1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 pExpr = sqlite3ExprSkipCollate(pExpr); 48 if( pExpr->flags & EP_Generic ) return 0; 49 op = pExpr->op; 50 if( op==TK_SELECT ){ 51 assert( pExpr->flags&EP_xIsSelect ); 52 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 53 } 54 if( op==TK_REGISTER ) op = pExpr->op2; 55 #ifndef SQLITE_OMIT_CAST 56 if( op==TK_CAST ){ 57 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 58 return sqlite3AffinityType(pExpr->u.zToken, 0); 59 } 60 #endif 61 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){ 62 return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn); 63 } 64 if( op==TK_SELECT_COLUMN ){ 65 assert( pExpr->pLeft->flags&EP_xIsSelect ); 66 return sqlite3ExprAffinity( 67 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 68 ); 69 } 70 return pExpr->affinity; 71 } 72 73 /* 74 ** Set the collating sequence for expression pExpr to be the collating 75 ** sequence named by pToken. Return a pointer to a new Expr node that 76 ** implements the COLLATE operator. 77 ** 78 ** If a memory allocation error occurs, that fact is recorded in pParse->db 79 ** and the pExpr parameter is returned unchanged. 80 */ 81 Expr *sqlite3ExprAddCollateToken( 82 Parse *pParse, /* Parsing context */ 83 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 84 const Token *pCollName, /* Name of collating sequence */ 85 int dequote /* True to dequote pCollName */ 86 ){ 87 if( pCollName->n>0 ){ 88 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 89 if( pNew ){ 90 pNew->pLeft = pExpr; 91 pNew->flags |= EP_Collate|EP_Skip; 92 pExpr = pNew; 93 } 94 } 95 return pExpr; 96 } 97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 98 Token s; 99 assert( zC!=0 ); 100 sqlite3TokenInit(&s, (char*)zC); 101 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 102 } 103 104 /* 105 ** Skip over any TK_COLLATE operators and any unlikely() 106 ** or likelihood() function at the root of an expression. 107 */ 108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 109 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 110 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 111 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 112 assert( pExpr->x.pList->nExpr>0 ); 113 assert( pExpr->op==TK_FUNCTION ); 114 pExpr = pExpr->x.pList->a[0].pExpr; 115 }else{ 116 assert( pExpr->op==TK_COLLATE ); 117 pExpr = pExpr->pLeft; 118 } 119 } 120 return pExpr; 121 } 122 123 /* 124 ** Return the collation sequence for the expression pExpr. If 125 ** there is no defined collating sequence, return NULL. 126 ** 127 ** See also: sqlite3ExprNNCollSeq() 128 ** 129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 130 ** default collation if pExpr has no defined collation. 131 ** 132 ** The collating sequence might be determined by a COLLATE operator 133 ** or by the presence of a column with a defined collating sequence. 134 ** COLLATE operators take first precedence. Left operands take 135 ** precedence over right operands. 136 */ 137 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 138 sqlite3 *db = pParse->db; 139 CollSeq *pColl = 0; 140 Expr *p = pExpr; 141 while( p ){ 142 int op = p->op; 143 if( p->flags & EP_Generic ) break; 144 if( op==TK_CAST || op==TK_UPLUS ){ 145 p = p->pLeft; 146 continue; 147 } 148 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 149 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 150 break; 151 } 152 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 153 || op==TK_REGISTER || op==TK_TRIGGER) 154 && p->pTab!=0 155 ){ 156 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 157 ** a TK_COLUMN but was previously evaluated and cached in a register */ 158 int j = p->iColumn; 159 if( j>=0 ){ 160 const char *zColl = p->pTab->aCol[j].zColl; 161 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 162 } 163 break; 164 } 165 if( p->flags & EP_Collate ){ 166 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 167 p = p->pLeft; 168 }else{ 169 Expr *pNext = p->pRight; 170 /* The Expr.x union is never used at the same time as Expr.pRight */ 171 assert( p->x.pList==0 || p->pRight==0 ); 172 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 173 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 174 ** least one EP_Collate. Thus the following two ALWAYS. */ 175 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 176 int i; 177 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 178 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 179 pNext = p->x.pList->a[i].pExpr; 180 break; 181 } 182 } 183 } 184 p = pNext; 185 } 186 }else{ 187 break; 188 } 189 } 190 if( sqlite3CheckCollSeq(pParse, pColl) ){ 191 pColl = 0; 192 } 193 return pColl; 194 } 195 196 /* 197 ** Return the collation sequence for the expression pExpr. If 198 ** there is no defined collating sequence, return a pointer to the 199 ** defautl collation sequence. 200 ** 201 ** See also: sqlite3ExprCollSeq() 202 ** 203 ** The sqlite3ExprCollSeq() routine works the same except that it 204 ** returns NULL if there is no defined collation. 205 */ 206 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){ 207 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 208 if( p==0 ) p = pParse->db->pDfltColl; 209 assert( p!=0 ); 210 return p; 211 } 212 213 /* 214 ** Return TRUE if the two expressions have equivalent collating sequences. 215 */ 216 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){ 217 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 218 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 219 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 220 } 221 222 /* 223 ** pExpr is an operand of a comparison operator. aff2 is the 224 ** type affinity of the other operand. This routine returns the 225 ** type affinity that should be used for the comparison operator. 226 */ 227 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 228 char aff1 = sqlite3ExprAffinity(pExpr); 229 if( aff1 && aff2 ){ 230 /* Both sides of the comparison are columns. If one has numeric 231 ** affinity, use that. Otherwise use no affinity. 232 */ 233 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 234 return SQLITE_AFF_NUMERIC; 235 }else{ 236 return SQLITE_AFF_BLOB; 237 } 238 }else if( !aff1 && !aff2 ){ 239 /* Neither side of the comparison is a column. Compare the 240 ** results directly. 241 */ 242 return SQLITE_AFF_BLOB; 243 }else{ 244 /* One side is a column, the other is not. Use the columns affinity. */ 245 assert( aff1==0 || aff2==0 ); 246 return (aff1 + aff2); 247 } 248 } 249 250 /* 251 ** pExpr is a comparison operator. Return the type affinity that should 252 ** be applied to both operands prior to doing the comparison. 253 */ 254 static char comparisonAffinity(Expr *pExpr){ 255 char aff; 256 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 257 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 258 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 259 assert( pExpr->pLeft ); 260 aff = sqlite3ExprAffinity(pExpr->pLeft); 261 if( pExpr->pRight ){ 262 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 263 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 264 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 265 }else if( aff==0 ){ 266 aff = SQLITE_AFF_BLOB; 267 } 268 return aff; 269 } 270 271 /* 272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 273 ** idx_affinity is the affinity of an indexed column. Return true 274 ** if the index with affinity idx_affinity may be used to implement 275 ** the comparison in pExpr. 276 */ 277 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 278 char aff = comparisonAffinity(pExpr); 279 switch( aff ){ 280 case SQLITE_AFF_BLOB: 281 return 1; 282 case SQLITE_AFF_TEXT: 283 return idx_affinity==SQLITE_AFF_TEXT; 284 default: 285 return sqlite3IsNumericAffinity(idx_affinity); 286 } 287 } 288 289 /* 290 ** Return the P5 value that should be used for a binary comparison 291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 292 */ 293 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 294 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 295 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 296 return aff; 297 } 298 299 /* 300 ** Return a pointer to the collation sequence that should be used by 301 ** a binary comparison operator comparing pLeft and pRight. 302 ** 303 ** If the left hand expression has a collating sequence type, then it is 304 ** used. Otherwise the collation sequence for the right hand expression 305 ** is used, or the default (BINARY) if neither expression has a collating 306 ** type. 307 ** 308 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 309 ** it is not considered. 310 */ 311 CollSeq *sqlite3BinaryCompareCollSeq( 312 Parse *pParse, 313 Expr *pLeft, 314 Expr *pRight 315 ){ 316 CollSeq *pColl; 317 assert( pLeft ); 318 if( pLeft->flags & EP_Collate ){ 319 pColl = sqlite3ExprCollSeq(pParse, pLeft); 320 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 321 pColl = sqlite3ExprCollSeq(pParse, pRight); 322 }else{ 323 pColl = sqlite3ExprCollSeq(pParse, pLeft); 324 if( !pColl ){ 325 pColl = sqlite3ExprCollSeq(pParse, pRight); 326 } 327 } 328 return pColl; 329 } 330 331 /* 332 ** Generate code for a comparison operator. 333 */ 334 static int codeCompare( 335 Parse *pParse, /* The parsing (and code generating) context */ 336 Expr *pLeft, /* The left operand */ 337 Expr *pRight, /* The right operand */ 338 int opcode, /* The comparison opcode */ 339 int in1, int in2, /* Register holding operands */ 340 int dest, /* Jump here if true. */ 341 int jumpIfNull /* If true, jump if either operand is NULL */ 342 ){ 343 int p5; 344 int addr; 345 CollSeq *p4; 346 347 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 348 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 349 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 350 (void*)p4, P4_COLLSEQ); 351 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 352 return addr; 353 } 354 355 /* 356 ** Return true if expression pExpr is a vector, or false otherwise. 357 ** 358 ** A vector is defined as any expression that results in two or more 359 ** columns of result. Every TK_VECTOR node is an vector because the 360 ** parser will not generate a TK_VECTOR with fewer than two entries. 361 ** But a TK_SELECT might be either a vector or a scalar. It is only 362 ** considered a vector if it has two or more result columns. 363 */ 364 int sqlite3ExprIsVector(Expr *pExpr){ 365 return sqlite3ExprVectorSize(pExpr)>1; 366 } 367 368 /* 369 ** If the expression passed as the only argument is of type TK_VECTOR 370 ** return the number of expressions in the vector. Or, if the expression 371 ** is a sub-select, return the number of columns in the sub-select. For 372 ** any other type of expression, return 1. 373 */ 374 int sqlite3ExprVectorSize(Expr *pExpr){ 375 u8 op = pExpr->op; 376 if( op==TK_REGISTER ) op = pExpr->op2; 377 if( op==TK_VECTOR ){ 378 return pExpr->x.pList->nExpr; 379 }else if( op==TK_SELECT ){ 380 return pExpr->x.pSelect->pEList->nExpr; 381 }else{ 382 return 1; 383 } 384 } 385 386 /* 387 ** Return a pointer to a subexpression of pVector that is the i-th 388 ** column of the vector (numbered starting with 0). The caller must 389 ** ensure that i is within range. 390 ** 391 ** If pVector is really a scalar (and "scalar" here includes subqueries 392 ** that return a single column!) then return pVector unmodified. 393 ** 394 ** pVector retains ownership of the returned subexpression. 395 ** 396 ** If the vector is a (SELECT ...) then the expression returned is 397 ** just the expression for the i-th term of the result set, and may 398 ** not be ready for evaluation because the table cursor has not yet 399 ** been positioned. 400 */ 401 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 402 assert( i<sqlite3ExprVectorSize(pVector) ); 403 if( sqlite3ExprIsVector(pVector) ){ 404 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 405 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 406 return pVector->x.pSelect->pEList->a[i].pExpr; 407 }else{ 408 return pVector->x.pList->a[i].pExpr; 409 } 410 } 411 return pVector; 412 } 413 414 /* 415 ** Compute and return a new Expr object which when passed to 416 ** sqlite3ExprCode() will generate all necessary code to compute 417 ** the iField-th column of the vector expression pVector. 418 ** 419 ** It is ok for pVector to be a scalar (as long as iField==0). 420 ** In that case, this routine works like sqlite3ExprDup(). 421 ** 422 ** The caller owns the returned Expr object and is responsible for 423 ** ensuring that the returned value eventually gets freed. 424 ** 425 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 426 ** then the returned object will reference pVector and so pVector must remain 427 ** valid for the life of the returned object. If pVector is a TK_VECTOR 428 ** or a scalar expression, then it can be deleted as soon as this routine 429 ** returns. 430 ** 431 ** A trick to cause a TK_SELECT pVector to be deleted together with 432 ** the returned Expr object is to attach the pVector to the pRight field 433 ** of the returned TK_SELECT_COLUMN Expr object. 434 */ 435 Expr *sqlite3ExprForVectorField( 436 Parse *pParse, /* Parsing context */ 437 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 438 int iField /* Which column of the vector to return */ 439 ){ 440 Expr *pRet; 441 if( pVector->op==TK_SELECT ){ 442 assert( pVector->flags & EP_xIsSelect ); 443 /* The TK_SELECT_COLUMN Expr node: 444 ** 445 ** pLeft: pVector containing TK_SELECT. Not deleted. 446 ** pRight: not used. But recursively deleted. 447 ** iColumn: Index of a column in pVector 448 ** iTable: 0 or the number of columns on the LHS of an assignment 449 ** pLeft->iTable: First in an array of register holding result, or 0 450 ** if the result is not yet computed. 451 ** 452 ** sqlite3ExprDelete() specifically skips the recursive delete of 453 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 454 ** can be attached to pRight to cause this node to take ownership of 455 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 456 ** with the same pLeft pointer to the pVector, but only one of them 457 ** will own the pVector. 458 */ 459 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 460 if( pRet ){ 461 pRet->iColumn = iField; 462 pRet->pLeft = pVector; 463 } 464 assert( pRet==0 || pRet->iTable==0 ); 465 }else{ 466 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 467 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 468 } 469 return pRet; 470 } 471 472 /* 473 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 474 ** it. Return the register in which the result is stored (or, if the 475 ** sub-select returns more than one column, the first in an array 476 ** of registers in which the result is stored). 477 ** 478 ** If pExpr is not a TK_SELECT expression, return 0. 479 */ 480 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 481 int reg = 0; 482 #ifndef SQLITE_OMIT_SUBQUERY 483 if( pExpr->op==TK_SELECT ){ 484 reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 485 } 486 #endif 487 return reg; 488 } 489 490 /* 491 ** Argument pVector points to a vector expression - either a TK_VECTOR 492 ** or TK_SELECT that returns more than one column. This function returns 493 ** the register number of a register that contains the value of 494 ** element iField of the vector. 495 ** 496 ** If pVector is a TK_SELECT expression, then code for it must have 497 ** already been generated using the exprCodeSubselect() routine. In this 498 ** case parameter regSelect should be the first in an array of registers 499 ** containing the results of the sub-select. 500 ** 501 ** If pVector is of type TK_VECTOR, then code for the requested field 502 ** is generated. In this case (*pRegFree) may be set to the number of 503 ** a temporary register to be freed by the caller before returning. 504 ** 505 ** Before returning, output parameter (*ppExpr) is set to point to the 506 ** Expr object corresponding to element iElem of the vector. 507 */ 508 static int exprVectorRegister( 509 Parse *pParse, /* Parse context */ 510 Expr *pVector, /* Vector to extract element from */ 511 int iField, /* Field to extract from pVector */ 512 int regSelect, /* First in array of registers */ 513 Expr **ppExpr, /* OUT: Expression element */ 514 int *pRegFree /* OUT: Temp register to free */ 515 ){ 516 u8 op = pVector->op; 517 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 518 if( op==TK_REGISTER ){ 519 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 520 return pVector->iTable+iField; 521 } 522 if( op==TK_SELECT ){ 523 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 524 return regSelect+iField; 525 } 526 *ppExpr = pVector->x.pList->a[iField].pExpr; 527 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 528 } 529 530 /* 531 ** Expression pExpr is a comparison between two vector values. Compute 532 ** the result of the comparison (1, 0, or NULL) and write that 533 ** result into register dest. 534 ** 535 ** The caller must satisfy the following preconditions: 536 ** 537 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 538 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 539 ** otherwise: op==pExpr->op and p5==0 540 */ 541 static void codeVectorCompare( 542 Parse *pParse, /* Code generator context */ 543 Expr *pExpr, /* The comparison operation */ 544 int dest, /* Write results into this register */ 545 u8 op, /* Comparison operator */ 546 u8 p5 /* SQLITE_NULLEQ or zero */ 547 ){ 548 Vdbe *v = pParse->pVdbe; 549 Expr *pLeft = pExpr->pLeft; 550 Expr *pRight = pExpr->pRight; 551 int nLeft = sqlite3ExprVectorSize(pLeft); 552 int i; 553 int regLeft = 0; 554 int regRight = 0; 555 u8 opx = op; 556 int addrDone = sqlite3VdbeMakeLabel(v); 557 558 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 559 sqlite3ErrorMsg(pParse, "row value misused"); 560 return; 561 } 562 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 563 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 564 || pExpr->op==TK_LT || pExpr->op==TK_GT 565 || pExpr->op==TK_LE || pExpr->op==TK_GE 566 ); 567 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 568 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 569 assert( p5==0 || pExpr->op!=op ); 570 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 571 572 p5 |= SQLITE_STOREP2; 573 if( opx==TK_LE ) opx = TK_LT; 574 if( opx==TK_GE ) opx = TK_GT; 575 576 regLeft = exprCodeSubselect(pParse, pLeft); 577 regRight = exprCodeSubselect(pParse, pRight); 578 579 for(i=0; 1 /*Loop exits by "break"*/; i++){ 580 int regFree1 = 0, regFree2 = 0; 581 Expr *pL, *pR; 582 int r1, r2; 583 assert( i>=0 && i<nLeft ); 584 if( i>0 ) sqlite3ExprCachePush(pParse); 585 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 586 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 587 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); 588 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 589 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 590 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 591 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 592 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 593 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 594 sqlite3ReleaseTempReg(pParse, regFree1); 595 sqlite3ReleaseTempReg(pParse, regFree2); 596 if( i>0 ) sqlite3ExprCachePop(pParse); 597 if( i==nLeft-1 ){ 598 break; 599 } 600 if( opx==TK_EQ ){ 601 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 602 p5 |= SQLITE_KEEPNULL; 603 }else if( opx==TK_NE ){ 604 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 605 p5 |= SQLITE_KEEPNULL; 606 }else{ 607 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 608 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 609 VdbeCoverageIf(v, op==TK_LT); 610 VdbeCoverageIf(v, op==TK_GT); 611 VdbeCoverageIf(v, op==TK_LE); 612 VdbeCoverageIf(v, op==TK_GE); 613 if( i==nLeft-2 ) opx = op; 614 } 615 } 616 sqlite3VdbeResolveLabel(v, addrDone); 617 } 618 619 #if SQLITE_MAX_EXPR_DEPTH>0 620 /* 621 ** Check that argument nHeight is less than or equal to the maximum 622 ** expression depth allowed. If it is not, leave an error message in 623 ** pParse. 624 */ 625 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 626 int rc = SQLITE_OK; 627 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 628 if( nHeight>mxHeight ){ 629 sqlite3ErrorMsg(pParse, 630 "Expression tree is too large (maximum depth %d)", mxHeight 631 ); 632 rc = SQLITE_ERROR; 633 } 634 return rc; 635 } 636 637 /* The following three functions, heightOfExpr(), heightOfExprList() 638 ** and heightOfSelect(), are used to determine the maximum height 639 ** of any expression tree referenced by the structure passed as the 640 ** first argument. 641 ** 642 ** If this maximum height is greater than the current value pointed 643 ** to by pnHeight, the second parameter, then set *pnHeight to that 644 ** value. 645 */ 646 static void heightOfExpr(Expr *p, int *pnHeight){ 647 if( p ){ 648 if( p->nHeight>*pnHeight ){ 649 *pnHeight = p->nHeight; 650 } 651 } 652 } 653 static void heightOfExprList(ExprList *p, int *pnHeight){ 654 if( p ){ 655 int i; 656 for(i=0; i<p->nExpr; i++){ 657 heightOfExpr(p->a[i].pExpr, pnHeight); 658 } 659 } 660 } 661 static void heightOfSelect(Select *pSelect, int *pnHeight){ 662 Select *p; 663 for(p=pSelect; p; p=p->pPrior){ 664 heightOfExpr(p->pWhere, pnHeight); 665 heightOfExpr(p->pHaving, pnHeight); 666 heightOfExpr(p->pLimit, pnHeight); 667 heightOfExprList(p->pEList, pnHeight); 668 heightOfExprList(p->pGroupBy, pnHeight); 669 heightOfExprList(p->pOrderBy, pnHeight); 670 } 671 } 672 673 /* 674 ** Set the Expr.nHeight variable in the structure passed as an 675 ** argument. An expression with no children, Expr.pList or 676 ** Expr.pSelect member has a height of 1. Any other expression 677 ** has a height equal to the maximum height of any other 678 ** referenced Expr plus one. 679 ** 680 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 681 ** if appropriate. 682 */ 683 static void exprSetHeight(Expr *p){ 684 int nHeight = 0; 685 heightOfExpr(p->pLeft, &nHeight); 686 heightOfExpr(p->pRight, &nHeight); 687 if( ExprHasProperty(p, EP_xIsSelect) ){ 688 heightOfSelect(p->x.pSelect, &nHeight); 689 }else if( p->x.pList ){ 690 heightOfExprList(p->x.pList, &nHeight); 691 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 692 } 693 p->nHeight = nHeight + 1; 694 } 695 696 /* 697 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 698 ** the height is greater than the maximum allowed expression depth, 699 ** leave an error in pParse. 700 ** 701 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 702 ** Expr.flags. 703 */ 704 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 705 if( pParse->nErr ) return; 706 exprSetHeight(p); 707 sqlite3ExprCheckHeight(pParse, p->nHeight); 708 } 709 710 /* 711 ** Return the maximum height of any expression tree referenced 712 ** by the select statement passed as an argument. 713 */ 714 int sqlite3SelectExprHeight(Select *p){ 715 int nHeight = 0; 716 heightOfSelect(p, &nHeight); 717 return nHeight; 718 } 719 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 720 /* 721 ** Propagate all EP_Propagate flags from the Expr.x.pList into 722 ** Expr.flags. 723 */ 724 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 725 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 726 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 727 } 728 } 729 #define exprSetHeight(y) 730 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 731 732 /* 733 ** This routine is the core allocator for Expr nodes. 734 ** 735 ** Construct a new expression node and return a pointer to it. Memory 736 ** for this node and for the pToken argument is a single allocation 737 ** obtained from sqlite3DbMalloc(). The calling function 738 ** is responsible for making sure the node eventually gets freed. 739 ** 740 ** If dequote is true, then the token (if it exists) is dequoted. 