1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_REGISTER ) op = pExpr->op2; 56 if( (op==TK_COLUMN || op==TK_AGG_COLUMN) && pExpr->y.pTab ){ 57 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 58 } 59 if( op==TK_SELECT ){ 60 assert( pExpr->flags&EP_xIsSelect ); 61 assert( pExpr->x.pSelect!=0 ); 62 assert( pExpr->x.pSelect->pEList!=0 ); 63 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 64 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 65 } 66 #ifndef SQLITE_OMIT_CAST 67 if( op==TK_CAST ){ 68 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 69 return sqlite3AffinityType(pExpr->u.zToken, 0); 70 } 71 #endif 72 if( op==TK_SELECT_COLUMN ){ 73 assert( pExpr->pLeft->flags&EP_xIsSelect ); 74 return sqlite3ExprAffinity( 75 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 76 ); 77 } 78 if( op==TK_VECTOR ){ 79 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 80 } 81 return pExpr->affExpr; 82 } 83 84 /* 85 ** Set the collating sequence for expression pExpr to be the collating 86 ** sequence named by pToken. Return a pointer to a new Expr node that 87 ** implements the COLLATE operator. 88 ** 89 ** If a memory allocation error occurs, that fact is recorded in pParse->db 90 ** and the pExpr parameter is returned unchanged. 91 */ 92 Expr *sqlite3ExprAddCollateToken( 93 Parse *pParse, /* Parsing context */ 94 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 95 const Token *pCollName, /* Name of collating sequence */ 96 int dequote /* True to dequote pCollName */ 97 ){ 98 assert( pExpr!=0 || pParse->db->mallocFailed ); 99 if( pExpr==0 ) return 0; 100 if( pExpr->op==TK_VECTOR ){ 101 ExprList *pList = pExpr->x.pList; 102 if( ALWAYS(pList!=0) ){ 103 int i; 104 for(i=0; i<pList->nExpr; i++){ 105 pList->a[i].pExpr = sqlite3ExprAddCollateToken(pParse,pList->a[i].pExpr, 106 pCollName, dequote); 107 } 108 } 109 }else if( pCollName->n>0 ){ 110 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 111 if( pNew ){ 112 pNew->pLeft = pExpr; 113 pNew->flags |= EP_Collate|EP_Skip; 114 pExpr = pNew; 115 } 116 } 117 return pExpr; 118 } 119 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 120 Token s; 121 assert( zC!=0 ); 122 sqlite3TokenInit(&s, (char*)zC); 123 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 124 } 125 126 /* 127 ** Skip over any TK_COLLATE operators. 128 */ 129 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 130 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 131 assert( pExpr->op==TK_COLLATE ); 132 pExpr = pExpr->pLeft; 133 } 134 return pExpr; 135 } 136 137 /* 138 ** Skip over any TK_COLLATE operators and/or any unlikely() 139 ** or likelihood() or likely() functions at the root of an 140 ** expression. 141 */ 142 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 143 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 144 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 145 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 146 assert( pExpr->x.pList->nExpr>0 ); 147 assert( pExpr->op==TK_FUNCTION ); 148 pExpr = pExpr->x.pList->a[0].pExpr; 149 }else{ 150 assert( pExpr->op==TK_COLLATE ); 151 pExpr = pExpr->pLeft; 152 } 153 } 154 return pExpr; 155 } 156 157 /* 158 ** Return the collation sequence for the expression pExpr. If 159 ** there is no defined collating sequence, return NULL. 160 ** 161 ** See also: sqlite3ExprNNCollSeq() 162 ** 163 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 164 ** default collation if pExpr has no defined collation. 165 ** 166 ** The collating sequence might be determined by a COLLATE operator 167 ** or by the presence of a column with a defined collating sequence. 168 ** COLLATE operators take first precedence. Left operands take 169 ** precedence over right operands. 170 */ 171 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 172 sqlite3 *db = pParse->db; 173 CollSeq *pColl = 0; 174 const Expr *p = pExpr; 175 while( p ){ 176 int op = p->op; 177 if( op==TK_REGISTER ) op = p->op2; 178 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 179 && p->y.pTab!=0 180 ){ 181 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 182 ** a TK_COLUMN but was previously evaluated and cached in a register */ 183 int j = p->iColumn; 184 if( j>=0 ){ 185 const char *zColl = p->y.pTab->aCol[j].zColl; 186 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 187 } 188 break; 189 } 190 if( op==TK_CAST || op==TK_UPLUS ){ 191 p = p->pLeft; 192 continue; 193 } 194 if( op==TK_VECTOR ){ 195 p = p->x.pList->a[0].pExpr; 196 continue; 197 } 198 if( op==TK_COLLATE ){ 199 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 200 break; 201 } 202 if( p->flags & EP_Collate ){ 203 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 204 p = p->pLeft; 205 }else{ 206 Expr *pNext = p->pRight; 207 /* The Expr.x union is never used at the same time as Expr.pRight */ 208 assert( p->x.pList==0 || p->pRight==0 ); 209 if( p->x.pList!=0 210 && !db->mallocFailed 211 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 212 ){ 213 int i; 214 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 215 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 216 pNext = p->x.pList->a[i].pExpr; 217 break; 218 } 219 } 220 } 221 p = pNext; 222 } 223 }else{ 224 break; 225 } 226 } 227 if( sqlite3CheckCollSeq(pParse, pColl) ){ 228 pColl = 0; 229 } 230 return pColl; 231 } 232 233 /* 234 ** Return the collation sequence for the expression pExpr. If 235 ** there is no defined collating sequence, return a pointer to the 236 ** defautl collation sequence. 237 ** 238 ** See also: sqlite3ExprCollSeq() 239 ** 240 ** The sqlite3ExprCollSeq() routine works the same except that it 241 ** returns NULL if there is no defined collation. 242 */ 243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 244 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 245 if( p==0 ) p = pParse->db->pDfltColl; 246 assert( p!=0 ); 247 return p; 248 } 249 250 /* 251 ** Return TRUE if the two expressions have equivalent collating sequences. 252 */ 253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 254 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 255 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 256 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 257 } 258 259 /* 260 ** pExpr is an operand of a comparison operator. aff2 is the 261 ** type affinity of the other operand. This routine returns the 262 ** type affinity that should be used for the comparison operator. 263 */ 264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 265 char aff1 = sqlite3ExprAffinity(pExpr); 266 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 267 /* Both sides of the comparison are columns. If one has numeric 268 ** affinity, use that. Otherwise use no affinity. 269 */ 270 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 271 return SQLITE_AFF_NUMERIC; 272 }else{ 273 return SQLITE_AFF_BLOB; 274 } 275 }else{ 276 /* One side is a column, the other is not. Use the columns affinity. */ 277 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 278 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 279 } 280 } 281 282 /* 283 ** pExpr is a comparison operator. Return the type affinity that should 284 ** be applied to both operands prior to doing the comparison. 285 */ 286 static char comparisonAffinity(const Expr *pExpr){ 287 char aff; 288 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 289 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 290 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 291 assert( pExpr->pLeft ); 292 aff = sqlite3ExprAffinity(pExpr->pLeft); 293 if( pExpr->pRight ){ 294 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 295 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 296 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 297 }else if( aff==0 ){ 298 aff = SQLITE_AFF_BLOB; 299 } 300 return aff; 301 } 302 303 /* 304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 305 ** idx_affinity is the affinity of an indexed column. Return true 306 ** if the index with affinity idx_affinity may be used to implement 307 ** the comparison in pExpr. 308 */ 309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 310 char aff = comparisonAffinity(pExpr); 311 if( aff<SQLITE_AFF_TEXT ){ 312 return 1; 313 } 314 if( aff==SQLITE_AFF_TEXT ){ 315 return idx_affinity==SQLITE_AFF_TEXT; 316 } 317 return sqlite3IsNumericAffinity(idx_affinity); 318 } 319 320 /* 321 ** Return the P5 value that should be used for a binary comparison 322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 323 */ 324 static u8 binaryCompareP5( 325 const Expr *pExpr1, /* Left operand */ 326 const Expr *pExpr2, /* Right operand */ 327 int jumpIfNull /* Extra flags added to P5 */ 328 ){ 329 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 330 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 331 return aff; 332 } 333 334 /* 335 ** Return a pointer to the collation sequence that should be used by 336 ** a binary comparison operator comparing pLeft and pRight. 337 ** 338 ** If the left hand expression has a collating sequence type, then it is 339 ** used. Otherwise the collation sequence for the right hand expression 340 ** is used, or the default (BINARY) if neither expression has a collating 341 ** type. 342 ** 343 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 344 ** it is not considered. 345 */ 346 CollSeq *sqlite3BinaryCompareCollSeq( 347 Parse *pParse, 348 const Expr *pLeft, 349 const Expr *pRight 350 ){ 351 CollSeq *pColl; 352 assert( pLeft ); 353 if( pLeft->flags & EP_Collate ){ 354 pColl = sqlite3ExprCollSeq(pParse, pLeft); 355 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 356 pColl = sqlite3ExprCollSeq(pParse, pRight); 357 }else{ 358 pColl = sqlite3ExprCollSeq(pParse, pLeft); 359 if( !pColl ){ 360 pColl = sqlite3ExprCollSeq(pParse, pRight); 361 } 362 } 363 return pColl; 364 } 365 366 /* Expresssion p is a comparison operator. Return a collation sequence 367 ** appropriate for the comparison operator. 368 ** 369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 370 ** However, if the OP_Commuted flag is set, then the order of the operands 371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 372 ** correct collating sequence is found. 373 */ 374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 375 if( ExprHasProperty(p, EP_Commuted) ){ 376 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 377 }else{ 378 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 379 } 380 } 381 382 /* 383 ** Generate code for a comparison operator. 384 */ 385 static int codeCompare( 386 Parse *pParse, /* The parsing (and code generating) context */ 387 Expr *pLeft, /* The left operand */ 388 Expr *pRight, /* The right operand */ 389 int opcode, /* The comparison opcode */ 390 int in1, int in2, /* Register holding operands */ 391 int dest, /* Jump here if true. */ 392 int jumpIfNull, /* If true, jump if either operand is NULL */ 393 int isCommuted /* The comparison has been commuted */ 394 ){ 395 int p5; 396 int addr; 397 CollSeq *p4; 398 399 if( pParse->nErr ) return 0; 400 if( isCommuted ){ 401 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 402 }else{ 403 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 404 } 405 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 406 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 407 (void*)p4, P4_COLLSEQ); 408 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 409 return addr; 410 } 411 412 /* 413 ** Return true if expression pExpr is a vector, or false otherwise. 414 ** 415 ** A vector is defined as any expression that results in two or more 416 ** columns of result. Every TK_VECTOR node is an vector because the 417 ** parser will not generate a TK_VECTOR with fewer than two entries. 418 ** But a TK_SELECT might be either a vector or a scalar. It is only 419 ** considered a vector if it has two or more result columns. 420 */ 421 int sqlite3ExprIsVector(Expr *pExpr){ 422 return sqlite3ExprVectorSize(pExpr)>1; 423 } 424 425 /* 426 ** If the expression passed as the only argument is of type TK_VECTOR 427 ** return the number of expressions in the vector. Or, if the expression 428 ** is a sub-select, return the number of columns in the sub-select. For 429 ** any other type of expression, return 1. 430 */ 431 int sqlite3ExprVectorSize(Expr *pExpr){ 432 u8 op = pExpr->op; 433 if( op==TK_REGISTER ) op = pExpr->op2; 434 if( op==TK_VECTOR ){ 435 return pExpr->x.pList->nExpr; 436 }else if( op==TK_SELECT ){ 437 return pExpr->x.pSelect->pEList->nExpr; 438 }else{ 439 return 1; 440 } 441 } 442 443 /* 444 ** Return a pointer to a subexpression of pVector that is the i-th 445 ** column of the vector (numbered starting with 0). The caller must 446 ** ensure that i is within range. 447 ** 448 ** If pVector is really a scalar (and "scalar" here includes subqueries 449 ** that return a single column!) then return pVector unmodified. 450 ** 451 ** pVector retains ownership of the returned subexpression. 452 ** 453 ** If the vector is a (SELECT ...) then the expression returned is 454 ** just the expression for the i-th term of the result set, and may 455 ** not be ready for evaluation because the table cursor has not yet 456 ** been positioned. 457 */ 458 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 459 assert( i<sqlite3ExprVectorSize(pVector) ); 460 if( sqlite3ExprIsVector(pVector) ){ 461 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 462 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 463 return pVector->x.pSelect->pEList->a[i].pExpr; 464 }else{ 465 return pVector->x.pList->a[i].pExpr; 466 } 467 } 468 return pVector; 469 } 470 471 /* 472 ** Compute and return a new Expr object which when passed to 473 ** sqlite3ExprCode() will generate all necessary code to compute 474 ** the iField-th column of the vector expression pVector. 475 ** 476 ** It is ok for pVector to be a scalar (as long as iField==0). 477 ** In that case, this routine works like sqlite3ExprDup(). 478 ** 479 ** The caller owns the returned Expr object and is responsible for 480 ** ensuring that the returned value eventually gets freed. 481 ** 482 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 483 ** then the returned object will reference pVector and so pVector must remain 484 ** valid for the life of the returned object. If pVector is a TK_VECTOR 485 ** or a scalar expression, then it can be deleted as soon as this routine 486 ** returns. 487 ** 488 ** A trick to cause a TK_SELECT pVector to be deleted together with 489 ** the returned Expr object is to attach the pVector to the pRight field 490 ** of the returned TK_SELECT_COLUMN Expr object. 491 */ 492 Expr *sqlite3ExprForVectorField( 493 Parse *pParse, /* Parsing context */ 494 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 495 int iField /* Which column of the vector to return */ 496 ){ 497 Expr *pRet; 498 if( pVector->op==TK_SELECT ){ 499 assert( pVector->flags & EP_xIsSelect ); 500 /* The TK_SELECT_COLUMN Expr node: 501 ** 502 ** pLeft: pVector containing TK_SELECT. Not deleted. 503 ** pRight: not used. But recursively deleted. 504 ** iColumn: Index of a column in pVector 505 ** iTable: 0 or the number of columns on the LHS of an assignment 506 ** pLeft->iTable: First in an array of register holding result, or 0 507 ** if the result is not yet computed. 508 ** 509 ** sqlite3ExprDelete() specifically skips the recursive delete of 510 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 511 ** can be attached to pRight to cause this node to take ownership of 512 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 513 ** with the same pLeft pointer to the pVector, but only one of them 514 ** will own the pVector. 515 */ 516 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 517 if( pRet ){ 518 pRet->iColumn = iField; 519 pRet->pLeft = pVector; 520 } 521 assert( pRet==0 || pRet->iTable==0 ); 522 }else{ 523 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 524 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 525 sqlite3RenameTokenRemap(pParse, pRet, pVector); 526 } 527 return pRet; 528 } 529 530 /* 531 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 532 ** it. Return the register in which the result is stored (or, if the 533 ** sub-select returns more than one column, the first in an array 534 ** of registers in which the result is stored). 535 ** 536 ** If pExpr is not a TK_SELECT expression, return 0. 537 */ 538 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 539 int reg = 0; 540 #ifndef SQLITE_OMIT_SUBQUERY 541 if( pExpr->op==TK_SELECT ){ 542 reg = sqlite3CodeSubselect(pParse, pExpr); 543 } 544 #endif 545 return reg; 546 } 547 548 /* 549 ** Argument pVector points to a vector expression - either a TK_VECTOR 550 ** or TK_SELECT that returns more than one column. This function returns 551 ** the register number of a register that contains the value of 552 ** element iField of the vector. 553 ** 554 ** If pVector is a TK_SELECT expression, then code for it must have 555 ** already been generated using the exprCodeSubselect() routine. In this 556 ** case parameter regSelect should be the first in an array of registers 557 ** containing the results of the sub-select. 558 ** 559 ** If pVector is of type TK_VECTOR, then code for the requested field 560 ** is generated. In this case (*pRegFree) may be set to the number of 561 ** a temporary register to be freed by the caller before returning. 562 ** 563 ** Before returning, output parameter (*ppExpr) is set to point to the 564 ** Expr object corresponding to element iElem of the vector. 565 */ 566 static int exprVectorRegister( 567 Parse *pParse, /* Parse context */ 568 Expr *pVector, /* Vector to extract element from */ 569 int iField, /* Field to extract from pVector */ 570 int regSelect, /* First in array of registers */ 571 Expr **ppExpr, /* OUT: Expression element */ 572 int *pRegFree /* OUT: Temp register to free */ 573 ){ 574 u8 op = pVector->op; 575 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 576 if( op==TK_REGISTER ){ 577 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 578 return pVector->iTable+iField; 579 } 580 if( op==TK_SELECT ){ 581 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 582 return regSelect+iField; 583 } 584 *ppExpr = pVector->x.pList->a[iField].pExpr; 585 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 586 } 587 588 /* 589 ** Expression pExpr is a comparison between two vector values. Compute 590 ** the result of the comparison (1, 0, or NULL) and write that 591 ** result into register dest. 592 ** 593 ** The caller must satisfy the following preconditions: 594 ** 595 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 596 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 597 ** otherwise: op==pExpr->op and p5==0 598 */ 599 static void codeVectorCompare( 600 Parse *pParse, /* Code generator context */ 601 Expr *pExpr, /* The comparison operation */ 602 int dest, /* Write results into this register */ 603 u8 op, /* Comparison operator */ 604 u8 p5 /* SQLITE_NULLEQ or zero */ 605 ){ 606 Vdbe *v = pParse->pVdbe; 607 Expr *pLeft = pExpr->pLeft; 608 Expr *pRight = pExpr->pRight; 609 int nLeft = sqlite3ExprVectorSize(pLeft); 610 int i; 611 int regLeft = 0; 612 int regRight = 0; 613 u8 opx = op; 614 int addrCmp = 0; 615 int addrDone = sqlite3VdbeMakeLabel(pParse); 616 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 617 618 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 619 if( pParse->nErr ) return; 620 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 621 sqlite3ErrorMsg(pParse, "row value misused"); 622 return; 623 } 624 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 625 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 626 || pExpr->op==TK_LT || pExpr->op==TK_GT 627 || pExpr->op==TK_LE || pExpr->op==TK_GE 628 ); 629 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 630 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 631 assert( p5==0 || pExpr->op!=op ); 632 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 633 634 if( op==TK_LE ) opx = TK_LT; 635 if( op==TK_GE ) opx = TK_GT; 636 if( op==TK_NE ) opx = TK_EQ; 637 638 regLeft = exprCodeSubselect(pParse, pLeft); 639 regRight = exprCodeSubselect(pParse, pRight); 640 641 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 642 for(i=0; 1 /*Loop exits by "break"*/; i++){ 643 int regFree1 = 0, regFree2 = 0; 644 Expr *pL, *pR; 645 int r1, r2; 646 assert( i>=0 && i<nLeft ); 647 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 648 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 649 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 650 addrCmp = sqlite3VdbeCurrentAddr(v); 651 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 652 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 653 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 654 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 655 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 656 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 657 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 658 sqlite3ReleaseTempReg(pParse, regFree1); 659 sqlite3ReleaseTempReg(pParse, regFree2); 660 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 661 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 662 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 663 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 664 } 665 if( p5==SQLITE_NULLEQ ){ 666 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 667 }else{ 668 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 669 } 670 if( i==nLeft-1 ){ 671 break; 672 } 673 if( opx==TK_EQ ){ 674 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 675 }else{ 676 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 677 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 678 if( i==nLeft-2 ) opx = op; 679 } 680 } 681 sqlite3VdbeJumpHere(v, addrCmp); 682 sqlite3VdbeResolveLabel(v, addrDone); 683 if( op==TK_NE ){ 684 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 685 } 686 } 687 688 #if SQLITE_MAX_EXPR_DEPTH>0 689 /* 690 ** Check that argument nHeight is less than or equal to the maximum 691 ** expression depth allowed. If it is not, leave an error message in 692 ** pParse. 693 */ 694 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 695 int rc = SQLITE_OK; 696 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 697 if( nHeight>mxHeight ){ 698 sqlite3ErrorMsg(pParse, 699 "Expression tree is too large (maximum depth %d)", mxHeight 700 ); 701 rc = SQLITE_ERROR; 702 } 703 return rc; 704 } 705 706 /* The following three functions, heightOfExpr(), heightOfExprList() 707 ** and heightOfSelect(), are used to determine the maximum height 708 ** of any expression tree referenced by the structure passed as the 709 ** first argument. 710 ** 711 ** If this maximum height is greater than the current value pointed 712 ** to by pnHeight, the second parameter, then set *pnHeight to that 713 ** value. 714 */ 715 static void heightOfExpr(Expr *p, int *pnHeight){ 716 if( p ){ 717 if( p->nHeight>*pnHeight ){ 718 *pnHeight = p->nHeight; 719 } 720 } 721 } 722 static void heightOfExprList(ExprList *p, int *pnHeight){ 723 if( p ){ 724 int i; 725 for(i=0; i<p->nExpr; i++){ 726 heightOfExpr(p->a[i].pExpr, pnHeight); 727 } 728 } 729 } 730 static void heightOfSelect(Select *pSelect, int *pnHeight){ 731 Select *p; 732 for(p=pSelect; p; p=p->pPrior){ 733 heightOfExpr(p->pWhere, pnHeight); 734 heightOfExpr(p->pHaving, pnHeight); 735 heightOfExpr(p->pLimit, pnHeight); 736 heightOfExprList(p->pEList, pnHeight); 737 heightOfExprList(p->pGroupBy, pnHeight); 738 heightOfExprList(p->pOrderBy, pnHeight); 739 } 740 } 741 742 /* 743 ** Set the Expr.nHeight variable in the structure passed as an 744 ** argument. An expression with no children, Expr.pList or 745 ** Expr.pSelect member has a height of 1. Any other expression 746 ** has a height equal to the maximum height of any other 747 ** referenced Expr plus one. 748 ** 749 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 750 ** if appropriate. 751 */ 752 static void exprSetHeight(Expr *p){ 753 int nHeight = 0; 754 heightOfExpr(p->pLeft, &nHeight); 755 heightOfExpr(p->pRight, &nHeight); 756 if( ExprHasProperty(p, EP_xIsSelect) ){ 757 heightOfSelect(p->x.pSelect, &nHeight); 758 }else if( p->x.pList ){ 759 heightOfExprList(p->x.pList, &nHeight); 760 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 761 } 762 p->nHeight = nHeight + 1; 763 } 764 765 /* 766 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 767 ** the height is greater than the maximum allowed expression depth, 768 ** leave an error in pParse. 769 ** 770 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 771 ** Expr.flags. 772 */ 773 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 774 if( pParse->nErr ) return; 775 exprSetHeight(p); 776 sqlite3ExprCheckHeight(pParse, p->nHeight); 777 } 778 779 /* 780 ** Return the maximum height of any expression tree referenced 781 ** by the select statement passed as an argument. 782 */ 783 int sqlite3SelectExprHeight(Select *p){ 784 int nHeight = 0; 785 heightOfSelect(p, &nHeight); 786 return nHeight; 787 } 788 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 789 /* 790 ** Propagate all EP_Propagate flags from the Expr.x.pList into 791 ** Expr.flags. 792 */ 793 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 794 if( pParse->nErr ) return; 795 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 796 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 797 } 798 } 799 #define exprSetHeight(y) 800 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 801 802 /* 803 ** This routine is the core allocator for Expr nodes. 804 ** 805 ** Construct a new expression node and return a pointer to it. Memory 806 ** for this node and for the pToken argument is a single allocation 807 ** obtained from sqlite3DbMalloc(). The calling function 808 ** is responsible for making sure the node eventually gets freed. 809 ** 810 ** If dequote is true, then the token (if it exists) is dequoted. 811 ** If dequote is false, no dequoting is performed. The deQuote 812 ** parameter is ignored if pToken is NULL or if the token does not 813 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 814 ** then the EP_DblQuoted flag is set on the expression node. 815 ** 816 ** Special case: If op==TK_INTEGER and pToken points to a string that 817 ** can be translated into a 32-bit integer, then the token is not 818 ** stored in u.zToken. Instead, the integer values is written 819 ** into u.iValue and the EP_IntValue flag is set. No extra storage 820 ** is allocated to hold the integer text and the dequote flag is ignored. 