xref: /sqlite-3.40.0/src/expr.c (revision 5f5719bd)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
48     assert( pExpr->op==TK_COLLATE
49          || pExpr->op==TK_IF_NULL_ROW
50          || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
51     pExpr = pExpr->pLeft;
52     assert( pExpr!=0 );
53   }
54   op = pExpr->op;
55   if( op==TK_REGISTER ) op = pExpr->op2;
56   if( (op==TK_COLUMN || op==TK_AGG_COLUMN) && pExpr->y.pTab ){
57     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
58   }
59   if( op==TK_SELECT ){
60     assert( pExpr->flags&EP_xIsSelect );
61     assert( pExpr->x.pSelect!=0 );
62     assert( pExpr->x.pSelect->pEList!=0 );
63     assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
64     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
65   }
66 #ifndef SQLITE_OMIT_CAST
67   if( op==TK_CAST ){
68     assert( !ExprHasProperty(pExpr, EP_IntValue) );
69     return sqlite3AffinityType(pExpr->u.zToken, 0);
70   }
71 #endif
72   if( op==TK_SELECT_COLUMN ){
73     assert( pExpr->pLeft->flags&EP_xIsSelect );
74     return sqlite3ExprAffinity(
75         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
76     );
77   }
78   if( op==TK_VECTOR ){
79     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
80   }
81   return pExpr->affExpr;
82 }
83 
84 /*
85 ** Set the collating sequence for expression pExpr to be the collating
86 ** sequence named by pToken.   Return a pointer to a new Expr node that
87 ** implements the COLLATE operator.
88 **
89 ** If a memory allocation error occurs, that fact is recorded in pParse->db
90 ** and the pExpr parameter is returned unchanged.
91 */
92 Expr *sqlite3ExprAddCollateToken(
93   Parse *pParse,           /* Parsing context */
94   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
95   const Token *pCollName,  /* Name of collating sequence */
96   int dequote              /* True to dequote pCollName */
97 ){
98   assert( pExpr!=0 || pParse->db->mallocFailed );
99   if( pExpr==0 ) return 0;
100   if( pExpr->op==TK_VECTOR ){
101     ExprList *pList = pExpr->x.pList;
102     if( ALWAYS(pList!=0) ){
103       int i;
104       for(i=0; i<pList->nExpr; i++){
105         pList->a[i].pExpr = sqlite3ExprAddCollateToken(pParse,pList->a[i].pExpr,
106                                                        pCollName, dequote);
107       }
108     }
109   }else if( pCollName->n>0 ){
110     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
111     if( pNew ){
112       pNew->pLeft = pExpr;
113       pNew->flags |= EP_Collate|EP_Skip;
114       pExpr = pNew;
115     }
116   }
117   return pExpr;
118 }
119 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
120   Token s;
121   assert( zC!=0 );
122   sqlite3TokenInit(&s, (char*)zC);
123   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
124 }
125 
126 /*
127 ** Skip over any TK_COLLATE operators.
128 */
129 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
130   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
131     assert( pExpr->op==TK_COLLATE );
132     pExpr = pExpr->pLeft;
133   }
134   return pExpr;
135 }
136 
137 /*
138 ** Skip over any TK_COLLATE operators and/or any unlikely()
139 ** or likelihood() or likely() functions at the root of an
140 ** expression.
141 */
142 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
143   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
144     if( ExprHasProperty(pExpr, EP_Unlikely) ){
145       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
146       assert( pExpr->x.pList->nExpr>0 );
147       assert( pExpr->op==TK_FUNCTION );
148       pExpr = pExpr->x.pList->a[0].pExpr;
149     }else{
150       assert( pExpr->op==TK_COLLATE );
151       pExpr = pExpr->pLeft;
152     }
153   }
154   return pExpr;
155 }
156 
157 /*
158 ** Return the collation sequence for the expression pExpr. If
159 ** there is no defined collating sequence, return NULL.
160 **
161 ** See also: sqlite3ExprNNCollSeq()
162 **
163 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
164 ** default collation if pExpr has no defined collation.
165 **
166 ** The collating sequence might be determined by a COLLATE operator
167 ** or by the presence of a column with a defined collating sequence.
168 ** COLLATE operators take first precedence.  Left operands take
169 ** precedence over right operands.
170 */
171 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
172   sqlite3 *db = pParse->db;
173   CollSeq *pColl = 0;
174   const Expr *p = pExpr;
175   while( p ){
176     int op = p->op;
177     if( op==TK_REGISTER ) op = p->op2;
178     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
179      && p->y.pTab!=0
180     ){
181       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
182       ** a TK_COLUMN but was previously evaluated and cached in a register */
183       int j = p->iColumn;
184       if( j>=0 ){
185         const char *zColl = p->y.pTab->aCol[j].zColl;
186         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
187       }
188       break;
189     }
190     if( op==TK_CAST || op==TK_UPLUS ){
191       p = p->pLeft;
192       continue;
193     }
194     if( op==TK_VECTOR ){
195       p = p->x.pList->a[0].pExpr;
196       continue;
197     }
198     if( op==TK_COLLATE ){
199       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
200       break;
201     }
202     if( p->flags & EP_Collate ){
203       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
204         p = p->pLeft;
205       }else{
206         Expr *pNext  = p->pRight;
207         /* The Expr.x union is never used at the same time as Expr.pRight */
208         assert( p->x.pList==0 || p->pRight==0 );
209         if( p->x.pList!=0
210          && !db->mallocFailed
211          && ALWAYS(!ExprHasProperty(p, EP_xIsSelect))
212         ){
213           int i;
214           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
215             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
216               pNext = p->x.pList->a[i].pExpr;
217               break;
218             }
219           }
220         }
221         p = pNext;
222       }
223     }else{
224       break;
225     }
226   }
227   if( sqlite3CheckCollSeq(pParse, pColl) ){
228     pColl = 0;
229   }
230   return pColl;
231 }
232 
233 /*
234 ** Return the collation sequence for the expression pExpr. If
235 ** there is no defined collating sequence, return a pointer to the
236 ** defautl collation sequence.
237 **
238 ** See also: sqlite3ExprCollSeq()
239 **
240 ** The sqlite3ExprCollSeq() routine works the same except that it
241 ** returns NULL if there is no defined collation.
242 */
243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
244   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
245   if( p==0 ) p = pParse->db->pDfltColl;
246   assert( p!=0 );
247   return p;
248 }
249 
250 /*
251 ** Return TRUE if the two expressions have equivalent collating sequences.
252 */
253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
254   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
255   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
256   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
257 }
258 
259 /*
260 ** pExpr is an operand of a comparison operator.  aff2 is the
261 ** type affinity of the other operand.  This routine returns the
262 ** type affinity that should be used for the comparison operator.
263 */
264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
265   char aff1 = sqlite3ExprAffinity(pExpr);
266   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
267     /* Both sides of the comparison are columns. If one has numeric
268     ** affinity, use that. Otherwise use no affinity.
269     */
270     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
271       return SQLITE_AFF_NUMERIC;
272     }else{
273       return SQLITE_AFF_BLOB;
274     }
275   }else{
276     /* One side is a column, the other is not. Use the columns affinity. */
277     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
278     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
279   }
280 }
281 
282 /*
283 ** pExpr is a comparison operator.  Return the type affinity that should
284 ** be applied to both operands prior to doing the comparison.
285 */
286 static char comparisonAffinity(const Expr *pExpr){
287   char aff;
288   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
289           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
290           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
291   assert( pExpr->pLeft );
292   aff = sqlite3ExprAffinity(pExpr->pLeft);
293   if( pExpr->pRight ){
294     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
295   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
296     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
297   }else if( aff==0 ){
298     aff = SQLITE_AFF_BLOB;
299   }
300   return aff;
301 }
302 
303 /*
304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
305 ** idx_affinity is the affinity of an indexed column. Return true
306 ** if the index with affinity idx_affinity may be used to implement
307 ** the comparison in pExpr.
308 */
309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
310   char aff = comparisonAffinity(pExpr);
311   if( aff<SQLITE_AFF_TEXT ){
312     return 1;
313   }
314   if( aff==SQLITE_AFF_TEXT ){
315     return idx_affinity==SQLITE_AFF_TEXT;
316   }
317   return sqlite3IsNumericAffinity(idx_affinity);
318 }
319 
320 /*
321 ** Return the P5 value that should be used for a binary comparison
322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
323 */
324 static u8 binaryCompareP5(
325   const Expr *pExpr1,   /* Left operand */
326   const Expr *pExpr2,   /* Right operand */
327   int jumpIfNull        /* Extra flags added to P5 */
328 ){
329   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
330   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
331   return aff;
332 }
333 
334 /*
335 ** Return a pointer to the collation sequence that should be used by
336 ** a binary comparison operator comparing pLeft and pRight.
337 **
338 ** If the left hand expression has a collating sequence type, then it is
339 ** used. Otherwise the collation sequence for the right hand expression
340 ** is used, or the default (BINARY) if neither expression has a collating
341 ** type.
342 **
343 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
344 ** it is not considered.
345 */
346 CollSeq *sqlite3BinaryCompareCollSeq(
347   Parse *pParse,
348   const Expr *pLeft,
349   const Expr *pRight
350 ){
351   CollSeq *pColl;
352   assert( pLeft );
353   if( pLeft->flags & EP_Collate ){
354     pColl = sqlite3ExprCollSeq(pParse, pLeft);
355   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
356     pColl = sqlite3ExprCollSeq(pParse, pRight);
357   }else{
358     pColl = sqlite3ExprCollSeq(pParse, pLeft);
359     if( !pColl ){
360       pColl = sqlite3ExprCollSeq(pParse, pRight);
361     }
362   }
363   return pColl;
364 }
365 
366 /* Expresssion p is a comparison operator.  Return a collation sequence
367 ** appropriate for the comparison operator.
368 **
369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
370 ** However, if the OP_Commuted flag is set, then the order of the operands
371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
372 ** correct collating sequence is found.
373 */
374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
375   if( ExprHasProperty(p, EP_Commuted) ){
376     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
377   }else{
378     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
379   }
380 }
381 
382 /*
383 ** Generate code for a comparison operator.
384 */
385 static int codeCompare(
386   Parse *pParse,    /* The parsing (and code generating) context */
387   Expr *pLeft,      /* The left operand */
388   Expr *pRight,     /* The right operand */
389   int opcode,       /* The comparison opcode */
390   int in1, int in2, /* Register holding operands */
391   int dest,         /* Jump here if true.  */
392   int jumpIfNull,   /* If true, jump if either operand is NULL */
393   int isCommuted    /* The comparison has been commuted */
394 ){
395   int p5;
396   int addr;
397   CollSeq *p4;
398 
399   if( pParse->nErr ) return 0;
400   if( isCommuted ){
401     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
402   }else{
403     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
404   }
405   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
406   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
407                            (void*)p4, P4_COLLSEQ);
408   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
409   return addr;
410 }
411 
412 /*
413 ** Return true if expression pExpr is a vector, or false otherwise.
414 **
415 ** A vector is defined as any expression that results in two or more
416 ** columns of result.  Every TK_VECTOR node is an vector because the
417 ** parser will not generate a TK_VECTOR with fewer than two entries.
418 ** But a TK_SELECT might be either a vector or a scalar. It is only
419 ** considered a vector if it has two or more result columns.
420 */
421 int sqlite3ExprIsVector(Expr *pExpr){
422   return sqlite3ExprVectorSize(pExpr)>1;
423 }
424 
425 /*
426 ** If the expression passed as the only argument is of type TK_VECTOR
427 ** return the number of expressions in the vector. Or, if the expression
428 ** is a sub-select, return the number of columns in the sub-select. For
429 ** any other type of expression, return 1.
430 */
431 int sqlite3ExprVectorSize(Expr *pExpr){
432   u8 op = pExpr->op;
433   if( op==TK_REGISTER ) op = pExpr->op2;
434   if( op==TK_VECTOR ){
435     return pExpr->x.pList->nExpr;
436   }else if( op==TK_SELECT ){
437     return pExpr->x.pSelect->pEList->nExpr;
438   }else{
439     return 1;
440   }
441 }
442 
443 /*
444 ** Return a pointer to a subexpression of pVector that is the i-th
445 ** column of the vector (numbered starting with 0).  The caller must
446 ** ensure that i is within range.
447 **
448 ** If pVector is really a scalar (and "scalar" here includes subqueries
449 ** that return a single column!) then return pVector unmodified.
450 **
451 ** pVector retains ownership of the returned subexpression.
452 **
453 ** If the vector is a (SELECT ...) then the expression returned is
454 ** just the expression for the i-th term of the result set, and may
455 ** not be ready for evaluation because the table cursor has not yet
456 ** been positioned.
457 */
458 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
459   assert( i<sqlite3ExprVectorSize(pVector) );
460   if( sqlite3ExprIsVector(pVector) ){
461     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
462     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
463       return pVector->x.pSelect->pEList->a[i].pExpr;
464     }else{
465       return pVector->x.pList->a[i].pExpr;
466     }
467   }
468   return pVector;
469 }
470 
471 /*
472 ** Compute and return a new Expr object which when passed to
473 ** sqlite3ExprCode() will generate all necessary code to compute
474 ** the iField-th column of the vector expression pVector.
475 **
476 ** It is ok for pVector to be a scalar (as long as iField==0).
477 ** In that case, this routine works like sqlite3ExprDup().
478 **
479 ** The caller owns the returned Expr object and is responsible for
480 ** ensuring that the returned value eventually gets freed.
481 **
482 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
483 ** then the returned object will reference pVector and so pVector must remain
484 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
485 ** or a scalar expression, then it can be deleted as soon as this routine
486 ** returns.
487 **
488 ** A trick to cause a TK_SELECT pVector to be deleted together with
489 ** the returned Expr object is to attach the pVector to the pRight field
490 ** of the returned TK_SELECT_COLUMN Expr object.
491 */
492 Expr *sqlite3ExprForVectorField(
493   Parse *pParse,       /* Parsing context */
494   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
495   int iField           /* Which column of the vector to return */
496 ){
497   Expr *pRet;
498   if( pVector->op==TK_SELECT ){
499     assert( pVector->flags & EP_xIsSelect );
500     /* The TK_SELECT_COLUMN Expr node:
501     **
502     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
503     ** pRight:          not used.  But recursively deleted.
504     ** iColumn:         Index of a column in pVector
505     ** iTable:          0 or the number of columns on the LHS of an assignment
506     ** pLeft->iTable:   First in an array of register holding result, or 0
507     **                  if the result is not yet computed.
508     **
509     ** sqlite3ExprDelete() specifically skips the recursive delete of
510     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
511     ** can be attached to pRight to cause this node to take ownership of
512     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
513     ** with the same pLeft pointer to the pVector, but only one of them
514     ** will own the pVector.
515     */
516     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
517     if( pRet ){
518       pRet->iColumn = iField;
519       pRet->pLeft = pVector;
520     }
521     assert( pRet==0 || pRet->iTable==0 );
522   }else{
523     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
524     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
525     sqlite3RenameTokenRemap(pParse, pRet, pVector);
526   }
527   return pRet;
528 }
529 
530 /*
531 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
532 ** it. Return the register in which the result is stored (or, if the
533 ** sub-select returns more than one column, the first in an array
534 ** of registers in which the result is stored).
535 **
536 ** If pExpr is not a TK_SELECT expression, return 0.
537 */
538 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
539   int reg = 0;
540 #ifndef SQLITE_OMIT_SUBQUERY
541   if( pExpr->op==TK_SELECT ){
542     reg = sqlite3CodeSubselect(pParse, pExpr);
543   }
544 #endif
545   return reg;
546 }
547 
548 /*
549 ** Argument pVector points to a vector expression - either a TK_VECTOR
550 ** or TK_SELECT that returns more than one column. This function returns
551 ** the register number of a register that contains the value of
552 ** element iField of the vector.
553 **
554 ** If pVector is a TK_SELECT expression, then code for it must have
555 ** already been generated using the exprCodeSubselect() routine. In this
556 ** case parameter regSelect should be the first in an array of registers
557 ** containing the results of the sub-select.
558 **
559 ** If pVector is of type TK_VECTOR, then code for the requested field
560 ** is generated. In this case (*pRegFree) may be set to the number of
561 ** a temporary register to be freed by the caller before returning.
562 **
563 ** Before returning, output parameter (*ppExpr) is set to point to the
564 ** Expr object corresponding to element iElem of the vector.
565 */
566 static int exprVectorRegister(
567   Parse *pParse,                  /* Parse context */
568   Expr *pVector,                  /* Vector to extract element from */
569   int iField,                     /* Field to extract from pVector */
570   int regSelect,                  /* First in array of registers */
571   Expr **ppExpr,                  /* OUT: Expression element */
572   int *pRegFree                   /* OUT: Temp register to free */
573 ){
574   u8 op = pVector->op;
575   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
576   if( op==TK_REGISTER ){
577     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
578     return pVector->iTable+iField;
579   }
580   if( op==TK_SELECT ){
581     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
582      return regSelect+iField;
583   }
584   *ppExpr = pVector->x.pList->a[iField].pExpr;
585   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
586 }
587 
588 /*
589 ** Expression pExpr is a comparison between two vector values. Compute
590 ** the result of the comparison (1, 0, or NULL) and write that
591 ** result into register dest.
592 **
593 ** The caller must satisfy the following preconditions:
594 **
595 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
596 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
597 **    otherwise:                op==pExpr->op and p5==0
598 */
599 static void codeVectorCompare(
600   Parse *pParse,        /* Code generator context */
601   Expr *pExpr,          /* The comparison operation */
602   int dest,             /* Write results into this register */
603   u8 op,                /* Comparison operator */
604   u8 p5                 /* SQLITE_NULLEQ or zero */
605 ){
606   Vdbe *v = pParse->pVdbe;
607   Expr *pLeft = pExpr->pLeft;
608   Expr *pRight = pExpr->pRight;
609   int nLeft = sqlite3ExprVectorSize(pLeft);
610   int i;
611   int regLeft = 0;
612   int regRight = 0;
613   u8 opx = op;
614   int addrCmp = 0;
615   int addrDone = sqlite3VdbeMakeLabel(pParse);
616   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
617 
618   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
619   if( pParse->nErr ) return;
620   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
621     sqlite3ErrorMsg(pParse, "row value misused");
622     return;
623   }
624   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
625        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
626        || pExpr->op==TK_LT || pExpr->op==TK_GT
627        || pExpr->op==TK_LE || pExpr->op==TK_GE
628   );
629   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
630             || (pExpr->op==TK_ISNOT && op==TK_NE) );
631   assert( p5==0 || pExpr->op!=op );
632   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
633 
634   if( op==TK_LE ) opx = TK_LT;
635   if( op==TK_GE ) opx = TK_GT;
636   if( op==TK_NE ) opx = TK_EQ;
637 
638   regLeft = exprCodeSubselect(pParse, pLeft);
639   regRight = exprCodeSubselect(pParse, pRight);
640 
641   sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
642   for(i=0; 1 /*Loop exits by "break"*/; i++){
643     int regFree1 = 0, regFree2 = 0;
644     Expr *pL, *pR;
645     int r1, r2;
646     assert( i>=0 && i<nLeft );
647     if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
648     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
649     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
650     addrCmp = sqlite3VdbeCurrentAddr(v);
651     codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
652     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
653     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
654     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
655     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
656     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
657     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
658     sqlite3ReleaseTempReg(pParse, regFree1);
659     sqlite3ReleaseTempReg(pParse, regFree2);
660     if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
661       addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
662       testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
663       testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
664     }
665     if( p5==SQLITE_NULLEQ ){
666       sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
667     }else{
668       sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
669     }
670     if( i==nLeft-1 ){
671       break;
672     }
673     if( opx==TK_EQ ){
674       sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
675     }else{
676       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
677       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
678       if( i==nLeft-2 ) opx = op;
679     }
680   }
681   sqlite3VdbeJumpHere(v, addrCmp);
682   sqlite3VdbeResolveLabel(v, addrDone);
683   if( op==TK_NE ){
684     sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
685   }
686 }
687 
688 #if SQLITE_MAX_EXPR_DEPTH>0
689 /*
690 ** Check that argument nHeight is less than or equal to the maximum
691 ** expression depth allowed. If it is not, leave an error message in
692 ** pParse.
693 */
694 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
695   int rc = SQLITE_OK;
696   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
697   if( nHeight>mxHeight ){
698     sqlite3ErrorMsg(pParse,
699        "Expression tree is too large (maximum depth %d)", mxHeight
700     );
701     rc = SQLITE_ERROR;
702   }
703   return rc;
704 }
705 
706 /* The following three functions, heightOfExpr(), heightOfExprList()
707 ** and heightOfSelect(), are used to determine the maximum height
708 ** of any expression tree referenced by the structure passed as the
709 ** first argument.
710 **
711 ** If this maximum height is greater than the current value pointed
712 ** to by pnHeight, the second parameter, then set *pnHeight to that
713 ** value.
714 */
715 static void heightOfExpr(Expr *p, int *pnHeight){
716   if( p ){
717     if( p->nHeight>*pnHeight ){
718       *pnHeight = p->nHeight;
719     }
720   }
721 }
722 static void heightOfExprList(ExprList *p, int *pnHeight){
723   if( p ){
724     int i;
725     for(i=0; i<p->nExpr; i++){
726       heightOfExpr(p->a[i].pExpr, pnHeight);
727     }
728   }
729 }
730 static void heightOfSelect(Select *pSelect, int *pnHeight){
731   Select *p;
732   for(p=pSelect; p; p=p->pPrior){
733     heightOfExpr(p->pWhere, pnHeight);
734     heightOfExpr(p->pHaving, pnHeight);
735     heightOfExpr(p->pLimit, pnHeight);
736     heightOfExprList(p->pEList, pnHeight);
737     heightOfExprList(p->pGroupBy, pnHeight);
738     heightOfExprList(p->pOrderBy, pnHeight);
739   }
740 }
741 
742 /*
743 ** Set the Expr.nHeight variable in the structure passed as an
744 ** argument. An expression with no children, Expr.pList or
745 ** Expr.pSelect member has a height of 1. Any other expression
746 ** has a height equal to the maximum height of any other
747 ** referenced Expr plus one.
748 **
749 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
750 ** if appropriate.
751 */
752 static void exprSetHeight(Expr *p){
753   int nHeight = 0;
754   heightOfExpr(p->pLeft, &nHeight);
755   heightOfExpr(p->pRight, &nHeight);
756   if( ExprHasProperty(p, EP_xIsSelect) ){
757     heightOfSelect(p->x.pSelect, &nHeight);
758   }else if( p->x.pList ){
759     heightOfExprList(p->x.pList, &nHeight);
760     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
761   }
762   p->nHeight = nHeight + 1;
763 }
764 
765 /*
766 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
767 ** the height is greater than the maximum allowed expression depth,
768 ** leave an error in pParse.
769 **
770 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
771 ** Expr.flags.
772 */
773 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
774   if( pParse->nErr ) return;
775   exprSetHeight(p);
776   sqlite3ExprCheckHeight(pParse, p->nHeight);
777 }
778 
779 /*
780 ** Return the maximum height of any expression tree referenced
781 ** by the select statement passed as an argument.
782 */
783 int sqlite3SelectExprHeight(Select *p){
784   int nHeight = 0;
785   heightOfSelect(p, &nHeight);
786   return nHeight;
787 }
788 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
789 /*
790 ** Propagate all EP_Propagate flags from the Expr.x.pList into
791 ** Expr.flags.
792 */
793 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
794   if( pParse->nErr ) return;
795   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
796     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
797   }
798 }
799 #define exprSetHeight(y)
800 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
801 
802 /*
803 ** This routine is the core allocator for Expr nodes.
804 **
805 ** Construct a new expression node and return a pointer to it.  Memory
806 ** for this node and for the pToken argument is a single allocation
807 ** obtained from sqlite3DbMalloc().  The calling function
808 ** is responsible for making sure the node eventually gets freed.
809 **
810 ** If dequote is true, then the token (if it exists) is dequoted.
811 ** If dequote is false, no dequoting is performed.  The deQuote
812 ** parameter is ignored if pToken is NULL or if the token does not
813 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
814 ** then the EP_DblQuoted flag is set on the expression node.
