the RHS has not yet been coded.  */
2760   v = pParse->pVdbe;
2761   assert( v!=0 );       /* OOM detected prior to this routine */
2762   VdbeNoopComment((v, "begin IN expr"));
2763   eType = sqlite3FindInIndex(pParse, pExpr,
2764                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2765                              destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap);
2766 
2767   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
2768        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
2769   );
2770 #ifdef SQLITE_DEBUG
2771   /* Confirm that aiMap[] contains nVector integer values between 0 and
2772   ** nVector-1. */
2773   for(i=0; i<nVector; i++){
2774     int j, cnt;
2775     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
2776     assert( cnt==1 );
2777   }
2778 #endif
2779 
2780   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
2781   ** vector, then it is stored in an array of nVector registers starting
2782   ** at r1.
2783   **
2784   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
2785   ** so that the fields are in the same order as an existing index.   The
2786   ** aiMap[] array contains a mapping from the original LHS field order to
2787   ** the field order that matches the RHS index.
2788   */
2789   sqlite3ExprCachePush(pParse);
2790   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
2791   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
2792   if( i==nVector ){
2793     /* LHS fields are not reordered */
2794     rLhs = rLhsOrig;
2795   }else{
2796     /* Need to reorder the LHS fields according to aiMap */
2797     rLhs = sqlite3GetTempRange(pParse, nVector);
2798     for(i=0; i<nVector; i++){
2799       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
2800     }
2801   }
2802 
2803   /* If sqlite3FindInIndex() did not find or create an index that is
2804   ** suitable for evaluating the IN operator, then evaluate using a
2805   ** sequence of comparisons.
2806   **
2807   ** This is step (1) in the in-operator.md optimized algorithm.
2808   */
2809   if( eType==IN_INDEX_NOOP ){
2810     ExprList *pList = pExpr->x.pList;
2811     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2812     int labelOk = sqlite3VdbeMakeLabel(v);
2813     int r2, regToFree;
2814     int regCkNull = 0;
2815     int ii;
2816     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2817     if( destIfNull!=destIfFalse ){
2818       regCkNull = sqlite3GetTempReg(pParse);
2819       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
2820     }
2821     for(ii=0; ii<pList->nExpr; ii++){
2822       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2823       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2824         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2825       }
2826       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2827         sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
2828                           (void*)pColl, P4_COLLSEQ);
2829         VdbeCoverageIf(v, ii<pList->nExpr-1);
2830         VdbeCoverageIf(v, ii==pList->nExpr-1);
2831         sqlite3VdbeChangeP5(v, zAff[0]);
2832       }else{
2833         assert( destIfNull==destIfFalse );
2834         sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
2835                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2836         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
2837       }
2838       sqlite3ReleaseTempReg(pParse, regToFree);
2839     }
2840     if( regCkNull ){
2841       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2842       sqlite3VdbeGoto(v, destIfFalse);
2843     }
2844     sqlite3VdbeResolveLabel(v, labelOk);
2845     sqlite3ReleaseTempReg(pParse, regCkNull);
2846     goto sqlite3ExprCodeIN_finished;
2847   }
2848 
2849   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
2850   ** LHS does contain NULLs then the result must be either FALSE or NULL.
2851   ** We will then skip the binary search of the RHS.
2852   */
2853   if( destIfNull==destIfFalse ){
2854     destStep2 = destIfFalse;
2855   }else{
2856     destStep2 = destStep6 = sqlite3VdbeMakeLabel(v);
2857   }
2858   for(i=0; i<nVector; i++){
2859     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
2860     if( sqlite3ExprCanBeNull(p) ){
2861       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
2862       VdbeCoverage(v);
2863     }
2864   }
2865 
2866   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
2867   ** of the RHS using the LHS as a probe.  If found, the result is
2868   ** true.
2869   */
2870   if( eType==IN_INDEX_ROWID ){
2871     /* In this case, the RHS is the ROWID of table b-tree and so we also
2872     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
2873     ** into a single opcode. */
2874     sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs);
2875     VdbeCoverage(v);
2876     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
2877   }else{
2878     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
2879     if( destIfFalse==destIfNull ){
2880       /* Combine Step 3 and Step 5 into a single opcode */
2881       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse,
2882                            rLhs, nVector); VdbeCoverage(v);
2883       goto sqlite3ExprCodeIN_finished;
2884     }
2885     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
2886     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0,
2887                                       rLhs, nVector); VdbeCoverage(v);
2888   }
2889 
2890   /* Step 4.  If the RHS is known to be non-NULL and we did not find
2891   ** an match on the search above, then the result must be FALSE.
2892   */
2893   if( rRhsHasNull && nVector==1 ){
2894     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
2895     VdbeCoverage(v);
2896   }
2897 
2898   /* Step 5.  If we do not care about the difference between NULL and
2899   ** FALSE, then just return false.
2900   */
2901   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
2902 
2903   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
2904   ** If any comparison is NULL, then the result is NULL.  If all
2905   ** comparisons are FALSE then the final result is FALSE.
2906   **
2907   ** For a scalar LHS, it is sufficient to check just the first row
2908   ** of the RHS.
2909   */
2910   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
2911   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2912   VdbeCoverage(v);
2913   if( nVector>1 ){
2914     destNotNull = sqlite3VdbeMakeLabel(v);
2915   }else{
2916     /* For nVector==1, combine steps 6 and 7 by immediately returning
2917     ** FALSE if the first comparison is not NULL */
2918     destNotNull = destIfFalse;
2919   }
2920   for(i=0; i<nVector; i++){
2921     Expr *p;
2922     CollSeq *pColl;
2923     int r3 = sqlite3GetTempReg(pParse);
2924     p = sqlite3VectorFieldSubexpr(pLeft, i);
2925     pColl = sqlite3ExprCollSeq(pParse, p);
2926     sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3);
2927     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
2928                       (void*)pColl, P4_COLLSEQ);
2929     VdbeCoverage(v);
2930     sqlite3ReleaseTempReg(pParse, r3);
2931   }
2932   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
2933   if( nVector>1 ){
2934     sqlite3VdbeResolveLabel(v, destNotNull);
2935     sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1);
2936     VdbeCoverage(v);
2937 
2938     /* Step 7:  If we reach this point, we know that the result must
2939     ** be false. */
2940     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2941   }
2942 
2943   /* Jumps here in order to return true. */
2944   sqlite3VdbeJumpHere(v, addrTruthOp);
2945 
2946 sqlite3ExprCodeIN_finished:
2947   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
2948   sqlite3ExprCachePop(pParse);
2949   VdbeComment((v, "end IN expr"));
2950 sqlite3ExprCodeIN_oom_error:
2951   sqlite3DbFree(pParse->db, aiMap);
2952   sqlite3DbFree(pParse->db, zAff);
2953 }
2954 #endif /* SQLITE_OMIT_SUBQUERY */
2955 
2956 #ifndef SQLITE_OMIT_FLOATING_POINT
2957 /*
2958 ** Generate an instruction that will put the floating point
2959 ** value described by z[0..n-1] into register iMem.
2960 **
2961 ** The z[] string will probably not be zero-terminated.  But the
2962 ** z[n] character is guaranteed to be something that does not look
2963 ** like the continuation of the number.
2964 */
2965 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2966   if( ALWAYS(z!=0) ){
2967     double value;
2968     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2969     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2970     if( negateFlag ) value = -value;
2971     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
2972   }
2973 }
2974 #endif
2975 
2976 
2977 /*
2978 ** Generate an instruction that will put the integer describe by
2979 ** text z[0..n-1] into register iMem.
2980 **
2981 ** Expr.u.zToken is always UTF8 and zero-terminated.
2982 */
2983 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2984   Vdbe *v = pParse->pVdbe;
2985   if( pExpr->flags & EP_IntValue ){
2986     int i = pExpr->u.iValue;
2987     assert( i>=0 );
2988     if( negFlag ) i = -i;
2989     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2990   }else{
2991     int c;
2992     i64 value;
2993     const char *z = pExpr->u.zToken;
2994     assert( z!=0 );
2995     c = sqlite3DecOrHexToI64(z, &value);
2996     if( c==1 || (c==2 && !negFlag) || (negFlag && value==SMALLEST_INT64)){
2997 #ifdef SQLITE_OMIT_FLOATING_POINT
2998       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2999 #else
3000 #ifndef SQLITE_OMIT_HEX_INTEGER
3001       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3002         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3003       }else
3004 #endif
3005       {
3006         codeReal(v, z, negFlag, iMem);
3007       }
3008 #endif
3009     }else{
3010       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
3011       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3012     }
3013   }
3014 }
3015 
3016 /*
3017 ** Erase column-cache entry number i
3018 */
3019 static void cacheEntryClear(Parse *pParse, int i){
3020   if( pParse->aColCache[i].tempReg ){
3021     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3022       pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3023     }
3024   }
3025   pParse->nColCache--;
3026   if( i<pParse->nColCache ){
3027     pParse->aColCache[i] = pParse->aColCache[pParse->nColCache];
3028   }
3029 }
3030 
3031 
3032 /*
3033 ** Record in the column cache that a particular column from a
3034 ** particular table is stored in a particular register.
3035 */
3036 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
3037   int i;
3038   int minLru;
3039   int idxLru;
3040   struct yColCache *p;
3041 
3042   /* Unless an error has occurred, register numbers are always positive. */
3043   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
3044   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
3045 
3046   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
3047   ** for testing only - to verify that SQLite always gets the same answer
3048   ** with and without the column cache.
