xref: /sqlite-3.40.0/src/expr.c (revision 60176fa9)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expresssions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op = pExpr->op;
35   if( op==TK_SELECT ){
36     assert( pExpr->flags&EP_xIsSelect );
37     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
38   }
39 #ifndef SQLITE_OMIT_CAST
40   if( op==TK_CAST ){
41     assert( !ExprHasProperty(pExpr, EP_IntValue) );
42     return sqlite3AffinityType(pExpr->u.zToken);
43   }
44 #endif
45   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
46    && pExpr->pTab!=0
47   ){
48     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
49     ** a TK_COLUMN but was previously evaluated and cached in a register */
50     int j = pExpr->iColumn;
51     if( j<0 ) return SQLITE_AFF_INTEGER;
52     assert( pExpr->pTab && j<pExpr->pTab->nCol );
53     return pExpr->pTab->aCol[j].affinity;
54   }
55   return pExpr->affinity;
56 }
57 
58 /*
59 ** Set the explicit collating sequence for an expression to the
60 ** collating sequence supplied in the second argument.
61 */
62 Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){
63   if( pExpr && pColl ){
64     pExpr->pColl = pColl;
65     pExpr->flags |= EP_ExpCollate;
66   }
67   return pExpr;
68 }
69 
70 /*
71 ** Set the collating sequence for expression pExpr to be the collating
72 ** sequence named by pToken.   Return a pointer to the revised expression.
73 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
74 ** flag.  An explicit collating sequence will override implicit
75 ** collating sequences.
76 */
77 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){
78   char *zColl = 0;            /* Dequoted name of collation sequence */
79   CollSeq *pColl;
80   sqlite3 *db = pParse->db;
81   zColl = sqlite3NameFromToken(db, pCollName);
82   pColl = sqlite3LocateCollSeq(pParse, zColl);
83   sqlite3ExprSetColl(pExpr, pColl);
84   sqlite3DbFree(db, zColl);
85   return pExpr;
86 }
87 
88 /*
89 ** Return the default collation sequence for the expression pExpr. If
90 ** there is no default collation type, return 0.
91 */
92 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
93   CollSeq *pColl = 0;
94   Expr *p = pExpr;
95   while( ALWAYS(p) ){
96     int op;
97     pColl = p->pColl;
98     if( pColl ) break;
99     op = p->op;
100     if( p->pTab!=0 && (
101         op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER
102     )){
103       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
104       ** a TK_COLUMN but was previously evaluated and cached in a register */
105       const char *zColl;
106       int j = p->iColumn;
107       if( j>=0 ){
108         sqlite3 *db = pParse->db;
109         zColl = p->pTab->aCol[j].zColl;
110         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
111         pExpr->pColl = pColl;
112       }
113       break;
114     }
115     if( op!=TK_CAST && op!=TK_UPLUS ){
116       break;
117     }
118     p = p->pLeft;
119   }
120   if( sqlite3CheckCollSeq(pParse, pColl) ){
121     pColl = 0;
122   }
123   return pColl;
124 }
125 
126 /*
127 ** pExpr is an operand of a comparison operator.  aff2 is the
128 ** type affinity of the other operand.  This routine returns the
129 ** type affinity that should be used for the comparison operator.
130 */
131 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
132   char aff1 = sqlite3ExprAffinity(pExpr);
133   if( aff1 && aff2 ){
134     /* Both sides of the comparison are columns. If one has numeric
135     ** affinity, use that. Otherwise use no affinity.
136     */
137     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
138       return SQLITE_AFF_NUMERIC;
139     }else{
140       return SQLITE_AFF_NONE;
141     }
142   }else if( !aff1 && !aff2 ){
143     /* Neither side of the comparison is a column.  Compare the
144     ** results directly.
145     */
146     return SQLITE_AFF_NONE;
147   }else{
148     /* One side is a column, the other is not. Use the columns affinity. */
149     assert( aff1==0 || aff2==0 );
150     return (aff1 + aff2);
151   }
152 }
153 
154 /*
155 ** pExpr is a comparison operator.  Return the type affinity that should
156 ** be applied to both operands prior to doing the comparison.
157 */
158 static char comparisonAffinity(Expr *pExpr){
159   char aff;
160   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
161           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
162           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
163   assert( pExpr->pLeft );
164   aff = sqlite3ExprAffinity(pExpr->pLeft);
165   if( pExpr->pRight ){
166     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
167   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
168     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
169   }else if( !aff ){
170     aff = SQLITE_AFF_NONE;
171   }
172   return aff;
173 }
174 
175 /*
176 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
177 ** idx_affinity is the affinity of an indexed column. Return true
178 ** if the index with affinity idx_affinity may be used to implement
179 ** the comparison in pExpr.
180 */
181 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
182   char aff = comparisonAffinity(pExpr);
183   switch( aff ){
184     case SQLITE_AFF_NONE:
185       return 1;
186     case SQLITE_AFF_TEXT:
187       return idx_affinity==SQLITE_AFF_TEXT;
188     default:
189       return sqlite3IsNumericAffinity(idx_affinity);
190   }
191 }
192 
193 /*
194 ** Return the P5 value that should be used for a binary comparison
195 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
196 */
197 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
198   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
199   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
200   return aff;
201 }
202 
203 /*
204 ** Return a pointer to the collation sequence that should be used by
205 ** a binary comparison operator comparing pLeft and pRight.
206 **
207 ** If the left hand expression has a collating sequence type, then it is
208 ** used. Otherwise the collation sequence for the right hand expression
209 ** is used, or the default (BINARY) if neither expression has a collating
210 ** type.
211 **
212 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
213 ** it is not considered.
214 */
215 CollSeq *sqlite3BinaryCompareCollSeq(
216   Parse *pParse,
217   Expr *pLeft,
218   Expr *pRight
219 ){
220   CollSeq *pColl;
221   assert( pLeft );
222   if( pLeft->flags & EP_ExpCollate ){
223     assert( pLeft->pColl );
224     pColl = pLeft->pColl;
225   }else if( pRight && pRight->flags & EP_ExpCollate ){
226     assert( pRight->pColl );
227     pColl = pRight->pColl;
228   }else{
229     pColl = sqlite3ExprCollSeq(pParse, pLeft);
230     if( !pColl ){
231       pColl = sqlite3ExprCollSeq(pParse, pRight);
232     }
233   }
234   return pColl;
235 }
236 
237 /*
238 ** Generate code for a comparison operator.
239 */
240 static int codeCompare(
241   Parse *pParse,    /* The parsing (and code generating) context */
242   Expr *pLeft,      /* The left operand */
243   Expr *pRight,     /* The right operand */
244   int opcode,       /* The comparison opcode */
245   int in1, int in2, /* Register holding operands */
246   int dest,         /* Jump here if true.  */
247   int jumpIfNull    /* If true, jump if either operand is NULL */
248 ){
249   int p5;
250   int addr;
251   CollSeq *p4;
252 
253   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
254   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
255   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
256                            (void*)p4, P4_COLLSEQ);
257   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
258   return addr;
259 }
260 
261 #if SQLITE_MAX_EXPR_DEPTH>0
262 /*
263 ** Check that argument nHeight is less than or equal to the maximum
264 ** expression depth allowed. If it is not, leave an error message in
265 ** pParse.
266 */
267 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
268   int rc = SQLITE_OK;
269   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
270   if( nHeight>mxHeight ){
271     sqlite3ErrorMsg(pParse,
272        "Expression tree is too large (maximum depth %d)", mxHeight
273     );
274     rc = SQLITE_ERROR;
275   }
276   return rc;
277 }
278 
279 /* The following three functions, heightOfExpr(), heightOfExprList()
280 ** and heightOfSelect(), are used to determine the maximum height
281 ** of any expression tree referenced by the structure passed as the
282 ** first argument.
283 **
284 ** If this maximum height is greater than the current value pointed
285 ** to by pnHeight, the second parameter, then set *pnHeight to that
286 ** value.
287 */
288 static void heightOfExpr(Expr *p, int *pnHeight){
289   if( p ){
290     if( p->nHeight>*pnHeight ){
291       *pnHeight = p->nHeight;
292     }
293   }
294 }
295 static void heightOfExprList(ExprList *p, int *pnHeight){
296   if( p ){
297     int i;
298     for(i=0; i<p->nExpr; i++){
299       heightOfExpr(p->a[i].pExpr, pnHeight);
300     }
301   }
302 }
303 static void heightOfSelect(Select *p, int *pnHeight){
304   if( p ){
305     heightOfExpr(p->pWhere, pnHeight);
306     heightOfExpr(p->pHaving, pnHeight);
307     heightOfExpr(p->pLimit, pnHeight);
308     heightOfExpr(p->pOffset, pnHeight);
309     heightOfExprList(p->pEList, pnHeight);
310     heightOfExprList(p->pGroupBy, pnHeight);
311     heightOfExprList(p->pOrderBy, pnHeight);
312     heightOfSelect(p->pPrior, pnHeight);
313   }
314 }
315 
316 /*
317 ** Set the Expr.nHeight variable in the structure passed as an
318 ** argument. An expression with no children, Expr.pList or
319 ** Expr.pSelect member has a height of 1. Any other expression
320 ** has a height equal to the maximum height of any other
321 ** referenced Expr plus one.
322 */
323 static void exprSetHeight(Expr *p){
324   int nHeight = 0;
325   heightOfExpr(p->pLeft, &nHeight);
326   heightOfExpr(p->pRight, &nHeight);
327   if( ExprHasProperty(p, EP_xIsSelect) ){
328     heightOfSelect(p->x.pSelect, &nHeight);
329   }else{
330     heightOfExprList(p->x.pList, &nHeight);
331   }
332   p->nHeight = nHeight + 1;
333 }
334 
335 /*
336 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
337 ** the height is greater than the maximum allowed expression depth,
338 ** leave an error in pParse.
339 */
340 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
341   exprSetHeight(p);
342   sqlite3ExprCheckHeight(pParse, p->nHeight);
343 }
344 
345 /*
346 ** Return the maximum height of any expression tree referenced
347 ** by the select statement passed as an argument.
348 */
349 int sqlite3SelectExprHeight(Select *p){
350   int nHeight = 0;
351   heightOfSelect(p, &nHeight);
352   return nHeight;
353 }
354 #else
355   #define exprSetHeight(y)
356 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
357 
358 /*
359 ** This routine is the core allocator for Expr nodes.
360 **
361 ** Construct a new expression node and return a pointer to it.  Memory
362 ** for this node and for the pToken argument is a single allocation
363 ** obtained from sqlite3DbMalloc().  The calling function
364 ** is responsible for making sure the node eventually gets freed.
365 **
366 ** If dequote is true, then the token (if it exists) is dequoted.
367 ** If dequote is false, no dequoting is performance.  The deQuote
368 ** parameter is ignored if pToken is NULL or if the token does not
369 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
370 ** then the EP_DblQuoted flag is set on the expression node.
371 **
372 ** Special case:  If op==TK_INTEGER and pToken points to a string that
373 ** can be translated into a 32-bit integer, then the token is not
374 ** stored in u.zToken.  Instead, the integer values is written
375 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
376 ** is allocated to hold the integer text and the dequote flag is ignored.
377 */
378 Expr *sqlite3ExprAlloc(
379   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
380   int op,                 /* Expression opcode */
381   const Token *pToken,    /* Token argument.  Might be NULL */
382   int dequote             /* True to dequote */
383 ){
384   Expr *pNew;
385   int nExtra = 0;
386   int iValue = 0;
387 
388   if( pToken ){
389     if( op!=TK_INTEGER || pToken->z==0
390           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
391       nExtra = pToken->n+1;
392     }
393   }
394   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
395   if( pNew ){
396     pNew->op = (u8)op;
397     pNew->iAgg = -1;
398     if( pToken ){
399       if( nExtra==0 ){
400         pNew->flags |= EP_IntValue;
401         pNew->u.iValue = iValue;
402       }else{
403         int c;
404         pNew->u.zToken = (char*)&pNew[1];
405         memcpy(pNew->u.zToken, pToken->z, pToken->n);
406         pNew->u.zToken[pToken->n] = 0;
407         if( dequote && nExtra>=3
408              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
409           sqlite3Dequote(pNew->u.zToken);
410           if( c=='"' ) pNew->flags |= EP_DblQuoted;
411         }
412       }
413     }
414 #if SQLITE_MAX_EXPR_DEPTH>0
415     pNew->nHeight = 1;
416 #endif
417   }
418   return pNew;
419 }
420 
421 /*
422 ** Allocate a new expression node from a zero-terminated token that has
423 ** already been dequoted.
424 */
425 Expr *sqlite3Expr(
426   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
427   int op,                 /* Expression opcode */
428   const char *zToken      /* Token argument.  Might be NULL */
429 ){
430   Token x;
431   x.z = zToken;
432   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
433   return sqlite3ExprAlloc(db, op, &x, 0);
434 }
435 
436 /*
437 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
438 **
439 ** If pRoot==NULL that means that a memory allocation error has occurred.
440 ** In that case, delete the subtrees pLeft and pRight.
441 */
442 void sqlite3ExprAttachSubtrees(
443   sqlite3 *db,
444   Expr *pRoot,
445   Expr *pLeft,
446   Expr *pRight
447 ){
448   if( pRoot==0 ){
449     assert( db->mallocFailed );
450     sqlite3ExprDelete(db, pLeft);
451     sqlite3ExprDelete(db, pRight);
452   }else{
453     if( pRight ){
454       pRoot->pRight = pRight;
455       if( pRight->flags & EP_ExpCollate ){
456         pRoot->flags |= EP_ExpCollate;
457         pRoot->pColl = pRight->pColl;
458       }
459     }
460     if( pLeft ){
461       pRoot->pLeft = pLeft;
462       if( pLeft->flags & EP_ExpCollate ){
463         pRoot->flags |= EP_ExpCollate;
464         pRoot->pColl = pLeft->pColl;
465       }
466     }
467     exprSetHeight(pRoot);
468   }
469 }
470 
471 /*
472 ** Allocate a Expr node which joins as many as two subtrees.
473 **
474 ** One or both of the subtrees can be NULL.  Return a pointer to the new
475 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
476 ** free the subtrees and return NULL.
477 */
478 Expr *sqlite3PExpr(
479   Parse *pParse,          /* Parsing context */
480   int op,                 /* Expression opcode */
481   Expr *pLeft,            /* Left operand */
482   Expr *pRight,           /* Right operand */
483   const Token *pToken     /* Argument token */
484 ){
485   Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
486   sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
487   return p;
488 }
489 
490 /*
491 ** Join two expressions using an AND operator.  If either expression is
492 ** NULL, then just return the other expression.
493 */
494 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
495   if( pLeft==0 ){
496     return pRight;
497   }else if( pRight==0 ){
498     return pLeft;
499   }else{
500     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
501     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
502     return pNew;
503   }
504 }
505 
506 /*
507 ** Construct a new expression node for a function with multiple
508 ** arguments.
509 */
510 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
511   Expr *pNew;
512   sqlite3 *db = pParse->db;
513   assert( pToken );
514   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
515   if( pNew==0 ){
516     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
517     return 0;
518   }
519   pNew->x.pList = pList;
520   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
521   sqlite3ExprSetHeight(pParse, pNew);
522   return pNew;
523 }
524 
525 /*
526 ** Assign a variable number to an expression that encodes a wildcard
527 ** in the original SQL statement.