741 ** If dequote is false, no dequoting is performed. The deQuote 742 ** parameter is ignored if pToken is NULL or if the token does not 743 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 744 ** then the EP_DblQuoted flag is set on the expression node. 745 ** 746 ** Special case: If op==TK_INTEGER and pToken points to a string that 747 ** can be translated into a 32-bit integer, then the token is not 748 ** stored in u.zToken. Instead, the integer values is written 749 ** into u.iValue and the EP_IntValue flag is set. No extra storage 750 ** is allocated to hold the integer text and the dequote flag is ignored. 751 */ 752 Expr *sqlite3ExprAlloc( 753 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 754 int op, /* Expression opcode */ 755 const Token *pToken, /* Token argument. Might be NULL */ 756 int dequote /* True to dequote */ 757 ){ 758 Expr *pNew; 759 int nExtra = 0; 760 int iValue = 0; 761 762 assert( db!=0 ); 763 if( pToken ){ 764 if( op!=TK_INTEGER || pToken->z==0 765 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 766 nExtra = pToken->n+1; 767 assert( iValue>=0 ); 768 } 769 } 770 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 771 if( pNew ){ 772 memset(pNew, 0, sizeof(Expr)); 773 pNew->op = (u8)op; 774 pNew->iAgg = -1; 775 if( pToken ){ 776 if( nExtra==0 ){ 777 pNew->flags |= EP_IntValue|EP_Leaf; 778 pNew->u.iValue = iValue; 779 }else{ 780 pNew->u.zToken = (char*)&pNew[1]; 781 assert( pToken->z!=0 || pToken->n==0 ); 782 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 783 pNew->u.zToken[pToken->n] = 0; 784 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 785 if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted; 786 sqlite3Dequote(pNew->u.zToken); 787 } 788 } 789 } 790 #if SQLITE_MAX_EXPR_DEPTH>0 791 pNew->nHeight = 1; 792 #endif 793 } 794 return pNew; 795 } 796 797 /* 798 ** Allocate a new expression node from a zero-terminated token that has 799 ** already been dequoted. 800 */ 801 Expr *sqlite3Expr( 802 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 803 int op, /* Expression opcode */ 804 const char *zToken /* Token argument. Might be NULL */ 805 ){ 806 Token x; 807 x.z = zToken; 808 x.n = sqlite3Strlen30(zToken); 809 return sqlite3ExprAlloc(db, op, &x, 0); 810 } 811 812 /* 813 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 814 ** 815 ** If pRoot==NULL that means that a memory allocation error has occurred. 816 ** In that case, delete the subtrees pLeft and pRight. 817 */ 818 void sqlite3ExprAttachSubtrees( 819 sqlite3 *db, 820 Expr *pRoot, 821 Expr *pLeft, 822 Expr *pRight 823 ){ 824 if( pRoot==0 ){ 825 assert( db->mallocFailed ); 826 sqlite3ExprDelete(db, pLeft); 827 sqlite3ExprDelete(db, pRight); 828 }else{ 829 if( pRight ){ 830 pRoot->pRight = pRight; 831 pRoot->flags |= EP_Propagate & pRight->flags; 832 } 833 if( pLeft ){ 834 pRoot->pLeft = pLeft; 835 pRoot->flags |= EP_Propagate & pLeft->flags; 836 } 837 exprSetHeight(pRoot); 838 } 839 } 840 841 /* 842 ** Allocate an Expr node which joins as many as two subtrees. 843 ** 844 ** One or both of the subtrees can be NULL. Return a pointer to the new 845 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 846 ** free the subtrees and return NULL. 847 */ 848 Expr *sqlite3PExpr( 849 Parse *pParse, /* Parsing context */ 850 int op, /* Expression opcode */ 851 Expr *pLeft, /* Left operand */ 852 Expr *pRight /* Right operand */ 853 ){ 854 Expr *p; 855 if( op==TK_AND && pParse->nErr==0 ){ 856 /* Take advantage of short-circuit false optimization for AND */ 857 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 858 }else{ 859 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 860 if( p ){ 861 memset(p, 0, sizeof(Expr)); 862 p->op = op & TKFLG_MASK; 863 p->iAgg = -1; 864 } 865 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 866 } 867 if( p ) { 868 sqlite3ExprCheckHeight(pParse, p->nHeight); 869 } 870 return p; 871 } 872 873 /* 874 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 875 ** do a memory allocation failure) then delete the pSelect object. 876 */ 877 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 878 if( pExpr ){ 879 pExpr->x.pSelect = pSelect; 880 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 881 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 882 }else{ 883 assert( pParse->db->mallocFailed ); 884 sqlite3SelectDelete(pParse->db, pSelect); 885 } 886 } 887 888 889 /* 890 ** If the expression is always either TRUE or FALSE (respectively), 891 ** then return 1. If one cannot determine the truth value of the 892 ** expression at compile-time return 0. 893 ** 894 ** This is an optimization. If is OK to return 0 here even if 895 ** the expression really is always false or false (a false negative). 896 ** But it is a bug to return 1 if the expression might have different 897 ** boolean values in different circumstances (a false positive.) 898 ** 899 ** Note that if the expression is part of conditional for a 900 ** LEFT JOIN, then we cannot determine at compile-time whether or not 901 ** is it true or false, so always return 0. 902 */ 903 static int exprAlwaysTrue(Expr *p){ 904 int v = 0; 905 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 906 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 907 return v!=0; 908 } 909 static int exprAlwaysFalse(Expr *p){ 910 int v = 0; 911 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 912 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 913 return v==0; 914 } 915 916 /* 917 ** Join two expressions using an AND operator. If either expression is 918 ** NULL, then just return the other expression. 919 ** 920 ** If one side or the other of the AND is known to be false, then instead 921 ** of returning an AND expression, just return a constant expression with 922 ** a value of false. 923 */ 924 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 925 if( pLeft==0 ){ 926 return pRight; 927 }else if( pRight==0 ){ 928 return pLeft; 929 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 930 sqlite3ExprDelete(db, pLeft); 931 sqlite3ExprDelete(db, pRight); 932 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 933 }else{ 934 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 935 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 936 return pNew; 937 } 938 } 939 940 /* 941 ** Construct a new expression node for a function with multiple 942 ** arguments. 943 */ 944 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 945 Expr *pNew; 946 sqlite3 *db = pParse->db; 947 assert( pToken ); 948 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 949 if( pNew==0 ){ 950 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 951 return 0; 952 } 953 pNew->x.pList = pList; 954 ExprSetProperty(pNew, EP_HasFunc); 955 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 956 sqlite3ExprSetHeightAndFlags(pParse, pNew); 957 return pNew; 958 } 959 960 /* 961 ** Assign a variable number to an expression that encodes a wildcard 962 ** in the original SQL statement. 963 ** 964 ** Wildcards consisting of a single "?" are assigned the next sequential 965 ** variable number. 966 ** 967 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 968 ** sure "nnn" is not too big to avoid a denial of service attack when 969 ** the SQL statement comes from an external source. 970 ** 971 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 972 ** as the previous instance of the same wildcard. Or if this is the first 973 ** instance of the wildcard, the next sequential variable number is 974 ** assigned. 975 */ 976 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 977 sqlite3 *db = pParse->db; 978 const char *z; 979 ynVar x; 980 981 if( pExpr==0 ) return; 982 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 983 z = pExpr->u.zToken; 984 assert( z!=0 ); 985 assert( z[0]!=0 ); 986 assert( n==(u32)sqlite3Strlen30(z) ); 987 if( z[1]==0 ){ 988 /* Wildcard of the form "?". Assign the next variable number */ 989 assert( z[0]=='?' ); 990 x = (ynVar)(++pParse->nVar); 991 }else{ 992 int doAdd = 0; 993 if( z[0]=='?' ){ 994 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 995 ** use it as the variable number */ 996 i64 i; 997 int bOk; 998 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 999 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1000 bOk = 1; 1001 }else{ 1002 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1003 } 1004 testcase( i==0 ); 1005 testcase( i==1 ); 1006 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1007 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1008 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1009 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1010 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1011 return; 1012 } 1013 x = (ynVar)i; 1014 if( x>pParse->nVar ){ 1015 pParse->nVar = (int)x; 1016 doAdd = 1; 1017 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1018 doAdd = 1; 1019 } 1020 }else{ 1021 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1022 ** number as the prior appearance of the same name, or if the name 1023 ** has never appeared before, reuse the same variable number 1024 */ 1025 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1026 if( x==0 ){ 1027 x = (ynVar)(++pParse->nVar); 1028 doAdd = 1; 1029 } 1030 } 1031 if( doAdd ){ 1032 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1033 } 1034 } 1035 pExpr->iColumn = x; 1036 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1037 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1038 } 1039 } 1040 1041 /* 1042 ** Recursively delete an expression tree. 1043 */ 1044 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1045 assert( p!=0 ); 1046 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1047 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1048 #ifdef SQLITE_DEBUG 1049 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1050 assert( p->pLeft==0 ); 1051 assert( p->pRight==0 ); 1052 assert( p->x.pSelect==0 ); 1053 } 1054 #endif 1055 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1056 /* The Expr.x union is never used at the same time as Expr.pRight */ 1057 assert( p->x.pList==0 || p->pRight==0 ); 1058 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1059 if( p->pRight ){ 1060 sqlite3ExprDeleteNN(db, p->pRight); 1061 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1062 sqlite3SelectDelete(db, p->x.pSelect); 1063 }else{ 1064 sqlite3ExprListDelete(db, p->x.pList); 1065 } 1066 } 1067 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1068 if( !ExprHasProperty(p, EP_Static) ){ 1069 sqlite3DbFreeNN(db, p); 1070 } 1071 } 1072 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1073 if( p ) sqlite3ExprDeleteNN(db, p); 1074 } 1075 1076 /* 1077 ** Return the number of bytes allocated for the expression structure 1078 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1079 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1080 */ 1081 static int exprStructSize(Expr *p){ 1082 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1083 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1084 return EXPR_FULLSIZE; 1085 } 1086 1087 /* 1088 ** The dupedExpr*Size() routines each return the number of bytes required 1089 ** to store a copy of an expression or expression tree. They differ in 1090 ** how much of the tree is measured. 1091 ** 1092 ** dupedExprStructSize() Size of only the Expr structure 1093 ** dupedExprNodeSize() Size of Expr + space for token 1094 ** dupedExprSize() Expr + token + subtree components 1095 ** 1096 *************************************************************************** 1097 ** 1098 ** The dupedExprStructSize() function returns two values OR-ed together: 1099 ** (1) the space required for a copy of the Expr structure only and 1100 ** (2) the EP_xxx flags that indicate what the structure size should be. 1101 ** The return values is always one of: 1102 ** 1103 ** EXPR_FULLSIZE 1104 ** EXPR_REDUCEDSIZE | EP_Reduced 1105 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1106 ** 1107 ** The size of the structure can be found by masking the return value 1108 ** of this routine with 0xfff. The flags can be found by masking the 1109 ** return value with EP_Reduced|EP_TokenOnly. 1110 ** 1111 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1112 ** (unreduced) Expr objects as they or originally constructed by the parser. 1113 ** During expression analysis, extra information is computed and moved into 1114 ** later parts of teh Expr object and that extra information might get chopped 1115 ** off if the expression is reduced. Note also that it does not work to 1116 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1117 ** to reduce a pristine expression tree from the parser. The implementation 1118 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1119 ** to enforce this constraint. 1120 */ 1121 static int dupedExprStructSize(Expr *p, int flags){ 1122 int nSize; 1123 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1124 assert( EXPR_FULLSIZE<=0xfff ); 1125 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1126 if( 0==flags || p->op==TK_SELECT_COLUMN ){ 1127 nSize = EXPR_FULLSIZE; 1128 }else{ 1129 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1130 assert( !ExprHasProperty(p, EP_FromJoin) ); 1131 assert( !ExprHasProperty(p, EP_MemToken) ); 1132 assert( !ExprHasProperty(p, EP_NoReduce) ); 1133 if( p->pLeft || p->x.pList ){ 1134 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1135 }else{ 1136 assert( p->pRight==0 ); 1137 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1138 } 1139 } 1140 return nSize; 1141 } 1142 1143 /* 1144 ** This function returns the space in bytes required to store the copy 1145 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1146 ** string is defined.) 1147 */ 1148 static int dupedExprNodeSize(Expr *p, int flags){ 1149 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1150 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1151 nByte += sqlite3Strlen30(p->u.zToken)+1; 1152 } 1153 return ROUND8(nByte); 1154 } 1155 1156 /* 1157 ** Return the number of bytes required to create a duplicate of the 1158 ** expression passed as the first argument. The second argument is a 1159 ** mask containing EXPRDUP_XXX flags. 1160 ** 1161 ** The value returned includes space to create a copy of the Expr struct 1162 ** itself and the buffer referred to by Expr.u.zToken, if any. 1163 ** 1164 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1165 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1166 ** and Expr.pRight variables (but not for any structures pointed to or 1167 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1168 */ 1169 static int dupedExprSize(Expr *p, int flags){ 1170 int nByte = 0; 1171 if( p ){ 1172 nByte = dupedExprNodeSize(p, flags); 1173 if( flags&EXPRDUP_REDUCE ){ 1174 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1175 } 1176 } 1177 return nByte; 1178 } 1179 1180 /* 1181 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1182 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1183 ** to store the copy of expression p, the copies of p->u.zToken 1184 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1185 ** if any. Before returning, *pzBuffer is set to the first byte past the 1186 ** portion of the buffer copied into by this function. 1187 */ 1188 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1189 Expr *pNew; /* Value to return */ 1190 u8 *zAlloc; /* Memory space from which to build Expr object */ 1191 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1192 1193 assert( db!=0 ); 1194 assert( p ); 1195 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1196 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1197 1198 /* Figure out where to write the new Expr structure. */ 1199 if( pzBuffer ){ 1200 zAlloc = *pzBuffer; 1201 staticFlag = EP_Static; 1202 }else{ 1203 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1204 staticFlag = 0; 1205 } 1206 pNew = (Expr *)zAlloc; 1207 1208 if( pNew ){ 1209 /* Set nNewSize to the size allocated for the structure pointed to 1210 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1211 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1212 ** by the copy of the p->u.zToken string (if any). 1213 */ 1214 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1215 const int nNewSize = nStructSize & 0xfff; 1216 int nToken; 1217 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1218 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1219 }else{ 1220 nToken = 0; 1221 } 1222 if( dupFlags ){ 1223 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1224 memcpy(zAlloc, p, nNewSize); 1225 }else{ 1226 u32 nSize = (u32)exprStructSize(p); 1227 memcpy(zAlloc, p, nSize); 1228 if( nSize<EXPR_FULLSIZE ){ 1229 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1230 } 1231 } 1232 1233 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1234 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1235 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1236 pNew->flags |= staticFlag; 1237 1238 /* Copy the p->u.zToken string, if any. */ 1239 if( nToken ){ 1240 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1241 memcpy(zToken, p->u.zToken, nToken); 1242 } 1243 1244 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1245 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1246 if( ExprHasProperty(p, EP_xIsSelect) ){ 1247 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1248 }else{ 1249 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1250 } 1251 } 1252 1253 /* Fill in pNew->pLeft and pNew->pRight. */ 1254 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 1255 zAlloc += dupedExprNodeSize(p, dupFlags); 1256 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1257 pNew->pLeft = p->pLeft ? 1258 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1259 pNew->pRight = p->pRight ? 1260 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1261 } 1262 if( pzBuffer ){ 1263 *pzBuffer = zAlloc; 1264 } 1265 }else{ 1266 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1267 if( pNew->op==TK_SELECT_COLUMN ){ 1268 pNew->pLeft = p->pLeft; 1269 assert( p->iColumn==0 || p->pRight==0 ); 1270 assert( p->pRight==0 || p->pRight==p->pLeft ); 1271 }else{ 1272 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1273 } 1274 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1275 } 1276 } 1277 } 1278 return pNew; 1279 } 1280 1281 /* 1282 ** Create and return a deep copy of the object passed as the second 1283 ** argument. If an OOM condition is encountered, NULL is returned 1284 ** and the db->mallocFailed flag set. 1285 */ 1286 #ifndef SQLITE_OMIT_CTE 1287 static With *withDup(sqlite3 *db, With *p){ 1288 With *pRet = 0; 1289 if( p ){ 1290 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1291 pRet = sqlite3DbMallocZero(db, nByte); 1292 if( pRet ){ 1293 int i; 1294 pRet->nCte = p->nCte; 1295 for(i=0; i<p->nCte; i++){ 1296 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1297 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1298 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1299 } 1300 } 1301 } 1302 return pRet; 1303 } 1304 #else 1305 # define withDup(x,y) 0 1306 #endif 1307 1308 /* 1309 ** The following group of routines make deep copies of expressions, 1310 ** expression lists, ID lists, and select statements. The copies can 1311 ** be deleted (by being passed to their respective ...Delete() routines) 1312 ** without effecting the originals. 1313 ** 1314 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1315 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1316 ** by subsequent calls to sqlite*ListAppend() routines. 1317 ** 1318 ** Any tables that the SrcList might point to are not duplicated. 1319 ** 1320 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1321 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1322 ** truncated version of the usual Expr structure that will be stored as 1323 ** part of the in-memory representation of the database schema. 1324 */ 1325 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1326 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1327 return p ? exprDup(db, p, flags, 0) : 0; 1328 } 1329 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1330 ExprList *pNew; 1331 struct ExprList_item *pItem, *pOldItem; 1332 int i; 1333 Expr *pPriorSelectCol = 0; 1334 assert( db!=0 ); 1335 if( p==0 ) return 0; 1336 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1337 if( pNew==0 ) return 0; 1338 pNew->nExpr = p->nExpr; 1339 pItem = pNew->a; 1340 pOldItem = p->a; 1341 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1342 Expr *pOldExpr = pOldItem->pExpr; 1343 Expr *pNewExpr; 1344 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1345 if( pOldExpr 1346 && pOldExpr->op==TK_SELECT_COLUMN 1347 && (pNewExpr = pItem->pExpr)!=0 1348 ){ 1349 assert( pNewExpr->iColumn==0 || i>0 ); 1350 if( pNewExpr->iColumn==0 ){ 1351 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1352 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1353 }else{ 1354 assert( i>0 ); 1355 assert( pItem[-1].pExpr!=0 ); 1356 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1357 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1358 pNewExpr->pLeft = pPriorSelectCol; 1359 } 1360 } 1361 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1362 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1363 pItem->sortOrder = pOldItem->sortOrder; 1364 pItem->done = 0; 1365 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1366 pItem->bSorterRef = pOldItem->bSorterRef; 1367 pItem->u = pOldItem->u; 1368 } 1369 return pNew; 1370 } 1371 1372 /* 1373 ** If cursors, triggers, views and subqueries are all omitted from 1374 ** the build, then none of the following routines, except for 1375 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1376 ** called with a NULL argument. 1377 */ 1378 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1379 || !defined(SQLITE_OMIT_SUBQUERY) 1380 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1381 SrcList *pNew; 1382 int i; 1383 int nByte; 1384 assert( db!=0 ); 1385 if( p==0 ) return 0; 1386 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1387 pNew = sqlite3DbMallocRawNN(db, nByte ); 1388 if( pNew==0 ) return 0; 1389 pNew->nSrc = pNew->nAlloc = p->nSrc; 1390 for(i=0; i<p->nSrc; i++){ 1391 struct SrcList_item *pNewItem = &pNew->a[i]; 1392 struct SrcList_item *pOldItem = &p->a[i]; 1393 Table *pTab; 1394 pNewItem->pSchema = pOldItem->pSchema; 1395 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1396 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1397 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1398 pNewItem->fg = pOldItem->fg; 1399 pNewItem->iCursor = pOldItem->iCursor; 1400 pNewItem->addrFillSub = pOldItem->addrFillSub; 1401 pNewItem->regReturn = pOldItem->regReturn; 1402 if( pNewItem->fg.isIndexedBy ){ 1403 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1404 } 1405 pNewItem->pIBIndex = pOldItem->pIBIndex; 1406 if( pNewItem->fg.isTabFunc ){ 1407 pNewItem->u1.pFuncArg = 1408 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1409 } 1410 pTab = pNewItem->pTab = pOldItem->pTab; 1411 if( pTab ){ 1412 pTab->nTabRef++; 1413 } 1414 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1415 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1416 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1417 pNewItem->colUsed = pOldItem->colUsed; 1418 } 1419 return pNew; 1420 } 1421 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1422 IdList *pNew; 1423 int i; 1424 assert( db!