3049   */
3050   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
3051 
3052   /* First replace any existing entry.
3053   **
3054   ** Actually, the way the column cache is currently used, we are guaranteed
3055   ** that the object will never already be in cache.  Verify this guarantee.
3056   */
3057 #ifndef NDEBUG
3058   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3059     assert( p->iTable!=iTab || p->iColumn!=iCol );
3060   }
3061 #endif
3062 
3063   /* If the cache is already full, delete the least recently used entry */
3064   if( pParse->nColCache>=SQLITE_N_COLCACHE ){
3065     minLru = 0x7fffffff;
3066     idxLru = -1;
3067     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3068       if( p->lru<minLru ){
3069         idxLru = i;
3070         minLru = p->lru;
3071       }
3072     }
3073     p = &pParse->aColCache[idxLru];
3074   }else{
3075     p = &pParse->aColCache[pParse->nColCache++];
3076   }
3077 
3078   /* Add the new entry to the end of the cache */
3079   p->iLevel = pParse->iCacheLevel;
3080   p->iTable = iTab;
3081   p->iColumn = iCol;
3082   p->iReg = iReg;
3083   p->tempReg = 0;
3084   p->lru = pParse->iCacheCnt++;
3085 }
3086 
3087 /*
3088 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
3089 ** Purge the range of registers from the column cache.
3090 */
3091 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
3092   int i = 0;
3093   while( i<pParse->nColCache ){
3094     struct yColCache *p = &pParse->aColCache[i];
3095     if( p->iReg >= iReg && p->iReg < iReg+nReg ){
3096       cacheEntryClear(pParse, i);
3097     }else{
3098       i++;
3099     }
3100   }
3101 }
3102 
3103 /*
3104 ** Remember the current column cache context.  Any new entries added
3105 ** added to the column cache after this call are removed when the
3106 ** corresponding pop occurs.
3107 */
3108 void sqlite3ExprCachePush(Parse *pParse){
3109   pParse->iCacheLevel++;
3110 #ifdef SQLITE_DEBUG
3111   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3112     printf("PUSH to %d\n", pParse->iCacheLevel);
3113   }
3114 #endif
3115 }
3116 
3117 /*
3118 ** Remove from the column cache any entries that were added since the
3119 ** the previous sqlite3ExprCachePush operation.  In other words, restore
3120 ** the cache to the state it was in prior the most recent Push.
3121 */
3122 void sqlite3ExprCachePop(Parse *pParse){
3123   int i = 0;
3124   assert( pParse->iCacheLevel>=1 );
3125   pParse->iCacheLevel--;
3126 #ifdef SQLITE_DEBUG
3127   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3128     printf("POP  to %d\n", pParse->iCacheLevel);
3129   }
3130 #endif
3131   while( i<pParse->nColCache ){
3132     if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){
3133       cacheEntryClear(pParse, i);
3134     }else{
3135       i++;
3136     }
3137   }
3138 }
3139 
3140 /*
3141 ** When a cached column is reused, make sure that its register is
3142 ** no longer available as a temp register.  ticket #3879:  that same
3143 ** register might be in the cache in multiple places, so be sure to
3144 ** get them all.
3145 */
3146 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
3147   int i;
3148   struct yColCache *p;
3149   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3150     if( p->iReg==iReg ){
3151       p->tempReg = 0;
3152     }
3153   }
3154 }
3155 
3156 /* Generate code that will load into register regOut a value that is
3157 ** appropriate for the iIdxCol-th column of index pIdx.
3158 */
3159 void sqlite3ExprCodeLoadIndexColumn(
3160   Parse *pParse,  /* The parsing context */
3161   Index *pIdx,    /* The index whose column is to be loaded */
3162   int iTabCur,    /* Cursor pointing to a table row */
3163   int iIdxCol,    /* The column of the index to be loaded */
3164   int regOut      /* Store the index column value in this register */
3165 ){
3166   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3167   if( iTabCol==XN_EXPR ){
3168     assert( pIdx->aColExpr );
3169     assert( pIdx->aColExpr->nExpr>iIdxCol );
3170     pParse->iSelfTab = iTabCur;
3171     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3172   }else{
3173     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3174                                     iTabCol, regOut);
3175   }
3176 }
3177 
3178 /*
3179 ** Generate code to extract the value of the iCol-th column of a table.
3180 */
3181 void sqlite3ExprCodeGetColumnOfTable(
3182   Vdbe *v,        /* The VDBE under construction */
3183   Table *pTab,    /* The table containing the value */
3184   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3185   int iCol,       /* Index of the column to extract */
3186   int regOut      /* Extract the value into this register */
3187 ){
3188   if( iCol<0 || iCol==pTab->iPKey ){
3189     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3190   }else{
3191     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
3192     int x = iCol;
3193     if( !HasRowid(pTab) && !IsVirtual(pTab) ){
3194       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3195     }
3196     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3197   }
3198   if( iCol>=0 ){
3199     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3200   }
3201 }
3202 
3203 /*
3204 ** Generate code that will extract the iColumn-th column from
3205 ** table pTab and store the column value in a register.
3206 **
3207 ** An effort is made to store the column value in register iReg.  This
3208 ** is not garanteeed for GetColumn() - the result can be stored in
3209 ** any register.  But the result is guaranteed to land in register iReg
3210 ** for GetColumnToReg().
3211 **
3212 ** There must be an open cursor to pTab in iTable when this routine
3213 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3214 */
3215 int sqlite3ExprCodeGetColumn(
3216   Parse *pParse,   /* Parsing and code generating context */
3217   Table *pTab,     /* Description of the table we are reading from */
3218   int iColumn,     /* Index of the table column */
3219   int iTable,      /* The cursor pointing to the table */
3220   int iReg,        /* Store results here */
3221   u8 p5            /* P5 value for OP_Column + FLAGS */
3222 ){
3223   Vdbe *v = pParse->pVdbe;
3224   int i;
3225   struct yColCache *p;
3226 
3227   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3228     if( p->iTable==iTable && p->iColumn==iColumn ){
3229       p->lru = pParse->iCacheCnt++;
3230       sqlite3ExprCachePinRegister(pParse, p->iReg);
3231       return p->iReg;
3232     }
3233   }
3234   assert( v!=0 );
3235   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
3236   if( p5 ){
3237     sqlite3VdbeChangeP5(v, p5);
3238   }else{
3239     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
3240   }
3241   return iReg;
3242 }
3243 void sqlite3ExprCodeGetColumnToReg(
3244   Parse *pParse,   /* Parsing and code generating context */
3245   Table *pTab,     /* Description of the table we are reading from */
3246   int iColumn,     /* Index of the table column */
3247   int iTable,      /* The cursor pointing to the table */
3248   int iReg         /* Store results here */
3249 ){
3250   int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
3251   if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
3252 }
3253 
3254 
3255 /*
3256 ** Clear all column cache entries.
3257 */
3258 void sqlite3ExprCacheClear(Parse *pParse){
3259   int i;
3260 
3261 #if SQLITE_DEBUG
3262   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3263     printf("CLEAR\n");
3264   }
3265 #endif
3266   for(i=0; i<pParse->nColCache; i++){
3267     if( pParse->aColCache[i].tempReg
3268      && pParse->nTempReg<ArraySize(pParse->aTempReg)
3269     ){
3270        pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3271     }
3272   }
3273   pParse->nColCache = 0;
3274 }
3275 
3276 /*
3277 ** Record the fact that an affinity change has occurred on iCount
3278 ** registers starting with iStart.
3279 */
3280 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
3281   sqlite3ExprCacheRemove(pParse, iStart, iCount);
3282 }
3283 
3284 /*
3285 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3286 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
3287 */
3288 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3289   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
3290   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3291   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
3292 }
3293 
3294 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
3295 /*
3296 ** Return true if any register in the range iFrom..iTo (inclusive)
3297 ** is used as part of the column cache.
3298 **
3299 ** This routine is used within assert() and testcase() macros only
3300 ** and does not appear in a normal build.
3301 */
3302 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
3303   int i;
3304   struct yColCache *p;
3305   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3306     int r = p->iReg;
3307     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
3308   }
3309   return 0;
3310 }
3311 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
3312 
3313 
3314 /*
3315 ** Convert a scalar expression node to a TK_REGISTER referencing
3316 ** register iReg.  The caller must ensure that iReg already contains
3317 ** the correct value for the expression.
3318 */
3319 static void exprToRegister(Expr *p, int iReg){
3320   p->op2 = p->op;
3321   p->op = TK_REGISTER;
3322   p->iTable = iReg;
3323   ExprClearProperty(p, EP_Skip);
3324 }
3325 
3326 /*
3327 ** Evaluate an expression (either a vector or a scalar expression) and store
3328 ** the result in continguous temporary registers.  Return the index of
3329 ** the first register used to store the result.
3330 **
3331 ** If the returned result register is a temporary scalar, then also write
3332 ** that register number into *piFreeable.  If the returned result register
3333 ** is not a temporary or if the expression is a vector set *piFreeable
3334 ** to 0.
3335 */
3336 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3337   int iResult;
3338   int nResult = sqlite3ExprVectorSize(p);
3339   if( nResult==1 ){
3340     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3341   }else{
3342     *piFreeable = 0;
3343     if( p->op==TK_SELECT ){
3344       iResult = sqlite3CodeSubselect(pParse, p, 0, 0);
3345     }else{
3346       int i;
3347       iResult = pParse->nMem+1;
3348       pParse->nMem += nResult;
3349       for(i=0; i<nResult; i++){
3350         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3351       }
3352     }
3353   }
3354   return iResult;
3355 }
3356 
3357 
3358 /*
3359 ** Generate code into the current Vdbe to evaluate the given
3360 ** expression.  Attempt to store the results in register "target".