528 **
529 ** Wildcards consisting of a single "?" are assigned the next sequential
530 ** variable number.
531 **
532 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
533 ** sure "nnn" is not too be to avoid a denial of service attack when
534 ** the SQL statement comes from an external source.
535 **
536 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
537 ** as the previous instance of the same wildcard.  Or if this is the first
538 ** instance of the wildcard, the next sequenial variable number is
539 ** assigned.
540 */
541 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
542   sqlite3 *db = pParse->db;
543   const char *z;
544 
545   if( pExpr==0 ) return;
546   assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
547   z = pExpr->u.zToken;
548   assert( z!=0 );
549   assert( z[0]!=0 );
550   if( z[1]==0 ){
551     /* Wildcard of the form "?".  Assign the next variable number */
552     assert( z[0]=='?' );
553     pExpr->iColumn = (ynVar)(++pParse->nVar);
554   }else if( z[0]=='?' ){
555     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
556     ** use it as the variable number */
557     int i = atoi((char*)&z[1]);
558     pExpr->iColumn = (ynVar)i;
559     testcase( i==0 );
560     testcase( i==1 );
561     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
562     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
563     if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
564       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
565           db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
566     }
567     if( i>pParse->nVar ){
568       pParse->nVar = i;
569     }
570   }else{
571     /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
572     ** number as the prior appearance of the same name, or if the name
573     ** has never appeared before, reuse the same variable number
574     */
575     int i;
576     u32 n;
577     n = sqlite3Strlen30(z);
578     for(i=0; i<pParse->nVarExpr; i++){
579       Expr *pE = pParse->apVarExpr[i];
580       assert( pE!=0 );
581       if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){
582         pExpr->iColumn = pE->iColumn;
583         break;
584       }
585     }
586     if( i>=pParse->nVarExpr ){
587       pExpr->iColumn = (ynVar)(++pParse->nVar);
588       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
589         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
590         pParse->apVarExpr =
591             sqlite3DbReallocOrFree(
592               db,
593               pParse->apVarExpr,
594               pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
595             );
596       }
597       if( !db->mallocFailed ){
598         assert( pParse->apVarExpr!=0 );
599         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
600       }
601     }
602   }
603   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
604     sqlite3ErrorMsg(pParse, "too many SQL variables");
605   }
606 }
607 
608 /*
609 ** Recursively delete an expression tree.
610 */
611 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
612   if( p==0 ) return;
613   if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
614     sqlite3ExprDelete(db, p->pLeft);
615     sqlite3ExprDelete(db, p->pRight);
616     if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
617       sqlite3DbFree(db, p->u.zToken);
618     }
619     if( ExprHasProperty(p, EP_xIsSelect) ){
620       sqlite3SelectDelete(db, p->x.pSelect);
621     }else{
622       sqlite3ExprListDelete(db, p->x.pList);
623     }
624   }
625   if( !ExprHasProperty(p, EP_Static) ){
626     sqlite3DbFree(db, p);
627   }
628 }
629 
630 /*
631 ** Return the number of bytes allocated for the expression structure
632 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
633 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
634 */
635 static int exprStructSize(Expr *p){
636   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
637   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
638   return EXPR_FULLSIZE;
639 }
640 
641 /*
642 ** The dupedExpr*Size() routines each return the number of bytes required
643 ** to store a copy of an expression or expression tree.  They differ in
644 ** how much of the tree is measured.
645 **
646 **     dupedExprStructSize()     Size of only the Expr structure
647 **     dupedExprNodeSize()       Size of Expr + space for token
648 **     dupedExprSize()           Expr + token + subtree components
649 **
650 ***************************************************************************
651 **
652 ** The dupedExprStructSize() function returns two values OR-ed together:
653 ** (1) the space required for a copy of the Expr structure only and
654 ** (2) the EP_xxx flags that indicate what the structure size should be.
655 ** The return values is always one of:
656 **
657 **      EXPR_FULLSIZE
658 **      EXPR_REDUCEDSIZE   | EP_Reduced
659 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
660 **
661 ** The size of the structure can be found by masking the return value
662 ** of this routine with 0xfff.  The flags can be found by masking the
663 ** return value with EP_Reduced|EP_TokenOnly.
664 **
665 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
666 ** (unreduced) Expr objects as they or originally constructed by the parser.
667 ** During expression analysis, extra information is computed and moved into
668 ** later parts of teh Expr object and that extra information might get chopped
669 ** off if the expression is reduced.  Note also that it does not work to
670 ** make a EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
671 ** to reduce a pristine expression tree from the parser.  The implementation
672 ** of dupedExprStructSize() contain multiple assert() statements that attempt
673 ** to enforce this constraint.
674 */
675 static int dupedExprStructSize(Expr *p, int flags){
676   int nSize;
677   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
678   if( 0==(flags&EXPRDUP_REDUCE) ){
679     nSize = EXPR_FULLSIZE;
680   }else{
681     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
682     assert( !ExprHasProperty(p, EP_FromJoin) );
683     assert( (p->flags2 & EP2_MallocedToken)==0 );
684     assert( (p->flags2 & EP2_Irreducible)==0 );
685     if( p->pLeft || p->pRight || p->pColl || p->x.pList ){
686       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
687     }else{
688       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
689     }
690   }
691   return nSize;
692 }
693 
694 /*
695 ** This function returns the space in bytes required to store the copy
696 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
697 ** string is defined.)
698 */
699 static int dupedExprNodeSize(Expr *p, int flags){
700   int nByte = dupedExprStructSize(p, flags) & 0xfff;
701   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
702     nByte += sqlite3Strlen30(p->u.zToken)+1;
703   }
704   return ROUND8(nByte);
705 }
706 
707 /*
708 ** Return the number of bytes required to create a duplicate of the
709 ** expression passed as the first argument. The second argument is a
710 ** mask containing EXPRDUP_XXX flags.
711 **
712 ** The value returned includes space to create a copy of the Expr struct
713 ** itself and the buffer referred to by Expr.u.zToken, if any.
714 **
715 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
716 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
717 ** and Expr.pRight variables (but not for any structures pointed to or
718 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
719 */
720 static int dupedExprSize(Expr *p, int flags){
721   int nByte = 0;
722   if( p ){
723     nByte = dupedExprNodeSize(p, flags);
724     if( flags&EXPRDUP_REDUCE ){
725       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
726     }
727   }
728   return nByte;
729 }
730 
731 /*
732 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
733 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
734 ** to store the copy of expression p, the copies of p->u.zToken
735 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
736 ** if any. Before returning, *pzBuffer is set to the first byte passed the
737 ** portion of the buffer copied into by this function.
738 */
739 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
740   Expr *pNew = 0;                      /* Value to return */
741   if( p ){
742     const int isReduced = (flags&EXPRDUP_REDUCE);
743     u8 *zAlloc;
744     u32 staticFlag = 0;
745 
746     assert( pzBuffer==0 || isReduced );
747 
748     /* Figure out where to write the new Expr structure. */
749     if( pzBuffer ){
750       zAlloc = *pzBuffer;
751       staticFlag = EP_Static;
752     }else{
753       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
754     }
755     pNew = (Expr *)zAlloc;
756 
757     if( pNew ){
758       /* Set nNewSize to the size allocated for the structure pointed to
759       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
760       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
761       ** by the copy of the p->u.zToken string (if any).
762       */
763       const unsigned nStructSize = dupedExprStructSize(p, flags);
764       const int nNewSize = nStructSize & 0xfff;
765       int nToken;
766       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
767         nToken = sqlite3Strlen30(p->u.zToken) + 1;
768       }else{
769         nToken = 0;
770       }
771       if( isReduced ){
772         assert( ExprHasProperty(p, EP_Reduced)==0 );
773         memcpy(zAlloc, p, nNewSize);
774       }else{
775         int nSize = exprStructSize(p);
776         memcpy(zAlloc, p, nSize);
777         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
778       }
779 
780       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
781       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
782       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
783       pNew->flags |= staticFlag;
784 
785       /* Copy the p->u.zToken string, if any. */
786       if( nToken ){
787         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
788         memcpy(zToken, p->u.zToken, nToken);
789       }
790 
791       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
792         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
793         if( ExprHasProperty(p, EP_xIsSelect) ){
794           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
795         }else{
796           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
797         }
798       }
799 
800       /* Fill in pNew->pLeft and pNew->pRight. */
801       if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
802         zAlloc += dupedExprNodeSize(p, flags);
803         if( ExprHasProperty(pNew, EP_Reduced) ){
804           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
805           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
806         }
807         if( pzBuffer ){
808           *pzBuffer = zAlloc;
809         }
810       }else{
811         pNew->flags2 = 0;
812         if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
813           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
814           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
815         }
816       }
817 
818     }
819   }
820   return pNew;
821 }
822 
823 /*
824 ** The following group of routines make deep copies of expressions,
825 ** expression lists, ID lists, and select statements.  The copies can
826 ** be deleted (by being passed to their respective ...Delete() routines)
827 ** without effecting the originals.
828 **
829 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
830 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
831 ** by subsequent calls to sqlite*ListAppend() routines.
832 **
833 ** Any tables that the SrcList might point to are not duplicated.
834 **
835 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
836 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
837 ** truncated version of the usual Expr structure that will be stored as
838 ** part of the in-memory representation of the database schema.
839 */
840 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
841   return exprDup(db, p, flags, 0);
842 }
843 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
844   ExprList *pNew;
845   struct ExprList_item *pItem, *pOldItem;
846   int i;
847   if( p==0 ) return 0;
848   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
849   if( pNew==0 ) return 0;
850   pNew->iECursor = 0;
851   pNew->nExpr = pNew->nAlloc = p->nExpr;
852   pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
853   if( pItem==0 ){
854     sqlite3DbFree(db, pNew);
855     return 0;
856   }
857   pOldItem = p->a;
858   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
859     Expr *pOldExpr = pOldItem->pExpr;
860     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
861     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
862     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
863     pItem->sortOrder = pOldItem->sortOrder;
864     pItem->done = 0;
865     pItem->iCol = pOldItem->iCol;
866     pItem->iAlias = pOldItem->iAlias;
867   }
868   return pNew;
869 }
870 
871 /*
872 ** If cursors, triggers, views and subqueries are all omitted from
873 ** the build, then none of the following routines, except for
874 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
875 ** called with a NULL argument.
876 */
877 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
878  || !defined(SQLITE_OMIT_SUBQUERY)
879 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
880   SrcList *pNew;
881   int i;
882   int nByte;
883   if( p==0 ) return 0;
884   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
885   pNew = sqlite3DbMallocRaw(db, nByte );
886   if( pNew==0 ) return 0;
887   pNew->nSrc = pNew->nAlloc = p->nSrc;
888   for(i=0; i<p->nSrc; i++){
889     struct SrcList_item *pNewItem = &pNew->a[i];
890     struct SrcList_item *pOldItem = &p->a[i];
891     Table *pTab;
892     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
893     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
894     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
895     pNewItem->jointype = pOldItem->jointype;
896     pNewItem->iCursor = pOldItem->iCursor;
897     pNewItem->isPopulated = pOldItem->isPopulated;
898     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
899     pNewItem->notIndexed = pOldItem->notIndexed;
900     pNewItem->pIndex = pOldItem->pIndex;
901     pTab = pNewItem->pTab = pOldItem->pTab;
902     if( pTab ){
903       pTab->nRef++;
904     }
905     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
906     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
907     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
908     pNewItem->colUsed = pOldItem->colUsed;
909   }
910   return pNew;
911 }
912 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
913   IdList *pNew;
914   int i;
915   if( p==0 ) return 0;
916   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
917   if( pNew==0 ) return 0;
918   pNew->nId = pNew->nAlloc = p->nId;
919   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
920   if( pNew->a==0 ){
921     sqlite3DbFree(db, pNew);
922     return 0;
923   }
924   for(i=0; i<p->nId; i++){
925     struct IdList_item *pNewItem = &pNew->a[i];
926     struct IdList_item *pOldItem = &p->a[i];
927     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
928     pNewItem->idx = pOldItem->idx;
929   }
930   return pNew;
931 }
932 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
933   Select *pNew;
934   if( p==0 ) return 0;
935   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
936   if( pNew==0 ) return 0;
937   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
938   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
939   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
940   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
941   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
942   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
943   pNew->op = p->op;
944   pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags);
945   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
946   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
947   pNew->iLimit = 0;
948   pNew->iOffset = 0;
949   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
950   pNew->pRightmost = 0;
951   pNew->addrOpenEphm[0] = -1;
952   pNew->addrOpenEphm[1] = -1;
953   pNew->addrOpenEphm[2] = -1;
954   return pNew;
955 }
956 #else
957 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
958   assert( p==0 );
959   return 0;
960 }
961 #endif
962 
963 
964 /*
965 ** Add a new element to the end of an expression list.  If pList is
966 ** initially NULL, then create a new expression list.
967 **
968 ** If a memory allocation error occurs, the entire list is freed and
969 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
970 ** that the new entry was successfully appended.
971 */
972 ExprList *sqlite3ExprListAppend(
973   Parse *pParse,          /* Parsing context */
974   ExprList *pList,        /* List to which to append. Might be NULL */
975   Expr *pExpr             /* Expression to be appended. Might be NULL */
976 ){
977   sqlite3 *db = pParse->db;
978   if( pList==0 ){
979     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
980     if( pList==0 ){
981       goto no_mem;
982     }
983     assert( pList->nAlloc==0 );
984   }
985   if( pList->nAlloc<=pList->nExpr ){
986     struct ExprList_item *a;
987     int n = pList->nAlloc*2 + 4;
988     a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
989     if( a==0 ){
990       goto no_mem;
991     }
992     pList->a = a;
993     pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]);
994   }
995   assert( pList->a!=0 );
996   if( 1 ){
997     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
998     memset(pItem, 0, sizeof(*pItem));
999     pItem->pExpr = pExpr;
1000   }
1001   return pList;
1002 
1003 no_mem:
1004   /* Avoid leaking memory if malloc has failed. */
1005   sqlite3ExprDelete(db, pExpr);
1006   sqlite3ExprListDelete(db, pList);
1007   return 0;
1008 }
1009 
1010 /*
1011 ** Set the ExprList.a[].zName element of the most recently added item
1012 ** on the expression list.
1013 **
1014 ** pList might be NULL following an OOM error.  But pName should never be
1015 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1016 ** is set.
1017 */
1018 void sqlite3ExprListSetName(
1019   Parse *pParse,          /* Parsing context */
1020   ExprList *pList,        /* List to which to add the span. */
1021   Token *pName,           /* Name to be added */
1022   int dequote             /* True to cause the name to be dequoted */
1023 ){
1024   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1025   if( pList ){
1026     struct ExprList_item *pItem;
1027     assert( pList->nExpr>0 );
1028     pItem = &pList->a[pList->nExpr-1];
1029     assert( pItem->zName==0 );
1030     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1031     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1032   }
1033 }
1034 
1035 /*
1036 ** Set the ExprList.a[].zSpan element of the most recently added item
1037 ** on the expression list.
