xref: /sqlite-3.40.0/src/expr.c (revision 6024772b)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expresssions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op;
35   pExpr = sqlite3ExprSkipCollate(pExpr);
36   if( pExpr->flags & EP_Generic ) return SQLITE_AFF_NONE;
37   op = pExpr->op;
38   if( op==TK_SELECT ){
39     assert( pExpr->flags&EP_xIsSelect );
40     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
41   }
42 #ifndef SQLITE_OMIT_CAST
43   if( op==TK_CAST ){
44     assert( !ExprHasProperty(pExpr, EP_IntValue) );
45     return sqlite3AffinityType(pExpr->u.zToken, 0);
46   }
47 #endif
48   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
49    && pExpr->pTab!=0
50   ){
51     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
52     ** a TK_COLUMN but was previously evaluated and cached in a register */
53     int j = pExpr->iColumn;
54     if( j<0 ) return SQLITE_AFF_INTEGER;
55     assert( pExpr->pTab && j<pExpr->pTab->nCol );
56     return pExpr->pTab->aCol[j].affinity;
57   }
58   return pExpr->affinity;
59 }
60 
61 /*
62 ** Set the collating sequence for expression pExpr to be the collating
63 ** sequence named by pToken.   Return a pointer to a new Expr node that
64 ** implements the COLLATE operator.
65 **
66 ** If a memory allocation error occurs, that fact is recorded in pParse->db
67 ** and the pExpr parameter is returned unchanged.
68 */
69 Expr *sqlite3ExprAddCollateToken(
70   Parse *pParse,           /* Parsing context */
71   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
72   const Token *pCollName   /* Name of collating sequence */
73 ){
74   if( pCollName->n>0 ){
75     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1);
76     if( pNew ){
77       pNew->pLeft = pExpr;
78       pNew->flags |= EP_Collate|EP_Skip;
79       pExpr = pNew;
80     }
81   }
82   return pExpr;
83 }
84 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
85   Token s;
86   assert( zC!=0 );
87   s.z = zC;
88   s.n = sqlite3Strlen30(s.z);
89   return sqlite3ExprAddCollateToken(pParse, pExpr, &s);
90 }
91 
92 /*
93 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely()
94 ** or likelihood() function at the root of an expression.
95 */
96 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
97   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
98     if( ExprHasProperty(pExpr, EP_Unlikely) ){
99       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
100       assert( pExpr->x.pList->nExpr>0 );
101       assert( pExpr->op==TK_FUNCTION );
102       pExpr = pExpr->x.pList->a[0].pExpr;
103     }else{
104       assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS );
105       pExpr = pExpr->pLeft;
106     }
107   }
108   return pExpr;
109 }
110 
111 /*
112 ** Return the collation sequence for the expression pExpr. If
113 ** there is no defined collating sequence, return NULL.
114 **
115 ** The collating sequence might be determined by a COLLATE operator
116 ** or by the presence of a column with a defined collating sequence.
117 ** COLLATE operators take first precedence.  Left operands take
118 ** precedence over right operands.
119 */
120 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
121   sqlite3 *db = pParse->db;
122   CollSeq *pColl = 0;
123   Expr *p = pExpr;
124   while( p ){
125     int op = p->op;
126     if( p->flags & EP_Generic ) break;
127     if( op==TK_CAST || op==TK_UPLUS ){
128       p = p->pLeft;
129       continue;
130     }
131     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
132       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
133       break;
134     }
135     if( p->pTab!=0
136      && (op==TK_AGG_COLUMN || op==TK_COLUMN
137           || op==TK_REGISTER || op==TK_TRIGGER)
138     ){
139       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
140       ** a TK_COLUMN but was previously evaluated and cached in a register */
141       int j = p->iColumn;
142       if( j>=0 ){
143         const char *zColl = p->pTab->aCol[j].zColl;
144         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
145       }
146       break;
147     }
148     if( p->flags & EP_Collate ){
149       if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){
150         p = p->pLeft;
151       }else{
152         p = p->pRight;
153       }
154     }else{
155       break;
156     }
157   }
158   if( sqlite3CheckCollSeq(pParse, pColl) ){
159     pColl = 0;
160   }
161   return pColl;
162 }
163 
164 /*
165 ** pExpr is an operand of a comparison operator.  aff2 is the
166 ** type affinity of the other operand.  This routine returns the
167 ** type affinity that should be used for the comparison operator.
168 */
169 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
170   char aff1 = sqlite3ExprAffinity(pExpr);
171   if( aff1 && aff2 ){
172     /* Both sides of the comparison are columns. If one has numeric
173     ** affinity, use that. Otherwise use no affinity.
174     */
175     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
176       return SQLITE_AFF_NUMERIC;
177     }else{
178       return SQLITE_AFF_NONE;
179     }
180   }else if( !aff1 && !aff2 ){
181     /* Neither side of the comparison is a column.  Compare the
182     ** results directly.
183     */
184     return SQLITE_AFF_NONE;
185   }else{
186     /* One side is a column, the other is not. Use the columns affinity. */
187     assert( aff1==0 || aff2==0 );
188     return (aff1 + aff2);
189   }
190 }
191 
192 /*
193 ** pExpr is a comparison operator.  Return the type affinity that should
194 ** be applied to both operands prior to doing the comparison.
195 */
196 static char comparisonAffinity(Expr *pExpr){
197   char aff;
198   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
199           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
200           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
201   assert( pExpr->pLeft );
202   aff = sqlite3ExprAffinity(pExpr->pLeft);
203   if( pExpr->pRight ){
204     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
205   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
206     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
207   }else if( !aff ){
208     aff = SQLITE_AFF_NONE;
209   }
210   return aff;
211 }
212 
213 /*
214 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
215 ** idx_affinity is the affinity of an indexed column. Return true
216 ** if the index with affinity idx_affinity may be used to implement
217 ** the comparison in pExpr.
218 */
219 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
220   char aff = comparisonAffinity(pExpr);
221   switch( aff ){
222     case SQLITE_AFF_NONE:
223       return 1;
224     case SQLITE_AFF_TEXT:
225       return idx_affinity==SQLITE_AFF_TEXT;
226     default:
227       return sqlite3IsNumericAffinity(idx_affinity);
228   }
229 }
230 
231 /*
232 ** Return the P5 value that should be used for a binary comparison
233 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
234 */
235 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
236   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
237   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
238   return aff;
239 }
240 
241 /*
242 ** Return a pointer to the collation sequence that should be used by
243 ** a binary comparison operator comparing pLeft and pRight.
244 **
245 ** If the left hand expression has a collating sequence type, then it is
246 ** used. Otherwise the collation sequence for the right hand expression
247 ** is used, or the default (BINARY) if neither expression has a collating
248 ** type.
249 **
250 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
251 ** it is not considered.
252 */
253 CollSeq *sqlite3BinaryCompareCollSeq(
254   Parse *pParse,
255   Expr *pLeft,
256   Expr *pRight
257 ){
258   CollSeq *pColl;
259   assert( pLeft );
260   if( pLeft->flags & EP_Collate ){
261     pColl = sqlite3ExprCollSeq(pParse, pLeft);
262   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
263     pColl = sqlite3ExprCollSeq(pParse, pRight);
264   }else{
265     pColl = sqlite3ExprCollSeq(pParse, pLeft);
266     if( !pColl ){
267       pColl = sqlite3ExprCollSeq(pParse, pRight);
268     }
269   }
270   return pColl;
271 }
272 
273 /*
274 ** Generate code for a comparison operator.
275 */
276 static int codeCompare(
277   Parse *pParse,    /* The parsing (and code generating) context */
278   Expr *pLeft,      /* The left operand */
279   Expr *pRight,     /* The right operand */
280   int opcode,       /* The comparison opcode */
281   int in1, int in2, /* Register holding operands */
282   int dest,         /* Jump here if true.  */
283   int jumpIfNull    /* If true, jump if either operand is NULL */
284 ){
285   int p5;
286   int addr;
287   CollSeq *p4;
288 
289   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
290   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
291   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
292                            (void*)p4, P4_COLLSEQ);
293   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
294   return addr;
295 }
296 
297 #if SQLITE_MAX_EXPR_DEPTH>0
298 /*
299 ** Check that argument nHeight is less than or equal to the maximum
300 ** expression depth allowed. If it is not, leave an error message in
301 ** pParse.
302 */
303 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
304   int rc = SQLITE_OK;
305   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
306   if( nHeight>mxHeight ){
307     sqlite3ErrorMsg(pParse,
308        "Expression tree is too large (maximum depth %d)", mxHeight
309     );
310     rc = SQLITE_ERROR;
311   }
312   return rc;
313 }
314 
315 /* The following three functions, heightOfExpr(), heightOfExprList()
316 ** and heightOfSelect(), are used to determine the maximum height
317 ** of any expression tree referenced by the structure passed as the
318 ** first argument.
319 **
320 ** If this maximum height is greater than the current value pointed
321 ** to by pnHeight, the second parameter, then set *pnHeight to that
322 ** value.
323 */
324 static void heightOfExpr(Expr *p, int *pnHeight){
325   if( p ){
326     if( p->nHeight>*pnHeight ){
327       *pnHeight = p->nHeight;
328     }
329   }
330 }
331 static void heightOfExprList(ExprList *p, int *pnHeight){
332   if( p ){
333     int i;
334     for(i=0; i<p->nExpr; i++){
335       heightOfExpr(p->a[i].pExpr, pnHeight);
336     }
337   }
338 }
339 static void heightOfSelect(Select *p, int *pnHeight){
340   if( p ){
341     heightOfExpr(p->pWhere, pnHeight);
342     heightOfExpr(p->pHaving, pnHeight);
343     heightOfExpr(p->pLimit, pnHeight);
344     heightOfExpr(p->pOffset, pnHeight);
345     heightOfExprList(p->pEList, pnHeight);
346     heightOfExprList(p->pGroupBy, pnHeight);
347     heightOfExprList(p->pOrderBy, pnHeight);
348     heightOfSelect(p->pPrior, pnHeight);
349   }
350 }
351 
352 /*
353 ** Set the Expr.nHeight variable in the structure passed as an
354 ** argument. An expression with no children, Expr.pList or
355 ** Expr.pSelect member has a height of 1. Any other expression
356 ** has a height equal to the maximum height of any other
357 ** referenced Expr plus one.
358 */
359 static void exprSetHeight(Expr *p){
360   int nHeight = 0;
361   heightOfExpr(p->pLeft, &nHeight);
362   heightOfExpr(p->pRight, &nHeight);
363   if( ExprHasProperty(p, EP_xIsSelect) ){
364     heightOfSelect(p->x.pSelect, &nHeight);
365   }else{
366     heightOfExprList(p->x.pList, &nHeight);
367   }
368   p->nHeight = nHeight + 1;
369 }
370 
371 /*
372 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
373 ** the height is greater than the maximum allowed expression depth,
374 ** leave an error in pParse.
375 */
376 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
377   exprSetHeight(p);
378   sqlite3ExprCheckHeight(pParse, p->nHeight);
379 }
380 
381 /*
382 ** Return the maximum height of any expression tree referenced
383 ** by the select statement passed as an argument.
384 */
385 int sqlite3SelectExprHeight(Select *p){
386   int nHeight = 0;
387   heightOfSelect(p, &nHeight);
388   return nHeight;
389 }
390 #else
391   #define exprSetHeight(y)
392 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
393 
394 /*
395 ** This routine is the core allocator for Expr nodes.
396 **
397 ** Construct a new expression node and return a pointer to it.  Memory
398 ** for this node and for the pToken argument is a single allocation
399 ** obtained from sqlite3DbMalloc().  The calling function
400 ** is responsible for making sure the node eventually gets freed.
401 **
402 ** If dequote is true, then the token (if it exists) is dequoted.
403 ** If dequote is false, no dequoting is performance.  The deQuote
404 ** parameter is ignored if pToken is NULL or if the token does not
405 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
406 ** then the EP_DblQuoted flag is set on the expression node.
407 **
408 ** Special case:  If op==TK_INTEGER and pToken points to a string that
409 ** can be translated into a 32-bit integer, then the token is not
410 ** stored in u.zToken.  Instead, the integer values is written
411 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
412 ** is allocated to hold the integer text and the dequote flag is ignored.
413 */
414 Expr *sqlite3ExprAlloc(
415   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
416   int op,                 /* Expression opcode */
417   const Token *pToken,    /* Token argument.  Might be NULL */
418   int dequote             /* True to dequote */
419 ){
420   Expr *pNew;
421   int nExtra = 0;
422   int iValue = 0;
423 
424   if( pToken ){
425     if( op!=TK_INTEGER || pToken->z==0
426           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
427       nExtra = pToken->n+1;
428       assert( iValue>=0 );
429     }
430   }
431   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
432   if( pNew ){
433     pNew->op = (u8)op;
434     pNew->iAgg = -1;
435     if( pToken ){
436       if( nExtra==0 ){
437         pNew->flags |= EP_IntValue;
438         pNew->u.iValue = iValue;
439       }else{
440         int c;
441         pNew->u.zToken = (char*)&pNew[1];
442         assert( pToken->z!=0 || pToken->n==0 );
443         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
444         pNew->u.zToken[pToken->n] = 0;
445         if( dequote && nExtra>=3
446              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
447           sqlite3Dequote(pNew->u.zToken);
448           if( c=='"' ) pNew->flags |= EP_DblQuoted;
449         }
450       }
451     }
452 #if SQLITE_MAX_EXPR_DEPTH>0
453     pNew->nHeight = 1;
454 #endif
455   }
456   return pNew;
457 }
458 
459 /*
460 ** Allocate a new expression node from a zero-terminated token that has
461 ** already been dequoted.
462 */
463 Expr *sqlite3Expr(
464   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
465   int op,                 /* Expression opcode */
466   const char *zToken      /* Token argument.  Might be NULL */
467 ){
468   Token x;
469   x.z = zToken;
470   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
471   return sqlite3ExprAlloc(db, op, &x, 0);
472 }
473 
474 /*
475 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
476 **
477 ** If pRoot==NULL that means that a memory allocation error has occurred.
478 ** In that case, delete the subtrees pLeft and pRight.
479 */
480 void sqlite3ExprAttachSubtrees(
481   sqlite3 *db,
482   Expr *pRoot,
483   Expr *pLeft,
484   Expr *pRight
485 ){
486   if( pRoot==0 ){
487     assert( db->mallocFailed );
488     sqlite3ExprDelete(db, pLeft);
489     sqlite3ExprDelete(db, pRight);
490   }else{
491     if( pRight ){
492       pRoot->pRight = pRight;
493       pRoot->flags |= EP_Collate & pRight->flags;
494     }
495     if( pLeft ){
496       pRoot->pLeft = pLeft;
497       pRoot->flags |= EP_Collate & pLeft->flags;
498     }
499     exprSetHeight(pRoot);
500   }
501 }
502 
503 /*
504 ** Allocate a Expr node which joins as many as two subtrees.
505 **
506 ** One or both of the subtrees can be NULL.  Return a pointer to the new
507 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
508 ** free the subtrees and return NULL.
509 */
510 Expr *sqlite3PExpr(
511   Parse *pParse,          /* Parsing context */
512   int op,                 /* Expression opcode */
513   Expr *pLeft,            /* Left operand */
514   Expr *pRight,           /* Right operand */
515   const Token *pToken     /* Argument token */
516 ){
517   Expr *p;
518   if( op==TK_AND && pLeft && pRight ){
519     /* Take advantage of short-circuit false optimization for AND */
520     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
521   }else{
522     p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
523     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
524   }
525   if( p ) {
526     sqlite3ExprCheckHeight(pParse, p->nHeight);
527   }
528   return p;
529 }
530 
531 /*
532 ** If the expression is always either TRUE or FALSE (respectively),
533 ** then return 1.  If one cannot determine the truth value of the
534 ** expression at compile-time return 0.
535 **
536 ** This is an optimization.  If is OK to return 0 here even if
537 ** the expression really is always false or false (a false negative).
538 ** But it is a bug to return 1 if the expression might have different
539 ** boolean values in different circumstances (a false positive.)
540 **
541 ** Note that if the expression is part of conditional for a
542 ** LEFT JOIN, then we cannot determine at compile-time whether or not
543 ** is it true or false, so always return 0.
544 */
545 static int exprAlwaysTrue(Expr *p){
546   int v = 0;
547   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
548   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
549   return v!=0;
550 }
551 static int exprAlwaysFalse(Expr *p){
552   int v = 0;
553   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
554   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
555   return v==0;
556 }
557 
558 /*
559 ** Join two expressions using an AND operator.  If either expression is
560 ** NULL, then just return the other expression.
561 **
562 ** If one side or the other of the AND is known to be false, then instead
563 ** of returning an AND expression, just return a constant expression with
564 ** a value of false.
