1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expresssions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op; 35 pExpr = sqlite3ExprSkipCollate(pExpr); 36 if( pExpr->flags & EP_Generic ) return SQLITE_AFF_NONE; 37 op = pExpr->op; 38 if( op==TK_SELECT ){ 39 assert( pExpr->flags&EP_xIsSelect ); 40 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 41 } 42 #ifndef SQLITE_OMIT_CAST 43 if( op==TK_CAST ){ 44 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 45 return sqlite3AffinityType(pExpr->u.zToken, 0); 46 } 47 #endif 48 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 49 && pExpr->pTab!=0 50 ){ 51 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 52 ** a TK_COLUMN but was previously evaluated and cached in a register */ 53 int j = pExpr->iColumn; 54 if( j<0 ) return SQLITE_AFF_INTEGER; 55 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 56 return pExpr->pTab->aCol[j].affinity; 57 } 58 return pExpr->affinity; 59 } 60 61 /* 62 ** Set the collating sequence for expression pExpr to be the collating 63 ** sequence named by pToken. Return a pointer to a new Expr node that 64 ** implements the COLLATE operator. 65 ** 66 ** If a memory allocation error occurs, that fact is recorded in pParse->db 67 ** and the pExpr parameter is returned unchanged. 68 */ 69 Expr *sqlite3ExprAddCollateToken( 70 Parse *pParse, /* Parsing context */ 71 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 72 const Token *pCollName /* Name of collating sequence */ 73 ){ 74 if( pCollName->n>0 ){ 75 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1); 76 if( pNew ){ 77 pNew->pLeft = pExpr; 78 pNew->flags |= EP_Collate|EP_Skip; 79 pExpr = pNew; 80 } 81 } 82 return pExpr; 83 } 84 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 85 Token s; 86 assert( zC!=0 ); 87 s.z = zC; 88 s.n = sqlite3Strlen30(s.z); 89 return sqlite3ExprAddCollateToken(pParse, pExpr, &s); 90 } 91 92 /* 93 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely() 94 ** or likelihood() function at the root of an expression. 95 */ 96 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 97 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 98 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 99 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 100 assert( pExpr->x.pList->nExpr>0 ); 101 assert( pExpr->op==TK_FUNCTION ); 102 pExpr = pExpr->x.pList->a[0].pExpr; 103 }else{ 104 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS ); 105 pExpr = pExpr->pLeft; 106 } 107 } 108 return pExpr; 109 } 110 111 /* 112 ** Return the collation sequence for the expression pExpr. If 113 ** there is no defined collating sequence, return NULL. 114 ** 115 ** The collating sequence might be determined by a COLLATE operator 116 ** or by the presence of a column with a defined collating sequence. 117 ** COLLATE operators take first precedence. Left operands take 118 ** precedence over right operands. 119 */ 120 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 121 sqlite3 *db = pParse->db; 122 CollSeq *pColl = 0; 123 Expr *p = pExpr; 124 while( p ){ 125 int op = p->op; 126 if( p->flags & EP_Generic ) break; 127 if( op==TK_CAST || op==TK_UPLUS ){ 128 p = p->pLeft; 129 continue; 130 } 131 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 132 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 133 break; 134 } 135 if( p->pTab!=0 136 && (op==TK_AGG_COLUMN || op==TK_COLUMN 137 || op==TK_REGISTER || op==TK_TRIGGER) 138 ){ 139 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 140 ** a TK_COLUMN but was previously evaluated and cached in a register */ 141 int j = p->iColumn; 142 if( j>=0 ){ 143 const char *zColl = p->pTab->aCol[j].zColl; 144 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 145 } 146 break; 147 } 148 if( p->flags & EP_Collate ){ 149 if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){ 150 p = p->pLeft; 151 }else{ 152 p = p->pRight; 153 } 154 }else{ 155 break; 156 } 157 } 158 if( sqlite3CheckCollSeq(pParse, pColl) ){ 159 pColl = 0; 160 } 161 return pColl; 162 } 163 164 /* 165 ** pExpr is an operand of a comparison operator. aff2 is the 166 ** type affinity of the other operand. This routine returns the 167 ** type affinity that should be used for the comparison operator. 168 */ 169 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 170 char aff1 = sqlite3ExprAffinity(pExpr); 171 if( aff1 && aff2 ){ 172 /* Both sides of the comparison are columns. If one has numeric 173 ** affinity, use that. Otherwise use no affinity. 174 */ 175 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 176 return SQLITE_AFF_NUMERIC; 177 }else{ 178 return SQLITE_AFF_NONE; 179 } 180 }else if( !aff1 && !aff2 ){ 181 /* Neither side of the comparison is a column. Compare the 182 ** results directly. 183 */ 184 return SQLITE_AFF_NONE; 185 }else{ 186 /* One side is a column, the other is not. Use the columns affinity. */ 187 assert( aff1==0 || aff2==0 ); 188 return (aff1 + aff2); 189 } 190 } 191 192 /* 193 ** pExpr is a comparison operator. Return the type affinity that should 194 ** be applied to both operands prior to doing the comparison. 195 */ 196 static char comparisonAffinity(Expr *pExpr){ 197 char aff; 198 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 199 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 200 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 201 assert( pExpr->pLeft ); 202 aff = sqlite3ExprAffinity(pExpr->pLeft); 203 if( pExpr->pRight ){ 204 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 205 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 206 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 207 }else if( !aff ){ 208 aff = SQLITE_AFF_NONE; 209 } 210 return aff; 211 } 212 213 /* 214 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 215 ** idx_affinity is the affinity of an indexed column. Return true 216 ** if the index with affinity idx_affinity may be used to implement 217 ** the comparison in pExpr. 218 */ 219 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 220 char aff = comparisonAffinity(pExpr); 221 switch( aff ){ 222 case SQLITE_AFF_NONE: 223 return 1; 224 case SQLITE_AFF_TEXT: 225 return idx_affinity==SQLITE_AFF_TEXT; 226 default: 227 return sqlite3IsNumericAffinity(idx_affinity); 228 } 229 } 230 231 /* 232 ** Return the P5 value that should be used for a binary comparison 233 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 234 */ 235 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 236 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 237 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 238 return aff; 239 } 240 241 /* 242 ** Return a pointer to the collation sequence that should be used by 243 ** a binary comparison operator comparing pLeft and pRight. 244 ** 245 ** If the left hand expression has a collating sequence type, then it is 246 ** used. Otherwise the collation sequence for the right hand expression 247 ** is used, or the default (BINARY) if neither expression has a collating 248 ** type. 249 ** 250 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 251 ** it is not considered. 252 */ 253 CollSeq *sqlite3BinaryCompareCollSeq( 254 Parse *pParse, 255 Expr *pLeft, 256 Expr *pRight 257 ){ 258 CollSeq *pColl; 259 assert( pLeft ); 260 if( pLeft->flags & EP_Collate ){ 261 pColl = sqlite3ExprCollSeq(pParse, pLeft); 262 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 263 pColl = sqlite3ExprCollSeq(pParse, pRight); 264 }else{ 265 pColl = sqlite3ExprCollSeq(pParse, pLeft); 266 if( !pColl ){ 267 pColl = sqlite3ExprCollSeq(pParse, pRight); 268 } 269 } 270 return pColl; 271 } 272 273 /* 274 ** Generate code for a comparison operator. 275 */ 276 static int codeCompare( 277 Parse *pParse, /* The parsing (and code generating) context */ 278 Expr *pLeft, /* The left operand */ 279 Expr *pRight, /* The right operand */ 280 int opcode, /* The comparison opcode */ 281 int in1, int in2, /* Register holding operands */ 282 int dest, /* Jump here if true. */ 283 int jumpIfNull /* If true, jump if either operand is NULL */ 284 ){ 285 int p5; 286 int addr; 287 CollSeq *p4; 288 289 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 290 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 291 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 292 (void*)p4, P4_COLLSEQ); 293 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 294 return addr; 295 } 296 297 #if SQLITE_MAX_EXPR_DEPTH>0 298 /* 299 ** Check that argument nHeight is less than or equal to the maximum 300 ** expression depth allowed. If it is not, leave an error message in 301 ** pParse. 302 */ 303 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 304 int rc = SQLITE_OK; 305 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 306 if( nHeight>mxHeight ){ 307 sqlite3ErrorMsg(pParse, 308 "Expression tree is too large (maximum depth %d)", mxHeight 309 ); 310 rc = SQLITE_ERROR; 311 } 312 return rc; 313 } 314 315 /* The following three functions, heightOfExpr(), heightOfExprList() 316 ** and heightOfSelect(), are used to determine the maximum height 317 ** of any expression tree referenced by the structure passed as the 318 ** first argument. 319 ** 320 ** If this maximum height is greater than the current value pointed 321 ** to by pnHeight, the second parameter, then set *pnHeight to that 322 ** value. 323 */ 324 static void heightOfExpr(Expr *p, int *pnHeight){ 325 if( p ){ 326 if( p->nHeight>*pnHeight ){ 327 *pnHeight = p->nHeight; 328 } 329 } 330 } 331 static void heightOfExprList(ExprList *p, int *pnHeight){ 332 if( p ){ 333 int i; 334 for(i=0; i<p->nExpr; i++){ 335 heightOfExpr(p->a[i].pExpr, pnHeight); 336 } 337 } 338 } 339 static void heightOfSelect(Select *p, int *pnHeight){ 340 if( p ){ 341 heightOfExpr(p->pWhere, pnHeight); 342 heightOfExpr(p->pHaving, pnHeight); 343 heightOfExpr(p->pLimit, pnHeight); 344 heightOfExpr(p->pOffset, pnHeight); 345 heightOfExprList(p->pEList, pnHeight); 346 heightOfExprList(p->pGroupBy, pnHeight); 347 heightOfExprList(p->pOrderBy, pnHeight); 348 heightOfSelect(p->pPrior, pnHeight); 349 } 350 } 351 352 /* 353 ** Set the Expr.nHeight variable in the structure passed as an 354 ** argument. An expression with no children, Expr.pList or 355 ** Expr.pSelect member has a height of 1. Any other expression 356 ** has a height equal to the maximum height of any other 357 ** referenced Expr plus one. 358 */ 359 static void exprSetHeight(Expr *p){ 360 int nHeight = 0; 361 heightOfExpr(p->pLeft, &nHeight); 362 heightOfExpr(p->pRight, &nHeight); 363 if( ExprHasProperty(p, EP_xIsSelect) ){ 364 heightOfSelect(p->x.pSelect, &nHeight); 365 }else{ 366 heightOfExprList(p->x.pList, &nHeight); 367 } 368 p->nHeight = nHeight + 1; 369 } 370 371 /* 372 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 373 ** the height is greater than the maximum allowed expression depth, 374 ** leave an error in pParse. 375 */ 376 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 377 exprSetHeight(p); 378 sqlite3ExprCheckHeight(pParse, p->nHeight); 379 } 380 381 /* 382 ** Return the maximum height of any expression tree referenced 383 ** by the select statement passed as an argument. 384 */ 385 int sqlite3SelectExprHeight(Select *p){ 386 int nHeight = 0; 387 heightOfSelect(p, &nHeight); 388 return nHeight; 389 } 390 #else 391 #define exprSetHeight(y) 392 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 393 394 /* 395 ** This routine is the core allocator for Expr nodes. 396 ** 397 ** Construct a new expression node and return a pointer to it. Memory 398 ** for this node and for the pToken argument is a single allocation 399 ** obtained from sqlite3DbMalloc(). The calling function 400 ** is responsible for making sure the node eventually gets freed. 401 ** 402 ** If dequote is true, then the token (if it exists) is dequoted. 403 ** If dequote is false, no dequoting is performance. The deQuote 404 ** parameter is ignored if pToken is NULL or if the token does not 405 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 406 ** then the EP_DblQuoted flag is set on the expression node. 407 ** 408 ** Special case: If op==TK_INTEGER and pToken points to a string that 409 ** can be translated into a 32-bit integer, then the token is not 410 ** stored in u.zToken. Instead, the integer values is written 411 ** into u.iValue and the EP_IntValue flag is set. No extra storage 412 ** is allocated to hold the integer text and the dequote flag is ignored. 413 */ 414 Expr *sqlite3ExprAlloc( 415 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 416 int op, /* Expression opcode */ 417 const Token *pToken, /* Token argument. Might be NULL */ 418 int dequote /* True to dequote */ 419 ){ 420 Expr *pNew; 421 int nExtra = 0; 422 int iValue = 0; 423 424 if( pToken ){ 425 if( op!=TK_INTEGER || pToken->z==0 426 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 427 nExtra = pToken->n+1; 428 assert( iValue>=0 ); 429 } 430 } 431 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 432 if( pNew ){ 433 pNew->op = (u8)op; 434 pNew->iAgg = -1; 435 if( pToken ){ 436 if( nExtra==0 ){ 437 pNew->flags |= EP_IntValue; 438 pNew->u.iValue = iValue; 439 }else{ 440 int c; 441 pNew->u.zToken = (char*)&pNew[1]; 442 assert( pToken->z!=0 || pToken->n==0 ); 443 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 444 pNew->u.zToken[pToken->n] = 0; 445 if( dequote && nExtra>=3 446 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 447 sqlite3Dequote(pNew->u.zToken); 448 if( c=='"' ) pNew->flags |= EP_DblQuoted; 449 } 450 } 451 } 452 #if SQLITE_MAX_EXPR_DEPTH>0 453 pNew->nHeight = 1; 454 #endif 455 } 456 return pNew; 457 } 458 459 /* 460 ** Allocate a new expression node from a zero-terminated token that has 461 ** already been dequoted. 462 */ 463 Expr *sqlite3Expr( 464 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 465 int op, /* Expression opcode */ 466 const char *zToken /* Token argument. Might be NULL */ 467 ){ 468 Token x; 469 x.z = zToken; 470 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 471 return sqlite3ExprAlloc(db, op, &x, 0); 472 } 473 474 /* 475 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 476 ** 477 ** If pRoot==NULL that means that a memory allocation error has occurred. 478 ** In that case, delete the subtrees pLeft and pRight. 479 */ 480 void sqlite3ExprAttachSubtrees( 481 sqlite3 *db, 482 Expr *pRoot, 483 Expr *pLeft, 484 Expr *pRight 485 ){ 486 if( pRoot==0 ){ 487 assert( db->mallocFailed ); 488 sqlite3ExprDelete(db, pLeft); 489 sqlite3ExprDelete(db, pRight); 490 }else{ 491 if( pRight ){ 492 pRoot->pRight = pRight; 493 pRoot->flags |= EP_Collate & pRight->flags; 494 } 495 if( pLeft ){ 496 pRoot->pLeft = pLeft; 497 pRoot->flags |= EP_Collate & pLeft->flags; 498 } 499 exprSetHeight(pRoot); 500 } 501 } 502 503 /* 504 ** Allocate a Expr node which joins as many as two subtrees. 505 ** 506 ** One or both of the subtrees can be NULL. Return a pointer to the new 507 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 508 ** free the subtrees and return NULL. 509 */ 510 Expr *sqlite3PExpr( 511 Parse *pParse, /* Parsing context */ 512 int op, /* Expression opcode */ 513 Expr *pLeft, /* Left operand */ 514 Expr *pRight, /* Right operand */ 515 const Token *pToken /* Argument token */ 516 ){ 517 Expr *p; 518 if( op==TK_AND && pLeft && pRight ){ 519 /* Take advantage of short-circuit false optimization for AND */ 520 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 521 }else{ 522 p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 523 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 524 } 525 if( p ) { 526 sqlite3ExprCheckHeight(pParse, p->nHeight); 527 } 528 return p; 529 } 530 531 /* 532 ** If the expression is always either TRUE or FALSE (respectively), 533 ** then return 1. If one cannot determine the truth value of the 534 ** expression at compile-time return 0. 535 ** 536 ** This is an optimization. If is OK to return 0 here even if 537 ** the expression really is always false or false (a false negative). 538 ** But it is a bug to return 1 if the expression might have different 539 ** boolean values in different circumstances (a false positive.) 540 ** 541 ** Note that if the expression is part of conditional for a 542 ** LEFT JOIN, then we cannot determine at compile-time whether or not 543 ** is it true or false, so always return 0. 544 */ 545 static int exprAlwaysTrue(Expr *p){ 546 int v = 0; 547 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 548 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 549 return v!=0; 550 } 551 static int exprAlwaysFalse(Expr *p){ 552 int v = 0; 553 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 554 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 555 return v==0; 556 } 557 558 /* 559 ** Join two expressions using an AND operator. If either expression is 560 ** NULL, then just return the other expression. 561 ** 562 ** If one side or the other of the AND is known to be false, then instead 563 ** of returning an AND expression, just return a constant expression with 564 ** a value of false. 565 */ 566 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 567 if( pLeft==0 ){ 568 return pRight; 569 }else if( pRight==0 ){ 570 return pLeft; 571 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 572 sqlite3ExprDelete(db, pLeft); 573 sqlite3ExprDelete(db, pRight); 574 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 575 }else{ 576 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 577 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 578 return pNew; 579 } 580 } 581 582 /* 583 ** Construct a new expression node for a function with multiple 584 ** arguments. 585 */ 586 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 587 Expr *pNew; 588 sqlite3 *db = pParse->db; 589 assert( pToken ); 590 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 591 if( pNew==0 ){ 592 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 593 return 0; 594 } 595 pNew->x.pList = pList; 596 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 597 sqlite3ExprSetHeight(pParse, pNew); 598 return pNew; 599 } 600 601 /* 602 ** Assign a variable number to an expression that encodes a wildcard 603 ** in the original SQL statement. 