1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expresssions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op = pExpr->op; 35 if( op==TK_SELECT ){ 36 assert( pExpr->flags&EP_xIsSelect ); 37 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 38 } 39 #ifndef SQLITE_OMIT_CAST 40 if( op==TK_CAST ){ 41 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 42 return sqlite3AffinityType(pExpr->u.zToken); 43 } 44 #endif 45 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 46 && pExpr->pTab!=0 47 ){ 48 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 49 ** a TK_COLUMN but was previously evaluated and cached in a register */ 50 int j = pExpr->iColumn; 51 if( j<0 ) return SQLITE_AFF_INTEGER; 52 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 53 return pExpr->pTab->aCol[j].affinity; 54 } 55 return pExpr->affinity; 56 } 57 58 /* 59 ** Set the explicit collating sequence for an expression to the 60 ** collating sequence supplied in the second argument. 61 */ 62 Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){ 63 if( pExpr && pColl ){ 64 pExpr->pColl = pColl; 65 pExpr->flags |= EP_ExpCollate; 66 } 67 return pExpr; 68 } 69 70 /* 71 ** Set the collating sequence for expression pExpr to be the collating 72 ** sequence named by pToken. Return a pointer to the revised expression. 73 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 74 ** flag. An explicit collating sequence will override implicit 75 ** collating sequences. 76 */ 77 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){ 78 char *zColl = 0; /* Dequoted name of collation sequence */ 79 CollSeq *pColl; 80 sqlite3 *db = pParse->db; 81 zColl = sqlite3NameFromToken(db, pCollName); 82 pColl = sqlite3LocateCollSeq(pParse, zColl); 83 sqlite3ExprSetColl(pExpr, pColl); 84 sqlite3DbFree(db, zColl); 85 return pExpr; 86 } 87 88 /* 89 ** Return the default collation sequence for the expression pExpr. If 90 ** there is no default collation type, return 0. 91 */ 92 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 93 CollSeq *pColl = 0; 94 Expr *p = pExpr; 95 while( ALWAYS(p) ){ 96 int op; 97 pColl = p->pColl; 98 if( pColl ) break; 99 op = p->op; 100 if( p->pTab!=0 && ( 101 op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER 102 )){ 103 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 104 ** a TK_COLUMN but was previously evaluated and cached in a register */ 105 const char *zColl; 106 int j = p->iColumn; 107 if( j>=0 ){ 108 sqlite3 *db = pParse->db; 109 zColl = p->pTab->aCol[j].zColl; 110 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 111 pExpr->pColl = pColl; 112 } 113 break; 114 } 115 if( op!=TK_CAST && op!=TK_UPLUS ){ 116 break; 117 } 118 p = p->pLeft; 119 } 120 if( sqlite3CheckCollSeq(pParse, pColl) ){ 121 pColl = 0; 122 } 123 return pColl; 124 } 125 126 /* 127 ** pExpr is an operand of a comparison operator. aff2 is the 128 ** type affinity of the other operand. This routine returns the 129 ** type affinity that should be used for the comparison operator. 130 */ 131 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 132 char aff1 = sqlite3ExprAffinity(pExpr); 133 if( aff1 && aff2 ){ 134 /* Both sides of the comparison are columns. If one has numeric 135 ** affinity, use that. Otherwise use no affinity. 136 */ 137 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 138 return SQLITE_AFF_NUMERIC; 139 }else{ 140 return SQLITE_AFF_NONE; 141 } 142 }else if( !aff1 && !aff2 ){ 143 /* Neither side of the comparison is a column. Compare the 144 ** results directly. 145 */ 146 return SQLITE_AFF_NONE; 147 }else{ 148 /* One side is a column, the other is not. Use the columns affinity. */ 149 assert( aff1==0 || aff2==0 ); 150 return (aff1 + aff2); 151 } 152 } 153 154 /* 155 ** pExpr is a comparison operator. Return the type affinity that should 156 ** be applied to both operands prior to doing the comparison. 157 */ 158 static char comparisonAffinity(Expr *pExpr){ 159 char aff; 160 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 161 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 162 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 163 assert( pExpr->pLeft ); 164 aff = sqlite3ExprAffinity(pExpr->pLeft); 165 if( pExpr->pRight ){ 166 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 167 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 168 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 169 }else if( !aff ){ 170 aff = SQLITE_AFF_NONE; 171 } 172 return aff; 173 } 174 175 /* 176 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 177 ** idx_affinity is the affinity of an indexed column. Return true 178 ** if the index with affinity idx_affinity may be used to implement 179 ** the comparison in pExpr. 180 */ 181 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 182 char aff = comparisonAffinity(pExpr); 183 switch( aff ){ 184 case SQLITE_AFF_NONE: 185 return 1; 186 case SQLITE_AFF_TEXT: 187 return idx_affinity==SQLITE_AFF_TEXT; 188 default: 189 return sqlite3IsNumericAffinity(idx_affinity); 190 } 191 } 192 193 /* 194 ** Return the P5 value that should be used for a binary comparison 195 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 196 */ 197 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 198 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 199 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 200 return aff; 201 } 202 203 /* 204 ** Return a pointer to the collation sequence that should be used by 205 ** a binary comparison operator comparing pLeft and pRight. 206 ** 207 ** If the left hand expression has a collating sequence type, then it is 208 ** used. Otherwise the collation sequence for the right hand expression 209 ** is used, or the default (BINARY) if neither expression has a collating 210 ** type. 211 ** 212 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 213 ** it is not considered. 214 */ 215 CollSeq *sqlite3BinaryCompareCollSeq( 216 Parse *pParse, 217 Expr *pLeft, 218 Expr *pRight 219 ){ 220 CollSeq *pColl; 221 assert( pLeft ); 222 if( pLeft->flags & EP_ExpCollate ){ 223 assert( pLeft->pColl ); 224 pColl = pLeft->pColl; 225 }else if( pRight && pRight->flags & EP_ExpCollate ){ 226 assert( pRight->pColl ); 227 pColl = pRight->pColl; 228 }else{ 229 pColl = sqlite3ExprCollSeq(pParse, pLeft); 230 if( !pColl ){ 231 pColl = sqlite3ExprCollSeq(pParse, pRight); 232 } 233 } 234 return pColl; 235 } 236 237 /* 238 ** Generate code for a comparison operator. 239 */ 240 static int codeCompare( 241 Parse *pParse, /* The parsing (and code generating) context */ 242 Expr *pLeft, /* The left operand */ 243 Expr *pRight, /* The right operand */ 244 int opcode, /* The comparison opcode */ 245 int in1, int in2, /* Register holding operands */ 246 int dest, /* Jump here if true. */ 247 int jumpIfNull /* If true, jump if either operand is NULL */ 248 ){ 249 int p5; 250 int addr; 251 CollSeq *p4; 252 253 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 254 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 255 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 256 (void*)p4, P4_COLLSEQ); 257 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 258 return addr; 259 } 260 261 #if SQLITE_MAX_EXPR_DEPTH>0 262 /* 263 ** Check that argument nHeight is less than or equal to the maximum 264 ** expression depth allowed. If it is not, leave an error message in 265 ** pParse. 266 */ 267 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 268 int rc = SQLITE_OK; 269 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 270 if( nHeight>mxHeight ){ 271 sqlite3ErrorMsg(pParse, 272 "Expression tree is too large (maximum depth %d)", mxHeight 273 ); 274 rc = SQLITE_ERROR; 275 } 276 return rc; 277 } 278 279 /* The following three functions, heightOfExpr(), heightOfExprList() 280 ** and heightOfSelect(), are used to determine the maximum height 281 ** of any expression tree referenced by the structure passed as the 282 ** first argument. 283 ** 284 ** If this maximum height is greater than the current value pointed 285 ** to by pnHeight, the second parameter, then set *pnHeight to that 286 ** value. 287 */ 288 static void heightOfExpr(Expr *p, int *pnHeight){ 289 if( p ){ 290 if( p->nHeight>*pnHeight ){ 291 *pnHeight = p->nHeight; 292 } 293 } 294 } 295 static void heightOfExprList(ExprList *p, int *pnHeight){ 296 if( p ){ 297 int i; 298 for(i=0; i<p->nExpr; i++){ 299 heightOfExpr(p->a[i].pExpr, pnHeight); 300 } 301 } 302 } 303 static void heightOfSelect(Select *p, int *pnHeight){ 304 if( p ){ 305 heightOfExpr(p->pWhere, pnHeight); 306 heightOfExpr(p->pHaving, pnHeight); 307 heightOfExpr(p->pLimit, pnHeight); 308 heightOfExpr(p->pOffset, pnHeight); 309 heightOfExprList(p->pEList, pnHeight); 310 heightOfExprList(p->pGroupBy, pnHeight); 311 heightOfExprList(p->pOrderBy, pnHeight); 312 heightOfSelect(p->pPrior, pnHeight); 313 } 314 } 315 316 /* 317 ** Set the Expr.nHeight variable in the structure passed as an 318 ** argument. An expression with no children, Expr.pList or 319 ** Expr.pSelect member has a height of 1. Any other expression 320 ** has a height equal to the maximum height of any other 321 ** referenced Expr plus one. 322 */ 323 static void exprSetHeight(Expr *p){ 324 int nHeight = 0; 325 heightOfExpr(p->pLeft, &nHeight); 326 heightOfExpr(p->pRight, &nHeight); 327 if( ExprHasProperty(p, EP_xIsSelect) ){ 328 heightOfSelect(p->x.pSelect, &nHeight); 329 }else{ 330 heightOfExprList(p->x.pList, &nHeight); 331 } 332 p->nHeight = nHeight + 1; 333 } 334 335 /* 336 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 337 ** the height is greater than the maximum allowed expression depth, 338 ** leave an error in pParse. 339 */ 340 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 341 exprSetHeight(p); 342 sqlite3ExprCheckHeight(pParse, p->nHeight); 343 } 344 345 /* 346 ** Return the maximum height of any expression tree referenced 347 ** by the select statement passed as an argument. 348 */ 349 int sqlite3SelectExprHeight(Select *p){ 350 int nHeight = 0; 351 heightOfSelect(p, &nHeight); 352 return nHeight; 353 } 354 #else 355 #define exprSetHeight(y) 356 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 357 358 /* 359 ** This routine is the core allocator for Expr nodes. 360 ** 361 ** Construct a new expression node and return a pointer to it. Memory 362 ** for this node and for the pToken argument is a single allocation 363 ** obtained from sqlite3DbMalloc(). The calling function 364 ** is responsible for making sure the node eventually gets freed. 365 ** 366 ** If dequote is true, then the token (if it exists) is dequoted. 367 ** If dequote is false, no dequoting is performance. The deQuote 368 ** parameter is ignored if pToken is NULL or if the token does not 369 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 370 ** then the EP_DblQuoted flag is set on the expression node. 371 ** 372 ** Special case: If op==TK_INTEGER and pToken points to a string that 373 ** can be translated into a 32-bit integer, then the token is not 374 ** stored in u.zToken. Instead, the integer values is written 375 ** into u.iValue and the EP_IntValue flag is set. No extra storage 376 ** is allocated to hold the integer text and the dequote flag is ignored. 377 */ 378 Expr *sqlite3ExprAlloc( 379 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 380 int op, /* Expression opcode */ 381 const Token *pToken, /* Token argument. Might be NULL */ 382 int dequote /* True to dequote */ 383 ){ 384 Expr *pNew; 385 int nExtra = 0; 386 int iValue = 0; 387 388 if( pToken ){ 389 if( op!=TK_INTEGER || pToken->z==0 390 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 391 nExtra = pToken->n+1; 392 } 393 } 394 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 395 if( pNew ){ 396 pNew->op = (u8)op; 397 pNew->iAgg = -1; 398 if( pToken ){ 399 if( nExtra==0 ){ 400 pNew->flags |= EP_IntValue; 401 pNew->u.iValue = iValue; 402 }else{ 403 int c; 404 pNew->u.zToken = (char*)&pNew[1]; 405 memcpy(pNew->u.zToken, pToken->z, pToken->n); 406 pNew->u.zToken[pToken->n] = 0; 407 if( dequote && nExtra>=3 408 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 409 sqlite3Dequote(pNew->u.zToken); 410 if( c=='"' ) pNew->flags |= EP_DblQuoted; 411 } 412 } 413 } 414 #if SQLITE_MAX_EXPR_DEPTH>0 415 pNew->nHeight = 1; 416 #endif 417 } 418 return pNew; 419 } 420 421 /* 422 ** Allocate a new expression node from a zero-terminated token that has 423 ** already been dequoted. 424 */ 425 Expr *sqlite3Expr( 426 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 427 int op, /* Expression opcode */ 428 const char *zToken /* Token argument. Might be NULL */ 429 ){ 430 Token x; 431 x.z = zToken; 432 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 433 return sqlite3ExprAlloc(db, op, &x, 0); 434 } 435 436 /* 437 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 438 ** 439 ** If pRoot==NULL that means that a memory allocation error has occurred. 440 ** In that case, delete the subtrees pLeft and pRight. 441 */ 442 void sqlite3ExprAttachSubtrees( 443 sqlite3 *db, 444 Expr *pRoot, 445 Expr *pLeft, 446 Expr *pRight 447 ){ 448 if( pRoot==0 ){ 449 assert( db->mallocFailed ); 450 sqlite3ExprDelete(db, pLeft); 451 sqlite3ExprDelete(db, pRight); 452 }else{ 453 if( pRight ){ 454 pRoot->pRight = pRight; 455 if( pRight->flags & EP_ExpCollate ){ 456 pRoot->flags |= EP_ExpCollate; 457 pRoot->pColl = pRight->pColl; 458 } 459 } 460 if( pLeft ){ 461 pRoot->pLeft = pLeft; 462 if( pLeft->flags & EP_ExpCollate ){ 463 pRoot->flags |= EP_ExpCollate; 464 pRoot->pColl = pLeft->pColl; 465 } 466 } 467 exprSetHeight(pRoot); 468 } 469 } 470 471 /* 472 ** Allocate a Expr node which joins as many as two subtrees. 473 ** 474 ** One or both of the subtrees can be NULL. Return a pointer to the new 475 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 476 ** free the subtrees and return NULL. 477 */ 478 Expr *sqlite3PExpr( 479 Parse *pParse, /* Parsing context */ 480 int op, /* Expression opcode */ 481 Expr *pLeft, /* Left operand */ 482 Expr *pRight, /* Right operand */ 483 const Token *pToken /* Argument token */ 484 ){ 485 Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 486 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 487 return p; 488 } 489 490 /* 491 ** Join two expressions using an AND operator. If either expression is 492 ** NULL, then just return the other expression. 493 */ 494 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 495 if( pLeft==0 ){ 496 return pRight; 497 }else if( pRight==0 ){ 498 return pLeft; 499 }else{ 500 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 501 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 502 return pNew; 503 } 504 } 505 506 /* 507 ** Construct a new expression node for a function with multiple 508 ** arguments. 509 */ 510 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 511 Expr *pNew; 512 sqlite3 *db = pParse->db; 513 assert( pToken ); 514 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 515 if( pNew==0 ){ 516 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 517 return 0; 518 } 519 pNew->x.pList = pList; 520 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 521 sqlite3ExprSetHeight(pParse, pNew); 522 return pNew; 523 } 524 525 /* 526 ** Assign a variable number to an expression that encodes a wildcard 527 ** in the original SQL statement. 528 ** 529 ** Wildcards consisting of a single "?" are assigned the next sequential 530 ** variable number. 531 ** 532 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 533 ** sure "nnn" is not too be to avoid a denial of service attack when 534 ** the SQL statement comes from an external source. 535 ** 536 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 537 ** as the previous instance of the same wildcard. Or if this is the first 538 ** instance of the wildcard, the next sequenial variable number is 539 ** assigned. 