3361 ** Return the register where results are stored.
3362 **
3363 ** With this routine, there is no guarantee that results will
3364 ** be stored in target.  The result might be stored in some other
3365 ** register if it is convenient to do so.  The calling function
3366 ** must check the return code and move the results to the desired
3367 ** register.
3368 */
3369 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3370   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3371   int op;                   /* The opcode being coded */
3372   int inReg = target;       /* Results stored in register inReg */
3373   int regFree1 = 0;         /* If non-zero free this temporary register */
3374   int regFree2 = 0;         /* If non-zero free this temporary register */
3375   int r1, r2;               /* Various register numbers */
3376   Expr tempX;               /* Temporary expression node */
3377   int p5 = 0;
3378 
3379   assert( target>0 && target<=pParse->nMem );
3380   if( v==0 ){
3381     assert( pParse->db->mallocFailed );
3382     return 0;
3383   }
3384 
3385   if( pExpr==0 ){
3386     op = TK_NULL;
3387   }else{
3388     op = pExpr->op;
3389   }
3390   switch( op ){
3391     case TK_AGG_COLUMN: {
3392       AggInfo *pAggInfo = pExpr->pAggInfo;
3393       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3394       if( !pAggInfo->directMode ){
3395         assert( pCol->iMem>0 );
3396         return pCol->iMem;
3397       }else if( pAggInfo->useSortingIdx ){
3398         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3399                               pCol->iSorterColumn, target);
3400         return target;
3401       }
3402       /* Otherwise, fall thru into the TK_COLUMN case */
3403     }
3404     case TK_COLUMN: {
3405       int iTab = pExpr->iTable;
3406       if( iTab<0 ){
3407         if( pParse->ckBase>0 ){
3408           /* Generating CHECK constraints or inserting into partial index */
3409           return pExpr->iColumn + pParse->ckBase;
3410         }else{
3411           /* Coding an expression that is part of an index where column names
3412           ** in the index refer to the table to which the index belongs */
3413           iTab = pParse->iSelfTab;
3414         }
3415       }
3416       return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
3417                                pExpr->iColumn, iTab, target,
3418                                pExpr->op2);
3419     }
3420     case TK_INTEGER: {
3421       codeInteger(pParse, pExpr, 0, target);
3422       return target;
3423     }
3424 #ifndef SQLITE_OMIT_FLOATING_POINT
3425     case TK_FLOAT: {
3426       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3427       codeReal(v, pExpr->u.zToken, 0, target);
3428       return target;
3429     }
3430 #endif
3431     case TK_STRING: {
3432       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3433       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3434       return target;
3435     }
3436     case TK_NULL: {
3437       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3438       return target;
3439     }
3440 #ifndef SQLITE_OMIT_BLOB_LITERAL
3441     case TK_BLOB: {
3442       int n;
3443       const char *z;
3444       char *zBlob;
3445       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3446       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3447       assert( pExpr->u.zToken[1]=='\'' );
3448       z = &pExpr->u.zToken[2];
3449       n = sqlite3Strlen30(z) - 1;
3450       assert( z[n]=='\'' );
3451       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3452       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3453       return target;
3454     }
3455 #endif
3456     case TK_VARIABLE: {
3457       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3458       assert( pExpr->u.zToken!=0 );
3459       assert( pExpr->u.zToken[0]!=0 );
3460       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3461       if( pExpr->u.zToken[1]!=0 ){
3462         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3463         assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 );
3464         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3465         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3466       }
3467       return target;
3468     }
3469     case TK_REGISTER: {
3470       return pExpr->iTable;
3471     }
3472 #ifndef SQLITE_OMIT_CAST
3473     case TK_CAST: {
3474       /* Expressions of the form:   CAST(pLeft AS token) */
3475       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3476       if( inReg!=target ){
3477         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3478         inReg = target;
3479       }
3480       sqlite3VdbeAddOp2(v, OP_Cast, target,
3481                         sqlite3AffinityType(pExpr->u.zToken, 0));
3482       testcase( usedAsColumnCache(pParse, inReg, inReg) );
3483       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
3484       return inReg;
3485     }
3486 #endif /* SQLITE_OMIT_CAST */
3487     case TK_IS:
3488     case TK_ISNOT:
3489       op = (op==TK_IS) ? TK_EQ : TK_NE;
3490       p5 = SQLITE_NULLEQ;
3491       /* fall-through */
3492     case TK_LT:
3493     case TK_LE:
3494     case TK_GT:
3495     case TK_GE:
3496     case TK_NE:
3497     case TK_EQ: {
3498       Expr *pLeft = pExpr->pLeft;
3499       if( sqlite3ExprIsVector(pLeft) ){
3500         codeVectorCompare(pParse, pExpr, target, op, p5);
3501       }else{
3502         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3503         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3504         codeCompare(pParse, pLeft, pExpr->pRight, op,
3505             r1, r2, inReg, SQLITE_STOREP2 | p5);
3506         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3507         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3508         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3509         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3510         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3511         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3512         testcase( regFree1==0 );
3513         testcase( regFree2==0 );
3514       }
3515       break;
3516     }
3517     case TK_AND:
3518     case TK_OR:
3519     case TK_PLUS:
3520     case TK_STAR:
3521     case TK_MINUS:
3522     case TK_REM:
3523     case TK_BITAND:
3524     case TK_BITOR:
3525     case TK_SLASH:
3526     case TK_LSHIFT:
3527     case TK_RSHIFT:
3528     case TK_CONCAT: {
3529       assert( TK_AND==OP_And );            testcase( op==TK_AND );
3530       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
3531       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
3532       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
3533       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
3534       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
3535       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
3536       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
3537       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
3538       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
3539       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
3540       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3541       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3542       sqlite3VdbeAddOp3(v, op, r2, r1, target);
3543       testcase( regFree1==0 );
3544       testcase( regFree2==0 );
3545       break;
3546     }
3547     case TK_UMINUS: {
3548       Expr *pLeft = pExpr->pLeft;
3549       assert( pLeft );
3550       if( pLeft->op==TK_INTEGER ){
3551         codeInteger(pParse, pLeft, 1, target);
3552         return target;
3553 #ifndef SQLITE_OMIT_FLOATING_POINT
3554       }else if( pLeft->op==TK_FLOAT ){
3555         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3556         codeReal(v, pLeft->u.zToken, 1, target);
3557         return target;
3558 #endif
3559       }else{
3560         tempX.op = TK_INTEGER;
3561         tempX.flags = EP_IntValue|EP_TokenOnly;
3562         tempX.u.iValue = 0;
3563         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3564         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3565         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3566         testcase( regFree2==0 );
3567       }
3568       break;
3569     }
3570     case TK_BITNOT:
3571     case TK_NOT: {
3572       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
3573       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
3574       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3575       testcase( regFree1==0 );
3576       sqlite3VdbeAddOp2(v, op, r1, inReg);
3577       break;
3578     }
3579     case TK_ISNULL:
3580     case TK_NOTNULL: {
3581       int addr;
3582       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3583       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3584       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3585       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3586       testcase( regFree1==0 );
3587       addr = sqlite3VdbeAddOp1(v, op, r1);
3588       VdbeCoverageIf(v, op==TK_ISNULL);
3589       VdbeCoverageIf(v, op==TK_NOTNULL);
3590       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3591       sqlite3VdbeJumpHere(v, addr);
3592       break;
3593     }
3594     case TK_AGG_FUNCTION: {
3595       AggInfo *pInfo = pExpr->pAggInfo;
3596       if( pInfo==0 ){
3597         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3598         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3599       }else{
3600         return pInfo->aFunc[pExpr->iAgg].iMem;
3601       }
3602       break;
3603     }
3604     case TK_FUNCTION: {
3605       ExprList *pFarg;       /* List of function arguments */
3606       int nFarg;             /* Number of function arguments */
3607       FuncDef *pDef;         /* The function definition object */
3608       const char *zId;       /* The function name */
3609       u32 constMask = 0;     /* Mask of function arguments that are constant */
3610       int i;                 /* Loop counter */
3611       sqlite3 *db = pParse->db;  /* The database connection */
3612       u8 enc = ENC(db);      /* The text encoding used by this database */
3613       CollSeq *pColl = 0;    /* A collating sequence */
3614 
3615       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
3616         /* SQL functions can be expensive. So try to move constant functions
3617         ** out of the inner loop, even if that means an extra OP_Copy. */
3618         return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
3619       }
3620       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3621       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3622         pFarg = 0;
3623       }else{
3624         pFarg = pExpr->x.pList;
3625       }
3626       nFarg = pFarg ? pFarg->nExpr : 0;
3627       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3628       zId = pExpr->u.zToken;
3629       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3630 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3631       if( pDef==0 && pParse->explain ){
3632         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3633       }
3634 #endif
3635       if( pDef==0 || pDef->xFinalize!=0 ){
3636         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3637         break;
3638       }
3639 
3640       /* Attempt a direct implementation of the built-in COALESCE() and
3641       ** IFNULL() functions.  This avoids unnecessary evaluation of
3642       ** arguments past the first non-NULL argument.