1038 **
1039 ** pList might be NULL following an OOM error.  But pSpan should never be
1040 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1041 ** is set.
1042 */
1043 void sqlite3ExprListSetSpan(
1044   Parse *pParse,          /* Parsing context */
1045   ExprList *pList,        /* List to which to add the span. */
1046   ExprSpan *pSpan         /* The span to be added */
1047 ){
1048   sqlite3 *db = pParse->db;
1049   assert( pList!=0 || db->mallocFailed!=0 );
1050   if( pList ){
1051     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1052     assert( pList->nExpr>0 );
1053     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1054     sqlite3DbFree(db, pItem->zSpan);
1055     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1056                                     (int)(pSpan->zEnd - pSpan->zStart));
1057   }
1058 }
1059 
1060 /*
1061 ** If the expression list pEList contains more than iLimit elements,
1062 ** leave an error message in pParse.
1063 */
1064 void sqlite3ExprListCheckLength(
1065   Parse *pParse,
1066   ExprList *pEList,
1067   const char *zObject
1068 ){
1069   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1070   testcase( pEList && pEList->nExpr==mx );
1071   testcase( pEList && pEList->nExpr==mx+1 );
1072   if( pEList && pEList->nExpr>mx ){
1073     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1074   }
1075 }
1076 
1077 /*
1078 ** Delete an entire expression list.
1079 */
1080 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1081   int i;
1082   struct ExprList_item *pItem;
1083   if( pList==0 ) return;
1084   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
1085   assert( pList->nExpr<=pList->nAlloc );
1086   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1087     sqlite3ExprDelete(db, pItem->pExpr);
1088     sqlite3DbFree(db, pItem->zName);
1089     sqlite3DbFree(db, pItem->zSpan);
1090   }
1091   sqlite3DbFree(db, pList->a);
1092   sqlite3DbFree(db, pList);
1093 }
1094 
1095 /*
1096 ** These routines are Walker callbacks.  Walker.u.pi is a pointer
1097 ** to an integer.  These routines are checking an expression to see
1098 ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
1099 ** not constant.
1100 **
1101 ** These callback routines are used to implement the following:
1102 **
1103 **     sqlite3ExprIsConstant()
1104 **     sqlite3ExprIsConstantNotJoin()
1105 **     sqlite3ExprIsConstantOrFunction()
1106 **
1107 */
1108 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1109 
1110   /* If pWalker->u.i is 3 then any term of the expression that comes from
1111   ** the ON or USING clauses of a join disqualifies the expression
1112   ** from being considered constant. */
1113   if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
1114     pWalker->u.i = 0;
1115     return WRC_Abort;
1116   }
1117 
1118   switch( pExpr->op ){
1119     /* Consider functions to be constant if all their arguments are constant
1120     ** and pWalker->u.i==2 */
1121     case TK_FUNCTION:
1122       if( pWalker->u.i==2 ) return 0;
1123       /* Fall through */
1124     case TK_ID:
1125     case TK_COLUMN:
1126     case TK_AGG_FUNCTION:
1127     case TK_AGG_COLUMN:
1128       testcase( pExpr->op==TK_ID );
1129       testcase( pExpr->op==TK_COLUMN );
1130       testcase( pExpr->op==TK_AGG_FUNCTION );
1131       testcase( pExpr->op==TK_AGG_COLUMN );
1132       pWalker->u.i = 0;
1133       return WRC_Abort;
1134     default:
1135       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1136       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1137       return WRC_Continue;
1138   }
1139 }
1140 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1141   UNUSED_PARAMETER(NotUsed);
1142   pWalker->u.i = 0;
1143   return WRC_Abort;
1144 }
1145 static int exprIsConst(Expr *p, int initFlag){
1146   Walker w;
1147   w.u.i = initFlag;
1148   w.xExprCallback = exprNodeIsConstant;
1149   w.xSelectCallback = selectNodeIsConstant;
1150   sqlite3WalkExpr(&w, p);
1151   return w.u.i;
1152 }
1153 
1154 /*
1155 ** Walk an expression tree.  Return 1 if the expression is constant
1156 ** and 0 if it involves variables or function calls.
1157 **
1158 ** For the purposes of this function, a double-quoted string (ex: "abc")
1159 ** is considered a variable but a single-quoted string (ex: 'abc') is
1160 ** a constant.
1161 */
1162 int sqlite3ExprIsConstant(Expr *p){
1163   return exprIsConst(p, 1);
1164 }
1165 
1166 /*
1167 ** Walk an expression tree.  Return 1 if the expression is constant
1168 ** that does no originate from the ON or USING clauses of a join.
1169 ** Return 0 if it involves variables or function calls or terms from
1170 ** an ON or USING clause.
1171 */
1172 int sqlite3ExprIsConstantNotJoin(Expr *p){
1173   return exprIsConst(p, 3);
1174 }
1175 
1176 /*
1177 ** Walk an expression tree.  Return 1 if the expression is constant
1178 ** or a function call with constant arguments.  Return and 0 if there
1179 ** are any variables.
1180 **
1181 ** For the purposes of this function, a double-quoted string (ex: "abc")
1182 ** is considered a variable but a single-quoted string (ex: 'abc') is
1183 ** a constant.
1184 */
1185 int sqlite3ExprIsConstantOrFunction(Expr *p){
1186   return exprIsConst(p, 2);
1187 }
1188 
1189 /*
1190 ** If the expression p codes a constant integer that is small enough
1191 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1192 ** in *pValue.  If the expression is not an integer or if it is too big
1193 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1194 */
1195 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1196   int rc = 0;
1197   if( p->flags & EP_IntValue ){
1198     *pValue = p->u.iValue;
1199     return 1;
1200   }
1201   switch( p->op ){
1202     case TK_INTEGER: {
1203       rc = sqlite3GetInt32(p->u.zToken, pValue);
1204       assert( rc==0 );
1205       break;
1206     }
1207     case TK_UPLUS: {
1208       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1209       break;
1210     }
1211     case TK_UMINUS: {
1212       int v;
1213       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1214         *pValue = -v;
1215         rc = 1;
1216       }
1217       break;
1218     }
1219     default: break;
1220   }
1221   if( rc ){
1222     assert( ExprHasAnyProperty(p, EP_Reduced|EP_TokenOnly)
1223                || (p->flags2 & EP2_MallocedToken)==0 );
1224     p->op = TK_INTEGER;
1225     p->flags |= EP_IntValue;
1226     p->u.iValue = *pValue;
1227   }
1228   return rc;
1229 }
1230 
1231 /*
1232 ** Return FALSE if there is no chance that the expression can be NULL.
1233 **
1234 ** If the expression might be NULL or if the expression is too complex
1235 ** to tell return TRUE.
1236 **
1237 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1238 ** when we know that a value cannot be NULL.  Hence, a false positive
1239 ** (returning TRUE when in fact the expression can never be NULL) might
1240 ** be a small performance hit but is otherwise harmless.  On the other
1241 ** hand, a false negative (returning FALSE when the result could be NULL)
1242 ** will likely result in an incorrect answer.  So when in doubt, return
1243 ** TRUE.
1244 */
1245 int sqlite3ExprCanBeNull(const Expr *p){
1246   u8 op;
1247   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1248   op = p->op;
1249   if( op==TK_REGISTER ) op = p->op2;
1250   switch( op ){
1251     case TK_INTEGER:
1252     case TK_STRING:
1253     case TK_FLOAT:
1254     case TK_BLOB:
1255       return 0;
1256     default:
1257       return 1;
1258   }
1259 }
1260 
1261 /*
1262 ** Generate an OP_IsNull instruction that tests register iReg and jumps
1263 ** to location iDest if the value in iReg is NULL.  The value in iReg
1264 ** was computed by pExpr.  If we can look at pExpr at compile-time and
1265 ** determine that it can never generate a NULL, then the OP_IsNull operation
1266 ** can be omitted.
1267 */
1268 void sqlite3ExprCodeIsNullJump(
1269   Vdbe *v,            /* The VDBE under construction */
1270   const Expr *pExpr,  /* Only generate OP_IsNull if this expr can be NULL */
1271   int iReg,           /* Test the value in this register for NULL */
1272   int iDest           /* Jump here if the value is null */
1273 ){
1274   if( sqlite3ExprCanBeNull(pExpr) ){
1275     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
1276   }
1277 }
1278 
1279 /*
1280 ** Return TRUE if the given expression is a constant which would be
1281 ** unchanged by OP_Affinity with the affinity given in the second
1282 ** argument.
1283 **
1284 ** This routine is used to determine if the OP_Affinity operation
1285 ** can be omitted.  When in doubt return FALSE.  A false negative
1286 ** is harmless.  A false positive, however, can result in the wrong
1287 ** answer.
1288 */
1289 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1290   u8 op;
1291   if( aff==SQLITE_AFF_NONE ) return 1;
1292   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1293   op = p->op;
1294   if( op==TK_REGISTER ) op = p->op2;
1295   switch( op ){
1296     case TK_INTEGER: {
1297       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1298     }
1299     case TK_FLOAT: {
1300       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1301     }
1302     case TK_STRING: {
1303       return aff==SQLITE_AFF_TEXT;
1304     }
1305     case TK_BLOB: {
1306       return 1;
1307     }
1308     case TK_COLUMN: {
1309       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1310       return p->iColumn<0
1311           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1312     }
1313     default: {
1314       return 0;
1315     }
1316   }
1317 }
1318 
1319 /*
1320 ** Return TRUE if the given string is a row-id column name.
1321 */
1322 int sqlite3IsRowid(const char *z){
1323   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1324   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1325   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1326   return 0;
1327 }
1328 
1329 /*
1330 ** Return true if we are able to the IN operator optimization on a
1331 ** query of the form
1332 **
1333 **       x IN (SELECT ...)
1334 **
1335 ** Where the SELECT... clause is as specified by the parameter to this
1336 ** routine.
1337 **
1338 ** The Select object passed in has already been preprocessed and no
1339 ** errors have been found.
1340 */
1341 #ifndef SQLITE_OMIT_SUBQUERY
1342 static int isCandidateForInOpt(Select *p){
1343   SrcList *pSrc;
1344   ExprList *pEList;
1345   Table *pTab;
1346   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1347   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1348   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1349     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1350     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1351     return 0; /* No DISTINCT keyword and no aggregate functions */
1352   }
1353   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1354   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1355   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1356   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1357   pSrc = p->pSrc;
1358   assert( pSrc!=0 );
1359   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1360   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1361   pTab = pSrc->a[0].pTab;
1362   if( NEVER(pTab==0) ) return 0;
1363   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1364   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1365   pEList = p->pEList;
1366   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1367   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1368   return 1;
1369 }
1370 #endif /* SQLITE_OMIT_SUBQUERY */
1371 
1372 /*
1373 ** This function is used by the implementation of the IN (...) operator.
1374 ** It's job is to find or create a b-tree structure that may be used
1375 ** either to test for membership of the (...) set or to iterate through
1376 ** its members, skipping duplicates.
1377 **
1378 ** The index of the cursor opened on the b-tree (database table, database index
1379 ** or ephermal table) is stored in pX->iTable before this function returns.
1380 ** The returned value of this function indicates the b-tree type, as follows:
1381 **
1382 **   IN_INDEX_ROWID - The cursor was opened on a database table.
1383 **   IN_INDEX_INDEX - The cursor was opened on a database index.
1384 **   IN_INDEX_EPH -   The cursor was opened on a specially created and
1385 **                    populated epheremal table.
1386 **
1387 ** An existing b-tree may only be used if the SELECT is of the simple
1388 ** form:
1389 **
1390 **     SELECT <column> FROM <table>
1391 **
1392 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
1393 ** through the set members, skipping any duplicates. In this case an
1394 ** epheremal table must be used unless the selected <column> is guaranteed
1395 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1396 ** has a UNIQUE constraint or UNIQUE index.
1397 **
1398 ** If the prNotFound parameter is not 0, then the b-tree will be used
1399 ** for fast set membership tests. In this case an epheremal table must
1400 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1401 ** be found with <column> as its left-most column.
1402 **
1403 ** When the b-tree is being used for membership tests, the calling function
1404 ** needs to know whether or not the structure contains an SQL NULL
1405 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1406 ** If there is any chance that the (...) might contain a NULL value at
1407 ** runtime, then a register is allocated and the register number written
1408 ** to *prNotFound. If there is no chance that the (...) contains a
1409 ** NULL value, then *prNotFound is left unchanged.
1410 **
1411 ** If a register is allocated and its location stored in *prNotFound, then
1412 ** its initial value is NULL.  If the (...) does not remain constant
1413 ** for the duration of the query (i.e. the SELECT within the (...)
1414 ** is a correlated subquery) then the value of the allocated register is
1415 ** reset to NULL each time the subquery is rerun. This allows the
1416 ** caller to use vdbe code equivalent to the following:
1417 **
1418 **   if( register==NULL ){
1419 **     has_null = <test if data structure contains null>
1420 **     register = 1
1421 **   }
1422 **
1423 ** in order to avoid running the <test if data structure contains null>
1424 ** test more often than is necessary.
1425 */
1426 #ifndef SQLITE_OMIT_SUBQUERY
1427 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1428   Select *p;                            /* SELECT to the right of IN operator */
1429   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1430   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1431   int mustBeUnique = (prNotFound==0);   /* True if RHS must be unique */
1432 
1433   assert( pX->op==TK_IN );
1434 
1435   /* Check to see if an existing table or index can be used to
1436   ** satisfy the query.  This is preferable to generating a new
1437   ** ephemeral table.
1438   */
1439   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1440   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1441     sqlite3 *db = pParse->db;              /* Database connection */
1442     Expr *pExpr = p->pEList->a[0].pExpr;   /* Expression <column> */
1443     int iCol = pExpr->iColumn;             /* Index of column <column> */
1444     Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1445     Table *pTab = p->pSrc->a[0].pTab;      /* Table <table>. */
1446     int iDb;                               /* Database idx for pTab */
1447 
1448     /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
1449     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1450     sqlite3CodeVerifySchema(pParse, iDb);
1451     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1452 
1453     /* This function is only called from two places. In both cases the vdbe
1454     ** has already been allocated. So assume sqlite3GetVdbe() is always
1455     ** successful here.
1456     */
1457     assert(v);
1458     if( iCol<0 ){
1459       int iMem = ++pParse->nMem;
1460       int iAddr;
1461 
1462       iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1463       sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1464 
1465       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1466       eType = IN_INDEX_ROWID;
1467 
1468       sqlite3VdbeJumpHere(v, iAddr);
1469     }else{
1470       Index *pIdx;                         /* Iterator variable */
1471 
1472       /* The collation sequence used by the comparison. If an index is to
1473       ** be used in place of a temp-table, it must be ordered according
1474       ** to this collation sequence.  */
1475       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1476 
1477       /* Check that the affinity that will be used to perform the
1478       ** comparison is the same as the affinity of the column. If
1479       ** it is not, it is not possible to use any index.