604 ** 605 ** Wildcards consisting of a single "?" are assigned the next sequential 606 ** variable number. 607 ** 608 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 609 ** sure "nnn" is not too be to avoid a denial of service attack when 610 ** the SQL statement comes from an external source. 611 ** 612 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 613 ** as the previous instance of the same wildcard. Or if this is the first 614 ** instance of the wildcard, the next sequenial variable number is 615 ** assigned. 616 */ 617 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 618 sqlite3 *db = pParse->db; 619 const char *z; 620 621 if( pExpr==0 ) return; 622 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 623 z = pExpr->u.zToken; 624 assert( z!=0 ); 625 assert( z[0]!=0 ); 626 if( z[1]==0 ){ 627 /* Wildcard of the form "?". Assign the next variable number */ 628 assert( z[0]=='?' ); 629 pExpr->iColumn = (ynVar)(++pParse->nVar); 630 }else{ 631 ynVar x = 0; 632 u32 n = sqlite3Strlen30(z); 633 if( z[0]=='?' ){ 634 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 635 ** use it as the variable number */ 636 i64 i; 637 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 638 pExpr->iColumn = x = (ynVar)i; 639 testcase( i==0 ); 640 testcase( i==1 ); 641 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 642 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 643 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 644 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 645 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 646 x = 0; 647 } 648 if( i>pParse->nVar ){ 649 pParse->nVar = (int)i; 650 } 651 }else{ 652 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 653 ** number as the prior appearance of the same name, or if the name 654 ** has never appeared before, reuse the same variable number 655 */ 656 ynVar i; 657 for(i=0; i<pParse->nzVar; i++){ 658 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 659 pExpr->iColumn = x = (ynVar)i+1; 660 break; 661 } 662 } 663 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 664 } 665 if( x>0 ){ 666 if( x>pParse->nzVar ){ 667 char **a; 668 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 669 if( a==0 ) return; /* Error reported through db->mallocFailed */ 670 pParse->azVar = a; 671 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 672 pParse->nzVar = x; 673 } 674 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 675 sqlite3DbFree(db, pParse->azVar[x-1]); 676 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 677 } 678 } 679 } 680 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 681 sqlite3ErrorMsg(pParse, "too many SQL variables"); 682 } 683 } 684 685 /* 686 ** Recursively delete an expression tree. 687 */ 688 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 689 if( p==0 ) return; 690 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 691 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 692 if( !ExprHasProperty(p, EP_TokenOnly) ){ 693 /* The Expr.x union is never used at the same time as Expr.pRight */ 694 assert( p->x.pList==0 || p->pRight==0 ); 695 sqlite3ExprDelete(db, p->pLeft); 696 sqlite3ExprDelete(db, p->pRight); 697 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 698 if( ExprHasProperty(p, EP_xIsSelect) ){ 699 sqlite3SelectDelete(db, p->x.pSelect); 700 }else{ 701 sqlite3ExprListDelete(db, p->x.pList); 702 } 703 } 704 if( !ExprHasProperty(p, EP_Static) ){ 705 sqlite3DbFree(db, p); 706 } 707 } 708 709 /* 710 ** Return the number of bytes allocated for the expression structure 711 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 712 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 713 */ 714 static int exprStructSize(Expr *p){ 715 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 716 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 717 return EXPR_FULLSIZE; 718 } 719 720 /* 721 ** The dupedExpr*Size() routines each return the number of bytes required 722 ** to store a copy of an expression or expression tree. They differ in 723 ** how much of the tree is measured. 724 ** 725 ** dupedExprStructSize() Size of only the Expr structure 726 ** dupedExprNodeSize() Size of Expr + space for token 727 ** dupedExprSize() Expr + token + subtree components 728 ** 729 *************************************************************************** 730 ** 731 ** The dupedExprStructSize() function returns two values OR-ed together: 732 ** (1) the space required for a copy of the Expr structure only and 733 ** (2) the EP_xxx flags that indicate what the structure size should be. 734 ** The return values is always one of: 735 ** 736 ** EXPR_FULLSIZE 737 ** EXPR_REDUCEDSIZE | EP_Reduced 738 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 739 ** 740 ** The size of the structure can be found by masking the return value 741 ** of this routine with 0xfff. The flags can be found by masking the 742 ** return value with EP_Reduced|EP_TokenOnly. 743 ** 744 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 745 ** (unreduced) Expr objects as they or originally constructed by the parser. 746 ** During expression analysis, extra information is computed and moved into 747 ** later parts of teh Expr object and that extra information might get chopped 748 ** off if the expression is reduced. Note also that it does not work to 749 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal 750 ** to reduce a pristine expression tree from the parser. The implementation 751 ** of dupedExprStructSize() contain multiple assert() statements that attempt 752 ** to enforce this constraint. 753 */ 754 static int dupedExprStructSize(Expr *p, int flags){ 755 int nSize; 756 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 757 assert( EXPR_FULLSIZE<=0xfff ); 758 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 759 if( 0==(flags&EXPRDUP_REDUCE) ){ 760 nSize = EXPR_FULLSIZE; 761 }else{ 762 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 763 assert( !ExprHasProperty(p, EP_FromJoin) ); 764 assert( !ExprHasProperty(p, EP_MemToken) ); 765 assert( !ExprHasProperty(p, EP_NoReduce) ); 766 if( p->pLeft || p->x.pList ){ 767 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 768 }else{ 769 assert( p->pRight==0 ); 770 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 771 } 772 } 773 return nSize; 774 } 775 776 /* 777 ** This function returns the space in bytes required to store the copy 778 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 779 ** string is defined.) 780 */ 781 static int dupedExprNodeSize(Expr *p, int flags){ 782 int nByte = dupedExprStructSize(p, flags) & 0xfff; 783 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 784 nByte += sqlite3Strlen30(p->u.zToken)+1; 785 } 786 return ROUND8(nByte); 787 } 788 789 /* 790 ** Return the number of bytes required to create a duplicate of the 791 ** expression passed as the first argument. The second argument is a 792 ** mask containing EXPRDUP_XXX flags. 793 ** 794 ** The value returned includes space to create a copy of the Expr struct 795 ** itself and the buffer referred to by Expr.u.zToken, if any. 796 ** 797 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 798 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 799 ** and Expr.pRight variables (but not for any structures pointed to or 800 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 801 */ 802 static int dupedExprSize(Expr *p, int flags){ 803 int nByte = 0; 804 if( p ){ 805 nByte = dupedExprNodeSize(p, flags); 806 if( flags&EXPRDUP_REDUCE ){ 807 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 808 } 809 } 810 return nByte; 811 } 812 813 /* 814 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 815 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 816 ** to store the copy of expression p, the copies of p->u.zToken 817 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 818 ** if any. Before returning, *pzBuffer is set to the first byte passed the 819 ** portion of the buffer copied into by this function. 820 */ 821 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 822 Expr *pNew = 0; /* Value to return */ 823 if( p ){ 824 const int isReduced = (flags&EXPRDUP_REDUCE); 825 u8 *zAlloc; 826 u32 staticFlag = 0; 827 828 assert( pzBuffer==0 || isReduced ); 829 830 /* Figure out where to write the new Expr structure. */ 831 if( pzBuffer ){ 832 zAlloc = *pzBuffer; 833 staticFlag = EP_Static; 834 }else{ 835 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 836 } 837 pNew = (Expr *)zAlloc; 838 839 if( pNew ){ 840 /* Set nNewSize to the size allocated for the structure pointed to 841 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 842 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 843 ** by the copy of the p->u.zToken string (if any). 844 */ 845 const unsigned nStructSize = dupedExprStructSize(p, flags); 846 const int nNewSize = nStructSize & 0xfff; 847 int nToken; 848 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 849 nToken = sqlite3Strlen30(p->u.zToken) + 1; 850 }else{ 851 nToken = 0; 852 } 853 if( isReduced ){ 854 assert( ExprHasProperty(p, EP_Reduced)==0 ); 855 memcpy(zAlloc, p, nNewSize); 856 }else{ 857 int nSize = exprStructSize(p); 858 memcpy(zAlloc, p, nSize); 859 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 860 } 861 862 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 863 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 864 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 865 pNew->flags |= staticFlag; 866 867 /* Copy the p->u.zToken string, if any. */ 868 if( nToken ){ 869 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 870 memcpy(zToken, p->u.zToken, nToken); 871 } 872 873 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 874 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 875 if( ExprHasProperty(p, EP_xIsSelect) ){ 876 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 877 }else{ 878 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 879 } 880 } 881 882 /* Fill in pNew->pLeft and pNew->pRight. */ 883 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 884 zAlloc += dupedExprNodeSize(p, flags); 885 if( ExprHasProperty(pNew, EP_Reduced) ){ 886 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 887 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 888 } 889 if( pzBuffer ){ 890 *pzBuffer = zAlloc; 891 } 892 }else{ 893 if( !ExprHasProperty(p, EP_TokenOnly) ){ 894 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 895 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 896 } 897 } 898 899 } 900 } 901 return pNew; 902 } 903 904 /* 905 ** Create and return a deep copy of the object passed as the second 906 ** argument. If an OOM condition is encountered, NULL is returned 907 ** and the db->mallocFailed flag set. 908 */ 909 #ifndef SQLITE_OMIT_CTE 910 static With *withDup(sqlite3 *db, With *p){ 911 With *pRet = 0; 912 if( p ){ 913 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 914 pRet = sqlite3DbMallocZero(db, nByte); 915 if( pRet ){ 916 int i; 917 pRet->nCte = p->nCte; 918 for(i=0; i<p->nCte; i++){ 919 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 920 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 921 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 922 } 923 } 924 } 925 return pRet; 926 } 927 #else 928 # define withDup(x,y) 0 929 #endif 930 931 /* 932 ** The following group of routines make deep copies of expressions, 933 ** expression lists, ID lists, and select statements. The copies can 934 ** be deleted (by being passed to their respective ...Delete() routines) 935 ** without effecting the originals. 936 ** 937 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 938 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 939 ** by subsequent calls to sqlite*ListAppend() routines. 940 ** 941 ** Any tables that the SrcList might point to are not duplicated. 942 ** 943 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 944 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 945 ** truncated version of the usual Expr structure that will be stored as 946 ** part of the in-memory representation of the database schema. 947 */ 948 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 949 return exprDup(db, p, flags, 0); 950 } 951 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 952 ExprList *pNew; 953 struct ExprList_item *pItem, *pOldItem; 954 int i; 955 if( p==0 ) return 0; 956 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 957 if( pNew==0 ) return 0; 958 pNew->nExpr = i = p->nExpr; 959 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 960 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 961 if( pItem==0 ){ 962 sqlite3DbFree(db, pNew); 963 return 0; 964 } 965 pOldItem = p->a; 966 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 967 Expr *pOldExpr = pOldItem->pExpr; 968 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 969 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 970 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 971 pItem->sortOrder = pOldItem->sortOrder; 972 pItem->done = 0; 973 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 974 pItem->u = pOldItem->u; 975 } 976 return pNew; 977 } 978 979 /* 980 ** If cursors, triggers, views and subqueries are all omitted from 981 ** the build, then none of the following routines, except for 982 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 983 ** called with a NULL argument. 984 */ 985 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 986 || !defined(SQLITE_OMIT_SUBQUERY) 987 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 988 SrcList *pNew; 989 int i; 990 int nByte; 991 if( p==0 ) return 0; 992 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 993 pNew = sqlite3DbMallocRaw(db, nByte ); 994 if( pNew==0 ) return 0; 995 pNew->nSrc = pNew->nAlloc = p->nSrc; 996 for(i=0; i<p->nSrc; i++){ 997 struct SrcList_item *pNewItem = &pNew->a[i]; 998 struct SrcList_item *pOldItem = &p->a[i]; 999 Table *pTab; 1000 pNewItem->pSchema = pOldItem->pSchema; 1001 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1002 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1003 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1004 pNewItem->jointype = pOldItem->jointype; 1005 pNewItem->iCursor = pOldItem->iCursor; 1006 pNewItem->addrFillSub = pOldItem->addrFillSub; 1007 pNewItem->regReturn = pOldItem->regReturn; 1008 pNewItem->isCorrelated = pOldItem->isCorrelated; 1009 pNewItem->viaCoroutine = pOldItem->viaCoroutine; 1010 pNewItem->isRecursive = pOldItem->isRecursive; 1011 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 1012 pNewItem->notIndexed = pOldItem->notIndexed; 1013 pNewItem->pIndex = pOldItem->pIndex; 1014 pTab = pNewItem->pTab = pOldItem->pTab; 1015 if( pTab ){ 1016 pTab->nRef++; 1017 } 1018 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1019 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1020 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1021 pNewItem->colUsed = pOldItem->colUsed; 1022 } 1023 return pNew; 1024 } 1025 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1026 IdList *pNew; 1027 int i; 1028 if( p==0 ) return 0; 1029 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 1030 if( pNew==0 ) return 0; 1031 pNew->nId = p->nId; 1032 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 1033 if( pNew->a==0 ){ 1034 sqlite3DbFree(db, pNew); 1035 return 0; 1036 } 1037 /* Note that because the size of the allocation for p->a[] is not 1038 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1039 ** on the duplicate created by this function. */ 1040 for(i=0; i<p->nId; i++){ 1041 struct IdList_item *pNewItem = &pNew->a[i]; 1042 struct IdList_item *pOldItem = &p->a[i]; 1043 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1044 pNewItem->idx = pOldItem->idx; 1045 } 1046 return pNew; 1047 } 1048 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1049 Select *pNew, *pPrior; 1050 if( p==0 ) return 0; 1051 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 1052 if( pNew==0 ) return 0; 1053 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1054 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1055 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1056 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1057 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1058 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1059 pNew->op = p->op; 1060 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1061 if( pPrior ) pPrior->pNext = pNew; 1062 pNew->pNext = 0; 1063 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1064 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1065 pNew->iLimit = 0; 1066 pNew->iOffset = 0; 1067 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1068 pNew->addrOpenEphm[0] = -1; 1069 pNew->addrOpenEphm[1] = -1; 1070 pNew->nSelectRow = p->nSelectRow; 1071 pNew->pWith = withDup(db, p->pWith); 1072 return pNew; 1073 } 1074 #else 1075 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1076 assert( p==0 ); 1077 return 0; 1078 } 1079 #endif 1080 1081 1082 /* 1083 ** Add a new element to the end of an expression list. If pList is 1084 ** initially NULL, then create a new expression list. 1085 ** 1086 ** If a memory allocation error occurs, the entire list is freed and 1087 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1088 ** that the new entry was successfully appended. 1089 */ 1090 ExprList *sqlite3ExprListAppend( 1091 Parse *pParse, /* Parsing context */ 1092 ExprList *pList, /* List to which to append. Might be NULL */ 1093 Expr *pExpr /* Expression to be appended. Might be NULL */ 1094 ){ 1095 sqlite3 *db = pParse->db; 1096 if( pList==0 ){ 1097 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1098 if( pList==0 ){ 1099 goto no_mem; 1100 } 1101 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1102 if( pList->a==0 ) goto no_mem; 1103 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1104 struct ExprList_item *a; 1105 assert( pList->nExpr>0 ); 1106 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1107 if( a==0 ){ 1108 goto no_mem; 1109 } 1110 pList->a = a; 1111 } 1112 assert( pList->a!