815 **
816 ** Special case:  If op==TK_INTEGER and pToken points to a string that
817 ** can be translated into a 32-bit integer, then the token is not
818 ** stored in u.zToken.  Instead, the integer values is written
819 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
820 ** is allocated to hold the integer text and the dequote flag is ignored.
821 */
822 Expr *sqlite3ExprAlloc(
823   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
824   int op,                 /* Expression opcode */
825   const Token *pToken,    /* Token argument.  Might be NULL */
826   int dequote             /* True to dequote */
827 ){
828   Expr *pNew;
829   int nExtra = 0;
830   int iValue = 0;
831 
832   assert( db!=0 );
833   if( pToken ){
834     if( op!=TK_INTEGER || pToken->z==0
835           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
836       nExtra = pToken->n+1;
837       assert( iValue>=0 );
838     }
839   }
840   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
841   if( pNew ){
842     memset(pNew, 0, sizeof(Expr));
843     pNew->op = (u8)op;
844     pNew->iAgg = -1;
845     if( pToken ){
846       if( nExtra==0 ){
847         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
848         pNew->u.iValue = iValue;
849       }else{
850         pNew->u.zToken = (char*)&pNew[1];
851         assert( pToken->z!=0 || pToken->n==0 );
852         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
853         pNew->u.zToken[pToken->n] = 0;
854         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
855           sqlite3DequoteExpr(pNew);
856         }
857       }
858     }
859 #if SQLITE_MAX_EXPR_DEPTH>0
860     pNew->nHeight = 1;
861 #endif
862   }
863   return pNew;
864 }
865 
866 /*
867 ** Allocate a new expression node from a zero-terminated token that has
868 ** already been dequoted.
869 */
870 Expr *sqlite3Expr(
871   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
872   int op,                 /* Expression opcode */
873   const char *zToken      /* Token argument.  Might be NULL */
874 ){
875   Token x;
876   x.z = zToken;
877   x.n = sqlite3Strlen30(zToken);
878   return sqlite3ExprAlloc(db, op, &x, 0);
879 }
880 
881 /*
882 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
883 **
884 ** If pRoot==NULL that means that a memory allocation error has occurred.
885 ** In that case, delete the subtrees pLeft and pRight.
886 */
887 void sqlite3ExprAttachSubtrees(
888   sqlite3 *db,
889   Expr *pRoot,
890   Expr *pLeft,
891   Expr *pRight
892 ){
893   if( pRoot==0 ){
894     assert( db->mallocFailed );
895     sqlite3ExprDelete(db, pLeft);
896     sqlite3ExprDelete(db, pRight);
897   }else{
898     if( pRight ){
899       pRoot->pRight = pRight;
900       pRoot->flags |= EP_Propagate & pRight->flags;
901     }
902     if( pLeft ){
903       pRoot->pLeft = pLeft;
904       pRoot->flags |= EP_Propagate & pLeft->flags;
905     }
906     exprSetHeight(pRoot);
907   }
908 }
909 
910 /*
911 ** Allocate an Expr node which joins as many as two subtrees.
912 **
913 ** One or both of the subtrees can be NULL.  Return a pointer to the new
914 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
915 ** free the subtrees and return NULL.
916 */
917 Expr *sqlite3PExpr(
918   Parse *pParse,          /* Parsing context */
919   int op,                 /* Expression opcode */
920   Expr *pLeft,            /* Left operand */
921   Expr *pRight            /* Right operand */
922 ){
923   Expr *p;
924   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
925   if( p ){
926     memset(p, 0, sizeof(Expr));
927     p->op = op & 0xff;
928     p->iAgg = -1;
929     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
930     sqlite3ExprCheckHeight(pParse, p->nHeight);
931   }else{
932     sqlite3ExprDelete(pParse->db, pLeft);
933     sqlite3ExprDelete(pParse->db, pRight);
934   }
935   return p;
936 }
937 
938 /*
939 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
940 ** do a memory allocation failure) then delete the pSelect object.
941 */
942 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
943   if( pExpr ){
944     pExpr->x.pSelect = pSelect;
945     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
946     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
947   }else{
948     assert( pParse->db->mallocFailed );
949     sqlite3SelectDelete(pParse->db, pSelect);
950   }
951 }
952 
953 
954 /*
955 ** Join two expressions using an AND operator.  If either expression is
956 ** NULL, then just return the other expression.
957 **
958 ** If one side or the other of the AND is known to be false, then instead
959 ** of returning an AND expression, just return a constant expression with
960 ** a value of false.
961 */
962 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
963   sqlite3 *db = pParse->db;
964   if( pLeft==0  ){
965     return pRight;
966   }else if( pRight==0 ){
967     return pLeft;
968   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
969          && !IN_RENAME_OBJECT
970   ){
971     sqlite3ExprDeferredDelete(pParse, pLeft);
972     sqlite3ExprDeferredDelete(pParse, pRight);
973     return sqlite3Expr(db, TK_INTEGER, "0");
974   }else{
975     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
976   }
977 }
978 
979 /*
980 ** Construct a new expression node for a function with multiple
981 ** arguments.
982 */
983 Expr *sqlite3ExprFunction(
984   Parse *pParse,        /* Parsing context */
985   ExprList *pList,      /* Argument list */
986   Token *pToken,        /* Name of the function */
987   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
988 ){
989   Expr *pNew;
990   sqlite3 *db = pParse->db;
991   assert( pToken );
992   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
993   if( pNew==0 ){
994     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
995     return 0;
996   }
997   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
998     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
999   }
1000   pNew->x.pList = pList;
1001   ExprSetProperty(pNew, EP_HasFunc);
1002   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
1003   sqlite3ExprSetHeightAndFlags(pParse, pNew);
1004   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
1005   return pNew;
1006 }
1007 
1008 /*
1009 ** Check to see if a function is usable according to current access
1010 ** rules:
1011 **
1012 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
1013 **
1014 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
1015 **                                top-level SQL
1016 **
1017 ** If the function is not usable, create an error.
1018 */
1019 void sqlite3ExprFunctionUsable(
1020   Parse *pParse,         /* Parsing and code generating context */
1021   Expr *pExpr,           /* The function invocation */
1022   FuncDef *pDef          /* The function being invoked */
1023 ){
1024   assert( !IN_RENAME_OBJECT );
1025   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1026   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1027     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1028      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1029     ){
1030       /* Functions prohibited in triggers and views if:
1031       **     (1) tagged with SQLITE_DIRECTONLY
1032       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1033       **         is tagged with SQLITE_FUNC_UNSAFE) and
1034       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1035       **         that the schema is possibly tainted).
1036       */
1037       sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName);
1038     }
1039   }
1040 }
1041 
1042 /*
1043 ** Assign a variable number to an expression that encodes a wildcard
1044 ** in the original SQL statement.
1045 **
1046 ** Wildcards consisting of a single "?" are assigned the next sequential
1047 ** variable number.
1048 **
1049 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1050 ** sure "nnn" is not too big to avoid a denial of service attack when
1051 ** the SQL statement comes from an external source.
1052 **
1053 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1054 ** as the previous instance of the same wildcard.  Or if this is the first
1055 ** instance of the wildcard, the next sequential variable number is
1056 ** assigned.
1057 */
1058 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1059   sqlite3 *db = pParse->db;
1060   const char *z;
1061   ynVar x;
1062 
1063   if( pExpr==0 ) return;
1064   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1065   z = pExpr->u.zToken;
1066   assert( z!=0 );
1067   assert( z[0]!=0 );
1068   assert( n==(u32)sqlite3Strlen30(z) );
1069   if( z[1]==0 ){
1070     /* Wildcard of the form "?".  Assign the next variable number */
1071     assert( z[0]=='?' );
1072     x = (ynVar)(++pParse->nVar);
1073   }else{
1074     int doAdd = 0;
1075     if( z[0]=='?' ){
1076       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1077       ** use it as the variable number */
1078       i64 i;
1079       int bOk;
1080       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1081         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1082         bOk = 1;
1083       }else{
1084         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1085       }
1086       testcase( i==0 );
1087       testcase( i==1 );
1088       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1089       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1090       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1091         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1092             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1093         return;
1094       }
1095       x = (ynVar)i;
1096       if( x>pParse->nVar ){
1097         pParse->nVar = (int)x;
1098         doAdd = 1;
1099       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1100         doAdd = 1;
1101       }
1102     }else{
1103       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1104       ** number as the prior appearance of the same name, or if the name
1105       ** has never appeared before, reuse the same variable number
1106       */
1107       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1108       if( x==0 ){
1109         x = (ynVar)(++pParse->nVar);
1110         doAdd = 1;
1111       }
1112     }
1113     if( doAdd ){
1114       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1115     }
1116   }
1117   pExpr->iColumn = x;
1118   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1119     sqlite3ErrorMsg(pParse, "too many SQL variables");
1120   }
1121 }
1122 
1123 /*
1124 ** Recursively delete an expression tree.
1125 */
1126 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1127   assert( p!=0 );
1128   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1129   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1130 
1131   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1132   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1133           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1134 #ifdef SQLITE_DEBUG
1135   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1136     assert( p->pLeft==0 );
1137     assert( p->pRight==0 );
1138     assert( p->x.pSelect==0 );
1139   }
1140 #endif
1141   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1142     /* The Expr.x union is never used at the same time as Expr.pRight */
1143     assert( p->x.pList==0 || p->pRight==0 );
1144     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1145     if( p->pRight ){
1146       assert( !ExprHasProperty(p, EP_WinFunc) );
1147       sqlite3ExprDeleteNN(db, p->pRight);
1148     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1149       assert( !ExprHasProperty(p, EP_WinFunc) );
1150       sqlite3SelectDelete(db, p->x.pSelect);
1151     }else{
1152       sqlite3ExprListDelete(db, p->x.pList);
1153 #ifndef SQLITE_OMIT_WINDOWFUNC
1154       if( ExprHasProperty(p, EP_WinFunc) ){
1155         sqlite3WindowDelete(db, p->y.pWin);
1156       }
1157 #endif
1158     }
1159   }
1160   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1161   if( !ExprHasProperty(p, EP_Static) ){
1162     sqlite3DbFreeNN(db, p);
1163   }
1164 }
1165 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1166   if( p ) sqlite3ExprDeleteNN(db, p);
1167 }
1168 
1169 
1170 /*
1171 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1172 ** This is similar to sqlite3ExprDelete() except that the delete is
1173 ** deferred untilthe pParse is deleted.
1174 **
1175 ** The pExpr might be deleted immediately on an OOM error.
1176 **
1177 ** The deferred delete is (currently) implemented by adding the
1178 ** pExpr to the pParse->pConstExpr list with a register number of 0.
1179 */
1180 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
1181   pParse->pConstExpr =
1182       sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
1183 }
1184 
1185 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1186 ** expression.
1187 */
1188 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1189   if( p ){
1190     if( IN_RENAME_OBJECT ){
1191       sqlite3RenameExprUnmap(pParse, p);
1192     }
1193     sqlite3ExprDeleteNN(pParse->db, p);
1194   }
1195 }
1196 
1197 /*
1198 ** Return the number of bytes allocated for the expression structure
1199 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1200 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1201 */
1202 static int exprStructSize(Expr *p){
1203   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1204   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1205   return EXPR_FULLSIZE;
1206 }
1207 
1208 /*
1209 ** The dupedExpr*Size() routines each return the number of bytes required
1210 ** to store a copy of an expression or expression tree.  They differ in
1211 ** how much of the tree is measured.
1212 **
1213 **     dupedExprStructSize()     Size of only the Expr structure
1214 **     dupedExprNodeSize()       Size of Expr + space for token
1215 **     dupedExprSize()           Expr + token + subtree components
1216 **
1217 ***************************************************************************
1218 **
1219 ** The dupedExprStructSize() function returns two values OR-ed together:
1220 ** (1) the space required for a copy of the Expr structure only and
1221 ** (2) the EP_xxx flags that indicate what the structure size should be.
1222 ** The return values is always one of:
1223 **
1224 **      EXPR_FULLSIZE
1225 **      EXPR_REDUCEDSIZE   | EP_Reduced
1226 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1227 **
1228 ** The size of the structure can be found by masking the return value
1229 ** of this routine with 0xfff.  The flags can be found by masking the
1230 ** return value with EP_Reduced|EP_TokenOnly.
1231 **
1232 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1233 ** (unreduced) Expr objects as they or originally constructed by the parser.
1234 ** During expression analysis, extra information is computed and moved into
1235 ** later parts of the Expr object and that extra information might get chopped
1236 ** off if the expression is reduced.  Note also that it does not work to
1237 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1238 ** to reduce a pristine expression tree from the parser.  The implementation
1239 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1240 ** to enforce this constraint.
1241 */
1242 static int dupedExprStructSize(Expr *p, int flags){
1243   int nSize;
1244   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1245   assert( EXPR_FULLSIZE<=0xfff );
1246   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1247   if( 0==flags || p->op==TK_SELECT_COLUMN
1248 #ifndef SQLITE_OMIT_WINDOWFUNC
1249    || ExprHasProperty(p, EP_WinFunc)
1250 #endif
1251   ){
1252     nSize = EXPR_FULLSIZE;
1253   }else{
1254     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1255     assert( !ExprHasProperty(p, EP_FromJoin) );
1256     assert( !ExprHasProperty(p, EP_MemToken) );
1257     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1258     if( p->pLeft || p->x.pList ){
1259       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1260     }else{
1261       assert( p->pRight==0 );
1262       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1263     }
1264   }
1265   return nSize;
1266 }
1267 
1268 /*
1269 ** This function returns the space in bytes required to store the copy
1270 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1271 ** string is defined.)
1272 */
1273 static int dupedExprNodeSize(Expr *p, int flags){
1274   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1275   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1276     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1277   }
1278   return ROUND8(nByte);
1279 }
1280 
1281 /*
1282 ** Return the number of bytes required to create a duplicate of the
1283 ** expression passed as the first argument. The second argument is a
1284 ** mask containing EXPRDUP_XXX flags.
1285 **
1286 ** The value returned includes space to create a copy of the Expr struct
1287 ** itself and the buffer referred to by Expr.u.zToken, if any.
1288 **
1289 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1290 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1291 ** and Expr.pRight variables (but not for any structures pointed to or
1292 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1293 */
1294 static int dupedExprSize(Expr *p, int flags){
1295   int nByte = 0;
1296   if( p ){
1297     nByte = dupedExprNodeSize(p, flags);
1298     if( flags&EXPRDUP_REDUCE ){
1299       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1300     }
1301   }
1302   return nByte;
1303 }
1304 
1305 /*
1306 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1307 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1308 ** to store the copy of expression p, the copies of p->u.zToken
1309 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1310 ** if any. Before returning, *pzBuffer is set to the first byte past the
1311 ** portion of the buffer copied into by this function.
1312 */
1313 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1314   Expr *pNew;           /* Value to return */
1315   u8 *zAlloc;           /* Memory space from which to build Expr object */
1316   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1317 
1318   assert( db!=0 );
1319   assert( p );
1320   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1321   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1322 
1323   /* Figure out where to write the new Expr structure. */
1324   if( pzBuffer ){
1325     zAlloc = *pzBuffer;
1326     staticFlag = EP_Static;
1327     assert( zAlloc!=0 );
1328   }else{
1329     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1330     staticFlag = 0;
1331   }
1332   pNew = (Expr *)zAlloc;
1333 
1334   if( pNew ){
1335     /* Set nNewSize to the size allocated for the structure pointed to
1336     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1337     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1338     ** by the copy of the p->u.zToken string (if any).
1339     */
1340     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1341     const int nNewSize = nStructSize & 0xfff;
1342     int nToken;
1343     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1344       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1345     }else{
1346       nToken = 0;
1347     }
1348     if( dupFlags ){
1349       assert( ExprHasProperty(p, EP_Reduced)==0 );
1350       memcpy(zAlloc, p, nNewSize);
1351     }else{
1352       u32 nSize = (u32)exprStructSize(p);
1353       memcpy(zAlloc, p, nSize);
1354       if( nSize<EXPR_FULLSIZE ){
1355         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1356       }
1357     }
1358 
1359     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1360     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1361     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1362     pNew->flags |= staticFlag;
1363     ExprClearVVAProperties(pNew);
1364     if( dupFlags ){
1365       ExprSetVVAProperty(pNew, EP_Immutable);
1366     }
1367 
1368     /* Copy the p->u.zToken string, if any. */
1369     if( nToken ){
1370       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1371       memcpy(zToken, p->u.zToken, nToken);
1372     }
1373 
1374     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1375       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1376       if( ExprHasProperty(p, EP_xIsSelect) ){
1377         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1378       }else{
1379         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1380       }
1381     }
1382 
1383     /* Fill in pNew->pLeft and pNew->pRight. */
1384     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1385       zAlloc += dupedExprNodeSize(p, dupFlags);
1386       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1387         pNew->pLeft = p->pLeft ?
1388                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1389         pNew->pRight = p->pRight ?
1390                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1391       }
1392 #ifndef SQLITE_OMIT_WINDOWFUNC
1393       if( ExprHasProperty(p, EP_WinFunc) ){
1394         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1395         assert( ExprHasProperty(pNew, EP_WinFunc) );
1396       }
1397 #endif /* SQLITE_OMIT_WINDOWFUNC */
1398       if( pzBuffer ){
1399         *pzBuffer = zAlloc;
1400       }
1401     }else{
1402       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1403         if( pNew->op==TK_SELECT_COLUMN ){
1404           pNew->pLeft = p->pLeft;
1405           assert( p->iColumn==0 || p->pRight==0 );
1406           assert( p->pRight==0  || p->pRight==p->pLeft
1407                                 || ExprHasProperty(p->pLeft, EP_Subquery) );
1408         }else{
1409           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1410         }
1411         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1412       }
1413     }
1414   }
1415   return pNew;
1416 }
1417 
1418 /*
1419 ** Create and return a deep copy of the object passed as the second
1420 ** argument. If an OOM condition is encountered, NULL is returned
1421 ** and the db->mallocFailed flag set.
1422 */
1423 #ifndef SQLITE_OMIT_CTE
1424 static With *withDup(sqlite3 *db, With *p){
1425   With *pRet = 0;
1426   if( p ){
1427     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1428     pRet = sqlite3DbMallocZero(db, nByte);
1429     if( pRet ){
1430       int i;
1431       pRet->nCte = p->nCte;
1432       for(i=0; i<p->nCte; i++){
1433         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1434         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1435         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1436       }
1437     }
1438   }
1439   return pRet;
1440 }
1441 #else
1442 # define withDup(x,y) 0
1443 #endif
1444 
1445 #ifndef SQLITE_OMIT_WINDOWFUNC
1446 /*
1447 ** The gatherSelectWindows() procedure and its helper routine
1448 ** gatherSelectWindowsCallback() are used to scan all the expressions
1449 ** an a newly duplicated SELECT statement and gather all of the Window
1450 ** objects found there, assembling them onto the linked list at Select->pWin.
1451 */
1452 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1453   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1454     Select *pSelect = pWalker->u.pSelect;
1455     Window *pWin = pExpr->y.pWin;
1456     assert( pWin );
1457     assert( IsWindowFunc(pExpr) );
1458     assert( pWin->ppThis==0 );
1459     sqlite3WindowLink(pSelect, pWin);
1460   }
1461   return WRC_Continue;
1462 }
1463 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1464   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1465 }
1466 static void gatherSelectWindows(Select *p){
1467   Walker w;
1468   w.xExprCallback = gatherSelectWindowsCallback;
1469   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1470   w.xSelectCallback2 = 0;
1471   w.pParse = 0;
1472   w.u.pSelect = p;
1473   sqlite3WalkSelect(&w, p);
1474 }
1475 #endif
1476 
1477 
1478 /*
1479 ** The following group of routines make deep copies of expressions,
1480 ** expression lists, ID lists, and select statements.  The copies can
1481 ** be deleted (by being passed to their respective ...Delete() routines)
1482 ** without effecting the originals.
1483 **
1484 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1485 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1486 ** by subsequent calls to sqlite*ListAppend() routines.
1487 **
1488 ** Any tables that the SrcList might point to are not duplicated.
1489 **
1490 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1491 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1492 ** truncated version of the usual Expr structure that will be stored as
1493 ** part of the in-memory representation of the database schema.
1494 */
1495 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1496   assert( flags==0 || flags==EXPRDUP_REDUCE );
1497   return p ? exprDup(db, p, flags, 0) : 0;
1498 }
1499 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1500   ExprList *pNew;
1501   struct ExprList_item *pItem, *pOldItem;
1502   int i;
1503   Expr *pPriorSelectCol = 0;
1504   assert( db!=0 );
1505   if( p==0 ) return 0;
1506   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1507   if( pNew==0 ) return 0;
1508   pNew->nExpr = p->nExpr;
1509   pNew->nAlloc = p->nAlloc;
1510   pItem = pNew->a;
1511   pOldItem = p->a;
1512   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1513     Expr *pOldExpr = pOldItem->pExpr;
1514     Expr *pNewExpr;
1515     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1516     if( pOldExpr
1517      && pOldExpr->op==TK_SELECT_COLUMN
1518      && (pNewExpr = pItem->pExpr)!=0
1519     ){
1520       assert( pNewExpr->iColumn==0 || i>0 );
1521       if( pNewExpr->iColumn==0 ){
1522         assert( pOldExpr->pLeft==pOldExpr->pRight );
1523         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1524       }else{
1525         assert( i>0 );
1526         assert( pItem[-1].pExpr!=0 );
1527         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1528         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1529         pNewExpr->pLeft = pPriorSelectCol;
1530       }
1531     }
1532     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1533     pItem->sortFlags = pOldItem->sortFlags;
1534     pItem->eEName = pOldItem->eEName;
1535     pItem->done = 0;
1536     pItem->bNulls = pOldItem->bNulls;
1537     pItem->bSorterRef = pOldItem->bSorterRef;
1538     pItem->u = pOldItem->u;
1539   }
1540   return pNew;
1541 }
1542 
1543 /*
1544 ** If cursors, triggers, views and subqueries are all omitted from
1545 ** the build, then none of the following routines, except for
1546 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1547 ** called with a NULL argument.
1548 */
1549 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1550  || !defined(SQLITE_OMIT_SUBQUERY)
1551 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1552   SrcList *pNew;
1553   int i;
1554   int nByte;
1555   assert( db!=0 );
1556   if( p==0 ) return 0;
1557   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1558   pNew = sqlite3DbMallocRawNN(db, nByte );
1559   if( pNew==0 ) return 0;
1560   pNew->nSrc = pNew->nAlloc = p->nSrc;
1561   for(i=0; i<p->nSrc; i++){
1562     SrcItem *pNewItem = &pNew->a[i];
1563     SrcItem *pOldItem = &p->a[i];
1564     Table *pTab;
1565     pNewItem->pSchema = pOldItem->pSchema;
1566     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1567     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1568     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1569     pNewItem->fg = pOldItem->fg;
1570     pNewItem->iCursor = pOldItem->iCursor;
1571     pNewItem->addrFillSub = pOldItem->addrFillSub;
1572     pNewItem->regReturn = pOldItem->regReturn;
1573     if( pNewItem->fg.isIndexedBy ){
1574       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1575     }
1576     pNewItem->u2 = pOldItem->u2;
1577     if( pNewItem->fg.isCte ){
1578       pNewItem->u2.pCteUse->nUse++;
1579     }
1580     if( pNewItem->fg.isTabFunc ){
1581       pNewItem->u1.pFuncArg =
1582           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1583     }
1584     pTab = pNewItem->pTab = pOldItem->pTab;
1585     if( pTab ){
1586       pTab->nTabRef++;
1587     }
1588     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1589     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1590     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1591     pNewItem->colUsed = pOldItem->colUsed;
1592   }
1593   return pNew;
1594 }
1595 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1596   IdList *pNew;
1597   int i;
1598   assert( db!=0 );
1599   if( p==0 ) return 0;
1600   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1601   if( pNew==0 ) return 0;
1602   pNew->nId = p->nId;
1603   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1604   if( pNew->a==0 ){
1605     sqlite3DbFreeNN(db, pNew);
1606     return 0;
1607   }
1608   /* Note that because the size of the allocation for p->a[] is not
1609   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1610   ** on the duplicate created by this function. */
1611   for(i=0; i<p->nId; i++){
1612     struct IdList_item *pNewItem = &pNew->a[i];
1613     struct IdList_item *pOldItem = &p->a[i];
1614     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1615     pNewItem->idx = pOldItem->idx;
1616   }
1617   return pNew;
1618 }
1619 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1620   Select *pRet = 0;
1621   Select *pNext = 0;
1622   Select **pp = &pRet;
1623   Select *p;
1624 
1625   assert( db!=0 );
1626   for(p=pDup; p; p=p->pPrior){
1627     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1628     if( pNew==0 ) break;
1629     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1630     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1631     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1632     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1633     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1634     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1635     pNew->op = p->op;
1636     pNew->pNext = pNext;
1637     pNew->pPrior = 0;
1638     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1639     pNew->iLimit = 0;
1640     pNew->iOffset = 0;
1641     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1642     pNew->addrOpenEphm[0] = -1;
1643     pNew->addrOpenEphm[1] = -1;
1644     pNew->nSelectRow = p->nSelectRow;
1645     pNew->pWith = withDup(db, p->pWith);
1646 #ifndef SQLITE_OMIT_WINDOWFUNC
1647     pNew->pWin = 0;
1648     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1649     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1650 #endif
1651     pNew->selId = p->selId;
1652     if( db->mallocFailed ){
1653       /* Any prior OOM might have left the Select object incomplete.