565 */
566 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
567   if( pLeft==0 ){
568     return pRight;
569   }else if( pRight==0 ){
570     return pLeft;
571   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
572     sqlite3ExprDelete(db, pLeft);
573     sqlite3ExprDelete(db, pRight);
574     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
575   }else{
576     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
577     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
578     return pNew;
579   }
580 }
581 
582 /*
583 ** Construct a new expression node for a function with multiple
584 ** arguments.
585 */
586 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
587   Expr *pNew;
588   sqlite3 *db = pParse->db;
589   assert( pToken );
590   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
591   if( pNew==0 ){
592     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
593     return 0;
594   }
595   pNew->x.pList = pList;
596   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
597   sqlite3ExprSetHeight(pParse, pNew);
598   return pNew;
599 }
600 
601 /*
602 ** Assign a variable number to an expression that encodes a wildcard
603 ** in the original SQL statement.
604 **
605 ** Wildcards consisting of a single "?" are assigned the next sequential
606 ** variable number.
607 **
608 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
609 ** sure "nnn" is not too be to avoid a denial of service attack when
610 ** the SQL statement comes from an external source.
611 **
612 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
613 ** as the previous instance of the same wildcard.  Or if this is the first
614 ** instance of the wildcard, the next sequenial variable number is
615 ** assigned.
616 */
617 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
618   sqlite3 *db = pParse->db;
619   const char *z;
620 
621   if( pExpr==0 ) return;
622   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
623   z = pExpr->u.zToken;
624   assert( z!=0 );
625   assert( z[0]!=0 );
626   if( z[1]==0 ){
627     /* Wildcard of the form "?".  Assign the next variable number */
628     assert( z[0]=='?' );
629     pExpr->iColumn = (ynVar)(++pParse->nVar);
630   }else{
631     ynVar x = 0;
632     u32 n = sqlite3Strlen30(z);
633     if( z[0]=='?' ){
634       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
635       ** use it as the variable number */
636       i64 i;
637       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
638       pExpr->iColumn = x = (ynVar)i;
639       testcase( i==0 );
640       testcase( i==1 );
641       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
642       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
643       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
644         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
645             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
646         x = 0;
647       }
648       if( i>pParse->nVar ){
649         pParse->nVar = (int)i;
650       }
651     }else{
652       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
653       ** number as the prior appearance of the same name, or if the name
654       ** has never appeared before, reuse the same variable number
655       */
656       ynVar i;
657       for(i=0; i<pParse->nzVar; i++){
658         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
659           pExpr->iColumn = x = (ynVar)i+1;
660           break;
661         }
662       }
663       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
664     }
665     if( x>0 ){
666       if( x>pParse->nzVar ){
667         char **a;
668         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
669         if( a==0 ) return;  /* Error reported through db->mallocFailed */
670         pParse->azVar = a;
671         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
672         pParse->nzVar = x;
673       }
674       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
675         sqlite3DbFree(db, pParse->azVar[x-1]);
676         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
677       }
678     }
679   }
680   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
681     sqlite3ErrorMsg(pParse, "too many SQL variables");
682   }
683 }
684 
685 /*
686 ** Recursively delete an expression tree.
687 */
688 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
689   if( p==0 ) return;
690   /* Sanity check: Assert that the IntValue is non-negative if it exists */
691   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
692   if( !ExprHasProperty(p, EP_TokenOnly) ){
693     /* The Expr.x union is never used at the same time as Expr.pRight */
694     assert( p->x.pList==0 || p->pRight==0 );
695     sqlite3ExprDelete(db, p->pLeft);
696     sqlite3ExprDelete(db, p->pRight);
697     if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
698     if( ExprHasProperty(p, EP_xIsSelect) ){
699       sqlite3SelectDelete(db, p->x.pSelect);
700     }else{
701       sqlite3ExprListDelete(db, p->x.pList);
702     }
703   }
704   if( !ExprHasProperty(p, EP_Static) ){
705     sqlite3DbFree(db, p);
706   }
707 }
708 
709 /*
710 ** Return the number of bytes allocated for the expression structure
711 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
712 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
713 */
714 static int exprStructSize(Expr *p){
715   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
716   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
717   return EXPR_FULLSIZE;
718 }
719 
720 /*
721 ** The dupedExpr*Size() routines each return the number of bytes required
722 ** to store a copy of an expression or expression tree.  They differ in
723 ** how much of the tree is measured.
724 **
725 **     dupedExprStructSize()     Size of only the Expr structure
726 **     dupedExprNodeSize()       Size of Expr + space for token
727 **     dupedExprSize()           Expr + token + subtree components
728 **
729 ***************************************************************************
730 **
731 ** The dupedExprStructSize() function returns two values OR-ed together:
732 ** (1) the space required for a copy of the Expr structure only and
733 ** (2) the EP_xxx flags that indicate what the structure size should be.
734 ** The return values is always one of:
735 **
736 **      EXPR_FULLSIZE
737 **      EXPR_REDUCEDSIZE   | EP_Reduced
738 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
739 **
740 ** The size of the structure can be found by masking the return value
741 ** of this routine with 0xfff.  The flags can be found by masking the
742 ** return value with EP_Reduced|EP_TokenOnly.
743 **
744 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
745 ** (unreduced) Expr objects as they or originally constructed by the parser.
746 ** During expression analysis, extra information is computed and moved into
747 ** later parts of teh Expr object and that extra information might get chopped
748 ** off if the expression is reduced.  Note also that it does not work to
749 ** make a EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
750 ** to reduce a pristine expression tree from the parser.  The implementation
751 ** of dupedExprStructSize() contain multiple assert() statements that attempt
752 ** to enforce this constraint.
753 */
754 static int dupedExprStructSize(Expr *p, int flags){
755   int nSize;
756   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
757   assert( EXPR_FULLSIZE<=0xfff );
758   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
759   if( 0==(flags&EXPRDUP_REDUCE) ){
760     nSize = EXPR_FULLSIZE;
761   }else{
762     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
763     assert( !ExprHasProperty(p, EP_FromJoin) );
764     assert( !ExprHasProperty(p, EP_MemToken) );
765     assert( !ExprHasProperty(p, EP_NoReduce) );
766     if( p->pLeft || p->x.pList ){
767       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
768     }else{
769       assert( p->pRight==0 );
770       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
771     }
772   }
773   return nSize;
774 }
775 
776 /*
777 ** This function returns the space in bytes required to store the copy
778 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
779 ** string is defined.)
780 */
781 static int dupedExprNodeSize(Expr *p, int flags){
782   int nByte = dupedExprStructSize(p, flags) & 0xfff;
783   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
784     nByte += sqlite3Strlen30(p->u.zToken)+1;
785   }
786   return ROUND8(nByte);
787 }
788 
789 /*
790 ** Return the number of bytes required to create a duplicate of the
791 ** expression passed as the first argument. The second argument is a
792 ** mask containing EXPRDUP_XXX flags.
793 **
794 ** The value returned includes space to create a copy of the Expr struct
795 ** itself and the buffer referred to by Expr.u.zToken, if any.
796 **
797 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
798 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
799 ** and Expr.pRight variables (but not for any structures pointed to or
800 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
801 */
802 static int dupedExprSize(Expr *p, int flags){
803   int nByte = 0;
804   if( p ){
805     nByte = dupedExprNodeSize(p, flags);
806     if( flags&EXPRDUP_REDUCE ){
807       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
808     }
809   }
810   return nByte;
811 }
812 
813 /*
814 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
815 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
816 ** to store the copy of expression p, the copies of p->u.zToken
817 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
818 ** if any. Before returning, *pzBuffer is set to the first byte passed the
819 ** portion of the buffer copied into by this function.
820 */
821 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
822   Expr *pNew = 0;                      /* Value to return */
823   if( p ){
824     const int isReduced = (flags&EXPRDUP_REDUCE);
825     u8 *zAlloc;
826     u32 staticFlag = 0;
827 
828     assert( pzBuffer==0 || isReduced );
829 
830     /* Figure out where to write the new Expr structure. */
831     if( pzBuffer ){
832       zAlloc = *pzBuffer;
833       staticFlag = EP_Static;
834     }else{
835       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
836     }
837     pNew = (Expr *)zAlloc;
838 
839     if( pNew ){
840       /* Set nNewSize to the size allocated for the structure pointed to
841       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
842       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
843       ** by the copy of the p->u.zToken string (if any).
844       */
845       const unsigned nStructSize = dupedExprStructSize(p, flags);
846       const int nNewSize = nStructSize & 0xfff;
847       int nToken;
848       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
849         nToken = sqlite3Strlen30(p->u.zToken) + 1;
850       }else{
851         nToken = 0;
852       }
853       if( isReduced ){
854         assert( ExprHasProperty(p, EP_Reduced)==0 );
855         memcpy(zAlloc, p, nNewSize);
856       }else{
857         int nSize = exprStructSize(p);
858         memcpy(zAlloc, p, nSize);
859         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
860       }
861 
862       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
863       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
864       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
865       pNew->flags |= staticFlag;
866 
867       /* Copy the p->u.zToken string, if any. */
868       if( nToken ){
869         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
870         memcpy(zToken, p->u.zToken, nToken);
871       }
872 
873       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
874         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
875         if( ExprHasProperty(p, EP_xIsSelect) ){
876           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
877         }else{
878           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
879         }
880       }
881 
882       /* Fill in pNew->pLeft and pNew->pRight. */
883       if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
884         zAlloc += dupedExprNodeSize(p, flags);
885         if( ExprHasProperty(pNew, EP_Reduced) ){
886           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
887           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
888         }
889         if( pzBuffer ){
890           *pzBuffer = zAlloc;
891         }
892       }else{
893         if( !ExprHasProperty(p, EP_TokenOnly) ){
894           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
895           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
896         }
897       }
898 
899     }
900   }
901   return pNew;
902 }
903 
904 /*
905 ** Create and return a deep copy of the object passed as the second
906 ** argument. If an OOM condition is encountered, NULL is returned
907 ** and the db->mallocFailed flag set.
908 */
909 #ifndef SQLITE_OMIT_CTE
910 static With *withDup(sqlite3 *db, With *p){
911   With *pRet = 0;
912   if( p ){
913     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
914     pRet = sqlite3DbMallocZero(db, nByte);
915     if( pRet ){
916       int i;
917       pRet->nCte = p->nCte;
918       for(i=0; i<p->nCte; i++){
919         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
920         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
921         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
922       }
923     }
924   }
925   return pRet;
926 }
927 #else
928 # define withDup(x,y) 0
929 #endif
930 
931 /*
932 ** The following group of routines make deep copies of expressions,
933 ** expression lists, ID lists, and select statements.  The copies can
934 ** be deleted (by being passed to their respective ...Delete() routines)
935 ** without effecting the originals.
936 **
937 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
938 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
939 ** by subsequent calls to sqlite*ListAppend() routines.
940 **
941 ** Any tables that the SrcList might point to are not duplicated.
942 **
943 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
944 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
945 ** truncated version of the usual Expr structure that will be stored as
946 ** part of the in-memory representation of the database schema.
947 */
948 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
949   return exprDup(db, p, flags, 0);
950 }
951 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
952   ExprList *pNew;
953   struct ExprList_item *pItem, *pOldItem;
954   int i;
955   if( p==0 ) return 0;
956   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
957   if( pNew==0 ) return 0;
958   pNew->nExpr = i = p->nExpr;
959   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
960   pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
961   if( pItem==0 ){
962     sqlite3DbFree(db, pNew);
963     return 0;
964   }
965   pOldItem = p->a;
966   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
967     Expr *pOldExpr = pOldItem->pExpr;
968     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
969     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
970     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
971     pItem->sortOrder = pOldItem->sortOrder;
972     pItem->done = 0;
973     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
974     pItem->u = pOldItem->u;
975   }
976   return pNew;
977 }
978 
979 /*
980 ** If cursors, triggers, views and subqueries are all omitted from
981 ** the build, then none of the following routines, except for
982 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
983 ** called with a NULL argument.
984 */
985 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
986  || !defined(SQLITE_OMIT_SUBQUERY)
987 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
988   SrcList *pNew;
989   int i;
990   int nByte;
991   if( p==0 ) return 0;
992   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
993   pNew = sqlite3DbMallocRaw(db, nByte );
994   if( pNew==0 ) return 0;
995   pNew->nSrc = pNew->nAlloc = p->nSrc;
996   for(i=0; i<p->nSrc; i++){
997     struct SrcList_item *pNewItem = &pNew->a[i];
998     struct SrcList_item *pOldItem = &p->a[i];
999     Table *pTab;
1000     pNewItem->pSchema = pOldItem->pSchema;
1001     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1002     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1003     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1004     pNewItem->jointype = pOldItem->jointype;
1005     pNewItem->iCursor = pOldItem->iCursor;
1006     pNewItem->addrFillSub = pOldItem->addrFillSub;
1007     pNewItem->regReturn = pOldItem->regReturn;
1008     pNewItem->isCorrelated = pOldItem->isCorrelated;
1009     pNewItem->viaCoroutine = pOldItem->viaCoroutine;
1010     pNewItem->isRecursive = pOldItem->isRecursive;
1011     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
1012     pNewItem->notIndexed = pOldItem->notIndexed;
1013     pNewItem->pIndex = pOldItem->pIndex;
1014     pTab = pNewItem->pTab = pOldItem->pTab;
1015     if( pTab ){
1016       pTab->nRef++;
1017     }
1018     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1019     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1020     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1021     pNewItem->colUsed = pOldItem->colUsed;
1022   }
1023   return pNew;
1024 }
1025 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1026   IdList *pNew;
1027   int i;
1028   if( p==0 ) return 0;
1029   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
1030   if( pNew==0 ) return 0;
1031   pNew->nId = p->nId;
1032   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
1033   if( pNew->a==0 ){
1034     sqlite3DbFree(db, pNew);
1035     return 0;
1036   }
1037   /* Note that because the size of the allocation for p->a[] is not
1038   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1039   ** on the duplicate created by this function. */
1040   for(i=0; i<p->nId; i++){
1041     struct IdList_item *pNewItem = &pNew->a[i];
1042     struct IdList_item *pOldItem = &p->a[i];
1043     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1044     pNewItem->idx = pOldItem->idx;
1045   }
1046   return pNew;
1047 }
1048 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1049   Select *pNew, *pPrior;
1050   if( p==0 ) return 0;
1051   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
1052   if( pNew==0 ) return 0;
1053   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1054   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1055   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1056   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1057   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1058   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1059   pNew->op = p->op;
1060   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1061   if( pPrior ) pPrior->pNext = pNew;
1062   pNew->pNext = 0;
1063   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1064   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1065   pNew->iLimit = 0;
1066   pNew->iOffset = 0;
1067   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1068   pNew->addrOpenEphm[0] = -1;
1069   pNew->addrOpenEphm[1] = -1;
1070   pNew->nSelectRow = p->nSelectRow;
1071   pNew->pWith = withDup(db, p->pWith);
1072   return pNew;
1073 }
1074 #else
1075 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1076   assert( p==0 );
1077   return 0;
1078 }
1079 #endif
1080 
1081 
1082 /*
1083 ** Add a new element to the end of an expression list.  If pList is
1084 ** initially NULL, then create a new expression list.
1085 **
1086 ** If a memory allocation error occurs, the entire list is freed and
1087 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1088 ** that the new entry was successfully appended.
1089 */
1090 ExprList *sqlite3ExprListAppend(
1091   Parse *pParse,          /* Parsing context */
1092   ExprList *pList,        /* List to which to append. Might be NULL */
1093   Expr *pExpr             /* Expression to be appended. Might be NULL */
1094 ){
1095   sqlite3 *db = pParse->db;
1096   if( pList==0 ){
1097     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1098     if( pList==0 ){
1099       goto no_mem;
1100     }
1101     pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1102     if( pList->a==0 ) goto no_mem;
1103   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1104     struct ExprList_item *a;
1105     assert( pList->nExpr>0 );
1106     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1107     if( a==0 ){
1108       goto no_mem;
1109     }
1110     pList->a = a;
1111   }
1112   assert( pList->a!=0 );
1113   if( 1 ){
1114     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1115     memset(pItem, 0, sizeof(*pItem));
1116     pItem->pExpr = pExpr;
1117   }
1118   return pList;
1119 
1120 no_mem:
1121   /* Avoid leaking memory if malloc has failed. */
1122   sqlite3ExprDelete(db, pExpr);
1123   sqlite3ExprListDelete(db, pList);
1124   return 0;
1125 }
1126 
1127 /*
1128 ** Set the ExprList.a[].zName element of the most recently added item
1129 ** on the expression list.
1130 **
1131 ** pList might be NULL following an OOM error.  But pName should never be
1132 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1133 ** is set.