=0 ); 1113 if( 1 ){ 1114 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1115 memset(pItem, 0, sizeof(*pItem)); 1116 pItem->pExpr = pExpr; 1117 } 1118 return pList; 1119 1120 no_mem: 1121 /* Avoid leaking memory if malloc has failed. */ 1122 sqlite3ExprDelete(db, pExpr); 1123 sqlite3ExprListDelete(db, pList); 1124 return 0; 1125 } 1126 1127 /* 1128 ** Set the ExprList.a[].zName element of the most recently added item 1129 ** on the expression list. 1130 ** 1131 ** pList might be NULL following an OOM error. But pName should never be 1132 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1133 ** is set. 1134 */ 1135 void sqlite3ExprListSetName( 1136 Parse *pParse, /* Parsing context */ 1137 ExprList *pList, /* List to which to add the span. */ 1138 Token *pName, /* Name to be added */ 1139 int dequote /* True to cause the name to be dequoted */ 1140 ){ 1141 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1142 if( pList ){ 1143 struct ExprList_item *pItem; 1144 assert( pList->nExpr>0 ); 1145 pItem = &pList->a[pList->nExpr-1]; 1146 assert( pItem->zName==0 ); 1147 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1148 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1149 } 1150 } 1151 1152 /* 1153 ** Set the ExprList.a[].zSpan element of the most recently added item 1154 ** on the expression list. 1155 ** 1156 ** pList might be NULL following an OOM error. But pSpan should never be 1157 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1158 ** is set. 1159 */ 1160 void sqlite3ExprListSetSpan( 1161 Parse *pParse, /* Parsing context */ 1162 ExprList *pList, /* List to which to add the span. */ 1163 ExprSpan *pSpan /* The span to be added */ 1164 ){ 1165 sqlite3 *db = pParse->db; 1166 assert( pList!=0 || db->mallocFailed!=0 ); 1167 if( pList ){ 1168 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1169 assert( pList->nExpr>0 ); 1170 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1171 sqlite3DbFree(db, pItem->zSpan); 1172 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1173 (int)(pSpan->zEnd - pSpan->zStart)); 1174 } 1175 } 1176 1177 /* 1178 ** If the expression list pEList contains more than iLimit elements, 1179 ** leave an error message in pParse. 1180 */ 1181 void sqlite3ExprListCheckLength( 1182 Parse *pParse, 1183 ExprList *pEList, 1184 const char *zObject 1185 ){ 1186 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1187 testcase( pEList && pEList->nExpr==mx ); 1188 testcase( pEList && pEList->nExpr==mx+1 ); 1189 if( pEList && pEList->nExpr>mx ){ 1190 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1191 } 1192 } 1193 1194 /* 1195 ** Delete an entire expression list. 1196 */ 1197 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1198 int i; 1199 struct ExprList_item *pItem; 1200 if( pList==0 ) return; 1201 assert( pList->a!=0 || pList->nExpr==0 ); 1202 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1203 sqlite3ExprDelete(db, pItem->pExpr); 1204 sqlite3DbFree(db, pItem->zName); 1205 sqlite3DbFree(db, pItem->zSpan); 1206 } 1207 sqlite3DbFree(db, pList->a); 1208 sqlite3DbFree(db, pList); 1209 } 1210 1211 /* 1212 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1213 ** to an integer. These routines are checking an expression to see 1214 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1215 ** not constant. 1216 ** 1217 ** These callback routines are used to implement the following: 1218 ** 1219 ** sqlite3ExprIsConstant() 1220 ** sqlite3ExprIsConstantNotJoin() 1221 ** sqlite3ExprIsConstantOrFunction() 1222 ** 1223 */ 1224 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1225 1226 /* If pWalker->u.i is 3 then any term of the expression that comes from 1227 ** the ON or USING clauses of a join disqualifies the expression 1228 ** from being considered constant. */ 1229 if( pWalker->u.i==3 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1230 pWalker->u.i = 0; 1231 return WRC_Abort; 1232 } 1233 1234 switch( pExpr->op ){ 1235 /* Consider functions to be constant if all their arguments are constant 1236 ** and either pWalker->u.i==2 or the function as the SQLITE_FUNC_CONST 1237 ** flag. */ 1238 case TK_FUNCTION: 1239 if( pWalker->u.i==2 || ExprHasProperty(pExpr,EP_Constant) ){ 1240 return WRC_Continue; 1241 } 1242 /* Fall through */ 1243 case TK_ID: 1244 case TK_COLUMN: 1245 case TK_AGG_FUNCTION: 1246 case TK_AGG_COLUMN: 1247 testcase( pExpr->op==TK_ID ); 1248 testcase( pExpr->op==TK_COLUMN ); 1249 testcase( pExpr->op==TK_AGG_FUNCTION ); 1250 testcase( pExpr->op==TK_AGG_COLUMN ); 1251 pWalker->u.i = 0; 1252 return WRC_Abort; 1253 default: 1254 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1255 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1256 return WRC_Continue; 1257 } 1258 } 1259 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1260 UNUSED_PARAMETER(NotUsed); 1261 pWalker->u.i = 0; 1262 return WRC_Abort; 1263 } 1264 static int exprIsConst(Expr *p, int initFlag){ 1265 Walker w; 1266 memset(&w, 0, sizeof(w)); 1267 w.u.i = initFlag; 1268 w.xExprCallback = exprNodeIsConstant; 1269 w.xSelectCallback = selectNodeIsConstant; 1270 sqlite3WalkExpr(&w, p); 1271 return w.u.i; 1272 } 1273 1274 /* 1275 ** Walk an expression tree. Return 1 if the expression is constant 1276 ** and 0 if it involves variables or function calls. 1277 ** 1278 ** For the purposes of this function, a double-quoted string (ex: "abc") 1279 ** is considered a variable but a single-quoted string (ex: 'abc') is 1280 ** a constant. 1281 */ 1282 int sqlite3ExprIsConstant(Expr *p){ 1283 return exprIsConst(p, 1); 1284 } 1285 1286 /* 1287 ** Walk an expression tree. Return 1 if the expression is constant 1288 ** that does no originate from the ON or USING clauses of a join. 1289 ** Return 0 if it involves variables or function calls or terms from 1290 ** an ON or USING clause. 1291 */ 1292 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1293 return exprIsConst(p, 3); 1294 } 1295 1296 /* 1297 ** Walk an expression tree. Return 1 if the expression is constant 1298 ** or a function call with constant arguments. Return and 0 if there 1299 ** are any variables. 1300 ** 1301 ** For the purposes of this function, a double-quoted string (ex: "abc") 1302 ** is considered a variable but a single-quoted string (ex: 'abc') is 1303 ** a constant. 1304 */ 1305 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1306 return exprIsConst(p, 2); 1307 } 1308 1309 /* 1310 ** If the expression p codes a constant integer that is small enough 1311 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1312 ** in *pValue. If the expression is not an integer or if it is too big 1313 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1314 */ 1315 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1316 int rc = 0; 1317 1318 /* If an expression is an integer literal that fits in a signed 32-bit 1319 ** integer, then the EP_IntValue flag will have already been set */ 1320 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1321 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1322 1323 if( p->flags & EP_IntValue ){ 1324 *pValue = p->u.iValue; 1325 return 1; 1326 } 1327 switch( p->op ){ 1328 case TK_UPLUS: { 1329 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1330 break; 1331 } 1332 case TK_UMINUS: { 1333 int v; 1334 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1335 assert( v!=(-2147483647-1) ); 1336 *pValue = -v; 1337 rc = 1; 1338 } 1339 break; 1340 } 1341 default: break; 1342 } 1343 return rc; 1344 } 1345 1346 /* 1347 ** Return FALSE if there is no chance that the expression can be NULL. 1348 ** 1349 ** If the expression might be NULL or if the expression is too complex 1350 ** to tell return TRUE. 1351 ** 1352 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1353 ** when we know that a value cannot be NULL. Hence, a false positive 1354 ** (returning TRUE when in fact the expression can never be NULL) might 1355 ** be a small performance hit but is otherwise harmless. On the other 1356 ** hand, a false negative (returning FALSE when the result could be NULL) 1357 ** will likely result in an incorrect answer. So when in doubt, return 1358 ** TRUE. 1359 */ 1360 int sqlite3ExprCanBeNull(const Expr *p){ 1361 u8 op; 1362 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1363 op = p->op; 1364 if( op==TK_REGISTER ) op = p->op2; 1365 switch( op ){ 1366 case TK_INTEGER: 1367 case TK_STRING: 1368 case TK_FLOAT: 1369 case TK_BLOB: 1370 return 0; 1371 default: 1372 return 1; 1373 } 1374 } 1375 1376 /* 1377 ** Return TRUE if the given expression is a constant which would be 1378 ** unchanged by OP_Affinity with the affinity given in the second 1379 ** argument. 1380 ** 1381 ** This routine is used to determine if the OP_Affinity operation 1382 ** can be omitted. When in doubt return FALSE. A false negative 1383 ** is harmless. A false positive, however, can result in the wrong 1384 ** answer. 1385 */ 1386 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1387 u8 op; 1388 if( aff==SQLITE_AFF_NONE ) return 1; 1389 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1390 op = p->op; 1391 if( op==TK_REGISTER ) op = p->op2; 1392 switch( op ){ 1393 case TK_INTEGER: { 1394 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1395 } 1396 case TK_FLOAT: { 1397 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1398 } 1399 case TK_STRING: { 1400 return aff==SQLITE_AFF_TEXT; 1401 } 1402 case TK_BLOB: { 1403 return 1; 1404 } 1405 case TK_COLUMN: { 1406 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1407 return p->iColumn<0 1408 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1409 } 1410 default: { 1411 return 0; 1412 } 1413 } 1414 } 1415 1416 /* 1417 ** Return TRUE if the given string is a row-id column name. 1418 */ 1419 int sqlite3IsRowid(const char *z){ 1420 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1421 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1422 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1423 return 0; 1424 } 1425 1426 /* 1427 ** Return true if we are able to the IN operator optimization on a 1428 ** query of the form 1429 ** 1430 ** x IN (SELECT ...) 1431 ** 1432 ** Where the SELECT... clause is as specified by the parameter to this 1433 ** routine. 1434 ** 1435 ** The Select object passed in has already been preprocessed and no 1436 ** errors have been found. 1437 */ 1438 #ifndef SQLITE_OMIT_SUBQUERY 1439 static int isCandidateForInOpt(Select *p){ 1440 SrcList *pSrc; 1441 ExprList *pEList; 1442 Table *pTab; 1443 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1444 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1445 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1446 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1447 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1448 return 0; /* No DISTINCT keyword and no aggregate functions */ 1449 } 1450 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1451 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1452 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1453 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1454 pSrc = p->pSrc; 1455 assert( pSrc!=0 ); 1456 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1457 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1458 pTab = pSrc->a[0].pTab; 1459 if( NEVER(pTab==0) ) return 0; 1460 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1461 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1462 pEList = p->pEList; 1463 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1464 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1465 return 1; 1466 } 1467 #endif /* SQLITE_OMIT_SUBQUERY */ 1468 1469 /* 1470 ** Code an OP_Once instruction and allocate space for its flag. Return the 1471 ** address of the new instruction. 1472 */ 1473 int sqlite3CodeOnce(Parse *pParse){ 1474 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1475 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1476 } 1477 1478 /* 1479 ** This function is used by the implementation of the IN (...) operator. 1480 ** The pX parameter is the expression on the RHS of the IN operator, which 1481 ** might be either a list of expressions or a subquery. 1482 ** 1483 ** The job of this routine is to find or create a b-tree object that can 1484 ** be used either to test for membership in the RHS set or to iterate through 1485 ** all members of the RHS set, skipping duplicates. 1486 ** 1487 ** A cursor is opened on the b-tree object that the RHS of the IN operator 1488 ** and pX->iTable is set to the index of that cursor. 1489 ** 1490 ** The returned value of this function indicates the b-tree type, as follows: 1491 ** 1492 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1493 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 1494 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 1495 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1496 ** populated epheremal table. 1497 ** 1498 ** An existing b-tree might be used if the RHS expression pX is a simple 1499 ** subquery such as: 1500 ** 1501 ** SELECT <column> FROM <table> 1502 ** 1503 ** If the RHS of the IN operator is a list or a more complex subquery, then 1504 ** an ephemeral table might need to be generated from the RHS and then 1505 ** pX->iTable made to point to the ephermeral table instead of an 1506 ** existing table. 1507 ** 1508 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate 1509 ** through the set members, skipping any duplicates. In this case an 1510 ** epheremal table must be used unless the selected <column> is guaranteed 1511 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1512 ** has a UNIQUE constraint or UNIQUE index. 1513 ** 1514 ** If the prNotFound parameter is not 0, then the b-tree will be used 1515 ** for fast set membership tests. In this case an epheremal table must 1516 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1517 ** be found with <column> as its left-most column. 1518 ** 1519 ** When the b-tree is being used for membership tests, the calling function 1520 ** needs to know whether or not the structure contains an SQL NULL 1521 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1522 ** If there is any chance that the (...) might contain a NULL value at 1523 ** runtime, then a register is allocated and the register number written 1524 ** to *prNotFound. If there is no chance that the (...) contains a 1525 ** NULL value, then *prNotFound is left unchanged. 1526 ** 1527 ** If a register is allocated and its location stored in *prNotFound, then 1528 ** its initial value is NULL. If the (...) does not remain constant 1529 ** for the duration of the query (i.e. the SELECT within the (...) 1530 ** is a correlated subquery) then the value of the allocated register is 1531 ** reset to NULL each time the subquery is rerun. This allows the 1532 ** caller to use vdbe code equivalent to the following: 1533 ** 1534 ** if( register==NULL ){ 1535 ** has_null = <test if data structure contains null> 1536 ** register = 1 1537 ** } 1538 ** 1539 ** in order to avoid running the <test if data structure contains null> 1540 ** test more often than is necessary. 1541 */ 1542 #ifndef SQLITE_OMIT_SUBQUERY 1543 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1544 Select *p; /* SELECT to the right of IN operator */ 1545 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1546 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1547 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ 1548 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1549 1550 assert( pX->op==TK_IN ); 1551 1552 /* Check to see if an existing table or index can be used to 1553 ** satisfy the query. This is preferable to generating a new 1554 ** ephemeral table. 1555 */ 1556 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1557 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1558 sqlite3 *db = pParse->db; /* Database connection */ 1559 Table *pTab; /* Table <table>. */ 1560 Expr *pExpr; /* Expression <column> */ 1561 i16 iCol; /* Index of column <column> */ 1562 i16 iDb; /* Database idx for pTab */ 1563 1564 assert( p ); /* Because of isCandidateForInOpt(p) */ 1565 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1566 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1567 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1568 pTab = p->pSrc->a[0].pTab; 1569 pExpr = p->pEList->a[0].pExpr; 1570 iCol = (i16)pExpr->iColumn; 1571 1572 /* Code an OP_Transaction and OP_TableLock for <table>. */ 1573 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1574 sqlite3CodeVerifySchema(pParse, iDb); 1575 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1576 1577 /* This function is only called from two places. In both cases the vdbe 1578 ** has already been allocated. So assume sqlite3GetVdbe() is always 1579 ** successful here. 1580 */ 1581 assert(v); 1582 if( iCol<0 ){ 1583 int iAddr = sqlite3CodeOnce(pParse); 1584 VdbeCoverage(v); 1585 1586 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1587 eType = IN_INDEX_ROWID; 1588 1589 sqlite3VdbeJumpHere(v, iAddr); 1590 }else{ 1591 Index *pIdx; /* Iterator variable */ 1592 1593 /* The collation sequence used by the comparison. If an index is to 1594 ** be used in place of a temp-table, it must be ordered according 1595 ** to this collation sequence. */ 1596 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1597 1598 /* Check that the affinity that will be used to perform the 1599 ** comparison is the same as the affinity of the column. If 1600 ** it is not, it is not possible to use any index. 1601 */ 1602 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1603 1604 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1605 if( (pIdx->aiColumn[0]==iCol) 1606 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1607 && (!mustBeUnique || (pIdx->nKeyCol==1 && pIdx->onError!