1654       ** Delete the whole thing rather than allow an incomplete Select
1655       ** to be used by the code generator. */
1656       pNew->pNext = 0;
1657       sqlite3SelectDelete(db, pNew);
1658       break;
1659     }
1660     *pp = pNew;
1661     pp = &pNew->pPrior;
1662     pNext = pNew;
1663   }
1664 
1665   return pRet;
1666 }
1667 #else
1668 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1669   assert( p==0 );
1670   return 0;
1671 }
1672 #endif
1673 
1674 
1675 /*
1676 ** Add a new element to the end of an expression list.  If pList is
1677 ** initially NULL, then create a new expression list.
1678 **
1679 ** The pList argument must be either NULL or a pointer to an ExprList
1680 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1681 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1682 ** Reason:  This routine assumes that the number of slots in pList->a[]
1683 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1684 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1685 **
1686 ** If a memory allocation error occurs, the entire list is freed and
1687 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1688 ** that the new entry was successfully appended.
1689 */
1690 static const struct ExprList_item zeroItem = {0};
1691 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
1692   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1693   Expr *pExpr             /* Expression to be appended. Might be NULL */
1694 ){
1695   struct ExprList_item *pItem;
1696   ExprList *pList;
1697 
1698   pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
1699   if( pList==0 ){
1700     sqlite3ExprDelete(db, pExpr);
1701     return 0;
1702   }
1703   pList->nAlloc = 4;
1704   pList->nExpr = 1;
1705   pItem = &pList->a[0];
1706   *pItem = zeroItem;
1707   pItem->pExpr = pExpr;
1708   return pList;
1709 }
1710 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
1711   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1712   ExprList *pList,        /* List to which to append. Might be NULL */
1713   Expr *pExpr             /* Expression to be appended. Might be NULL */
1714 ){
1715   struct ExprList_item *pItem;
1716   ExprList *pNew;
1717   pList->nAlloc *= 2;
1718   pNew = sqlite3DbRealloc(db, pList,
1719        sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
1720   if( pNew==0 ){
1721     sqlite3ExprListDelete(db, pList);
1722     sqlite3ExprDelete(db, pExpr);
1723     return 0;
1724   }else{
1725     pList = pNew;
1726   }
1727   pItem = &pList->a[pList->nExpr++];
1728   *pItem = zeroItem;
1729   pItem->pExpr = pExpr;
1730   return pList;
1731 }
1732 ExprList *sqlite3ExprListAppend(
1733   Parse *pParse,          /* Parsing context */
1734   ExprList *pList,        /* List to which to append. Might be NULL */
1735   Expr *pExpr             /* Expression to be appended. Might be NULL */
1736 ){
1737   struct ExprList_item *pItem;
1738   if( pList==0 ){
1739     return sqlite3ExprListAppendNew(pParse->db,pExpr);
1740   }
1741   if( pList->nAlloc<pList->nExpr+1 ){
1742     return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
1743   }
1744   pItem = &pList->a[pList->nExpr++];
1745   *pItem = zeroItem;
1746   pItem->pExpr = pExpr;
1747   return pList;
1748 }
1749 
1750 /*
1751 ** pColumns and pExpr form a vector assignment which is part of the SET
1752 ** clause of an UPDATE statement.  Like this:
1753 **
1754 **        (a,b,c) = (expr1,expr2,expr3)
1755 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1756 **
1757 ** For each term of the vector assignment, append new entries to the
1758 ** expression list pList.  In the case of a subquery on the RHS, append
1759 ** TK_SELECT_COLUMN expressions.
1760 */
1761 ExprList *sqlite3ExprListAppendVector(
1762   Parse *pParse,         /* Parsing context */
1763   ExprList *pList,       /* List to which to append. Might be NULL */
1764   IdList *pColumns,      /* List of names of LHS of the assignment */
1765   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1766 ){
1767   sqlite3 *db = pParse->db;
1768   int n;
1769   int i;
1770   int iFirst = pList ? pList->nExpr : 0;
1771   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1772   ** exit prior to this routine being invoked */
1773   if( NEVER(pColumns==0) ) goto vector_append_error;
1774   if( pExpr==0 ) goto vector_append_error;
1775 
1776   /* If the RHS is a vector, then we can immediately check to see that
1777   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1778   ** wildcards ("*") in the result set of the SELECT must be expanded before
1779   ** we can do the size check, so defer the size check until code generation.
1780   */
1781   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1782     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1783                     pColumns->nId, n);
1784     goto vector_append_error;
1785   }
1786 
1787   for(i=0; i<pColumns->nId; i++){
1788     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1789     assert( pSubExpr!=0 || db->mallocFailed );
1790     assert( pSubExpr==0 || pSubExpr->iTable==0 );
1791     if( pSubExpr==0 ) continue;
1792     pSubExpr->iTable = pColumns->nId;
1793     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1794     if( pList ){
1795       assert( pList->nExpr==iFirst+i+1 );
1796       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1797       pColumns->a[i].zName = 0;
1798     }
1799   }
1800 
1801   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1802     Expr *pFirst = pList->a[iFirst].pExpr;
1803     assert( pFirst!=0 );
1804     assert( pFirst->op==TK_SELECT_COLUMN );
1805 
1806     /* Store the SELECT statement in pRight so it will be deleted when
1807     ** sqlite3ExprListDelete() is called */
1808     pFirst->pRight = pExpr;
1809     pExpr = 0;
1810 
1811     /* Remember the size of the LHS in iTable so that we can check that
1812     ** the RHS and LHS sizes match during code generation. */
1813     pFirst->iTable = pColumns->nId;
1814   }
1815 
1816 vector_append_error:
1817   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1818   sqlite3IdListDelete(db, pColumns);
1819   return pList;
1820 }
1821 
1822 /*
1823 ** Set the sort order for the last element on the given ExprList.
1824 */
1825 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1826   struct ExprList_item *pItem;
1827   if( p==0 ) return;
1828   assert( p->nExpr>0 );
1829 
1830   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1831   assert( iSortOrder==SQLITE_SO_UNDEFINED
1832        || iSortOrder==SQLITE_SO_ASC
1833        || iSortOrder==SQLITE_SO_DESC
1834   );
1835   assert( eNulls==SQLITE_SO_UNDEFINED
1836        || eNulls==SQLITE_SO_ASC
1837        || eNulls==SQLITE_SO_DESC
1838   );
1839 
1840   pItem = &p->a[p->nExpr-1];
1841   assert( pItem->bNulls==0 );
1842   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1843     iSortOrder = SQLITE_SO_ASC;
1844   }
1845   pItem->sortFlags = (u8)iSortOrder;
1846 
1847   if( eNulls!=SQLITE_SO_UNDEFINED ){
1848     pItem->bNulls = 1;
1849     if( iSortOrder!=eNulls ){
1850       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1851     }
1852   }
1853 }
1854 
1855 /*
1856 ** Set the ExprList.a[].zEName element of the most recently added item
1857 ** on the expression list.
1858 **
1859 ** pList might be NULL following an OOM error.  But pName should never be
1860 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1861 ** is set.
1862 */
1863 void sqlite3ExprListSetName(
1864   Parse *pParse,          /* Parsing context */
1865   ExprList *pList,        /* List to which to add the span. */
1866   Token *pName,           /* Name to be added */
1867   int dequote             /* True to cause the name to be dequoted */
1868 ){
1869   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1870   assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1871   if( pList ){
1872     struct ExprList_item *pItem;
1873     assert( pList->nExpr>0 );
1874     pItem = &pList->a[pList->nExpr-1];
1875     assert( pItem->zEName==0 );
1876     assert( pItem->eEName==ENAME_NAME );
1877     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1878     if( dequote ){
1879       /* If dequote==0, then pName->z does not point to part of a DDL
1880       ** statement handled by the parser. And so no token need be added
1881       ** to the token-map.  */
1882       sqlite3Dequote(pItem->zEName);
1883       if( IN_RENAME_OBJECT ){
1884         sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName);
1885       }
1886     }
1887   }
1888 }
1889 
1890 /*
1891 ** Set the ExprList.a[].zSpan element of the most recently added item
1892 ** on the expression list.
1893 **
1894 ** pList might be NULL following an OOM error.  But pSpan should never be
1895 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1896 ** is set.
1897 */
1898 void sqlite3ExprListSetSpan(
1899   Parse *pParse,          /* Parsing context */
1900   ExprList *pList,        /* List to which to add the span. */
1901   const char *zStart,     /* Start of the span */
1902   const char *zEnd        /* End of the span */
1903 ){
1904   sqlite3 *db = pParse->db;
1905   assert( pList!=0 || db->mallocFailed!=0 );
1906   if( pList ){
1907     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1908     assert( pList->nExpr>0 );
1909     if( pItem->zEName==0 ){
1910       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
1911       pItem->eEName = ENAME_SPAN;
1912     }
1913   }
1914 }
1915 
1916 /*
1917 ** If the expression list pEList contains more than iLimit elements,
1918 ** leave an error message in pParse.
1919 */
1920 void sqlite3ExprListCheckLength(
1921   Parse *pParse,
1922   ExprList *pEList,
1923   const char *zObject
1924 ){
1925   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1926   testcase( pEList && pEList->nExpr==mx );
1927   testcase( pEList && pEList->nExpr==mx+1 );
1928   if( pEList && pEList->nExpr>mx ){
1929     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1930   }
1931 }
1932 
1933 /*
1934 ** Delete an entire expression list.
1935 */
1936 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1937   int i = pList->nExpr;
1938   struct ExprList_item *pItem =  pList->a;
1939   assert( pList->nExpr>0 );
1940   do{
1941     sqlite3ExprDelete(db, pItem->pExpr);
1942     sqlite3DbFree(db, pItem->zEName);
1943     pItem++;
1944   }while( --i>0 );
1945   sqlite3DbFreeNN(db, pList);
1946 }
1947 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1948   if( pList ) exprListDeleteNN(db, pList);
1949 }
1950 
1951 /*
1952 ** Return the bitwise-OR of all Expr.flags fields in the given
1953 ** ExprList.
1954 */
1955 u32 sqlite3ExprListFlags(const ExprList *pList){
1956   int i;
1957   u32 m = 0;
1958   assert( pList!=0 );
1959   for(i=0; i<pList->nExpr; i++){
1960      Expr *pExpr = pList->a[i].pExpr;
1961      assert( pExpr!=0 );
1962      m |= pExpr->flags;
1963   }
1964   return m;
1965 }
1966 
1967 /*
1968 ** This is a SELECT-node callback for the expression walker that
1969 ** always "fails".  By "fail" in this case, we mean set
1970 ** pWalker->eCode to zero and abort.
1971 **
1972 ** This callback is used by multiple expression walkers.
1973 */
1974 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1975   UNUSED_PARAMETER(NotUsed);
1976   pWalker->eCode = 0;
1977   return WRC_Abort;
1978 }
1979 
1980 /*
1981 ** Check the input string to see if it is "true" or "false" (in any case).
1982 **
1983 **       If the string is....           Return
1984 **         "true"                         EP_IsTrue
1985 **         "false"                        EP_IsFalse
1986 **         anything else                  0
1987 */
1988 u32 sqlite3IsTrueOrFalse(const char *zIn){
1989   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
1990   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
1991   return 0;
1992 }
1993 
1994 
1995 /*
1996 ** If the input expression is an ID with the name "true" or "false"
1997 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1998 ** the conversion happened, and zero if the expression is unaltered.
1999 */
2000 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
2001   u32 v;
2002   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
2003   if( !ExprHasProperty(pExpr, EP_Quoted)
2004    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
2005   ){
2006     pExpr->op = TK_TRUEFALSE;
2007     ExprSetProperty(pExpr, v);
2008     return 1;
2009   }
2010   return 0;
2011 }
2012 
2013 /*
2014 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
2015 ** and 0 if it is FALSE.
2016 */
2017 int sqlite3ExprTruthValue(const Expr *pExpr){
2018   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
2019   assert( pExpr->op==TK_TRUEFALSE );
2020   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
2021        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
2022   return pExpr->u.zToken[4]==0;
2023 }
2024 
2025 /*
2026 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2027 ** terms that are always true or false.  Return the simplified expression.
2028 ** Or return the original expression if no simplification is possible.
2029 **
2030 ** Examples:
2031 **
2032 **     (x<10) AND true                =>   (x<10)
2033 **     (x<10) AND false               =>   false
2034 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
2035 **     (x<10) AND (y=22 OR true)      =>   (x<10)
2036 **     (y=22) OR true                 =>   true
2037 */
2038 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
2039   assert( pExpr!=0 );
2040   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
2041     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
2042     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
2043     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
2044       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
2045     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
2046       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
2047     }
2048   }
2049   return pExpr;
2050 }
2051 
2052 
2053 /*
2054 ** These routines are Walker callbacks used to check expressions to
2055 ** see if they are "constant" for some definition of constant.  The
2056 ** Walker.eCode value determines the type of "constant" we are looking
2057 ** for.
2058 **
2059 ** These callback routines are used to implement the following:
2060 **
2061 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
2062 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
2063 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
2064 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
2065 **
2066 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2067 ** is found to not be a constant.
2068 **
2069 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2070 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
2071 ** when parsing an existing schema out of the sqlite_schema table and 4
2072 ** when processing a new CREATE TABLE statement.  A bound parameter raises
2073 ** an error for new statements, but is silently converted
2074 ** to NULL for existing schemas.  This allows sqlite_schema tables that
2075 ** contain a bound parameter because they were generated by older versions
2076 ** of SQLite to be parsed by newer versions of SQLite without raising a
2077 ** malformed schema error.
2078 */
2079 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2080 
2081   /* If pWalker->eCode is 2 then any term of the expression that comes from
2082   ** the ON or USING clauses of a left join disqualifies the expression
2083   ** from being considered constant. */
2084   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
2085     pWalker->eCode = 0;
2086     return WRC_Abort;
2087   }
2088 
2089   switch( pExpr->op ){
2090     /* Consider functions to be constant if all their arguments are constant
2091     ** and either pWalker->eCode==4 or 5 or the function has the
2092     ** SQLITE_FUNC_CONST flag. */
2093     case TK_FUNCTION:
2094       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2095        && !ExprHasProperty(pExpr, EP_WinFunc)
2096       ){
2097         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2098         return WRC_Continue;
2099       }else{
2100         pWalker->eCode = 0;
2101         return WRC_Abort;
2102       }
2103     case TK_ID:
2104       /* Convert "true" or "false" in a DEFAULT clause into the
2105       ** appropriate TK_TRUEFALSE operator */
2106       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2107         return WRC_Prune;
2108       }
2109       /* no break */ deliberate_fall_through
2110     case TK_COLUMN:
2111     case TK_AGG_FUNCTION:
2112     case TK_AGG_COLUMN:
2113       testcase( pExpr->op==TK_ID );
2114       testcase( pExpr->op==TK_COLUMN );
2115       testcase( pExpr->op==TK_AGG_FUNCTION );
2116       testcase( pExpr->op==TK_AGG_COLUMN );
2117       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2118         return WRC_Continue;
2119       }
2120       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2121         return WRC_Continue;
2122       }
2123       /* no break */ deliberate_fall_through
2124     case TK_IF_NULL_ROW:
2125     case TK_REGISTER:
2126     case TK_DOT:
2127       testcase( pExpr->op==TK_REGISTER );
2128       testcase( pExpr->op==TK_IF_NULL_ROW );
2129       testcase( pExpr->op==TK_DOT );
2130       pWalker->eCode = 0;
2131       return WRC_Abort;
2132     case TK_VARIABLE:
2133       if( pWalker->eCode==5 ){
2134         /* Silently convert bound parameters that appear inside of CREATE
2135         ** statements into a NULL when parsing the CREATE statement text out
2136         ** of the sqlite_schema table */
2137         pExpr->op = TK_NULL;
2138       }else if( pWalker->eCode==4 ){
2139         /* A bound parameter in a CREATE statement that originates from
2140         ** sqlite3_prepare() causes an error */
2141         pWalker->eCode = 0;
2142         return WRC_Abort;
2143       }
2144       /* no break */ deliberate_fall_through
2145     default:
2146       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2147       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2148       return WRC_Continue;
2149   }
2150 }
2151 static int exprIsConst(Expr *p, int initFlag, int iCur){
2152   Walker w;
2153   w.eCode = initFlag;
2154   w.xExprCallback = exprNodeIsConstant;
2155   w.xSelectCallback = sqlite3SelectWalkFail;
2156 #ifdef SQLITE_DEBUG
2157   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2158 #endif
2159   w.u.iCur = iCur;
2160   sqlite3WalkExpr(&w, p);
2161   return w.eCode;
2162 }
2163 
2164 /*
2165 ** Walk an expression tree.  Return non-zero if the expression is constant
2166 ** and 0 if it involves variables or function calls.
2167 **
2168 ** For the purposes of this function, a double-quoted string (ex: "abc")
2169 ** is considered a variable but a single-quoted string (ex: 'abc') is
2170 ** a constant.
2171 */
2172 int sqlite3ExprIsConstant(Expr *p){
2173   return exprIsConst(p, 1, 0);
2174 }
2175 
2176 /*
2177 ** Walk an expression tree.  Return non-zero if
2178 **
2179 **   (1) the expression is constant, and
2180 **   (2) the expression does originate in the ON or USING clause
2181 **       of a LEFT JOIN, and
2182 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2183 **       operands created by the constant propagation optimization.
2184 **
2185 ** When this routine returns true, it indicates that the expression
2186 ** can be added to the pParse->pConstExpr list and evaluated once when
2187 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2188 */
2189 int sqlite3ExprIsConstantNotJoin(Expr *p){
2190   return exprIsConst(p, 2, 0);
2191 }
2192 
2193 /*
2194 ** Walk an expression tree.  Return non-zero if the expression is constant
2195 ** for any single row of the table with cursor iCur.  In other words, the
2196 ** expression must not refer to any non-deterministic function nor any
2197 ** table other than iCur.
2198 */
2199 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2200   return exprIsConst(p, 3, iCur);
2201 }
2202 
2203 
2204 /*
2205 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2206 */
2207 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2208   ExprList *pGroupBy = pWalker->u.pGroupBy;
2209   int i;
2210 
2211   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2212   ** it constant.  */
2213   for(i=0; i<pGroupBy->nExpr; i++){
2214     Expr *p = pGroupBy->a[i].pExpr;
2215     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2216       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2217       if( sqlite3IsBinary(pColl) ){
2218         return WRC_Prune;
2219       }
2220     }
2221   }
2222 
2223   /* Check if pExpr is a sub-select. If so, consider it variable. */
2224   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2225     pWalker->eCode = 0;
2226     return WRC_Abort;
2227   }
2228 
2229   return exprNodeIsConstant(pWalker, pExpr);
2230 }
2231 
2232 /*
2233 ** Walk the expression tree passed as the first argument. Return non-zero
2234 ** if the expression consists entirely of constants or copies of terms
2235 ** in pGroupBy that sort with the BINARY collation sequence.
2236 **
2237 ** This routine is used to determine if a term of the HAVING clause can
2238 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2239 ** the value of the HAVING clause term must be the same for all members of
2240 ** a "group".  The requirement that the GROUP BY term must be BINARY
2241 ** assumes that no other collating sequence will have a finer-grained
2242 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2243 ** A=B in every other collating sequence.  The requirement that the
2244 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2245 ** to promote HAVING clauses that use the same alternative collating
2246 ** sequence as the GROUP BY term, but that is much harder to check,
2247 ** alternative collating sequences are uncommon, and this is only an
2248 ** optimization, so we take the easy way out and simply require the
2249 ** GROUP BY to use the BINARY collating sequence.
2250 */
2251 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2252   Walker w;
2253   w.eCode = 1;
2254   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2255   w.xSelectCallback = 0;
2256   w.u.pGroupBy = pGroupBy;
2257   w.pParse = pParse;
2258   sqlite3WalkExpr(&w, p);
2259   return w.eCode;
2260 }
2261 
2262 /*
2263 ** Walk an expression tree for the DEFAULT field of a column definition
2264 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2265 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2266 ** the expression is constant or a function call with constant arguments.
2267 ** Return and 0 if there are any variables.
2268 **
2269 ** isInit is true when parsing from sqlite_schema.  isInit is false when
2270 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2271 ** (such as ? or $abc) in the expression are converted into NULL.  When
2272 ** isInit is false, parameters raise an error.  Parameters should not be
2273 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2274 ** allowed it, so we need to support it when reading sqlite_schema for
2275 ** backwards compatibility.
2276 **
2277 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2278 **
2279 ** For the purposes of this function, a double-quoted string (ex: "abc")
2280 ** is considered a variable but a single-quoted string (ex: 'abc') is
2281 ** a constant.
2282 */
2283 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2284   assert( isInit==0 || isInit==1 );
2285   return exprIsConst(p, 4+isInit, 0);
2286 }
2287 
2288 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2289 /*
2290 ** Walk an expression tree.  Return 1 if the expression contains a
2291 ** subquery of some kind.  Return 0 if there are no subqueries.
2292 */
2293 int sqlite3ExprContainsSubquery(Expr *p){
2294   Walker w;
2295   w.eCode = 1;
2296   w.xExprCallback = sqlite3ExprWalkNoop;
2297   w.xSelectCallback = sqlite3SelectWalkFail;
2298 #ifdef SQLITE_DEBUG
2299   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2300 #endif
2301   sqlite3WalkExpr(&w, p);
2302   return w.eCode==0;
2303 }
2304 #endif
2305 
2306 /*
2307 ** If the expression p codes a constant integer that is small enough
2308 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2309 ** in *pValue.  If the expression is not an integer or if it is too big
2310 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2311 */
2312 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2313   int rc = 0;
2314   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2315 
2316   /* If an expression is an integer literal that fits in a signed 32-bit
2317   ** integer, then the EP_IntValue flag will have already been set */
2318   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2319            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2320 
2321   if( p->flags & EP_IntValue ){
2322     *pValue = p->u.iValue;
2323     return 1;
2324   }
2325   switch( p->op ){
2326     case TK_UPLUS: {
2327       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2328       break;
2329     }
2330     case TK_UMINUS: {
2331       int v;
2332       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2333         assert( v!=(-2147483647-1) );
2334         *pValue = -v;
2335         rc = 1;
2336       }
2337       break;
2338     }
2339     default: break;
2340   }
2341   return rc;
2342 }
2343 
2344 /*
2345 ** Return FALSE if there is no chance that the expression can be NULL.
2346 **
2347 ** If the expression might be NULL or if the expression is too complex
2348 ** to tell return TRUE.
2349 **
2350 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2351 ** when we know that a value cannot be NULL.  Hence, a false positive
2352 ** (returning TRUE when in fact the expression can never be NULL) might
2353 ** be a small performance hit but is otherwise harmless.  On the other
2354 ** hand, a false negative (returning FALSE when the result could be NULL)
2355 ** will likely result in an incorrect answer.  So when in doubt, return
2356 ** TRUE.