3643       */
3644       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3645         int endCoalesce = sqlite3VdbeMakeLabel(v);
3646         assert( nFarg>=2 );
3647         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3648         for(i=1; i<nFarg; i++){
3649           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3650           VdbeCoverage(v);
3651           sqlite3ExprCacheRemove(pParse, target, 1);
3652           sqlite3ExprCachePush(pParse);
3653           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3654           sqlite3ExprCachePop(pParse);
3655         }
3656         sqlite3VdbeResolveLabel(v, endCoalesce);
3657         break;
3658       }
3659 
3660       /* The UNLIKELY() function is a no-op.  The result is the value
3661       ** of the first argument.
3662       */
3663       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3664         assert( nFarg>=1 );
3665         return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3666       }
3667 
3668 #ifdef SQLITE_DEBUG
3669       /* The AFFINITY() function evaluates to a string that describes
3670       ** the type affinity of the argument.  This is used for testing of
3671       ** the SQLite type logic.
3672       */
3673       if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
3674         const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3675         char aff;
3676         assert( nFarg==1 );
3677         aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3678         sqlite3VdbeLoadString(v, target,
3679                               aff ? azAff[aff-SQLITE_AFF_BLOB] : "none");
3680         return target;
3681       }
3682 #endif
3683 
3684       for(i=0; i<nFarg; i++){
3685         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3686           testcase( i==31 );
3687           constMask |= MASKBIT32(i);
3688         }
3689         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
3690           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
3691         }
3692       }
3693       if( pFarg ){
3694         if( constMask ){
3695           r1 = pParse->nMem+1;
3696           pParse->nMem += nFarg;
3697         }else{
3698           r1 = sqlite3GetTempRange(pParse, nFarg);
3699         }
3700 
3701         /* For length() and typeof() functions with a column argument,
3702         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3703         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3704         ** loading.
3705         */
3706         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3707           u8 exprOp;
3708           assert( nFarg==1 );
3709           assert( pFarg->a[0].pExpr!=0 );
3710           exprOp = pFarg->a[0].pExpr->op;
3711           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3712             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3713             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3714             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3715             pFarg->a[0].pExpr->op2 =
3716                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3717           }
3718         }
3719 
3720         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
3721         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3722                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3723         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
3724       }else{
3725         r1 = 0;
3726       }
3727 #ifndef SQLITE_OMIT_VIRTUALTABLE
3728       /* Possibly overload the function if the first argument is
3729       ** a virtual table column.
3730       **
3731       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3732       ** second argument, not the first, as the argument to test to
3733       ** see if it is a column in a virtual table.  This is done because
3734       ** the left operand of infix functions (the operand we want to
3735       ** control overloading) ends up as the second argument to the
3736       ** function.  The expression "A glob B" is equivalent to
3737       ** "glob(B,A).  We want to use the A in "A glob B" to test
3738       ** for function overloading.  But we use the B term in "glob(B,A)".
3739       */
3740       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
3741         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3742       }else if( nFarg>0 ){
3743         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3744       }
3745 #endif
3746       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3747         if( !pColl ) pColl = db->pDfltColl;
3748         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3749       }
3750       sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target,
3751                         (char*)pDef, P4_FUNCDEF);
3752       sqlite3VdbeChangeP5(v, (u8)nFarg);
3753       if( nFarg && constMask==0 ){
3754         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3755       }
3756       return target;
3757     }
3758 #ifndef SQLITE_OMIT_SUBQUERY
3759     case TK_EXISTS:
3760     case TK_SELECT: {
3761       int nCol;
3762       testcase( op==TK_EXISTS );
3763       testcase( op==TK_SELECT );
3764       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
3765         sqlite3SubselectError(pParse, nCol, 1);
3766       }else{
3767         return sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3768       }
3769       break;
3770     }
3771     case TK_SELECT_COLUMN: {
3772       int n;
3773       if( pExpr->pLeft->iTable==0 ){
3774         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0);
3775       }
3776       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
3777       if( pExpr->iTable
3778        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
3779       ){
3780         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
3781                                 pExpr->iTable, n);
3782       }
3783       return pExpr->pLeft->iTable + pExpr->iColumn;
3784     }
3785     case TK_IN: {
3786       int destIfFalse = sqlite3VdbeMakeLabel(v);
3787       int destIfNull = sqlite3VdbeMakeLabel(v);
3788       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3789       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3790       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3791       sqlite3VdbeResolveLabel(v, destIfFalse);
3792       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3793       sqlite3VdbeResolveLabel(v, destIfNull);
3794       return target;
3795     }
3796 #endif /* SQLITE_OMIT_SUBQUERY */
3797 
3798 
3799     /*
3800     **    x BETWEEN y AND z
3801     **
3802     ** This is equivalent to
3803     **
3804     **    x>=y AND x<=z
3805     **
3806     ** X is stored in pExpr->pLeft.
3807     ** Y is stored in pExpr->pList->a[0].pExpr.
3808     ** Z is stored in pExpr->pList->a[1].pExpr.
3809     */
3810     case TK_BETWEEN: {
3811       exprCodeBetween(pParse, pExpr, target, 0, 0);
3812       return target;
3813     }
3814     case TK_SPAN:
3815     case TK_COLLATE:
3816     case TK_UPLUS: {
3817       return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3818     }
3819 
3820     case TK_TRIGGER: {
3821       /* If the opcode is TK_TRIGGER, then the expression is a reference
3822       ** to a column in the new.* or old.* pseudo-tables available to
3823       ** trigger programs. In this case Expr.iTable is set to 1 for the
3824       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3825       ** is set to the column of the pseudo-table to read, or to -1 to
3826       ** read the rowid field.
3827       **
3828       ** The expression is implemented using an OP_Param opcode. The p1
3829       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3830       ** to reference another column of the old.* pseudo-table, where
3831       ** i is the index of the column. For a new.rowid reference, p1 is
3832       ** set to (n+1), where n is the number of columns in each pseudo-table.
3833       ** For a reference to any other column in the new.* pseudo-table, p1
3834       ** is set to (n+2+i), where n and i are as defined previously. For
3835       ** example, if the table on which triggers are being fired is
3836       ** declared as:
3837       **
3838       **   CREATE TABLE t1(a, b);
3839       **
3840       ** Then p1 is interpreted as follows:
3841       **
3842       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3843       **   p1==1   ->    old.a         p1==4   ->    new.a
3844       **   p1==2   ->    old.b         p1==5   ->    new.b
3845       */
3846       Table *pTab = pExpr->pTab;
3847       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3848 
3849       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3850       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3851       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3852       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3853 
3854       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3855       VdbeComment((v, "%s.%s -> $%d",
3856         (pExpr->iTable ? "new" : "old"),
3857         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3858         target
3859       ));
3860 
3861 #ifndef SQLITE_OMIT_FLOATING_POINT
3862       /* If the column has REAL affinity, it may currently be stored as an
3863       ** integer. Use OP_RealAffinity to make sure it is really real.
3864       **
3865       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3866       ** floating point when extracting it from the record.  */
3867       if( pExpr->iColumn>=0
3868        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3869       ){
3870         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3871       }
3872 #endif
3873       break;
3874     }
3875 
3876     case TK_VECTOR: {
3877       sqlite3ErrorMsg(pParse, "row value misused");
3878       break;
3879     }
3880 
3881     /*
3882     ** Form A:
3883     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3884     **
3885     ** Form B:
3886     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3887     **
3888     ** Form A is can be transformed into the equivalent form B as follows:
3889     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3890     **        WHEN x=eN THEN rN ELSE y END
3891     **
3892     ** X (if it exists) is in pExpr->pLeft.
3893     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3894     ** odd.  The Y is also optional.  If the number of elements in x.pList
3895     ** is even, then Y is omitted and the "otherwise" result is NULL.
3896     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3897     **
3898     ** The result of the expression is the Ri for the first matching Ei,
3899     ** or if there is no matching Ei, the ELSE term Y, or if there is
3900     ** no ELSE term, NULL.
3901     */
3902     default: assert( op==TK_CASE ); {
3903       int endLabel;                     /* GOTO label for end of CASE stmt */
3904       int nextCase;                     /* GOTO label for next WHEN clause */
3905       int nExpr;                        /* 2x number of WHEN terms */
3906       int i;                            /* Loop counter */
3907       ExprList *pEList;                 /* List of WHEN terms */
3908       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3909       Expr opCompare;                   /* The X==Ei expression */
3910       Expr *pX;                         /* The X expression */
3911       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3912       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
3913 
3914       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3915       assert(pExpr->x.pList->nExpr > 0);
3916       pEList = pExpr->x.pList;
3917       aListelem = pEList->a;
3918       nExpr = pEList->nExpr;
3919       endLabel = sqlite3VdbeMakeLabel(v);
3920       if( (pX = pExpr->pLeft)!=0 ){
3921         tempX = *pX;
3922         testcase( pX->op==TK_COLUMN );
3923         exprToRegister(&tempX, exprCodeVector(pParse, &tempX, &regFree1));
3924         testcase( regFree1==0 );
3925         memset(&opCompare, 0, sizeof(opCompare));
3926         opCompare.op = TK_EQ;
3927         opCompare.pLeft = &tempX;
3928         pTest = &opCompare;
3929         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3930         ** The value in regFree1 might get SCopy-ed into the file result.