=OE_None)) 1608 ){ 1609 int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1610 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 1611 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1612 VdbeComment((v, "%s", pIdx->zName)); 1613 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 1614 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 1615 1616 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1617 *prNotFound = ++pParse->nMem; 1618 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1619 } 1620 sqlite3VdbeJumpHere(v, iAddr); 1621 } 1622 } 1623 } 1624 } 1625 1626 if( eType==0 ){ 1627 /* Could not found an existing table or index to use as the RHS b-tree. 1628 ** We will have to generate an ephemeral table to do the job. 1629 */ 1630 u32 savedNQueryLoop = pParse->nQueryLoop; 1631 int rMayHaveNull = 0; 1632 eType = IN_INDEX_EPH; 1633 if( prNotFound ){ 1634 *prNotFound = rMayHaveNull = ++pParse->nMem; 1635 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1636 }else{ 1637 pParse->nQueryLoop = 0; 1638 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 1639 eType = IN_INDEX_ROWID; 1640 } 1641 } 1642 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1643 pParse->nQueryLoop = savedNQueryLoop; 1644 }else{ 1645 pX->iTable = iTab; 1646 } 1647 return eType; 1648 } 1649 #endif 1650 1651 /* 1652 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1653 ** or IN operators. Examples: 1654 ** 1655 ** (SELECT a FROM b) -- subquery 1656 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1657 ** x IN (4,5,11) -- IN operator with list on right-hand side 1658 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1659 ** 1660 ** The pExpr parameter describes the expression that contains the IN 1661 ** operator or subquery. 1662 ** 1663 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1664 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1665 ** to some integer key column of a table B-Tree. In this case, use an 1666 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1667 ** (slower) variable length keys B-Tree. 1668 ** 1669 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1670 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1671 ** Furthermore, the IN is in a WHERE clause and that we really want 1672 ** to iterate over the RHS of the IN operator in order to quickly locate 1673 ** all corresponding LHS elements. All this routine does is initialize 1674 ** the register given by rMayHaveNull to NULL. Calling routines will take 1675 ** care of changing this register value to non-NULL if the RHS is NULL-free. 1676 ** 1677 ** If rMayHaveNull is zero, that means that the subquery is being used 1678 ** for membership testing only. There is no need to initialize any 1679 ** registers to indicate the presence or absence of NULLs on the RHS. 1680 ** 1681 ** For a SELECT or EXISTS operator, return the register that holds the 1682 ** result. For IN operators or if an error occurs, the return value is 0. 1683 */ 1684 #ifndef SQLITE_OMIT_SUBQUERY 1685 int sqlite3CodeSubselect( 1686 Parse *pParse, /* Parsing context */ 1687 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1688 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ 1689 int isRowid /* If true, LHS of IN operator is a rowid */ 1690 ){ 1691 int testAddr = -1; /* One-time test address */ 1692 int rReg = 0; /* Register storing resulting */ 1693 Vdbe *v = sqlite3GetVdbe(pParse); 1694 if( NEVER(v==0) ) return 0; 1695 sqlite3ExprCachePush(pParse); 1696 1697 /* This code must be run in its entirety every time it is encountered 1698 ** if any of the following is true: 1699 ** 1700 ** * The right-hand side is a correlated subquery 1701 ** * The right-hand side is an expression list containing variables 1702 ** * We are inside a trigger 1703 ** 1704 ** If all of the above are false, then we can run this code just once 1705 ** save the results, and reuse the same result on subsequent invocations. 1706 */ 1707 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 1708 testAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1709 } 1710 1711 #ifndef SQLITE_OMIT_EXPLAIN 1712 if( pParse->explain==2 ){ 1713 char *zMsg = sqlite3MPrintf( 1714 pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ", 1715 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId 1716 ); 1717 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1718 } 1719 #endif 1720 1721 switch( pExpr->op ){ 1722 case TK_IN: { 1723 char affinity; /* Affinity of the LHS of the IN */ 1724 int addr; /* Address of OP_OpenEphemeral instruction */ 1725 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1726 KeyInfo *pKeyInfo = 0; /* Key information */ 1727 1728 if( rMayHaveNull ){ 1729 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1730 } 1731 1732 affinity = sqlite3ExprAffinity(pLeft); 1733 1734 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1735 ** expression it is handled the same way. An ephemeral table is 1736 ** filled with single-field index keys representing the results 1737 ** from the SELECT or the <exprlist>. 1738 ** 1739 ** If the 'x' expression is a column value, or the SELECT... 1740 ** statement returns a column value, then the affinity of that 1741 ** column is used to build the index keys. If both 'x' and the 1742 ** SELECT... statement are columns, then numeric affinity is used 1743 ** if either column has NUMERIC or INTEGER affinity. If neither 1744 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1745 ** is used. 1746 */ 1747 pExpr->iTable = pParse->nTab++; 1748 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1749 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); 1750 1751 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1752 /* Case 1: expr IN (SELECT ...) 1753 ** 1754 ** Generate code to write the results of the select into the temporary 1755 ** table allocated and opened above. 1756 */ 1757 SelectDest dest; 1758 ExprList *pEList; 1759 1760 assert( !isRowid ); 1761 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1762 dest.affSdst = (u8)affinity; 1763 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1764 pExpr->x.pSelect->iLimit = 0; 1765 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 1766 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1767 sqlite3KeyInfoUnref(pKeyInfo); 1768 return 0; 1769 } 1770 pEList = pExpr->x.pSelect->pEList; 1771 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 1772 assert( pEList!=0 ); 1773 assert( pEList->nExpr>0 ); 1774 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1775 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1776 pEList->a[0].pExpr); 1777 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1778 /* Case 2: expr IN (exprlist) 1779 ** 1780 ** For each expression, build an index key from the evaluation and 1781 ** store it in the temporary table. If <expr> is a column, then use 1782 ** that columns affinity when building index keys. If <expr> is not 1783 ** a column, use numeric affinity. 1784 */ 1785 int i; 1786 ExprList *pList = pExpr->x.pList; 1787 struct ExprList_item *pItem; 1788 int r1, r2, r3; 1789 1790 if( !affinity ){ 1791 affinity = SQLITE_AFF_NONE; 1792 } 1793 if( pKeyInfo ){ 1794 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1795 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1796 } 1797 1798 /* Loop through each expression in <exprlist>. */ 1799 r1 = sqlite3GetTempReg(pParse); 1800 r2 = sqlite3GetTempReg(pParse); 1801 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1802 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1803 Expr *pE2 = pItem->pExpr; 1804 int iValToIns; 1805 1806 /* If the expression is not constant then we will need to 1807 ** disable the test that was generated above that makes sure 1808 ** this code only executes once. Because for a non-constant 1809 ** expression we need to rerun this code each time. 1810 */ 1811 if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){ 1812 sqlite3VdbeChangeToNoop(v, testAddr); 1813 testAddr = -1; 1814 } 1815 1816 /* Evaluate the expression and insert it into the temp table */ 1817 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1818 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1819 }else{ 1820 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1821 if( isRowid ){ 1822 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1823 sqlite3VdbeCurrentAddr(v)+2); 1824 VdbeCoverage(v); 1825 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1826 }else{ 1827 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1828 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1829 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1830 } 1831 } 1832 } 1833 sqlite3ReleaseTempReg(pParse, r1); 1834 sqlite3ReleaseTempReg(pParse, r2); 1835 } 1836 if( pKeyInfo ){ 1837 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 1838 } 1839 break; 1840 } 1841 1842 case TK_EXISTS: 1843 case TK_SELECT: 1844 default: { 1845 /* If this has to be a scalar SELECT. Generate code to put the 1846 ** value of this select in a memory cell and record the number 1847 ** of the memory cell in iColumn. If this is an EXISTS, write 1848 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1849 ** and record that memory cell in iColumn. 1850 */ 1851 Select *pSel; /* SELECT statement to encode */ 1852 SelectDest dest; /* How to deal with SELECt result */ 1853 1854 testcase( pExpr->op==TK_EXISTS ); 1855 testcase( pExpr->op==TK_SELECT ); 1856 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1857 1858 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1859 pSel = pExpr->x.pSelect; 1860 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1861 if( pExpr->op==TK_SELECT ){ 1862 dest.eDest = SRT_Mem; 1863 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 1864 VdbeComment((v, "Init subquery result")); 1865 }else{ 1866 dest.eDest = SRT_Exists; 1867 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 1868 VdbeComment((v, "Init EXISTS result")); 1869 } 1870 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1871 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 1872 &sqlite3IntTokens[1]); 1873 pSel->iLimit = 0; 1874 if( sqlite3Select(pParse, pSel, &dest) ){ 1875 return 0; 1876 } 1877 rReg = dest.iSDParm; 1878 ExprSetVVAProperty(pExpr, EP_NoReduce); 1879 break; 1880 } 1881 } 1882 1883 if( testAddr>=0 ){ 1884 sqlite3VdbeJumpHere(v, testAddr); 1885 } 1886 sqlite3ExprCachePop(pParse); 1887 1888 return rReg; 1889 } 1890 #endif /* SQLITE_OMIT_SUBQUERY */ 1891 1892 #ifndef SQLITE_OMIT_SUBQUERY 1893 /* 1894 ** Generate code for an IN expression. 1895 ** 1896 ** x IN (SELECT ...) 1897 ** x IN (value, value, ...) 1898 ** 1899 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 1900 ** is an array of zero or more values. The expression is true if the LHS is 1901 ** contained within the RHS. The value of the expression is unknown (NULL) 1902 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 1903 ** RHS contains one or more NULL values. 1904 ** 1905 ** This routine generates code will jump to destIfFalse if the LHS is not 1906 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 1907 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 1908 ** within the RHS then fall through. 1909 */ 1910 static void sqlite3ExprCodeIN( 1911 Parse *pParse, /* Parsing and code generating context */ 1912 Expr *pExpr, /* The IN expression */ 1913 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 1914 int destIfNull /* Jump here if the results are unknown due to NULLs */ 1915 ){ 1916 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 1917 char affinity; /* Comparison affinity to use */ 1918 int eType; /* Type of the RHS */ 1919 int r1; /* Temporary use register */ 1920 Vdbe *v; /* Statement under construction */ 1921 1922 /* Compute the RHS. After this step, the table with cursor 1923 ** pExpr->iTable will contains the values that make up the RHS. 1924 */ 1925 v = pParse->pVdbe; 1926 assert( v!=0 ); /* OOM detected prior to this routine */ 1927 VdbeNoopComment((v, "begin IN expr")); 1928 eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull); 1929 1930 /* Figure out the affinity to use to create a key from the results 1931 ** of the expression. affinityStr stores a static string suitable for 1932 ** P4 of OP_MakeRecord. 1933 */ 1934 affinity = comparisonAffinity(pExpr); 1935 1936 /* Code the LHS, the <expr> from "<expr> IN (...)". 1937 */ 1938 sqlite3ExprCachePush(pParse); 1939 r1 = sqlite3GetTempReg(pParse); 1940 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 1941 1942 /* If the LHS is NULL, then the result is either false or NULL depending 1943 ** on whether the RHS is empty or not, respectively. 1944 */ 1945 if( destIfNull==destIfFalse ){ 1946 /* Shortcut for the common case where the false and NULL outcomes are 1947 ** the same. */ 1948 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); 1949 }else{ 1950 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); 1951 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 1952 VdbeCoverage(v); 1953 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 1954 sqlite3VdbeJumpHere(v, addr1); 1955 } 1956 1957 if( eType==IN_INDEX_ROWID ){ 1958 /* In this case, the RHS is the ROWID of table b-tree 1959 */ 1960 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); 1961 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 1962 VdbeCoverage(v); 1963 }else{ 1964 /* In this case, the RHS is an index b-tree. 1965 */ 1966 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 1967 1968 /* If the set membership test fails, then the result of the 1969 ** "x IN (...)" expression must be either 0 or NULL. If the set 1970 ** contains no NULL values, then the result is 0. If the set 1971 ** contains one or more NULL values, then the result of the 1972 ** expression is also NULL. 1973 */ 1974 if( rRhsHasNull==0 || destIfFalse==destIfNull ){ 1975 /* This branch runs if it is known at compile time that the RHS 1976 ** cannot contain NULL values. This happens as the result 1977 ** of a "NOT NULL" constraint in the database schema. 1978 ** 1979 ** Also run this branch if NULL is equivalent to FALSE 1980 ** for this particular IN operator. 1981 */ 1982 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 1983 VdbeCoverage(v); 1984 }else{ 1985 /* In this branch, the RHS of the IN might contain a NULL and 1986 ** the presence of a NULL on the RHS makes a difference in the 1987 ** outcome. 1988 */ 1989 int j1, j2; 1990 1991 /* First check to see if the LHS is contained in the RHS. If so, 1992 ** then the presence of NULLs in the RHS does not matter, so jump 1993 ** over all of the code that follows. 1994 */ 1995 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 1996 VdbeCoverage(v); 1997 1998 /* Here we begin generating code that runs if the LHS is not 1999 ** contained within the RHS. Generate additional code that 2000 ** tests the RHS for NULLs. If the RHS contains a NULL then 2001 ** jump to destIfNull. If there are no NULLs in the RHS then 2002 ** jump to destIfFalse. 2003 */ 2004 sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); VdbeCoverage(v); 2005 sqlite3VdbeAddOp2(v, OP_IfNot, rRhsHasNull, destIfFalse); VdbeCoverage(v); 2006 j2 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); 2007 VdbeCoverage(v); 2008 sqlite3VdbeAddOp2(v, OP_Integer, 0, rRhsHasNull); 2009 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 2010 sqlite3VdbeJumpHere(v, j2); 2011 sqlite3VdbeAddOp2(v, OP_Integer, 1, rRhsHasNull); 2012 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 2013 2014 /* The OP_Found at the top of this branch jumps here when true, 2015 ** causing the overall IN expression evaluation to fall through. 2016 */ 2017 sqlite3VdbeJumpHere(v, j1); 2018 } 2019 } 2020 sqlite3ReleaseTempReg(pParse, r1); 2021 sqlite3ExprCachePop(pParse); 2022 VdbeComment((v, "end IN expr")); 2023 } 2024 #endif /* SQLITE_OMIT_SUBQUERY */ 2025 2026 /* 2027 ** Duplicate an 8-byte value 2028 */ 2029 static char *dup8bytes(Vdbe *v, const char *in){ 2030 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 2031 if( out ){ 2032 memcpy(out, in, 8); 2033 } 2034 return out; 2035 } 2036 2037 #ifndef SQLITE_OMIT_FLOATING_POINT 2038 /* 2039 ** Generate an instruction that will put the floating point 2040 ** value described by z[0..n-1] into register iMem. 2041 ** 2042 ** The z[] string will probably not be zero-terminated. But the 2043 ** z[n] character is guaranteed to be something that does not look 2044 ** like the continuation of the number. 2045 */ 2046 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2047 if( ALWAYS(z!=0) ){ 2048 double value; 2049 char *zV; 2050 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2051 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2052 if( negateFlag ) value = -value; 2053 zV = dup8bytes(v, (char*)&value); 2054 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 2055 } 2056 } 2057 #endif 2058 2059 2060 /* 2061 ** Generate an instruction that will put the integer describe by 2062 ** text z[0..n-1] into register iMem. 2063 ** 2064 ** Expr.u.zToken is always UTF8 and zero-terminated. 2065 */ 2066 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2067 Vdbe *v = pParse->pVdbe; 2068 if( pExpr->flags & EP_IntValue ){ 2069 int i = pExpr->u.iValue; 2070 assert( i>=0 ); 2071 if( negFlag ) i = -i; 2072 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2073 }else{ 2074 int c; 2075 i64 value; 2076 const char *z = pExpr->u.zToken; 2077 assert( z!=0 ); 2078 c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2079 if( c==0 || (c==2 && negFlag) ){ 2080 char *zV; 2081 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2082 zV = dup8bytes(v, (char*)&value); 2083 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 2084 }else{ 2085 #ifdef SQLITE_OMIT_FLOATING_POINT 2086 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2087 #else 2088 codeReal(v, z, negFlag, iMem); 2089 #endif 2090 } 2091 } 2092 } 2093 2094 /* 2095 ** Clear a cache entry. 