=0 ); 1425 if( p==0 ) return 0; 1426 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1427 if( pNew==0 ) return 0; 1428 pNew->nId = p->nId; 1429 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1430 if( pNew->a==0 ){ 1431 sqlite3DbFreeNN(db, pNew); 1432 return 0; 1433 } 1434 /* Note that because the size of the allocation for p->a[] is not 1435 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1436 ** on the duplicate created by this function. */ 1437 for(i=0; i<p->nId; i++){ 1438 struct IdList_item *pNewItem = &pNew->a[i]; 1439 struct IdList_item *pOldItem = &p->a[i]; 1440 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1441 pNewItem->idx = pOldItem->idx; 1442 } 1443 return pNew; 1444 } 1445 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1446 Select *pRet = 0; 1447 Select *pNext = 0; 1448 Select **pp = &pRet; 1449 Select *p; 1450 1451 assert( db!=0 ); 1452 for(p=pDup; p; p=p->pPrior){ 1453 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1454 if( pNew==0 ) break; 1455 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1456 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1457 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1458 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1459 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1460 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1461 pNew->op = p->op; 1462 pNew->pNext = pNext; 1463 pNew->pPrior = 0; 1464 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1465 pNew->iLimit = 0; 1466 pNew->iOffset = 0; 1467 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1468 pNew->addrOpenEphm[0] = -1; 1469 pNew->addrOpenEphm[1] = -1; 1470 pNew->nSelectRow = p->nSelectRow; 1471 pNew->pWith = withDup(db, p->pWith); 1472 sqlite3SelectSetName(pNew, p->zSelName); 1473 *pp = pNew; 1474 pp = &pNew->pPrior; 1475 pNext = pNew; 1476 } 1477 1478 return pRet; 1479 } 1480 #else 1481 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1482 assert( p==0 ); 1483 return 0; 1484 } 1485 #endif 1486 1487 1488 /* 1489 ** Add a new element to the end of an expression list. If pList is 1490 ** initially NULL, then create a new expression list. 1491 ** 1492 ** The pList argument must be either NULL or a pointer to an ExprList 1493 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1494 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1495 ** Reason: This routine assumes that the number of slots in pList->a[] 1496 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1497 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1498 ** 1499 ** If a memory allocation error occurs, the entire list is freed and 1500 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1501 ** that the new entry was successfully appended. 1502 */ 1503 ExprList *sqlite3ExprListAppend( 1504 Parse *pParse, /* Parsing context */ 1505 ExprList *pList, /* List to which to append. Might be NULL */ 1506 Expr *pExpr /* Expression to be appended. Might be NULL */ 1507 ){ 1508 struct ExprList_item *pItem; 1509 sqlite3 *db = pParse->db; 1510 assert( db!=0 ); 1511 if( pList==0 ){ 1512 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1513 if( pList==0 ){ 1514 goto no_mem; 1515 } 1516 pList->nExpr = 0; 1517 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1518 ExprList *pNew; 1519 pNew = sqlite3DbRealloc(db, pList, 1520 sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0])); 1521 if( pNew==0 ){ 1522 goto no_mem; 1523 } 1524 pList = pNew; 1525 } 1526 pItem = &pList->a[pList->nExpr++]; 1527 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) ); 1528 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1529 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName)); 1530 pItem->pExpr = pExpr; 1531 return pList; 1532 1533 no_mem: 1534 /* Avoid leaking memory if malloc has failed. */ 1535 sqlite3ExprDelete(db, pExpr); 1536 sqlite3ExprListDelete(db, pList); 1537 return 0; 1538 } 1539 1540 /* 1541 ** pColumns and pExpr form a vector assignment which is part of the SET 1542 ** clause of an UPDATE statement. Like this: 1543 ** 1544 ** (a,b,c) = (expr1,expr2,expr3) 1545 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1546 ** 1547 ** For each term of the vector assignment, append new entries to the 1548 ** expression list pList. In the case of a subquery on the RHS, append 1549 ** TK_SELECT_COLUMN expressions. 1550 */ 1551 ExprList *sqlite3ExprListAppendVector( 1552 Parse *pParse, /* Parsing context */ 1553 ExprList *pList, /* List to which to append. Might be NULL */ 1554 IdList *pColumns, /* List of names of LHS of the assignment */ 1555 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1556 ){ 1557 sqlite3 *db = pParse->db; 1558 int n; 1559 int i; 1560 int iFirst = pList ? pList->nExpr : 0; 1561 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1562 ** exit prior to this routine being invoked */ 1563 if( NEVER(pColumns==0) ) goto vector_append_error; 1564 if( pExpr==0 ) goto vector_append_error; 1565 1566 /* If the RHS is a vector, then we can immediately check to see that 1567 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1568 ** wildcards ("*") in the result set of the SELECT must be expanded before 1569 ** we can do the size check, so defer the size check until code generation. 1570 */ 1571 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1572 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1573 pColumns->nId, n); 1574 goto vector_append_error; 1575 } 1576 1577 for(i=0; i<pColumns->nId; i++){ 1578 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1579 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1580 if( pList ){ 1581 assert( pList->nExpr==iFirst+i+1 ); 1582 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1583 pColumns->a[i].zName = 0; 1584 } 1585 } 1586 1587 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1588 Expr *pFirst = pList->a[iFirst].pExpr; 1589 assert( pFirst!=0 ); 1590 assert( pFirst->op==TK_SELECT_COLUMN ); 1591 1592 /* Store the SELECT statement in pRight so it will be deleted when 1593 ** sqlite3ExprListDelete() is called */ 1594 pFirst->pRight = pExpr; 1595 pExpr = 0; 1596 1597 /* Remember the size of the LHS in iTable so that we can check that 1598 ** the RHS and LHS sizes match during code generation. */ 1599 pFirst->iTable = pColumns->nId; 1600 } 1601 1602 vector_append_error: 1603 sqlite3ExprDelete(db, pExpr); 1604 sqlite3IdListDelete(db, pColumns); 1605 return pList; 1606 } 1607 1608 /* 1609 ** Set the sort order for the last element on the given ExprList. 1610 */ 1611 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1612 if( p==0 ) return; 1613 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1614 assert( p->nExpr>0 ); 1615 if( iSortOrder<0 ){ 1616 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1617 return; 1618 } 1619 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1620 } 1621 1622 /* 1623 ** Set the ExprList.a[].zName element of the most recently added item 1624 ** on the expression list. 1625 ** 1626 ** pList might be NULL following an OOM error. But pName should never be 1627 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1628 ** is set. 1629 */ 1630 void sqlite3ExprListSetName( 1631 Parse *pParse, /* Parsing context */ 1632 ExprList *pList, /* List to which to add the span. */ 1633 Token *pName, /* Name to be added */ 1634 int dequote /* True to cause the name to be dequoted */ 1635 ){ 1636 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1637 if( pList ){ 1638 struct ExprList_item *pItem; 1639 assert( pList->nExpr>0 ); 1640 pItem = &pList->a[pList->nExpr-1]; 1641 assert( pItem->zName==0 ); 1642 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1643 if( dequote ) sqlite3Dequote(pItem->zName); 1644 } 1645 } 1646 1647 /* 1648 ** Set the ExprList.a[].zSpan element of the most recently added item 1649 ** on the expression list. 1650 ** 1651 ** pList might be NULL following an OOM error. But pSpan should never be 1652 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1653 ** is set. 1654 */ 1655 void sqlite3ExprListSetSpan( 1656 Parse *pParse, /* Parsing context */ 1657 ExprList *pList, /* List to which to add the span. */ 1658 const char *zStart, /* Start of the span */ 1659 const char *zEnd /* End of the span */ 1660 ){ 1661 sqlite3 *db = pParse->db; 1662 assert( pList!=0 || db->mallocFailed!=0 ); 1663 if( pList ){ 1664 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1665 assert( pList->nExpr>0 ); 1666 sqlite3DbFree(db, pItem->zSpan); 1667 pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd); 1668 } 1669 } 1670 1671 /* 1672 ** If the expression list pEList contains more than iLimit elements, 1673 ** leave an error message in pParse. 1674 */ 1675 void sqlite3ExprListCheckLength( 1676 Parse *pParse, 1677 ExprList *pEList, 1678 const char *zObject 1679 ){ 1680 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1681 testcase( pEList && pEList->nExpr==mx ); 1682 testcase( pEList && pEList->nExpr==mx+1 ); 1683 if( pEList && pEList->nExpr>mx ){ 1684 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1685 } 1686 } 1687 1688 /* 1689 ** Delete an entire expression list. 1690 */ 1691 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1692 int i = pList->nExpr; 1693 struct ExprList_item *pItem = pList->a; 1694 assert( pList->nExpr>0 ); 1695 do{ 1696 sqlite3ExprDelete(db, pItem->pExpr); 1697 sqlite3DbFree(db, pItem->zName); 1698 sqlite3DbFree(db, pItem->zSpan); 1699 pItem++; 1700 }while( --i>0 ); 1701 sqlite3DbFreeNN(db, pList); 1702 } 1703 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1704 if( pList ) exprListDeleteNN(db, pList); 1705 } 1706 1707 /* 1708 ** Return the bitwise-OR of all Expr.flags fields in the given 1709 ** ExprList. 1710 */ 1711 u32 sqlite3ExprListFlags(const ExprList *pList){ 1712 int i; 1713 u32 m = 0; 1714 assert( pList!=0 ); 1715 for(i=0; i<pList->nExpr; i++){ 1716 Expr *pExpr = pList->a[i].pExpr; 1717 assert( pExpr!=0 ); 1718 m |= pExpr->flags; 1719 } 1720 return m; 1721 } 1722 1723 /* 1724 ** This is a SELECT-node callback for the expression walker that 1725 ** always "fails". By "fail" in this case, we mean set 1726 ** pWalker->eCode to zero and abort. 1727 ** 1728 ** This callback is used by multiple expression walkers. 1729 */ 1730 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1731 UNUSED_PARAMETER(NotUsed); 1732 pWalker->eCode = 0; 1733 return WRC_Abort; 1734 } 1735 1736 /* 1737 ** If the input expression is an ID with the name "true" or "false" 1738 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1739 ** the conversion happened, and zero if the expression is unaltered. 1740 */ 1741 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1742 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1743 if( sqlite3StrICmp(pExpr->u.zToken, "true")==0 1744 || sqlite3StrICmp(pExpr->u.zToken, "false")==0 1745 ){ 1746 pExpr->op = TK_TRUEFALSE; 1747 return 1; 1748 } 1749 return 0; 1750 } 1751 1752 /* 1753 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1754 ** and 0 if it is FALSE. 1755 */ 1756 int sqlite3ExprTruthValue(const Expr *pExpr){ 1757 assert( pExpr->op==TK_TRUEFALSE ); 1758 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1759 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1760 return pExpr->u.zToken[4]==0; 1761 } 1762 1763 1764 /* 1765 ** These routines are Walker callbacks used to check expressions to 1766 ** see if they are "constant" for some definition of constant. The 1767 ** Walker.eCode value determines the type of "constant" we are looking 1768 ** for. 1769 ** 1770 ** These callback routines are used to implement the following: 1771 ** 1772 ** sqlite3ExprIsConstant() pWalker->eCode==1 1773 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1774 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1775 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1776 ** 1777 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1778 ** is found to not be a constant. 1779 ** 1780 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1781 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1782 ** an existing schema and 4 when processing a new statement. A bound 1783 ** parameter raises an error for new statements, but is silently converted 1784 ** to NULL for existing schemas. This allows sqlite_master tables that 1785 ** contain a bound parameter because they were generated by older versions 1786 ** of SQLite to be parsed by newer versions of SQLite without raising a 1787 ** malformed schema error. 1788 */ 1789 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1790 1791 /* If pWalker->eCode is 2 then any term of the expression that comes from 1792 ** the ON or USING clauses of a left join disqualifies the expression 1793 ** from being considered constant. */ 1794 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1795 pWalker->eCode = 0; 1796 return WRC_Abort; 1797 } 1798 1799 switch( pExpr->op ){ 1800 /* Consider functions to be constant if all their arguments are constant 1801 ** and either pWalker->eCode==4 or 5 or the function has the 1802 ** SQLITE_FUNC_CONST flag. */ 1803 case TK_FUNCTION: 1804 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1805 return WRC_Continue; 1806 }else{ 1807 pWalker->eCode = 0; 1808 return WRC_Abort; 1809 } 1810 case TK_ID: 1811 /* Convert "true" or "false" in a DEFAULT clause into the 1812 ** appropriate TK_TRUEFALSE operator */ 1813 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 1814 return WRC_Prune; 1815 } 1816 /* Fall thru */ 1817 case TK_COLUMN: 1818 case TK_AGG_FUNCTION: 1819 case TK_AGG_COLUMN: 1820 testcase( pExpr->op==TK_ID ); 1821 testcase( pExpr->op==TK_COLUMN ); 1822 testcase( pExpr->op==TK_AGG_FUNCTION ); 1823 testcase( pExpr->op==TK_AGG_COLUMN ); 1824 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1825 return WRC_Continue; 1826 } 1827 /* Fall through */ 1828 case TK_IF_NULL_ROW: 1829 case TK_REGISTER: 1830 testcase( pExpr->op==TK_REGISTER ); 1831 testcase( pExpr->op==TK_IF_NULL_ROW ); 1832 pWalker->eCode = 0; 1833 return WRC_Abort; 1834 case TK_VARIABLE: 1835 if( pWalker->eCode==5 ){ 1836 /* Silently convert bound parameters that appear inside of CREATE 1837 ** statements into a NULL when parsing the CREATE statement text out 1838 ** of the sqlite_master table */ 1839 pExpr->op = TK_NULL; 1840 }else if( pWalker->eCode==4 ){ 1841 /* A bound parameter in a CREATE statement that originates from 1842 ** sqlite3_prepare() causes an error */ 1843 pWalker->eCode = 0; 1844 return WRC_Abort; 1845 } 1846 /* Fall through */ 1847 default: 1848 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 1849 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 1850 return WRC_Continue; 1851 } 1852 } 1853 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1854 Walker w; 1855 w.eCode = initFlag; 1856 w.xExprCallback = exprNodeIsConstant; 1857 w.xSelectCallback = sqlite3SelectWalkFail; 1858 #ifdef SQLITE_DEBUG 1859 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1860 #endif 1861 w.u.iCur = iCur; 1862 sqlite3WalkExpr(&w, p); 1863 return w.eCode; 1864 } 1865 1866 /* 1867 ** Walk an expression tree. Return non-zero if the expression is constant 1868 ** and 0 if it involves variables or function calls. 1869 ** 1870 ** For the purposes of this function, a double-quoted string (ex: "abc") 1871 ** is considered a variable but a single-quoted string (ex: 'abc') is 1872 ** a constant. 1873 */ 1874 int sqlite3ExprIsConstant(Expr *p){ 1875 return exprIsConst(p, 1, 0); 1876 } 1877 1878 /* 1879 ** Walk an expression tree. Return non-zero if the expression is constant 1880 ** that does no originate from the ON or USING clauses of a join. 1881 ** Return 0 if it involves variables or function calls or terms from 1882 ** an ON or USING clause. 1883 */ 1884 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1885 return exprIsConst(p, 2, 0); 1886 } 1887 1888 /* 1889 ** Walk an expression tree. Return non-zero if the expression is constant 1890 ** for any single row of the table with cursor iCur. In other words, the 1891 ** expression must not refer to any non-deterministic function nor any 1892 ** table other than iCur. 1893 */ 1894 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1895 return exprIsConst(p, 3, iCur); 1896 } 1897 1898 1899 /* 1900 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 1901 */ 1902 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 1903 ExprList *pGroupBy = pWalker->u.pGroupBy; 1904 int i; 1905 1906 /* Check if pExpr is identical to any GROUP BY term. If so, consider 1907 ** it constant. */ 1908 for(i=0; i<pGroupBy->nExpr; i++){ 1909 Expr *p = pGroupBy->a[i].pExpr; 1910 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 1911 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 1912 if( sqlite3_stricmp("BINARY", pColl->zName)==0 ){ 1913 return WRC_Prune; 1914 } 1915 } 1916 } 1917 1918 /* Check if pExpr is a sub-select. If so, consider it variable. */ 1919 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1920 pWalker->eCode = 0; 1921 return WRC_Abort; 1922 } 1923 1924 return exprNodeIsConstant(pWalker, pExpr); 1925 } 1926 1927 /* 1928 ** Walk the expression tree passed as the first argument. Return non-zero 1929 ** if the expression consists entirely of constants or copies of terms 1930 ** in pGroupBy that sort with the BINARY collation sequence. 1931 ** 1932 ** This routine is used to determine if a term of the HAVING clause can 1933 ** be promoted into the WHERE clause. In order for such a promotion to work, 1934 ** the value of the HAVING clause term must be the same for all members of 1935 ** a "group". The requirement that the GROUP BY term must be BINARY 1936 ** assumes that no other collating sequence will have a finer-grained 1937 ** grouping than binary. In other words (A=B COLLATE binary) implies 1938 ** A=B in every other collating sequence. The requirement that the 1939 ** GROUP BY be BINARY is stricter than necessary. It would also work 1940 ** to promote HAVING clauses that use the same alternative collating 1941 ** sequence as the GROUP BY term, but that is much harder to check, 1942 ** alternative collating sequences are uncommon, and this is only an 1943 ** optimization, so we take the easy way out and simply require the 1944 ** GROUP BY to use the BINARY collating sequence. 1945 */ 1946 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 1947 Walker w; 1948 w.eCode = 1; 1949 w.xExprCallback = exprNodeIsConstantOrGroupBy; 1950 w.xSelectCallback = 0; 1951 w.u.pGroupBy = pGroupBy; 1952 w.pParse = pParse; 1953 sqlite3WalkExpr(&w, p); 1954 return w.eCode; 1955 } 1956 1957 /* 1958 ** Walk an expression tree. Return non-zero if the expression is constant 1959 ** or a function call with constant arguments. Return and 0 if there 1960 ** are any variables. 1961 ** 1962 ** For the purposes of this function, a double-quoted string (ex: "abc") 1963 ** is considered a variable but a single-quoted string (ex: 'abc') is 1964 ** a constant. 1965 */ 1966 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1967 assert( isInit==0 || isInit==1 ); 1968 return exprIsConst(p, 4+isInit, 0); 1969 } 1970 1971 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1972 /* 1973 ** Walk an expression tree. Return 1 if the expression contains a 1974 ** subquery of some kind. Return 0 if there are no subqueries. 1975 */ 1976 int sqlite3ExprContainsSubquery(Expr *p){ 1977 Walker w; 1978 w.eCode = 1; 1979 w.xExprCallback = sqlite3ExprWalkNoop; 1980 w.xSelectCallback = sqlite3SelectWalkFail; 1981 #ifdef SQLITE_DEBUG 1982 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1983 #endif 1984 sqlite3WalkExpr(&w, p); 1985 return w.eCode==0; 1986 } 1987 #endif 1988 1989 /* 1990 ** If the expression p codes a constant integer that is small enough 1991 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1992 ** in *pValue. If the expression is not an integer or if it is too big 1993 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1994 */ 1995 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1996 int rc = 0; 1997 if( p==0 ) return 0; /* Can only happen following on OOM */ 1998 1999 /* If an expression is an integer literal that fits in a signed 32-bit 2000 ** integer, then the EP_IntValue flag will have already been set */ 2001 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2002 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2003 2004 if( p->flags & EP_IntValue ){ 2005 *pValue = p->u.iValue; 2006 return 1; 2007 } 2008 switch( p->op ){ 2009 case TK_UPLUS: { 2010 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2011 break; 2012 } 2013 case TK_UMINUS: { 2014 int v; 2015 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2016 assert( v!=(-2147483647-1) ); 2017 *pValue = -v; 2018 rc = 1; 2019 } 2020 break; 2021 } 2022 default: break; 2023 } 2024 return rc; 2025 } 2026 2027 /* 2028 ** Return FALSE if there is no chance that the expression can be NULL. 2029 ** 2030 ** If the expression might be NULL or if the expression is too complex 2031 ** to tell return TRUE. 2032 ** 2033 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2034 ** when we know that a value cannot be NULL. Hence, a false positive 2035 ** (returning TRUE when in fact the expression can never be NULL) might 2036 ** be a small performance hit but is otherwise harmless. On the other 2037 ** hand, a false negative (returning FALSE when the result could be NULL) 2038 ** will likely result in an incorrect answer. So when in doubt, return 2039 ** TRUE. 2040 */ 2041 int sqlite3ExprCanBeNull(const Expr *p){ 2042 u8 op; 2043 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 2044 op = p->op; 2045 if( op==TK_REGISTER ) op = p->op2; 2046 switch( op ){ 2047 case TK_INTEGER: 2048 case TK_STRING: 2049 case TK_FLOAT: 2050 case TK_BLOB: 2051 return 0; 2052 case TK_COLUMN: 2053 return ExprHasProperty(p, EP_CanBeNull) || 2054 p->pTab==0 || /* Reference to column of index on expression */ 2055 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 2056 default: 2057 return 1; 2058 } 2059 } 2060 2061 /* 2062 ** Return TRUE if the given expression is a constant which would be 2063 ** unchanged by OP_Affinity with the affinity given in the second 2064 ** argument. 2065 ** 2066 ** This routine is used to determine if the OP_Affinity operation 2067 ** can be omitted. When in doubt return FALSE. A false negative 2068 ** is harmless. A false positive, however, can result in the wrong 2069 ** answer. 2070 */ 2071 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2072 u8 op; 2073 if( aff==SQLITE_AFF_BLOB ) return 1; 2074 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 2075 op = p->op; 2076 if( op==TK_REGISTER ) op = p->op2; 2077 switch( op ){ 2078 case TK_INTEGER: { 2079 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 2080 } 2081 case TK_FLOAT: { 2082 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 2083 } 2084 case TK_STRING: { 2085 return aff==SQLITE_AFF_TEXT; 2086 } 2087 case TK_BLOB: { 2088 return 1; 2089 } 2090 case TK_COLUMN: { 2091 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2092 return p->iColumn<0 2093 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 2094 } 2095 default: { 2096 return 0; 2097 } 2098 } 2099 } 2100 2101 /* 2102 ** Return TRUE if the given string is a row-id column name. 2103 */ 2104 int sqlite3IsRowid(const char *z){ 2105 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2106 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2107 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2108 return 0; 2109 } 2110 2111 /* 2112 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2113 ** that can be simplified to a direct table access, then return 2114 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2115 ** or if the SELECT statement needs to be manifested into a transient 2116 ** table, then return NULL. 2117 */ 2118 #ifndef SQLITE_OMIT_SUBQUERY 2119 static Select *isCandidateForInOpt(Expr *pX){ 2120 Select *p; 2121 SrcList *pSrc; 2122 ExprList *pEList; 2123 Table *pTab; 2124 int i; 2125 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2126 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2127 p = pX->x.pSelect; 2128 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2129 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2130 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2131 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2132 return 0; /* No DISTINCT keyword and no aggregate functions */ 2133 } 2134 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2135 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2136 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2137 pSrc = p->pSrc; 2138 assert( pSrc!