540 */ 541 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 542 sqlite3 *db = pParse->db; 543 const char *z; 544 545 if( pExpr==0 ) return; 546 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 547 z = pExpr->u.zToken; 548 assert( z!=0 ); 549 assert( z[0]!=0 ); 550 if( z[1]==0 ){ 551 /* Wildcard of the form "?". Assign the next variable number */ 552 assert( z[0]=='?' ); 553 pExpr->iColumn = (ynVar)(++pParse->nVar); 554 }else if( z[0]=='?' ){ 555 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 556 ** use it as the variable number */ 557 int i = atoi((char*)&z[1]); 558 pExpr->iColumn = (ynVar)i; 559 testcase( i==0 ); 560 testcase( i==1 ); 561 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 562 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 563 if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 564 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 565 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 566 } 567 if( i>pParse->nVar ){ 568 pParse->nVar = i; 569 } 570 }else{ 571 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 572 ** number as the prior appearance of the same name, or if the name 573 ** has never appeared before, reuse the same variable number 574 */ 575 int i; 576 u32 n; 577 n = sqlite3Strlen30(z); 578 for(i=0; i<pParse->nVarExpr; i++){ 579 Expr *pE = pParse->apVarExpr[i]; 580 assert( pE!=0 ); 581 if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){ 582 pExpr->iColumn = pE->iColumn; 583 break; 584 } 585 } 586 if( i>=pParse->nVarExpr ){ 587 pExpr->iColumn = (ynVar)(++pParse->nVar); 588 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ 589 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; 590 pParse->apVarExpr = 591 sqlite3DbReallocOrFree( 592 db, 593 pParse->apVarExpr, 594 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) 595 ); 596 } 597 if( !db->mallocFailed ){ 598 assert( pParse->apVarExpr!=0 ); 599 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; 600 } 601 } 602 } 603 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 604 sqlite3ErrorMsg(pParse, "too many SQL variables"); 605 } 606 } 607 608 /* 609 ** Recursively delete an expression tree. 610 */ 611 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 612 if( p==0 ) return; 613 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 614 sqlite3ExprDelete(db, p->pLeft); 615 sqlite3ExprDelete(db, p->pRight); 616 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ 617 sqlite3DbFree(db, p->u.zToken); 618 } 619 if( ExprHasProperty(p, EP_xIsSelect) ){ 620 sqlite3SelectDelete(db, p->x.pSelect); 621 }else{ 622 sqlite3ExprListDelete(db, p->x.pList); 623 } 624 } 625 if( !ExprHasProperty(p, EP_Static) ){ 626 sqlite3DbFree(db, p); 627 } 628 } 629 630 /* 631 ** Return the number of bytes allocated for the expression structure 632 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 633 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 634 */ 635 static int exprStructSize(Expr *p){ 636 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 637 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 638 return EXPR_FULLSIZE; 639 } 640 641 /* 642 ** The dupedExpr*Size() routines each return the number of bytes required 643 ** to store a copy of an expression or expression tree. They differ in 644 ** how much of the tree is measured. 645 ** 646 ** dupedExprStructSize() Size of only the Expr structure 647 ** dupedExprNodeSize() Size of Expr + space for token 648 ** dupedExprSize() Expr + token + subtree components 649 ** 650 *************************************************************************** 651 ** 652 ** The dupedExprStructSize() function returns two values OR-ed together: 653 ** (1) the space required for a copy of the Expr structure only and 654 ** (2) the EP_xxx flags that indicate what the structure size should be. 655 ** The return values is always one of: 656 ** 657 ** EXPR_FULLSIZE 658 ** EXPR_REDUCEDSIZE | EP_Reduced 659 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 660 ** 661 ** The size of the structure can be found by masking the return value 662 ** of this routine with 0xfff. The flags can be found by masking the 663 ** return value with EP_Reduced|EP_TokenOnly. 664 ** 665 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 666 ** (unreduced) Expr objects as they or originally constructed by the parser. 667 ** During expression analysis, extra information is computed and moved into 668 ** later parts of teh Expr object and that extra information might get chopped 669 ** off if the expression is reduced. Note also that it does not work to 670 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal 671 ** to reduce a pristine expression tree from the parser. The implementation 672 ** of dupedExprStructSize() contain multiple assert() statements that attempt 673 ** to enforce this constraint. 674 */ 675 static int dupedExprStructSize(Expr *p, int flags){ 676 int nSize; 677 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 678 if( 0==(flags&EXPRDUP_REDUCE) ){ 679 nSize = EXPR_FULLSIZE; 680 }else{ 681 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 682 assert( !ExprHasProperty(p, EP_FromJoin) ); 683 assert( (p->flags2 & EP2_MallocedToken)==0 ); 684 assert( (p->flags2 & EP2_Irreducible)==0 ); 685 if( p->pLeft || p->pRight || p->pColl || p->x.pList ){ 686 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 687 }else{ 688 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 689 } 690 } 691 return nSize; 692 } 693 694 /* 695 ** This function returns the space in bytes required to store the copy 696 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 697 ** string is defined.) 698 */ 699 static int dupedExprNodeSize(Expr *p, int flags){ 700 int nByte = dupedExprStructSize(p, flags) & 0xfff; 701 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 702 nByte += sqlite3Strlen30(p->u.zToken)+1; 703 } 704 return ROUND8(nByte); 705 } 706 707 /* 708 ** Return the number of bytes required to create a duplicate of the 709 ** expression passed as the first argument. The second argument is a 710 ** mask containing EXPRDUP_XXX flags. 711 ** 712 ** The value returned includes space to create a copy of the Expr struct 713 ** itself and the buffer referred to by Expr.u.zToken, if any. 714 ** 715 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 716 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 717 ** and Expr.pRight variables (but not for any structures pointed to or 718 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 719 */ 720 static int dupedExprSize(Expr *p, int flags){ 721 int nByte = 0; 722 if( p ){ 723 nByte = dupedExprNodeSize(p, flags); 724 if( flags&EXPRDUP_REDUCE ){ 725 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 726 } 727 } 728 return nByte; 729 } 730 731 /* 732 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 733 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 734 ** to store the copy of expression p, the copies of p->u.zToken 735 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 736 ** if any. Before returning, *pzBuffer is set to the first byte passed the 737 ** portion of the buffer copied into by this function. 738 */ 739 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 740 Expr *pNew = 0; /* Value to return */ 741 if( p ){ 742 const int isReduced = (flags&EXPRDUP_REDUCE); 743 u8 *zAlloc; 744 u32 staticFlag = 0; 745 746 assert( pzBuffer==0 || isReduced ); 747 748 /* Figure out where to write the new Expr structure. */ 749 if( pzBuffer ){ 750 zAlloc = *pzBuffer; 751 staticFlag = EP_Static; 752 }else{ 753 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 754 } 755 pNew = (Expr *)zAlloc; 756 757 if( pNew ){ 758 /* Set nNewSize to the size allocated for the structure pointed to 759 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 760 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 761 ** by the copy of the p->u.zToken string (if any). 762 */ 763 const unsigned nStructSize = dupedExprStructSize(p, flags); 764 const int nNewSize = nStructSize & 0xfff; 765 int nToken; 766 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 767 nToken = sqlite3Strlen30(p->u.zToken) + 1; 768 }else{ 769 nToken = 0; 770 } 771 if( isReduced ){ 772 assert( ExprHasProperty(p, EP_Reduced)==0 ); 773 memcpy(zAlloc, p, nNewSize); 774 }else{ 775 int nSize = exprStructSize(p); 776 memcpy(zAlloc, p, nSize); 777 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 778 } 779 780 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 781 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 782 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 783 pNew->flags |= staticFlag; 784 785 /* Copy the p->u.zToken string, if any. */ 786 if( nToken ){ 787 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 788 memcpy(zToken, p->u.zToken, nToken); 789 } 790 791 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 792 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 793 if( ExprHasProperty(p, EP_xIsSelect) ){ 794 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 795 }else{ 796 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 797 } 798 } 799 800 /* Fill in pNew->pLeft and pNew->pRight. */ 801 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 802 zAlloc += dupedExprNodeSize(p, flags); 803 if( ExprHasProperty(pNew, EP_Reduced) ){ 804 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 805 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 806 } 807 if( pzBuffer ){ 808 *pzBuffer = zAlloc; 809 } 810 }else{ 811 pNew->flags2 = 0; 812 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 813 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 814 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 815 } 816 } 817 818 } 819 } 820 return pNew; 821 } 822 823 /* 824 ** The following group of routines make deep copies of expressions, 825 ** expression lists, ID lists, and select statements. The copies can 826 ** be deleted (by being passed to their respective ...Delete() routines) 827 ** without effecting the originals. 828 ** 829 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 830 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 831 ** by subsequent calls to sqlite*ListAppend() routines. 832 ** 833 ** Any tables that the SrcList might point to are not duplicated. 834 ** 835 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 836 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 837 ** truncated version of the usual Expr structure that will be stored as 838 ** part of the in-memory representation of the database schema. 839 */ 840 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 841 return exprDup(db, p, flags, 0); 842 } 843 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 844 ExprList *pNew; 845 struct ExprList_item *pItem, *pOldItem; 846 int i; 847 if( p==0 ) return 0; 848 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 849 if( pNew==0 ) return 0; 850 pNew->iECursor = 0; 851 pNew->nExpr = pNew->nAlloc = p->nExpr; 852 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); 853 if( pItem==0 ){ 854 sqlite3DbFree(db, pNew); 855 return 0; 856 } 857 pOldItem = p->a; 858 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 859 Expr *pOldExpr = pOldItem->pExpr; 860 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 861 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 862 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 863 pItem->sortOrder = pOldItem->sortOrder; 864 pItem->done = 0; 865 pItem->iCol = pOldItem->iCol; 866 pItem->iAlias = pOldItem->iAlias; 867 } 868 return pNew; 869 } 870 871 /* 872 ** If cursors, triggers, views and subqueries are all omitted from 873 ** the build, then none of the following routines, except for 874 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 875 ** called with a NULL argument. 876 */ 877 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 878 || !defined(SQLITE_OMIT_SUBQUERY) 879 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 880 SrcList *pNew; 881 int i; 882 int nByte; 883 if( p==0 ) return 0; 884 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 885 pNew = sqlite3DbMallocRaw(db, nByte ); 886 if( pNew==0 ) return 0; 887 pNew->nSrc = pNew->nAlloc = p->nSrc; 888 for(i=0; i<p->nSrc; i++){ 889 struct SrcList_item *pNewItem = &pNew->a[i]; 890 struct SrcList_item *pOldItem = &p->a[i]; 891 Table *pTab; 892 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 893 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 894 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 895 pNewItem->jointype = pOldItem->jointype; 896 pNewItem->iCursor = pOldItem->iCursor; 897 pNewItem->isPopulated = pOldItem->isPopulated; 898 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 899 pNewItem->notIndexed = pOldItem->notIndexed; 900 pNewItem->pIndex = pOldItem->pIndex; 901 pTab = pNewItem->pTab = pOldItem->pTab; 902 if( pTab ){ 903 pTab->nRef++; 904 } 905 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 906 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 907 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 908 pNewItem->colUsed = pOldItem->colUsed; 909 } 910 return pNew; 911 } 912 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 913 IdList *pNew; 914 int i; 915 if( p==0 ) return 0; 916 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 917 if( pNew==0 ) return 0; 918 pNew->nId = pNew->nAlloc = p->nId; 919 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 920 if( pNew->a==0 ){ 921 sqlite3DbFree(db, pNew); 922 return 0; 923 } 924 for(i=0; i<p->nId; i++){ 925 struct IdList_item *pNewItem = &pNew->a[i]; 926 struct IdList_item *pOldItem = &p->a[i]; 927 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 928 pNewItem->idx = pOldItem->idx; 929 } 930 return pNew; 931 } 932 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 933 Select *pNew; 934 if( p==0 ) return 0; 935 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 936 if( pNew==0 ) return 0; 937 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 938 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 939 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 940 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 941 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 942 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 943 pNew->op = p->op; 944 pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags); 945 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 946 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 947 pNew->iLimit = 0; 948 pNew->iOffset = 0; 949 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 950 pNew->pRightmost = 0; 951 pNew->addrOpenEphm[0] = -1; 952 pNew->addrOpenEphm[1] = -1; 953 pNew->addrOpenEphm[2] = -1; 954 return pNew; 955 } 956 #else 957 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 958 assert( p==0 ); 959 return 0; 960 } 961 #endif 962 963 964 /* 965 ** Add a new element to the end of an expression list. If pList is 966 ** initially NULL, then create a new expression list. 967 ** 968 ** If a memory allocation error occurs, the entire list is freed and 969 ** NULL is returned. If non-NULL is returned, then it is guaranteed 970 ** that the new entry was successfully appended. 971 */ 972 ExprList *sqlite3ExprListAppend( 973 Parse *pParse, /* Parsing context */ 974 ExprList *pList, /* List to which to append. Might be NULL */ 975 Expr *pExpr /* Expression to be appended. Might be NULL */ 976 ){ 977 sqlite3 *db = pParse->db; 978 if( pList==0 ){ 979 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 980 if( pList==0 ){ 981 goto no_mem; 982 } 983 assert( pList->nAlloc==0 ); 984 } 985 if( pList->nAlloc<=pList->nExpr ){ 986 struct ExprList_item *a; 987 int n = pList->nAlloc*2 + 4; 988 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); 989 if( a==0 ){ 990 goto no_mem; 991 } 992 pList->a = a; 993 pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]); 994 } 995 assert( pList->a!