2096 */ 2097 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2098 if( p->tempReg ){ 2099 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2100 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2101 } 2102 p->tempReg = 0; 2103 } 2104 } 2105 2106 2107 /* 2108 ** Record in the column cache that a particular column from a 2109 ** particular table is stored in a particular register. 2110 */ 2111 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2112 int i; 2113 int minLru; 2114 int idxLru; 2115 struct yColCache *p; 2116 2117 assert( iReg>0 ); /* Register numbers are always positive */ 2118 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2119 2120 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2121 ** for testing only - to verify that SQLite always gets the same answer 2122 ** with and without the column cache. 2123 */ 2124 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2125 2126 /* First replace any existing entry. 2127 ** 2128 ** Actually, the way the column cache is currently used, we are guaranteed 2129 ** that the object will never already be in cache. Verify this guarantee. 2130 */ 2131 #ifndef NDEBUG 2132 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2133 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2134 } 2135 #endif 2136 2137 /* Find an empty slot and replace it */ 2138 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2139 if( p->iReg==0 ){ 2140 p->iLevel = pParse->iCacheLevel; 2141 p->iTable = iTab; 2142 p->iColumn = iCol; 2143 p->iReg = iReg; 2144 p->tempReg = 0; 2145 p->lru = pParse->iCacheCnt++; 2146 return; 2147 } 2148 } 2149 2150 /* Replace the last recently used */ 2151 minLru = 0x7fffffff; 2152 idxLru = -1; 2153 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2154 if( p->lru<minLru ){ 2155 idxLru = i; 2156 minLru = p->lru; 2157 } 2158 } 2159 if( ALWAYS(idxLru>=0) ){ 2160 p = &pParse->aColCache[idxLru]; 2161 p->iLevel = pParse->iCacheLevel; 2162 p->iTable = iTab; 2163 p->iColumn = iCol; 2164 p->iReg = iReg; 2165 p->tempReg = 0; 2166 p->lru = pParse->iCacheCnt++; 2167 return; 2168 } 2169 } 2170 2171 /* 2172 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2173 ** Purge the range of registers from the column cache. 2174 */ 2175 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2176 int i; 2177 int iLast = iReg + nReg - 1; 2178 struct yColCache *p; 2179 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2180 int r = p->iReg; 2181 if( r>=iReg && r<=iLast ){ 2182 cacheEntryClear(pParse, p); 2183 p->iReg = 0; 2184 } 2185 } 2186 } 2187 2188 /* 2189 ** Remember the current column cache context. Any new entries added 2190 ** added to the column cache after this call are removed when the 2191 ** corresponding pop occurs. 2192 */ 2193 void sqlite3ExprCachePush(Parse *pParse){ 2194 pParse->iCacheLevel++; 2195 #ifdef SQLITE_DEBUG 2196 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2197 printf("PUSH to %d\n", pParse->iCacheLevel); 2198 } 2199 #endif 2200 } 2201 2202 /* 2203 ** Remove from the column cache any entries that were added since the 2204 ** the previous sqlite3ExprCachePush operation. In other words, restore 2205 ** the cache to the state it was in prior the most recent Push. 2206 */ 2207 void sqlite3ExprCachePop(Parse *pParse){ 2208 int i; 2209 struct yColCache *p; 2210 assert( pParse->iCacheLevel>=1 ); 2211 pParse->iCacheLevel--; 2212 #ifdef SQLITE_DEBUG 2213 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2214 printf("POP to %d\n", pParse->iCacheLevel); 2215 } 2216 #endif 2217 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2218 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2219 cacheEntryClear(pParse, p); 2220 p->iReg = 0; 2221 } 2222 } 2223 } 2224 2225 /* 2226 ** When a cached column is reused, make sure that its register is 2227 ** no longer available as a temp register. ticket #3879: that same 2228 ** register might be in the cache in multiple places, so be sure to 2229 ** get them all. 2230 */ 2231 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2232 int i; 2233 struct yColCache *p; 2234 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2235 if( p->iReg==iReg ){ 2236 p->tempReg = 0; 2237 } 2238 } 2239 } 2240 2241 /* 2242 ** Generate code to extract the value of the iCol-th column of a table. 2243 */ 2244 void sqlite3ExprCodeGetColumnOfTable( 2245 Vdbe *v, /* The VDBE under construction */ 2246 Table *pTab, /* The table containing the value */ 2247 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 2248 int iCol, /* Index of the column to extract */ 2249 int regOut /* Extract the value into this register */ 2250 ){ 2251 if( iCol<0 || iCol==pTab->iPKey ){ 2252 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2253 }else{ 2254 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2255 int x = iCol; 2256 if( !HasRowid(pTab) ){ 2257 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 2258 } 2259 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 2260 } 2261 if( iCol>=0 ){ 2262 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2263 } 2264 } 2265 2266 /* 2267 ** Generate code that will extract the iColumn-th column from 2268 ** table pTab and store the column value in a register. An effort 2269 ** is made to store the column value in register iReg, but this is 2270 ** not guaranteed. The location of the column value is returned. 2271 ** 2272 ** There must be an open cursor to pTab in iTable when this routine 2273 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2274 */ 2275 int sqlite3ExprCodeGetColumn( 2276 Parse *pParse, /* Parsing and code generating context */ 2277 Table *pTab, /* Description of the table we are reading from */ 2278 int iColumn, /* Index of the table column */ 2279 int iTable, /* The cursor pointing to the table */ 2280 int iReg, /* Store results here */ 2281 u8 p5 /* P5 value for OP_Column */ 2282 ){ 2283 Vdbe *v = pParse->pVdbe; 2284 int i; 2285 struct yColCache *p; 2286 2287 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2288 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2289 p->lru = pParse->iCacheCnt++; 2290 sqlite3ExprCachePinRegister(pParse, p->iReg); 2291 return p->iReg; 2292 } 2293 } 2294 assert( v!=0 ); 2295 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2296 if( p5 ){ 2297 sqlite3VdbeChangeP5(v, p5); 2298 }else{ 2299 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2300 } 2301 return iReg; 2302 } 2303 2304 /* 2305 ** Clear all column cache entries. 2306 */ 2307 void sqlite3ExprCacheClear(Parse *pParse){ 2308 int i; 2309 struct yColCache *p; 2310 2311 #if SQLITE_DEBUG 2312 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2313 printf("CLEAR\n"); 2314 } 2315 #endif 2316 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2317 if( p->iReg ){ 2318 cacheEntryClear(pParse, p); 2319 p->iReg = 0; 2320 } 2321 } 2322 } 2323 2324 /* 2325 ** Record the fact that an affinity change has occurred on iCount 2326 ** registers starting with iStart. 2327 */ 2328 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2329 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2330 } 2331 2332 /* 2333 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2334 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2335 */ 2336 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2337 int i; 2338 struct yColCache *p; 2339 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2340 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2341 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2342 int x = p->iReg; 2343 if( x>=iFrom && x<iFrom+nReg ){ 2344 p->iReg += iTo-iFrom; 2345 } 2346 } 2347 } 2348 2349 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2350 /* 2351 ** Return true if any register in the range iFrom..iTo (inclusive) 2352 ** is used as part of the column cache. 2353 ** 2354 ** This routine is used within assert() and testcase() macros only 2355 ** and does not appear in a normal build. 2356 */ 2357 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2358 int i; 2359 struct yColCache *p; 2360 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2361 int r = p->iReg; 2362 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2363 } 2364 return 0; 2365 } 2366 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2367 2368 /* 2369 ** Convert an expression node to a TK_REGISTER 2370 */ 2371 static void exprToRegister(Expr *p, int iReg){ 2372 p->op2 = p->op; 2373 p->op = TK_REGISTER; 2374 p->iTable = iReg; 2375 ExprClearProperty(p, EP_Skip); 2376 } 2377 2378 /* 2379 ** Generate code into the current Vdbe to evaluate the given 2380 ** expression. Attempt to store the results in register "target". 2381 ** Return the register where results are stored. 2382 ** 2383 ** With this routine, there is no guarantee that results will 2384 ** be stored in target. The result might be stored in some other 2385 ** register if it is convenient to do so. The calling function 2386 ** must check the return code and move the results to the desired 2387 ** register. 2388 */ 2389 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2390 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2391 int op; /* The opcode being coded */ 2392 int inReg = target; /* Results stored in register inReg */ 2393 int regFree1 = 0; /* If non-zero free this temporary register */ 2394 int regFree2 = 0; /* If non-zero free this temporary register */ 2395 int r1, r2, r3, r4; /* Various register numbers */ 2396 sqlite3 *db = pParse->db; /* The database connection */ 2397 Expr tempX; /* Temporary expression node */ 2398 2399 assert( target>0 && target<=pParse->nMem ); 2400 if( v==0 ){ 2401 assert( pParse->db->mallocFailed ); 2402 return 0; 2403 } 2404 2405 if( pExpr==0 ){ 2406 op = TK_NULL; 2407 }else{ 2408 op = pExpr->op; 2409 } 2410 switch( op ){ 2411 case TK_AGG_COLUMN: { 2412 AggInfo *pAggInfo = pExpr->pAggInfo; 2413 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2414 if( !pAggInfo->directMode ){ 2415 assert( pCol->iMem>0 ); 2416 inReg = pCol->iMem; 2417 break; 2418 }else if( pAggInfo->useSortingIdx ){ 2419 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2420 pCol->iSorterColumn, target); 2421 break; 2422 } 2423 /* Otherwise, fall thru into the TK_COLUMN case */ 2424 } 2425 case TK_COLUMN: { 2426 int iTab = pExpr->iTable; 2427 if( iTab<0 ){ 2428 if( pParse->ckBase>0 ){ 2429 /* Generating CHECK constraints or inserting into partial index */ 2430 inReg = pExpr->iColumn + pParse->ckBase; 2431 break; 2432 }else{ 2433 /* Deleting from a partial index */ 2434 iTab = pParse->iPartIdxTab; 2435 } 2436 } 2437 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2438 pExpr->iColumn, iTab, target, 2439 pExpr->op2); 2440 break; 2441 } 2442 case TK_INTEGER: { 2443 codeInteger(pParse, pExpr, 0, target); 2444 break; 2445 } 2446 #ifndef SQLITE_OMIT_FLOATING_POINT 2447 case TK_FLOAT: { 2448 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2449 codeReal(v, pExpr->u.zToken, 0, target); 2450 break; 2451 } 2452 #endif 2453 case TK_STRING: { 2454 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2455 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2456 break; 2457 } 2458 case TK_NULL: { 2459 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2460 break; 2461 } 2462 #ifndef SQLITE_OMIT_BLOB_LITERAL 2463 case TK_BLOB: { 2464 int n; 2465 const char *z; 2466 char *zBlob; 2467 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2468 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2469 assert( pExpr->u.zToken[1]=='\'' ); 2470 z = &pExpr->u.zToken[2]; 2471 n = sqlite3Strlen30(z) - 1; 2472 assert( z[n]=='\'' ); 2473 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2474 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2475 break; 2476 } 2477 #endif 2478 case TK_VARIABLE: { 2479 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2480 assert( pExpr->u.zToken!=0 ); 2481 assert( pExpr->u.zToken[0]!=0 ); 2482 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2483 if( pExpr->u.zToken[1]!=0 ){ 2484 assert( pExpr->u.zToken[0]=='?' 2485 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2486 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2487 } 2488 break; 2489 } 2490 case TK_REGISTER: { 2491 inReg = pExpr->iTable; 2492 break; 2493 } 2494 case TK_AS: { 2495 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2496 break; 2497 } 2498 #ifndef SQLITE_OMIT_CAST 2499 case TK_CAST: { 2500 /* Expressions of the form: CAST(pLeft AS token) */ 2501 int aff, to_op; 2502 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2503 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2504 aff = sqlite3AffinityType(pExpr->u.zToken, 0); 2505 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2506 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2507 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2508 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2509 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2510 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2511 testcase( to_op==OP_ToText ); 2512 testcase( to_op==OP_ToBlob ); 2513 testcase( to_op==OP_ToNumeric ); 2514 testcase( to_op==OP_ToInt ); 2515 testcase( to_op==OP_ToReal ); 2516 if( inReg!=target ){ 2517 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2518 inReg = target; 2519 } 2520 sqlite3VdbeAddOp1(v, to_op, inReg); 2521 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2522 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2523 break; 2524 } 2525 #endif /* SQLITE_OMIT_CAST */ 2526 case TK_LT: 2527 case TK_LE: 2528 case TK_GT: 2529 case TK_GE: 2530 case TK_NE: 2531 case TK_EQ: { 2532 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2533 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2534 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2535 r1, r2, inReg, SQLITE_STOREP2); 2536 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 2537 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 2538 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 2539 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 2540 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 2541 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 2542 testcase( regFree1==0 ); 2543 testcase( regFree2==0 ); 2544 break; 2545 } 2546 case TK_IS: 2547 case TK_ISNOT: { 2548 testcase( op==TK_IS ); 2549 testcase( op==TK_ISNOT ); 2550 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2551 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2552 op = (op==TK_IS) ? TK_EQ : TK_NE; 2553 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2554 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2555 VdbeCoverageIf(v, op==TK_EQ); 2556 VdbeCoverageIf(v, op==TK_NE); 2557 testcase( regFree1==0 ); 2558 testcase( regFree2==0 ); 2559 break; 2560 } 2561 case TK_AND: 2562 case TK_OR: 2563 case TK_PLUS: 2564 case TK_STAR: 2565 case TK_MINUS: 2566 case TK_REM: 2567 case TK_BITAND: 2568 case TK_BITOR: 2569 case TK_SLASH: 2570 case TK_LSHIFT: 2571 case TK_RSHIFT: 2572 case TK_CONCAT: { 2573 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 2574 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 2575 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 2576 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 2577 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 2578 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 2579 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 2580 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 2581 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 2582 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 2583 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 2584 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2585 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2586 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2587 testcase( regFree1==0 ); 2588 testcase( regFree2==0 ); 2589 break; 2590 } 2591 case TK_UMINUS: { 2592 Expr *pLeft = pExpr->pLeft; 2593 assert( pLeft ); 2594 if( pLeft->op==TK_INTEGER ){ 2595 codeInteger(pParse, pLeft, 1, target); 2596 #ifndef SQLITE_OMIT_FLOATING_POINT 2597 }else if( pLeft->op==TK_FLOAT ){ 2598 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2599 codeReal(v, pLeft->u.zToken, 1, target); 2600 #endif 2601 }else{ 2602 tempX.op = TK_INTEGER; 2603 tempX.flags = EP_IntValue|EP_TokenOnly; 2604 tempX.u.iValue = 0; 2605 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 2606 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2607 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2608 testcase( regFree2==0 ); 2609 } 2610 inReg = target; 2611 break; 2612 } 2613 case TK_BITNOT: 2614 case TK_NOT: { 2615 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 2616 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 2617 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2618 testcase( regFree1==0 ); 2619 inReg = target; 2620 sqlite3VdbeAddOp2(v, op, r1, inReg); 2621 break; 2622 } 2623 case TK_ISNULL: 2624 case TK_NOTNULL: { 2625 int addr; 2626 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 2627 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 2628 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2629 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2630 testcase( regFree1==0 ); 2631 addr = sqlite3VdbeAddOp1(v, op, r1); 2632 VdbeCoverageIf(v, op==TK_ISNULL); 2633 VdbeCoverageIf(v, op==TK_NOTNULL); 2634 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2635 sqlite3VdbeJumpHere(v, addr); 2636 break; 2637 } 2638 case TK_AGG_FUNCTION: { 2639 AggInfo *pInfo = pExpr->pAggInfo; 2640 if( pInfo==0 ){ 2641 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2642 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2643 }else{ 2644 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2645 } 2646 break; 2647 } 2648 case TK_FUNCTION: { 2649 ExprList *pFarg; /* List of function arguments */ 2650 int nFarg; /* Number of function arguments */ 2651 FuncDef *pDef; /* The function definition object */ 2652 int nId; /* Length of the function name in bytes */ 2653 const char *zId; /* The function name */ 2654 u32 constMask = 0; /* Mask of function arguments that are constant */ 2655 int i; /* Loop counter */ 2656 u8 enc = ENC(db); /* The text encoding used by this database */ 2657 CollSeq *pColl = 0; /* A collating sequence */ 2658 2659 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2660 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 2661 pFarg = 0; 2662 }else{ 2663 pFarg = pExpr->x.pList; 2664 } 2665 nFarg = pFarg ? pFarg->nExpr : 0; 2666 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2667 zId = pExpr->u.zToken; 2668 nId = sqlite3Strlen30(zId); 2669 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2670 if( pDef==0 ){ 2671 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2672 break; 2673 } 2674 2675 /* Attempt a direct implementation of the built-in COALESCE() and 2676 ** IFNULL() functions. This avoids unnecessary evalation of 2677 ** arguments past the first non-NULL argument. 