=0 ); 2139 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2140 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2141 pTab = pSrc->a[0].pTab; 2142 assert( pTab!=0 ); 2143 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2144 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2145 pEList = p->pEList; 2146 assert( pEList!=0 ); 2147 /* All SELECT results must be columns. */ 2148 for(i=0; i<pEList->nExpr; i++){ 2149 Expr *pRes = pEList->a[i].pExpr; 2150 if( pRes->op!=TK_COLUMN ) return 0; 2151 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2152 } 2153 return p; 2154 } 2155 #endif /* SQLITE_OMIT_SUBQUERY */ 2156 2157 #ifndef SQLITE_OMIT_SUBQUERY 2158 /* 2159 ** Generate code that checks the left-most column of index table iCur to see if 2160 ** it contains any NULL entries. Cause the register at regHasNull to be set 2161 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2162 ** to be set to NULL if iCur contains one or more NULL values. 2163 */ 2164 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2165 int addr1; 2166 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2167 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2168 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2169 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2170 VdbeComment((v, "first_entry_in(%d)", iCur)); 2171 sqlite3VdbeJumpHere(v, addr1); 2172 } 2173 #endif 2174 2175 2176 #ifndef SQLITE_OMIT_SUBQUERY 2177 /* 2178 ** The argument is an IN operator with a list (not a subquery) on the 2179 ** right-hand side. Return TRUE if that list is constant. 2180 */ 2181 static int sqlite3InRhsIsConstant(Expr *pIn){ 2182 Expr *pLHS; 2183 int res; 2184 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2185 pLHS = pIn->pLeft; 2186 pIn->pLeft = 0; 2187 res = sqlite3ExprIsConstant(pIn); 2188 pIn->pLeft = pLHS; 2189 return res; 2190 } 2191 #endif 2192 2193 /* 2194 ** This function is used by the implementation of the IN (...) operator. 2195 ** The pX parameter is the expression on the RHS of the IN operator, which 2196 ** might be either a list of expressions or a subquery. 2197 ** 2198 ** The job of this routine is to find or create a b-tree object that can 2199 ** be used either to test for membership in the RHS set or to iterate through 2200 ** all members of the RHS set, skipping duplicates. 2201 ** 2202 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2203 ** and pX->iTable is set to the index of that cursor. 2204 ** 2205 ** The returned value of this function indicates the b-tree type, as follows: 2206 ** 2207 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2208 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2209 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2210 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2211 ** populated epheremal table. 2212 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2213 ** implemented as a sequence of comparisons. 2214 ** 2215 ** An existing b-tree might be used if the RHS expression pX is a simple 2216 ** subquery such as: 2217 ** 2218 ** SELECT <column1>, <column2>... FROM <table> 2219 ** 2220 ** If the RHS of the IN operator is a list or a more complex subquery, then 2221 ** an ephemeral table might need to be generated from the RHS and then 2222 ** pX->iTable made to point to the ephemeral table instead of an 2223 ** existing table. 2224 ** 2225 ** The inFlags parameter must contain, at a minimum, one of the bits 2226 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2227 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2228 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2229 ** be used to loop over all values of the RHS of the IN operator. 2230 ** 2231 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2232 ** through the set members) then the b-tree must not contain duplicates. 2233 ** An epheremal table will be created unless the selected columns are guaranteed 2234 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2235 ** a UNIQUE constraint or index. 2236 ** 2237 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2238 ** for fast set membership tests) then an epheremal table must 2239 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2240 ** index can be found with the specified <columns> as its left-most. 2241 ** 2242 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2243 ** if the RHS of the IN operator is a list (not a subquery) then this 2244 ** routine might decide that creating an ephemeral b-tree for membership 2245 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2246 ** calling routine should implement the IN operator using a sequence 2247 ** of Eq or Ne comparison operations. 2248 ** 2249 ** When the b-tree is being used for membership tests, the calling function 2250 ** might need to know whether or not the RHS side of the IN operator 2251 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2252 ** if there is any chance that the (...) might contain a NULL value at 2253 ** runtime, then a register is allocated and the register number written 2254 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2255 ** NULL value, then *prRhsHasNull is left unchanged. 2256 ** 2257 ** If a register is allocated and its location stored in *prRhsHasNull, then 2258 ** the value in that register will be NULL if the b-tree contains one or more 2259 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2260 ** NULL values. 2261 ** 2262 ** If the aiMap parameter is not NULL, it must point to an array containing 2263 ** one element for each column returned by the SELECT statement on the RHS 2264 ** of the IN(...) operator. The i'th entry of the array is populated with the 2265 ** offset of the index column that matches the i'th column returned by the 2266 ** SELECT. For example, if the expression and selected index are: 2267 ** 2268 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2269 ** CREATE INDEX i1 ON t1(b, c, a); 2270 ** 2271 ** then aiMap[] is populated with {2, 0, 1}. 2272 */ 2273 #ifndef SQLITE_OMIT_SUBQUERY 2274 int sqlite3FindInIndex( 2275 Parse *pParse, /* Parsing context */ 2276 Expr *pX, /* The right-hand side (RHS) of the IN operator */ 2277 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2278 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2279 int *aiMap /* Mapping from Index fields to RHS fields */ 2280 ){ 2281 Select *p; /* SELECT to the right of IN operator */ 2282 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2283 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2284 int mustBeUnique; /* True if RHS must be unique */ 2285 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2286 2287 assert( pX->op==TK_IN ); 2288 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2289 2290 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2291 ** whether or not the SELECT result contains NULL values, check whether 2292 ** or not NULL is actually possible (it may not be, for example, due 2293 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2294 ** set prRhsHasNull to 0 before continuing. */ 2295 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2296 int i; 2297 ExprList *pEList = pX->x.pSelect->pEList; 2298 for(i=0; i<pEList->nExpr; i++){ 2299 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2300 } 2301 if( i==pEList->nExpr ){ 2302 prRhsHasNull = 0; 2303 } 2304 } 2305 2306 /* Check to see if an existing table or index can be used to 2307 ** satisfy the query. This is preferable to generating a new 2308 ** ephemeral table. */ 2309 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2310 sqlite3 *db = pParse->db; /* Database connection */ 2311 Table *pTab; /* Table <table>. */ 2312 i16 iDb; /* Database idx for pTab */ 2313 ExprList *pEList = p->pEList; 2314 int nExpr = pEList->nExpr; 2315 2316 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2317 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2318 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2319 pTab = p->pSrc->a[0].pTab; 2320 2321 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2322 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2323 sqlite3CodeVerifySchema(pParse, iDb); 2324 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2325 2326 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2327 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2328 /* The "x IN (SELECT rowid FROM table)" case */ 2329 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2330 VdbeCoverage(v); 2331 2332 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2333 eType = IN_INDEX_ROWID; 2334 2335 sqlite3VdbeJumpHere(v, iAddr); 2336 }else{ 2337 Index *pIdx; /* Iterator variable */ 2338 int affinity_ok = 1; 2339 int i; 2340 2341 /* Check that the affinity that will be used to perform each 2342 ** comparison is the same as the affinity of each column in table 2343 ** on the RHS of the IN operator. If it not, it is not possible to 2344 ** use any index of the RHS table. */ 2345 for(i=0; i<nExpr && affinity_ok; i++){ 2346 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2347 int iCol = pEList->a[i].pExpr->iColumn; 2348 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2349 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2350 testcase( cmpaff==SQLITE_AFF_BLOB ); 2351 testcase( cmpaff==SQLITE_AFF_TEXT ); 2352 switch( cmpaff ){ 2353 case SQLITE_AFF_BLOB: 2354 break; 2355 case SQLITE_AFF_TEXT: 2356 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2357 ** other has no affinity and the other side is TEXT. Hence, 2358 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2359 ** and for the term on the LHS of the IN to have no affinity. */ 2360 assert( idxaff==SQLITE_AFF_TEXT ); 2361 break; 2362 default: 2363 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2364 } 2365 } 2366 2367 if( affinity_ok ){ 2368 /* Search for an existing index that will work for this IN operator */ 2369 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2370 Bitmask colUsed; /* Columns of the index used */ 2371 Bitmask mCol; /* Mask for the current column */ 2372 if( pIdx->nColumn<nExpr ) continue; 2373 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2374 ** BITMASK(nExpr) without overflowing */ 2375 testcase( pIdx->nColumn==BMS-2 ); 2376 testcase( pIdx->nColumn==BMS-1 ); 2377 if( pIdx->nColumn>=BMS-1 ) continue; 2378 if( mustBeUnique ){ 2379 if( pIdx->nKeyCol>nExpr 2380 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2381 ){ 2382 continue; /* This index is not unique over the IN RHS columns */ 2383 } 2384 } 2385 2386 colUsed = 0; /* Columns of index used so far */ 2387 for(i=0; i<nExpr; i++){ 2388 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2389 Expr *pRhs = pEList->a[i].pExpr; 2390 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2391 int j; 2392 2393 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2394 for(j=0; j<nExpr; j++){ 2395 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2396 assert( pIdx->azColl[j] ); 2397 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2398 continue; 2399 } 2400 break; 2401 } 2402 if( j==nExpr ) break; 2403 mCol = MASKBIT(j); 2404 if( mCol & colUsed ) break; /* Each column used only once */ 2405 colUsed |= mCol; 2406 if( aiMap ) aiMap[i] = j; 2407 } 2408 2409 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2410 if( colUsed==(MASKBIT(nExpr)-1) ){ 2411 /* If we reach this point, that means the index pIdx is usable */ 2412 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2413 ExplainQueryPlan((pParse, 0, 2414 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2415 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2416 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2417 VdbeComment((v, "%s", pIdx->zName)); 2418 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2419 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2420 2421 if( prRhsHasNull ){ 2422 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2423 i64 mask = (1<<nExpr)-1; 2424 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2425 iTab, 0, 0, (u8*)&mask, P4_INT64); 2426 #endif 2427 *prRhsHasNull = ++pParse->nMem; 2428 if( nExpr==1 ){ 2429 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2430 } 2431 } 2432 sqlite3VdbeJumpHere(v, iAddr); 2433 } 2434 } /* End loop over indexes */ 2435 } /* End if( affinity_ok ) */ 2436 } /* End if not an rowid index */ 2437 } /* End attempt to optimize using an index */ 2438 2439 /* If no preexisting index is available for the IN clause 2440 ** and IN_INDEX_NOOP is an allowed reply 2441 ** and the RHS of the IN operator is a list, not a subquery 2442 ** and the RHS is not constant or has two or fewer terms, 2443 ** then it is not worth creating an ephemeral table to evaluate 2444 ** the IN operator so return IN_INDEX_NOOP. 2445 */ 2446 if( eType==0 2447 && (inFlags & IN_INDEX_NOOP_OK) 2448 && !ExprHasProperty(pX, EP_xIsSelect) 2449 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2450 ){ 2451 eType = IN_INDEX_NOOP; 2452 } 2453 2454 if( eType==0 ){ 2455 /* Could not find an existing table or index to use as the RHS b-tree. 2456 ** We will have to generate an ephemeral table to do the job. 2457 */ 2458 u32 savedNQueryLoop = pParse->nQueryLoop; 2459 int rMayHaveNull = 0; 2460 eType = IN_INDEX_EPH; 2461 if( inFlags & IN_INDEX_LOOP ){ 2462 pParse->nQueryLoop = 0; 2463 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 2464 eType = IN_INDEX_ROWID; 2465 } 2466 }else if( prRhsHasNull ){ 2467 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2468 } 2469 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 2470 pParse->nQueryLoop = savedNQueryLoop; 2471 }else{ 2472 pX->iTable = iTab; 2473 } 2474 2475 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2476 int i, n; 2477 n = sqlite3ExprVectorSize(pX->pLeft); 2478 for(i=0; i<n; i++) aiMap[i] = i; 2479 } 2480 return eType; 2481 } 2482 #endif 2483 2484 #ifndef SQLITE_OMIT_SUBQUERY 2485 /* 2486 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2487 ** function allocates and returns a nul-terminated string containing 2488 ** the affinities to be used for each column of the comparison. 2489 ** 2490 ** It is the responsibility of the caller to ensure that the returned 2491 ** string is eventually freed using sqlite3DbFree(). 2492 */ 2493 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2494 Expr *pLeft = pExpr->pLeft; 2495 int nVal = sqlite3ExprVectorSize(pLeft); 2496 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2497 char *zRet; 2498 2499 assert( pExpr->op==TK_IN ); 2500 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2501 if( zRet ){ 2502 int i; 2503 for(i=0; i<nVal; i++){ 2504 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2505 char a = sqlite3ExprAffinity(pA); 2506 if( pSelect ){ 2507 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2508 }else{ 2509 zRet[i] = a; 2510 } 2511 } 2512 zRet[nVal] = '\0'; 2513 } 2514 return zRet; 2515 } 2516 #endif 2517 2518 #ifndef SQLITE_OMIT_SUBQUERY 2519 /* 2520 ** Load the Parse object passed as the first argument with an error 2521 ** message of the form: 2522 ** 2523 ** "sub-select returns N columns - expected M" 2524 */ 2525 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2526 const char *zFmt = "sub-select returns %d columns - expected %d"; 2527 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2528 } 2529 #endif 2530 2531 /* 2532 ** Expression pExpr is a vector that has been used in a context where 2533 ** it is not permitted. If pExpr is a sub-select vector, this routine 2534 ** loads the Parse object with a message of the form: 2535 ** 2536 ** "sub-select returns N columns - expected 1" 2537 ** 2538 ** Or, if it is a regular scalar vector: 2539 ** 2540 ** "row value misused" 2541 */ 2542 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2543 #ifndef SQLITE_OMIT_SUBQUERY 2544 if( pExpr->flags & EP_xIsSelect ){ 2545 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2546 }else 2547 #endif 2548 { 2549 sqlite3ErrorMsg(pParse, "row value misused"); 2550 } 2551 } 2552 2553 /* 2554 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 2555 ** or IN operators. Examples: 2556 ** 2557 ** (SELECT a FROM b) -- subquery 2558 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2559 ** x IN (4,5,11) -- IN operator with list on right-hand side 2560 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2561 ** 2562 ** The pExpr parameter describes the expression that contains the IN 2563 ** operator or subquery. 2564 ** 2565 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 2566 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 2567 ** to some integer key column of a table B-Tree. In this case, use an 2568 ** intkey B-Tree to store the set of IN(...) values instead of the usual 2569 ** (slower) variable length keys B-Tree. 2570 ** 2571 ** If rMayHaveNull is non-zero, that means that the operation is an IN 2572 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 2573 ** All this routine does is initialize the register given by rMayHaveNull 2574 ** to NULL. Calling routines will take care of changing this register 2575 ** value to non-NULL if the RHS is NULL-free. 2576 ** 2577 ** For a SELECT or EXISTS operator, return the register that holds the 2578 ** result. For a multi-column SELECT, the result is stored in a contiguous 2579 ** array of registers and the return value is the register of the left-most 2580 ** result column. Return 0 for IN operators or if an error occurs. 2581 */ 2582 #ifndef SQLITE_OMIT_SUBQUERY 2583 int sqlite3CodeSubselect( 2584 Parse *pParse, /* Parsing context */ 2585 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 2586 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 2587 int isRowid /* If true, LHS of IN operator is a rowid */ 2588 ){ 2589 int jmpIfDynamic = -1; /* One-time test address */ 2590 int rReg = 0; /* Register storing resulting */ 2591 Vdbe *v = sqlite3GetVdbe(pParse); 2592 if( NEVER(v==0) ) return 0; 2593 sqlite3ExprCachePush(pParse); 2594 2595 /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it 2596 ** is encountered if any of the following is true: 2597 ** 2598 ** * The right-hand side is a correlated subquery 2599 ** * The right-hand side is an expression list containing variables 2600 ** * We are inside a trigger 2601 ** 2602 ** If all of the above are false, then we can run this code just once 2603 ** save the results, and reuse the same result on subsequent invocations. 2604 */ 2605 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2606 jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2607 } 2608 2609 switch( pExpr->op ){ 2610 case TK_IN: { 2611 int addr; /* Address of OP_OpenEphemeral instruction */ 2612 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 2613 KeyInfo *pKeyInfo = 0; /* Key information */ 2614 int nVal; /* Size of vector pLeft */ 2615 2616 nVal = sqlite3ExprVectorSize(pLeft); 2617 assert( !isRowid || nVal==1 ); 2618 2619 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 2620 ** expression it is handled the same way. An ephemeral table is 2621 ** filled with index keys representing the results from the 2622 ** SELECT or the <exprlist>. 2623 ** 2624 ** If the 'x' expression is a column value, or the SELECT... 2625 ** statement returns a column value, then the affinity of that 2626 ** column is used to build the index keys. If both 'x' and the 2627 ** SELECT... statement are columns, then numeric affinity is used 2628 ** if either column has NUMERIC or INTEGER affinity. If neither 2629 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2630 ** is used. 2631 */ 2632 pExpr->iTable = pParse->nTab++; 2633 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, 2634 pExpr->iTable, (isRowid?0:nVal)); 2635 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2636 2637 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2638 /* Case 1: expr IN (SELECT ...) 2639 ** 2640 ** Generate code to write the results of the select into the temporary 2641 ** table allocated and opened above. 2642 */ 2643 Select *pSelect = pExpr->x.pSelect; 2644 ExprList *pEList = pSelect->pEList; 2645 2646 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY", 2647 jmpIfDynamic>=0?"":"CORRELATED " 2648 )); 2649 assert( !isRowid ); 2650 /* If the LHS and RHS of the IN operator do not match, that 2651 ** error will have been caught long before we reach this point. */ 2652 if( ALWAYS(pEList->nExpr==nVal) ){ 2653 SelectDest dest; 2654 int i; 2655 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 2656 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2657 pSelect->iLimit = 0; 2658 testcase( pSelect->selFlags & SF_Distinct ); 2659 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2660 if( sqlite3Select(pParse, pSelect, &dest) ){ 2661 sqlite3DbFree(pParse->db, dest.zAffSdst); 2662 sqlite3KeyInfoUnref(pKeyInfo); 2663 return 0; 2664 } 2665 sqlite3DbFree(pParse->db, dest.zAffSdst); 2666 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2667 assert( pEList!=0 ); 2668 assert( pEList->nExpr>0 ); 2669 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2670 for(i=0; i<nVal; i++){ 2671 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2672 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2673 pParse, p, pEList->a[i].pExpr 2674 ); 2675 } 2676 } 2677 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2678 /* Case 2: expr IN (exprlist) 2679 ** 2680 ** For each expression, build an index key from the evaluation and 2681 ** store it in the temporary table. If <expr> is a column, then use 2682 ** that columns affinity when building index keys. If <expr> is not 2683 ** a column, use numeric affinity. 2684 */ 2685 char affinity; /* Affinity of the LHS of the IN */ 2686 int i; 2687 ExprList *pList = pExpr->x.pList; 2688 struct ExprList_item *pItem; 2689 int r1, r2, r3; 2690 affinity = sqlite3ExprAffinity(pLeft); 2691 if( !affinity ){ 2692 affinity = SQLITE_AFF_BLOB; 2693 } 2694 if( pKeyInfo ){ 2695 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2696 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2697 } 2698 2699 /* Loop through each expression in <exprlist>. */ 2700 r1 = sqlite3GetTempReg(pParse); 2701 r2 = sqlite3GetTempReg(pParse); 2702 if( isRowid ) sqlite3VdbeAddOp4(v, OP_Blob, 0, r2, 0, "", P4_STATIC); 2703 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2704 Expr *pE2 = pItem->pExpr; 2705 int iValToIns; 2706 2707 /* If the expression is not constant then we will need to 2708 ** disable the test that was generated above that makes sure 2709 ** this code only executes once. Because for a non-constant 2710 ** expression we need to rerun this code each time. 2711 */ 2712 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 2713 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 2714 jmpIfDynamic = -1; 2715 } 2716 2717 /* Evaluate the expression and insert it into the temp table */ 2718 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 2719 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 2720 }else{ 2721 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2722 if( isRowid ){ 2723 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2724 sqlite3VdbeCurrentAddr(v)+2); 2725 VdbeCoverage(v); 2726 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 2727 }else{ 2728 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2729 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 2730 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1); 2731 } 2732 } 2733 } 2734 sqlite3ReleaseTempReg(pParse, r1); 2735 sqlite3ReleaseTempReg(pParse, r2); 2736 } 2737 if( pKeyInfo ){ 2738 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2739 } 2740 break; 2741 } 2742 2743 case TK_EXISTS: 2744 case TK_SELECT: 2745 default: { 2746 /* Case 3: (SELECT ... FROM ...) 