1134 */
1135 void sqlite3ExprListSetName(
1136   Parse *pParse,          /* Parsing context */
1137   ExprList *pList,        /* List to which to add the span. */
1138   Token *pName,           /* Name to be added */
1139   int dequote             /* True to cause the name to be dequoted */
1140 ){
1141   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1142   if( pList ){
1143     struct ExprList_item *pItem;
1144     assert( pList->nExpr>0 );
1145     pItem = &pList->a[pList->nExpr-1];
1146     assert( pItem->zName==0 );
1147     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1148     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1149   }
1150 }
1151 
1152 /*
1153 ** Set the ExprList.a[].zSpan element of the most recently added item
1154 ** on the expression list.
1155 **
1156 ** pList might be NULL following an OOM error.  But pSpan should never be
1157 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1158 ** is set.
1159 */
1160 void sqlite3ExprListSetSpan(
1161   Parse *pParse,          /* Parsing context */
1162   ExprList *pList,        /* List to which to add the span. */
1163   ExprSpan *pSpan         /* The span to be added */
1164 ){
1165   sqlite3 *db = pParse->db;
1166   assert( pList!=0 || db->mallocFailed!=0 );
1167   if( pList ){
1168     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1169     assert( pList->nExpr>0 );
1170     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1171     sqlite3DbFree(db, pItem->zSpan);
1172     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1173                                     (int)(pSpan->zEnd - pSpan->zStart));
1174   }
1175 }
1176 
1177 /*
1178 ** If the expression list pEList contains more than iLimit elements,
1179 ** leave an error message in pParse.
1180 */
1181 void sqlite3ExprListCheckLength(
1182   Parse *pParse,
1183   ExprList *pEList,
1184   const char *zObject
1185 ){
1186   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1187   testcase( pEList && pEList->nExpr==mx );
1188   testcase( pEList && pEList->nExpr==mx+1 );
1189   if( pEList && pEList->nExpr>mx ){
1190     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1191   }
1192 }
1193 
1194 /*
1195 ** Delete an entire expression list.
1196 */
1197 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1198   int i;
1199   struct ExprList_item *pItem;
1200   if( pList==0 ) return;
1201   assert( pList->a!=0 || pList->nExpr==0 );
1202   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1203     sqlite3ExprDelete(db, pItem->pExpr);
1204     sqlite3DbFree(db, pItem->zName);
1205     sqlite3DbFree(db, pItem->zSpan);
1206   }
1207   sqlite3DbFree(db, pList->a);
1208   sqlite3DbFree(db, pList);
1209 }
1210 
1211 /*
1212 ** These routines are Walker callbacks.  Walker.u.pi is a pointer
1213 ** to an integer.  These routines are checking an expression to see
1214 ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
1215 ** not constant.
1216 **
1217 ** These callback routines are used to implement the following:
1218 **
1219 **     sqlite3ExprIsConstant()
1220 **     sqlite3ExprIsConstantNotJoin()
1221 **     sqlite3ExprIsConstantOrFunction()
1222 **
1223 */
1224 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1225 
1226   /* If pWalker->u.i is 3 then any term of the expression that comes from
1227   ** the ON or USING clauses of a join disqualifies the expression
1228   ** from being considered constant. */
1229   if( pWalker->u.i==3 && ExprHasProperty(pExpr, EP_FromJoin) ){
1230     pWalker->u.i = 0;
1231     return WRC_Abort;
1232   }
1233 
1234   switch( pExpr->op ){
1235     /* Consider functions to be constant if all their arguments are constant
1236     ** and either pWalker->u.i==2 or the function as the SQLITE_FUNC_CONST
1237     ** flag. */
1238     case TK_FUNCTION:
1239       if( pWalker->u.i==2 || ExprHasProperty(pExpr,EP_Constant) ){
1240         return WRC_Continue;
1241       }
1242       /* Fall through */
1243     case TK_ID:
1244     case TK_COLUMN:
1245     case TK_AGG_FUNCTION:
1246     case TK_AGG_COLUMN:
1247       testcase( pExpr->op==TK_ID );
1248       testcase( pExpr->op==TK_COLUMN );
1249       testcase( pExpr->op==TK_AGG_FUNCTION );
1250       testcase( pExpr->op==TK_AGG_COLUMN );
1251       pWalker->u.i = 0;
1252       return WRC_Abort;
1253     default:
1254       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1255       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1256       return WRC_Continue;
1257   }
1258 }
1259 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1260   UNUSED_PARAMETER(NotUsed);
1261   pWalker->u.i = 0;
1262   return WRC_Abort;
1263 }
1264 static int exprIsConst(Expr *p, int initFlag){
1265   Walker w;
1266   memset(&w, 0, sizeof(w));
1267   w.u.i = initFlag;
1268   w.xExprCallback = exprNodeIsConstant;
1269   w.xSelectCallback = selectNodeIsConstant;
1270   sqlite3WalkExpr(&w, p);
1271   return w.u.i;
1272 }
1273 
1274 /*
1275 ** Walk an expression tree.  Return 1 if the expression is constant
1276 ** and 0 if it involves variables or function calls.
1277 **
1278 ** For the purposes of this function, a double-quoted string (ex: "abc")
1279 ** is considered a variable but a single-quoted string (ex: 'abc') is
1280 ** a constant.
1281 */
1282 int sqlite3ExprIsConstant(Expr *p){
1283   return exprIsConst(p, 1);
1284 }
1285 
1286 /*
1287 ** Walk an expression tree.  Return 1 if the expression is constant
1288 ** that does no originate from the ON or USING clauses of a join.
1289 ** Return 0 if it involves variables or function calls or terms from
1290 ** an ON or USING clause.
1291 */
1292 int sqlite3ExprIsConstantNotJoin(Expr *p){
1293   return exprIsConst(p, 3);
1294 }
1295 
1296 /*
1297 ** Walk an expression tree.  Return 1 if the expression is constant
1298 ** or a function call with constant arguments.  Return and 0 if there
1299 ** are any variables.
1300 **
1301 ** For the purposes of this function, a double-quoted string (ex: "abc")
1302 ** is considered a variable but a single-quoted string (ex: 'abc') is
1303 ** a constant.
1304 */
1305 int sqlite3ExprIsConstantOrFunction(Expr *p){
1306   return exprIsConst(p, 2);
1307 }
1308 
1309 /*
1310 ** If the expression p codes a constant integer that is small enough
1311 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1312 ** in *pValue.  If the expression is not an integer or if it is too big
1313 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1314 */
1315 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1316   int rc = 0;
1317 
1318   /* If an expression is an integer literal that fits in a signed 32-bit
1319   ** integer, then the EP_IntValue flag will have already been set */
1320   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1321            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1322 
1323   if( p->flags & EP_IntValue ){
1324     *pValue = p->u.iValue;
1325     return 1;
1326   }
1327   switch( p->op ){
1328     case TK_UPLUS: {
1329       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1330       break;
1331     }
1332     case TK_UMINUS: {
1333       int v;
1334       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1335         assert( v!=(-2147483647-1) );
1336         *pValue = -v;
1337         rc = 1;
1338       }
1339       break;
1340     }
1341     default: break;
1342   }
1343   return rc;
1344 }
1345 
1346 /*
1347 ** Return FALSE if there is no chance that the expression can be NULL.
1348 **
1349 ** If the expression might be NULL or if the expression is too complex
1350 ** to tell return TRUE.
1351 **
1352 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1353 ** when we know that a value cannot be NULL.  Hence, a false positive
1354 ** (returning TRUE when in fact the expression can never be NULL) might
1355 ** be a small performance hit but is otherwise harmless.  On the other
1356 ** hand, a false negative (returning FALSE when the result could be NULL)
1357 ** will likely result in an incorrect answer.  So when in doubt, return
1358 ** TRUE.
1359 */
1360 int sqlite3ExprCanBeNull(const Expr *p){
1361   u8 op;
1362   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1363   op = p->op;
1364   if( op==TK_REGISTER ) op = p->op2;
1365   switch( op ){
1366     case TK_INTEGER:
1367     case TK_STRING:
1368     case TK_FLOAT:
1369     case TK_BLOB:
1370       return 0;
1371     default:
1372       return 1;
1373   }
1374 }
1375 
1376 /*
1377 ** Return TRUE if the given expression is a constant which would be
1378 ** unchanged by OP_Affinity with the affinity given in the second
1379 ** argument.
1380 **
1381 ** This routine is used to determine if the OP_Affinity operation
1382 ** can be omitted.  When in doubt return FALSE.  A false negative
1383 ** is harmless.  A false positive, however, can result in the wrong
1384 ** answer.
1385 */
1386 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1387   u8 op;
1388   if( aff==SQLITE_AFF_NONE ) return 1;
1389   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1390   op = p->op;
1391   if( op==TK_REGISTER ) op = p->op2;
1392   switch( op ){
1393     case TK_INTEGER: {
1394       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1395     }
1396     case TK_FLOAT: {
1397       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1398     }
1399     case TK_STRING: {
1400       return aff==SQLITE_AFF_TEXT;
1401     }
1402     case TK_BLOB: {
1403       return 1;
1404     }
1405     case TK_COLUMN: {
1406       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1407       return p->iColumn<0
1408           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1409     }
1410     default: {
1411       return 0;
1412     }
1413   }
1414 }
1415 
1416 /*
1417 ** Return TRUE if the given string is a row-id column name.
1418 */
1419 int sqlite3IsRowid(const char *z){
1420   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1421   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1422   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1423   return 0;
1424 }
1425 
1426 /*
1427 ** Return true if we are able to the IN operator optimization on a
1428 ** query of the form
1429 **
1430 **       x IN (SELECT ...)
1431 **
1432 ** Where the SELECT... clause is as specified by the parameter to this
1433 ** routine.
1434 **
1435 ** The Select object passed in has already been preprocessed and no
1436 ** errors have been found.
1437 */
1438 #ifndef SQLITE_OMIT_SUBQUERY
1439 static int isCandidateForInOpt(Select *p){
1440   SrcList *pSrc;
1441   ExprList *pEList;
1442   Table *pTab;
1443   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1444   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1445   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1446     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1447     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1448     return 0; /* No DISTINCT keyword and no aggregate functions */
1449   }
1450   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1451   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1452   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1453   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1454   pSrc = p->pSrc;
1455   assert( pSrc!=0 );
1456   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1457   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1458   pTab = pSrc->a[0].pTab;
1459   if( NEVER(pTab==0) ) return 0;
1460   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1461   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1462   pEList = p->pEList;
1463   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1464   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1465   return 1;
1466 }
1467 #endif /* SQLITE_OMIT_SUBQUERY */
1468 
1469 /*
1470 ** Code an OP_Once instruction and allocate space for its flag. Return the
1471 ** address of the new instruction.
1472 */
1473 int sqlite3CodeOnce(Parse *pParse){
1474   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1475   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1476 }
1477 
1478 /*
1479 ** This function is used by the implementation of the IN (...) operator.
1480 ** The pX parameter is the expression on the RHS of the IN operator, which
1481 ** might be either a list of expressions or a subquery.
1482 **
1483 ** The job of this routine is to find or create a b-tree object that can
1484 ** be used either to test for membership in the RHS set or to iterate through
1485 ** all members of the RHS set, skipping duplicates.
1486 **
1487 ** A cursor is opened on the b-tree object that the RHS of the IN operator
1488 ** and pX->iTable is set to the index of that cursor.
1489 **
1490 ** The returned value of this function indicates the b-tree type, as follows:
1491 **
1492 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
1493 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
1494 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1495 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
1496 **                         populated epheremal table.
1497 **
1498 ** An existing b-tree might be used if the RHS expression pX is a simple
1499 ** subquery such as:
1500 **
1501 **     SELECT <column> FROM <table>
1502 **
1503 ** If the RHS of the IN operator is a list or a more complex subquery, then
1504 ** an ephemeral table might need to be generated from the RHS and then
1505 ** pX->iTable made to point to the ephermeral table instead of an
1506 ** existing table.
1507 **
1508 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
1509 ** through the set members, skipping any duplicates. In this case an
1510 ** epheremal table must be used unless the selected <column> is guaranteed
1511 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1512 ** has a UNIQUE constraint or UNIQUE index.
1513 **
1514 ** If the prNotFound parameter is not 0, then the b-tree will be used
1515 ** for fast set membership tests. In this case an epheremal table must
1516 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1517 ** be found with <column> as its left-most column.
1518 **
1519 ** When the b-tree is being used for membership tests, the calling function
1520 ** needs to know whether or not the structure contains an SQL NULL
1521 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1522 ** If there is any chance that the (...) might contain a NULL value at
1523 ** runtime, then a register is allocated and the register number written
1524 ** to *prNotFound. If there is no chance that the (...) contains a
1525 ** NULL value, then *prNotFound is left unchanged.
1526 **
1527 ** If a register is allocated and its location stored in *prNotFound, then
1528 ** its initial value is NULL.  If the (...) does not remain constant
1529 ** for the duration of the query (i.e. the SELECT within the (...)
1530 ** is a correlated subquery) then the value of the allocated register is
1531 ** reset to NULL each time the subquery is rerun. This allows the
1532 ** caller to use vdbe code equivalent to the following:
1533 **
1534 **   if( register==NULL ){
1535 **     has_null = <test if data structure contains null>
1536 **     register = 1
1537 **   }
1538 **
1539 ** in order to avoid running the <test if data structure contains null>
1540 ** test more often than is necessary.
1541 */
1542 #ifndef SQLITE_OMIT_SUBQUERY
1543 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1544   Select *p;                            /* SELECT to the right of IN operator */
1545   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1546   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1547   int mustBeUnique = (prNotFound==0);   /* True if RHS must be unique */
1548   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1549 
1550   assert( pX->op==TK_IN );
1551 
1552   /* Check to see if an existing table or index can be used to
1553   ** satisfy the query.  This is preferable to generating a new
1554   ** ephemeral table.
1555   */
1556   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1557   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1558     sqlite3 *db = pParse->db;              /* Database connection */
1559     Table *pTab;                           /* Table <table>. */
1560     Expr *pExpr;                           /* Expression <column> */
1561     i16 iCol;                              /* Index of column <column> */
1562     i16 iDb;                               /* Database idx for pTab */
1563 
1564     assert( p );                        /* Because of isCandidateForInOpt(p) */
1565     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1566     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1567     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1568     pTab = p->pSrc->a[0].pTab;
1569     pExpr = p->pEList->a[0].pExpr;
1570     iCol = (i16)pExpr->iColumn;
1571 
1572     /* Code an OP_Transaction and OP_TableLock for <table>. */
1573     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1574     sqlite3CodeVerifySchema(pParse, iDb);
1575     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1576 
1577     /* This function is only called from two places. In both cases the vdbe
1578     ** has already been allocated. So assume sqlite3GetVdbe() is always
1579     ** successful here.
1580     */
1581     assert(v);
1582     if( iCol<0 ){
1583       int iAddr = sqlite3CodeOnce(pParse);
1584       VdbeCoverage(v);
1585 
1586       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1587       eType = IN_INDEX_ROWID;
1588 
1589       sqlite3VdbeJumpHere(v, iAddr);
1590     }else{
1591       Index *pIdx;                         /* Iterator variable */
1592 
1593       /* The collation sequence used by the comparison. If an index is to
1594       ** be used in place of a temp-table, it must be ordered according
1595       ** to this collation sequence.  */
1596       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1597 
1598       /* Check that the affinity that will be used to perform the
1599       ** comparison is the same as the affinity of the column. If
1600       ** it is not, it is not possible to use any index.
1601       */
1602       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1603 
1604       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1605         if( (pIdx->aiColumn[0]==iCol)
1606          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1607          && (!mustBeUnique || (pIdx->nKeyCol==1 && pIdx->onError!=OE_None))
1608         ){
1609           int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1610           sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1611           sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1612           VdbeComment((v, "%s", pIdx->zName));
1613           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1614           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1615 
1616           if( prNotFound && !pTab->aCol[iCol].notNull ){
1617             *prNotFound = ++pParse->nMem;
1618             sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
1619           }
1620           sqlite3VdbeJumpHere(v, iAddr);
1621         }
1622       }
1623     }
1624   }
1625 
1626   if( eType==0 ){
1627     /* Could not found an existing table or index to use as the RHS b-tree.
1628     ** We will have to generate an ephemeral table to do the job.
1629     */
1630     u32 savedNQueryLoop = pParse->nQueryLoop;
1631     int rMayHaveNull = 0;
1632     eType = IN_INDEX_EPH;
1633     if( prNotFound ){
1634       *prNotFound = rMayHaveNull = ++pParse->nMem;
1635       sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
1636     }else{
1637       pParse->nQueryLoop = 0;
1638       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1639         eType = IN_INDEX_ROWID;
1640       }
1641     }
1642     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1643     pParse->nQueryLoop = savedNQueryLoop;
1644   }else{
1645     pX->iTable = iTab;
1646   }
1647   return eType;
1648 }
1649 #endif
1650 
1651 /*
1652 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1653 ** or IN operators.  Examples:
1654 **
1655 **     (SELECT a FROM b)          -- subquery
1656 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1657 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1658 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1659 **
1660 ** The pExpr parameter describes the expression that contains the IN
1661 ** operator or subquery.