1480       */
1481       char aff = comparisonAffinity(pX);
1482       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
1483 
1484       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1485         if( (pIdx->aiColumn[0]==iCol)
1486          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1487          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1488         ){
1489           int iMem = ++pParse->nMem;
1490           int iAddr;
1491           char *pKey;
1492 
1493           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1494           iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1495           sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1496 
1497           sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1498                                pKey,P4_KEYINFO_HANDOFF);
1499           VdbeComment((v, "%s", pIdx->zName));
1500           eType = IN_INDEX_INDEX;
1501 
1502           sqlite3VdbeJumpHere(v, iAddr);
1503           if( prNotFound && !pTab->aCol[iCol].notNull ){
1504             *prNotFound = ++pParse->nMem;
1505           }
1506         }
1507       }
1508     }
1509   }
1510 
1511   if( eType==0 ){
1512     /* Could not found an existing table or index to use as the RHS b-tree.
1513     ** We will have to generate an ephemeral table to do the job.
1514     */
1515     double savedNQueryLoop = pParse->nQueryLoop;
1516     int rMayHaveNull = 0;
1517     eType = IN_INDEX_EPH;
1518     if( prNotFound ){
1519       *prNotFound = rMayHaveNull = ++pParse->nMem;
1520     }else{
1521       testcase( pParse->nQueryLoop>(double)1 );
1522       pParse->nQueryLoop = (double)1;
1523       if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
1524         eType = IN_INDEX_ROWID;
1525       }
1526     }
1527     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1528     pParse->nQueryLoop = savedNQueryLoop;
1529   }else{
1530     pX->iTable = iTab;
1531   }
1532   return eType;
1533 }
1534 #endif
1535 
1536 /*
1537 ** Generate code for scalar subqueries used as an expression
1538 ** and IN operators.  Examples:
1539 **
1540 **     (SELECT a FROM b)          -- subquery
1541 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1542 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1543 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1544 **
1545 ** The pExpr parameter describes the expression that contains the IN
1546 ** operator or subquery.
1547 **
1548 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1549 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1550 ** to some integer key column of a table B-Tree. In this case, use an
1551 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1552 ** (slower) variable length keys B-Tree.
1553 **
1554 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1555 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1556 ** Furthermore, the IN is in a WHERE clause and that we really want
1557 ** to iterate over the RHS of the IN operator in order to quickly locate
1558 ** all corresponding LHS elements.  All this routine does is initialize
1559 ** the register given by rMayHaveNull to NULL.  Calling routines will take
1560 ** care of changing this register value to non-NULL if the RHS is NULL-free.
1561 **
1562 ** If rMayHaveNull is zero, that means that the subquery is being used
1563 ** for membership testing only.  There is no need to initialize any
1564 ** registers to indicate the presense or absence of NULLs on the RHS.
1565 **
1566 ** For a SELECT or EXISTS operator, return the register that holds the
1567 ** result.  For IN operators or if an error occurs, the return value is 0.
1568 */
1569 #ifndef SQLITE_OMIT_SUBQUERY
1570 int sqlite3CodeSubselect(
1571   Parse *pParse,          /* Parsing context */
1572   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1573   int rMayHaveNull,       /* Register that records whether NULLs exist in RHS */
1574   int isRowid             /* If true, LHS of IN operator is a rowid */
1575 ){
1576   int testAddr = 0;                       /* One-time test address */
1577   int rReg = 0;                           /* Register storing resulting */
1578   Vdbe *v = sqlite3GetVdbe(pParse);
1579   if( NEVER(v==0) ) return 0;
1580   sqlite3ExprCachePush(pParse);
1581 
1582   /* This code must be run in its entirety every time it is encountered
1583   ** if any of the following is true:
1584   **
1585   **    *  The right-hand side is a correlated subquery
1586   **    *  The right-hand side is an expression list containing variables
1587   **    *  We are inside a trigger
1588   **
1589   ** If all of the above are false, then we can run this code just once
1590   ** save the results, and reuse the same result on subsequent invocations.
1591   */
1592   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){
1593     int mem = ++pParse->nMem;
1594     sqlite3VdbeAddOp1(v, OP_If, mem);
1595     testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
1596     assert( testAddr>0 || pParse->db->mallocFailed );
1597   }
1598 
1599   switch( pExpr->op ){
1600     case TK_IN: {
1601       char affinity;
1602       KeyInfo keyInfo;
1603       int addr;        /* Address of OP_OpenEphemeral instruction */
1604       Expr *pLeft = pExpr->pLeft;
1605 
1606       if( rMayHaveNull ){
1607         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1608       }
1609 
1610       affinity = sqlite3ExprAffinity(pLeft);
1611 
1612       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1613       ** expression it is handled the same way.  An ephemeral table is
1614       ** filled with single-field index keys representing the results
1615       ** from the SELECT or the <exprlist>.
1616       **
1617       ** If the 'x' expression is a column value, or the SELECT...
1618       ** statement returns a column value, then the affinity of that
1619       ** column is used to build the index keys. If both 'x' and the
1620       ** SELECT... statement are columns, then numeric affinity is used
1621       ** if either column has NUMERIC or INTEGER affinity. If neither
1622       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1623       ** is used.
1624       */
1625       pExpr->iTable = pParse->nTab++;
1626       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1627       memset(&keyInfo, 0, sizeof(keyInfo));
1628       keyInfo.nField = 1;
1629 
1630       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1631         /* Case 1:     expr IN (SELECT ...)
1632         **
1633         ** Generate code to write the results of the select into the temporary
1634         ** table allocated and opened above.
1635         */
1636         SelectDest dest;
1637         ExprList *pEList;
1638 
1639         assert( !isRowid );
1640         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1641         dest.affinity = (u8)affinity;
1642         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1643         if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
1644           return 0;
1645         }
1646         pEList = pExpr->x.pSelect->pEList;
1647         if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
1648           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1649               pEList->a[0].pExpr);
1650         }
1651       }else if( ALWAYS(pExpr->x.pList!=0) ){
1652         /* Case 2:     expr IN (exprlist)
1653         **
1654         ** For each expression, build an index key from the evaluation and
1655         ** store it in the temporary table. If <expr> is a column, then use
1656         ** that columns affinity when building index keys. If <expr> is not
1657         ** a column, use numeric affinity.
1658         */
1659         int i;
1660         ExprList *pList = pExpr->x.pList;
1661         struct ExprList_item *pItem;
1662         int r1, r2, r3;
1663 
1664         if( !affinity ){
1665           affinity = SQLITE_AFF_NONE;
1666         }
1667         keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1668 
1669         /* Loop through each expression in <exprlist>. */
1670         r1 = sqlite3GetTempReg(pParse);
1671         r2 = sqlite3GetTempReg(pParse);
1672         sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1673         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1674           Expr *pE2 = pItem->pExpr;
1675           int iValToIns;
1676 
1677           /* If the expression is not constant then we will need to
1678           ** disable the test that was generated above that makes sure
1679           ** this code only executes once.  Because for a non-constant
1680           ** expression we need to rerun this code each time.
1681           */
1682           if( testAddr && !sqlite3ExprIsConstant(pE2) ){
1683             sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
1684             testAddr = 0;
1685           }
1686 
1687           /* Evaluate the expression and insert it into the temp table */
1688           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1689             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1690           }else{
1691             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1692             if( isRowid ){
1693               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1694                                 sqlite3VdbeCurrentAddr(v)+2);
1695               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1696             }else{
1697               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1698               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1699               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1700             }
1701           }
1702         }
1703         sqlite3ReleaseTempReg(pParse, r1);
1704         sqlite3ReleaseTempReg(pParse, r2);
1705       }
1706       if( !isRowid ){
1707         sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1708       }
1709       break;
1710     }
1711 
1712     case TK_EXISTS:
1713     case TK_SELECT:
1714     default: {
1715       /* If this has to be a scalar SELECT.  Generate code to put the
1716       ** value of this select in a memory cell and record the number
1717       ** of the memory cell in iColumn.  If this is an EXISTS, write
1718       ** an integer 0 (not exists) or 1 (exists) into a memory cell
1719       ** and record that memory cell in iColumn.
1720       */
1721       Select *pSel;                         /* SELECT statement to encode */
1722       SelectDest dest;                      /* How to deal with SELECt result */
1723 
1724       testcase( pExpr->op==TK_EXISTS );
1725       testcase( pExpr->op==TK_SELECT );
1726       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1727 
1728       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1729       pSel = pExpr->x.pSelect;
1730       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1731       if( pExpr->op==TK_SELECT ){
1732         dest.eDest = SRT_Mem;
1733         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
1734         VdbeComment((v, "Init subquery result"));
1735       }else{
1736         dest.eDest = SRT_Exists;
1737         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
1738         VdbeComment((v, "Init EXISTS result"));
1739       }
1740       sqlite3ExprDelete(pParse->db, pSel->pLimit);
1741       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
1742                                   &sqlite3IntTokens[1]);
1743       if( sqlite3Select(pParse, pSel, &dest) ){
1744         return 0;
1745       }
1746       rReg = dest.iParm;
1747       ExprSetIrreducible(pExpr);
1748       break;
1749     }
1750   }
1751 
1752   if( testAddr ){
1753     sqlite3VdbeJumpHere(v, testAddr-1);
1754   }
1755   sqlite3ExprCachePop(pParse, 1);
1756 
1757   return rReg;
1758 }
1759 #endif /* SQLITE_OMIT_SUBQUERY */
1760 
1761 #ifndef SQLITE_OMIT_SUBQUERY
1762 /*
1763 ** Generate code for an IN expression.
1764 **
1765 **      x IN (SELECT ...)
1766 **      x IN (value, value, ...)
1767 **
1768 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
1769 ** is an array of zero or more values.  The expression is true if the LHS is
1770 ** contained within the RHS.  The value of the expression is unknown (NULL)
1771 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
1772 ** RHS contains one or more NULL values.
1773 **
1774 ** This routine generates code will jump to destIfFalse if the LHS is not
1775 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
1776 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
1777 ** within the RHS then fall through.
1778 */
1779 static void sqlite3ExprCodeIN(
1780   Parse *pParse,        /* Parsing and code generating context */
1781   Expr *pExpr,          /* The IN expression */
1782   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
1783   int destIfNull        /* Jump here if the results are unknown due to NULLs */
1784 ){
1785   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
1786   char affinity;        /* Comparison affinity to use */
1787   int eType;            /* Type of the RHS */
1788   int r1;               /* Temporary use register */
1789   Vdbe *v;              /* Statement under construction */
1790 
1791   /* Compute the RHS.   After this step, the table with cursor
1792   ** pExpr->iTable will contains the values that make up the RHS.
1793   */
1794   v = pParse->pVdbe;
1795   assert( v!=0 );       /* OOM detected prior to this routine */
1796   VdbeNoopComment((v, "begin IN expr"));
1797   eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
1798 
1799   /* Figure out the affinity to use to create a key from the results
1800   ** of the expression. affinityStr stores a static string suitable for
1801   ** P4 of OP_MakeRecord.
1802   */
1803   affinity = comparisonAffinity(pExpr);
1804 
1805   /* Code the LHS, the <expr> from "<expr> IN (...)".
1806   */
1807   sqlite3ExprCachePush(pParse);
1808   r1 = sqlite3GetTempReg(pParse);
1809   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
1810 
1811   /* If the LHS is NULL, then the result is either false or NULL depending
1812   ** on whether the RHS is empty or not, respectively.
1813   */
1814   if( destIfNull==destIfFalse ){
1815     /* Shortcut for the common case where the false and NULL outcomes are
1816     ** the same. */
1817     sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
1818   }else{
1819     int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
1820     sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
1821     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
1822     sqlite3VdbeJumpHere(v, addr1);
1823   }
1824 
1825   if( eType==IN_INDEX_ROWID ){
1826     /* In this case, the RHS is the ROWID of table b-tree
1827     */
1828     sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
1829     sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
1830   }else{
1831     /* In this case, the RHS is an index b-tree.
1832     */
1833     sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
1834 
1835     /* If the set membership test fails, then the result of the
1836     ** "x IN (...)" expression must be either 0 or NULL. If the set
1837     ** contains no NULL values, then the result is 0. If the set
1838     ** contains one or more NULL values, then the result of the
1839     ** expression is also NULL.
1840     */
1841     if( rRhsHasNull==0 || destIfFalse==destIfNull ){
1842       /* This branch runs if it is known at compile time that the RHS
1843       ** cannot contain NULL values. This happens as the result
1844       ** of a "NOT NULL" constraint in the database schema.
1845       **
1846       ** Also run this branch if NULL is equivalent to FALSE
1847       ** for this particular IN operator.
1848       */
1849       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
1850 
1851     }else{
1852       /* In this branch, the RHS of the IN might contain a NULL and
1853       ** the presence of a NULL on the RHS makes a difference in the
1854       ** outcome.
1855       */
1856       int j1, j2, j3;
1857 
1858       /* First check to see if the LHS is contained in the RHS.  If so,
1859       ** then the presence of NULLs in the RHS does not matter, so jump
1860       ** over all of the code that follows.
1861       */
1862       j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
1863 
1864       /* Here we begin generating code that runs if the LHS is not
1865       ** contained within the RHS.  Generate additional code that
1866       ** tests the RHS for NULLs.  If the RHS contains a NULL then
1867       ** jump to destIfNull.  If there are no NULLs in the RHS then
1868       ** jump to destIfFalse.
1869       */
1870       j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
1871       j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
1872       sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
1873       sqlite3VdbeJumpHere(v, j3);
1874       sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
1875       sqlite3VdbeJumpHere(v, j2);
1876 
1877       /* Jump to the appropriate target depending on whether or not
1878       ** the RHS contains a NULL
1879       */
1880       sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
1881       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
1882 
1883       /* The OP_Found at the top of this branch jumps here when true,
1884       ** causing the overall IN expression evaluation to fall through.
1885       */
1886       sqlite3VdbeJumpHere(v, j1);
1887     }
1888   }
1889   sqlite3ReleaseTempReg(pParse, r1);
1890   sqlite3ExprCachePop(pParse, 1);
1891   VdbeComment((v, "end IN expr"));
1892 }
1893 #endif /* SQLITE_OMIT_SUBQUERY */
1894 
1895 /*
1896 ** Duplicate an 8-byte value
1897 */
1898 static char *dup8bytes(Vdbe *v, const char *in){
1899   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1900   if( out ){
1901     memcpy(out, in, 8);
1902   }
1903   return out;
1904 }
1905 
1906 #ifndef SQLITE_OMIT_FLOATING_POINT
1907 /*
1908 ** Generate an instruction that will put the floating point
1909 ** value described by z[0..n-1] into register iMem.
1910 **
1911 ** The z[] string will probably not be zero-terminated.  But the
1912 ** z[n] character is guaranteed to be something that does not look
1913 ** like the continuation of the number.
1914 */
1915 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
1916   if( ALWAYS(z!=0) ){
1917     double value;
1918     char *zV;
1919     sqlite3AtoF(z, &value);
1920     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
1921     if( negateFlag ) value = -value;
1922     zV = dup8bytes(v, (char*)&value);
1923     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
1924   }
1925 }
1926 #endif
1927 
1928 
1929 /*
1930 ** Generate an instruction that will put the integer describe by
1931 ** text z[0..n-1] into register iMem.