2747 ** or: EXISTS(SELECT ... FROM ...) 2748 ** 2749 ** For a SELECT, generate code to put the values for all columns of 2750 ** the first row into an array of registers and return the index of 2751 ** the first register. 2752 ** 2753 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2754 ** into a register and return that register number. 2755 ** 2756 ** In both cases, the query is augmented with "LIMIT 1". Any 2757 ** preexisting limit is discarded in place of the new LIMIT 1. 2758 */ 2759 Select *pSel; /* SELECT statement to encode */ 2760 SelectDest dest; /* How to deal with SELECT result */ 2761 int nReg; /* Registers to allocate */ 2762 Expr *pLimit; /* New limit expression */ 2763 2764 testcase( pExpr->op==TK_EXISTS ); 2765 testcase( pExpr->op==TK_SELECT ); 2766 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2767 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2768 2769 pSel = pExpr->x.pSelect; 2770 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY", 2771 jmpIfDynamic>=0?"":"CORRELATED ")); 2772 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2773 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2774 pParse->nMem += nReg; 2775 if( pExpr->op==TK_SELECT ){ 2776 dest.eDest = SRT_Mem; 2777 dest.iSdst = dest.iSDParm; 2778 dest.nSdst = nReg; 2779 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2780 VdbeComment((v, "Init subquery result")); 2781 }else{ 2782 dest.eDest = SRT_Exists; 2783 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2784 VdbeComment((v, "Init EXISTS result")); 2785 } 2786 pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0); 2787 if( pSel->pLimit ){ 2788 sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft); 2789 pSel->pLimit->pLeft = pLimit; 2790 }else{ 2791 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 2792 } 2793 pSel->iLimit = 0; 2794 if( sqlite3Select(pParse, pSel, &dest) ){ 2795 return 0; 2796 } 2797 rReg = dest.iSDParm; 2798 ExprSetVVAProperty(pExpr, EP_NoReduce); 2799 break; 2800 } 2801 } 2802 2803 if( rHasNullFlag ){ 2804 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2805 } 2806 2807 if( jmpIfDynamic>=0 ){ 2808 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2809 } 2810 sqlite3ExprCachePop(pParse); 2811 2812 return rReg; 2813 } 2814 #endif /* SQLITE_OMIT_SUBQUERY */ 2815 2816 #ifndef SQLITE_OMIT_SUBQUERY 2817 /* 2818 ** Expr pIn is an IN(...) expression. This function checks that the 2819 ** sub-select on the RHS of the IN() operator has the same number of 2820 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 2821 ** a sub-query, that the LHS is a vector of size 1. 2822 */ 2823 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 2824 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 2825 if( (pIn->flags & EP_xIsSelect) ){ 2826 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 2827 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 2828 return 1; 2829 } 2830 }else if( nVector!=1 ){ 2831 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 2832 return 1; 2833 } 2834 return 0; 2835 } 2836 #endif 2837 2838 #ifndef SQLITE_OMIT_SUBQUERY 2839 /* 2840 ** Generate code for an IN expression. 2841 ** 2842 ** x IN (SELECT ...) 2843 ** x IN (value, value, ...) 2844 ** 2845 ** The left-hand side (LHS) is a scalar or vector expression. The 2846 ** right-hand side (RHS) is an array of zero or more scalar values, or a 2847 ** subquery. If the RHS is a subquery, the number of result columns must 2848 ** match the number of columns in the vector on the LHS. If the RHS is 2849 ** a list of values, the LHS must be a scalar. 2850 ** 2851 ** The IN operator is true if the LHS value is contained within the RHS. 2852 ** The result is false if the LHS is definitely not in the RHS. The 2853 ** result is NULL if the presence of the LHS in the RHS cannot be 2854 ** determined due to NULLs. 2855 ** 2856 ** This routine generates code that jumps to destIfFalse if the LHS is not 2857 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2858 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2859 ** within the RHS then fall through. 2860 ** 2861 ** See the separate in-operator.md documentation file in the canonical 2862 ** SQLite source tree for additional information. 2863 */ 2864 static void sqlite3ExprCodeIN( 2865 Parse *pParse, /* Parsing and code generating context */ 2866 Expr *pExpr, /* The IN expression */ 2867 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2868 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2869 ){ 2870 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2871 int eType; /* Type of the RHS */ 2872 int rLhs; /* Register(s) holding the LHS values */ 2873 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 2874 Vdbe *v; /* Statement under construction */ 2875 int *aiMap = 0; /* Map from vector field to index column */ 2876 char *zAff = 0; /* Affinity string for comparisons */ 2877 int nVector; /* Size of vectors for this IN operator */ 2878 int iDummy; /* Dummy parameter to exprCodeVector() */ 2879 Expr *pLeft; /* The LHS of the IN operator */ 2880 int i; /* loop counter */ 2881 int destStep2; /* Where to jump when NULLs seen in step 2 */ 2882 int destStep6 = 0; /* Start of code for Step 6 */ 2883 int addrTruthOp; /* Address of opcode that determines the IN is true */ 2884 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 2885 int addrTop; /* Top of the step-6 loop */ 2886 2887 pLeft = pExpr->pLeft; 2888 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 2889 zAff = exprINAffinity(pParse, pExpr); 2890 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 2891 aiMap = (int*)sqlite3DbMallocZero( 2892 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 2893 ); 2894 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 2895 2896 /* Attempt to compute the RHS. After this step, if anything other than 2897 ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable 2898 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 2899 ** the RHS has not yet been coded. */ 2900 v = pParse->pVdbe; 2901 assert( v!=0 ); /* OOM detected prior to this routine */ 2902 VdbeNoopComment((v, "begin IN expr")); 2903 eType = sqlite3FindInIndex(pParse, pExpr, 2904 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2905 destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap); 2906 2907 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 2908 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 2909 ); 2910 #ifdef SQLITE_DEBUG 2911 /* Confirm that aiMap[] contains nVector integer values between 0 and 2912 ** nVector-1. */ 2913 for(i=0; i<nVector; i++){ 2914 int j, cnt; 2915 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 2916 assert( cnt==1 ); 2917 } 2918 #endif 2919 2920 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 2921 ** vector, then it is stored in an array of nVector registers starting 2922 ** at r1. 2923 ** 2924 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 2925 ** so that the fields are in the same order as an existing index. The 2926 ** aiMap[] array contains a mapping from the original LHS field order to 2927 ** the field order that matches the RHS index. 2928 */ 2929 sqlite3ExprCachePush(pParse); 2930 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 2931 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 2932 if( i==nVector ){ 2933 /* LHS fields are not reordered */ 2934 rLhs = rLhsOrig; 2935 }else{ 2936 /* Need to reorder the LHS fields according to aiMap */ 2937 rLhs = sqlite3GetTempRange(pParse, nVector); 2938 for(i=0; i<nVector; i++){ 2939 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 2940 } 2941 } 2942 2943 /* If sqlite3FindInIndex() did not find or create an index that is 2944 ** suitable for evaluating the IN operator, then evaluate using a 2945 ** sequence of comparisons. 2946 ** 2947 ** This is step (1) in the in-operator.md optimized algorithm. 2948 */ 2949 if( eType==IN_INDEX_NOOP ){ 2950 ExprList *pList = pExpr->x.pList; 2951 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2952 int labelOk = sqlite3VdbeMakeLabel(v); 2953 int r2, regToFree; 2954 int regCkNull = 0; 2955 int ii; 2956 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2957 if( destIfNull!=destIfFalse ){ 2958 regCkNull = sqlite3GetTempReg(pParse); 2959 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 2960 } 2961 for(ii=0; ii<pList->nExpr; ii++){ 2962 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2963 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2964 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2965 } 2966 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2967 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 2968 (void*)pColl, P4_COLLSEQ); 2969 VdbeCoverageIf(v, ii<pList->nExpr-1); 2970 VdbeCoverageIf(v, ii==pList->nExpr-1); 2971 sqlite3VdbeChangeP5(v, zAff[0]); 2972 }else{ 2973 assert( destIfNull==destIfFalse ); 2974 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 2975 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2976 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 2977 } 2978 sqlite3ReleaseTempReg(pParse, regToFree); 2979 } 2980 if( regCkNull ){ 2981 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2982 sqlite3VdbeGoto(v, destIfFalse); 2983 } 2984 sqlite3VdbeResolveLabel(v, labelOk); 2985 sqlite3ReleaseTempReg(pParse, regCkNull); 2986 goto sqlite3ExprCodeIN_finished; 2987 } 2988 2989 /* Step 2: Check to see if the LHS contains any NULL columns. If the 2990 ** LHS does contain NULLs then the result must be either FALSE or NULL. 2991 ** We will then skip the binary search of the RHS. 2992 */ 2993 if( destIfNull==destIfFalse ){ 2994 destStep2 = destIfFalse; 2995 }else{ 2996 destStep2 = destStep6 = sqlite3VdbeMakeLabel(v); 2997 } 2998 for(i=0; i<nVector; i++){ 2999 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3000 if( sqlite3ExprCanBeNull(p) ){ 3001 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3002 VdbeCoverage(v); 3003 } 3004 } 3005 3006 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3007 ** of the RHS using the LHS as a probe. If found, the result is 3008 ** true. 3009 */ 3010 if( eType==IN_INDEX_ROWID ){ 3011 /* In this case, the RHS is the ROWID of table b-tree and so we also 3012 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3013 ** into a single opcode. */ 3014 sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs); 3015 VdbeCoverage(v); 3016 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3017 }else{ 3018 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3019 if( destIfFalse==destIfNull ){ 3020 /* Combine Step 3 and Step 5 into a single opcode */ 3021 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, 3022 rLhs, nVector); VdbeCoverage(v); 3023 goto sqlite3ExprCodeIN_finished; 3024 } 3025 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3026 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, 3027 rLhs, nVector); VdbeCoverage(v); 3028 } 3029 3030 /* Step 4. If the RHS is known to be non-NULL and we did not find 3031 ** an match on the search above, then the result must be FALSE. 3032 */ 3033 if( rRhsHasNull && nVector==1 ){ 3034 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3035 VdbeCoverage(v); 3036 } 3037 3038 /* Step 5. If we do not care about the difference between NULL and 3039 ** FALSE, then just return false. 3040 */ 3041 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3042 3043 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3044 ** If any comparison is NULL, then the result is NULL. If all 3045 ** comparisons are FALSE then the final result is FALSE. 3046 ** 3047 ** For a scalar LHS, it is sufficient to check just the first row 3048 ** of the RHS. 3049 */ 3050 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3051 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 3052 VdbeCoverage(v); 3053 if( nVector>1 ){ 3054 destNotNull = sqlite3VdbeMakeLabel(v); 3055 }else{ 3056 /* For nVector==1, combine steps 6 and 7 by immediately returning 3057 ** FALSE if the first comparison is not NULL */ 3058 destNotNull = destIfFalse; 3059 } 3060 for(i=0; i<nVector; i++){ 3061 Expr *p; 3062 CollSeq *pColl; 3063 int r3 = sqlite3GetTempReg(pParse); 3064 p = sqlite3VectorFieldSubexpr(pLeft, i); 3065 pColl = sqlite3ExprCollSeq(pParse, p); 3066 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3); 3067 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3068 (void*)pColl, P4_COLLSEQ); 3069 VdbeCoverage(v); 3070 sqlite3ReleaseTempReg(pParse, r3); 3071 } 3072 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3073 if( nVector>1 ){ 3074 sqlite3VdbeResolveLabel(v, destNotNull); 3075 sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1); 3076 VdbeCoverage(v); 3077 3078 /* Step 7: If we reach this point, we know that the result must 3079 ** be false. */ 3080 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3081 } 3082 3083 /* Jumps here in order to return true. */ 3084 sqlite3VdbeJumpHere(v, addrTruthOp); 3085 3086 sqlite3ExprCodeIN_finished: 3087 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3088 sqlite3ExprCachePop(pParse); 3089 VdbeComment((v, "end IN expr")); 3090 sqlite3ExprCodeIN_oom_error: 3091 sqlite3DbFree(pParse->db, aiMap); 3092 sqlite3DbFree(pParse->db, zAff); 3093 } 3094 #endif /* SQLITE_OMIT_SUBQUERY */ 3095 3096 #ifndef SQLITE_OMIT_FLOATING_POINT 3097 /* 3098 ** Generate an instruction that will put the floating point 3099 ** value described by z[0..n-1] into register iMem. 3100 ** 3101 ** The z[] string will probably not be zero-terminated. But the 3102 ** z[n] character is guaranteed to be something that does not look 3103 ** like the continuation of the number. 3104 */ 3105 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3106 if( ALWAYS(z!=0) ){ 3107 double value; 3108 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3109 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3110 if( negateFlag ) value = -value; 3111 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3112 } 3113 } 3114 #endif 3115 3116 3117 /* 3118 ** Generate an instruction that will put the integer describe by 3119 ** text z[0..n-1] into register iMem. 3120 ** 3121 ** Expr.u.zToken is always UTF8 and zero-terminated. 3122 */ 3123 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3124 Vdbe *v = pParse->pVdbe; 3125 if( pExpr->flags & EP_IntValue ){ 3126 int i = pExpr->u.iValue; 3127 assert( i>=0 ); 3128 if( negFlag ) i = -i; 3129 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3130 }else{ 3131 int c; 3132 i64 value; 3133 const char *z = pExpr->u.zToken; 3134 assert( z!=0 ); 3135 c = sqlite3DecOrHexToI64(z, &value); 3136 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3137 #ifdef SQLITE_OMIT_FLOATING_POINT 3138 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3139 #else 3140 #ifndef SQLITE_OMIT_HEX_INTEGER 3141 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3142 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3143 }else 3144 #endif 3145 { 3146 codeReal(v, z, negFlag, iMem); 3147 } 3148 #endif 3149 }else{ 3150 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3151 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3152 } 3153 } 3154 } 3155 3156 /* 3157 ** Erase column-cache entry number i 3158 */ 3159 static void cacheEntryClear(Parse *pParse, int i){ 3160 if( pParse->aColCache[i].tempReg ){ 3161 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3162 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3163 } 3164 } 3165 pParse->nColCache--; 3166 if( i<pParse->nColCache ){ 3167 pParse->aColCache[i] = pParse->aColCache[pParse->nColCache]; 3168 } 3169 } 3170 3171 3172 /* 3173 ** Record in the column cache that a particular column from a 3174 ** particular table is stored in a particular register. 3175 */ 3176 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 3177 int i; 3178 int minLru; 3179 int idxLru; 3180 struct yColCache *p; 3181 3182 /* Unless an error has occurred, register numbers are always positive. */ 3183 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 3184 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 3185 3186 /* The SQLITE_ColumnCache flag disables the column cache. This is used 3187 ** for testing only - to verify that SQLite always gets the same answer 3188 ** with and without the column cache. 3189 */ 3190 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 3191 3192 /* First replace any existing entry. 3193 ** 3194 ** Actually, the way the column cache is currently used, we are guaranteed 3195 ** that the object will never already be in cache. Verify this guarantee. 3196 */ 3197 #ifndef NDEBUG 3198 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3199 assert( p->iTable!=iTab || p->iColumn!=iCol ); 3200 } 3201 #endif 3202 3203 /* If the cache is already full, delete the least recently used entry */ 3204 if( pParse->nColCache>=SQLITE_N_COLCACHE ){ 3205 minLru = 0x7fffffff; 3206 idxLru = -1; 3207 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 3208 if( p->lru<minLru ){ 3209 idxLru = i; 3210 minLru = p->lru; 3211 } 3212 } 3213 p = &pParse->aColCache[idxLru]; 3214 }else{ 3215 p = &pParse->aColCache[pParse->nColCache++]; 3216 } 3217 3218 /* Add the new entry to the end of the cache */ 3219 p->iLevel = pParse->iCacheLevel; 3220 p->iTable = iTab; 3221 p->iColumn = iCol; 3222 p->iReg = iReg; 3223 p->tempReg = 0; 3224 p->lru = pParse->iCacheCnt++; 3225 } 3226 3227 /* 3228 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 3229 ** Purge the range of registers from the column cache. 3230 */ 3231 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 3232 int i = 0; 3233 while( i<pParse->nColCache ){ 3234 struct yColCache *p = &pParse->aColCache[i]; 3235 if( p->iReg >= iReg && p->iReg < iReg+nReg ){ 3236 cacheEntryClear(pParse, i); 3237 }else{ 3238 i++; 3239 } 3240 } 3241 } 3242 3243 /* 3244 ** Remember the current column cache context. Any new entries added 3245 ** added to the column cache after this call are removed when the 3246 ** corresponding pop occurs. 3247 */ 3248 void sqlite3ExprCachePush(Parse *pParse){ 3249 pParse->iCacheLevel++; 3250 #ifdef SQLITE_DEBUG 3251 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3252 printf("PUSH to %d\n", pParse->iCacheLevel); 3253 } 3254 #endif 3255 } 3256 3257 /* 3258 ** Remove from the column cache any entries that were added since the 3259 ** the previous sqlite3ExprCachePush operation. In other words, restore 3260 ** the cache to the state it was in prior the most recent Push. 3261 */ 3262 void sqlite3ExprCachePop(Parse *pParse){ 3263 int i = 0; 3264 assert( pParse->iCacheLevel>=1 ); 3265 pParse->iCacheLevel--; 3266 #ifdef SQLITE_DEBUG 3267 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3268 printf("POP to %d\n", pParse->iCacheLevel); 3269 } 3270 #endif 3271 while( i<pParse->nColCache ){ 3272 if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){ 3273 cacheEntryClear(pParse, i); 3274 }else{ 3275 i++; 3276 } 3277 } 3278 } 3279 3280 /* 3281 ** When a cached column is reused, make sure that its register is 3282 ** no longer available as a temp register. ticket #3879: that same 3283 ** register might be in the cache in multiple places, so be sure to 3284 ** get them all. 3285 */ 3286 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 3287 int i; 3288 struct yColCache *p; 3289 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3290 if( p->iReg==iReg ){ 3291 p->tempReg = 0; 3292 } 3293 } 3294 } 3295 3296 /* Generate code that will load into register regOut a value that is 3297 ** appropriate for the iIdxCol-th column of index pIdx. 3298 */ 3299 void sqlite3ExprCodeLoadIndexColumn( 3300 Parse *pParse, /* The parsing context */ 3301 Index *pIdx, /* The index whose column is to be loaded */ 3302 int iTabCur, /* Cursor pointing to a table row */ 3303 int iIdxCol, /* The column of the index to be loaded */ 3304 int regOut /* Store the index column value in this register */ 3305 ){ 3306 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3307 if( iTabCol==XN_EXPR ){ 3308 assert( pIdx->aColExpr ); 3309 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3310 pParse->iSelfTab = iTabCur + 1; 3311 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3312 pParse->iSelfTab = 0; 3313 }else{ 3314 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3315 iTabCol, regOut); 3316 } 3317 } 3318 3319 /* 3320 ** Generate code to extract the value of the iCol-th column of a table. 3321 */ 3322 void sqlite3ExprCodeGetColumnOfTable( 3323 Vdbe *v, /* The VDBE under construction */ 3324 Table *pTab, /* The table containing the value */ 3325 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3326 int iCol, /* Index of the column to extract */ 3327 int regOut /* Extract the value into this register */ 3328 ){ 3329 if( pTab==0 ){ 3330 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3331 return; 3332 } 3333 if( iCol<0 || iCol==pTab->iPKey ){ 3334 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3335 }else{ 3336 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 3337 int x = iCol; 3338 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ 3339 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3340 } 3341 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3342 } 3343 if( iCol>=0 ){ 3344 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3345 } 3346 } 3347 3348 /* 3349 ** Generate code that will extract the iColumn-th column from 3350 ** table pTab and store the column value in a register. 3351 ** 3352 ** An effort is made to store the column value in register iReg. This 3353 ** is not garanteeed for GetColumn() - the result can be stored in 3354 ** any register. But the result is guaranteed to land in register iReg 3355 ** for GetColumnToReg(). 3356 ** 3357 ** There must be an open cursor to pTab in iTable when this routine 3358 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3359 */ 3360 int sqlite3ExprCodeGetColumn( 3361 Parse *pParse, /* Parsing and code generating context */ 3362 Table *pTab, /* Description of the table we are reading from */ 3363 int iColumn, /* Index of the table column */ 3364 int iTable, /* The cursor pointing to the table */ 3365 int iReg, /* Store results here */ 3366 u8 p5 /* P5 value for OP_Column + FLAGS */ 3367 ){ 3368 Vdbe *v = pParse->pVdbe; 3369 int i; 3370 struct yColCache *p; 3371 3372 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3373 if( p->iTable==iTable && p->iColumn==iColumn ){ 3374 p->lru = pParse->iCacheCnt++; 3375 sqlite3ExprCachePinRegister(pParse, p->iReg); 3376 return p->iReg; 3377 } 3378 } 3379 assert( v!=0 ); 3380 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 3381 if( p5 ){ 3382 sqlite3VdbeChangeP5(v, p5); 3383 }else{ 3384 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 3385 } 3386 return iReg; 3387 } 3388 void sqlite3ExprCodeGetColumnToReg( 3389 Parse *pParse, /* Parsing and code generating context */ 3390 Table *pTab, /* Description of the table we are reading from */ 3391 int iColumn, /* Index of the table column */ 3392 int iTable, /* The cursor pointing to the table */ 3393 int iReg /* Store results here */ 3394 ){ 3395 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); 3396 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); 3397 } 3398 3399 3400 /* 3401 ** Clear all column cache entries. 3402 */ 3403 void sqlite3ExprCacheClear(Parse *pParse){ 3404 int i; 3405 3406 #ifdef SQLITE_DEBUG 3407 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3408 printf("CLEAR\n"); 3409 } 3410 #endif 3411 for(i=0; i<pParse->nColCache; i++){ 3412 if( pParse->aColCache[i].tempReg 3413 && pParse->nTempReg<ArraySize(pParse->aTempReg) 3414 ){ 3415 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3416 } 3417 } 3418 pParse->nColCache = 0; 3419 } 3420 3421 /* 3422 ** Record the fact that an affinity change has occurred on iCount 3423 ** registers starting with iStart. 