821 */ 822 Expr *sqlite3ExprAlloc( 823 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 824 int op, /* Expression opcode */ 825 const Token *pToken, /* Token argument. Might be NULL */ 826 int dequote /* True to dequote */ 827 ){ 828 Expr *pNew; 829 int nExtra = 0; 830 int iValue = 0; 831 832 assert( db!=0 ); 833 if( pToken ){ 834 if( op!=TK_INTEGER || pToken->z==0 835 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 836 nExtra = pToken->n+1; 837 assert( iValue>=0 ); 838 } 839 } 840 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 841 if( pNew ){ 842 memset(pNew, 0, sizeof(Expr)); 843 pNew->op = (u8)op; 844 pNew->iAgg = -1; 845 if( pToken ){ 846 if( nExtra==0 ){ 847 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 848 pNew->u.iValue = iValue; 849 }else{ 850 pNew->u.zToken = (char*)&pNew[1]; 851 assert( pToken->z!=0 || pToken->n==0 ); 852 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 853 pNew->u.zToken[pToken->n] = 0; 854 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 855 sqlite3DequoteExpr(pNew); 856 } 857 } 858 } 859 #if SQLITE_MAX_EXPR_DEPTH>0 860 pNew->nHeight = 1; 861 #endif 862 } 863 return pNew; 864 } 865 866 /* 867 ** Allocate a new expression node from a zero-terminated token that has 868 ** already been dequoted. 869 */ 870 Expr *sqlite3Expr( 871 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 872 int op, /* Expression opcode */ 873 const char *zToken /* Token argument. Might be NULL */ 874 ){ 875 Token x; 876 x.z = zToken; 877 x.n = sqlite3Strlen30(zToken); 878 return sqlite3ExprAlloc(db, op, &x, 0); 879 } 880 881 /* 882 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 883 ** 884 ** If pRoot==NULL that means that a memory allocation error has occurred. 885 ** In that case, delete the subtrees pLeft and pRight. 886 */ 887 void sqlite3ExprAttachSubtrees( 888 sqlite3 *db, 889 Expr *pRoot, 890 Expr *pLeft, 891 Expr *pRight 892 ){ 893 if( pRoot==0 ){ 894 assert( db->mallocFailed ); 895 sqlite3ExprDelete(db, pLeft); 896 sqlite3ExprDelete(db, pRight); 897 }else{ 898 if( pRight ){ 899 pRoot->pRight = pRight; 900 pRoot->flags |= EP_Propagate & pRight->flags; 901 } 902 if( pLeft ){ 903 pRoot->pLeft = pLeft; 904 pRoot->flags |= EP_Propagate & pLeft->flags; 905 } 906 exprSetHeight(pRoot); 907 } 908 } 909 910 /* 911 ** Allocate an Expr node which joins as many as two subtrees. 912 ** 913 ** One or both of the subtrees can be NULL. Return a pointer to the new 914 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 915 ** free the subtrees and return NULL. 916 */ 917 Expr *sqlite3PExpr( 918 Parse *pParse, /* Parsing context */ 919 int op, /* Expression opcode */ 920 Expr *pLeft, /* Left operand */ 921 Expr *pRight /* Right operand */ 922 ){ 923 Expr *p; 924 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 925 if( p ){ 926 memset(p, 0, sizeof(Expr)); 927 p->op = op & 0xff; 928 p->iAgg = -1; 929 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 930 sqlite3ExprCheckHeight(pParse, p->nHeight); 931 }else{ 932 sqlite3ExprDelete(pParse->db, pLeft); 933 sqlite3ExprDelete(pParse->db, pRight); 934 } 935 return p; 936 } 937 938 /* 939 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 940 ** do a memory allocation failure) then delete the pSelect object. 941 */ 942 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 943 if( pExpr ){ 944 pExpr->x.pSelect = pSelect; 945 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 946 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 947 }else{ 948 assert( pParse->db->mallocFailed ); 949 sqlite3SelectDelete(pParse->db, pSelect); 950 } 951 } 952 953 954 /* 955 ** Join two expressions using an AND operator. If either expression is 956 ** NULL, then just return the other expression. 957 ** 958 ** If one side or the other of the AND is known to be false, then instead 959 ** of returning an AND expression, just return a constant expression with 960 ** a value of false. 961 */ 962 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 963 sqlite3 *db = pParse->db; 964 if( pLeft==0 ){ 965 return pRight; 966 }else if( pRight==0 ){ 967 return pLeft; 968 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 969 && !IN_RENAME_OBJECT 970 ){ 971 sqlite3ExprDeferredDelete(pParse, pLeft); 972 sqlite3ExprDeferredDelete(pParse, pRight); 973 return sqlite3Expr(db, TK_INTEGER, "0"); 974 }else{ 975 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 976 } 977 } 978 979 /* 980 ** Construct a new expression node for a function with multiple 981 ** arguments. 982 */ 983 Expr *sqlite3ExprFunction( 984 Parse *pParse, /* Parsing context */ 985 ExprList *pList, /* Argument list */ 986 Token *pToken, /* Name of the function */ 987 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 988 ){ 989 Expr *pNew; 990 sqlite3 *db = pParse->db; 991 assert( pToken ); 992 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 993 if( pNew==0 ){ 994 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 995 return 0; 996 } 997 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 998 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 999 } 1000 pNew->x.pList = pList; 1001 ExprSetProperty(pNew, EP_HasFunc); 1002 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 1003 sqlite3ExprSetHeightAndFlags(pParse, pNew); 1004 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 1005 return pNew; 1006 } 1007 1008 /* 1009 ** Check to see if a function is usable according to current access 1010 ** rules: 1011 ** 1012 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1013 ** 1014 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1015 ** top-level SQL 1016 ** 1017 ** If the function is not usable, create an error. 1018 */ 1019 void sqlite3ExprFunctionUsable( 1020 Parse *pParse, /* Parsing and code generating context */ 1021 Expr *pExpr, /* The function invocation */ 1022 FuncDef *pDef /* The function being invoked */ 1023 ){ 1024 assert( !IN_RENAME_OBJECT ); 1025 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1026 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1027 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1028 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1029 ){ 1030 /* Functions prohibited in triggers and views if: 1031 ** (1) tagged with SQLITE_DIRECTONLY 1032 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1033 ** is tagged with SQLITE_FUNC_UNSAFE) and 1034 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1035 ** that the schema is possibly tainted). 1036 */ 1037 sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName); 1038 } 1039 } 1040 } 1041 1042 /* 1043 ** Assign a variable number to an expression that encodes a wildcard 1044 ** in the original SQL statement. 1045 ** 1046 ** Wildcards consisting of a single "?" are assigned the next sequential 1047 ** variable number. 1048 ** 1049 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1050 ** sure "nnn" is not too big to avoid a denial of service attack when 1051 ** the SQL statement comes from an external source. 1052 ** 1053 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1054 ** as the previous instance of the same wildcard. Or if this is the first 1055 ** instance of the wildcard, the next sequential variable number is 1056 ** assigned. 1057 */ 1058 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1059 sqlite3 *db = pParse->db; 1060 const char *z; 1061 ynVar x; 1062 1063 if( pExpr==0 ) return; 1064 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1065 z = pExpr->u.zToken; 1066 assert( z!=0 ); 1067 assert( z[0]!=0 ); 1068 assert( n==(u32)sqlite3Strlen30(z) ); 1069 if( z[1]==0 ){ 1070 /* Wildcard of the form "?". Assign the next variable number */ 1071 assert( z[0]=='?' ); 1072 x = (ynVar)(++pParse->nVar); 1073 }else{ 1074 int doAdd = 0; 1075 if( z[0]=='?' ){ 1076 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1077 ** use it as the variable number */ 1078 i64 i; 1079 int bOk; 1080 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1081 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1082 bOk = 1; 1083 }else{ 1084 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1085 } 1086 testcase( i==0 ); 1087 testcase( i==1 ); 1088 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1089 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1090 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1091 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1092 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1093 return; 1094 } 1095 x = (ynVar)i; 1096 if( x>pParse->nVar ){ 1097 pParse->nVar = (int)x; 1098 doAdd = 1; 1099 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1100 doAdd = 1; 1101 } 1102 }else{ 1103 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1104 ** number as the prior appearance of the same name, or if the name 1105 ** has never appeared before, reuse the same variable number 1106 */ 1107 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1108 if( x==0 ){ 1109 x = (ynVar)(++pParse->nVar); 1110 doAdd = 1; 1111 } 1112 } 1113 if( doAdd ){ 1114 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1115 } 1116 } 1117 pExpr->iColumn = x; 1118 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1119 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1120 } 1121 } 1122 1123 /* 1124 ** Recursively delete an expression tree. 1125 */ 1126 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1127 assert( p!=0 ); 1128 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1129 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1130 1131 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1132 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1133 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1134 #ifdef SQLITE_DEBUG 1135 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1136 assert( p->pLeft==0 ); 1137 assert( p->pRight==0 ); 1138 assert( p->x.pSelect==0 ); 1139 } 1140 #endif 1141 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1142 /* The Expr.x union is never used at the same time as Expr.pRight */ 1143 assert( p->x.pList==0 || p->pRight==0 ); 1144 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1145 if( p->pRight ){ 1146 assert( !ExprHasProperty(p, EP_WinFunc) ); 1147 sqlite3ExprDeleteNN(db, p->pRight); 1148 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1149 assert( !ExprHasProperty(p, EP_WinFunc) ); 1150 sqlite3SelectDelete(db, p->x.pSelect); 1151 }else{ 1152 sqlite3ExprListDelete(db, p->x.pList); 1153 #ifndef SQLITE_OMIT_WINDOWFUNC 1154 if( ExprHasProperty(p, EP_WinFunc) ){ 1155 sqlite3WindowDelete(db, p->y.pWin); 1156 } 1157 #endif 1158 } 1159 } 1160 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1161 if( !ExprHasProperty(p, EP_Static) ){ 1162 sqlite3DbFreeNN(db, p); 1163 } 1164 } 1165 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1166 if( p ) sqlite3ExprDeleteNN(db, p); 1167 } 1168 1169 1170 /* 1171 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 1172 ** This is similar to sqlite3ExprDelete() except that the delete is 1173 ** deferred untilthe pParse is deleted. 1174 ** 1175 ** The pExpr might be deleted immediately on an OOM error. 1176 ** 1177 ** The deferred delete is (currently) implemented by adding the 1178 ** pExpr to the pParse->pConstExpr list with a register number of 0. 1179 */ 1180 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 1181 pParse->pConstExpr = 1182 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 1183 } 1184 1185 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1186 ** expression. 1187 */ 1188 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1189 if( p ){ 1190 if( IN_RENAME_OBJECT ){ 1191 sqlite3RenameExprUnmap(pParse, p); 1192 } 1193 sqlite3ExprDeleteNN(pParse->db, p); 1194 } 1195 } 1196 1197 /* 1198 ** Return the number of bytes allocated for the expression structure 1199 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1200 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1201 */ 1202 static int exprStructSize(Expr *p){ 1203 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1204 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1205 return EXPR_FULLSIZE; 1206 } 1207 1208 /* 1209 ** The dupedExpr*Size() routines each return the number of bytes required 1210 ** to store a copy of an expression or expression tree. They differ in 1211 ** how much of the tree is measured. 1212 ** 1213 ** dupedExprStructSize() Size of only the Expr structure 1214 ** dupedExprNodeSize() Size of Expr + space for token 1215 ** dupedExprSize() Expr + token + subtree components 1216 ** 1217 *************************************************************************** 1218 ** 1219 ** The dupedExprStructSize() function returns two values OR-ed together: 1220 ** (1) the space required for a copy of the Expr structure only and 1221 ** (2) the EP_xxx flags that indicate what the structure size should be. 1222 ** The return values is always one of: 1223 ** 1224 ** EXPR_FULLSIZE 1225 ** EXPR_REDUCEDSIZE | EP_Reduced 1226 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1227 ** 1228 ** The size of the structure can be found by masking the return value 1229 ** of this routine with 0xfff. The flags can be found by masking the 1230 ** return value with EP_Reduced|EP_TokenOnly. 1231 ** 1232 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1233 ** (unreduced) Expr objects as they or originally constructed by the parser. 1234 ** During expression analysis, extra information is computed and moved into 1235 ** later parts of the Expr object and that extra information might get chopped 1236 ** off if the expression is reduced. Note also that it does not work to 1237 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1238 ** to reduce a pristine expression tree from the parser. The implementation 1239 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1240 ** to enforce this constraint. 1241 */ 1242 static int dupedExprStructSize(Expr *p, int flags){ 1243 int nSize; 1244 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1245 assert( EXPR_FULLSIZE<=0xfff ); 1246 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1247 if( 0==flags || p->op==TK_SELECT_COLUMN 1248 #ifndef SQLITE_OMIT_WINDOWFUNC 1249 || ExprHasProperty(p, EP_WinFunc) 1250 #endif 1251 ){ 1252 nSize = EXPR_FULLSIZE; 1253 }else{ 1254 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1255 assert( !ExprHasProperty(p, EP_FromJoin) ); 1256 assert( !ExprHasProperty(p, EP_MemToken) ); 1257 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1258 if( p->pLeft || p->x.pList ){ 1259 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1260 }else{ 1261 assert( p->pRight==0 ); 1262 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1263 } 1264 } 1265 return nSize; 1266 } 1267 1268 /* 1269 ** This function returns the space in bytes required to store the copy 1270 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1271 ** string is defined.) 1272 */ 1273 static int dupedExprNodeSize(Expr *p, int flags){ 1274 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1275 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1276 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1277 } 1278 return ROUND8(nByte); 1279 } 1280 1281 /* 1282 ** Return the number of bytes required to create a duplicate of the 1283 ** expression passed as the first argument. The second argument is a 1284 ** mask containing EXPRDUP_XXX flags. 1285 ** 1286 ** The value returned includes space to create a copy of the Expr struct 1287 ** itself and the buffer referred to by Expr.u.zToken, if any. 1288 ** 1289 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1290 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1291 ** and Expr.pRight variables (but not for any structures pointed to or 1292 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1293 */ 1294 static int dupedExprSize(Expr *p, int flags){ 1295 int nByte = 0; 1296 if( p ){ 1297 nByte = dupedExprNodeSize(p, flags); 1298 if( flags&EXPRDUP_REDUCE ){ 1299 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1300 } 1301 } 1302 return nByte; 1303 } 1304 1305 /* 1306 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1307 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1308 ** to store the copy of expression p, the copies of p->u.zToken 1309 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1310 ** if any. Before returning, *pzBuffer is set to the first byte past the 1311 ** portion of the buffer copied into by this function. 1312 */ 1313 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1314 Expr *pNew; /* Value to return */ 1315 u8 *zAlloc; /* Memory space from which to build Expr object */ 1316 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1317 1318 assert( db!=0 ); 1319 assert( p ); 1320 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1321 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1322 1323 /* Figure out where to write the new Expr structure. */ 1324 if( pzBuffer ){ 1325 zAlloc = *pzBuffer; 1326 staticFlag = EP_Static; 1327 assert( zAlloc!=0 ); 1328 }else{ 1329 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1330 staticFlag = 0; 1331 } 1332 pNew = (Expr *)zAlloc; 1333 1334 if( pNew ){ 1335 /* Set nNewSize to the size allocated for the structure pointed to 1336 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1337 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1338 ** by the copy of the p->u.zToken string (if any). 1339 */ 1340 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1341 const int nNewSize = nStructSize & 0xfff; 1342 int nToken; 1343 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1344 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1345 }else{ 1346 nToken = 0; 1347 } 1348 if( dupFlags ){ 1349 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1350 memcpy(zAlloc, p, nNewSize); 1351 }else{ 1352 u32 nSize = (u32)exprStructSize(p); 1353 memcpy(zAlloc, p, nSize); 1354 if( nSize<EXPR_FULLSIZE ){ 1355 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1356 } 1357 } 1358 1359 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1360 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1361 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1362 pNew->flags |= staticFlag; 1363 ExprClearVVAProperties(pNew); 1364 if( dupFlags ){ 1365 ExprSetVVAProperty(pNew, EP_Immutable); 1366 } 1367 1368 /* Copy the p->u.zToken string, if any. */ 1369 if( nToken ){ 1370 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1371 memcpy(zToken, p->u.zToken, nToken); 1372 } 1373 1374 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1375 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1376 if( ExprHasProperty(p, EP_xIsSelect) ){ 1377 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1378 }else{ 1379 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1380 } 1381 } 1382 1383 /* Fill in pNew->pLeft and pNew->pRight. */ 1384 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1385 zAlloc += dupedExprNodeSize(p, dupFlags); 1386 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1387 pNew->pLeft = p->pLeft ? 1388 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1389 pNew->pRight = p->pRight ? 1390 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1391 } 1392 #ifndef SQLITE_OMIT_WINDOWFUNC 1393 if( ExprHasProperty(p, EP_WinFunc) ){ 1394 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1395 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1396 } 1397 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1398 if( pzBuffer ){ 1399 *pzBuffer = zAlloc; 1400 } 1401 }else{ 1402 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1403 if( pNew->op==TK_SELECT_COLUMN ){ 1404 pNew->pLeft = p->pLeft; 1405 assert( p->iColumn==0 || p->pRight==0 ); 1406 assert( p->pRight==0 || p->pRight==p->pLeft 1407 || ExprHasProperty(p->pLeft, EP_Subquery) ); 1408 }else{ 1409 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1410 } 1411 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1412 } 1413 } 1414 } 1415 return pNew; 1416 } 1417 1418 /* 1419 ** Create and return a deep copy of the object passed as the second 1420 ** argument. If an OOM condition is encountered, NULL is returned 1421 ** and the db->mallocFailed flag set. 1422 */ 1423 #ifndef SQLITE_OMIT_CTE 1424 static With *withDup(sqlite3 *db, With *p){ 1425 With *pRet = 0; 1426 if( p ){ 1427 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1428 pRet = sqlite3DbMallocZero(db, nByte); 1429 if( pRet ){ 1430 int i; 1431 pRet->nCte = p->nCte; 1432 for(i=0; i<p->nCte; i++){ 1433 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1434 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1435 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1436 } 1437 } 1438 } 1439 return pRet; 1440 } 1441 #else 1442 # define withDup(x,y) 0 1443 #endif 1444 1445 #ifndef SQLITE_OMIT_WINDOWFUNC 1446 /* 1447 ** The gatherSelectWindows() procedure and its helper routine 1448 ** gatherSelectWindowsCallback() are used to scan all the expressions 1449 ** an a newly duplicated SELECT statement and gather all of the Window 1450 ** objects found there, assembling them onto the linked list at Select->pWin. 1451 */ 1452 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1453 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1454 Select *pSelect = pWalker->u.pSelect; 1455 Window *pWin = pExpr->y.pWin; 1456 assert( pWin ); 1457 assert( IsWindowFunc(pExpr) ); 1458 assert( pWin->ppThis==0 ); 1459 sqlite3WindowLink(pSelect, pWin); 1460 } 1461 return WRC_Continue; 1462 } 1463 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1464 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1465 } 1466 static void gatherSelectWindows(Select *p){ 1467 Walker w; 1468 w.xExprCallback = gatherSelectWindowsCallback; 1469 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1470 w.xSelectCallback2 = 0; 1471 w.pParse = 0; 1472 w.u.pSelect = p; 1473 sqlite3WalkSelect(&w, p); 1474 } 1475 #endif 1476 1477 1478 /* 1479 ** The following group of routines make deep copies of expressions, 1480 ** expression lists, ID lists, and select statements. The copies can 1481 ** be deleted (by being passed to their respective ...Delete() routines) 1482 ** without effecting the originals. 1483 ** 1484 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1485 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1486 ** by subsequent calls to sqlite*ListAppend() routines. 1487 ** 1488 ** Any tables that the SrcList might point to are not duplicated. 1489 ** 1490 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1491 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1492 ** truncated version of the usual Expr structure that will be stored as 1493 ** part of the in-memory representation of the database schema. 1494 */ 1495 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1496 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1497 return p ? exprDup(db, p, flags, 0) : 0; 1498 } 1499 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1500 ExprList *pNew; 1501 struct ExprList_item *pItem, *pOldItem; 1502 int i; 1503 Expr *pPriorSelectCol = 0; 1504 assert( db!=0 ); 1505 if( p==0 ) return 0; 1506 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1507 if( pNew==0 ) return 0; 1508 pNew->nExpr = p->nExpr; 1509 pNew->nAlloc = p->nAlloc; 1510 pItem = pNew->a; 1511 pOldItem = p->a; 1512 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1513 Expr *pOldExpr = pOldItem->pExpr; 1514 Expr *pNewExpr; 1515 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1516 if( pOldExpr 1517 && pOldExpr->op==TK_SELECT_COLUMN 1518 && (pNewExpr = pItem->pExpr)!=0 1519 ){ 1520 assert( pNewExpr->iColumn==0 || i>0 ); 1521 if( pNewExpr->iColumn==0 ){ 1522 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1523 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1524 }else{ 1525 assert( i>0 ); 1526 assert( pItem[-1].pExpr!=0 ); 1527 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1528 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1529 pNewExpr->pLeft = pPriorSelectCol; 1530 } 1531 } 1532 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1533 pItem->sortFlags = pOldItem->sortFlags; 1534 pItem->eEName = pOldItem->eEName; 1535 pItem->done = 0; 1536 pItem->bNulls = pOldItem->bNulls; 1537 pItem->bSorterRef = pOldItem->bSorterRef; 1538 pItem->u = pOldItem->u; 1539 } 1540 return pNew; 1541 } 1542 1543 /* 1544 ** If cursors, triggers, views and subqueries are all omitted from 1545 ** the build, then none of the following routines, except for 1546 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1547 ** called with a NULL argument. 1548 */ 1549 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1550 || !defined(SQLITE_OMIT_SUBQUERY) 1551 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1552 SrcList *pNew; 1553 int i; 1554 int nByte; 1555 assert( db!=0 ); 1556 if( p==0 ) return 0; 1557 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1558 pNew = sqlite3DbMallocRawNN(db, nByte ); 1559 if( pNew==0 ) return 0; 1560 pNew->nSrc = pNew->nAlloc = p->nSrc; 1561 for(i=0; i<p->nSrc; i++){ 1562 SrcItem *pNewItem = &pNew->a[i]; 1563 SrcItem *pOldItem = &p->a[i]; 1564 Table *pTab; 1565 pNewItem->pSchema = pOldItem->pSchema; 1566 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1567 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1568 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1569 pNewItem->fg = pOldItem->fg; 1570 pNewItem->iCursor = pOldItem->iCursor; 1571 pNewItem->addrFillSub = pOldItem->addrFillSub; 1572 pNewItem->regReturn = pOldItem->regReturn; 1573 if( pNewItem->fg.isIndexedBy ){ 1574 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1575 } 1576 pNewItem->u2 = pOldItem->u2; 1577 if( pNewItem->fg.isCte ){ 1578 pNewItem->u2.pCteUse->nUse++; 1579 } 1580 if( pNewItem->fg.isTabFunc ){ 1581 pNewItem->u1.pFuncArg = 1582 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1583 } 1584 pTab = pNewItem->pTab = pOldItem->pTab; 1585 if( pTab ){ 1586 pTab->nTabRef++; 1587 } 1588 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1589 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1590 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1591 pNewItem->colUsed = pOldItem->colUsed; 1592 } 1593 return pNew; 1594 } 1595 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1596 IdList *pNew; 1597 int i; 1598 assert( db!=0 ); 1599 if( p==0 ) return 0; 1600 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1601 if( pNew==0 ) return 0; 1602 pNew->nId = p->nId; 1603 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1604 if( pNew->a==0 ){ 1605 sqlite3DbFreeNN(db, pNew); 1606 return 0; 1607 } 1608 /* Note that because the size of the allocation for p->a[] is not 1609 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1610 ** on the duplicate created by this function. */ 1611 for(i=0; i<p->nId; i++){ 1612 struct IdList_item *pNewItem = &pNew->a[i]; 1613 struct IdList_item *pOldItem = &p->a[i]; 1614 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1615 pNewItem->idx = pOldItem->idx; 1616 } 1617 return pNew; 1618 } 1619 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1620 Select *pRet = 0; 1621 Select *pNext = 0; 1622 Select **pp = &pRet; 1623 Select *p; 1624 1625 assert( db!