1932 **
1933 ** The z[] string will probably not be zero-terminated.  But the
1934 ** z[n] character is guaranteed to be something that does not look
1935 ** like the continuation of the number.
1936 */
1937 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
1938   Vdbe *v = pParse->pVdbe;
1939   if( pExpr->flags & EP_IntValue ){
1940     int i = pExpr->u.iValue;
1941     if( negFlag ) i = -i;
1942     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
1943   }else{
1944     const char *z = pExpr->u.zToken;
1945     assert( z!=0 );
1946     if( sqlite3FitsIn64Bits(z, negFlag) ){
1947       i64 value;
1948       char *zV;
1949       sqlite3Atoi64(z, &value);
1950       if( negFlag ) value = -value;
1951       zV = dup8bytes(v, (char*)&value);
1952       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
1953     }else{
1954 #ifdef SQLITE_OMIT_FLOATING_POINT
1955       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
1956 #else
1957       codeReal(v, z, negFlag, iMem);
1958 #endif
1959     }
1960   }
1961 }
1962 
1963 /*
1964 ** Clear a cache entry.
1965 */
1966 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
1967   if( p->tempReg ){
1968     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
1969       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
1970     }
1971     p->tempReg = 0;
1972   }
1973 }
1974 
1975 
1976 /*
1977 ** Record in the column cache that a particular column from a
1978 ** particular table is stored in a particular register.
1979 */
1980 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
1981   int i;
1982   int minLru;
1983   int idxLru;
1984   struct yColCache *p;
1985 
1986   assert( iReg>0 );  /* Register numbers are always positive */
1987   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
1988 
1989   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
1990   ** for testing only - to verify that SQLite always gets the same answer
1991   ** with and without the column cache.
1992   */
1993   if( pParse->db->flags & SQLITE_ColumnCache ) return;
1994 
1995   /* First replace any existing entry.
1996   **
1997   ** Actually, the way the column cache is currently used, we are guaranteed
1998   ** that the object will never already be in cache.  Verify this guarantee.
1999   */
2000 #ifndef NDEBUG
2001   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2002 #if 0 /* This code wold remove the entry from the cache if it existed */
2003     if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){
2004       cacheEntryClear(pParse, p);
2005       p->iLevel = pParse->iCacheLevel;
2006       p->iReg = iReg;
2007       p->lru = pParse->iCacheCnt++;
2008       return;
2009     }
2010 #endif
2011     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2012   }
2013 #endif
2014 
2015   /* Find an empty slot and replace it */
2016   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2017     if( p->iReg==0 ){
2018       p->iLevel = pParse->iCacheLevel;
2019       p->iTable = iTab;
2020       p->iColumn = iCol;
2021       p->iReg = iReg;
2022       p->tempReg = 0;
2023       p->lru = pParse->iCacheCnt++;
2024       return;
2025     }
2026   }
2027 
2028   /* Replace the last recently used */
2029   minLru = 0x7fffffff;
2030   idxLru = -1;
2031   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2032     if( p->lru<minLru ){
2033       idxLru = i;
2034       minLru = p->lru;
2035     }
2036   }
2037   if( ALWAYS(idxLru>=0) ){
2038     p = &pParse->aColCache[idxLru];
2039     p->iLevel = pParse->iCacheLevel;
2040     p->iTable = iTab;
2041     p->iColumn = iCol;
2042     p->iReg = iReg;
2043     p->tempReg = 0;
2044     p->lru = pParse->iCacheCnt++;
2045     return;
2046   }
2047 }
2048 
2049 /*
2050 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2051 ** Purge the range of registers from the column cache.
2052 */
2053 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2054   int i;
2055   int iLast = iReg + nReg - 1;
2056   struct yColCache *p;
2057   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2058     int r = p->iReg;
2059     if( r>=iReg && r<=iLast ){
2060       cacheEntryClear(pParse, p);
2061       p->iReg = 0;
2062     }
2063   }
2064 }
2065 
2066 /*
2067 ** Remember the current column cache context.  Any new entries added
2068 ** added to the column cache after this call are removed when the
2069 ** corresponding pop occurs.
2070 */
2071 void sqlite3ExprCachePush(Parse *pParse){
2072   pParse->iCacheLevel++;
2073 }
2074 
2075 /*
2076 ** Remove from the column cache any entries that were added since the
2077 ** the previous N Push operations.  In other words, restore the cache
2078 ** to the state it was in N Pushes ago.
2079 */
2080 void sqlite3ExprCachePop(Parse *pParse, int N){
2081   int i;
2082   struct yColCache *p;
2083   assert( N>0 );
2084   assert( pParse->iCacheLevel>=N );
2085   pParse->iCacheLevel -= N;
2086   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2087     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2088       cacheEntryClear(pParse, p);
2089       p->iReg = 0;
2090     }
2091   }
2092 }
2093 
2094 /*
2095 ** When a cached column is reused, make sure that its register is
2096 ** no longer available as a temp register.  ticket #3879:  that same
2097 ** register might be in the cache in multiple places, so be sure to
2098 ** get them all.
2099 */
2100 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2101   int i;
2102   struct yColCache *p;
2103   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2104     if( p->iReg==iReg ){
2105       p->tempReg = 0;
2106     }
2107   }
2108 }
2109 
2110 /*
2111 ** Generate code to extract the value of the iCol-th column of a table.
2112 */
2113 void sqlite3ExprCodeGetColumnOfTable(
2114   Vdbe *v,        /* The VDBE under construction */
2115   Table *pTab,    /* The table containing the value */
2116   int iTabCur,    /* The cursor for this table */
2117   int iCol,       /* Index of the column to extract */
2118   int regOut      /* Extract the valud into this register */
2119 ){
2120   if( iCol<0 || iCol==pTab->iPKey ){
2121     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2122   }else{
2123     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2124     sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut);
2125   }
2126   if( iCol>=0 ){
2127     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2128   }
2129 }
2130 
2131 /*
2132 ** Generate code that will extract the iColumn-th column from
2133 ** table pTab and store the column value in a register.  An effort
2134 ** is made to store the column value in register iReg, but this is
2135 ** not guaranteed.  The location of the column value is returned.
2136 **
2137 ** There must be an open cursor to pTab in iTable when this routine
2138 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2139 */
2140 int sqlite3ExprCodeGetColumn(
2141   Parse *pParse,   /* Parsing and code generating context */
2142   Table *pTab,     /* Description of the table we are reading from */
2143   int iColumn,     /* Index of the table column */
2144   int iTable,      /* The cursor pointing to the table */
2145   int iReg         /* Store results here */
2146 ){
2147   Vdbe *v = pParse->pVdbe;
2148   int i;
2149   struct yColCache *p;
2150 
2151   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2152     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2153       p->lru = pParse->iCacheCnt++;
2154       sqlite3ExprCachePinRegister(pParse, p->iReg);
2155       return p->iReg;
2156     }
2157   }
2158   assert( v!=0 );
2159   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2160   sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2161   return iReg;
2162 }
2163 
2164 /*
2165 ** Clear all column cache entries.
2166 */
2167 void sqlite3ExprCacheClear(Parse *pParse){
2168   int i;
2169   struct yColCache *p;
2170 
2171   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2172     if( p->iReg ){
2173       cacheEntryClear(pParse, p);
2174       p->iReg = 0;
2175     }
2176   }
2177 }
2178 
2179 /*
2180 ** Record the fact that an affinity change has occurred on iCount
2181 ** registers starting with iStart.
2182 */
2183 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2184   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2185 }
2186 
2187 /*
2188 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2189 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2190 */
2191 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2192   int i;
2193   struct yColCache *p;
2194   if( NEVER(iFrom==iTo) ) return;
2195   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2196   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2197     int x = p->iReg;
2198     if( x>=iFrom && x<iFrom+nReg ){
2199       p->iReg += iTo-iFrom;
2200     }
2201   }
2202 }
2203 
2204 /*
2205 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
2206 ** over to iTo..iTo+nReg-1.
2207 */
2208 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
2209   int i;
2210   if( NEVER(iFrom==iTo) ) return;
2211   for(i=0; i<nReg; i++){
2212     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
2213   }
2214 }
2215 
2216 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2217 /*
2218 ** Return true if any register in the range iFrom..iTo (inclusive)
2219 ** is used as part of the column cache.
2220 **
2221 ** This routine is used within assert() and testcase() macros only
2222 ** and does not appear in a normal build.
2223 */
2224 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2225   int i;
2226   struct yColCache *p;
2227   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2228     int r = p->iReg;
2229     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2230   }
2231   return 0;
2232 }
2233 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2234 
2235 /*
2236 ** If the last instruction coded is an ephemeral copy of any of
2237 ** the registers in the nReg registers beginning with iReg, then
2238 ** convert the last instruction from OP_SCopy to OP_Copy.
2239 */
2240 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
2241   VdbeOp *pOp;
2242   Vdbe *v;
2243 
2244   assert( pParse->db->mallocFailed==0 );
2245   v = pParse->pVdbe;
2246   assert( v!=0 );
2247   pOp = sqlite3VdbeGetOp(v, -1);
2248   assert( pOp!=0 );
2249   if( pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
2250     pOp->opcode = OP_Copy;
2251   }
2252 }
2253 
2254 /*
2255 ** Generate code to store the value of the iAlias-th alias in register
2256 ** target.  The first time this is called, pExpr is evaluated to compute
2257 ** the value of the alias.  The value is stored in an auxiliary register
2258 ** and the number of that register is returned.  On subsequent calls,
2259 ** the register number is returned without generating any code.
2260 **
2261 ** Note that in order for this to work, code must be generated in the
2262 ** same order that it is executed.
2263 **
2264 ** Aliases are numbered starting with 1.  So iAlias is in the range
2265 ** of 1 to pParse->nAlias inclusive.
2266 **
2267 ** pParse->aAlias[iAlias-1] records the register number where the value
2268 ** of the iAlias-th alias is stored.  If zero, that means that the
2269 ** alias has not yet been computed.
2270 */
2271 static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){
2272 #if 0
2273   sqlite3 *db = pParse->db;
2274   int iReg;
2275   if( pParse->nAliasAlloc<pParse->nAlias ){
2276     pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias,
2277                                  sizeof(pParse->aAlias[0])*pParse->nAlias );
2278     testcase( db->mallocFailed && pParse->nAliasAlloc>0 );
2279     if( db->mallocFailed ) return 0;
2280     memset(&pParse->aAlias[pParse->nAliasAlloc], 0,
2281            (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0]));
2282     pParse->nAliasAlloc = pParse->nAlias;
2283   }
2284   assert( iAlias>0 && iAlias<=pParse->nAlias );
2285   iReg = pParse->aAlias[iAlias-1];
2286   if( iReg==0 ){
2287     if( pParse->iCacheLevel>0 ){
2288       iReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2289     }else{
2290       iReg = ++pParse->nMem;
2291       sqlite3ExprCode(pParse, pExpr, iReg);
2292       pParse->aAlias[iAlias-1] = iReg;
2293     }
2294   }
2295   return iReg;
2296 #else
2297   UNUSED_PARAMETER(iAlias);
2298   return sqlite3ExprCodeTarget(pParse, pExpr, target);
2299 #endif
2300 }
2301 
2302 /*
2303 ** Generate code into the current Vdbe to evaluate the given
2304 ** expression.  Attempt to store the results in register "target".
2305 ** Return the register where results are stored.
2306 **
2307 ** With this routine, there is no guarantee that results will
2308 ** be stored in target.  The result might be stored in some other
2309 ** register if it is convenient to do so.  The calling function
2310 ** must check the return code and move the results to the desired
2311 ** register.