2357 */
2358 int sqlite3ExprCanBeNull(const Expr *p){
2359   u8 op;
2360   assert( p!=0 );
2361   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2362     p = p->pLeft;
2363     assert( p!=0 );
2364   }
2365   op = p->op;
2366   if( op==TK_REGISTER ) op = p->op2;
2367   switch( op ){
2368     case TK_INTEGER:
2369     case TK_STRING:
2370     case TK_FLOAT:
2371     case TK_BLOB:
2372       return 0;
2373     case TK_COLUMN:
2374       return ExprHasProperty(p, EP_CanBeNull) ||
2375              p->y.pTab==0 ||  /* Reference to column of index on expression */
2376              (p->iColumn>=0
2377               && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */
2378               && p->y.pTab->aCol[p->iColumn].notNull==0);
2379     default:
2380       return 1;
2381   }
2382 }
2383 
2384 /*
2385 ** Return TRUE if the given expression is a constant which would be
2386 ** unchanged by OP_Affinity with the affinity given in the second
2387 ** argument.
2388 **
2389 ** This routine is used to determine if the OP_Affinity operation
2390 ** can be omitted.  When in doubt return FALSE.  A false negative
2391 ** is harmless.  A false positive, however, can result in the wrong
2392 ** answer.
2393 */
2394 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2395   u8 op;
2396   int unaryMinus = 0;
2397   if( aff==SQLITE_AFF_BLOB ) return 1;
2398   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2399     if( p->op==TK_UMINUS ) unaryMinus = 1;
2400     p = p->pLeft;
2401   }
2402   op = p->op;
2403   if( op==TK_REGISTER ) op = p->op2;
2404   switch( op ){
2405     case TK_INTEGER: {
2406       return aff>=SQLITE_AFF_NUMERIC;
2407     }
2408     case TK_FLOAT: {
2409       return aff>=SQLITE_AFF_NUMERIC;
2410     }
2411     case TK_STRING: {
2412       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2413     }
2414     case TK_BLOB: {
2415       return !unaryMinus;
2416     }
2417     case TK_COLUMN: {
2418       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2419       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2420     }
2421     default: {
2422       return 0;
2423     }
2424   }
2425 }
2426 
2427 /*
2428 ** Return TRUE if the given string is a row-id column name.
2429 */
2430 int sqlite3IsRowid(const char *z){
2431   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2432   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2433   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2434   return 0;
2435 }
2436 
2437 /*
2438 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2439 ** that can be simplified to a direct table access, then return
2440 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2441 ** or if the SELECT statement needs to be manifested into a transient
2442 ** table, then return NULL.
2443 */
2444 #ifndef SQLITE_OMIT_SUBQUERY
2445 static Select *isCandidateForInOpt(Expr *pX){
2446   Select *p;
2447   SrcList *pSrc;
2448   ExprList *pEList;
2449   Table *pTab;
2450   int i;
2451   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2452   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2453   p = pX->x.pSelect;
2454   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2455   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2456     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2457     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2458     return 0; /* No DISTINCT keyword and no aggregate functions */
2459   }
2460   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2461   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2462   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2463   pSrc = p->pSrc;
2464   assert( pSrc!=0 );
2465   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2466   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2467   pTab = pSrc->a[0].pTab;
2468   assert( pTab!=0 );
2469   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2470   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2471   pEList = p->pEList;
2472   assert( pEList!=0 );
2473   /* All SELECT results must be columns. */
2474   for(i=0; i<pEList->nExpr; i++){
2475     Expr *pRes = pEList->a[i].pExpr;
2476     if( pRes->op!=TK_COLUMN ) return 0;
2477     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2478   }
2479   return p;
2480 }
2481 #endif /* SQLITE_OMIT_SUBQUERY */
2482 
2483 #ifndef SQLITE_OMIT_SUBQUERY
2484 /*
2485 ** Generate code that checks the left-most column of index table iCur to see if
2486 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2487 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2488 ** to be set to NULL if iCur contains one or more NULL values.
2489 */
2490 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2491   int addr1;
2492   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2493   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2494   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2495   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2496   VdbeComment((v, "first_entry_in(%d)", iCur));
2497   sqlite3VdbeJumpHere(v, addr1);
2498 }
2499 #endif
2500 
2501 
2502 #ifndef SQLITE_OMIT_SUBQUERY
2503 /*
2504 ** The argument is an IN operator with a list (not a subquery) on the
2505 ** right-hand side.  Return TRUE if that list is constant.
2506 */
2507 static int sqlite3InRhsIsConstant(Expr *pIn){
2508   Expr *pLHS;
2509   int res;
2510   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2511   pLHS = pIn->pLeft;
2512   pIn->pLeft = 0;
2513   res = sqlite3ExprIsConstant(pIn);
2514   pIn->pLeft = pLHS;
2515   return res;
2516 }
2517 #endif
2518 
2519 /*
2520 ** This function is used by the implementation of the IN (...) operator.
2521 ** The pX parameter is the expression on the RHS of the IN operator, which
2522 ** might be either a list of expressions or a subquery.
2523 **
2524 ** The job of this routine is to find or create a b-tree object that can
2525 ** be used either to test for membership in the RHS set or to iterate through
2526 ** all members of the RHS set, skipping duplicates.
2527 **
2528 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2529 ** and pX->iTable is set to the index of that cursor.
2530 **
2531 ** The returned value of this function indicates the b-tree type, as follows:
2532 **
2533 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2534 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2535 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2536 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2537 **                         populated epheremal table.
2538 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2539 **                         implemented as a sequence of comparisons.
2540 **
2541 ** An existing b-tree might be used if the RHS expression pX is a simple
2542 ** subquery such as:
2543 **
2544 **     SELECT <column1>, <column2>... FROM <table>
2545 **
2546 ** If the RHS of the IN operator is a list or a more complex subquery, then
2547 ** an ephemeral table might need to be generated from the RHS and then
2548 ** pX->iTable made to point to the ephemeral table instead of an
2549 ** existing table.
2550 **
2551 ** The inFlags parameter must contain, at a minimum, one of the bits
2552 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2553 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2554 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2555 ** be used to loop over all values of the RHS of the IN operator.
2556 **
2557 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2558 ** through the set members) then the b-tree must not contain duplicates.
2559 ** An epheremal table will be created unless the selected columns are guaranteed
2560 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2561 ** a UNIQUE constraint or index.
2562 **
2563 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2564 ** for fast set membership tests) then an epheremal table must
2565 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2566 ** index can be found with the specified <columns> as its left-most.
2567 **
2568 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2569 ** if the RHS of the IN operator is a list (not a subquery) then this
2570 ** routine might decide that creating an ephemeral b-tree for membership
2571 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2572 ** calling routine should implement the IN operator using a sequence
2573 ** of Eq or Ne comparison operations.
2574 **
2575 ** When the b-tree is being used for membership tests, the calling function
2576 ** might need to know whether or not the RHS side of the IN operator
2577 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2578 ** if there is any chance that the (...) might contain a NULL value at
2579 ** runtime, then a register is allocated and the register number written
2580 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2581 ** NULL value, then *prRhsHasNull is left unchanged.
2582 **
2583 ** If a register is allocated and its location stored in *prRhsHasNull, then
2584 ** the value in that register will be NULL if the b-tree contains one or more
2585 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2586 ** NULL values.
2587 **
2588 ** If the aiMap parameter is not NULL, it must point to an array containing
2589 ** one element for each column returned by the SELECT statement on the RHS
2590 ** of the IN(...) operator. The i'th entry of the array is populated with the
2591 ** offset of the index column that matches the i'th column returned by the
2592 ** SELECT. For example, if the expression and selected index are:
2593 **
2594 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2595 **   CREATE INDEX i1 ON t1(b, c, a);
2596 **
2597 ** then aiMap[] is populated with {2, 0, 1}.
2598 */
2599 #ifndef SQLITE_OMIT_SUBQUERY
2600 int sqlite3FindInIndex(
2601   Parse *pParse,             /* Parsing context */
2602   Expr *pX,                  /* The IN expression */
2603   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2604   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2605   int *aiMap,                /* Mapping from Index fields to RHS fields */
2606   int *piTab                 /* OUT: index to use */
2607 ){
2608   Select *p;                            /* SELECT to the right of IN operator */
2609   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2610   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2611   int mustBeUnique;                     /* True if RHS must be unique */
2612   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2613 
2614   assert( pX->op==TK_IN );
2615   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2616 
2617   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2618   ** whether or not the SELECT result contains NULL values, check whether
2619   ** or not NULL is actually possible (it may not be, for example, due
2620   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2621   ** set prRhsHasNull to 0 before continuing.  */
2622   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2623     int i;
2624     ExprList *pEList = pX->x.pSelect->pEList;
2625     for(i=0; i<pEList->nExpr; i++){
2626       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2627     }
2628     if( i==pEList->nExpr ){
2629       prRhsHasNull = 0;
2630     }
2631   }
2632 
2633   /* Check to see if an existing table or index can be used to
2634   ** satisfy the query.  This is preferable to generating a new
2635   ** ephemeral table.  */
2636   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2637     sqlite3 *db = pParse->db;              /* Database connection */
2638     Table *pTab;                           /* Table <table>. */
2639     int iDb;                               /* Database idx for pTab */
2640     ExprList *pEList = p->pEList;
2641     int nExpr = pEList->nExpr;
2642 
2643     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2644     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2645     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2646     pTab = p->pSrc->a[0].pTab;
2647 
2648     /* Code an OP_Transaction and OP_TableLock for <table>. */
2649     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2650     assert( iDb>=0 && iDb<SQLITE_MAX_DB );
2651     sqlite3CodeVerifySchema(pParse, iDb);
2652     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2653 
2654     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2655     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2656       /* The "x IN (SELECT rowid FROM table)" case */
2657       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2658       VdbeCoverage(v);
2659 
2660       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2661       eType = IN_INDEX_ROWID;
2662       ExplainQueryPlan((pParse, 0,
2663             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2664       sqlite3VdbeJumpHere(v, iAddr);
2665     }else{
2666       Index *pIdx;                         /* Iterator variable */
2667       int affinity_ok = 1;
2668       int i;
2669 
2670       /* Check that the affinity that will be used to perform each
2671       ** comparison is the same as the affinity of each column in table
2672       ** on the RHS of the IN operator.  If it not, it is not possible to
2673       ** use any index of the RHS table.  */
2674       for(i=0; i<nExpr && affinity_ok; i++){
2675         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2676         int iCol = pEList->a[i].pExpr->iColumn;
2677         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2678         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2679         testcase( cmpaff==SQLITE_AFF_BLOB );
2680         testcase( cmpaff==SQLITE_AFF_TEXT );
2681         switch( cmpaff ){
2682           case SQLITE_AFF_BLOB:
2683             break;
2684           case SQLITE_AFF_TEXT:
2685             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2686             ** other has no affinity and the other side is TEXT.  Hence,
2687             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2688             ** and for the term on the LHS of the IN to have no affinity. */
2689             assert( idxaff==SQLITE_AFF_TEXT );
2690             break;
2691           default:
2692             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2693         }
2694       }
2695 
2696       if( affinity_ok ){
2697         /* Search for an existing index that will work for this IN operator */
2698         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2699           Bitmask colUsed;      /* Columns of the index used */
2700           Bitmask mCol;         /* Mask for the current column */
2701           if( pIdx->nColumn<nExpr ) continue;
2702           if( pIdx->pPartIdxWhere!=0 ) continue;
2703           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2704           ** BITMASK(nExpr) without overflowing */
2705           testcase( pIdx->nColumn==BMS-2 );
2706           testcase( pIdx->nColumn==BMS-1 );
2707           if( pIdx->nColumn>=BMS-1 ) continue;
2708           if( mustBeUnique ){
2709             if( pIdx->nKeyCol>nExpr
2710              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2711             ){
2712               continue;  /* This index is not unique over the IN RHS columns */
2713             }
2714           }
2715 
2716           colUsed = 0;   /* Columns of index used so far */
2717           for(i=0; i<nExpr; i++){
2718             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2719             Expr *pRhs = pEList->a[i].pExpr;
2720             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2721             int j;
2722 
2723             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2724             for(j=0; j<nExpr; j++){
2725               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2726               assert( pIdx->azColl[j] );
2727               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2728                 continue;
2729               }
2730               break;
2731             }
2732             if( j==nExpr ) break;
2733             mCol = MASKBIT(j);
2734             if( mCol & colUsed ) break; /* Each column used only once */
2735             colUsed |= mCol;
2736             if( aiMap ) aiMap[i] = j;
2737           }
2738 
2739           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2740           if( colUsed==(MASKBIT(nExpr)-1) ){
2741             /* If we reach this point, that means the index pIdx is usable */
2742             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2743             ExplainQueryPlan((pParse, 0,
2744                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2745             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2746             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2747             VdbeComment((v, "%s", pIdx->zName));
2748             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2749             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2750 
2751             if( prRhsHasNull ){
2752 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2753               i64 mask = (1<<nExpr)-1;
2754               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2755                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2756 #endif
2757               *prRhsHasNull = ++pParse->nMem;
2758               if( nExpr==1 ){
2759                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2760               }
2761             }
2762             sqlite3VdbeJumpHere(v, iAddr);
2763           }
2764         } /* End loop over indexes */
2765       } /* End if( affinity_ok ) */
2766     } /* End if not an rowid index */
2767   } /* End attempt to optimize using an index */
2768 
2769   /* If no preexisting index is available for the IN clause
2770   ** and IN_INDEX_NOOP is an allowed reply
2771   ** and the RHS of the IN operator is a list, not a subquery
2772   ** and the RHS is not constant or has two or fewer terms,
2773   ** then it is not worth creating an ephemeral table to evaluate
2774   ** the IN operator so return IN_INDEX_NOOP.
2775   */
2776   if( eType==0
2777    && (inFlags & IN_INDEX_NOOP_OK)
2778    && !ExprHasProperty(pX, EP_xIsSelect)
2779    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2780   ){
2781     eType = IN_INDEX_NOOP;
2782   }
2783 
2784   if( eType==0 ){
2785     /* Could not find an existing table or index to use as the RHS b-tree.
2786     ** We will have to generate an ephemeral table to do the job.
2787     */
2788     u32 savedNQueryLoop = pParse->nQueryLoop;
2789     int rMayHaveNull = 0;
2790     eType = IN_INDEX_EPH;
2791     if( inFlags & IN_INDEX_LOOP ){
2792       pParse->nQueryLoop = 0;
2793     }else if( prRhsHasNull ){
2794       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2795     }
2796     assert( pX->op==TK_IN );
2797     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2798     if( rMayHaveNull ){
2799       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2800     }
2801     pParse->nQueryLoop = savedNQueryLoop;
2802   }
2803 
2804   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2805     int i, n;
2806     n = sqlite3ExprVectorSize(pX->pLeft);
2807     for(i=0; i<n; i++) aiMap[i] = i;
2808   }
2809   *piTab = iTab;
2810   return eType;
2811 }
2812 #endif
2813 
2814 #ifndef SQLITE_OMIT_SUBQUERY
2815 /*
2816 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2817 ** function allocates and returns a nul-terminated string containing
2818 ** the affinities to be used for each column of the comparison.
2819 **
2820 ** It is the responsibility of the caller to ensure that the returned
2821 ** string is eventually freed using sqlite3DbFree().
2822 */
2823 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2824   Expr *pLeft = pExpr->pLeft;
2825   int nVal = sqlite3ExprVectorSize(pLeft);
2826   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2827   char *zRet;
2828 
2829   assert( pExpr->op==TK_IN );
2830   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2831   if( zRet ){
2832     int i;
2833     for(i=0; i<nVal; i++){
2834       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2835       char a = sqlite3ExprAffinity(pA);
2836       if( pSelect ){
2837         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2838       }else{
2839         zRet[i] = a;
2840       }
2841     }
2842     zRet[nVal] = '\0';
2843   }
2844   return zRet;
2845 }
2846 #endif
2847 
2848 #ifndef SQLITE_OMIT_SUBQUERY
2849 /*
2850 ** Load the Parse object passed as the first argument with an error
2851 ** message of the form:
2852 **
2853 **   "sub-select returns N columns - expected M"
2854 */
2855 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2856   if( pParse->nErr==0 ){
2857     const char *zFmt = "sub-select returns %d columns - expected %d";
2858     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2859   }
2860 }
2861 #endif
2862 
2863 /*
2864 ** Expression pExpr is a vector that has been used in a context where
2865 ** it is not permitted. If pExpr is a sub-select vector, this routine
2866 ** loads the Parse object with a message of the form:
2867 **
2868 **   "sub-select returns N columns - expected 1"
2869 **
2870 ** Or, if it is a regular scalar vector:
2871 **
2872 **   "row value misused"
2873 */
2874 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2875 #ifndef SQLITE_OMIT_SUBQUERY
2876   if( pExpr->flags & EP_xIsSelect ){
2877     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2878   }else
2879 #endif
2880   {
2881     sqlite3ErrorMsg(pParse, "row value misused");
2882   }
2883 }
2884 
2885 #ifndef SQLITE_OMIT_SUBQUERY
2886 /*
2887 ** Generate code that will construct an ephemeral table containing all terms
2888 ** in the RHS of an IN operator.  The IN operator can be in either of two
2889 ** forms:
2890 **
2891 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2892 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2893 **
2894 ** The pExpr parameter is the IN operator.  The cursor number for the
2895 ** constructed ephermeral table is returned.  The first time the ephemeral
2896 ** table is computed, the cursor number is also stored in pExpr->iTable,
2897 ** however the cursor number returned might not be the same, as it might
2898 ** have been duplicated using OP_OpenDup.
2899 **
2900 ** If the LHS expression ("x" in the examples) is a column value, or
2901 ** the SELECT statement returns a column value, then the affinity of that
2902 ** column is used to build the index keys. If both 'x' and the
2903 ** SELECT... statement are columns, then numeric affinity is used
2904 ** if either column has NUMERIC or INTEGER affinity. If neither
2905 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2906 ** is used.
2907 */
2908 void sqlite3CodeRhsOfIN(
2909   Parse *pParse,          /* Parsing context */
2910   Expr *pExpr,            /* The IN operator */
2911   int iTab                /* Use this cursor number */
2912 ){
2913   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2914   int addr;                   /* Address of OP_OpenEphemeral instruction */
2915   Expr *pLeft;                /* the LHS of the IN operator */
2916   KeyInfo *pKeyInfo = 0;      /* Key information */
2917   int nVal;                   /* Size of vector pLeft */
2918   Vdbe *v;                    /* The prepared statement under construction */
2919 
2920   v = pParse->pVdbe;
2921   assert( v!=0 );
2922 
2923   /* The evaluation of the IN must be repeated every time it
2924   ** is encountered if any of the following is true:
2925   **
2926   **    *  The right-hand side is a correlated subquery
2927   **    *  The right-hand side is an expression list containing variables
2928   **    *  We are inside a trigger
2929   **
2930   ** If all of the above are false, then we can compute the RHS just once
2931   ** and reuse it many names.
2932   */
2933   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2934     /* Reuse of the RHS is allowed */
2935     /* If this routine has already been coded, but the previous code
2936     ** might not have been invoked yet, so invoke it now as a subroutine.
2937     */
2938     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2939       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2940       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2941         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
2942               pExpr->x.pSelect->selId));
2943       }
2944       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2945                         pExpr->y.sub.iAddr);
2946       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
2947       sqlite3VdbeJumpHere(v, addrOnce);
2948       return;
2949     }
2950 
2951     /* Begin coding the subroutine */
2952     ExprSetProperty(pExpr, EP_Subrtn);
2953     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
2954     pExpr->y.sub.regReturn = ++pParse->nMem;
2955     pExpr->y.sub.iAddr =
2956       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2957     VdbeComment((v, "return address"));
2958 
2959     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2960   }
2961 
2962   /* Check to see if this is a vector IN operator */
2963   pLeft = pExpr->pLeft;
2964   nVal = sqlite3ExprVectorSize(pLeft);
2965 
2966   /* Construct the ephemeral table that will contain the content of
2967   ** RHS of the IN operator.
2968   */
2969   pExpr->iTable = iTab;
2970   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
2971 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2972   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2973     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
2974   }else{
2975     VdbeComment((v, "RHS of IN operator"));
2976   }
2977 #endif
2978   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2979 
2980   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2981     /* Case 1:     expr IN (SELECT ...)
2982     **
2983     ** Generate code to write the results of the select into the temporary
2984     ** table allocated and opened above.
2985     */
2986     Select *pSelect = pExpr->x.pSelect;
2987     ExprList *pEList = pSelect->pEList;
2988 
2989     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
2990         addrOnce?"":"CORRELATED ", pSelect->selId
2991     ));
2992     /* If the LHS and RHS of the IN operator do not match, that
2993     ** error will have been caught long before we reach this point. */
2994     if( ALWAYS(pEList->nExpr==nVal) ){
2995       SelectDest dest;
2996       int i;
2997       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
2998       dest.zAffSdst = exprINAffinity(pParse, pExpr);
2999       pSelect->iLimit = 0;
3000       testcase( pSelect->selFlags & SF_Distinct );
3001       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
3002       if( sqlite3Select(pParse, pSelect, &dest) ){
3003         sqlite3DbFree(pParse->db, dest.zAffSdst);
3004         sqlite3KeyInfoUnref(pKeyInfo);
3005         return;
3006       }
3007       sqlite3DbFree(pParse->db, dest.zAffSdst);
3008       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
3009       assert( pEList!=0 );
3010       assert( pEList->nExpr>0 );
3011       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3012       for(i=0; i<nVal; i++){
3013         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
3014         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
3015             pParse, p, pEList->a[i].pExpr
3016         );
3017       }
3018     }
3019   }else if( ALWAYS(pExpr->x.pList!=0) ){
3020     /* Case 2:     expr IN (exprlist)
3021     **
3022     ** For each expression, build an index key from the evaluation and
3023     ** store it in the temporary table. If <expr> is a column, then use
3024     ** that columns affinity when building index keys. If <expr> is not
3025     ** a column, use numeric affinity.
3026     */
3027     char affinity;            /* Affinity of the LHS of the IN */
3028     int i;
3029     ExprList *pList = pExpr->x.pList;
3030     struct ExprList_item *pItem;
3031     int r1, r2;
3032     affinity = sqlite3ExprAffinity(pLeft);
3033     if( affinity<=SQLITE_AFF_NONE ){
3034       affinity = SQLITE_AFF_BLOB;
3035     }else if( affinity==SQLITE_AFF_REAL ){
3036       affinity = SQLITE_AFF_NUMERIC;
3037     }
3038     if( pKeyInfo ){
3039       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3040       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3041     }
3042 
3043     /* Loop through each expression in <exprlist>. */
3044     r1 = sqlite3GetTempReg(pParse);
3045     r2 = sqlite3GetTempReg(pParse);
3046     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
3047       Expr *pE2 = pItem->pExpr;
3048 
3049       /* If the expression is not constant then we will need to
3050       ** disable the test that was generated above that makes sure
3051       ** this code only executes once.  Because for a non-constant
3052       ** expression we need to rerun this code each time.
3053       */
3054       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
3055         sqlite3VdbeChangeToNoop(v, addrOnce);
3056         ExprClearProperty(pExpr, EP_Subrtn);
3057         addrOnce = 0;
3058       }
3059 
3060       /* Evaluate the expression and insert it into the temp table */
3061       sqlite3ExprCode(pParse, pE2, r1);
3062       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3063       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3064     }
3065     sqlite3ReleaseTempReg(pParse, r1);
3066     sqlite3ReleaseTempReg(pParse, r2);
3067   }
3068   if( pKeyInfo ){
3069     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3070   }
3071   if( addrOnce ){
3072     sqlite3VdbeJumpHere(v, addrOnce);
3073     /* Subroutine return */
3074     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3075     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3076     sqlite3ClearTempRegCache(pParse);
3077   }
3078 }
3079 #endif /* SQLITE_OMIT_SUBQUERY */
3080 
3081 /*
3082 ** Generate code for scalar subqueries used as a subquery expression
3083 ** or EXISTS operator:
3084 **
3085 **     (SELECT a FROM b)          -- subquery
3086 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
3087 **
3088 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3089 **
3090 ** Return the register that holds the result.  For a multi-column SELECT,
3091 ** the result is stored in a contiguous array of registers and the
3092 ** return value is the register of the left-most result column.