=0 ); 996 if( 1 ){ 997 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 998 memset(pItem, 0, sizeof(*pItem)); 999 pItem->pExpr = pExpr; 1000 } 1001 return pList; 1002 1003 no_mem: 1004 /* Avoid leaking memory if malloc has failed. */ 1005 sqlite3ExprDelete(db, pExpr); 1006 sqlite3ExprListDelete(db, pList); 1007 return 0; 1008 } 1009 1010 /* 1011 ** Set the ExprList.a[].zName element of the most recently added item 1012 ** on the expression list. 1013 ** 1014 ** pList might be NULL following an OOM error. But pName should never be 1015 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1016 ** is set. 1017 */ 1018 void sqlite3ExprListSetName( 1019 Parse *pParse, /* Parsing context */ 1020 ExprList *pList, /* List to which to add the span. */ 1021 Token *pName, /* Name to be added */ 1022 int dequote /* True to cause the name to be dequoted */ 1023 ){ 1024 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1025 if( pList ){ 1026 struct ExprList_item *pItem; 1027 assert( pList->nExpr>0 ); 1028 pItem = &pList->a[pList->nExpr-1]; 1029 assert( pItem->zName==0 ); 1030 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1031 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1032 } 1033 } 1034 1035 /* 1036 ** Set the ExprList.a[].zSpan element of the most recently added item 1037 ** on the expression list. 1038 ** 1039 ** pList might be NULL following an OOM error. But pSpan should never be 1040 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1041 ** is set. 1042 */ 1043 void sqlite3ExprListSetSpan( 1044 Parse *pParse, /* Parsing context */ 1045 ExprList *pList, /* List to which to add the span. */ 1046 ExprSpan *pSpan /* The span to be added */ 1047 ){ 1048 sqlite3 *db = pParse->db; 1049 assert( pList!=0 || db->mallocFailed!=0 ); 1050 if( pList ){ 1051 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1052 assert( pList->nExpr>0 ); 1053 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1054 sqlite3DbFree(db, pItem->zSpan); 1055 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1056 (int)(pSpan->zEnd - pSpan->zStart)); 1057 } 1058 } 1059 1060 /* 1061 ** If the expression list pEList contains more than iLimit elements, 1062 ** leave an error message in pParse. 1063 */ 1064 void sqlite3ExprListCheckLength( 1065 Parse *pParse, 1066 ExprList *pEList, 1067 const char *zObject 1068 ){ 1069 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1070 testcase( pEList && pEList->nExpr==mx ); 1071 testcase( pEList && pEList->nExpr==mx+1 ); 1072 if( pEList && pEList->nExpr>mx ){ 1073 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1074 } 1075 } 1076 1077 /* 1078 ** Delete an entire expression list. 1079 */ 1080 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1081 int i; 1082 struct ExprList_item *pItem; 1083 if( pList==0 ) return; 1084 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 1085 assert( pList->nExpr<=pList->nAlloc ); 1086 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1087 sqlite3ExprDelete(db, pItem->pExpr); 1088 sqlite3DbFree(db, pItem->zName); 1089 sqlite3DbFree(db, pItem->zSpan); 1090 } 1091 sqlite3DbFree(db, pList->a); 1092 sqlite3DbFree(db, pList); 1093 } 1094 1095 /* 1096 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1097 ** to an integer. These routines are checking an expression to see 1098 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1099 ** not constant. 1100 ** 1101 ** These callback routines are used to implement the following: 1102 ** 1103 ** sqlite3ExprIsConstant() 1104 ** sqlite3ExprIsConstantNotJoin() 1105 ** sqlite3ExprIsConstantOrFunction() 1106 ** 1107 */ 1108 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1109 1110 /* If pWalker->u.i is 3 then any term of the expression that comes from 1111 ** the ON or USING clauses of a join disqualifies the expression 1112 ** from being considered constant. */ 1113 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 1114 pWalker->u.i = 0; 1115 return WRC_Abort; 1116 } 1117 1118 switch( pExpr->op ){ 1119 /* Consider functions to be constant if all their arguments are constant 1120 ** and pWalker->u.i==2 */ 1121 case TK_FUNCTION: 1122 if( pWalker->u.i==2 ) return 0; 1123 /* Fall through */ 1124 case TK_ID: 1125 case TK_COLUMN: 1126 case TK_AGG_FUNCTION: 1127 case TK_AGG_COLUMN: 1128 testcase( pExpr->op==TK_ID ); 1129 testcase( pExpr->op==TK_COLUMN ); 1130 testcase( pExpr->op==TK_AGG_FUNCTION ); 1131 testcase( pExpr->op==TK_AGG_COLUMN ); 1132 pWalker->u.i = 0; 1133 return WRC_Abort; 1134 default: 1135 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1136 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1137 return WRC_Continue; 1138 } 1139 } 1140 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1141 UNUSED_PARAMETER(NotUsed); 1142 pWalker->u.i = 0; 1143 return WRC_Abort; 1144 } 1145 static int exprIsConst(Expr *p, int initFlag){ 1146 Walker w; 1147 w.u.i = initFlag; 1148 w.xExprCallback = exprNodeIsConstant; 1149 w.xSelectCallback = selectNodeIsConstant; 1150 sqlite3WalkExpr(&w, p); 1151 return w.u.i; 1152 } 1153 1154 /* 1155 ** Walk an expression tree. Return 1 if the expression is constant 1156 ** and 0 if it involves variables or function calls. 1157 ** 1158 ** For the purposes of this function, a double-quoted string (ex: "abc") 1159 ** is considered a variable but a single-quoted string (ex: 'abc') is 1160 ** a constant. 1161 */ 1162 int sqlite3ExprIsConstant(Expr *p){ 1163 return exprIsConst(p, 1); 1164 } 1165 1166 /* 1167 ** Walk an expression tree. Return 1 if the expression is constant 1168 ** that does no originate from the ON or USING clauses of a join. 1169 ** Return 0 if it involves variables or function calls or terms from 1170 ** an ON or USING clause. 1171 */ 1172 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1173 return exprIsConst(p, 3); 1174 } 1175 1176 /* 1177 ** Walk an expression tree. Return 1 if the expression is constant 1178 ** or a function call with constant arguments. Return and 0 if there 1179 ** are any variables. 1180 ** 1181 ** For the purposes of this function, a double-quoted string (ex: "abc") 1182 ** is considered a variable but a single-quoted string (ex: 'abc') is 1183 ** a constant. 1184 */ 1185 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1186 return exprIsConst(p, 2); 1187 } 1188 1189 /* 1190 ** If the expression p codes a constant integer that is small enough 1191 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1192 ** in *pValue. If the expression is not an integer or if it is too big 1193 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1194 */ 1195 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1196 int rc = 0; 1197 if( p->flags & EP_IntValue ){ 1198 *pValue = p->u.iValue; 1199 return 1; 1200 } 1201 switch( p->op ){ 1202 case TK_INTEGER: { 1203 rc = sqlite3GetInt32(p->u.zToken, pValue); 1204 assert( rc==0 ); 1205 break; 1206 } 1207 case TK_UPLUS: { 1208 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1209 break; 1210 } 1211 case TK_UMINUS: { 1212 int v; 1213 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1214 *pValue = -v; 1215 rc = 1; 1216 } 1217 break; 1218 } 1219 default: break; 1220 } 1221 if( rc ){ 1222 assert( ExprHasAnyProperty(p, EP_Reduced|EP_TokenOnly) 1223 || (p->flags2 & EP2_MallocedToken)==0 ); 1224 p->op = TK_INTEGER; 1225 p->flags |= EP_IntValue; 1226 p->u.iValue = *pValue; 1227 } 1228 return rc; 1229 } 1230 1231 /* 1232 ** Return FALSE if there is no chance that the expression can be NULL. 1233 ** 1234 ** If the expression might be NULL or if the expression is too complex 1235 ** to tell return TRUE. 1236 ** 1237 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1238 ** when we know that a value cannot be NULL. Hence, a false positive 1239 ** (returning TRUE when in fact the expression can never be NULL) might 1240 ** be a small performance hit but is otherwise harmless. On the other 1241 ** hand, a false negative (returning FALSE when the result could be NULL) 1242 ** will likely result in an incorrect answer. So when in doubt, return 1243 ** TRUE. 1244 */ 1245 int sqlite3ExprCanBeNull(const Expr *p){ 1246 u8 op; 1247 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1248 op = p->op; 1249 if( op==TK_REGISTER ) op = p->op2; 1250 switch( op ){ 1251 case TK_INTEGER: 1252 case TK_STRING: 1253 case TK_FLOAT: 1254 case TK_BLOB: 1255 return 0; 1256 default: 1257 return 1; 1258 } 1259 } 1260 1261 /* 1262 ** Generate an OP_IsNull instruction that tests register iReg and jumps 1263 ** to location iDest if the value in iReg is NULL. The value in iReg 1264 ** was computed by pExpr. If we can look at pExpr at compile-time and 1265 ** determine that it can never generate a NULL, then the OP_IsNull operation 1266 ** can be omitted. 1267 */ 1268 void sqlite3ExprCodeIsNullJump( 1269 Vdbe *v, /* The VDBE under construction */ 1270 const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */ 1271 int iReg, /* Test the value in this register for NULL */ 1272 int iDest /* Jump here if the value is null */ 1273 ){ 1274 if( sqlite3ExprCanBeNull(pExpr) ){ 1275 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest); 1276 } 1277 } 1278 1279 /* 1280 ** Return TRUE if the given expression is a constant which would be 1281 ** unchanged by OP_Affinity with the affinity given in the second 1282 ** argument. 1283 ** 1284 ** This routine is used to determine if the OP_Affinity operation 1285 ** can be omitted. When in doubt return FALSE. A false negative 1286 ** is harmless. A false positive, however, can result in the wrong 1287 ** answer. 1288 */ 1289 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1290 u8 op; 1291 if( aff==SQLITE_AFF_NONE ) return 1; 1292 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1293 op = p->op; 1294 if( op==TK_REGISTER ) op = p->op2; 1295 switch( op ){ 1296 case TK_INTEGER: { 1297 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1298 } 1299 case TK_FLOAT: { 1300 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1301 } 1302 case TK_STRING: { 1303 return aff==SQLITE_AFF_TEXT; 1304 } 1305 case TK_BLOB: { 1306 return 1; 1307 } 1308 case TK_COLUMN: { 1309 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1310 return p->iColumn<0 1311 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1312 } 1313 default: { 1314 return 0; 1315 } 1316 } 1317 } 1318 1319 /* 1320 ** Return TRUE if the given string is a row-id column name. 1321 */ 1322 int sqlite3IsRowid(const char *z){ 1323 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1324 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1325 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1326 return 0; 1327 } 1328 1329 /* 1330 ** Return true if we are able to the IN operator optimization on a 1331 ** query of the form 1332 ** 1333 ** x IN (SELECT ...) 1334 ** 1335 ** Where the SELECT... clause is as specified by the parameter to this 1336 ** routine. 1337 ** 1338 ** The Select object passed in has already been preprocessed and no 1339 ** errors have been found. 1340 */ 1341 #ifndef SQLITE_OMIT_SUBQUERY 1342 static int isCandidateForInOpt(Select *p){ 1343 SrcList *pSrc; 1344 ExprList *pEList; 1345 Table *pTab; 1346 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1347 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1348 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1349 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1350 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1351 return 0; /* No DISTINCT keyword and no aggregate functions */ 1352 } 1353 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1354 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1355 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1356 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1357 pSrc = p->pSrc; 1358 assert( pSrc!=0 ); 1359 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1360 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1361 pTab = pSrc->a[0].pTab; 1362 if( NEVER(pTab==0) ) return 0; 1363 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1364 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1365 pEList = p->pEList; 1366 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1367 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1368 return 1; 1369 } 1370 #endif /* SQLITE_OMIT_SUBQUERY */ 1371 1372 /* 1373 ** This function is used by the implementation of the IN (...) operator. 1374 ** It's job is to find or create a b-tree structure that may be used 1375 ** either to test for membership of the (...) set or to iterate through 1376 ** its members, skipping duplicates. 1377 ** 1378 ** The index of the cursor opened on the b-tree (database table, database index 1379 ** or ephermal table) is stored in pX->iTable before this function returns. 1380 ** The returned value of this function indicates the b-tree type, as follows: 1381 ** 1382 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1383 ** IN_INDEX_INDEX - The cursor was opened on a database index. 1384 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1385 ** populated epheremal table. 1386 ** 1387 ** An existing b-tree may only be used if the SELECT is of the simple 1388 ** form: 1389 ** 1390 ** SELECT <column> FROM <table> 1391 ** 1392 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate 1393 ** through the set members, skipping any duplicates. In this case an 1394 ** epheremal table must be used unless the selected <column> is guaranteed 1395 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1396 ** has a UNIQUE constraint or UNIQUE index. 1397 ** 1398 ** If the prNotFound parameter is not 0, then the b-tree will be used 1399 ** for fast set membership tests. In this case an epheremal table must 1400 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1401 ** be found with <column> as its left-most column. 1402 ** 1403 ** When the b-tree is being used for membership tests, the calling function 1404 ** needs to know whether or not the structure contains an SQL NULL 1405 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1406 ** If there is any chance that the (...) might contain a NULL value at 1407 ** runtime, then a register is allocated and the register number written 1408 ** to *prNotFound. If there is no chance that the (...) contains a 1409 ** NULL value, then *prNotFound is left unchanged. 1410 ** 1411 ** If a register is allocated and its location stored in *prNotFound, then 1412 ** its initial value is NULL. If the (...) does not remain constant 1413 ** for the duration of the query (i.e. the SELECT within the (...) 1414 ** is a correlated subquery) then the value of the allocated register is 1415 ** reset to NULL each time the subquery is rerun. This allows the 1416 ** caller to use vdbe code equivalent to the following: 1417 ** 1418 ** if( register==NULL ){ 1419 ** has_null = <test if data structure contains null> 1420 ** register = 1 1421 ** } 1422 ** 1423 ** in order to avoid running the <test if data structure contains null> 1424 ** test more often than is necessary. 1425 */ 1426 #ifndef SQLITE_OMIT_SUBQUERY 1427 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1428 Select *p; /* SELECT to the right of IN operator */ 1429 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1430 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1431 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ 1432 1433 assert( pX->op==TK_IN ); 1434 1435 /* Check to see if an existing table or index can be used to 1436 ** satisfy the query. This is preferable to generating a new 1437 ** ephemeral table. 