3424 */ 3425 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 3426 sqlite3ExprCacheRemove(pParse, iStart, iCount); 3427 } 3428 3429 /* 3430 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3431 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 3432 */ 3433 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3434 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 3435 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3436 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 3437 } 3438 3439 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 3440 /* 3441 ** Return true if any register in the range iFrom..iTo (inclusive) 3442 ** is used as part of the column cache. 3443 ** 3444 ** This routine is used within assert() and testcase() macros only 3445 ** and does not appear in a normal build. 3446 */ 3447 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 3448 int i; 3449 struct yColCache *p; 3450 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3451 int r = p->iReg; 3452 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 3453 } 3454 return 0; 3455 } 3456 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 3457 3458 3459 /* 3460 ** Convert a scalar expression node to a TK_REGISTER referencing 3461 ** register iReg. The caller must ensure that iReg already contains 3462 ** the correct value for the expression. 3463 */ 3464 static void exprToRegister(Expr *p, int iReg){ 3465 p->op2 = p->op; 3466 p->op = TK_REGISTER; 3467 p->iTable = iReg; 3468 ExprClearProperty(p, EP_Skip); 3469 } 3470 3471 /* 3472 ** Evaluate an expression (either a vector or a scalar expression) and store 3473 ** the result in continguous temporary registers. Return the index of 3474 ** the first register used to store the result. 3475 ** 3476 ** If the returned result register is a temporary scalar, then also write 3477 ** that register number into *piFreeable. If the returned result register 3478 ** is not a temporary or if the expression is a vector set *piFreeable 3479 ** to 0. 3480 */ 3481 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3482 int iResult; 3483 int nResult = sqlite3ExprVectorSize(p); 3484 if( nResult==1 ){ 3485 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3486 }else{ 3487 *piFreeable = 0; 3488 if( p->op==TK_SELECT ){ 3489 #if SQLITE_OMIT_SUBQUERY 3490 iResult = 0; 3491 #else 3492 iResult = sqlite3CodeSubselect(pParse, p, 0, 0); 3493 #endif 3494 }else{ 3495 int i; 3496 iResult = pParse->nMem+1; 3497 pParse->nMem += nResult; 3498 for(i=0; i<nResult; i++){ 3499 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3500 } 3501 } 3502 } 3503 return iResult; 3504 } 3505 3506 3507 /* 3508 ** Generate code into the current Vdbe to evaluate the given 3509 ** expression. Attempt to store the results in register "target". 3510 ** Return the register where results are stored. 3511 ** 3512 ** With this routine, there is no guarantee that results will 3513 ** be stored in target. The result might be stored in some other 3514 ** register if it is convenient to do so. The calling function 3515 ** must check the return code and move the results to the desired 3516 ** register. 3517 */ 3518 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3519 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3520 int op; /* The opcode being coded */ 3521 int inReg = target; /* Results stored in register inReg */ 3522 int regFree1 = 0; /* If non-zero free this temporary register */ 3523 int regFree2 = 0; /* If non-zero free this temporary register */ 3524 int r1, r2; /* Various register numbers */ 3525 Expr tempX; /* Temporary expression node */ 3526 int p5 = 0; 3527 3528 assert( target>0 && target<=pParse->nMem ); 3529 if( v==0 ){ 3530 assert( pParse->db->mallocFailed ); 3531 return 0; 3532 } 3533 3534 expr_code_doover: 3535 if( pExpr==0 ){ 3536 op = TK_NULL; 3537 }else{ 3538 op = pExpr->op; 3539 } 3540 switch( op ){ 3541 case TK_AGG_COLUMN: { 3542 AggInfo *pAggInfo = pExpr->pAggInfo; 3543 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3544 if( !pAggInfo->directMode ){ 3545 assert( pCol->iMem>0 ); 3546 return pCol->iMem; 3547 }else if( pAggInfo->useSortingIdx ){ 3548 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3549 pCol->iSorterColumn, target); 3550 return target; 3551 } 3552 /* Otherwise, fall thru into the TK_COLUMN case */ 3553 } 3554 case TK_COLUMN: { 3555 int iTab = pExpr->iTable; 3556 if( iTab<0 ){ 3557 if( pParse->iSelfTab<0 ){ 3558 /* Generating CHECK constraints or inserting into partial index */ 3559 return pExpr->iColumn - pParse->iSelfTab; 3560 }else{ 3561 /* Coding an expression that is part of an index where column names 3562 ** in the index refer to the table to which the index belongs */ 3563 iTab = pParse->iSelfTab - 1; 3564 } 3565 } 3566 return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 3567 pExpr->iColumn, iTab, target, 3568 pExpr->op2); 3569 } 3570 case TK_INTEGER: { 3571 codeInteger(pParse, pExpr, 0, target); 3572 return target; 3573 } 3574 case TK_TRUEFALSE: { 3575 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3576 return target; 3577 } 3578 #ifndef SQLITE_OMIT_FLOATING_POINT 3579 case TK_FLOAT: { 3580 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3581 codeReal(v, pExpr->u.zToken, 0, target); 3582 return target; 3583 } 3584 #endif 3585 case TK_STRING: { 3586 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3587 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3588 return target; 3589 } 3590 case TK_NULL: { 3591 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3592 return target; 3593 } 3594 #ifndef SQLITE_OMIT_BLOB_LITERAL 3595 case TK_BLOB: { 3596 int n; 3597 const char *z; 3598 char *zBlob; 3599 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3600 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3601 assert( pExpr->u.zToken[1]=='\'' ); 3602 z = &pExpr->u.zToken[2]; 3603 n = sqlite3Strlen30(z) - 1; 3604 assert( z[n]=='\'' ); 3605 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3606 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3607 return target; 3608 } 3609 #endif 3610 case TK_VARIABLE: { 3611 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3612 assert( pExpr->u.zToken!=0 ); 3613 assert( pExpr->u.zToken[0]!=0 ); 3614 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3615 if( pExpr->u.zToken[1]!=0 ){ 3616 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3617 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); 3618 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3619 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3620 } 3621 return target; 3622 } 3623 case TK_REGISTER: { 3624 return pExpr->iTable; 3625 } 3626 #ifndef SQLITE_OMIT_CAST 3627 case TK_CAST: { 3628 /* Expressions of the form: CAST(pLeft AS token) */ 3629 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3630 if( inReg!=target ){ 3631 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3632 inReg = target; 3633 } 3634 sqlite3VdbeAddOp2(v, OP_Cast, target, 3635 sqlite3AffinityType(pExpr->u.zToken, 0)); 3636 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 3637 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 3638 return inReg; 3639 } 3640 #endif /* SQLITE_OMIT_CAST */ 3641 case TK_IS: 3642 case TK_ISNOT: 3643 op = (op==TK_IS) ? TK_EQ : TK_NE; 3644 p5 = SQLITE_NULLEQ; 3645 /* fall-through */ 3646 case TK_LT: 3647 case TK_LE: 3648 case TK_GT: 3649 case TK_GE: 3650 case TK_NE: 3651 case TK_EQ: { 3652 Expr *pLeft = pExpr->pLeft; 3653 if( sqlite3ExprIsVector(pLeft) ){ 3654 codeVectorCompare(pParse, pExpr, target, op, p5); 3655 }else{ 3656 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3657 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3658 codeCompare(pParse, pLeft, pExpr->pRight, op, 3659 r1, r2, inReg, SQLITE_STOREP2 | p5); 3660 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3661 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3662 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3663 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3664 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3665 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3666 testcase( regFree1==0 ); 3667 testcase( regFree2==0 ); 3668 } 3669 break; 3670 } 3671 case TK_AND: 3672 case TK_OR: 3673 case TK_PLUS: 3674 case TK_STAR: 3675 case TK_MINUS: 3676 case TK_REM: 3677 case TK_BITAND: 3678 case TK_BITOR: 3679 case TK_SLASH: 3680 case TK_LSHIFT: 3681 case TK_RSHIFT: 3682 case TK_CONCAT: { 3683 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3684 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3685 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3686 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3687 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3688 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3689 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3690 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3691 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3692 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3693 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3694 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3695 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3696 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3697 testcase( regFree1==0 ); 3698 testcase( regFree2==0 ); 3699 break; 3700 } 3701 case TK_UMINUS: { 3702 Expr *pLeft = pExpr->pLeft; 3703 assert( pLeft ); 3704 if( pLeft->op==TK_INTEGER ){ 3705 codeInteger(pParse, pLeft, 1, target); 3706 return target; 3707 #ifndef SQLITE_OMIT_FLOATING_POINT 3708 }else if( pLeft->op==TK_FLOAT ){ 3709 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3710 codeReal(v, pLeft->u.zToken, 1, target); 3711 return target; 3712 #endif 3713 }else{ 3714 tempX.op = TK_INTEGER; 3715 tempX.flags = EP_IntValue|EP_TokenOnly; 3716 tempX.u.iValue = 0; 3717 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3718 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3719 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3720 testcase( regFree2==0 ); 3721 } 3722 break; 3723 } 3724 case TK_BITNOT: 3725 case TK_NOT: { 3726 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3727 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3728 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3729 testcase( regFree1==0 ); 3730 sqlite3VdbeAddOp2(v, op, r1, inReg); 3731 break; 3732 } 3733 case TK_TRUTH: { 3734 int isTrue; /* IS TRUE or IS NOT TRUE */ 3735 int bNormal; /* IS TRUE or IS FALSE */ 3736 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3737 testcase( regFree1==0 ); 3738 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 3739 bNormal = pExpr->op2==TK_IS; 3740 testcase( isTrue && bNormal); 3741 testcase( !isTrue && bNormal); 3742 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 3743 break; 3744 } 3745 case TK_ISNULL: 3746 case TK_NOTNULL: { 3747 int addr; 3748 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3749 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3750 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3751 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3752 testcase( regFree1==0 ); 3753 addr = sqlite3VdbeAddOp1(v, op, r1); 3754 VdbeCoverageIf(v, op==TK_ISNULL); 3755 VdbeCoverageIf(v, op==TK_NOTNULL); 3756 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3757 sqlite3VdbeJumpHere(v, addr); 3758 break; 3759 } 3760 case TK_AGG_FUNCTION: { 3761 AggInfo *pInfo = pExpr->pAggInfo; 3762 if( pInfo==0 ){ 3763 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3764 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3765 }else{ 3766 return pInfo->aFunc[pExpr->iAgg].iMem; 3767 } 3768 break; 3769 } 3770 case TK_FUNCTION: { 3771 ExprList *pFarg; /* List of function arguments */ 3772 int nFarg; /* Number of function arguments */ 3773 FuncDef *pDef; /* The function definition object */ 3774 const char *zId; /* The function name */ 3775 u32 constMask = 0; /* Mask of function arguments that are constant */ 3776 int i; /* Loop counter */ 3777 sqlite3 *db = pParse->db; /* The database connection */ 3778 u8 enc = ENC(db); /* The text encoding used by this database */ 3779 CollSeq *pColl = 0; /* A collating sequence */ 3780 3781 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3782 /* SQL functions can be expensive. So try to move constant functions 3783 ** out of the inner loop, even if that means an extra OP_Copy. */ 3784 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3785 } 3786 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3787 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3788 pFarg = 0; 3789 }else{ 3790 pFarg = pExpr->x.pList; 3791 } 3792 nFarg = pFarg ? pFarg->nExpr : 0; 3793 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3794 zId = pExpr->u.zToken; 3795 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3796 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3797 if( pDef==0 && pParse->explain ){ 3798 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3799 } 3800 #endif 3801 if( pDef==0 || pDef->xFinalize!=0 ){ 3802 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3803 break; 3804 } 3805 3806 /* Attempt a direct implementation of the built-in COALESCE() and 3807 ** IFNULL() functions. This avoids unnecessary evaluation of 3808 ** arguments past the first non-NULL argument. 3809 */ 3810 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3811 int endCoalesce = sqlite3VdbeMakeLabel(v); 3812 assert( nFarg>=2 ); 3813 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3814 for(i=1; i<nFarg; i++){ 3815 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3816 VdbeCoverage(v); 3817 sqlite3ExprCacheRemove(pParse, target, 1); 3818 sqlite3ExprCachePush(pParse); 3819 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3820 sqlite3ExprCachePop(pParse); 3821 } 3822 sqlite3VdbeResolveLabel(v, endCoalesce); 3823 break; 3824 } 3825 3826 /* The UNLIKELY() function is a no-op. The result is the value 3827 ** of the first argument. 3828 */ 3829 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3830 assert( nFarg>=1 ); 3831 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3832 } 3833 3834 #ifdef SQLITE_DEBUG 3835 /* The AFFINITY() function evaluates to a string that describes 3836 ** the type affinity of the argument. This is used for testing of 3837 ** the SQLite type logic. 3838 */ 3839 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3840 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3841 char aff; 3842 assert( nFarg==1 ); 3843 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3844 sqlite3VdbeLoadString(v, target, 3845 aff ? azAff[aff-SQLITE_AFF_BLOB] : "none"); 3846 return target; 3847 } 3848 #endif 3849 3850 for(i=0; i<nFarg; i++){ 3851 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3852 testcase( i==31 ); 3853 constMask |= MASKBIT32(i); 3854 } 3855 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3856 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3857 } 3858 } 3859 if( pFarg ){ 3860 if( constMask ){ 3861 r1 = pParse->nMem+1; 3862 pParse->nMem += nFarg; 3863 }else{ 3864 r1 = sqlite3GetTempRange(pParse, nFarg); 3865 } 3866 3867 /* For length() and typeof() functions with a column argument, 3868 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3869 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3870 ** loading. 3871 */ 3872 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3873 u8 exprOp; 3874 assert( nFarg==1 ); 3875 assert( pFarg->a[0].pExpr!=0 ); 3876 exprOp = pFarg->a[0].pExpr->op; 3877 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3878 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3879 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3880 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3881 pFarg->a[0].pExpr->op2 = 3882 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3883 } 3884 } 3885 3886 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 3887 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3888 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3889 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 3890 }else{ 3891 r1 = 0; 3892 } 3893 #ifndef SQLITE_OMIT_VIRTUALTABLE 3894 /* Possibly overload the function if the first argument is 3895 ** a virtual table column. 3896 ** 3897 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3898 ** second argument, not the first, as the argument to test to 3899 ** see if it is a column in a virtual table. This is done because 3900 ** the left operand of infix functions (the operand we want to 3901 ** control overloading) ends up as the second argument to the 3902 ** function. The expression "A glob B" is equivalent to 3903 ** "glob(B,A). We want to use the A in "A glob B" to test 3904 ** for function overloading. But we use the B term in "glob(B,A)". 3905 */ 3906 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 3907 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3908 }else if( nFarg>0 ){ 3909 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3910 } 3911 #endif 3912 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3913 if( !pColl ) pColl = db->pDfltColl; 3914 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3915 } 3916 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 3917 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 3918 Expr *pArg = pFarg->a[0].pExpr; 3919 if( pArg->op==TK_COLUMN ){ 3920 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 3921 }else{ 3922 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3923 } 3924 }else 3925 #endif 3926 { 3927 sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0, 3928 constMask, r1, target, (char*)pDef, P4_FUNCDEF); 3929 sqlite3VdbeChangeP5(v, (u8)nFarg); 3930 } 3931 if( nFarg && constMask==0 ){ 3932 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3933 } 3934 return target; 3935 } 3936 #ifndef SQLITE_OMIT_SUBQUERY 3937 case TK_EXISTS: 3938 case TK_SELECT: { 3939 int nCol; 3940 testcase( op==TK_EXISTS ); 3941 testcase( op==TK_SELECT ); 3942 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 3943 sqlite3SubselectError(pParse, nCol, 1); 3944 }else{ 3945 return sqlite3CodeSubselect(pParse, pExpr, 0, 0); 3946 } 3947 break; 3948 } 3949 case TK_SELECT_COLUMN: { 3950 int n; 3951 if( pExpr->pLeft->iTable==0 ){ 3952 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0); 3953 } 3954 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 3955 if( pExpr->iTable 3956 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 3957 ){ 3958 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 3959 pExpr->iTable, n); 3960 } 3961 return pExpr->pLeft->iTable + pExpr->iColumn; 3962 } 3963 case TK_IN: { 3964 int destIfFalse = sqlite3VdbeMakeLabel(v); 3965 int destIfNull = sqlite3VdbeMakeLabel(v); 3966 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3967 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3968 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3969 sqlite3VdbeResolveLabel(v, destIfFalse); 3970 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3971 sqlite3VdbeResolveLabel(v, destIfNull); 3972 return target; 3973 } 3974 #endif /* SQLITE_OMIT_SUBQUERY */ 3975 3976 3977 /* 3978 ** x BETWEEN y AND z 3979 ** 3980 ** This is equivalent to 3981 ** 3982 ** x>=y AND x<=z 3983 ** 3984 ** X is stored in pExpr->pLeft. 3985 ** Y is stored in pExpr->pList->a[0].pExpr. 3986 ** Z is stored in pExpr->pList->a[1].pExpr. 3987 */ 3988 case TK_BETWEEN: { 3989 exprCodeBetween(pParse, pExpr, target, 0, 0); 3990 return target; 3991 } 3992 case TK_SPAN: 3993 case TK_COLLATE: 3994 case TK_UPLUS: { 3995 pExpr = pExpr->pLeft; 3996 goto expr_code_doover; 3997 } 3998 3999 case TK_TRIGGER: { 4000 /* If the opcode is TK_TRIGGER, then the expression is a reference 4001 ** to a column in the new.* or old.* pseudo-tables available to 4002 ** trigger programs. In this case Expr.iTable is set to 1 for the 4003 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4004 ** is set to the column of the pseudo-table to read, or to -1 to 4005 ** read the rowid field. 4006 ** 4007 ** The expression is implemented using an OP_Param opcode. The p1 4008 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4009 ** to reference another column of the old.* pseudo-table, where 4010 ** i is the index of the column. For a new.rowid reference, p1 is 4011 ** set to (n+1), where n is the number of columns in each pseudo-table. 4012 ** For a reference to any other column in the new.* pseudo-table, p1 4013 ** is set to (n+2+i), where n and i are as defined previously. For 4014 ** example, if the table on which triggers are being fired is 4015 ** declared as: 4016 ** 4017 ** CREATE TABLE t1(a, b); 4018 ** 4019 ** Then p1 is interpreted as follows: 4020 ** 4021 ** p1==0 -> old.rowid p1==3 -> new.rowid 4022 ** p1==1 -> old.a p1==4 -> new.a 4023 ** p1==2 -> old.b p1==5 -> new.b 4024 */ 4025 Table *pTab = pExpr->pTab; 4026 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 4027 4028 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4029 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 4030 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 4031 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4032 4033 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4034 VdbeComment((v, "r[%d]=%s.%s", target, 4035 (pExpr->iTable ? "new" : "old"), 4036 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName) 4037 )); 4038 4039 #ifndef SQLITE_OMIT_FLOATING_POINT 4040 /* If the column has REAL affinity, it may currently be stored as an 4041 ** integer. Use OP_RealAffinity to make sure it is really real. 4042 ** 4043 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4044 ** floating point when extracting it from the record. */ 4045 if( pExpr->iColumn>=0 4046 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 4047 ){ 4048 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4049 } 4050 #endif 4051 break; 4052 } 4053 4054 case TK_VECTOR: { 4055 sqlite3ErrorMsg(pParse, "row value misused"); 4056 break; 4057 } 4058 4059 case TK_IF_NULL_ROW: { 4060 int addrINR; 4061 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4062 sqlite3ExprCachePush(pParse); 4063 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4064 sqlite3ExprCachePop(pParse); 4065 sqlite3VdbeJumpHere(v, addrINR); 4066 sqlite3VdbeChangeP3(v, addrINR, inReg); 4067 break; 4068 } 4069 4070 /* 4071 ** Form A: 4072 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4073 ** 4074 ** Form B: 4075 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4076 ** 4077 ** Form A is can be transformed into the equivalent form B as follows: 4078 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4079 ** WHEN x=eN THEN rN ELSE y END 4080 ** 4081 ** X (if it exists) is in pExpr->pLeft. 4082 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4083 ** odd. The Y is also optional. If the number of elements in x.pList 4084 ** is even, then Y is omitted and the "otherwise" result is NULL. 4085 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4086 ** 4087 ** The result of the expression is the Ri for the first matching Ei, 4088 ** or if there is no matching Ei, the ELSE term Y, or if there is 4089 ** no ELSE term, NULL. 4090 */ 4091 default: assert( op==TK_CASE ); { 4092 int endLabel; /* GOTO label for end of CASE stmt */ 4093 int nextCase; /* GOTO label for next WHEN clause */ 4094 int nExpr; /* 2x number of WHEN terms */ 4095 int i; /* Loop counter */ 4096 ExprList *pEList; /* List of WHEN terms */ 4097 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4098 Expr opCompare; /* The X==Ei expression */ 4099 Expr *pX; /* The X expression */ 4100 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4101 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 4102 4103 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4104 assert(pExpr->x.pList->nExpr > 0); 4105 pEList = pExpr->x.pList; 4106 aListelem = pEList->a; 4107 nExpr = pEList->nExpr; 4108 endLabel = sqlite3VdbeMakeLabel(v); 4109 if( (pX = pExpr->pLeft)!