=0 ); 1626 for(p=pDup; p; p=p->pPrior){ 1627 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1628 if( pNew==0 ) break; 1629 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1630 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1631 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1632 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1633 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1634 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1635 pNew->op = p->op; 1636 pNew->pNext = pNext; 1637 pNew->pPrior = 0; 1638 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1639 pNew->iLimit = 0; 1640 pNew->iOffset = 0; 1641 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1642 pNew->addrOpenEphm[0] = -1; 1643 pNew->addrOpenEphm[1] = -1; 1644 pNew->nSelectRow = p->nSelectRow; 1645 pNew->pWith = withDup(db, p->pWith); 1646 #ifndef SQLITE_OMIT_WINDOWFUNC 1647 pNew->pWin = 0; 1648 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1649 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1650 #endif 1651 pNew->selId = p->selId; 1652 if( db->mallocFailed ){ 1653 /* Any prior OOM might have left the Select object incomplete. 1654 ** Delete the whole thing rather than allow an incomplete Select 1655 ** to be used by the code generator. */ 1656 pNew->pNext = 0; 1657 sqlite3SelectDelete(db, pNew); 1658 break; 1659 } 1660 *pp = pNew; 1661 pp = &pNew->pPrior; 1662 pNext = pNew; 1663 } 1664 1665 return pRet; 1666 } 1667 #else 1668 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1669 assert( p==0 ); 1670 return 0; 1671 } 1672 #endif 1673 1674 1675 /* 1676 ** Add a new element to the end of an expression list. If pList is 1677 ** initially NULL, then create a new expression list. 1678 ** 1679 ** The pList argument must be either NULL or a pointer to an ExprList 1680 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1681 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1682 ** Reason: This routine assumes that the number of slots in pList->a[] 1683 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1684 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1685 ** 1686 ** If a memory allocation error occurs, the entire list is freed and 1687 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1688 ** that the new entry was successfully appended. 1689 */ 1690 static const struct ExprList_item zeroItem = {0}; 1691 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 1692 sqlite3 *db, /* Database handle. Used for memory allocation */ 1693 Expr *pExpr /* Expression to be appended. Might be NULL */ 1694 ){ 1695 struct ExprList_item *pItem; 1696 ExprList *pList; 1697 1698 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 1699 if( pList==0 ){ 1700 sqlite3ExprDelete(db, pExpr); 1701 return 0; 1702 } 1703 pList->nAlloc = 4; 1704 pList->nExpr = 1; 1705 pItem = &pList->a[0]; 1706 *pItem = zeroItem; 1707 pItem->pExpr = pExpr; 1708 return pList; 1709 } 1710 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 1711 sqlite3 *db, /* Database handle. Used for memory allocation */ 1712 ExprList *pList, /* List to which to append. Might be NULL */ 1713 Expr *pExpr /* Expression to be appended. Might be NULL */ 1714 ){ 1715 struct ExprList_item *pItem; 1716 ExprList *pNew; 1717 pList->nAlloc *= 2; 1718 pNew = sqlite3DbRealloc(db, pList, 1719 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 1720 if( pNew==0 ){ 1721 sqlite3ExprListDelete(db, pList); 1722 sqlite3ExprDelete(db, pExpr); 1723 return 0; 1724 }else{ 1725 pList = pNew; 1726 } 1727 pItem = &pList->a[pList->nExpr++]; 1728 *pItem = zeroItem; 1729 pItem->pExpr = pExpr; 1730 return pList; 1731 } 1732 ExprList *sqlite3ExprListAppend( 1733 Parse *pParse, /* Parsing context */ 1734 ExprList *pList, /* List to which to append. Might be NULL */ 1735 Expr *pExpr /* Expression to be appended. Might be NULL */ 1736 ){ 1737 struct ExprList_item *pItem; 1738 if( pList==0 ){ 1739 return sqlite3ExprListAppendNew(pParse->db,pExpr); 1740 } 1741 if( pList->nAlloc<pList->nExpr+1 ){ 1742 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 1743 } 1744 pItem = &pList->a[pList->nExpr++]; 1745 *pItem = zeroItem; 1746 pItem->pExpr = pExpr; 1747 return pList; 1748 } 1749 1750 /* 1751 ** pColumns and pExpr form a vector assignment which is part of the SET 1752 ** clause of an UPDATE statement. Like this: 1753 ** 1754 ** (a,b,c) = (expr1,expr2,expr3) 1755 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1756 ** 1757 ** For each term of the vector assignment, append new entries to the 1758 ** expression list pList. In the case of a subquery on the RHS, append 1759 ** TK_SELECT_COLUMN expressions. 1760 */ 1761 ExprList *sqlite3ExprListAppendVector( 1762 Parse *pParse, /* Parsing context */ 1763 ExprList *pList, /* List to which to append. Might be NULL */ 1764 IdList *pColumns, /* List of names of LHS of the assignment */ 1765 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1766 ){ 1767 sqlite3 *db = pParse->db; 1768 int n; 1769 int i; 1770 int iFirst = pList ? pList->nExpr : 0; 1771 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1772 ** exit prior to this routine being invoked */ 1773 if( NEVER(pColumns==0) ) goto vector_append_error; 1774 if( pExpr==0 ) goto vector_append_error; 1775 1776 /* If the RHS is a vector, then we can immediately check to see that 1777 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1778 ** wildcards ("*") in the result set of the SELECT must be expanded before 1779 ** we can do the size check, so defer the size check until code generation. 1780 */ 1781 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1782 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1783 pColumns->nId, n); 1784 goto vector_append_error; 1785 } 1786 1787 for(i=0; i<pColumns->nId; i++){ 1788 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1789 assert( pSubExpr!=0 || db->mallocFailed ); 1790 assert( pSubExpr==0 || pSubExpr->iTable==0 ); 1791 if( pSubExpr==0 ) continue; 1792 pSubExpr->iTable = pColumns->nId; 1793 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1794 if( pList ){ 1795 assert( pList->nExpr==iFirst+i+1 ); 1796 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1797 pColumns->a[i].zName = 0; 1798 } 1799 } 1800 1801 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1802 Expr *pFirst = pList->a[iFirst].pExpr; 1803 assert( pFirst!=0 ); 1804 assert( pFirst->op==TK_SELECT_COLUMN ); 1805 1806 /* Store the SELECT statement in pRight so it will be deleted when 1807 ** sqlite3ExprListDelete() is called */ 1808 pFirst->pRight = pExpr; 1809 pExpr = 0; 1810 1811 /* Remember the size of the LHS in iTable so that we can check that 1812 ** the RHS and LHS sizes match during code generation. */ 1813 pFirst->iTable = pColumns->nId; 1814 } 1815 1816 vector_append_error: 1817 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1818 sqlite3IdListDelete(db, pColumns); 1819 return pList; 1820 } 1821 1822 /* 1823 ** Set the sort order for the last element on the given ExprList. 1824 */ 1825 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1826 struct ExprList_item *pItem; 1827 if( p==0 ) return; 1828 assert( p->nExpr>0 ); 1829 1830 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1831 assert( iSortOrder==SQLITE_SO_UNDEFINED 1832 || iSortOrder==SQLITE_SO_ASC 1833 || iSortOrder==SQLITE_SO_DESC 1834 ); 1835 assert( eNulls==SQLITE_SO_UNDEFINED 1836 || eNulls==SQLITE_SO_ASC 1837 || eNulls==SQLITE_SO_DESC 1838 ); 1839 1840 pItem = &p->a[p->nExpr-1]; 1841 assert( pItem->bNulls==0 ); 1842 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1843 iSortOrder = SQLITE_SO_ASC; 1844 } 1845 pItem->sortFlags = (u8)iSortOrder; 1846 1847 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1848 pItem->bNulls = 1; 1849 if( iSortOrder!=eNulls ){ 1850 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1851 } 1852 } 1853 } 1854 1855 /* 1856 ** Set the ExprList.a[].zEName element of the most recently added item 1857 ** on the expression list. 1858 ** 1859 ** pList might be NULL following an OOM error. But pName should never be 1860 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1861 ** is set. 1862 */ 1863 void sqlite3ExprListSetName( 1864 Parse *pParse, /* Parsing context */ 1865 ExprList *pList, /* List to which to add the span. */ 1866 Token *pName, /* Name to be added */ 1867 int dequote /* True to cause the name to be dequoted */ 1868 ){ 1869 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1870 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1871 if( pList ){ 1872 struct ExprList_item *pItem; 1873 assert( pList->nExpr>0 ); 1874 pItem = &pList->a[pList->nExpr-1]; 1875 assert( pItem->zEName==0 ); 1876 assert( pItem->eEName==ENAME_NAME ); 1877 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1878 if( dequote ){ 1879 /* If dequote==0, then pName->z does not point to part of a DDL 1880 ** statement handled by the parser. And so no token need be added 1881 ** to the token-map. */ 1882 sqlite3Dequote(pItem->zEName); 1883 if( IN_RENAME_OBJECT ){ 1884 sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName); 1885 } 1886 } 1887 } 1888 } 1889 1890 /* 1891 ** Set the ExprList.a[].zSpan element of the most recently added item 1892 ** on the expression list. 1893 ** 1894 ** pList might be NULL following an OOM error. But pSpan should never be 1895 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1896 ** is set. 1897 */ 1898 void sqlite3ExprListSetSpan( 1899 Parse *pParse, /* Parsing context */ 1900 ExprList *pList, /* List to which to add the span. */ 1901 const char *zStart, /* Start of the span */ 1902 const char *zEnd /* End of the span */ 1903 ){ 1904 sqlite3 *db = pParse->db; 1905 assert( pList!=0 || db->mallocFailed!=0 ); 1906 if( pList ){ 1907 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1908 assert( pList->nExpr>0 ); 1909 if( pItem->zEName==0 ){ 1910 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1911 pItem->eEName = ENAME_SPAN; 1912 } 1913 } 1914 } 1915 1916 /* 1917 ** If the expression list pEList contains more than iLimit elements, 1918 ** leave an error message in pParse. 1919 */ 1920 void sqlite3ExprListCheckLength( 1921 Parse *pParse, 1922 ExprList *pEList, 1923 const char *zObject 1924 ){ 1925 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1926 testcase( pEList && pEList->nExpr==mx ); 1927 testcase( pEList && pEList->nExpr==mx+1 ); 1928 if( pEList && pEList->nExpr>mx ){ 1929 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1930 } 1931 } 1932 1933 /* 1934 ** Delete an entire expression list. 1935 */ 1936 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1937 int i = pList->nExpr; 1938 struct ExprList_item *pItem = pList->a; 1939 assert( pList->nExpr>0 ); 1940 do{ 1941 sqlite3ExprDelete(db, pItem->pExpr); 1942 sqlite3DbFree(db, pItem->zEName); 1943 pItem++; 1944 }while( --i>0 ); 1945 sqlite3DbFreeNN(db, pList); 1946 } 1947 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1948 if( pList ) exprListDeleteNN(db, pList); 1949 } 1950 1951 /* 1952 ** Return the bitwise-OR of all Expr.flags fields in the given 1953 ** ExprList. 1954 */ 1955 u32 sqlite3ExprListFlags(const ExprList *pList){ 1956 int i; 1957 u32 m = 0; 1958 assert( pList!=0 ); 1959 for(i=0; i<pList->nExpr; i++){ 1960 Expr *pExpr = pList->a[i].pExpr; 1961 assert( pExpr!=0 ); 1962 m |= pExpr->flags; 1963 } 1964 return m; 1965 } 1966 1967 /* 1968 ** This is a SELECT-node callback for the expression walker that 1969 ** always "fails". By "fail" in this case, we mean set 1970 ** pWalker->eCode to zero and abort. 1971 ** 1972 ** This callback is used by multiple expression walkers. 1973 */ 1974 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1975 UNUSED_PARAMETER(NotUsed); 1976 pWalker->eCode = 0; 1977 return WRC_Abort; 1978 } 1979 1980 /* 1981 ** Check the input string to see if it is "true" or "false" (in any case). 1982 ** 1983 ** If the string is.... Return 1984 ** "true" EP_IsTrue 1985 ** "false" EP_IsFalse 1986 ** anything else 0 1987 */ 1988 u32 sqlite3IsTrueOrFalse(const char *zIn){ 1989 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 1990 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 1991 return 0; 1992 } 1993 1994 1995 /* 1996 ** If the input expression is an ID with the name "true" or "false" 1997 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1998 ** the conversion happened, and zero if the expression is unaltered. 1999 */ 2000 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 2001 u32 v; 2002 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 2003 if( !ExprHasProperty(pExpr, EP_Quoted) 2004 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 2005 ){ 2006 pExpr->op = TK_TRUEFALSE; 2007 ExprSetProperty(pExpr, v); 2008 return 1; 2009 } 2010 return 0; 2011 } 2012 2013 /* 2014 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 2015 ** and 0 if it is FALSE. 2016 */ 2017 int sqlite3ExprTruthValue(const Expr *pExpr){ 2018 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 2019 assert( pExpr->op==TK_TRUEFALSE ); 2020 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 2021 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 2022 return pExpr->u.zToken[4]==0; 2023 } 2024 2025 /* 2026 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 2027 ** terms that are always true or false. Return the simplified expression. 2028 ** Or return the original expression if no simplification is possible. 2029 ** 2030 ** Examples: 2031 ** 2032 ** (x<10) AND true => (x<10) 2033 ** (x<10) AND false => false 2034 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 2035 ** (x<10) AND (y=22 OR true) => (x<10) 2036 ** (y=22) OR true => true 2037 */ 2038 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 2039 assert( pExpr!=0 ); 2040 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 2041 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 2042 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 2043 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 2044 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 2045 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 2046 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 2047 } 2048 } 2049 return pExpr; 2050 } 2051 2052 2053 /* 2054 ** These routines are Walker callbacks used to check expressions to 2055 ** see if they are "constant" for some definition of constant. The 2056 ** Walker.eCode value determines the type of "constant" we are looking 2057 ** for. 2058 ** 2059 ** These callback routines are used to implement the following: 2060 ** 2061 ** sqlite3ExprIsConstant() pWalker->eCode==1 2062 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2063 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2064 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2065 ** 2066 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2067 ** is found to not be a constant. 2068 ** 2069 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2070 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2071 ** when parsing an existing schema out of the sqlite_schema table and 4 2072 ** when processing a new CREATE TABLE statement. A bound parameter raises 2073 ** an error for new statements, but is silently converted 2074 ** to NULL for existing schemas. This allows sqlite_schema tables that 2075 ** contain a bound parameter because they were generated by older versions 2076 ** of SQLite to be parsed by newer versions of SQLite without raising a 2077 ** malformed schema error. 2078 */ 2079 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2080 2081 /* If pWalker->eCode is 2 then any term of the expression that comes from 2082 ** the ON or USING clauses of a left join disqualifies the expression 2083 ** from being considered constant. */ 2084 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2085 pWalker->eCode = 0; 2086 return WRC_Abort; 2087 } 2088 2089 switch( pExpr->op ){ 2090 /* Consider functions to be constant if all their arguments are constant 2091 ** and either pWalker->eCode==4 or 5 or the function has the 2092 ** SQLITE_FUNC_CONST flag. */ 2093 case TK_FUNCTION: 2094 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2095 && !ExprHasProperty(pExpr, EP_WinFunc) 2096 ){ 2097 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2098 return WRC_Continue; 2099 }else{ 2100 pWalker->eCode = 0; 2101 return WRC_Abort; 2102 } 2103 case TK_ID: 2104 /* Convert "true" or "false" in a DEFAULT clause into the 2105 ** appropriate TK_TRUEFALSE operator */ 2106 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2107 return WRC_Prune; 2108 } 2109 /* no break */ deliberate_fall_through 2110 case TK_COLUMN: 2111 case TK_AGG_FUNCTION: 2112 case TK_AGG_COLUMN: 2113 testcase( pExpr->op==TK_ID ); 2114 testcase( pExpr->op==TK_COLUMN ); 2115 testcase( pExpr->op==TK_AGG_FUNCTION ); 2116 testcase( pExpr->op==TK_AGG_COLUMN ); 2117 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2118 return WRC_Continue; 2119 } 2120 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2121 return WRC_Continue; 2122 } 2123 /* no break */ deliberate_fall_through 2124 case TK_IF_NULL_ROW: 2125 case TK_REGISTER: 2126 case TK_DOT: 2127 testcase( pExpr->op==TK_REGISTER ); 2128 testcase( pExpr->op==TK_IF_NULL_ROW ); 2129 testcase( pExpr->op==TK_DOT ); 2130 pWalker->eCode = 0; 2131 return WRC_Abort; 2132 case TK_VARIABLE: 2133 if( pWalker->eCode==5 ){ 2134 /* Silently convert bound parameters that appear inside of CREATE 2135 ** statements into a NULL when parsing the CREATE statement text out 2136 ** of the sqlite_schema table */ 2137 pExpr->op = TK_NULL; 2138 }else if( pWalker->eCode==4 ){ 2139 /* A bound parameter in a CREATE statement that originates from 2140 ** sqlite3_prepare() causes an error */ 2141 pWalker->eCode = 0; 2142 return WRC_Abort; 2143 } 2144 /* no break */ deliberate_fall_through 2145 default: 2146 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2147 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2148 return WRC_Continue; 2149 } 2150 } 2151 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2152 Walker w; 2153 w.eCode = initFlag; 2154 w.xExprCallback = exprNodeIsConstant; 2155 w.xSelectCallback = sqlite3SelectWalkFail; 2156 #ifdef SQLITE_DEBUG 2157 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2158 #endif 2159 w.u.iCur = iCur; 2160 sqlite3WalkExpr(&w, p); 2161 return w.eCode; 2162 } 2163 2164 /* 2165 ** Walk an expression tree. Return non-zero if the expression is constant 2166 ** and 0 if it involves variables or function calls. 2167 ** 2168 ** For the purposes of this function, a double-quoted string (ex: "abc") 2169 ** is considered a variable but a single-quoted string (ex: 'abc') is 2170 ** a constant. 2171 */ 2172 int sqlite3ExprIsConstant(Expr *p){ 2173 return exprIsConst(p, 1, 0); 2174 } 2175 2176 /* 2177 ** Walk an expression tree. Return non-zero if 2178 ** 2179 ** (1) the expression is constant, and 2180 ** (2) the expression does originate in the ON or USING clause 2181 ** of a LEFT JOIN, and 2182 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2183 ** operands created by the constant propagation optimization. 2184 ** 2185 ** When this routine returns true, it indicates that the expression 2186 ** can be added to the pParse->pConstExpr list and evaluated once when 2187 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2188 */ 2189 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2190 return exprIsConst(p, 2, 0); 2191 } 2192 2193 /* 2194 ** Walk an expression tree. Return non-zero if the expression is constant 2195 ** for any single row of the table with cursor iCur. In other words, the 2196 ** expression must not refer to any non-deterministic function nor any 2197 ** table other than iCur. 2198 */ 2199 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2200 return exprIsConst(p, 3, iCur); 2201 } 2202 2203 2204 /* 2205 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2206 */ 2207 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2208 ExprList *pGroupBy = pWalker->u.pGroupBy; 2209 int i; 2210 2211 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2212 ** it constant. */ 2213 for(i=0; i<pGroupBy->nExpr; i++){ 2214 Expr *p = pGroupBy->a[i].pExpr; 2215 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2216 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2217 if( sqlite3IsBinary(pColl) ){ 2218 return WRC_Prune; 2219 } 2220 } 2221 } 2222 2223 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2224 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2225 pWalker->eCode = 0; 2226 return WRC_Abort; 2227 } 2228 2229 return exprNodeIsConstant(pWalker, pExpr); 2230 } 2231 2232 /* 2233 ** Walk the expression tree passed as the first argument. Return non-zero 2234 ** if the expression consists entirely of constants or copies of terms 2235 ** in pGroupBy that sort with the BINARY collation sequence. 2236 ** 2237 ** This routine is used to determine if a term of the HAVING clause can 2238 ** be promoted into the WHERE clause. In order for such a promotion to work, 2239 ** the value of the HAVING clause term must be the same for all members of 2240 ** a "group". The requirement that the GROUP BY term must be BINARY 2241 ** assumes that no other collating sequence will have a finer-grained 2242 ** grouping than binary. In other words (A=B COLLATE binary) implies 2243 ** A=B in every other collating sequence. The requirement that the 2244 ** GROUP BY be BINARY is stricter than necessary. It would also work 2245 ** to promote HAVING clauses that use the same alternative collating 2246 ** sequence as the GROUP BY term, but that is much harder to check, 2247 ** alternative collating sequences are uncommon, and this is only an 2248 ** optimization, so we take the easy way out and simply require the 2249 ** GROUP BY to use the BINARY collating sequence. 2250 */ 2251 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2252 Walker w; 2253 w.eCode = 1; 2254 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2255 w.xSelectCallback = 0; 2256 w.u.pGroupBy = pGroupBy; 2257 w.pParse = pParse; 2258 sqlite3WalkExpr(&w, p); 2259 return w.eCode; 2260 } 2261 2262 /* 2263 ** Walk an expression tree for the DEFAULT field of a column definition 2264 ** in a CREATE TABLE statement. Return non-zero if the expression is 2265 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2266 ** the expression is constant or a function call with constant arguments. 2267 ** Return and 0 if there are any variables. 2268 ** 2269 ** isInit is true when parsing from sqlite_schema. isInit is false when 2270 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2271 ** (such as ? or $abc) in the expression are converted into NULL. When 2272 ** isInit is false, parameters raise an error. Parameters should not be 2273 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2274 ** allowed it, so we need to support it when reading sqlite_schema for 2275 ** backwards compatibility. 2276 ** 2277 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2278 ** 2279 ** For the purposes of this function, a double-quoted string (ex: "abc") 2280 ** is considered a variable but a single-quoted string (ex: 'abc') is 2281 ** a constant. 2282 */ 2283 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2284 assert( isInit==0 || isInit==1 ); 2285 return exprIsConst(p, 4+isInit, 0); 2286 } 2287 2288 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2289 /* 2290 ** Walk an expression tree. Return 1 if the expression contains a 2291 ** subquery of some kind. Return 0 if there are no subqueries. 2292 */ 2293 int sqlite3ExprContainsSubquery(Expr *p){ 2294 Walker w; 2295 w.eCode = 1; 2296 w.xExprCallback = sqlite3ExprWalkNoop; 2297 w.xSelectCallback = sqlite3SelectWalkFail; 2298 #ifdef SQLITE_DEBUG 2299 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2300 #endif 2301 sqlite3WalkExpr(&w, p); 2302 return w.eCode==0; 2303 } 2304 #endif 2305 2306 /* 2307 ** If the expression p codes a constant integer that is small enough 2308 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2309 ** in *pValue. If the expression is not an integer or if it is too big 2310 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2311 */ 2312 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2313 int rc = 0; 2314 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2315 2316 /* If an expression is an integer literal that fits in a signed 32-bit 2317 ** integer, then the EP_IntValue flag will have already been set */ 2318 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2319 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2320 2321 if( p->flags & EP_IntValue ){ 2322 *pValue = p->u.iValue; 2323 return 1; 2324 } 2325 switch( p->op ){ 2326 case TK_UPLUS: { 2327 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2328 break; 2329 } 2330 case TK_UMINUS: { 2331 int v; 2332 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2333 assert( v!=(-2147483647-1) ); 2334 *pValue = -v; 2335 rc = 1; 2336 } 2337 break; 2338 } 2339 default: break; 2340 } 2341 return rc; 2342 } 2343 2344 /* 2345 ** Return FALSE if there is no chance that the expression can be NULL. 2346 ** 2347 ** If the expression might be NULL or if the expression is too complex 2348 ** to tell return TRUE. 2349 ** 2350 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2351 ** when we know that a value cannot be NULL. Hence, a false positive 2352 ** (returning TRUE when in fact the expression can never be NULL) might 2353 ** be a small performance hit but is otherwise harmless. On the other 2354 ** hand, a false negative (returning FALSE when the result could be NULL) 2355 ** will likely result in an incorrect answer. So when in doubt, return 2356 ** TRUE. 2357 */ 2358 int sqlite3ExprCanBeNull(const Expr *p){ 2359 u8 op; 2360 assert( p!=0 ); 2361 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2362 p = p->pLeft; 2363 assert( p!=0 ); 2364 } 2365 op = p->op; 2366 if( op==TK_REGISTER ) op = p->op2; 2367 switch( op ){ 2368 case TK_INTEGER: 2369 case TK_STRING: 2370 case TK_FLOAT: 2371 case TK_BLOB: 2372 return 0; 2373 case TK_COLUMN: 2374 return ExprHasProperty(p, EP_CanBeNull) || 2375 p->y.pTab==0 || /* Reference to column of index on expression */ 2376 (p->iColumn>=0 2377 && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ 2378 && p->y.pTab->aCol[p->iColumn].notNull==0); 2379 default: 2380 return 1; 2381 } 2382 } 2383 2384 /* 2385 ** Return TRUE if the given expression is a constant which would be 2386 ** unchanged by OP_Affinity with the affinity given in the second 2387 ** argument. 2388 ** 2389 ** This routine is used to determine if the OP_Affinity operation 2390 ** can be omitted. When in doubt return FALSE. A false negative 2391 ** is harmless. A false positive, however, can result in the wrong 2392 ** answer. 