1438 */ 1439 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1440 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1441 sqlite3 *db = pParse->db; /* Database connection */ 1442 Expr *pExpr = p->pEList->a[0].pExpr; /* Expression <column> */ 1443 int iCol = pExpr->iColumn; /* Index of column <column> */ 1444 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1445 Table *pTab = p->pSrc->a[0].pTab; /* Table <table>. */ 1446 int iDb; /* Database idx for pTab */ 1447 1448 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */ 1449 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1450 sqlite3CodeVerifySchema(pParse, iDb); 1451 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1452 1453 /* This function is only called from two places. In both cases the vdbe 1454 ** has already been allocated. So assume sqlite3GetVdbe() is always 1455 ** successful here. 1456 */ 1457 assert(v); 1458 if( iCol<0 ){ 1459 int iMem = ++pParse->nMem; 1460 int iAddr; 1461 1462 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1463 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1464 1465 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1466 eType = IN_INDEX_ROWID; 1467 1468 sqlite3VdbeJumpHere(v, iAddr); 1469 }else{ 1470 Index *pIdx; /* Iterator variable */ 1471 1472 /* The collation sequence used by the comparison. If an index is to 1473 ** be used in place of a temp-table, it must be ordered according 1474 ** to this collation sequence. */ 1475 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1476 1477 /* Check that the affinity that will be used to perform the 1478 ** comparison is the same as the affinity of the column. If 1479 ** it is not, it is not possible to use any index. 1480 */ 1481 char aff = comparisonAffinity(pX); 1482 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); 1483 1484 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1485 if( (pIdx->aiColumn[0]==iCol) 1486 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1487 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1488 ){ 1489 int iMem = ++pParse->nMem; 1490 int iAddr; 1491 char *pKey; 1492 1493 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); 1494 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1495 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1496 1497 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, 1498 pKey,P4_KEYINFO_HANDOFF); 1499 VdbeComment((v, "%s", pIdx->zName)); 1500 eType = IN_INDEX_INDEX; 1501 1502 sqlite3VdbeJumpHere(v, iAddr); 1503 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1504 *prNotFound = ++pParse->nMem; 1505 } 1506 } 1507 } 1508 } 1509 } 1510 1511 if( eType==0 ){ 1512 /* Could not found an existing table or index to use as the RHS b-tree. 1513 ** We will have to generate an ephemeral table to do the job. 1514 */ 1515 double savedNQueryLoop = pParse->nQueryLoop; 1516 int rMayHaveNull = 0; 1517 eType = IN_INDEX_EPH; 1518 if( prNotFound ){ 1519 *prNotFound = rMayHaveNull = ++pParse->nMem; 1520 }else{ 1521 testcase( pParse->nQueryLoop>(double)1 ); 1522 pParse->nQueryLoop = (double)1; 1523 if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ 1524 eType = IN_INDEX_ROWID; 1525 } 1526 } 1527 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1528 pParse->nQueryLoop = savedNQueryLoop; 1529 }else{ 1530 pX->iTable = iTab; 1531 } 1532 return eType; 1533 } 1534 #endif 1535 1536 /* 1537 ** Generate code for scalar subqueries used as an expression 1538 ** and IN operators. Examples: 1539 ** 1540 ** (SELECT a FROM b) -- subquery 1541 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1542 ** x IN (4,5,11) -- IN operator with list on right-hand side 1543 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1544 ** 1545 ** The pExpr parameter describes the expression that contains the IN 1546 ** operator or subquery. 1547 ** 1548 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1549 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1550 ** to some integer key column of a table B-Tree. In this case, use an 1551 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1552 ** (slower) variable length keys B-Tree. 1553 ** 1554 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1555 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1556 ** Furthermore, the IN is in a WHERE clause and that we really want 1557 ** to iterate over the RHS of the IN operator in order to quickly locate 1558 ** all corresponding LHS elements. All this routine does is initialize 1559 ** the register given by rMayHaveNull to NULL. Calling routines will take 1560 ** care of changing this register value to non-NULL if the RHS is NULL-free. 1561 ** 1562 ** If rMayHaveNull is zero, that means that the subquery is being used 1563 ** for membership testing only. There is no need to initialize any 1564 ** registers to indicate the presense or absence of NULLs on the RHS. 1565 ** 1566 ** For a SELECT or EXISTS operator, return the register that holds the 1567 ** result. For IN operators or if an error occurs, the return value is 0. 1568 */ 1569 #ifndef SQLITE_OMIT_SUBQUERY 1570 int sqlite3CodeSubselect( 1571 Parse *pParse, /* Parsing context */ 1572 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1573 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ 1574 int isRowid /* If true, LHS of IN operator is a rowid */ 1575 ){ 1576 int testAddr = 0; /* One-time test address */ 1577 int rReg = 0; /* Register storing resulting */ 1578 Vdbe *v = sqlite3GetVdbe(pParse); 1579 if( NEVER(v==0) ) return 0; 1580 sqlite3ExprCachePush(pParse); 1581 1582 /* This code must be run in its entirety every time it is encountered 1583 ** if any of the following is true: 1584 ** 1585 ** * The right-hand side is a correlated subquery 1586 ** * The right-hand side is an expression list containing variables 1587 ** * We are inside a trigger 1588 ** 1589 ** If all of the above are false, then we can run this code just once 1590 ** save the results, and reuse the same result on subsequent invocations. 1591 */ 1592 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){ 1593 int mem = ++pParse->nMem; 1594 sqlite3VdbeAddOp1(v, OP_If, mem); 1595 testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem); 1596 assert( testAddr>0 || pParse->db->mallocFailed ); 1597 } 1598 1599 switch( pExpr->op ){ 1600 case TK_IN: { 1601 char affinity; 1602 KeyInfo keyInfo; 1603 int addr; /* Address of OP_OpenEphemeral instruction */ 1604 Expr *pLeft = pExpr->pLeft; 1605 1606 if( rMayHaveNull ){ 1607 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1608 } 1609 1610 affinity = sqlite3ExprAffinity(pLeft); 1611 1612 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1613 ** expression it is handled the same way. An ephemeral table is 1614 ** filled with single-field index keys representing the results 1615 ** from the SELECT or the <exprlist>. 1616 ** 1617 ** If the 'x' expression is a column value, or the SELECT... 1618 ** statement returns a column value, then the affinity of that 1619 ** column is used to build the index keys. If both 'x' and the 1620 ** SELECT... statement are columns, then numeric affinity is used 1621 ** if either column has NUMERIC or INTEGER affinity. If neither 1622 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1623 ** is used. 1624 */ 1625 pExpr->iTable = pParse->nTab++; 1626 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1627 memset(&keyInfo, 0, sizeof(keyInfo)); 1628 keyInfo.nField = 1; 1629 1630 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1631 /* Case 1: expr IN (SELECT ...) 1632 ** 1633 ** Generate code to write the results of the select into the temporary 1634 ** table allocated and opened above. 1635 */ 1636 SelectDest dest; 1637 ExprList *pEList; 1638 1639 assert( !isRowid ); 1640 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1641 dest.affinity = (u8)affinity; 1642 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1643 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1644 return 0; 1645 } 1646 pEList = pExpr->x.pSelect->pEList; 1647 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 1648 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1649 pEList->a[0].pExpr); 1650 } 1651 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1652 /* Case 2: expr IN (exprlist) 1653 ** 1654 ** For each expression, build an index key from the evaluation and 1655 ** store it in the temporary table. If <expr> is a column, then use 1656 ** that columns affinity when building index keys. If <expr> is not 1657 ** a column, use numeric affinity. 1658 */ 1659 int i; 1660 ExprList *pList = pExpr->x.pList; 1661 struct ExprList_item *pItem; 1662 int r1, r2, r3; 1663 1664 if( !affinity ){ 1665 affinity = SQLITE_AFF_NONE; 1666 } 1667 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1668 1669 /* Loop through each expression in <exprlist>. */ 1670 r1 = sqlite3GetTempReg(pParse); 1671 r2 = sqlite3GetTempReg(pParse); 1672 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1673 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1674 Expr *pE2 = pItem->pExpr; 1675 int iValToIns; 1676 1677 /* If the expression is not constant then we will need to 1678 ** disable the test that was generated above that makes sure 1679 ** this code only executes once. Because for a non-constant 1680 ** expression we need to rerun this code each time. 1681 */ 1682 if( testAddr && !sqlite3ExprIsConstant(pE2) ){ 1683 sqlite3VdbeChangeToNoop(v, testAddr-1, 2); 1684 testAddr = 0; 1685 } 1686 1687 /* Evaluate the expression and insert it into the temp table */ 1688 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1689 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1690 }else{ 1691 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1692 if( isRowid ){ 1693 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1694 sqlite3VdbeCurrentAddr(v)+2); 1695 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1696 }else{ 1697 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1698 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1699 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1700 } 1701 } 1702 } 1703 sqlite3ReleaseTempReg(pParse, r1); 1704 sqlite3ReleaseTempReg(pParse, r2); 1705 } 1706 if( !isRowid ){ 1707 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); 1708 } 1709 break; 1710 } 1711 1712 case TK_EXISTS: 1713 case TK_SELECT: 1714 default: { 1715 /* If this has to be a scalar SELECT. Generate code to put the 1716 ** value of this select in a memory cell and record the number 1717 ** of the memory cell in iColumn. If this is an EXISTS, write 1718 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1719 ** and record that memory cell in iColumn. 1720 */ 1721 Select *pSel; /* SELECT statement to encode */ 1722 SelectDest dest; /* How to deal with SELECt result */ 1723 1724 testcase( pExpr->op==TK_EXISTS ); 1725 testcase( pExpr->op==TK_SELECT ); 1726 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1727 1728 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1729 pSel = pExpr->x.pSelect; 1730 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1731 if( pExpr->op==TK_SELECT ){ 1732 dest.eDest = SRT_Mem; 1733 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm); 1734 VdbeComment((v, "Init subquery result")); 1735 }else{ 1736 dest.eDest = SRT_Exists; 1737 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm); 1738 VdbeComment((v, "Init EXISTS result")); 1739 } 1740 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1741 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 1742 &sqlite3IntTokens[1]); 1743 if( sqlite3Select(pParse, pSel, &dest) ){ 1744 return 0; 1745 } 1746 rReg = dest.iParm; 1747 ExprSetIrreducible(pExpr); 1748 break; 1749 } 1750 } 1751 1752 if( testAddr ){ 1753 sqlite3VdbeJumpHere(v, testAddr-1); 1754 } 1755 sqlite3ExprCachePop(pParse, 1); 1756 1757 return rReg; 1758 } 1759 #endif /* SQLITE_OMIT_SUBQUERY */ 1760 1761 #ifndef SQLITE_OMIT_SUBQUERY 1762 /* 1763 ** Generate code for an IN expression. 1764 ** 1765 ** x IN (SELECT ...) 1766 ** x IN (value, value, ...) 1767 ** 1768 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 1769 ** is an array of zero or more values. The expression is true if the LHS is 1770 ** contained within the RHS. The value of the expression is unknown (NULL) 1771 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 1772 ** RHS contains one or more NULL values. 1773 ** 1774 ** This routine generates code will jump to destIfFalse if the LHS is not 1775 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 1776 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 1777 ** within the RHS then fall through. 1778 */ 1779 static void sqlite3ExprCodeIN( 1780 Parse *pParse, /* Parsing and code generating context */ 1781 Expr *pExpr, /* The IN expression */ 1782 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 1783 int destIfNull /* Jump here if the results are unknown due to NULLs */ 1784 ){ 1785 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 1786 char affinity; /* Comparison affinity to use */ 1787 int eType; /* Type of the RHS */ 1788 int r1; /* Temporary use register */ 1789 Vdbe *v; /* Statement under construction */ 1790 1791 /* Compute the RHS. After this step, the table with cursor 1792 ** pExpr->iTable will contains the values that make up the RHS. 1793 */ 1794 v = pParse->pVdbe; 1795 assert( v!=0 ); /* OOM detected prior to this routine */ 1796 VdbeNoopComment((v, "begin IN expr")); 1797 eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull); 1798 1799 /* Figure out the affinity to use to create a key from the results 1800 ** of the expression. affinityStr stores a static string suitable for 1801 ** P4 of OP_MakeRecord. 1802 */ 1803 affinity = comparisonAffinity(pExpr); 1804 1805 /* Code the LHS, the <expr> from "<expr> IN (...)". 1806 */ 1807 sqlite3ExprCachePush(pParse); 1808 r1 = sqlite3GetTempReg(pParse); 1809 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 1810 1811 /* If the LHS is NULL, then the result is either false or NULL depending 1812 ** on whether the RHS is empty or not, respectively. 1813 */ 1814 if( destIfNull==destIfFalse ){ 1815 /* Shortcut for the common case where the false and NULL outcomes are 1816 ** the same. */ 1817 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); 1818 }else{ 1819 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); 1820 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 1821 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 1822 sqlite3VdbeJumpHere(v, addr1); 1823 } 1824 1825 if( eType==IN_INDEX_ROWID ){ 1826 /* In this case, the RHS is the ROWID of table b-tree 1827 */ 1828 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); 1829 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 1830 }else{ 1831 /* In this case, the RHS is an index b-tree. 1832 */ 1833 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 1834 1835 /* If the set membership test fails, then the result of the 1836 ** "x IN (...)" expression must be either 0 or NULL. If the set 1837 ** contains no NULL values, then the result is 0. If the set 1838 ** contains one or more NULL values, then the result of the 1839 ** expression is also NULL. 1840 */ 1841 if( rRhsHasNull==0 || destIfFalse==destIfNull ){ 1842 /* This branch runs if it is known at compile time that the RHS 1843 ** cannot contain NULL values. This happens as the result 1844 ** of a "NOT NULL" constraint in the database schema. 1845 ** 1846 ** Also run this branch if NULL is equivalent to FALSE 1847 ** for this particular IN operator. 1848 */ 1849 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 1850 1851 }else{ 1852 /* In this branch, the RHS of the IN might contain a NULL and 1853 ** the presence of a NULL on the RHS makes a difference in the 1854 ** outcome. 1855 */ 1856 int j1, j2, j3; 1857 1858 /* First check to see if the LHS is contained in the RHS. If so, 1859 ** then the presence of NULLs in the RHS does not matter, so jump 1860 ** over all of the code that follows. 1861 */ 1862 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 1863 1864 /* Here we begin generating code that runs if the LHS is not 1865 ** contained within the RHS. Generate additional code that 1866 ** tests the RHS for NULLs. If the RHS contains a NULL then 1867 ** jump to destIfNull. If there are no NULLs in the RHS then 1868 ** jump to destIfFalse. 