1662 **
1663 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1664 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1665 ** to some integer key column of a table B-Tree. In this case, use an
1666 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1667 ** (slower) variable length keys B-Tree.
1668 **
1669 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1670 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1671 ** Furthermore, the IN is in a WHERE clause and that we really want
1672 ** to iterate over the RHS of the IN operator in order to quickly locate
1673 ** all corresponding LHS elements.  All this routine does is initialize
1674 ** the register given by rMayHaveNull to NULL.  Calling routines will take
1675 ** care of changing this register value to non-NULL if the RHS is NULL-free.
1676 **
1677 ** If rMayHaveNull is zero, that means that the subquery is being used
1678 ** for membership testing only.  There is no need to initialize any
1679 ** registers to indicate the presence or absence of NULLs on the RHS.
1680 **
1681 ** For a SELECT or EXISTS operator, return the register that holds the
1682 ** result.  For IN operators or if an error occurs, the return value is 0.
1683 */
1684 #ifndef SQLITE_OMIT_SUBQUERY
1685 int sqlite3CodeSubselect(
1686   Parse *pParse,          /* Parsing context */
1687   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1688   int rMayHaveNull,       /* Register that records whether NULLs exist in RHS */
1689   int isRowid             /* If true, LHS of IN operator is a rowid */
1690 ){
1691   int testAddr = -1;                      /* One-time test address */
1692   int rReg = 0;                           /* Register storing resulting */
1693   Vdbe *v = sqlite3GetVdbe(pParse);
1694   if( NEVER(v==0) ) return 0;
1695   sqlite3ExprCachePush(pParse);
1696 
1697   /* This code must be run in its entirety every time it is encountered
1698   ** if any of the following is true:
1699   **
1700   **    *  The right-hand side is a correlated subquery
1701   **    *  The right-hand side is an expression list containing variables
1702   **    *  We are inside a trigger
1703   **
1704   ** If all of the above are false, then we can run this code just once
1705   ** save the results, and reuse the same result on subsequent invocations.
1706   */
1707   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1708     testAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1709   }
1710 
1711 #ifndef SQLITE_OMIT_EXPLAIN
1712   if( pParse->explain==2 ){
1713     char *zMsg = sqlite3MPrintf(
1714         pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ",
1715         pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1716     );
1717     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1718   }
1719 #endif
1720 
1721   switch( pExpr->op ){
1722     case TK_IN: {
1723       char affinity;              /* Affinity of the LHS of the IN */
1724       int addr;                   /* Address of OP_OpenEphemeral instruction */
1725       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1726       KeyInfo *pKeyInfo = 0;      /* Key information */
1727 
1728       if( rMayHaveNull ){
1729         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1730       }
1731 
1732       affinity = sqlite3ExprAffinity(pLeft);
1733 
1734       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1735       ** expression it is handled the same way.  An ephemeral table is
1736       ** filled with single-field index keys representing the results
1737       ** from the SELECT or the <exprlist>.
1738       **
1739       ** If the 'x' expression is a column value, or the SELECT...
1740       ** statement returns a column value, then the affinity of that
1741       ** column is used to build the index keys. If both 'x' and the
1742       ** SELECT... statement are columns, then numeric affinity is used
1743       ** if either column has NUMERIC or INTEGER affinity. If neither
1744       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1745       ** is used.
1746       */
1747       pExpr->iTable = pParse->nTab++;
1748       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1749       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1750 
1751       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1752         /* Case 1:     expr IN (SELECT ...)
1753         **
1754         ** Generate code to write the results of the select into the temporary
1755         ** table allocated and opened above.
1756         */
1757         SelectDest dest;
1758         ExprList *pEList;
1759 
1760         assert( !isRowid );
1761         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1762         dest.affSdst = (u8)affinity;
1763         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1764         pExpr->x.pSelect->iLimit = 0;
1765         testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1766         if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
1767           sqlite3KeyInfoUnref(pKeyInfo);
1768           return 0;
1769         }
1770         pEList = pExpr->x.pSelect->pEList;
1771         assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1772         assert( pEList!=0 );
1773         assert( pEList->nExpr>0 );
1774         assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1775         pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1776                                                          pEList->a[0].pExpr);
1777       }else if( ALWAYS(pExpr->x.pList!=0) ){
1778         /* Case 2:     expr IN (exprlist)
1779         **
1780         ** For each expression, build an index key from the evaluation and
1781         ** store it in the temporary table. If <expr> is a column, then use
1782         ** that columns affinity when building index keys. If <expr> is not
1783         ** a column, use numeric affinity.
1784         */
1785         int i;
1786         ExprList *pList = pExpr->x.pList;
1787         struct ExprList_item *pItem;
1788         int r1, r2, r3;
1789 
1790         if( !affinity ){
1791           affinity = SQLITE_AFF_NONE;
1792         }
1793         if( pKeyInfo ){
1794           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1795           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1796         }
1797 
1798         /* Loop through each expression in <exprlist>. */
1799         r1 = sqlite3GetTempReg(pParse);
1800         r2 = sqlite3GetTempReg(pParse);
1801         sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1802         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1803           Expr *pE2 = pItem->pExpr;
1804           int iValToIns;
1805 
1806           /* If the expression is not constant then we will need to
1807           ** disable the test that was generated above that makes sure
1808           ** this code only executes once.  Because for a non-constant
1809           ** expression we need to rerun this code each time.
1810           */
1811           if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){
1812             sqlite3VdbeChangeToNoop(v, testAddr);
1813             testAddr = -1;
1814           }
1815 
1816           /* Evaluate the expression and insert it into the temp table */
1817           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1818             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1819           }else{
1820             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1821             if( isRowid ){
1822               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1823                                 sqlite3VdbeCurrentAddr(v)+2);
1824               VdbeCoverage(v);
1825               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1826             }else{
1827               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1828               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1829               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1830             }
1831           }
1832         }
1833         sqlite3ReleaseTempReg(pParse, r1);
1834         sqlite3ReleaseTempReg(pParse, r2);
1835       }
1836       if( pKeyInfo ){
1837         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
1838       }
1839       break;
1840     }
1841 
1842     case TK_EXISTS:
1843     case TK_SELECT:
1844     default: {
1845       /* If this has to be a scalar SELECT.  Generate code to put the
1846       ** value of this select in a memory cell and record the number
1847       ** of the memory cell in iColumn.  If this is an EXISTS, write
1848       ** an integer 0 (not exists) or 1 (exists) into a memory cell
1849       ** and record that memory cell in iColumn.
1850       */
1851       Select *pSel;                         /* SELECT statement to encode */
1852       SelectDest dest;                      /* How to deal with SELECt result */
1853 
1854       testcase( pExpr->op==TK_EXISTS );
1855       testcase( pExpr->op==TK_SELECT );
1856       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1857 
1858       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1859       pSel = pExpr->x.pSelect;
1860       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1861       if( pExpr->op==TK_SELECT ){
1862         dest.eDest = SRT_Mem;
1863         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
1864         VdbeComment((v, "Init subquery result"));
1865       }else{
1866         dest.eDest = SRT_Exists;
1867         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
1868         VdbeComment((v, "Init EXISTS result"));
1869       }
1870       sqlite3ExprDelete(pParse->db, pSel->pLimit);
1871       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
1872                                   &sqlite3IntTokens[1]);
1873       pSel->iLimit = 0;
1874       if( sqlite3Select(pParse, pSel, &dest) ){
1875         return 0;
1876       }
1877       rReg = dest.iSDParm;
1878       ExprSetVVAProperty(pExpr, EP_NoReduce);
1879       break;
1880     }
1881   }
1882 
1883   if( testAddr>=0 ){
1884     sqlite3VdbeJumpHere(v, testAddr);
1885   }
1886   sqlite3ExprCachePop(pParse);
1887 
1888   return rReg;
1889 }
1890 #endif /* SQLITE_OMIT_SUBQUERY */
1891 
1892 #ifndef SQLITE_OMIT_SUBQUERY
1893 /*
1894 ** Generate code for an IN expression.
1895 **
1896 **      x IN (SELECT ...)
1897 **      x IN (value, value, ...)
1898 **
1899 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
1900 ** is an array of zero or more values.  The expression is true if the LHS is
1901 ** contained within the RHS.  The value of the expression is unknown (NULL)
1902 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
1903 ** RHS contains one or more NULL values.
1904 **
1905 ** This routine generates code will jump to destIfFalse if the LHS is not
1906 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
1907 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
1908 ** within the RHS then fall through.
1909 */
1910 static void sqlite3ExprCodeIN(
1911   Parse *pParse,        /* Parsing and code generating context */
1912   Expr *pExpr,          /* The IN expression */
1913   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
1914   int destIfNull        /* Jump here if the results are unknown due to NULLs */
1915 ){
1916   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
1917   char affinity;        /* Comparison affinity to use */
1918   int eType;            /* Type of the RHS */
1919   int r1;               /* Temporary use register */
1920   Vdbe *v;              /* Statement under construction */
1921 
1922   /* Compute the RHS.   After this step, the table with cursor
1923   ** pExpr->iTable will contains the values that make up the RHS.
1924   */
1925   v = pParse->pVdbe;
1926   assert( v!=0 );       /* OOM detected prior to this routine */
1927   VdbeNoopComment((v, "begin IN expr"));
1928   eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
1929 
1930   /* Figure out the affinity to use to create a key from the results
1931   ** of the expression. affinityStr stores a static string suitable for
1932   ** P4 of OP_MakeRecord.
1933   */
1934   affinity = comparisonAffinity(pExpr);
1935 
1936   /* Code the LHS, the <expr> from "<expr> IN (...)".
1937   */
1938   sqlite3ExprCachePush(pParse);
1939   r1 = sqlite3GetTempReg(pParse);
1940   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
1941 
1942   /* If the LHS is NULL, then the result is either false or NULL depending
1943   ** on whether the RHS is empty or not, respectively.
1944   */
1945   if( destIfNull==destIfFalse ){
1946     /* Shortcut for the common case where the false and NULL outcomes are
1947     ** the same. */
1948     sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
1949   }else{
1950     int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
1951     sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
1952     VdbeCoverage(v);
1953     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
1954     sqlite3VdbeJumpHere(v, addr1);
1955   }
1956 
1957   if( eType==IN_INDEX_ROWID ){
1958     /* In this case, the RHS is the ROWID of table b-tree
1959     */
1960     sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
1961     sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
1962     VdbeCoverage(v);
1963   }else{
1964     /* In this case, the RHS is an index b-tree.
1965     */
1966     sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
1967 
1968     /* If the set membership test fails, then the result of the
1969     ** "x IN (...)" expression must be either 0 or NULL. If the set
1970     ** contains no NULL values, then the result is 0. If the set
1971     ** contains one or more NULL values, then the result of the
1972     ** expression is also NULL.
1973     */
1974     if( rRhsHasNull==0 || destIfFalse==destIfNull ){
1975       /* This branch runs if it is known at compile time that the RHS
1976       ** cannot contain NULL values. This happens as the result
1977       ** of a "NOT NULL" constraint in the database schema.
1978       **
1979       ** Also run this branch if NULL is equivalent to FALSE
1980       ** for this particular IN operator.
1981       */
1982       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
1983       VdbeCoverage(v);
1984     }else{
1985       /* In this branch, the RHS of the IN might contain a NULL and
1986       ** the presence of a NULL on the RHS makes a difference in the
1987       ** outcome.
1988       */
1989       int j1, j2;
1990 
1991       /* First check to see if the LHS is contained in the RHS.  If so,
1992       ** then the presence of NULLs in the RHS does not matter, so jump
1993       ** over all of the code that follows.
1994       */
1995       j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
1996       VdbeCoverage(v);
1997 
1998       /* Here we begin generating code that runs if the LHS is not
1999       ** contained within the RHS.  Generate additional code that
2000       ** tests the RHS for NULLs.  If the RHS contains a NULL then
2001       ** jump to destIfNull.  If there are no NULLs in the RHS then
2002       ** jump to destIfFalse.
2003       */
2004       sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); VdbeCoverage(v);
2005       sqlite3VdbeAddOp2(v, OP_IfNot, rRhsHasNull, destIfFalse); VdbeCoverage(v);
2006       j2 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
2007       VdbeCoverage(v);
2008       sqlite3VdbeAddOp2(v, OP_Integer, 0, rRhsHasNull);
2009       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2010       sqlite3VdbeJumpHere(v, j2);
2011       sqlite3VdbeAddOp2(v, OP_Integer, 1, rRhsHasNull);
2012       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
2013 
2014       /* The OP_Found at the top of this branch jumps here when true,
2015       ** causing the overall IN expression evaluation to fall through.
2016       */
2017       sqlite3VdbeJumpHere(v, j1);
2018     }
2019   }
2020   sqlite3ReleaseTempReg(pParse, r1);
2021   sqlite3ExprCachePop(pParse);
2022   VdbeComment((v, "end IN expr"));
2023 }
2024 #endif /* SQLITE_OMIT_SUBQUERY */
2025 
2026 /*
2027 ** Duplicate an 8-byte value
2028 */
2029 static char *dup8bytes(Vdbe *v, const char *in){
2030   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
2031   if( out ){
2032     memcpy(out, in, 8);
2033   }
2034   return out;
2035 }
2036 
2037 #ifndef SQLITE_OMIT_FLOATING_POINT
2038 /*
2039 ** Generate an instruction that will put the floating point
2040 ** value described by z[0..n-1] into register iMem.
2041 **
2042 ** The z[] string will probably not be zero-terminated.  But the
2043 ** z[n] character is guaranteed to be something that does not look
2044 ** like the continuation of the number.
2045 */
2046 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2047   if( ALWAYS(z!=0) ){
2048     double value;
2049     char *zV;
2050     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2051     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2052     if( negateFlag ) value = -value;
2053     zV = dup8bytes(v, (char*)&value);
2054     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
2055   }
2056 }
2057 #endif
2058 
2059 
2060 /*
2061 ** Generate an instruction that will put the integer describe by
2062 ** text z[0..n-1] into register iMem.
2063 **
2064 ** Expr.u.zToken is always UTF8 and zero-terminated.
2065 */
2066 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2067   Vdbe *v = pParse->pVdbe;
2068   if( pExpr->flags & EP_IntValue ){
2069     int i = pExpr->u.iValue;
2070     assert( i>=0 );
2071     if( negFlag ) i = -i;
2072     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2073   }else{
2074     int c;
2075     i64 value;
2076     const char *z = pExpr->u.zToken;
2077     assert( z!=0 );
2078     c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2079     if( c==0 || (c==2 && negFlag) ){
2080       char *zV;
2081       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2082       zV = dup8bytes(v, (char*)&value);
2083       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
2084     }else{
2085 #ifdef SQLITE_OMIT_FLOATING_POINT
2086       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2087 #else
2088       codeReal(v, z, negFlag, iMem);
2089 #endif
2090     }
2091   }
2092 }
2093 
2094 /*
2095 ** Clear a cache entry.
2096 */
2097 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2098   if( p->tempReg ){
2099     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2100       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2101     }
2102     p->tempReg = 0;
2103   }
2104 }
2105 
2106 
2107 /*
2108 ** Record in the column cache that a particular column from a
2109 ** particular table is stored in a particular register.
2110 */
2111 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2112   int i;
2113   int minLru;
2114   int idxLru;
2115   struct yColCache *p;
2116 
2117   assert( iReg>0 );  /* Register numbers are always positive */
2118   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2119 
2120   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2121   ** for testing only - to verify that SQLite always gets the same answer
2122   ** with and without the column cache.
2123   */
2124   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2125 
2126   /* First replace any existing entry.
2127   **
2128   ** Actually, the way the column cache is currently used, we are guaranteed
2129   ** that the object will never already be in cache.  Verify this guarantee.
2130   */
2131 #ifndef NDEBUG
2132   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2133     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2134   }
2135 #endif
2136 
2137   /* Find an empty slot and replace it */
2138   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2139     if( p->iReg==0 ){
2140       p->iLevel = pParse->iCacheLevel;
2141       p->iTable = iTab;
2142       p->iColumn = iCol;
2143       p->iReg = iReg;
2144       p->tempReg = 0;
2145       p->lru = pParse->iCacheCnt++;
2146       return;
2147     }
2148   }
2149 
2150   /* Replace the last recently used */
2151   minLru = 0x7fffffff;
2152   idxLru = -1;
2153   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2154     if( p->lru<minLru ){
2155       idxLru = i;
2156       minLru = p->lru;
2157     }
2158   }
2159   if( ALWAYS(idxLru>=0) ){
2160     p = &pParse->aColCache[idxLru];
2161     p->iLevel = pParse->iCacheLevel;
2162     p->iTable = iTab;
2163     p->iColumn = iCol;
2164     p->iReg = iReg;
2165     p->tempReg = 0;
2166     p->lru = pParse->iCacheCnt++;
2167     return;
2168   }
2169 }
2170 
2171 /*
2172 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2173 ** Purge the range of registers from the column cache.