3093 ** Return 0 if an error occurs.
3094 */
3095 #ifndef SQLITE_OMIT_SUBQUERY
3096 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3097   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3098   int rReg = 0;               /* Register storing resulting */
3099   Select *pSel;               /* SELECT statement to encode */
3100   SelectDest dest;            /* How to deal with SELECT result */
3101   int nReg;                   /* Registers to allocate */
3102   Expr *pLimit;               /* New limit expression */
3103 
3104   Vdbe *v = pParse->pVdbe;
3105   assert( v!=0 );
3106   testcase( pExpr->op==TK_EXISTS );
3107   testcase( pExpr->op==TK_SELECT );
3108   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3109   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
3110   pSel = pExpr->x.pSelect;
3111 
3112   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3113   ** is encountered if any of the following is true:
3114   **
3115   **    *  The right-hand side is a correlated subquery
3116   **    *  The right-hand side is an expression list containing variables
3117   **    *  We are inside a trigger
3118   **
3119   ** If all of the above are false, then we can run this code just once
3120   ** save the results, and reuse the same result on subsequent invocations.
3121   */
3122   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3123     /* If this routine has already been coded, then invoke it as a
3124     ** subroutine. */
3125     if( ExprHasProperty(pExpr, EP_Subrtn) ){
3126       ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3127       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3128                         pExpr->y.sub.iAddr);
3129       return pExpr->iTable;
3130     }
3131 
3132     /* Begin coding the subroutine */
3133     ExprSetProperty(pExpr, EP_Subrtn);
3134     pExpr->y.sub.regReturn = ++pParse->nMem;
3135     pExpr->y.sub.iAddr =
3136       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
3137     VdbeComment((v, "return address"));
3138 
3139     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3140   }
3141 
3142   /* For a SELECT, generate code to put the values for all columns of
3143   ** the first row into an array of registers and return the index of
3144   ** the first register.
3145   **
3146   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3147   ** into a register and return that register number.
3148   **
3149   ** In both cases, the query is augmented with "LIMIT 1".  Any
3150   ** preexisting limit is discarded in place of the new LIMIT 1.
3151   */
3152   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3153         addrOnce?"":"CORRELATED ", pSel->selId));
3154   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3155   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3156   pParse->nMem += nReg;
3157   if( pExpr->op==TK_SELECT ){
3158     dest.eDest = SRT_Mem;
3159     dest.iSdst = dest.iSDParm;
3160     dest.nSdst = nReg;
3161     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3162     VdbeComment((v, "Init subquery result"));
3163   }else{
3164     dest.eDest = SRT_Exists;
3165     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3166     VdbeComment((v, "Init EXISTS result"));
3167   }
3168   if( pSel->pLimit ){
3169     /* The subquery already has a limit.  If the pre-existing limit is X
3170     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3171     sqlite3 *db = pParse->db;
3172     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3173     if( pLimit ){
3174       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3175       pLimit = sqlite3PExpr(pParse, TK_NE,
3176                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3177     }
3178     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3179     pSel->pLimit->pLeft = pLimit;
3180   }else{
3181     /* If there is no pre-existing limit add a limit of 1 */
3182     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3183     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3184   }
3185   pSel->iLimit = 0;
3186   if( sqlite3Select(pParse, pSel, &dest) ){
3187     return 0;
3188   }
3189   pExpr->iTable = rReg = dest.iSDParm;
3190   ExprSetVVAProperty(pExpr, EP_NoReduce);
3191   if( addrOnce ){
3192     sqlite3VdbeJumpHere(v, addrOnce);
3193 
3194     /* Subroutine return */
3195     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3196     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3197     sqlite3ClearTempRegCache(pParse);
3198   }
3199 
3200   return rReg;
3201 }
3202 #endif /* SQLITE_OMIT_SUBQUERY */
3203 
3204 #ifndef SQLITE_OMIT_SUBQUERY
3205 /*
3206 ** Expr pIn is an IN(...) expression. This function checks that the
3207 ** sub-select on the RHS of the IN() operator has the same number of
3208 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3209 ** a sub-query, that the LHS is a vector of size 1.
3210 */
3211 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3212   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3213   if( (pIn->flags & EP_xIsSelect)!=0 && !pParse->db->mallocFailed ){
3214     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3215       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3216       return 1;
3217     }
3218   }else if( nVector!=1 ){
3219     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3220     return 1;
3221   }
3222   return 0;
3223 }
3224 #endif
3225 
3226 #ifndef SQLITE_OMIT_SUBQUERY
3227 /*
3228 ** Generate code for an IN expression.
3229 **
3230 **      x IN (SELECT ...)
3231 **      x IN (value, value, ...)
3232 **
3233 ** The left-hand side (LHS) is a scalar or vector expression.  The
3234 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3235 ** subquery.  If the RHS is a subquery, the number of result columns must
3236 ** match the number of columns in the vector on the LHS.  If the RHS is
3237 ** a list of values, the LHS must be a scalar.
3238 **
3239 ** The IN operator is true if the LHS value is contained within the RHS.
3240 ** The result is false if the LHS is definitely not in the RHS.  The
3241 ** result is NULL if the presence of the LHS in the RHS cannot be
3242 ** determined due to NULLs.
3243 **
3244 ** This routine generates code that jumps to destIfFalse if the LHS is not
3245 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3246 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3247 ** within the RHS then fall through.
3248 **
3249 ** See the separate in-operator.md documentation file in the canonical
3250 ** SQLite source tree for additional information.
3251 */
3252 static void sqlite3ExprCodeIN(
3253   Parse *pParse,        /* Parsing and code generating context */
3254   Expr *pExpr,          /* The IN expression */
3255   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3256   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3257 ){
3258   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3259   int eType;            /* Type of the RHS */
3260   int rLhs;             /* Register(s) holding the LHS values */
3261   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3262   Vdbe *v;              /* Statement under construction */
3263   int *aiMap = 0;       /* Map from vector field to index column */
3264   char *zAff = 0;       /* Affinity string for comparisons */
3265   int nVector;          /* Size of vectors for this IN operator */
3266   int iDummy;           /* Dummy parameter to exprCodeVector() */
3267   Expr *pLeft;          /* The LHS of the IN operator */
3268   int i;                /* loop counter */
3269   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3270   int destStep6 = 0;    /* Start of code for Step 6 */
3271   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3272   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3273   int addrTop;          /* Top of the step-6 loop */
3274   int iTab = 0;         /* Index to use */
3275   u8 okConstFactor = pParse->okConstFactor;
3276 
3277   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3278   pLeft = pExpr->pLeft;
3279   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3280   zAff = exprINAffinity(pParse, pExpr);
3281   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3282   aiMap = (int*)sqlite3DbMallocZero(
3283       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3284   );
3285   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3286 
3287   /* Attempt to compute the RHS. After this step, if anything other than
3288   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3289   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3290   ** the RHS has not yet been coded.  */
3291   v = pParse->pVdbe;
3292   assert( v!=0 );       /* OOM detected prior to this routine */
3293   VdbeNoopComment((v, "begin IN expr"));
3294   eType = sqlite3FindInIndex(pParse, pExpr,
3295                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3296                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3297                              aiMap, &iTab);
3298 
3299   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3300        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3301   );
3302 #ifdef SQLITE_DEBUG
3303   /* Confirm that aiMap[] contains nVector integer values between 0 and
3304   ** nVector-1. */
3305   for(i=0; i<nVector; i++){
3306     int j, cnt;
3307     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3308     assert( cnt==1 );
3309   }
3310 #endif
3311 
3312   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3313   ** vector, then it is stored in an array of nVector registers starting
3314   ** at r1.
3315   **
3316   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3317   ** so that the fields are in the same order as an existing index.   The
3318   ** aiMap[] array contains a mapping from the original LHS field order to
3319   ** the field order that matches the RHS index.
3320   **
3321   ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3322   ** even if it is constant, as OP_Affinity may be used on the register
3323   ** by code generated below.  */
3324   assert( pParse->okConstFactor==okConstFactor );
3325   pParse->okConstFactor = 0;
3326   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3327   pParse->okConstFactor = okConstFactor;
3328   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3329   if( i==nVector ){
3330     /* LHS fields are not reordered */
3331     rLhs = rLhsOrig;
3332   }else{
3333     /* Need to reorder the LHS fields according to aiMap */
3334     rLhs = sqlite3GetTempRange(pParse, nVector);
3335     for(i=0; i<nVector; i++){
3336       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3337     }
3338   }
3339 
3340   /* If sqlite3FindInIndex() did not find or create an index that is
3341   ** suitable for evaluating the IN operator, then evaluate using a
3342   ** sequence of comparisons.
3343   **
3344   ** This is step (1) in the in-operator.md optimized algorithm.
3345   */
3346   if( eType==IN_INDEX_NOOP ){
3347     ExprList *pList = pExpr->x.pList;
3348     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3349     int labelOk = sqlite3VdbeMakeLabel(pParse);
3350     int r2, regToFree;
3351     int regCkNull = 0;
3352     int ii;
3353     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3354     if( destIfNull!=destIfFalse ){
3355       regCkNull = sqlite3GetTempReg(pParse);
3356       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3357     }
3358     for(ii=0; ii<pList->nExpr; ii++){
3359       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3360       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3361         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3362       }
3363       sqlite3ReleaseTempReg(pParse, regToFree);
3364       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3365         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3366         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3367                           (void*)pColl, P4_COLLSEQ);
3368         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3369         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3370         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3371         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3372         sqlite3VdbeChangeP5(v, zAff[0]);
3373       }else{
3374         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3375         assert( destIfNull==destIfFalse );
3376         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3377                           (void*)pColl, P4_COLLSEQ);
3378         VdbeCoverageIf(v, op==OP_Ne);
3379         VdbeCoverageIf(v, op==OP_IsNull);
3380         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3381       }
3382     }
3383     if( regCkNull ){
3384       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3385       sqlite3VdbeGoto(v, destIfFalse);
3386     }
3387     sqlite3VdbeResolveLabel(v, labelOk);
3388     sqlite3ReleaseTempReg(pParse, regCkNull);
3389     goto sqlite3ExprCodeIN_finished;
3390   }
3391 
3392   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3393   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3394   ** We will then skip the binary search of the RHS.
3395   */
3396   if( destIfNull==destIfFalse ){
3397     destStep2 = destIfFalse;
3398   }else{
3399     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3400   }
3401   if( pParse->nErr ) goto sqlite3ExprCodeIN_finished;
3402   for(i=0; i<nVector; i++){
3403     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3404     if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3405     if( sqlite3ExprCanBeNull(p) ){
3406       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3407       VdbeCoverage(v);
3408     }
3409   }
3410 
3411   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3412   ** of the RHS using the LHS as a probe.  If found, the result is
3413   ** true.
3414   */
3415   if( eType==IN_INDEX_ROWID ){
3416     /* In this case, the RHS is the ROWID of table b-tree and so we also
3417     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3418     ** into a single opcode. */
3419     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3420     VdbeCoverage(v);
3421     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3422   }else{
3423     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3424     if( destIfFalse==destIfNull ){
3425       /* Combine Step 3 and Step 5 into a single opcode */
3426       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3427                            rLhs, nVector); VdbeCoverage(v);
3428       goto sqlite3ExprCodeIN_finished;
3429     }
3430     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3431     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3432                                       rLhs, nVector); VdbeCoverage(v);
3433   }
3434 
3435   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3436   ** an match on the search above, then the result must be FALSE.
3437   */
3438   if( rRhsHasNull && nVector==1 ){
3439     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3440     VdbeCoverage(v);
3441   }
3442 
3443   /* Step 5.  If we do not care about the difference between NULL and
3444   ** FALSE, then just return false.
3445   */
3446   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3447 
3448   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3449   ** If any comparison is NULL, then the result is NULL.  If all
3450   ** comparisons are FALSE then the final result is FALSE.
3451   **
3452   ** For a scalar LHS, it is sufficient to check just the first row
3453   ** of the RHS.
3454   */
3455   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3456   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3457   VdbeCoverage(v);
3458   if( nVector>1 ){
3459     destNotNull = sqlite3VdbeMakeLabel(pParse);
3460   }else{
3461     /* For nVector==1, combine steps 6 and 7 by immediately returning
3462     ** FALSE if the first comparison is not NULL */
3463     destNotNull = destIfFalse;
3464   }
3465   for(i=0; i<nVector; i++){
3466     Expr *p;
3467     CollSeq *pColl;
3468     int r3 = sqlite3GetTempReg(pParse);
3469     p = sqlite3VectorFieldSubexpr(pLeft, i);
3470     pColl = sqlite3ExprCollSeq(pParse, p);
3471     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3472     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3473                       (void*)pColl, P4_COLLSEQ);
3474     VdbeCoverage(v);
3475     sqlite3ReleaseTempReg(pParse, r3);
3476   }
3477   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3478   if( nVector>1 ){
3479     sqlite3VdbeResolveLabel(v, destNotNull);
3480     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3481     VdbeCoverage(v);
3482 
3483     /* Step 7:  If we reach this point, we know that the result must
3484     ** be false. */
3485     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3486   }
3487 
3488   /* Jumps here in order to return true. */
3489   sqlite3VdbeJumpHere(v, addrTruthOp);
3490 
3491 sqlite3ExprCodeIN_finished:
3492   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3493   VdbeComment((v, "end IN expr"));
3494 sqlite3ExprCodeIN_oom_error:
3495   sqlite3DbFree(pParse->db, aiMap);
3496   sqlite3DbFree(pParse->db, zAff);
3497 }
3498 #endif /* SQLITE_OMIT_SUBQUERY */
3499 
3500 #ifndef SQLITE_OMIT_FLOATING_POINT
3501 /*
3502 ** Generate an instruction that will put the floating point
3503 ** value described by z[0..n-1] into register iMem.
3504 **
3505 ** The z[] string will probably not be zero-terminated.  But the
3506 ** z[n] character is guaranteed to be something that does not look
3507 ** like the continuation of the number.
3508 */
3509 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3510   if( ALWAYS(z!=0) ){
3511     double value;
3512     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3513     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3514     if( negateFlag ) value = -value;
3515     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3516   }
3517 }
3518 #endif
3519 
3520 
3521 /*
3522 ** Generate an instruction that will put the integer describe by
3523 ** text z[0..n-1] into register iMem.
3524 **
3525 ** Expr.u.zToken is always UTF8 and zero-terminated.
3526 */
3527 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3528   Vdbe *v = pParse->pVdbe;
3529   if( pExpr->flags & EP_IntValue ){
3530     int i = pExpr->u.iValue;
3531     assert( i>=0 );
3532     if( negFlag ) i = -i;
3533     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3534   }else{
3535     int c;
3536     i64 value;
3537     const char *z = pExpr->u.zToken;
3538     assert( z!=0 );
3539     c = sqlite3DecOrHexToI64(z, &value);
3540     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3541 #ifdef SQLITE_OMIT_FLOATING_POINT
3542       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3543 #else
3544 #ifndef SQLITE_OMIT_HEX_INTEGER
3545       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3546         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3547       }else
3548 #endif
3549       {
3550         codeReal(v, z, negFlag, iMem);
3551       }
3552 #endif
3553     }else{
3554       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3555       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3556     }
3557   }
3558 }
3559 
3560 
3561 /* Generate code that will load into register regOut a value that is
3562 ** appropriate for the iIdxCol-th column of index pIdx.
3563 */
3564 void sqlite3ExprCodeLoadIndexColumn(
3565   Parse *pParse,  /* The parsing context */
3566   Index *pIdx,    /* The index whose column is to be loaded */
3567   int iTabCur,    /* Cursor pointing to a table row */
3568   int iIdxCol,    /* The column of the index to be loaded */
3569   int regOut      /* Store the index column value in this register */
3570 ){
3571   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3572   if( iTabCol==XN_EXPR ){
3573     assert( pIdx->aColExpr );
3574     assert( pIdx->aColExpr->nExpr>iIdxCol );
3575     pParse->iSelfTab = iTabCur + 1;
3576     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3577     pParse->iSelfTab = 0;
3578   }else{
3579     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3580                                     iTabCol, regOut);
3581   }
3582 }
3583 
3584 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3585 /*
3586 ** Generate code that will compute the value of generated column pCol
3587 ** and store the result in register regOut
3588 */
3589 void sqlite3ExprCodeGeneratedColumn(
3590   Parse *pParse,
3591   Column *pCol,
3592   int regOut
3593 ){
3594   int iAddr;
3595   Vdbe *v = pParse->pVdbe;
3596   assert( v!=0 );
3597   assert( pParse->iSelfTab!=0 );
3598   if( pParse->iSelfTab>0 ){
3599     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3600   }else{
3601     iAddr = 0;
3602   }
3603   sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut);
3604   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3605     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3606   }
3607   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3608 }
3609 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3610 
3611 /*
3612 ** Generate code to extract the value of the iCol-th column of a table.
3613 */
3614 void sqlite3ExprCodeGetColumnOfTable(
3615   Vdbe *v,        /* Parsing context */
3616   Table *pTab,    /* The table containing the value */
3617   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3618   int iCol,       /* Index of the column to extract */
3619   int regOut      /* Extract the value into this register */
3620 ){
3621   Column *pCol;
3622   assert( v!=0 );
3623   if( pTab==0 ){
3624     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3625     return;
3626   }
3627   if( iCol<0 || iCol==pTab->iPKey ){
3628     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3629   }else{
3630     int op;
3631     int x;
3632     if( IsVirtual(pTab) ){
3633       op = OP_VColumn;
3634       x = iCol;
3635 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3636     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3637       Parse *pParse = sqlite3VdbeParser(v);
3638       if( pCol->colFlags & COLFLAG_BUSY ){
3639         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName);
3640       }else{
3641         int savedSelfTab = pParse->iSelfTab;
3642         pCol->colFlags |= COLFLAG_BUSY;
3643         pParse->iSelfTab = iTabCur+1;
3644         sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut);
3645         pParse->iSelfTab = savedSelfTab;
3646         pCol->colFlags &= ~COLFLAG_BUSY;
3647       }
3648       return;
3649 #endif
3650     }else if( !HasRowid(pTab) ){
3651       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3652       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3653       op = OP_Column;
3654     }else{
3655       x = sqlite3TableColumnToStorage(pTab,iCol);
3656       testcase( x!=iCol );
3657       op = OP_Column;
3658     }
3659     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3660     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3661   }
3662 }
3663 
3664 /*
3665 ** Generate code that will extract the iColumn-th column from
3666 ** table pTab and store the column value in register iReg.
3667 **
3668 ** There must be an open cursor to pTab in iTable when this routine
3669 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3670 */
3671 int sqlite3ExprCodeGetColumn(
3672   Parse *pParse,   /* Parsing and code generating context */
3673   Table *pTab,     /* Description of the table we are reading from */
3674   int iColumn,     /* Index of the table column */
3675   int iTable,      /* The cursor pointing to the table */
3676   int iReg,        /* Store results here */
3677   u8 p5            /* P5 value for OP_Column + FLAGS */
3678 ){
3679   assert( pParse->pVdbe!=0 );
3680   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3681   if( p5 ){
3682     VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3683     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3684   }
3685   return iReg;
3686 }
3687 
3688 /*
3689 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3690 ** over to iTo..iTo+nReg-1.
3691 */
3692 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3693   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3694 }
3695 
3696 /*
3697 ** Convert a scalar expression node to a TK_REGISTER referencing
3698 ** register iReg.  The caller must ensure that iReg already contains
3699 ** the correct value for the expression.
3700 */
3701 static void exprToRegister(Expr *pExpr, int iReg){
3702   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3703   if( NEVER(p==0) ) return;
3704   p->op2 = p->op;
3705   p->op = TK_REGISTER;
3706   p->iTable = iReg;
3707   ExprClearProperty(p, EP_Skip);
3708 }
3709 
3710 /*
3711 ** Evaluate an expression (either a vector or a scalar expression) and store
3712 ** the result in continguous temporary registers.  Return the index of
3713 ** the first register used to store the result.
3714 **
3715 ** If the returned result register is a temporary scalar, then also write
3716 ** that register number into *piFreeable.  If the returned result register
3717 ** is not a temporary or if the expression is a vector set *piFreeable
3718 ** to 0.
3719 */
3720 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3721   int iResult;
3722   int nResult = sqlite3ExprVectorSize(p);
3723   if( nResult==1 ){
3724     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3725   }else{
3726     *piFreeable = 0;
3727     if( p->op==TK_SELECT ){
3728 #if SQLITE_OMIT_SUBQUERY
3729       iResult = 0;
3730 #else
3731       iResult = sqlite3CodeSubselect(pParse, p);
3732 #endif
3733     }else{
3734       int i;
3735       iResult = pParse->nMem+1;
3736       pParse->nMem += nResult;
3737       for(i=0; i<nResult; i++){
3738         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3739       }
3740     }
3741   }
3742   return iResult;
3743 }
3744 
3745 /*
3746 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3747 ** so that a subsequent copy will not be merged into this one.
3748 */
3749 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3750   if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
3751     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3752   }
3753 }
3754 
3755 /*
3756 ** Generate code to implement special SQL functions that are implemented
3757 ** in-line rather than by using the usual callbacks.
3758 */
3759 static int exprCodeInlineFunction(
3760   Parse *pParse,        /* Parsing context */
3761   ExprList *pFarg,      /* List of function arguments */
3762   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3763   int target            /* Store function result in this register */
3764 ){
3765   int nFarg;
3766   Vdbe *v = pParse->pVdbe;
3767   assert( v!=0 );
3768   assert( pFarg!=0 );
3769   nFarg = pFarg->nExpr;
3770   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3771   switch( iFuncId ){
3772     case INLINEFUNC_coalesce: {
3773       /* Attempt a direct implementation of the built-in COALESCE() and
3774       ** IFNULL() functions.  This avoids unnecessary evaluation of
3775       ** arguments past the first non-NULL argument.
3776       */
3777       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3778       int i;
3779       assert( nFarg>=2 );
3780       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3781       for(i=1; i<nFarg; i++){
3782         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3783         VdbeCoverage(v);
3784         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3785       }
3786       setDoNotMergeFlagOnCopy(v);
3787       sqlite3VdbeResolveLabel(v, endCoalesce);
3788       break;
3789     }
3790     case INLINEFUNC_iif: {
3791       Expr caseExpr;
3792       memset(&caseExpr, 0, sizeof(caseExpr));
3793       caseExpr.op = TK_CASE;
3794       caseExpr.x.pList = pFarg;
3795       return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3796     }
3797 
3798     default: {
3799       /* The UNLIKELY() function is a no-op.  The result is the value
3800       ** of the first argument.
3801       */
3802       assert( nFarg==1 || nFarg==2 );
3803       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3804       break;
3805     }
3806 
3807   /***********************************************************************
3808   ** Test-only SQL functions that are only usable if enabled
3809   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3810   */
3811     case INLINEFUNC_expr_compare: {
3812       /* Compare two expressions using sqlite3ExprCompare() */
3813       assert( nFarg==2 );
3814       sqlite3VdbeAddOp2(v, OP_Integer,
3815          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3816          target);
3817       break;
3818     }
3819 
3820     case INLINEFUNC_expr_implies_expr: {
3821       /* Compare two expressions using sqlite3ExprImpliesExpr() */
3822       assert( nFarg==2 );
3823       sqlite3VdbeAddOp2(v, OP_Integer,
3824          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3825          target);
3826       break;
3827     }
3828 
3829     case INLINEFUNC_implies_nonnull_row: {
3830       /* REsult of sqlite3ExprImpliesNonNullRow() */
3831       Expr *pA1;
3832       assert( nFarg==2 );
3833       pA1 = pFarg->a[1].pExpr;
3834       if( pA1->op==TK_COLUMN ){
3835         sqlite3VdbeAddOp2(v, OP_Integer,
3836            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
3837            target);
3838       }else{
3839         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3840       }
3841       break;
3842     }
3843 
3844 #ifdef SQLITE_DEBUG
3845     case INLINEFUNC_affinity: {
3846       /* The AFFINITY() function evaluates to a string that describes
3847       ** the type affinity of the argument.  This is used for testing of
3848       ** the SQLite type logic.