1869 */ 1870 j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull); 1871 j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); 1872 sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull); 1873 sqlite3VdbeJumpHere(v, j3); 1874 sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1); 1875 sqlite3VdbeJumpHere(v, j2); 1876 1877 /* Jump to the appropriate target depending on whether or not 1878 ** the RHS contains a NULL 1879 */ 1880 sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); 1881 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 1882 1883 /* The OP_Found at the top of this branch jumps here when true, 1884 ** causing the overall IN expression evaluation to fall through. 1885 */ 1886 sqlite3VdbeJumpHere(v, j1); 1887 } 1888 } 1889 sqlite3ReleaseTempReg(pParse, r1); 1890 sqlite3ExprCachePop(pParse, 1); 1891 VdbeComment((v, "end IN expr")); 1892 } 1893 #endif /* SQLITE_OMIT_SUBQUERY */ 1894 1895 /* 1896 ** Duplicate an 8-byte value 1897 */ 1898 static char *dup8bytes(Vdbe *v, const char *in){ 1899 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 1900 if( out ){ 1901 memcpy(out, in, 8); 1902 } 1903 return out; 1904 } 1905 1906 #ifndef SQLITE_OMIT_FLOATING_POINT 1907 /* 1908 ** Generate an instruction that will put the floating point 1909 ** value described by z[0..n-1] into register iMem. 1910 ** 1911 ** The z[] string will probably not be zero-terminated. But the 1912 ** z[n] character is guaranteed to be something that does not look 1913 ** like the continuation of the number. 1914 */ 1915 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 1916 if( ALWAYS(z!=0) ){ 1917 double value; 1918 char *zV; 1919 sqlite3AtoF(z, &value); 1920 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 1921 if( negateFlag ) value = -value; 1922 zV = dup8bytes(v, (char*)&value); 1923 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 1924 } 1925 } 1926 #endif 1927 1928 1929 /* 1930 ** Generate an instruction that will put the integer describe by 1931 ** text z[0..n-1] into register iMem. 1932 ** 1933 ** The z[] string will probably not be zero-terminated. But the 1934 ** z[n] character is guaranteed to be something that does not look 1935 ** like the continuation of the number. 1936 */ 1937 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 1938 Vdbe *v = pParse->pVdbe; 1939 if( pExpr->flags & EP_IntValue ){ 1940 int i = pExpr->u.iValue; 1941 if( negFlag ) i = -i; 1942 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 1943 }else{ 1944 const char *z = pExpr->u.zToken; 1945 assert( z!=0 ); 1946 if( sqlite3FitsIn64Bits(z, negFlag) ){ 1947 i64 value; 1948 char *zV; 1949 sqlite3Atoi64(z, &value); 1950 if( negFlag ) value = -value; 1951 zV = dup8bytes(v, (char*)&value); 1952 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 1953 }else{ 1954 #ifdef SQLITE_OMIT_FLOATING_POINT 1955 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 1956 #else 1957 codeReal(v, z, negFlag, iMem); 1958 #endif 1959 } 1960 } 1961 } 1962 1963 /* 1964 ** Clear a cache entry. 1965 */ 1966 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 1967 if( p->tempReg ){ 1968 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 1969 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 1970 } 1971 p->tempReg = 0; 1972 } 1973 } 1974 1975 1976 /* 1977 ** Record in the column cache that a particular column from a 1978 ** particular table is stored in a particular register. 1979 */ 1980 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 1981 int i; 1982 int minLru; 1983 int idxLru; 1984 struct yColCache *p; 1985 1986 assert( iReg>0 ); /* Register numbers are always positive */ 1987 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 1988 1989 /* The SQLITE_ColumnCache flag disables the column cache. This is used 1990 ** for testing only - to verify that SQLite always gets the same answer 1991 ** with and without the column cache. 1992 */ 1993 if( pParse->db->flags & SQLITE_ColumnCache ) return; 1994 1995 /* First replace any existing entry. 1996 ** 1997 ** Actually, the way the column cache is currently used, we are guaranteed 1998 ** that the object will never already be in cache. Verify this guarantee. 1999 */ 2000 #ifndef NDEBUG 2001 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2002 #if 0 /* This code wold remove the entry from the cache if it existed */ 2003 if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){ 2004 cacheEntryClear(pParse, p); 2005 p->iLevel = pParse->iCacheLevel; 2006 p->iReg = iReg; 2007 p->lru = pParse->iCacheCnt++; 2008 return; 2009 } 2010 #endif 2011 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2012 } 2013 #endif 2014 2015 /* Find an empty slot and replace it */ 2016 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2017 if( p->iReg==0 ){ 2018 p->iLevel = pParse->iCacheLevel; 2019 p->iTable = iTab; 2020 p->iColumn = iCol; 2021 p->iReg = iReg; 2022 p->tempReg = 0; 2023 p->lru = pParse->iCacheCnt++; 2024 return; 2025 } 2026 } 2027 2028 /* Replace the last recently used */ 2029 minLru = 0x7fffffff; 2030 idxLru = -1; 2031 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2032 if( p->lru<minLru ){ 2033 idxLru = i; 2034 minLru = p->lru; 2035 } 2036 } 2037 if( ALWAYS(idxLru>=0) ){ 2038 p = &pParse->aColCache[idxLru]; 2039 p->iLevel = pParse->iCacheLevel; 2040 p->iTable = iTab; 2041 p->iColumn = iCol; 2042 p->iReg = iReg; 2043 p->tempReg = 0; 2044 p->lru = pParse->iCacheCnt++; 2045 return; 2046 } 2047 } 2048 2049 /* 2050 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2051 ** Purge the range of registers from the column cache. 2052 */ 2053 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2054 int i; 2055 int iLast = iReg + nReg - 1; 2056 struct yColCache *p; 2057 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2058 int r = p->iReg; 2059 if( r>=iReg && r<=iLast ){ 2060 cacheEntryClear(pParse, p); 2061 p->iReg = 0; 2062 } 2063 } 2064 } 2065 2066 /* 2067 ** Remember the current column cache context. Any new entries added 2068 ** added to the column cache after this call are removed when the 2069 ** corresponding pop occurs. 2070 */ 2071 void sqlite3ExprCachePush(Parse *pParse){ 2072 pParse->iCacheLevel++; 2073 } 2074 2075 /* 2076 ** Remove from the column cache any entries that were added since the 2077 ** the previous N Push operations. In other words, restore the cache 2078 ** to the state it was in N Pushes ago. 2079 */ 2080 void sqlite3ExprCachePop(Parse *pParse, int N){ 2081 int i; 2082 struct yColCache *p; 2083 assert( N>0 ); 2084 assert( pParse->iCacheLevel>=N ); 2085 pParse->iCacheLevel -= N; 2086 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2087 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2088 cacheEntryClear(pParse, p); 2089 p->iReg = 0; 2090 } 2091 } 2092 } 2093 2094 /* 2095 ** When a cached column is reused, make sure that its register is 2096 ** no longer available as a temp register. ticket #3879: that same 2097 ** register might be in the cache in multiple places, so be sure to 2098 ** get them all. 2099 */ 2100 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2101 int i; 2102 struct yColCache *p; 2103 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2104 if( p->iReg==iReg ){ 2105 p->tempReg = 0; 2106 } 2107 } 2108 } 2109 2110 /* 2111 ** Generate code to extract the value of the iCol-th column of a table. 2112 */ 2113 void sqlite3ExprCodeGetColumnOfTable( 2114 Vdbe *v, /* The VDBE under construction */ 2115 Table *pTab, /* The table containing the value */ 2116 int iTabCur, /* The cursor for this table */ 2117 int iCol, /* Index of the column to extract */ 2118 int regOut /* Extract the valud into this register */ 2119 ){ 2120 if( iCol<0 || iCol==pTab->iPKey ){ 2121 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2122 }else{ 2123 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2124 sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut); 2125 } 2126 if( iCol>=0 ){ 2127 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2128 } 2129 } 2130 2131 /* 2132 ** Generate code that will extract the iColumn-th column from 2133 ** table pTab and store the column value in a register. An effort 2134 ** is made to store the column value in register iReg, but this is 2135 ** not guaranteed. The location of the column value is returned. 2136 ** 2137 ** There must be an open cursor to pTab in iTable when this routine 2138 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2139 */ 2140 int sqlite3ExprCodeGetColumn( 2141 Parse *pParse, /* Parsing and code generating context */ 2142 Table *pTab, /* Description of the table we are reading from */ 2143 int iColumn, /* Index of the table column */ 2144 int iTable, /* The cursor pointing to the table */ 2145 int iReg /* Store results here */ 2146 ){ 2147 Vdbe *v = pParse->pVdbe; 2148 int i; 2149 struct yColCache *p; 2150 2151 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2152 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2153 p->lru = pParse->iCacheCnt++; 2154 sqlite3ExprCachePinRegister(pParse, p->iReg); 2155 return p->iReg; 2156 } 2157 } 2158 assert( v!=0 ); 2159 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2160 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2161 return iReg; 2162 } 2163 2164 /* 2165 ** Clear all column cache entries. 2166 */ 2167 void sqlite3ExprCacheClear(Parse *pParse){ 2168 int i; 2169 struct yColCache *p; 2170 2171 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2172 if( p->iReg ){ 2173 cacheEntryClear(pParse, p); 2174 p->iReg = 0; 2175 } 2176 } 2177 } 2178 2179 /* 2180 ** Record the fact that an affinity change has occurred on iCount 2181 ** registers starting with iStart. 2182 */ 2183 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2184 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2185 } 2186 2187 /* 2188 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2189 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2190 */ 2191 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2192 int i; 2193 struct yColCache *p; 2194 if( NEVER(iFrom==iTo) ) return; 2195 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2196 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2197 int x = p->iReg; 2198 if( x>=iFrom && x<iFrom+nReg ){ 2199 p->iReg += iTo-iFrom; 2200 } 2201 } 2202 } 2203 2204 /* 2205 ** Generate code to copy content from registers iFrom...iFrom+nReg-1 2206 ** over to iTo..iTo+nReg-1. 2207 */ 2208 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){ 2209 int i; 2210 if( NEVER(iFrom==iTo) ) return; 2211 for(i=0; i<nReg; i++){ 2212 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i); 2213 } 2214 } 2215 2216 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2217 /* 2218 ** Return true if any register in the range iFrom..iTo (inclusive) 2219 ** is used as part of the column cache. 2220 ** 2221 ** This routine is used within assert() and testcase() macros only 2222 ** and does not appear in a normal build. 2223 */ 2224 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2225 int i; 2226 struct yColCache *p; 2227 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2228 int r = p->iReg; 2229 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2230 } 2231 return 0; 2232 } 2233 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2234 2235 /* 2236 ** If the last instruction coded is an ephemeral copy of any of 2237 ** the registers in the nReg registers beginning with iReg, then 2238 ** convert the last instruction from OP_SCopy to OP_Copy. 2239 */ 2240 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){ 2241 VdbeOp *pOp; 2242 Vdbe *v; 2243 2244 assert( pParse->db->mallocFailed==0 ); 2245 v = pParse->pVdbe; 2246 assert( v!=0 ); 2247 pOp = sqlite3VdbeGetOp(v, -1); 2248 assert( pOp!=0 ); 2249 if( pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){ 2250 pOp->opcode = OP_Copy; 2251 } 2252 } 2253 2254 /* 2255 ** Generate code to store the value of the iAlias-th alias in register 2256 ** target. The first time this is called, pExpr is evaluated to compute 2257 ** the value of the alias. The value is stored in an auxiliary register 2258 ** and the number of that register is returned. On subsequent calls, 2259 ** the register number is returned without generating any code. 2260 ** 2261 ** Note that in order for this to work, code must be generated in the 2262 ** same order that it is executed. 2263 ** 2264 ** Aliases are numbered starting with 1. So iAlias is in the range 2265 ** of 1 to pParse->nAlias inclusive. 2266 ** 2267 ** pParse->aAlias[iAlias-1] records the register number where the value 2268 ** of the iAlias-th alias is stored. If zero, that means that the 2269 ** alias has not yet been computed. 2270 */ 2271 static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){ 2272 #if 0 2273 sqlite3 *db = pParse->db; 2274 int iReg; 2275 if( pParse->nAliasAlloc<pParse->nAlias ){ 2276 pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias, 2277 sizeof(pParse->aAlias[0])*pParse->nAlias ); 2278 testcase( db->mallocFailed && pParse->nAliasAlloc>0 ); 2279 if( db->mallocFailed ) return 0; 2280 memset(&pParse->aAlias[pParse->nAliasAlloc], 0, 2281 (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0])); 2282 pParse->nAliasAlloc = pParse->nAlias; 2283 } 2284 assert( iAlias>0 && iAlias<=pParse->nAlias ); 2285 iReg = pParse->aAlias[iAlias-1]; 2286 if( iReg==0 ){ 2287 if( pParse->iCacheLevel>0 ){ 2288 iReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2289 }else{ 2290 iReg = ++pParse->nMem; 2291 sqlite3ExprCode(pParse, pExpr, iReg); 2292 pParse->aAlias[iAlias-1] = iReg; 2293 } 2294 } 2295 return iReg; 2296 #else 2297 UNUSED_PARAMETER(iAlias); 2298 return sqlite3ExprCodeTarget(pParse, pExpr, target); 2299 #endif 2300 } 2301 2302 /* 2303 ** Generate code into the current Vdbe to evaluate the given 2304 ** expression. Attempt to store the results in register "target". 2305 ** Return the register where results are stored. 2306 ** 2307 ** With this routine, there is no guarantee that results will 2308 ** be stored in target. The result might be stored in some other 2309 ** register if it is convenient to do so. The calling function 2310 ** must check the return code and move the results to the desired 2311 ** register. 2312 */ 2313 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2314 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2315 int op; /* The opcode being coded */ 2316 int inReg = target; /* Results stored in register inReg */ 2317 int regFree1 = 0; /* If non-zero free this temporary register */ 2318 int regFree2 = 0; /* If non-zero free this temporary register */ 2319 int r1, r2, r3, r4; /* Various register numbers */ 2320 sqlite3 *db = pParse->db; /* The database connection */ 2321 2322 assert( target>0 && target<=pParse->nMem ); 2323 if( v==0 ){ 2324 assert( pParse->db->mallocFailed ); 2325 return 0; 2326 } 2327 2328 if( pExpr==0 ){ 2329 op = TK_NULL; 2330 }else{ 2331 op = pExpr->op; 2332 } 2333 switch( op ){ 2334 case TK_AGG_COLUMN: { 2335 AggInfo *pAggInfo = pExpr->pAggInfo; 2336 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2337 if( !pAggInfo->directMode ){ 2338 assert( pCol->iMem>0 ); 2339 inReg = pCol->iMem; 2340 break; 2341 }else if( pAggInfo->useSortingIdx ){ 2342 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx, 2343 pCol->iSorterColumn, target); 2344 break; 2345 } 2346 /* Otherwise, fall thru into the TK_COLUMN case */ 2347 } 2348 case TK_COLUMN: { 2349 if( pExpr->iTable<0 ){ 2350 /* This only happens when coding check constraints */ 2351 assert( pParse->ckBase>0 ); 2352 inReg = pExpr->iColumn + pParse->ckBase; 2353 }else{ 2354 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2355 pExpr->iColumn, pExpr->iTable, target); 2356 } 2357 break; 2358 } 2359 case TK_INTEGER: { 2360 codeInteger(pParse, pExpr, 0, target); 2361 break; 2362 } 2363 #ifndef SQLITE_OMIT_FLOATING_POINT 2364 case TK_FLOAT: { 2365 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2366 codeReal(v, pExpr->u.zToken, 0, target); 2367 break; 2368 } 2369 #endif 2370 case TK_STRING: { 2371 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2372 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2373 break; 2374 } 2375 case TK_NULL: { 2376 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2377 break; 2378 } 2379 #ifndef SQLITE_OMIT_BLOB_LITERAL 2380 case TK_BLOB: { 2381 int n; 2382 const char *z; 2383 char *zBlob; 2384 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2385 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2386 assert( pExpr->u.zToken[1]=='\'' ); 2387 z = &pExpr->u.zToken[2]; 2388 n = sqlite3Strlen30(z) - 1; 2389 assert( z[n]=='\'' ); 2390 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2391 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2392 break; 2393 } 2394 #endif 2395 case TK_VARIABLE: { 2396 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2397 assert( pExpr->u.zToken!