2312 */
2313 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2314   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2315   int op;                   /* The opcode being coded */
2316   int inReg = target;       /* Results stored in register inReg */
2317   int regFree1 = 0;         /* If non-zero free this temporary register */
2318   int regFree2 = 0;         /* If non-zero free this temporary register */
2319   int r1, r2, r3, r4;       /* Various register numbers */
2320   sqlite3 *db = pParse->db; /* The database connection */
2321 
2322   assert( target>0 && target<=pParse->nMem );
2323   if( v==0 ){
2324     assert( pParse->db->mallocFailed );
2325     return 0;
2326   }
2327 
2328   if( pExpr==0 ){
2329     op = TK_NULL;
2330   }else{
2331     op = pExpr->op;
2332   }
2333   switch( op ){
2334     case TK_AGG_COLUMN: {
2335       AggInfo *pAggInfo = pExpr->pAggInfo;
2336       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2337       if( !pAggInfo->directMode ){
2338         assert( pCol->iMem>0 );
2339         inReg = pCol->iMem;
2340         break;
2341       }else if( pAggInfo->useSortingIdx ){
2342         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
2343                               pCol->iSorterColumn, target);
2344         break;
2345       }
2346       /* Otherwise, fall thru into the TK_COLUMN case */
2347     }
2348     case TK_COLUMN: {
2349       if( pExpr->iTable<0 ){
2350         /* This only happens when coding check constraints */
2351         assert( pParse->ckBase>0 );
2352         inReg = pExpr->iColumn + pParse->ckBase;
2353       }else{
2354         inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2355                                  pExpr->iColumn, pExpr->iTable, target);
2356       }
2357       break;
2358     }
2359     case TK_INTEGER: {
2360       codeInteger(pParse, pExpr, 0, target);
2361       break;
2362     }
2363 #ifndef SQLITE_OMIT_FLOATING_POINT
2364     case TK_FLOAT: {
2365       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2366       codeReal(v, pExpr->u.zToken, 0, target);
2367       break;
2368     }
2369 #endif
2370     case TK_STRING: {
2371       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2372       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2373       break;
2374     }
2375     case TK_NULL: {
2376       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2377       break;
2378     }
2379 #ifndef SQLITE_OMIT_BLOB_LITERAL
2380     case TK_BLOB: {
2381       int n;
2382       const char *z;
2383       char *zBlob;
2384       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2385       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2386       assert( pExpr->u.zToken[1]=='\'' );
2387       z = &pExpr->u.zToken[2];
2388       n = sqlite3Strlen30(z) - 1;
2389       assert( z[n]=='\'' );
2390       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2391       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2392       break;
2393     }
2394 #endif
2395     case TK_VARIABLE: {
2396       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2397       assert( pExpr->u.zToken!=0 );
2398       assert( pExpr->u.zToken[0]!=0 );
2399       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2400       if( pExpr->u.zToken[1]!=0 ){
2401         sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, 0);
2402       }
2403       break;
2404     }
2405     case TK_REGISTER: {
2406       inReg = pExpr->iTable;
2407       break;
2408     }
2409     case TK_AS: {
2410       inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target);
2411       break;
2412     }
2413 #ifndef SQLITE_OMIT_CAST
2414     case TK_CAST: {
2415       /* Expressions of the form:   CAST(pLeft AS token) */
2416       int aff, to_op;
2417       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2418       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2419       aff = sqlite3AffinityType(pExpr->u.zToken);
2420       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2421       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
2422       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
2423       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2424       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
2425       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
2426       testcase( to_op==OP_ToText );
2427       testcase( to_op==OP_ToBlob );
2428       testcase( to_op==OP_ToNumeric );
2429       testcase( to_op==OP_ToInt );
2430       testcase( to_op==OP_ToReal );
2431       if( inReg!=target ){
2432         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2433         inReg = target;
2434       }
2435       sqlite3VdbeAddOp1(v, to_op, inReg);
2436       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2437       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2438       break;
2439     }
2440 #endif /* SQLITE_OMIT_CAST */
2441     case TK_LT:
2442     case TK_LE:
2443     case TK_GT:
2444     case TK_GE:
2445     case TK_NE:
2446     case TK_EQ: {
2447       assert( TK_LT==OP_Lt );
2448       assert( TK_LE==OP_Le );
2449       assert( TK_GT==OP_Gt );
2450       assert( TK_GE==OP_Ge );
2451       assert( TK_EQ==OP_Eq );
2452       assert( TK_NE==OP_Ne );
2453       testcase( op==TK_LT );
2454       testcase( op==TK_LE );
2455       testcase( op==TK_GT );
2456       testcase( op==TK_GE );
2457       testcase( op==TK_EQ );
2458       testcase( op==TK_NE );
2459       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2460       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2461       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2462                   r1, r2, inReg, SQLITE_STOREP2);
2463       testcase( regFree1==0 );
2464       testcase( regFree2==0 );
2465       break;
2466     }
2467     case TK_IS:
2468     case TK_ISNOT: {
2469       testcase( op==TK_IS );
2470       testcase( op==TK_ISNOT );
2471       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2472       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2473       op = (op==TK_IS) ? TK_EQ : TK_NE;
2474       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2475                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2476       testcase( regFree1==0 );
2477       testcase( regFree2==0 );
2478       break;
2479     }
2480     case TK_AND:
2481     case TK_OR:
2482     case TK_PLUS:
2483     case TK_STAR:
2484     case TK_MINUS:
2485     case TK_REM:
2486     case TK_BITAND:
2487     case TK_BITOR:
2488     case TK_SLASH:
2489     case TK_LSHIFT:
2490     case TK_RSHIFT:
2491     case TK_CONCAT: {
2492       assert( TK_AND==OP_And );
2493       assert( TK_OR==OP_Or );
2494       assert( TK_PLUS==OP_Add );
2495       assert( TK_MINUS==OP_Subtract );
2496       assert( TK_REM==OP_Remainder );
2497       assert( TK_BITAND==OP_BitAnd );
2498       assert( TK_BITOR==OP_BitOr );
2499       assert( TK_SLASH==OP_Divide );
2500       assert( TK_LSHIFT==OP_ShiftLeft );
2501       assert( TK_RSHIFT==OP_ShiftRight );
2502       assert( TK_CONCAT==OP_Concat );
2503       testcase( op==TK_AND );
2504       testcase( op==TK_OR );
2505       testcase( op==TK_PLUS );
2506       testcase( op==TK_MINUS );
2507       testcase( op==TK_REM );
2508       testcase( op==TK_BITAND );
2509       testcase( op==TK_BITOR );
2510       testcase( op==TK_SLASH );
2511       testcase( op==TK_LSHIFT );
2512       testcase( op==TK_RSHIFT );
2513       testcase( op==TK_CONCAT );
2514       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2515       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2516       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2517       testcase( regFree1==0 );
2518       testcase( regFree2==0 );
2519       break;
2520     }
2521     case TK_UMINUS: {
2522       Expr *pLeft = pExpr->pLeft;
2523       assert( pLeft );
2524       if( pLeft->op==TK_INTEGER ){
2525         codeInteger(pParse, pLeft, 1, target);
2526 #ifndef SQLITE_OMIT_FLOATING_POINT
2527       }else if( pLeft->op==TK_FLOAT ){
2528         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2529         codeReal(v, pLeft->u.zToken, 1, target);
2530 #endif
2531       }else{
2532         regFree1 = r1 = sqlite3GetTempReg(pParse);
2533         sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
2534         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2535         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2536         testcase( regFree2==0 );
2537       }
2538       inReg = target;
2539       break;
2540     }
2541     case TK_BITNOT:
2542     case TK_NOT: {
2543       assert( TK_BITNOT==OP_BitNot );
2544       assert( TK_NOT==OP_Not );
2545       testcase( op==TK_BITNOT );
2546       testcase( op==TK_NOT );
2547       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2548       testcase( regFree1==0 );
2549       inReg = target;
2550       sqlite3VdbeAddOp2(v, op, r1, inReg);
2551       break;
2552     }
2553     case TK_ISNULL:
2554     case TK_NOTNULL: {
2555       int addr;
2556       assert( TK_ISNULL==OP_IsNull );
2557       assert( TK_NOTNULL==OP_NotNull );
2558       testcase( op==TK_ISNULL );
2559       testcase( op==TK_NOTNULL );
2560       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2561       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2562       testcase( regFree1==0 );
2563       addr = sqlite3VdbeAddOp1(v, op, r1);
2564       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2565       sqlite3VdbeJumpHere(v, addr);
2566       break;
2567     }
2568     case TK_AGG_FUNCTION: {
2569       AggInfo *pInfo = pExpr->pAggInfo;
2570       if( pInfo==0 ){
2571         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2572         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2573       }else{
2574         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2575       }
2576       break;
2577     }
2578     case TK_CONST_FUNC:
2579     case TK_FUNCTION: {
2580       ExprList *pFarg;       /* List of function arguments */
2581       int nFarg;             /* Number of function arguments */
2582       FuncDef *pDef;         /* The function definition object */
2583       int nId;               /* Length of the function name in bytes */
2584       const char *zId;       /* The function name */
2585       int constMask = 0;     /* Mask of function arguments that are constant */
2586       int i;                 /* Loop counter */
2587       u8 enc = ENC(db);      /* The text encoding used by this database */
2588       CollSeq *pColl = 0;    /* A collating sequence */
2589 
2590       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2591       testcase( op==TK_CONST_FUNC );
2592       testcase( op==TK_FUNCTION );
2593       if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
2594         pFarg = 0;
2595       }else{
2596         pFarg = pExpr->x.pList;
2597       }
2598       nFarg = pFarg ? pFarg->nExpr : 0;
2599       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2600       zId = pExpr->u.zToken;
2601       nId = sqlite3Strlen30(zId);
2602       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2603       if( pDef==0 ){
2604         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2605         break;
2606       }
2607 
2608       /* Attempt a direct implementation of the built-in COALESCE() and
2609       ** IFNULL() functions.  This avoids unnecessary evalation of
2610       ** arguments past the first non-NULL argument.
2611       */
2612       if( pDef->flags & SQLITE_FUNC_COALESCE ){
2613         int endCoalesce = sqlite3VdbeMakeLabel(v);
2614         assert( nFarg>=2 );
2615         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2616         for(i=1; i<nFarg; i++){
2617           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2618           sqlite3ExprCacheRemove(pParse, target, 1);
2619           sqlite3ExprCachePush(pParse);
2620           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2621           sqlite3ExprCachePop(pParse, 1);
2622         }
2623         sqlite3VdbeResolveLabel(v, endCoalesce);
2624         break;
2625       }
2626 
2627 
2628       if( pFarg ){
2629         r1 = sqlite3GetTempRange(pParse, nFarg);
2630         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2631         sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
2632         sqlite3ExprCachePop(pParse, 1);   /* Ticket 2ea2425d34be */
2633       }else{
2634         r1 = 0;
2635       }
2636 #ifndef SQLITE_OMIT_VIRTUALTABLE
2637       /* Possibly overload the function if the first argument is
2638       ** a virtual table column.
2639       **
2640       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2641       ** second argument, not the first, as the argument to test to
2642       ** see if it is a column in a virtual table.  This is done because
2643       ** the left operand of infix functions (the operand we want to
2644       ** control overloading) ends up as the second argument to the
2645       ** function.  The expression "A glob B" is equivalent to
2646       ** "glob(B,A).  We want to use the A in "A glob B" to test
2647       ** for function overloading.  But we use the B term in "glob(B,A)".
2648       */
2649       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2650         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2651       }else if( nFarg>0 ){
2652         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2653       }
2654 #endif
2655       for(i=0; i<nFarg; i++){
2656         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2657           constMask |= (1<<i);
2658         }
2659         if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2660           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2661         }
2662       }
2663       if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
2664         if( !pColl ) pColl = db->pDfltColl;
2665         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2666       }
2667       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2668                         (char*)pDef, P4_FUNCDEF);
2669       sqlite3VdbeChangeP5(v, (u8)nFarg);
2670       if( nFarg ){
2671         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2672       }
2673       break;
2674     }
2675 #ifndef SQLITE_OMIT_SUBQUERY
2676     case TK_EXISTS:
2677     case TK_SELECT: {
2678       testcase( op==TK_EXISTS );
2679       testcase( op==TK_SELECT );
2680       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2681       break;
2682     }
2683     case TK_IN: {
2684       int destIfFalse = sqlite3VdbeMakeLabel(v);
2685       int destIfNull = sqlite3VdbeMakeLabel(v);
2686       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2687       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2688       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2689       sqlite3VdbeResolveLabel(v, destIfFalse);
2690       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2691       sqlite3VdbeResolveLabel(v, destIfNull);
2692       break;
2693     }
2694 #endif /* SQLITE_OMIT_SUBQUERY */
2695 
2696 
2697     /*
2698     **    x BETWEEN y AND z
2699     **
2700     ** This is equivalent to
2701     **
2702     **    x>=y AND x<=z
2703     **
2704     ** X is stored in pExpr->pLeft.
2705     ** Y is stored in pExpr->pList->a[0].pExpr.
2706     ** Z is stored in pExpr->pList->a[1].pExpr.
2707     */
2708     case TK_BETWEEN: {
2709       Expr *pLeft = pExpr->pLeft;
2710       struct ExprList_item *pLItem = pExpr->x.pList->a;
2711       Expr *pRight = pLItem->pExpr;
2712 
2713       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2714       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2715       testcase( regFree1==0 );
2716       testcase( regFree2==0 );
2717       r3 = sqlite3GetTempReg(pParse);
2718       r4 = sqlite3GetTempReg(pParse);
2719       codeCompare(pParse, pLeft, pRight, OP_Ge,
2720                   r1, r2, r3, SQLITE_STOREP2);
2721       pLItem++;
2722       pRight = pLItem->pExpr;
2723       sqlite3ReleaseTempReg(pParse, regFree2);
2724       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2725       testcase( regFree2==0 );
2726       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2727       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2728       sqlite3ReleaseTempReg(pParse, r3);
2729       sqlite3ReleaseTempReg(pParse, r4);
2730       break;
2731     }
2732     case TK_UPLUS: {
2733       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2734       break;
2735     }
2736 
2737     case TK_TRIGGER: {
2738       /* If the opcode is TK_TRIGGER, then the expression is a reference
2739       ** to a column in the new.* or old.* pseudo-tables available to
2740       ** trigger programs. In this case Expr.iTable is set to 1 for the
2741       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2742       ** is set to the column of the pseudo-table to read, or to -1 to
2743       ** read the rowid field.
2744       **
2745       ** The expression is implemented using an OP_Param opcode. The p1
2746       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2747       ** to reference another column of the old.* pseudo-table, where
2748       ** i is the index of the column. For a new.rowid reference, p1 is
2749       ** set to (n+1), where n is the number of columns in each pseudo-table.
2750       ** For a reference to any other column in the new.* pseudo-table, p1
2751       ** is set to (n+2+i), where n and i are as defined previously. For
2752       ** example, if the table on which triggers are being fired is
2753       ** declared as:
2754       **
2755       **   CREATE TABLE t1(a, b);
2756       **
2757       ** Then p1 is interpreted as follows:
2758       **
2759       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
2760       **   p1==1   ->    old.a         p1==4   ->    new.a
2761       **   p1==2   ->    old.b         p1==5   ->    new.b
2762       */
2763       Table *pTab = pExpr->pTab;
2764       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2765 
2766       assert( pExpr->iTable==0 || pExpr->iTable==1 );
2767       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2768       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2769       assert( p1>=0 && p1<(pTab->nCol*2+2) );
2770 
2771       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
2772       VdbeComment((v, "%s.%s -> $%d",
2773         (pExpr->iTable ? "new" : "old"),
2774         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
2775         target
2776       ));
2777 
2778 #ifndef SQLITE_OMIT_FLOATING_POINT
2779       /* If the column has REAL affinity, it may currently be stored as an
2780       ** integer. Use OP_RealAffinity to make sure it is really real.  */
2781       if( pExpr->iColumn>=0
2782        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
2783       ){
2784         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
2785       }
2786 #endif
2787       break;
2788     }
2789 
2790 
2791     /*
2792     ** Form A:
2793     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2794     **
2795     ** Form B:
2796     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2797     **
2798     ** Form A is can be transformed into the equivalent form B as follows:
2799     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2800     **        WHEN x=eN THEN rN ELSE y END
2801     **
2802     ** X (if it exists) is in pExpr->pLeft.
2803     ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
2804     ** ELSE clause and no other term matches, then the result of the
2805     ** exprssion is NULL.
2806     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2807     **
2808     ** The result of the expression is the Ri for the first matching Ei,
2809     ** or if there is no matching Ei, the ELSE term Y, or if there is
2810     ** no ELSE term, NULL.
2811     */
2812     default: assert( op==TK_CASE ); {
2813       int endLabel;                     /* GOTO label for end of CASE stmt */
2814       int nextCase;                     /* GOTO label for next WHEN clause */
2815       int nExpr;                        /* 2x number of WHEN terms */
2816       int i;                            /* Loop counter */
2817       ExprList *pEList;                 /* List of WHEN terms */
2818       struct ExprList_item *aListelem;  /* Array of WHEN terms */
2819       Expr opCompare;                   /* The X==Ei expression */
2820       Expr cacheX;                      /* Cached expression X */
2821       Expr *pX;                         /* The X expression */
2822       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
2823       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
2824 
2825       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
2826       assert((pExpr->x.pList->nExpr % 2) == 0);
2827       assert(pExpr->x.pList->nExpr > 0);
2828       pEList = pExpr->x.pList;
2829       aListelem = pEList->a;
2830       nExpr = pEList->nExpr;
2831       endLabel = sqlite3VdbeMakeLabel(v);
2832       if( (pX = pExpr->pLeft)!=0 ){
2833         cacheX = *pX;
2834         testcase( pX->op==TK_COLUMN );
2835         testcase( pX->op==TK_REGISTER );
2836         cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
2837         testcase( regFree1==0 );
2838         cacheX.op = TK_REGISTER;
2839         opCompare.op = TK_EQ;
2840         opCompare.pLeft = &cacheX;
2841         pTest = &opCompare;
2842       }
2843       for(i=0; i<nExpr; i=i+2){
2844         sqlite3ExprCachePush(pParse);
2845         if( pX ){
2846           assert( pTest!=0 );
2847           opCompare.pRight = aListelem[i].pExpr;
2848         }else{
2849           pTest = aListelem[i].pExpr;
2850         }
2851         nextCase = sqlite3VdbeMakeLabel(v);
2852         testcase( pTest->op==TK_COLUMN );
2853         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2854         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2855         testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2856         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2857         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2858         sqlite3ExprCachePop(pParse, 1);
2859         sqlite3VdbeResolveLabel(v, nextCase);
2860       }
2861       if( pExpr->pRight ){
2862         sqlite3ExprCachePush(pParse);
2863         sqlite3ExprCode(pParse, pExpr->pRight, target);
2864         sqlite3ExprCachePop(pParse, 1);
2865       }else{
2866         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2867       }
2868       assert( db->mallocFailed || pParse->nErr>0
2869            || pParse->iCacheLevel==iCacheLevel );
2870       sqlite3VdbeResolveLabel(v, endLabel);
2871       break;
2872     }
2873 #ifndef SQLITE_OMIT_TRIGGER
2874     case TK_RAISE: {
2875       assert( pExpr->affinity==OE_Rollback
2876            || pExpr->affinity==OE_Abort
2877            || pExpr->affinity==OE_Fail
2878            || pExpr->affinity==OE_Ignore
2879       );
2880       if( !pParse->pTriggerTab ){
2881         sqlite3ErrorMsg(pParse,
2882                        "RAISE() may only be used within a trigger-program");
2883         return 0;
2884       }
2885       if( pExpr->affinity==OE_Abort ){
2886         sqlite3MayAbort(pParse);
2887       }
2888       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2889       if( pExpr->affinity==OE_Ignore ){
2890         sqlite3VdbeAddOp4(
2891             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
2892       }else{
2893         sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);
2894       }
2895 
2896       break;
2897     }
2898 #endif
2899   }
2900   sqlite3ReleaseTempReg(pParse, regFree1);
2901   sqlite3ReleaseTempReg(pParse, regFree2);
2902   return inReg;
2903 }
2904 
2905 /*
2906 ** Generate code to evaluate an expression and store the results
2907 ** into a register.  Return the register number where the results
2908 ** are stored.