3849       */
3850       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3851       char aff;
3852       assert( nFarg==1 );
3853       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3854       sqlite3VdbeLoadString(v, target,
3855               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3856       break;
3857     }
3858 #endif
3859   }
3860   return target;
3861 }
3862 
3863 
3864 /*
3865 ** Generate code into the current Vdbe to evaluate the given
3866 ** expression.  Attempt to store the results in register "target".
3867 ** Return the register where results are stored.
3868 **
3869 ** With this routine, there is no guarantee that results will
3870 ** be stored in target.  The result might be stored in some other
3871 ** register if it is convenient to do so.  The calling function
3872 ** must check the return code and move the results to the desired
3873 ** register.
3874 */
3875 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3876   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3877   int op;                   /* The opcode being coded */
3878   int inReg = target;       /* Results stored in register inReg */
3879   int regFree1 = 0;         /* If non-zero free this temporary register */
3880   int regFree2 = 0;         /* If non-zero free this temporary register */
3881   int r1, r2;               /* Various register numbers */
3882   Expr tempX;               /* Temporary expression node */
3883   int p5 = 0;
3884 
3885   assert( target>0 && target<=pParse->nMem );
3886   assert( v!=0 );
3887 
3888 expr_code_doover:
3889   if( pExpr==0 ){
3890     op = TK_NULL;
3891   }else{
3892     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3893     op = pExpr->op;
3894   }
3895   switch( op ){
3896     case TK_AGG_COLUMN: {
3897       AggInfo *pAggInfo = pExpr->pAggInfo;
3898       struct AggInfo_col *pCol;
3899       assert( pAggInfo!=0 );
3900       assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
3901       pCol = &pAggInfo->aCol[pExpr->iAgg];
3902       if( !pAggInfo->directMode ){
3903         assert( pCol->iMem>0 );
3904         return pCol->iMem;
3905       }else if( pAggInfo->useSortingIdx ){
3906         Table *pTab = pCol->pTab;
3907         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3908                               pCol->iSorterColumn, target);
3909         if( pCol->iColumn<0 ){
3910           VdbeComment((v,"%s.rowid",pTab->zName));
3911         }else{
3912           VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName));
3913           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
3914             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3915           }
3916         }
3917         return target;
3918       }
3919       /* Otherwise, fall thru into the TK_COLUMN case */
3920       /* no break */ deliberate_fall_through
3921     }
3922     case TK_COLUMN: {
3923       int iTab = pExpr->iTable;
3924       int iReg;
3925       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3926         /* This COLUMN expression is really a constant due to WHERE clause
3927         ** constraints, and that constant is coded by the pExpr->pLeft
3928         ** expresssion.  However, make sure the constant has the correct
3929         ** datatype by applying the Affinity of the table column to the
3930         ** constant.
3931         */
3932         int aff;
3933         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3934         if( pExpr->y.pTab ){
3935           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3936         }else{
3937           aff = pExpr->affExpr;
3938         }
3939         if( aff>SQLITE_AFF_BLOB ){
3940           static const char zAff[] = "B\000C\000D\000E";
3941           assert( SQLITE_AFF_BLOB=='A' );
3942           assert( SQLITE_AFF_TEXT=='B' );
3943           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3944                             &zAff[(aff-'B')*2], P4_STATIC);
3945         }
3946         return iReg;
3947       }
3948       if( iTab<0 ){
3949         if( pParse->iSelfTab<0 ){
3950           /* Other columns in the same row for CHECK constraints or
3951           ** generated columns or for inserting into partial index.
3952           ** The row is unpacked into registers beginning at
3953           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
3954           ** immediately prior to the first column.
3955           */
3956           Column *pCol;
3957           Table *pTab = pExpr->y.pTab;
3958           int iSrc;
3959           int iCol = pExpr->iColumn;
3960           assert( pTab!=0 );
3961           assert( iCol>=XN_ROWID );
3962           assert( iCol<pTab->nCol );
3963           if( iCol<0 ){
3964             return -1-pParse->iSelfTab;
3965           }
3966           pCol = pTab->aCol + iCol;
3967           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
3968           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
3969 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3970           if( pCol->colFlags & COLFLAG_GENERATED ){
3971             if( pCol->colFlags & COLFLAG_BUSY ){
3972               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3973                               pCol->zName);
3974               return 0;
3975             }
3976             pCol->colFlags |= COLFLAG_BUSY;
3977             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
3978               sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc);
3979             }
3980             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
3981             return iSrc;
3982           }else
3983 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3984           if( pCol->affinity==SQLITE_AFF_REAL ){
3985             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
3986             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3987             return target;
3988           }else{
3989             return iSrc;
3990           }
3991         }else{
3992           /* Coding an expression that is part of an index where column names
3993           ** in the index refer to the table to which the index belongs */
3994           iTab = pParse->iSelfTab - 1;
3995         }
3996       }
3997       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
3998                                pExpr->iColumn, iTab, target,
3999                                pExpr->op2);
4000       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
4001         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
4002       }
4003       return iReg;
4004     }
4005     case TK_INTEGER: {
4006       codeInteger(pParse, pExpr, 0, target);
4007       return target;
4008     }
4009     case TK_TRUEFALSE: {
4010       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
4011       return target;
4012     }
4013 #ifndef SQLITE_OMIT_FLOATING_POINT
4014     case TK_FLOAT: {
4015       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4016       codeReal(v, pExpr->u.zToken, 0, target);
4017       return target;
4018     }
4019 #endif
4020     case TK_STRING: {
4021       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4022       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
4023       return target;
4024     }
4025     default: {
4026       /* Make NULL the default case so that if a bug causes an illegal
4027       ** Expr node to be passed into this function, it will be handled
4028       ** sanely and not crash.  But keep the assert() to bring the problem
4029       ** to the attention of the developers. */
4030       assert( op==TK_NULL || pParse->db->mallocFailed );
4031       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4032       return target;
4033     }
4034 #ifndef SQLITE_OMIT_BLOB_LITERAL
4035     case TK_BLOB: {
4036       int n;
4037       const char *z;
4038       char *zBlob;
4039       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4040       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
4041       assert( pExpr->u.zToken[1]=='\'' );
4042       z = &pExpr->u.zToken[2];
4043       n = sqlite3Strlen30(z) - 1;
4044       assert( z[n]=='\'' );
4045       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
4046       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
4047       return target;
4048     }
4049 #endif
4050     case TK_VARIABLE: {
4051       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4052       assert( pExpr->u.zToken!=0 );
4053       assert( pExpr->u.zToken[0]!=0 );
4054       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
4055       if( pExpr->u.zToken[1]!=0 ){
4056         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
4057         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
4058         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
4059         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
4060       }
4061       return target;
4062     }
4063     case TK_REGISTER: {
4064       return pExpr->iTable;
4065     }
4066 #ifndef SQLITE_OMIT_CAST
4067     case TK_CAST: {
4068       /* Expressions of the form:   CAST(pLeft AS token) */
4069       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4070       if( inReg!=target ){
4071         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4072         inReg = target;
4073       }
4074       sqlite3VdbeAddOp2(v, OP_Cast, target,
4075                         sqlite3AffinityType(pExpr->u.zToken, 0));
4076       return inReg;
4077     }
4078 #endif /* SQLITE_OMIT_CAST */
4079     case TK_IS:
4080     case TK_ISNOT:
4081       op = (op==TK_IS) ? TK_EQ : TK_NE;
4082       p5 = SQLITE_NULLEQ;
4083       /* fall-through */
4084     case TK_LT:
4085     case TK_LE:
4086     case TK_GT:
4087     case TK_GE:
4088     case TK_NE:
4089     case TK_EQ: {
4090       Expr *pLeft = pExpr->pLeft;
4091       if( sqlite3ExprIsVector(pLeft) ){
4092         codeVectorCompare(pParse, pExpr, target, op, p5);
4093       }else{
4094         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4095         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4096         sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
4097         codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
4098             sqlite3VdbeCurrentAddr(v)+2, p5,
4099             ExprHasProperty(pExpr,EP_Commuted));
4100         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4101         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4102         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4103         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4104         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4105         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4106         if( p5==SQLITE_NULLEQ ){
4107           sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
4108         }else{
4109           sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
4110         }
4111         testcase( regFree1==0 );
4112         testcase( regFree2==0 );
4113       }
4114       break;
4115     }
4116     case TK_AND:
4117     case TK_OR:
4118     case TK_PLUS:
4119     case TK_STAR:
4120     case TK_MINUS:
4121     case TK_REM:
4122     case TK_BITAND:
4123     case TK_BITOR:
4124     case TK_SLASH:
4125     case TK_LSHIFT:
4126     case TK_RSHIFT:
4127     case TK_CONCAT: {
4128       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4129       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4130       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4131       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4132       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4133       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4134       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4135       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4136       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4137       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4138       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4139       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4140       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4141       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4142       testcase( regFree1==0 );
4143       testcase( regFree2==0 );
4144       break;
4145     }
4146     case TK_UMINUS: {
4147       Expr *pLeft = pExpr->pLeft;
4148       assert( pLeft );
4149       if( pLeft->op==TK_INTEGER ){
4150         codeInteger(pParse, pLeft, 1, target);
4151         return target;
4152 #ifndef SQLITE_OMIT_FLOATING_POINT
4153       }else if( pLeft->op==TK_FLOAT ){
4154         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4155         codeReal(v, pLeft->u.zToken, 1, target);
4156         return target;
4157 #endif
4158       }else{
4159         tempX.op = TK_INTEGER;
4160         tempX.flags = EP_IntValue|EP_TokenOnly;
4161         tempX.u.iValue = 0;
4162         ExprClearVVAProperties(&tempX);
4163         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4164         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4165         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4166         testcase( regFree2==0 );
4167       }
4168       break;
4169     }
4170     case TK_BITNOT:
4171     case TK_NOT: {
4172       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4173       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4174       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4175       testcase( regFree1==0 );
4176       sqlite3VdbeAddOp2(v, op, r1, inReg);
4177       break;
4178     }
4179     case TK_TRUTH: {
4180       int isTrue;    /* IS TRUE or IS NOT TRUE */
4181       int bNormal;   /* IS TRUE or IS FALSE */
4182       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4183       testcase( regFree1==0 );
4184       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4185       bNormal = pExpr->op2==TK_IS;
4186       testcase( isTrue && bNormal);
4187       testcase( !isTrue && bNormal);
4188       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4189       break;
4190     }
4191     case TK_ISNULL:
4192     case TK_NOTNULL: {
4193       int addr;
4194       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4195       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4196       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4197       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4198       testcase( regFree1==0 );
4199       addr = sqlite3VdbeAddOp1(v, op, r1);
4200       VdbeCoverageIf(v, op==TK_ISNULL);
4201       VdbeCoverageIf(v, op==TK_NOTNULL);
4202       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4203       sqlite3VdbeJumpHere(v, addr);
4204       break;
4205     }
4206     case TK_AGG_FUNCTION: {
4207       AggInfo *pInfo = pExpr->pAggInfo;
4208       if( pInfo==0
4209        || NEVER(pExpr->iAgg<0)
4210        || NEVER(pExpr->iAgg>=pInfo->nFunc)
4211       ){
4212         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4213         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
4214       }else{
4215         return pInfo->aFunc[pExpr->iAgg].iMem;
4216       }
4217       break;
4218     }
4219     case TK_FUNCTION: {
4220       ExprList *pFarg;       /* List of function arguments */
4221       int nFarg;             /* Number of function arguments */
4222       FuncDef *pDef;         /* The function definition object */
4223       const char *zId;       /* The function name */
4224       u32 constMask = 0;     /* Mask of function arguments that are constant */
4225       int i;                 /* Loop counter */
4226       sqlite3 *db = pParse->db;  /* The database connection */
4227       u8 enc = ENC(db);      /* The text encoding used by this database */
4228       CollSeq *pColl = 0;    /* A collating sequence */
4229 
4230 #ifndef SQLITE_OMIT_WINDOWFUNC
4231       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4232         return pExpr->y.pWin->regResult;
4233       }
4234 #endif
4235 
4236       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4237         /* SQL functions can be expensive. So try to avoid running them
4238         ** multiple times if we know they always give the same result */
4239         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4240       }
4241       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4242       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4243       pFarg = pExpr->x.pList;
4244       nFarg = pFarg ? pFarg->nExpr : 0;
4245       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4246       zId = pExpr->u.zToken;
4247       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4248 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4249       if( pDef==0 && pParse->explain ){
4250         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4251       }
4252 #endif
4253       if( pDef==0 || pDef->xFinalize!=0 ){
4254         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
4255         break;
4256       }
4257       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4258         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4259         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4260         return exprCodeInlineFunction(pParse, pFarg,
4261              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4262       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4263         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4264       }
4265 
4266       for(i=0; i<nFarg; i++){
4267         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4268           testcase( i==31 );
4269           constMask |= MASKBIT32(i);
4270         }
4271         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4272           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4273         }
4274       }
4275       if( pFarg ){
4276         if( constMask ){
4277           r1 = pParse->nMem+1;
4278           pParse->nMem += nFarg;
4279         }else{
4280           r1 = sqlite3GetTempRange(pParse, nFarg);
4281         }
4282 
4283         /* For length() and typeof() functions with a column argument,
4284         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4285         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4286         ** loading.
4287         */
4288         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4289           u8 exprOp;
4290           assert( nFarg==1 );
4291           assert( pFarg->a[0].pExpr!=0 );
4292           exprOp = pFarg->a[0].pExpr->op;
4293           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4294             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4295             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4296             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4297             pFarg->a[0].pExpr->op2 =
4298                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4299           }
4300         }
4301 
4302         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4303                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4304       }else{
4305         r1 = 0;
4306       }
4307 #ifndef SQLITE_OMIT_VIRTUALTABLE
4308       /* Possibly overload the function if the first argument is
4309       ** a virtual table column.
4310       **
4311       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4312       ** second argument, not the first, as the argument to test to
4313       ** see if it is a column in a virtual table.  This is done because
4314       ** the left operand of infix functions (the operand we want to
4315       ** control overloading) ends up as the second argument to the
4316       ** function.  The expression "A glob B" is equivalent to
4317       ** "glob(B,A).  We want to use the A in "A glob B" to test
4318       ** for function overloading.  But we use the B term in "glob(B,A)".
4319       */
4320       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4321         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4322       }else if( nFarg>0 ){
4323         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4324       }
4325 #endif
4326       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4327         if( !pColl ) pColl = db->pDfltColl;
4328         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4329       }
4330 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4331       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
4332         Expr *pArg = pFarg->a[0].pExpr;
4333         if( pArg->op==TK_COLUMN ){
4334           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4335         }else{
4336           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4337         }
4338       }else
4339 #endif
4340       {
4341         sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4342                                    pDef, pExpr->op2);
4343       }
4344       if( nFarg ){
4345         if( constMask==0 ){
4346           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4347         }else{
4348           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4349         }
4350       }
4351       return target;
4352     }
4353 #ifndef SQLITE_OMIT_SUBQUERY
4354     case TK_EXISTS:
4355     case TK_SELECT: {
4356       int nCol;
4357       testcase( op==TK_EXISTS );
4358       testcase( op==TK_SELECT );
4359       if( pParse->db->mallocFailed ){
4360         return 0;
4361       }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
4362         sqlite3SubselectError(pParse, nCol, 1);
4363       }else{
4364         return sqlite3CodeSubselect(pParse, pExpr);
4365       }
4366       break;
4367     }
4368     case TK_SELECT_COLUMN: {
4369       int n;
4370       if( pExpr->pLeft->iTable==0 ){
4371         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
4372       }
4373       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
4374       if( pExpr->iTable!=0
4375        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
4376       ){
4377         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4378                                 pExpr->iTable, n);
4379       }
4380       return pExpr->pLeft->iTable + pExpr->iColumn;
4381     }
4382     case TK_IN: {
4383       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4384       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4385       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4386       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4387       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4388       sqlite3VdbeResolveLabel(v, destIfFalse);
4389       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4390       sqlite3VdbeResolveLabel(v, destIfNull);
4391       return target;
4392     }
4393 #endif /* SQLITE_OMIT_SUBQUERY */
4394 
4395 
4396     /*
4397     **    x BETWEEN y AND z
4398     **
4399     ** This is equivalent to
4400     **
4401     **    x>=y AND x<=z
4402     **
4403     ** X is stored in pExpr->pLeft.
4404     ** Y is stored in pExpr->pList->a[0].pExpr.
4405     ** Z is stored in pExpr->pList->a[1].pExpr.
4406     */
4407     case TK_BETWEEN: {
4408       exprCodeBetween(pParse, pExpr, target, 0, 0);
4409       return target;
4410     }
4411     case TK_SPAN:
4412     case TK_COLLATE:
4413     case TK_UPLUS: {
4414       pExpr = pExpr->pLeft;
4415       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4416     }
4417 
4418     case TK_TRIGGER: {
4419       /* If the opcode is TK_TRIGGER, then the expression is a reference
4420       ** to a column in the new.* or old.* pseudo-tables available to
4421       ** trigger programs. In this case Expr.iTable is set to 1 for the
4422       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4423       ** is set to the column of the pseudo-table to read, or to -1 to
4424       ** read the rowid field.
4425       **
4426       ** The expression is implemented using an OP_Param opcode. The p1
4427       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4428       ** to reference another column of the old.* pseudo-table, where
4429       ** i is the index of the column. For a new.rowid reference, p1 is
4430       ** set to (n+1), where n is the number of columns in each pseudo-table.
4431       ** For a reference to any other column in the new.* pseudo-table, p1
4432       ** is set to (n+2+i), where n and i are as defined previously. For
4433       ** example, if the table on which triggers are being fired is
4434       ** declared as:
4435       **
4436       **   CREATE TABLE t1(a, b);
4437       **
4438       ** Then p1 is interpreted as follows:
4439       **
4440       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4441       **   p1==1   ->    old.a         p1==4   ->    new.a
4442       **   p1==2   ->    old.b         p1==5   ->    new.b
4443       */
4444       Table *pTab = pExpr->y.pTab;
4445       int iCol = pExpr->iColumn;
4446       int p1 = pExpr->iTable * (pTab->nCol+1) + 1
4447                      + sqlite3TableColumnToStorage(pTab, iCol);
4448 
4449       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4450       assert( iCol>=-1 && iCol<pTab->nCol );
4451       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4452       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4453 
4454       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4455       VdbeComment((v, "r[%d]=%s.%s", target,
4456         (pExpr->iTable ? "new" : "old"),
4457         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName)
4458       ));
4459 
4460 #ifndef SQLITE_OMIT_FLOATING_POINT
4461       /* If the column has REAL affinity, it may currently be stored as an
4462       ** integer. Use OP_RealAffinity to make sure it is really real.
4463       **
4464       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4465       ** floating point when extracting it from the record.  */
4466       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4467         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4468       }
4469 #endif
4470       break;
4471     }
4472 
4473     case TK_VECTOR: {
4474       sqlite3ErrorMsg(pParse, "row value misused");
4475       break;
4476     }
4477 
4478     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4479     ** that derive from the right-hand table of a LEFT JOIN.  The
4480     ** Expr.iTable value is the table number for the right-hand table.
4481     ** The expression is only evaluated if that table is not currently
4482     ** on a LEFT JOIN NULL row.
4483     */
4484     case TK_IF_NULL_ROW: {
4485       int addrINR;
4486       u8 okConstFactor = pParse->okConstFactor;
4487       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4488       /* Temporarily disable factoring of constant expressions, since
4489       ** even though expressions may appear to be constant, they are not
4490       ** really constant because they originate from the right-hand side
4491       ** of a LEFT JOIN. */
4492       pParse->okConstFactor = 0;
4493       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4494       pParse->okConstFactor = okConstFactor;
4495       sqlite3VdbeJumpHere(v, addrINR);
4496       sqlite3VdbeChangeP3(v, addrINR, inReg);
4497       break;
4498     }
4499 
4500     /*
4501     ** Form A:
4502     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4503     **
4504     ** Form B:
4505     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4506     **
4507     ** Form A is can be transformed into the equivalent form B as follows:
4508     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4509     **        WHEN x=eN THEN rN ELSE y END
4510     **
4511     ** X (if it exists) is in pExpr->pLeft.
4512     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4513     ** odd.  The Y is also optional.  If the number of elements in x.pList
4514     ** is even, then Y is omitted and the "otherwise" result is NULL.
4515     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4516     **
4517     ** The result of the expression is the Ri for the first matching Ei,
4518     ** or if there is no matching Ei, the ELSE term Y, or if there is
4519     ** no ELSE term, NULL.
4520     */
4521     case TK_CASE: {
4522       int endLabel;                     /* GOTO label for end of CASE stmt */
4523       int nextCase;                     /* GOTO label for next WHEN clause */
4524       int nExpr;                        /* 2x number of WHEN terms */
4525       int i;                            /* Loop counter */
4526       ExprList *pEList;                 /* List of WHEN terms */
4527       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4528       Expr opCompare;                   /* The X==Ei expression */
4529       Expr *pX;                         /* The X expression */
4530       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4531       Expr *pDel = 0;
4532       sqlite3 *db = pParse->db;
4533 
4534       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4535       assert(pExpr->x.pList->nExpr > 0);
4536       pEList = pExpr->x.pList;
4537       aListelem = pEList->a;
4538       nExpr = pEList->nExpr;
4539       endLabel = sqlite3VdbeMakeLabel(pParse);
4540       if( (pX = pExpr->pLeft)!=0 ){
4541         pDel = sqlite3ExprDup(db, pX, 0);
4542         if( db->mallocFailed ){
4543           sqlite3ExprDelete(db, pDel);
4544           break;
4545         }
4546         testcase( pX->op==TK_COLUMN );
4547         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4548         testcase( regFree1==0 );
4549         memset(&opCompare, 0, sizeof(opCompare));
4550         opCompare.op = TK_EQ;
4551         opCompare.pLeft = pDel;
4552         pTest = &opCompare;
4553         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4554         ** The value in regFree1 might get SCopy-ed into the file result.
4555         ** So make sure that the regFree1 register is not reused for other
4556         ** purposes and possibly overwritten.  */
4557         regFree1 = 0;
4558       }
4559       for(i=0; i<nExpr-1; i=i+2){
4560         if( pX ){
4561           assert( pTest!=0 );
4562           opCompare.pRight = aListelem[i].pExpr;
4563         }else{
4564           pTest = aListelem[i].pExpr;
4565         }
4566         nextCase = sqlite3VdbeMakeLabel(pParse);
4567         testcase( pTest->op==TK_COLUMN );
4568         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4569         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4570         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4571         sqlite3VdbeGoto(v, endLabel);
4572         sqlite3VdbeResolveLabel(v, nextCase);
4573       }
4574       if( (nExpr&1)!=0 ){
4575         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4576       }else{
4577         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4578       }
4579       sqlite3ExprDelete(db, pDel);
4580       setDoNotMergeFlagOnCopy(v);
4581       sqlite3VdbeResolveLabel(v, endLabel);
4582       break;
4583     }
4584 #ifndef SQLITE_OMIT_TRIGGER
4585     case TK_RAISE: {
4586       assert( pExpr->affExpr==OE_Rollback
4587            || pExpr->affExpr==OE_Abort
4588            || pExpr->affExpr==OE_Fail
4589            || pExpr->affExpr==OE_Ignore
4590       );
4591       if( !pParse->pTriggerTab && !pParse->nested ){
4592         sqlite3ErrorMsg(pParse,
4593                        "RAISE() may only be used within a trigger-program");
4594         return 0;
4595       }
4596       if( pExpr->affExpr==OE_Abort ){
4597         sqlite3MayAbort(pParse);
4598       }
4599       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4600       if( pExpr->affExpr==OE_Ignore ){
4601         sqlite3VdbeAddOp4(
4602             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4603         VdbeCoverage(v);
4604       }else{
4605         sqlite3HaltConstraint(pParse,
4606              pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4607              pExpr->affExpr, pExpr->u.zToken, 0, 0);
4608       }
4609 
4610       break;
4611     }
4612 #endif
4613   }
4614   sqlite3ReleaseTempReg(pParse, regFree1);
4615   sqlite3ReleaseTempReg(pParse, regFree2);
4616   return inReg;
4617 }
4618 
4619 /*
4620 ** Generate code that will evaluate expression pExpr just one time
4621 ** per prepared statement execution.