=0 ); 2398 assert( pExpr->u.zToken[0]!=0 ); 2399 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2400 if( pExpr->u.zToken[1]!=0 ){ 2401 sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, 0); 2402 } 2403 break; 2404 } 2405 case TK_REGISTER: { 2406 inReg = pExpr->iTable; 2407 break; 2408 } 2409 case TK_AS: { 2410 inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target); 2411 break; 2412 } 2413 #ifndef SQLITE_OMIT_CAST 2414 case TK_CAST: { 2415 /* Expressions of the form: CAST(pLeft AS token) */ 2416 int aff, to_op; 2417 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2418 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2419 aff = sqlite3AffinityType(pExpr->u.zToken); 2420 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2421 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2422 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2423 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2424 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2425 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2426 testcase( to_op==OP_ToText ); 2427 testcase( to_op==OP_ToBlob ); 2428 testcase( to_op==OP_ToNumeric ); 2429 testcase( to_op==OP_ToInt ); 2430 testcase( to_op==OP_ToReal ); 2431 if( inReg!=target ){ 2432 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2433 inReg = target; 2434 } 2435 sqlite3VdbeAddOp1(v, to_op, inReg); 2436 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2437 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2438 break; 2439 } 2440 #endif /* SQLITE_OMIT_CAST */ 2441 case TK_LT: 2442 case TK_LE: 2443 case TK_GT: 2444 case TK_GE: 2445 case TK_NE: 2446 case TK_EQ: { 2447 assert( TK_LT==OP_Lt ); 2448 assert( TK_LE==OP_Le ); 2449 assert( TK_GT==OP_Gt ); 2450 assert( TK_GE==OP_Ge ); 2451 assert( TK_EQ==OP_Eq ); 2452 assert( TK_NE==OP_Ne ); 2453 testcase( op==TK_LT ); 2454 testcase( op==TK_LE ); 2455 testcase( op==TK_GT ); 2456 testcase( op==TK_GE ); 2457 testcase( op==TK_EQ ); 2458 testcase( op==TK_NE ); 2459 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2460 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2461 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2462 r1, r2, inReg, SQLITE_STOREP2); 2463 testcase( regFree1==0 ); 2464 testcase( regFree2==0 ); 2465 break; 2466 } 2467 case TK_IS: 2468 case TK_ISNOT: { 2469 testcase( op==TK_IS ); 2470 testcase( op==TK_ISNOT ); 2471 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2472 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2473 op = (op==TK_IS) ? TK_EQ : TK_NE; 2474 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2475 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2476 testcase( regFree1==0 ); 2477 testcase( regFree2==0 ); 2478 break; 2479 } 2480 case TK_AND: 2481 case TK_OR: 2482 case TK_PLUS: 2483 case TK_STAR: 2484 case TK_MINUS: 2485 case TK_REM: 2486 case TK_BITAND: 2487 case TK_BITOR: 2488 case TK_SLASH: 2489 case TK_LSHIFT: 2490 case TK_RSHIFT: 2491 case TK_CONCAT: { 2492 assert( TK_AND==OP_And ); 2493 assert( TK_OR==OP_Or ); 2494 assert( TK_PLUS==OP_Add ); 2495 assert( TK_MINUS==OP_Subtract ); 2496 assert( TK_REM==OP_Remainder ); 2497 assert( TK_BITAND==OP_BitAnd ); 2498 assert( TK_BITOR==OP_BitOr ); 2499 assert( TK_SLASH==OP_Divide ); 2500 assert( TK_LSHIFT==OP_ShiftLeft ); 2501 assert( TK_RSHIFT==OP_ShiftRight ); 2502 assert( TK_CONCAT==OP_Concat ); 2503 testcase( op==TK_AND ); 2504 testcase( op==TK_OR ); 2505 testcase( op==TK_PLUS ); 2506 testcase( op==TK_MINUS ); 2507 testcase( op==TK_REM ); 2508 testcase( op==TK_BITAND ); 2509 testcase( op==TK_BITOR ); 2510 testcase( op==TK_SLASH ); 2511 testcase( op==TK_LSHIFT ); 2512 testcase( op==TK_RSHIFT ); 2513 testcase( op==TK_CONCAT ); 2514 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2515 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2516 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2517 testcase( regFree1==0 ); 2518 testcase( regFree2==0 ); 2519 break; 2520 } 2521 case TK_UMINUS: { 2522 Expr *pLeft = pExpr->pLeft; 2523 assert( pLeft ); 2524 if( pLeft->op==TK_INTEGER ){ 2525 codeInteger(pParse, pLeft, 1, target); 2526 #ifndef SQLITE_OMIT_FLOATING_POINT 2527 }else if( pLeft->op==TK_FLOAT ){ 2528 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2529 codeReal(v, pLeft->u.zToken, 1, target); 2530 #endif 2531 }else{ 2532 regFree1 = r1 = sqlite3GetTempReg(pParse); 2533 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); 2534 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2535 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2536 testcase( regFree2==0 ); 2537 } 2538 inReg = target; 2539 break; 2540 } 2541 case TK_BITNOT: 2542 case TK_NOT: { 2543 assert( TK_BITNOT==OP_BitNot ); 2544 assert( TK_NOT==OP_Not ); 2545 testcase( op==TK_BITNOT ); 2546 testcase( op==TK_NOT ); 2547 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2548 testcase( regFree1==0 ); 2549 inReg = target; 2550 sqlite3VdbeAddOp2(v, op, r1, inReg); 2551 break; 2552 } 2553 case TK_ISNULL: 2554 case TK_NOTNULL: { 2555 int addr; 2556 assert( TK_ISNULL==OP_IsNull ); 2557 assert( TK_NOTNULL==OP_NotNull ); 2558 testcase( op==TK_ISNULL ); 2559 testcase( op==TK_NOTNULL ); 2560 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2561 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2562 testcase( regFree1==0 ); 2563 addr = sqlite3VdbeAddOp1(v, op, r1); 2564 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2565 sqlite3VdbeJumpHere(v, addr); 2566 break; 2567 } 2568 case TK_AGG_FUNCTION: { 2569 AggInfo *pInfo = pExpr->pAggInfo; 2570 if( pInfo==0 ){ 2571 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2572 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2573 }else{ 2574 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2575 } 2576 break; 2577 } 2578 case TK_CONST_FUNC: 2579 case TK_FUNCTION: { 2580 ExprList *pFarg; /* List of function arguments */ 2581 int nFarg; /* Number of function arguments */ 2582 FuncDef *pDef; /* The function definition object */ 2583 int nId; /* Length of the function name in bytes */ 2584 const char *zId; /* The function name */ 2585 int constMask = 0; /* Mask of function arguments that are constant */ 2586 int i; /* Loop counter */ 2587 u8 enc = ENC(db); /* The text encoding used by this database */ 2588 CollSeq *pColl = 0; /* A collating sequence */ 2589 2590 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2591 testcase( op==TK_CONST_FUNC ); 2592 testcase( op==TK_FUNCTION ); 2593 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 2594 pFarg = 0; 2595 }else{ 2596 pFarg = pExpr->x.pList; 2597 } 2598 nFarg = pFarg ? pFarg->nExpr : 0; 2599 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2600 zId = pExpr->u.zToken; 2601 nId = sqlite3Strlen30(zId); 2602 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2603 if( pDef==0 ){ 2604 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2605 break; 2606 } 2607 2608 /* Attempt a direct implementation of the built-in COALESCE() and 2609 ** IFNULL() functions. This avoids unnecessary evalation of 2610 ** arguments past the first non-NULL argument. 2611 */ 2612 if( pDef->flags & SQLITE_FUNC_COALESCE ){ 2613 int endCoalesce = sqlite3VdbeMakeLabel(v); 2614 assert( nFarg>=2 ); 2615 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2616 for(i=1; i<nFarg; i++){ 2617 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2618 sqlite3ExprCacheRemove(pParse, target, 1); 2619 sqlite3ExprCachePush(pParse); 2620 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2621 sqlite3ExprCachePop(pParse, 1); 2622 } 2623 sqlite3VdbeResolveLabel(v, endCoalesce); 2624 break; 2625 } 2626 2627 2628 if( pFarg ){ 2629 r1 = sqlite3GetTempRange(pParse, nFarg); 2630 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2631 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); 2632 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ 2633 }else{ 2634 r1 = 0; 2635 } 2636 #ifndef SQLITE_OMIT_VIRTUALTABLE 2637 /* Possibly overload the function if the first argument is 2638 ** a virtual table column. 2639 ** 2640 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2641 ** second argument, not the first, as the argument to test to 2642 ** see if it is a column in a virtual table. This is done because 2643 ** the left operand of infix functions (the operand we want to 2644 ** control overloading) ends up as the second argument to the 2645 ** function. The expression "A glob B" is equivalent to 2646 ** "glob(B,A). We want to use the A in "A glob B" to test 2647 ** for function overloading. But we use the B term in "glob(B,A)". 2648 */ 2649 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2650 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2651 }else if( nFarg>0 ){ 2652 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2653 } 2654 #endif 2655 for(i=0; i<nFarg; i++){ 2656 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2657 constMask |= (1<<i); 2658 } 2659 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2660 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2661 } 2662 } 2663 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){ 2664 if( !pColl ) pColl = db->pDfltColl; 2665 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2666 } 2667 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2668 (char*)pDef, P4_FUNCDEF); 2669 sqlite3VdbeChangeP5(v, (u8)nFarg); 2670 if( nFarg ){ 2671 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2672 } 2673 break; 2674 } 2675 #ifndef SQLITE_OMIT_SUBQUERY 2676 case TK_EXISTS: 2677 case TK_SELECT: { 2678 testcase( op==TK_EXISTS ); 2679 testcase( op==TK_SELECT ); 2680 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2681 break; 2682 } 2683 case TK_IN: { 2684 int destIfFalse = sqlite3VdbeMakeLabel(v); 2685 int destIfNull = sqlite3VdbeMakeLabel(v); 2686 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2687 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2688 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2689 sqlite3VdbeResolveLabel(v, destIfFalse); 2690 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2691 sqlite3VdbeResolveLabel(v, destIfNull); 2692 break; 2693 } 2694 #endif /* SQLITE_OMIT_SUBQUERY */ 2695 2696 2697 /* 2698 ** x BETWEEN y AND z 2699 ** 2700 ** This is equivalent to 2701 ** 2702 ** x>=y AND x<=z 2703 ** 2704 ** X is stored in pExpr->pLeft. 2705 ** Y is stored in pExpr->pList->a[0].pExpr. 2706 ** Z is stored in pExpr->pList->a[1].pExpr. 2707 */ 2708 case TK_BETWEEN: { 2709 Expr *pLeft = pExpr->pLeft; 2710 struct ExprList_item *pLItem = pExpr->x.pList->a; 2711 Expr *pRight = pLItem->pExpr; 2712 2713 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 2714 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2715 testcase( regFree1==0 ); 2716 testcase( regFree2==0 ); 2717 r3 = sqlite3GetTempReg(pParse); 2718 r4 = sqlite3GetTempReg(pParse); 2719 codeCompare(pParse, pLeft, pRight, OP_Ge, 2720 r1, r2, r3, SQLITE_STOREP2); 2721 pLItem++; 2722 pRight = pLItem->pExpr; 2723 sqlite3ReleaseTempReg(pParse, regFree2); 2724 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2725 testcase( regFree2==0 ); 2726 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2727 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2728 sqlite3ReleaseTempReg(pParse, r3); 2729 sqlite3ReleaseTempReg(pParse, r4); 2730 break; 2731 } 2732 case TK_UPLUS: { 2733 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2734 break; 2735 } 2736 2737 case TK_TRIGGER: { 2738 /* If the opcode is TK_TRIGGER, then the expression is a reference 2739 ** to a column in the new.* or old.* pseudo-tables available to 2740 ** trigger programs. In this case Expr.iTable is set to 1 for the 2741 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 2742 ** is set to the column of the pseudo-table to read, or to -1 to 2743 ** read the rowid field. 2744 ** 2745 ** The expression is implemented using an OP_Param opcode. The p1 2746 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 2747 ** to reference another column of the old.* pseudo-table, where 2748 ** i is the index of the column. For a new.rowid reference, p1 is 2749 ** set to (n+1), where n is the number of columns in each pseudo-table. 2750 ** For a reference to any other column in the new.* pseudo-table, p1 2751 ** is set to (n+2+i), where n and i are as defined previously. For 2752 ** example, if the table on which triggers are being fired is 2753 ** declared as: 2754 ** 2755 ** CREATE TABLE t1(a, b); 2756 ** 2757 ** Then p1 is interpreted as follows: 2758 ** 2759 ** p1==0 -> old.rowid p1==3 -> new.rowid 2760 ** p1==1 -> old.a p1==4 -> new.a 2761 ** p1==2 -> old.b p1==5 -> new.b 2762 */ 2763 Table *pTab = pExpr->pTab; 2764 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 2765 2766 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 2767 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 2768 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 2769 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 2770 2771 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 2772 VdbeComment((v, "%s.%s -> $%d", 2773 (pExpr->iTable ? "new" : "old"), 2774 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 2775 target 2776 )); 2777 2778 #ifndef SQLITE_OMIT_FLOATING_POINT 2779 /* If the column has REAL affinity, it may currently be stored as an 2780 ** integer. Use OP_RealAffinity to make sure it is really real. */ 2781 if( pExpr->iColumn>=0 2782 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 2783 ){ 2784 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 2785 } 2786 #endif 2787 break; 2788 } 2789 2790 2791 /* 2792 ** Form A: 2793 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2794 ** 2795 ** Form B: 2796 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2797 ** 2798 ** Form A is can be transformed into the equivalent form B as follows: 2799 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2800 ** WHEN x=eN THEN rN ELSE y END 2801 ** 2802 ** X (if it exists) is in pExpr->pLeft. 2803 ** Y is in pExpr->pRight. The Y is also optional. If there is no 2804 ** ELSE clause and no other term matches, then the result of the 2805 ** exprssion is NULL. 2806 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2807 ** 2808 ** The result of the expression is the Ri for the first matching Ei, 2809 ** or if there is no matching Ei, the ELSE term Y, or if there is 2810 ** no ELSE term, NULL. 2811 */ 2812 default: assert( op==TK_CASE ); { 2813 int endLabel; /* GOTO label for end of CASE stmt */ 2814 int nextCase; /* GOTO label for next WHEN clause */ 2815 int nExpr; /* 2x number of WHEN terms */ 2816 int i; /* Loop counter */ 2817 ExprList *pEList; /* List of WHEN terms */ 2818 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2819 Expr opCompare; /* The X==Ei expression */ 2820 Expr cacheX; /* Cached expression X */ 2821 Expr *pX; /* The X expression */ 2822 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 2823 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 2824 2825 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 2826 assert((pExpr->x.pList->nExpr % 2) == 0); 2827 assert(pExpr->x.pList->nExpr > 0); 2828 pEList = pExpr->x.pList; 2829 aListelem = pEList->a; 2830 nExpr = pEList->nExpr; 2831 endLabel = sqlite3VdbeMakeLabel(v); 2832 if( (pX = pExpr->pLeft)!