2393 */ 2394 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2395 u8 op; 2396 int unaryMinus = 0; 2397 if( aff==SQLITE_AFF_BLOB ) return 1; 2398 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2399 if( p->op==TK_UMINUS ) unaryMinus = 1; 2400 p = p->pLeft; 2401 } 2402 op = p->op; 2403 if( op==TK_REGISTER ) op = p->op2; 2404 switch( op ){ 2405 case TK_INTEGER: { 2406 return aff>=SQLITE_AFF_NUMERIC; 2407 } 2408 case TK_FLOAT: { 2409 return aff>=SQLITE_AFF_NUMERIC; 2410 } 2411 case TK_STRING: { 2412 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2413 } 2414 case TK_BLOB: { 2415 return !unaryMinus; 2416 } 2417 case TK_COLUMN: { 2418 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2419 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2420 } 2421 default: { 2422 return 0; 2423 } 2424 } 2425 } 2426 2427 /* 2428 ** Return TRUE if the given string is a row-id column name. 2429 */ 2430 int sqlite3IsRowid(const char *z){ 2431 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2432 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2433 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2434 return 0; 2435 } 2436 2437 /* 2438 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2439 ** that can be simplified to a direct table access, then return 2440 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2441 ** or if the SELECT statement needs to be manifested into a transient 2442 ** table, then return NULL. 2443 */ 2444 #ifndef SQLITE_OMIT_SUBQUERY 2445 static Select *isCandidateForInOpt(Expr *pX){ 2446 Select *p; 2447 SrcList *pSrc; 2448 ExprList *pEList; 2449 Table *pTab; 2450 int i; 2451 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2452 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2453 p = pX->x.pSelect; 2454 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2455 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2456 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2457 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2458 return 0; /* No DISTINCT keyword and no aggregate functions */ 2459 } 2460 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2461 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2462 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2463 pSrc = p->pSrc; 2464 assert( pSrc!=0 ); 2465 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2466 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2467 pTab = pSrc->a[0].pTab; 2468 assert( pTab!=0 ); 2469 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2470 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2471 pEList = p->pEList; 2472 assert( pEList!=0 ); 2473 /* All SELECT results must be columns. */ 2474 for(i=0; i<pEList->nExpr; i++){ 2475 Expr *pRes = pEList->a[i].pExpr; 2476 if( pRes->op!=TK_COLUMN ) return 0; 2477 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2478 } 2479 return p; 2480 } 2481 #endif /* SQLITE_OMIT_SUBQUERY */ 2482 2483 #ifndef SQLITE_OMIT_SUBQUERY 2484 /* 2485 ** Generate code that checks the left-most column of index table iCur to see if 2486 ** it contains any NULL entries. Cause the register at regHasNull to be set 2487 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2488 ** to be set to NULL if iCur contains one or more NULL values. 2489 */ 2490 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2491 int addr1; 2492 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2493 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2494 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2495 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2496 VdbeComment((v, "first_entry_in(%d)", iCur)); 2497 sqlite3VdbeJumpHere(v, addr1); 2498 } 2499 #endif 2500 2501 2502 #ifndef SQLITE_OMIT_SUBQUERY 2503 /* 2504 ** The argument is an IN operator with a list (not a subquery) on the 2505 ** right-hand side. Return TRUE if that list is constant. 2506 */ 2507 static int sqlite3InRhsIsConstant(Expr *pIn){ 2508 Expr *pLHS; 2509 int res; 2510 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2511 pLHS = pIn->pLeft; 2512 pIn->pLeft = 0; 2513 res = sqlite3ExprIsConstant(pIn); 2514 pIn->pLeft = pLHS; 2515 return res; 2516 } 2517 #endif 2518 2519 /* 2520 ** This function is used by the implementation of the IN (...) operator. 2521 ** The pX parameter is the expression on the RHS of the IN operator, which 2522 ** might be either a list of expressions or a subquery. 2523 ** 2524 ** The job of this routine is to find or create a b-tree object that can 2525 ** be used either to test for membership in the RHS set or to iterate through 2526 ** all members of the RHS set, skipping duplicates. 2527 ** 2528 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2529 ** and pX->iTable is set to the index of that cursor. 2530 ** 2531 ** The returned value of this function indicates the b-tree type, as follows: 2532 ** 2533 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2534 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2535 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2536 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2537 ** populated epheremal table. 2538 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2539 ** implemented as a sequence of comparisons. 2540 ** 2541 ** An existing b-tree might be used if the RHS expression pX is a simple 2542 ** subquery such as: 2543 ** 2544 ** SELECT <column1>, <column2>... FROM <table> 2545 ** 2546 ** If the RHS of the IN operator is a list or a more complex subquery, then 2547 ** an ephemeral table might need to be generated from the RHS and then 2548 ** pX->iTable made to point to the ephemeral table instead of an 2549 ** existing table. 2550 ** 2551 ** The inFlags parameter must contain, at a minimum, one of the bits 2552 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2553 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2554 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2555 ** be used to loop over all values of the RHS of the IN operator. 2556 ** 2557 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2558 ** through the set members) then the b-tree must not contain duplicates. 2559 ** An epheremal table will be created unless the selected columns are guaranteed 2560 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2561 ** a UNIQUE constraint or index. 2562 ** 2563 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2564 ** for fast set membership tests) then an epheremal table must 2565 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2566 ** index can be found with the specified <columns> as its left-most. 2567 ** 2568 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2569 ** if the RHS of the IN operator is a list (not a subquery) then this 2570 ** routine might decide that creating an ephemeral b-tree for membership 2571 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2572 ** calling routine should implement the IN operator using a sequence 2573 ** of Eq or Ne comparison operations. 2574 ** 2575 ** When the b-tree is being used for membership tests, the calling function 2576 ** might need to know whether or not the RHS side of the IN operator 2577 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2578 ** if there is any chance that the (...) might contain a NULL value at 2579 ** runtime, then a register is allocated and the register number written 2580 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2581 ** NULL value, then *prRhsHasNull is left unchanged. 2582 ** 2583 ** If a register is allocated and its location stored in *prRhsHasNull, then 2584 ** the value in that register will be NULL if the b-tree contains one or more 2585 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2586 ** NULL values. 2587 ** 2588 ** If the aiMap parameter is not NULL, it must point to an array containing 2589 ** one element for each column returned by the SELECT statement on the RHS 2590 ** of the IN(...) operator. The i'th entry of the array is populated with the 2591 ** offset of the index column that matches the i'th column returned by the 2592 ** SELECT. For example, if the expression and selected index are: 2593 ** 2594 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2595 ** CREATE INDEX i1 ON t1(b, c, a); 2596 ** 2597 ** then aiMap[] is populated with {2, 0, 1}. 2598 */ 2599 #ifndef SQLITE_OMIT_SUBQUERY 2600 int sqlite3FindInIndex( 2601 Parse *pParse, /* Parsing context */ 2602 Expr *pX, /* The IN expression */ 2603 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2604 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2605 int *aiMap, /* Mapping from Index fields to RHS fields */ 2606 int *piTab /* OUT: index to use */ 2607 ){ 2608 Select *p; /* SELECT to the right of IN operator */ 2609 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2610 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2611 int mustBeUnique; /* True if RHS must be unique */ 2612 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2613 2614 assert( pX->op==TK_IN ); 2615 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2616 2617 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2618 ** whether or not the SELECT result contains NULL values, check whether 2619 ** or not NULL is actually possible (it may not be, for example, due 2620 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2621 ** set prRhsHasNull to 0 before continuing. */ 2622 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2623 int i; 2624 ExprList *pEList = pX->x.pSelect->pEList; 2625 for(i=0; i<pEList->nExpr; i++){ 2626 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2627 } 2628 if( i==pEList->nExpr ){ 2629 prRhsHasNull = 0; 2630 } 2631 } 2632 2633 /* Check to see if an existing table or index can be used to 2634 ** satisfy the query. This is preferable to generating a new 2635 ** ephemeral table. */ 2636 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2637 sqlite3 *db = pParse->db; /* Database connection */ 2638 Table *pTab; /* Table <table>. */ 2639 int iDb; /* Database idx for pTab */ 2640 ExprList *pEList = p->pEList; 2641 int nExpr = pEList->nExpr; 2642 2643 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2644 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2645 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2646 pTab = p->pSrc->a[0].pTab; 2647 2648 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2649 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2650 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 2651 sqlite3CodeVerifySchema(pParse, iDb); 2652 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2653 2654 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2655 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2656 /* The "x IN (SELECT rowid FROM table)" case */ 2657 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2658 VdbeCoverage(v); 2659 2660 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2661 eType = IN_INDEX_ROWID; 2662 ExplainQueryPlan((pParse, 0, 2663 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2664 sqlite3VdbeJumpHere(v, iAddr); 2665 }else{ 2666 Index *pIdx; /* Iterator variable */ 2667 int affinity_ok = 1; 2668 int i; 2669 2670 /* Check that the affinity that will be used to perform each 2671 ** comparison is the same as the affinity of each column in table 2672 ** on the RHS of the IN operator. If it not, it is not possible to 2673 ** use any index of the RHS table. */ 2674 for(i=0; i<nExpr && affinity_ok; i++){ 2675 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2676 int iCol = pEList->a[i].pExpr->iColumn; 2677 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2678 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2679 testcase( cmpaff==SQLITE_AFF_BLOB ); 2680 testcase( cmpaff==SQLITE_AFF_TEXT ); 2681 switch( cmpaff ){ 2682 case SQLITE_AFF_BLOB: 2683 break; 2684 case SQLITE_AFF_TEXT: 2685 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2686 ** other has no affinity and the other side is TEXT. Hence, 2687 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2688 ** and for the term on the LHS of the IN to have no affinity. */ 2689 assert( idxaff==SQLITE_AFF_TEXT ); 2690 break; 2691 default: 2692 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2693 } 2694 } 2695 2696 if( affinity_ok ){ 2697 /* Search for an existing index that will work for this IN operator */ 2698 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2699 Bitmask colUsed; /* Columns of the index used */ 2700 Bitmask mCol; /* Mask for the current column */ 2701 if( pIdx->nColumn<nExpr ) continue; 2702 if( pIdx->pPartIdxWhere!=0 ) continue; 2703 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2704 ** BITMASK(nExpr) without overflowing */ 2705 testcase( pIdx->nColumn==BMS-2 ); 2706 testcase( pIdx->nColumn==BMS-1 ); 2707 if( pIdx->nColumn>=BMS-1 ) continue; 2708 if( mustBeUnique ){ 2709 if( pIdx->nKeyCol>nExpr 2710 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2711 ){ 2712 continue; /* This index is not unique over the IN RHS columns */ 2713 } 2714 } 2715 2716 colUsed = 0; /* Columns of index used so far */ 2717 for(i=0; i<nExpr; i++){ 2718 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2719 Expr *pRhs = pEList->a[i].pExpr; 2720 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2721 int j; 2722 2723 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2724 for(j=0; j<nExpr; j++){ 2725 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2726 assert( pIdx->azColl[j] ); 2727 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2728 continue; 2729 } 2730 break; 2731 } 2732 if( j==nExpr ) break; 2733 mCol = MASKBIT(j); 2734 if( mCol & colUsed ) break; /* Each column used only once */ 2735 colUsed |= mCol; 2736 if( aiMap ) aiMap[i] = j; 2737 } 2738 2739 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2740 if( colUsed==(MASKBIT(nExpr)-1) ){ 2741 /* If we reach this point, that means the index pIdx is usable */ 2742 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2743 ExplainQueryPlan((pParse, 0, 2744 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2745 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2746 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2747 VdbeComment((v, "%s", pIdx->zName)); 2748 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2749 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2750 2751 if( prRhsHasNull ){ 2752 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2753 i64 mask = (1<<nExpr)-1; 2754 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2755 iTab, 0, 0, (u8*)&mask, P4_INT64); 2756 #endif 2757 *prRhsHasNull = ++pParse->nMem; 2758 if( nExpr==1 ){ 2759 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2760 } 2761 } 2762 sqlite3VdbeJumpHere(v, iAddr); 2763 } 2764 } /* End loop over indexes */ 2765 } /* End if( affinity_ok ) */ 2766 } /* End if not an rowid index */ 2767 } /* End attempt to optimize using an index */ 2768 2769 /* If no preexisting index is available for the IN clause 2770 ** and IN_INDEX_NOOP is an allowed reply 2771 ** and the RHS of the IN operator is a list, not a subquery 2772 ** and the RHS is not constant or has two or fewer terms, 2773 ** then it is not worth creating an ephemeral table to evaluate 2774 ** the IN operator so return IN_INDEX_NOOP. 2775 */ 2776 if( eType==0 2777 && (inFlags & IN_INDEX_NOOP_OK) 2778 && !ExprHasProperty(pX, EP_xIsSelect) 2779 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2780 ){ 2781 eType = IN_INDEX_NOOP; 2782 } 2783 2784 if( eType==0 ){ 2785 /* Could not find an existing table or index to use as the RHS b-tree. 2786 ** We will have to generate an ephemeral table to do the job. 2787 */ 2788 u32 savedNQueryLoop = pParse->nQueryLoop; 2789 int rMayHaveNull = 0; 2790 eType = IN_INDEX_EPH; 2791 if( inFlags & IN_INDEX_LOOP ){ 2792 pParse->nQueryLoop = 0; 2793 }else if( prRhsHasNull ){ 2794 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2795 } 2796 assert( pX->op==TK_IN ); 2797 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2798 if( rMayHaveNull ){ 2799 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2800 } 2801 pParse->nQueryLoop = savedNQueryLoop; 2802 } 2803 2804 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2805 int i, n; 2806 n = sqlite3ExprVectorSize(pX->pLeft); 2807 for(i=0; i<n; i++) aiMap[i] = i; 2808 } 2809 *piTab = iTab; 2810 return eType; 2811 } 2812 #endif 2813 2814 #ifndef SQLITE_OMIT_SUBQUERY 2815 /* 2816 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2817 ** function allocates and returns a nul-terminated string containing 2818 ** the affinities to be used for each column of the comparison. 2819 ** 2820 ** It is the responsibility of the caller to ensure that the returned 2821 ** string is eventually freed using sqlite3DbFree(). 2822 */ 2823 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2824 Expr *pLeft = pExpr->pLeft; 2825 int nVal = sqlite3ExprVectorSize(pLeft); 2826 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2827 char *zRet; 2828 2829 assert( pExpr->op==TK_IN ); 2830 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2831 if( zRet ){ 2832 int i; 2833 for(i=0; i<nVal; i++){ 2834 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2835 char a = sqlite3ExprAffinity(pA); 2836 if( pSelect ){ 2837 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2838 }else{ 2839 zRet[i] = a; 2840 } 2841 } 2842 zRet[nVal] = '\0'; 2843 } 2844 return zRet; 2845 } 2846 #endif 2847 2848 #ifndef SQLITE_OMIT_SUBQUERY 2849 /* 2850 ** Load the Parse object passed as the first argument with an error 2851 ** message of the form: 2852 ** 2853 ** "sub-select returns N columns - expected M" 2854 */ 2855 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2856 if( pParse->nErr==0 ){ 2857 const char *zFmt = "sub-select returns %d columns - expected %d"; 2858 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2859 } 2860 } 2861 #endif 2862 2863 /* 2864 ** Expression pExpr is a vector that has been used in a context where 2865 ** it is not permitted. If pExpr is a sub-select vector, this routine 2866 ** loads the Parse object with a message of the form: 2867 ** 2868 ** "sub-select returns N columns - expected 1" 2869 ** 2870 ** Or, if it is a regular scalar vector: 2871 ** 2872 ** "row value misused" 2873 */ 2874 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2875 #ifndef SQLITE_OMIT_SUBQUERY 2876 if( pExpr->flags & EP_xIsSelect ){ 2877 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2878 }else 2879 #endif 2880 { 2881 sqlite3ErrorMsg(pParse, "row value misused"); 2882 } 2883 } 2884 2885 #ifndef SQLITE_OMIT_SUBQUERY 2886 /* 2887 ** Generate code that will construct an ephemeral table containing all terms 2888 ** in the RHS of an IN operator. The IN operator can be in either of two 2889 ** forms: 2890 ** 2891 ** x IN (4,5,11) -- IN operator with list on right-hand side 2892 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2893 ** 2894 ** The pExpr parameter is the IN operator. The cursor number for the 2895 ** constructed ephermeral table is returned. The first time the ephemeral 2896 ** table is computed, the cursor number is also stored in pExpr->iTable, 2897 ** however the cursor number returned might not be the same, as it might 2898 ** have been duplicated using OP_OpenDup. 2899 ** 2900 ** If the LHS expression ("x" in the examples) is a column value, or 2901 ** the SELECT statement returns a column value, then the affinity of that 2902 ** column is used to build the index keys. If both 'x' and the 2903 ** SELECT... statement are columns, then numeric affinity is used 2904 ** if either column has NUMERIC or INTEGER affinity. If neither 2905 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2906 ** is used. 2907 */ 2908 void sqlite3CodeRhsOfIN( 2909 Parse *pParse, /* Parsing context */ 2910 Expr *pExpr, /* The IN operator */ 2911 int iTab /* Use this cursor number */ 2912 ){ 2913 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2914 int addr; /* Address of OP_OpenEphemeral instruction */ 2915 Expr *pLeft; /* the LHS of the IN operator */ 2916 KeyInfo *pKeyInfo = 0; /* Key information */ 2917 int nVal; /* Size of vector pLeft */ 2918 Vdbe *v; /* The prepared statement under construction */ 2919 2920 v = pParse->pVdbe; 2921 assert( v!=0 ); 2922 2923 /* The evaluation of the IN must be repeated every time it 2924 ** is encountered if any of the following is true: 2925 ** 2926 ** * The right-hand side is a correlated subquery 2927 ** * The right-hand side is an expression list containing variables 2928 ** * We are inside a trigger 2929 ** 2930 ** If all of the above are false, then we can compute the RHS just once 2931 ** and reuse it many names. 2932 */ 2933 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2934 /* Reuse of the RHS is allowed */ 2935 /* If this routine has already been coded, but the previous code 2936 ** might not have been invoked yet, so invoke it now as a subroutine. 2937 */ 2938 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2939 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2940 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2941 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2942 pExpr->x.pSelect->selId)); 2943 } 2944 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2945 pExpr->y.sub.iAddr); 2946 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2947 sqlite3VdbeJumpHere(v, addrOnce); 2948 return; 2949 } 2950 2951 /* Begin coding the subroutine */ 2952 ExprSetProperty(pExpr, EP_Subrtn); 2953 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 2954 pExpr->y.sub.regReturn = ++pParse->nMem; 2955 pExpr->y.sub.iAddr = 2956 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2957 VdbeComment((v, "return address")); 2958 2959 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2960 } 2961 2962 /* Check to see if this is a vector IN operator */ 2963 pLeft = pExpr->pLeft; 2964 nVal = sqlite3ExprVectorSize(pLeft); 2965 2966 /* Construct the ephemeral table that will contain the content of 2967 ** RHS of the IN operator. 2968 */ 2969 pExpr->iTable = iTab; 2970 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2971 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2972 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2973 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2974 }else{ 2975 VdbeComment((v, "RHS of IN operator")); 2976 } 2977 #endif 2978 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2979 2980 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2981 /* Case 1: expr IN (SELECT ...) 2982 ** 2983 ** Generate code to write the results of the select into the temporary 2984 ** table allocated and opened above. 2985 */ 2986 Select *pSelect = pExpr->x.pSelect; 2987 ExprList *pEList = pSelect->pEList; 2988 2989 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2990 addrOnce?"":"CORRELATED ", pSelect->selId 2991 )); 2992 /* If the LHS and RHS of the IN operator do not match, that 2993 ** error will have been caught long before we reach this point. */ 2994 if( ALWAYS(pEList->nExpr==nVal) ){ 2995 SelectDest dest; 2996 int i; 2997 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2998 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2999 pSelect->iLimit = 0; 3000 testcase( pSelect->selFlags & SF_Distinct ); 3001 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 3002 if( sqlite3Select(pParse, pSelect, &dest) ){ 3003 sqlite3DbFree(pParse->db, dest.zAffSdst); 3004 sqlite3KeyInfoUnref(pKeyInfo); 3005 return; 3006 } 3007 sqlite3DbFree(pParse->db, dest.zAffSdst); 3008 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 3009 assert( pEList!=0 ); 3010 assert( pEList->nExpr>0 ); 3011 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3012 for(i=0; i<nVal; i++){ 3013 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 3014 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 3015 pParse, p, pEList->a[i].pExpr 3016 ); 3017 } 3018 } 3019 }else if( ALWAYS(pExpr->x.pList!=0) ){ 3020 /* Case 2: expr IN (exprlist) 3021 ** 3022 ** For each expression, build an index key from the evaluation and 3023 ** store it in the temporary table. If <expr> is a column, then use 3024 ** that columns affinity when building index keys. If <expr> is not 3025 ** a column, use numeric affinity. 3026 */ 3027 char affinity; /* Affinity of the LHS of the IN */ 3028 int i; 3029 ExprList *pList = pExpr->x.pList; 3030 struct ExprList_item *pItem; 3031 int r1, r2; 3032 affinity = sqlite3ExprAffinity(pLeft); 3033 if( affinity<=SQLITE_AFF_NONE ){ 3034 affinity = SQLITE_AFF_BLOB; 3035 }else if( affinity==SQLITE_AFF_REAL ){ 3036 affinity = SQLITE_AFF_NUMERIC; 3037 } 3038 if( pKeyInfo ){ 3039 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3040 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3041 } 3042 3043 /* Loop through each expression in <exprlist>. */ 3044 r1 = sqlite3GetTempReg(pParse); 3045 r2 = sqlite3GetTempReg(pParse); 3046 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 3047 Expr *pE2 = pItem->pExpr; 3048 3049 /* If the expression is not constant then we will need to 3050 ** disable the test that was generated above that makes sure 3051 ** this code only executes once. Because for a non-constant 3052 ** expression we need to rerun this code each time. 3053 */ 3054 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 3055 sqlite3VdbeChangeToNoop(v, addrOnce); 3056 ExprClearProperty(pExpr, EP_Subrtn); 3057 addrOnce = 0; 3058 } 3059 3060 /* Evaluate the expression and insert it into the temp table */ 3061 sqlite3ExprCode(pParse, pE2, r1); 3062 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3063 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3064 } 3065 sqlite3ReleaseTempReg(pParse, r1); 3066 sqlite3ReleaseTempReg(pParse, r2); 3067 } 3068 if( pKeyInfo ){ 3069 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3070 } 3071 if( addrOnce ){ 3072 sqlite3VdbeJumpHere(v, addrOnce); 3073 /* Subroutine return */ 3074 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3075 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3076 sqlite3ClearTempRegCache(pParse); 3077 } 3078 } 3079 #endif /* SQLITE_OMIT_SUBQUERY */ 3080 3081 /* 3082 ** Generate code for scalar subqueries used as a subquery expression 3083 ** or EXISTS operator: 3084 ** 3085 ** (SELECT a FROM b) -- subquery 3086 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3087 ** 3088 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3089 ** 3090 ** Return the register that holds the result. For a multi-column SELECT, 3091 ** the result is stored in a contiguous array of registers and the 3092 ** return value is the register of the left-most result column. 3093 ** Return 0 if an error occurs. 