4622 **
4623 ** If the expression uses functions (that might throw an exception) then
4624 ** guard them with an OP_Once opcode to ensure that the code is only executed
4625 ** once. If no functions are involved, then factor the code out and put it at
4626 ** the end of the prepared statement in the initialization section.
4627 **
4628 ** If regDest>=0 then the result is always stored in that register and the
4629 ** result is not reusable.  If regDest<0 then this routine is free to
4630 ** store the value whereever it wants.  The register where the expression
4631 ** is stored is returned.  When regDest<0, two identical expressions might
4632 ** code to the same register, if they do not contain function calls and hence
4633 ** are factored out into the initialization section at the end of the
4634 ** prepared statement.
4635 */
4636 int sqlite3ExprCodeRunJustOnce(
4637   Parse *pParse,    /* Parsing context */
4638   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4639   int regDest       /* Store the value in this register */
4640 ){
4641   ExprList *p;
4642   assert( ConstFactorOk(pParse) );
4643   p = pParse->pConstExpr;
4644   if( regDest<0 && p ){
4645     struct ExprList_item *pItem;
4646     int i;
4647     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4648       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4649         return pItem->u.iConstExprReg;
4650       }
4651     }
4652   }
4653   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4654   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4655     Vdbe *v = pParse->pVdbe;
4656     int addr;
4657     assert( v );
4658     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4659     pParse->okConstFactor = 0;
4660     if( !pParse->db->mallocFailed ){
4661       if( regDest<0 ) regDest = ++pParse->nMem;
4662       sqlite3ExprCode(pParse, pExpr, regDest);
4663     }
4664     pParse->okConstFactor = 1;
4665     sqlite3ExprDelete(pParse->db, pExpr);
4666     sqlite3VdbeJumpHere(v, addr);
4667   }else{
4668     p = sqlite3ExprListAppend(pParse, p, pExpr);
4669     if( p ){
4670        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4671        pItem->reusable = regDest<0;
4672        if( regDest<0 ) regDest = ++pParse->nMem;
4673        pItem->u.iConstExprReg = regDest;
4674     }
4675     pParse->pConstExpr = p;
4676   }
4677   return regDest;
4678 }
4679 
4680 /*
4681 ** Generate code to evaluate an expression and store the results
4682 ** into a register.  Return the register number where the results
4683 ** are stored.
4684 **
4685 ** If the register is a temporary register that can be deallocated,
4686 ** then write its number into *pReg.  If the result register is not
4687 ** a temporary, then set *pReg to zero.
4688 **
4689 ** If pExpr is a constant, then this routine might generate this
4690 ** code to fill the register in the initialization section of the
4691 ** VDBE program, in order to factor it out of the evaluation loop.
4692 */
4693 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4694   int r2;
4695   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4696   if( ConstFactorOk(pParse)
4697    && ALWAYS(pExpr!=0)
4698    && pExpr->op!=TK_REGISTER
4699    && sqlite3ExprIsConstantNotJoin(pExpr)
4700   ){
4701     *pReg  = 0;
4702     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4703   }else{
4704     int r1 = sqlite3GetTempReg(pParse);
4705     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4706     if( r2==r1 ){
4707       *pReg = r1;
4708     }else{
4709       sqlite3ReleaseTempReg(pParse, r1);
4710       *pReg = 0;
4711     }
4712   }
4713   return r2;
4714 }
4715 
4716 /*
4717 ** Generate code that will evaluate expression pExpr and store the
4718 ** results in register target.  The results are guaranteed to appear
4719 ** in register target.
4720 */
4721 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4722   int inReg;
4723 
4724   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4725   assert( target>0 && target<=pParse->nMem );
4726   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4727   if( pParse->pVdbe==0 ) return;
4728   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4729   if( inReg!=target ){
4730     u8 op;
4731     if( ExprHasProperty(pExpr,EP_Subquery) ){
4732       op = OP_Copy;
4733     }else{
4734       op = OP_SCopy;
4735     }
4736     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4737   }
4738 }
4739 
4740 /*
4741 ** Make a transient copy of expression pExpr and then code it using
4742 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4743 ** except that the input expression is guaranteed to be unchanged.
4744 */
4745 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4746   sqlite3 *db = pParse->db;
4747   pExpr = sqlite3ExprDup(db, pExpr, 0);
4748   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4749   sqlite3ExprDelete(db, pExpr);
4750 }
4751 
4752 /*
4753 ** Generate code that will evaluate expression pExpr and store the
4754 ** results in register target.  The results are guaranteed to appear
4755 ** in register target.  If the expression is constant, then this routine
4756 ** might choose to code the expression at initialization time.
4757 */
4758 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4759   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4760     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4761   }else{
4762     sqlite3ExprCodeCopy(pParse, pExpr, target);
4763   }
4764 }
4765 
4766 /*
4767 ** Generate code that pushes the value of every element of the given
4768 ** expression list into a sequence of registers beginning at target.
4769 **
4770 ** Return the number of elements evaluated.  The number returned will
4771 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4772 ** is defined.
4773 **
4774 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4775 ** filled using OP_SCopy.  OP_Copy must be used instead.
4776 **
4777 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4778 ** factored out into initialization code.
4779 **
4780 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4781 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4782 ** in registers at srcReg, and so the value can be copied from there.
4783 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4784 ** are simply omitted rather than being copied from srcReg.
4785 */
4786 int sqlite3ExprCodeExprList(
4787   Parse *pParse,     /* Parsing context */
4788   ExprList *pList,   /* The expression list to be coded */
4789   int target,        /* Where to write results */
4790   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4791   u8 flags           /* SQLITE_ECEL_* flags */
4792 ){
4793   struct ExprList_item *pItem;
4794   int i, j, n;
4795   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4796   Vdbe *v = pParse->pVdbe;
4797   assert( pList!=0 );
4798   assert( target>0 );
4799   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4800   n = pList->nExpr;
4801   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4802   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4803     Expr *pExpr = pItem->pExpr;
4804 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4805     if( pItem->bSorterRef ){
4806       i--;
4807       n--;
4808     }else
4809 #endif
4810     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4811       if( flags & SQLITE_ECEL_OMITREF ){
4812         i--;
4813         n--;
4814       }else{
4815         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4816       }
4817     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4818            && sqlite3ExprIsConstantNotJoin(pExpr)
4819     ){
4820       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
4821     }else{
4822       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4823       if( inReg!=target+i ){
4824         VdbeOp *pOp;
4825         if( copyOp==OP_Copy
4826          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4827          && pOp->p1+pOp->p3+1==inReg
4828          && pOp->p2+pOp->p3+1==target+i
4829          && pOp->p5==0  /* The do-not-merge flag must be clear */
4830         ){
4831           pOp->p3++;
4832         }else{
4833           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4834         }
4835       }
4836     }
4837   }
4838   return n;
4839 }
4840 
4841 /*
4842 ** Generate code for a BETWEEN operator.
4843 **
4844 **    x BETWEEN y AND z
4845 **
4846 ** The above is equivalent to
4847 **
4848 **    x>=y AND x<=z
4849 **
4850 ** Code it as such, taking care to do the common subexpression
4851 ** elimination of x.
4852 **
4853 ** The xJumpIf parameter determines details:
4854 **
4855 **    NULL:                   Store the boolean result in reg[dest]
4856 **    sqlite3ExprIfTrue:      Jump to dest if true
4857 **    sqlite3ExprIfFalse:     Jump to dest if false
4858 **
4859 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4860 */
4861 static void exprCodeBetween(
4862   Parse *pParse,    /* Parsing and code generating context */
4863   Expr *pExpr,      /* The BETWEEN expression */
4864   int dest,         /* Jump destination or storage location */
4865   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4866   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4867 ){
4868   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4869   Expr compLeft;    /* The  x>=y  term */
4870   Expr compRight;   /* The  x<=z  term */
4871   int regFree1 = 0; /* Temporary use register */
4872   Expr *pDel = 0;
4873   sqlite3 *db = pParse->db;
4874 
4875   memset(&compLeft, 0, sizeof(Expr));
4876   memset(&compRight, 0, sizeof(Expr));
4877   memset(&exprAnd, 0, sizeof(Expr));
4878 
4879   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4880   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4881   if( db->mallocFailed==0 ){
4882     exprAnd.op = TK_AND;
4883     exprAnd.pLeft = &compLeft;
4884     exprAnd.pRight = &compRight;
4885     compLeft.op = TK_GE;
4886     compLeft.pLeft = pDel;
4887     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4888     compRight.op = TK_LE;
4889     compRight.pLeft = pDel;
4890     compRight.pRight = pExpr->x.pList->a[1].pExpr;
4891     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4892     if( xJump ){
4893       xJump(pParse, &exprAnd, dest, jumpIfNull);
4894     }else{
4895       /* Mark the expression is being from the ON or USING clause of a join
4896       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4897       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4898       ** for clarity, but we are out of bits in the Expr.flags field so we
4899       ** have to reuse the EP_FromJoin bit.  Bummer. */
4900       pDel->flags |= EP_FromJoin;
4901       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4902     }
4903     sqlite3ReleaseTempReg(pParse, regFree1);
4904   }
4905   sqlite3ExprDelete(db, pDel);
4906 
4907   /* Ensure adequate test coverage */
4908   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4909   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4910   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4911   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4912   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4913   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4914   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4915   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4916   testcase( xJump==0 );
4917 }
4918 
4919 /*
4920 ** Generate code for a boolean expression such that a jump is made
4921 ** to the label "dest" if the expression is true but execution
4922 ** continues straight thru if the expression is false.
4923 **
4924 ** If the expression evaluates to NULL (neither true nor false), then
4925 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4926 **
4927 ** This code depends on the fact that certain token values (ex: TK_EQ)
4928 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4929 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4930 ** the make process cause these values to align.  Assert()s in the code
4931 ** below verify that the numbers are aligned correctly.
4932 */
4933 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4934   Vdbe *v = pParse->pVdbe;
4935   int op = 0;
4936   int regFree1 = 0;
4937   int regFree2 = 0;
4938   int r1, r2;
4939 
4940   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4941   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4942   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4943   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
4944   op = pExpr->op;
4945   switch( op ){
4946     case TK_AND:
4947     case TK_OR: {
4948       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4949       if( pAlt!=pExpr ){
4950         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
4951       }else if( op==TK_AND ){
4952         int d2 = sqlite3VdbeMakeLabel(pParse);
4953         testcase( jumpIfNull==0 );
4954         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
4955                            jumpIfNull^SQLITE_JUMPIFNULL);
4956         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4957         sqlite3VdbeResolveLabel(v, d2);
4958       }else{
4959         testcase( jumpIfNull==0 );
4960         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4961         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4962       }
4963       break;
4964     }
4965     case TK_NOT: {
4966       testcase( jumpIfNull==0 );
4967       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4968       break;
4969     }
4970     case TK_TRUTH: {
4971       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4972       int isTrue;     /* IS TRUE or IS NOT TRUE */
4973       testcase( jumpIfNull==0 );
4974       isNot = pExpr->op2==TK_ISNOT;
4975       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4976       testcase( isTrue && isNot );
4977       testcase( !isTrue && isNot );
4978       if( isTrue ^ isNot ){
4979         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4980                           isNot ? SQLITE_JUMPIFNULL : 0);
4981       }else{
4982         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4983                            isNot ? SQLITE_JUMPIFNULL : 0);
4984       }
4985       break;
4986     }
4987     case TK_IS:
4988     case TK_ISNOT:
4989       testcase( op==TK_IS );
4990       testcase( op==TK_ISNOT );
4991       op = (op==TK_IS) ? TK_EQ : TK_NE;
4992       jumpIfNull = SQLITE_NULLEQ;
4993       /* no break */ deliberate_fall_through
4994     case TK_LT:
4995     case TK_LE:
4996     case TK_GT:
4997     case TK_GE:
4998     case TK_NE:
4999     case TK_EQ: {
5000       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5001       testcase( jumpIfNull==0 );
5002       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5003       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5004       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5005                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
5006       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5007       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5008       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5009       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5010       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5011       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5012       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5013       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5014       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5015       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5016       testcase( regFree1==0 );
5017       testcase( regFree2==0 );
5018       break;
5019     }
5020     case TK_ISNULL:
5021     case TK_NOTNULL: {
5022       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
5023       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
5024       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5025       sqlite3VdbeAddOp2(v, op, r1, dest);
5026       VdbeCoverageIf(v, op==TK_ISNULL);
5027       VdbeCoverageIf(v, op==TK_NOTNULL);
5028       testcase( regFree1==0 );
5029       break;
5030     }
5031     case TK_BETWEEN: {
5032       testcase( jumpIfNull==0 );
5033       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
5034       break;
5035     }
5036 #ifndef SQLITE_OMIT_SUBQUERY
5037     case TK_IN: {
5038       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
5039       int destIfNull = jumpIfNull ? dest : destIfFalse;
5040       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
5041       sqlite3VdbeGoto(v, dest);
5042       sqlite3VdbeResolveLabel(v, destIfFalse);
5043       break;
5044     }
5045 #endif
5046     default: {
5047     default_expr:
5048       if( ExprAlwaysTrue(pExpr) ){
5049         sqlite3VdbeGoto(v, dest);
5050       }else if( ExprAlwaysFalse(pExpr) ){
5051         /* No-op */
5052       }else{
5053         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5054         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
5055         VdbeCoverage(v);
5056         testcase( regFree1==0 );
5057         testcase( jumpIfNull==0 );
5058       }
5059       break;
5060     }
5061   }
5062   sqlite3ReleaseTempReg(pParse, regFree1);
5063   sqlite3ReleaseTempReg(pParse, regFree2);
5064 }
5065 
5066 /*
5067 ** Generate code for a boolean expression such that a jump is made
5068 ** to the label "dest" if the expression is false but execution
5069 ** continues straight thru if the expression is true.
5070 **
5071 ** If the expression evaluates to NULL (neither true nor false) then
5072 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5073 ** is 0.
5074 */
5075 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5076   Vdbe *v = pParse->pVdbe;
5077   int op = 0;
5078   int regFree1 = 0;
5079   int regFree2 = 0;
5080   int r1, r2;
5081 
5082   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5083   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5084   if( pExpr==0 )    return;
5085   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5086 
5087   /* The value of pExpr->op and op are related as follows:
5088   **
5089   **       pExpr->op            op
5090   **       ---------          ----------
5091   **       TK_ISNULL          OP_NotNull
5092   **       TK_NOTNULL         OP_IsNull
5093   **       TK_NE              OP_Eq
5094   **       TK_EQ              OP_Ne
5095   **       TK_GT              OP_Le
5096   **       TK_LE              OP_Gt
5097   **       TK_GE              OP_Lt
5098   **       TK_LT              OP_Ge
5099   **
5100   ** For other values of pExpr->op, op is undefined and unused.
5101   ** The value of TK_ and OP_ constants are arranged such that we
5102   ** can compute the mapping above using the following expression.
5103   ** Assert()s verify that the computation is correct.
5104   */
5105   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5106 
5107   /* Verify correct alignment of TK_ and OP_ constants
5108   */
5109   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5110   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5111   assert( pExpr->op!=TK_NE || op==OP_Eq );
5112   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5113   assert( pExpr->op!=TK_LT || op==OP_Ge );
5114   assert( pExpr->op!=TK_LE || op==OP_Gt );
5115   assert( pExpr->op!=TK_GT || op==OP_Le );
5116   assert( pExpr->op!=TK_GE || op==OP_Lt );
5117 
5118   switch( pExpr->op ){
5119     case TK_AND:
5120     case TK_OR: {
5121       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5122       if( pAlt!=pExpr ){
5123         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5124       }else if( pExpr->op==TK_AND ){
5125         testcase( jumpIfNull==0 );
5126         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5127         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5128       }else{
5129         int d2 = sqlite3VdbeMakeLabel(pParse);
5130         testcase( jumpIfNull==0 );
5131         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5132                           jumpIfNull^SQLITE_JUMPIFNULL);
5133         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5134         sqlite3VdbeResolveLabel(v, d2);
5135       }
5136       break;
5137     }
5138     case TK_NOT: {
5139       testcase( jumpIfNull==0 );
5140       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5141       break;
5142     }
5143     case TK_TRUTH: {
5144       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5145       int isTrue;  /* IS TRUE or IS NOT TRUE */
5146       testcase( jumpIfNull==0 );
5147       isNot = pExpr->op2==TK_ISNOT;
5148       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5149       testcase( isTrue && isNot );
5150       testcase( !isTrue && isNot );
5151       if( isTrue ^ isNot ){
5152         /* IS TRUE and IS NOT FALSE */
5153         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5154                            isNot ? 0 : SQLITE_JUMPIFNULL);
5155 
5156       }else{
5157         /* IS FALSE and IS NOT TRUE */
5158         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5159                           isNot ? 0 : SQLITE_JUMPIFNULL);
5160       }
5161       break;
5162     }
5163     case TK_IS:
5164     case TK_ISNOT:
5165       testcase( pExpr->op==TK_IS );
5166       testcase( pExpr->op==TK_ISNOT );
5167       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5168       jumpIfNull = SQLITE_NULLEQ;
5169       /* no break */ deliberate_fall_through
5170     case TK_LT:
5171     case TK_LE:
5172     case TK_GT:
5173     case TK_GE:
5174     case TK_NE:
5175     case TK_EQ: {
5176       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5177       testcase( jumpIfNull==0 );
5178       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5179       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5180       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5181                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5182       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5183       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5184       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5185       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5186       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5187       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5188       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5189       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5190       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5191       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5192       testcase( regFree1==0 );
5193       testcase( regFree2==0 );
5194       break;
5195     }
5196     case TK_ISNULL:
5197     case TK_NOTNULL: {
5198       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5199       sqlite3VdbeAddOp2(v, op, r1, dest);
5200       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5201       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5202       testcase( regFree1==0 );
5203       break;
5204     }
5205     case TK_BETWEEN: {
5206       testcase( jumpIfNull==0 );
5207       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5208       break;
5209     }
5210 #ifndef SQLITE_OMIT_SUBQUERY
5211     case TK_IN: {
5212       if( jumpIfNull ){
5213         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5214       }else{
5215         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5216         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5217         sqlite3VdbeResolveLabel(v, destIfNull);
5218       }
5219       break;
5220     }
5221 #endif
5222     default: {
5223     default_expr:
5224       if( ExprAlwaysFalse(pExpr) ){
5225         sqlite3VdbeGoto(v, dest);
5226       }else if( ExprAlwaysTrue(pExpr) ){
5227         /* no-op */
5228       }else{
5229         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5230         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5231         VdbeCoverage(v);
5232         testcase( regFree1==0 );
5233         testcase( jumpIfNull==0 );
5234       }
5235       break;
5236     }
5237   }
5238   sqlite3ReleaseTempReg(pParse, regFree1);
5239   sqlite3ReleaseTempReg(pParse, regFree2);
5240 }
5241 
5242 /*
5243 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5244 ** code generation, and that copy is deleted after code generation. This
5245 ** ensures that the original pExpr is unchanged.
5246 */
5247 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5248   sqlite3 *db = pParse->db;
5249   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5250   if( db->mallocFailed==0 ){
5251     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5252   }
5253   sqlite3ExprDelete(db, pCopy);
5254 }
5255 
5256 /*
5257 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5258 ** type of expression.
5259 **
5260 ** If pExpr is a simple SQL value - an integer, real, string, blob
5261 ** or NULL value - then the VDBE currently being prepared is configured
5262 ** to re-prepare each time a new value is bound to variable pVar.
5263 **
5264 ** Additionally, if pExpr is a simple SQL value and the value is the
5265 ** same as that currently bound to variable pVar, non-zero is returned.
5266 ** Otherwise, if the values are not the same or if pExpr is not a simple
5267 ** SQL value, zero is returned.
5268 */
5269 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
5270   int res = 0;
5271   int iVar;
5272   sqlite3_value *pL, *pR = 0;
5273 
5274   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5275   if( pR ){
5276     iVar = pVar->iColumn;
5277     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5278     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5279     if( pL ){
5280       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5281         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5282       }
5283       res =  0==sqlite3MemCompare(pL, pR, 0);
5284     }
5285     sqlite3ValueFree(pR);
5286     sqlite3ValueFree(pL);
5287   }
5288 
5289   return res;
5290 }
5291 
5292 /*
5293 ** Do a deep comparison of two expression trees.  Return 0 if the two
5294 ** expressions are completely identical.  Return 1 if they differ only
5295 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5296 ** other than the top-level COLLATE operator.
5297 **
5298 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5299 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5300 **
5301 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5302 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5303 **
5304 ** Sometimes this routine will return 2 even if the two expressions
5305 ** really are equivalent.  If we cannot prove that the expressions are
5306 ** identical, we return 2 just to be safe.  So if this routine
5307 ** returns 2, then you do not really know for certain if the two
5308 ** expressions are the same.  But if you get a 0 or 1 return, then you
5309 ** can be sure the expressions are the same.  In the places where
5310 ** this routine is used, it does not hurt to get an extra 2 - that
5311 ** just might result in some slightly slower code.  But returning
5312 ** an incorrect 0 or 1 could lead to a malfunction.
5313 **
5314 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5315 ** pParse->pReprepare can be matched against literals in pB.  The
5316 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5317 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5318 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5319 ** pB causes a return value of 2.
5320 */
5321 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
5322   u32 combinedFlags;
5323   if( pA==0 || pB==0 ){
5324     return pB==pA ? 0 : 2;
5325   }
5326   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5327     return 0;
5328   }
5329   combinedFlags = pA->flags | pB->flags;
5330   if( combinedFlags & EP_IntValue ){
5331     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5332       return 0;
5333     }
5334     return 2;
5335   }
5336   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5337     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5338       return 1;
5339     }
5340     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5341       return 1;
5342     }
5343     return 2;
5344   }
5345   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
5346     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5347       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5348 #ifndef SQLITE_OMIT_WINDOWFUNC
5349       assert( pA->op==pB->op );
5350       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5351         return 2;
5352       }
5353       if( ExprHasProperty(pA,EP_WinFunc) ){
5354         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5355           return 2;
5356         }
5357       }
5358 #endif
5359     }else if( pA->op==TK_NULL ){
5360       return 0;
5361     }else if( pA->op==TK_COLLATE ){
5362       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5363     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
5364       return 2;
5365     }
5366   }
5367   if( (pA->flags & (EP_Distinct|EP_Commuted))
5368      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5369   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5370     if( combinedFlags & EP_xIsSelect ) return 2;
5371     if( (combinedFlags & EP_FixedCol)==0
5372      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5373     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5374     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5375     if( pA->op!=TK_STRING
5376      && pA->op!=TK_TRUEFALSE
5377      && ALWAYS((combinedFlags & EP_Reduced)==0)
5378     ){
5379       if( pA->iColumn!=pB->iColumn ) return 2;
5380       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5381       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5382         return 2;
5383       }
5384     }
5385   }
5386   return 0;
5387 }
5388 
5389 /*
5390 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5391 ** if they are certainly different, or 2 if it is not possible to
5392 ** determine if they are identical or not.
5393 **
5394 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5395 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5396 **
5397 ** This routine might return non-zero for equivalent ExprLists.  The
5398 ** only consequence will be disabled optimizations.  But this routine
5399 ** must never return 0 if the two ExprList objects are different, or
5400 ** a malfunction will result.
5401 **
5402 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5403 ** always differs from a non-NULL pointer.
5404 */
5405 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
5406   int i;
5407   if( pA==0 && pB==0 ) return 0;
5408   if( pA==0 || pB==0 ) return 1;
5409   if( pA->nExpr!=pB->nExpr ) return 1;
5410   for(i=0; i<pA->nExpr; i++){
5411     int res;
5412     Expr *pExprA = pA->a[i].pExpr;
5413     Expr *pExprB = pB->a[i].pExpr;
5414     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
5415     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5416   }
5417   return 0;
5418 }
5419 
5420 /*
5421 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5422 ** are ignored.