=0 ){ 2833 cacheX = *pX; 2834 testcase( pX->op==TK_COLUMN ); 2835 testcase( pX->op==TK_REGISTER ); 2836 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); 2837 testcase( regFree1==0 ); 2838 cacheX.op = TK_REGISTER; 2839 opCompare.op = TK_EQ; 2840 opCompare.pLeft = &cacheX; 2841 pTest = &opCompare; 2842 } 2843 for(i=0; i<nExpr; i=i+2){ 2844 sqlite3ExprCachePush(pParse); 2845 if( pX ){ 2846 assert( pTest!=0 ); 2847 opCompare.pRight = aListelem[i].pExpr; 2848 }else{ 2849 pTest = aListelem[i].pExpr; 2850 } 2851 nextCase = sqlite3VdbeMakeLabel(v); 2852 testcase( pTest->op==TK_COLUMN ); 2853 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2854 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2855 testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); 2856 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2857 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2858 sqlite3ExprCachePop(pParse, 1); 2859 sqlite3VdbeResolveLabel(v, nextCase); 2860 } 2861 if( pExpr->pRight ){ 2862 sqlite3ExprCachePush(pParse); 2863 sqlite3ExprCode(pParse, pExpr->pRight, target); 2864 sqlite3ExprCachePop(pParse, 1); 2865 }else{ 2866 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2867 } 2868 assert( db->mallocFailed || pParse->nErr>0 2869 || pParse->iCacheLevel==iCacheLevel ); 2870 sqlite3VdbeResolveLabel(v, endLabel); 2871 break; 2872 } 2873 #ifndef SQLITE_OMIT_TRIGGER 2874 case TK_RAISE: { 2875 assert( pExpr->affinity==OE_Rollback 2876 || pExpr->affinity==OE_Abort 2877 || pExpr->affinity==OE_Fail 2878 || pExpr->affinity==OE_Ignore 2879 ); 2880 if( !pParse->pTriggerTab ){ 2881 sqlite3ErrorMsg(pParse, 2882 "RAISE() may only be used within a trigger-program"); 2883 return 0; 2884 } 2885 if( pExpr->affinity==OE_Abort ){ 2886 sqlite3MayAbort(pParse); 2887 } 2888 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2889 if( pExpr->affinity==OE_Ignore ){ 2890 sqlite3VdbeAddOp4( 2891 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 2892 }else{ 2893 sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0); 2894 } 2895 2896 break; 2897 } 2898 #endif 2899 } 2900 sqlite3ReleaseTempReg(pParse, regFree1); 2901 sqlite3ReleaseTempReg(pParse, regFree2); 2902 return inReg; 2903 } 2904 2905 /* 2906 ** Generate code to evaluate an expression and store the results 2907 ** into a register. Return the register number where the results 2908 ** are stored. 2909 ** 2910 ** If the register is a temporary register that can be deallocated, 2911 ** then write its number into *pReg. If the result register is not 2912 ** a temporary, then set *pReg to zero. 2913 */ 2914 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 2915 int r1 = sqlite3GetTempReg(pParse); 2916 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2917 if( r2==r1 ){ 2918 *pReg = r1; 2919 }else{ 2920 sqlite3ReleaseTempReg(pParse, r1); 2921 *pReg = 0; 2922 } 2923 return r2; 2924 } 2925 2926 /* 2927 ** Generate code that will evaluate expression pExpr and store the 2928 ** results in register target. The results are guaranteed to appear 2929 ** in register target. 2930 */ 2931 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 2932 int inReg; 2933 2934 assert( target>0 && target<=pParse->nMem ); 2935 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2936 assert( pParse->pVdbe || pParse->db->mallocFailed ); 2937 if( inReg!=target && pParse->pVdbe ){ 2938 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 2939 } 2940 return target; 2941 } 2942 2943 /* 2944 ** Generate code that evalutes the given expression and puts the result 2945 ** in register target. 2946 ** 2947 ** Also make a copy of the expression results into another "cache" register 2948 ** and modify the expression so that the next time it is evaluated, 2949 ** the result is a copy of the cache register. 2950 ** 2951 ** This routine is used for expressions that are used multiple 2952 ** times. They are evaluated once and the results of the expression 2953 ** are reused. 2954 */ 2955 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 2956 Vdbe *v = pParse->pVdbe; 2957 int inReg; 2958 inReg = sqlite3ExprCode(pParse, pExpr, target); 2959 assert( target>0 ); 2960 /* This routine is called for terms to INSERT or UPDATE. And the only 2961 ** other place where expressions can be converted into TK_REGISTER is 2962 ** in WHERE clause processing. So as currently implemented, there is 2963 ** no way for a TK_REGISTER to exist here. But it seems prudent to 2964 ** keep the ALWAYS() in case the conditions above change with future 2965 ** modifications or enhancements. */ 2966 if( ALWAYS(pExpr->op!=TK_REGISTER) ){ 2967 int iMem; 2968 iMem = ++pParse->nMem; 2969 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 2970 pExpr->iTable = iMem; 2971 pExpr->op2 = pExpr->op; 2972 pExpr->op = TK_REGISTER; 2973 } 2974 return inReg; 2975 } 2976 2977 /* 2978 ** Return TRUE if pExpr is an constant expression that is appropriate 2979 ** for factoring out of a loop. Appropriate expressions are: 2980 ** 2981 ** * Any expression that evaluates to two or more opcodes. 2982 ** 2983 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 2984 ** or OP_Variable that does not need to be placed in a 2985 ** specific register. 2986 ** 2987 ** There is no point in factoring out single-instruction constant 2988 ** expressions that need to be placed in a particular register. 2989 ** We could factor them out, but then we would end up adding an 2990 ** OP_SCopy instruction to move the value into the correct register 2991 ** later. We might as well just use the original instruction and 2992 ** avoid the OP_SCopy. 2993 */ 2994 static int isAppropriateForFactoring(Expr *p){ 2995 if( !sqlite3ExprIsConstantNotJoin(p) ){ 2996 return 0; /* Only constant expressions are appropriate for factoring */ 2997 } 2998 if( (p->flags & EP_FixedDest)==0 ){ 2999 return 1; /* Any constant without a fixed destination is appropriate */ 3000 } 3001 while( p->op==TK_UPLUS ) p = p->pLeft; 3002 switch( p->op ){ 3003 #ifndef SQLITE_OMIT_BLOB_LITERAL 3004 case TK_BLOB: 3005 #endif 3006 case TK_VARIABLE: 3007 case TK_INTEGER: 3008 case TK_FLOAT: 3009 case TK_NULL: 3010 case TK_STRING: { 3011 testcase( p->op==TK_BLOB ); 3012 testcase( p->op==TK_VARIABLE ); 3013 testcase( p->op==TK_INTEGER ); 3014 testcase( p->op==TK_FLOAT ); 3015 testcase( p->op==TK_NULL ); 3016 testcase( p->op==TK_STRING ); 3017 /* Single-instruction constants with a fixed destination are 3018 ** better done in-line. If we factor them, they will just end 3019 ** up generating an OP_SCopy to move the value to the destination 3020 ** register. */ 3021 return 0; 3022 } 3023 case TK_UMINUS: { 3024 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ 3025 return 0; 3026 } 3027 break; 3028 } 3029 default: { 3030 break; 3031 } 3032 } 3033 return 1; 3034 } 3035 3036 /* 3037 ** If pExpr is a constant expression that is appropriate for 3038 ** factoring out of a loop, then evaluate the expression 3039 ** into a register and convert the expression into a TK_REGISTER 3040 ** expression. 3041 */ 3042 static int evalConstExpr(Walker *pWalker, Expr *pExpr){ 3043 Parse *pParse = pWalker->pParse; 3044 switch( pExpr->op ){ 3045 case TK_IN: 3046 case TK_REGISTER: { 3047 return WRC_Prune; 3048 } 3049 case TK_FUNCTION: 3050 case TK_AGG_FUNCTION: 3051 case TK_CONST_FUNC: { 3052 /* The arguments to a function have a fixed destination. 3053 ** Mark them this way to avoid generated unneeded OP_SCopy 3054 ** instructions. 3055 */ 3056 ExprList *pList = pExpr->x.pList; 3057 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3058 if( pList ){ 3059 int i = pList->nExpr; 3060 struct ExprList_item *pItem = pList->a; 3061 for(; i>0; i--, pItem++){ 3062 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest; 3063 } 3064 } 3065 break; 3066 } 3067 } 3068 if( isAppropriateForFactoring(pExpr) ){ 3069 int r1 = ++pParse->nMem; 3070 int r2; 3071 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3072 if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1); 3073 pExpr->op2 = pExpr->op; 3074 pExpr->op = TK_REGISTER; 3075 pExpr->iTable = r2; 3076 return WRC_Prune; 3077 } 3078 return WRC_Continue; 3079 } 3080 3081 /* 3082 ** Preevaluate constant subexpressions within pExpr and store the 3083 ** results in registers. Modify pExpr so that the constant subexpresions 3084 ** are TK_REGISTER opcodes that refer to the precomputed values. 3085 */ 3086 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ 3087 Walker w; 3088 w.xExprCallback = evalConstExpr; 3089 w.xSelectCallback = 0; 3090 w.pParse = pParse; 3091 sqlite3WalkExpr(&w, pExpr); 3092 } 3093 3094 3095 /* 3096 ** Generate code that pushes the value of every element of the given 3097 ** expression list into a sequence of registers beginning at target. 3098 ** 3099 ** Return the number of elements evaluated. 3100 */ 3101 int sqlite3ExprCodeExprList( 3102 Parse *pParse, /* Parsing context */ 3103 ExprList *pList, /* The expression list to be coded */ 3104 int target, /* Where to write results */ 3105 int doHardCopy /* Make a hard copy of every element */ 3106 ){ 3107 struct ExprList_item *pItem; 3108 int i, n; 3109 assert( pList!=0 ); 3110 assert( target>0 ); 3111 n = pList->nExpr; 3112 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3113 if( pItem->iAlias ){ 3114 int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target+i); 3115 Vdbe *v = sqlite3GetVdbe(pParse); 3116 if( iReg!=target+i ){ 3117 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i); 3118 } 3119 }else{ 3120 sqlite3ExprCode(pParse, pItem->pExpr, target+i); 3121 } 3122 if( doHardCopy && !pParse->db->mallocFailed ){ 3123 sqlite3ExprHardCopy(pParse, target, n); 3124 } 3125 } 3126 return n; 3127 } 3128 3129 /* 3130 ** Generate code for a BETWEEN operator. 3131 ** 3132 ** x BETWEEN y AND z 3133 ** 3134 ** The above is equivalent to 3135 ** 3136 ** x>=y AND x<=z 3137 ** 3138 ** Code it as such, taking care to do the common subexpression 3139 ** elementation of x. 3140 */ 3141 static void exprCodeBetween( 3142 Parse *pParse, /* Parsing and code generating context */ 3143 Expr *pExpr, /* The BETWEEN expression */ 3144 int dest, /* Jump here if the jump is taken */ 3145 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3146 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3147 ){ 3148 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3149 Expr compLeft; /* The x>=y term */ 3150 Expr compRight; /* The x<=z term */ 3151 Expr exprX; /* The x subexpression */ 3152 int regFree1 = 0; /* Temporary use register */ 3153 3154 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3155 exprX = *pExpr->pLeft; 3156 exprAnd.op = TK_AND; 3157 exprAnd.pLeft = &compLeft; 3158 exprAnd.pRight = &compRight; 3159 compLeft.op = TK_GE; 3160 compLeft.pLeft = &exprX; 3161 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3162 compRight.op = TK_LE; 3163 compRight.pLeft = &exprX; 3164 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3165 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3166 exprX.op = TK_REGISTER; 3167 if( jumpIfTrue ){ 3168 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3169 }else{ 3170 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3171 } 3172 sqlite3ReleaseTempReg(pParse, regFree1); 3173 3174 /* Ensure adequate test coverage */ 3175 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3176 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3177 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3178 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3179 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3180 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3181 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3182 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3183 } 3184 3185 /* 3186 ** Generate code for a boolean expression such that a jump is made 3187 ** to the label "dest" if the expression is true but execution 3188 ** continues straight thru if the expression is false. 3189 ** 3190 ** If the expression evaluates to NULL (neither true nor false), then 3191 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3192 ** 3193 ** This code depends on the fact that certain token values (ex: TK_EQ) 3194 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3195 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3196 ** the make process cause these values to align. Assert()s in the code 3197 ** below verify that the numbers are aligned correctly. 3198 */ 3199 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3200 Vdbe *v = pParse->pVdbe; 3201 int op = 0; 3202 int regFree1 = 0; 3203 int regFree2 = 0; 3204 int r1, r2; 3205 3206 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3207 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3208 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3209 op = pExpr->op; 3210 switch( op ){ 3211 case TK_AND: { 3212 int d2 = sqlite3VdbeMakeLabel(v); 3213 testcase( jumpIfNull==0 ); 3214 sqlite3ExprCachePush(pParse); 3215 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3216 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3217 sqlite3VdbeResolveLabel(v, d2); 3218 sqlite3ExprCachePop(pParse, 1); 3219 break; 3220 } 3221 case TK_OR: { 3222 testcase( jumpIfNull==0 ); 3223 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3224 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3225 break; 3226 } 3227 case TK_NOT: { 3228 testcase( jumpIfNull==0 ); 3229 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3230 break; 3231 } 3232 case TK_LT: 3233 case TK_LE: 3234 case TK_GT: 3235 case TK_GE: 3236 case TK_NE: 3237 case TK_EQ: { 3238 assert( TK_LT==OP_Lt ); 3239 assert( TK_LE==OP_Le ); 3240 assert( TK_GT==OP_Gt ); 3241 assert( TK_GE==OP_Ge ); 3242 assert( TK_EQ==OP_Eq ); 3243 assert( TK_NE==OP_Ne ); 3244 testcase( op==TK_LT ); 3245 testcase( op==TK_LE ); 3246 testcase( op==TK_GT ); 3247 testcase( op==TK_GE ); 3248 testcase( op==TK_EQ ); 3249 testcase( op==TK_NE ); 3250 testcase( jumpIfNull==0 ); 3251 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3252 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3253 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3254 r1, r2, dest, jumpIfNull); 3255 testcase( regFree1==0 ); 3256 testcase( regFree2==0 ); 3257 break; 3258 } 3259 case TK_IS: 3260 case TK_ISNOT: { 3261 testcase( op==TK_IS ); 3262 testcase( op==TK_ISNOT ); 3263 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3264 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3265 op = (op==TK_IS) ? TK_EQ : TK_NE; 3266 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3267 r1, r2, dest, SQLITE_NULLEQ); 3268 testcase( regFree1==0 ); 3269 testcase( regFree2==0 ); 3270 break; 3271 } 3272 case TK_ISNULL: 3273 case TK_NOTNULL: { 3274 assert( TK_ISNULL==OP_IsNull ); 3275 assert( TK_NOTNULL==OP_NotNull ); 3276 testcase( op==TK_ISNULL ); 3277 testcase( op==TK_NOTNULL ); 3278 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3279 sqlite3VdbeAddOp2(v, op, r1, dest); 3280 testcase( regFree1==0 ); 3281 break; 3282 } 3283 case TK_BETWEEN: { 3284 testcase( jumpIfNull==0 ); 3285 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3286 break; 3287 } 3288 case TK_IN: { 3289 int destIfFalse = sqlite3VdbeMakeLabel(v); 3290 int destIfNull = jumpIfNull ? dest : destIfFalse; 3291 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3292 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3293 sqlite3VdbeResolveLabel(v, destIfFalse); 3294 break; 3295 } 3296 default: { 3297 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3298 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3299 testcase( regFree1==0 ); 3300 testcase( jumpIfNull==0 ); 3301 break; 3302 } 3303 } 3304 sqlite3ReleaseTempReg(pParse, regFree1); 3305 sqlite3ReleaseTempReg(pParse, regFree2); 3306 } 3307 3308 /* 3309 ** Generate code for a boolean expression such that a jump is made 3310 ** to the label "dest" if the expression is false but execution 3311 ** continues straight thru if the expression is true. 3312 ** 3313 ** If the expression evaluates to NULL (neither true nor false) then 3314 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3315 ** is 0. 