3094 */ 3095 #ifndef SQLITE_OMIT_SUBQUERY 3096 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3097 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3098 int rReg = 0; /* Register storing resulting */ 3099 Select *pSel; /* SELECT statement to encode */ 3100 SelectDest dest; /* How to deal with SELECT result */ 3101 int nReg; /* Registers to allocate */ 3102 Expr *pLimit; /* New limit expression */ 3103 3104 Vdbe *v = pParse->pVdbe; 3105 assert( v!=0 ); 3106 testcase( pExpr->op==TK_EXISTS ); 3107 testcase( pExpr->op==TK_SELECT ); 3108 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3109 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 3110 pSel = pExpr->x.pSelect; 3111 3112 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3113 ** is encountered if any of the following is true: 3114 ** 3115 ** * The right-hand side is a correlated subquery 3116 ** * The right-hand side is an expression list containing variables 3117 ** * We are inside a trigger 3118 ** 3119 ** If all of the above are false, then we can run this code just once 3120 ** save the results, and reuse the same result on subsequent invocations. 3121 */ 3122 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3123 /* If this routine has already been coded, then invoke it as a 3124 ** subroutine. */ 3125 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3126 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3127 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3128 pExpr->y.sub.iAddr); 3129 return pExpr->iTable; 3130 } 3131 3132 /* Begin coding the subroutine */ 3133 ExprSetProperty(pExpr, EP_Subrtn); 3134 pExpr->y.sub.regReturn = ++pParse->nMem; 3135 pExpr->y.sub.iAddr = 3136 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3137 VdbeComment((v, "return address")); 3138 3139 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3140 } 3141 3142 /* For a SELECT, generate code to put the values for all columns of 3143 ** the first row into an array of registers and return the index of 3144 ** the first register. 3145 ** 3146 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3147 ** into a register and return that register number. 3148 ** 3149 ** In both cases, the query is augmented with "LIMIT 1". Any 3150 ** preexisting limit is discarded in place of the new LIMIT 1. 3151 */ 3152 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3153 addrOnce?"":"CORRELATED ", pSel->selId)); 3154 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3155 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3156 pParse->nMem += nReg; 3157 if( pExpr->op==TK_SELECT ){ 3158 dest.eDest = SRT_Mem; 3159 dest.iSdst = dest.iSDParm; 3160 dest.nSdst = nReg; 3161 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3162 VdbeComment((v, "Init subquery result")); 3163 }else{ 3164 dest.eDest = SRT_Exists; 3165 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3166 VdbeComment((v, "Init EXISTS result")); 3167 } 3168 if( pSel->pLimit ){ 3169 /* The subquery already has a limit. If the pre-existing limit is X 3170 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3171 sqlite3 *db = pParse->db; 3172 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3173 if( pLimit ){ 3174 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3175 pLimit = sqlite3PExpr(pParse, TK_NE, 3176 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3177 } 3178 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3179 pSel->pLimit->pLeft = pLimit; 3180 }else{ 3181 /* If there is no pre-existing limit add a limit of 1 */ 3182 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3183 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3184 } 3185 pSel->iLimit = 0; 3186 if( sqlite3Select(pParse, pSel, &dest) ){ 3187 return 0; 3188 } 3189 pExpr->iTable = rReg = dest.iSDParm; 3190 ExprSetVVAProperty(pExpr, EP_NoReduce); 3191 if( addrOnce ){ 3192 sqlite3VdbeJumpHere(v, addrOnce); 3193 3194 /* Subroutine return */ 3195 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3196 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3197 sqlite3ClearTempRegCache(pParse); 3198 } 3199 3200 return rReg; 3201 } 3202 #endif /* SQLITE_OMIT_SUBQUERY */ 3203 3204 #ifndef SQLITE_OMIT_SUBQUERY 3205 /* 3206 ** Expr pIn is an IN(...) expression. This function checks that the 3207 ** sub-select on the RHS of the IN() operator has the same number of 3208 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3209 ** a sub-query, that the LHS is a vector of size 1. 3210 */ 3211 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3212 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3213 if( (pIn->flags & EP_xIsSelect)!=0 && !pParse->db->mallocFailed ){ 3214 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3215 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3216 return 1; 3217 } 3218 }else if( nVector!=1 ){ 3219 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3220 return 1; 3221 } 3222 return 0; 3223 } 3224 #endif 3225 3226 #ifndef SQLITE_OMIT_SUBQUERY 3227 /* 3228 ** Generate code for an IN expression. 3229 ** 3230 ** x IN (SELECT ...) 3231 ** x IN (value, value, ...) 3232 ** 3233 ** The left-hand side (LHS) is a scalar or vector expression. The 3234 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3235 ** subquery. If the RHS is a subquery, the number of result columns must 3236 ** match the number of columns in the vector on the LHS. If the RHS is 3237 ** a list of values, the LHS must be a scalar. 3238 ** 3239 ** The IN operator is true if the LHS value is contained within the RHS. 3240 ** The result is false if the LHS is definitely not in the RHS. The 3241 ** result is NULL if the presence of the LHS in the RHS cannot be 3242 ** determined due to NULLs. 3243 ** 3244 ** This routine generates code that jumps to destIfFalse if the LHS is not 3245 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3246 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3247 ** within the RHS then fall through. 3248 ** 3249 ** See the separate in-operator.md documentation file in the canonical 3250 ** SQLite source tree for additional information. 3251 */ 3252 static void sqlite3ExprCodeIN( 3253 Parse *pParse, /* Parsing and code generating context */ 3254 Expr *pExpr, /* The IN expression */ 3255 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3256 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3257 ){ 3258 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3259 int eType; /* Type of the RHS */ 3260 int rLhs; /* Register(s) holding the LHS values */ 3261 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3262 Vdbe *v; /* Statement under construction */ 3263 int *aiMap = 0; /* Map from vector field to index column */ 3264 char *zAff = 0; /* Affinity string for comparisons */ 3265 int nVector; /* Size of vectors for this IN operator */ 3266 int iDummy; /* Dummy parameter to exprCodeVector() */ 3267 Expr *pLeft; /* The LHS of the IN operator */ 3268 int i; /* loop counter */ 3269 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3270 int destStep6 = 0; /* Start of code for Step 6 */ 3271 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3272 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3273 int addrTop; /* Top of the step-6 loop */ 3274 int iTab = 0; /* Index to use */ 3275 u8 okConstFactor = pParse->okConstFactor; 3276 3277 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3278 pLeft = pExpr->pLeft; 3279 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3280 zAff = exprINAffinity(pParse, pExpr); 3281 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3282 aiMap = (int*)sqlite3DbMallocZero( 3283 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3284 ); 3285 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3286 3287 /* Attempt to compute the RHS. After this step, if anything other than 3288 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3289 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3290 ** the RHS has not yet been coded. */ 3291 v = pParse->pVdbe; 3292 assert( v!=0 ); /* OOM detected prior to this routine */ 3293 VdbeNoopComment((v, "begin IN expr")); 3294 eType = sqlite3FindInIndex(pParse, pExpr, 3295 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3296 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3297 aiMap, &iTab); 3298 3299 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3300 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3301 ); 3302 #ifdef SQLITE_DEBUG 3303 /* Confirm that aiMap[] contains nVector integer values between 0 and 3304 ** nVector-1. */ 3305 for(i=0; i<nVector; i++){ 3306 int j, cnt; 3307 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3308 assert( cnt==1 ); 3309 } 3310 #endif 3311 3312 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3313 ** vector, then it is stored in an array of nVector registers starting 3314 ** at r1. 3315 ** 3316 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3317 ** so that the fields are in the same order as an existing index. The 3318 ** aiMap[] array contains a mapping from the original LHS field order to 3319 ** the field order that matches the RHS index. 3320 ** 3321 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3322 ** even if it is constant, as OP_Affinity may be used on the register 3323 ** by code generated below. */ 3324 assert( pParse->okConstFactor==okConstFactor ); 3325 pParse->okConstFactor = 0; 3326 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3327 pParse->okConstFactor = okConstFactor; 3328 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3329 if( i==nVector ){ 3330 /* LHS fields are not reordered */ 3331 rLhs = rLhsOrig; 3332 }else{ 3333 /* Need to reorder the LHS fields according to aiMap */ 3334 rLhs = sqlite3GetTempRange(pParse, nVector); 3335 for(i=0; i<nVector; i++){ 3336 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3337 } 3338 } 3339 3340 /* If sqlite3FindInIndex() did not find or create an index that is 3341 ** suitable for evaluating the IN operator, then evaluate using a 3342 ** sequence of comparisons. 3343 ** 3344 ** This is step (1) in the in-operator.md optimized algorithm. 3345 */ 3346 if( eType==IN_INDEX_NOOP ){ 3347 ExprList *pList = pExpr->x.pList; 3348 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3349 int labelOk = sqlite3VdbeMakeLabel(pParse); 3350 int r2, regToFree; 3351 int regCkNull = 0; 3352 int ii; 3353 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3354 if( destIfNull!=destIfFalse ){ 3355 regCkNull = sqlite3GetTempReg(pParse); 3356 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3357 } 3358 for(ii=0; ii<pList->nExpr; ii++){ 3359 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3360 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3361 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3362 } 3363 sqlite3ReleaseTempReg(pParse, regToFree); 3364 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3365 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3366 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3367 (void*)pColl, P4_COLLSEQ); 3368 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3369 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3370 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3371 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3372 sqlite3VdbeChangeP5(v, zAff[0]); 3373 }else{ 3374 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3375 assert( destIfNull==destIfFalse ); 3376 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3377 (void*)pColl, P4_COLLSEQ); 3378 VdbeCoverageIf(v, op==OP_Ne); 3379 VdbeCoverageIf(v, op==OP_IsNull); 3380 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3381 } 3382 } 3383 if( regCkNull ){ 3384 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3385 sqlite3VdbeGoto(v, destIfFalse); 3386 } 3387 sqlite3VdbeResolveLabel(v, labelOk); 3388 sqlite3ReleaseTempReg(pParse, regCkNull); 3389 goto sqlite3ExprCodeIN_finished; 3390 } 3391 3392 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3393 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3394 ** We will then skip the binary search of the RHS. 3395 */ 3396 if( destIfNull==destIfFalse ){ 3397 destStep2 = destIfFalse; 3398 }else{ 3399 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3400 } 3401 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3402 for(i=0; i<nVector; i++){ 3403 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3404 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3405 if( sqlite3ExprCanBeNull(p) ){ 3406 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3407 VdbeCoverage(v); 3408 } 3409 } 3410 3411 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3412 ** of the RHS using the LHS as a probe. If found, the result is 3413 ** true. 3414 */ 3415 if( eType==IN_INDEX_ROWID ){ 3416 /* In this case, the RHS is the ROWID of table b-tree and so we also 3417 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3418 ** into a single opcode. */ 3419 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3420 VdbeCoverage(v); 3421 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3422 }else{ 3423 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3424 if( destIfFalse==destIfNull ){ 3425 /* Combine Step 3 and Step 5 into a single opcode */ 3426 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3427 rLhs, nVector); VdbeCoverage(v); 3428 goto sqlite3ExprCodeIN_finished; 3429 } 3430 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3431 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3432 rLhs, nVector); VdbeCoverage(v); 3433 } 3434 3435 /* Step 4. If the RHS is known to be non-NULL and we did not find 3436 ** an match on the search above, then the result must be FALSE. 3437 */ 3438 if( rRhsHasNull && nVector==1 ){ 3439 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3440 VdbeCoverage(v); 3441 } 3442 3443 /* Step 5. If we do not care about the difference between NULL and 3444 ** FALSE, then just return false. 3445 */ 3446 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3447 3448 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3449 ** If any comparison is NULL, then the result is NULL. If all 3450 ** comparisons are FALSE then the final result is FALSE. 3451 ** 3452 ** For a scalar LHS, it is sufficient to check just the first row 3453 ** of the RHS. 3454 */ 3455 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3456 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3457 VdbeCoverage(v); 3458 if( nVector>1 ){ 3459 destNotNull = sqlite3VdbeMakeLabel(pParse); 3460 }else{ 3461 /* For nVector==1, combine steps 6 and 7 by immediately returning 3462 ** FALSE if the first comparison is not NULL */ 3463 destNotNull = destIfFalse; 3464 } 3465 for(i=0; i<nVector; i++){ 3466 Expr *p; 3467 CollSeq *pColl; 3468 int r3 = sqlite3GetTempReg(pParse); 3469 p = sqlite3VectorFieldSubexpr(pLeft, i); 3470 pColl = sqlite3ExprCollSeq(pParse, p); 3471 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3472 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3473 (void*)pColl, P4_COLLSEQ); 3474 VdbeCoverage(v); 3475 sqlite3ReleaseTempReg(pParse, r3); 3476 } 3477 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3478 if( nVector>1 ){ 3479 sqlite3VdbeResolveLabel(v, destNotNull); 3480 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3481 VdbeCoverage(v); 3482 3483 /* Step 7: If we reach this point, we know that the result must 3484 ** be false. */ 3485 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3486 } 3487 3488 /* Jumps here in order to return true. */ 3489 sqlite3VdbeJumpHere(v, addrTruthOp); 3490 3491 sqlite3ExprCodeIN_finished: 3492 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3493 VdbeComment((v, "end IN expr")); 3494 sqlite3ExprCodeIN_oom_error: 3495 sqlite3DbFree(pParse->db, aiMap); 3496 sqlite3DbFree(pParse->db, zAff); 3497 } 3498 #endif /* SQLITE_OMIT_SUBQUERY */ 3499 3500 #ifndef SQLITE_OMIT_FLOATING_POINT 3501 /* 3502 ** Generate an instruction that will put the floating point 3503 ** value described by z[0..n-1] into register iMem. 3504 ** 3505 ** The z[] string will probably not be zero-terminated. But the 3506 ** z[n] character is guaranteed to be something that does not look 3507 ** like the continuation of the number. 3508 */ 3509 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3510 if( ALWAYS(z!=0) ){ 3511 double value; 3512 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3513 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3514 if( negateFlag ) value = -value; 3515 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3516 } 3517 } 3518 #endif 3519 3520 3521 /* 3522 ** Generate an instruction that will put the integer describe by 3523 ** text z[0..n-1] into register iMem. 3524 ** 3525 ** Expr.u.zToken is always UTF8 and zero-terminated. 3526 */ 3527 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3528 Vdbe *v = pParse->pVdbe; 3529 if( pExpr->flags & EP_IntValue ){ 3530 int i = pExpr->u.iValue; 3531 assert( i>=0 ); 3532 if( negFlag ) i = -i; 3533 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3534 }else{ 3535 int c; 3536 i64 value; 3537 const char *z = pExpr->u.zToken; 3538 assert( z!=0 ); 3539 c = sqlite3DecOrHexToI64(z, &value); 3540 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3541 #ifdef SQLITE_OMIT_FLOATING_POINT 3542 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3543 #else 3544 #ifndef SQLITE_OMIT_HEX_INTEGER 3545 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3546 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3547 }else 3548 #endif 3549 { 3550 codeReal(v, z, negFlag, iMem); 3551 } 3552 #endif 3553 }else{ 3554 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3555 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3556 } 3557 } 3558 } 3559 3560 3561 /* Generate code that will load into register regOut a value that is 3562 ** appropriate for the iIdxCol-th column of index pIdx. 3563 */ 3564 void sqlite3ExprCodeLoadIndexColumn( 3565 Parse *pParse, /* The parsing context */ 3566 Index *pIdx, /* The index whose column is to be loaded */ 3567 int iTabCur, /* Cursor pointing to a table row */ 3568 int iIdxCol, /* The column of the index to be loaded */ 3569 int regOut /* Store the index column value in this register */ 3570 ){ 3571 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3572 if( iTabCol==XN_EXPR ){ 3573 assert( pIdx->aColExpr ); 3574 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3575 pParse->iSelfTab = iTabCur + 1; 3576 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3577 pParse->iSelfTab = 0; 3578 }else{ 3579 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3580 iTabCol, regOut); 3581 } 3582 } 3583 3584 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3585 /* 3586 ** Generate code that will compute the value of generated column pCol 3587 ** and store the result in register regOut 3588 */ 3589 void sqlite3ExprCodeGeneratedColumn( 3590 Parse *pParse, 3591 Column *pCol, 3592 int regOut 3593 ){ 3594 int iAddr; 3595 Vdbe *v = pParse->pVdbe; 3596 assert( v!=0 ); 3597 assert( pParse->iSelfTab!=0 ); 3598 if( pParse->iSelfTab>0 ){ 3599 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3600 }else{ 3601 iAddr = 0; 3602 } 3603 sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut); 3604 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3605 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3606 } 3607 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3608 } 3609 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3610 3611 /* 3612 ** Generate code to extract the value of the iCol-th column of a table. 3613 */ 3614 void sqlite3ExprCodeGetColumnOfTable( 3615 Vdbe *v, /* Parsing context */ 3616 Table *pTab, /* The table containing the value */ 3617 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3618 int iCol, /* Index of the column to extract */ 3619 int regOut /* Extract the value into this register */ 3620 ){ 3621 Column *pCol; 3622 assert( v!=0 ); 3623 if( pTab==0 ){ 3624 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3625 return; 3626 } 3627 if( iCol<0 || iCol==pTab->iPKey ){ 3628 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3629 }else{ 3630 int op; 3631 int x; 3632 if( IsVirtual(pTab) ){ 3633 op = OP_VColumn; 3634 x = iCol; 3635 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3636 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3637 Parse *pParse = sqlite3VdbeParser(v); 3638 if( pCol->colFlags & COLFLAG_BUSY ){ 3639 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName); 3640 }else{ 3641 int savedSelfTab = pParse->iSelfTab; 3642 pCol->colFlags |= COLFLAG_BUSY; 3643 pParse->iSelfTab = iTabCur+1; 3644 sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut); 3645 pParse->iSelfTab = savedSelfTab; 3646 pCol->colFlags &= ~COLFLAG_BUSY; 3647 } 3648 return; 3649 #endif 3650 }else if( !HasRowid(pTab) ){ 3651 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3652 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3653 op = OP_Column; 3654 }else{ 3655 x = sqlite3TableColumnToStorage(pTab,iCol); 3656 testcase( x!=iCol ); 3657 op = OP_Column; 3658 } 3659 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3660 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3661 } 3662 } 3663 3664 /* 3665 ** Generate code that will extract the iColumn-th column from 3666 ** table pTab and store the column value in register iReg. 3667 ** 3668 ** There must be an open cursor to pTab in iTable when this routine 3669 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3670 */ 3671 int sqlite3ExprCodeGetColumn( 3672 Parse *pParse, /* Parsing and code generating context */ 3673 Table *pTab, /* Description of the table we are reading from */ 3674 int iColumn, /* Index of the table column */ 3675 int iTable, /* The cursor pointing to the table */ 3676 int iReg, /* Store results here */ 3677 u8 p5 /* P5 value for OP_Column + FLAGS */ 3678 ){ 3679 assert( pParse->pVdbe!=0 ); 3680 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3681 if( p5 ){ 3682 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3683 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3684 } 3685 return iReg; 3686 } 3687 3688 /* 3689 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3690 ** over to iTo..iTo+nReg-1. 3691 */ 3692 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3693 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3694 } 3695 3696 /* 3697 ** Convert a scalar expression node to a TK_REGISTER referencing 3698 ** register iReg. The caller must ensure that iReg already contains 3699 ** the correct value for the expression. 3700 */ 3701 static void exprToRegister(Expr *pExpr, int iReg){ 3702 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3703 if( NEVER(p==0) ) return; 3704 p->op2 = p->op; 3705 p->op = TK_REGISTER; 3706 p->iTable = iReg; 3707 ExprClearProperty(p, EP_Skip); 3708 } 3709 3710 /* 3711 ** Evaluate an expression (either a vector or a scalar expression) and store 3712 ** the result in continguous temporary registers. Return the index of 3713 ** the first register used to store the result. 3714 ** 3715 ** If the returned result register is a temporary scalar, then also write 3716 ** that register number into *piFreeable. If the returned result register 3717 ** is not a temporary or if the expression is a vector set *piFreeable 3718 ** to 0. 3719 */ 3720 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3721 int iResult; 3722 int nResult = sqlite3ExprVectorSize(p); 3723 if( nResult==1 ){ 3724 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3725 }else{ 3726 *piFreeable = 0; 3727 if( p->op==TK_SELECT ){ 3728 #if SQLITE_OMIT_SUBQUERY 3729 iResult = 0; 3730 #else 3731 iResult = sqlite3CodeSubselect(pParse, p); 3732 #endif 3733 }else{ 3734 int i; 3735 iResult = pParse->nMem+1; 3736 pParse->nMem += nResult; 3737 for(i=0; i<nResult; i++){ 3738 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3739 } 3740 } 3741 } 3742 return iResult; 3743 } 3744 3745 /* 3746 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3747 ** so that a subsequent copy will not be merged into this one. 3748 */ 3749 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3750 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3751 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3752 } 3753 } 3754 3755 /* 3756 ** Generate code to implement special SQL functions that are implemented 3757 ** in-line rather than by using the usual callbacks. 3758 */ 3759 static int exprCodeInlineFunction( 3760 Parse *pParse, /* Parsing context */ 3761 ExprList *pFarg, /* List of function arguments */ 3762 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3763 int target /* Store function result in this register */ 3764 ){ 3765 int nFarg; 3766 Vdbe *v = pParse->pVdbe; 3767 assert( v!=0 ); 3768 assert( pFarg!=0 ); 3769 nFarg = pFarg->nExpr; 3770 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3771 switch( iFuncId ){ 3772 case INLINEFUNC_coalesce: { 3773 /* Attempt a direct implementation of the built-in COALESCE() and 3774 ** IFNULL() functions. This avoids unnecessary evaluation of 3775 ** arguments past the first non-NULL argument. 3776 */ 3777 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3778 int i; 3779 assert( nFarg>=2 ); 3780 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3781 for(i=1; i<nFarg; i++){ 3782 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3783 VdbeCoverage(v); 3784 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3785 } 3786 setDoNotMergeFlagOnCopy(v); 3787 sqlite3VdbeResolveLabel(v, endCoalesce); 3788 break; 3789 } 3790 case INLINEFUNC_iif: { 3791 Expr caseExpr; 3792 memset(&caseExpr, 0, sizeof(caseExpr)); 3793 caseExpr.op = TK_CASE; 3794 caseExpr.x.pList = pFarg; 3795 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3796 } 3797 3798 default: { 3799 /* The UNLIKELY() function is a no-op. The result is the value 3800 ** of the first argument. 3801 */ 3802 assert( nFarg==1 || nFarg==2 ); 3803 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3804 break; 3805 } 3806 3807 /*********************************************************************** 3808 ** Test-only SQL functions that are only usable if enabled 3809 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3810 */ 3811 case INLINEFUNC_expr_compare: { 3812 /* Compare two expressions using sqlite3ExprCompare() */ 3813 assert( nFarg==2 ); 3814 sqlite3VdbeAddOp2(v, OP_Integer, 3815 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3816 target); 3817 break; 3818 } 3819 3820 case INLINEFUNC_expr_implies_expr: { 3821 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3822 assert( nFarg==2 ); 3823 sqlite3VdbeAddOp2(v, OP_Integer, 3824 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3825 target); 3826 break; 3827 } 3828 3829 case INLINEFUNC_implies_nonnull_row: { 3830 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3831 Expr *pA1; 3832 assert( nFarg==2 ); 3833 pA1 = pFarg->a[1].pExpr; 3834 if( pA1->op==TK_COLUMN ){ 3835 sqlite3VdbeAddOp2(v, OP_Integer, 3836 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3837 target); 3838 }else{ 3839 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3840 } 3841 break; 3842 } 3843 3844 #ifdef SQLITE_DEBUG 3845 case INLINEFUNC_affinity: { 3846 /* The AFFINITY() function evaluates to a string that describes 3847 ** the type affinity of the argument. This is used for testing of 3848 ** the SQLite type logic. 