2174 */
2175 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2176   int i;
2177   int iLast = iReg + nReg - 1;
2178   struct yColCache *p;
2179   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2180     int r = p->iReg;
2181     if( r>=iReg && r<=iLast ){
2182       cacheEntryClear(pParse, p);
2183       p->iReg = 0;
2184     }
2185   }
2186 }
2187 
2188 /*
2189 ** Remember the current column cache context.  Any new entries added
2190 ** added to the column cache after this call are removed when the
2191 ** corresponding pop occurs.
2192 */
2193 void sqlite3ExprCachePush(Parse *pParse){
2194   pParse->iCacheLevel++;
2195 #ifdef SQLITE_DEBUG
2196   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2197     printf("PUSH to %d\n", pParse->iCacheLevel);
2198   }
2199 #endif
2200 }
2201 
2202 /*
2203 ** Remove from the column cache any entries that were added since the
2204 ** the previous sqlite3ExprCachePush operation.  In other words, restore
2205 ** the cache to the state it was in prior the most recent Push.
2206 */
2207 void sqlite3ExprCachePop(Parse *pParse){
2208   int i;
2209   struct yColCache *p;
2210   assert( pParse->iCacheLevel>=1 );
2211   pParse->iCacheLevel--;
2212 #ifdef SQLITE_DEBUG
2213   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2214     printf("POP  to %d\n", pParse->iCacheLevel);
2215   }
2216 #endif
2217   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2218     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2219       cacheEntryClear(pParse, p);
2220       p->iReg = 0;
2221     }
2222   }
2223 }
2224 
2225 /*
2226 ** When a cached column is reused, make sure that its register is
2227 ** no longer available as a temp register.  ticket #3879:  that same
2228 ** register might be in the cache in multiple places, so be sure to
2229 ** get them all.
2230 */
2231 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2232   int i;
2233   struct yColCache *p;
2234   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2235     if( p->iReg==iReg ){
2236       p->tempReg = 0;
2237     }
2238   }
2239 }
2240 
2241 /*
2242 ** Generate code to extract the value of the iCol-th column of a table.
2243 */
2244 void sqlite3ExprCodeGetColumnOfTable(
2245   Vdbe *v,        /* The VDBE under construction */
2246   Table *pTab,    /* The table containing the value */
2247   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
2248   int iCol,       /* Index of the column to extract */
2249   int regOut      /* Extract the value into this register */
2250 ){
2251   if( iCol<0 || iCol==pTab->iPKey ){
2252     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2253   }else{
2254     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2255     int x = iCol;
2256     if( !HasRowid(pTab) ){
2257       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2258     }
2259     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2260   }
2261   if( iCol>=0 ){
2262     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2263   }
2264 }
2265 
2266 /*
2267 ** Generate code that will extract the iColumn-th column from
2268 ** table pTab and store the column value in a register.  An effort
2269 ** is made to store the column value in register iReg, but this is
2270 ** not guaranteed.  The location of the column value is returned.
2271 **
2272 ** There must be an open cursor to pTab in iTable when this routine
2273 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2274 */
2275 int sqlite3ExprCodeGetColumn(
2276   Parse *pParse,   /* Parsing and code generating context */
2277   Table *pTab,     /* Description of the table we are reading from */
2278   int iColumn,     /* Index of the table column */
2279   int iTable,      /* The cursor pointing to the table */
2280   int iReg,        /* Store results here */
2281   u8 p5            /* P5 value for OP_Column */
2282 ){
2283   Vdbe *v = pParse->pVdbe;
2284   int i;
2285   struct yColCache *p;
2286 
2287   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2288     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2289       p->lru = pParse->iCacheCnt++;
2290       sqlite3ExprCachePinRegister(pParse, p->iReg);
2291       return p->iReg;
2292     }
2293   }
2294   assert( v!=0 );
2295   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2296   if( p5 ){
2297     sqlite3VdbeChangeP5(v, p5);
2298   }else{
2299     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2300   }
2301   return iReg;
2302 }
2303 
2304 /*
2305 ** Clear all column cache entries.
2306 */
2307 void sqlite3ExprCacheClear(Parse *pParse){
2308   int i;
2309   struct yColCache *p;
2310 
2311 #if SQLITE_DEBUG
2312   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2313     printf("CLEAR\n");
2314   }
2315 #endif
2316   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2317     if( p->iReg ){
2318       cacheEntryClear(pParse, p);
2319       p->iReg = 0;
2320     }
2321   }
2322 }
2323 
2324 /*
2325 ** Record the fact that an affinity change has occurred on iCount
2326 ** registers starting with iStart.
2327 */
2328 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2329   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2330 }
2331 
2332 /*
2333 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2334 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2335 */
2336 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2337   int i;
2338   struct yColCache *p;
2339   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2340   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2341   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2342     int x = p->iReg;
2343     if( x>=iFrom && x<iFrom+nReg ){
2344       p->iReg += iTo-iFrom;
2345     }
2346   }
2347 }
2348 
2349 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2350 /*
2351 ** Return true if any register in the range iFrom..iTo (inclusive)
2352 ** is used as part of the column cache.
2353 **
2354 ** This routine is used within assert() and testcase() macros only
2355 ** and does not appear in a normal build.
2356 */
2357 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2358   int i;
2359   struct yColCache *p;
2360   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2361     int r = p->iReg;
2362     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2363   }
2364   return 0;
2365 }
2366 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2367 
2368 /*
2369 ** Convert an expression node to a TK_REGISTER
2370 */
2371 static void exprToRegister(Expr *p, int iReg){
2372   p->op2 = p->op;
2373   p->op = TK_REGISTER;
2374   p->iTable = iReg;
2375   ExprClearProperty(p, EP_Skip);
2376 }
2377 
2378 /*
2379 ** Generate code into the current Vdbe to evaluate the given
2380 ** expression.  Attempt to store the results in register "target".
2381 ** Return the register where results are stored.
2382 **
2383 ** With this routine, there is no guarantee that results will
2384 ** be stored in target.  The result might be stored in some other
2385 ** register if it is convenient to do so.  The calling function
2386 ** must check the return code and move the results to the desired
2387 ** register.
2388 */
2389 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2390   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2391   int op;                   /* The opcode being coded */
2392   int inReg = target;       /* Results stored in register inReg */
2393   int regFree1 = 0;         /* If non-zero free this temporary register */
2394   int regFree2 = 0;         /* If non-zero free this temporary register */
2395   int r1, r2, r3, r4;       /* Various register numbers */
2396   sqlite3 *db = pParse->db; /* The database connection */
2397   Expr tempX;               /* Temporary expression node */
2398 
2399   assert( target>0 && target<=pParse->nMem );
2400   if( v==0 ){
2401     assert( pParse->db->mallocFailed );
2402     return 0;
2403   }
2404 
2405   if( pExpr==0 ){
2406     op = TK_NULL;
2407   }else{
2408     op = pExpr->op;
2409   }
2410   switch( op ){
2411     case TK_AGG_COLUMN: {
2412       AggInfo *pAggInfo = pExpr->pAggInfo;
2413       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2414       if( !pAggInfo->directMode ){
2415         assert( pCol->iMem>0 );
2416         inReg = pCol->iMem;
2417         break;
2418       }else if( pAggInfo->useSortingIdx ){
2419         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2420                               pCol->iSorterColumn, target);
2421         break;
2422       }
2423       /* Otherwise, fall thru into the TK_COLUMN case */
2424     }
2425     case TK_COLUMN: {
2426       int iTab = pExpr->iTable;
2427       if( iTab<0 ){
2428         if( pParse->ckBase>0 ){
2429           /* Generating CHECK constraints or inserting into partial index */
2430           inReg = pExpr->iColumn + pParse->ckBase;
2431           break;
2432         }else{
2433           /* Deleting from a partial index */
2434           iTab = pParse->iPartIdxTab;
2435         }
2436       }
2437       inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2438                                pExpr->iColumn, iTab, target,
2439                                pExpr->op2);
2440       break;
2441     }
2442     case TK_INTEGER: {
2443       codeInteger(pParse, pExpr, 0, target);
2444       break;
2445     }
2446 #ifndef SQLITE_OMIT_FLOATING_POINT
2447     case TK_FLOAT: {
2448       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2449       codeReal(v, pExpr->u.zToken, 0, target);
2450       break;
2451     }
2452 #endif
2453     case TK_STRING: {
2454       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2455       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2456       break;
2457     }
2458     case TK_NULL: {
2459       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2460       break;
2461     }
2462 #ifndef SQLITE_OMIT_BLOB_LITERAL
2463     case TK_BLOB: {
2464       int n;
2465       const char *z;
2466       char *zBlob;
2467       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2468       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2469       assert( pExpr->u.zToken[1]=='\'' );
2470       z = &pExpr->u.zToken[2];
2471       n = sqlite3Strlen30(z) - 1;
2472       assert( z[n]=='\'' );
2473       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2474       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2475       break;
2476     }
2477 #endif
2478     case TK_VARIABLE: {
2479       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2480       assert( pExpr->u.zToken!=0 );
2481       assert( pExpr->u.zToken[0]!=0 );
2482       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2483       if( pExpr->u.zToken[1]!=0 ){
2484         assert( pExpr->u.zToken[0]=='?'
2485              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2486         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2487       }
2488       break;
2489     }
2490     case TK_REGISTER: {
2491       inReg = pExpr->iTable;
2492       break;
2493     }
2494     case TK_AS: {
2495       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2496       break;
2497     }
2498 #ifndef SQLITE_OMIT_CAST
2499     case TK_CAST: {
2500       /* Expressions of the form:   CAST(pLeft AS token) */
2501       int aff, to_op;
2502       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2503       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2504       aff = sqlite3AffinityType(pExpr->u.zToken, 0);
2505       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2506       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
2507       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
2508       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2509       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
2510       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
2511       testcase( to_op==OP_ToText );
2512       testcase( to_op==OP_ToBlob );
2513       testcase( to_op==OP_ToNumeric );
2514       testcase( to_op==OP_ToInt );
2515       testcase( to_op==OP_ToReal );
2516       if( inReg!=target ){
2517         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2518         inReg = target;
2519       }
2520       sqlite3VdbeAddOp1(v, to_op, inReg);
2521       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2522       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2523       break;
2524     }
2525 #endif /* SQLITE_OMIT_CAST */
2526     case TK_LT:
2527     case TK_LE:
2528     case TK_GT:
2529     case TK_GE:
2530     case TK_NE:
2531     case TK_EQ: {
2532       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2533       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2534       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2535                   r1, r2, inReg, SQLITE_STOREP2);
2536       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
2537       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
2538       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
2539       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
2540       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
2541       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
2542       testcase( regFree1==0 );
2543       testcase( regFree2==0 );
2544       break;
2545     }
2546     case TK_IS:
2547     case TK_ISNOT: {
2548       testcase( op==TK_IS );
2549       testcase( op==TK_ISNOT );
2550       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2551       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2552       op = (op==TK_IS) ? TK_EQ : TK_NE;
2553       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2554                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2555       VdbeCoverageIf(v, op==TK_EQ);
2556       VdbeCoverageIf(v, op==TK_NE);
2557       testcase( regFree1==0 );
2558       testcase( regFree2==0 );
2559       break;
2560     }
2561     case TK_AND:
2562     case TK_OR:
2563     case TK_PLUS:
2564     case TK_STAR:
2565     case TK_MINUS:
2566     case TK_REM:
2567     case TK_BITAND:
2568     case TK_BITOR:
2569     case TK_SLASH:
2570     case TK_LSHIFT:
2571     case TK_RSHIFT:
2572     case TK_CONCAT: {
2573       assert( TK_AND==OP_And );            testcase( op==TK_AND );
2574       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
2575       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
2576       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
2577       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
2578       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
2579       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
2580       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
2581       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
2582       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
2583       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
2584       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2585       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2586       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2587       testcase( regFree1==0 );
2588       testcase( regFree2==0 );
2589       break;
2590     }
2591     case TK_UMINUS: {
2592       Expr *pLeft = pExpr->pLeft;
2593       assert( pLeft );
2594       if( pLeft->op==TK_INTEGER ){
2595         codeInteger(pParse, pLeft, 1, target);
2596 #ifndef SQLITE_OMIT_FLOATING_POINT
2597       }else if( pLeft->op==TK_FLOAT ){
2598         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2599         codeReal(v, pLeft->u.zToken, 1, target);
2600 #endif
2601       }else{
2602         tempX.op = TK_INTEGER;
2603         tempX.flags = EP_IntValue|EP_TokenOnly;
2604         tempX.u.iValue = 0;
2605         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2606         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2607         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2608         testcase( regFree2==0 );
2609       }
2610       inReg = target;
2611       break;
2612     }
2613     case TK_BITNOT:
2614     case TK_NOT: {
2615       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
2616       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
2617       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2618       testcase( regFree1==0 );
2619       inReg = target;
2620       sqlite3VdbeAddOp2(v, op, r1, inReg);
2621       break;
2622     }
2623     case TK_ISNULL:
2624     case TK_NOTNULL: {
2625       int addr;
2626       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
2627       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
2628       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2629       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2630       testcase( regFree1==0 );
2631       addr = sqlite3VdbeAddOp1(v, op, r1);
2632       VdbeCoverageIf(v, op==TK_ISNULL);
2633       VdbeCoverageIf(v, op==TK_NOTNULL);
2634       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2635       sqlite3VdbeJumpHere(v, addr);
2636       break;
2637     }
2638     case TK_AGG_FUNCTION: {
2639       AggInfo *pInfo = pExpr->pAggInfo;
2640       if( pInfo==0 ){
2641         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2642         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2643       }else{
2644         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2645       }
2646       break;
2647     }
2648     case TK_FUNCTION: {
2649       ExprList *pFarg;       /* List of function arguments */
2650       int nFarg;             /* Number of function arguments */
2651       FuncDef *pDef;         /* The function definition object */
2652       int nId;               /* Length of the function name in bytes */
2653       const char *zId;       /* The function name */
2654       u32 constMask = 0;     /* Mask of function arguments that are constant */
2655       int i;                 /* Loop counter */
2656       u8 enc = ENC(db);      /* The text encoding used by this database */
2657       CollSeq *pColl = 0;    /* A collating sequence */
2658 
2659       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2660       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2661         pFarg = 0;
2662       }else{
2663         pFarg = pExpr->x.pList;
2664       }
2665       nFarg = pFarg ? pFarg->nExpr : 0;
2666       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2667       zId = pExpr->u.zToken;
2668       nId = sqlite3Strlen30(zId);
2669       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2670       if( pDef==0 ){
2671         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2672         break;
2673       }
2674 
2675       /* Attempt a direct implementation of the built-in COALESCE() and
2676       ** IFNULL() functions.  This avoids unnecessary evalation of
2677       ** arguments past the first non-NULL argument.
2678       */
2679       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2680         int endCoalesce = sqlite3VdbeMakeLabel(v);
2681         assert( nFarg>=2 );
2682         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2683         for(i=1; i<nFarg; i++){
2684           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2685           VdbeCoverage(v);
2686           sqlite3ExprCacheRemove(pParse, target, 1);
2687           sqlite3ExprCachePush(pParse);
2688           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2689           sqlite3ExprCachePop(pParse);
2690         }
2691         sqlite3VdbeResolveLabel(v, endCoalesce);
2692         break;
2693       }
2694 
2695       /* The UNLIKELY() function is a no-op.  The result is the value
2696       ** of the first argument.
2697       */
2698       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2699         assert( nFarg>=1 );
2700         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2701         break;
2702       }
2703 
2704       for(i=0; i<nFarg; i++){
2705         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2706           testcase( i==31 );
2707           constMask |= MASKBIT32(i);
2708         }
2709         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2710           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2711         }
2712       }
2713       if( pFarg ){
2714         if( constMask ){
2715           r1 = pParse->nMem+1;
2716           pParse->nMem += nFarg;
2717         }else{
2718           r1 = sqlite3GetTempRange(pParse, nFarg);
2719         }
2720 
2721         /* For length() and typeof() functions with a column argument,
2722         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2723         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2724         ** loading.