=0 ){ 4110 tempX = *pX; 4111 testcase( pX->op==TK_COLUMN ); 4112 exprToRegister(&tempX, exprCodeVector(pParse, &tempX, ®Free1)); 4113 testcase( regFree1==0 ); 4114 memset(&opCompare, 0, sizeof(opCompare)); 4115 opCompare.op = TK_EQ; 4116 opCompare.pLeft = &tempX; 4117 pTest = &opCompare; 4118 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4119 ** The value in regFree1 might get SCopy-ed into the file result. 4120 ** So make sure that the regFree1 register is not reused for other 4121 ** purposes and possibly overwritten. */ 4122 regFree1 = 0; 4123 } 4124 for(i=0; i<nExpr-1; i=i+2){ 4125 sqlite3ExprCachePush(pParse); 4126 if( pX ){ 4127 assert( pTest!=0 ); 4128 opCompare.pRight = aListelem[i].pExpr; 4129 }else{ 4130 pTest = aListelem[i].pExpr; 4131 } 4132 nextCase = sqlite3VdbeMakeLabel(v); 4133 testcase( pTest->op==TK_COLUMN ); 4134 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4135 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4136 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4137 sqlite3VdbeGoto(v, endLabel); 4138 sqlite3ExprCachePop(pParse); 4139 sqlite3VdbeResolveLabel(v, nextCase); 4140 } 4141 if( (nExpr&1)!=0 ){ 4142 sqlite3ExprCachePush(pParse); 4143 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4144 sqlite3ExprCachePop(pParse); 4145 }else{ 4146 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4147 } 4148 assert( pParse->db->mallocFailed || pParse->nErr>0 4149 || pParse->iCacheLevel==iCacheLevel ); 4150 sqlite3VdbeResolveLabel(v, endLabel); 4151 break; 4152 } 4153 #ifndef SQLITE_OMIT_TRIGGER 4154 case TK_RAISE: { 4155 assert( pExpr->affinity==OE_Rollback 4156 || pExpr->affinity==OE_Abort 4157 || pExpr->affinity==OE_Fail 4158 || pExpr->affinity==OE_Ignore 4159 ); 4160 if( !pParse->pTriggerTab ){ 4161 sqlite3ErrorMsg(pParse, 4162 "RAISE() may only be used within a trigger-program"); 4163 return 0; 4164 } 4165 if( pExpr->affinity==OE_Abort ){ 4166 sqlite3MayAbort(pParse); 4167 } 4168 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4169 if( pExpr->affinity==OE_Ignore ){ 4170 sqlite3VdbeAddOp4( 4171 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4172 VdbeCoverage(v); 4173 }else{ 4174 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4175 pExpr->affinity, pExpr->u.zToken, 0, 0); 4176 } 4177 4178 break; 4179 } 4180 #endif 4181 } 4182 sqlite3ReleaseTempReg(pParse, regFree1); 4183 sqlite3ReleaseTempReg(pParse, regFree2); 4184 return inReg; 4185 } 4186 4187 /* 4188 ** Factor out the code of the given expression to initialization time. 4189 ** 4190 ** If regDest>=0 then the result is always stored in that register and the 4191 ** result is not reusable. If regDest<0 then this routine is free to 4192 ** store the value whereever it wants. The register where the expression 4193 ** is stored is returned. When regDest<0, two identical expressions will 4194 ** code to the same register. 4195 */ 4196 int sqlite3ExprCodeAtInit( 4197 Parse *pParse, /* Parsing context */ 4198 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4199 int regDest /* Store the value in this register */ 4200 ){ 4201 ExprList *p; 4202 assert( ConstFactorOk(pParse) ); 4203 p = pParse->pConstExpr; 4204 if( regDest<0 && p ){ 4205 struct ExprList_item *pItem; 4206 int i; 4207 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4208 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4209 return pItem->u.iConstExprReg; 4210 } 4211 } 4212 } 4213 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4214 p = sqlite3ExprListAppend(pParse, p, pExpr); 4215 if( p ){ 4216 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4217 pItem->reusable = regDest<0; 4218 if( regDest<0 ) regDest = ++pParse->nMem; 4219 pItem->u.iConstExprReg = regDest; 4220 } 4221 pParse->pConstExpr = p; 4222 return regDest; 4223 } 4224 4225 /* 4226 ** Generate code to evaluate an expression and store the results 4227 ** into a register. Return the register number where the results 4228 ** are stored. 4229 ** 4230 ** If the register is a temporary register that can be deallocated, 4231 ** then write its number into *pReg. If the result register is not 4232 ** a temporary, then set *pReg to zero. 4233 ** 4234 ** If pExpr is a constant, then this routine might generate this 4235 ** code to fill the register in the initialization section of the 4236 ** VDBE program, in order to factor it out of the evaluation loop. 4237 */ 4238 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4239 int r2; 4240 pExpr = sqlite3ExprSkipCollate(pExpr); 4241 if( ConstFactorOk(pParse) 4242 && pExpr->op!=TK_REGISTER 4243 && sqlite3ExprIsConstantNotJoin(pExpr) 4244 ){ 4245 *pReg = 0; 4246 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4247 }else{ 4248 int r1 = sqlite3GetTempReg(pParse); 4249 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4250 if( r2==r1 ){ 4251 *pReg = r1; 4252 }else{ 4253 sqlite3ReleaseTempReg(pParse, r1); 4254 *pReg = 0; 4255 } 4256 } 4257 return r2; 4258 } 4259 4260 /* 4261 ** Generate code that will evaluate expression pExpr and store the 4262 ** results in register target. The results are guaranteed to appear 4263 ** in register target. 4264 */ 4265 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4266 int inReg; 4267 4268 assert( target>0 && target<=pParse->nMem ); 4269 if( pExpr && pExpr->op==TK_REGISTER ){ 4270 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 4271 }else{ 4272 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4273 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4274 if( inReg!=target && pParse->pVdbe ){ 4275 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4276 } 4277 } 4278 } 4279 4280 /* 4281 ** Make a transient copy of expression pExpr and then code it using 4282 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4283 ** except that the input expression is guaranteed to be unchanged. 4284 */ 4285 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4286 sqlite3 *db = pParse->db; 4287 pExpr = sqlite3ExprDup(db, pExpr, 0); 4288 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4289 sqlite3ExprDelete(db, pExpr); 4290 } 4291 4292 /* 4293 ** Generate code that will evaluate expression pExpr and store the 4294 ** results in register target. The results are guaranteed to appear 4295 ** in register target. If the expression is constant, then this routine 4296 ** might choose to code the expression at initialization time. 4297 */ 4298 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4299 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 4300 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4301 }else{ 4302 sqlite3ExprCode(pParse, pExpr, target); 4303 } 4304 } 4305 4306 /* 4307 ** Generate code that evaluates the given expression and puts the result 4308 ** in register target. 4309 ** 4310 ** Also make a copy of the expression results into another "cache" register 4311 ** and modify the expression so that the next time it is evaluated, 4312 ** the result is a copy of the cache register. 4313 ** 4314 ** This routine is used for expressions that are used multiple 4315 ** times. They are evaluated once and the results of the expression 4316 ** are reused. 4317 */ 4318 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 4319 Vdbe *v = pParse->pVdbe; 4320 int iMem; 4321 4322 assert( target>0 ); 4323 assert( pExpr->op!=TK_REGISTER ); 4324 sqlite3ExprCode(pParse, pExpr, target); 4325 iMem = ++pParse->nMem; 4326 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 4327 exprToRegister(pExpr, iMem); 4328 } 4329 4330 /* 4331 ** Generate code that pushes the value of every element of the given 4332 ** expression list into a sequence of registers beginning at target. 4333 ** 4334 ** Return the number of elements evaluated. The number returned will 4335 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4336 ** is defined. 4337 ** 4338 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4339 ** filled using OP_SCopy. OP_Copy must be used instead. 4340 ** 4341 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4342 ** factored out into initialization code. 4343 ** 4344 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4345 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4346 ** in registers at srcReg, and so the value can be copied from there. 4347 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4348 ** are simply omitted rather than being copied from srcReg. 4349 */ 4350 int sqlite3ExprCodeExprList( 4351 Parse *pParse, /* Parsing context */ 4352 ExprList *pList, /* The expression list to be coded */ 4353 int target, /* Where to write results */ 4354 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4355 u8 flags /* SQLITE_ECEL_* flags */ 4356 ){ 4357 struct ExprList_item *pItem; 4358 int i, j, n; 4359 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4360 Vdbe *v = pParse->pVdbe; 4361 assert( pList!=0 ); 4362 assert( target>0 ); 4363 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4364 n = pList->nExpr; 4365 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4366 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4367 Expr *pExpr = pItem->pExpr; 4368 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4369 if( pItem->bSorterRef ){ 4370 i--; 4371 n--; 4372 }else 4373 #endif 4374 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4375 if( flags & SQLITE_ECEL_OMITREF ){ 4376 i--; 4377 n--; 4378 }else{ 4379 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4380 } 4381 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 4382 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4383 }else{ 4384 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4385 if( inReg!=target+i ){ 4386 VdbeOp *pOp; 4387 if( copyOp==OP_Copy 4388 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4389 && pOp->p1+pOp->p3+1==inReg 4390 && pOp->p2+pOp->p3+1==target+i 4391 ){ 4392 pOp->p3++; 4393 }else{ 4394 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4395 } 4396 } 4397 } 4398 } 4399 return n; 4400 } 4401 4402 /* 4403 ** Generate code for a BETWEEN operator. 4404 ** 4405 ** x BETWEEN y AND z 4406 ** 4407 ** The above is equivalent to 4408 ** 4409 ** x>=y AND x<=z 4410 ** 4411 ** Code it as such, taking care to do the common subexpression 4412 ** elimination of x. 4413 ** 4414 ** The xJumpIf parameter determines details: 4415 ** 4416 ** NULL: Store the boolean result in reg[dest] 4417 ** sqlite3ExprIfTrue: Jump to dest if true 4418 ** sqlite3ExprIfFalse: Jump to dest if false 4419 ** 4420 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4421 */ 4422 static void exprCodeBetween( 4423 Parse *pParse, /* Parsing and code generating context */ 4424 Expr *pExpr, /* The BETWEEN expression */ 4425 int dest, /* Jump destination or storage location */ 4426 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4427 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4428 ){ 4429 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4430 Expr compLeft; /* The x>=y term */ 4431 Expr compRight; /* The x<=z term */ 4432 Expr exprX; /* The x subexpression */ 4433 int regFree1 = 0; /* Temporary use register */ 4434 4435 4436 memset(&compLeft, 0, sizeof(Expr)); 4437 memset(&compRight, 0, sizeof(Expr)); 4438 memset(&exprAnd, 0, sizeof(Expr)); 4439 4440 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4441 exprX = *pExpr->pLeft; 4442 exprAnd.op = TK_AND; 4443 exprAnd.pLeft = &compLeft; 4444 exprAnd.pRight = &compRight; 4445 compLeft.op = TK_GE; 4446 compLeft.pLeft = &exprX; 4447 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4448 compRight.op = TK_LE; 4449 compRight.pLeft = &exprX; 4450 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4451 exprToRegister(&exprX, exprCodeVector(pParse, &exprX, ®Free1)); 4452 if( xJump ){ 4453 xJump(pParse, &exprAnd, dest, jumpIfNull); 4454 }else{ 4455 /* Mark the expression is being from the ON or USING clause of a join 4456 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4457 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4458 ** for clarity, but we are out of bits in the Expr.flags field so we 4459 ** have to reuse the EP_FromJoin bit. Bummer. */ 4460 exprX.flags |= EP_FromJoin; 4461 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4462 } 4463 sqlite3ReleaseTempReg(pParse, regFree1); 4464 4465 /* Ensure adequate test coverage */ 4466 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4467 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4468 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4469 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4470 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4471 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4472 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4473 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4474 testcase( xJump==0 ); 4475 } 4476 4477 /* 4478 ** Generate code for a boolean expression such that a jump is made 4479 ** to the label "dest" if the expression is true but execution 4480 ** continues straight thru if the expression is false. 4481 ** 4482 ** If the expression evaluates to NULL (neither true nor false), then 4483 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4484 ** 4485 ** This code depends on the fact that certain token values (ex: TK_EQ) 4486 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4487 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4488 ** the make process cause these values to align. Assert()s in the code 4489 ** below verify that the numbers are aligned correctly. 4490 */ 4491 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4492 Vdbe *v = pParse->pVdbe; 4493 int op = 0; 4494 int regFree1 = 0; 4495 int regFree2 = 0; 4496 int r1, r2; 4497 4498 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4499 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4500 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4501 op = pExpr->op; 4502 switch( op ){ 4503 case TK_AND: { 4504 int d2 = sqlite3VdbeMakeLabel(v); 4505 testcase( jumpIfNull==0 ); 4506 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 4507 sqlite3ExprCachePush(pParse); 4508 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4509 sqlite3VdbeResolveLabel(v, d2); 4510 sqlite3ExprCachePop(pParse); 4511 break; 4512 } 4513 case TK_OR: { 4514 testcase( jumpIfNull==0 ); 4515 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4516 sqlite3ExprCachePush(pParse); 4517 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4518 sqlite3ExprCachePop(pParse); 4519 break; 4520 } 4521 case TK_NOT: { 4522 testcase( jumpIfNull==0 ); 4523 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4524 break; 4525 } 4526 case TK_TRUTH: { 4527 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4528 int isTrue; /* IS TRUE or IS NOT TRUE */ 4529 testcase( jumpIfNull==0 ); 4530 isNot = pExpr->op2==TK_ISNOT; 4531 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4532 testcase( isTrue && isNot ); 4533 testcase( !isTrue && isNot ); 4534 if( isTrue ^ isNot ){ 4535 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4536 isNot ? SQLITE_JUMPIFNULL : 0); 4537 }else{ 4538 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4539 isNot ? SQLITE_JUMPIFNULL : 0); 4540 } 4541 break; 4542 } 4543 case TK_IS: 4544 case TK_ISNOT: 4545 testcase( op==TK_IS ); 4546 testcase( op==TK_ISNOT ); 4547 op = (op==TK_IS) ? TK_EQ : TK_NE; 4548 jumpIfNull = SQLITE_NULLEQ; 4549 /* Fall thru */ 4550 case TK_LT: 4551 case TK_LE: 4552 case TK_GT: 4553 case TK_GE: 4554 case TK_NE: 4555 case TK_EQ: { 4556 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4557 testcase( jumpIfNull==0 ); 4558 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4559 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4560 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4561 r1, r2, dest, jumpIfNull); 4562 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4563 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4564 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4565 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4566 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4567 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4568 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4569 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4570 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4571 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4572 testcase( regFree1==0 ); 4573 testcase( regFree2==0 ); 4574 break; 4575 } 4576 case TK_ISNULL: 4577 case TK_NOTNULL: { 4578 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4579 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4580 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4581 sqlite3VdbeAddOp2(v, op, r1, dest); 4582 VdbeCoverageIf(v, op==TK_ISNULL); 4583 VdbeCoverageIf(v, op==TK_NOTNULL); 4584 testcase( regFree1==0 ); 4585 break; 4586 } 4587 case TK_BETWEEN: { 4588 testcase( jumpIfNull==0 ); 4589 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4590 break; 4591 } 4592 #ifndef SQLITE_OMIT_SUBQUERY 4593 case TK_IN: { 4594 int destIfFalse = sqlite3VdbeMakeLabel(v); 4595 int destIfNull = jumpIfNull ? dest : destIfFalse; 4596 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4597 sqlite3VdbeGoto(v, dest); 4598 sqlite3VdbeResolveLabel(v, destIfFalse); 4599 break; 4600 } 4601 #endif 4602 default: { 4603 default_expr: 4604 if( exprAlwaysTrue(pExpr) ){ 4605 sqlite3VdbeGoto(v, dest); 4606 }else if( exprAlwaysFalse(pExpr) ){ 4607 /* No-op */ 4608 }else{ 4609 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4610 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4611 VdbeCoverage(v); 4612 testcase( regFree1==0 ); 4613 testcase( jumpIfNull==0 ); 4614 } 4615 break; 4616 } 4617 } 4618 sqlite3ReleaseTempReg(pParse, regFree1); 4619 sqlite3ReleaseTempReg(pParse, regFree2); 4620 } 4621 4622 /* 4623 ** Generate code for a boolean expression such that a jump is made 4624 ** to the label "dest" if the expression is false but execution 4625 ** continues straight thru if the expression is true. 4626 ** 4627 ** If the expression evaluates to NULL (neither true nor false) then 4628 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4629 ** is 0. 4630 */ 4631 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4632 Vdbe *v = pParse->pVdbe; 4633 int op = 0; 4634 int regFree1 = 0; 4635 int regFree2 = 0; 4636 int r1, r2; 4637 4638 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4639 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4640 if( pExpr==0 ) return; 4641 4642 /* The value of pExpr->op and op are related as follows: 4643 ** 4644 ** pExpr->op op 4645 ** --------- ---------- 4646 ** TK_ISNULL OP_NotNull 4647 ** TK_NOTNULL OP_IsNull 4648 ** TK_NE OP_Eq 4649 ** TK_EQ OP_Ne 4650 ** TK_GT OP_Le 4651 ** TK_LE OP_Gt 4652 ** TK_GE OP_Lt 4653 ** TK_LT OP_Ge 4654 ** 4655 ** For other values of pExpr->op, op is undefined and unused. 4656 ** The value of TK_ and OP_ constants are arranged such that we 4657 ** can compute the mapping above using the following expression. 4658 ** Assert()s verify that the computation is correct. 4659 */ 4660 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4661 4662 /* Verify correct alignment of TK_ and OP_ constants 4663 */ 4664 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4665 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4666 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4667 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4668 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4669 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4670 assert( pExpr->op!=TK_GT || op==OP_Le ); 4671 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4672 4673 switch( pExpr->op ){ 4674 case TK_AND: { 4675 testcase( jumpIfNull==0 ); 4676 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4677 sqlite3ExprCachePush(pParse); 4678 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4679 sqlite3ExprCachePop(pParse); 4680 break; 4681 } 4682 case TK_OR: { 4683 int d2 = sqlite3VdbeMakeLabel(v); 4684 testcase( jumpIfNull==0 ); 4685 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 4686 sqlite3ExprCachePush(pParse); 4687 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4688 sqlite3VdbeResolveLabel(v, d2); 4689 sqlite3ExprCachePop(pParse); 4690 break; 4691 } 4692 case TK_NOT: { 4693 testcase( jumpIfNull==0 ); 4694 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4695 break; 4696 } 4697 case TK_TRUTH: { 4698 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4699 int isTrue; /* IS TRUE or IS NOT TRUE */ 4700 testcase( jumpIfNull==0 ); 4701 isNot = pExpr->op2==TK_ISNOT; 4702 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4703 testcase( isTrue && isNot ); 4704 testcase( !isTrue && isNot ); 4705 if( isTrue ^ isNot ){ 4706 /* IS TRUE and IS NOT FALSE */ 4707 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4708 isNot ? 0 : SQLITE_JUMPIFNULL); 4709 4710 }else{ 4711 /* IS FALSE and IS NOT TRUE */ 4712 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4713 isNot ? 0 : SQLITE_JUMPIFNULL); 4714 } 4715 break; 4716 } 4717 case TK_IS: 4718 case TK_ISNOT: 4719 testcase( pExpr->op==TK_IS ); 4720 testcase( pExpr->op==TK_ISNOT ); 4721 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4722 jumpIfNull = SQLITE_NULLEQ; 4723 /* Fall thru */ 4724 case TK_LT: 4725 case TK_LE: 4726 case TK_GT: 4727 case TK_GE: 4728 case TK_NE: 4729 case TK_EQ: { 4730 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4731 testcase( jumpIfNull==0 ); 4732 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4733 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4734 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4735 r1, r2, dest, jumpIfNull); 4736 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4737 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4738 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4739 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4740 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4741 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4742 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4743 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4744 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4745 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4746 testcase( regFree1==0 ); 4747 testcase( regFree2==0 ); 4748 break; 4749 } 4750 case TK_ISNULL: 4751 case TK_NOTNULL: { 4752 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4753 sqlite3VdbeAddOp2(v, op, r1, dest); 4754 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4755 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4756 testcase( regFree1==0 ); 4757 break; 4758 } 4759 case TK_BETWEEN: { 4760 testcase( jumpIfNull==0 ); 4761 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4762 break; 4763 } 4764 #ifndef SQLITE_OMIT_SUBQUERY 4765 case TK_IN: { 4766 if( jumpIfNull ){ 4767 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4768 }else{ 4769 int destIfNull = sqlite3VdbeMakeLabel(v); 4770 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4771 sqlite3VdbeResolveLabel(v, destIfNull); 4772 } 4773 break; 4774 } 4775 #endif 4776 default: { 4777 default_expr: 4778 if( exprAlwaysFalse(pExpr) ){ 4779 sqlite3VdbeGoto(v, dest); 4780 }else if( exprAlwaysTrue(pExpr) ){ 4781 /* no-op */ 4782 }else{ 4783 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4784 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4785 VdbeCoverage(v); 4786 testcase( regFree1==0 ); 4787 testcase( jumpIfNull==0 ); 4788 } 4789 break; 4790 } 4791 } 4792 sqlite3ReleaseTempReg(pParse, regFree1); 4793 sqlite3ReleaseTempReg(pParse, regFree2); 4794 } 4795 4796 /* 4797 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4798 ** code generation, and that copy is deleted after code generation. This 4799 ** ensures that the original pExpr is unchanged. 4800 */ 4801 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4802 sqlite3 *db = pParse->db; 4803 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4804 if( db->mallocFailed==0 ){ 4805 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4806 } 4807 sqlite3ExprDelete(db, pCopy); 4808 } 4809 4810 /* 4811 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 4812 ** type of expression. 