3849 */ 3850 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3851 char aff; 3852 assert( nFarg==1 ); 3853 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3854 sqlite3VdbeLoadString(v, target, 3855 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3856 break; 3857 } 3858 #endif 3859 } 3860 return target; 3861 } 3862 3863 3864 /* 3865 ** Generate code into the current Vdbe to evaluate the given 3866 ** expression. Attempt to store the results in register "target". 3867 ** Return the register where results are stored. 3868 ** 3869 ** With this routine, there is no guarantee that results will 3870 ** be stored in target. The result might be stored in some other 3871 ** register if it is convenient to do so. The calling function 3872 ** must check the return code and move the results to the desired 3873 ** register. 3874 */ 3875 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3876 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3877 int op; /* The opcode being coded */ 3878 int inReg = target; /* Results stored in register inReg */ 3879 int regFree1 = 0; /* If non-zero free this temporary register */ 3880 int regFree2 = 0; /* If non-zero free this temporary register */ 3881 int r1, r2; /* Various register numbers */ 3882 Expr tempX; /* Temporary expression node */ 3883 int p5 = 0; 3884 3885 assert( target>0 && target<=pParse->nMem ); 3886 assert( v!=0 ); 3887 3888 expr_code_doover: 3889 if( pExpr==0 ){ 3890 op = TK_NULL; 3891 }else{ 3892 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3893 op = pExpr->op; 3894 } 3895 switch( op ){ 3896 case TK_AGG_COLUMN: { 3897 AggInfo *pAggInfo = pExpr->pAggInfo; 3898 struct AggInfo_col *pCol; 3899 assert( pAggInfo!=0 ); 3900 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 3901 pCol = &pAggInfo->aCol[pExpr->iAgg]; 3902 if( !pAggInfo->directMode ){ 3903 assert( pCol->iMem>0 ); 3904 return pCol->iMem; 3905 }else if( pAggInfo->useSortingIdx ){ 3906 Table *pTab = pCol->pTab; 3907 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3908 pCol->iSorterColumn, target); 3909 if( pCol->iColumn<0 ){ 3910 VdbeComment((v,"%s.rowid",pTab->zName)); 3911 }else{ 3912 VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName)); 3913 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 3914 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3915 } 3916 } 3917 return target; 3918 } 3919 /* Otherwise, fall thru into the TK_COLUMN case */ 3920 /* no break */ deliberate_fall_through 3921 } 3922 case TK_COLUMN: { 3923 int iTab = pExpr->iTable; 3924 int iReg; 3925 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3926 /* This COLUMN expression is really a constant due to WHERE clause 3927 ** constraints, and that constant is coded by the pExpr->pLeft 3928 ** expresssion. However, make sure the constant has the correct 3929 ** datatype by applying the Affinity of the table column to the 3930 ** constant. 3931 */ 3932 int aff; 3933 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3934 if( pExpr->y.pTab ){ 3935 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3936 }else{ 3937 aff = pExpr->affExpr; 3938 } 3939 if( aff>SQLITE_AFF_BLOB ){ 3940 static const char zAff[] = "B\000C\000D\000E"; 3941 assert( SQLITE_AFF_BLOB=='A' ); 3942 assert( SQLITE_AFF_TEXT=='B' ); 3943 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3944 &zAff[(aff-'B')*2], P4_STATIC); 3945 } 3946 return iReg; 3947 } 3948 if( iTab<0 ){ 3949 if( pParse->iSelfTab<0 ){ 3950 /* Other columns in the same row for CHECK constraints or 3951 ** generated columns or for inserting into partial index. 3952 ** The row is unpacked into registers beginning at 3953 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 3954 ** immediately prior to the first column. 3955 */ 3956 Column *pCol; 3957 Table *pTab = pExpr->y.pTab; 3958 int iSrc; 3959 int iCol = pExpr->iColumn; 3960 assert( pTab!=0 ); 3961 assert( iCol>=XN_ROWID ); 3962 assert( iCol<pTab->nCol ); 3963 if( iCol<0 ){ 3964 return -1-pParse->iSelfTab; 3965 } 3966 pCol = pTab->aCol + iCol; 3967 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 3968 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 3969 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3970 if( pCol->colFlags & COLFLAG_GENERATED ){ 3971 if( pCol->colFlags & COLFLAG_BUSY ){ 3972 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3973 pCol->zName); 3974 return 0; 3975 } 3976 pCol->colFlags |= COLFLAG_BUSY; 3977 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 3978 sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc); 3979 } 3980 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 3981 return iSrc; 3982 }else 3983 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3984 if( pCol->affinity==SQLITE_AFF_REAL ){ 3985 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 3986 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3987 return target; 3988 }else{ 3989 return iSrc; 3990 } 3991 }else{ 3992 /* Coding an expression that is part of an index where column names 3993 ** in the index refer to the table to which the index belongs */ 3994 iTab = pParse->iSelfTab - 1; 3995 } 3996 } 3997 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3998 pExpr->iColumn, iTab, target, 3999 pExpr->op2); 4000 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 4001 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 4002 } 4003 return iReg; 4004 } 4005 case TK_INTEGER: { 4006 codeInteger(pParse, pExpr, 0, target); 4007 return target; 4008 } 4009 case TK_TRUEFALSE: { 4010 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 4011 return target; 4012 } 4013 #ifndef SQLITE_OMIT_FLOATING_POINT 4014 case TK_FLOAT: { 4015 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4016 codeReal(v, pExpr->u.zToken, 0, target); 4017 return target; 4018 } 4019 #endif 4020 case TK_STRING: { 4021 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4022 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 4023 return target; 4024 } 4025 default: { 4026 /* Make NULL the default case so that if a bug causes an illegal 4027 ** Expr node to be passed into this function, it will be handled 4028 ** sanely and not crash. But keep the assert() to bring the problem 4029 ** to the attention of the developers. */ 4030 assert( op==TK_NULL || pParse->db->mallocFailed ); 4031 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4032 return target; 4033 } 4034 #ifndef SQLITE_OMIT_BLOB_LITERAL 4035 case TK_BLOB: { 4036 int n; 4037 const char *z; 4038 char *zBlob; 4039 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4040 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 4041 assert( pExpr->u.zToken[1]=='\'' ); 4042 z = &pExpr->u.zToken[2]; 4043 n = sqlite3Strlen30(z) - 1; 4044 assert( z[n]=='\'' ); 4045 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 4046 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 4047 return target; 4048 } 4049 #endif 4050 case TK_VARIABLE: { 4051 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4052 assert( pExpr->u.zToken!=0 ); 4053 assert( pExpr->u.zToken[0]!=0 ); 4054 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 4055 if( pExpr->u.zToken[1]!=0 ){ 4056 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 4057 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 4058 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 4059 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 4060 } 4061 return target; 4062 } 4063 case TK_REGISTER: { 4064 return pExpr->iTable; 4065 } 4066 #ifndef SQLITE_OMIT_CAST 4067 case TK_CAST: { 4068 /* Expressions of the form: CAST(pLeft AS token) */ 4069 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4070 if( inReg!=target ){ 4071 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4072 inReg = target; 4073 } 4074 sqlite3VdbeAddOp2(v, OP_Cast, target, 4075 sqlite3AffinityType(pExpr->u.zToken, 0)); 4076 return inReg; 4077 } 4078 #endif /* SQLITE_OMIT_CAST */ 4079 case TK_IS: 4080 case TK_ISNOT: 4081 op = (op==TK_IS) ? TK_EQ : TK_NE; 4082 p5 = SQLITE_NULLEQ; 4083 /* fall-through */ 4084 case TK_LT: 4085 case TK_LE: 4086 case TK_GT: 4087 case TK_GE: 4088 case TK_NE: 4089 case TK_EQ: { 4090 Expr *pLeft = pExpr->pLeft; 4091 if( sqlite3ExprIsVector(pLeft) ){ 4092 codeVectorCompare(pParse, pExpr, target, op, p5); 4093 }else{ 4094 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4095 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4096 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 4097 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 4098 sqlite3VdbeCurrentAddr(v)+2, p5, 4099 ExprHasProperty(pExpr,EP_Commuted)); 4100 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4101 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4102 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4103 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4104 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4105 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4106 if( p5==SQLITE_NULLEQ ){ 4107 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 4108 }else{ 4109 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 4110 } 4111 testcase( regFree1==0 ); 4112 testcase( regFree2==0 ); 4113 } 4114 break; 4115 } 4116 case TK_AND: 4117 case TK_OR: 4118 case TK_PLUS: 4119 case TK_STAR: 4120 case TK_MINUS: 4121 case TK_REM: 4122 case TK_BITAND: 4123 case TK_BITOR: 4124 case TK_SLASH: 4125 case TK_LSHIFT: 4126 case TK_RSHIFT: 4127 case TK_CONCAT: { 4128 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4129 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4130 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4131 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4132 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4133 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4134 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4135 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4136 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4137 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4138 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4139 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4140 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4141 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4142 testcase( regFree1==0 ); 4143 testcase( regFree2==0 ); 4144 break; 4145 } 4146 case TK_UMINUS: { 4147 Expr *pLeft = pExpr->pLeft; 4148 assert( pLeft ); 4149 if( pLeft->op==TK_INTEGER ){ 4150 codeInteger(pParse, pLeft, 1, target); 4151 return target; 4152 #ifndef SQLITE_OMIT_FLOATING_POINT 4153 }else if( pLeft->op==TK_FLOAT ){ 4154 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4155 codeReal(v, pLeft->u.zToken, 1, target); 4156 return target; 4157 #endif 4158 }else{ 4159 tempX.op = TK_INTEGER; 4160 tempX.flags = EP_IntValue|EP_TokenOnly; 4161 tempX.u.iValue = 0; 4162 ExprClearVVAProperties(&tempX); 4163 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4164 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4165 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4166 testcase( regFree2==0 ); 4167 } 4168 break; 4169 } 4170 case TK_BITNOT: 4171 case TK_NOT: { 4172 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4173 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4174 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4175 testcase( regFree1==0 ); 4176 sqlite3VdbeAddOp2(v, op, r1, inReg); 4177 break; 4178 } 4179 case TK_TRUTH: { 4180 int isTrue; /* IS TRUE or IS NOT TRUE */ 4181 int bNormal; /* IS TRUE or IS FALSE */ 4182 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4183 testcase( regFree1==0 ); 4184 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4185 bNormal = pExpr->op2==TK_IS; 4186 testcase( isTrue && bNormal); 4187 testcase( !isTrue && bNormal); 4188 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4189 break; 4190 } 4191 case TK_ISNULL: 4192 case TK_NOTNULL: { 4193 int addr; 4194 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4195 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4196 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4197 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4198 testcase( regFree1==0 ); 4199 addr = sqlite3VdbeAddOp1(v, op, r1); 4200 VdbeCoverageIf(v, op==TK_ISNULL); 4201 VdbeCoverageIf(v, op==TK_NOTNULL); 4202 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4203 sqlite3VdbeJumpHere(v, addr); 4204 break; 4205 } 4206 case TK_AGG_FUNCTION: { 4207 AggInfo *pInfo = pExpr->pAggInfo; 4208 if( pInfo==0 4209 || NEVER(pExpr->iAgg<0) 4210 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4211 ){ 4212 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4213 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 4214 }else{ 4215 return pInfo->aFunc[pExpr->iAgg].iMem; 4216 } 4217 break; 4218 } 4219 case TK_FUNCTION: { 4220 ExprList *pFarg; /* List of function arguments */ 4221 int nFarg; /* Number of function arguments */ 4222 FuncDef *pDef; /* The function definition object */ 4223 const char *zId; /* The function name */ 4224 u32 constMask = 0; /* Mask of function arguments that are constant */ 4225 int i; /* Loop counter */ 4226 sqlite3 *db = pParse->db; /* The database connection */ 4227 u8 enc = ENC(db); /* The text encoding used by this database */ 4228 CollSeq *pColl = 0; /* A collating sequence */ 4229 4230 #ifndef SQLITE_OMIT_WINDOWFUNC 4231 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4232 return pExpr->y.pWin->regResult; 4233 } 4234 #endif 4235 4236 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4237 /* SQL functions can be expensive. So try to avoid running them 4238 ** multiple times if we know they always give the same result */ 4239 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4240 } 4241 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4242 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4243 pFarg = pExpr->x.pList; 4244 nFarg = pFarg ? pFarg->nExpr : 0; 4245 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4246 zId = pExpr->u.zToken; 4247 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4248 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4249 if( pDef==0 && pParse->explain ){ 4250 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4251 } 4252 #endif 4253 if( pDef==0 || pDef->xFinalize!=0 ){ 4254 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 4255 break; 4256 } 4257 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4258 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4259 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4260 return exprCodeInlineFunction(pParse, pFarg, 4261 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4262 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4263 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4264 } 4265 4266 for(i=0; i<nFarg; i++){ 4267 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4268 testcase( i==31 ); 4269 constMask |= MASKBIT32(i); 4270 } 4271 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4272 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4273 } 4274 } 4275 if( pFarg ){ 4276 if( constMask ){ 4277 r1 = pParse->nMem+1; 4278 pParse->nMem += nFarg; 4279 }else{ 4280 r1 = sqlite3GetTempRange(pParse, nFarg); 4281 } 4282 4283 /* For length() and typeof() functions with a column argument, 4284 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4285 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4286 ** loading. 4287 */ 4288 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4289 u8 exprOp; 4290 assert( nFarg==1 ); 4291 assert( pFarg->a[0].pExpr!=0 ); 4292 exprOp = pFarg->a[0].pExpr->op; 4293 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4294 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4295 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4296 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4297 pFarg->a[0].pExpr->op2 = 4298 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4299 } 4300 } 4301 4302 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4303 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4304 }else{ 4305 r1 = 0; 4306 } 4307 #ifndef SQLITE_OMIT_VIRTUALTABLE 4308 /* Possibly overload the function if the first argument is 4309 ** a virtual table column. 4310 ** 4311 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4312 ** second argument, not the first, as the argument to test to 4313 ** see if it is a column in a virtual table. This is done because 4314 ** the left operand of infix functions (the operand we want to 4315 ** control overloading) ends up as the second argument to the 4316 ** function. The expression "A glob B" is equivalent to 4317 ** "glob(B,A). We want to use the A in "A glob B" to test 4318 ** for function overloading. But we use the B term in "glob(B,A)". 4319 */ 4320 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4321 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4322 }else if( nFarg>0 ){ 4323 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4324 } 4325 #endif 4326 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4327 if( !pColl ) pColl = db->pDfltColl; 4328 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4329 } 4330 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4331 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4332 Expr *pArg = pFarg->a[0].pExpr; 4333 if( pArg->op==TK_COLUMN ){ 4334 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4335 }else{ 4336 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4337 } 4338 }else 4339 #endif 4340 { 4341 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4342 pDef, pExpr->op2); 4343 } 4344 if( nFarg ){ 4345 if( constMask==0 ){ 4346 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4347 }else{ 4348 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4349 } 4350 } 4351 return target; 4352 } 4353 #ifndef SQLITE_OMIT_SUBQUERY 4354 case TK_EXISTS: 4355 case TK_SELECT: { 4356 int nCol; 4357 testcase( op==TK_EXISTS ); 4358 testcase( op==TK_SELECT ); 4359 if( pParse->db->mallocFailed ){ 4360 return 0; 4361 }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4362 sqlite3SubselectError(pParse, nCol, 1); 4363 }else{ 4364 return sqlite3CodeSubselect(pParse, pExpr); 4365 } 4366 break; 4367 } 4368 case TK_SELECT_COLUMN: { 4369 int n; 4370 if( pExpr->pLeft->iTable==0 ){ 4371 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4372 } 4373 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 4374 if( pExpr->iTable!=0 4375 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 4376 ){ 4377 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4378 pExpr->iTable, n); 4379 } 4380 return pExpr->pLeft->iTable + pExpr->iColumn; 4381 } 4382 case TK_IN: { 4383 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4384 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4385 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4386 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4387 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4388 sqlite3VdbeResolveLabel(v, destIfFalse); 4389 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4390 sqlite3VdbeResolveLabel(v, destIfNull); 4391 return target; 4392 } 4393 #endif /* SQLITE_OMIT_SUBQUERY */ 4394 4395 4396 /* 4397 ** x BETWEEN y AND z 4398 ** 4399 ** This is equivalent to 4400 ** 4401 ** x>=y AND x<=z 4402 ** 4403 ** X is stored in pExpr->pLeft. 4404 ** Y is stored in pExpr->pList->a[0].pExpr. 4405 ** Z is stored in pExpr->pList->a[1].pExpr. 4406 */ 4407 case TK_BETWEEN: { 4408 exprCodeBetween(pParse, pExpr, target, 0, 0); 4409 return target; 4410 } 4411 case TK_SPAN: 4412 case TK_COLLATE: 4413 case TK_UPLUS: { 4414 pExpr = pExpr->pLeft; 4415 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4416 } 4417 4418 case TK_TRIGGER: { 4419 /* If the opcode is TK_TRIGGER, then the expression is a reference 4420 ** to a column in the new.* or old.* pseudo-tables available to 4421 ** trigger programs. In this case Expr.iTable is set to 1 for the 4422 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4423 ** is set to the column of the pseudo-table to read, or to -1 to 4424 ** read the rowid field. 4425 ** 4426 ** The expression is implemented using an OP_Param opcode. The p1 4427 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4428 ** to reference another column of the old.* pseudo-table, where 4429 ** i is the index of the column. For a new.rowid reference, p1 is 4430 ** set to (n+1), where n is the number of columns in each pseudo-table. 4431 ** For a reference to any other column in the new.* pseudo-table, p1 4432 ** is set to (n+2+i), where n and i are as defined previously. For 4433 ** example, if the table on which triggers are being fired is 4434 ** declared as: 4435 ** 4436 ** CREATE TABLE t1(a, b); 4437 ** 4438 ** Then p1 is interpreted as follows: 4439 ** 4440 ** p1==0 -> old.rowid p1==3 -> new.rowid 4441 ** p1==1 -> old.a p1==4 -> new.a 4442 ** p1==2 -> old.b p1==5 -> new.b 4443 */ 4444 Table *pTab = pExpr->y.pTab; 4445 int iCol = pExpr->iColumn; 4446 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4447 + sqlite3TableColumnToStorage(pTab, iCol); 4448 4449 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4450 assert( iCol>=-1 && iCol<pTab->nCol ); 4451 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4452 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4453 4454 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4455 VdbeComment((v, "r[%d]=%s.%s", target, 4456 (pExpr->iTable ? "new" : "old"), 4457 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName) 4458 )); 4459 4460 #ifndef SQLITE_OMIT_FLOATING_POINT 4461 /* If the column has REAL affinity, it may currently be stored as an 4462 ** integer. Use OP_RealAffinity to make sure it is really real. 4463 ** 4464 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4465 ** floating point when extracting it from the record. */ 4466 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4467 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4468 } 4469 #endif 4470 break; 4471 } 4472 4473 case TK_VECTOR: { 4474 sqlite3ErrorMsg(pParse, "row value misused"); 4475 break; 4476 } 4477 4478 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4479 ** that derive from the right-hand table of a LEFT JOIN. The 4480 ** Expr.iTable value is the table number for the right-hand table. 4481 ** The expression is only evaluated if that table is not currently 4482 ** on a LEFT JOIN NULL row. 4483 */ 4484 case TK_IF_NULL_ROW: { 4485 int addrINR; 4486 u8 okConstFactor = pParse->okConstFactor; 4487 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4488 /* Temporarily disable factoring of constant expressions, since 4489 ** even though expressions may appear to be constant, they are not 4490 ** really constant because they originate from the right-hand side 4491 ** of a LEFT JOIN. */ 4492 pParse->okConstFactor = 0; 4493 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4494 pParse->okConstFactor = okConstFactor; 4495 sqlite3VdbeJumpHere(v, addrINR); 4496 sqlite3VdbeChangeP3(v, addrINR, inReg); 4497 break; 4498 } 4499 4500 /* 4501 ** Form A: 4502 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4503 ** 4504 ** Form B: 4505 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4506 ** 4507 ** Form A is can be transformed into the equivalent form B as follows: 4508 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4509 ** WHEN x=eN THEN rN ELSE y END 4510 ** 4511 ** X (if it exists) is in pExpr->pLeft. 4512 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4513 ** odd. The Y is also optional. If the number of elements in x.pList 4514 ** is even, then Y is omitted and the "otherwise" result is NULL. 4515 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4516 ** 4517 ** The result of the expression is the Ri for the first matching Ei, 4518 ** or if there is no matching Ei, the ELSE term Y, or if there is 4519 ** no ELSE term, NULL. 4520 */ 4521 case TK_CASE: { 4522 int endLabel; /* GOTO label for end of CASE stmt */ 4523 int nextCase; /* GOTO label for next WHEN clause */ 4524 int nExpr; /* 2x number of WHEN terms */ 4525 int i; /* Loop counter */ 4526 ExprList *pEList; /* List of WHEN terms */ 4527 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4528 Expr opCompare; /* The X==Ei expression */ 4529 Expr *pX; /* The X expression */ 4530 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4531 Expr *pDel = 0; 4532 sqlite3 *db = pParse->db; 4533 4534 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4535 assert(pExpr->x.pList->nExpr > 0); 4536 pEList = pExpr->x.pList; 4537 aListelem = pEList->a; 4538 nExpr = pEList->nExpr; 4539 endLabel = sqlite3VdbeMakeLabel(pParse); 4540 if( (pX = pExpr->pLeft)!=0 ){ 4541 pDel = sqlite3ExprDup(db, pX, 0); 4542 if( db->mallocFailed ){ 4543 sqlite3ExprDelete(db, pDel); 4544 break; 4545 } 4546 testcase( pX->op==TK_COLUMN ); 4547 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4548 testcase( regFree1==0 ); 4549 memset(&opCompare, 0, sizeof(opCompare)); 4550 opCompare.op = TK_EQ; 4551 opCompare.pLeft = pDel; 4552 pTest = &opCompare; 4553 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4554 ** The value in regFree1 might get SCopy-ed into the file result. 4555 ** So make sure that the regFree1 register is not reused for other 4556 ** purposes and possibly overwritten. */ 4557 regFree1 = 0; 4558 } 4559 for(i=0; i<nExpr-1; i=i+2){ 4560 if( pX ){ 4561 assert( pTest!=0 ); 4562 opCompare.pRight = aListelem[i].pExpr; 4563 }else{ 4564 pTest = aListelem[i].pExpr; 4565 } 4566 nextCase = sqlite3VdbeMakeLabel(pParse); 4567 testcase( pTest->op==TK_COLUMN ); 4568 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4569 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4570 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4571 sqlite3VdbeGoto(v, endLabel); 4572 sqlite3VdbeResolveLabel(v, nextCase); 4573 } 4574 if( (nExpr&1)!