2725         */
2726         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2727           u8 exprOp;
2728           assert( nFarg==1 );
2729           assert( pFarg->a[0].pExpr!=0 );
2730           exprOp = pFarg->a[0].pExpr->op;
2731           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2732             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2733             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2734             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
2735             pFarg->a[0].pExpr->op2 =
2736                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
2737           }
2738         }
2739 
2740         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2741         sqlite3ExprCodeExprList(pParse, pFarg, r1,
2742                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
2743         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
2744       }else{
2745         r1 = 0;
2746       }
2747 #ifndef SQLITE_OMIT_VIRTUALTABLE
2748       /* Possibly overload the function if the first argument is
2749       ** a virtual table column.
2750       **
2751       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2752       ** second argument, not the first, as the argument to test to
2753       ** see if it is a column in a virtual table.  This is done because
2754       ** the left operand of infix functions (the operand we want to
2755       ** control overloading) ends up as the second argument to the
2756       ** function.  The expression "A glob B" is equivalent to
2757       ** "glob(B,A).  We want to use the A in "A glob B" to test
2758       ** for function overloading.  But we use the B term in "glob(B,A)".
2759       */
2760       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2761         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2762       }else if( nFarg>0 ){
2763         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2764       }
2765 #endif
2766       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
2767         if( !pColl ) pColl = db->pDfltColl;
2768         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2769       }
2770       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2771                         (char*)pDef, P4_FUNCDEF);
2772       sqlite3VdbeChangeP5(v, (u8)nFarg);
2773       if( nFarg && constMask==0 ){
2774         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2775       }
2776       break;
2777     }
2778 #ifndef SQLITE_OMIT_SUBQUERY
2779     case TK_EXISTS:
2780     case TK_SELECT: {
2781       testcase( op==TK_EXISTS );
2782       testcase( op==TK_SELECT );
2783       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2784       break;
2785     }
2786     case TK_IN: {
2787       int destIfFalse = sqlite3VdbeMakeLabel(v);
2788       int destIfNull = sqlite3VdbeMakeLabel(v);
2789       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2790       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2791       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2792       sqlite3VdbeResolveLabel(v, destIfFalse);
2793       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2794       sqlite3VdbeResolveLabel(v, destIfNull);
2795       break;
2796     }
2797 #endif /* SQLITE_OMIT_SUBQUERY */
2798 
2799 
2800     /*
2801     **    x BETWEEN y AND z
2802     **
2803     ** This is equivalent to
2804     **
2805     **    x>=y AND x<=z
2806     **
2807     ** X is stored in pExpr->pLeft.
2808     ** Y is stored in pExpr->pList->a[0].pExpr.
2809     ** Z is stored in pExpr->pList->a[1].pExpr.
2810     */
2811     case TK_BETWEEN: {
2812       Expr *pLeft = pExpr->pLeft;
2813       struct ExprList_item *pLItem = pExpr->x.pList->a;
2814       Expr *pRight = pLItem->pExpr;
2815 
2816       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2817       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2818       testcase( regFree1==0 );
2819       testcase( regFree2==0 );
2820       r3 = sqlite3GetTempReg(pParse);
2821       r4 = sqlite3GetTempReg(pParse);
2822       codeCompare(pParse, pLeft, pRight, OP_Ge,
2823                   r1, r2, r3, SQLITE_STOREP2);  VdbeCoverage(v);
2824       pLItem++;
2825       pRight = pLItem->pExpr;
2826       sqlite3ReleaseTempReg(pParse, regFree2);
2827       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2828       testcase( regFree2==0 );
2829       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2830       VdbeCoverage(v);
2831       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2832       sqlite3ReleaseTempReg(pParse, r3);
2833       sqlite3ReleaseTempReg(pParse, r4);
2834       break;
2835     }
2836     case TK_COLLATE:
2837     case TK_UPLUS: {
2838       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2839       break;
2840     }
2841 
2842     case TK_TRIGGER: {
2843       /* If the opcode is TK_TRIGGER, then the expression is a reference
2844       ** to a column in the new.* or old.* pseudo-tables available to
2845       ** trigger programs. In this case Expr.iTable is set to 1 for the
2846       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2847       ** is set to the column of the pseudo-table to read, or to -1 to
2848       ** read the rowid field.
2849       **
2850       ** The expression is implemented using an OP_Param opcode. The p1
2851       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2852       ** to reference another column of the old.* pseudo-table, where
2853       ** i is the index of the column. For a new.rowid reference, p1 is
2854       ** set to (n+1), where n is the number of columns in each pseudo-table.
2855       ** For a reference to any other column in the new.* pseudo-table, p1
2856       ** is set to (n+2+i), where n and i are as defined previously. For
2857       ** example, if the table on which triggers are being fired is
2858       ** declared as:
2859       **
2860       **   CREATE TABLE t1(a, b);
2861       **
2862       ** Then p1 is interpreted as follows:
2863       **
2864       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
2865       **   p1==1   ->    old.a         p1==4   ->    new.a
2866       **   p1==2   ->    old.b         p1==5   ->    new.b
2867       */
2868       Table *pTab = pExpr->pTab;
2869       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2870 
2871       assert( pExpr->iTable==0 || pExpr->iTable==1 );
2872       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2873       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2874       assert( p1>=0 && p1<(pTab->nCol*2+2) );
2875 
2876       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
2877       VdbeComment((v, "%s.%s -> $%d",
2878         (pExpr->iTable ? "new" : "old"),
2879         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
2880         target
2881       ));
2882 
2883 #ifndef SQLITE_OMIT_FLOATING_POINT
2884       /* If the column has REAL affinity, it may currently be stored as an
2885       ** integer. Use OP_RealAffinity to make sure it is really real.  */
2886       if( pExpr->iColumn>=0
2887        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
2888       ){
2889         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
2890       }
2891 #endif
2892       break;
2893     }
2894 
2895 
2896     /*
2897     ** Form A:
2898     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2899     **
2900     ** Form B:
2901     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2902     **
2903     ** Form A is can be transformed into the equivalent form B as follows:
2904     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2905     **        WHEN x=eN THEN rN ELSE y END
2906     **
2907     ** X (if it exists) is in pExpr->pLeft.
2908     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
2909     ** odd.  The Y is also optional.  If the number of elements in x.pList
2910     ** is even, then Y is omitted and the "otherwise" result is NULL.
2911     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2912     **
2913     ** The result of the expression is the Ri for the first matching Ei,
2914     ** or if there is no matching Ei, the ELSE term Y, or if there is
2915     ** no ELSE term, NULL.
2916     */
2917     default: assert( op==TK_CASE ); {
2918       int endLabel;                     /* GOTO label for end of CASE stmt */
2919       int nextCase;                     /* GOTO label for next WHEN clause */
2920       int nExpr;                        /* 2x number of WHEN terms */
2921       int i;                            /* Loop counter */
2922       ExprList *pEList;                 /* List of WHEN terms */
2923       struct ExprList_item *aListelem;  /* Array of WHEN terms */
2924       Expr opCompare;                   /* The X==Ei expression */
2925       Expr *pX;                         /* The X expression */
2926       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
2927       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
2928 
2929       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
2930       assert(pExpr->x.pList->nExpr > 0);
2931       pEList = pExpr->x.pList;
2932       aListelem = pEList->a;
2933       nExpr = pEList->nExpr;
2934       endLabel = sqlite3VdbeMakeLabel(v);
2935       if( (pX = pExpr->pLeft)!=0 ){
2936         tempX = *pX;
2937         testcase( pX->op==TK_COLUMN );
2938         exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
2939         testcase( regFree1==0 );
2940         opCompare.op = TK_EQ;
2941         opCompare.pLeft = &tempX;
2942         pTest = &opCompare;
2943         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
2944         ** The value in regFree1 might get SCopy-ed into the file result.
2945         ** So make sure that the regFree1 register is not reused for other
2946         ** purposes and possibly overwritten.  */
2947         regFree1 = 0;
2948       }
2949       for(i=0; i<nExpr-1; i=i+2){
2950         sqlite3ExprCachePush(pParse);
2951         if( pX ){
2952           assert( pTest!=0 );
2953           opCompare.pRight = aListelem[i].pExpr;
2954         }else{
2955           pTest = aListelem[i].pExpr;
2956         }
2957         nextCase = sqlite3VdbeMakeLabel(v);
2958         testcase( pTest->op==TK_COLUMN );
2959         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2960         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2961         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2962         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2963         sqlite3ExprCachePop(pParse);
2964         sqlite3VdbeResolveLabel(v, nextCase);
2965       }
2966       if( (nExpr&1)!=0 ){
2967         sqlite3ExprCachePush(pParse);
2968         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
2969         sqlite3ExprCachePop(pParse);
2970       }else{
2971         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2972       }
2973       assert( db->mallocFailed || pParse->nErr>0
2974            || pParse->iCacheLevel==iCacheLevel );
2975       sqlite3VdbeResolveLabel(v, endLabel);
2976       break;
2977     }
2978 #ifndef SQLITE_OMIT_TRIGGER
2979     case TK_RAISE: {
2980       assert( pExpr->affinity==OE_Rollback
2981            || pExpr->affinity==OE_Abort
2982            || pExpr->affinity==OE_Fail
2983            || pExpr->affinity==OE_Ignore
2984       );
2985       if( !pParse->pTriggerTab ){
2986         sqlite3ErrorMsg(pParse,
2987                        "RAISE() may only be used within a trigger-program");
2988         return 0;
2989       }
2990       if( pExpr->affinity==OE_Abort ){
2991         sqlite3MayAbort(pParse);
2992       }
2993       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2994       if( pExpr->affinity==OE_Ignore ){
2995         sqlite3VdbeAddOp4(
2996             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
2997         VdbeCoverage(v);
2998       }else{
2999         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3000                               pExpr->affinity, pExpr->u.zToken, 0, 0);
3001       }
3002 
3003       break;
3004     }
3005 #endif
3006   }
3007   sqlite3ReleaseTempReg(pParse, regFree1);
3008   sqlite3ReleaseTempReg(pParse, regFree2);
3009   return inReg;
3010 }
3011 
3012 /*
3013 ** Factor out the code of the given expression to initialization time.
3014 */
3015 void sqlite3ExprCodeAtInit(
3016   Parse *pParse,    /* Parsing context */
3017   Expr *pExpr,      /* The expression to code when the VDBE initializes */
3018   int regDest,      /* Store the value in this register */
3019   u8 reusable       /* True if this expression is reusable */
3020 ){
3021   ExprList *p;
3022   assert( ConstFactorOk(pParse) );
3023   p = pParse->pConstExpr;
3024   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3025   p = sqlite3ExprListAppend(pParse, p, pExpr);
3026   if( p ){
3027      struct ExprList_item *pItem = &p->a[p->nExpr-1];
3028      pItem->u.iConstExprReg = regDest;
3029      pItem->reusable = reusable;
3030   }
3031   pParse->pConstExpr = p;
3032 }
3033 
3034 /*
3035 ** Generate code to evaluate an expression and store the results
3036 ** into a register.  Return the register number where the results
3037 ** are stored.
3038 **
3039 ** If the register is a temporary register that can be deallocated,
3040 ** then write its number into *pReg.  If the result register is not
3041 ** a temporary, then set *pReg to zero.
3042 **
3043 ** If pExpr is a constant, then this routine might generate this
3044 ** code to fill the register in the initialization section of the
3045 ** VDBE program, in order to factor it out of the evaluation loop.
3046 */
3047 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3048   int r2;
3049   pExpr = sqlite3ExprSkipCollate(pExpr);
3050   if( ConstFactorOk(pParse)
3051    && pExpr->op!=TK_REGISTER
3052    && sqlite3ExprIsConstantNotJoin(pExpr)
3053   ){
3054     ExprList *p = pParse->pConstExpr;
3055     int i;
3056     *pReg  = 0;
3057     if( p ){
3058       struct ExprList_item *pItem;
3059       for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3060         if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3061           return pItem->u.iConstExprReg;
3062         }
3063       }
3064     }
3065     r2 = ++pParse->nMem;
3066     sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3067   }else{
3068     int r1 = sqlite3GetTempReg(pParse);
3069     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3070     if( r2==r1 ){
3071       *pReg = r1;
3072     }else{
3073       sqlite3ReleaseTempReg(pParse, r1);
3074       *pReg = 0;
3075     }
3076   }
3077   return r2;
3078 }
3079 
3080 /*
3081 ** Generate code that will evaluate expression pExpr and store the
3082 ** results in register target.  The results are guaranteed to appear
3083 ** in register target.
3084 */
3085 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3086   int inReg;
3087 
3088   assert( target>0 && target<=pParse->nMem );
3089   if( pExpr && pExpr->op==TK_REGISTER ){
3090     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3091   }else{
3092     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3093     assert( pParse->pVdbe || pParse->db->mallocFailed );
3094     if( inReg!=target && pParse->pVdbe ){
3095       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
3096     }
3097   }
3098 }
3099 
3100 /*
3101 ** Generate code that will evaluate expression pExpr and store the
3102 ** results in register target.  The results are guaranteed to appear
3103 ** in register target.  If the expression is constant, then this routine
3104 ** might choose to code the expression at initialization time.
3105 */
3106 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
3107   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
3108     sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
3109   }else{
3110     sqlite3ExprCode(pParse, pExpr, target);
3111   }
3112 }
3113 
3114 /*
3115 ** Generate code that evalutes the given expression and puts the result
3116 ** in register target.
3117 **
3118 ** Also make a copy of the expression results into another "cache" register
3119 ** and modify the expression so that the next time it is evaluated,
3120 ** the result is a copy of the cache register.
3121 **
3122 ** This routine is used for expressions that are used multiple
3123 ** times.  They are evaluated once and the results of the expression
3124 ** are reused.
3125 */
3126 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3127   Vdbe *v = pParse->pVdbe;
3128   int iMem;
3129 
3130   assert( target>0 );
3131   assert( pExpr->op!=TK_REGISTER );
3132   sqlite3ExprCode(pParse, pExpr, target);
3133   iMem = ++pParse->nMem;
3134   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
3135   exprToRegister(pExpr, iMem);
3136 }
3137 
3138 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3139 /*
3140 ** Generate a human-readable explanation of an expression tree.