5423 */
5424 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
5425   return sqlite3ExprCompare(0,
5426              sqlite3ExprSkipCollateAndLikely(pA),
5427              sqlite3ExprSkipCollateAndLikely(pB),
5428              iTab);
5429 }
5430 
5431 /*
5432 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5433 **
5434 ** Or if seenNot is true, return non-zero if Expr p can only be
5435 ** non-NULL if pNN is not NULL
5436 */
5437 static int exprImpliesNotNull(
5438   Parse *pParse,      /* Parsing context */
5439   Expr *p,            /* The expression to be checked */
5440   Expr *pNN,          /* The expression that is NOT NULL */
5441   int iTab,           /* Table being evaluated */
5442   int seenNot         /* Return true only if p can be any non-NULL value */
5443 ){
5444   assert( p );
5445   assert( pNN );
5446   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5447     return pNN->op!=TK_NULL;
5448   }
5449   switch( p->op ){
5450     case TK_IN: {
5451       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5452       assert( ExprHasProperty(p,EP_xIsSelect)
5453            || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5454       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5455     }
5456     case TK_BETWEEN: {
5457       ExprList *pList = p->x.pList;
5458       assert( pList!=0 );
5459       assert( pList->nExpr==2 );
5460       if( seenNot ) return 0;
5461       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5462        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5463       ){
5464         return 1;
5465       }
5466       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5467     }
5468     case TK_EQ:
5469     case TK_NE:
5470     case TK_LT:
5471     case TK_LE:
5472     case TK_GT:
5473     case TK_GE:
5474     case TK_PLUS:
5475     case TK_MINUS:
5476     case TK_BITOR:
5477     case TK_LSHIFT:
5478     case TK_RSHIFT:
5479     case TK_CONCAT:
5480       seenNot = 1;
5481       /* no break */ deliberate_fall_through
5482     case TK_STAR:
5483     case TK_REM:
5484     case TK_BITAND:
5485     case TK_SLASH: {
5486       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5487       /* no break */ deliberate_fall_through
5488     }
5489     case TK_SPAN:
5490     case TK_COLLATE:
5491     case TK_UPLUS:
5492     case TK_UMINUS: {
5493       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5494     }
5495     case TK_TRUTH: {
5496       if( seenNot ) return 0;
5497       if( p->op2!=TK_IS ) return 0;
5498       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5499     }
5500     case TK_BITNOT:
5501     case TK_NOT: {
5502       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5503     }
5504   }
5505   return 0;
5506 }
5507 
5508 /*
5509 ** Return true if we can prove the pE2 will always be true if pE1 is
5510 ** true.  Return false if we cannot complete the proof or if pE2 might
5511 ** be false.  Examples:
5512 **
5513 **     pE1: x==5       pE2: x==5             Result: true
5514 **     pE1: x>0        pE2: x==5             Result: false
5515 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5516 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5517 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5518 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5519 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5520 **
5521 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5522 ** Expr.iTable<0 then assume a table number given by iTab.
5523 **
5524 ** If pParse is not NULL, then the values of bound variables in pE1 are
5525 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5526 ** modified to record which bound variables are referenced.  If pParse
5527 ** is NULL, then false will be returned if pE1 contains any bound variables.
5528 **
5529 ** When in doubt, return false.  Returning true might give a performance
5530 ** improvement.  Returning false might cause a performance reduction, but
5531 ** it will always give the correct answer and is hence always safe.
5532 */
5533 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5534   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5535     return 1;
5536   }
5537   if( pE2->op==TK_OR
5538    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5539              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5540   ){
5541     return 1;
5542   }
5543   if( pE2->op==TK_NOTNULL
5544    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5545   ){
5546     return 1;
5547   }
5548   return 0;
5549 }
5550 
5551 /*
5552 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5553 ** If the expression node requires that the table at pWalker->iCur
5554 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5555 **
5556 ** This routine controls an optimization.  False positives (setting
5557 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5558 ** (never setting pWalker->eCode) is a harmless missed optimization.
5559 */
5560 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5561   testcase( pExpr->op==TK_AGG_COLUMN );
5562   testcase( pExpr->op==TK_AGG_FUNCTION );
5563   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5564   switch( pExpr->op ){
5565     case TK_ISNOT:
5566     case TK_ISNULL:
5567     case TK_NOTNULL:
5568     case TK_IS:
5569     case TK_OR:
5570     case TK_VECTOR:
5571     case TK_CASE:
5572     case TK_IN:
5573     case TK_FUNCTION:
5574     case TK_TRUTH:
5575       testcase( pExpr->op==TK_ISNOT );
5576       testcase( pExpr->op==TK_ISNULL );
5577       testcase( pExpr->op==TK_NOTNULL );
5578       testcase( pExpr->op==TK_IS );
5579       testcase( pExpr->op==TK_OR );
5580       testcase( pExpr->op==TK_VECTOR );
5581       testcase( pExpr->op==TK_CASE );
5582       testcase( pExpr->op==TK_IN );
5583       testcase( pExpr->op==TK_FUNCTION );
5584       testcase( pExpr->op==TK_TRUTH );
5585       return WRC_Prune;
5586     case TK_COLUMN:
5587       if( pWalker->u.iCur==pExpr->iTable ){
5588         pWalker->eCode = 1;
5589         return WRC_Abort;
5590       }
5591       return WRC_Prune;
5592 
5593     case TK_AND:
5594       if( pWalker->eCode==0 ){
5595         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5596         if( pWalker->eCode ){
5597           pWalker->eCode = 0;
5598           sqlite3WalkExpr(pWalker, pExpr->pRight);
5599         }
5600       }
5601       return WRC_Prune;
5602 
5603     case TK_BETWEEN:
5604       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5605         assert( pWalker->eCode );
5606         return WRC_Abort;
5607       }
5608       return WRC_Prune;
5609 
5610     /* Virtual tables are allowed to use constraints like x=NULL.  So
5611     ** a term of the form x=y does not prove that y is not null if x
5612     ** is the column of a virtual table */
5613     case TK_EQ:
5614     case TK_NE:
5615     case TK_LT:
5616     case TK_LE:
5617     case TK_GT:
5618     case TK_GE: {
5619       Expr *pLeft = pExpr->pLeft;
5620       Expr *pRight = pExpr->pRight;
5621       testcase( pExpr->op==TK_EQ );
5622       testcase( pExpr->op==TK_NE );
5623       testcase( pExpr->op==TK_LT );
5624       testcase( pExpr->op==TK_LE );
5625       testcase( pExpr->op==TK_GT );
5626       testcase( pExpr->op==TK_GE );
5627       /* The y.pTab=0 assignment in wherecode.c always happens after the
5628       ** impliesNotNullRow() test */
5629       if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0)
5630                                && IsVirtual(pLeft->y.pTab))
5631        || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0)
5632                                && IsVirtual(pRight->y.pTab))
5633       ){
5634         return WRC_Prune;
5635       }
5636       /* no break */ deliberate_fall_through
5637     }
5638     default:
5639       return WRC_Continue;
5640   }
5641 }
5642 
5643 /*
5644 ** Return true (non-zero) if expression p can only be true if at least
5645 ** one column of table iTab is non-null.  In other words, return true
5646 ** if expression p will always be NULL or false if every column of iTab
5647 ** is NULL.
5648 **
5649 ** False negatives are acceptable.  In other words, it is ok to return
5650 ** zero even if expression p will never be true of every column of iTab
5651 ** is NULL.  A false negative is merely a missed optimization opportunity.
5652 **
5653 ** False positives are not allowed, however.  A false positive may result
5654 ** in an incorrect answer.
5655 **
5656 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5657 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5658 **
5659 ** This routine is used to check if a LEFT JOIN can be converted into
5660 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5661 ** clause requires that some column of the right table of the LEFT JOIN
5662 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5663 ** ordinary join.
5664 */
5665 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5666   Walker w;
5667   p = sqlite3ExprSkipCollateAndLikely(p);
5668   if( p==0 ) return 0;
5669   if( p->op==TK_NOTNULL ){
5670     p = p->pLeft;
5671   }else{
5672     while( p->op==TK_AND ){
5673       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5674       p = p->pRight;
5675     }
5676   }
5677   w.xExprCallback = impliesNotNullRow;
5678   w.xSelectCallback = 0;
5679   w.xSelectCallback2 = 0;
5680   w.eCode = 0;
5681   w.u.iCur = iTab;
5682   sqlite3WalkExpr(&w, p);
5683   return w.eCode;
5684 }
5685 
5686 /*
5687 ** An instance of the following structure is used by the tree walker
5688 ** to determine if an expression can be evaluated by reference to the
5689 ** index only, without having to do a search for the corresponding
5690 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5691 ** is the cursor for the table.
5692 */
5693 struct IdxCover {
5694   Index *pIdx;     /* The index to be tested for coverage */
5695   int iCur;        /* Cursor number for the table corresponding to the index */
5696 };
5697 
5698 /*
5699 ** Check to see if there are references to columns in table
5700 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5701 ** pWalker->u.pIdxCover->pIdx.
5702 */
5703 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5704   if( pExpr->op==TK_COLUMN
5705    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5706    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5707   ){
5708     pWalker->eCode = 1;
5709     return WRC_Abort;
5710   }
5711   return WRC_Continue;
5712 }
5713 
5714 /*
5715 ** Determine if an index pIdx on table with cursor iCur contains will
5716 ** the expression pExpr.  Return true if the index does cover the
5717 ** expression and false if the pExpr expression references table columns
5718 ** that are not found in the index pIdx.
5719 **
5720 ** An index covering an expression means that the expression can be
5721 ** evaluated using only the index and without having to lookup the
5722 ** corresponding table entry.
5723 */
5724 int sqlite3ExprCoveredByIndex(
5725   Expr *pExpr,        /* The index to be tested */
5726   int iCur,           /* The cursor number for the corresponding table */
5727   Index *pIdx         /* The index that might be used for coverage */
5728 ){
5729   Walker w;
5730   struct IdxCover xcov;
5731   memset(&w, 0, sizeof(w));
5732   xcov.iCur = iCur;
5733   xcov.pIdx = pIdx;
5734   w.xExprCallback = exprIdxCover;
5735   w.u.pIdxCover = &xcov;
5736   sqlite3WalkExpr(&w, pExpr);
5737   return !w.eCode;
5738 }
5739 
5740 
5741 /*
5742 ** An instance of the following structure is used by the tree walker
5743 ** to count references to table columns in the arguments of an
5744 ** aggregate function, in order to implement the
5745 ** sqlite3FunctionThisSrc() routine.
5746 */
5747 struct SrcCount {
5748   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5749   int iSrcInner;   /* Smallest cursor number in this context */
5750   int nThis;       /* Number of references to columns in pSrcList */
5751   int nOther;      /* Number of references to columns in other FROM clauses */
5752 };
5753 
5754 /*
5755 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first
5756 ** SELECT with a FROM clause encountered during this iteration, set
5757 ** SrcCount.iSrcInner to the cursor number of the leftmost object in
5758 ** the FROM cause.
5759 */
5760 static int selectSrcCount(Walker *pWalker, Select *pSel){
5761   struct SrcCount *p = pWalker->u.pSrcCount;
5762   if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){
5763     pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor;
5764   }
5765   return WRC_Continue;
5766 }
5767 
5768 /*
5769 ** Count the number of references to columns.
5770 */
5771 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5772   /* There was once a NEVER() on the second term on the grounds that
5773   ** sqlite3FunctionUsesThisSrc() was always called before
5774   ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet
5775   ** been converted into TK_AGG_COLUMN. But this is no longer true due
5776   ** to window functions - sqlite3WindowRewrite() may now indirectly call
5777   ** FunctionUsesThisSrc() when creating a new sub-select. */
5778   if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){
5779     int i;
5780     struct SrcCount *p = pWalker->u.pSrcCount;
5781     SrcList *pSrc = p->pSrc;
5782     int nSrc = pSrc ? pSrc->nSrc : 0;
5783     for(i=0; i<nSrc; i++){
5784       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5785     }
5786     if( i<nSrc ){
5787       p->nThis++;
5788     }else if( pExpr->iTable<p->iSrcInner ){
5789       /* In a well-formed parse tree (no name resolution errors),
5790       ** TK_COLUMN nodes with smaller Expr.iTable values are in an
5791       ** outer context.  Those are the only ones to count as "other" */
5792       p->nOther++;
5793     }
5794   }
5795   return WRC_Continue;
5796 }
5797 
5798 /*
5799 ** Determine if any of the arguments to the pExpr Function reference
5800 ** pSrcList.  Return true if they do.  Also return true if the function
5801 ** has no arguments or has only constant arguments.  Return false if pExpr
5802 ** references columns but not columns of tables found in pSrcList.
5803 */
5804 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5805   Walker w;
5806   struct SrcCount cnt;
5807   assert( pExpr->op==TK_AGG_FUNCTION );
5808   memset(&w, 0, sizeof(w));
5809   w.xExprCallback = exprSrcCount;
5810   w.xSelectCallback = selectSrcCount;
5811   w.u.pSrcCount = &cnt;
5812   cnt.pSrc = pSrcList;
5813   cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF;
5814   cnt.nThis = 0;
5815   cnt.nOther = 0;
5816   sqlite3WalkExprList(&w, pExpr->x.pList);
5817 #ifndef SQLITE_OMIT_WINDOWFUNC
5818   if( ExprHasProperty(pExpr, EP_WinFunc) ){
5819     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
5820   }
5821 #endif
5822   return cnt.nThis>0 || cnt.nOther==0;
5823 }
5824 
5825 /*
5826 ** This is a Walker expression node callback.
5827 **
5828 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
5829 ** object that is referenced does not refer directly to the Expr.  If
5830 ** it does, make a copy.  This is done because the pExpr argument is
5831 ** subject to change.
5832 **
5833 ** The copy is stored on pParse->pConstExpr with a register number of 0.
5834 ** This will cause the expression to be deleted automatically when the
5835 ** Parse object is destroyed, but the zero register number means that it
5836 ** will not generate any code in the preamble.
5837 */
5838 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
5839   if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
5840    && pExpr->pAggInfo!=0
5841   ){
5842     AggInfo *pAggInfo = pExpr->pAggInfo;
5843     int iAgg = pExpr->iAgg;
5844     Parse *pParse = pWalker->pParse;
5845     sqlite3 *db = pParse->db;
5846     assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION );
5847     if( pExpr->op==TK_AGG_COLUMN ){
5848       assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
5849       if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
5850         pExpr = sqlite3ExprDup(db, pExpr, 0);
5851         if( pExpr ){
5852           pAggInfo->aCol[iAgg].pCExpr = pExpr;
5853           sqlite3ExprDeferredDelete(pParse, pExpr);
5854         }
5855       }
5856     }else{
5857       assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
5858       if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
5859         pExpr = sqlite3ExprDup(db, pExpr, 0);
5860         if( pExpr ){
5861           pAggInfo->aFunc[iAgg].pFExpr = pExpr;
5862           sqlite3ExprDeferredDelete(pParse, pExpr);
5863         }
5864       }
5865     }
5866   }
5867   return WRC_Continue;
5868 }
5869 
5870 /*
5871 ** Initialize a Walker object so that will persist AggInfo entries referenced
5872 ** by the tree that is walked.
5873 */
5874 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
5875   memset(pWalker, 0, sizeof(*pWalker));
5876   pWalker->pParse = pParse;
5877   pWalker->xExprCallback = agginfoPersistExprCb;
5878   pWalker->xSelectCallback = sqlite3SelectWalkNoop;
5879 }
5880 
5881 /*
5882 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5883 ** the new element.  Return a negative number if malloc fails.
5884 */
5885 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5886   int i;
5887   pInfo->aCol = sqlite3ArrayAllocate(
5888        db,
5889        pInfo->aCol,
5890        sizeof(pInfo->aCol[0]),
5891        &pInfo->nColumn,
5892        &i
5893   );
5894   return i;
5895 }
5896 
5897 /*
5898 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5899 ** the new element.  Return a negative number if malloc fails.
5900 */
5901 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5902   int i;
5903   pInfo->aFunc = sqlite3ArrayAllocate(
5904        db,
5905        pInfo->aFunc,
5906        sizeof(pInfo->aFunc[0]),
5907        &pInfo->nFunc,
5908        &i
5909   );
5910   return i;
5911 }
5912 
5913 /*
5914 ** This is the xExprCallback for a tree walker.  It is used to
5915 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5916 ** for additional information.
5917 */
5918 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5919   int i;
5920   NameContext *pNC = pWalker->u.pNC;
5921   Parse *pParse = pNC->pParse;
5922   SrcList *pSrcList = pNC->pSrcList;
5923   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5924 
5925   assert( pNC->ncFlags & NC_UAggInfo );
5926   switch( pExpr->op ){
5927     case TK_AGG_COLUMN:
5928     case TK_COLUMN: {
5929       testcase( pExpr->op==TK_AGG_COLUMN );
5930       testcase( pExpr->op==TK_COLUMN );
5931       /* Check to see if the column is in one of the tables in the FROM
5932       ** clause of the aggregate query */
5933       if( ALWAYS(pSrcList!=0) ){
5934         SrcItem *pItem = pSrcList->a;
5935         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5936           struct AggInfo_col *pCol;
5937           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5938           if( pExpr->iTable==pItem->iCursor ){
5939             /* If we reach this point, it means that pExpr refers to a table
5940             ** that is in the FROM clause of the aggregate query.
5941             **
5942             ** Make an entry for the column in pAggInfo->aCol[] if there
5943             ** is not an entry there already.
5944             */
5945             int k;
5946             pCol = pAggInfo->aCol;
5947             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5948               if( pCol->iTable==pExpr->iTable &&
5949                   pCol->iColumn==pExpr->iColumn ){
5950                 break;
5951               }
5952             }
5953             if( (k>=pAggInfo->nColumn)
5954              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5955             ){
5956               pCol = &pAggInfo->aCol[k];
5957               pCol->pTab = pExpr->y.pTab;
5958               pCol->iTable = pExpr->iTable;
5959               pCol->iColumn = pExpr->iColumn;
5960               pCol->iMem = ++pParse->nMem;
5961               pCol->iSorterColumn = -1;
5962               pCol->pCExpr = pExpr;
5963               if( pAggInfo->pGroupBy ){
5964                 int j, n;
5965                 ExprList *pGB = pAggInfo->pGroupBy;
5966                 struct ExprList_item *pTerm = pGB->a;
5967                 n = pGB->nExpr;
5968                 for(j=0; j<n; j++, pTerm++){
5969                   Expr *pE = pTerm->pExpr;
5970                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5971                       pE->iColumn==pExpr->iColumn ){
5972                     pCol->iSorterColumn = j;
5973                     break;
5974                   }
5975                 }
5976               }
5977               if( pCol->iSorterColumn<0 ){
5978                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5979               }
5980             }
5981             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5982             ** because it was there before or because we just created it).
5983             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5984             ** pAggInfo->aCol[] entry.
5985             */
5986             ExprSetVVAProperty(pExpr, EP_NoReduce);
5987             pExpr->pAggInfo = pAggInfo;
5988             pExpr->op = TK_AGG_COLUMN;
5989             pExpr->iAgg = (i16)k;
5990             break;
5991           } /* endif pExpr->iTable==pItem->iCursor */
5992         } /* end loop over pSrcList */
5993       }
5994       return WRC_Prune;
5995     }
5996     case TK_AGG_FUNCTION: {
5997       if( (pNC->ncFlags & NC_InAggFunc)==0
5998        && pWalker->walkerDepth==pExpr->op2
5999       ){
6000         /* Check to see if pExpr is a duplicate of another aggregate
6001         ** function that is already in the pAggInfo structure
6002         */
6003         struct AggInfo_func *pItem = pAggInfo->aFunc;
6004         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
6005           if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
6006             break;
6007           }
6008         }
6009         if( i>=pAggInfo->nFunc ){
6010           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
6011           */
6012           u8 enc = ENC(pParse->db);
6013           i = addAggInfoFunc(pParse->db, pAggInfo);
6014           if( i>=0 ){
6015             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6016             pItem = &pAggInfo->aFunc[i];
6017             pItem->pFExpr = pExpr;
6018             pItem->iMem = ++pParse->nMem;
6019             assert( !ExprHasProperty(pExpr, EP_IntValue) );
6020             pItem->pFunc = sqlite3FindFunction(pParse->db,
6021                    pExpr->u.zToken,
6022                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
6023             if( pExpr->flags & EP_Distinct ){
6024               pItem->iDistinct = pParse->nTab++;
6025             }else{
6026               pItem->iDistinct = -1;
6027             }
6028           }
6029         }
6030         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
6031         */
6032         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6033         ExprSetVVAProperty(pExpr, EP_NoReduce);
6034         pExpr->iAgg = (i16)i;
6035         pExpr->pAggInfo = pAggInfo;
6036         return WRC_Prune;
6037       }else{
6038         return WRC_Continue;
6039       }
6040     }
6041   }
6042   return WRC_Continue;
6043 }
6044 
6045 /*
6046 ** Analyze the pExpr expression looking for aggregate functions and
6047 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6048 ** points to.  Additional entries are made on the AggInfo object as
6049 ** necessary.
6050 **
6051 ** This routine should only be called after the expression has been
6052 ** analyzed by sqlite3ResolveExprNames().
6053 */
6054 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
6055   Walker w;
6056   w.xExprCallback = analyzeAggregate;
6057   w.xSelectCallback = sqlite3WalkerDepthIncrease;
6058   w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
6059   w.walkerDepth = 0;
6060   w.u.pNC = pNC;
6061   w.pParse = 0;
6062   assert( pNC->pSrcList!=0 );
6063   sqlite3WalkExpr(&w, pExpr);
6064 }
6065 
6066 /*
6067 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6068 ** expression list.  Return the number of errors.
6069 **
6070 ** If an error is found, the analysis is cut short.
6071 */
6072 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6073   struct ExprList_item *pItem;
6074   int i;
6075   if( pList ){
6076     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6077       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
6078     }
6079   }
6080 }
6081 
6082 /*
6083 ** Allocate a single new register for use to hold some intermediate result.
6084 */
6085 int sqlite3GetTempReg(Parse *pParse){
6086   if( pParse->nTempReg==0 ){
6087     return ++pParse->nMem;
6088   }
6089   return pParse->aTempReg[--pParse->nTempReg];
6090 }
6091 
6092 /*
6093 ** Deallocate a register, making available for reuse for some other
6094 ** purpose.
6095 */
6096 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6097   if( iReg ){
6098     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6099     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6100       pParse->aTempReg[pParse->nTempReg++] = iReg;
6101     }
6102   }
6103 }
6104 
6105 /*
6106 ** Allocate or deallocate a block of nReg consecutive registers.
6107 */
6108 int sqlite3GetTempRange(Parse *pParse, int nReg){
6109   int i, n;
6110   if( nReg==1 ) return sqlite3GetTempReg(pParse);
6111   i = pParse->iRangeReg;
6112   n = pParse->nRangeReg;
6113   if( nReg<=n ){
6114     pParse->iRangeReg += nReg;
6115     pParse->nRangeReg -= nReg;
6116   }else{
6117     i = pParse->nMem+1;
6118     pParse->nMem += nReg;
6119   }
6120   return i;
6121 }
6122 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6123   if( nReg==1 ){
6124     sqlite3ReleaseTempReg(pParse, iReg);
6125     return;
6126   }
6127   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6128   if( nReg>pParse->nRangeReg ){
6129     pParse->nRangeReg = nReg;
6130     pParse->iRangeReg = iReg;
6131   }
6132 }
6133 
6134 /*
6135 ** Mark all temporary registers as being unavailable for reuse.
6136 **
6137 ** Always invoke this procedure after coding a subroutine or co-routine
6138 ** that might be invoked from other parts of the code, to ensure that
6139 ** the sub/co-routine does not use registers in common with the code that
6140 ** invokes the sub/co-routine.
6141 */
6142 void sqlite3ClearTempRegCache(Parse *pParse){
6143   pParse->nTempReg = 0;
6144   pParse->nRangeReg = 0;
6145 }
6146 
6147 /*
6148 ** Validate that no temporary register falls within the range of
6149 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
6150 ** statements.
6151 */
6152 #ifdef SQLITE_DEBUG
6153 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6154   int i;
6155   if( pParse->nRangeReg>0
6156    && pParse->iRangeReg+pParse->nRangeReg > iFirst
6157    && pParse->iRangeReg <= iLast
6158   ){
6159      return 0;
6160   }
6161   for(i=0; i<pParse->nTempReg; i++){
6162     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6163       return 0;
6164     }
6165   }
6166   return 1;
6167 }
6168 #endif /* SQLITE_DEBUG */
6169