=0 ){ 4575 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4576 }else{ 4577 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4578 } 4579 sqlite3ExprDelete(db, pDel); 4580 setDoNotMergeFlagOnCopy(v); 4581 sqlite3VdbeResolveLabel(v, endLabel); 4582 break; 4583 } 4584 #ifndef SQLITE_OMIT_TRIGGER 4585 case TK_RAISE: { 4586 assert( pExpr->affExpr==OE_Rollback 4587 || pExpr->affExpr==OE_Abort 4588 || pExpr->affExpr==OE_Fail 4589 || pExpr->affExpr==OE_Ignore 4590 ); 4591 if( !pParse->pTriggerTab && !pParse->nested ){ 4592 sqlite3ErrorMsg(pParse, 4593 "RAISE() may only be used within a trigger-program"); 4594 return 0; 4595 } 4596 if( pExpr->affExpr==OE_Abort ){ 4597 sqlite3MayAbort(pParse); 4598 } 4599 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4600 if( pExpr->affExpr==OE_Ignore ){ 4601 sqlite3VdbeAddOp4( 4602 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4603 VdbeCoverage(v); 4604 }else{ 4605 sqlite3HaltConstraint(pParse, 4606 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4607 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4608 } 4609 4610 break; 4611 } 4612 #endif 4613 } 4614 sqlite3ReleaseTempReg(pParse, regFree1); 4615 sqlite3ReleaseTempReg(pParse, regFree2); 4616 return inReg; 4617 } 4618 4619 /* 4620 ** Generate code that will evaluate expression pExpr just one time 4621 ** per prepared statement execution. 4622 ** 4623 ** If the expression uses functions (that might throw an exception) then 4624 ** guard them with an OP_Once opcode to ensure that the code is only executed 4625 ** once. If no functions are involved, then factor the code out and put it at 4626 ** the end of the prepared statement in the initialization section. 4627 ** 4628 ** If regDest>=0 then the result is always stored in that register and the 4629 ** result is not reusable. If regDest<0 then this routine is free to 4630 ** store the value whereever it wants. The register where the expression 4631 ** is stored is returned. When regDest<0, two identical expressions might 4632 ** code to the same register, if they do not contain function calls and hence 4633 ** are factored out into the initialization section at the end of the 4634 ** prepared statement. 4635 */ 4636 int sqlite3ExprCodeRunJustOnce( 4637 Parse *pParse, /* Parsing context */ 4638 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4639 int regDest /* Store the value in this register */ 4640 ){ 4641 ExprList *p; 4642 assert( ConstFactorOk(pParse) ); 4643 p = pParse->pConstExpr; 4644 if( regDest<0 && p ){ 4645 struct ExprList_item *pItem; 4646 int i; 4647 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4648 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4649 return pItem->u.iConstExprReg; 4650 } 4651 } 4652 } 4653 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4654 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4655 Vdbe *v = pParse->pVdbe; 4656 int addr; 4657 assert( v ); 4658 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4659 pParse->okConstFactor = 0; 4660 if( !pParse->db->mallocFailed ){ 4661 if( regDest<0 ) regDest = ++pParse->nMem; 4662 sqlite3ExprCode(pParse, pExpr, regDest); 4663 } 4664 pParse->okConstFactor = 1; 4665 sqlite3ExprDelete(pParse->db, pExpr); 4666 sqlite3VdbeJumpHere(v, addr); 4667 }else{ 4668 p = sqlite3ExprListAppend(pParse, p, pExpr); 4669 if( p ){ 4670 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4671 pItem->reusable = regDest<0; 4672 if( regDest<0 ) regDest = ++pParse->nMem; 4673 pItem->u.iConstExprReg = regDest; 4674 } 4675 pParse->pConstExpr = p; 4676 } 4677 return regDest; 4678 } 4679 4680 /* 4681 ** Generate code to evaluate an expression and store the results 4682 ** into a register. Return the register number where the results 4683 ** are stored. 4684 ** 4685 ** If the register is a temporary register that can be deallocated, 4686 ** then write its number into *pReg. If the result register is not 4687 ** a temporary, then set *pReg to zero. 4688 ** 4689 ** If pExpr is a constant, then this routine might generate this 4690 ** code to fill the register in the initialization section of the 4691 ** VDBE program, in order to factor it out of the evaluation loop. 4692 */ 4693 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4694 int r2; 4695 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4696 if( ConstFactorOk(pParse) 4697 && ALWAYS(pExpr!=0) 4698 && pExpr->op!=TK_REGISTER 4699 && sqlite3ExprIsConstantNotJoin(pExpr) 4700 ){ 4701 *pReg = 0; 4702 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4703 }else{ 4704 int r1 = sqlite3GetTempReg(pParse); 4705 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4706 if( r2==r1 ){ 4707 *pReg = r1; 4708 }else{ 4709 sqlite3ReleaseTempReg(pParse, r1); 4710 *pReg = 0; 4711 } 4712 } 4713 return r2; 4714 } 4715 4716 /* 4717 ** Generate code that will evaluate expression pExpr and store the 4718 ** results in register target. The results are guaranteed to appear 4719 ** in register target. 4720 */ 4721 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4722 int inReg; 4723 4724 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4725 assert( target>0 && target<=pParse->nMem ); 4726 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4727 if( pParse->pVdbe==0 ) return; 4728 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4729 if( inReg!=target ){ 4730 u8 op; 4731 if( ExprHasProperty(pExpr,EP_Subquery) ){ 4732 op = OP_Copy; 4733 }else{ 4734 op = OP_SCopy; 4735 } 4736 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4737 } 4738 } 4739 4740 /* 4741 ** Make a transient copy of expression pExpr and then code it using 4742 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4743 ** except that the input expression is guaranteed to be unchanged. 4744 */ 4745 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4746 sqlite3 *db = pParse->db; 4747 pExpr = sqlite3ExprDup(db, pExpr, 0); 4748 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4749 sqlite3ExprDelete(db, pExpr); 4750 } 4751 4752 /* 4753 ** Generate code that will evaluate expression pExpr and store the 4754 ** results in register target. The results are guaranteed to appear 4755 ** in register target. If the expression is constant, then this routine 4756 ** might choose to code the expression at initialization time. 4757 */ 4758 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4759 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4760 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4761 }else{ 4762 sqlite3ExprCodeCopy(pParse, pExpr, target); 4763 } 4764 } 4765 4766 /* 4767 ** Generate code that pushes the value of every element of the given 4768 ** expression list into a sequence of registers beginning at target. 4769 ** 4770 ** Return the number of elements evaluated. The number returned will 4771 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4772 ** is defined. 4773 ** 4774 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4775 ** filled using OP_SCopy. OP_Copy must be used instead. 4776 ** 4777 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4778 ** factored out into initialization code. 4779 ** 4780 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4781 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4782 ** in registers at srcReg, and so the value can be copied from there. 4783 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4784 ** are simply omitted rather than being copied from srcReg. 4785 */ 4786 int sqlite3ExprCodeExprList( 4787 Parse *pParse, /* Parsing context */ 4788 ExprList *pList, /* The expression list to be coded */ 4789 int target, /* Where to write results */ 4790 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4791 u8 flags /* SQLITE_ECEL_* flags */ 4792 ){ 4793 struct ExprList_item *pItem; 4794 int i, j, n; 4795 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4796 Vdbe *v = pParse->pVdbe; 4797 assert( pList!=0 ); 4798 assert( target>0 ); 4799 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4800 n = pList->nExpr; 4801 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4802 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4803 Expr *pExpr = pItem->pExpr; 4804 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4805 if( pItem->bSorterRef ){ 4806 i--; 4807 n--; 4808 }else 4809 #endif 4810 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4811 if( flags & SQLITE_ECEL_OMITREF ){ 4812 i--; 4813 n--; 4814 }else{ 4815 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4816 } 4817 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4818 && sqlite3ExprIsConstantNotJoin(pExpr) 4819 ){ 4820 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4821 }else{ 4822 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4823 if( inReg!=target+i ){ 4824 VdbeOp *pOp; 4825 if( copyOp==OP_Copy 4826 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4827 && pOp->p1+pOp->p3+1==inReg 4828 && pOp->p2+pOp->p3+1==target+i 4829 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4830 ){ 4831 pOp->p3++; 4832 }else{ 4833 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4834 } 4835 } 4836 } 4837 } 4838 return n; 4839 } 4840 4841 /* 4842 ** Generate code for a BETWEEN operator. 4843 ** 4844 ** x BETWEEN y AND z 4845 ** 4846 ** The above is equivalent to 4847 ** 4848 ** x>=y AND x<=z 4849 ** 4850 ** Code it as such, taking care to do the common subexpression 4851 ** elimination of x. 4852 ** 4853 ** The xJumpIf parameter determines details: 4854 ** 4855 ** NULL: Store the boolean result in reg[dest] 4856 ** sqlite3ExprIfTrue: Jump to dest if true 4857 ** sqlite3ExprIfFalse: Jump to dest if false 4858 ** 4859 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4860 */ 4861 static void exprCodeBetween( 4862 Parse *pParse, /* Parsing and code generating context */ 4863 Expr *pExpr, /* The BETWEEN expression */ 4864 int dest, /* Jump destination or storage location */ 4865 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4866 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4867 ){ 4868 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4869 Expr compLeft; /* The x>=y term */ 4870 Expr compRight; /* The x<=z term */ 4871 int regFree1 = 0; /* Temporary use register */ 4872 Expr *pDel = 0; 4873 sqlite3 *db = pParse->db; 4874 4875 memset(&compLeft, 0, sizeof(Expr)); 4876 memset(&compRight, 0, sizeof(Expr)); 4877 memset(&exprAnd, 0, sizeof(Expr)); 4878 4879 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4880 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4881 if( db->mallocFailed==0 ){ 4882 exprAnd.op = TK_AND; 4883 exprAnd.pLeft = &compLeft; 4884 exprAnd.pRight = &compRight; 4885 compLeft.op = TK_GE; 4886 compLeft.pLeft = pDel; 4887 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4888 compRight.op = TK_LE; 4889 compRight.pLeft = pDel; 4890 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4891 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4892 if( xJump ){ 4893 xJump(pParse, &exprAnd, dest, jumpIfNull); 4894 }else{ 4895 /* Mark the expression is being from the ON or USING clause of a join 4896 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4897 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4898 ** for clarity, but we are out of bits in the Expr.flags field so we 4899 ** have to reuse the EP_FromJoin bit. Bummer. */ 4900 pDel->flags |= EP_FromJoin; 4901 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4902 } 4903 sqlite3ReleaseTempReg(pParse, regFree1); 4904 } 4905 sqlite3ExprDelete(db, pDel); 4906 4907 /* Ensure adequate test coverage */ 4908 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4909 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4910 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4911 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4912 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4913 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4914 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4915 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4916 testcase( xJump==0 ); 4917 } 4918 4919 /* 4920 ** Generate code for a boolean expression such that a jump is made 4921 ** to the label "dest" if the expression is true but execution 4922 ** continues straight thru if the expression is false. 4923 ** 4924 ** If the expression evaluates to NULL (neither true nor false), then 4925 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4926 ** 4927 ** This code depends on the fact that certain token values (ex: TK_EQ) 4928 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4929 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4930 ** the make process cause these values to align. Assert()s in the code 4931 ** below verify that the numbers are aligned correctly. 4932 */ 4933 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4934 Vdbe *v = pParse->pVdbe; 4935 int op = 0; 4936 int regFree1 = 0; 4937 int regFree2 = 0; 4938 int r1, r2; 4939 4940 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4941 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4942 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4943 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 4944 op = pExpr->op; 4945 switch( op ){ 4946 case TK_AND: 4947 case TK_OR: { 4948 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4949 if( pAlt!=pExpr ){ 4950 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4951 }else if( op==TK_AND ){ 4952 int d2 = sqlite3VdbeMakeLabel(pParse); 4953 testcase( jumpIfNull==0 ); 4954 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4955 jumpIfNull^SQLITE_JUMPIFNULL); 4956 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4957 sqlite3VdbeResolveLabel(v, d2); 4958 }else{ 4959 testcase( jumpIfNull==0 ); 4960 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4961 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4962 } 4963 break; 4964 } 4965 case TK_NOT: { 4966 testcase( jumpIfNull==0 ); 4967 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4968 break; 4969 } 4970 case TK_TRUTH: { 4971 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4972 int isTrue; /* IS TRUE or IS NOT TRUE */ 4973 testcase( jumpIfNull==0 ); 4974 isNot = pExpr->op2==TK_ISNOT; 4975 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4976 testcase( isTrue && isNot ); 4977 testcase( !isTrue && isNot ); 4978 if( isTrue ^ isNot ){ 4979 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4980 isNot ? SQLITE_JUMPIFNULL : 0); 4981 }else{ 4982 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4983 isNot ? SQLITE_JUMPIFNULL : 0); 4984 } 4985 break; 4986 } 4987 case TK_IS: 4988 case TK_ISNOT: 4989 testcase( op==TK_IS ); 4990 testcase( op==TK_ISNOT ); 4991 op = (op==TK_IS) ? TK_EQ : TK_NE; 4992 jumpIfNull = SQLITE_NULLEQ; 4993 /* no break */ deliberate_fall_through 4994 case TK_LT: 4995 case TK_LE: 4996 case TK_GT: 4997 case TK_GE: 4998 case TK_NE: 4999 case TK_EQ: { 5000 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5001 testcase( jumpIfNull==0 ); 5002 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5003 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5004 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5005 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 5006 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5007 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5008 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5009 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5010 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5011 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5012 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5013 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5014 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5015 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5016 testcase( regFree1==0 ); 5017 testcase( regFree2==0 ); 5018 break; 5019 } 5020 case TK_ISNULL: 5021 case TK_NOTNULL: { 5022 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 5023 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 5024 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5025 sqlite3VdbeAddOp2(v, op, r1, dest); 5026 VdbeCoverageIf(v, op==TK_ISNULL); 5027 VdbeCoverageIf(v, op==TK_NOTNULL); 5028 testcase( regFree1==0 ); 5029 break; 5030 } 5031 case TK_BETWEEN: { 5032 testcase( jumpIfNull==0 ); 5033 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 5034 break; 5035 } 5036 #ifndef SQLITE_OMIT_SUBQUERY 5037 case TK_IN: { 5038 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 5039 int destIfNull = jumpIfNull ? dest : destIfFalse; 5040 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 5041 sqlite3VdbeGoto(v, dest); 5042 sqlite3VdbeResolveLabel(v, destIfFalse); 5043 break; 5044 } 5045 #endif 5046 default: { 5047 default_expr: 5048 if( ExprAlwaysTrue(pExpr) ){ 5049 sqlite3VdbeGoto(v, dest); 5050 }else if( ExprAlwaysFalse(pExpr) ){ 5051 /* No-op */ 5052 }else{ 5053 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5054 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 5055 VdbeCoverage(v); 5056 testcase( regFree1==0 ); 5057 testcase( jumpIfNull==0 ); 5058 } 5059 break; 5060 } 5061 } 5062 sqlite3ReleaseTempReg(pParse, regFree1); 5063 sqlite3ReleaseTempReg(pParse, regFree2); 5064 } 5065 5066 /* 5067 ** Generate code for a boolean expression such that a jump is made 5068 ** to the label "dest" if the expression is false but execution 5069 ** continues straight thru if the expression is true. 5070 ** 5071 ** If the expression evaluates to NULL (neither true nor false) then 5072 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5073 ** is 0. 5074 */ 5075 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5076 Vdbe *v = pParse->pVdbe; 5077 int op = 0; 5078 int regFree1 = 0; 5079 int regFree2 = 0; 5080 int r1, r2; 5081 5082 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5083 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5084 if( pExpr==0 ) return; 5085 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5086 5087 /* The value of pExpr->op and op are related as follows: 5088 ** 5089 ** pExpr->op op 5090 ** --------- ---------- 5091 ** TK_ISNULL OP_NotNull 5092 ** TK_NOTNULL OP_IsNull 5093 ** TK_NE OP_Eq 5094 ** TK_EQ OP_Ne 5095 ** TK_GT OP_Le 5096 ** TK_LE OP_Gt 5097 ** TK_GE OP_Lt 5098 ** TK_LT OP_Ge 5099 ** 5100 ** For other values of pExpr->op, op is undefined and unused. 5101 ** The value of TK_ and OP_ constants are arranged such that we 5102 ** can compute the mapping above using the following expression. 5103 ** Assert()s verify that the computation is correct. 5104 */ 5105 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5106 5107 /* Verify correct alignment of TK_ and OP_ constants 5108 */ 5109 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5110 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5111 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5112 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5113 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5114 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5115 assert( pExpr->op!=TK_GT || op==OP_Le ); 5116 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5117 5118 switch( pExpr->op ){ 5119 case TK_AND: 5120 case TK_OR: { 5121 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5122 if( pAlt!=pExpr ){ 5123 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5124 }else if( pExpr->op==TK_AND ){ 5125 testcase( jumpIfNull==0 ); 5126 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5127 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5128 }else{ 5129 int d2 = sqlite3VdbeMakeLabel(pParse); 5130 testcase( jumpIfNull==0 ); 5131 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5132 jumpIfNull^SQLITE_JUMPIFNULL); 5133 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5134 sqlite3VdbeResolveLabel(v, d2); 5135 } 5136 break; 5137 } 5138 case TK_NOT: { 5139 testcase( jumpIfNull==0 ); 5140 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5141 break; 5142 } 5143 case TK_TRUTH: { 5144 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5145 int isTrue; /* IS TRUE or IS NOT TRUE */ 5146 testcase( jumpIfNull==0 ); 5147 isNot = pExpr->op2==TK_ISNOT; 5148 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5149 testcase( isTrue && isNot ); 5150 testcase( !isTrue && isNot ); 5151 if( isTrue ^ isNot ){ 5152 /* IS TRUE and IS NOT FALSE */ 5153 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5154 isNot ? 0 : SQLITE_JUMPIFNULL); 5155 5156 }else{ 5157 /* IS FALSE and IS NOT TRUE */ 5158 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5159 isNot ? 0 : SQLITE_JUMPIFNULL); 5160 } 5161 break; 5162 } 5163 case TK_IS: 5164 case TK_ISNOT: 5165 testcase( pExpr->op==TK_IS ); 5166 testcase( pExpr->op==TK_ISNOT ); 5167 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5168 jumpIfNull = SQLITE_NULLEQ; 5169 /* no break */ deliberate_fall_through 5170 case TK_LT: 5171 case TK_LE: 5172 case TK_GT: 5173 case TK_GE: 5174 case TK_NE: 5175 case TK_EQ: { 5176 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5177 testcase( jumpIfNull==0 ); 5178 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5179 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5180 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5181 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5182 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5183 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5184 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5185 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5186 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5187 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5188 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5189 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5190 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5191 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5192 testcase( regFree1==0 ); 5193 testcase( regFree2==0 ); 5194 break; 5195 } 5196 case TK_ISNULL: 5197 case TK_NOTNULL: { 5198 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5199 sqlite3VdbeAddOp2(v, op, r1, dest); 5200 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5201 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5202 testcase( regFree1==0 ); 5203 break; 5204 } 5205 case TK_BETWEEN: { 5206 testcase( jumpIfNull==0 ); 5207 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5208 break; 5209 } 5210 #ifndef SQLITE_OMIT_SUBQUERY 5211 case TK_IN: { 5212 if( jumpIfNull ){ 5213 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5214 }else{ 5215 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5216 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5217 sqlite3VdbeResolveLabel(v, destIfNull); 5218 } 5219 break; 5220 } 5221 #endif 5222 default: { 5223 default_expr: 5224 if( ExprAlwaysFalse(pExpr) ){ 5225 sqlite3VdbeGoto(v, dest); 5226 }else if( ExprAlwaysTrue(pExpr) ){ 5227 /* no-op */ 5228 }else{ 5229 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5230 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5231 VdbeCoverage(v); 5232 testcase( regFree1==0 ); 5233 testcase( jumpIfNull==0 ); 5234 } 5235 break; 5236 } 5237 } 5238 sqlite3ReleaseTempReg(pParse, regFree1); 5239 sqlite3ReleaseTempReg(pParse, regFree2); 5240 } 5241 5242 /* 5243 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5244 ** code generation, and that copy is deleted after code generation. This 5245 ** ensures that the original pExpr is unchanged. 5246 */ 5247 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5248 sqlite3 *db = pParse->db; 5249 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5250 if( db->mallocFailed==0 ){ 5251 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5252 } 5253 sqlite3ExprDelete(db, pCopy); 5254 } 5255 5256 /* 5257 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5258 ** type of expression. 5259 ** 5260 ** If pExpr is a simple SQL value - an integer, real, string, blob 5261 ** or NULL value - then the VDBE currently being prepared is configured 5262 ** to re-prepare each time a new value is bound to variable pVar. 5263 ** 5264 ** Additionally, if pExpr is a simple SQL value and the value is the 5265 ** same as that currently bound to variable pVar, non-zero is returned. 5266 ** Otherwise, if the values are not the same or if pExpr is not a simple 5267 ** SQL value, zero is returned. 5268 */ 5269 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 5270 int res = 0; 5271 int iVar; 5272 sqlite3_value *pL, *pR = 0; 5273 5274 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5275 if( pR ){ 5276 iVar = pVar->iColumn; 5277 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5278 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5279 if( pL ){ 5280 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5281 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5282 } 5283 res = 0==sqlite3MemCompare(pL, pR, 0); 5284 } 5285 sqlite3ValueFree(pR); 5286 sqlite3ValueFree(pL); 5287 } 5288 5289 return res; 5290 } 5291 5292 /* 5293 ** Do a deep comparison of two expression trees. Return 0 if the two 5294 ** expressions are completely identical. Return 1 if they differ only 5295 ** by a COLLATE operator at the top level. Return 2 if there are differences 5296 ** other than the top-level COLLATE operator. 5297 ** 5298 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5299 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5300 ** 5301 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5302 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5303 ** 5304 ** Sometimes this routine will return 2 even if the two expressions 5305 ** really are equivalent. If we cannot prove that the expressions are 5306 ** identical, we return 2 just to be safe. So if this routine 5307 ** returns 2, then you do not really know for certain if the two 5308 ** expressions are the same. But if you get a 0 or 1 return, then you 5309 ** can be sure the expressions are the same. In the places where 5310 ** this routine is used, it does not hurt to get an extra 2 - that 5311 ** just might result in some slightly slower code. But returning 5312 ** an incorrect 0 or 1 could lead to a malfunction. 5313 ** 5314 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5315 ** pParse->pReprepare can be matched against literals in pB. The 5316 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5317 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5318 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5319 ** pB causes a return value of 2. 5320 */ 5321 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 5322 u32 combinedFlags; 5323 if( pA==0 || pB==0 ){ 5324 return pB==pA ? 