3141 */
3142 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){
3143   int op;                   /* The opcode being coded */
3144   const char *zBinOp = 0;   /* Binary operator */
3145   const char *zUniOp = 0;   /* Unary operator */
3146   if( pExpr==0 ){
3147     op = TK_NULL;
3148   }else{
3149     op = pExpr->op;
3150   }
3151   switch( op ){
3152     case TK_AGG_COLUMN: {
3153       sqlite3ExplainPrintf(pOut, "AGG{%d:%d}",
3154             pExpr->iTable, pExpr->iColumn);
3155       break;
3156     }
3157     case TK_COLUMN: {
3158       if( pExpr->iTable<0 ){
3159         /* This only happens when coding check constraints */
3160         sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn);
3161       }else{
3162         sqlite3ExplainPrintf(pOut, "{%d:%d}",
3163                              pExpr->iTable, pExpr->iColumn);
3164       }
3165       break;
3166     }
3167     case TK_INTEGER: {
3168       if( pExpr->flags & EP_IntValue ){
3169         sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue);
3170       }else{
3171         sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken);
3172       }
3173       break;
3174     }
3175 #ifndef SQLITE_OMIT_FLOATING_POINT
3176     case TK_FLOAT: {
3177       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
3178       break;
3179     }
3180 #endif
3181     case TK_STRING: {
3182       sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken);
3183       break;
3184     }
3185     case TK_NULL: {
3186       sqlite3ExplainPrintf(pOut,"NULL");
3187       break;
3188     }
3189 #ifndef SQLITE_OMIT_BLOB_LITERAL
3190     case TK_BLOB: {
3191       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
3192       break;
3193     }
3194 #endif
3195     case TK_VARIABLE: {
3196       sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)",
3197                            pExpr->u.zToken, pExpr->iColumn);
3198       break;
3199     }
3200     case TK_REGISTER: {
3201       sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable);
3202       break;
3203     }
3204     case TK_AS: {
3205       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3206       break;
3207     }
3208 #ifndef SQLITE_OMIT_CAST
3209     case TK_CAST: {
3210       /* Expressions of the form:   CAST(pLeft AS token) */
3211       const char *zAff = "unk";
3212       switch( sqlite3AffinityType(pExpr->u.zToken, 0) ){
3213         case SQLITE_AFF_TEXT:    zAff = "TEXT";     break;
3214         case SQLITE_AFF_NONE:    zAff = "NONE";     break;
3215         case SQLITE_AFF_NUMERIC: zAff = "NUMERIC";  break;
3216         case SQLITE_AFF_INTEGER: zAff = "INTEGER";  break;
3217         case SQLITE_AFF_REAL:    zAff = "REAL";     break;
3218       }
3219       sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff);
3220       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3221       sqlite3ExplainPrintf(pOut, ")");
3222       break;
3223     }
3224 #endif /* SQLITE_OMIT_CAST */
3225     case TK_LT:      zBinOp = "LT";     break;
3226     case TK_LE:      zBinOp = "LE";     break;
3227     case TK_GT:      zBinOp = "GT";     break;
3228     case TK_GE:      zBinOp = "GE";     break;
3229     case TK_NE:      zBinOp = "NE";     break;
3230     case TK_EQ:      zBinOp = "EQ";     break;
3231     case TK_IS:      zBinOp = "IS";     break;
3232     case TK_ISNOT:   zBinOp = "ISNOT";  break;
3233     case TK_AND:     zBinOp = "AND";    break;
3234     case TK_OR:      zBinOp = "OR";     break;
3235     case TK_PLUS:    zBinOp = "ADD";    break;
3236     case TK_STAR:    zBinOp = "MUL";    break;
3237     case TK_MINUS:   zBinOp = "SUB";    break;
3238     case TK_REM:     zBinOp = "REM";    break;
3239     case TK_BITAND:  zBinOp = "BITAND"; break;
3240     case TK_BITOR:   zBinOp = "BITOR";  break;
3241     case TK_SLASH:   zBinOp = "DIV";    break;
3242     case TK_LSHIFT:  zBinOp = "LSHIFT"; break;
3243     case TK_RSHIFT:  zBinOp = "RSHIFT"; break;
3244     case TK_CONCAT:  zBinOp = "CONCAT"; break;
3245 
3246     case TK_UMINUS:  zUniOp = "UMINUS"; break;
3247     case TK_UPLUS:   zUniOp = "UPLUS";  break;
3248     case TK_BITNOT:  zUniOp = "BITNOT"; break;
3249     case TK_NOT:     zUniOp = "NOT";    break;
3250     case TK_ISNULL:  zUniOp = "ISNULL"; break;
3251     case TK_NOTNULL: zUniOp = "NOTNULL"; break;
3252 
3253     case TK_COLLATE: {
3254       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3255       sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken);
3256       break;
3257     }
3258 
3259     case TK_AGG_FUNCTION:
3260     case TK_FUNCTION: {
3261       ExprList *pFarg;       /* List of function arguments */
3262       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3263         pFarg = 0;
3264       }else{
3265         pFarg = pExpr->x.pList;
3266       }
3267       if( op==TK_AGG_FUNCTION ){
3268         sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(",
3269                              pExpr->op2, pExpr->u.zToken);
3270       }else{
3271         sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken);
3272       }
3273       if( pFarg ){
3274         sqlite3ExplainExprList(pOut, pFarg);
3275       }
3276       sqlite3ExplainPrintf(pOut, ")");
3277       break;
3278     }
3279 #ifndef SQLITE_OMIT_SUBQUERY
3280     case TK_EXISTS: {
3281       sqlite3ExplainPrintf(pOut, "EXISTS(");
3282       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3283       sqlite3ExplainPrintf(pOut,")");
3284       break;
3285     }
3286     case TK_SELECT: {
3287       sqlite3ExplainPrintf(pOut, "(");
3288       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3289       sqlite3ExplainPrintf(pOut, ")");
3290       break;
3291     }
3292     case TK_IN: {
3293       sqlite3ExplainPrintf(pOut, "IN(");
3294       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3295       sqlite3ExplainPrintf(pOut, ",");
3296       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3297         sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3298       }else{
3299         sqlite3ExplainExprList(pOut, pExpr->x.pList);
3300       }
3301       sqlite3ExplainPrintf(pOut, ")");
3302       break;
3303     }
3304 #endif /* SQLITE_OMIT_SUBQUERY */
3305 
3306     /*
3307     **    x BETWEEN y AND z
3308     **
3309     ** This is equivalent to
3310     **
3311     **    x>=y AND x<=z
3312     **
3313     ** X is stored in pExpr->pLeft.
3314     ** Y is stored in pExpr->pList->a[0].pExpr.
3315     ** Z is stored in pExpr->pList->a[1].pExpr.
3316     */
3317     case TK_BETWEEN: {
3318       Expr *pX = pExpr->pLeft;
3319       Expr *pY = pExpr->x.pList->a[0].pExpr;
3320       Expr *pZ = pExpr->x.pList->a[1].pExpr;
3321       sqlite3ExplainPrintf(pOut, "BETWEEN(");
3322       sqlite3ExplainExpr(pOut, pX);
3323       sqlite3ExplainPrintf(pOut, ",");
3324       sqlite3ExplainExpr(pOut, pY);
3325       sqlite3ExplainPrintf(pOut, ",");
3326       sqlite3ExplainExpr(pOut, pZ);
3327       sqlite3ExplainPrintf(pOut, ")");
3328       break;
3329     }
3330     case TK_TRIGGER: {
3331       /* If the opcode is TK_TRIGGER, then the expression is a reference
3332       ** to a column in the new.* or old.* pseudo-tables available to
3333       ** trigger programs. In this case Expr.iTable is set to 1 for the
3334       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3335       ** is set to the column of the pseudo-table to read, or to -1 to
3336       ** read the rowid field.
3337       */
3338       sqlite3ExplainPrintf(pOut, "%s(%d)",
3339           pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
3340       break;
3341     }
3342     case TK_CASE: {
3343       sqlite3ExplainPrintf(pOut, "CASE(");
3344       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3345       sqlite3ExplainPrintf(pOut, ",");
3346       sqlite3ExplainExprList(pOut, pExpr->x.pList);
3347       break;
3348     }
3349 #ifndef SQLITE_OMIT_TRIGGER
3350     case TK_RAISE: {
3351       const char *zType = "unk";
3352       switch( pExpr->affinity ){
3353         case OE_Rollback:   zType = "rollback";  break;
3354         case OE_Abort:      zType = "abort";     break;
3355         case OE_Fail:       zType = "fail";      break;
3356         case OE_Ignore:     zType = "ignore";    break;
3357       }
3358       sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken);
3359       break;
3360     }
3361 #endif
3362   }
3363   if( zBinOp ){
3364     sqlite3ExplainPrintf(pOut,"%s(", zBinOp);
3365     sqlite3ExplainExpr(pOut, pExpr->pLeft);
3366     sqlite3ExplainPrintf(pOut,",");
3367     sqlite3ExplainExpr(pOut, pExpr->pRight);
3368     sqlite3ExplainPrintf(pOut,")");
3369   }else if( zUniOp ){
3370     sqlite3ExplainPrintf(pOut,"%s(", zUniOp);
3371     sqlite3ExplainExpr(pOut, pExpr->pLeft);
3372     sqlite3ExplainPrintf(pOut,")");
3373   }
3374 }
3375 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
3376 
3377 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3378 /*
3379 ** Generate a human-readable explanation of an expression list.
3380 */
3381 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){
3382   int i;
3383   if( pList==0 || pList->nExpr==0 ){
3384     sqlite3ExplainPrintf(pOut, "(empty-list)");
3385     return;
3386   }else if( pList->nExpr==1 ){
3387     sqlite3ExplainExpr(pOut, pList->a[0].pExpr);
3388   }else{
3389     sqlite3ExplainPush(pOut);
3390     for(i=0; i<pList->nExpr; i++){
3391       sqlite3ExplainPrintf(pOut, "item[%d] = ", i);
3392       sqlite3ExplainPush(pOut);
3393       sqlite3ExplainExpr(pOut, pList->a[i].pExpr);
3394       sqlite3ExplainPop(pOut);
3395       if( pList->a[i].zName ){
3396         sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
3397       }
3398       if( pList->a[i].bSpanIsTab ){
3399         sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
3400       }
3401       if( i<pList->nExpr-1 ){
3402         sqlite3ExplainNL(pOut);
3403       }
3404     }
3405     sqlite3ExplainPop(pOut);
3406   }
3407 }
3408 #endif /* SQLITE_DEBUG */
3409 
3410 /*
3411 ** Generate code that pushes the value of every element of the given
3412 ** expression list into a sequence of registers beginning at target.
3413 **
3414 ** Return the number of elements evaluated.
3415 **
3416 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3417 ** filled using OP_SCopy.  OP_Copy must be used instead.
3418 **
3419 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3420 ** factored out into initialization code.
3421 */
3422 int sqlite3ExprCodeExprList(
3423   Parse *pParse,     /* Parsing context */
3424   ExprList *pList,   /* The expression list to be coded */
3425   int target,        /* Where to write results */
3426   u8 flags           /* SQLITE_ECEL_* flags */
3427 ){
3428   struct ExprList_item *pItem;
3429   int i, n;
3430   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3431   assert( pList!=0 );
3432   assert( target>0 );
3433   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3434   n = pList->nExpr;
3435   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3436   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3437     Expr *pExpr = pItem->pExpr;
3438     if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3439       sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3440     }else{
3441       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3442       if( inReg!=target+i ){
3443         VdbeOp *pOp;
3444         Vdbe *v = pParse->pVdbe;
3445         if( copyOp==OP_Copy
3446          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3447          && pOp->p1+pOp->p3+1==inReg
3448          && pOp->p2+pOp->p3+1==target+i
3449         ){
3450           pOp->p3++;
3451         }else{
3452           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3453         }
3454       }
3455     }
3456   }
3457   return n;
3458 }
3459 
3460 /*
3461 ** Generate code for a BETWEEN operator.
3462 **
3463 **    x BETWEEN y AND z
3464 **
3465 ** The above is equivalent to
3466 **
3467 **    x>=y AND x<=z
3468 **
3469 ** Code it as such, taking care to do the common subexpression
3470 ** elementation of x.
3471 */
3472 static void exprCodeBetween(
3473   Parse *pParse,    /* Parsing and code generating context */
3474   Expr *pExpr,      /* The BETWEEN expression */
3475   int dest,         /* Jump here if the jump is taken */
3476   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3477   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3478 ){
3479   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3480   Expr compLeft;    /* The  x>=y  term */
3481   Expr compRight;   /* The  x<=z  term */
3482   Expr exprX;       /* The  x  subexpression */
3483   int regFree1 = 0; /* Temporary use register */
3484 
3485   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3486   exprX = *pExpr->pLeft;
3487   exprAnd.op = TK_AND;
3488   exprAnd.pLeft = &compLeft;
3489   exprAnd.pRight = &compRight;
3490   compLeft.op = TK_GE;
3491   compLeft.pLeft = &exprX;
3492   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3493   compRight.op = TK_LE;
3494   compRight.pLeft = &exprX;
3495   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3496   exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3497   if( jumpIfTrue ){
3498     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3499   }else{
3500     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3501   }
3502   sqlite3ReleaseTempReg(pParse, regFree1);
3503 
3504   /* Ensure adequate test coverage */
3505   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3506   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3507   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3508   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3509   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3510   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3511   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3512   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3513 }
3514 
3515 /*
3516 ** Generate code for a boolean expression such that a jump is made
3517 ** to the label "dest" if the expression is true but execution
3518 ** continues straight thru if the expression is false.
3519 **
3520 ** If the expression evaluates to NULL (neither true nor false), then
3521 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3522 **
3523 ** This code depends on the fact that certain token values (ex: TK_EQ)
3524 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3525 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3526 ** the make process cause these values to align.  Assert()s in the code
3527 ** below verify that the numbers are aligned correctly.
3528 */
3529 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3530   Vdbe *v = pParse->pVdbe;
3531   int op = 0;
3532   int regFree1 = 0;
3533   int regFree2 = 0;
3534   int r1, r2;
3535 
3536   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3537   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
3538   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3539   op = pExpr->op;
3540   switch( op ){
3541     case TK_AND: {
3542       int d2 = sqlite3VdbeMakeLabel(v);
3543       testcase( jumpIfNull==0 );
3544       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3545       sqlite3ExprCachePush(pParse);
3546       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3547       sqlite3VdbeResolveLabel(v, d2);
3548       sqlite3ExprCachePop(pParse);
3549       break;
3550     }
3551     case TK_OR: {
3552       testcase( jumpIfNull==0 );
3553       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3554       sqlite3ExprCachePush(pParse);
3555       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3556       sqlite3ExprCachePop(pParse);
3557       break;
3558     }
3559     case TK_NOT: {
3560       testcase( jumpIfNull==0 );
3561       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3562       break;
3563     }
3564     case TK_LT:
3565     case TK_LE:
3566     case TK_GT:
3567     case TK_GE:
3568     case TK_NE:
3569     case TK_EQ: {
3570       testcase( jumpIfNull==0 );
3571       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3572       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3573       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3574                   r1, r2, dest, jumpIfNull);
3575       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3576       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3577       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3578       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3579       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3580       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3581       testcase( regFree1==0 );
3582       testcase( regFree2==0 );
3583       break;
3584     }
3585     case TK_IS:
3586     case TK_ISNOT: {
3587       testcase( op==TK_IS );
3588       testcase( op==TK_ISNOT );
3589       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3590       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3591       op = (op==TK_IS) ? TK_EQ : TK_NE;
3592       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3593                   r1, r2, dest, SQLITE_NULLEQ);
3594       VdbeCoverageIf(v, op==TK_EQ);
3595       VdbeCoverageIf(v, op==TK_NE);
3596       testcase( regFree1==0 );
3597       testcase( regFree2==0 );
3598       break;
3599     }
3600     case TK_ISNULL:
3601     case TK_NOTNULL: {
3602       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3603       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3604       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3605       sqlite3VdbeAddOp2(v, op, r1, dest);
3606       VdbeCoverageIf(v, op==TK_ISNULL);
3607       VdbeCoverageIf(v, op==TK_NOTNULL);
3608       testcase( regFree1==0 );
3609       break;
3610     }
3611     case TK_BETWEEN: {
3612       testcase( jumpIfNull==0 );
3613       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3614       break;
3615     }
3616 #ifndef SQLITE_OMIT_SUBQUERY
3617     case TK_IN: {
3618       int destIfFalse = sqlite3VdbeMakeLabel(v);
3619       int destIfNull = jumpIfNull ? dest : destIfFalse;
3620       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3621       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3622       sqlite3VdbeResolveLabel(v, destIfFalse);
3623       break;
3624     }
3625 #endif
3626     default: {
3627       if( exprAlwaysTrue(pExpr) ){
3628         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3629       }else if( exprAlwaysFalse(pExpr) ){
3630         /* No-op */
3631       }else{
3632         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3633         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3634         VdbeCoverage(v);
3635         testcase( regFree1==0 );
3636         testcase( jumpIfNull==0 );
3637       }
3638       break;
3639     }
3640   }
3641   sqlite3ReleaseTempReg(pParse, regFree1);
3642   sqlite3ReleaseTempReg(pParse, regFree2);
3643 }
3644 
3645 /*
3646 ** Generate code for a boolean expression such that a jump is made
3647 ** to the label "dest" if the expression is false but execution
3648 ** continues straight thru if the expression is true.
3649 **
3650 ** If the expression evaluates to NULL (neither true nor false) then
3651 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3652 ** is 0.
3653 */
3654 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3655   Vdbe *v = pParse->pVdbe;
3656   int op = 0;
3657   int regFree1 = 0;
3658   int regFree2 = 0;
3659   int r1, r2;
3660 
3661   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3662   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3663   if( pExpr==0 )    return;
3664 
3665   /* The value of pExpr->op and op are related as follows:
3666   **
3667   **       pExpr->op            op
3668   **       ---------          ----------
3669   **       TK_ISNULL          OP_NotNull
3670   **       TK_NOTNULL         OP_IsNull
3671   **       TK_NE              OP_Eq
3672   **       TK_EQ              OP_Ne
3673   **       TK_GT              OP_Le
3674   **       TK_LE              OP_Gt
3675   **       TK_GE              OP_Lt
3676   **       TK_LT              OP_Ge
3677   **
3678   ** For other values of pExpr->op, op is undefined and unused.
3679   ** The value of TK_ and OP_ constants are arranged such that we
3680   ** can compute the mapping above using the following expression.
3681   ** Assert()s verify that the computation is correct.