3931         ** So make sure that the regFree1 register is not reused for other
3932         ** purposes and possibly overwritten.  */
3933         regFree1 = 0;
3934       }
3935       for(i=0; i<nExpr-1; i=i+2){
3936         sqlite3ExprCachePush(pParse);
3937         if( pX ){
3938           assert( pTest!=0 );
3939           opCompare.pRight = aListelem[i].pExpr;
3940         }else{
3941           pTest = aListelem[i].pExpr;
3942         }
3943         nextCase = sqlite3VdbeMakeLabel(v);
3944         testcase( pTest->op==TK_COLUMN );
3945         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3946         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3947         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3948         sqlite3VdbeGoto(v, endLabel);
3949         sqlite3ExprCachePop(pParse);
3950         sqlite3VdbeResolveLabel(v, nextCase);
3951       }
3952       if( (nExpr&1)!=0 ){
3953         sqlite3ExprCachePush(pParse);
3954         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3955         sqlite3ExprCachePop(pParse);
3956       }else{
3957         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3958       }
3959       assert( pParse->db->mallocFailed || pParse->nErr>0
3960            || pParse->iCacheLevel==iCacheLevel );
3961       sqlite3VdbeResolveLabel(v, endLabel);
3962       break;
3963     }
3964 #ifndef SQLITE_OMIT_TRIGGER
3965     case TK_RAISE: {
3966       assert( pExpr->affinity==OE_Rollback
3967            || pExpr->affinity==OE_Abort
3968            || pExpr->affinity==OE_Fail
3969            || pExpr->affinity==OE_Ignore
3970       );
3971       if( !pParse->pTriggerTab ){
3972         sqlite3ErrorMsg(pParse,
3973                        "RAISE() may only be used within a trigger-program");
3974         return 0;
3975       }
3976       if( pExpr->affinity==OE_Abort ){
3977         sqlite3MayAbort(pParse);
3978       }
3979       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3980       if( pExpr->affinity==OE_Ignore ){
3981         sqlite3VdbeAddOp4(
3982             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3983         VdbeCoverage(v);
3984       }else{
3985         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3986                               pExpr->affinity, pExpr->u.zToken, 0, 0);
3987       }
3988 
3989       break;
3990     }
3991 #endif
3992   }
3993   sqlite3ReleaseTempReg(pParse, regFree1);
3994   sqlite3ReleaseTempReg(pParse, regFree2);
3995   return inReg;
3996 }
3997 
3998 /*
3999 ** Factor out the code of the given expression to initialization time.
4000 **
4001 ** If regDest>=0 then the result is always stored in that register and the
4002 ** result is not reusable.  If regDest<0 then this routine is free to
4003 ** store the value whereever it wants.  The register where the expression
4004 ** is stored is returned.  When regDest<0, two identical expressions will
4005 ** code to the same register.
4006 */
4007 int sqlite3ExprCodeAtInit(
4008   Parse *pParse,    /* Parsing context */
4009   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4010   int regDest       /* Store the value in this register */
4011 ){
4012   ExprList *p;
4013   assert( ConstFactorOk(pParse) );
4014   p = pParse->pConstExpr;
4015   if( regDest<0 && p ){
4016     struct ExprList_item *pItem;
4017     int i;
4018     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4019       if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
4020         return pItem->u.iConstExprReg;
4021       }
4022     }
4023   }
4024   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4025   p = sqlite3ExprListAppend(pParse, p, pExpr);
4026   if( p ){
4027      struct ExprList_item *pItem = &p->a[p->nExpr-1];
4028      pItem->reusable = regDest<0;
4029      if( regDest<0 ) regDest = ++pParse->nMem;
4030      pItem->u.iConstExprReg = regDest;
4031   }
4032   pParse->pConstExpr = p;
4033   return regDest;
4034 }
4035 
4036 /*
4037 ** Generate code to evaluate an expression and store the results
4038 ** into a register.  Return the register number where the results
4039 ** are stored.
4040 **
4041 ** If the register is a temporary register that can be deallocated,
4042 ** then write its number into *pReg.  If the result register is not
4043 ** a temporary, then set *pReg to zero.
4044 **
4045 ** If pExpr is a constant, then this routine might generate this
4046 ** code to fill the register in the initialization section of the
4047 ** VDBE program, in order to factor it out of the evaluation loop.
4048 */
4049 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4050   int r2;
4051   pExpr = sqlite3ExprSkipCollate(pExpr);
4052   if( ConstFactorOk(pParse)
4053    && pExpr->op!=TK_REGISTER
4054    && sqlite3ExprIsConstantNotJoin(pExpr)
4055   ){
4056     *pReg  = 0;
4057     r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4058   }else{
4059     int r1 = sqlite3GetTempReg(pParse);
4060     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4061     if( r2==r1 ){
4062       *pReg = r1;
4063     }else{
4064       sqlite3ReleaseTempReg(pParse, r1);
4065       *pReg = 0;
4066     }
4067   }
4068   return r2;
4069 }
4070 
4071 /*
4072 ** Generate code that will evaluate expression pExpr and store the
4073 ** results in register target.  The results are guaranteed to appear
4074 ** in register target.
4075 */
4076 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4077   int inReg;
4078 
4079   assert( target>0 && target<=pParse->nMem );
4080   if( pExpr && pExpr->op==TK_REGISTER ){
4081     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
4082   }else{
4083     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4084     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4085     if( inReg!=target && pParse->pVdbe ){
4086       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4087     }
4088   }
4089 }
4090 
4091 /*
4092 ** Make a transient copy of expression pExpr and then code it using
4093 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4094 ** except that the input expression is guaranteed to be unchanged.
4095 */
4096 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4097   sqlite3 *db = pParse->db;
4098   pExpr = sqlite3ExprDup(db, pExpr, 0);
4099   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4100   sqlite3ExprDelete(db, pExpr);
4101 }
4102 
4103 /*
4104 ** Generate code that will evaluate expression pExpr and store the
4105 ** results in register target.  The results are guaranteed to appear
4106 ** in register target.  If the expression is constant, then this routine
4107 ** might choose to code the expression at initialization time.
4108 */
4109 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4110   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
4111     sqlite3ExprCodeAtInit(pParse, pExpr, target);
4112   }else{
4113     sqlite3ExprCode(pParse, pExpr, target);
4114   }
4115 }
4116 
4117 /*
4118 ** Generate code that evaluates the given expression and puts the result
4119 ** in register target.
4120 **
4121 ** Also make a copy of the expression results into another "cache" register
4122 ** and modify the expression so that the next time it is evaluated,
4123 ** the result is a copy of the cache register.
4124 **
4125 ** This routine is used for expressions that are used multiple
4126 ** times.  They are evaluated once and the results of the expression
4127 ** are reused.
4128 */
4129 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
4130   Vdbe *v = pParse->pVdbe;
4131   int iMem;
4132 
4133   assert( target>0 );
4134   assert( pExpr->op!=TK_REGISTER );
4135   sqlite3ExprCode(pParse, pExpr, target);
4136   iMem = ++pParse->nMem;
4137   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
4138   exprToRegister(pExpr, iMem);
4139 }
4140 
4141 /*
4142 ** Generate code that pushes the value of every element of the given
4143 ** expression list into a sequence of registers beginning at target.
4144 **
4145 ** Return the number of elements evaluated.
4146 **
4147 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4148 ** filled using OP_SCopy.  OP_Copy must be used instead.
4149 **
4150 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4151 ** factored out into initialization code.
4152 **
4153 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4154 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4155 ** in registers at srcReg, and so the value can be copied from there.
4156 */
4157 int sqlite3ExprCodeExprList(
4158   Parse *pParse,     /* Parsing context */
4159   ExprList *pList,   /* The expression list to be coded */
4160   int target,        /* Where to write results */
4161   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4162   u8 flags           /* SQLITE_ECEL_* flags */
4163 ){
4164   struct ExprList_item *pItem;
4165   int i, j, n;
4166   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4167   Vdbe *v = pParse->pVdbe;
4168   assert( pList!=0 );
4169   assert( target>0 );
4170   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4171   n = pList->nExpr;
4172   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4173   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4174     Expr *pExpr = pItem->pExpr;
4175     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4176       if( flags & SQLITE_ECEL_OMITREF ){
4177         i--;
4178         n--;
4179       }else{
4180         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4181       }
4182     }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
4183       sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4184     }else{
4185       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4186       if( inReg!=target+i ){
4187         VdbeOp *pOp;
4188         if( copyOp==OP_Copy
4189          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4190          && pOp->p1+pOp->p3+1==inReg
4191          && pOp->p2+pOp->p3+1==target+i
4192         ){
4193           pOp->p3++;
4194         }else{
4195           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4196         }
4197       }
4198     }
4199   }
4200   return n;
4201 }
4202 
4203 /*
4204 ** Generate code for a BETWEEN operator.
4205 **
4206 **    x BETWEEN y AND z
4207 **
4208 ** The above is equivalent to
4209 **
4210 **    x>=y AND x<=z
4211 **
4212 ** Code it as such, taking care to do the common subexpression
4213 ** elimination of x.