4813 ** 4814 ** If pExpr is a simple SQL value - an integer, real, string, blob 4815 ** or NULL value - then the VDBE currently being prepared is configured 4816 ** to re-prepare each time a new value is bound to variable pVar. 4817 ** 4818 ** Additionally, if pExpr is a simple SQL value and the value is the 4819 ** same as that currently bound to variable pVar, non-zero is returned. 4820 ** Otherwise, if the values are not the same or if pExpr is not a simple 4821 ** SQL value, zero is returned. 4822 */ 4823 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 4824 int res = 0; 4825 int iVar; 4826 sqlite3_value *pL, *pR = 0; 4827 4828 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 4829 if( pR ){ 4830 iVar = pVar->iColumn; 4831 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 4832 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 4833 if( pL ){ 4834 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 4835 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 4836 } 4837 res = 0==sqlite3MemCompare(pL, pR, 0); 4838 } 4839 sqlite3ValueFree(pR); 4840 sqlite3ValueFree(pL); 4841 } 4842 4843 return res; 4844 } 4845 4846 /* 4847 ** Do a deep comparison of two expression trees. Return 0 if the two 4848 ** expressions are completely identical. Return 1 if they differ only 4849 ** by a COLLATE operator at the top level. Return 2 if there are differences 4850 ** other than the top-level COLLATE operator. 4851 ** 4852 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4853 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4854 ** 4855 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4856 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4857 ** 4858 ** Sometimes this routine will return 2 even if the two expressions 4859 ** really are equivalent. If we cannot prove that the expressions are 4860 ** identical, we return 2 just to be safe. So if this routine 4861 ** returns 2, then you do not really know for certain if the two 4862 ** expressions are the same. But if you get a 0 or 1 return, then you 4863 ** can be sure the expressions are the same. In the places where 4864 ** this routine is used, it does not hurt to get an extra 2 - that 4865 ** just might result in some slightly slower code. But returning 4866 ** an incorrect 0 or 1 could lead to a malfunction. 4867 ** 4868 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 4869 ** pParse->pReprepare can be matched against literals in pB. The 4870 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 4871 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 4872 ** Argument pParse should normally be NULL. If it is not NULL and pA or 4873 ** pB causes a return value of 2. 4874 */ 4875 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 4876 u32 combinedFlags; 4877 if( pA==0 || pB==0 ){ 4878 return pB==pA ? 0 : 2; 4879 } 4880 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 4881 return 0; 4882 } 4883 combinedFlags = pA->flags | pB->flags; 4884 if( combinedFlags & EP_IntValue ){ 4885 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 4886 return 0; 4887 } 4888 return 2; 4889 } 4890 if( pA->op!=pB->op ){ 4891 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 4892 return 1; 4893 } 4894 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 4895 return 1; 4896 } 4897 return 2; 4898 } 4899 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 4900 if( pA->op==TK_FUNCTION ){ 4901 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4902 }else if( pA->op==TK_COLLATE ){ 4903 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4904 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4905 return 2; 4906 } 4907 } 4908 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4909 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 4910 if( combinedFlags & EP_xIsSelect ) return 2; 4911 if( sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 4912 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 4913 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4914 assert( (combinedFlags & EP_Reduced)==0 ); 4915 if( pA->op!=TK_STRING && pA->op!=TK_TRUEFALSE ){ 4916 if( pA->iColumn!=pB->iColumn ) return 2; 4917 if( pA->iTable!=pB->iTable 4918 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4919 } 4920 } 4921 return 0; 4922 } 4923 4924 /* 4925 ** Compare two ExprList objects. Return 0 if they are identical and 4926 ** non-zero if they differ in any way. 4927 ** 4928 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4929 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4930 ** 4931 ** This routine might return non-zero for equivalent ExprLists. The 4932 ** only consequence will be disabled optimizations. But this routine 4933 ** must never return 0 if the two ExprList objects are different, or 4934 ** a malfunction will result. 4935 ** 4936 ** Two NULL pointers are considered to be the same. But a NULL pointer 4937 ** always differs from a non-NULL pointer. 4938 */ 4939 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4940 int i; 4941 if( pA==0 && pB==0 ) return 0; 4942 if( pA==0 || pB==0 ) return 1; 4943 if( pA->nExpr!=pB->nExpr ) return 1; 4944 for(i=0; i<pA->nExpr; i++){ 4945 Expr *pExprA = pA->a[i].pExpr; 4946 Expr *pExprB = pB->a[i].pExpr; 4947 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 4948 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1; 4949 } 4950 return 0; 4951 } 4952 4953 /* 4954 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 4955 ** are ignored. 4956 */ 4957 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 4958 return sqlite3ExprCompare(0, 4959 sqlite3ExprSkipCollate(pA), 4960 sqlite3ExprSkipCollate(pB), 4961 iTab); 4962 } 4963 4964 /* 4965 ** Return true if we can prove the pE2 will always be true if pE1 is 4966 ** true. Return false if we cannot complete the proof or if pE2 might 4967 ** be false. Examples: 4968 ** 4969 ** pE1: x==5 pE2: x==5 Result: true 4970 ** pE1: x>0 pE2: x==5 Result: false 4971 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 4972 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 4973 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 4974 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 4975 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 4976 ** 4977 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 4978 ** Expr.iTable<0 then assume a table number given by iTab. 4979 ** 4980 ** If pParse is not NULL, then the values of bound variables in pE1 are 4981 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 4982 ** modified to record which bound variables are referenced. If pParse 4983 ** is NULL, then false will be returned if pE1 contains any bound variables. 4984 ** 4985 ** When in doubt, return false. Returning true might give a performance 4986 ** improvement. Returning false might cause a performance reduction, but 4987 ** it will always give the correct answer and is hence always safe. 4988 */ 4989 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 4990 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 4991 return 1; 4992 } 4993 if( pE2->op==TK_OR 4994 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 4995 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 4996 ){ 4997 return 1; 4998 } 4999 if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){ 5000 Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft); 5001 testcase( pX!=pE1->pLeft ); 5002 if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1; 5003 } 5004 return 0; 5005 } 5006 5007 /* 5008 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow(). 5009 ** If the expression node requires that the table at pWalker->iCur 5010 ** have a non-NULL column, then set pWalker->eCode to 1 and abort. 5011 */ 5012 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5013 /* This routine is only called for WHERE clause expressions and so it 5014 ** cannot have any TK_AGG_COLUMN entries because those are only found 5015 ** in HAVING clauses. We can get a TK_AGG_FUNCTION in a WHERE clause, 5016 ** but that is an illegal construct and the query will be rejected at 5017 ** a later stage of processing, so the TK_AGG_FUNCTION case does not 5018 ** need to be considered here. */ 5019 assert( pExpr->op!=TK_AGG_COLUMN ); 5020 testcase( pExpr->op==TK_AGG_FUNCTION ); 5021 5022 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5023 switch( pExpr->op ){ 5024 case TK_ISNOT: 5025 case TK_NOT: 5026 case TK_ISNULL: 5027 case TK_IS: 5028 case TK_OR: 5029 case TK_CASE: 5030 case TK_IN: 5031 case TK_FUNCTION: 5032 testcase( pExpr->op==TK_ISNOT ); 5033 testcase( pExpr->op==TK_NOT ); 5034 testcase( pExpr->op==TK_ISNULL ); 5035 testcase( pExpr->op==TK_IS ); 5036 testcase( pExpr->op==TK_OR ); 5037 testcase( pExpr->op==TK_CASE ); 5038 testcase( pExpr->op==TK_IN ); 5039 testcase( pExpr->op==TK_FUNCTION ); 5040 return WRC_Prune; 5041 case TK_COLUMN: 5042 if( pWalker->u.iCur==pExpr->iTable ){ 5043 pWalker->eCode = 1; 5044 return WRC_Abort; 5045 } 5046 return WRC_Prune; 5047 5048 /* Virtual tables are allowed to use constraints like x=NULL. So 5049 ** a term of the form x=y does not prove that y is not null if x 5050 ** is the column of a virtual table */ 5051 case TK_EQ: 5052 case TK_NE: 5053 case TK_LT: 5054 case TK_LE: 5055 case TK_GT: 5056 case TK_GE: 5057 testcase( pExpr->op==TK_EQ ); 5058 testcase( pExpr->op==TK_NE ); 5059 testcase( pExpr->op==TK_LT ); 5060 testcase( pExpr->op==TK_LE ); 5061 testcase( pExpr->op==TK_GT ); 5062 testcase( pExpr->op==TK_GE ); 5063 if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->pTab)) 5064 || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->pTab)) 5065 ){ 5066 return WRC_Prune; 5067 } 5068 default: 5069 return WRC_Continue; 5070 } 5071 } 5072 5073 /* 5074 ** Return true (non-zero) if expression p can only be true if at least 5075 ** one column of table iTab is non-null. In other words, return true 5076 ** if expression p will always be NULL or false if every column of iTab 5077 ** is NULL. 5078 ** 5079 ** False negatives are acceptable. In other words, it is ok to return 5080 ** zero even if expression p will never be true of every column of iTab 5081 ** is NULL. A false negative is merely a missed optimization opportunity. 5082 ** 5083 ** False positives are not allowed, however. A false positive may result 5084 ** in an incorrect answer. 5085 ** 5086 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5087 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5088 ** 5089 ** This routine is used to check if a LEFT JOIN can be converted into 5090 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5091 ** clause requires that some column of the right table of the LEFT JOIN 5092 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5093 ** ordinary join. 5094 */ 5095 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5096 Walker w; 5097 w.xExprCallback = impliesNotNullRow; 5098 w.xSelectCallback = 0; 5099 w.xSelectCallback2 = 0; 5100 w.eCode = 0; 5101 w.u.iCur = iTab; 5102 sqlite3WalkExpr(&w, p); 5103 return w.eCode; 5104 } 5105 5106 /* 5107 ** An instance of the following structure is used by the tree walker 5108 ** to determine if an expression can be evaluated by reference to the 5109 ** index only, without having to do a search for the corresponding 5110 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5111 ** is the cursor for the table. 5112 */ 5113 struct IdxCover { 5114 Index *pIdx; /* The index to be tested for coverage */ 5115 int iCur; /* Cursor number for the table corresponding to the index */ 5116 }; 5117 5118 /* 5119 ** Check to see if there are references to columns in table 5120 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5121 ** pWalker->u.pIdxCover->pIdx. 5122 */ 5123 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5124 if( pExpr->op==TK_COLUMN 5125 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5126 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5127 ){ 5128 pWalker->eCode = 1; 5129 return WRC_Abort; 5130 } 5131 return WRC_Continue; 5132 } 5133 5134 /* 5135 ** Determine if an index pIdx on table with cursor iCur contains will 5136 ** the expression pExpr. Return true if the index does cover the 5137 ** expression and false if the pExpr expression references table columns 5138 ** that are not found in the index pIdx. 5139 ** 5140 ** An index covering an expression means that the expression can be 5141 ** evaluated using only the index and without having to lookup the 5142 ** corresponding table entry. 5143 */ 5144 int sqlite3ExprCoveredByIndex( 5145 Expr *pExpr, /* The index to be tested */ 5146 int iCur, /* The cursor number for the corresponding table */ 5147 Index *pIdx /* The index that might be used for coverage */ 5148 ){ 5149 Walker w; 5150 struct IdxCover xcov; 5151 memset(&w, 0, sizeof(w)); 5152 xcov.iCur = iCur; 5153 xcov.pIdx = pIdx; 5154 w.xExprCallback = exprIdxCover; 5155 w.u.pIdxCover = &xcov; 5156 sqlite3WalkExpr(&w, pExpr); 5157 return !w.eCode; 5158 } 5159 5160 5161 /* 5162 ** An instance of the following structure is used by the tree walker 5163 ** to count references to table columns in the arguments of an 5164 ** aggregate function, in order to implement the 5165 ** sqlite3FunctionThisSrc() routine. 5166 */ 5167 struct SrcCount { 5168 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5169 int nThis; /* Number of references to columns in pSrcList */ 5170 int nOther; /* Number of references to columns in other FROM clauses */ 5171 }; 5172 5173 /* 5174 ** Count the number of references to columns. 5175 */ 5176 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5177 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 5178 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 5179 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 5180 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 5181 ** NEVER() will need to be removed. */ 5182 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 5183 int i; 5184 struct SrcCount *p = pWalker->u.pSrcCount; 5185 SrcList *pSrc = p->pSrc; 5186 int nSrc = pSrc ? pSrc->nSrc : 0; 5187 for(i=0; i<nSrc; i++){ 5188 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5189 } 5190 if( i<nSrc ){ 5191 p->nThis++; 5192 }else{ 5193 p->nOther++; 5194 } 5195 } 5196 return WRC_Continue; 5197 } 5198 5199 /* 5200 ** Determine if any of the arguments to the pExpr Function reference 5201 ** pSrcList. Return true if they do. Also return true if the function 5202 ** has no arguments or has only constant arguments. Return false if pExpr 5203 ** references columns but not columns of tables found in pSrcList. 5204 */ 5205 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5206 Walker w; 5207 struct SrcCount cnt; 5208 assert( pExpr->op==TK_AGG_FUNCTION ); 5209 w.xExprCallback = exprSrcCount; 5210 w.xSelectCallback = 0; 5211 w.u.pSrcCount = &cnt; 5212 cnt.pSrc = pSrcList; 5213 cnt.nThis = 0; 5214 cnt.nOther = 0; 5215 sqlite3WalkExprList(&w, pExpr->x.pList); 5216 return cnt.nThis>0 || cnt.nOther==0; 5217 } 5218 5219 /* 5220 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5221 ** the new element. Return a negative number if malloc fails. 5222 */ 5223 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5224 int i; 5225 pInfo->aCol = sqlite3ArrayAllocate( 5226 db, 5227 pInfo->aCol, 5228 sizeof(pInfo->aCol[0]), 5229 &pInfo->nColumn, 5230 &i 5231 ); 5232 return i; 5233 } 5234 5235 /* 5236 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5237 ** the new element. Return a negative number if malloc fails. 5238 */ 5239 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5240 int i; 5241 pInfo->aFunc = sqlite3ArrayAllocate( 5242 db, 5243 pInfo->aFunc, 5244 sizeof(pInfo->aFunc[0]), 5245 &pInfo->nFunc, 5246 &i 5247 ); 5248 return i; 5249 } 5250 5251 /* 5252 ** This is the xExprCallback for a tree walker. It is used to 5253 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5254 ** for additional information. 5255 */ 5256 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5257 int i; 5258 NameContext *pNC = pWalker->u.pNC; 5259 Parse *pParse = pNC->pParse; 5260 SrcList *pSrcList = pNC->pSrcList; 5261 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5262 5263 assert( pNC->ncFlags & NC_UAggInfo ); 5264 switch( pExpr->op ){ 5265 case TK_AGG_COLUMN: 5266 case TK_COLUMN: { 5267 testcase( pExpr->op==TK_AGG_COLUMN ); 5268 testcase( pExpr->op==TK_COLUMN ); 5269 /* Check to see if the column is in one of the tables in the FROM 5270 ** clause of the aggregate query */ 5271 if( ALWAYS(pSrcList!=0) ){ 5272 struct SrcList_item *pItem = pSrcList->a; 5273 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5274 struct AggInfo_col *pCol; 5275 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5276 if( pExpr->iTable==pItem->iCursor ){ 5277 /* If we reach this point, it means that pExpr refers to a table 5278 ** that is in the FROM clause of the aggregate query. 5279 ** 5280 ** Make an entry for the column in pAggInfo->aCol[] if there 5281 ** is not an entry there already. 5282 */ 5283 int k; 5284 pCol = pAggInfo->aCol; 5285 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5286 if( pCol->iTable==pExpr->iTable && 5287 pCol->iColumn==pExpr->iColumn ){ 5288 break; 5289 } 5290 } 5291 if( (k>=pAggInfo->nColumn) 5292 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5293 ){ 5294 pCol = &pAggInfo->aCol[k]; 5295 pCol->pTab = pExpr->pTab; 5296 pCol->iTable = pExpr->iTable; 5297 pCol->iColumn = pExpr->iColumn; 5298 pCol->iMem = ++pParse->nMem; 5299 pCol->iSorterColumn = -1; 5300 pCol->pExpr = pExpr; 5301 if( pAggInfo->pGroupBy ){ 5302 int j, n; 5303 ExprList *pGB = pAggInfo->pGroupBy; 5304 struct ExprList_item *pTerm = pGB->a; 5305 n = pGB->nExpr; 5306 for(j=0; j<n; j++, pTerm++){ 5307 Expr *pE = pTerm->pExpr; 5308 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5309 pE->iColumn==pExpr->iColumn ){ 5310 pCol->iSorterColumn = j; 5311 break; 5312 } 5313 } 5314 } 5315 if( pCol->iSorterColumn<0 ){ 5316 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5317 } 5318 } 5319 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5320 ** because it was there before or because we just created it). 5321 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5322 ** pAggInfo->aCol[] entry. 5323 */ 5324 ExprSetVVAProperty(pExpr, EP_NoReduce); 5325 pExpr->pAggInfo = pAggInfo; 5326 pExpr->op = TK_AGG_COLUMN; 5327 pExpr->iAgg = (i16)k; 5328 break; 5329 } /* endif pExpr->iTable==pItem->iCursor */ 5330 } /* end loop over pSrcList */ 5331 } 5332 return WRC_Prune; 5333 } 5334 case TK_AGG_FUNCTION: { 5335 if( (pNC->ncFlags & NC_InAggFunc)==0 5336 && pWalker->walkerDepth==pExpr->op2 5337 ){ 5338 /* Check to see if pExpr is a duplicate of another aggregate 5339 ** function that is already in the pAggInfo structure 5340 */ 5341 struct AggInfo_func *pItem = pAggInfo->aFunc; 5342 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5343 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5344 break; 5345 } 5346 } 5347 if( i>=pAggInfo->nFunc ){ 5348 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5349 */ 5350 u8 enc = ENC(pParse->db); 5351 i = addAggInfoFunc(pParse->db, pAggInfo); 5352 if( i>=0 ){ 5353 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5354 pItem = &pAggInfo->aFunc[i]; 5355 pItem->pExpr = pExpr; 5356 pItem->iMem = ++pParse->nMem; 5357 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5358 pItem->pFunc = sqlite3FindFunction(pParse->db, 5359 pExpr->u.zToken, 5360 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5361 if( pExpr->flags & EP_Distinct ){ 5362 pItem->iDistinct = pParse->nTab++; 5363 }else{ 5364 pItem->iDistinct = -1; 5365 } 5366 } 5367 } 5368 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5369 */ 5370 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5371 ExprSetVVAProperty(pExpr, EP_NoReduce); 5372 pExpr->iAgg = (i16)i; 5373 pExpr->pAggInfo = pAggInfo; 5374 return WRC_Prune; 5375 }else{ 5376 return WRC_Continue; 5377 } 5378 } 5379 } 5380 return WRC_Continue; 5381 } 5382 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5383 UNUSED_PARAMETER(pSelect); 5384 pWalker->walkerDepth++; 5385 return WRC_Continue; 5386 } 5387 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5388 UNUSED_PARAMETER(pSelect); 5389 pWalker->walkerDepth--; 5390 } 5391 5392 /* 5393 ** Analyze the pExpr expression looking for aggregate functions and 5394 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5395 ** points to. Additional entries are made on the AggInfo object as 5396 ** necessary. 5397 ** 5398 ** This routine should only be called after the expression has been 5399 ** analyzed by sqlite3ResolveExprNames(). 5400 */ 5401 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5402 Walker w; 5403 w.xExprCallback = analyzeAggregate; 5404 w.xSelectCallback = analyzeAggregatesInSelect; 5405 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5406 w.walkerDepth = 0; 5407 w.u.pNC = pNC; 5408 assert( pNC->pSrcList!=0 ); 5409 sqlite3WalkExpr(&w, pExpr); 5410 } 5411 5412 /* 5413 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5414 ** expression list. Return the number of errors. 5415 ** 5416 ** If an error is found, the analysis is cut short. 5417 */ 5418 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5419 struct ExprList_item *pItem; 5420 int i; 5421 if( pList ){ 5422 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5423 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5424 } 5425 } 5426 } 5427 5428 /* 5429 ** Allocate a single new register for use to hold some intermediate result. 5430 */ 5431 int sqlite3GetTempReg(Parse *pParse){ 5432 if( pParse->nTempReg==0 ){ 5433 return ++pParse->nMem; 5434 } 5435 return pParse->aTempReg[--pParse->nTempReg]; 5436 } 5437 5438 /* 5439 ** Deallocate a register, making available for reuse for some other 5440 ** purpose. 5441 ** 5442 ** If a register is currently being used by the column cache, then 5443 ** the deallocation is deferred until the column cache line that uses 5444 ** the register becomes stale. 5445 */ 5446 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5447 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5448 int i; 5449 struct yColCache *p; 5450 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 5451 if( p->iReg==iReg ){ 5452 p->tempReg = 1; 5453 return; 5454 } 5455 } 5456 pParse->aTempReg[pParse->nTempReg++] = iReg; 5457 } 5458 } 5459 5460 /* 5461 ** Allocate or deallocate a block of nReg consecutive registers. 5462 */ 5463 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5464 int i, n; 5465 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5466 i = pParse->iRangeReg; 5467 n = pParse->nRangeReg; 5468 if( nReg<=n ){ 5469 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 5470 pParse->iRangeReg += nReg; 5471 pParse->nRangeReg -= nReg; 5472 }else{ 5473 i = pParse->nMem+1; 5474 pParse->nMem += nReg; 5475 } 5476 return i; 5477 } 5478 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5479 if( nReg==1 ){ 5480 sqlite3ReleaseTempReg(pParse, iReg); 5481 return; 5482 } 5483 sqlite3ExprCacheRemove(pParse, iReg, nReg); 5484 if( nReg>pParse->nRangeReg ){ 5485 pParse->nRangeReg = nReg; 5486 pParse->iRangeReg = iReg; 5487 } 5488 } 5489 5490 /* 5491 ** Mark all temporary registers as being unavailable for reuse. 5492 */ 5493 void sqlite3ClearTempRegCache(Parse *pParse){ 5494 pParse->nTempReg = 0; 5495 pParse->nRangeReg = 0; 5496 } 5497 5498 /* 5499 ** Validate that no temporary register falls within the range of 5500 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5501 ** statements. 5502 */ 5503 #ifdef SQLITE_DEBUG 5504 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5505 int i; 5506 if( pParse->nRangeReg>0 5507 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5508 && pParse->iRangeReg <= iLast 5509 ){ 5510 return 0; 5511 } 5512 for(i=0; i<pParse->nTempReg; i++){ 5513 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5514 return 0; 5515 } 5516 } 5517 return 1; 5518 } 5519 #endif /* SQLITE_DEBUG */ 5520