3682   */
3683   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3684 
3685   /* Verify correct alignment of TK_ and OP_ constants
3686   */
3687   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3688   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3689   assert( pExpr->op!=TK_NE || op==OP_Eq );
3690   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3691   assert( pExpr->op!=TK_LT || op==OP_Ge );
3692   assert( pExpr->op!=TK_LE || op==OP_Gt );
3693   assert( pExpr->op!=TK_GT || op==OP_Le );
3694   assert( pExpr->op!=TK_GE || op==OP_Lt );
3695 
3696   switch( pExpr->op ){
3697     case TK_AND: {
3698       testcase( jumpIfNull==0 );
3699       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3700       sqlite3ExprCachePush(pParse);
3701       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3702       sqlite3ExprCachePop(pParse);
3703       break;
3704     }
3705     case TK_OR: {
3706       int d2 = sqlite3VdbeMakeLabel(v);
3707       testcase( jumpIfNull==0 );
3708       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3709       sqlite3ExprCachePush(pParse);
3710       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3711       sqlite3VdbeResolveLabel(v, d2);
3712       sqlite3ExprCachePop(pParse);
3713       break;
3714     }
3715     case TK_NOT: {
3716       testcase( jumpIfNull==0 );
3717       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3718       break;
3719     }
3720     case TK_LT:
3721     case TK_LE:
3722     case TK_GT:
3723     case TK_GE:
3724     case TK_NE:
3725     case TK_EQ: {
3726       testcase( jumpIfNull==0 );
3727       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3728       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3729       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3730                   r1, r2, dest, jumpIfNull);
3731       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3732       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3733       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3734       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3735       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3736       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3737       testcase( regFree1==0 );
3738       testcase( regFree2==0 );
3739       break;
3740     }
3741     case TK_IS:
3742     case TK_ISNOT: {
3743       testcase( pExpr->op==TK_IS );
3744       testcase( pExpr->op==TK_ISNOT );
3745       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3746       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3747       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3748       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3749                   r1, r2, dest, SQLITE_NULLEQ);
3750       VdbeCoverageIf(v, op==TK_EQ);
3751       VdbeCoverageIf(v, op==TK_NE);
3752       testcase( regFree1==0 );
3753       testcase( regFree2==0 );
3754       break;
3755     }
3756     case TK_ISNULL:
3757     case TK_NOTNULL: {
3758       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3759       sqlite3VdbeAddOp2(v, op, r1, dest);
3760       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
3761       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
3762       testcase( regFree1==0 );
3763       break;
3764     }
3765     case TK_BETWEEN: {
3766       testcase( jumpIfNull==0 );
3767       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3768       break;
3769     }
3770 #ifndef SQLITE_OMIT_SUBQUERY
3771     case TK_IN: {
3772       if( jumpIfNull ){
3773         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3774       }else{
3775         int destIfNull = sqlite3VdbeMakeLabel(v);
3776         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3777         sqlite3VdbeResolveLabel(v, destIfNull);
3778       }
3779       break;
3780     }
3781 #endif
3782     default: {
3783       if( exprAlwaysFalse(pExpr) ){
3784         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3785       }else if( exprAlwaysTrue(pExpr) ){
3786         /* no-op */
3787       }else{
3788         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3789         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3790         VdbeCoverage(v);
3791         testcase( regFree1==0 );
3792         testcase( jumpIfNull==0 );
3793       }
3794       break;
3795     }
3796   }
3797   sqlite3ReleaseTempReg(pParse, regFree1);
3798   sqlite3ReleaseTempReg(pParse, regFree2);
3799 }
3800 
3801 /*
3802 ** Do a deep comparison of two expression trees.  Return 0 if the two
3803 ** expressions are completely identical.  Return 1 if they differ only
3804 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3805 ** other than the top-level COLLATE operator.
3806 **
3807 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3808 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3809 **
3810 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
3811 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3812 **
3813 ** Sometimes this routine will return 2 even if the two expressions
3814 ** really are equivalent.  If we cannot prove that the expressions are
3815 ** identical, we return 2 just to be safe.  So if this routine
3816 ** returns 2, then you do not really know for certain if the two
3817 ** expressions are the same.  But if you get a 0 or 1 return, then you
3818 ** can be sure the expressions are the same.  In the places where
3819 ** this routine is used, it does not hurt to get an extra 2 - that
3820 ** just might result in some slightly slower code.  But returning
3821 ** an incorrect 0 or 1 could lead to a malfunction.
3822 */
3823 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3824   u32 combinedFlags;
3825   if( pA==0 || pB==0 ){
3826     return pB==pA ? 0 : 2;
3827   }
3828   combinedFlags = pA->flags | pB->flags;
3829   if( combinedFlags & EP_IntValue ){
3830     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3831       return 0;
3832     }
3833     return 2;
3834   }
3835   if( pA->op!=pB->op ){
3836     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
3837       return 1;
3838     }
3839     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
3840       return 1;
3841     }
3842     return 2;
3843   }
3844   if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){
3845     if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3846       return pA->op==TK_COLLATE ? 1 : 2;
3847     }
3848   }
3849   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3850   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
3851     if( combinedFlags & EP_xIsSelect ) return 2;
3852     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
3853     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
3854     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
3855     if( ALWAYS((combinedFlags & EP_Reduced)==0) ){
3856       if( pA->iColumn!=pB->iColumn ) return 2;
3857       if( pA->iTable!=pB->iTable
3858        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
3859     }
3860   }
3861   return 0;
3862 }
3863 
3864 /*
3865 ** Compare two ExprList objects.  Return 0 if they are identical and
3866 ** non-zero if they differ in any way.
3867 **
3868 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3869 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3870 **
3871 ** This routine might return non-zero for equivalent ExprLists.  The
3872 ** only consequence will be disabled optimizations.  But this routine
3873 ** must never return 0 if the two ExprList objects are different, or
3874 ** a malfunction will result.
3875 **
3876 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3877 ** always differs from a non-NULL pointer.
3878 */
3879 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
3880   int i;
3881   if( pA==0 && pB==0 ) return 0;
3882   if( pA==0 || pB==0 ) return 1;
3883   if( pA->nExpr!=pB->nExpr ) return 1;
3884   for(i=0; i<pA->nExpr; i++){
3885     Expr *pExprA = pA->a[i].pExpr;
3886     Expr *pExprB = pB->a[i].pExpr;
3887     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3888     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
3889   }
3890   return 0;
3891 }
3892 
3893 /*
3894 ** Return true if we can prove the pE2 will always be true if pE1 is
3895 ** true.  Return false if we cannot complete the proof or if pE2 might
3896 ** be false.  Examples:
3897 **
3898 **     pE1: x==5       pE2: x==5             Result: true
3899 **     pE1: x>0        pE2: x==5             Result: false
3900 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
3901 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
3902 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
3903 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
3904 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
3905 **
3906 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
3907 ** Expr.iTable<0 then assume a table number given by iTab.
3908 **
3909 ** When in doubt, return false.  Returning true might give a performance
3910 ** improvement.  Returning false might cause a performance reduction, but
3911 ** it will always give the correct answer and is hence always safe.
3912 */
3913 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
3914   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
3915     return 1;
3916   }
3917   if( pE2->op==TK_OR
3918    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
3919              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
3920   ){
3921     return 1;
3922   }
3923   if( pE2->op==TK_NOTNULL
3924    && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
3925    && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
3926   ){
3927     return 1;
3928   }
3929   return 0;
3930 }
3931 
3932 /*
3933 ** An instance of the following structure is used by the tree walker
3934 ** to count references to table columns in the arguments of an
3935 ** aggregate function, in order to implement the
3936 ** sqlite3FunctionThisSrc() routine.
3937 */
3938 struct SrcCount {
3939   SrcList *pSrc;   /* One particular FROM clause in a nested query */
3940   int nThis;       /* Number of references to columns in pSrcList */
3941   int nOther;      /* Number of references to columns in other FROM clauses */
3942 };
3943 
3944 /*
3945 ** Count the number of references to columns.
3946 */
3947 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
3948   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
3949   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
3950   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
3951   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
3952   ** NEVER() will need to be removed. */
3953   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
3954     int i;
3955     struct SrcCount *p = pWalker->u.pSrcCount;
3956     SrcList *pSrc = p->pSrc;
3957     for(i=0; i<pSrc->nSrc; i++){
3958       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
3959     }
3960     if( i<pSrc->nSrc ){
3961       p->nThis++;
3962     }else{
3963       p->nOther++;
3964     }
3965   }
3966   return WRC_Continue;
3967 }
3968 
3969 /*
3970 ** Determine if any of the arguments to the pExpr Function reference
3971 ** pSrcList.  Return true if they do.  Also return true if the function
3972 ** has no arguments or has only constant arguments.  Return false if pExpr
3973 ** references columns but not columns of tables found in pSrcList.
3974 */
3975 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
3976   Walker w;
3977   struct SrcCount cnt;
3978   assert( pExpr->op==TK_AGG_FUNCTION );
3979   memset(&w, 0, sizeof(w));
3980   w.xExprCallback = exprSrcCount;
3981   w.u.pSrcCount = &cnt;
3982   cnt.pSrc = pSrcList;
3983   cnt.nThis = 0;
3984   cnt.nOther = 0;
3985   sqlite3WalkExprList(&w, pExpr->x.pList);
3986   return cnt.nThis>0 || cnt.nOther==0;
3987 }
3988 
3989 /*
3990 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
3991 ** the new element.  Return a negative number if malloc fails.
3992 */
3993 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3994   int i;
3995   pInfo->aCol = sqlite3ArrayAllocate(
3996        db,
3997        pInfo->aCol,
3998        sizeof(pInfo->aCol[0]),
3999        &pInfo->nColumn,
4000        &i
4001   );
4002   return i;
4003 }
4004 
4005 /*
4006 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
4007 ** the new element.  Return a negative number if malloc fails.
4008 */
4009 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
4010   int i;
4011   pInfo->aFunc = sqlite3ArrayAllocate(
4012        db,
4013        pInfo->aFunc,
4014        sizeof(pInfo->aFunc[0]),
4015        &pInfo->nFunc,
4016        &i
4017   );
4018   return i;
4019 }
4020 
4021 /*
4022 ** This is the xExprCallback for a tree walker.  It is used to
4023 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
4024 ** for additional information.
4025 */
4026 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4027   int i;
4028   NameContext *pNC = pWalker->u.pNC;
4029   Parse *pParse = pNC->pParse;
4030   SrcList *pSrcList = pNC->pSrcList;
4031   AggInfo *pAggInfo = pNC->pAggInfo;
4032 
4033   switch( pExpr->op ){
4034     case TK_AGG_COLUMN:
4035     case TK_COLUMN: {
4036       testcase( pExpr->op==TK_AGG_COLUMN );
4037       testcase( pExpr->op==TK_COLUMN );
4038       /* Check to see if the column is in one of the tables in the FROM
4039       ** clause of the aggregate query */
4040       if( ALWAYS(pSrcList!=0) ){
4041         struct SrcList_item *pItem = pSrcList->a;
4042         for(i=0; i<pSrcList->nSrc; i++, pItem++){
4043           struct AggInfo_col *pCol;
4044           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4045           if( pExpr->iTable==pItem->iCursor ){
4046             /* If we reach this point, it means that pExpr refers to a table
4047             ** that is in the FROM clause of the aggregate query.
4048             **
4049             ** Make an entry for the column in pAggInfo->aCol[] if there
4050             ** is not an entry there already.
4051             */
4052             int k;
4053             pCol = pAggInfo->aCol;
4054             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4055               if( pCol->iTable==pExpr->iTable &&
4056                   pCol->iColumn==pExpr->iColumn ){
4057                 break;
4058               }
4059             }
4060             if( (k>=pAggInfo->nColumn)
4061              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4062             ){
4063               pCol = &pAggInfo->aCol[k];
4064               pCol->pTab = pExpr->pTab;
4065               pCol->iTable = pExpr->iTable;
4066               pCol->iColumn = pExpr->iColumn;
4067               pCol->iMem = ++pParse->nMem;
4068               pCol->iSorterColumn = -1;
4069               pCol->pExpr = pExpr;
4070               if( pAggInfo->pGroupBy ){
4071                 int j, n;
4072                 ExprList *pGB = pAggInfo->pGroupBy;
4073                 struct ExprList_item *pTerm = pGB->a;
4074                 n = pGB->nExpr;
4075                 for(j=0; j<n; j++, pTerm++){
4076                   Expr *pE = pTerm->pExpr;
4077                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4078                       pE->iColumn==pExpr->iColumn ){
4079                     pCol->iSorterColumn = j;
4080                     break;
4081                   }
4082                 }
4083               }
4084               if( pCol->iSorterColumn<0 ){
4085                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4086               }
4087             }
4088             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4089             ** because it was there before or because we just created it).
4090             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4091             ** pAggInfo->aCol[] entry.
4092             */
4093             ExprSetVVAProperty(pExpr, EP_NoReduce);
4094             pExpr->pAggInfo = pAggInfo;
4095             pExpr->op = TK_AGG_COLUMN;
4096             pExpr->iAgg = (i16)k;
4097             break;
4098           } /* endif pExpr->iTable==pItem->iCursor */
4099         } /* end loop over pSrcList */
4100       }
4101       return WRC_Prune;
4102     }
4103     case TK_AGG_FUNCTION: {
4104       if( (pNC->ncFlags & NC_InAggFunc)==0
4105        && pWalker->walkerDepth==pExpr->op2
4106       ){
4107         /* Check to see if pExpr is a duplicate of another aggregate
4108         ** function that is already in the pAggInfo structure
4109         */
4110         struct AggInfo_func *pItem = pAggInfo->aFunc;
4111         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4112           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4113             break;
4114           }
4115         }
4116         if( i>=pAggInfo->nFunc ){
4117           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4118           */
4119           u8 enc = ENC(pParse->db);
4120           i = addAggInfoFunc(pParse->db, pAggInfo);
4121           if( i>=0 ){
4122             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4123             pItem = &pAggInfo->aFunc[i];
4124             pItem->pExpr = pExpr;
4125             pItem->iMem = ++pParse->nMem;
4126             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4127             pItem->pFunc = sqlite3FindFunction(pParse->db,
4128                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4129                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4130             if( pExpr->flags & EP_Distinct ){
4131               pItem->iDistinct = pParse->nTab++;
4132             }else{
4133               pItem->iDistinct = -1;
4134             }
4135           }
4136         }
4137         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4138         */
4139         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4140         ExprSetVVAProperty(pExpr, EP_NoReduce);
4141         pExpr->iAgg = (i16)i;
4142         pExpr->pAggInfo = pAggInfo;
4143         return WRC_Prune;
4144       }else{
4145         return WRC_Continue;
4146       }
4147     }
4148   }
4149   return WRC_Continue;
4150 }
4151 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4152   UNUSED_PARAMETER(pWalker);
4153   UNUSED_PARAMETER(pSelect);
4154   return WRC_Continue;
4155 }
4156 
4157 /*
4158 ** Analyze the pExpr expression looking for aggregate functions and
4159 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4160 ** points to.  Additional entries are made on the AggInfo object as
4161 ** necessary.
4162 **
4163 ** This routine should only be called after the expression has been
4164 ** analyzed by sqlite3ResolveExprNames().
4165 */
4166 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4167   Walker w;
4168   memset(&w, 0, sizeof(w));
4169   w.xExprCallback = analyzeAggregate;
4170   w.xSelectCallback = analyzeAggregatesInSelect;
4171   w.u.pNC = pNC;
4172   assert( pNC->pSrcList!=0 );
4173   sqlite3WalkExpr(&w, pExpr);
4174 }
4175 
4176 /*
4177 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4178 ** expression list.  Return the number of errors.
4179 **
4180 ** If an error is found, the analysis is cut short.
4181 */
4182 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4183   struct ExprList_item *pItem;
4184   int i;
4185   if( pList ){
4186     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4187       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4188     }
4189   }
4190 }
4191 
4192 /*
4193 ** Allocate a single new register for use to hold some intermediate result.
4194 */
4195 int sqlite3GetTempReg(Parse *pParse){
4196   if( pParse->nTempReg==0 ){
4197     return ++pParse->nMem;
4198   }
4199   return pParse->aTempReg[--pParse->nTempReg];
4200 }
4201 
4202 /*
4203 ** Deallocate a register, making available for reuse for some other
4204 ** purpose.
4205 **
4206 ** If a register is currently being used by the column cache, then
4207 ** the dallocation is deferred until the column cache line that uses
4208 ** the register becomes stale.
4209 */
4210 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4211   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4212     int i;
4213     struct yColCache *p;
4214     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4215       if( p->iReg==iReg ){
4216         p->tempReg = 1;
4217         return;
4218       }
4219     }
4220     pParse->aTempReg[pParse->nTempReg++] = iReg;
4221   }
4222 }
4223 
4224 /*
4225 ** Allocate or deallocate a block of nReg consecutive registers
4226 */
4227 int sqlite3GetTempRange(Parse *pParse, int nReg){
4228   int i, n;
4229   i = pParse->iRangeReg;
4230   n = pParse->nRangeReg;
4231   if( nReg<=n ){
4232     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4233     pParse->iRangeReg += nReg;
4234     pParse->nRangeReg -= nReg;
4235   }else{
4236     i = pParse->nMem+1;
4237     pParse->nMem += nReg;
4238   }
4239   return i;
4240 }
4241 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4242   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4243   if( nReg>pParse->nRangeReg ){
4244     pParse->nRangeReg = nReg;
4245     pParse->iRangeReg = iReg;
4246   }
4247 }
4248 
4249 /*
4250 ** Mark all temporary registers as being unavailable for reuse.
4251 */
4252 void sqlite3ClearTempRegCache(Parse *pParse){
4253   pParse->nTempReg = 0;
4254   pParse->nRangeReg = 0;
4255 }
4256