4214 **
4215 ** The xJumpIf parameter determines details:
4216 **
4217 **    NULL:                   Store the boolean result in reg[dest]
4218 **    sqlite3ExprIfTrue:      Jump to dest if true
4219 **    sqlite3ExprIfFalse:     Jump to dest if false
4220 **
4221 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4222 */
4223 static void exprCodeBetween(
4224   Parse *pParse,    /* Parsing and code generating context */
4225   Expr *pExpr,      /* The BETWEEN expression */
4226   int dest,         /* Jump destination or storage location */
4227   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4228   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4229 ){
4230  Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4231   Expr compLeft;    /* The  x>=y  term */
4232   Expr compRight;   /* The  x<=z  term */
4233   Expr exprX;       /* The  x  subexpression */
4234   int regFree1 = 0; /* Temporary use register */
4235 
4236 
4237   memset(&compLeft, 0, sizeof(Expr));
4238   memset(&compRight, 0, sizeof(Expr));
4239   memset(&exprAnd, 0, sizeof(Expr));
4240 
4241   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4242   exprX = *pExpr->pLeft;
4243   exprAnd.op = TK_AND;
4244   exprAnd.pLeft = &compLeft;
4245   exprAnd.pRight = &compRight;
4246   compLeft.op = TK_GE;
4247   compLeft.pLeft = &exprX;
4248   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4249   compRight.op = TK_LE;
4250   compRight.pLeft = &exprX;
4251   compRight.pRight = pExpr->x.pList->a[1].pExpr;
4252   exprToRegister(&exprX, exprCodeVector(pParse, &exprX, &regFree1));
4253   if( xJump ){
4254     xJump(pParse, &exprAnd, dest, jumpIfNull);
4255   }else{
4256     /* Mark the expression is being from the ON or USING clause of a join
4257     ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4258     ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4259     ** for clarity, but we are out of bits in the Expr.flags field so we
4260     ** have to reuse the EP_FromJoin bit.  Bummer. */
4261     exprX.flags |= EP_FromJoin;
4262     sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4263   }
4264   sqlite3ReleaseTempReg(pParse, regFree1);
4265 
4266   /* Ensure adequate test coverage */
4267   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4268   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4269   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4270   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4271   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4272   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4273   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4274   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4275   testcase( xJump==0 );
4276 }
4277 
4278 /*
4279 ** Generate code for a boolean expression such that a jump is made
4280 ** to the label "dest" if the expression is true but execution
4281 ** continues straight thru if the expression is false.
4282 **
4283 ** If the expression evaluates to NULL (neither true nor false), then
4284 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4285 **
4286 ** This code depends on the fact that certain token values (ex: TK_EQ)
4287 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4288 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4289 ** the make process cause these values to align.  Assert()s in the code
4290 ** below verify that the numbers are aligned correctly.
4291 */
4292 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4293   Vdbe *v = pParse->pVdbe;
4294   int op = 0;
4295   int regFree1 = 0;
4296   int regFree2 = 0;
4297   int r1, r2;
4298 
4299   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4300   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4301   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4302   op = pExpr->op;
4303   switch( op ){
4304     case TK_AND: {
4305       int d2 = sqlite3VdbeMakeLabel(v);
4306       testcase( jumpIfNull==0 );
4307       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
4308       sqlite3ExprCachePush(pParse);
4309       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4310       sqlite3VdbeResolveLabel(v, d2);
4311       sqlite3ExprCachePop(pParse);
4312       break;
4313     }
4314     case TK_OR: {
4315       testcase( jumpIfNull==0 );
4316       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4317       sqlite3ExprCachePush(pParse);
4318       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4319       sqlite3ExprCachePop(pParse);
4320       break;
4321     }
4322     case TK_NOT: {
4323       testcase( jumpIfNull==0 );
4324       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4325       break;
4326     }
4327     case TK_IS:
4328     case TK_ISNOT:
4329       testcase( op==TK_IS );
4330       testcase( op==TK_ISNOT );
4331       op = (op==TK_IS) ? TK_EQ : TK_NE;
4332       jumpIfNull = SQLITE_NULLEQ;
4333       /* Fall thru */
4334     case TK_LT:
4335     case TK_LE:
4336     case TK_GT:
4337     case TK_GE:
4338     case TK_NE:
4339     case TK_EQ: {
4340       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4341       testcase( jumpIfNull==0 );
4342       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4343       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4344       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4345                   r1, r2, dest, jumpIfNull);
4346       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4347       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4348       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4349       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4350       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4351       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4352       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4353       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4354       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4355       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4356       testcase( regFree1==0 );
4357       testcase( regFree2==0 );
4358       break;
4359     }
4360     case TK_ISNULL:
4361     case TK_NOTNULL: {
4362       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4363       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4364       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4365       sqlite3VdbeAddOp2(v, op, r1, dest);
4366       VdbeCoverageIf(v, op==TK_ISNULL);
4367       VdbeCoverageIf(v, op==TK_NOTNULL);
4368       testcase( regFree1==0 );
4369       break;
4370     }
4371     case TK_BETWEEN: {
4372       testcase( jumpIfNull==0 );
4373       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4374       break;
4375     }
4376 #ifndef SQLITE_OMIT_SUBQUERY
4377     case TK_IN: {
4378       int destIfFalse = sqlite3VdbeMakeLabel(v);
4379       int destIfNull = jumpIfNull ? dest : destIfFalse;
4380       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4381       sqlite3VdbeGoto(v, dest);
4382       sqlite3VdbeResolveLabel(v, destIfFalse);
4383       break;
4384     }
4385 #endif
4386     default: {
4387     default_expr:
4388       if( exprAlwaysTrue(pExpr) ){
4389         sqlite3VdbeGoto(v, dest);
4390       }else if( exprAlwaysFalse(pExpr) ){
4391         /* No-op */
4392       }else{
4393         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4394         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4395         VdbeCoverage(v);
4396         testcase( regFree1==0 );
4397         testcase( jumpIfNull==0 );
4398       }
4399       break;
4400     }
4401   }
4402   sqlite3ReleaseTempReg(pParse, regFree1);
4403   sqlite3ReleaseTempReg(pParse, regFree2);
4404 }
4405 
4406 /*
4407 ** Generate code for a boolean expression such that a jump is made
4408 ** to the label "dest" if the expression is false but execution
4409 ** continues straight thru if the expression is true.
4410 **
4411 ** If the expression evaluates to NULL (neither true nor false) then
4412 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4413 ** is 0.
4414 */
4415 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4416   Vdbe *v = pParse->pVdbe;
4417   int op = 0;
4418   int regFree1 = 0;
4419   int regFree2 = 0;
4420   int r1, r2;
4421 
4422   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4423   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4424   if( pExpr==0 )    return;
4425 
4426   /* The value of pExpr->op and op are related as follows:
4427   **
4428   **       pExpr->op            op
4429   **       ---------          ----------
4430   **       TK_ISNULL          OP_NotNull
4431   **       TK_NOTNULL         OP_IsNull
4432   **       TK_NE              OP_Eq
4433   **       TK_EQ              OP_Ne
4434   **       TK_GT              OP_Le
4435   **       TK_LE              OP_Gt
4436   **       TK_GE              OP_Lt
4437   **       TK_LT              OP_Ge
4438   **
4439   ** For other values of pExpr->op, op is undefined and unused.
4440   ** The value of TK_ and OP_ constants are arranged such that we
4441   ** can compute the mapping above using the following expression.
4442   ** Assert()s verify that the computation is correct.
4443   */
4444   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4445 
4446   /* Verify correct alignment of TK_ and OP_ constants
4447   */
4448   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4449   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4450   assert( pExpr->op!=TK_NE || op==OP_Eq );
4451   assert( pExpr->op!=TK_EQ || op==OP_Ne );
4452   assert( pExpr->op!=TK_LT || op==OP_Ge );
4453   assert( pExpr->op!=TK_LE || op==OP_Gt );
4454   assert( pExpr->op!=TK_GT || op==OP_Le );
4455   assert( pExpr->op!=TK_GE || op==OP_Lt );
4456 
4457   switch( pExpr->op ){
4458     case TK_AND: {
4459       testcase( jumpIfNull==0 );
4460       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4461       sqlite3ExprCachePush(pParse);
4462       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4463       sqlite3ExprCachePop(pParse);
4464       break;
4465     }
4466     case TK_OR: {
4467       int d2 = sqlite3VdbeMakeLabel(v);
4468       testcase( jumpIfNull==0 );
4469       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
4470       sqlite3ExprCachePush(pParse);
4471       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4472       sqlite3VdbeResolveLabel(v, d2);
4473       sqlite3ExprCachePop(pParse);
4474       break;
4475     }
4476     case TK_NOT: {
4477       testcase( jumpIfNull==0 );
4478       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4479       break;
4480     }
4481     case TK_IS:
4482     case TK_ISNOT:
4483       testcase( pExpr->op==TK_IS );
4484       testcase( pExpr->op==TK_ISNOT );
4485       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4486       jumpIfNull = SQLITE_NULLEQ;
4487       /* Fall thru */
4488     case TK_LT:
4489     case TK_LE:
4490     case TK_GT:
4491     case TK_GE:
4492     case TK_NE:
4493     case TK_EQ: {
4494       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4495       testcase( jumpIfNull==0 );
4496       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4497       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4498       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4499                   r1, r2, dest, jumpIfNull);
4500       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4501       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4502       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4503       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4504       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4505       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4506       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4507       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4508       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4509       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4510       testcase( regFree1==0 );
4511       testcase( regFree2==0 );
4512       break;
4513     }
4514     case TK_ISNULL:
4515     case TK_NOTNULL: {
4516       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4517       sqlite3VdbeAddOp2(v, op, r1, dest);
4518       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
4519       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
4520       testcase( regFree1==0 );
4521       break;
4522     }
4523     case TK_BETWEEN: {
4524       testcase( jumpIfNull==0 );
4525       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4526       break;
4527     }
4528 #ifndef SQLITE_OMIT_SUBQUERY
4529     case TK_IN: {
4530       if( jumpIfNull ){
4531         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4532       }else{
4533         int destIfNull = sqlite3VdbeMakeLabel(v);
4534         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4535         sqlite3VdbeResolveLabel(v, destIfNull);
4536       }
4537       break;
4538     }
4539 #endif
4540     default: {
4541     default_expr:
4542       if( exprAlwaysFalse(pExpr) ){
4543         sqlite3VdbeGoto(v, dest);
4544       }else if( exprAlwaysTrue(pExpr) ){
4545         /* no-op */
4546       }else{
4547         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4548         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4549         VdbeCoverage(v);
4550         testcase( regFree1==0 );
4551         testcase( jumpIfNull==0 );
4552       }
4553       break;
4554     }
4555   }
4556   sqlite3ReleaseTempReg(pParse, regFree1);
4557   sqlite3ReleaseTempReg(pParse, regFree2);
4558 }
4559 
4560 /*
4561 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4562 ** code generation, and that copy is deleted after code generation. This
4563 ** ensures that the original pExpr is unchanged.