2909 **
2910 ** If the register is a temporary register that can be deallocated,
2911 ** then write its number into *pReg.  If the result register is not
2912 ** a temporary, then set *pReg to zero.
2913 */
2914 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2915   int r1 = sqlite3GetTempReg(pParse);
2916   int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2917   if( r2==r1 ){
2918     *pReg = r1;
2919   }else{
2920     sqlite3ReleaseTempReg(pParse, r1);
2921     *pReg = 0;
2922   }
2923   return r2;
2924 }
2925 
2926 /*
2927 ** Generate code that will evaluate expression pExpr and store the
2928 ** results in register target.  The results are guaranteed to appear
2929 ** in register target.
2930 */
2931 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2932   int inReg;
2933 
2934   assert( target>0 && target<=pParse->nMem );
2935   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2936   assert( pParse->pVdbe || pParse->db->mallocFailed );
2937   if( inReg!=target && pParse->pVdbe ){
2938     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2939   }
2940   return target;
2941 }
2942 
2943 /*
2944 ** Generate code that evalutes the given expression and puts the result
2945 ** in register target.
2946 **
2947 ** Also make a copy of the expression results into another "cache" register
2948 ** and modify the expression so that the next time it is evaluated,
2949 ** the result is a copy of the cache register.
2950 **
2951 ** This routine is used for expressions that are used multiple
2952 ** times.  They are evaluated once and the results of the expression
2953 ** are reused.
2954 */
2955 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
2956   Vdbe *v = pParse->pVdbe;
2957   int inReg;
2958   inReg = sqlite3ExprCode(pParse, pExpr, target);
2959   assert( target>0 );
2960   /* This routine is called for terms to INSERT or UPDATE.  And the only
2961   ** other place where expressions can be converted into TK_REGISTER is
2962   ** in WHERE clause processing.  So as currently implemented, there is
2963   ** no way for a TK_REGISTER to exist here.  But it seems prudent to
2964   ** keep the ALWAYS() in case the conditions above change with future
2965   ** modifications or enhancements. */
2966   if( ALWAYS(pExpr->op!=TK_REGISTER) ){
2967     int iMem;
2968     iMem = ++pParse->nMem;
2969     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
2970     pExpr->iTable = iMem;
2971     pExpr->op2 = pExpr->op;
2972     pExpr->op = TK_REGISTER;
2973   }
2974   return inReg;
2975 }
2976 
2977 /*
2978 ** Return TRUE if pExpr is an constant expression that is appropriate
2979 ** for factoring out of a loop.  Appropriate expressions are:
2980 **
2981 **    *  Any expression that evaluates to two or more opcodes.
2982 **
2983 **    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
2984 **       or OP_Variable that does not need to be placed in a
2985 **       specific register.
2986 **
2987 ** There is no point in factoring out single-instruction constant
2988 ** expressions that need to be placed in a particular register.
2989 ** We could factor them out, but then we would end up adding an
2990 ** OP_SCopy instruction to move the value into the correct register
2991 ** later.  We might as well just use the original instruction and
2992 ** avoid the OP_SCopy.
2993 */
2994 static int isAppropriateForFactoring(Expr *p){
2995   if( !sqlite3ExprIsConstantNotJoin(p) ){
2996     return 0;  /* Only constant expressions are appropriate for factoring */
2997   }
2998   if( (p->flags & EP_FixedDest)==0 ){
2999     return 1;  /* Any constant without a fixed destination is appropriate */
3000   }
3001   while( p->op==TK_UPLUS ) p = p->pLeft;
3002   switch( p->op ){
3003 #ifndef SQLITE_OMIT_BLOB_LITERAL
3004     case TK_BLOB:
3005 #endif
3006     case TK_VARIABLE:
3007     case TK_INTEGER:
3008     case TK_FLOAT:
3009     case TK_NULL:
3010     case TK_STRING: {
3011       testcase( p->op==TK_BLOB );
3012       testcase( p->op==TK_VARIABLE );
3013       testcase( p->op==TK_INTEGER );
3014       testcase( p->op==TK_FLOAT );
3015       testcase( p->op==TK_NULL );
3016       testcase( p->op==TK_STRING );
3017       /* Single-instruction constants with a fixed destination are
3018       ** better done in-line.  If we factor them, they will just end
3019       ** up generating an OP_SCopy to move the value to the destination
3020       ** register. */
3021       return 0;
3022     }
3023     case TK_UMINUS: {
3024       if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
3025         return 0;
3026       }
3027       break;
3028     }
3029     default: {
3030       break;
3031     }
3032   }
3033   return 1;
3034 }
3035 
3036 /*
3037 ** If pExpr is a constant expression that is appropriate for
3038 ** factoring out of a loop, then evaluate the expression
3039 ** into a register and convert the expression into a TK_REGISTER
3040 ** expression.
3041 */
3042 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
3043   Parse *pParse = pWalker->pParse;
3044   switch( pExpr->op ){
3045     case TK_IN:
3046     case TK_REGISTER: {
3047       return WRC_Prune;
3048     }
3049     case TK_FUNCTION:
3050     case TK_AGG_FUNCTION:
3051     case TK_CONST_FUNC: {
3052       /* The arguments to a function have a fixed destination.
3053       ** Mark them this way to avoid generated unneeded OP_SCopy
3054       ** instructions.
3055       */
3056       ExprList *pList = pExpr->x.pList;
3057       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3058       if( pList ){
3059         int i = pList->nExpr;
3060         struct ExprList_item *pItem = pList->a;
3061         for(; i>0; i--, pItem++){
3062           if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
3063         }
3064       }
3065       break;
3066     }
3067   }
3068   if( isAppropriateForFactoring(pExpr) ){
3069     int r1 = ++pParse->nMem;
3070     int r2;
3071     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3072     if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
3073     pExpr->op2 = pExpr->op;
3074     pExpr->op = TK_REGISTER;
3075     pExpr->iTable = r2;
3076     return WRC_Prune;
3077   }
3078   return WRC_Continue;
3079 }
3080 
3081 /*
3082 ** Preevaluate constant subexpressions within pExpr and store the
3083 ** results in registers.  Modify pExpr so that the constant subexpresions
3084 ** are TK_REGISTER opcodes that refer to the precomputed values.
3085 */
3086 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
3087   Walker w;
3088   w.xExprCallback = evalConstExpr;
3089   w.xSelectCallback = 0;
3090   w.pParse = pParse;
3091   sqlite3WalkExpr(&w, pExpr);
3092 }
3093 
3094 
3095 /*
3096 ** Generate code that pushes the value of every element of the given
3097 ** expression list into a sequence of registers beginning at target.
3098 **
3099 ** Return the number of elements evaluated.
3100 */
3101 int sqlite3ExprCodeExprList(
3102   Parse *pParse,     /* Parsing context */
3103   ExprList *pList,   /* The expression list to be coded */
3104   int target,        /* Where to write results */
3105   int doHardCopy     /* Make a hard copy of every element */
3106 ){
3107   struct ExprList_item *pItem;
3108   int i, n;
3109   assert( pList!=0 );
3110   assert( target>0 );
3111   n = pList->nExpr;
3112   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3113     if( pItem->iAlias ){
3114       int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target+i);
3115       Vdbe *v = sqlite3GetVdbe(pParse);
3116       if( iReg!=target+i ){
3117         sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i);
3118       }
3119     }else{
3120       sqlite3ExprCode(pParse, pItem->pExpr, target+i);
3121     }
3122     if( doHardCopy && !pParse->db->mallocFailed ){
3123       sqlite3ExprHardCopy(pParse, target, n);
3124     }
3125   }
3126   return n;
3127 }
3128 
3129 /*
3130 ** Generate code for a BETWEEN operator.
3131 **
3132 **    x BETWEEN y AND z
3133 **
3134 ** The above is equivalent to
3135 **
3136 **    x>=y AND x<=z
3137 **
3138 ** Code it as such, taking care to do the common subexpression
3139 ** elementation of x.
3140 */
3141 static void exprCodeBetween(
3142   Parse *pParse,    /* Parsing and code generating context */
3143   Expr *pExpr,      /* The BETWEEN expression */
3144   int dest,         /* Jump here if the jump is taken */
3145   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3146   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3147 ){
3148   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3149   Expr compLeft;    /* The  x>=y  term */
3150   Expr compRight;   /* The  x<=z  term */
3151   Expr exprX;       /* The  x  subexpression */
3152   int regFree1 = 0; /* Temporary use register */
3153 
3154   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3155   exprX = *pExpr->pLeft;
3156   exprAnd.op = TK_AND;
3157   exprAnd.pLeft = &compLeft;
3158   exprAnd.pRight = &compRight;
3159   compLeft.op = TK_GE;
3160   compLeft.pLeft = &exprX;
3161   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3162   compRight.op = TK_LE;
3163   compRight.pLeft = &exprX;
3164   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3165   exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
3166   exprX.op = TK_REGISTER;
3167   if( jumpIfTrue ){
3168     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3169   }else{
3170     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3171   }
3172   sqlite3ReleaseTempReg(pParse, regFree1);
3173 
3174   /* Ensure adequate test coverage */
3175   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3176   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3177   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3178   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3179   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3180   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3181   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3182   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3183 }
3184 
3185 /*
3186 ** Generate code for a boolean expression such that a jump is made
3187 ** to the label "dest" if the expression is true but execution
3188 ** continues straight thru if the expression is false.
3189 **
3190 ** If the expression evaluates to NULL (neither true nor false), then
3191 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3192 **
3193 ** This code depends on the fact that certain token values (ex: TK_EQ)
3194 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3195 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3196 ** the make process cause these values to align.  Assert()s in the code
3197 ** below verify that the numbers are aligned correctly.
3198 */
3199 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3200   Vdbe *v = pParse->pVdbe;
3201   int op = 0;
3202   int regFree1 = 0;
3203   int regFree2 = 0;
3204   int r1, r2;
3205 
3206   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3207   if( NEVER(v==0) )     return;  /* Existance of VDBE checked by caller */
3208   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3209   op = pExpr->op;
3210   switch( op ){
3211     case TK_AND: {
3212       int d2 = sqlite3VdbeMakeLabel(v);
3213       testcase( jumpIfNull==0 );
3214       sqlite3ExprCachePush(pParse);
3215       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3216       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3217       sqlite3VdbeResolveLabel(v, d2);
3218       sqlite3ExprCachePop(pParse, 1);
3219       break;
3220     }
3221     case TK_OR: {
3222       testcase( jumpIfNull==0 );
3223       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3224       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3225       break;
3226     }
3227     case TK_NOT: {
3228       testcase( jumpIfNull==0 );
3229       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3230       break;
3231     }
3232     case TK_LT:
3233     case TK_LE:
3234     case TK_GT:
3235     case TK_GE:
3236     case TK_NE:
3237     case TK_EQ: {
3238       assert( TK_LT==OP_Lt );
3239       assert( TK_LE==OP_Le );
3240       assert( TK_GT==OP_Gt );
3241       assert( TK_GE==OP_Ge );
3242       assert( TK_EQ==OP_Eq );
3243       assert( TK_NE==OP_Ne );
3244       testcase( op==TK_LT );
3245       testcase( op==TK_LE );
3246       testcase( op==TK_GT );
3247       testcase( op==TK_GE );
3248       testcase( op==TK_EQ );
3249       testcase( op==TK_NE );
3250       testcase( jumpIfNull==0 );
3251       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3252       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3253       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3254                   r1, r2, dest, jumpIfNull);
3255       testcase( regFree1==0 );
3256       testcase( regFree2==0 );
3257       break;
3258     }
3259     case TK_IS:
3260     case TK_ISNOT: {
3261       testcase( op==TK_IS );
3262       testcase( op==TK_ISNOT );
3263       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3264       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3265       op = (op==TK_IS) ? TK_EQ : TK_NE;
3266       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3267                   r1, r2, dest, SQLITE_NULLEQ);
3268       testcase( regFree1==0 );
3269       testcase( regFree2==0 );
3270       break;
3271     }
3272     case TK_ISNULL:
3273     case TK_NOTNULL: {
3274       assert( TK_ISNULL==OP_IsNull );
3275       assert( TK_NOTNULL==OP_NotNull );
3276       testcase( op==TK_ISNULL );
3277       testcase( op==TK_NOTNULL );
3278       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3279       sqlite3VdbeAddOp2(v, op, r1, dest);
3280       testcase( regFree1==0 );
3281       break;
3282     }
3283     case TK_BETWEEN: {
3284       testcase( jumpIfNull==0 );
3285       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3286       break;
3287     }
3288     case TK_IN: {
3289       int destIfFalse = sqlite3VdbeMakeLabel(v);
3290       int destIfNull = jumpIfNull ? dest : destIfFalse;
3291       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3292       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3293       sqlite3VdbeResolveLabel(v, destIfFalse);
3294       break;
3295     }
3296     default: {
3297       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3298       sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3299       testcase( regFree1==0 );
3300       testcase( jumpIfNull==0 );
3301       break;
3302     }
3303   }
3304   sqlite3ReleaseTempReg(pParse, regFree1);
3305   sqlite3ReleaseTempReg(pParse, regFree2);
3306 }
3307 
3308 /*
3309 ** Generate code for a boolean expression such that a jump is made
3310 ** to the label "dest" if the expression is false but execution
3311 ** continues straight thru if the expression is true.
3312 **
3313 ** If the expression evaluates to NULL (neither true nor false) then
3314 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3315 ** is 0.