2678 */ 2679 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 2680 int endCoalesce = sqlite3VdbeMakeLabel(v); 2681 assert( nFarg>=2 ); 2682 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2683 for(i=1; i<nFarg; i++){ 2684 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2685 VdbeCoverage(v); 2686 sqlite3ExprCacheRemove(pParse, target, 1); 2687 sqlite3ExprCachePush(pParse); 2688 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2689 sqlite3ExprCachePop(pParse); 2690 } 2691 sqlite3VdbeResolveLabel(v, endCoalesce); 2692 break; 2693 } 2694 2695 /* The UNLIKELY() function is a no-op. The result is the value 2696 ** of the first argument. 2697 */ 2698 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 2699 assert( nFarg>=1 ); 2700 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2701 break; 2702 } 2703 2704 for(i=0; i<nFarg; i++){ 2705 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2706 testcase( i==31 ); 2707 constMask |= MASKBIT32(i); 2708 } 2709 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2710 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2711 } 2712 } 2713 if( pFarg ){ 2714 if( constMask ){ 2715 r1 = pParse->nMem+1; 2716 pParse->nMem += nFarg; 2717 }else{ 2718 r1 = sqlite3GetTempRange(pParse, nFarg); 2719 } 2720 2721 /* For length() and typeof() functions with a column argument, 2722 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2723 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2724 ** loading. 2725 */ 2726 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2727 u8 exprOp; 2728 assert( nFarg==1 ); 2729 assert( pFarg->a[0].pExpr!=0 ); 2730 exprOp = pFarg->a[0].pExpr->op; 2731 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2732 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2733 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2734 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 2735 pFarg->a[0].pExpr->op2 = 2736 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 2737 } 2738 } 2739 2740 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2741 sqlite3ExprCodeExprList(pParse, pFarg, r1, 2742 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 2743 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 2744 }else{ 2745 r1 = 0; 2746 } 2747 #ifndef SQLITE_OMIT_VIRTUALTABLE 2748 /* Possibly overload the function if the first argument is 2749 ** a virtual table column. 2750 ** 2751 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2752 ** second argument, not the first, as the argument to test to 2753 ** see if it is a column in a virtual table. This is done because 2754 ** the left operand of infix functions (the operand we want to 2755 ** control overloading) ends up as the second argument to the 2756 ** function. The expression "A glob B" is equivalent to 2757 ** "glob(B,A). We want to use the A in "A glob B" to test 2758 ** for function overloading. But we use the B term in "glob(B,A)". 2759 */ 2760 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2761 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2762 }else if( nFarg>0 ){ 2763 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2764 } 2765 #endif 2766 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 2767 if( !pColl ) pColl = db->pDfltColl; 2768 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2769 } 2770 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2771 (char*)pDef, P4_FUNCDEF); 2772 sqlite3VdbeChangeP5(v, (u8)nFarg); 2773 if( nFarg && constMask==0 ){ 2774 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2775 } 2776 break; 2777 } 2778 #ifndef SQLITE_OMIT_SUBQUERY 2779 case TK_EXISTS: 2780 case TK_SELECT: { 2781 testcase( op==TK_EXISTS ); 2782 testcase( op==TK_SELECT ); 2783 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2784 break; 2785 } 2786 case TK_IN: { 2787 int destIfFalse = sqlite3VdbeMakeLabel(v); 2788 int destIfNull = sqlite3VdbeMakeLabel(v); 2789 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2790 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2791 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2792 sqlite3VdbeResolveLabel(v, destIfFalse); 2793 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2794 sqlite3VdbeResolveLabel(v, destIfNull); 2795 break; 2796 } 2797 #endif /* SQLITE_OMIT_SUBQUERY */ 2798 2799 2800 /* 2801 ** x BETWEEN y AND z 2802 ** 2803 ** This is equivalent to 2804 ** 2805 ** x>=y AND x<=z 2806 ** 2807 ** X is stored in pExpr->pLeft. 2808 ** Y is stored in pExpr->pList->a[0].pExpr. 2809 ** Z is stored in pExpr->pList->a[1].pExpr. 2810 */ 2811 case TK_BETWEEN: { 2812 Expr *pLeft = pExpr->pLeft; 2813 struct ExprList_item *pLItem = pExpr->x.pList->a; 2814 Expr *pRight = pLItem->pExpr; 2815 2816 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 2817 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2818 testcase( regFree1==0 ); 2819 testcase( regFree2==0 ); 2820 r3 = sqlite3GetTempReg(pParse); 2821 r4 = sqlite3GetTempReg(pParse); 2822 codeCompare(pParse, pLeft, pRight, OP_Ge, 2823 r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); 2824 pLItem++; 2825 pRight = pLItem->pExpr; 2826 sqlite3ReleaseTempReg(pParse, regFree2); 2827 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2828 testcase( regFree2==0 ); 2829 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2830 VdbeCoverage(v); 2831 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2832 sqlite3ReleaseTempReg(pParse, r3); 2833 sqlite3ReleaseTempReg(pParse, r4); 2834 break; 2835 } 2836 case TK_COLLATE: 2837 case TK_UPLUS: { 2838 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2839 break; 2840 } 2841 2842 case TK_TRIGGER: { 2843 /* If the opcode is TK_TRIGGER, then the expression is a reference 2844 ** to a column in the new.* or old.* pseudo-tables available to 2845 ** trigger programs. In this case Expr.iTable is set to 1 for the 2846 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 2847 ** is set to the column of the pseudo-table to read, or to -1 to 2848 ** read the rowid field. 2849 ** 2850 ** The expression is implemented using an OP_Param opcode. The p1 2851 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 2852 ** to reference another column of the old.* pseudo-table, where 2853 ** i is the index of the column. For a new.rowid reference, p1 is 2854 ** set to (n+1), where n is the number of columns in each pseudo-table. 2855 ** For a reference to any other column in the new.* pseudo-table, p1 2856 ** is set to (n+2+i), where n and i are as defined previously. For 2857 ** example, if the table on which triggers are being fired is 2858 ** declared as: 2859 ** 2860 ** CREATE TABLE t1(a, b); 2861 ** 2862 ** Then p1 is interpreted as follows: 2863 ** 2864 ** p1==0 -> old.rowid p1==3 -> new.rowid 2865 ** p1==1 -> old.a p1==4 -> new.a 2866 ** p1==2 -> old.b p1==5 -> new.b 2867 */ 2868 Table *pTab = pExpr->pTab; 2869 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 2870 2871 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 2872 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 2873 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 2874 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 2875 2876 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 2877 VdbeComment((v, "%s.%s -> $%d", 2878 (pExpr->iTable ? "new" : "old"), 2879 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 2880 target 2881 )); 2882 2883 #ifndef SQLITE_OMIT_FLOATING_POINT 2884 /* If the column has REAL affinity, it may currently be stored as an 2885 ** integer. Use OP_RealAffinity to make sure it is really real. */ 2886 if( pExpr->iColumn>=0 2887 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 2888 ){ 2889 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 2890 } 2891 #endif 2892 break; 2893 } 2894 2895 2896 /* 2897 ** Form A: 2898 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2899 ** 2900 ** Form B: 2901 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2902 ** 2903 ** Form A is can be transformed into the equivalent form B as follows: 2904 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2905 ** WHEN x=eN THEN rN ELSE y END 2906 ** 2907 ** X (if it exists) is in pExpr->pLeft. 2908 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 2909 ** odd. The Y is also optional. If the number of elements in x.pList 2910 ** is even, then Y is omitted and the "otherwise" result is NULL. 2911 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2912 ** 2913 ** The result of the expression is the Ri for the first matching Ei, 2914 ** or if there is no matching Ei, the ELSE term Y, or if there is 2915 ** no ELSE term, NULL. 2916 */ 2917 default: assert( op==TK_CASE ); { 2918 int endLabel; /* GOTO label for end of CASE stmt */ 2919 int nextCase; /* GOTO label for next WHEN clause */ 2920 int nExpr; /* 2x number of WHEN terms */ 2921 int i; /* Loop counter */ 2922 ExprList *pEList; /* List of WHEN terms */ 2923 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2924 Expr opCompare; /* The X==Ei expression */ 2925 Expr *pX; /* The X expression */ 2926 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 2927 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 2928 2929 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 2930 assert(pExpr->x.pList->nExpr > 0); 2931 pEList = pExpr->x.pList; 2932 aListelem = pEList->a; 2933 nExpr = pEList->nExpr; 2934 endLabel = sqlite3VdbeMakeLabel(v); 2935 if( (pX = pExpr->pLeft)!=0 ){ 2936 tempX = *pX; 2937 testcase( pX->op==TK_COLUMN ); 2938 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); 2939 testcase( regFree1==0 ); 2940 opCompare.op = TK_EQ; 2941 opCompare.pLeft = &tempX; 2942 pTest = &opCompare; 2943 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 2944 ** The value in regFree1 might get SCopy-ed into the file result. 2945 ** So make sure that the regFree1 register is not reused for other 2946 ** purposes and possibly overwritten. */ 2947 regFree1 = 0; 2948 } 2949 for(i=0; i<nExpr-1; i=i+2){ 2950 sqlite3ExprCachePush(pParse); 2951 if( pX ){ 2952 assert( pTest!=0 ); 2953 opCompare.pRight = aListelem[i].pExpr; 2954 }else{ 2955 pTest = aListelem[i].pExpr; 2956 } 2957 nextCase = sqlite3VdbeMakeLabel(v); 2958 testcase( pTest->op==TK_COLUMN ); 2959 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2960 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2961 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2962 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2963 sqlite3ExprCachePop(pParse); 2964 sqlite3VdbeResolveLabel(v, nextCase); 2965 } 2966 if( (nExpr&1)!=0 ){ 2967 sqlite3ExprCachePush(pParse); 2968 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 2969 sqlite3ExprCachePop(pParse); 2970 }else{ 2971 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2972 } 2973 assert( db->mallocFailed || pParse->nErr>0 2974 || pParse->iCacheLevel==iCacheLevel ); 2975 sqlite3VdbeResolveLabel(v, endLabel); 2976 break; 2977 } 2978 #ifndef SQLITE_OMIT_TRIGGER 2979 case TK_RAISE: { 2980 assert( pExpr->affinity==OE_Rollback 2981 || pExpr->affinity==OE_Abort 2982 || pExpr->affinity==OE_Fail 2983 || pExpr->affinity==OE_Ignore 2984 ); 2985 if( !pParse->pTriggerTab ){ 2986 sqlite3ErrorMsg(pParse, 2987 "RAISE() may only be used within a trigger-program"); 2988 return 0; 2989 } 2990 if( pExpr->affinity==OE_Abort ){ 2991 sqlite3MayAbort(pParse); 2992 } 2993 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2994 if( pExpr->affinity==OE_Ignore ){ 2995 sqlite3VdbeAddOp4( 2996 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 2997 VdbeCoverage(v); 2998 }else{ 2999 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 3000 pExpr->affinity, pExpr->u.zToken, 0, 0); 3001 } 3002 3003 break; 3004 } 3005 #endif 3006 } 3007 sqlite3ReleaseTempReg(pParse, regFree1); 3008 sqlite3ReleaseTempReg(pParse, regFree2); 3009 return inReg; 3010 } 3011 3012 /* 3013 ** Factor out the code of the given expression to initialization time. 3014 */ 3015 void sqlite3ExprCodeAtInit( 3016 Parse *pParse, /* Parsing context */ 3017 Expr *pExpr, /* The expression to code when the VDBE initializes */ 3018 int regDest, /* Store the value in this register */ 3019 u8 reusable /* True if this expression is reusable */ 3020 ){ 3021 ExprList *p; 3022 assert( ConstFactorOk(pParse) ); 3023 p = pParse->pConstExpr; 3024 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 3025 p = sqlite3ExprListAppend(pParse, p, pExpr); 3026 if( p ){ 3027 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 3028 pItem->u.iConstExprReg = regDest; 3029 pItem->reusable = reusable; 3030 } 3031 pParse->pConstExpr = p; 3032 } 3033 3034 /* 3035 ** Generate code to evaluate an expression and store the results 3036 ** into a register. Return the register number where the results 3037 ** are stored. 3038 ** 3039 ** If the register is a temporary register that can be deallocated, 3040 ** then write its number into *pReg. If the result register is not 3041 ** a temporary, then set *pReg to zero. 3042 ** 3043 ** If pExpr is a constant, then this routine might generate this 3044 ** code to fill the register in the initialization section of the 3045 ** VDBE program, in order to factor it out of the evaluation loop. 3046 */ 3047 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 3048 int r2; 3049 pExpr = sqlite3ExprSkipCollate(pExpr); 3050 if( ConstFactorOk(pParse) 3051 && pExpr->op!=TK_REGISTER 3052 && sqlite3ExprIsConstantNotJoin(pExpr) 3053 ){ 3054 ExprList *p = pParse->pConstExpr; 3055 int i; 3056 *pReg = 0; 3057 if( p ){ 3058 struct ExprList_item *pItem; 3059 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 3060 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 3061 return pItem->u.iConstExprReg; 3062 } 3063 } 3064 } 3065 r2 = ++pParse->nMem; 3066 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); 3067 }else{ 3068 int r1 = sqlite3GetTempReg(pParse); 3069 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3070 if( r2==r1 ){ 3071 *pReg = r1; 3072 }else{ 3073 sqlite3ReleaseTempReg(pParse, r1); 3074 *pReg = 0; 3075 } 3076 } 3077 return r2; 3078 } 3079 3080 /* 3081 ** Generate code that will evaluate expression pExpr and store the 3082 ** results in register target. The results are guaranteed to appear 3083 ** in register target. 3084 */ 3085 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 3086 int inReg; 3087 3088 assert( target>0 && target<=pParse->nMem ); 3089 if( pExpr && pExpr->op==TK_REGISTER ){ 3090 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 3091 }else{ 3092 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 3093 assert( pParse->pVdbe || pParse->db->mallocFailed ); 3094 if( inReg!=target && pParse->pVdbe ){ 3095 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 3096 } 3097 } 3098 } 3099 3100 /* 3101 ** Generate code that will evaluate expression pExpr and store the 3102 ** results in register target. The results are guaranteed to appear 3103 ** in register target. If the expression is constant, then this routine 3104 ** might choose to code the expression at initialization time. 3105 */ 3106 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 3107 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 3108 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); 3109 }else{ 3110 sqlite3ExprCode(pParse, pExpr, target); 3111 } 3112 } 3113 3114 /* 3115 ** Generate code that evalutes the given expression and puts the result 3116 ** in register target. 3117 ** 3118 ** Also make a copy of the expression results into another "cache" register 3119 ** and modify the expression so that the next time it is evaluated, 3120 ** the result is a copy of the cache register. 3121 ** 3122 ** This routine is used for expressions that are used multiple 3123 ** times. They are evaluated once and the results of the expression 3124 ** are reused. 3125 */ 3126 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3127 Vdbe *v = pParse->pVdbe; 3128 int iMem; 3129 3130 assert( target>0 ); 3131 assert( pExpr->op!