3316 */ 3317 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3318 Vdbe *v = pParse->pVdbe; 3319 int op = 0; 3320 int regFree1 = 0; 3321 int regFree2 = 0; 3322 int r1, r2; 3323 3324 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3325 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3326 if( pExpr==0 ) return; 3327 3328 /* The value of pExpr->op and op are related as follows: 3329 ** 3330 ** pExpr->op op 3331 ** --------- ---------- 3332 ** TK_ISNULL OP_NotNull 3333 ** TK_NOTNULL OP_IsNull 3334 ** TK_NE OP_Eq 3335 ** TK_EQ OP_Ne 3336 ** TK_GT OP_Le 3337 ** TK_LE OP_Gt 3338 ** TK_GE OP_Lt 3339 ** TK_LT OP_Ge 3340 ** 3341 ** For other values of pExpr->op, op is undefined and unused. 3342 ** The value of TK_ and OP_ constants are arranged such that we 3343 ** can compute the mapping above using the following expression. 3344 ** Assert()s verify that the computation is correct. 3345 */ 3346 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3347 3348 /* Verify correct alignment of TK_ and OP_ constants 3349 */ 3350 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3351 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3352 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3353 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3354 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3355 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3356 assert( pExpr->op!=TK_GT || op==OP_Le ); 3357 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3358 3359 switch( pExpr->op ){ 3360 case TK_AND: { 3361 testcase( jumpIfNull==0 ); 3362 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3363 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3364 break; 3365 } 3366 case TK_OR: { 3367 int d2 = sqlite3VdbeMakeLabel(v); 3368 testcase( jumpIfNull==0 ); 3369 sqlite3ExprCachePush(pParse); 3370 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3371 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3372 sqlite3VdbeResolveLabel(v, d2); 3373 sqlite3ExprCachePop(pParse, 1); 3374 break; 3375 } 3376 case TK_NOT: { 3377 testcase( jumpIfNull==0 ); 3378 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3379 break; 3380 } 3381 case TK_LT: 3382 case TK_LE: 3383 case TK_GT: 3384 case TK_GE: 3385 case TK_NE: 3386 case TK_EQ: { 3387 testcase( op==TK_LT ); 3388 testcase( op==TK_LE ); 3389 testcase( op==TK_GT ); 3390 testcase( op==TK_GE ); 3391 testcase( op==TK_EQ ); 3392 testcase( op==TK_NE ); 3393 testcase( jumpIfNull==0 ); 3394 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3395 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3396 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3397 r1, r2, dest, jumpIfNull); 3398 testcase( regFree1==0 ); 3399 testcase( regFree2==0 ); 3400 break; 3401 } 3402 case TK_IS: 3403 case TK_ISNOT: { 3404 testcase( pExpr->op==TK_IS ); 3405 testcase( pExpr->op==TK_ISNOT ); 3406 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3407 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3408 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3409 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3410 r1, r2, dest, SQLITE_NULLEQ); 3411 testcase( regFree1==0 ); 3412 testcase( regFree2==0 ); 3413 break; 3414 } 3415 case TK_ISNULL: 3416 case TK_NOTNULL: { 3417 testcase( op==TK_ISNULL ); 3418 testcase( op==TK_NOTNULL ); 3419 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3420 sqlite3VdbeAddOp2(v, op, r1, dest); 3421 testcase( regFree1==0 ); 3422 break; 3423 } 3424 case TK_BETWEEN: { 3425 testcase( jumpIfNull==0 ); 3426 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3427 break; 3428 } 3429 case TK_IN: { 3430 if( jumpIfNull ){ 3431 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3432 }else{ 3433 int destIfNull = sqlite3VdbeMakeLabel(v); 3434 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3435 sqlite3VdbeResolveLabel(v, destIfNull); 3436 } 3437 break; 3438 } 3439 default: { 3440 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3441 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3442 testcase( regFree1==0 ); 3443 testcase( jumpIfNull==0 ); 3444 break; 3445 } 3446 } 3447 sqlite3ReleaseTempReg(pParse, regFree1); 3448 sqlite3ReleaseTempReg(pParse, regFree2); 3449 } 3450 3451 /* 3452 ** Do a deep comparison of two expression trees. Return 0 if the two 3453 ** expressions are completely identical. Return 1 if they differ only 3454 ** by a COLLATE operator at the top level. Return 2 if there are differences 3455 ** other than the top-level COLLATE operator. 3456 ** 3457 ** Sometimes this routine will return 2 even if the two expressions 3458 ** really are equivalent. If we cannot prove that the expressions are 3459 ** identical, we return 2 just to be safe. So if this routine 3460 ** returns 2, then you do not really know for certain if the two 3461 ** expressions are the same. But if you get a 0 or 1 return, then you 3462 ** can be sure the expressions are the same. In the places where 3463 ** this routine is used, it does not hurt to get an extra 2 - that 3464 ** just might result in some slightly slower code. But returning 3465 ** an incorrect 0 or 1 could lead to a malfunction. 3466 */ 3467 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 3468 if( pA==0||pB==0 ){ 3469 return pB==pA ? 0 : 2; 3470 } 3471 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); 3472 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); 3473 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ 3474 return 2; 3475 } 3476 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3477 if( pA->op!=pB->op ) return 2; 3478 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2; 3479 if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2; 3480 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2; 3481 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2; 3482 if( ExprHasProperty(pA, EP_IntValue) ){ 3483 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){ 3484 return 2; 3485 } 3486 }else if( pA->op!=TK_COLUMN && pA->u.zToken ){ 3487 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2; 3488 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3489 return 2; 3490 } 3491 } 3492 if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1; 3493 if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2; 3494 return 0; 3495 } 3496 3497 /* 3498 ** Compare two ExprList objects. Return 0 if they are identical and 3499 ** non-zero if they differ in any way. 3500 ** 3501 ** This routine might return non-zero for equivalent ExprLists. The 3502 ** only consequence will be disabled optimizations. But this routine 3503 ** must never return 0 if the two ExprList objects are different, or 3504 ** a malfunction will result. 3505 ** 3506 ** Two NULL pointers are considered to be the same. But a NULL pointer 3507 ** always differs from a non-NULL pointer. 3508 */ 3509 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){ 3510 int i; 3511 if( pA==0 && pB==0 ) return 0; 3512 if( pA==0 || pB==0 ) return 1; 3513 if( pA->nExpr!=pB->nExpr ) return 1; 3514 for(i=0; i<pA->nExpr; i++){ 3515 Expr *pExprA = pA->a[i].pExpr; 3516 Expr *pExprB = pB->a[i].pExpr; 3517 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3518 if( sqlite3ExprCompare(pExprA, pExprB) ) return 1; 3519 } 3520 return 0; 3521 } 3522 3523 /* 3524 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3525 ** the new element. Return a negative number if malloc fails. 3526 */ 3527 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3528 int i; 3529 pInfo->aCol = sqlite3ArrayAllocate( 3530 db, 3531 pInfo->aCol, 3532 sizeof(pInfo->aCol[0]), 3533 3, 3534 &pInfo->nColumn, 3535 &pInfo->nColumnAlloc, 3536 &i 3537 ); 3538 return i; 3539 } 3540 3541 /* 3542 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3543 ** the new element. Return a negative number if malloc fails. 3544 */ 3545 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3546 int i; 3547 pInfo->aFunc = sqlite3ArrayAllocate( 3548 db, 3549 pInfo->aFunc, 3550 sizeof(pInfo->aFunc[0]), 3551 3, 3552 &pInfo->nFunc, 3553 &pInfo->nFuncAlloc, 3554 &i 3555 ); 3556 return i; 3557 } 3558 3559 /* 3560 ** This is the xExprCallback for a tree walker. It is used to 3561 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3562 ** for additional information. 3563 */ 3564 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 3565 int i; 3566 NameContext *pNC = pWalker->u.pNC; 3567 Parse *pParse = pNC->pParse; 3568 SrcList *pSrcList = pNC->pSrcList; 3569 AggInfo *pAggInfo = pNC->pAggInfo; 3570 3571 switch( pExpr->op ){ 3572 case TK_AGG_COLUMN: 3573 case TK_COLUMN: { 3574 testcase( pExpr->op==TK_AGG_COLUMN ); 3575 testcase( pExpr->op==TK_COLUMN ); 3576 /* Check to see if the column is in one of the tables in the FROM 3577 ** clause of the aggregate query */ 3578 if( ALWAYS(pSrcList!=0) ){ 3579 struct SrcList_item *pItem = pSrcList->a; 3580 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3581 struct AggInfo_col *pCol; 3582 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3583 if( pExpr->iTable==pItem->iCursor ){ 3584 /* If we reach this point, it means that pExpr refers to a table 3585 ** that is in the FROM clause of the aggregate query. 3586 ** 3587 ** Make an entry for the column in pAggInfo->aCol[] if there 3588 ** is not an entry there already. 3589 */ 3590 int k; 3591 pCol = pAggInfo->aCol; 3592 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 3593 if( pCol->iTable==pExpr->iTable && 3594 pCol->iColumn==pExpr->iColumn ){ 3595 break; 3596 } 3597 } 3598 if( (k>=pAggInfo->nColumn) 3599 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 3600 ){ 3601 pCol = &pAggInfo->aCol[k]; 3602 pCol->pTab = pExpr->pTab; 3603 pCol->iTable = pExpr->iTable; 3604 pCol->iColumn = pExpr->iColumn; 3605 pCol->iMem = ++pParse->nMem; 3606 pCol->iSorterColumn = -1; 3607 pCol->pExpr = pExpr; 3608 if( pAggInfo->pGroupBy ){ 3609 int j, n; 3610 ExprList *pGB = pAggInfo->pGroupBy; 3611 struct ExprList_item *pTerm = pGB->a; 3612 n = pGB->nExpr; 3613 for(j=0; j<n; j++, pTerm++){ 3614 Expr *pE = pTerm->pExpr; 3615 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 3616 pE->iColumn==pExpr->iColumn ){ 3617 pCol->iSorterColumn = j; 3618 break; 3619 } 3620 } 3621 } 3622 if( pCol->iSorterColumn<0 ){ 3623 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 3624 } 3625 } 3626 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 3627 ** because it was there before or because we just created it). 3628 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 3629 ** pAggInfo->aCol[] entry. 3630 */ 3631 ExprSetIrreducible(pExpr); 3632 pExpr->pAggInfo = pAggInfo; 3633 pExpr->op = TK_AGG_COLUMN; 3634 pExpr->iAgg = (i16)k; 3635 break; 3636 } /* endif pExpr->iTable==pItem->iCursor */ 3637 } /* end loop over pSrcList */ 3638 } 3639 return WRC_Prune; 3640 } 3641 case TK_AGG_FUNCTION: { 3642 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 3643 ** to be ignored */ 3644 if( pNC->nDepth==0 ){ 3645 /* Check to see if pExpr is a duplicate of another aggregate 3646 ** function that is already in the pAggInfo structure 3647 */ 3648 struct AggInfo_func *pItem = pAggInfo->aFunc; 3649 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 3650 if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){ 3651 break; 3652 } 3653 } 3654 if( i>=pAggInfo->nFunc ){ 3655 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 3656 */ 3657 u8 enc = ENC(pParse->db); 3658 i = addAggInfoFunc(pParse->db, pAggInfo); 3659 if( i>=0 ){ 3660 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3661 pItem = &pAggInfo->aFunc[i]; 3662 pItem->pExpr = pExpr; 3663 pItem->iMem = ++pParse->nMem; 3664 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3665 pItem->pFunc = sqlite3FindFunction(pParse->db, 3666 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 3667 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 3668 if( pExpr->flags & EP_Distinct ){ 3669 pItem->iDistinct = pParse->nTab++; 3670 }else{ 3671 pItem->iDistinct = -1; 3672 } 3673 } 3674 } 3675 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 3676 */ 3677 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3678 ExprSetIrreducible(pExpr); 3679 pExpr->iAgg = (i16)i; 3680 pExpr->pAggInfo = pAggInfo; 3681 return WRC_Prune; 3682 } 3683 } 3684 } 3685 return WRC_Continue; 3686 } 3687 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 3688 NameContext *pNC = pWalker->u.pNC; 3689 if( pNC->nDepth==0 ){ 3690 pNC->nDepth++; 3691 sqlite3WalkSelect(pWalker, pSelect); 3692 pNC->nDepth--; 3693 return WRC_Prune; 3694 }else{ 3695 return WRC_Continue; 3696 } 3697 } 3698 3699 /* 3700 ** Analyze the given expression looking for aggregate functions and 3701 ** for variables that need to be added to the pParse->aAgg[] array. 3702 ** Make additional entries to the pParse->aAgg[] array as necessary. 3703 ** 3704 ** This routine should only be called after the expression has been 3705 ** analyzed by sqlite3ResolveExprNames(). 3706 */ 3707 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 3708 Walker w; 3709 w.xExprCallback = analyzeAggregate; 3710 w.xSelectCallback = analyzeAggregatesInSelect; 3711 w.u.pNC = pNC; 3712 assert( pNC->pSrcList!=0 ); 3713 sqlite3WalkExpr(&w, pExpr); 3714 } 3715 3716 /* 3717 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 3718 ** expression list. Return the number of errors. 3719 ** 3720 ** If an error is found, the analysis is cut short. 3721 */ 3722 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 3723 struct ExprList_item *pItem; 3724 int i; 3725 if( pList ){ 3726 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 3727 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 3728 } 3729 } 3730 } 3731 3732 /* 3733 ** Allocate a single new register for use to hold some intermediate result. 3734 */ 3735 int sqlite3GetTempReg(Parse *pParse){ 3736 if( pParse->nTempReg==0 ){ 3737 return ++pParse->nMem; 3738 } 3739 return pParse->aTempReg[--pParse->nTempReg]; 3740 } 3741 3742 /* 3743 ** Deallocate a register, making available for reuse for some other 3744 ** purpose. 3745 ** 3746 ** If a register is currently being used by the column cache, then 3747 ** the dallocation is deferred until the column cache line that uses 3748 ** the register becomes stale. 3749 */ 3750 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 3751 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3752 int i; 3753 struct yColCache *p; 3754 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 3755 if( p->iReg==iReg ){ 3756 p->tempReg = 1; 3757 return; 3758 } 3759 } 3760 pParse->aTempReg[pParse->nTempReg++] = iReg; 3761 } 3762 } 3763 3764 /* 3765 ** Allocate or deallocate a block of nReg consecutive registers 3766 */ 3767 int sqlite3GetTempRange(Parse *pParse, int nReg){ 3768 int i, n; 3769 i = pParse->iRangeReg; 3770 n = pParse->nRangeReg; 3771 if( nReg<=n ){ 3772 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 3773 pParse->iRangeReg += nReg; 3774 pParse->nRangeReg -= nReg; 3775 }else{ 3776 i = pParse->nMem+1; 3777 pParse->nMem += nReg; 3778 } 3779 return i; 3780 } 3781 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 3782 sqlite3ExprCacheRemove(pParse, iReg, nReg); 3783 if( nReg>pParse->nRangeReg ){ 3784 pParse->nRangeReg = nReg; 3785 pParse->iRangeReg = iReg; 3786 } 3787 } 3788