4564 */
4565 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4566   sqlite3 *db = pParse->db;
4567   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4568   if( db->mallocFailed==0 ){
4569     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4570   }
4571   sqlite3ExprDelete(db, pCopy);
4572 }
4573 
4574 
4575 /*
4576 ** Do a deep comparison of two expression trees.  Return 0 if the two
4577 ** expressions are completely identical.  Return 1 if they differ only
4578 ** by a COLLATE operator at the top level.  Return 2 if there are differences
4579 ** other than the top-level COLLATE operator.
4580 **
4581 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4582 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4583 **
4584 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
4585 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4586 **
4587 ** Sometimes this routine will return 2 even if the two expressions
4588 ** really are equivalent.  If we cannot prove that the expressions are
4589 ** identical, we return 2 just to be safe.  So if this routine
4590 ** returns 2, then you do not really know for certain if the two
4591 ** expressions are the same.  But if you get a 0 or 1 return, then you
4592 ** can be sure the expressions are the same.  In the places where
4593 ** this routine is used, it does not hurt to get an extra 2 - that
4594 ** just might result in some slightly slower code.  But returning
4595 ** an incorrect 0 or 1 could lead to a malfunction.
4596 */
4597 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
4598   u32 combinedFlags;
4599   if( pA==0 || pB==0 ){
4600     return pB==pA ? 0 : 2;
4601   }
4602   combinedFlags = pA->flags | pB->flags;
4603   if( combinedFlags & EP_IntValue ){
4604     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
4605       return 0;
4606     }
4607     return 2;
4608   }
4609   if( pA->op!=pB->op ){
4610     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
4611       return 1;
4612     }
4613     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
4614       return 1;
4615     }
4616     return 2;
4617   }
4618   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
4619     if( pA->op==TK_FUNCTION ){
4620       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4621     }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4622       return pA->op==TK_COLLATE ? 1 : 2;
4623     }
4624   }
4625   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4626   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
4627     if( combinedFlags & EP_xIsSelect ) return 2;
4628     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
4629     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
4630     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4631     if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){
4632       if( pA->iColumn!=pB->iColumn ) return 2;
4633       if( pA->iTable!=pB->iTable
4634        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4635     }
4636   }
4637   return 0;
4638 }
4639 
4640 /*
4641 ** Compare two ExprList objects.  Return 0 if they are identical and
4642 ** non-zero if they differ in any way.
4643 **
4644 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4645 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4646 **
4647 ** This routine might return non-zero for equivalent ExprLists.  The
4648 ** only consequence will be disabled optimizations.  But this routine
4649 ** must never return 0 if the two ExprList objects are different, or
4650 ** a malfunction will result.
4651 **
4652 ** Two NULL pointers are considered to be the same.  But a NULL pointer
4653 ** always differs from a non-NULL pointer.
4654 */
4655 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4656   int i;
4657   if( pA==0 && pB==0 ) return 0;
4658   if( pA==0 || pB==0 ) return 1;
4659   if( pA->nExpr!=pB->nExpr ) return 1;
4660   for(i=0; i<pA->nExpr; i++){
4661     Expr *pExprA = pA->a[i].pExpr;
4662     Expr *pExprB = pB->a[i].pExpr;
4663     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4664     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
4665   }
4666   return 0;
4667 }
4668 
4669 /*
4670 ** Return true if we can prove the pE2 will always be true if pE1 is
4671 ** true.  Return false if we cannot complete the proof or if pE2 might
4672 ** be false.  Examples:
4673 **
4674 **     pE1: x==5       pE2: x==5             Result: true
4675 **     pE1: x>0        pE2: x==5             Result: false
4676 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
4677 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
4678 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
4679 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
4680 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
4681 **
4682 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
4683 ** Expr.iTable<0 then assume a table number given by iTab.
4684 **
4685 ** When in doubt, return false.  Returning true might give a performance
4686 ** improvement.  Returning false might cause a performance reduction, but
4687 ** it will always give the correct answer and is hence always safe.
4688 */
4689 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
4690   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
4691     return 1;
4692   }
4693   if( pE2->op==TK_OR
4694    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
4695              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
4696   ){
4697     return 1;
4698   }
4699   if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){
4700     Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft);
4701     testcase( pX!=pE1->pLeft );
4702     if( sqlite3ExprCompare(pX, pE2->pLeft, iTab)==0 ) return 1;
4703   }
4704   return 0;
4705 }
4706 
4707 /*
4708 ** An instance of the following structure is used by the tree walker
4709 ** to determine if an expression can be evaluated by reference to the
4710 ** index only, without having to do a search for the corresponding
4711 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
4712 ** is the cursor for the table.
4713 */
4714 struct IdxCover {
4715   Index *pIdx;     /* The index to be tested for coverage */
4716   int iCur;        /* Cursor number for the table corresponding to the index */
4717 };
4718 
4719 /*
4720 ** Check to see if there are references to columns in table
4721 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
4722 ** pWalker->u.pIdxCover->pIdx.
4723 */
4724 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
4725   if( pExpr->op==TK_COLUMN
4726    && pExpr->iTable==pWalker->u.pIdxCover->iCur
4727    && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
4728   ){
4729     pWalker->eCode = 1;
4730     return WRC_Abort;
4731   }
4732   return WRC_Continue;
4733 }
4734 
4735 /*
4736 ** Determine if an index pIdx on table with cursor iCur contains will
4737 ** the expression pExpr.  Return true if the index does cover the
4738 ** expression and false if the pExpr expression references table columns
4739 ** that are not found in the index pIdx.
4740 **
4741 ** An index covering an expression means that the expression can be
4742 ** evaluated using only the index and without having to lookup the
4743 ** corresponding table entry.
4744 */
4745 int sqlite3ExprCoveredByIndex(
4746   Expr *pExpr,        /* The index to be tested */
4747   int iCur,           /* The cursor number for the corresponding table */
4748   Index *pIdx         /* The index that might be used for coverage */
4749 ){
4750   Walker w;
4751   struct IdxCover xcov;
4752   memset(&w, 0, sizeof(w));
4753   xcov.iCur = iCur;
4754   xcov.pIdx = pIdx;
4755   w.xExprCallback = exprIdxCover;
4756   w.u.pIdxCover = &xcov;
4757   sqlite3WalkExpr(&w, pExpr);
4758   return !w.eCode;
4759 }
4760 
4761 
4762 /*
4763 ** An instance of the following structure is used by the tree walker
4764 ** to count references to table columns in the arguments of an
4765 ** aggregate function, in order to implement the
4766 ** sqlite3FunctionThisSrc() routine.
4767 */
4768 struct SrcCount {
4769   SrcList *pSrc;   /* One particular FROM clause in a nested query */
4770   int nThis;       /* Number of references to columns in pSrcList */
4771   int nOther;      /* Number of references to columns in other FROM clauses */
4772 };
4773 
4774 /*
4775 ** Count the number of references to columns.
4776 */
4777 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
4778   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
4779   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
4780   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
4781   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
4782   ** NEVER() will need to be removed. */
4783   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
4784     int i;
4785     struct SrcCount *p = pWalker->u.pSrcCount;
4786     SrcList *pSrc = p->pSrc;
4787     int nSrc = pSrc ? pSrc->nSrc : 0;
4788     for(i=0; i<nSrc; i++){
4789       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
4790     }
4791     if( i<nSrc ){
4792       p->nThis++;
4793     }else{
4794       p->nOther++;
4795     }
4796   }
4797   return WRC_Continue;
4798 }
4799 
4800 /*
4801 ** Determine if any of the arguments to the pExpr Function reference
4802 ** pSrcList.  Return true if they do.  Also return true if the function
4803 ** has no arguments or has only constant arguments.  Return false if pExpr
4804 ** references columns but not columns of tables found in pSrcList.
4805 */
4806 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
4807   Walker w;
4808   struct SrcCount cnt;
4809   assert( pExpr->op==TK_AGG_FUNCTION );
4810   memset(&w, 0, sizeof(w));
4811   w.xExprCallback = exprSrcCount;
4812   w.u.pSrcCount = &cnt;
4813   cnt.pSrc = pSrcList;
4814   cnt.nThis = 0;
4815   cnt.nOther = 0;
4816   sqlite3WalkExprList(&w, pExpr->x.pList);
4817   return cnt.nThis>0 || cnt.nOther==0;
4818 }
4819 
4820 /*
4821 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
4822 ** the new element.  Return a negative number if malloc fails.