=TK_REGISTER ); 3132 sqlite3ExprCode(pParse, pExpr, target); 3133 iMem = ++pParse->nMem; 3134 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 3135 exprToRegister(pExpr, iMem); 3136 } 3137 3138 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3139 /* 3140 ** Generate a human-readable explanation of an expression tree. 3141 */ 3142 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){ 3143 int op; /* The opcode being coded */ 3144 const char *zBinOp = 0; /* Binary operator */ 3145 const char *zUniOp = 0; /* Unary operator */ 3146 if( pExpr==0 ){ 3147 op = TK_NULL; 3148 }else{ 3149 op = pExpr->op; 3150 } 3151 switch( op ){ 3152 case TK_AGG_COLUMN: { 3153 sqlite3ExplainPrintf(pOut, "AGG{%d:%d}", 3154 pExpr->iTable, pExpr->iColumn); 3155 break; 3156 } 3157 case TK_COLUMN: { 3158 if( pExpr->iTable<0 ){ 3159 /* This only happens when coding check constraints */ 3160 sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn); 3161 }else{ 3162 sqlite3ExplainPrintf(pOut, "{%d:%d}", 3163 pExpr->iTable, pExpr->iColumn); 3164 } 3165 break; 3166 } 3167 case TK_INTEGER: { 3168 if( pExpr->flags & EP_IntValue ){ 3169 sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue); 3170 }else{ 3171 sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken); 3172 } 3173 break; 3174 } 3175 #ifndef SQLITE_OMIT_FLOATING_POINT 3176 case TK_FLOAT: { 3177 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3178 break; 3179 } 3180 #endif 3181 case TK_STRING: { 3182 sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken); 3183 break; 3184 } 3185 case TK_NULL: { 3186 sqlite3ExplainPrintf(pOut,"NULL"); 3187 break; 3188 } 3189 #ifndef SQLITE_OMIT_BLOB_LITERAL 3190 case TK_BLOB: { 3191 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3192 break; 3193 } 3194 #endif 3195 case TK_VARIABLE: { 3196 sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)", 3197 pExpr->u.zToken, pExpr->iColumn); 3198 break; 3199 } 3200 case TK_REGISTER: { 3201 sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable); 3202 break; 3203 } 3204 case TK_AS: { 3205 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3206 break; 3207 } 3208 #ifndef SQLITE_OMIT_CAST 3209 case TK_CAST: { 3210 /* Expressions of the form: CAST(pLeft AS token) */ 3211 const char *zAff = "unk"; 3212 switch( sqlite3AffinityType(pExpr->u.zToken, 0) ){ 3213 case SQLITE_AFF_TEXT: zAff = "TEXT"; break; 3214 case SQLITE_AFF_NONE: zAff = "NONE"; break; 3215 case SQLITE_AFF_NUMERIC: zAff = "NUMERIC"; break; 3216 case SQLITE_AFF_INTEGER: zAff = "INTEGER"; break; 3217 case SQLITE_AFF_REAL: zAff = "REAL"; break; 3218 } 3219 sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff); 3220 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3221 sqlite3ExplainPrintf(pOut, ")"); 3222 break; 3223 } 3224 #endif /* SQLITE_OMIT_CAST */ 3225 case TK_LT: zBinOp = "LT"; break; 3226 case TK_LE: zBinOp = "LE"; break; 3227 case TK_GT: zBinOp = "GT"; break; 3228 case TK_GE: zBinOp = "GE"; break; 3229 case TK_NE: zBinOp = "NE"; break; 3230 case TK_EQ: zBinOp = "EQ"; break; 3231 case TK_IS: zBinOp = "IS"; break; 3232 case TK_ISNOT: zBinOp = "ISNOT"; break; 3233 case TK_AND: zBinOp = "AND"; break; 3234 case TK_OR: zBinOp = "OR"; break; 3235 case TK_PLUS: zBinOp = "ADD"; break; 3236 case TK_STAR: zBinOp = "MUL"; break; 3237 case TK_MINUS: zBinOp = "SUB"; break; 3238 case TK_REM: zBinOp = "REM"; break; 3239 case TK_BITAND: zBinOp = "BITAND"; break; 3240 case TK_BITOR: zBinOp = "BITOR"; break; 3241 case TK_SLASH: zBinOp = "DIV"; break; 3242 case TK_LSHIFT: zBinOp = "LSHIFT"; break; 3243 case TK_RSHIFT: zBinOp = "RSHIFT"; break; 3244 case TK_CONCAT: zBinOp = "CONCAT"; break; 3245 3246 case TK_UMINUS: zUniOp = "UMINUS"; break; 3247 case TK_UPLUS: zUniOp = "UPLUS"; break; 3248 case TK_BITNOT: zUniOp = "BITNOT"; break; 3249 case TK_NOT: zUniOp = "NOT"; break; 3250 case TK_ISNULL: zUniOp = "ISNULL"; break; 3251 case TK_NOTNULL: zUniOp = "NOTNULL"; break; 3252 3253 case TK_COLLATE: { 3254 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3255 sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken); 3256 break; 3257 } 3258 3259 case TK_AGG_FUNCTION: 3260 case TK_FUNCTION: { 3261 ExprList *pFarg; /* List of function arguments */ 3262 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3263 pFarg = 0; 3264 }else{ 3265 pFarg = pExpr->x.pList; 3266 } 3267 if( op==TK_AGG_FUNCTION ){ 3268 sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(", 3269 pExpr->op2, pExpr->u.zToken); 3270 }else{ 3271 sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken); 3272 } 3273 if( pFarg ){ 3274 sqlite3ExplainExprList(pOut, pFarg); 3275 } 3276 sqlite3ExplainPrintf(pOut, ")"); 3277 break; 3278 } 3279 #ifndef SQLITE_OMIT_SUBQUERY 3280 case TK_EXISTS: { 3281 sqlite3ExplainPrintf(pOut, "EXISTS("); 3282 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3283 sqlite3ExplainPrintf(pOut,")"); 3284 break; 3285 } 3286 case TK_SELECT: { 3287 sqlite3ExplainPrintf(pOut, "("); 3288 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3289 sqlite3ExplainPrintf(pOut, ")"); 3290 break; 3291 } 3292 case TK_IN: { 3293 sqlite3ExplainPrintf(pOut, "IN("); 3294 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3295 sqlite3ExplainPrintf(pOut, ","); 3296 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3297 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3298 }else{ 3299 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3300 } 3301 sqlite3ExplainPrintf(pOut, ")"); 3302 break; 3303 } 3304 #endif /* SQLITE_OMIT_SUBQUERY */ 3305 3306 /* 3307 ** x BETWEEN y AND z 3308 ** 3309 ** This is equivalent to 3310 ** 3311 ** x>=y AND x<=z 3312 ** 3313 ** X is stored in pExpr->pLeft. 3314 ** Y is stored in pExpr->pList->a[0].pExpr. 3315 ** Z is stored in pExpr->pList->a[1].pExpr. 3316 */ 3317 case TK_BETWEEN: { 3318 Expr *pX = pExpr->pLeft; 3319 Expr *pY = pExpr->x.pList->a[0].pExpr; 3320 Expr *pZ = pExpr->x.pList->a[1].pExpr; 3321 sqlite3ExplainPrintf(pOut, "BETWEEN("); 3322 sqlite3ExplainExpr(pOut, pX); 3323 sqlite3ExplainPrintf(pOut, ","); 3324 sqlite3ExplainExpr(pOut, pY); 3325 sqlite3ExplainPrintf(pOut, ","); 3326 sqlite3ExplainExpr(pOut, pZ); 3327 sqlite3ExplainPrintf(pOut, ")"); 3328 break; 3329 } 3330 case TK_TRIGGER: { 3331 /* If the opcode is TK_TRIGGER, then the expression is a reference 3332 ** to a column in the new.* or old.* pseudo-tables available to 3333 ** trigger programs. In this case Expr.iTable is set to 1 for the 3334 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3335 ** is set to the column of the pseudo-table to read, or to -1 to 3336 ** read the rowid field. 3337 */ 3338 sqlite3ExplainPrintf(pOut, "%s(%d)", 3339 pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); 3340 break; 3341 } 3342 case TK_CASE: { 3343 sqlite3ExplainPrintf(pOut, "CASE("); 3344 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3345 sqlite3ExplainPrintf(pOut, ","); 3346 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3347 break; 3348 } 3349 #ifndef SQLITE_OMIT_TRIGGER 3350 case TK_RAISE: { 3351 const char *zType = "unk"; 3352 switch( pExpr->affinity ){ 3353 case OE_Rollback: zType = "rollback"; break; 3354 case OE_Abort: zType = "abort"; break; 3355 case OE_Fail: zType = "fail"; break; 3356 case OE_Ignore: zType = "ignore"; break; 3357 } 3358 sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken); 3359 break; 3360 } 3361 #endif 3362 } 3363 if( zBinOp ){ 3364 sqlite3ExplainPrintf(pOut,"%s(", zBinOp); 3365 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3366 sqlite3ExplainPrintf(pOut,","); 3367 sqlite3ExplainExpr(pOut, pExpr->pRight); 3368 sqlite3ExplainPrintf(pOut,")"); 3369 }else if( zUniOp ){ 3370 sqlite3ExplainPrintf(pOut,"%s(", zUniOp); 3371 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3372 sqlite3ExplainPrintf(pOut,")"); 3373 } 3374 } 3375 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 3376 3377 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3378 /* 3379 ** Generate a human-readable explanation of an expression list. 3380 */ 3381 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){ 3382 int i; 3383 if( pList==0 || pList->nExpr==0 ){ 3384 sqlite3ExplainPrintf(pOut, "(empty-list)"); 3385 return; 3386 }else if( pList->nExpr==1 ){ 3387 sqlite3ExplainExpr(pOut, pList->a[0].pExpr); 3388 }else{ 3389 sqlite3ExplainPush(pOut); 3390 for(i=0; i<pList->nExpr; i++){ 3391 sqlite3ExplainPrintf(pOut, "item[%d] = ", i); 3392 sqlite3ExplainPush(pOut); 3393 sqlite3ExplainExpr(pOut, pList->a[i].pExpr); 3394 sqlite3ExplainPop(pOut); 3395 if( pList->a[i].zName ){ 3396 sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName); 3397 } 3398 if( pList->a[i].bSpanIsTab ){ 3399 sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan); 3400 } 3401 if( i<pList->nExpr-1 ){ 3402 sqlite3ExplainNL(pOut); 3403 } 3404 } 3405 sqlite3ExplainPop(pOut); 3406 } 3407 } 3408 #endif /* SQLITE_DEBUG */ 3409 3410 /* 3411 ** Generate code that pushes the value of every element of the given 3412 ** expression list into a sequence of registers beginning at target. 3413 ** 3414 ** Return the number of elements evaluated. 3415 ** 3416 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 3417 ** filled using OP_SCopy. OP_Copy must be used instead. 3418 ** 3419 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 3420 ** factored out into initialization code. 3421 */ 3422 int sqlite3ExprCodeExprList( 3423 Parse *pParse, /* Parsing context */ 3424 ExprList *pList, /* The expression list to be coded */ 3425 int target, /* Where to write results */ 3426 u8 flags /* SQLITE_ECEL_* flags */ 3427 ){ 3428 struct ExprList_item *pItem; 3429 int i, n; 3430 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 3431 assert( pList!=0 ); 3432 assert( target>0 ); 3433 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3434 n = pList->nExpr; 3435 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 3436 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3437 Expr *pExpr = pItem->pExpr; 3438 if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 3439 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); 3440 }else{ 3441 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3442 if( inReg!=target+i ){ 3443 VdbeOp *pOp; 3444 Vdbe *v = pParse->pVdbe; 3445 if( copyOp==OP_Copy 3446 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 3447 && pOp->p1+pOp->p3+1==inReg 3448 && pOp->p2+pOp->p3+1==target+i 3449 ){ 3450 pOp->p3++; 3451 }else{ 3452 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 3453 } 3454 } 3455 } 3456 } 3457 return n; 3458 } 3459 3460 /* 3461 ** Generate code for a BETWEEN operator. 3462 ** 3463 ** x BETWEEN y AND z 3464 ** 3465 ** The above is equivalent to 3466 ** 3467 ** x>=y AND x<=z 3468 ** 3469 ** Code it as such, taking care to do the common subexpression 3470 ** elementation of x. 3471 */ 3472 static void exprCodeBetween( 3473 Parse *pParse, /* Parsing and code generating context */ 3474 Expr *pExpr, /* The BETWEEN expression */ 3475 int dest, /* Jump here if the jump is taken */ 3476 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3477 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3478 ){ 3479 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3480 Expr compLeft; /* The x>=y term */ 3481 Expr compRight; /* The x<=z term */ 3482 Expr exprX; /* The x subexpression */ 3483 int regFree1 = 0; /* Temporary use register */ 3484 3485 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3486 exprX = *pExpr->pLeft; 3487 exprAnd.op = TK_AND; 3488 exprAnd.pLeft = &compLeft; 3489 exprAnd.pRight = &compRight; 3490 compLeft.op = TK_GE; 3491 compLeft.pLeft = &exprX; 3492 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3493 compRight.op = TK_LE; 3494 compRight.pLeft = &exprX; 3495 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3496 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); 3497 if( jumpIfTrue ){ 3498 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3499 }else{ 3500 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3501 } 3502 sqlite3ReleaseTempReg(pParse, regFree1); 3503 3504 /* Ensure adequate test coverage */ 3505 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3506 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3507 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3508 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3509 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3510 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3511 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3512 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3513 } 3514 3515 /* 3516 ** Generate code for a boolean expression such that a jump is made 3517 ** to the label "dest" if the expression is true but execution 3518 ** continues straight thru if the expression is false. 3519 ** 3520 ** If the expression evaluates to NULL (neither true nor false), then 3521 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3522 ** 3523 ** This code depends on the fact that certain token values (ex: TK_EQ) 3524 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3525 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3526 ** the make process cause these values to align. Assert()s in the code 3527 ** below verify that the numbers are aligned correctly. 3528 */ 3529 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3530 Vdbe *v = pParse->pVdbe; 3531 int op = 0; 3532 int regFree1 = 0; 3533 int regFree2 = 0; 3534 int r1, r2; 3535 3536 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3537 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3538 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3539 op = pExpr->op; 3540 switch( op ){ 3541 case TK_AND: { 3542 int d2 = sqlite3VdbeMakeLabel(v); 3543 testcase( jumpIfNull==0 ); 3544 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3545 sqlite3ExprCachePush(pParse); 3546 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3547 sqlite3VdbeResolveLabel(v, d2); 3548 sqlite3ExprCachePop(pParse); 3549 break; 3550 } 3551 case TK_OR: { 3552 testcase( jumpIfNull==0 ); 3553 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3554 sqlite3ExprCachePush(pParse); 3555 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3556 sqlite3ExprCachePop(pParse); 3557 break; 3558 } 3559 case TK_NOT: { 3560 testcase( jumpIfNull==0 ); 3561 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3562 break; 3563 } 3564 case TK_LT: 3565 case TK_LE: 3566 case TK_GT: 3567 case TK_GE: 3568 case TK_NE: 3569 case TK_EQ: { 3570 testcase( jumpIfNull==0 ); 3571 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3572 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3573 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3574 r1, r2, dest, jumpIfNull); 3575 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3576 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3577 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3578 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3579 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3580 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3581 testcase( regFree1==0 ); 3582 testcase( regFree2==0 ); 3583 break; 3584 } 3585 case TK_IS: 3586 case TK_ISNOT: { 3587 testcase( op==TK_IS ); 3588 testcase( op==TK_ISNOT ); 3589 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3590 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3591 op = (op==TK_IS) ? TK_EQ : TK_NE; 3592 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3593 r1, r2, dest, SQLITE_NULLEQ); 3594 VdbeCoverageIf(v, op==TK_EQ); 3595 VdbeCoverageIf(v, op==TK_NE); 3596 testcase( regFree1==0 ); 3597 testcase( regFree2==0 ); 3598 break; 3599 } 3600 case TK_ISNULL: 3601 case TK_NOTNULL: { 3602 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3603 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3604 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3605 sqlite3VdbeAddOp2(v, op, r1, dest); 3606 VdbeCoverageIf(v, op==TK_ISNULL); 3607 VdbeCoverageIf(v, op==TK_NOTNULL); 3608 testcase( regFree1==0 ); 3609 break; 3610 } 3611 case TK_BETWEEN: { 3612 testcase( jumpIfNull==0 ); 3613 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3614 break; 3615 } 3616 #ifndef SQLITE_OMIT_SUBQUERY 3617 case TK_IN: { 3618 int destIfFalse = sqlite3VdbeMakeLabel(v); 3619 int destIfNull = jumpIfNull ? dest : destIfFalse; 3620 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3621 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3622 sqlite3VdbeResolveLabel(v, destIfFalse); 3623 break; 3624 } 3625 #endif 3626 default: { 3627 if( exprAlwaysTrue(pExpr) ){ 3628 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3629 }else if( exprAlwaysFalse(pExpr) ){ 3630 /* No-op */ 3631 }else{ 3632 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3633 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3634 VdbeCoverage(v); 3635 testcase( regFree1==0 ); 3636 testcase( jumpIfNull==0 ); 3637 } 3638 break; 3639 } 3640 } 3641 sqlite3ReleaseTempReg(pParse, regFree1); 3642 sqlite3ReleaseTempReg(pParse, regFree2); 3643 } 3644 3645 /* 3646 ** Generate code for a boolean expression such that a jump is made 3647 ** to the label "dest" if the expression is false but execution 3648 ** continues straight thru if the expression is true. 3649 ** 3650 ** If the expression evaluates to NULL (neither true nor false) then 3651 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3652 ** is 0. 3653 */ 3654 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3655 Vdbe *v = pParse->pVdbe; 3656 int op = 0; 3657 int regFree1 = 0; 3658 int regFree2 = 0; 3659 int r1, r2; 3660 3661 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3662 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3663 if( pExpr==0 ) return; 3664 3665 /* The value of pExpr->op and op are related as follows: 3666 ** 3667 ** pExpr->op op 3668 ** --------- ---------- 3669 ** TK_ISNULL OP_NotNull 3670 ** TK_NOTNULL OP_IsNull 3671 ** TK_NE OP_Eq 3672 ** TK_EQ OP_Ne 3673 ** TK_GT OP_Le 3674 ** TK_LE OP_Gt 3675 ** TK_GE OP_Lt 3676 ** TK_LT OP_Ge 3677 ** 3678 ** For other values of pExpr->op, op is undefined and unused. 3679 ** The value of TK_ and OP_ constants are arranged such that we 3680 ** can compute the mapping above using the following expression. 3681 ** Assert()s verify that the computation is correct. 3682 */ 3683 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3684 3685 /* Verify correct alignment of TK_ and OP_ constants 3686 */ 3687 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3688 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3689 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3690 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3691 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3692 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3693 assert( pExpr->op!