0 : 2; 5325 } 5326 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5327 return 0; 5328 } 5329 combinedFlags = pA->flags | pB->flags; 5330 if( combinedFlags & EP_IntValue ){ 5331 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5332 return 0; 5333 } 5334 return 2; 5335 } 5336 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5337 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5338 return 1; 5339 } 5340 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5341 return 1; 5342 } 5343 return 2; 5344 } 5345 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5346 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5347 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5348 #ifndef SQLITE_OMIT_WINDOWFUNC 5349 assert( pA->op==pB->op ); 5350 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5351 return 2; 5352 } 5353 if( ExprHasProperty(pA,EP_WinFunc) ){ 5354 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5355 return 2; 5356 } 5357 } 5358 #endif 5359 }else if( pA->op==TK_NULL ){ 5360 return 0; 5361 }else if( pA->op==TK_COLLATE ){ 5362 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5363 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5364 return 2; 5365 } 5366 } 5367 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5368 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5369 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5370 if( combinedFlags & EP_xIsSelect ) return 2; 5371 if( (combinedFlags & EP_FixedCol)==0 5372 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5373 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5374 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5375 if( pA->op!=TK_STRING 5376 && pA->op!=TK_TRUEFALSE 5377 && ALWAYS((combinedFlags & EP_Reduced)==0) 5378 ){ 5379 if( pA->iColumn!=pB->iColumn ) return 2; 5380 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5381 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5382 return 2; 5383 } 5384 } 5385 } 5386 return 0; 5387 } 5388 5389 /* 5390 ** Compare two ExprList objects. Return 0 if they are identical, 1 5391 ** if they are certainly different, or 2 if it is not possible to 5392 ** determine if they are identical or not. 5393 ** 5394 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5395 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5396 ** 5397 ** This routine might return non-zero for equivalent ExprLists. The 5398 ** only consequence will be disabled optimizations. But this routine 5399 ** must never return 0 if the two ExprList objects are different, or 5400 ** a malfunction will result. 5401 ** 5402 ** Two NULL pointers are considered to be the same. But a NULL pointer 5403 ** always differs from a non-NULL pointer. 5404 */ 5405 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 5406 int i; 5407 if( pA==0 && pB==0 ) return 0; 5408 if( pA==0 || pB==0 ) return 1; 5409 if( pA->nExpr!=pB->nExpr ) return 1; 5410 for(i=0; i<pA->nExpr; i++){ 5411 int res; 5412 Expr *pExprA = pA->a[i].pExpr; 5413 Expr *pExprB = pB->a[i].pExpr; 5414 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5415 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5416 } 5417 return 0; 5418 } 5419 5420 /* 5421 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5422 ** are ignored. 5423 */ 5424 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 5425 return sqlite3ExprCompare(0, 5426 sqlite3ExprSkipCollateAndLikely(pA), 5427 sqlite3ExprSkipCollateAndLikely(pB), 5428 iTab); 5429 } 5430 5431 /* 5432 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5433 ** 5434 ** Or if seenNot is true, return non-zero if Expr p can only be 5435 ** non-NULL if pNN is not NULL 5436 */ 5437 static int exprImpliesNotNull( 5438 Parse *pParse, /* Parsing context */ 5439 Expr *p, /* The expression to be checked */ 5440 Expr *pNN, /* The expression that is NOT NULL */ 5441 int iTab, /* Table being evaluated */ 5442 int seenNot /* Return true only if p can be any non-NULL value */ 5443 ){ 5444 assert( p ); 5445 assert( pNN ); 5446 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5447 return pNN->op!=TK_NULL; 5448 } 5449 switch( p->op ){ 5450 case TK_IN: { 5451 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5452 assert( ExprHasProperty(p,EP_xIsSelect) 5453 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5454 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5455 } 5456 case TK_BETWEEN: { 5457 ExprList *pList = p->x.pList; 5458 assert( pList!=0 ); 5459 assert( pList->nExpr==2 ); 5460 if( seenNot ) return 0; 5461 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5462 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5463 ){ 5464 return 1; 5465 } 5466 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5467 } 5468 case TK_EQ: 5469 case TK_NE: 5470 case TK_LT: 5471 case TK_LE: 5472 case TK_GT: 5473 case TK_GE: 5474 case TK_PLUS: 5475 case TK_MINUS: 5476 case TK_BITOR: 5477 case TK_LSHIFT: 5478 case TK_RSHIFT: 5479 case TK_CONCAT: 5480 seenNot = 1; 5481 /* no break */ deliberate_fall_through 5482 case TK_STAR: 5483 case TK_REM: 5484 case TK_BITAND: 5485 case TK_SLASH: { 5486 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5487 /* no break */ deliberate_fall_through 5488 } 5489 case TK_SPAN: 5490 case TK_COLLATE: 5491 case TK_UPLUS: 5492 case TK_UMINUS: { 5493 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5494 } 5495 case TK_TRUTH: { 5496 if( seenNot ) return 0; 5497 if( p->op2!=TK_IS ) return 0; 5498 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5499 } 5500 case TK_BITNOT: 5501 case TK_NOT: { 5502 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5503 } 5504 } 5505 return 0; 5506 } 5507 5508 /* 5509 ** Return true if we can prove the pE2 will always be true if pE1 is 5510 ** true. Return false if we cannot complete the proof or if pE2 might 5511 ** be false. Examples: 5512 ** 5513 ** pE1: x==5 pE2: x==5 Result: true 5514 ** pE1: x>0 pE2: x==5 Result: false 5515 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5516 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5517 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5518 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5519 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5520 ** 5521 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5522 ** Expr.iTable<0 then assume a table number given by iTab. 5523 ** 5524 ** If pParse is not NULL, then the values of bound variables in pE1 are 5525 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5526 ** modified to record which bound variables are referenced. If pParse 5527 ** is NULL, then false will be returned if pE1 contains any bound variables. 5528 ** 5529 ** When in doubt, return false. Returning true might give a performance 5530 ** improvement. Returning false might cause a performance reduction, but 5531 ** it will always give the correct answer and is hence always safe. 5532 */ 5533 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5534 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5535 return 1; 5536 } 5537 if( pE2->op==TK_OR 5538 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5539 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5540 ){ 5541 return 1; 5542 } 5543 if( pE2->op==TK_NOTNULL 5544 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5545 ){ 5546 return 1; 5547 } 5548 return 0; 5549 } 5550 5551 /* 5552 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5553 ** If the expression node requires that the table at pWalker->iCur 5554 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5555 ** 5556 ** This routine controls an optimization. False positives (setting 5557 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5558 ** (never setting pWalker->eCode) is a harmless missed optimization. 5559 */ 5560 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5561 testcase( pExpr->op==TK_AGG_COLUMN ); 5562 testcase( pExpr->op==TK_AGG_FUNCTION ); 5563 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5564 switch( pExpr->op ){ 5565 case TK_ISNOT: 5566 case TK_ISNULL: 5567 case TK_NOTNULL: 5568 case TK_IS: 5569 case TK_OR: 5570 case TK_VECTOR: 5571 case TK_CASE: 5572 case TK_IN: 5573 case TK_FUNCTION: 5574 case TK_TRUTH: 5575 testcase( pExpr->op==TK_ISNOT ); 5576 testcase( pExpr->op==TK_ISNULL ); 5577 testcase( pExpr->op==TK_NOTNULL ); 5578 testcase( pExpr->op==TK_IS ); 5579 testcase( pExpr->op==TK_OR ); 5580 testcase( pExpr->op==TK_VECTOR ); 5581 testcase( pExpr->op==TK_CASE ); 5582 testcase( pExpr->op==TK_IN ); 5583 testcase( pExpr->op==TK_FUNCTION ); 5584 testcase( pExpr->op==TK_TRUTH ); 5585 return WRC_Prune; 5586 case TK_COLUMN: 5587 if( pWalker->u.iCur==pExpr->iTable ){ 5588 pWalker->eCode = 1; 5589 return WRC_Abort; 5590 } 5591 return WRC_Prune; 5592 5593 case TK_AND: 5594 if( pWalker->eCode==0 ){ 5595 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5596 if( pWalker->eCode ){ 5597 pWalker->eCode = 0; 5598 sqlite3WalkExpr(pWalker, pExpr->pRight); 5599 } 5600 } 5601 return WRC_Prune; 5602 5603 case TK_BETWEEN: 5604 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5605 assert( pWalker->eCode ); 5606 return WRC_Abort; 5607 } 5608 return WRC_Prune; 5609 5610 /* Virtual tables are allowed to use constraints like x=NULL. So 5611 ** a term of the form x=y does not prove that y is not null if x 5612 ** is the column of a virtual table */ 5613 case TK_EQ: 5614 case TK_NE: 5615 case TK_LT: 5616 case TK_LE: 5617 case TK_GT: 5618 case TK_GE: { 5619 Expr *pLeft = pExpr->pLeft; 5620 Expr *pRight = pExpr->pRight; 5621 testcase( pExpr->op==TK_EQ ); 5622 testcase( pExpr->op==TK_NE ); 5623 testcase( pExpr->op==TK_LT ); 5624 testcase( pExpr->op==TK_LE ); 5625 testcase( pExpr->op==TK_GT ); 5626 testcase( pExpr->op==TK_GE ); 5627 /* The y.pTab=0 assignment in wherecode.c always happens after the 5628 ** impliesNotNullRow() test */ 5629 if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0) 5630 && IsVirtual(pLeft->y.pTab)) 5631 || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0) 5632 && IsVirtual(pRight->y.pTab)) 5633 ){ 5634 return WRC_Prune; 5635 } 5636 /* no break */ deliberate_fall_through 5637 } 5638 default: 5639 return WRC_Continue; 5640 } 5641 } 5642 5643 /* 5644 ** Return true (non-zero) if expression p can only be true if at least 5645 ** one column of table iTab is non-null. In other words, return true 5646 ** if expression p will always be NULL or false if every column of iTab 5647 ** is NULL. 5648 ** 5649 ** False negatives are acceptable. In other words, it is ok to return 5650 ** zero even if expression p will never be true of every column of iTab 5651 ** is NULL. A false negative is merely a missed optimization opportunity. 5652 ** 5653 ** False positives are not allowed, however. A false positive may result 5654 ** in an incorrect answer. 5655 ** 5656 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5657 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5658 ** 5659 ** This routine is used to check if a LEFT JOIN can be converted into 5660 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5661 ** clause requires that some column of the right table of the LEFT JOIN 5662 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5663 ** ordinary join. 5664 */ 5665 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5666 Walker w; 5667 p = sqlite3ExprSkipCollateAndLikely(p); 5668 if( p==0 ) return 0; 5669 if( p->op==TK_NOTNULL ){ 5670 p = p->pLeft; 5671 }else{ 5672 while( p->op==TK_AND ){ 5673 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5674 p = p->pRight; 5675 } 5676 } 5677 w.xExprCallback = impliesNotNullRow; 5678 w.xSelectCallback = 0; 5679 w.xSelectCallback2 = 0; 5680 w.eCode = 0; 5681 w.u.iCur = iTab; 5682 sqlite3WalkExpr(&w, p); 5683 return w.eCode; 5684 } 5685 5686 /* 5687 ** An instance of the following structure is used by the tree walker 5688 ** to determine if an expression can be evaluated by reference to the 5689 ** index only, without having to do a search for the corresponding 5690 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5691 ** is the cursor for the table. 5692 */ 5693 struct IdxCover { 5694 Index *pIdx; /* The index to be tested for coverage */ 5695 int iCur; /* Cursor number for the table corresponding to the index */ 5696 }; 5697 5698 /* 5699 ** Check to see if there are references to columns in table 5700 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5701 ** pWalker->u.pIdxCover->pIdx. 5702 */ 5703 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5704 if( pExpr->op==TK_COLUMN 5705 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5706 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5707 ){ 5708 pWalker->eCode = 1; 5709 return WRC_Abort; 5710 } 5711 return WRC_Continue; 5712 } 5713 5714 /* 5715 ** Determine if an index pIdx on table with cursor iCur contains will 5716 ** the expression pExpr. Return true if the index does cover the 5717 ** expression and false if the pExpr expression references table columns 5718 ** that are not found in the index pIdx. 5719 ** 5720 ** An index covering an expression means that the expression can be 5721 ** evaluated using only the index and without having to lookup the 5722 ** corresponding table entry. 5723 */ 5724 int sqlite3ExprCoveredByIndex( 5725 Expr *pExpr, /* The index to be tested */ 5726 int iCur, /* The cursor number for the corresponding table */ 5727 Index *pIdx /* The index that might be used for coverage */ 5728 ){ 5729 Walker w; 5730 struct IdxCover xcov; 5731 memset(&w, 0, sizeof(w)); 5732 xcov.iCur = iCur; 5733 xcov.pIdx = pIdx; 5734 w.xExprCallback = exprIdxCover; 5735 w.u.pIdxCover = &xcov; 5736 sqlite3WalkExpr(&w, pExpr); 5737 return !w.eCode; 5738 } 5739 5740 5741 /* 5742 ** An instance of the following structure is used by the tree walker 5743 ** to count references to table columns in the arguments of an 5744 ** aggregate function, in order to implement the 5745 ** sqlite3FunctionThisSrc() routine. 5746 */ 5747 struct SrcCount { 5748 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5749 int iSrcInner; /* Smallest cursor number in this context */ 5750 int nThis; /* Number of references to columns in pSrcList */ 5751 int nOther; /* Number of references to columns in other FROM clauses */ 5752 }; 5753 5754 /* 5755 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first 5756 ** SELECT with a FROM clause encountered during this iteration, set 5757 ** SrcCount.iSrcInner to the cursor number of the leftmost object in 5758 ** the FROM cause. 5759 */ 5760 static int selectSrcCount(Walker *pWalker, Select *pSel){ 5761 struct SrcCount *p = pWalker->u.pSrcCount; 5762 if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){ 5763 pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor; 5764 } 5765 return WRC_Continue; 5766 } 5767 5768 /* 5769 ** Count the number of references to columns. 5770 */ 5771 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5772 /* There was once a NEVER() on the second term on the grounds that 5773 ** sqlite3FunctionUsesThisSrc() was always called before 5774 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet 5775 ** been converted into TK_AGG_COLUMN. But this is no longer true due 5776 ** to window functions - sqlite3WindowRewrite() may now indirectly call 5777 ** FunctionUsesThisSrc() when creating a new sub-select. */ 5778 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 5779 int i; 5780 struct SrcCount *p = pWalker->u.pSrcCount; 5781 SrcList *pSrc = p->pSrc; 5782 int nSrc = pSrc ? pSrc->nSrc : 0; 5783 for(i=0; i<nSrc; i++){ 5784 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5785 } 5786 if( i<nSrc ){ 5787 p->nThis++; 5788 }else if( pExpr->iTable<p->iSrcInner ){ 5789 /* In a well-formed parse tree (no name resolution errors), 5790 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5791 ** outer context. Those are the only ones to count as "other" */ 5792 p->nOther++; 5793 } 5794 } 5795 return WRC_Continue; 5796 } 5797 5798 /* 5799 ** Determine if any of the arguments to the pExpr Function reference 5800 ** pSrcList. Return true if they do. Also return true if the function 5801 ** has no arguments or has only constant arguments. Return false if pExpr 5802 ** references columns but not columns of tables found in pSrcList. 5803 */ 5804 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5805 Walker w; 5806 struct SrcCount cnt; 5807 assert( pExpr->op==TK_AGG_FUNCTION ); 5808 memset(&w, 0, sizeof(w)); 5809 w.xExprCallback = exprSrcCount; 5810 w.xSelectCallback = selectSrcCount; 5811 w.u.pSrcCount = &cnt; 5812 cnt.pSrc = pSrcList; 5813 cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF; 5814 cnt.nThis = 0; 5815 cnt.nOther = 0; 5816 sqlite3WalkExprList(&w, pExpr->x.pList); 5817 #ifndef SQLITE_OMIT_WINDOWFUNC 5818 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5819 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5820 } 5821 #endif 5822 return cnt.nThis>0 || cnt.nOther==0; 5823 } 5824 5825 /* 5826 ** This is a Walker expression node callback. 5827 ** 5828 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 5829 ** object that is referenced does not refer directly to the Expr. If 5830 ** it does, make a copy. This is done because the pExpr argument is 5831 ** subject to change. 5832 ** 5833 ** The copy is stored on pParse->pConstExpr with a register number of 0. 5834 ** This will cause the expression to be deleted automatically when the 5835 ** Parse object is destroyed, but the zero register number means that it 5836 ** will not generate any code in the preamble. 5837 */ 5838 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 5839 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 5840 && pExpr->pAggInfo!=0 5841 ){ 5842 AggInfo *pAggInfo = pExpr->pAggInfo; 5843 int iAgg = pExpr->iAgg; 5844 Parse *pParse = pWalker->pParse; 5845 sqlite3 *db = pParse->db; 5846 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 5847 if( pExpr->op==TK_AGG_COLUMN ){ 5848 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 5849 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 5850 pExpr = sqlite3ExprDup(db, pExpr, 0); 5851 if( pExpr ){ 5852 pAggInfo->aCol[iAgg].pCExpr = pExpr; 5853 sqlite3ExprDeferredDelete(pParse, pExpr); 5854 } 5855 } 5856 }else{ 5857 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 5858 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 5859 pExpr = sqlite3ExprDup(db, pExpr, 0); 5860 if( pExpr ){ 5861 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 5862 sqlite3ExprDeferredDelete(pParse, pExpr); 5863 } 5864 } 5865 } 5866 } 5867 return WRC_Continue; 5868 } 5869 5870 /* 5871 ** Initialize a Walker object so that will persist AggInfo entries referenced 5872 ** by the tree that is walked. 5873 */ 5874 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 5875 memset(pWalker, 0, sizeof(*pWalker)); 5876 pWalker->pParse = pParse; 5877 pWalker->xExprCallback = agginfoPersistExprCb; 5878 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 5879 } 5880 5881 /* 5882 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5883 ** the new element. Return a negative number if malloc fails. 5884 */ 5885 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5886 int i; 5887 pInfo->aCol = sqlite3ArrayAllocate( 5888 db, 5889 pInfo->aCol, 5890 sizeof(pInfo->aCol[0]), 5891 &pInfo->nColumn, 5892 &i 5893 ); 5894 return i; 5895 } 5896 5897 /* 5898 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5899 ** the new element. Return a negative number if malloc fails. 5900 */ 5901 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5902 int i; 5903 pInfo->aFunc = sqlite3ArrayAllocate( 5904 db, 5905 pInfo->aFunc, 5906 sizeof(pInfo->aFunc[0]), 5907 &pInfo->nFunc, 5908 &i 5909 ); 5910 return i; 5911 } 5912 5913 /* 5914 ** This is the xExprCallback for a tree walker. It is used to 5915 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5916 ** for additional information. 5917 */ 5918 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5919 int i; 5920 NameContext *pNC = pWalker->u.pNC; 5921 Parse *pParse = pNC->pParse; 5922 SrcList *pSrcList = pNC->pSrcList; 5923 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5924 5925 assert( pNC->ncFlags & NC_UAggInfo ); 5926 switch( pExpr->op ){ 5927 case TK_AGG_COLUMN: 5928 case TK_COLUMN: { 5929 testcase( pExpr->op==TK_AGG_COLUMN ); 5930 testcase( pExpr->op==TK_COLUMN ); 5931 /* Check to see if the column is in one of the tables in the FROM 5932 ** clause of the aggregate query */ 5933 if( ALWAYS(pSrcList!=0) ){ 5934 SrcItem *pItem = pSrcList->a; 5935 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5936 struct AggInfo_col *pCol; 5937 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5938 if( pExpr->iTable==pItem->iCursor ){ 5939 /* If we reach this point, it means that pExpr refers to a table 5940 ** that is in the FROM clause of the aggregate query. 5941 ** 5942 ** Make an entry for the column in pAggInfo->aCol[] if there 5943 ** is not an entry there already. 5944 */ 5945 int k; 5946 pCol = pAggInfo->aCol; 5947 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5948 if( pCol->iTable==pExpr->iTable && 5949 pCol->iColumn==pExpr->iColumn ){ 5950 break; 5951 } 5952 } 5953 if( (k>=pAggInfo->nColumn) 5954 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5955 ){ 5956 pCol = &pAggInfo->aCol[k]; 5957 pCol->pTab = pExpr->y.pTab; 5958 pCol->iTable = pExpr->iTable; 5959 pCol->iColumn = pExpr->iColumn; 5960 pCol->iMem = ++pParse->nMem; 5961 pCol->iSorterColumn = -1; 5962 pCol->pCExpr = pExpr; 5963 if( pAggInfo->pGroupBy ){ 5964 int j, n; 5965 ExprList *pGB = pAggInfo->pGroupBy; 5966 struct ExprList_item *pTerm = pGB->a; 5967 n = pGB->nExpr; 5968 for(j=0; j<n; j++, pTerm++){ 5969 Expr *pE = pTerm->pExpr; 5970 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5971 pE->iColumn==pExpr->iColumn ){ 5972 pCol->iSorterColumn = j; 5973 break; 5974 } 5975 } 5976 } 5977 if( pCol->iSorterColumn<0 ){ 5978 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5979 } 5980 } 5981 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5982 ** because it was there before or because we just created it). 5983 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5984 ** pAggInfo->aCol[] entry. 5985 */ 5986 ExprSetVVAProperty(pExpr, EP_NoReduce); 5987 pExpr->pAggInfo = pAggInfo; 5988 pExpr->op = TK_AGG_COLUMN; 5989 pExpr->iAgg = (i16)k; 5990 break; 5991 } /* endif pExpr->iTable==pItem->iCursor */ 5992 } /* end loop over pSrcList */ 5993 } 5994 return WRC_Prune; 5995 } 5996 case TK_AGG_FUNCTION: { 5997 if( (pNC->ncFlags & NC_InAggFunc)==0 5998 && pWalker->walkerDepth==pExpr->op2 5999 ){ 6000 /* Check to see if pExpr is a duplicate of another aggregate 6001 ** function that is already in the pAggInfo structure 6002 */ 6003 struct AggInfo_func *pItem = pAggInfo->aFunc; 6004 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 6005 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 6006 break; 6007 } 6008 } 6009 if( i>=pAggInfo->nFunc ){ 6010 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 6011 */ 6012 u8 enc = ENC(pParse->db); 6013 i = addAggInfoFunc(pParse->db, pAggInfo); 6014 if( i>=0 ){ 6015 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6016 pItem = &pAggInfo->aFunc[i]; 6017 pItem->pFExpr = pExpr; 6018 pItem->iMem = ++pParse->nMem; 6019 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 6020 pItem->pFunc = sqlite3FindFunction(pParse->db, 6021 pExpr->u.zToken, 6022 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 6023 if( pExpr->flags & EP_Distinct ){ 6024 pItem->iDistinct = pParse->nTab++; 6025 }else{ 6026 pItem->iDistinct = -1; 6027 } 6028 } 6029 } 6030 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 6031 */ 6032 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6033 ExprSetVVAProperty(pExpr, EP_NoReduce); 6034 pExpr->iAgg = (i16)i; 6035 pExpr->pAggInfo = pAggInfo; 6036 return WRC_Prune; 6037 }else{ 6038 return WRC_Continue; 6039 } 6040 } 6041 } 6042 return WRC_Continue; 6043 } 6044 6045 /* 6046 ** Analyze the pExpr expression looking for aggregate functions and 6047 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 6048 ** points to. Additional entries are made on the AggInfo object as 6049 ** necessary. 6050 ** 6051 ** This routine should only be called after the expression has been 6052 ** analyzed by sqlite3ResolveExprNames(). 6053 */ 6054 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 6055 Walker w; 6056 w.xExprCallback = analyzeAggregate; 6057 w.xSelectCallback = sqlite3WalkerDepthIncrease; 6058 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 6059 w.walkerDepth = 0; 6060 w.u.pNC = pNC; 6061 w.pParse = 0; 6062 assert( pNC->pSrcList!=0 ); 6063 sqlite3WalkExpr(&w, pExpr); 6064 } 6065 6066 /* 6067 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6068 ** expression list. Return the number of errors. 6069 ** 6070 ** If an error is found, the analysis is cut short. 6071 */ 6072 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6073 struct ExprList_item *pItem; 6074 int i; 6075 if( pList ){ 6076 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6077 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6078 } 6079 } 6080 } 6081 6082 /* 6083 ** Allocate a single new register for use to hold some intermediate result. 6084 */ 6085 int sqlite3GetTempReg(Parse *pParse){ 6086 if( pParse->nTempReg==0 ){ 6087 return ++pParse->nMem; 6088 } 6089 return pParse->aTempReg[--pParse->nTempReg]; 6090 } 6091 6092 /* 6093 ** Deallocate a register, making available for reuse for some other 6094 ** purpose. 6095 */ 6096 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6097 if( iReg ){ 6098 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6099 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6100 pParse->aTempReg[pParse->nTempReg++] = iReg; 6101 } 6102 } 6103 } 6104 6105 /* 6106 ** Allocate or deallocate a block of nReg consecutive registers. 6107 */ 6108 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6109 int i, n; 6110 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6111 i = pParse->iRangeReg; 6112 n = pParse->nRangeReg; 6113 if( nReg<=n ){ 6114 pParse->iRangeReg += nReg; 6115 pParse->nRangeReg -= nReg; 6116 }else{ 6117 i = pParse->nMem+1; 6118 pParse->nMem += nReg; 6119 } 6120 return i; 6121 } 6122 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6123 if( nReg==1 ){ 6124 sqlite3ReleaseTempReg(pParse, iReg); 6125 return; 6126 } 6127 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6128 if( nReg>pParse->nRangeReg ){ 6129 pParse->nRangeReg = nReg; 6130 pParse->iRangeReg = iReg; 6131 } 6132 } 6133 6134 /* 6135 ** Mark all temporary registers as being unavailable for reuse. 6136 ** 6137 ** Always invoke this procedure after coding a subroutine or co-routine 6138 ** that might be invoked from other parts of the code, to ensure that 6139 ** the sub/co-routine does not use registers in common with the code that 6140 ** invokes the sub/co-routine. 6141 */ 6142 void sqlite3ClearTempRegCache(Parse *pParse){ 6143 pParse->nTempReg = 0; 6144 pParse->nRangeReg = 0; 6145 } 6146 6147 /* 6148 ** Validate that no temporary register falls within the range of 6149 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6150 ** statements. 6151 */ 6152 #ifdef SQLITE_DEBUG 6153 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6154 int i; 6155 if( pParse->nRangeReg>0 6156 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6157 && pParse->iRangeReg <= iLast 6158 ){ 6159 return 0; 6160 } 6161 for(i=0; i<pParse->nTempReg; i++){ 6162 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6163 return 0; 6164 } 6165 } 6166 return 1; 6167 } 6168 #endif /* SQLITE_DEBUG */ 6169