4823 */
4824 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
4825   int i;
4826   pInfo->aCol = sqlite3ArrayAllocate(
4827        db,
4828        pInfo->aCol,
4829        sizeof(pInfo->aCol[0]),
4830        &pInfo->nColumn,
4831        &i
4832   );
4833   return i;
4834 }
4835 
4836 /*
4837 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
4838 ** the new element.  Return a negative number if malloc fails.
4839 */
4840 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
4841   int i;
4842   pInfo->aFunc = sqlite3ArrayAllocate(
4843        db,
4844        pInfo->aFunc,
4845        sizeof(pInfo->aFunc[0]),
4846        &pInfo->nFunc,
4847        &i
4848   );
4849   return i;
4850 }
4851 
4852 /*
4853 ** This is the xExprCallback for a tree walker.  It is used to
4854 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
4855 ** for additional information.
4856 */
4857 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4858   int i;
4859   NameContext *pNC = pWalker->u.pNC;
4860   Parse *pParse = pNC->pParse;
4861   SrcList *pSrcList = pNC->pSrcList;
4862   AggInfo *pAggInfo = pNC->pAggInfo;
4863 
4864   switch( pExpr->op ){
4865     case TK_AGG_COLUMN:
4866     case TK_COLUMN: {
4867       testcase( pExpr->op==TK_AGG_COLUMN );
4868       testcase( pExpr->op==TK_COLUMN );
4869       /* Check to see if the column is in one of the tables in the FROM
4870       ** clause of the aggregate query */
4871       if( ALWAYS(pSrcList!=0) ){
4872         struct SrcList_item *pItem = pSrcList->a;
4873         for(i=0; i<pSrcList->nSrc; i++, pItem++){
4874           struct AggInfo_col *pCol;
4875           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4876           if( pExpr->iTable==pItem->iCursor ){
4877             /* If we reach this point, it means that pExpr refers to a table
4878             ** that is in the FROM clause of the aggregate query.
4879             **
4880             ** Make an entry for the column in pAggInfo->aCol[] if there
4881             ** is not an entry there already.
4882             */
4883             int k;
4884             pCol = pAggInfo->aCol;
4885             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4886               if( pCol->iTable==pExpr->iTable &&
4887                   pCol->iColumn==pExpr->iColumn ){
4888                 break;
4889               }
4890             }
4891             if( (k>=pAggInfo->nColumn)
4892              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4893             ){
4894               pCol = &pAggInfo->aCol[k];
4895               pCol->pTab = pExpr->pTab;
4896               pCol->iTable = pExpr->iTable;
4897               pCol->iColumn = pExpr->iColumn;
4898               pCol->iMem = ++pParse->nMem;
4899               pCol->iSorterColumn = -1;
4900               pCol->pExpr = pExpr;
4901               if( pAggInfo->pGroupBy ){
4902                 int j, n;
4903                 ExprList *pGB = pAggInfo->pGroupBy;
4904                 struct ExprList_item *pTerm = pGB->a;
4905                 n = pGB->nExpr;
4906                 for(j=0; j<n; j++, pTerm++){
4907                   Expr *pE = pTerm->pExpr;
4908                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4909                       pE->iColumn==pExpr->iColumn ){
4910                     pCol->iSorterColumn = j;
4911                     break;
4912                   }
4913                 }
4914               }
4915               if( pCol->iSorterColumn<0 ){
4916                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4917               }
4918             }
4919             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4920             ** because it was there before or because we just created it).
4921             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4922             ** pAggInfo->aCol[] entry.
4923             */
4924             ExprSetVVAProperty(pExpr, EP_NoReduce);
4925             pExpr->pAggInfo = pAggInfo;
4926             pExpr->op = TK_AGG_COLUMN;
4927             pExpr->iAgg = (i16)k;
4928             break;
4929           } /* endif pExpr->iTable==pItem->iCursor */
4930         } /* end loop over pSrcList */
4931       }
4932       return WRC_Prune;
4933     }
4934     case TK_AGG_FUNCTION: {
4935       if( (pNC->ncFlags & NC_InAggFunc)==0
4936        && pWalker->walkerDepth==pExpr->op2
4937       ){
4938         /* Check to see if pExpr is a duplicate of another aggregate
4939         ** function that is already in the pAggInfo structure
4940         */
4941         struct AggInfo_func *pItem = pAggInfo->aFunc;
4942         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4943           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4944             break;
4945           }
4946         }
4947         if( i>=pAggInfo->nFunc ){
4948           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4949           */
4950           u8 enc = ENC(pParse->db);
4951           i = addAggInfoFunc(pParse->db, pAggInfo);
4952           if( i>=0 ){
4953             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4954             pItem = &pAggInfo->aFunc[i];
4955             pItem->pExpr = pExpr;
4956             pItem->iMem = ++pParse->nMem;
4957             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4958             pItem->pFunc = sqlite3FindFunction(pParse->db,
4959                    pExpr->u.zToken,
4960                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4961             if( pExpr->flags & EP_Distinct ){
4962               pItem->iDistinct = pParse->nTab++;
4963             }else{
4964               pItem->iDistinct = -1;
4965             }
4966           }
4967         }
4968         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4969         */
4970         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4971         ExprSetVVAProperty(pExpr, EP_NoReduce);
4972         pExpr->iAgg = (i16)i;
4973         pExpr->pAggInfo = pAggInfo;
4974         return WRC_Prune;
4975       }else{
4976         return WRC_Continue;
4977       }
4978     }
4979   }
4980   return WRC_Continue;
4981 }
4982 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4983   UNUSED_PARAMETER(pWalker);
4984   UNUSED_PARAMETER(pSelect);
4985   return WRC_Continue;
4986 }
4987 
4988 /*
4989 ** Analyze the pExpr expression looking for aggregate functions and
4990 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4991 ** points to.  Additional entries are made on the AggInfo object as
4992 ** necessary.
4993 **
4994 ** This routine should only be called after the expression has been
4995 ** analyzed by sqlite3ResolveExprNames().
4996 */
4997 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4998   Walker w;
4999   memset(&w, 0, sizeof(w));
5000   w.xExprCallback = analyzeAggregate;
5001   w.xSelectCallback = analyzeAggregatesInSelect;
5002   w.u.pNC = pNC;
5003   assert( pNC->pSrcList!=0 );
5004   sqlite3WalkExpr(&w, pExpr);
5005 }
5006 
5007 /*
5008 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5009 ** expression list.  Return the number of errors.
5010 **
5011 ** If an error is found, the analysis is cut short.
5012 */
5013 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5014   struct ExprList_item *pItem;
5015   int i;
5016   if( pList ){
5017     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5018       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5019     }
5020   }
5021 }
5022 
5023 /*
5024 ** Allocate a single new register for use to hold some intermediate result.
5025 */
5026 int sqlite3GetTempReg(Parse *pParse){
5027   if( pParse->nTempReg==0 ){
5028     return ++pParse->nMem;
5029   }
5030   return pParse->aTempReg[--pParse->nTempReg];
5031 }
5032 
5033 /*
5034 ** Deallocate a register, making available for reuse for some other
5035 ** purpose.
5036 **
5037 ** If a register is currently being used by the column cache, then
5038 ** the deallocation is deferred until the column cache line that uses
5039 ** the register becomes stale.
5040 */
5041 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5042   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5043     int i;
5044     struct yColCache *p;
5045     for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
5046       if( p->iReg==iReg ){
5047         p->tempReg = 1;
5048         return;
5049       }
5050     }
5051     pParse->aTempReg[pParse->nTempReg++] = iReg;
5052   }
5053 }
5054 
5055 /*
5056 ** Allocate or deallocate a block of nReg consecutive registers.
5057 */
5058 int sqlite3GetTempRange(Parse *pParse, int nReg){
5059   int i, n;
5060   if( nReg==1 ) return sqlite3GetTempReg(pParse);
5061   i = pParse->iRangeReg;
5062   n = pParse->nRangeReg;
5063   if( nReg<=n ){
5064     assert( !usedAsColumnCache(pParse, i, i+n-1) );
5065     pParse->iRangeReg += nReg;
5066     pParse->nRangeReg -= nReg;
5067   }else{
5068     i = pParse->nMem+1;
5069     pParse->nMem += nReg;
5070   }
5071   return i;
5072 }
5073 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5074   if( nReg==1 ){
5075     sqlite3ReleaseTempReg(pParse, iReg);
5076     return;
5077   }
5078   sqlite3ExprCacheRemove(pParse, iReg, nReg);
5079   if( nReg>pParse->nRangeReg ){
5080     pParse->nRangeReg = nReg;
5081     pParse->iRangeReg = iReg;
5082   }
5083 }
5084 
5085 /*
5086 ** Mark all temporary registers as being unavailable for reuse.
5087 */
5088 void sqlite3ClearTempRegCache(Parse *pParse){
5089   pParse->nTempReg = 0;
5090   pParse->nRangeReg = 0;
5091 }
5092 
5093 /*
5094 ** Validate that no temporary register falls within the range of
5095 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5096 ** statements.
5097 */
5098 #ifdef SQLITE_DEBUG
5099 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5100   int i;
5101   if( pParse->nRangeReg>0
5102    && pParse->iRangeReg+pParse->nRangeReg<iLast
5103    && pParse->iRangeReg>=iFirst
5104   ){
5105      return 0;
5106   }
5107   for(i=0; i<pParse->nTempReg; i++){
5108     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5109       return 0;
5110     }
5111   }
5112   return 1;
5113 }
5114 #endif /* SQLITE_DEBUG */
5115