=TK_GT || op==OP_Le ); 3694 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3695 3696 switch( pExpr->op ){ 3697 case TK_AND: { 3698 testcase( jumpIfNull==0 ); 3699 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3700 sqlite3ExprCachePush(pParse); 3701 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3702 sqlite3ExprCachePop(pParse); 3703 break; 3704 } 3705 case TK_OR: { 3706 int d2 = sqlite3VdbeMakeLabel(v); 3707 testcase( jumpIfNull==0 ); 3708 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3709 sqlite3ExprCachePush(pParse); 3710 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3711 sqlite3VdbeResolveLabel(v, d2); 3712 sqlite3ExprCachePop(pParse); 3713 break; 3714 } 3715 case TK_NOT: { 3716 testcase( jumpIfNull==0 ); 3717 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3718 break; 3719 } 3720 case TK_LT: 3721 case TK_LE: 3722 case TK_GT: 3723 case TK_GE: 3724 case TK_NE: 3725 case TK_EQ: { 3726 testcase( jumpIfNull==0 ); 3727 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3728 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3729 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3730 r1, r2, dest, jumpIfNull); 3731 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3732 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3733 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3734 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3735 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3736 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3737 testcase( regFree1==0 ); 3738 testcase( regFree2==0 ); 3739 break; 3740 } 3741 case TK_IS: 3742 case TK_ISNOT: { 3743 testcase( pExpr->op==TK_IS ); 3744 testcase( pExpr->op==TK_ISNOT ); 3745 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3746 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3747 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3748 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3749 r1, r2, dest, SQLITE_NULLEQ); 3750 VdbeCoverageIf(v, op==TK_EQ); 3751 VdbeCoverageIf(v, op==TK_NE); 3752 testcase( regFree1==0 ); 3753 testcase( regFree2==0 ); 3754 break; 3755 } 3756 case TK_ISNULL: 3757 case TK_NOTNULL: { 3758 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3759 sqlite3VdbeAddOp2(v, op, r1, dest); 3760 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 3761 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 3762 testcase( regFree1==0 ); 3763 break; 3764 } 3765 case TK_BETWEEN: { 3766 testcase( jumpIfNull==0 ); 3767 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3768 break; 3769 } 3770 #ifndef SQLITE_OMIT_SUBQUERY 3771 case TK_IN: { 3772 if( jumpIfNull ){ 3773 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3774 }else{ 3775 int destIfNull = sqlite3VdbeMakeLabel(v); 3776 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3777 sqlite3VdbeResolveLabel(v, destIfNull); 3778 } 3779 break; 3780 } 3781 #endif 3782 default: { 3783 if( exprAlwaysFalse(pExpr) ){ 3784 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3785 }else if( exprAlwaysTrue(pExpr) ){ 3786 /* no-op */ 3787 }else{ 3788 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3789 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3790 VdbeCoverage(v); 3791 testcase( regFree1==0 ); 3792 testcase( jumpIfNull==0 ); 3793 } 3794 break; 3795 } 3796 } 3797 sqlite3ReleaseTempReg(pParse, regFree1); 3798 sqlite3ReleaseTempReg(pParse, regFree2); 3799 } 3800 3801 /* 3802 ** Do a deep comparison of two expression trees. Return 0 if the two 3803 ** expressions are completely identical. Return 1 if they differ only 3804 ** by a COLLATE operator at the top level. Return 2 if there are differences 3805 ** other than the top-level COLLATE operator. 3806 ** 3807 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3808 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3809 ** 3810 ** The pA side might be using TK_REGISTER. If that is the case and pB is 3811 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 3812 ** 3813 ** Sometimes this routine will return 2 even if the two expressions 3814 ** really are equivalent. If we cannot prove that the expressions are 3815 ** identical, we return 2 just to be safe. So if this routine 3816 ** returns 2, then you do not really know for certain if the two 3817 ** expressions are the same. But if you get a 0 or 1 return, then you 3818 ** can be sure the expressions are the same. In the places where 3819 ** this routine is used, it does not hurt to get an extra 2 - that 3820 ** just might result in some slightly slower code. But returning 3821 ** an incorrect 0 or 1 could lead to a malfunction. 3822 */ 3823 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 3824 u32 combinedFlags; 3825 if( pA==0 || pB==0 ){ 3826 return pB==pA ? 0 : 2; 3827 } 3828 combinedFlags = pA->flags | pB->flags; 3829 if( combinedFlags & EP_IntValue ){ 3830 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 3831 return 0; 3832 } 3833 return 2; 3834 } 3835 if( pA->op!=pB->op ){ 3836 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 3837 return 1; 3838 } 3839 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 3840 return 1; 3841 } 3842 return 2; 3843 } 3844 if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){ 3845 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3846 return pA->op==TK_COLLATE ? 1 : 2; 3847 } 3848 } 3849 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3850 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 3851 if( combinedFlags & EP_xIsSelect ) return 2; 3852 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 3853 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 3854 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 3855 if( ALWAYS((combinedFlags & EP_Reduced)==0) ){ 3856 if( pA->iColumn!=pB->iColumn ) return 2; 3857 if( pA->iTable!=pB->iTable 3858 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 3859 } 3860 } 3861 return 0; 3862 } 3863 3864 /* 3865 ** Compare two ExprList objects. Return 0 if they are identical and 3866 ** non-zero if they differ in any way. 3867 ** 3868 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3869 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3870 ** 3871 ** This routine might return non-zero for equivalent ExprLists. The 3872 ** only consequence will be disabled optimizations. But this routine 3873 ** must never return 0 if the two ExprList objects are different, or 3874 ** a malfunction will result. 3875 ** 3876 ** Two NULL pointers are considered to be the same. But a NULL pointer 3877 ** always differs from a non-NULL pointer. 3878 */ 3879 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 3880 int i; 3881 if( pA==0 && pB==0 ) return 0; 3882 if( pA==0 || pB==0 ) return 1; 3883 if( pA->nExpr!=pB->nExpr ) return 1; 3884 for(i=0; i<pA->nExpr; i++){ 3885 Expr *pExprA = pA->a[i].pExpr; 3886 Expr *pExprB = pB->a[i].pExpr; 3887 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3888 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 3889 } 3890 return 0; 3891 } 3892 3893 /* 3894 ** Return true if we can prove the pE2 will always be true if pE1 is 3895 ** true. Return false if we cannot complete the proof or if pE2 might 3896 ** be false. Examples: 3897 ** 3898 ** pE1: x==5 pE2: x==5 Result: true 3899 ** pE1: x>0 pE2: x==5 Result: false 3900 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 3901 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 3902 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 3903 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 3904 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 3905 ** 3906 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 3907 ** Expr.iTable<0 then assume a table number given by iTab. 3908 ** 3909 ** When in doubt, return false. Returning true might give a performance 3910 ** improvement. Returning false might cause a performance reduction, but 3911 ** it will always give the correct answer and is hence always safe. 3912 */ 3913 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 3914 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 3915 return 1; 3916 } 3917 if( pE2->op==TK_OR 3918 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 3919 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 3920 ){ 3921 return 1; 3922 } 3923 if( pE2->op==TK_NOTNULL 3924 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 3925 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) 3926 ){ 3927 return 1; 3928 } 3929 return 0; 3930 } 3931 3932 /* 3933 ** An instance of the following structure is used by the tree walker 3934 ** to count references to table columns in the arguments of an 3935 ** aggregate function, in order to implement the 3936 ** sqlite3FunctionThisSrc() routine. 3937 */ 3938 struct SrcCount { 3939 SrcList *pSrc; /* One particular FROM clause in a nested query */ 3940 int nThis; /* Number of references to columns in pSrcList */ 3941 int nOther; /* Number of references to columns in other FROM clauses */ 3942 }; 3943 3944 /* 3945 ** Count the number of references to columns. 3946 */ 3947 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 3948 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 3949 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 3950 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 3951 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 3952 ** NEVER() will need to be removed. */ 3953 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 3954 int i; 3955 struct SrcCount *p = pWalker->u.pSrcCount; 3956 SrcList *pSrc = p->pSrc; 3957 for(i=0; i<pSrc->nSrc; i++){ 3958 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 3959 } 3960 if( i<pSrc->nSrc ){ 3961 p->nThis++; 3962 }else{ 3963 p->nOther++; 3964 } 3965 } 3966 return WRC_Continue; 3967 } 3968 3969 /* 3970 ** Determine if any of the arguments to the pExpr Function reference 3971 ** pSrcList. Return true if they do. Also return true if the function 3972 ** has no arguments or has only constant arguments. Return false if pExpr 3973 ** references columns but not columns of tables found in pSrcList. 3974 */ 3975 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 3976 Walker w; 3977 struct SrcCount cnt; 3978 assert( pExpr->op==TK_AGG_FUNCTION ); 3979 memset(&w, 0, sizeof(w)); 3980 w.xExprCallback = exprSrcCount; 3981 w.u.pSrcCount = &cnt; 3982 cnt.pSrc = pSrcList; 3983 cnt.nThis = 0; 3984 cnt.nOther = 0; 3985 sqlite3WalkExprList(&w, pExpr->x.pList); 3986 return cnt.nThis>0 || cnt.nOther==0; 3987 } 3988 3989 /* 3990 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3991 ** the new element. Return a negative number if malloc fails. 3992 */ 3993 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3994 int i; 3995 pInfo->aCol = sqlite3ArrayAllocate( 3996 db, 3997 pInfo->aCol, 3998 sizeof(pInfo->aCol[0]), 3999 &pInfo->nColumn, 4000 &i 4001 ); 4002 return i; 4003 } 4004 4005 /* 4006 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 4007 ** the new element. Return a negative number if malloc fails. 4008 */ 4009 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 4010 int i; 4011 pInfo->aFunc = sqlite3ArrayAllocate( 4012 db, 4013 pInfo->aFunc, 4014 sizeof(pInfo->aFunc[0]), 4015 &pInfo->nFunc, 4016 &i 4017 ); 4018 return i; 4019 } 4020 4021 /* 4022 ** This is the xExprCallback for a tree walker. It is used to 4023 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 4024 ** for additional information. 4025 */ 4026 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 4027 int i; 4028 NameContext *pNC = pWalker->u.pNC; 4029 Parse *pParse = pNC->pParse; 4030 SrcList *pSrcList = pNC->pSrcList; 4031 AggInfo *pAggInfo = pNC->pAggInfo; 4032 4033 switch( pExpr->op ){ 4034 case TK_AGG_COLUMN: 4035 case TK_COLUMN: { 4036 testcase( pExpr->op==TK_AGG_COLUMN ); 4037 testcase( pExpr->op==TK_COLUMN ); 4038 /* Check to see if the column is in one of the tables in the FROM 4039 ** clause of the aggregate query */ 4040 if( ALWAYS(pSrcList!=0) ){ 4041 struct SrcList_item *pItem = pSrcList->a; 4042 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 4043 struct AggInfo_col *pCol; 4044 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4045 if( pExpr->iTable==pItem->iCursor ){ 4046 /* If we reach this point, it means that pExpr refers to a table 4047 ** that is in the FROM clause of the aggregate query. 4048 ** 4049 ** Make an entry for the column in pAggInfo->aCol[] if there 4050 ** is not an entry there already. 4051 */ 4052 int k; 4053 pCol = pAggInfo->aCol; 4054 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4055 if( pCol->iTable==pExpr->iTable && 4056 pCol->iColumn==pExpr->iColumn ){ 4057 break; 4058 } 4059 } 4060 if( (k>=pAggInfo->nColumn) 4061 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4062 ){ 4063 pCol = &pAggInfo->aCol[k]; 4064 pCol->pTab = pExpr->pTab; 4065 pCol->iTable = pExpr->iTable; 4066 pCol->iColumn = pExpr->iColumn; 4067 pCol->iMem = ++pParse->nMem; 4068 pCol->iSorterColumn = -1; 4069 pCol->pExpr = pExpr; 4070 if( pAggInfo->pGroupBy ){ 4071 int j, n; 4072 ExprList *pGB = pAggInfo->pGroupBy; 4073 struct ExprList_item *pTerm = pGB->a; 4074 n = pGB->nExpr; 4075 for(j=0; j<n; j++, pTerm++){ 4076 Expr *pE = pTerm->pExpr; 4077 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4078 pE->iColumn==pExpr->iColumn ){ 4079 pCol->iSorterColumn = j; 4080 break; 4081 } 4082 } 4083 } 4084 if( pCol->iSorterColumn<0 ){ 4085 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4086 } 4087 } 4088 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4089 ** because it was there before or because we just created it). 4090 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4091 ** pAggInfo->aCol[] entry. 4092 */ 4093 ExprSetVVAProperty(pExpr, EP_NoReduce); 4094 pExpr->pAggInfo = pAggInfo; 4095 pExpr->op = TK_AGG_COLUMN; 4096 pExpr->iAgg = (i16)k; 4097 break; 4098 } /* endif pExpr->iTable==pItem->iCursor */ 4099 } /* end loop over pSrcList */ 4100 } 4101 return WRC_Prune; 4102 } 4103 case TK_AGG_FUNCTION: { 4104 if( (pNC->ncFlags & NC_InAggFunc)==0 4105 && pWalker->walkerDepth==pExpr->op2 4106 ){ 4107 /* Check to see if pExpr is a duplicate of another aggregate 4108 ** function that is already in the pAggInfo structure 4109 */ 4110 struct AggInfo_func *pItem = pAggInfo->aFunc; 4111 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4112 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 4113 break; 4114 } 4115 } 4116 if( i>=pAggInfo->nFunc ){ 4117 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4118 */ 4119 u8 enc = ENC(pParse->db); 4120 i = addAggInfoFunc(pParse->db, pAggInfo); 4121 if( i>=0 ){ 4122 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4123 pItem = &pAggInfo->aFunc[i]; 4124 pItem->pExpr = pExpr; 4125 pItem->iMem = ++pParse->nMem; 4126 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4127 pItem->pFunc = sqlite3FindFunction(pParse->db, 4128 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 4129 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4130 if( pExpr->flags & EP_Distinct ){ 4131 pItem->iDistinct = pParse->nTab++; 4132 }else{ 4133 pItem->iDistinct = -1; 4134 } 4135 } 4136 } 4137 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4138 */ 4139 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4140 ExprSetVVAProperty(pExpr, EP_NoReduce); 4141 pExpr->iAgg = (i16)i; 4142 pExpr->pAggInfo = pAggInfo; 4143 return WRC_Prune; 4144 }else{ 4145 return WRC_Continue; 4146 } 4147 } 4148 } 4149 return WRC_Continue; 4150 } 4151 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4152 UNUSED_PARAMETER(pWalker); 4153 UNUSED_PARAMETER(pSelect); 4154 return WRC_Continue; 4155 } 4156 4157 /* 4158 ** Analyze the pExpr expression looking for aggregate functions and 4159 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4160 ** points to. Additional entries are made on the AggInfo object as 4161 ** necessary. 4162 ** 4163 ** This routine should only be called after the expression has been 4164 ** analyzed by sqlite3ResolveExprNames(). 4165 */ 4166 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4167 Walker w; 4168 memset(&w, 0, sizeof(w)); 4169 w.xExprCallback = analyzeAggregate; 4170 w.xSelectCallback = analyzeAggregatesInSelect; 4171 w.u.pNC = pNC; 4172 assert( pNC->pSrcList!=0 ); 4173 sqlite3WalkExpr(&w, pExpr); 4174 } 4175 4176 /* 4177 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4178 ** expression list. Return the number of errors. 4179 ** 4180 ** If an error is found, the analysis is cut short. 4181 */ 4182 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4183 struct ExprList_item *pItem; 4184 int i; 4185 if( pList ){ 4186 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4187 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4188 } 4189 } 4190 } 4191 4192 /* 4193 ** Allocate a single new register for use to hold some intermediate result. 4194 */ 4195 int sqlite3GetTempReg(Parse *pParse){ 4196 if( pParse->nTempReg==0 ){ 4197 return ++pParse->nMem; 4198 } 4199 return pParse->aTempReg[--pParse->nTempReg]; 4200 } 4201 4202 /* 4203 ** Deallocate a register, making available for reuse for some other 4204 ** purpose. 4205 ** 4206 ** If a register is currently being used by the column cache, then 4207 ** the dallocation is deferred until the column cache line that uses 4208 ** the register becomes stale. 4209 */ 4210 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4211 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4212 int i; 4213 struct yColCache *p; 4214 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4215 if( p->iReg==iReg ){ 4216 p->tempReg = 1; 4217 return; 4218 } 4219 } 4220 pParse->aTempReg[pParse->nTempReg++] = iReg; 4221 } 4222 } 4223 4224 /* 4225 ** Allocate or deallocate a block of nReg consecutive registers 4226 */ 4227 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4228 int i, n; 4229 i = pParse->iRangeReg; 4230 n = pParse->nRangeReg; 4231 if( nReg<=n ){ 4232 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4233 pParse->iRangeReg += nReg; 4234 pParse->nRangeReg -= nReg; 4235 }else{ 4236 i = pParse->nMem+1; 4237 pParse->nMem += nReg; 4238 } 4239 return i; 4240 } 4241 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4242 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4243 if( nReg>pParse->nRangeReg ){ 4244 pParse->nRangeReg = nReg; 4245 pParse->iRangeReg = iReg; 4246 } 4247 } 4248 4249 /* 4250 ** Mark all temporary registers as being unavailable for reuse. 4251 */ 4252 void sqlite3ClearTempRegCache(Parse *pParse){ 4253 pParse->nTempReg = 0; 4254 pParse->nRangeReg = 0; 4255 } 4256