3316 */
3317 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3318   Vdbe *v = pParse->pVdbe;
3319   int op = 0;
3320   int regFree1 = 0;
3321   int regFree2 = 0;
3322   int r1, r2;
3323 
3324   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3325   if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
3326   if( pExpr==0 )    return;
3327 
3328   /* The value of pExpr->op and op are related as follows:
3329   **
3330   **       pExpr->op            op
3331   **       ---------          ----------
3332   **       TK_ISNULL          OP_NotNull
3333   **       TK_NOTNULL         OP_IsNull
3334   **       TK_NE              OP_Eq
3335   **       TK_EQ              OP_Ne
3336   **       TK_GT              OP_Le
3337   **       TK_LE              OP_Gt
3338   **       TK_GE              OP_Lt
3339   **       TK_LT              OP_Ge
3340   **
3341   ** For other values of pExpr->op, op is undefined and unused.
3342   ** The value of TK_ and OP_ constants are arranged such that we
3343   ** can compute the mapping above using the following expression.
3344   ** Assert()s verify that the computation is correct.
3345   */
3346   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3347 
3348   /* Verify correct alignment of TK_ and OP_ constants
3349   */
3350   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3351   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3352   assert( pExpr->op!=TK_NE || op==OP_Eq );
3353   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3354   assert( pExpr->op!=TK_LT || op==OP_Ge );
3355   assert( pExpr->op!=TK_LE || op==OP_Gt );
3356   assert( pExpr->op!=TK_GT || op==OP_Le );
3357   assert( pExpr->op!=TK_GE || op==OP_Lt );
3358 
3359   switch( pExpr->op ){
3360     case TK_AND: {
3361       testcase( jumpIfNull==0 );
3362       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3363       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3364       break;
3365     }
3366     case TK_OR: {
3367       int d2 = sqlite3VdbeMakeLabel(v);
3368       testcase( jumpIfNull==0 );
3369       sqlite3ExprCachePush(pParse);
3370       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3371       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3372       sqlite3VdbeResolveLabel(v, d2);
3373       sqlite3ExprCachePop(pParse, 1);
3374       break;
3375     }
3376     case TK_NOT: {
3377       testcase( jumpIfNull==0 );
3378       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3379       break;
3380     }
3381     case TK_LT:
3382     case TK_LE:
3383     case TK_GT:
3384     case TK_GE:
3385     case TK_NE:
3386     case TK_EQ: {
3387       testcase( op==TK_LT );
3388       testcase( op==TK_LE );
3389       testcase( op==TK_GT );
3390       testcase( op==TK_GE );
3391       testcase( op==TK_EQ );
3392       testcase( op==TK_NE );
3393       testcase( jumpIfNull==0 );
3394       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3395       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3396       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3397                   r1, r2, dest, jumpIfNull);
3398       testcase( regFree1==0 );
3399       testcase( regFree2==0 );
3400       break;
3401     }
3402     case TK_IS:
3403     case TK_ISNOT: {
3404       testcase( pExpr->op==TK_IS );
3405       testcase( pExpr->op==TK_ISNOT );
3406       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3407       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3408       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3409       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3410                   r1, r2, dest, SQLITE_NULLEQ);
3411       testcase( regFree1==0 );
3412       testcase( regFree2==0 );
3413       break;
3414     }
3415     case TK_ISNULL:
3416     case TK_NOTNULL: {
3417       testcase( op==TK_ISNULL );
3418       testcase( op==TK_NOTNULL );
3419       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3420       sqlite3VdbeAddOp2(v, op, r1, dest);
3421       testcase( regFree1==0 );
3422       break;
3423     }
3424     case TK_BETWEEN: {
3425       testcase( jumpIfNull==0 );
3426       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3427       break;
3428     }
3429     case TK_IN: {
3430       if( jumpIfNull ){
3431         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3432       }else{
3433         int destIfNull = sqlite3VdbeMakeLabel(v);
3434         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3435         sqlite3VdbeResolveLabel(v, destIfNull);
3436       }
3437       break;
3438     }
3439     default: {
3440       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3441       sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3442       testcase( regFree1==0 );
3443       testcase( jumpIfNull==0 );
3444       break;
3445     }
3446   }
3447   sqlite3ReleaseTempReg(pParse, regFree1);
3448   sqlite3ReleaseTempReg(pParse, regFree2);
3449 }
3450 
3451 /*
3452 ** Do a deep comparison of two expression trees.  Return 0 if the two
3453 ** expressions are completely identical.  Return 1 if they differ only
3454 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3455 ** other than the top-level COLLATE operator.
3456 **
3457 ** Sometimes this routine will return 2 even if the two expressions
3458 ** really are equivalent.  If we cannot prove that the expressions are
3459 ** identical, we return 2 just to be safe.  So if this routine
3460 ** returns 2, then you do not really know for certain if the two
3461 ** expressions are the same.  But if you get a 0 or 1 return, then you
3462 ** can be sure the expressions are the same.  In the places where
3463 ** this routine is used, it does not hurt to get an extra 2 - that
3464 ** just might result in some slightly slower code.  But returning
3465 ** an incorrect 0 or 1 could lead to a malfunction.
3466 */
3467 int sqlite3ExprCompare(Expr *pA, Expr *pB){
3468   if( pA==0||pB==0 ){
3469     return pB==pA ? 0 : 2;
3470   }
3471   assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
3472   assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
3473   if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
3474     return 2;
3475   }
3476   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3477   if( pA->op!=pB->op ) return 2;
3478   if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2;
3479   if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
3480   if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
3481   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
3482   if( ExprHasProperty(pA, EP_IntValue) ){
3483     if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
3484       return 2;
3485     }
3486   }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
3487     if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
3488     if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){
3489       return 2;
3490     }
3491   }
3492   if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1;
3493   if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2;
3494   return 0;
3495 }
3496 
3497 /*
3498 ** Compare two ExprList objects.  Return 0 if they are identical and
3499 ** non-zero if they differ in any way.
3500 **
3501 ** This routine might return non-zero for equivalent ExprLists.  The
3502 ** only consequence will be disabled optimizations.  But this routine
3503 ** must never return 0 if the two ExprList objects are different, or
3504 ** a malfunction will result.
3505 **
3506 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3507 ** always differs from a non-NULL pointer.
3508 */
3509 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){
3510   int i;
3511   if( pA==0 && pB==0 ) return 0;
3512   if( pA==0 || pB==0 ) return 1;
3513   if( pA->nExpr!=pB->nExpr ) return 1;
3514   for(i=0; i<pA->nExpr; i++){
3515     Expr *pExprA = pA->a[i].pExpr;
3516     Expr *pExprB = pB->a[i].pExpr;
3517     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3518     if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
3519   }
3520   return 0;
3521 }
3522 
3523 /*
3524 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
3525 ** the new element.  Return a negative number if malloc fails.
3526 */
3527 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3528   int i;
3529   pInfo->aCol = sqlite3ArrayAllocate(
3530        db,
3531        pInfo->aCol,
3532        sizeof(pInfo->aCol[0]),
3533        3,
3534        &pInfo->nColumn,
3535        &pInfo->nColumnAlloc,
3536        &i
3537   );
3538   return i;
3539 }
3540 
3541 /*
3542 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
3543 ** the new element.  Return a negative number if malloc fails.
3544 */
3545 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3546   int i;
3547   pInfo->aFunc = sqlite3ArrayAllocate(
3548        db,
3549        pInfo->aFunc,
3550        sizeof(pInfo->aFunc[0]),
3551        3,
3552        &pInfo->nFunc,
3553        &pInfo->nFuncAlloc,
3554        &i
3555   );
3556   return i;
3557 }
3558 
3559 /*
3560 ** This is the xExprCallback for a tree walker.  It is used to
3561 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
3562 ** for additional information.
3563 */
3564 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
3565   int i;
3566   NameContext *pNC = pWalker->u.pNC;
3567   Parse *pParse = pNC->pParse;
3568   SrcList *pSrcList = pNC->pSrcList;
3569   AggInfo *pAggInfo = pNC->pAggInfo;
3570 
3571   switch( pExpr->op ){
3572     case TK_AGG_COLUMN:
3573     case TK_COLUMN: {
3574       testcase( pExpr->op==TK_AGG_COLUMN );
3575       testcase( pExpr->op==TK_COLUMN );
3576       /* Check to see if the column is in one of the tables in the FROM
3577       ** clause of the aggregate query */
3578       if( ALWAYS(pSrcList!=0) ){
3579         struct SrcList_item *pItem = pSrcList->a;
3580         for(i=0; i<pSrcList->nSrc; i++, pItem++){
3581           struct AggInfo_col *pCol;
3582           assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3583           if( pExpr->iTable==pItem->iCursor ){
3584             /* If we reach this point, it means that pExpr refers to a table
3585             ** that is in the FROM clause of the aggregate query.
3586             **
3587             ** Make an entry for the column in pAggInfo->aCol[] if there
3588             ** is not an entry there already.
3589             */
3590             int k;
3591             pCol = pAggInfo->aCol;
3592             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
3593               if( pCol->iTable==pExpr->iTable &&
3594                   pCol->iColumn==pExpr->iColumn ){
3595                 break;
3596               }
3597             }
3598             if( (k>=pAggInfo->nColumn)
3599              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
3600             ){
3601               pCol = &pAggInfo->aCol[k];
3602               pCol->pTab = pExpr->pTab;
3603               pCol->iTable = pExpr->iTable;
3604               pCol->iColumn = pExpr->iColumn;
3605               pCol->iMem = ++pParse->nMem;
3606               pCol->iSorterColumn = -1;
3607               pCol->pExpr = pExpr;
3608               if( pAggInfo->pGroupBy ){
3609                 int j, n;
3610                 ExprList *pGB = pAggInfo->pGroupBy;
3611                 struct ExprList_item *pTerm = pGB->a;
3612                 n = pGB->nExpr;
3613                 for(j=0; j<n; j++, pTerm++){
3614                   Expr *pE = pTerm->pExpr;
3615                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
3616                       pE->iColumn==pExpr->iColumn ){
3617                     pCol->iSorterColumn = j;
3618                     break;
3619                   }
3620                 }
3621               }
3622               if( pCol->iSorterColumn<0 ){
3623                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
3624               }
3625             }
3626             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
3627             ** because it was there before or because we just created it).
3628             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
3629             ** pAggInfo->aCol[] entry.
3630             */
3631             ExprSetIrreducible(pExpr);
3632             pExpr->pAggInfo = pAggInfo;
3633             pExpr->op = TK_AGG_COLUMN;
3634             pExpr->iAgg = (i16)k;
3635             break;
3636           } /* endif pExpr->iTable==pItem->iCursor */
3637         } /* end loop over pSrcList */
3638       }
3639       return WRC_Prune;
3640     }
3641     case TK_AGG_FUNCTION: {
3642       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
3643       ** to be ignored */
3644       if( pNC->nDepth==0 ){
3645         /* Check to see if pExpr is a duplicate of another aggregate
3646         ** function that is already in the pAggInfo structure
3647         */
3648         struct AggInfo_func *pItem = pAggInfo->aFunc;
3649         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
3650           if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
3651             break;
3652           }
3653         }
3654         if( i>=pAggInfo->nFunc ){
3655           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
3656           */
3657           u8 enc = ENC(pParse->db);
3658           i = addAggInfoFunc(pParse->db, pAggInfo);
3659           if( i>=0 ){
3660             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3661             pItem = &pAggInfo->aFunc[i];
3662             pItem->pExpr = pExpr;
3663             pItem->iMem = ++pParse->nMem;
3664             assert( !ExprHasProperty(pExpr, EP_IntValue) );
3665             pItem->pFunc = sqlite3FindFunction(pParse->db,
3666                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
3667                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
3668             if( pExpr->flags & EP_Distinct ){
3669               pItem->iDistinct = pParse->nTab++;
3670             }else{
3671               pItem->iDistinct = -1;
3672             }
3673           }
3674         }
3675         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
3676         */
3677         assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3678         ExprSetIrreducible(pExpr);
3679         pExpr->iAgg = (i16)i;
3680         pExpr->pAggInfo = pAggInfo;
3681         return WRC_Prune;
3682       }
3683     }
3684   }
3685   return WRC_Continue;
3686 }
3687 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
3688   NameContext *pNC = pWalker->u.pNC;
3689   if( pNC->nDepth==0 ){
3690     pNC->nDepth++;
3691     sqlite3WalkSelect(pWalker, pSelect);
3692     pNC->nDepth--;
3693     return WRC_Prune;
3694   }else{
3695     return WRC_Continue;
3696   }
3697 }
3698 
3699 /*
3700 ** Analyze the given expression looking for aggregate functions and
3701 ** for variables that need to be added to the pParse->aAgg[] array.
3702 ** Make additional entries to the pParse->aAgg[] array as necessary.
3703 **
3704 ** This routine should only be called after the expression has been
3705 ** analyzed by sqlite3ResolveExprNames().
3706 */
3707 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
3708   Walker w;
3709   w.xExprCallback = analyzeAggregate;
3710   w.xSelectCallback = analyzeAggregatesInSelect;
3711   w.u.pNC = pNC;
3712   assert( pNC->pSrcList!=0 );
3713   sqlite3WalkExpr(&w, pExpr);
3714 }
3715 
3716 /*
3717 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
3718 ** expression list.  Return the number of errors.
3719 **
3720 ** If an error is found, the analysis is cut short.
3721 */
3722 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
3723   struct ExprList_item *pItem;
3724   int i;
3725   if( pList ){
3726     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
3727       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
3728     }
3729   }
3730 }
3731 
3732 /*
3733 ** Allocate a single new register for use to hold some intermediate result.
3734 */
3735 int sqlite3GetTempReg(Parse *pParse){
3736   if( pParse->nTempReg==0 ){
3737     return ++pParse->nMem;
3738   }
3739   return pParse->aTempReg[--pParse->nTempReg];
3740 }
3741 
3742 /*
3743 ** Deallocate a register, making available for reuse for some other
3744 ** purpose.
3745 **
3746 ** If a register is currently being used by the column cache, then
3747 ** the dallocation is deferred until the column cache line that uses
3748 ** the register becomes stale.
3749 */
3750 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
3751   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3752     int i;
3753     struct yColCache *p;
3754     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3755       if( p->iReg==iReg ){
3756         p->tempReg = 1;
3757         return;
3758       }
3759     }
3760     pParse->aTempReg[pParse->nTempReg++] = iReg;
3761   }
3762 }
3763 
3764 /*
3765 ** Allocate or deallocate a block of nReg consecutive registers
3766 */
3767 int sqlite3GetTempRange(Parse *pParse, int nReg){
3768   int i, n;
3769   i = pParse->iRangeReg;
3770   n = pParse->nRangeReg;
3771   if( nReg<=n ){
3772     assert( !usedAsColumnCache(pParse, i, i+n-1) );
3773     pParse->iRangeReg += nReg;
3774     pParse->nRangeReg -= nReg;
3775   }else{
3776     i = pParse->nMem+1;
3777     pParse->nMem += nReg;
3778   }
3779   return i;
3780 }
3781 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
3782   sqlite3ExprCacheRemove(pParse, iReg, nReg);
3783   if( nReg>pParse->nRangeReg ){
3784     pParse->nRangeReg = nReg;
3785     pParse->iRangeReg = iReg;
3786   }
3787 }
3788